1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/Bitcode/BitstreamReader.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/OperandTraits.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/IR/ValueHandle.h" 31 #include "llvm/Support/DataStream.h" 32 #include "llvm/Support/ManagedStatic.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Support/MemoryBuffer.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include <deque> 37 using namespace llvm; 38 39 namespace { 40 enum { 41 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 42 }; 43 44 class BitcodeReaderValueList { 45 std::vector<WeakVH> ValuePtrs; 46 47 /// As we resolve forward-referenced constants, we add information about them 48 /// to this vector. This allows us to resolve them in bulk instead of 49 /// resolving each reference at a time. See the code in 50 /// ResolveConstantForwardRefs for more information about this. 51 /// 52 /// The key of this vector is the placeholder constant, the value is the slot 53 /// number that holds the resolved value. 54 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 55 ResolveConstantsTy ResolveConstants; 56 LLVMContext &Context; 57 public: 58 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 59 ~BitcodeReaderValueList() { 60 assert(ResolveConstants.empty() && "Constants not resolved?"); 61 } 62 63 // vector compatibility methods 64 unsigned size() const { return ValuePtrs.size(); } 65 void resize(unsigned N) { ValuePtrs.resize(N); } 66 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 67 68 void clear() { 69 assert(ResolveConstants.empty() && "Constants not resolved?"); 70 ValuePtrs.clear(); 71 } 72 73 Value *operator[](unsigned i) const { 74 assert(i < ValuePtrs.size()); 75 return ValuePtrs[i]; 76 } 77 78 Value *back() const { return ValuePtrs.back(); } 79 void pop_back() { ValuePtrs.pop_back(); } 80 bool empty() const { return ValuePtrs.empty(); } 81 void shrinkTo(unsigned N) { 82 assert(N <= size() && "Invalid shrinkTo request!"); 83 ValuePtrs.resize(N); 84 } 85 86 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 87 Value *getValueFwdRef(unsigned Idx, Type *Ty); 88 89 void assignValue(Value *V, unsigned Idx); 90 91 /// Once all constants are read, this method bulk resolves any forward 92 /// references. 93 void resolveConstantForwardRefs(); 94 }; 95 96 class BitcodeReaderMDValueList { 97 unsigned NumFwdRefs; 98 bool AnyFwdRefs; 99 unsigned MinFwdRef; 100 unsigned MaxFwdRef; 101 std::vector<TrackingMDRef> MDValuePtrs; 102 103 LLVMContext &Context; 104 public: 105 BitcodeReaderMDValueList(LLVMContext &C) 106 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 107 108 // vector compatibility methods 109 unsigned size() const { return MDValuePtrs.size(); } 110 void resize(unsigned N) { MDValuePtrs.resize(N); } 111 void push_back(Metadata *MD) { MDValuePtrs.emplace_back(MD); } 112 void clear() { MDValuePtrs.clear(); } 113 Metadata *back() const { return MDValuePtrs.back(); } 114 void pop_back() { MDValuePtrs.pop_back(); } 115 bool empty() const { return MDValuePtrs.empty(); } 116 117 Metadata *operator[](unsigned i) const { 118 assert(i < MDValuePtrs.size()); 119 return MDValuePtrs[i]; 120 } 121 122 void shrinkTo(unsigned N) { 123 assert(N <= size() && "Invalid shrinkTo request!"); 124 MDValuePtrs.resize(N); 125 } 126 127 Metadata *getValueFwdRef(unsigned Idx); 128 void assignValue(Metadata *MD, unsigned Idx); 129 void tryToResolveCycles(); 130 }; 131 132 class BitcodeReader : public GVMaterializer { 133 LLVMContext &Context; 134 DiagnosticHandlerFunction DiagnosticHandler; 135 Module *TheModule = nullptr; 136 std::unique_ptr<MemoryBuffer> Buffer; 137 std::unique_ptr<BitstreamReader> StreamFile; 138 BitstreamCursor Stream; 139 uint64_t NextUnreadBit = 0; 140 bool SeenValueSymbolTable = false; 141 142 std::vector<Type*> TypeList; 143 BitcodeReaderValueList ValueList; 144 BitcodeReaderMDValueList MDValueList; 145 std::vector<Comdat *> ComdatList; 146 SmallVector<Instruction *, 64> InstructionList; 147 148 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 149 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits; 150 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 151 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 152 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 153 154 SmallVector<Instruction*, 64> InstsWithTBAATag; 155 156 /// The set of attributes by index. Index zero in the file is for null, and 157 /// is thus not represented here. As such all indices are off by one. 158 std::vector<AttributeSet> MAttributes; 159 160 /// \brief The set of attribute groups. 161 std::map<unsigned, AttributeSet> MAttributeGroups; 162 163 /// While parsing a function body, this is a list of the basic blocks for the 164 /// function. 165 std::vector<BasicBlock*> FunctionBBs; 166 167 // When reading the module header, this list is populated with functions that 168 // have bodies later in the file. 169 std::vector<Function*> FunctionsWithBodies; 170 171 // When intrinsic functions are encountered which require upgrading they are 172 // stored here with their replacement function. 173 typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap; 174 UpgradedIntrinsicMap UpgradedIntrinsics; 175 176 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 177 DenseMap<unsigned, unsigned> MDKindMap; 178 179 // Several operations happen after the module header has been read, but 180 // before function bodies are processed. This keeps track of whether 181 // we've done this yet. 182 bool SeenFirstFunctionBody = false; 183 184 /// When function bodies are initially scanned, this map contains info about 185 /// where to find deferred function body in the stream. 186 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 187 188 /// When Metadata block is initially scanned when parsing the module, we may 189 /// choose to defer parsing of the metadata. This vector contains info about 190 /// which Metadata blocks are deferred. 191 std::vector<uint64_t> DeferredMetadataInfo; 192 193 /// These are basic blocks forward-referenced by block addresses. They are 194 /// inserted lazily into functions when they're loaded. The basic block ID is 195 /// its index into the vector. 196 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 197 std::deque<Function *> BasicBlockFwdRefQueue; 198 199 /// Indicates that we are using a new encoding for instruction operands where 200 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 201 /// instruction number, for a more compact encoding. Some instruction 202 /// operands are not relative to the instruction ID: basic block numbers, and 203 /// types. Once the old style function blocks have been phased out, we would 204 /// not need this flag. 205 bool UseRelativeIDs = false; 206 207 /// True if all functions will be materialized, negating the need to process 208 /// (e.g.) blockaddress forward references. 209 bool WillMaterializeAllForwardRefs = false; 210 211 /// Functions that have block addresses taken. This is usually empty. 212 SmallPtrSet<const Function *, 4> BlockAddressesTaken; 213 214 /// True if any Metadata block has been materialized. 215 bool IsMetadataMaterialized = false; 216 217 bool StripDebugInfo = false; 218 219 public: 220 std::error_code error(BitcodeError E, const Twine &Message); 221 std::error_code error(BitcodeError E); 222 std::error_code error(const Twine &Message); 223 224 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context, 225 DiagnosticHandlerFunction DiagnosticHandler); 226 BitcodeReader(LLVMContext &Context, 227 DiagnosticHandlerFunction DiagnosticHandler); 228 ~BitcodeReader() override { freeState(); } 229 230 std::error_code materializeForwardReferencedFunctions(); 231 232 void freeState(); 233 234 void releaseBuffer(); 235 236 bool isDematerializable(const GlobalValue *GV) const override; 237 std::error_code materialize(GlobalValue *GV) override; 238 std::error_code materializeModule(Module *M) override; 239 std::vector<StructType *> getIdentifiedStructTypes() const override; 240 void dematerialize(GlobalValue *GV) override; 241 242 /// \brief Main interface to parsing a bitcode buffer. 243 /// \returns true if an error occurred. 244 std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 245 Module *M, 246 bool ShouldLazyLoadMetadata = false); 247 248 /// \brief Cheap mechanism to just extract module triple 249 /// \returns true if an error occurred. 250 ErrorOr<std::string> parseTriple(); 251 252 static uint64_t decodeSignRotatedValue(uint64_t V); 253 254 /// Materialize any deferred Metadata block. 255 std::error_code materializeMetadata() override; 256 257 void setStripDebugInfo() override; 258 259 private: 260 std::vector<StructType *> IdentifiedStructTypes; 261 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 262 StructType *createIdentifiedStructType(LLVMContext &Context); 263 264 Type *getTypeByID(unsigned ID); 265 Value *getFnValueByID(unsigned ID, Type *Ty) { 266 if (Ty && Ty->isMetadataTy()) 267 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 268 return ValueList.getValueFwdRef(ID, Ty); 269 } 270 Metadata *getFnMetadataByID(unsigned ID) { 271 return MDValueList.getValueFwdRef(ID); 272 } 273 BasicBlock *getBasicBlock(unsigned ID) const { 274 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 275 return FunctionBBs[ID]; 276 } 277 AttributeSet getAttributes(unsigned i) const { 278 if (i-1 < MAttributes.size()) 279 return MAttributes[i-1]; 280 return AttributeSet(); 281 } 282 283 /// Read a value/type pair out of the specified record from slot 'Slot'. 284 /// Increment Slot past the number of slots used in the record. Return true on 285 /// failure. 286 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 287 unsigned InstNum, Value *&ResVal) { 288 if (Slot == Record.size()) return true; 289 unsigned ValNo = (unsigned)Record[Slot++]; 290 // Adjust the ValNo, if it was encoded relative to the InstNum. 291 if (UseRelativeIDs) 292 ValNo = InstNum - ValNo; 293 if (ValNo < InstNum) { 294 // If this is not a forward reference, just return the value we already 295 // have. 296 ResVal = getFnValueByID(ValNo, nullptr); 297 return ResVal == nullptr; 298 } 299 if (Slot == Record.size()) 300 return true; 301 302 unsigned TypeNo = (unsigned)Record[Slot++]; 303 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 304 return ResVal == nullptr; 305 } 306 307 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 308 /// past the number of slots used by the value in the record. Return true if 309 /// there is an error. 310 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 311 unsigned InstNum, Type *Ty, Value *&ResVal) { 312 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 313 return true; 314 // All values currently take a single record slot. 315 ++Slot; 316 return false; 317 } 318 319 /// Like popValue, but does not increment the Slot number. 320 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 321 unsigned InstNum, Type *Ty, Value *&ResVal) { 322 ResVal = getValue(Record, Slot, InstNum, Ty); 323 return ResVal == nullptr; 324 } 325 326 /// Version of getValue that returns ResVal directly, or 0 if there is an 327 /// error. 328 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 329 unsigned InstNum, Type *Ty) { 330 if (Slot == Record.size()) return nullptr; 331 unsigned ValNo = (unsigned)Record[Slot]; 332 // Adjust the ValNo, if it was encoded relative to the InstNum. 333 if (UseRelativeIDs) 334 ValNo = InstNum - ValNo; 335 return getFnValueByID(ValNo, Ty); 336 } 337 338 /// Like getValue, but decodes signed VBRs. 339 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 340 unsigned InstNum, Type *Ty) { 341 if (Slot == Record.size()) return nullptr; 342 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 343 // Adjust the ValNo, if it was encoded relative to the InstNum. 344 if (UseRelativeIDs) 345 ValNo = InstNum - ValNo; 346 return getFnValueByID(ValNo, Ty); 347 } 348 349 /// Converts alignment exponent (i.e. power of two (or zero)) to the 350 /// corresponding alignment to use. If alignment is too large, returns 351 /// a corresponding error code. 352 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 353 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 354 std::error_code parseModule(bool Resume, bool ShouldLazyLoadMetadata = false); 355 std::error_code parseAttributeBlock(); 356 std::error_code parseAttributeGroupBlock(); 357 std::error_code parseTypeTable(); 358 std::error_code parseTypeTableBody(); 359 360 std::error_code parseValueSymbolTable(); 361 std::error_code parseConstants(); 362 std::error_code rememberAndSkipFunctionBody(); 363 /// Save the positions of the Metadata blocks and skip parsing the blocks. 364 std::error_code rememberAndSkipMetadata(); 365 std::error_code parseFunctionBody(Function *F); 366 std::error_code globalCleanup(); 367 std::error_code resolveGlobalAndAliasInits(); 368 std::error_code parseMetadata(); 369 std::error_code parseMetadataAttachment(Function &F); 370 ErrorOr<std::string> parseModuleTriple(); 371 std::error_code parseUseLists(); 372 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 373 std::error_code initStreamFromBuffer(); 374 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 375 std::error_code findFunctionInStream( 376 Function *F, 377 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 378 }; 379 } // namespace 380 381 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 382 DiagnosticSeverity Severity, 383 const Twine &Msg) 384 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 385 386 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 387 388 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 389 std::error_code EC, const Twine &Message) { 390 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 391 DiagnosticHandler(DI); 392 return EC; 393 } 394 395 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 396 std::error_code EC) { 397 return error(DiagnosticHandler, EC, EC.message()); 398 } 399 400 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 401 const Twine &Message) { 402 return error(DiagnosticHandler, 403 make_error_code(BitcodeError::CorruptedBitcode), Message); 404 } 405 406 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) { 407 return ::error(DiagnosticHandler, make_error_code(E), Message); 408 } 409 410 std::error_code BitcodeReader::error(const Twine &Message) { 411 return ::error(DiagnosticHandler, 412 make_error_code(BitcodeError::CorruptedBitcode), Message); 413 } 414 415 std::error_code BitcodeReader::error(BitcodeError E) { 416 return ::error(DiagnosticHandler, make_error_code(E)); 417 } 418 419 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F, 420 LLVMContext &C) { 421 if (F) 422 return F; 423 return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); }; 424 } 425 426 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context, 427 DiagnosticHandlerFunction DiagnosticHandler) 428 : Context(Context), 429 DiagnosticHandler(getDiagHandler(DiagnosticHandler, Context)), 430 Buffer(Buffer), ValueList(Context), MDValueList(Context) {} 431 432 BitcodeReader::BitcodeReader(LLVMContext &Context, 433 DiagnosticHandlerFunction DiagnosticHandler) 434 : Context(Context), 435 DiagnosticHandler(getDiagHandler(DiagnosticHandler, Context)), 436 Buffer(nullptr), ValueList(Context), MDValueList(Context) {} 437 438 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 439 if (WillMaterializeAllForwardRefs) 440 return std::error_code(); 441 442 // Prevent recursion. 443 WillMaterializeAllForwardRefs = true; 444 445 while (!BasicBlockFwdRefQueue.empty()) { 446 Function *F = BasicBlockFwdRefQueue.front(); 447 BasicBlockFwdRefQueue.pop_front(); 448 assert(F && "Expected valid function"); 449 if (!BasicBlockFwdRefs.count(F)) 450 // Already materialized. 451 continue; 452 453 // Check for a function that isn't materializable to prevent an infinite 454 // loop. When parsing a blockaddress stored in a global variable, there 455 // isn't a trivial way to check if a function will have a body without a 456 // linear search through FunctionsWithBodies, so just check it here. 457 if (!F->isMaterializable()) 458 return error("Never resolved function from blockaddress"); 459 460 // Try to materialize F. 461 if (std::error_code EC = materialize(F)) 462 return EC; 463 } 464 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 465 466 // Reset state. 467 WillMaterializeAllForwardRefs = false; 468 return std::error_code(); 469 } 470 471 void BitcodeReader::freeState() { 472 Buffer = nullptr; 473 std::vector<Type*>().swap(TypeList); 474 ValueList.clear(); 475 MDValueList.clear(); 476 std::vector<Comdat *>().swap(ComdatList); 477 478 std::vector<AttributeSet>().swap(MAttributes); 479 std::vector<BasicBlock*>().swap(FunctionBBs); 480 std::vector<Function*>().swap(FunctionsWithBodies); 481 DeferredFunctionInfo.clear(); 482 DeferredMetadataInfo.clear(); 483 MDKindMap.clear(); 484 485 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 486 BasicBlockFwdRefQueue.clear(); 487 } 488 489 //===----------------------------------------------------------------------===// 490 // Helper functions to implement forward reference resolution, etc. 491 //===----------------------------------------------------------------------===// 492 493 /// Convert a string from a record into an std::string, return true on failure. 