1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "BitcodeReader.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/Bitcode/LLVMBitCodes.h" 16 #include "llvm/IR/AutoUpgrade.h" 17 #include "llvm/IR/Constants.h" 18 #include "llvm/IR/DebugInfoMetadata.h" 19 #include "llvm/IR/DerivedTypes.h" 20 #include "llvm/IR/DiagnosticPrinter.h" 21 #include "llvm/IR/InlineAsm.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/OperandTraits.h" 26 #include "llvm/IR/Operator.h" 27 #include "llvm/Support/DataStream.h" 28 #include "llvm/Support/ManagedStatic.h" 29 #include "llvm/Support/MathExtras.h" 30 #include "llvm/Support/MemoryBuffer.h" 31 #include "llvm/Support/raw_ostream.h" 32 33 using namespace llvm; 34 35 enum { 36 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 37 }; 38 39 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 40 DiagnosticSeverity Severity, 41 const Twine &Msg) 42 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 43 44 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 45 46 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 47 std::error_code EC, const Twine &Message) { 48 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 49 DiagnosticHandler(DI); 50 return EC; 51 } 52 53 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 54 std::error_code EC) { 55 return Error(DiagnosticHandler, EC, EC.message()); 56 } 57 58 std::error_code BitcodeReader::Error(BitcodeError E, const Twine &Message) { 59 return ::Error(DiagnosticHandler, make_error_code(E), Message); 60 } 61 62 std::error_code BitcodeReader::Error(const Twine &Message) { 63 return ::Error(DiagnosticHandler, 64 make_error_code(BitcodeError::CorruptedBitcode), Message); 65 } 66 67 std::error_code BitcodeReader::Error(BitcodeError E) { 68 return ::Error(DiagnosticHandler, make_error_code(E)); 69 } 70 71 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F, 72 LLVMContext &C) { 73 if (F) 74 return F; 75 return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); }; 76 } 77 78 BitcodeReader::BitcodeReader(MemoryBuffer *buffer, LLVMContext &C, 79 DiagnosticHandlerFunction DiagnosticHandler) 80 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 81 TheModule(nullptr), Buffer(buffer), LazyStreamer(nullptr), 82 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 83 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 84 WillMaterializeAllForwardRefs(false) {} 85 86 BitcodeReader::BitcodeReader(DataStreamer *streamer, LLVMContext &C, 87 DiagnosticHandlerFunction DiagnosticHandler) 88 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 89 TheModule(nullptr), Buffer(nullptr), LazyStreamer(streamer), 90 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 91 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 92 WillMaterializeAllForwardRefs(false) {} 93 94 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 95 if (WillMaterializeAllForwardRefs) 96 return std::error_code(); 97 98 // Prevent recursion. 99 WillMaterializeAllForwardRefs = true; 100 101 while (!BasicBlockFwdRefQueue.empty()) { 102 Function *F = BasicBlockFwdRefQueue.front(); 103 BasicBlockFwdRefQueue.pop_front(); 104 assert(F && "Expected valid function"); 105 if (!BasicBlockFwdRefs.count(F)) 106 // Already materialized. 107 continue; 108 109 // Check for a function that isn't materializable to prevent an infinite 110 // loop. When parsing a blockaddress stored in a global variable, there 111 // isn't a trivial way to check if a function will have a body without a 112 // linear search through FunctionsWithBodies, so just check it here. 113 if (!F->isMaterializable()) 114 return Error("Never resolved function from blockaddress"); 115 116 // Try to materialize F. 117 if (std::error_code EC = materialize(F)) 118 return EC; 119 } 120 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 121 122 // Reset state. 123 WillMaterializeAllForwardRefs = false; 124 return std::error_code(); 125 } 126 127 void BitcodeReader::FreeState() { 128 Buffer = nullptr; 129 std::vector<Type*>().swap(TypeList); 130 ValueList.clear(); 131 MDValueList.clear(); 132 std::vector<Comdat *>().swap(ComdatList); 133 134 std::vector<AttributeSet>().swap(MAttributes); 135 std::vector<BasicBlock*>().swap(FunctionBBs); 136 std::vector<Function*>().swap(FunctionsWithBodies); 137 DeferredFunctionInfo.clear(); 138 MDKindMap.clear(); 139 140 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 141 BasicBlockFwdRefQueue.clear(); 142 } 143 144 //===----------------------------------------------------------------------===// 145 // Helper functions to implement forward reference resolution, etc. 146 //===----------------------------------------------------------------------===// 147 148 /// ConvertToString - Convert a string from a record into an std::string, return 149 /// true on failure. 150 template<typename StrTy> 151 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx, 152 StrTy &Result) { 153 if (Idx > Record.size()) 154 return true; 155 156 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 157 Result += (char)Record[i]; 158 return false; 159 } 160 161 static bool hasImplicitComdat(size_t Val) { 162 switch (Val) { 163 default: 164 return false; 165 case 1: // Old WeakAnyLinkage 166 case 4: // Old LinkOnceAnyLinkage 167 case 10: // Old WeakODRLinkage 168 case 11: // Old LinkOnceODRLinkage 169 return true; 170 } 171 } 172 173 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 174 switch (Val) { 175 default: // Map unknown/new linkages to external 176 case 0: 177 return GlobalValue::ExternalLinkage; 178 case 2: 179 return GlobalValue::AppendingLinkage; 180 case 3: 181 return GlobalValue::InternalLinkage; 182 case 5: 183 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 184 case 6: 185 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 186 case 7: 187 return GlobalValue::ExternalWeakLinkage; 188 case 8: 189 return GlobalValue::CommonLinkage; 190 case 9: 191 return GlobalValue::PrivateLinkage; 192 case 12: 193 return GlobalValue::AvailableExternallyLinkage; 194 case 13: 195 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 196 case 14: 197 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 198 case 15: 199 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 200 case 1: // Old value with implicit comdat. 201 case 16: 202 return GlobalValue::WeakAnyLinkage; 203 case 10: // Old value with implicit comdat. 204 case 17: 205 return GlobalValue::WeakODRLinkage; 206 case 4: // Old value with implicit comdat. 207 case 18: 208 return GlobalValue::LinkOnceAnyLinkage; 209 case 11: // Old value with implicit comdat. 210 case 19: 211 return GlobalValue::LinkOnceODRLinkage; 212 } 213 } 214 215 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 216 switch (Val) { 217 default: // Map unknown visibilities to default. 218 case 0: return GlobalValue::DefaultVisibility; 219 case 1: return GlobalValue::HiddenVisibility; 220 case 2: return GlobalValue::ProtectedVisibility; 221 } 222 } 223 224 static GlobalValue::DLLStorageClassTypes 225 GetDecodedDLLStorageClass(unsigned Val) { 226 switch (Val) { 227 default: // Map unknown values to default. 228 case 0: return GlobalValue::DefaultStorageClass; 229 case 1: return GlobalValue::DLLImportStorageClass; 230 case 2: return GlobalValue::DLLExportStorageClass; 231 } 232 } 233 234 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) { 235 switch (Val) { 236 case 0: return GlobalVariable::NotThreadLocal; 237 default: // Map unknown non-zero value to general dynamic. 238 case 1: return GlobalVariable::GeneralDynamicTLSModel; 239 case 2: return GlobalVariable::LocalDynamicTLSModel; 240 case 3: return GlobalVariable::InitialExecTLSModel; 241 case 4: return GlobalVariable::LocalExecTLSModel; 242 } 243 } 244 245 static int GetDecodedCastOpcode(unsigned Val) { 246 switch (Val) { 247 default: return -1; 248 case bitc::CAST_TRUNC : return Instruction::Trunc; 249 case bitc::CAST_ZEXT : return Instruction::ZExt; 250 case bitc::CAST_SEXT : return Instruction::SExt; 251 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 252 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 253 case bitc::CAST_UITOFP : return Instruction::UIToFP; 254 case bitc::CAST_SITOFP : return Instruction::SIToFP; 255 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 256 case bitc::CAST_FPEXT : return Instruction::FPExt; 257 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 258 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 259 case bitc::CAST_BITCAST : return Instruction::BitCast; 260 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 261 } 262 } 263 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) { 264 switch (Val) { 265 default: return -1; 266 case bitc::BINOP_ADD: 267 return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add; 268 case bitc::BINOP_SUB: 269 return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub; 270 case bitc::BINOP_MUL: 271 return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul; 272 case bitc::BINOP_UDIV: return Instruction::UDiv; 273 case bitc::BINOP_SDIV: 274 return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv; 275 case bitc::BINOP_UREM: return Instruction::URem; 276 case bitc::BINOP_SREM: 277 return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem; 278 case bitc::BINOP_SHL: return Instruction::Shl; 279 case bitc::BINOP_LSHR: return Instruction::LShr; 280 case bitc::BINOP_ASHR: return Instruction::AShr; 281 case bitc::BINOP_AND: return Instruction::And; 282 case bitc::BINOP_OR: return Instruction::Or; 283 case bitc::BINOP_XOR: return Instruction::Xor; 284 } 285 } 286 287 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) { 288 switch (Val) { 289 default: return AtomicRMWInst::BAD_BINOP; 290 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 291 case bitc::RMW_ADD: return AtomicRMWInst::Add; 292 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 293 case bitc::RMW_AND: return AtomicRMWInst::And; 294 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 295 case bitc::RMW_OR: return AtomicRMWInst::Or; 296 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 297 case bitc::RMW_MAX: return AtomicRMWInst::Max; 298 case bitc::RMW_MIN: return AtomicRMWInst::Min; 299 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 300 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 301 } 302 } 303 304 static AtomicOrdering GetDecodedOrdering(unsigned Val) { 305 switch (Val) { 306 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 307 case bitc::ORDERING_UNORDERED: return Unordered; 308 case bitc::ORDERING_MONOTONIC: return Monotonic; 309 case bitc::ORDERING_ACQUIRE: return Acquire; 310 case bitc::ORDERING_RELEASE: return Release; 311 case bitc::ORDERING_ACQREL: return AcquireRelease; 312 default: // Map unknown orderings to sequentially-consistent. 313 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 314 } 315 } 316 317 static SynchronizationScope GetDecodedSynchScope(unsigned Val) { 318 switch (Val) { 319 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 320 default: // Map unknown scopes to cross-thread. 321 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 322 } 323 } 324 325 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 326 switch (Val) { 327 default: // Map unknown selection kinds to any. 328 case bitc::COMDAT_SELECTION_KIND_ANY: 329 return Comdat::Any; 330 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 331 return Comdat::ExactMatch; 332 case bitc::COMDAT_SELECTION_KIND_LARGEST: 333 return Comdat::Largest; 334 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 335 return Comdat::NoDuplicates; 336 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 337 return Comdat::SameSize; 338 } 339 } 340 341 static void UpgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 342 switch (Val) { 343 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 344 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 345 } 346 } 347 348 namespace llvm { 349 namespace { 350 /// @brief A class for maintaining the slot number definition 351 /// as a placeholder for the actual definition for forward constants defs. 352 class ConstantPlaceHolder : public ConstantExpr { 353 void operator=(const ConstantPlaceHolder &) LLVM_DELETED_FUNCTION; 354 public: 355 // allocate space for exactly one operand 356 void *operator new(size_t s) { 357 return User::operator new(s, 1); 358 } 359 explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context) 360 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 361 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 362 } 363 364 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 365 static bool classof(const Value *V) { 366 return isa<ConstantExpr>(V) && 367 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 368 } 369 370 371 /// Provide fast operand accessors 372 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 373 }; 374 } 375 376 // FIXME: can we inherit this from ConstantExpr? 377 template <> 378 struct OperandTraits<ConstantPlaceHolder> : 379 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 380 }; 381 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 382 } 383 384 385 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 386 if (Idx == size()) { 387 push_back(V); 388 return; 389 } 390 391 if (Idx >= size()) 392 resize(Idx+1); 393 394 WeakVH &OldV = ValuePtrs[Idx]; 395 if (!OldV) { 396 OldV = V; 397 return; 398 } 399 400 // Handle constants and non-constants (e.g. instrs) differently for 401 // efficiency. 402 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 403 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 404 OldV = V; 405 } else { 406 // If there was a forward reference to this value, replace it. 407 Value *PrevVal = OldV; 408 OldV->replaceAllUsesWith(V); 409 delete PrevVal; 410 } 411 } 412 413 414 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 415 Type *Ty) { 416 if (Idx >= size()) 417 resize(Idx + 1); 418 419 if (Value *V = ValuePtrs[Idx]) { 420 assert(Ty == V->getType() && "Type mismatch in constant table!"); 421 return cast<Constant>(V); 422 } 423 424 // Create and return a placeholder, which will later be RAUW'd. 425 Constant *C = new ConstantPlaceHolder(Ty, Context); 426 ValuePtrs[Idx] = C; 427 return C; 428 } 429 430 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 431 if (Idx >= size()) 432 resize(Idx + 1); 433 434 if (Value *V = ValuePtrs[Idx]) { 435 assert((!Ty || Ty == V->getType()) && "Type mismatch in value table!"); 436 return V; 437 } 438 439 // No type specified, must be invalid reference. 440 if (!Ty) return nullptr; 441 442 // Create and return a placeholder, which will later be RAUW'd. 443 Value *V = new Argument(Ty); 444 ValuePtrs[Idx] = V; 445 return V; 446 } 447 448 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 449 /// resolves any forward references. The idea behind this is that we sometimes 450 /// get constants (such as large arrays) which reference *many* forward ref 451 /// constants. Replacing each of these causes a lot of thrashing when 452 /// building/reuniquing the constant. Instead of doing this, we look at all the 453 /// uses and rewrite all the place holders at once for any constant that uses 454 /// a placeholder. 455 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 456 // Sort the values by-pointer so that they are efficient to look up with a 457 // binary search. 458 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 459 460 SmallVector<Constant*, 64> NewOps; 461 462 while (!ResolveConstants.empty()) { 463 Value *RealVal = operator[](ResolveConstants.back().second); 464 Constant *Placeholder = ResolveConstants.back().first; 465 ResolveConstants.pop_back(); 466 467 // Loop over all users of the placeholder, updating them to reference the 468 // new value. If they reference more than one placeholder, update them all 469 // at once. 470 while (!Placeholder->use_empty()) { 471 auto UI = Placeholder->user_begin(); 472 User *U = *UI; 473 474 // If the using object isn't uniqued, just update the operands. This 475 // handles instructions and initializers for global variables. 476 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 477 UI.getUse().set(RealVal); 478 continue; 479 } 480 481 // Otherwise, we have a constant that uses the placeholder. Replace that 482 // constant with a new constant that has *all* placeholder uses updated. 483 Constant *UserC = cast<Constant>(U); 484 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 485 I != E; ++I) { 486 Value *NewOp; 487 if (!isa<ConstantPlaceHolder>(*I)) { 488 // Not a placeholder reference. 489 NewOp = *I; 490 } else if (*I == Placeholder) { 491 // Common case is that it just references this one placeholder. 492 NewOp = RealVal; 493 } else { 494 // Otherwise, look up the placeholder in ResolveConstants. 495 ResolveConstantsTy::iterator It = 496 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 497 std::pair<Constant*, unsigned>(cast<Constant>(*I), 498 0)); 499 assert(It != ResolveConstants.end() && It->first == *I); 500 NewOp = operator[](It->second); 501 } 502 503 NewOps.push_back(cast<Constant>(NewOp)); 504 } 505 506 // Make the new constant. 507 Constant *NewC; 508 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 509 NewC = ConstantArray::get(UserCA->getType(), NewOps); 510 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 511 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 512 } else if (isa<ConstantVector>(UserC)) { 513 NewC = ConstantVector::get(NewOps); 514 } else { 515 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 516 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 517 } 518 519 UserC->replaceAllUsesWith(NewC); 520 UserC->destroyConstant(); 521 NewOps.clear(); 522 } 523 524 // Update all ValueHandles, they should be the only users at this point. 525 Placeholder->replaceAllUsesWith(RealVal); 526 delete Placeholder; 527 } 528 } 529 530 void BitcodeReaderMDValueList::AssignValue(Metadata *MD, unsigned Idx) { 531 if (Idx == size()) { 532 push_back(MD); 533 return; 534 } 535 536 if (Idx >= size()) 537 resize(Idx+1); 538 539 TrackingMDRef &OldMD = MDValuePtrs[Idx]; 540 if (!OldMD) { 541 OldMD.reset(MD); 542 return; 543 } 544 545 // If there was a forward reference to this value, replace it. 546 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 547 PrevMD->replaceAllUsesWith(MD); 548 --NumFwdRefs; 549 } 550 551 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 552 if (Idx >= size()) 553 resize(Idx + 1); 554 555 if (Metadata *MD = MDValuePtrs[Idx]) 556 return MD; 557 558 // Create and return a placeholder, which will later be RAUW'd. 559 AnyFwdRefs = true; 560 ++NumFwdRefs; 561 Metadata *MD = MDNode::getTemporary(Context, None).release(); 562 MDValuePtrs[Idx].reset(MD); 563 return MD; 564 } 565 566 void BitcodeReaderMDValueList::tryToResolveCycles() { 567 if (!AnyFwdRefs) 568 // Nothing to do. 569 return; 570 571 if (NumFwdRefs) 572 // Still forward references... can't resolve cycles. 573 return; 574 575 // Resolve any cycles. 576 for (auto &MD : MDValuePtrs) { 577 auto *N = dyn_cast_or_null<MDNode>(MD); 578 if (!N) 579 continue; 580 581 assert(!N->isTemporary() && "Unexpected forward reference"); 582 N->resolveCycles(); 583 } 584 } 585 586 Type *BitcodeReader::getTypeByID(unsigned ID) { 587 // The type table size is always specified correctly. 588 if (ID >= TypeList.size()) 589 return nullptr; 590 591 if (Type *Ty = TypeList[ID]) 592 return Ty; 593 594 // If we have a forward reference, the only possible case is when it is to a 595 // named struct. Just create a placeholder for now. 596 return TypeList[ID] = createIdentifiedStructType(Context); 597 } 598 599 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 600 StringRef Name) { 601 auto *Ret = StructType::create(Context, Name); 602 IdentifiedStructTypes.push_back(Ret); 603 return Ret; 604 } 605 606 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 607 auto *Ret = StructType::create(Context); 608 IdentifiedStructTypes.push_back(Ret); 609 return Ret; 610 } 611 612 613 //===----------------------------------------------------------------------===// 614 // Functions for parsing blocks from the bitcode file 615 //===----------------------------------------------------------------------===// 616 617 618 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 619 /// been decoded from the given integer. This function must stay in sync with 620 /// 'encodeLLVMAttributesForBitcode'. 621 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 622 uint64_t EncodedAttrs) { 623 // FIXME: Remove in 4.0. 624 625 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 626 // the bits above 31 down by 11 bits. 627 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 628 assert((!Alignment || isPowerOf2_32(Alignment)) && 629 "Alignment must be a power of two."); 630 631 if (Alignment) 632 B.addAlignmentAttr(Alignment); 633 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 634 (EncodedAttrs & 0xffff)); 635 } 636 637 std::error_code BitcodeReader::ParseAttributeBlock() { 638 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 639 return Error("Invalid record"); 640 641 if (!MAttributes.empty()) 642 return Error("Invalid multiple blocks"); 643 644 SmallVector<uint64_t, 64> Record; 645 646 SmallVector<AttributeSet, 8> Attrs; 647 648 // Read all the records. 649 while (1) { 650 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 651 652 switch (Entry.Kind) { 653 case BitstreamEntry::SubBlock: // Handled for us already. 654 case BitstreamEntry::Error: 655 return Error("Malformed block"); 656 case BitstreamEntry::EndBlock: 657 return std::error_code(); 658 case BitstreamEntry::Record: 659 // The interesting case. 660 break; 661 } 662 663 // Read a record. 664 Record.clear(); 665 switch (Stream.readRecord(Entry.ID, Record)) { 666 default: // Default behavior: ignore. 667 break; 668 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 669 // FIXME: Remove in 4.0. 670 if (Record.size() & 1) 671 return Error("Invalid record"); 672 673 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 674 AttrBuilder B; 675 decodeLLVMAttributesForBitcode(B, Record[i+1]); 676 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 677 } 678 679 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 680 Attrs.clear(); 681 break; 682 } 683 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 684 for (unsigned i = 0, e = Record.size(); i != e; ++i) 685 Attrs.push_back(MAttributeGroups[Record[i]]); 686 687 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 688 Attrs.clear(); 689 break; 690 } 691 } 692 } 693 } 694 695 // Returns Attribute::None on unrecognized codes. 696 static Attribute::AttrKind GetAttrFromCode(uint64_t Code) { 697 switch (Code) { 698 default: 699 return Attribute::None; 700 case bitc::ATTR_KIND_ALIGNMENT: 701 return Attribute::Alignment; 702 case bitc::ATTR_KIND_ALWAYS_INLINE: 703 return Attribute::AlwaysInline; 704 case bitc::ATTR_KIND_BUILTIN: 705 return Attribute::Builtin; 706 case bitc::ATTR_KIND_BY_VAL: 707 return Attribute::ByVal; 708 case bitc::ATTR_KIND_IN_ALLOCA: 709 return Attribute::InAlloca; 710 case bitc::ATTR_KIND_COLD: 711 return Attribute::Cold; 712 case bitc::ATTR_KIND_INLINE_HINT: 713 return Attribute::InlineHint; 714 case bitc::ATTR_KIND_IN_REG: 715 return Attribute::InReg; 716 case bitc::ATTR_KIND_JUMP_TABLE: 717 return Attribute::JumpTable; 718 case bitc::ATTR_KIND_MIN_SIZE: 719 return Attribute::MinSize; 720 case bitc::ATTR_KIND_NAKED: 721 return Attribute::Naked; 722 case bitc::ATTR_KIND_NEST: 723 return Attribute::Nest; 724 case bitc::ATTR_KIND_NO_ALIAS: 725 return Attribute::NoAlias; 726 case bitc::ATTR_KIND_NO_BUILTIN: 727 return Attribute::NoBuiltin; 728 case bitc::ATTR_KIND_NO_CAPTURE: 729 return Attribute::NoCapture; 730 case bitc::ATTR_KIND_NO_DUPLICATE: 731 return Attribute::NoDuplicate; 732 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 733 return Attribute::NoImplicitFloat; 734 case bitc::ATTR_KIND_NO_INLINE: 735 return Attribute::NoInline; 736 case bitc::ATTR_KIND_NON_LAZY_BIND: 737 return Attribute::NonLazyBind; 738 case bitc::ATTR_KIND_NON_NULL: 739 return Attribute::NonNull; 740 case bitc::ATTR_KIND_DEREFERENCEABLE: 741 return Attribute::Dereferenceable; 742 case bitc::ATTR_KIND_NO_RED_ZONE: 743 return Attribute::NoRedZone; 744 case bitc::ATTR_KIND_NO_RETURN: 745 return Attribute::NoReturn; 746 case bitc::ATTR_KIND_NO_UNWIND: 747 return Attribute::NoUnwind; 748 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 749 return Attribute::OptimizeForSize; 750 case bitc::ATTR_KIND_OPTIMIZE_NONE: 751 return Attribute::OptimizeNone; 752 case bitc::ATTR_KIND_READ_NONE: 753 return Attribute::ReadNone; 754 case bitc::ATTR_KIND_READ_ONLY: 755 return Attribute::ReadOnly; 756 case bitc::ATTR_KIND_RETURNED: 757 return Attribute::Returned; 758 case bitc::ATTR_KIND_RETURNS_TWICE: 759 return Attribute::ReturnsTwice; 760 case bitc::ATTR_KIND_S_EXT: 761 return Attribute::SExt; 762 case bitc::ATTR_KIND_STACK_ALIGNMENT: 763 return Attribute::StackAlignment; 764 case bitc::ATTR_KIND_STACK_PROTECT: 765 return Attribute::StackProtect; 766 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 767 return Attribute::StackProtectReq; 768 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 769 return Attribute::StackProtectStrong; 770 case bitc::ATTR_KIND_STRUCT_RET: 771 return Attribute::StructRet; 772 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 773 return Attribute::SanitizeAddress; 774 case bitc::ATTR_KIND_SANITIZE_THREAD: 775 return Attribute::SanitizeThread; 776 case bitc::ATTR_KIND_SANITIZE_MEMORY: 777 return Attribute::SanitizeMemory; 778 case bitc::ATTR_KIND_UW_TABLE: 779 return Attribute::UWTable; 780 case bitc::ATTR_KIND_Z_EXT: 781 return Attribute::ZExt; 782 } 783 } 784 785 std::error_code BitcodeReader::ParseAttrKind(uint64_t Code, 786 Attribute::AttrKind *Kind) { 787 *Kind = GetAttrFromCode(Code); 788 if (*Kind == Attribute::None) 789 return Error(BitcodeError::CorruptedBitcode, 790 "Unknown attribute kind (" + Twine(Code) + ")"); 791 return std::error_code(); 792 } 793 794 std::error_code BitcodeReader::ParseAttributeGroupBlock() { 795 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 796 return Error("Invalid record"); 797 798 if (!MAttributeGroups.empty()) 799 return Error("Invalid multiple blocks"); 800 801 SmallVector<uint64_t, 64> Record; 802 803 // Read all the records. 804 while (1) { 805 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 806 807 switch (Entry.Kind) { 808 case BitstreamEntry::SubBlock: // Handled for us already. 809 case BitstreamEntry::Error: 810 return Error("Malformed block"); 811 case BitstreamEntry::EndBlock: 812 return std::error_code(); 813 case BitstreamEntry::Record: 814 // The interesting case. 815 break; 816 } 817 818 // Read a record. 819 Record.clear(); 820 switch (Stream.readRecord(Entry.ID, Record)) { 821 default: // Default behavior: ignore. 822 break; 823 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 824 if (Record.size() < 3) 825 return Error("Invalid record"); 826 827 uint64_t GrpID = Record[0]; 828 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 829 830 AttrBuilder B; 831 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 832 if (Record[i] == 0) { // Enum attribute 833 Attribute::AttrKind Kind; 834 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 835 return EC; 836 837 B.addAttribute(Kind); 838 } else if (Record[i] == 1) { // Integer attribute 839 Attribute::AttrKind Kind; 840 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 841 return EC; 842 if (Kind == Attribute::Alignment) 843 B.addAlignmentAttr(Record[++i]); 844 else if (Kind == Attribute::StackAlignment) 845 B.addStackAlignmentAttr(Record[++i]); 846 else if (Kind == Attribute::Dereferenceable) 847 B.addDereferenceableAttr(Record[++i]); 848 } else { // String attribute 849 assert((Record[i] == 3 || Record[i] == 4) && 850 "Invalid attribute group entry"); 851 bool HasValue = (Record[i++] == 4); 852 SmallString<64> KindStr; 853 SmallString<64> ValStr; 854 855 while (Record[i] != 0 && i != e) 856 KindStr += Record[i++]; 857 assert(Record[i] == 0 && "Kind string not null terminated"); 858 859 if (HasValue) { 860 // Has a value associated with it. 861 ++i; // Skip the '0' that terminates the "kind" string. 862 while (Record[i] != 0 && i != e) 863 ValStr += Record[i++]; 864 assert(Record[i] == 0 && "Value string not null terminated"); 865 } 866 867 B.addAttribute(KindStr.str(), ValStr.str()); 868 } 869 } 870 871 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 872 break; 873 } 874 } 875 } 876 } 877 878 std::error_code BitcodeReader::ParseTypeTable() { 879 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 880 return Error("Invalid record"); 881 882 return ParseTypeTableBody(); 883 } 884 885 std::error_code BitcodeReader::ParseTypeTableBody() { 886 if (!TypeList.empty()) 887 return Error("Invalid multiple blocks"); 888 889 SmallVector<uint64_t, 64> Record; 890 unsigned NumRecords = 0; 891 892 SmallString<64> TypeName; 893 894 // Read all the records for this type table. 895 while (1) { 896 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 897 898 switch (Entry.Kind) { 899 case BitstreamEntry::SubBlock: // Handled for us already. 900 case BitstreamEntry::Error: 901 return Error("Malformed block"); 902 case BitstreamEntry::EndBlock: 903 if (NumRecords != TypeList.size()) 904 return Error("Malformed block"); 905 return std::error_code(); 906 case BitstreamEntry::Record: 907 // The interesting case. 908 break; 909 } 910 911 // Read a record. 912 Record.clear(); 913 Type *ResultTy = nullptr; 914 switch (Stream.readRecord(Entry.ID, Record)) { 915 default: 916 return Error("Invalid value"); 917 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 918 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 919 // type list. This allows us to reserve space. 920 if (Record.size() < 1) 921 return Error("Invalid record"); 922 TypeList.resize(Record[0]); 923 continue; 924 case bitc::TYPE_CODE_VOID: // VOID 925 ResultTy = Type::getVoidTy(Context); 926 break; 927 case bitc::TYPE_CODE_HALF: // HALF 928 ResultTy = Type::getHalfTy(Context); 929 break; 930 case bitc::TYPE_CODE_FLOAT: // FLOAT 931 ResultTy = Type::getFloatTy(Context); 932 break; 933 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 934 ResultTy = Type::getDoubleTy(Context); 935 break; 936 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 937 ResultTy = Type::getX86_FP80Ty(Context); 938 break; 939 case bitc::TYPE_CODE_FP128: // FP128 940 ResultTy = Type::getFP128Ty(Context); 941 break; 942 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 943 ResultTy = Type::getPPC_FP128Ty(Context); 944 break; 945 case bitc::TYPE_CODE_LABEL: // LABEL 946 ResultTy = Type::getLabelTy(Context); 947 break; 948 case bitc::TYPE_CODE_METADATA: // METADATA 949 ResultTy = Type::getMetadataTy(Context); 950 break; 951 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 952 ResultTy = Type::getX86_MMXTy(Context); 953 break; 954 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 955 if (Record.size() < 1) 956 return Error("Invalid record"); 957 958 uint64_t NumBits = Record[0]; 959 if (NumBits < IntegerType::MIN_INT_BITS || 960 NumBits > IntegerType::MAX_INT_BITS) 961 return Error("Bitwidth for integer type out of range"); 962 ResultTy = IntegerType::get(Context, NumBits); 963 break; 964 } 965 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 966 // [pointee type, address space] 967 if (Record.size() < 1) 968 return Error("Invalid record"); 969 unsigned AddressSpace = 0; 970 if (Record.size() == 2) 971 AddressSpace = Record[1]; 972 ResultTy = getTypeByID(Record[0]); 973 if (!ResultTy) 974 return Error("Invalid type"); 975 ResultTy = PointerType::get(ResultTy, AddressSpace); 976 break; 977 } 978 case bitc::TYPE_CODE_FUNCTION_OLD: { 979 // FIXME: attrid is dead, remove it in LLVM 4.0 980 // FUNCTION: [vararg, attrid, retty, paramty x N] 981 if (Record.size() < 3) 982 return Error("Invalid record"); 983 SmallVector<Type*, 8> ArgTys; 984 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 985 if (Type *T = getTypeByID(Record[i])) 986 ArgTys.push_back(T); 987 else 988 break; 989 } 990 991 ResultTy = getTypeByID(Record[2]); 992 if (!ResultTy || ArgTys.size() < Record.size()-3) 993 return Error("Invalid type"); 994 995 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 996 break; 997 } 998 case bitc::TYPE_CODE_FUNCTION: { 999 // FUNCTION: [vararg, retty, paramty x N] 1000 if (Record.size() < 2) 1001 return Error("Invalid record"); 1002 SmallVector<Type*, 8> ArgTys; 1003 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1004 if (Type *T = getTypeByID(Record[i])) 1005 ArgTys.push_back(T); 1006 else 1007 break; 1008 } 1009 1010 ResultTy = getTypeByID(Record[1]); 1011 if (!ResultTy || ArgTys.size() < Record.size()-2) 1012 return Error("Invalid type"); 1013 1014 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1015 break; 1016 } 1017 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1018 if (Record.size() < 1) 1019 return Error("Invalid record"); 1020 SmallVector<Type*, 8> EltTys; 1021 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1022 if (Type *T = getTypeByID(Record[i])) 1023 EltTys.push_back(T); 1024 else 1025 break; 1026 } 1027 if (EltTys.size() != Record.size()-1) 1028 return Error("Invalid type"); 1029 ResultTy = StructType::get(Context, EltTys, Record[0]); 1030 break; 1031 } 1032 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1033 if (ConvertToString(Record, 0, TypeName)) 1034 return Error("Invalid record"); 1035 continue; 1036 1037 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1038 if (Record.size() < 1) 1039 return Error("Invalid record"); 1040 1041 if (NumRecords >= TypeList.size()) 1042 return Error("Invalid TYPE table"); 1043 1044 // Check to see if this was forward referenced, if so fill in the temp. 1045 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1046 if (Res) { 1047 Res->setName(TypeName); 1048 TypeList[NumRecords] = nullptr; 1049 } else // Otherwise, create a new struct. 