494 template <typename StrTy> 495 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 496 StrTy &Result) { 497 if (Idx > Record.size()) 498 return true; 499 500 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 501 Result += (char)Record[i]; 502 return false; 503 } 504 505 static bool hasImplicitComdat(size_t Val) { 506 switch (Val) { 507 default: 508 return false; 509 case 1: // Old WeakAnyLinkage 510 case 4: // Old LinkOnceAnyLinkage 511 case 10: // Old WeakODRLinkage 512 case 11: // Old LinkOnceODRLinkage 513 return true; 514 } 515 } 516 517 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 518 switch (Val) { 519 default: // Map unknown/new linkages to external 520 case 0: 521 return GlobalValue::ExternalLinkage; 522 case 2: 523 return GlobalValue::AppendingLinkage; 524 case 3: 525 return GlobalValue::InternalLinkage; 526 case 5: 527 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 528 case 6: 529 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 530 case 7: 531 return GlobalValue::ExternalWeakLinkage; 532 case 8: 533 return GlobalValue::CommonLinkage; 534 case 9: 535 return GlobalValue::PrivateLinkage; 536 case 12: 537 return GlobalValue::AvailableExternallyLinkage; 538 case 13: 539 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 540 case 14: 541 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 542 case 15: 543 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 544 case 1: // Old value with implicit comdat. 545 case 16: 546 return GlobalValue::WeakAnyLinkage; 547 case 10: // Old value with implicit comdat. 548 case 17: 549 return GlobalValue::WeakODRLinkage; 550 case 4: // Old value with implicit comdat. 551 case 18: 552 return GlobalValue::LinkOnceAnyLinkage; 553 case 11: // Old value with implicit comdat. 554 case 19: 555 return GlobalValue::LinkOnceODRLinkage; 556 } 557 } 558 559 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 560 switch (Val) { 561 default: // Map unknown visibilities to default. 562 case 0: return GlobalValue::DefaultVisibility; 563 case 1: return GlobalValue::HiddenVisibility; 564 case 2: return GlobalValue::ProtectedVisibility; 565 } 566 } 567 568 static GlobalValue::DLLStorageClassTypes 569 getDecodedDLLStorageClass(unsigned Val) { 570 switch (Val) { 571 default: // Map unknown values to default. 572 case 0: return GlobalValue::DefaultStorageClass; 573 case 1: return GlobalValue::DLLImportStorageClass; 574 case 2: return GlobalValue::DLLExportStorageClass; 575 } 576 } 577 578 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 579 switch (Val) { 580 case 0: return GlobalVariable::NotThreadLocal; 581 default: // Map unknown non-zero value to general dynamic. 582 case 1: return GlobalVariable::GeneralDynamicTLSModel; 583 case 2: return GlobalVariable::LocalDynamicTLSModel; 584 case 3: return GlobalVariable::InitialExecTLSModel; 585 case 4: return GlobalVariable::LocalExecTLSModel; 586 } 587 } 588 589 static int getDecodedCastOpcode(unsigned Val) { 590 switch (Val) { 591 default: return -1; 592 case bitc::CAST_TRUNC : return Instruction::Trunc; 593 case bitc::CAST_ZEXT : return Instruction::ZExt; 594 case bitc::CAST_SEXT : return Instruction::SExt; 595 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 596 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 597 case bitc::CAST_UITOFP : return Instruction::UIToFP; 598 case bitc::CAST_SITOFP : return Instruction::SIToFP; 599 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 600 case bitc::CAST_FPEXT : return Instruction::FPExt; 601 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 602 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 603 case bitc::CAST_BITCAST : return Instruction::BitCast; 604 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 605 } 606 } 607 608 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 609 bool IsFP = Ty->isFPOrFPVectorTy(); 610 // BinOps are only valid for int/fp or vector of int/fp types 611 if (!IsFP && !Ty->isIntOrIntVectorTy()) 612 return -1; 613 614 switch (Val) { 615 default: 616 return -1; 617 case bitc::BINOP_ADD: 618 return IsFP ? Instruction::FAdd : Instruction::Add; 619 case bitc::BINOP_SUB: 620 return IsFP ? Instruction::FSub : Instruction::Sub; 621 case bitc::BINOP_MUL: 622 return IsFP ? Instruction::FMul : Instruction::Mul; 623 case bitc::BINOP_UDIV: 624 return IsFP ? -1 : Instruction::UDiv; 625 case bitc::BINOP_SDIV: 626 return IsFP ? Instruction::FDiv : Instruction::SDiv; 627 case bitc::BINOP_UREM: 628 return IsFP ? -1 : Instruction::URem; 629 case bitc::BINOP_SREM: 630 return IsFP ? Instruction::FRem : Instruction::SRem; 631 case bitc::BINOP_SHL: 632 return IsFP ? -1 : Instruction::Shl; 633 case bitc::BINOP_LSHR: 634 return IsFP ? -1 : Instruction::LShr; 635 case bitc::BINOP_ASHR: 636 return IsFP ? -1 : Instruction::AShr; 637 case bitc::BINOP_AND: 638 return IsFP ? -1 : Instruction::And; 639 case bitc::BINOP_OR: 640 return IsFP ? -1 : Instruction::Or; 641 case bitc::BINOP_XOR: 642 return IsFP ? -1 : Instruction::Xor; 643 } 644 } 645 646 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 647 switch (Val) { 648 default: return AtomicRMWInst::BAD_BINOP; 649 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 650 case bitc::RMW_ADD: return AtomicRMWInst::Add; 651 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 652 case bitc::RMW_AND: return AtomicRMWInst::And; 653 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 654 case bitc::RMW_OR: return AtomicRMWInst::Or; 655 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 656 case bitc::RMW_MAX: return AtomicRMWInst::Max; 657 case bitc::RMW_MIN: return AtomicRMWInst::Min; 658 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 659 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 660 } 661 } 662 663 static AtomicOrdering getDecodedOrdering(unsigned Val) { 664 switch (Val) { 665 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 666 case bitc::ORDERING_UNORDERED: return Unordered; 667 case bitc::ORDERING_MONOTONIC: return Monotonic; 668 case bitc::ORDERING_ACQUIRE: return Acquire; 669 case bitc::ORDERING_RELEASE: return Release; 670 case bitc::ORDERING_ACQREL: return AcquireRelease; 671 default: // Map unknown orderings to sequentially-consistent. 672 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 673 } 674 } 675 676 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 677 switch (Val) { 678 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 679 default: // Map unknown scopes to cross-thread. 680 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 681 } 682 } 683 684 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 685 switch (Val) { 686 default: // Map unknown selection kinds to any. 687 case bitc::COMDAT_SELECTION_KIND_ANY: 688 return Comdat::Any; 689 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 690 return Comdat::ExactMatch; 691 case bitc::COMDAT_SELECTION_KIND_LARGEST: 692 return Comdat::Largest; 693 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 694 return Comdat::NoDuplicates; 695 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 696 return Comdat::SameSize; 697 } 698 } 699 700 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 701 FastMathFlags FMF; 702 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 703 FMF.setUnsafeAlgebra(); 704 if (0 != (Val & FastMathFlags::NoNaNs)) 705 FMF.setNoNaNs(); 706 if (0 != (Val & FastMathFlags::NoInfs)) 707 FMF.setNoInfs(); 708 if (0 != (Val & FastMathFlags::NoSignedZeros)) 709 FMF.setNoSignedZeros(); 710 if (0 != (Val & FastMathFlags::AllowReciprocal)) 711 FMF.setAllowReciprocal(); 712 return FMF; 713 } 714 715 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 716 switch (Val) { 717 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 718 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 719 } 720 } 721 722 namespace llvm { 723 namespace { 724 /// \brief A class for maintaining the slot number definition 725 /// as a placeholder for the actual definition for forward constants defs. 726 class ConstantPlaceHolder : public ConstantExpr { 727 void operator=(const ConstantPlaceHolder &) = delete; 728 729 public: 730 // allocate space for exactly one operand 731 void *operator new(size_t s) { return User::operator new(s, 1); } 732 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 733 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 734 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 735 } 736 737 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 738 static bool classof(const Value *V) { 739 return isa<ConstantExpr>(V) && 740 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 741 } 742 743 /// Provide fast operand accessors 744 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 745 }; 746 } 747 748 // FIXME: can we inherit this from ConstantExpr? 749 template <> 750 struct OperandTraits<ConstantPlaceHolder> : 751 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 752 }; 753 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 754 } 755 756 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 757 if (Idx == size()) { 758 push_back(V); 759 return; 760 } 761 762 if (Idx >= size()) 763 resize(Idx+1); 764 765 WeakVH &OldV = ValuePtrs[Idx]; 766 if (!OldV) { 767 OldV = V; 768 return; 769 } 770 771 // Handle constants and non-constants (e.g. instrs) differently for 772 // efficiency. 773 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 774 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 775 OldV = V; 776 } else { 777 // If there was a forward reference to this value, replace it. 778 Value *PrevVal = OldV; 779 OldV->replaceAllUsesWith(V); 780 delete PrevVal; 781 } 782 } 783 784 785 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 786 Type *Ty) { 787 if (Idx >= size()) 788 resize(Idx + 1); 789 790 if (Value *V = ValuePtrs[Idx]) { 791 if (Ty != V->getType()) 792 report_fatal_error("Type mismatch in constant table!"); 793 return cast<Constant>(V); 794 } 795 796 // Create and return a placeholder, which will later be RAUW'd. 797 Constant *C = new ConstantPlaceHolder(Ty, Context); 798 ValuePtrs[Idx] = C; 799 return C; 800 } 801 802 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 803 // Bail out for a clearly invalid value. This would make us call resize(0) 804 if (Idx == UINT_MAX) 805 return nullptr; 806 807 if (Idx >= size()) 808 resize(Idx + 1); 809 810 if (Value *V = ValuePtrs[Idx]) { 811 // If the types don't match, it's invalid. 812 if (Ty && Ty != V->getType()) 813 return nullptr; 814 return V; 815 } 816 817 // No type specified, must be invalid reference. 818 if (!Ty) return nullptr; 819 820 // Create and return a placeholder, which will later be RAUW'd. 821 Value *V = new Argument(Ty); 822 ValuePtrs[Idx] = V; 823 return V; 824 } 825 826 /// Once all constants are read, this method bulk resolves any forward 827 /// references. The idea behind this is that we sometimes get constants (such 828 /// as large arrays) which reference *many* forward ref constants. Replacing 829 /// each of these causes a lot of thrashing when building/reuniquing the 830 /// constant. Instead of doing this, we look at all the uses and rewrite all 831 /// the place holders at once for any constant that uses a placeholder. 832 void BitcodeReaderValueList::resolveConstantForwardRefs() { 833 // Sort the values by-pointer so that they are efficient to look up with a 834 // binary search. 835 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 836 837 SmallVector<Constant*, 64> NewOps; 838 839 while (!ResolveConstants.empty()) { 840 Value *RealVal = operator[](ResolveConstants.back().second); 841 Constant *Placeholder = ResolveConstants.back().first; 842 ResolveConstants.pop_back(); 843 844 // Loop over all users of the placeholder, updating them to reference the 845 // new value. If they reference more than one placeholder, update them all 846 // at once. 847 while (!Placeholder->use_empty()) { 848 auto UI = Placeholder->user_begin(); 849 User *U = *UI; 850 851 // If the using object isn't uniqued, just update the operands. This 852 // handles instructions and initializers for global variables. 853 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 854 UI.getUse().set(RealVal); 855 continue; 856 } 857 858 // Otherwise, we have a constant that uses the placeholder. Replace that 859 // constant with a new constant that has *all* placeholder uses updated. 860 Constant *UserC = cast<Constant>(U); 861 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 862 I != E; ++I) { 863 Value *NewOp; 864 if (!isa<ConstantPlaceHolder>(*I)) { 865 // Not a placeholder reference. 866 NewOp = *I; 867 } else if (*I == Placeholder) { 868 // Common case is that it just references this one placeholder. 869 NewOp = RealVal; 870 } else { 871 // Otherwise, look up the placeholder in ResolveConstants. 872 ResolveConstantsTy::iterator It = 873 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 874 std::pair<Constant*, unsigned>(cast<Constant>(*I), 875 0)); 876 assert(It != ResolveConstants.end() && It->first == *I); 877 NewOp = operator[](It->second); 878 } 879 880 NewOps.push_back(cast<Constant>(NewOp)); 881 } 882 883 // Make the new constant. 884 Constant *NewC; 885 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 886 NewC = ConstantArray::get(UserCA->getType(), NewOps); 887 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 888 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 889 } else if (isa<ConstantVector>(UserC)) { 890 NewC = ConstantVector::get(NewOps); 891 } else { 892 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 893 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 894 } 895 896 UserC->replaceAllUsesWith(NewC); 897 UserC->destroyConstant(); 898 NewOps.clear(); 899 } 900 901 // Update all ValueHandles, they should be the only users at this point. 902 Placeholder->replaceAllUsesWith(RealVal); 903 delete Placeholder; 904 } 905 } 906 907 void BitcodeReaderMDValueList::assignValue(Metadata *MD, unsigned Idx) { 908 if (Idx == size()) { 909 push_back(MD); 910 return; 911 } 912 913 if (Idx >= size()) 914 resize(Idx+1); 915 916 TrackingMDRef &OldMD = MDValuePtrs[Idx]; 917 if (!OldMD) { 918 OldMD.reset(MD); 919 return; 920 } 921 922 // If there was a forward reference to this value, replace it. 923 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 924 PrevMD->replaceAllUsesWith(MD); 925 --NumFwdRefs; 926 } 927 928 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 929 if (Idx >= size()) 930 resize(Idx + 1); 931 932 if (Metadata *MD = MDValuePtrs[Idx]) 933 return MD; 934 935 // Track forward refs to be resolved later. 936 if (AnyFwdRefs) { 937 MinFwdRef = std::min(MinFwdRef, Idx); 938 MaxFwdRef = std::max(MaxFwdRef, Idx); 939 } else { 940 AnyFwdRefs = true; 941 MinFwdRef = MaxFwdRef = Idx; 942 } 943 ++NumFwdRefs; 944 945 // Create and return a placeholder, which will later be RAUW'd. 946 Metadata *MD = MDNode::getTemporary(Context, None).release(); 947 MDValuePtrs[Idx].reset(MD); 948 return MD; 949 } 950 951 void BitcodeReaderMDValueList::tryToResolveCycles() { 952 if (!AnyFwdRefs) 953 // Nothing to do. 954 return; 955 956 if (NumFwdRefs) 957 // Still forward references... can't resolve cycles. 958 return; 959 960 // Resolve any cycles. 961 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 962 auto &MD = MDValuePtrs[I]; 963 auto *N = dyn_cast_or_null<MDNode>(MD); 964 if (!N) 965 continue; 966 967 assert(!N->isTemporary() && "Unexpected forward reference"); 968 N->resolveCycles(); 969 } 970 971 // Make sure we return early again until there's another forward ref. 972 AnyFwdRefs = false; 973 } 974 975 Type *BitcodeReader::getTypeByID(unsigned ID) { 976 // The type table size is always specified correctly. 977 if (ID >= TypeList.size()) 978 return nullptr; 979 980 if (Type *Ty = TypeList[ID]) 981 return Ty; 982 983 // If we have a forward reference, the only possible case is when it is to a 984 // named struct. Just create a placeholder for now. 985 return TypeList[ID] = createIdentifiedStructType(Context); 986 } 987 988 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 989 StringRef Name) { 990 auto *Ret = StructType::create(Context, Name); 991 IdentifiedStructTypes.push_back(Ret); 992 return Ret; 993 } 994 995 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 996 auto *Ret = StructType::create(Context); 997 IdentifiedStructTypes.push_back(Ret); 998 return Ret; 999 } 1000 1001 1002 //===----------------------------------------------------------------------===// 1003 // Functions for parsing blocks from the bitcode file 1004 //===----------------------------------------------------------------------===// 1005 1006 1007 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1008 /// been decoded from the given integer. This function must stay in sync with 1009 /// 'encodeLLVMAttributesForBitcode'. 1010 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1011 uint64_t EncodedAttrs) { 1012 // FIXME: Remove in 4.0. 1013 1014 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1015 // the bits above 31 down by 11 bits. 1016 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1017 assert((!Alignment || isPowerOf2_32(Alignment)) && 1018 "Alignment must be a power of two."); 1019 1020 if (Alignment) 1021 B.addAlignmentAttr(Alignment); 1022 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1023 (EncodedAttrs & 0xffff)); 1024 } 1025 1026 std::error_code BitcodeReader::parseAttributeBlock() { 1027 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1028 return error("Invalid record"); 1029 1030 if (!MAttributes.empty()) 1031 return error("Invalid multiple blocks"); 1032 1033 SmallVector<uint64_t, 64> Record; 1034 1035 SmallVector<AttributeSet, 8> Attrs; 1036 1037 // Read all the records. 1038 while (1) { 1039 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1040 1041 switch (Entry.Kind) { 1042 case BitstreamEntry::SubBlock: // Handled for us already. 1043 case BitstreamEntry::Error: 1044 return error("Malformed block"); 1045 case BitstreamEntry::EndBlock: 1046 return std::error_code(); 1047 case BitstreamEntry::Record: 1048 // The interesting case. 1049 break; 1050 } 1051 1052 // Read a record. 1053 Record.clear(); 1054 switch (Stream.readRecord(Entry.ID, Record)) { 1055 default: // Default behavior: ignore. 1056 break; 1057 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1058 // FIXME: Remove in 4.0. 