1050 Res = createIdentifiedStructType(Context, TypeName); 1051 TypeName.clear(); 1052 1053 SmallVector<Type*, 8> EltTys; 1054 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1055 if (Type *T = getTypeByID(Record[i])) 1056 EltTys.push_back(T); 1057 else 1058 break; 1059 } 1060 if (EltTys.size() != Record.size()-1) 1061 return Error("Invalid record"); 1062 Res->setBody(EltTys, Record[0]); 1063 ResultTy = Res; 1064 break; 1065 } 1066 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1067 if (Record.size() != 1) 1068 return Error("Invalid record"); 1069 1070 if (NumRecords >= TypeList.size()) 1071 return Error("Invalid TYPE table"); 1072 1073 // Check to see if this was forward referenced, if so fill in the temp. 1074 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1075 if (Res) { 1076 Res->setName(TypeName); 1077 TypeList[NumRecords] = nullptr; 1078 } else // Otherwise, create a new struct with no body. 1079 Res = createIdentifiedStructType(Context, TypeName); 1080 TypeName.clear(); 1081 ResultTy = Res; 1082 break; 1083 } 1084 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1085 if (Record.size() < 2) 1086 return Error("Invalid record"); 1087 if ((ResultTy = getTypeByID(Record[1]))) 1088 ResultTy = ArrayType::get(ResultTy, Record[0]); 1089 else 1090 return Error("Invalid type"); 1091 break; 1092 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1093 if (Record.size() < 2) 1094 return Error("Invalid record"); 1095 if ((ResultTy = getTypeByID(Record[1]))) 1096 ResultTy = VectorType::get(ResultTy, Record[0]); 1097 else 1098 return Error("Invalid type"); 1099 break; 1100 } 1101 1102 if (NumRecords >= TypeList.size()) 1103 return Error("Invalid TYPE table"); 1104 if (TypeList[NumRecords]) 1105 return Error( 1106 "Invalid TYPE table: Only named structs can be forward referenced"); 1107 assert(ResultTy && "Didn't read a type?"); 1108 TypeList[NumRecords++] = ResultTy; 1109 } 1110 } 1111 1112 std::error_code BitcodeReader::ParseValueSymbolTable() { 1113 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1114 return Error("Invalid record"); 1115 1116 SmallVector<uint64_t, 64> Record; 1117 1118 Triple TT(TheModule->getTargetTriple()); 1119 1120 // Read all the records for this value table. 1121 SmallString<128> ValueName; 1122 while (1) { 1123 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1124 1125 switch (Entry.Kind) { 1126 case BitstreamEntry::SubBlock: // Handled for us already. 1127 case BitstreamEntry::Error: 1128 return Error("Malformed block"); 1129 case BitstreamEntry::EndBlock: 1130 return std::error_code(); 1131 case BitstreamEntry::Record: 1132 // The interesting case. 1133 break; 1134 } 1135 1136 // Read a record. 1137 Record.clear(); 1138 switch (Stream.readRecord(Entry.ID, Record)) { 1139 default: // Default behavior: unknown type. 1140 break; 1141 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1142 if (ConvertToString(Record, 1, ValueName)) 1143 return Error("Invalid record"); 1144 unsigned ValueID = Record[0]; 1145 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1146 return Error("Invalid record"); 1147 Value *V = ValueList[ValueID]; 1148 1149 V->setName(StringRef(ValueName.data(), ValueName.size())); 1150 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1151 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1152 if (TT.isOSBinFormatMachO()) 1153 GO->setComdat(nullptr); 1154 else 1155 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1156 } 1157 } 1158 ValueName.clear(); 1159 break; 1160 } 1161 case bitc::VST_CODE_BBENTRY: { 1162 if (ConvertToString(Record, 1, ValueName)) 1163 return Error("Invalid record"); 1164 BasicBlock *BB = getBasicBlock(Record[0]); 1165 if (!BB) 1166 return Error("Invalid record"); 1167 1168 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1169 ValueName.clear(); 1170 break; 1171 } 1172 } 1173 } 1174 } 1175 1176 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1177 1178 std::error_code BitcodeReader::ParseMetadata() { 1179 unsigned NextMDValueNo = MDValueList.size(); 1180 1181 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1182 return Error("Invalid record"); 1183 1184 SmallVector<uint64_t, 64> Record; 1185 1186 auto getMD = 1187 [&](unsigned ID) -> Metadata *{ return MDValueList.getValueFwdRef(ID); }; 1188 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1189 if (ID) 1190 return getMD(ID - 1); 1191 return nullptr; 1192 }; 1193 auto getMDString = [&](unsigned ID) -> MDString *{ 1194 // This requires that the ID is not really a forward reference. In 1195 // particular, the MDString must already have been resolved. 1196 return cast_or_null<MDString>(getMDOrNull(ID)); 1197 }; 1198 1199 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1200 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1201 1202 // Read all the records. 1203 while (1) { 1204 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1205 1206 switch (Entry.Kind) { 1207 case BitstreamEntry::SubBlock: // Handled for us already. 1208 case BitstreamEntry::Error: 1209 return Error("Malformed block"); 1210 case BitstreamEntry::EndBlock: 1211 MDValueList.tryToResolveCycles(); 1212 return std::error_code(); 1213 case BitstreamEntry::Record: 1214 // The interesting case. 1215 break; 1216 } 1217 1218 // Read a record. 1219 Record.clear(); 1220 unsigned Code = Stream.readRecord(Entry.ID, Record); 1221 bool IsDistinct = false; 1222 switch (Code) { 1223 default: // Default behavior: ignore. 1224 break; 1225 case bitc::METADATA_NAME: { 1226 // Read name of the named metadata. 1227 SmallString<8> Name(Record.begin(), Record.end()); 1228 Record.clear(); 1229 Code = Stream.ReadCode(); 1230 1231 // METADATA_NAME is always followed by METADATA_NAMED_NODE. 1232 unsigned NextBitCode = Stream.readRecord(Code, Record); 1233 assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode; 1234 1235 // Read named metadata elements. 1236 unsigned Size = Record.size(); 1237 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1238 for (unsigned i = 0; i != Size; ++i) { 1239 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1240 if (!MD) 1241 return Error("Invalid record"); 1242 NMD->addOperand(MD); 1243 } 1244 break; 1245 } 1246 case bitc::METADATA_OLD_FN_NODE: { 1247 // FIXME: Remove in 4.0. 1248 // This is a LocalAsMetadata record, the only type of function-local 1249 // metadata. 1250 if (Record.size() % 2 == 1) 1251 return Error("Invalid record"); 1252 1253 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1254 // to be legal, but there's no upgrade path. 1255 auto dropRecord = [&] { 1256 MDValueList.AssignValue(MDNode::get(Context, None), NextMDValueNo++); 1257 }; 1258 if (Record.size() != 2) { 1259 dropRecord(); 1260 break; 1261 } 1262 1263 Type *Ty = getTypeByID(Record[0]); 1264 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1265 dropRecord(); 1266 break; 1267 } 1268 1269 MDValueList.AssignValue( 1270 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1271 NextMDValueNo++); 1272 break; 1273 } 1274 case bitc::METADATA_OLD_NODE: { 1275 // FIXME: Remove in 4.0. 1276 if (Record.size() % 2 == 1) 1277 return Error("Invalid record"); 1278 1279 unsigned Size = Record.size(); 1280 SmallVector<Metadata *, 8> Elts; 1281 for (unsigned i = 0; i != Size; i += 2) { 1282 Type *Ty = getTypeByID(Record[i]); 1283 if (!Ty) 1284 return Error("Invalid record"); 1285 if (Ty->isMetadataTy()) 1286 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1287 else if (!Ty->isVoidTy()) { 1288 auto *MD = 1289 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 1290 assert(isa<ConstantAsMetadata>(MD) && 1291 "Expected non-function-local metadata"); 1292 Elts.push_back(MD); 1293 } else 1294 Elts.push_back(nullptr); 1295 } 1296 MDValueList.AssignValue(MDNode::get(Context, Elts), NextMDValueNo++); 1297 break; 1298 } 1299 case bitc::METADATA_VALUE: { 1300 if (Record.size() != 2) 1301 return Error("Invalid record"); 1302 1303 Type *Ty = getTypeByID(Record[0]); 1304 if (Ty->isMetadataTy() || Ty->isVoidTy()) 1305 return Error("Invalid record"); 1306 1307 MDValueList.AssignValue( 1308 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1309 NextMDValueNo++); 1310 break; 1311 } 1312 case bitc::METADATA_DISTINCT_NODE: 1313 IsDistinct = true; 1314 // fallthrough... 1315 case bitc::METADATA_NODE: { 1316 SmallVector<Metadata *, 8> Elts; 1317 Elts.reserve(Record.size()); 1318 for (unsigned ID : Record) 1319 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); 1320 MDValueList.AssignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 1321 : MDNode::get(Context, Elts), 1322 NextMDValueNo++); 1323 break; 1324 } 1325 case bitc::METADATA_LOCATION: { 1326 if (Record.size() != 5) 1327 return Error("Invalid record"); 1328 1329 auto get = Record[0] ? MDLocation::getDistinct : MDLocation::get; 1330 unsigned Line = Record[1]; 1331 unsigned Column = Record[2]; 1332 MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3])); 1333 Metadata *InlinedAt = 1334 Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr; 1335 MDValueList.AssignValue(get(Context, Line, Column, Scope, InlinedAt), 1336 NextMDValueNo++); 1337 break; 1338 } 1339 case bitc::METADATA_GENERIC_DEBUG: { 1340 if (Record.size() < 4) 1341 return Error("Invalid record"); 1342 1343 unsigned Tag = Record[1]; 1344 unsigned Version = Record[2]; 1345 1346 if (Tag >= 1u << 16 || Version != 0) 1347 return Error("Invalid record"); 1348 1349 auto *Header = getMDString(Record[3]); 1350 SmallVector<Metadata *, 8> DwarfOps; 1351 for (unsigned I = 4, E = Record.size(); I != E; ++I) 1352 DwarfOps.push_back(Record[I] ? MDValueList.getValueFwdRef(Record[I] - 1) 1353 : nullptr); 1354 MDValueList.AssignValue(GET_OR_DISTINCT(GenericDebugNode, Record[0], 1355 (Context, Tag, Header, DwarfOps)), 1356 NextMDValueNo++); 1357 break; 1358 } 1359 case bitc::METADATA_SUBRANGE: { 1360 if (Record.size() != 3) 1361 return Error("Invalid record"); 1362 1363 MDValueList.AssignValue( 1364 GET_OR_DISTINCT(MDSubrange, Record[0], 1365 (Context, Record[1], unrotateSign(Record[2]))), 1366 NextMDValueNo++); 1367 break; 1368 } 1369 case bitc::METADATA_ENUMERATOR: { 1370 if (Record.size() != 3) 1371 return Error("Invalid record"); 1372 1373 MDValueList.AssignValue(GET_OR_DISTINCT(MDEnumerator, Record[0], 1374 (Context, unrotateSign(Record[1]), 1375 getMDString(Record[2]))), 1376 NextMDValueNo++); 1377 break; 1378 } 1379 case bitc::METADATA_BASIC_TYPE: { 1380 if (Record.size() != 6) 1381 return Error("Invalid record"); 1382 1383 MDValueList.AssignValue( 1384 GET_OR_DISTINCT(MDBasicType, Record[0], 1385 (Context, Record[1], getMDString(Record[2]), 1386 Record[3], Record[4], Record[5])), 1387 NextMDValueNo++); 1388 break; 1389 } 1390 case bitc::METADATA_DERIVED_TYPE: { 1391 if (Record.size() != 12) 1392 return Error("Invalid record"); 1393 1394 MDValueList.AssignValue( 1395 GET_OR_DISTINCT(MDDerivedType, Record[0], 1396 (Context, Record[1], getMDString(Record[2]), 1397 getMDOrNull(Record[3]), Record[4], 1398 getMDOrNull(Record[5]), getMD(Record[6]), Record[7], 1399 Record[8], Record[9], Record[10], 1400 getMDOrNull(Record[11]))), 1401 NextMDValueNo++); 1402 break; 1403 } 1404 case bitc::METADATA_COMPOSITE_TYPE: { 1405 if (Record.size() != 16) 1406 return Error("Invalid record"); 1407 1408 MDValueList.AssignValue( 1409 GET_OR_DISTINCT(MDCompositeType, Record[0], 1410 (Context, Record[1], getMDString(Record[2]), 1411 getMDOrNull(Record[3]), Record[4], 1412 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 1413 Record[7], Record[8], Record[9], Record[10], 1414 getMDOrNull(Record[11]), Record[12], 1415 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 1416 getMDString(Record[15]))), 1417 NextMDValueNo++); 1418 break; 1419 } 1420 case bitc::METADATA_SUBROUTINE_TYPE: { 1421 if (Record.size() != 3) 1422 return Error("Invalid record"); 1423 1424 MDValueList.AssignValue( 1425 GET_OR_DISTINCT(MDSubroutineType, Record[0], 1426 (Context, Record[1], getMDOrNull(Record[2]))), 1427 NextMDValueNo++); 1428 break; 1429 } 1430 case bitc::METADATA_FILE: { 1431 if (Record.size() != 3) 1432 return Error("Invalid record"); 1433 1434 MDValueList.AssignValue( 1435 GET_OR_DISTINCT(MDFile, Record[0], (Context, getMDString(Record[1]), 1436 getMDString(Record[2]))), 1437 NextMDValueNo++); 1438 break; 1439 } 1440 case bitc::METADATA_COMPILE_UNIT: { 1441 if (Record.size() != 14) 1442 return Error("Invalid record"); 1443 1444 MDValueList.AssignValue( 1445 GET_OR_DISTINCT( 1446 MDCompileUnit, Record[0], 1447 (Context, Record[1], getMD(Record[2]), getMDString(Record[3]), 1448 Record[4], getMDString(Record[5]), Record[6], 1449 getMDString(Record[7]), Record[8], getMDOrNull(Record[9]), 1450 getMDOrNull(Record[10]), getMDOrNull(Record[11]), 1451 getMDOrNull(Record[12]), getMDOrNull(Record[13]))), 1452 NextMDValueNo++); 1453 break; 1454 } 1455 case bitc::METADATA_SUBPROGRAM: { 1456 if (Record.size() != 19) 1457 return Error("Invalid record"); 1458 1459 MDValueList.AssignValue( 1460 GET_OR_DISTINCT( 1461 MDSubprogram, Record[0], 1462 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 1463 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 1464 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 1465 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 1466 Record[14], getMDOrNull(Record[15]), getMDOrNull(Record[16]), 1467 getMDOrNull(Record[17]), getMDOrNull(Record[18]))), 1468 NextMDValueNo++); 1469 break; 1470 } 1471 case bitc::METADATA_LEXICAL_BLOCK: { 1472 if (Record.size() != 5) 1473 return Error("Invalid record"); 1474 1475 MDValueList.AssignValue( 1476 GET_OR_DISTINCT(MDLexicalBlock, Record[0], 1477 (Context, getMDOrNull(Record[1]), 1478 getMDOrNull(Record[2]), Record[3], Record[4])), 1479 NextMDValueNo++); 1480 break; 1481 } 1482 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 1483 if (Record.size() != 4) 1484 return Error("Invalid record"); 1485 1486 MDValueList.AssignValue( 1487 GET_OR_DISTINCT(MDLexicalBlockFile, Record[0], 1488 (Context, getMDOrNull(Record[1]), 1489 getMDOrNull(Record[2]), Record[3])), 1490 NextMDValueNo++); 1491 break; 1492 } 1493 case bitc::METADATA_NAMESPACE: { 1494 if (Record.size() != 5) 1495 return Error("Invalid record"); 1496 1497 MDValueList.AssignValue( 1498 GET_OR_DISTINCT(MDNamespace, Record[0], 1499 (Context, getMDOrNull(Record[1]), 1500 getMDOrNull(Record[2]), getMDString(Record[3]), 1501 Record[4])), 1502 NextMDValueNo++); 1503 break; 1504 } 1505 case bitc::METADATA_TEMPLATE_TYPE: { 1506 if (Record.size() != 4) 1507 return Error("Invalid record"); 1508 1509 MDValueList.AssignValue( 1510 GET_OR_DISTINCT(MDTemplateTypeParameter, Record[0], 1511 (Context, getMDOrNull(Record[1]), 1512 getMDString(Record[2]), getMDOrNull(Record[3]))), 1513 NextMDValueNo++); 1514 break; 1515 } 1516 case bitc::METADATA_TEMPLATE_VALUE: { 1517 if (Record.size() != 6) 1518 return Error("Invalid record"); 1519 1520 MDValueList.AssignValue( 1521 GET_OR_DISTINCT(MDTemplateValueParameter, Record[0], 1522 (Context, Record[1], getMDOrNull(Record[2]), 1523 getMDString(Record[3]), getMDOrNull(Record[4]), 1524 getMDOrNull(Record[5]))), 1525 NextMDValueNo++); 1526 break; 1527 } 1528 case bitc::METADATA_GLOBAL_VAR: { 1529 if (Record.size() != 11) 1530 return Error("Invalid record"); 1531 1532 MDValueList.AssignValue( 1533 GET_OR_DISTINCT(MDGlobalVariable, Record[0], 1534 (Context, getMDOrNull(Record[1]), 1535 getMDString(Record[2]), getMDString(Record[3]), 1536 getMDOrNull(Record[4]), Record[5], 1537 getMDOrNull(Record[6]), Record[7], Record[8], 1538 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 1539 NextMDValueNo++); 1540 break; 1541 } 1542 case bitc::METADATA_LOCAL_VAR: { 1543 if (Record.size() != 10) 1544 return Error("Invalid record"); 1545 1546 MDValueList.AssignValue( 1547 GET_OR_DISTINCT(MDLocalVariable, Record[0], 1548 (Context, Record[1], getMDOrNull(Record[2]), 1549 getMDString(Record[3]), getMDOrNull(Record[4]), 1550 Record[5], getMDOrNull(Record[6]), Record[7], 1551 Record[8], getMDOrNull(Record[9]))), 1552 NextMDValueNo++); 1553 break; 1554 } 1555 case bitc::METADATA_EXPRESSION: { 1556 if (Record.size() < 1) 1557 return Error("Invalid record"); 1558 1559 MDValueList.AssignValue( 1560 GET_OR_DISTINCT(MDExpression, Record[0], 1561 (Context, makeArrayRef(Record).slice(1))), 1562 NextMDValueNo++); 1563 break; 1564 } 1565 case bitc::METADATA_STRING: { 1566 std::string String(Record.begin(), Record.end()); 1567 llvm::UpgradeMDStringConstant(String); 1568 Metadata *MD = MDString::get(Context, String); 1569 MDValueList.AssignValue(MD, NextMDValueNo++); 1570 break; 1571 } 1572 case bitc::METADATA_KIND: { 1573 if (Record.size() < 2) 1574 return Error("Invalid record"); 1575 1576 unsigned Kind = Record[0]; 1577 SmallString<8> Name(Record.begin()+1, Record.end()); 1578 1579 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1580 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1581 return Error("Conflicting METADATA_KIND records"); 1582 break; 1583 } 1584 } 1585 } 1586 #undef GET_OR_DISTINCT 1587 } 1588 1589 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in 1590 /// the LSB for dense VBR encoding. 1591 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 1592 if ((V & 1) == 0) 1593 return V >> 1; 1594 if (V != 1) 1595 return -(V >> 1); 1596 // There is no such thing as -0 with integers. "-0" really means MININT. 1597 return 1ULL << 63; 1598 } 1599 1600 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 1601 /// values and aliases that we can. 1602 std::error_code BitcodeReader::ResolveGlobalAndAliasInits() { 1603 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 1604 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 1605 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 1606 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 1607 1608 GlobalInitWorklist.swap(GlobalInits); 1609 AliasInitWorklist.swap(AliasInits); 1610 FunctionPrefixWorklist.swap(FunctionPrefixes); 1611 FunctionPrologueWorklist.swap(FunctionPrologues); 1612 1613 while (!GlobalInitWorklist.empty()) { 1614 unsigned ValID = GlobalInitWorklist.back().second; 1615 if (ValID >= ValueList.size()) { 1616 // Not ready to resolve this yet, it requires something later in the file. 1617 GlobalInits.push_back(GlobalInitWorklist.back()); 1618 } else { 1619 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1620 GlobalInitWorklist.back().first->setInitializer(C); 1621 else 1622 return Error("Expected a constant"); 1623 } 1624 GlobalInitWorklist.pop_back(); 1625 } 1626 1627 while (!AliasInitWorklist.empty()) { 1628 unsigned ValID = AliasInitWorklist.back().second; 1629 if (ValID >= ValueList.size()) { 1630 AliasInits.push_back(AliasInitWorklist.back()); 1631 } else { 1632 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1633 AliasInitWorklist.back().first->setAliasee(C); 1634 else 1635 return Error("Expected a constant"); 1636 } 1637 AliasInitWorklist.pop_back(); 1638 } 1639 1640 while (!FunctionPrefixWorklist.empty()) { 1641 unsigned ValID = FunctionPrefixWorklist.back().second; 1642 if (ValID >= ValueList.size()) { 1643 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 1644 } else { 1645 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1646 FunctionPrefixWorklist.back().first->setPrefixData(C); 1647 else 1648 return Error("Expected a constant"); 1649 } 1650 FunctionPrefixWorklist.pop_back(); 1651 } 1652 1653 while (!FunctionPrologueWorklist.empty()) { 1654 unsigned ValID = FunctionPrologueWorklist.back().second; 1655 if (ValID >= ValueList.size()) { 1656 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 1657 } else { 1658 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1659 FunctionPrologueWorklist.back().first->setPrologueData(C); 1660 else 1661 return Error("Expected a constant"); 1662 } 1663 FunctionPrologueWorklist.pop_back(); 1664 } 1665 1666 return std::error_code(); 1667 } 1668 1669 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 1670 SmallVector<uint64_t, 8> Words(Vals.size()); 1671 std::transform(Vals.begin(), Vals.end(), Words.begin(), 1672 BitcodeReader::decodeSignRotatedValue); 1673 1674 return APInt(TypeBits, Words); 1675 } 1676 1677 std::error_code BitcodeReader::ParseConstants() { 1678 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 1679 return Error("Invalid record"); 1680 1681 SmallVector<uint64_t, 64> Record; 1682 1683 // Read all the records for this value table. 1684 Type *CurTy = Type::getInt32Ty(Context); 1685 unsigned NextCstNo = ValueList.size(); 1686 while (1) { 1687 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1688 1689 switch (Entry.Kind) { 1690 case BitstreamEntry::SubBlock: // Handled for us already. 1691 case BitstreamEntry::Error: 1692 return Error("Malformed block"); 1693 case BitstreamEntry::EndBlock: 1694 if (NextCstNo != ValueList.size()) 1695 return Error("Invalid ronstant reference"); 1696 1697 // Once all the constants have been read, go through and resolve forward 1698 // references. 1699 ValueList.ResolveConstantForwardRefs(); 1700 return std::error_code(); 1701 case BitstreamEntry::Record: 1702 // The interesting case. 1703 break; 1704 } 1705 1706 // Read a record. 1707 Record.clear(); 1708 Value *V = nullptr; 1709 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 1710 switch (BitCode) { 1711 default: // Default behavior: unknown constant 1712 case bitc::CST_CODE_UNDEF: // UNDEF 1713 V = UndefValue::get(CurTy); 1714 break; 1715 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 1716 if (Record.empty()) 1717 return Error("Invalid record"); 1718 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 1719 return Error("Invalid record"); 1720 CurTy = TypeList[Record[0]]; 1721 continue; // Skip the ValueList manipulation. 1722 case bitc::CST_CODE_NULL: // NULL 1723 V = Constant::getNullValue(CurTy); 1724 break; 1725 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 1726 if (!CurTy->isIntegerTy() || Record.empty()) 1727 return Error("Invalid record"); 1728 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 1729 break; 1730 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 1731 if (!CurTy->isIntegerTy() || Record.empty()) 1732 return Error("Invalid record"); 1733 1734 APInt VInt = ReadWideAPInt(Record, 1735 cast<IntegerType>(CurTy)->getBitWidth()); 1736 V = ConstantInt::get(Context, VInt); 1737 1738 break; 1739 } 1740 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 1741 if (Record.empty()) 1742 return Error("Invalid record"); 1743 if (CurTy->isHalfTy()) 1744 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 1745 APInt(16, (uint16_t)Record[0]))); 1746 else if (CurTy->isFloatTy()) 1747 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 1748 APInt(32, (uint32_t)Record[0]))); 1749 else if (CurTy->isDoubleTy()) 1750 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 1751 APInt(64, Record[0]))); 1752 else if (CurTy->isX86_FP80Ty()) { 1753 // Bits are not stored the same way as a normal i80 APInt, compensate. 1754 uint64_t Rearrange[2]; 1755 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 1756 Rearrange[1] = Record[0] >> 48; 1757 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 1758 APInt(80, Rearrange))); 1759 } else if (CurTy->isFP128Ty()) 1760 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 1761 APInt(128, Record))); 1762 else if (CurTy->isPPC_FP128Ty()) 1763 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 1764 APInt(128, Record))); 1765 else 1766 V = UndefValue::get(CurTy); 1767 break; 1768 } 1769 1770 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 1771 if (Record.empty()) 1772 return Error("Invalid record"); 1773 1774 unsigned Size = Record.size(); 1775 SmallVector<Constant*, 16> Elts; 1776 1777 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 1778 for (unsigned i = 0; i != Size; ++i) 1779 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 1780 STy->getElementType(i))); 1781 V = ConstantStruct::get(STy, Elts); 1782 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 1783 Type *EltTy = ATy->getElementType(); 1784 for (unsigned i = 0; i != Size; ++i) 1785 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1786 V = ConstantArray::get(ATy, Elts); 1787 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 1788 Type *EltTy = VTy->getElementType(); 1789 for (unsigned i = 0; i != Size; ++i) 1790 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1791 V = ConstantVector::get(Elts); 1792 } else { 1793 V = UndefValue::get(CurTy); 1794 } 1795 break; 1796 } 1797 case bitc::CST_CODE_STRING: // STRING: [values] 1798 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 1799 if (Record.empty()) 1800 return Error("Invalid record"); 1801 1802 SmallString<16> Elts(Record.begin(), Record.end()); 1803 V = ConstantDataArray::getString(Context, Elts, 1804 BitCode == bitc::CST_CODE_CSTRING); 1805 break; 1806 } 1807 case bitc::CST_CODE_DATA: {// DATA: [n x value] 1808 if (Record.empty()) 1809 return Error("Invalid record"); 1810 1811 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 1812 unsigned Size = Record.size(); 1813 1814 if (EltTy->isIntegerTy(8)) { 1815 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 1816 if (isa<VectorType>(CurTy)) 1817 V = ConstantDataVector::get(Context, Elts); 1818 else 1819 V = ConstantDataArray::get(Context, Elts); 1820 } else if (EltTy->isIntegerTy(16)) { 1821 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 1822 if (isa<VectorType>(CurTy)) 1823 V = ConstantDataVector::get(Context, Elts); 1824 else 1825 V = ConstantDataArray::get(Context, Elts); 1826 } else if (EltTy->isIntegerTy(32)) { 1827 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 1828 if (isa<VectorType>(CurTy)) 1829 V = ConstantDataVector::get(Context, Elts); 1830 else 1831 V = ConstantDataArray::get(Context, Elts); 1832 } else if (EltTy->isIntegerTy(64)) { 1833 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 1834 if (isa<VectorType>(CurTy)) 1835 V = ConstantDataVector::get(Context, Elts); 1836 else 1837 V = ConstantDataArray::get(Context, Elts); 1838 } else if (EltTy->isFloatTy()) { 1839 SmallVector<float, 16> Elts(Size); 1840 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 1841 if (isa<VectorType>(CurTy)) 1842 V = ConstantDataVector::get(Context, Elts); 1843 else 1844 V = ConstantDataArray::get(Context, Elts); 1845 } else if (EltTy->isDoubleTy()) { 1846 SmallVector<double, 16> Elts(Size); 1847 std::transform(Record.begin(), Record.end(), Elts.begin(), 1848 BitsToDouble); 1849 if (isa<VectorType>(CurTy)) 1850 V = ConstantDataVector::get(Context, Elts); 1851 else 1852 V = ConstantDataArray::get(Context, Elts); 1853 } else { 1854 return Error("Invalid type for value"); 1855 } 1856 break; 1857 } 1858 1859 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 1860 if (Record.size() < 3) 1861 return Error("Invalid record"); 1862 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 1863 if (Opc < 0) { 1864 V = UndefValue::get(CurTy); // Unknown binop. 1865 } else { 1866 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 1867 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 1868 unsigned Flags = 0; 1869 if (Record.size() >= 4) { 1870 if (Opc == Instruction::Add || 1871 Opc == Instruction::Sub || 1872 Opc == Instruction::Mul || 1873 Opc == Instruction::Shl) { 1874 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1875 Flags |= OverflowingBinaryOperator::NoSignedWrap; 1876 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1877 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 1878 } else if (Opc == Instruction::SDiv || 1879 Opc == Instruction::UDiv || 1880 Opc == Instruction::LShr || 1881 Opc == Instruction::AShr) { 1882 if (Record[3] & (1 << bitc::PEO_EXACT)) 1883 Flags |= SDivOperator::IsExact; 1884 } 1885 } 1886 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 1887 } 1888 break; 1889 } 1890 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 1891 if (Record.size() < 3) 1892 return Error("Invalid record"); 1893 int Opc = GetDecodedCastOpcode(Record[0]); 1894 if (Opc < 0) { 1895 V = UndefValue::get(CurTy); // Unknown cast. 1896 } else { 1897 Type *OpTy = getTypeByID(Record[1]); 1898 if (!OpTy) 1899 return Error("Invalid record"); 1900 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 1901 V = UpgradeBitCastExpr(Opc, Op, CurTy); 1902 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 1903 } 1904 break; 1905 } 1906 case bitc::CST_CODE_CE_INBOUNDS_GEP: 1907 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 1908 if (Record.size() & 1) 1909 return Error("Invalid record"); 1910 SmallVector<Constant*, 16> Elts; 1911 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1912 Type *ElTy = getTypeByID(Record[i]); 1913 if (!ElTy) 1914 return Error("Invalid record"); 1915 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 1916 } 1917 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 1918 V = ConstantExpr::getGetElementPtr(Elts[0], Indices, 1919 BitCode == 1920 bitc::CST_CODE_CE_INBOUNDS_GEP); 1921 break; 1922 } 1923 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 1924 if (Record.size() < 3) 1925 return Error("Invalid record"); 1926 1927 Type *SelectorTy = Type::getInt1Ty(Context); 1928 1929 // If CurTy is a vector of length n, then Record[0] must be a <n x i1> 1930 // vector. Otherwise, it must be a single bit. 1931 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 1932 SelectorTy = VectorType::get(Type::getInt1Ty(Context), 1933 VTy->getNumElements()); 1934 1935 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 1936 SelectorTy), 1937 ValueList.getConstantFwdRef(Record[1],CurTy), 1938 ValueList.getConstantFwdRef(Record[2],CurTy)); 1939 break; 1940 } 1941 case bitc::CST_CODE_CE_EXTRACTELT 1942 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 1943 if (Record.size() < 3) 1944 return Error("Invalid record"); 1945 VectorType *OpTy = 1946 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1947 if (!OpTy) 1948 return Error("Invalid record"); 1949 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1950 Constant *Op1 = nullptr; 1951 if (Record.size() == 4) { 1952 Type *IdxTy = getTypeByID(Record[2]); 1953 if (!IdxTy) 1954 return Error("Invalid record"); 1955 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1956 } else // TODO: Remove with llvm 4.0 1957 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1958 if (!Op1) 1959 return Error("Invalid record"); 1960 V = ConstantExpr::getExtractElement(Op0, Op1); 1961 break; 1962 } 1963 case bitc::CST_CODE_CE_INSERTELT 1964 : { // CE_INSERTELT: [opval, opval, opty, opval] 1965 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1966 if (Record.size() < 3 || !OpTy) 1967 return Error("Invalid record"); 1968 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1969 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 1970 OpTy->getElementType()); 1971 Constant *Op2 = nullptr; 1972 if (Record.size() == 4) { 1973 Type *IdxTy = getTypeByID(Record[2]); 1974 if (!IdxTy) 1975 return Error("Invalid record"); 1976 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1977 } else // TODO: Remove with llvm 4.0 1978 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1979 if (!Op2) 1980 return Error("Invalid record"); 1981 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 1982 break; 1983 } 1984 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 1985 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1986 if (Record.size() < 3 || !OpTy) 1987 return Error("Invalid record"); 1988 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1989 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 1990 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1991 OpTy->getNumElements()); 1992 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 1993 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1994 break; 1995 } 1996 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 1997 VectorType *RTy = dyn_cast<VectorType>(CurTy); 1998 VectorType *OpTy = 1999 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2000 if (Record.size() < 4 || !RTy || !OpTy) 2001 return Error("Invalid record"); 2002 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2003 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2004 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2005 RTy->getNumElements()); 2006 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2007 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2008 break; 2009 } 2010 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2011 if (Record.size() < 4) 2012 return Error("Invalid record"); 2013 Type *OpTy = getTypeByID(Record[0]); 2014 if (!OpTy) 2015 return Error("Invalid record"); 2016 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2017 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2018 2019 if (OpTy->isFPOrFPVectorTy()) 2020 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2021 else 2022 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2023 break; 2024 } 2025 // This maintains backward compatibility, pre-asm dialect keywords. 2026 // FIXME: Remove with the 4.0 release. 2027 case bitc::CST_CODE_INLINEASM_OLD: { 2028 if (Record.size() < 2) 2029 return Error("Invalid record"); 2030 std::string AsmStr, ConstrStr; 2031 bool HasSideEffects = Record[0] & 1; 2032 bool IsAlignStack = Record[0] >> 1; 2033 unsigned AsmStrSize = Record[1]; 2034 if (2+AsmStrSize >= Record.size()) 2035 return Error("Invalid record"); 2036 unsigned ConstStrSize = Record[2+AsmStrSize]; 2037 if (3+AsmStrSize+ConstStrSize > Record.size()) 2038 return Error("Invalid record"); 2039 2040 for (unsigned i = 0; i != AsmStrSize; ++i) 2041 AsmStr += (char)Record[2+i]; 2042 for (unsigned i = 0; i != ConstStrSize; ++i) 2043 ConstrStr += (char)Record[3+AsmStrSize+i]; 2044 PointerType *PTy = cast<PointerType>(CurTy); 2045 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2046 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2047 break; 2048 } 2049 // This version adds support for the asm dialect keywords (e.g., 2050 // inteldialect). 