1059 if (Record.size() & 1) 1060 return error("Invalid record"); 1061 1062 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1063 AttrBuilder B; 1064 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1065 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1066 } 1067 1068 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1069 Attrs.clear(); 1070 break; 1071 } 1072 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1073 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1074 Attrs.push_back(MAttributeGroups[Record[i]]); 1075 1076 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1077 Attrs.clear(); 1078 break; 1079 } 1080 } 1081 } 1082 } 1083 1084 // Returns Attribute::None on unrecognized codes. 1085 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1086 switch (Code) { 1087 default: 1088 return Attribute::None; 1089 case bitc::ATTR_KIND_ALIGNMENT: 1090 return Attribute::Alignment; 1091 case bitc::ATTR_KIND_ALWAYS_INLINE: 1092 return Attribute::AlwaysInline; 1093 case bitc::ATTR_KIND_ARGMEMONLY: 1094 return Attribute::ArgMemOnly; 1095 case bitc::ATTR_KIND_BUILTIN: 1096 return Attribute::Builtin; 1097 case bitc::ATTR_KIND_BY_VAL: 1098 return Attribute::ByVal; 1099 case bitc::ATTR_KIND_IN_ALLOCA: 1100 return Attribute::InAlloca; 1101 case bitc::ATTR_KIND_COLD: 1102 return Attribute::Cold; 1103 case bitc::ATTR_KIND_CONVERGENT: 1104 return Attribute::Convergent; 1105 case bitc::ATTR_KIND_INLINE_HINT: 1106 return Attribute::InlineHint; 1107 case bitc::ATTR_KIND_IN_REG: 1108 return Attribute::InReg; 1109 case bitc::ATTR_KIND_JUMP_TABLE: 1110 return Attribute::JumpTable; 1111 case bitc::ATTR_KIND_MIN_SIZE: 1112 return Attribute::MinSize; 1113 case bitc::ATTR_KIND_NAKED: 1114 return Attribute::Naked; 1115 case bitc::ATTR_KIND_NEST: 1116 return Attribute::Nest; 1117 case bitc::ATTR_KIND_NO_ALIAS: 1118 return Attribute::NoAlias; 1119 case bitc::ATTR_KIND_NO_BUILTIN: 1120 return Attribute::NoBuiltin; 1121 case bitc::ATTR_KIND_NO_CAPTURE: 1122 return Attribute::NoCapture; 1123 case bitc::ATTR_KIND_NO_DUPLICATE: 1124 return Attribute::NoDuplicate; 1125 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1126 return Attribute::NoImplicitFloat; 1127 case bitc::ATTR_KIND_NO_INLINE: 1128 return Attribute::NoInline; 1129 case bitc::ATTR_KIND_NON_LAZY_BIND: 1130 return Attribute::NonLazyBind; 1131 case bitc::ATTR_KIND_NON_NULL: 1132 return Attribute::NonNull; 1133 case bitc::ATTR_KIND_DEREFERENCEABLE: 1134 return Attribute::Dereferenceable; 1135 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1136 return Attribute::DereferenceableOrNull; 1137 case bitc::ATTR_KIND_NO_RED_ZONE: 1138 return Attribute::NoRedZone; 1139 case bitc::ATTR_KIND_NO_RETURN: 1140 return Attribute::NoReturn; 1141 case bitc::ATTR_KIND_NO_UNWIND: 1142 return Attribute::NoUnwind; 1143 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1144 return Attribute::OptimizeForSize; 1145 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1146 return Attribute::OptimizeNone; 1147 case bitc::ATTR_KIND_READ_NONE: 1148 return Attribute::ReadNone; 1149 case bitc::ATTR_KIND_READ_ONLY: 1150 return Attribute::ReadOnly; 1151 case bitc::ATTR_KIND_RETURNED: 1152 return Attribute::Returned; 1153 case bitc::ATTR_KIND_RETURNS_TWICE: 1154 return Attribute::ReturnsTwice; 1155 case bitc::ATTR_KIND_S_EXT: 1156 return Attribute::SExt; 1157 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1158 return Attribute::StackAlignment; 1159 case bitc::ATTR_KIND_STACK_PROTECT: 1160 return Attribute::StackProtect; 1161 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1162 return Attribute::StackProtectReq; 1163 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1164 return Attribute::StackProtectStrong; 1165 case bitc::ATTR_KIND_SAFESTACK: 1166 return Attribute::SafeStack; 1167 case bitc::ATTR_KIND_STRUCT_RET: 1168 return Attribute::StructRet; 1169 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1170 return Attribute::SanitizeAddress; 1171 case bitc::ATTR_KIND_SANITIZE_THREAD: 1172 return Attribute::SanitizeThread; 1173 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1174 return Attribute::SanitizeMemory; 1175 case bitc::ATTR_KIND_UW_TABLE: 1176 return Attribute::UWTable; 1177 case bitc::ATTR_KIND_Z_EXT: 1178 return Attribute::ZExt; 1179 } 1180 } 1181 1182 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1183 unsigned &Alignment) { 1184 // Note: Alignment in bitcode files is incremented by 1, so that zero 1185 // can be used for default alignment. 1186 if (Exponent > Value::MaxAlignmentExponent + 1) 1187 return error("Invalid alignment value"); 1188 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1189 return std::error_code(); 1190 } 1191 1192 std::error_code BitcodeReader::parseAttrKind(uint64_t Code, 1193 Attribute::AttrKind *Kind) { 1194 *Kind = getAttrFromCode(Code); 1195 if (*Kind == Attribute::None) 1196 return error(BitcodeError::CorruptedBitcode, 1197 "Unknown attribute kind (" + Twine(Code) + ")"); 1198 return std::error_code(); 1199 } 1200 1201 std::error_code BitcodeReader::parseAttributeGroupBlock() { 1202 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1203 return error("Invalid record"); 1204 1205 if (!MAttributeGroups.empty()) 1206 return error("Invalid multiple blocks"); 1207 1208 SmallVector<uint64_t, 64> Record; 1209 1210 // Read all the records. 1211 while (1) { 1212 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1213 1214 switch (Entry.Kind) { 1215 case BitstreamEntry::SubBlock: // Handled for us already. 1216 case BitstreamEntry::Error: 1217 return error("Malformed block"); 1218 case BitstreamEntry::EndBlock: 1219 return std::error_code(); 1220 case BitstreamEntry::Record: 1221 // The interesting case. 1222 break; 1223 } 1224 1225 // Read a record. 1226 Record.clear(); 1227 switch (Stream.readRecord(Entry.ID, Record)) { 1228 default: // Default behavior: ignore. 1229 break; 1230 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1231 if (Record.size() < 3) 1232 return error("Invalid record"); 1233 1234 uint64_t GrpID = Record[0]; 1235 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1236 1237 AttrBuilder B; 1238 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1239 if (Record[i] == 0) { // Enum attribute 1240 Attribute::AttrKind Kind; 1241 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1242 return EC; 1243 1244 B.addAttribute(Kind); 1245 } else if (Record[i] == 1) { // Integer attribute 1246 Attribute::AttrKind Kind; 1247 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1248 return EC; 1249 if (Kind == Attribute::Alignment) 1250 B.addAlignmentAttr(Record[++i]); 1251 else if (Kind == Attribute::StackAlignment) 1252 B.addStackAlignmentAttr(Record[++i]); 1253 else if (Kind == Attribute::Dereferenceable) 1254 B.addDereferenceableAttr(Record[++i]); 1255 else if (Kind == Attribute::DereferenceableOrNull) 1256 B.addDereferenceableOrNullAttr(Record[++i]); 1257 } else { // String attribute 1258 assert((Record[i] == 3 || Record[i] == 4) && 1259 "Invalid attribute group entry"); 1260 bool HasValue = (Record[i++] == 4); 1261 SmallString<64> KindStr; 1262 SmallString<64> ValStr; 1263 1264 while (Record[i] != 0 && i != e) 1265 KindStr += Record[i++]; 1266 assert(Record[i] == 0 && "Kind string not null terminated"); 1267 1268 if (HasValue) { 1269 // Has a value associated with it. 1270 ++i; // Skip the '0' that terminates the "kind" string. 1271 while (Record[i] != 0 && i != e) 1272 ValStr += Record[i++]; 1273 assert(Record[i] == 0 && "Value string not null terminated"); 1274 } 1275 1276 B.addAttribute(KindStr.str(), ValStr.str()); 1277 } 1278 } 1279 1280 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1281 break; 1282 } 1283 } 1284 } 1285 } 1286 1287 std::error_code BitcodeReader::parseTypeTable() { 1288 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1289 return error("Invalid record"); 1290 1291 return parseTypeTableBody(); 1292 } 1293 1294 std::error_code BitcodeReader::parseTypeTableBody() { 1295 if (!TypeList.empty()) 1296 return error("Invalid multiple blocks"); 1297 1298 SmallVector<uint64_t, 64> Record; 1299 unsigned NumRecords = 0; 1300 1301 SmallString<64> TypeName; 1302 1303 // Read all the records for this type table. 1304 while (1) { 1305 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1306 1307 switch (Entry.Kind) { 1308 case BitstreamEntry::SubBlock: // Handled for us already. 1309 case BitstreamEntry::Error: 1310 return error("Malformed block"); 1311 case BitstreamEntry::EndBlock: 1312 if (NumRecords != TypeList.size()) 1313 return error("Malformed block"); 1314 return std::error_code(); 1315 case BitstreamEntry::Record: 1316 // The interesting case. 1317 break; 1318 } 1319 1320 // Read a record. 1321 Record.clear(); 1322 Type *ResultTy = nullptr; 1323 switch (Stream.readRecord(Entry.ID, Record)) { 1324 default: 1325 return error("Invalid value"); 1326 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1327 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1328 // type list. This allows us to reserve space. 1329 if (Record.size() < 1) 1330 return error("Invalid record"); 1331 TypeList.resize(Record[0]); 1332 continue; 1333 case bitc::TYPE_CODE_VOID: // VOID 1334 ResultTy = Type::getVoidTy(Context); 1335 break; 1336 case bitc::TYPE_CODE_HALF: // HALF 1337 ResultTy = Type::getHalfTy(Context); 1338 break; 1339 case bitc::TYPE_CODE_FLOAT: // FLOAT 1340 ResultTy = Type::getFloatTy(Context); 1341 break; 1342 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1343 ResultTy = Type::getDoubleTy(Context); 1344 break; 1345 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1346 ResultTy = Type::getX86_FP80Ty(Context); 1347 break; 1348 case bitc::TYPE_CODE_FP128: // FP128 1349 ResultTy = Type::getFP128Ty(Context); 1350 break; 1351 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1352 ResultTy = Type::getPPC_FP128Ty(Context); 1353 break; 1354 case bitc::TYPE_CODE_LABEL: // LABEL 1355 ResultTy = Type::getLabelTy(Context); 1356 break; 1357 case bitc::TYPE_CODE_METADATA: // METADATA 1358 ResultTy = Type::getMetadataTy(Context); 1359 break; 1360 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1361 ResultTy = Type::getX86_MMXTy(Context); 1362 break; 1363 case bitc::TYPE_CODE_TOKEN: // TOKEN 1364 ResultTy = Type::getTokenTy(Context); 1365 break; 1366 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1367 if (Record.size() < 1) 1368 return error("Invalid record"); 1369 1370 uint64_t NumBits = Record[0]; 1371 if (NumBits < IntegerType::MIN_INT_BITS || 1372 NumBits > IntegerType::MAX_INT_BITS) 1373 return error("Bitwidth for integer type out of range"); 1374 ResultTy = IntegerType::get(Context, NumBits); 1375 break; 1376 } 1377 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1378 // [pointee type, address space] 1379 if (Record.size() < 1) 1380 return error("Invalid record"); 1381 unsigned AddressSpace = 0; 1382 if (Record.size() == 2) 1383 AddressSpace = Record[1]; 1384 ResultTy = getTypeByID(Record[0]); 1385 if (!ResultTy || 1386 !PointerType::isValidElementType(ResultTy)) 1387 return error("Invalid type"); 1388 ResultTy = PointerType::get(ResultTy, AddressSpace); 1389 break; 1390 } 1391 case bitc::TYPE_CODE_FUNCTION_OLD: { 1392 // FIXME: attrid is dead, remove it in LLVM 4.0 1393 // FUNCTION: [vararg, attrid, retty, paramty x N] 1394 if (Record.size() < 3) 1395 return error("Invalid record"); 1396 SmallVector<Type*, 8> ArgTys; 1397 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1398 if (Type *T = getTypeByID(Record[i])) 1399 ArgTys.push_back(T); 1400 else 1401 break; 1402 } 1403 1404 ResultTy = getTypeByID(Record[2]); 1405 if (!ResultTy || ArgTys.size() < Record.size()-3) 1406 return error("Invalid type"); 1407 1408 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1409 break; 1410 } 1411 case bitc::TYPE_CODE_FUNCTION: { 1412 // FUNCTION: [vararg, retty, paramty x N] 1413 if (Record.size() < 2) 1414 return error("Invalid record"); 1415 SmallVector<Type*, 8> ArgTys; 1416 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1417 if (Type *T = getTypeByID(Record[i])) { 1418 if (!FunctionType::isValidArgumentType(T)) 1419 return error("Invalid function argument type"); 1420 ArgTys.push_back(T); 1421 } 1422 else 1423 break; 1424 } 1425 1426 ResultTy = getTypeByID(Record[1]); 1427 if (!ResultTy || ArgTys.size() < Record.size()-2) 1428 return error("Invalid type"); 1429 1430 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1431 break; 1432 } 1433 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1434 if (Record.size() < 1) 1435 return error("Invalid record"); 1436 SmallVector<Type*, 8> EltTys; 1437 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1438 if (Type *T = getTypeByID(Record[i])) 1439 EltTys.push_back(T); 1440 else 1441 break; 1442 } 1443 if (EltTys.size() != Record.size()-1) 1444 return error("Invalid type"); 1445 ResultTy = StructType::get(Context, EltTys, Record[0]); 1446 break; 1447 } 1448 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1449 if (convertToString(Record, 0, TypeName)) 1450 return error("Invalid record"); 1451 continue; 1452 1453 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1454 if (Record.size() < 1) 1455 return error("Invalid record"); 1456 1457 if (NumRecords >= TypeList.size()) 1458 return error("Invalid TYPE table"); 1459 1460 // Check to see if this was forward referenced, if so fill in the temp. 1461 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1462 if (Res) { 1463 Res->setName(TypeName); 1464 TypeList[NumRecords] = nullptr; 1465 } else // Otherwise, create a new struct. 1466 Res = createIdentifiedStructType(Context, TypeName); 1467 TypeName.clear(); 1468 1469 SmallVector<Type*, 8> EltTys; 1470 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1471 if (Type *T = getTypeByID(Record[i])) 1472 EltTys.push_back(T); 1473 else 1474 break; 1475 } 1476 if (EltTys.size() != Record.size()-1) 1477 return error("Invalid record"); 1478 Res->setBody(EltTys, Record[0]); 1479 ResultTy = Res; 1480 break; 1481 } 1482 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1483 if (Record.size() != 1) 1484 return error("Invalid record"); 1485 1486 if (NumRecords >= TypeList.size()) 1487 return error("Invalid TYPE table"); 1488 1489 // Check to see if this was forward referenced, if so fill in the temp. 1490 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1491 if (Res) { 1492 Res->setName(TypeName); 1493 TypeList[NumRecords] = nullptr; 1494 } else // Otherwise, create a new struct with no body. 1495 Res = createIdentifiedStructType(Context, TypeName); 1496 TypeName.clear(); 1497 ResultTy = Res; 1498 break; 1499 } 1500 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1501 if (Record.size() < 2) 1502 return error("Invalid record"); 1503 ResultTy = getTypeByID(Record[1]); 1504 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1505 return error("Invalid type"); 1506 ResultTy = ArrayType::get(ResultTy, Record[0]); 1507 break; 1508 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1509 if (Record.size() < 2) 1510 return error("Invalid record"); 1511 if (Record[0] == 0) 1512 return error("Invalid vector length"); 1513 ResultTy = getTypeByID(Record[1]); 1514 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1515 return error("Invalid type"); 1516 ResultTy = VectorType::get(ResultTy, Record[0]); 1517 break; 1518 } 1519 1520 if (NumRecords >= TypeList.size()) 1521 return error("Invalid TYPE table"); 1522 if (TypeList[NumRecords]) 1523 return error( 1524 "Invalid TYPE table: Only named structs can be forward referenced"); 1525 assert(ResultTy && "Didn't read a type?"); 1526 TypeList[NumRecords++] = ResultTy; 1527 } 1528 } 1529 1530 std::error_code BitcodeReader::parseValueSymbolTable() { 1531 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1532 return error("Invalid record"); 1533 1534 SmallVector<uint64_t, 64> Record; 1535 1536 Triple TT(TheModule->getTargetTriple()); 1537 1538 // Read all the records for this value table. 1539 SmallString<128> ValueName; 1540 while (1) { 1541 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1542 1543 switch (Entry.Kind) { 1544 case BitstreamEntry::SubBlock: // Handled for us already. 1545 case BitstreamEntry::Error: 1546 return error("Malformed block"); 1547 case BitstreamEntry::EndBlock: 1548 return std::error_code(); 1549 case BitstreamEntry::Record: 1550 // The interesting case. 1551 break; 1552 } 1553 1554 // Read a record. 1555 Record.clear(); 1556 switch (Stream.readRecord(Entry.ID, Record)) { 1557 default: // Default behavior: unknown type. 1558 break; 1559 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1560 if (convertToString(Record, 1, ValueName)) 1561 return error("Invalid record"); 1562 unsigned ValueID = Record[0]; 1563 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1564 return error("Invalid record"); 1565 Value *V = ValueList[ValueID]; 1566 1567 V->setName(StringRef(ValueName.data(), ValueName.size())); 1568 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1569 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1570 if (TT.isOSBinFormatMachO()) 1571 GO->setComdat(nullptr); 1572 else 1573 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1574 } 1575 } 1576 ValueName.clear(); 1577 break; 1578 } 1579 case bitc::VST_CODE_BBENTRY: { 1580 if (convertToString(Record, 1, ValueName)) 1581 return error("Invalid record"); 1582 BasicBlock *BB = getBasicBlock(Record[0]); 1583 if (!BB) 1584 return error("Invalid record"); 1585 1586 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1587 ValueName.clear(); 1588 break; 1589 } 1590 } 1591 } 1592 } 1593 1594 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1595 1596 std::error_code BitcodeReader::parseMetadata() { 1597 IsMetadataMaterialized = true; 1598 unsigned NextMDValueNo = MDValueList.size(); 1599 1600 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1601 return error("Invalid record"); 1602 1603 SmallVector<uint64_t, 64> Record; 1604 1605 auto getMD = 1606 [&](unsigned ID) -> Metadata *{ return MDValueList.getValueFwdRef(ID); }; 1607 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1608 if (ID) 1609 return getMD(ID - 1); 1610 return nullptr; 1611 }; 1612 auto getMDString = [&](unsigned ID) -> MDString *{ 1613 // This requires that the ID is not really a forward reference. In 1614 // particular, the MDString must already have been resolved. 