2051 case bitc::CST_CODE_INLINEASM: { 2052 if (Record.size() < 2) 2053 return Error("Invalid record"); 2054 std::string AsmStr, ConstrStr; 2055 bool HasSideEffects = Record[0] & 1; 2056 bool IsAlignStack = (Record[0] >> 1) & 1; 2057 unsigned AsmDialect = Record[0] >> 2; 2058 unsigned AsmStrSize = Record[1]; 2059 if (2+AsmStrSize >= Record.size()) 2060 return Error("Invalid record"); 2061 unsigned ConstStrSize = Record[2+AsmStrSize]; 2062 if (3+AsmStrSize+ConstStrSize > Record.size()) 2063 return Error("Invalid record"); 2064 2065 for (unsigned i = 0; i != AsmStrSize; ++i) 2066 AsmStr += (char)Record[2+i]; 2067 for (unsigned i = 0; i != ConstStrSize; ++i) 2068 ConstrStr += (char)Record[3+AsmStrSize+i]; 2069 PointerType *PTy = cast<PointerType>(CurTy); 2070 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2071 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2072 InlineAsm::AsmDialect(AsmDialect)); 2073 break; 2074 } 2075 case bitc::CST_CODE_BLOCKADDRESS:{ 2076 if (Record.size() < 3) 2077 return Error("Invalid record"); 2078 Type *FnTy = getTypeByID(Record[0]); 2079 if (!FnTy) 2080 return Error("Invalid record"); 2081 Function *Fn = 2082 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2083 if (!Fn) 2084 return Error("Invalid record"); 2085 2086 // Don't let Fn get dematerialized. 2087 BlockAddressesTaken.insert(Fn); 2088 2089 // If the function is already parsed we can insert the block address right 2090 // away. 2091 BasicBlock *BB; 2092 unsigned BBID = Record[2]; 2093 if (!BBID) 2094 // Invalid reference to entry block. 2095 return Error("Invalid ID"); 2096 if (!Fn->empty()) { 2097 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2098 for (size_t I = 0, E = BBID; I != E; ++I) { 2099 if (BBI == BBE) 2100 return Error("Invalid ID"); 2101 ++BBI; 2102 } 2103 BB = BBI; 2104 } else { 2105 // Otherwise insert a placeholder and remember it so it can be inserted 2106 // when the function is parsed. 2107 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2108 if (FwdBBs.empty()) 2109 BasicBlockFwdRefQueue.push_back(Fn); 2110 if (FwdBBs.size() < BBID + 1) 2111 FwdBBs.resize(BBID + 1); 2112 if (!FwdBBs[BBID]) 2113 FwdBBs[BBID] = BasicBlock::Create(Context); 2114 BB = FwdBBs[BBID]; 2115 } 2116 V = BlockAddress::get(Fn, BB); 2117 break; 2118 } 2119 } 2120 2121 ValueList.AssignValue(V, NextCstNo); 2122 ++NextCstNo; 2123 } 2124 } 2125 2126 std::error_code BitcodeReader::ParseUseLists() { 2127 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2128 return Error("Invalid record"); 2129 2130 // Read all the records. 2131 SmallVector<uint64_t, 64> Record; 2132 while (1) { 2133 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2134 2135 switch (Entry.Kind) { 2136 case BitstreamEntry::SubBlock: // Handled for us already. 2137 case BitstreamEntry::Error: 2138 return Error("Malformed block"); 2139 case BitstreamEntry::EndBlock: 2140 return std::error_code(); 2141 case BitstreamEntry::Record: 2142 // The interesting case. 2143 break; 2144 } 2145 2146 // Read a use list record. 2147 Record.clear(); 2148 bool IsBB = false; 2149 switch (Stream.readRecord(Entry.ID, Record)) { 2150 default: // Default behavior: unknown type. 2151 break; 2152 case bitc::USELIST_CODE_BB: 2153 IsBB = true; 2154 // fallthrough 2155 case bitc::USELIST_CODE_DEFAULT: { 2156 unsigned RecordLength = Record.size(); 2157 if (RecordLength < 3) 2158 // Records should have at least an ID and two indexes. 2159 return Error("Invalid record"); 2160 unsigned ID = Record.back(); 2161 Record.pop_back(); 2162 2163 Value *V; 2164 if (IsBB) { 2165 assert(ID < FunctionBBs.size() && "Basic block not found"); 2166 V = FunctionBBs[ID]; 2167 } else 2168 V = ValueList[ID]; 2169 unsigned NumUses = 0; 2170 SmallDenseMap<const Use *, unsigned, 16> Order; 2171 for (const Use &U : V->uses()) { 2172 if (++NumUses > Record.size()) 2173 break; 2174 Order[&U] = Record[NumUses - 1]; 2175 } 2176 if (Order.size() != Record.size() || NumUses > Record.size()) 2177 // Mismatches can happen if the functions are being materialized lazily 2178 // (out-of-order), or a value has been upgraded. 2179 break; 2180 2181 V->sortUseList([&](const Use &L, const Use &R) { 2182 return Order.lookup(&L) < Order.lookup(&R); 2183 }); 2184 break; 2185 } 2186 } 2187 } 2188 } 2189 2190 /// RememberAndSkipFunctionBody - When we see the block for a function body, 2191 /// remember where it is and then skip it. This lets us lazily deserialize the 2192 /// functions. 2193 std::error_code BitcodeReader::RememberAndSkipFunctionBody() { 2194 // Get the function we are talking about. 2195 if (FunctionsWithBodies.empty()) 2196 return Error("Insufficient function protos"); 2197 2198 Function *Fn = FunctionsWithBodies.back(); 2199 FunctionsWithBodies.pop_back(); 2200 2201 // Save the current stream state. 2202 uint64_t CurBit = Stream.GetCurrentBitNo(); 2203 DeferredFunctionInfo[Fn] = CurBit; 2204 2205 // Skip over the function block for now. 2206 if (Stream.SkipBlock()) 2207 return Error("Invalid record"); 2208 return std::error_code(); 2209 } 2210 2211 std::error_code BitcodeReader::GlobalCleanup() { 2212 // Patch the initializers for globals and aliases up. 2213 ResolveGlobalAndAliasInits(); 2214 if (!GlobalInits.empty() || !AliasInits.empty()) 2215 return Error("Malformed global initializer set"); 2216 2217 // Look for intrinsic functions which need to be upgraded at some point 2218 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 2219 FI != FE; ++FI) { 2220 Function *NewFn; 2221 if (UpgradeIntrinsicFunction(FI, NewFn)) 2222 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 2223 } 2224 2225 // Look for global variables which need to be renamed. 2226 for (Module::global_iterator 2227 GI = TheModule->global_begin(), GE = TheModule->global_end(); 2228 GI != GE;) { 2229 GlobalVariable *GV = GI++; 2230 UpgradeGlobalVariable(GV); 2231 } 2232 2233 // Force deallocation of memory for these vectors to favor the client that 2234 // want lazy deserialization. 2235 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 2236 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 2237 return std::error_code(); 2238 } 2239 2240 std::error_code BitcodeReader::ParseModule(bool Resume) { 2241 if (Resume) 2242 Stream.JumpToBit(NextUnreadBit); 2243 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2244 return Error("Invalid record"); 2245 2246 SmallVector<uint64_t, 64> Record; 2247 std::vector<std::string> SectionTable; 2248 std::vector<std::string> GCTable; 2249 2250 // Read all the records for this module. 2251 while (1) { 2252 BitstreamEntry Entry = Stream.advance(); 2253 2254 switch (Entry.Kind) { 2255 case BitstreamEntry::Error: 2256 return Error("Malformed block"); 2257 case BitstreamEntry::EndBlock: 2258 return GlobalCleanup(); 2259 2260 case BitstreamEntry::SubBlock: 2261 switch (Entry.ID) { 2262 default: // Skip unknown content. 2263 if (Stream.SkipBlock()) 2264 return Error("Invalid record"); 2265 break; 2266 case bitc::BLOCKINFO_BLOCK_ID: 2267 if (Stream.ReadBlockInfoBlock()) 2268 return Error("Malformed block"); 2269 break; 2270 case bitc::PARAMATTR_BLOCK_ID: 2271 if (std::error_code EC = ParseAttributeBlock()) 2272 return EC; 2273 break; 2274 case bitc::PARAMATTR_GROUP_BLOCK_ID: 2275 if (std::error_code EC = ParseAttributeGroupBlock()) 2276 return EC; 2277 break; 2278 case bitc::TYPE_BLOCK_ID_NEW: 2279 if (std::error_code EC = ParseTypeTable()) 2280 return EC; 2281 break; 2282 case bitc::VALUE_SYMTAB_BLOCK_ID: 2283 if (std::error_code EC = ParseValueSymbolTable()) 2284 return EC; 2285 SeenValueSymbolTable = true; 2286 break; 2287 case bitc::CONSTANTS_BLOCK_ID: 2288 if (std::error_code EC = ParseConstants()) 2289 return EC; 2290 if (std::error_code EC = ResolveGlobalAndAliasInits()) 2291 return EC; 2292 break; 2293 case bitc::METADATA_BLOCK_ID: 2294 if (std::error_code EC = ParseMetadata()) 2295 return EC; 2296 break; 2297 case bitc::FUNCTION_BLOCK_ID: 2298 // If this is the first function body we've seen, reverse the 2299 // FunctionsWithBodies list. 2300 if (!SeenFirstFunctionBody) { 2301 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 2302 if (std::error_code EC = GlobalCleanup()) 2303 return EC; 2304 SeenFirstFunctionBody = true; 2305 } 2306 2307 if (std::error_code EC = RememberAndSkipFunctionBody()) 2308 return EC; 2309 // For streaming bitcode, suspend parsing when we reach the function 2310 // bodies. Subsequent materialization calls will resume it when 2311 // necessary. For streaming, the function bodies must be at the end of 2312 // the bitcode. If the bitcode file is old, the symbol table will be 2313 // at the end instead and will not have been seen yet. In this case, 2314 // just finish the parse now. 2315 if (LazyStreamer && SeenValueSymbolTable) { 2316 NextUnreadBit = Stream.GetCurrentBitNo(); 2317 return std::error_code(); 2318 } 2319 break; 2320 case bitc::USELIST_BLOCK_ID: 2321 if (std::error_code EC = ParseUseLists()) 2322 return EC; 2323 break; 2324 } 2325 continue; 2326 2327 case BitstreamEntry::Record: 2328 // The interesting case. 2329 break; 2330 } 2331 2332 2333 // Read a record. 2334 switch (Stream.readRecord(Entry.ID, Record)) { 2335 default: break; // Default behavior, ignore unknown content. 2336 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 2337 if (Record.size() < 1) 2338 return Error("Invalid record"); 2339 // Only version #0 and #1 are supported so far. 2340 unsigned module_version = Record[0]; 2341 switch (module_version) { 2342 default: 2343 return Error("Invalid value"); 2344 case 0: 2345 UseRelativeIDs = false; 2346 break; 2347 case 1: 2348 UseRelativeIDs = true; 2349 break; 2350 } 2351 break; 2352 } 2353 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2354 std::string S; 2355 if (ConvertToString(Record, 0, S)) 2356 return Error("Invalid record"); 2357 TheModule->setTargetTriple(S); 2358 break; 2359 } 2360 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 2361 std::string S; 2362 if (ConvertToString(Record, 0, S)) 2363 return Error("Invalid record"); 2364 TheModule->setDataLayout(S); 2365 break; 2366 } 2367 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 2368 std::string S; 2369 if (ConvertToString(Record, 0, S)) 2370 return Error("Invalid record"); 2371 TheModule->setModuleInlineAsm(S); 2372 break; 2373 } 2374 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 2375 // FIXME: Remove in 4.0. 2376 std::string S; 2377 if (ConvertToString(Record, 0, S)) 2378 return Error("Invalid record"); 2379 // Ignore value. 2380 break; 2381 } 2382 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 2383 std::string S; 2384 if (ConvertToString(Record, 0, S)) 2385 return Error("Invalid record"); 2386 SectionTable.push_back(S); 2387 break; 2388 } 2389 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 2390 std::string S; 2391 if (ConvertToString(Record, 0, S)) 2392 return Error("Invalid record"); 2393 GCTable.push_back(S); 2394 break; 2395 } 2396 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 2397 if (Record.size() < 2) 2398 return Error("Invalid record"); 2399 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2400 unsigned ComdatNameSize = Record[1]; 2401 std::string ComdatName; 2402 ComdatName.reserve(ComdatNameSize); 2403 for (unsigned i = 0; i != ComdatNameSize; ++i) 2404 ComdatName += (char)Record[2 + i]; 2405 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 2406 C->setSelectionKind(SK); 2407 ComdatList.push_back(C); 2408 break; 2409 } 2410 // GLOBALVAR: [pointer type, isconst, initid, 2411 // linkage, alignment, section, visibility, threadlocal, 2412 // unnamed_addr, externally_initialized, dllstorageclass, 2413 // comdat] 2414 case bitc::MODULE_CODE_GLOBALVAR: { 2415 if (Record.size() < 6) 2416 return Error("Invalid record"); 2417 Type *Ty = getTypeByID(Record[0]); 2418 if (!Ty) 2419 return Error("Invalid record"); 2420 if (!Ty->isPointerTy()) 2421 return Error("Invalid type for value"); 2422 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2423 Ty = cast<PointerType>(Ty)->getElementType(); 2424 2425 bool isConstant = Record[1]; 2426 uint64_t RawLinkage = Record[3]; 2427 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2428 unsigned Alignment = (1 << Record[4]) >> 1; 2429 std::string Section; 2430 if (Record[5]) { 2431 if (Record[5]-1 >= SectionTable.size()) 2432 return Error("Invalid ID"); 2433 Section = SectionTable[Record[5]-1]; 2434 } 2435 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2436 // Local linkage must have default visibility. 2437 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2438 // FIXME: Change to an error if non-default in 4.0. 2439 Visibility = GetDecodedVisibility(Record[6]); 2440 2441 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2442 if (Record.size() > 7) 2443 TLM = GetDecodedThreadLocalMode(Record[7]); 2444 2445 bool UnnamedAddr = false; 2446 if (Record.size() > 8) 2447 UnnamedAddr = Record[8]; 2448 2449 bool ExternallyInitialized = false; 2450 if (Record.size() > 9) 2451 ExternallyInitialized = Record[9]; 2452 2453 GlobalVariable *NewGV = 2454 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 2455 TLM, AddressSpace, ExternallyInitialized); 2456 NewGV->setAlignment(Alignment); 2457 if (!Section.empty()) 2458 NewGV->setSection(Section); 2459 NewGV->setVisibility(Visibility); 2460 NewGV->setUnnamedAddr(UnnamedAddr); 2461 2462 if (Record.size() > 10) 2463 NewGV->setDLLStorageClass(GetDecodedDLLStorageClass(Record[10])); 2464 else 2465 UpgradeDLLImportExportLinkage(NewGV, RawLinkage); 2466 2467 ValueList.push_back(NewGV); 2468 2469 // Remember which value to use for the global initializer. 2470 if (unsigned InitID = Record[2]) 2471 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 2472 2473 if (Record.size() > 11) { 2474 if (unsigned ComdatID = Record[11]) { 2475 assert(ComdatID <= ComdatList.size()); 2476 NewGV->setComdat(ComdatList[ComdatID - 1]); 2477 } 2478 } else if (hasImplicitComdat(RawLinkage)) { 2479 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2480 } 2481 break; 2482 } 2483 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 2484 // alignment, section, visibility, gc, unnamed_addr, 2485 // prologuedata, dllstorageclass, comdat, prefixdata] 2486 case bitc::MODULE_CODE_FUNCTION: { 2487 if (Record.size() < 8) 2488 return Error("Invalid record"); 2489 Type *Ty = getTypeByID(Record[0]); 2490 if (!Ty) 2491 return Error("Invalid record"); 2492 if (!Ty->isPointerTy()) 2493 return Error("Invalid type for value"); 2494 FunctionType *FTy = 2495 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 2496 if (!FTy) 2497 return Error("Invalid type for value"); 2498 2499 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 2500 "", TheModule); 2501 2502 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 2503 bool isProto = Record[2]; 2504 uint64_t RawLinkage = Record[3]; 2505 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2506 Func->setAttributes(getAttributes(Record[4])); 2507 2508 Func->setAlignment((1 << Record[5]) >> 1); 2509 if (Record[6]) { 2510 if (Record[6]-1 >= SectionTable.size()) 2511 return Error("Invalid ID"); 2512 Func->setSection(SectionTable[Record[6]-1]); 2513 } 2514 // Local linkage must have default visibility. 2515 if (!Func->hasLocalLinkage()) 2516 // FIXME: Change to an error if non-default in 4.0. 2517 Func->setVisibility(GetDecodedVisibility(Record[7])); 2518 if (Record.size() > 8 && Record[8]) { 2519 if (Record[8]-1 > GCTable.size()) 2520 return Error("Invalid ID"); 2521 Func->setGC(GCTable[Record[8]-1].c_str()); 2522 } 2523 bool UnnamedAddr = false; 2524 if (Record.size() > 9) 2525 UnnamedAddr = Record[9]; 2526 Func->setUnnamedAddr(UnnamedAddr); 2527 if (Record.size() > 10 && Record[10] != 0) 2528 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 2529 2530 if (Record.size() > 11) 2531 Func->setDLLStorageClass(GetDecodedDLLStorageClass(Record[11])); 2532 else 2533 UpgradeDLLImportExportLinkage(Func, RawLinkage); 2534 2535 if (Record.size() > 12) { 2536 if (unsigned ComdatID = Record[12]) { 2537 assert(ComdatID <= ComdatList.size()); 2538 Func->setComdat(ComdatList[ComdatID - 1]); 2539 } 2540 } else if (hasImplicitComdat(RawLinkage)) { 2541 Func->setComdat(reinterpret_cast<Comdat *>(1)); 2542 } 2543 2544 if (Record.size() > 13 && Record[13] != 0) 2545 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 2546 2547 ValueList.push_back(Func); 2548 2549 // If this is a function with a body, remember the prototype we are 2550 // creating now, so that we can match up the body with them later. 