1615 return cast_or_null<MDString>(getMDOrNull(ID)); 1616 }; 1617 1618 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1619 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1620 1621 // Read all the records. 1622 while (1) { 1623 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1624 1625 switch (Entry.Kind) { 1626 case BitstreamEntry::SubBlock: // Handled for us already. 1627 case BitstreamEntry::Error: 1628 return error("Malformed block"); 1629 case BitstreamEntry::EndBlock: 1630 MDValueList.tryToResolveCycles(); 1631 return std::error_code(); 1632 case BitstreamEntry::Record: 1633 // The interesting case. 1634 break; 1635 } 1636 1637 // Read a record. 1638 Record.clear(); 1639 unsigned Code = Stream.readRecord(Entry.ID, Record); 1640 bool IsDistinct = false; 1641 switch (Code) { 1642 default: // Default behavior: ignore. 1643 break; 1644 case bitc::METADATA_NAME: { 1645 // Read name of the named metadata. 1646 SmallString<8> Name(Record.begin(), Record.end()); 1647 Record.clear(); 1648 Code = Stream.ReadCode(); 1649 1650 unsigned NextBitCode = Stream.readRecord(Code, Record); 1651 if (NextBitCode != bitc::METADATA_NAMED_NODE) 1652 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 1653 1654 // Read named metadata elements. 1655 unsigned Size = Record.size(); 1656 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1657 for (unsigned i = 0; i != Size; ++i) { 1658 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1659 if (!MD) 1660 return error("Invalid record"); 1661 NMD->addOperand(MD); 1662 } 1663 break; 1664 } 1665 case bitc::METADATA_OLD_FN_NODE: { 1666 // FIXME: Remove in 4.0. 1667 // This is a LocalAsMetadata record, the only type of function-local 1668 // metadata. 1669 if (Record.size() % 2 == 1) 1670 return error("Invalid record"); 1671 1672 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1673 // to be legal, but there's no upgrade path. 1674 auto dropRecord = [&] { 1675 MDValueList.assignValue(MDNode::get(Context, None), NextMDValueNo++); 1676 }; 1677 if (Record.size() != 2) { 1678 dropRecord(); 1679 break; 1680 } 1681 1682 Type *Ty = getTypeByID(Record[0]); 1683 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1684 dropRecord(); 1685 break; 1686 } 1687 1688 MDValueList.assignValue( 1689 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1690 NextMDValueNo++); 1691 break; 1692 } 1693 case bitc::METADATA_OLD_NODE: { 1694 // FIXME: Remove in 4.0. 1695 if (Record.size() % 2 == 1) 1696 return error("Invalid record"); 1697 1698 unsigned Size = Record.size(); 1699 SmallVector<Metadata *, 8> Elts; 1700 for (unsigned i = 0; i != Size; i += 2) { 1701 Type *Ty = getTypeByID(Record[i]); 1702 if (!Ty) 1703 return error("Invalid record"); 1704 if (Ty->isMetadataTy()) 1705 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1706 else if (!Ty->isVoidTy()) { 1707 auto *MD = 1708 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 1709 assert(isa<ConstantAsMetadata>(MD) && 1710 "Expected non-function-local metadata"); 1711 Elts.push_back(MD); 1712 } else 1713 Elts.push_back(nullptr); 1714 } 1715 MDValueList.assignValue(MDNode::get(Context, Elts), NextMDValueNo++); 1716 break; 1717 } 1718 case bitc::METADATA_VALUE: { 1719 if (Record.size() != 2) 1720 return error("Invalid record"); 1721 1722 Type *Ty = getTypeByID(Record[0]); 1723 if (Ty->isMetadataTy() || Ty->isVoidTy()) 1724 return error("Invalid record"); 1725 1726 MDValueList.assignValue( 1727 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1728 NextMDValueNo++); 1729 break; 1730 } 1731 case bitc::METADATA_DISTINCT_NODE: 1732 IsDistinct = true; 1733 // fallthrough... 1734 case bitc::METADATA_NODE: { 1735 SmallVector<Metadata *, 8> Elts; 1736 Elts.reserve(Record.size()); 1737 for (unsigned ID : Record) 1738 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); 1739 MDValueList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 1740 : MDNode::get(Context, Elts), 1741 NextMDValueNo++); 1742 break; 1743 } 1744 case bitc::METADATA_LOCATION: { 1745 if (Record.size() != 5) 1746 return error("Invalid record"); 1747 1748 unsigned Line = Record[1]; 1749 unsigned Column = Record[2]; 1750 MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3])); 1751 Metadata *InlinedAt = 1752 Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr; 1753 MDValueList.assignValue( 1754 GET_OR_DISTINCT(DILocation, Record[0], 1755 (Context, Line, Column, Scope, InlinedAt)), 1756 NextMDValueNo++); 1757 break; 1758 } 1759 case bitc::METADATA_GENERIC_DEBUG: { 1760 if (Record.size() < 4) 1761 return error("Invalid record"); 1762 1763 unsigned Tag = Record[1]; 1764 unsigned Version = Record[2]; 1765 1766 if (Tag >= 1u << 16 || Version != 0) 1767 return error("Invalid record"); 1768 1769 auto *Header = getMDString(Record[3]); 1770 SmallVector<Metadata *, 8> DwarfOps; 1771 for (unsigned I = 4, E = Record.size(); I != E; ++I) 1772 DwarfOps.push_back(Record[I] ? MDValueList.getValueFwdRef(Record[I] - 1) 1773 : nullptr); 1774 MDValueList.assignValue(GET_OR_DISTINCT(GenericDINode, Record[0], 1775 (Context, Tag, Header, DwarfOps)), 1776 NextMDValueNo++); 1777 break; 1778 } 1779 case bitc::METADATA_SUBRANGE: { 1780 if (Record.size() != 3) 1781 return error("Invalid record"); 1782 1783 MDValueList.assignValue( 1784 GET_OR_DISTINCT(DISubrange, Record[0], 1785 (Context, Record[1], unrotateSign(Record[2]))), 1786 NextMDValueNo++); 1787 break; 1788 } 1789 case bitc::METADATA_ENUMERATOR: { 1790 if (Record.size() != 3) 1791 return error("Invalid record"); 1792 1793 MDValueList.assignValue(GET_OR_DISTINCT(DIEnumerator, Record[0], 1794 (Context, unrotateSign(Record[1]), 1795 getMDString(Record[2]))), 1796 NextMDValueNo++); 1797 break; 1798 } 1799 case bitc::METADATA_BASIC_TYPE: { 1800 if (Record.size() != 6) 1801 return error("Invalid record"); 1802 1803 MDValueList.assignValue( 1804 GET_OR_DISTINCT(DIBasicType, Record[0], 1805 (Context, Record[1], getMDString(Record[2]), 1806 Record[3], Record[4], Record[5])), 1807 NextMDValueNo++); 1808 break; 1809 } 1810 case bitc::METADATA_DERIVED_TYPE: { 1811 if (Record.size() != 12) 1812 return error("Invalid record"); 1813 1814 MDValueList.assignValue( 1815 GET_OR_DISTINCT(DIDerivedType, Record[0], 1816 (Context, Record[1], getMDString(Record[2]), 1817 getMDOrNull(Record[3]), Record[4], 1818 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 1819 Record[7], Record[8], Record[9], Record[10], 1820 getMDOrNull(Record[11]))), 1821 NextMDValueNo++); 1822 break; 1823 } 1824 case bitc::METADATA_COMPOSITE_TYPE: { 1825 if (Record.size() != 16) 1826 return error("Invalid record"); 1827 1828 MDValueList.assignValue( 1829 GET_OR_DISTINCT(DICompositeType, Record[0], 1830 (Context, Record[1], getMDString(Record[2]), 1831 getMDOrNull(Record[3]), Record[4], 1832 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 1833 Record[7], Record[8], Record[9], Record[10], 1834 getMDOrNull(Record[11]), Record[12], 1835 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 1836 getMDString(Record[15]))), 1837 NextMDValueNo++); 1838 break; 1839 } 1840 case bitc::METADATA_SUBROUTINE_TYPE: { 1841 if (Record.size() != 3) 1842 return error("Invalid record"); 1843 1844 MDValueList.assignValue( 1845 GET_OR_DISTINCT(DISubroutineType, Record[0], 1846 (Context, Record[1], getMDOrNull(Record[2]))), 1847 NextMDValueNo++); 1848 break; 1849 } 1850 1851 case bitc::METADATA_MODULE: { 1852 if (Record.size() != 6) 1853 return error("Invalid record"); 1854 1855 MDValueList.assignValue( 1856 GET_OR_DISTINCT(DIModule, Record[0], 1857 (Context, getMDOrNull(Record[1]), 1858 getMDString(Record[2]), getMDString(Record[3]), 1859 getMDString(Record[4]), getMDString(Record[5]))), 1860 NextMDValueNo++); 1861 break; 1862 } 1863 1864 case bitc::METADATA_FILE: { 1865 if (Record.size() != 3) 1866 return error("Invalid record"); 1867 1868 MDValueList.assignValue( 1869 GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]), 1870 getMDString(Record[2]))), 1871 NextMDValueNo++); 1872 break; 1873 } 1874 case bitc::METADATA_COMPILE_UNIT: { 1875 if (Record.size() < 14 || Record.size() > 15) 1876 return error("Invalid record"); 1877 1878 // Ignore Record[1], which indicates whether this compile unit is 1879 // distinct. It's always distinct. 1880 MDValueList.assignValue( 1881 DICompileUnit::getDistinct( 1882 Context, Record[1], getMDOrNull(Record[2]), 1883 getMDString(Record[3]), Record[4], getMDString(Record[5]), 1884 Record[6], getMDString(Record[7]), Record[8], 1885 getMDOrNull(Record[9]), getMDOrNull(Record[10]), 1886 getMDOrNull(Record[11]), getMDOrNull(Record[12]), 1887 getMDOrNull(Record[13]), Record.size() == 14 ? 0 : Record[14]), 1888 NextMDValueNo++); 1889 break; 1890 } 1891 case bitc::METADATA_SUBPROGRAM: { 1892 if (Record.size() != 19) 1893 return error("Invalid record"); 1894 1895 MDValueList.assignValue( 1896 GET_OR_DISTINCT( 1897 DISubprogram, Record[0], 1898 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 1899 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 1900 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 1901 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 1902 Record[14], getMDOrNull(Record[15]), getMDOrNull(Record[16]), 1903 getMDOrNull(Record[17]), getMDOrNull(Record[18]))), 1904 NextMDValueNo++); 1905 break; 1906 } 1907 case bitc::METADATA_LEXICAL_BLOCK: { 1908 if (Record.size() != 5) 1909 return error("Invalid record"); 1910 1911 MDValueList.assignValue( 1912 GET_OR_DISTINCT(DILexicalBlock, Record[0], 1913 (Context, getMDOrNull(Record[1]), 1914 getMDOrNull(Record[2]), Record[3], Record[4])), 1915 NextMDValueNo++); 1916 break; 1917 } 1918 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 1919 if (Record.size() != 4) 1920 return error("Invalid record"); 1921 1922 MDValueList.assignValue( 1923 GET_OR_DISTINCT(DILexicalBlockFile, Record[0], 1924 (Context, getMDOrNull(Record[1]), 1925 getMDOrNull(Record[2]), Record[3])), 1926 NextMDValueNo++); 1927 break; 1928 } 1929 case bitc::METADATA_NAMESPACE: { 1930 if (Record.size() != 5) 1931 return error("Invalid record"); 1932 1933 MDValueList.assignValue( 1934 GET_OR_DISTINCT(DINamespace, Record[0], 1935 (Context, getMDOrNull(Record[1]), 1936 getMDOrNull(Record[2]), getMDString(Record[3]), 1937 Record[4])), 1938 NextMDValueNo++); 1939 break; 1940 } 1941 case bitc::METADATA_TEMPLATE_TYPE: { 1942 if (Record.size() != 3) 1943 return error("Invalid record"); 1944 1945 MDValueList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 1946 Record[0], 1947 (Context, getMDString(Record[1]), 1948 getMDOrNull(Record[2]))), 1949 NextMDValueNo++); 1950 break; 1951 } 1952 case bitc::METADATA_TEMPLATE_VALUE: { 1953 if (Record.size() != 5) 1954 return error("Invalid record"); 1955 1956 MDValueList.assignValue( 1957 GET_OR_DISTINCT(DITemplateValueParameter, Record[0], 1958 (Context, Record[1], getMDString(Record[2]), 1959 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 1960 NextMDValueNo++); 1961 break; 1962 } 1963 case bitc::METADATA_GLOBAL_VAR: { 1964 if (Record.size() != 11) 1965 return error("Invalid record"); 1966 1967 MDValueList.assignValue( 1968 GET_OR_DISTINCT(DIGlobalVariable, Record[0], 1969 (Context, getMDOrNull(Record[1]), 1970 getMDString(Record[2]), getMDString(Record[3]), 1971 getMDOrNull(Record[4]), Record[5], 1972 getMDOrNull(Record[6]), Record[7], Record[8], 1973 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 1974 NextMDValueNo++); 1975 break; 1976 } 1977 case bitc::METADATA_LOCAL_VAR: { 1978 // 10th field is for the obseleted 'inlinedAt:' field. 1979 if (Record.size() < 8 || Record.size() > 10) 1980 return error("Invalid record"); 1981 1982 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or 1983 // DW_TAG_arg_variable. 1984 bool HasTag = Record.size() > 8; 1985 MDValueList.assignValue( 1986 GET_OR_DISTINCT(DILocalVariable, Record[0], 1987 (Context, getMDOrNull(Record[1 + HasTag]), 1988 getMDString(Record[2 + HasTag]), 1989 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag], 1990 getMDOrNull(Record[5 + HasTag]), Record[6 + HasTag], 1991 Record[7 + HasTag])), 1992 NextMDValueNo++); 1993 break; 1994 } 1995 case bitc::METADATA_EXPRESSION: { 1996 if (Record.size() < 1) 1997 return error("Invalid record"); 1998 1999 MDValueList.assignValue( 2000 GET_OR_DISTINCT(DIExpression, Record[0], 2001 (Context, makeArrayRef(Record).slice(1))), 2002 NextMDValueNo++); 2003 break; 2004 } 2005 case bitc::METADATA_OBJC_PROPERTY: { 2006 if (Record.size() != 8) 2007 return error("Invalid record"); 2008 2009 MDValueList.assignValue( 2010 GET_OR_DISTINCT(DIObjCProperty, Record[0], 2011 (Context, getMDString(Record[1]), 2012 getMDOrNull(Record[2]), Record[3], 2013 getMDString(Record[4]), getMDString(Record[5]), 2014 Record[6], getMDOrNull(Record[7]))), 2015 NextMDValueNo++); 2016 break; 2017 } 2018 case bitc::METADATA_IMPORTED_ENTITY: { 2019 if (Record.size() != 6) 2020 return error("Invalid record"); 2021 2022 MDValueList.assignValue( 2023 GET_OR_DISTINCT(DIImportedEntity, Record[0], 2024 (Context, Record[1], getMDOrNull(Record[2]), 2025 getMDOrNull(Record[3]), Record[4], 2026 getMDString(Record[5]))), 2027 NextMDValueNo++); 2028 break; 2029 } 2030 case bitc::METADATA_STRING: { 2031 std::string String(Record.begin(), Record.end()); 2032 llvm::UpgradeMDStringConstant(String); 2033 Metadata *MD = MDString::get(Context, String); 2034 MDValueList.assignValue(MD, NextMDValueNo++); 2035 break; 2036 } 2037 case bitc::METADATA_KIND: { 2038 if (Record.size() < 2) 2039 return error("Invalid record"); 2040 2041 unsigned Kind = Record[0]; 2042 SmallString<8> Name(Record.begin()+1, Record.end()); 2043 2044 unsigned NewKind = TheModule->getMDKindID(Name.str()); 2045 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 2046 return error("Conflicting METADATA_KIND records"); 2047 break; 2048 } 2049 } 2050 } 2051 #undef GET_OR_DISTINCT 2052 } 2053 2054 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2055 /// encoding. 2056 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2057 if ((V & 1) == 0) 2058 return V >> 1; 2059 if (V != 1) 2060 return -(V >> 1); 2061 // There is no such thing as -0 with integers. "-0" really means MININT. 2062 return 1ULL << 63; 2063 } 2064 2065 /// Resolve all of the initializers for global values and aliases that we can. 2066 std::error_code BitcodeReader::resolveGlobalAndAliasInits() { 2067 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2068 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 2069 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2070 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2071 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 2072 2073 GlobalInitWorklist.swap(GlobalInits); 2074 AliasInitWorklist.swap(AliasInits); 2075 FunctionPrefixWorklist.swap(FunctionPrefixes); 2076 FunctionPrologueWorklist.swap(FunctionPrologues); 2077 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2078 2079 while (!GlobalInitWorklist.empty()) { 2080 unsigned ValID = GlobalInitWorklist.back().second; 2081 if (ValID >= ValueList.size()) { 2082 // Not ready to resolve this yet, it requires something later in the file. 2083 GlobalInits.push_back(GlobalInitWorklist.back()); 2084 } else { 2085 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2086 GlobalInitWorklist.back().first->setInitializer(C); 2087 else 2088 return error("Expected a constant"); 2089 } 2090 GlobalInitWorklist.pop_back(); 2091 } 2092 2093 while (!AliasInitWorklist.empty()) { 2094 unsigned ValID = AliasInitWorklist.back().second; 2095 if (ValID >= ValueList.size()) { 2096 AliasInits.push_back(AliasInitWorklist.back()); 2097 } else { 2098 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2099 if (!C) 2100 return error("Expected a constant"); 2101 GlobalAlias *Alias = AliasInitWorklist.back().first; 2102 if (C->getType() != Alias->getType()) 2103 return error("Alias and aliasee types don't match"); 2104 Alias->setAliasee(C); 2105 } 2106 AliasInitWorklist.pop_back(); 2107 } 2108 2109 while (!FunctionPrefixWorklist.empty()) { 2110 unsigned ValID = FunctionPrefixWorklist.back().second; 2111 if (ValID >= ValueList.size()) { 2112 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2113 } else { 2114 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2115 FunctionPrefixWorklist.back().first->setPrefixData(C); 2116 else 2117 return error("Expected a constant"); 2118 } 2119 FunctionPrefixWorklist.pop_back(); 2120 } 2121 2122 while (!FunctionPrologueWorklist.empty()) { 2123 unsigned ValID = FunctionPrologueWorklist.back().second; 2124 if (ValID >= ValueList.size()) { 2125 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2126 } else { 2127 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2128 FunctionPrologueWorklist.back().first->setPrologueData(C); 2129 else 2130 return error("Expected a constant"); 2131 } 2132 FunctionPrologueWorklist.pop_back(); 2133 } 2134 2135 while (!FunctionPersonalityFnWorklist.empty()) { 2136 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2137 if (ValID >= ValueList.size()) { 2138 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2139 } else { 2140 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2141 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2142 else 2143 return error("Expected a constant"); 2144 } 2145 FunctionPersonalityFnWorklist.pop_back(); 2146 } 2147 2148 return std::error_code(); 2149 } 2150 2151 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2152 SmallVector<uint64_t, 8> Words(Vals.size()); 2153 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2154 BitcodeReader::decodeSignRotatedValue); 2155 2156 return APInt(TypeBits, Words); 2157 } 2158 2159 std::error_code BitcodeReader::parseConstants() { 2160 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2161 return error("Invalid record"); 2162 2163 SmallVector<uint64_t, 64> Record; 2164 2165 // Read all the records for this value table. 2166 Type *CurTy = Type::getInt32Ty(Context); 2167 unsigned NextCstNo = ValueList.size(); 2168 while (1) { 2169 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2170 2171 switch (Entry.Kind) { 2172 case BitstreamEntry::SubBlock: // Handled for us already. 2173 case BitstreamEntry::Error: 2174 return error("Malformed block"); 2175 case BitstreamEntry::EndBlock: 2176 if (NextCstNo != ValueList.size()) 2177 return error("Invalid ronstant reference"); 2178 2179 // Once all the constants have been read, go through and resolve forward 2180 // references. 2181 ValueList.resolveConstantForwardRefs(); 2182 return std::error_code(); 2183 case BitstreamEntry::Record: 2184 // The interesting case. 2185 break; 2186 } 2187 2188 // Read a record. 2189 Record.clear(); 2190 Value *V = nullptr; 2191 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2192 switch (BitCode) { 2193 default: // Default behavior: unknown constant 2194 case bitc::CST_CODE_UNDEF: // UNDEF 2195 V = UndefValue::get(CurTy); 2196 break; 2197 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2198 if (Record.empty()) 2199 return error("Invalid record"); 2200 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2201 return error("Invalid record"); 2202 CurTy = TypeList[Record[0]]; 2203 continue; // Skip the ValueList manipulation. 2204 case bitc::CST_CODE_NULL: // NULL 2205 V = Constant::getNullValue(CurTy); 2206 break; 2207 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2208 if (!CurTy->isIntegerTy() || Record.empty()) 2209 return error("Invalid record"); 2210 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2211 break; 2212 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2213 if (!CurTy->isIntegerTy() || Record.empty()) 2214 return error("Invalid record"); 2215 2216 APInt VInt = 2217 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2218 V = ConstantInt::get(Context, VInt); 2219 2220 break; 2221 } 2222 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2223 if (Record.empty()) 2224 return error("Invalid record"); 2225 if (CurTy->isHalfTy()) 2226 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2227 APInt(16, (uint16_t)Record[0]))); 2228 else if (CurTy->isFloatTy()) 2229 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2230 APInt(32, (uint32_t)Record[0]))); 2231 else if (CurTy->isDoubleTy()) 2232 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2233 APInt(64, Record[0]))); 2234 else if (CurTy->isX86_FP80Ty()) { 2235 // Bits are not stored the same way as a normal i80 APInt, compensate. 2236 uint64_t Rearrange[2]; 2237 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2238 Rearrange[1] = Record[0] >> 48; 2239 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2240 APInt(80, Rearrange))); 2241 } else if (CurTy->isFP128Ty()) 2242 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2243 APInt(128, Record))); 2244 else if (CurTy->isPPC_FP128Ty()) 2245 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2246 APInt(128, Record))); 2247 else 2248 V = UndefValue::get(CurTy); 2249 break; 2250 } 2251 2252 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2253 if (Record.empty()) 2254 return error("Invalid record"); 2255 2256 unsigned Size = Record.size(); 2257 SmallVector<Constant*, 16> Elts; 2258 2259 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2260 for (unsigned i = 0; i != Size; ++i) 2261 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2262 STy->getElementType(i))); 2263 V = ConstantStruct::get(STy, Elts); 2264 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2265 Type *EltTy = ATy->getElementType(); 2266 for (unsigned i = 0; i != Size; ++i) 2267 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2268 V = ConstantArray::get(ATy, Elts); 2269 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2270 Type *EltTy = VTy->getElementType(); 2271 for (unsigned i = 0; i != Size; ++i) 2272 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2273 V = ConstantVector::get(Elts); 2274 } else { 2275 V = UndefValue::get(CurTy); 2276 } 2277 break; 2278 } 2279 case bitc::CST_CODE_STRING: // STRING: [values] 2280 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2281 if (Record.empty()) 2282 return error("Invalid record"); 2283 2284 SmallString<16> Elts(Record.begin(), Record.end()); 2285 V = ConstantDataArray::getString(Context, Elts, 2286 BitCode == bitc::CST_CODE_CSTRING); 2287 break; 2288 } 2289 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2290 if (Record.empty()) 2291 return error("Invalid record"); 2292 2293 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2294 unsigned Size = Record.size(); 2295 2296 if (EltTy->isIntegerTy(8)) { 2297 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2298 if (isa<VectorType>(CurTy)) 2299 V = ConstantDataVector::get(Context, Elts); 2300 else 2301 V = ConstantDataArray::get(Context, Elts); 2302 } else if (EltTy->isIntegerTy(16)) { 2303 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2304 if (isa<VectorType>(CurTy)) 2305 V = ConstantDataVector::get(Context, Elts); 2306 else 2307 V = ConstantDataArray::get(Context, Elts); 2308 } else if (EltTy->isIntegerTy(32)) { 2309 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2310 if (isa<VectorType>(CurTy)) 2311 V = ConstantDataVector::get(Context, Elts); 2312 else 2313 V = ConstantDataArray::get(Context, Elts); 2314 } else if (EltTy->isIntegerTy(64)) { 2315 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2316 if (isa<VectorType>(CurTy)) 2317 V = ConstantDataVector::get(Context, Elts); 2318 else 2319 V = ConstantDataArray::get(Context, Elts); 2320 } else if (EltTy->isFloatTy()) { 2321 SmallVector<float, 16> Elts(Size); 2322 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 2323 if (isa<VectorType>(CurTy)) 2324 V = ConstantDataVector::get(Context, Elts); 2325 else 2326 V = ConstantDataArray::get(Context, Elts); 2327 } else if (EltTy->isDoubleTy()) { 2328 SmallVector<double, 16> Elts(Size); 2329 std::transform(Record.begin(), Record.end(), Elts.begin(), 2330 BitsToDouble); 2331 if (isa<VectorType>(CurTy)) 2332 V = ConstantDataVector::get(Context, Elts); 2333 else 2334 V = ConstantDataArray::get(Context, Elts); 2335 } else { 2336 return error("Invalid type for value"); 2337 } 2338 break; 2339 } 2340 2341 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2342 if (Record.size() < 3) 2343 return error("Invalid record"); 2344 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2345 if (Opc < 0) { 2346 V = UndefValue::get(CurTy); // Unknown binop. 2347 } else { 2348 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2349 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2350 unsigned Flags = 0; 2351 if (Record.size() >= 4) { 2352 if (Opc == Instruction::Add || 2353 Opc == Instruction::Sub || 2354 Opc == Instruction::Mul || 2355 Opc == Instruction::Shl) { 2356 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2357 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2358 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2359 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2360 } else if (Opc == Instruction::SDiv || 2361 Opc == Instruction::UDiv || 2362 Opc == Instruction::LShr || 2363 Opc == Instruction::AShr) { 2364 if (Record[3] & (1 << bitc::PEO_EXACT)) 2365 Flags |= SDivOperator::IsExact; 2366 } 2367 } 2368 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2369 } 2370 break; 2371 } 2372 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2373 if (Record.size() < 3) 2374 return error("Invalid record"); 2375 int Opc = getDecodedCastOpcode(Record[0]); 2376 if (Opc < 0) { 2377 V = UndefValue::get(CurTy); // Unknown cast. 2378 } else { 2379 Type *OpTy = getTypeByID(Record[1]); 2380 if (!OpTy) 2381 return error("Invalid record"); 2382 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2383 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2384 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2385 } 2386 break; 2387 } 2388 case bitc::CST_CODE_CE_INBOUNDS_GEP: 2389 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 2390 unsigned OpNum = 0; 2391 Type *PointeeType = nullptr; 2392 if (Record.size() % 2) 2393 PointeeType = getTypeByID(Record[OpNum++]); 2394 SmallVector<Constant*, 16> Elts; 2395 while (OpNum != Record.size()) { 2396 Type *ElTy = getTypeByID(Record[OpNum++]); 2397 if (!ElTy) 2398 return error("Invalid record"); 2399 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2400 } 2401 2402 if (PointeeType && 2403 PointeeType != 2404 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 2405 ->getElementType()) 2406 return error("Explicit gep operator type does not match pointee type " 2407 "of pointer operand"); 2408 2409 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2410 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2411 BitCode == 2412 bitc::CST_CODE_CE_INBOUNDS_GEP); 2413 break; 2414 } 2415 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2416 if (Record.size() < 3) 2417 return error("Invalid record"); 2418 2419 Type *SelectorTy = Type::getInt1Ty(Context); 2420 2421 // If CurTy is a vector of length n, then Record[0] must be a <n x i1> 2422 // vector. Otherwise, it must be a single bit. 2423 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2424 SelectorTy = VectorType::get(Type::getInt1Ty(Context), 2425 VTy->getNumElements()); 2426 2427 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2428 SelectorTy), 2429 ValueList.getConstantFwdRef(Record[1],CurTy), 2430 ValueList.getConstantFwdRef(Record[2],CurTy)); 2431 break; 2432 } 2433 case bitc::CST_CODE_CE_EXTRACTELT 2434 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2435 if (Record.size() < 3) 2436 return error("Invalid record"); 2437 VectorType *OpTy = 2438 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2439 if (!OpTy) 2440 return error("Invalid record"); 2441 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2442 Constant *Op1 = nullptr; 2443 if (Record.size() == 4) { 2444 Type *IdxTy = getTypeByID(Record[2]); 2445 if (!IdxTy) 2446 return error("Invalid record"); 2447 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2448 } else // TODO: Remove with llvm 4.0 2449 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2450 if (!Op1) 2451 return error("Invalid record"); 2452 V = ConstantExpr::getExtractElement(Op0, Op1); 2453 break; 2454 } 2455 case bitc::CST_CODE_CE_INSERTELT 2456 : { // CE_INSERTELT: [opval, opval, opty, opval] 2457 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2458 if (Record.size() < 3 || !OpTy) 2459 return error("Invalid record"); 2460 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2461 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2462 OpTy->getElementType()); 2463 Constant *Op2 = nullptr; 2464 if (Record.size() == 4) { 2465 Type *IdxTy = getTypeByID(Record[2]); 2466 if (!IdxTy) 2467 return error("Invalid record"); 2468 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2469 } else // TODO: Remove with llvm 4.0 2470 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2471 if (!Op2) 2472 return error("Invalid record"); 2473 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2474 break; 2475 } 2476 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2477 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2478 if (Record.size() < 3 || !OpTy) 2479 return error("Invalid record"); 2480 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2481 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2482 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2483 OpTy->getNumElements()); 2484 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2485 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2486 break; 2487 } 2488 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2489 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2490 VectorType *OpTy = 2491 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2492 if (Record.size() < 4 || !RTy || !OpTy) 2493 return error("Invalid record"); 2494 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2495 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2496 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2497 RTy->getNumElements()); 2498 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2499 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2500 break; 2501 } 2502 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2503 if (Record.size() < 4) 2504 return error("Invalid record"); 2505 Type *OpTy = getTypeByID(Record[0]); 2506 if (!OpTy) 2507 return error("Invalid record"); 2508 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2509 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2510 2511 if (OpTy->isFPOrFPVectorTy()) 2512 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2513 else 2514 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2515 break; 2516 } 2517 // This maintains backward compatibility, pre-asm dialect keywords. 2518 // FIXME: Remove with the 4.0 release. 2519 case bitc::CST_CODE_INLINEASM_OLD: { 2520 if (Record.size() < 2) 2521 return error("Invalid record"); 2522 std::string AsmStr, ConstrStr; 2523 bool HasSideEffects = Record[0] & 1; 2524 bool IsAlignStack = Record[0] >> 1; 2525 unsigned AsmStrSize = Record[1]; 2526 if (2+AsmStrSize >= Record.size()) 2527 return error("Invalid record"); 2528 unsigned ConstStrSize = Record[2+AsmStrSize]; 2529 if (3+AsmStrSize+ConstStrSize > Record.size()) 2530 return error("Invalid record"); 2531 2532 for (unsigned i = 0; i != AsmStrSize; ++i) 2533 AsmStr += (char)Record[2+i]; 2534 for (unsigned i = 0; i != ConstStrSize; ++i) 2535 ConstrStr += (char)Record[3+AsmStrSize+i]; 2536 PointerType *PTy = cast<PointerType>(CurTy); 2537 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2538 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2539 break; 2540 } 2541 // This version adds support for the asm dialect keywords (e.g., 2542 // inteldialect). 2543 case bitc::CST_CODE_INLINEASM: { 2544 if (Record.size() < 2) 2545 return error("Invalid record"); 2546 std::string AsmStr, ConstrStr; 2547 bool HasSideEffects = Record[0] & 1; 2548 bool IsAlignStack = (Record[0] >> 1) & 1; 2549 unsigned AsmDialect = Record[0] >> 2; 2550 unsigned AsmStrSize = Record[1]; 2551 if (2+AsmStrSize >= Record.size()) 2552 return error("Invalid record"); 2553 unsigned ConstStrSize = Record[2+AsmStrSize]; 2554 if (3+AsmStrSize+ConstStrSize > Record.size()) 2555 return error("Invalid record"); 2556 2557 for (unsigned i = 0; i != AsmStrSize; ++i) 2558 AsmStr += (char)Record[2+i]; 2559 for (unsigned i = 0; i != ConstStrSize; ++i) 2560 ConstrStr += (char)Record[3+AsmStrSize+i]; 2561 PointerType *PTy = cast<PointerType>(CurTy); 2562 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2563 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2564 InlineAsm::AsmDialect(AsmDialect)); 2565 break; 2566 } 2567 case bitc::CST_CODE_BLOCKADDRESS:{ 2568 if (Record.size() < 3) 2569 return error("Invalid record"); 2570 Type *FnTy = getTypeByID(Record[0]); 2571 if (!FnTy) 2572 return error("Invalid record"); 2573 Function *Fn = 2574 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2575 if (!Fn) 2576 return error("Invalid record"); 2577 2578 // Don't let Fn get dematerialized. 2579 BlockAddressesTaken.insert(Fn); 2580 2581 // If the function is already parsed we can insert the block address right 2582 // away. 2583 BasicBlock *BB; 2584 unsigned BBID = Record[2]; 2585 if (!BBID) 2586 // Invalid reference to entry block. 2587 return error("Invalid ID"); 2588 if (!Fn->empty()) { 2589 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2590 for (size_t I = 0, E = BBID; I != E; ++I) { 2591 if (BBI == BBE) 2592 return error("Invalid ID"); 2593 ++BBI; 2594 } 2595 BB = BBI; 2596 } else { 2597 // Otherwise insert a placeholder and remember it so it can be inserted 2598 // when the function is parsed. 2599 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2600 if (FwdBBs.empty()) 2601 BasicBlockFwdRefQueue.push_back(Fn); 2602 if (FwdBBs.size() < BBID + 1) 2603 FwdBBs.resize(BBID + 1); 2604 if (!FwdBBs[BBID]) 2605 FwdBBs[BBID] = BasicBlock::Create(Context); 2606 BB = FwdBBs[BBID]; 2607 } 2608 V = BlockAddress::get(Fn, BB); 2609 break; 2610 } 2611 } 2612 2613 ValueList.assignValue(V, NextCstNo); 2614 ++NextCstNo; 2615 } 2616 } 2617 2618 std::error_code BitcodeReader::parseUseLists() { 2619 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2620 return error("Invalid record"); 2621 2622 // Read all the records. 2623 SmallVector<uint64_t, 64> Record; 2624 while (1) { 2625 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2626 2627 switch (Entry.Kind) { 2628 case BitstreamEntry::SubBlock: // Handled for us already. 2629 case BitstreamEntry::Error: 2630 return error("Malformed block"); 2631 case BitstreamEntry::EndBlock: 2632 return std::error_code(); 2633 case BitstreamEntry::Record: 2634 // The interesting case. 2635 break; 2636 } 2637 2638 // Read a use list record. 2639 Record.clear(); 2640 bool IsBB = false; 2641 switch (Stream.readRecord(Entry.ID, Record)) { 2642 default: // Default behavior: unknown type. 2643 break; 2644 case bitc::USELIST_CODE_BB: 2645 IsBB = true; 2646 // fallthrough 2647 case bitc::USELIST_CODE_DEFAULT: { 2648 unsigned RecordLength = Record.size(); 2649 if (RecordLength < 3) 2650 // Records should have at least an ID and two indexes. 2651 return error("Invalid record"); 2652 unsigned ID = Record.back(); 2653 Record.pop_back(); 2654 2655 Value *V; 2656 if (IsBB) { 2657 assert(ID < FunctionBBs.size() && "Basic block not found"); 2658 V = FunctionBBs[ID]; 2659 } else 2660 V = ValueList[ID]; 2661 unsigned NumUses = 0; 2662 SmallDenseMap<const Use *, unsigned, 16> Order; 2663 for (const Use &U : V->uses()) { 2664 if (++NumUses > Record.size()) 2665 break; 2666 Order[&U] = Record[NumUses - 1]; 2667 } 2668 if (Order.size() != Record.size() || NumUses > Record.size()) 2669 // Mismatches can happen if the functions are being materialized lazily 2670 // (out-of-order), or a value has been upgraded. 