2551 if (!isProto) { 2552 Func->setIsMaterializable(true); 2553 FunctionsWithBodies.push_back(Func); 2554 if (LazyStreamer) 2555 DeferredFunctionInfo[Func] = 0; 2556 } 2557 break; 2558 } 2559 // ALIAS: [alias type, aliasee val#, linkage] 2560 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass] 2561 case bitc::MODULE_CODE_ALIAS: { 2562 if (Record.size() < 3) 2563 return Error("Invalid record"); 2564 Type *Ty = getTypeByID(Record[0]); 2565 if (!Ty) 2566 return Error("Invalid record"); 2567 auto *PTy = dyn_cast<PointerType>(Ty); 2568 if (!PTy) 2569 return Error("Invalid type for value"); 2570 2571 auto *NewGA = 2572 GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(), 2573 getDecodedLinkage(Record[2]), "", TheModule); 2574 // Old bitcode files didn't have visibility field. 2575 // Local linkage must have default visibility. 2576 if (Record.size() > 3 && !NewGA->hasLocalLinkage()) 2577 // FIXME: Change to an error if non-default in 4.0. 2578 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 2579 if (Record.size() > 4) 2580 NewGA->setDLLStorageClass(GetDecodedDLLStorageClass(Record[4])); 2581 else 2582 UpgradeDLLImportExportLinkage(NewGA, Record[2]); 2583 if (Record.size() > 5) 2584 NewGA->setThreadLocalMode(GetDecodedThreadLocalMode(Record[5])); 2585 if (Record.size() > 6) 2586 NewGA->setUnnamedAddr(Record[6]); 2587 ValueList.push_back(NewGA); 2588 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 2589 break; 2590 } 2591 /// MODULE_CODE_PURGEVALS: [numvals] 2592 case bitc::MODULE_CODE_PURGEVALS: 2593 // Trim down the value list to the specified size. 2594 if (Record.size() < 1 || Record[0] > ValueList.size()) 2595 return Error("Invalid record"); 2596 ValueList.shrinkTo(Record[0]); 2597 break; 2598 } 2599 Record.clear(); 2600 } 2601 } 2602 2603 std::error_code BitcodeReader::ParseBitcodeInto(Module *M) { 2604 TheModule = nullptr; 2605 2606 if (std::error_code EC = InitStream()) 2607 return EC; 2608 2609 // Sniff for the signature. 2610 if (Stream.Read(8) != 'B' || 2611 Stream.Read(8) != 'C' || 2612 Stream.Read(4) != 0x0 || 2613 Stream.Read(4) != 0xC || 2614 Stream.Read(4) != 0xE || 2615 Stream.Read(4) != 0xD) 2616 return Error("Invalid bitcode signature"); 2617 2618 // We expect a number of well-defined blocks, though we don't necessarily 2619 // need to understand them all. 2620 while (1) { 2621 if (Stream.AtEndOfStream()) 2622 return std::error_code(); 2623 2624 BitstreamEntry Entry = 2625 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 2626 2627 switch (Entry.Kind) { 2628 case BitstreamEntry::Error: 2629 return Error("Malformed block"); 2630 case BitstreamEntry::EndBlock: 2631 return std::error_code(); 2632 2633 case BitstreamEntry::SubBlock: 2634 switch (Entry.ID) { 2635 case bitc::BLOCKINFO_BLOCK_ID: 2636 if (Stream.ReadBlockInfoBlock()) 2637 return Error("Malformed block"); 2638 break; 2639 case bitc::MODULE_BLOCK_ID: 2640 // Reject multiple MODULE_BLOCK's in a single bitstream. 2641 if (TheModule) 2642 return Error("Invalid multiple blocks"); 2643 TheModule = M; 2644 if (std::error_code EC = ParseModule(false)) 2645 return EC; 2646 if (LazyStreamer) 2647 return std::error_code(); 2648 break; 2649 default: 2650 if (Stream.SkipBlock()) 2651 return Error("Invalid record"); 2652 break; 2653 } 2654 continue; 2655 case BitstreamEntry::Record: 2656 // There should be no records in the top-level of blocks. 2657 2658 // The ranlib in Xcode 4 will align archive members by appending newlines 2659 // to the end of them. If this file size is a multiple of 4 but not 8, we 2660 // have to read and ignore these final 4 bytes :-( 2661 if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 && 2662 Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a && 2663 Stream.AtEndOfStream()) 2664 return std::error_code(); 2665 2666 return Error("Invalid record"); 2667 } 2668 } 2669 } 2670 2671 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 2672 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2673 return Error("Invalid record"); 2674 2675 SmallVector<uint64_t, 64> Record; 2676 2677 std::string Triple; 2678 // Read all the records for this module. 2679 while (1) { 2680 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2681 2682 switch (Entry.Kind) { 2683 case BitstreamEntry::SubBlock: // Handled for us already. 2684 case BitstreamEntry::Error: 2685 return Error("Malformed block"); 2686 case BitstreamEntry::EndBlock: 2687 return Triple; 2688 case BitstreamEntry::Record: 2689 // The interesting case. 2690 break; 2691 } 2692 2693 // Read a record. 2694 switch (Stream.readRecord(Entry.ID, Record)) { 2695 default: break; // Default behavior, ignore unknown content. 2696 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2697 std::string S; 2698 if (ConvertToString(Record, 0, S)) 2699 return Error("Invalid record"); 2700 Triple = S; 2701 break; 2702 } 2703 } 2704 Record.clear(); 2705 } 2706 llvm_unreachable("Exit infinite loop"); 2707 } 2708 2709 ErrorOr<std::string> BitcodeReader::parseTriple() { 2710 if (std::error_code EC = InitStream()) 2711 return EC; 2712 2713 // Sniff for the signature. 2714 if (Stream.Read(8) != 'B' || 2715 Stream.Read(8) != 'C' || 2716 Stream.Read(4) != 0x0 || 2717 Stream.Read(4) != 0xC || 2718 Stream.Read(4) != 0xE || 2719 Stream.Read(4) != 0xD) 2720 return Error("Invalid bitcode signature"); 2721 2722 // We expect a number of well-defined blocks, though we don't necessarily 2723 // need to understand them all. 2724 while (1) { 2725 BitstreamEntry Entry = Stream.advance(); 2726 2727 switch (Entry.Kind) { 2728 case BitstreamEntry::Error: 2729 return Error("Malformed block"); 2730 case BitstreamEntry::EndBlock: 2731 return std::error_code(); 2732 2733 case BitstreamEntry::SubBlock: 2734 if (Entry.ID == bitc::MODULE_BLOCK_ID) 2735 return parseModuleTriple(); 2736 2737 // Ignore other sub-blocks. 2738 if (Stream.SkipBlock()) 2739 return Error("Malformed block"); 2740 continue; 2741 2742 case BitstreamEntry::Record: 2743 Stream.skipRecord(Entry.ID); 2744 continue; 2745 } 2746 } 2747 } 2748 2749 /// ParseMetadataAttachment - Parse metadata attachments. 2750 std::error_code BitcodeReader::ParseMetadataAttachment() { 2751 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 2752 return Error("Invalid record"); 2753 2754 SmallVector<uint64_t, 64> Record; 2755 while (1) { 2756 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2757 2758 switch (Entry.Kind) { 2759 case BitstreamEntry::SubBlock: // Handled for us already. 2760 case BitstreamEntry::Error: 2761 return Error("Malformed block"); 2762 case BitstreamEntry::EndBlock: 2763 return std::error_code(); 2764 case BitstreamEntry::Record: 2765 // The interesting case. 2766 break; 2767 } 2768 2769 // Read a metadata attachment record. 2770 Record.clear(); 2771 switch (Stream.readRecord(Entry.ID, Record)) { 2772 default: // Default behavior: ignore. 2773 break; 2774 case bitc::METADATA_ATTACHMENT: { 2775 unsigned RecordLength = Record.size(); 2776 if (Record.empty() || (RecordLength - 1) % 2 == 1) 2777 return Error("Invalid record"); 2778 Instruction *Inst = InstructionList[Record[0]]; 2779 for (unsigned i = 1; i != RecordLength; i = i+2) { 2780 unsigned Kind = Record[i]; 2781 DenseMap<unsigned, unsigned>::iterator I = 2782 MDKindMap.find(Kind); 2783 if (I == MDKindMap.end()) 2784 return Error("Invalid ID"); 2785 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); 2786 if (isa<LocalAsMetadata>(Node)) 2787 // Drop the attachment. This used to be legal, but there's no 2788 // upgrade path. 2789 break; 2790 Inst->setMetadata(I->second, cast<MDNode>(Node)); 2791 if (I->second == LLVMContext::MD_tbaa) 2792 InstsWithTBAATag.push_back(Inst); 2793 } 2794 break; 2795 } 2796 } 2797 } 2798 } 2799 2800 /// ParseFunctionBody - Lazily parse the specified function body block. 2801 std::error_code BitcodeReader::ParseFunctionBody(Function *F) { 2802 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 2803 return Error("Invalid record"); 2804 2805 InstructionList.clear(); 2806 unsigned ModuleValueListSize = ValueList.size(); 2807 unsigned ModuleMDValueListSize = MDValueList.size(); 2808 2809 // Add all the function arguments to the value table. 2810 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 2811 ValueList.push_back(I); 2812 2813 unsigned NextValueNo = ValueList.size(); 2814 BasicBlock *CurBB = nullptr; 2815 unsigned CurBBNo = 0; 2816 2817 DebugLoc LastLoc; 2818 auto getLastInstruction = [&]() -> Instruction * { 2819 if (CurBB && !CurBB->empty()) 2820 return &CurBB->back(); 2821 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 2822 !FunctionBBs[CurBBNo - 1]->empty()) 2823 return &FunctionBBs[CurBBNo - 1]->back(); 2824 return nullptr; 2825 }; 2826 2827 // Read all the records. 2828 SmallVector<uint64_t, 64> Record; 2829 while (1) { 2830 BitstreamEntry Entry = Stream.advance(); 2831 2832 switch (Entry.Kind) { 2833 case BitstreamEntry::Error: 2834 return Error("Malformed block"); 2835 case BitstreamEntry::EndBlock: 2836 goto OutOfRecordLoop; 2837 2838 case BitstreamEntry::SubBlock: 2839 switch (Entry.ID) { 2840 default: // Skip unknown content. 2841 if (Stream.SkipBlock()) 2842 return Error("Invalid record"); 2843 break; 2844 case bitc::CONSTANTS_BLOCK_ID: 2845 if (std::error_code EC = ParseConstants()) 2846 return EC; 2847 NextValueNo = ValueList.size(); 2848 break; 2849 case bitc::VALUE_SYMTAB_BLOCK_ID: 2850 if (std::error_code EC = ParseValueSymbolTable()) 2851 return EC; 2852 break; 2853 case bitc::METADATA_ATTACHMENT_ID: 2854 if (std::error_code EC = ParseMetadataAttachment()) 2855 return EC; 2856 break; 2857 case bitc::METADATA_BLOCK_ID: 2858 if (std::error_code EC = ParseMetadata()) 2859 return EC; 2860 break; 2861 case bitc::USELIST_BLOCK_ID: 2862 if (std::error_code EC = ParseUseLists()) 2863 return EC; 2864 break; 2865 } 2866 continue; 2867 2868 case BitstreamEntry::Record: 2869 // The interesting case. 2870 break; 2871 } 2872 2873 // Read a record. 2874 Record.clear(); 2875 Instruction *I = nullptr; 2876 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2877 switch (BitCode) { 2878 default: // Default behavior: reject 2879 return Error("Invalid value"); 2880 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 2881 if (Record.size() < 1 || Record[0] == 0) 2882 return Error("Invalid record"); 2883 // Create all the basic blocks for the function. 2884 FunctionBBs.resize(Record[0]); 2885 2886 // See if anything took the address of blocks in this function. 2887 auto BBFRI = BasicBlockFwdRefs.find(F); 2888 if (BBFRI == BasicBlockFwdRefs.end()) { 2889 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 2890 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 2891 } else { 2892 auto &BBRefs = BBFRI->second; 2893 // Check for invalid basic block references. 2894 if (BBRefs.size() > FunctionBBs.size()) 2895 return Error("Invalid ID"); 2896 assert(!BBRefs.empty() && "Unexpected empty array"); 2897 assert(!BBRefs.front() && "Invalid reference to entry block"); 2898 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 2899 ++I) 2900 if (I < RE && BBRefs[I]) { 2901 BBRefs[I]->insertInto(F); 2902 FunctionBBs[I] = BBRefs[I]; 2903 } else { 2904 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 2905 } 2906 2907 // Erase from the table. 2908 BasicBlockFwdRefs.erase(BBFRI); 2909 } 2910 2911 CurBB = FunctionBBs[0]; 2912 continue; 2913 } 2914 2915 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 2916 // This record indicates that the last instruction is at the same 2917 // location as the previous instruction with a location. 2918 I = getLastInstruction(); 2919 2920 if (!I) 2921 return Error("Invalid record"); 2922 I->setDebugLoc(LastLoc); 2923 I = nullptr; 2924 continue; 2925 2926 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 2927 I = getLastInstruction(); 2928 if (!I || Record.size() < 4) 2929 return Error("Invalid record"); 2930 2931 unsigned Line = Record[0], Col = Record[1]; 2932 unsigned ScopeID = Record[2], IAID = Record[3]; 2933 2934 MDNode *Scope = nullptr, *IA = nullptr; 2935 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 2936 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 2937 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 2938 I->setDebugLoc(LastLoc); 2939 I = nullptr; 2940 continue; 2941 } 2942 2943 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 2944 unsigned OpNum = 0; 2945 Value *LHS, *RHS; 2946 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2947 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 2948 OpNum+1 > Record.size()) 2949 return Error("Invalid record"); 2950 2951 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 2952 if (Opc == -1) 2953 return Error("Invalid record"); 2954 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 2955 InstructionList.push_back(I); 2956 if (OpNum < Record.size()) { 2957 if (Opc == Instruction::Add || 2958 Opc == Instruction::Sub || 2959 Opc == Instruction::Mul || 2960 Opc == Instruction::Shl) { 2961 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2962 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 2963 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2964 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 2965 } else if (Opc == Instruction::SDiv || 2966 Opc == Instruction::UDiv || 2967 Opc == Instruction::LShr || 2968 Opc == Instruction::AShr) { 2969 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 2970 cast<BinaryOperator>(I)->setIsExact(true); 2971 } else if (isa<FPMathOperator>(I)) { 2972 FastMathFlags FMF; 2973 if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra)) 2974 FMF.setUnsafeAlgebra(); 2975 if (0 != (Record[OpNum] & FastMathFlags::NoNaNs)) 2976 FMF.setNoNaNs(); 2977 if (0 != (Record[OpNum] & FastMathFlags::NoInfs)) 2978 FMF.setNoInfs(); 2979 if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros)) 2980 FMF.setNoSignedZeros(); 2981 if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal)) 2982 FMF.setAllowReciprocal(); 2983 if (FMF.any()) 2984 I->setFastMathFlags(FMF); 2985 } 2986 2987 } 2988 break; 2989 } 2990 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 2991 unsigned OpNum = 0; 2992 Value *Op; 2993 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2994 OpNum+2 != Record.size()) 2995 return Error("Invalid record"); 2996 2997 Type *ResTy = getTypeByID(Record[OpNum]); 2998 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 2999 if (Opc == -1 || !ResTy) 3000 return Error("Invalid record"); 3001 Instruction *Temp = nullptr; 3002 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3003 if (Temp) { 3004 InstructionList.push_back(Temp); 3005 CurBB->getInstList().push_back(Temp); 3006 } 3007 } else { 3008 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 3009 } 3010 InstructionList.push_back(I); 3011 break; 3012 } 3013 case bitc::FUNC_CODE_INST_INBOUNDS_GEP: 3014 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] 3015 unsigned OpNum = 0; 3016 Value *BasePtr; 3017 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3018 return Error("Invalid record"); 3019 3020 SmallVector<Value*, 16> GEPIdx; 3021 while (OpNum != Record.size()) { 3022 Value *Op; 3023 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3024 return Error("Invalid record"); 3025 GEPIdx.push_back(Op); 3026 } 3027 3028 I = GetElementPtrInst::Create(BasePtr, GEPIdx); 3029 InstructionList.push_back(I); 3030 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP) 3031 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3032 break; 3033 } 3034 3035 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3036 // EXTRACTVAL: [opty, opval, n x indices] 3037 unsigned OpNum = 0; 3038 Value *Agg; 3039 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3040 return Error("Invalid record"); 3041 3042 SmallVector<unsigned, 4> EXTRACTVALIdx; 3043 for (unsigned RecSize = Record.size(); 3044 OpNum != RecSize; ++OpNum) { 3045 uint64_t Index = Record[OpNum]; 3046 if ((unsigned)Index != Index) 3047 return Error("Invalid value"); 3048 EXTRACTVALIdx.push_back((unsigned)Index); 3049 } 3050 3051 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3052 InstructionList.push_back(I); 3053 break; 3054 } 3055 3056 case bitc::FUNC_CODE_INST_INSERTVAL: { 3057 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3058 unsigned OpNum = 0; 3059 Value *Agg; 3060 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3061 return Error("Invalid record"); 3062 Value *Val; 3063 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3064 return Error("Invalid record"); 3065 3066 SmallVector<unsigned, 4> INSERTVALIdx; 3067 for (unsigned RecSize = Record.size(); 3068 OpNum != RecSize; ++OpNum) { 3069 uint64_t Index = Record[OpNum]; 3070 if ((unsigned)Index != Index) 3071 return Error("Invalid value"); 3072 INSERTVALIdx.push_back((unsigned)Index); 3073 } 3074 3075 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3076 InstructionList.push_back(I); 3077 break; 3078 } 3079 3080 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3081 // obsolete form of select 3082 // handles select i1 ... in old bitcode 3083 unsigned OpNum = 0; 3084 Value *TrueVal, *FalseVal, *Cond; 3085 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3086 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3087 