2671 break; 2672 2673 V->sortUseList([&](const Use &L, const Use &R) { 2674 return Order.lookup(&L) < Order.lookup(&R); 2675 }); 2676 break; 2677 } 2678 } 2679 } 2680 } 2681 2682 /// When we see the block for metadata, remember where it is and then skip it. 2683 /// This lets us lazily deserialize the metadata. 2684 std::error_code BitcodeReader::rememberAndSkipMetadata() { 2685 // Save the current stream state. 2686 uint64_t CurBit = Stream.GetCurrentBitNo(); 2687 DeferredMetadataInfo.push_back(CurBit); 2688 2689 // Skip over the block for now. 2690 if (Stream.SkipBlock()) 2691 return error("Invalid record"); 2692 return std::error_code(); 2693 } 2694 2695 std::error_code BitcodeReader::materializeMetadata() { 2696 for (uint64_t BitPos : DeferredMetadataInfo) { 2697 // Move the bit stream to the saved position. 2698 Stream.JumpToBit(BitPos); 2699 if (std::error_code EC = parseMetadata()) 2700 return EC; 2701 } 2702 DeferredMetadataInfo.clear(); 2703 return std::error_code(); 2704 } 2705 2706 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2707 2708 /// When we see the block for a function body, remember where it is and then 2709 /// skip it. This lets us lazily deserialize the functions. 2710 std::error_code BitcodeReader::rememberAndSkipFunctionBody() { 2711 // Get the function we are talking about. 2712 if (FunctionsWithBodies.empty()) 2713 return error("Insufficient function protos"); 2714 2715 Function *Fn = FunctionsWithBodies.back(); 2716 FunctionsWithBodies.pop_back(); 2717 2718 // Save the current stream state. 2719 uint64_t CurBit = Stream.GetCurrentBitNo(); 2720 DeferredFunctionInfo[Fn] = CurBit; 2721 2722 // Skip over the function block for now. 2723 if (Stream.SkipBlock()) 2724 return error("Invalid record"); 2725 return std::error_code(); 2726 } 2727 2728 std::error_code BitcodeReader::globalCleanup() { 2729 // Patch the initializers for globals and aliases up. 2730 resolveGlobalAndAliasInits(); 2731 if (!GlobalInits.empty() || !AliasInits.empty()) 2732 return error("Malformed global initializer set"); 2733 2734 // Look for intrinsic functions which need to be upgraded at some point 2735 for (Function &F : *TheModule) { 2736 Function *NewFn; 2737 if (UpgradeIntrinsicFunction(&F, NewFn)) 2738 UpgradedIntrinsics[&F] = NewFn; 2739 } 2740 2741 // Look for global variables which need to be renamed. 2742 for (GlobalVariable &GV : TheModule->globals()) 2743 UpgradeGlobalVariable(&GV); 2744 2745 // Force deallocation of memory for these vectors to favor the client that 2746 // want lazy deserialization. 2747 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 2748 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 2749 return std::error_code(); 2750 } 2751 2752 std::error_code BitcodeReader::parseModule(bool Resume, 2753 bool ShouldLazyLoadMetadata) { 2754 if (Resume) 2755 Stream.JumpToBit(NextUnreadBit); 2756 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2757 return error("Invalid record"); 2758 2759 SmallVector<uint64_t, 64> Record; 2760 std::vector<std::string> SectionTable; 2761 std::vector<std::string> GCTable; 2762 2763 // Read all the records for this module. 2764 while (1) { 2765 BitstreamEntry Entry = Stream.advance(); 2766 2767 switch (Entry.Kind) { 2768 case BitstreamEntry::Error: 2769 return error("Malformed block"); 2770 case BitstreamEntry::EndBlock: 2771 return globalCleanup(); 2772 2773 case BitstreamEntry::SubBlock: 2774 switch (Entry.ID) { 2775 default: // Skip unknown content. 2776 if (Stream.SkipBlock()) 2777 return error("Invalid record"); 2778 break; 2779 case bitc::BLOCKINFO_BLOCK_ID: 2780 if (Stream.ReadBlockInfoBlock()) 2781 return error("Malformed block"); 2782 break; 2783 case bitc::PARAMATTR_BLOCK_ID: 2784 if (std::error_code EC = parseAttributeBlock()) 2785 return EC; 2786 break; 2787 case bitc::PARAMATTR_GROUP_BLOCK_ID: 2788 if (std::error_code EC = parseAttributeGroupBlock()) 2789 return EC; 2790 break; 2791 case bitc::TYPE_BLOCK_ID_NEW: 2792 if (std::error_code EC = parseTypeTable()) 2793 return EC; 2794 break; 2795 case bitc::VALUE_SYMTAB_BLOCK_ID: 2796 if (std::error_code EC = parseValueSymbolTable()) 2797 return EC; 2798 SeenValueSymbolTable = true; 2799 break; 2800 case bitc::CONSTANTS_BLOCK_ID: 2801 if (std::error_code EC = parseConstants()) 2802 return EC; 2803 if (std::error_code EC = resolveGlobalAndAliasInits()) 2804 return EC; 2805 break; 2806 case bitc::METADATA_BLOCK_ID: 2807 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 2808 if (std::error_code EC = rememberAndSkipMetadata()) 2809 return EC; 2810 break; 2811 } 2812 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 2813 if (std::error_code EC = parseMetadata()) 2814 return EC; 2815 break; 2816 case bitc::FUNCTION_BLOCK_ID: 2817 // If this is the first function body we've seen, reverse the 2818 // FunctionsWithBodies list. 2819 if (!SeenFirstFunctionBody) { 2820 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 2821 if (std::error_code EC = globalCleanup()) 2822 return EC; 2823 SeenFirstFunctionBody = true; 2824 } 2825 2826 if (std::error_code EC = rememberAndSkipFunctionBody()) 2827 return EC; 2828 // Suspend parsing when we reach the function bodies. Subsequent 2829 // materialization calls will resume it when necessary. If the bitcode 2830 // file is old, the symbol table will be at the end instead and will not 2831 // have been seen yet. In this case, just finish the parse now. 2832 if (SeenValueSymbolTable) { 2833 NextUnreadBit = Stream.GetCurrentBitNo(); 2834 return std::error_code(); 2835 } 2836 break; 2837 case bitc::USELIST_BLOCK_ID: 2838 if (std::error_code EC = parseUseLists()) 2839 return EC; 2840 break; 2841 } 2842 continue; 2843 2844 case BitstreamEntry::Record: 2845 // The interesting case. 2846 break; 2847 } 2848 2849 2850 // Read a record. 2851 switch (Stream.readRecord(Entry.ID, Record)) { 2852 default: break; // Default behavior, ignore unknown content. 2853 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 2854 if (Record.size() < 1) 2855 return error("Invalid record"); 2856 // Only version #0 and #1 are supported so far. 2857 unsigned module_version = Record[0]; 2858 switch (module_version) { 2859 default: 2860 return error("Invalid value"); 2861 case 0: 2862 UseRelativeIDs = false; 2863 break; 2864 case 1: 2865 UseRelativeIDs = true; 2866 break; 2867 } 2868 break; 2869 } 2870 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2871 std::string S; 2872 if (convertToString(Record, 0, S)) 2873 return error("Invalid record"); 2874 TheModule->setTargetTriple(S); 2875 break; 2876 } 2877 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 2878 std::string S; 2879 if (convertToString(Record, 0, S)) 2880 return error("Invalid record"); 2881 TheModule->setDataLayout(S); 2882 break; 2883 } 2884 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 2885 std::string S; 2886 if (convertToString(Record, 0, S)) 2887 return error("Invalid record"); 2888 TheModule->setModuleInlineAsm(S); 2889 break; 2890 } 2891 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 2892 // FIXME: Remove in 4.0. 2893 std::string S; 2894 if (convertToString(Record, 0, S)) 2895 return error("Invalid record"); 2896 // Ignore value. 2897 break; 2898 } 2899 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 2900 std::string S; 2901 if (convertToString(Record, 0, S)) 2902 return error("Invalid record"); 2903 SectionTable.push_back(S); 2904 break; 2905 } 2906 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 2907 std::string S; 2908 if (convertToString(Record, 0, S)) 2909 return error("Invalid record"); 2910 GCTable.push_back(S); 2911 break; 2912 } 2913 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 2914 if (Record.size() < 2) 2915 return error("Invalid record"); 2916 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2917 unsigned ComdatNameSize = Record[1]; 2918 std::string ComdatName; 2919 ComdatName.reserve(ComdatNameSize); 2920 for (unsigned i = 0; i != ComdatNameSize; ++i) 2921 ComdatName += (char)Record[2 + i]; 2922 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 2923 C->setSelectionKind(SK); 2924 ComdatList.push_back(C); 2925 break; 2926 } 2927 // GLOBALVAR: [pointer type, isconst, initid, 2928 // linkage, alignment, section, visibility, threadlocal, 2929 // unnamed_addr, externally_initialized, dllstorageclass, 2930 // comdat] 2931 case bitc::MODULE_CODE_GLOBALVAR: { 2932 if (Record.size() < 6) 2933 return error("Invalid record"); 2934 Type *Ty = getTypeByID(Record[0]); 2935 if (!Ty) 2936 return error("Invalid record"); 2937 bool isConstant = Record[1] & 1; 2938 bool explicitType = Record[1] & 2; 2939 unsigned AddressSpace; 2940 if (explicitType) { 2941 AddressSpace = Record[1] >> 2; 2942 } else { 2943 if (!Ty->isPointerTy()) 2944 return error("Invalid type for value"); 2945 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2946 Ty = cast<PointerType>(Ty)->getElementType(); 2947 } 2948 2949 uint64_t RawLinkage = Record[3]; 2950 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2951 unsigned Alignment; 2952 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 2953 return EC; 2954 std::string Section; 2955 if (Record[5]) { 2956 if (Record[5]-1 >= SectionTable.size()) 2957 return error("Invalid ID"); 2958 Section = SectionTable[Record[5]-1]; 2959 } 2960 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2961 // Local linkage must have default visibility. 2962 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2963 // FIXME: Change to an error if non-default in 4.0. 2964 Visibility = getDecodedVisibility(Record[6]); 2965 2966 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2967 if (Record.size() > 7) 2968 TLM = getDecodedThreadLocalMode(Record[7]); 2969 2970 bool UnnamedAddr = false; 2971 if (Record.size() > 8) 2972 UnnamedAddr = Record[8]; 2973 2974 bool ExternallyInitialized = false; 2975 if (Record.size() > 9) 2976 ExternallyInitialized = Record[9]; 2977 2978 GlobalVariable *NewGV = 2979 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 2980 TLM, AddressSpace, ExternallyInitialized); 2981 NewGV->setAlignment(Alignment); 2982 if (!Section.empty()) 2983 NewGV->setSection(Section); 2984 NewGV->setVisibility(Visibility); 2985 NewGV->setUnnamedAddr(UnnamedAddr); 2986 2987 if (Record.size() > 10) 2988 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 2989 else 2990 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 2991 2992 ValueList.push_back(NewGV); 2993 2994 // Remember which value to use for the global initializer. 2995 if (unsigned InitID = Record[2]) 2996 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 2997 2998 if (Record.size() > 11) { 2999 if (unsigned ComdatID = Record[11]) { 3000 if (ComdatID > ComdatList.size()) 3001 return error("Invalid global variable comdat ID"); 3002 NewGV->setComdat(ComdatList[ComdatID - 1]); 3003 } 3004 } else if (hasImplicitComdat(RawLinkage)) { 3005 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3006 } 3007 break; 3008 } 3009 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 3010 // alignment, section, visibility, gc, unnamed_addr, 3011 // prologuedata, dllstorageclass, comdat, prefixdata] 3012 case bitc::MODULE_CODE_FUNCTION: { 3013 if (Record.size() < 8) 3014 return error("Invalid record"); 3015 Type *Ty = getTypeByID(Record[0]); 3016 if (!Ty) 3017 return error("Invalid record"); 3018 if (auto *PTy = dyn_cast<PointerType>(Ty)) 3019 Ty = PTy->getElementType(); 3020 auto *FTy = dyn_cast<FunctionType>(Ty); 3021 if (!FTy) 3022 return error("Invalid type for value"); 3023 3024 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3025 "", TheModule); 3026 3027 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 3028 bool isProto = Record[2]; 3029 uint64_t RawLinkage = Record[3]; 3030 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3031 Func->setAttributes(getAttributes(Record[4])); 3032 3033 unsigned Alignment; 3034 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 3035 return EC; 3036 Func->setAlignment(Alignment); 3037 if (Record[6]) { 3038 if (Record[6]-1 >= SectionTable.size()) 3039 return error("Invalid ID"); 3040 Func->setSection(SectionTable[Record[6]-1]); 3041 } 3042 // Local linkage must have default visibility. 3043 if (!Func->hasLocalLinkage()) 3044 // FIXME: Change to an error if non-default in 4.0. 3045 Func->setVisibility(getDecodedVisibility(Record[7])); 3046 if (Record.size() > 8 && Record[8]) { 3047 if (Record[8]-1 >= GCTable.size()) 3048 return error("Invalid ID"); 3049 Func->setGC(GCTable[Record[8]-1].c_str()); 3050 } 3051 bool UnnamedAddr = false; 3052 if (Record.size() > 9) 3053 UnnamedAddr = Record[9]; 3054 Func->setUnnamedAddr(UnnamedAddr); 3055 if (Record.size() > 10 && Record[10] != 0) 3056 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3057 3058 if (Record.size() > 11) 3059 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3060 else 3061 upgradeDLLImportExportLinkage(Func, RawLinkage); 3062 3063 if (Record.size() > 12) { 3064 if (unsigned ComdatID = Record[12]) { 3065 if (ComdatID > ComdatList.size()) 3066 return error("Invalid function comdat ID"); 3067 Func->setComdat(ComdatList[ComdatID - 1]); 3068 } 3069 } else if (hasImplicitComdat(RawLinkage)) { 3070 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3071 } 3072 3073 if (Record.size() > 13 && Record[13] != 0) 3074 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3075 3076 if (Record.size() > 14 && Record[14] != 0) 3077 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3078 3079 ValueList.push_back(Func); 3080 3081 // If this is a function with a body, remember the prototype we are 3082 // creating now, so that we can match up the body with them later. 3083 if (!isProto) { 3084 Func->setIsMaterializable(true); 3085 FunctionsWithBodies.push_back(Func); 3086 DeferredFunctionInfo[Func] = 0; 3087 } 3088 break; 3089 } 3090 // ALIAS: [alias type, aliasee val#, linkage] 3091 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass] 3092 case bitc::MODULE_CODE_ALIAS: { 3093 if (Record.size() < 3) 3094 return error("Invalid record"); 3095 Type *Ty = getTypeByID(Record[0]); 3096 if (!Ty) 3097 return error("Invalid record"); 3098 auto *PTy = dyn_cast<PointerType>(Ty); 3099 if (!PTy) 3100 return error("Invalid type for value"); 3101 3102 auto *NewGA = 3103 GlobalAlias::create(PTy, getDecodedLinkage(Record[2]), "", TheModule); 3104 // Old bitcode files didn't have visibility field. 3105 // Local linkage must have default visibility. 3106 if (Record.size() > 3 && !NewGA->hasLocalLinkage()) 3107 // FIXME: Change to an error if non-default in 4.0. 3108 NewGA->setVisibility(getDecodedVisibility(Record[3])); 3109 if (Record.size() > 4) 3110 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[4])); 3111 else 3112 upgradeDLLImportExportLinkage(NewGA, Record[2]); 3113 if (Record.size() > 5) 3114 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[5])); 3115 if (Record.size() > 6) 3116 NewGA->setUnnamedAddr(Record[6]); 3117 ValueList.push_back(NewGA); 3118 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 3119 break; 3120 } 3121 /// MODULE_CODE_PURGEVALS: [numvals] 3122 case bitc::MODULE_CODE_PURGEVALS: 3123 // Trim down the value list to the specified size. 3124 if (Record.size() < 1 || Record[0] > ValueList.size()) 3125 return error("Invalid record"); 3126 ValueList.shrinkTo(Record[0]); 3127 break; 3128 } 3129 Record.clear(); 3130 } 3131 } 3132 3133 std::error_code 3134 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 3135 Module *M, bool ShouldLazyLoadMetadata) { 3136 TheModule = M; 3137 3138 if (std::error_code EC = initStream(std::move(Streamer))) 3139 return EC; 3140 3141 // Sniff for the signature. 3142 if (Stream.Read(8) != 'B' || 3143 Stream.Read(8) != 'C' || 3144 Stream.Read(4) != 0x0 || 3145 Stream.Read(4) != 0xC || 3146 Stream.Read(4) != 0xE || 3147 Stream.Read(4) != 0xD) 3148 return error("Invalid bitcode signature"); 3149 3150 // We expect a number of well-defined blocks, though we don't necessarily 3151 // need to understand them all. 3152 while (1) { 3153 if (Stream.AtEndOfStream()) { 3154 // We didn't really read a proper Module. 3155 return error("Malformed IR file"); 3156 } 3157 3158 BitstreamEntry Entry = 3159 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 3160 3161 if (Entry.Kind != BitstreamEntry::SubBlock) 3162 return error("Malformed block"); 3163 3164 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3165 return parseModule(false, ShouldLazyLoadMetadata); 3166 3167 if (Stream.SkipBlock()) 3168 return error("Invalid record"); 3169 } 3170 } 3171 3172 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 3173 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3174 return error("Invalid record"); 3175 3176 SmallVector<uint64_t, 64> Record; 3177 3178 std::string Triple; 3179 // Read all the records for this module. 3180 while (1) { 3181 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3182 3183 switch (Entry.Kind) { 3184 case BitstreamEntry::SubBlock: // Handled for us already. 3185 case BitstreamEntry::Error: 3186 return error("Malformed block"); 3187 case BitstreamEntry::EndBlock: 3188 return Triple; 3189 case BitstreamEntry::Record: 3190 // The interesting case. 3191 break; 3192 } 3193 3194 // Read a record. 3195 switch (Stream.readRecord(Entry.ID, Record)) { 3196 default: break; // Default behavior, ignore unknown content. 3197 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3198 std::string S; 3199 if (convertToString(Record, 0, S)) 3200 return error("Invalid record"); 3201 Triple = S; 3202 break; 3203 } 3204 } 3205 Record.clear(); 3206 } 3207 llvm_unreachable("Exit infinite loop"); 3208 } 3209 3210 ErrorOr<std::string> BitcodeReader::parseTriple() { 3211 if (std::error_code EC = initStream(nullptr)) 3212 return EC; 3213 3214 // Sniff for the signature. 3215 if (Stream.Read(8) != 'B' || 3216 Stream.Read(8) != 'C' || 3217 Stream.Read(4) != 0x0 || 3218 Stream.Read(4) != 0xC || 3219 Stream.Read(4) != 0xE || 3220 Stream.Read(4) != 0xD) 3221 return error("Invalid bitcode signature"); 3222 3223 // We expect a number of well-defined blocks, though we don't necessarily 3224 // need to understand them all. 3225 while (1) { 3226 BitstreamEntry Entry = Stream.advance(); 3227 3228 switch (Entry.Kind) { 3229 case BitstreamEntry::Error: 3230 return error("Malformed block"); 3231 case BitstreamEntry::EndBlock: 3232 return std::error_code(); 3233 3234 case BitstreamEntry::SubBlock: 3235 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3236 return parseModuleTriple(); 3237 3238 // Ignore other sub-blocks. 3239 if (Stream.SkipBlock()) 3240 return error("Malformed block"); 3241 continue; 3242 3243 case BitstreamEntry::Record: 3244 Stream.skipRecord(Entry.ID); 3245 continue; 3246 } 3247 } 3248 } 3249 3250 /// Parse metadata attachments. 3251 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) { 3252 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 3253 return error("Invalid record"); 3254 3255 SmallVector<uint64_t, 64> Record; 3256 while (1) { 3257 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3258 3259 switch (Entry.Kind) { 3260 case BitstreamEntry::SubBlock: // Handled for us already. 3261 case BitstreamEntry::Error: 3262 return error("Malformed block"); 3263 case BitstreamEntry::EndBlock: 3264 return std::error_code(); 3265 case BitstreamEntry::Record: 3266 // The interesting case. 3267 break; 3268 } 3269 3270 // Read a metadata attachment record. 3271 Record.clear(); 3272 switch (Stream.readRecord(Entry.ID, Record)) { 3273 default: // Default behavior: ignore. 3274 break; 3275 case bitc::METADATA_ATTACHMENT: { 3276 unsigned RecordLength = Record.size(); 3277 if (Record.empty()) 3278 return error("Invalid record"); 3279 if (RecordLength % 2 == 0) { 3280 // A function attachment. 3281 for (unsigned I = 0; I != RecordLength; I += 2) { 3282 auto K = MDKindMap.find(Record[I]); 3283 if (K == MDKindMap.end()) 3284 return error("Invalid ID"); 3285 Metadata *MD = MDValueList.getValueFwdRef(Record[I + 1]); 3286 F.setMetadata(K->second, cast<MDNode>(MD)); 3287 } 3288 continue; 3289 } 3290 3291 // An instruction attachment. 3292 Instruction *Inst = InstructionList[Record[0]]; 3293 for (unsigned i = 1; i != RecordLength; i = i+2) { 3294 unsigned Kind = Record[i]; 3295 DenseMap<unsigned, unsigned>::iterator I = 3296 MDKindMap.find(Kind); 3297 if (I == MDKindMap.end()) 3298 return error("Invalid ID"); 3299 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); 3300 if (isa<LocalAsMetadata>(Node)) 3301 // Drop the attachment. This used to be legal, but there's no 3302 // upgrade path. 3303 break; 3304 Inst->setMetadata(I->second, cast<MDNode>(Node)); 3305 if (I->second == LLVMContext::MD_tbaa) 3306 InstsWithTBAATag.push_back(Inst); 3307 } 3308 break; 3309 } 3310 } 3311 } 3312 } 3313 3314 static std::error_code typeCheckLoadStoreInst(DiagnosticHandlerFunction DH, 3315 Type *ValType, Type *PtrType) { 3316 if (!isa<PointerType>(PtrType)) 3317 return error(DH, "Load/Store operand is not a pointer type"); 3318 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3319 3320 if (ValType && ValType != ElemType) 3321 return error(DH, "Explicit load/store type does not match pointee type of " 3322 "pointer operand"); 3323 if (!PointerType::isLoadableOrStorableType(ElemType)) 3324 return error(DH, "Cannot load/store from pointer"); 3325 return std::error_code(); 3326 } 3327 3328 /// Lazily parse the specified function body block. 3329 std::error_code BitcodeReader::parseFunctionBody(Function *F) { 3330 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3331 return error("Invalid record"); 3332 3333 InstructionList.clear(); 3334 unsigned ModuleValueListSize = ValueList.size(); 3335 unsigned ModuleMDValueListSize = MDValueList.size(); 3336 3337 // Add all the function arguments to the value table. 3338 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 3339 ValueList.push_back(I); 3340 3341 unsigned NextValueNo = ValueList.size(); 3342 BasicBlock *CurBB = nullptr; 3343 unsigned CurBBNo = 0; 3344 3345 DebugLoc LastLoc; 3346 auto getLastInstruction = [&]() -> Instruction * { 3347 if (CurBB && !CurBB->empty()) 3348 return &CurBB->back(); 3349 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3350 !FunctionBBs[CurBBNo - 1]->empty()) 3351 return &FunctionBBs[CurBBNo - 1]->back(); 3352 return nullptr; 3353 }; 3354 3355 // Read all the records. 3356 SmallVector<uint64_t, 64> Record; 3357 while (1) { 3358 BitstreamEntry Entry = Stream.advance(); 3359 3360 switch (Entry.Kind) { 3361 case BitstreamEntry::Error: 3362 return error("Malformed block"); 3363 case BitstreamEntry::EndBlock: 3364 goto OutOfRecordLoop; 3365 3366 case BitstreamEntry::SubBlock: 3367 switch (Entry.ID) { 3368 default: // Skip unknown content. 3369 if (Stream.SkipBlock()) 3370 return error("Invalid record"); 3371 break; 3372 case bitc::CONSTANTS_BLOCK_ID: 3373 if (std::error_code EC = parseConstants()) 3374 return EC; 3375 NextValueNo = ValueList.size(); 3376 break; 3377 case bitc::VALUE_SYMTAB_BLOCK_ID: 3378 if (std::error_code EC = parseValueSymbolTable()) 3379 return EC; 3380 break; 3381 case bitc::METADATA_ATTACHMENT_ID: 3382 if (std::error_code EC = parseMetadataAttachment(*F)) 3383 return EC; 3384 break; 3385 case bitc::METADATA_BLOCK_ID: 3386 if (std::error_code EC = parseMetadata()) 3387 return EC; 3388 break; 3389 case bitc::USELIST_BLOCK_ID: 3390 if (std::error_code EC = parseUseLists()) 3391 return EC; 3392 break; 3393 } 3394 continue; 3395 3396 case BitstreamEntry::Record: 3397 // The interesting case. 3398 break; 3399 } 3400 3401 // Read a record. 3402 Record.clear(); 3403 Instruction *I = nullptr; 3404 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3405 switch (BitCode) { 3406 default: // Default behavior: reject 3407 return error("Invalid value"); 3408 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3409 if (Record.size() < 1 || Record[0] == 0) 3410 return error("Invalid record"); 3411 // Create all the basic blocks for the function. 3412 FunctionBBs.resize(Record[0]); 3413 3414 // See if anything took the address of blocks in this function. 3415 auto BBFRI = BasicBlockFwdRefs.find(F); 3416 if (BBFRI == BasicBlockFwdRefs.end()) { 3417 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3418 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3419 } else { 3420 auto &BBRefs = BBFRI->second; 3421 // Check for invalid basic block references. 3422 if (BBRefs.size() > FunctionBBs.size()) 3423 return error("Invalid ID"); 3424 assert(!BBRefs.empty() && "Unexpected empty array"); 3425 assert(!BBRefs.front() && "Invalid reference to entry block"); 3426 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3427 ++I) 3428 if (I < RE && BBRefs[I]) { 3429 BBRefs[I]->insertInto(F); 3430 FunctionBBs[I] = BBRefs[I]; 3431 } else { 3432 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3433 } 3434 3435 // Erase from the table. 3436 BasicBlockFwdRefs.erase(BBFRI); 3437 } 3438 3439 CurBB = FunctionBBs[0]; 3440 continue; 3441 } 3442 3443 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3444 // This record indicates that the last instruction is at the same 3445 // location as the previous instruction with a location. 3446 I = getLastInstruction(); 3447 3448 if (!I) 3449 return error("Invalid record"); 3450 I->setDebugLoc(LastLoc); 3451 I = nullptr; 3452 continue; 3453 3454 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3455 I = getLastInstruction(); 3456 if (!I || Record.size() < 4) 3457 return error("Invalid record"); 3458 3459 unsigned Line = Record[0], Col = Record[1]; 3460 unsigned ScopeID = Record[2], IAID = Record[3]; 3461 3462 MDNode *Scope = nullptr, *IA = nullptr; 3463 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 3464 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 3465 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 3466 I->setDebugLoc(LastLoc); 3467 I = nullptr; 3468 continue; 3469 } 3470 3471 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3472 unsigned OpNum = 0; 3473 Value *LHS, *RHS; 3474 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3475 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3476 OpNum+1 > Record.size()) 3477 return error("Invalid record"); 3478 3479 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3480 if (Opc == -1) 3481 return error("Invalid record"); 3482 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3483 InstructionList.push_back(I); 3484 if (OpNum < Record.size()) { 3485 if (Opc == Instruction::Add || 3486 Opc == Instruction::Sub || 3487 Opc == Instruction::Mul || 3488 Opc == Instruction::Shl) { 3489 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3490 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3491 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3492 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3493 } else if (Opc == Instruction::SDiv || 3494 Opc == Instruction::UDiv || 3495 Opc == Instruction::LShr || 3496 Opc == Instruction::AShr) { 3497 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3498 cast<BinaryOperator>(I)->setIsExact(true); 3499 } else if (isa<FPMathOperator>(I)) { 3500 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3501 if (FMF.any()) 3502 I->setFastMathFlags(FMF); 3503 } 3504 3505 } 3506 break; 3507 } 3508 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3509 unsigned OpNum = 0; 3510 Value *Op; 3511 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3512 OpNum+2 != Record.size()) 3513 return error("Invalid record"); 3514 3515 Type *ResTy = getTypeByID(Record[OpNum]); 3516 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3517 if (Opc == -1 || !ResTy) 3518 return error("Invalid record"); 3519 Instruction *Temp = nullptr; 3520 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3521 if (Temp) { 3522 InstructionList.push_back(Temp); 3523 CurBB->getInstList().push_back(Temp); 3524 } 3525 } else { 3526 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 3527 } 3528 InstructionList.push_back(I); 3529 break; 3530 } 3531 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3532 case bitc::FUNC_CODE_INST_GEP_OLD: 3533 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3534 unsigned OpNum = 0; 3535 3536 Type *Ty; 3537 bool InBounds; 3538 3539 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3540 InBounds = Record[OpNum++]; 3541 Ty = getTypeByID(Record[OpNum++]); 3542 } else { 3543 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3544 Ty = nullptr; 3545 } 3546 3547 Value *BasePtr; 3548 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3549 return error("Invalid record"); 3550 3551 if (!Ty) 3552 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 3553 ->getElementType(); 3554 else if (Ty != 3555 cast<SequentialType>(BasePtr->getType()->getScalarType()) 3556 ->getElementType()) 3557 return error( 3558 "Explicit gep type does not match pointee type of pointer operand"); 3559 3560 SmallVector<Value*, 16> GEPIdx; 3561 while (OpNum != Record.size()) { 3562 Value *Op; 3563 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3564 return error("Invalid record"); 3565 GEPIdx.push_back(Op); 3566 } 3567 3568 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3569 3570 InstructionList.push_back(I); 3571 if (InBounds) 3572 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3573 break; 3574 } 3575 3576 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3577 // EXTRACTVAL: [opty, opval, n x indices] 3578 unsigned OpNum = 0; 3579 Value *Agg; 3580 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3581 return error("Invalid record"); 3582 3583 unsigned RecSize = Record.size(); 3584 if (OpNum == RecSize) 3585 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 3586 3587 SmallVector<unsigned, 4> EXTRACTVALIdx; 3588 Type *CurTy = Agg->getType(); 3589 for (; OpNum != RecSize; ++OpNum) { 3590 bool IsArray = CurTy->isArrayTy(); 3591 bool IsStruct = CurTy->isStructTy(); 3592 uint64_t Index = Record[OpNum]; 3593 3594 if (!IsStruct && !IsArray) 3595 return error("EXTRACTVAL: Invalid type"); 3596 if ((unsigned)Index != Index) 3597 return error("Invalid value"); 3598 if (IsStruct && Index >= CurTy->subtypes().size()) 3599 return error("EXTRACTVAL: Invalid struct index"); 3600 if (IsArray && Index >= CurTy->getArrayNumElements()) 3601 return error("EXTRACTVAL: Invalid array index"); 3602 EXTRACTVALIdx.push_back((unsigned)Index); 3603 3604 if (IsStruct) 3605 CurTy = CurTy->subtypes()[Index]; 3606 else 3607 CurTy = CurTy->subtypes()[0]; 3608 } 3609 3610 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3611 InstructionList.push_back(I); 3612 break; 3613 } 3614 3615 case bitc::FUNC_CODE_INST_INSERTVAL: { 3616 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3617 unsigned OpNum = 0; 3618 Value *Agg; 3619 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3620 return error("Invalid record"); 3621 Value *Val; 3622 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3623 return error("Invalid record"); 3624 3625 unsigned RecSize = Record.size(); 3626 if (OpNum == RecSize) 3627 return error("INSERTVAL: Invalid instruction with 0 indices"); 3628 3629 SmallVector<unsigned, 4> INSERTVALIdx; 3630 Type *CurTy = Agg->getType(); 3631 for (; OpNum != RecSize; ++OpNum) { 3632 bool IsArray = CurTy->isArrayTy(); 3633 bool IsStruct = CurTy->isStructTy(); 3634 uint64_t Index = Record[OpNum]; 3635 3636 if (!IsStruct && !IsArray) 3637 return error("INSERTVAL: Invalid type"); 3638 if ((unsigned)Index != Index) 3639 return error("Invalid value"); 3640 if (IsStruct && Index >= CurTy->subtypes().size()) 3641 return error("INSERTVAL: Invalid struct index"); 3642 if (IsArray && Index >= CurTy->getArrayNumElements()) 3643 return error("INSERTVAL: Invalid array index"); 3644 3645 INSERTVALIdx.push_back((unsigned)Index); 3646 if (IsStruct) 3647 CurTy = CurTy->subtypes()[Index]; 3648 else 3649 CurTy = CurTy->subtypes()[0]; 3650 } 3651 3652 if (CurTy != Val->getType()) 3653 return error("Inserted value type doesn't match aggregate type"); 3654 3655 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3656 InstructionList.push_back(I); 3657 break; 3658 } 3659 3660 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3661 // obsolete form of select 3662 // handles select i1 ... in old bitcode 3663 unsigned OpNum = 0; 3664 Value *TrueVal, *FalseVal, *Cond; 3665 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3666 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3667 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3668 return error("Invalid record"); 3669 3670 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3671 InstructionList.push_back(I); 3672 break; 3673 } 3674 3675 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3676 // new form of select 3677 // handles select i1 or select [N x i1] 3678 unsigned OpNum = 0; 3679 Value *TrueVal, *FalseVal, *Cond; 3680 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3681 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3682 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3683 return error("Invalid record"); 3684 3685 // select condition can be either i1 or [N x i1] 3686 if (VectorType* vector_type = 3687 dyn_cast<VectorType>(Cond->getType())) { 3688 // expect <n x i1> 3689 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3690 return error("Invalid type for value"); 3691 } else { 3692 // expect i1 3693 if (Cond->getType() != Type::getInt1Ty(Context)) 3694 return error("Invalid type for value"); 3695 } 3696 3697 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3698 InstructionList.push_back(I); 3699 break; 3700 } 3701 3702 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3703 unsigned OpNum = 0; 3704 Value *Vec, *Idx; 3705 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3706 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3707 return error("Invalid record"); 3708 if (!Vec->getType()->isVectorTy()) 3709 return error("Invalid type for value"); 3710 I = ExtractElementInst::Create(Vec, Idx); 3711 InstructionList.push_back(I); 3712 break; 3713 } 3714 3715 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3716 unsigned OpNum = 0; 3717 Value *Vec, *Elt, *Idx; 3718 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 3719 return error("Invalid record"); 3720 if (!Vec->getType()->isVectorTy()) 3721 return error("Invalid type for value"); 3722 if (popValue(Record, OpNum, NextValueNo, 3723 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3724 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3725 return error("Invalid record"); 3726 I = InsertElementInst::Create(Vec, Elt, Idx); 3727 InstructionList.push_back(I); 3728 break; 3729 } 3730 3731 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3732 unsigned OpNum = 0; 3733 Value *Vec1, *Vec2, *Mask; 3734 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3735 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3736 return error("Invalid record"); 3737 3738 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3739 return error("Invalid record"); 3740 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 3741 return error("Invalid type for value"); 3742 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3743 InstructionList.push_back(I); 3744 break; 3745 } 3746 3747 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3748 // Old form of ICmp/FCmp returning bool 3749 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3750 // both legal on vectors but had different behaviour. 