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3088 return Error("Invalid record"); 3089 3090 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3091 InstructionList.push_back(I); 3092 break; 3093 } 3094 3095 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3096 // new form of select 3097 // handles select i1 or select [N x i1] 3098 unsigned OpNum = 0; 3099 Value *TrueVal, *FalseVal, *Cond; 3100 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3101 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3102 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3103 return Error("Invalid record"); 3104 3105 // select condition can be either i1 or [N x i1] 3106 if (VectorType* vector_type = 3107 dyn_cast<VectorType>(Cond->getType())) { 3108 // expect <n x i1> 3109 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3110 return Error("Invalid type for value"); 3111 } else { 3112 // expect i1 3113 if (Cond->getType() != Type::getInt1Ty(Context)) 3114 return Error("Invalid type for value"); 3115 } 3116 3117 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3118 InstructionList.push_back(I); 3119 break; 3120 } 3121 3122 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3123 unsigned OpNum = 0; 3124 Value *Vec, *Idx; 3125 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3126 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3127 return Error("Invalid record"); 3128 I = ExtractElementInst::Create(Vec, Idx); 3129 InstructionList.push_back(I); 3130 break; 3131 } 3132 3133 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3134 unsigned OpNum = 0; 3135 Value *Vec, *Elt, *Idx; 3136 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3137 popValue(Record, OpNum, NextValueNo, 3138 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3139 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3140 return Error("Invalid record"); 3141 I = InsertElementInst::Create(Vec, Elt, Idx); 3142 InstructionList.push_back(I); 3143 break; 3144 } 3145 3146 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3147 unsigned OpNum = 0; 3148 Value *Vec1, *Vec2, *Mask; 3149 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3150 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3151 return Error("Invalid record"); 3152 3153 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3154 return Error("Invalid record"); 3155 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3156 InstructionList.push_back(I); 3157 break; 3158 } 3159 3160 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3161 // Old form of ICmp/FCmp returning bool 3162 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3163 // both legal on vectors but had different behaviour. 3164 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3165 // FCmp/ICmp returning bool or vector of bool 3166 3167 unsigned OpNum = 0; 3168 Value *LHS, *RHS; 3169 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3170 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3171 OpNum+1 != Record.size()) 3172 return Error("Invalid record"); 3173 3174 if (LHS->getType()->isFPOrFPVectorTy()) 3175 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 3176 else 3177 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 3178 InstructionList.push_back(I); 3179 break; 3180 } 3181 3182 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3183 { 3184 unsigned Size = Record.size(); 3185 if (Size == 0) { 3186 I = ReturnInst::Create(Context); 3187 InstructionList.push_back(I); 3188 break; 3189 } 3190 3191 unsigned OpNum = 0; 3192 Value *Op = nullptr; 3193 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3194 return Error("Invalid record"); 3195 if (OpNum != Record.size()) 3196 return Error("Invalid record"); 3197 3198 I = ReturnInst::Create(Context, Op); 3199 InstructionList.push_back(I); 3200 break; 3201 } 3202 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3203 if (Record.size() != 1 && Record.size() != 3) 3204 return Error("Invalid record"); 3205 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3206 if (!TrueDest) 3207 return Error("Invalid record"); 3208 3209 if (Record.size() == 1) { 3210 I = BranchInst::Create(TrueDest); 3211 InstructionList.push_back(I); 3212 } 3213 else { 3214 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3215 Value *Cond = getValue(Record, 2, NextValueNo, 3216 Type::getInt1Ty(Context)); 3217 if (!FalseDest || !Cond) 3218 return Error("Invalid record"); 3219 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3220 InstructionList.push_back(I); 3221 } 3222 break; 3223 } 3224 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3225 // Check magic 3226 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3227 // "New" SwitchInst format with case ranges. The changes to write this 3228 // format were reverted but we still recognize bitcode that uses it. 3229 // Hopefully someday we will have support for case ranges and can use 3230 // this format again. 3231 3232 Type *OpTy = getTypeByID(Record[1]); 3233 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 3234 3235 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 3236 BasicBlock *Default = getBasicBlock(Record[3]); 3237 if (!OpTy || !Cond || !Default) 3238 return Error("Invalid record"); 3239 3240 unsigned NumCases = Record[4]; 3241 3242 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3243 InstructionList.push_back(SI); 3244 3245 unsigned CurIdx = 5; 3246 for (unsigned i = 0; i != NumCases; ++i) { 3247 SmallVector<ConstantInt*, 1> CaseVals; 3248 unsigned NumItems = Record[CurIdx++]; 3249 for (unsigned ci = 0; ci != NumItems; ++ci) { 3250 bool isSingleNumber = Record[CurIdx++]; 3251 3252 APInt Low; 3253 unsigned ActiveWords = 1; 3254 if (ValueBitWidth > 64) 3255 ActiveWords = Record[CurIdx++]; 3256 Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3257 ValueBitWidth); 3258 CurIdx += ActiveWords; 3259 3260 if (!isSingleNumber) { 3261 ActiveWords = 1; 3262 if (ValueBitWidth > 64) 3263 ActiveWords = Record[CurIdx++]; 3264 APInt High = 3265 ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3266 ValueBitWidth); 3267 CurIdx += ActiveWords; 3268 3269 // FIXME: It is not clear whether values in the range should be 3270 // compared as signed or unsigned values. The partially 3271 // implemented changes that used this format in the past used 3272 // unsigned comparisons. 3273 for ( ; Low.ule(High); ++Low) 3274 CaseVals.push_back(ConstantInt::get(Context, Low)); 3275 } else 3276 CaseVals.push_back(ConstantInt::get(Context, Low)); 3277 } 3278 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 3279 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 3280 cve = CaseVals.end(); cvi != cve; ++cvi) 3281 SI->addCase(*cvi, DestBB); 3282 } 3283 I = SI; 3284 break; 3285 } 3286 3287 // Old SwitchInst format without case ranges. 3288 3289 if (Record.size() < 3 || (Record.size() & 1) == 0) 3290 return Error("Invalid record"); 3291 Type *OpTy = getTypeByID(Record[0]); 3292 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 3293 BasicBlock *Default = getBasicBlock(Record[2]); 3294 if (!OpTy || !Cond || !Default) 3295 return Error("Invalid record"); 3296 unsigned NumCases = (Record.size()-3)/2; 3297 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3298 InstructionList.push_back(SI); 3299 for (unsigned i = 0, e = NumCases; i != e; ++i) { 3300 ConstantInt *CaseVal = 3301 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 3302 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 3303 if (!CaseVal || !DestBB) { 3304 delete SI; 3305 return Error("Invalid record"); 3306 } 3307 SI->addCase(CaseVal, DestBB); 3308 } 3309 I = SI; 3310 break; 3311 } 3312 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 3313 if (Record.size() < 2) 3314 return Error("Invalid record"); 3315 Type *OpTy = getTypeByID(Record[0]); 3316 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 3317 if (!OpTy || !Address) 3318 return Error("Invalid record"); 3319 unsigned NumDests = Record.size()-2; 3320 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 3321 InstructionList.push_back(IBI); 3322 for (unsigned i = 0, e = NumDests; i != e; ++i) { 3323 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 3324 IBI->addDestination(DestBB); 3325 } else { 3326 delete IBI; 3327 return Error("Invalid record"); 3328 } 3329 } 3330 I = IBI; 3331 break; 3332 } 3333 3334 case bitc::FUNC_CODE_INST_INVOKE: { 3335 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 3336 if (Record.size() < 4) 3337 return Error("Invalid record"); 3338 AttributeSet PAL = getAttributes(Record[0]); 3339 unsigned CCInfo = Record[1]; 3340 BasicBlock *NormalBB = getBasicBlock(Record[2]); 3341 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 3342 3343 unsigned OpNum = 4; 3344 Value *Callee; 3345 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3346 return Error("Invalid record"); 3347 3348 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 3349 FunctionType *FTy = !CalleeTy ? nullptr : 3350 dyn_cast<FunctionType>(CalleeTy->getElementType()); 3351 3352 // Check that the right number of fixed parameters are here. 3353 if (!FTy || !NormalBB || !UnwindBB || 3354 Record.size() < OpNum+FTy->getNumParams()) 3355 return Error("Invalid record"); 3356 3357 SmallVector<Value*, 16> Ops; 3358 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3359 Ops.push_back(getValue(Record, OpNum, NextValueNo, 3360 FTy->getParamType(i))); 3361 if (!Ops.back()) 3362 return Error("Invalid record"); 3363 } 3364 3365 if (!FTy->isVarArg()) { 3366 if (Record.size() != OpNum) 3367 return Error("Invalid record"); 3368 } else { 3369 // Read type/value pairs for varargs params. 3370 while (OpNum != Record.size()) { 3371 Value *Op; 3372 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3373 return Error("Invalid record"); 3374 Ops.push_back(Op); 3375 } 3376 } 3377 3378 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); 3379 InstructionList.push_back(I); 3380 cast<InvokeInst>(I)->setCallingConv( 3381 static_cast<CallingConv::ID>(CCInfo)); 3382 cast<InvokeInst>(I)->setAttributes(PAL); 3383 break; 3384 } 3385 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 3386 unsigned Idx = 0; 3387 Value *Val = nullptr; 3388 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3389 return Error("Invalid record"); 3390 I = ResumeInst::Create(Val); 3391 InstructionList.push_back(I); 3392 break; 3393 } 3394 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 3395 I = new UnreachableInst(Context); 3396 InstructionList.push_back(I); 3397 break; 3398 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 3399 if (Record.size() < 1 || ((Record.size()-1)&1)) 3400 return Error("Invalid record"); 3401 Type *Ty = getTypeByID(Record[0]); 3402 if (!Ty) 3403 return Error("Invalid record"); 3404 3405 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 3406 InstructionList.push_back(PN); 3407 3408 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 3409 Value *V; 3410 // With the new function encoding, it is possible that operands have 3411 // negative IDs (for forward references). Use a signed VBR 3412 // representation to keep the encoding small. 3413 if (UseRelativeIDs) 3414 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 3415 else 3416 V = getValue(Record, 1+i, NextValueNo, Ty); 3417 BasicBlock *BB = getBasicBlock(Record[2+i]); 3418 if (!V || !BB) 3419 return Error("Invalid record"); 3420 PN->addIncoming(V, BB); 3421 } 3422 I = PN; 3423 break; 3424 } 3425 3426 case bitc::FUNC_CODE_INST_LANDINGPAD: { 3427 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 3428 unsigned Idx = 0; 3429 if (Record.size() < 4) 3430 return Error("Invalid record"); 3431 Type *Ty = getTypeByID(Record[Idx++]); 3432 if (!Ty) 3433 return Error("Invalid record"); 3434 Value *PersFn = nullptr; 3435 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 3436 return Error("Invalid record"); 3437 3438 bool IsCleanup = !!Record[Idx++]; 3439 unsigned NumClauses = Record[Idx++]; 3440 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses); 3441 LP->setCleanup(IsCleanup); 3442 for (unsigned J = 0; J != NumClauses; ++J) { 3443 LandingPadInst::ClauseType CT = 3444 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 3445 Value *Val; 3446 3447 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 3448 delete LP; 3449 return Error("Invalid record"); 3450 } 3451 3452 assert((CT != LandingPadInst::Catch || 3453 !isa<ArrayType>(Val->getType())) && 3454 "Catch clause has a invalid type!"); 3455 assert((CT != LandingPadInst::Filter || 3456 isa<ArrayType>(Val->getType())) && 3457 "Filter clause has invalid type!"); 3458 LP->addClause(cast<Constant>(Val)); 3459 } 3460 3461 I = LP; 3462 InstructionList.push_back(I); 3463 break; 3464 } 3465 3466 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 3467 if (Record.size() != 4) 3468 return Error("Invalid record"); 3469 PointerType *Ty = 3470 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 3471 Type *OpTy = getTypeByID(Record[1]); 3472 Value *Size = getFnValueByID(Record[2], OpTy); 3473 unsigned AlignRecord = Record[3]; 3474 bool InAlloca = AlignRecord & (1 << 5); 3475 unsigned Align = AlignRecord & ((1 << 5) - 1); 3476 if (!Ty || !Size) 3477 return Error("Invalid record"); 3478 AllocaInst *AI = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); 3479 AI->setUsedWithInAlloca(InAlloca); 3480 I = AI; 3481 InstructionList.push_back(I); 3482 break; 3483 } 3484 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 3485 unsigned OpNum = 0; 3486 Value *Op; 3487 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3488 OpNum+2 != Record.size()) 3489 return Error("Invalid record"); 3490 3491 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); 3492 InstructionList.push_back(I); 3493 break; 3494 } 3495 case bitc::FUNC_CODE_INST_LOADATOMIC: { 3496 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 3497 unsigned OpNum = 0; 3498 Value *Op; 3499 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3500 OpNum+4 != Record.size()) 3501 return Error("Invalid record"); 3502 3503 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3504 if (Ordering == NotAtomic || Ordering == Release || 3505 Ordering == AcquireRelease) 3506 return Error("Invalid record"); 3507 if (Ordering != NotAtomic && Record[OpNum] == 0) 3508 return Error("Invalid record"); 3509 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3510 3511 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1, 3512 Ordering, SynchScope); 3513 InstructionList.push_back(I); 3514 break; 3515 } 3516 case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol] 3517 unsigned OpNum = 0; 3518 Value *Val, *Ptr; 3519 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3520 popValue(Record, OpNum, NextValueNo, 3521 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3522 OpNum+2 != Record.size()) 3523 return Error("Invalid record"); 3524 3525 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 3526 InstructionList.push_back(I); 3527 break; 3528 } 3529 case bitc::FUNC_CODE_INST_STOREATOMIC: { 3530 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 3531 unsigned OpNum = 0; 3532 Value *Val, *Ptr; 3533 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3534 popValue(Record, OpNum, NextValueNo, 3535 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3536 OpNum+4 != Record.size()) 3537 return Error("Invalid record"); 3538 3539 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3540 if (Ordering == NotAtomic || Ordering == Acquire || 3541 Ordering == AcquireRelease) 3542 return Error("Invalid record"); 3543 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3544 if (Ordering != NotAtomic && Record[OpNum] == 0) 3545 return Error("Invalid record"); 3546 3547 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1, 3548 Ordering, SynchScope); 3549 InstructionList.push_back(I); 3550 break; 3551 } 3552 case bitc::FUNC_CODE_INST_CMPXCHG: { 3553 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 3554 // failureordering?, isweak?] 3555 unsigned OpNum = 0; 3556 Value *Ptr, *Cmp, *New; 3557 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3558 popValue(Record, OpNum, NextValueNo, 3559 cast<PointerType>(Ptr->getType())->getElementType(), Cmp) || 3560 popValue(Record, OpNum, NextValueNo, 3561 cast<PointerType>(Ptr->getType())->getElementType(), New) || 3562 (Record.size() < OpNum + 3 || Record.size() > OpNum + 5)) 3563 return Error("Invalid record"); 3564 AtomicOrdering SuccessOrdering = GetDecodedOrdering(Record[OpNum+1]); 3565 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 3566 return Error("Invalid record"); 3567 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]); 3568 3569 AtomicOrdering FailureOrdering; 3570 if (Record.size() < 7) 3571 FailureOrdering = 3572 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 3573 else 3574 FailureOrdering = GetDecodedOrdering(Record[OpNum+3]); 3575 3576 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 3577 SynchScope); 3578 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 3579 3580 if (Record.size() < 8) { 3581 // Before weak cmpxchgs existed, the instruction simply returned the 3582 // value loaded from memory, so bitcode files from that era will be 3583 // expecting the first component of a modern cmpxchg. 3584 CurBB->getInstList().push_back(I); 3585 I = ExtractValueInst::Create(I, 0); 3586 } else { 3587 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 3588 } 3589 3590 InstructionList.push_back(I); 3591 break; 3592 } 3593 case bitc::FUNC_CODE_INST_ATOMICRMW: { 3594 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 3595 unsigned OpNum = 0; 3596 Value *Ptr, *Val; 3597 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3598 popValue(Record, OpNum, NextValueNo, 3599 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3600 OpNum+4 != Record.size()) 3601 return Error("Invalid record"); 3602 AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]); 3603 if (Operation < AtomicRMWInst::FIRST_BINOP || 3604 Operation > AtomicRMWInst::LAST_BINOP) 3605 return Error("Invalid record"); 3606 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3607 if (Ordering == NotAtomic || Ordering == Unordered) 3608 return Error("Invalid record"); 3609 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3610 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 3611 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 3612 InstructionList.push_back(I); 3613 break; 3614 } 3615 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 3616 if (2 != Record.size()) 3617 return Error("Invalid record"); 3618 AtomicOrdering Ordering = GetDecodedOrdering(Record[0]); 3619 if (Ordering == NotAtomic || Ordering == Unordered || 3620 Ordering == Monotonic) 3621 return Error("Invalid record"); 3622 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]); 3623 I = new FenceInst(Context, Ordering, SynchScope); 3624 InstructionList.push_back(I); 3625 break; 3626 } 3627 case bitc::FUNC_CODE_INST_CALL: { 3628 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 3629 if (Record.size() < 3) 3630 return Error("Invalid record"); 3631 3632 AttributeSet PAL = getAttributes(Record[0]); 3633 unsigned CCInfo = Record[1]; 3634 3635 unsigned OpNum = 2; 3636 Value *Callee; 3637 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3638 return Error("Invalid record"); 3639 3640 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 3641 FunctionType *FTy = nullptr; 3642 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 3643 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 3644 return Error("Invalid record"); 3645 3646 SmallVector<Value*, 16> Args; 3647 // Read the fixed params. 3648 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3649 if (FTy->getParamType(i)->isLabelTy()) 3650 Args.push_back(getBasicBlock(Record[OpNum])); 3651 else 3652 Args.push_back(getValue(Record, OpNum, NextValueNo, 3653 FTy->getParamType(i))); 3654 if (!Args.back()) 3655 return Error("Invalid record"); 3656 } 3657 3658 // Read type/value pairs for varargs params. 3659 if (!FTy->isVarArg()) { 3660 if (OpNum != Record.size()) 3661 return Error("Invalid record"); 3662 } else { 3663 while (OpNum != Record.size()) { 3664 Value *Op; 3665 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3666 return Error("Invalid record"); 3667 Args.push_back(Op); 3668 } 3669 } 3670 3671 I = CallInst::Create(Callee, Args); 3672 InstructionList.push_back(I); 3673 cast<CallInst>(I)->setCallingConv( 3674 static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1)); 3675 CallInst::TailCallKind TCK = CallInst::TCK_None; 3676 if (CCInfo & 1) 3677 TCK = CallInst::TCK_Tail; 3678 if (CCInfo & (1 << 14)) 3679 TCK = CallInst::TCK_MustTail; 3680 cast<CallInst>(I)->setTailCallKind(TCK); 3681 cast<CallInst>(I)->setAttributes(PAL); 3682 break; 3683 } 3684 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 3685 if (Record.size() < 3) 3686 return Error("Invalid record"); 3687 Type *OpTy = getTypeByID(Record[0]); 3688 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 3689 Type *ResTy = getTypeByID(Record[2]); 3690 if (!OpTy || !Op || !ResTy) 3691 return Error("Invalid record"); 3692 I = new VAArgInst(Op, ResTy); 3693 InstructionList.push_back(I); 3694 break; 3695 } 3696 } 3697 3698 // Add instruction to end of current BB. If there is no current BB, reject 3699 // this file. 3700 if (!CurBB) { 3701 delete I; 3702 return Error("Invalid instruction with no BB"); 3703 } 3704 CurBB->getInstList().push_back(I); 3705 3706 // If this was a terminator instruction, move to the next block. 3707 if (isa<TerminatorInst>(I)) { 3708 ++CurBBNo; 3709 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 3710 } 3711 3712 // Non-void values get registered in the value table for future use. 3713 if (I && !I->getType()->isVoidTy()) 3714 ValueList.AssignValue(I, NextValueNo++); 3715 } 3716 3717 OutOfRecordLoop: 3718 3719 // Check the function list for unresolved values. 3720 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 3721 if (!A->getParent()) { 3722 // We found at least one unresolved value. Nuke them all to avoid leaks. 3723 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 3724 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 3725 A->replaceAllUsesWith(UndefValue::get(A->getType())); 3726 delete A; 3727 } 3728 } 3729 return Error("Never resolved value found in function"); 3730 } 3731 } 3732 3733 // FIXME: Check for unresolved forward-declared metadata references 3734 // and clean up leaks. 3735 3736 // Trim the value list down to the size it was before we parsed this function. 3737 ValueList.shrinkTo(ModuleValueListSize); 3738 MDValueList.shrinkTo(ModuleMDValueListSize); 3739 std::vector<BasicBlock*>().swap(FunctionBBs); 3740 return std::error_code(); 3741 } 3742 3743 /// Find the function body in the bitcode stream 3744 std::error_code BitcodeReader::FindFunctionInStream( 3745 Function *F, 3746 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 3747 while (DeferredFunctionInfoIterator->second == 0) { 3748 if (Stream.AtEndOfStream()) 3749 return Error("Could not find function in stream"); 3750 // ParseModule will parse the next body in the stream and set its 3751 // position in the DeferredFunctionInfo map. 3752 if (std::error_code EC = ParseModule(true)) 3753 return EC; 3754 } 3755 return std::error_code(); 3756 } 3757 3758 //===----------------------------------------------------------------------===// 3759 // GVMaterializer implementation 3760 //===----------------------------------------------------------------------===// 3761 3762 void BitcodeReader::releaseBuffer() { Buffer.release(); } 3763 3764 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 3765 Function *F = dyn_cast<Function>(GV); 3766 // If it's not a function or is already material, ignore the request. 3767 if (!F || !F->isMaterializable()) 3768 return std::error_code(); 3769 3770 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 3771 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 3772 // If its position is recorded as 0, its body is somewhere in the stream 3773 // but we haven't seen it yet. 3774 if (DFII->second == 0 && LazyStreamer) 3775 if (std::error_code EC = FindFunctionInStream(F, DFII)) 3776 return EC; 3777 3778 // Move the bit stream to the saved position of the deferred function body. 3779 Stream.JumpToBit(DFII->second); 3780 3781 if (std::error_code EC = ParseFunctionBody(F)) 3782 return EC; 3783 F->setIsMaterializable(false); 3784 3785 // Upgrade any old intrinsic calls in the function. 3786 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 3787 E = UpgradedIntrinsics.end(); I != E; ++I) { 3788 if (I->first != I->second) { 3789 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3790 UI != UE;) { 3791 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3792 UpgradeIntrinsicCall(CI, I->second); 3793 } 3794 } 3795 } 3796 3797 // Bring in any functions that this function forward-referenced via 3798 // blockaddresses. 3799 return materializeForwardReferencedFunctions(); 3800 } 3801 3802 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 3803 const Function *F = dyn_cast<Function>(GV); 3804 if (!F || F->isDeclaration()) 3805 return false; 3806 3807 // Dematerializing F would leave dangling references that wouldn't be 3808 // reconnected on re-materialization. 3809 if (BlockAddressesTaken.count(F)) 3810 return false; 3811 3812 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 3813 } 3814 3815 void BitcodeReader::Dematerialize(GlobalValue *GV) { 3816 Function *F = dyn_cast<Function>(GV); 3817 // If this function isn't dematerializable, this is a noop. 3818 if (!F || !isDematerializable(F)) 3819 return; 3820 3821 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 3822 3823 // Just forget the function body, we can remat it later. 3824 F->dropAllReferences(); 3825 F->setIsMaterializable(true); 3826 } 3827 3828 std::error_code BitcodeReader::MaterializeModule(Module *M) { 3829 assert(M == TheModule && 3830 "Can only Materialize the Module this BitcodeReader is attached to."); 3831 3832 // Promise to materialize all forward references. 3833 WillMaterializeAllForwardRefs = true; 3834 3835 // Iterate over the module, deserializing any functions that are still on 3836 // disk. 3837 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 3838 F != E; ++F) { 3839 if (std::error_code EC = materialize(F)) 3840 return EC; 3841 } 3842 // At this point, if there are any function bodies, the current bit is 3843 // pointing to the END_BLOCK record after them. Now make sure the rest 3844 // of the bits in the module have been read. 3845 if (NextUnreadBit) 3846 ParseModule(true); 3847 3848 // Check that all block address forward references got resolved (as we 3849 // promised above). 3850 if (!BasicBlockFwdRefs.empty()) 3851 return Error("Never resolved function from blockaddress"); 3852 3853 // Upgrade any intrinsic calls that slipped through (should not happen!) and 3854 // delete the old functions to clean up. We can't do this unless the entire 3855 // module is materialized because there could always be another function body 3856 // with calls to the old function. 3857 for (std::vector<std::pair<Function*, Function*> >::iterator I = 3858 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 3859 if (I->first != I->second) { 3860 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3861 UI != UE;) { 3862 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3863 UpgradeIntrinsicCall(CI, I->second); 3864 } 3865 if (!I->first->use_empty()) 3866 I->first->replaceAllUsesWith(I->second); 3867 I->first->eraseFromParent(); 3868 } 3869 } 3870 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 3871 3872 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 3873 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 3874 3875 UpgradeDebugInfo(*M); 3876 return std::error_code(); 3877 } 3878 3879 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 3880 return IdentifiedStructTypes; 3881 } 3882 3883 std::error_code BitcodeReader::InitStream() { 3884 if (LazyStreamer) 3885 return InitLazyStream(); 3886 return InitStreamFromBuffer(); 3887 } 3888 3889 std::error_code BitcodeReader::InitStreamFromBuffer() { 3890 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 3891 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 3892 3893 if (Buffer->getBufferSize() & 3) 3894 return Error("Invalid bitcode signature"); 3895 3896 // If we have a wrapper header, parse it and ignore the non-bc file contents. 3897 // The magic number is 0x0B17C0DE stored in little endian. 3898 if (isBitcodeWrapper(BufPtr, BufEnd)) 3899 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 3900 return Error("Invalid bitcode wrapper header"); 3901 3902 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 3903 Stream.init(&*StreamFile); 3904 3905 return std::error_code(); 3906 } 3907 3908 std::error_code BitcodeReader::InitLazyStream() { 3909 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 3910 // see it. 3911 auto OwnedBytes = llvm::make_unique<StreamingMemoryObject>(LazyStreamer); 3912 StreamingMemoryObject &Bytes = *OwnedBytes; 3913 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 3914 Stream.init(&*StreamFile); 3915 3916 unsigned char buf[16]; 3917 if (Bytes.readBytes(buf, 16, 0) != 16) 3918 return Error("Invalid bitcode signature"); 3919 3920 if (!isBitcode(buf, buf + 16)) 3921 return Error("Invalid bitcode signature"); 3922 3923 if (isBitcodeWrapper(buf, buf + 4)) { 3924 const unsigned char *bitcodeStart = buf; 3925 const unsigned char *bitcodeEnd = buf + 16; 3926 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 3927 Bytes.dropLeadingBytes(bitcodeStart - buf); 3928 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 3929 } 3930 return std::error_code(); 3931 } 3932 3933 namespace { 3934 class BitcodeErrorCategoryType : public std::error_category { 3935 const char *name() const LLVM_NOEXCEPT override { 3936 return "llvm.bitcode"; 3937 } 3938 std::string message(int IE) const override { 3939 BitcodeError E = static_cast<BitcodeError>(IE); 3940 switch (E) { 3941 case BitcodeError::InvalidBitcodeSignature: 3942 return "Invalid bitcode signature"; 3943 case BitcodeError::CorruptedBitcode: 3944 return "Corrupted bitcode"; 3945 } 3946 llvm_unreachable("Unknown error type!"); 3947 } 3948 }; 3949 } 3950 3951 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 3952 3953 const std::error_category &llvm::BitcodeErrorCategory() { 3954 return *ErrorCategory; 3955 } 3956 3957 //===----------------------------------------------------------------------===// 3958 // External interface 3959 //===----------------------------------------------------------------------===// 3960 3961 /// \brief Get a lazy one-at-time loading module from bitcode. 3962 /// 3963 /// This isn't always used in a lazy context. In particular, it's also used by 3964 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 3965 /// in forward-referenced functions from block address references. 3966 /// 3967 /// \param[in] WillMaterializeAll Set to \c true if the caller promises to 3968 /// materialize everything -- in particular, if this isn't truly lazy. 3969 static ErrorOr<Module *> 3970 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 3971 LLVMContext &Context, bool WillMaterializeAll, 3972 DiagnosticHandlerFunction DiagnosticHandler) { 3973 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 3974 BitcodeReader *R = 3975 new BitcodeReader(Buffer.get(), Context, DiagnosticHandler); 3976 M->setMaterializer(R); 3977 3978 auto cleanupOnError = [&](std::error_code EC) { 3979 R->releaseBuffer(); // Never take ownership on error. 3980 delete M; // Also deletes R. 3981 return EC; 3982 }; 3983 3984 if (std::error_code EC = R->ParseBitcodeInto(M)) 3985 return cleanupOnError(EC); 3986 3987 if (!WillMaterializeAll) 3988 // Resolve forward references from blockaddresses. 3989 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 3990 return cleanupOnError(EC); 3991 3992 Buffer.release(); // The BitcodeReader owns it now. 3993 return M; 3994 } 3995 3996 ErrorOr<Module *> 3997 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 3998 LLVMContext &Context, 3999 DiagnosticHandlerFunction DiagnosticHandler) { 4000 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 4001 DiagnosticHandler); 4002 } 4003 4004 ErrorOr<std::unique_ptr<Module>> 4005 llvm::getStreamedBitcodeModule(StringRef Name, DataStreamer *Streamer, 4006 LLVMContext &Context, 4007 DiagnosticHandlerFunction DiagnosticHandler) { 4008 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 4009 BitcodeReader *R = new BitcodeReader(Streamer, Context, DiagnosticHandler); 4010 M->setMaterializer(R); 4011 if (std::error_code EC = R->ParseBitcodeInto(M.get())) 4012 return EC; 4013 return std::move(M); 4014 } 4015 4016 ErrorOr<Module *> 4017 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 4018 DiagnosticHandlerFunction DiagnosticHandler) { 4019 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 4020 ErrorOr<Module *> ModuleOrErr = getLazyBitcodeModuleImpl( 4021 std::move(Buf), Context, true, DiagnosticHandler); 4022 if (!ModuleOrErr) 4023 return ModuleOrErr; 4024 Module *M = ModuleOrErr.get(); 4025 // Read in the entire module, and destroy the BitcodeReader. 4026 if (std::error_code EC = M->materializeAllPermanently()) { 4027 delete M; 4028 return EC; 4029 } 4030 4031 // TODO: Restore the use-lists to the in-memory state when the bitcode was 4032 // written. We must defer until the Module has been fully materialized. 4033 4034 return M; 4035 } 4036 4037 std::string 4038 llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context, 4039 DiagnosticHandlerFunction DiagnosticHandler) { 4040 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 4041 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context, 4042 DiagnosticHandler); 4043 ErrorOr<std::string> Triple = R->parseTriple(); 4044 if (Triple.getError()) 4045 return ""; 4046 return Triple.get(); 4047 } 4048