3751 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3752 // FCmp/ICmp returning bool or vector of bool 3753 3754 unsigned OpNum = 0; 3755 Value *LHS, *RHS; 3756 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3757 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 3758 return error("Invalid record"); 3759 3760 unsigned PredVal = Record[OpNum]; 3761 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 3762 FastMathFlags FMF; 3763 if (IsFP && Record.size() > OpNum+1) 3764 FMF = getDecodedFastMathFlags(Record[++OpNum]); 3765 3766 if (OpNum+1 != Record.size()) 3767 return error("Invalid record"); 3768 3769 if (LHS->getType()->isFPOrFPVectorTy()) 3770 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 3771 else 3772 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 3773 3774 if (FMF.any()) 3775 I->setFastMathFlags(FMF); 3776 InstructionList.push_back(I); 3777 break; 3778 } 3779 3780 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3781 { 3782 unsigned Size = Record.size(); 3783 if (Size == 0) { 3784 I = ReturnInst::Create(Context); 3785 InstructionList.push_back(I); 3786 break; 3787 } 3788 3789 unsigned OpNum = 0; 3790 Value *Op = nullptr; 3791 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3792 return error("Invalid record"); 3793 if (OpNum != Record.size()) 3794 return error("Invalid record"); 3795 3796 I = ReturnInst::Create(Context, Op); 3797 InstructionList.push_back(I); 3798 break; 3799 } 3800 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3801 if (Record.size() != 1 && Record.size() != 3) 3802 return error("Invalid record"); 3803 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3804 if (!TrueDest) 3805 return error("Invalid record"); 3806 3807 if (Record.size() == 1) { 3808 I = BranchInst::Create(TrueDest); 3809 InstructionList.push_back(I); 3810 } 3811 else { 3812 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3813 Value *Cond = getValue(Record, 2, NextValueNo, 3814 Type::getInt1Ty(Context)); 3815 if (!FalseDest || !Cond) 3816 return error("Invalid record"); 3817 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3818 InstructionList.push_back(I); 3819 } 3820 break; 3821 } 3822 // CLEANUPRET: [] or [ty,val] or [bb#] or [ty,val,bb#] 3823 case bitc::FUNC_CODE_INST_CLEANUPRET: { 3824 if (Record.size() < 2) 3825 return error("Invalid record"); 3826 unsigned Idx = 0; 3827 bool HasReturnValue = !!Record[Idx++]; 3828 bool HasUnwindDest = !!Record[Idx++]; 3829 Value *RetVal = nullptr; 3830 BasicBlock *UnwindDest = nullptr; 3831 3832 if (HasReturnValue && getValueTypePair(Record, Idx, NextValueNo, RetVal)) 3833 return error("Invalid record"); 3834 if (HasUnwindDest) { 3835 if (Idx == Record.size()) 3836 return error("Invalid record"); 3837 UnwindDest = getBasicBlock(Record[Idx++]); 3838 if (!UnwindDest) 3839 return error("Invalid record"); 3840 } 3841 3842 if (Record.size() != Idx) 3843 return error("Invalid record"); 3844 3845 I = CleanupReturnInst::Create(Context, RetVal, UnwindDest); 3846 InstructionList.push_back(I); 3847 break; 3848 } 3849 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [bb#] 3850 if (Record.size() != 1 && Record.size() != 3) 3851 return error("Invalid record"); 3852 unsigned Idx = 0; 3853 BasicBlock *BB = getBasicBlock(Record[Idx++]); 3854 if (!BB) 3855 return error("Invalid record"); 3856 Value *RetVal = nullptr; 3857 if (Record.size() == 3 && 3858 getValueTypePair(Record, Idx, NextValueNo, RetVal)) 3859 return error("Invalid record"); 3860 3861 I = CatchReturnInst::Create(BB, RetVal); 3862 InstructionList.push_back(I); 3863 break; 3864 } 3865 case bitc::FUNC_CODE_INST_CATCHPAD: { // CATCHPAD: [ty,bb#,bb#,num,(ty,val)*] 3866 if (Record.size() < 4) 3867 return error("Invalid record"); 3868 unsigned Idx = 0; 3869 Type *Ty = getTypeByID(Record[Idx++]); 3870 if (!Ty) 3871 return error("Invalid record"); 3872 BasicBlock *NormalBB = getBasicBlock(Record[Idx++]); 3873 if (!NormalBB) 3874 return error("Invalid record"); 3875 BasicBlock *UnwindBB = getBasicBlock(Record[Idx++]); 3876 if (!UnwindBB) 3877 return error("Invalid record"); 3878 unsigned NumArgOperands = Record[Idx++]; 3879 SmallVector<Value *, 2> Args; 3880 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 3881 Value *Val; 3882 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3883 return error("Invalid record"); 3884 Args.push_back(Val); 3885 } 3886 if (Record.size() != Idx) 3887 return error("Invalid record"); 3888 3889 I = CatchPadInst::Create(Ty, NormalBB, UnwindBB, Args); 3890 InstructionList.push_back(I); 3891 break; 3892 } 3893 case bitc::FUNC_CODE_INST_TERMINATEPAD: { // TERMINATEPAD: [bb#,num,(ty,val)*] 3894 if (Record.size() < 1) 3895 return error("Invalid record"); 3896 unsigned Idx = 0; 3897 bool HasUnwindDest = !!Record[Idx++]; 3898 BasicBlock *UnwindDest = nullptr; 3899 if (HasUnwindDest) { 3900 if (Idx == Record.size()) 3901 return error("Invalid record"); 3902 UnwindDest = getBasicBlock(Record[Idx++]); 3903 if (!UnwindDest) 3904 return error("Invalid record"); 3905 } 3906 unsigned NumArgOperands = Record[Idx++]; 3907 SmallVector<Value *, 2> Args; 3908 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 3909 Value *Val; 3910 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3911 return error("Invalid record"); 3912 Args.push_back(Val); 3913 } 3914 if (Record.size() != Idx) 3915 return error("Invalid record"); 3916 3917 I = TerminatePadInst::Create(Context, UnwindDest, Args); 3918 InstructionList.push_back(I); 3919 break; 3920 } 3921 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // CLEANUPPAD: [ty, num,(ty,val)*] 3922 if (Record.size() < 2) 3923 return error("Invalid record"); 3924 unsigned Idx = 0; 3925 Type *Ty = getTypeByID(Record[Idx++]); 3926 if (!Ty) 3927 return error("Invalid record"); 3928 unsigned NumArgOperands = Record[Idx++]; 3929 SmallVector<Value *, 2> Args; 3930 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 3931 Value *Val; 3932 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3933 return error("Invalid record"); 3934 Args.push_back(Val); 3935 } 3936 if (Record.size() != Idx) 3937 return error("Invalid record"); 3938 3939 I = CleanupPadInst::Create(Ty, Args); 3940 InstructionList.push_back(I); 3941 break; 3942 } 3943 case bitc::FUNC_CODE_INST_CATCHENDPAD: { // CATCHENDPADINST: [bb#] or [] 3944 if (Record.size() > 1) 3945 return error("Invalid record"); 3946 BasicBlock *BB = nullptr; 3947 if (Record.size() == 1) { 3948 BB = getBasicBlock(Record[0]); 3949 if (!BB) 3950 return error("Invalid record"); 3951 } 3952 I = CatchEndPadInst::Create(Context, BB); 3953 InstructionList.push_back(I); 3954 break; 3955 } 3956 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3957 // Check magic 3958 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3959 // "New" SwitchInst format with case ranges. The changes to write this 3960 // format were reverted but we still recognize bitcode that uses it. 3961 // Hopefully someday we will have support for case ranges and can use 3962 // this format again. 3963 3964 Type *OpTy = getTypeByID(Record[1]); 3965 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 3966 3967 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 3968 BasicBlock *Default = getBasicBlock(Record[3]); 3969 if (!OpTy || !Cond || !Default) 3970 return error("Invalid record"); 3971 3972 unsigned NumCases = Record[4]; 3973 3974 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3975 InstructionList.push_back(SI); 3976 3977 unsigned CurIdx = 5; 3978 for (unsigned i = 0; i != NumCases; ++i) { 3979 SmallVector<ConstantInt*, 1> CaseVals; 3980 unsigned NumItems = Record[CurIdx++]; 3981 for (unsigned ci = 0; ci != NumItems; ++ci) { 3982 bool isSingleNumber = Record[CurIdx++]; 3983 3984 APInt Low; 3985 unsigned ActiveWords = 1; 3986 if (ValueBitWidth > 64) 3987 ActiveWords = Record[CurIdx++]; 3988 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3989 ValueBitWidth); 3990 CurIdx += ActiveWords; 3991 3992 if (!isSingleNumber) { 3993 ActiveWords = 1; 3994 if (ValueBitWidth > 64) 3995 ActiveWords = Record[CurIdx++]; 3996 APInt High = readWideAPInt( 3997 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 3998 CurIdx += ActiveWords; 3999 4000 // FIXME: It is not clear whether values in the range should be 4001 // compared as signed or unsigned values. The partially 4002 // implemented changes that used this format in the past used 4003 // unsigned comparisons. 4004 for ( ; Low.ule(High); ++Low) 4005 CaseVals.push_back(ConstantInt::get(Context, Low)); 4006 } else 4007 CaseVals.push_back(ConstantInt::get(Context, Low)); 4008 } 4009 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4010 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4011 cve = CaseVals.end(); cvi != cve; ++cvi) 4012 SI->addCase(*cvi, DestBB); 4013 } 4014 I = SI; 4015 break; 4016 } 4017 4018 // Old SwitchInst format without case ranges. 4019 4020 if (Record.size() < 3 || (Record.size() & 1) == 0) 4021 return error("Invalid record"); 4022 Type *OpTy = getTypeByID(Record[0]); 4023 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4024 BasicBlock *Default = getBasicBlock(Record[2]); 4025 if (!OpTy || !Cond || !Default) 4026 return error("Invalid record"); 4027 unsigned NumCases = (Record.size()-3)/2; 4028 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4029 InstructionList.push_back(SI); 4030 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4031 ConstantInt *CaseVal = 4032 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4033 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4034 if (!CaseVal || !DestBB) { 4035 delete SI; 4036 return error("Invalid record"); 4037 } 4038 SI->addCase(CaseVal, DestBB); 4039 } 4040 I = SI; 4041 break; 4042 } 4043 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4044 if (Record.size() < 2) 4045 return error("Invalid record"); 4046 Type *OpTy = getTypeByID(Record[0]); 4047 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4048 if (!OpTy || !Address) 4049 return error("Invalid record"); 4050 unsigned NumDests = Record.size()-2; 4051 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4052 InstructionList.push_back(IBI); 4053 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4054 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4055 IBI->addDestination(DestBB); 4056 } else { 4057 delete IBI; 4058 return error("Invalid record"); 4059 } 4060 } 4061 I = IBI; 4062 break; 4063 } 4064 4065 case bitc::FUNC_CODE_INST_INVOKE: { 4066 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4067 if (Record.size() < 4) 4068 return error("Invalid record"); 4069 unsigned OpNum = 0; 4070 AttributeSet PAL = getAttributes(Record[OpNum++]); 4071 unsigned CCInfo = Record[OpNum++]; 4072 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4073 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4074 4075 FunctionType *FTy = nullptr; 4076 if (CCInfo >> 13 & 1 && 4077 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4078 return error("Explicit invoke type is not a function type"); 4079 4080 Value *Callee; 4081 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4082 return error("Invalid record"); 4083 4084 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4085 if (!CalleeTy) 4086 return error("Callee is not a pointer"); 4087 if (!FTy) { 4088 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4089 if (!FTy) 4090 return error("Callee is not of pointer to function type"); 4091 } else if (CalleeTy->getElementType() != FTy) 4092 return error("Explicit invoke type does not match pointee type of " 4093 "callee operand"); 4094 if (Record.size() < FTy->getNumParams() + OpNum) 4095 return error("Insufficient operands to call"); 4096 4097 SmallVector<Value*, 16> Ops; 4098 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4099 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4100 FTy->getParamType(i))); 4101 if (!Ops.back()) 4102 return error("Invalid record"); 4103 } 4104 4105 if (!FTy->isVarArg()) { 4106 if (Record.size() != OpNum) 4107 return error("Invalid record"); 4108 } else { 4109 // Read type/value pairs for varargs params. 4110 while (OpNum != Record.size()) { 4111 Value *Op; 4112 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4113 return error("Invalid record"); 4114 Ops.push_back(Op); 4115 } 4116 } 4117 4118 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); 4119 InstructionList.push_back(I); 4120 cast<InvokeInst>(I) 4121 ->setCallingConv(static_cast<CallingConv::ID>(~(1U << 13) & CCInfo)); 4122 cast<InvokeInst>(I)->setAttributes(PAL); 4123 break; 4124 } 4125 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4126 unsigned Idx = 0; 4127 Value *Val = nullptr; 4128 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4129 return error("Invalid record"); 4130 I = ResumeInst::Create(Val); 4131 InstructionList.push_back(I); 4132 break; 4133 } 4134 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4135 I = new UnreachableInst(Context); 4136 InstructionList.push_back(I); 4137 break; 4138 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4139 if (Record.size() < 1 || ((Record.size()-1)&1)) 4140 return error("Invalid record"); 4141 Type *Ty = getTypeByID(Record[0]); 4142 if (!Ty) 4143 return error("Invalid record"); 4144 4145 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4146 InstructionList.push_back(PN); 4147 4148 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4149 Value *V; 4150 // With the new function encoding, it is possible that operands have 4151 // negative IDs (for forward references). Use a signed VBR 4152 // representation to keep the encoding small. 4153 if (UseRelativeIDs) 4154 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4155 else 4156 V = getValue(Record, 1+i, NextValueNo, Ty); 4157 BasicBlock *BB = getBasicBlock(Record[2+i]); 4158 if (!V || !BB) 4159 return error("Invalid record"); 4160 PN->addIncoming(V, BB); 4161 } 4162 I = PN; 4163 break; 4164 } 4165 4166 case bitc::FUNC_CODE_INST_LANDINGPAD: 4167 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4168 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4169 unsigned Idx = 0; 4170 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4171 if (Record.size() < 3) 4172 return error("Invalid record"); 4173 } else { 4174 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4175 if (Record.size() < 4) 4176 return error("Invalid record"); 4177 } 4178 Type *Ty = getTypeByID(Record[Idx++]); 4179 if (!Ty) 4180 return error("Invalid record"); 4181 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4182 Value *PersFn = nullptr; 4183 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4184 return error("Invalid record"); 4185 4186 if (!F->hasPersonalityFn()) 4187 F->setPersonalityFn(cast<Constant>(PersFn)); 4188 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4189 return error("Personality function mismatch"); 4190 } 4191 4192 bool IsCleanup = !!Record[Idx++]; 4193 unsigned NumClauses = Record[Idx++]; 4194 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4195 LP->setCleanup(IsCleanup); 4196 for (unsigned J = 0; J != NumClauses; ++J) { 4197 LandingPadInst::ClauseType CT = 4198 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4199 Value *Val; 4200 4201 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4202 delete LP; 4203 return error("Invalid record"); 4204 } 4205 4206 assert((CT != LandingPadInst::Catch || 4207 !isa<ArrayType>(Val->getType())) && 4208 "Catch clause has a invalid type!"); 4209 assert((CT != LandingPadInst::Filter || 4210 isa<ArrayType>(Val->getType())) && 4211 "Filter clause has invalid type!"); 4212 LP->addClause(cast<Constant>(Val)); 4213 } 4214 4215 I = LP; 4216 InstructionList.push_back(I); 4217 break; 4218 } 4219 4220 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4221 if (Record.size() != 4) 4222 return error("Invalid record"); 4223 uint64_t AlignRecord = Record[3]; 4224 const uint64_t InAllocaMask = uint64_t(1) << 5; 4225 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4226 // Reserve bit 7 for SwiftError flag. 4227 // const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4228 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask; 4229 bool InAlloca = AlignRecord & InAllocaMask; 4230 Type *Ty = getTypeByID(Record[0]); 4231 if ((AlignRecord & ExplicitTypeMask) == 0) { 4232 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4233 if (!PTy) 4234 return error("Old-style alloca with a non-pointer type"); 4235 Ty = PTy->getElementType(); 4236 } 4237 Type *OpTy = getTypeByID(Record[1]); 4238 Value *Size = getFnValueByID(Record[2], OpTy); 4239 unsigned Align; 4240 if (std::error_code EC = 4241 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4242 return EC; 4243 } 4244 if (!Ty || !Size) 4245 return error("Invalid record"); 4246 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 4247 AI->setUsedWithInAlloca(InAlloca); 4248 I = AI; 4249 InstructionList.push_back(I); 4250 break; 4251 } 4252 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4253 unsigned OpNum = 0; 4254 Value *Op; 4255 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4256 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4257 return error("Invalid record"); 4258 4259 Type *Ty = nullptr; 4260 if (OpNum + 3 == Record.size()) 4261 Ty = getTypeByID(Record[OpNum++]); 4262 if (std::error_code EC = 4263 typeCheckLoadStoreInst(DiagnosticHandler, Ty, Op->getType())) 4264 return EC; 4265 if (!Ty) 4266 Ty = cast<PointerType>(Op->getType())->getElementType(); 4267 4268 unsigned Align; 4269 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4270 return EC; 4271 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4272 4273 InstructionList.push_back(I); 4274 break; 4275 } 4276 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4277 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4278 unsigned OpNum = 0; 4279 Value *Op; 4280 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4281 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4282 return error("Invalid record"); 4283 4284 Type *Ty = nullptr; 4285 if (OpNum + 5 == Record.size()) 4286 Ty = getTypeByID(Record[OpNum++]); 4287 if (std::error_code EC = 4288 typeCheckLoadStoreInst(DiagnosticHandler, Ty, Op->getType())) 4289 return EC; 4290 if (!Ty) 4291 Ty = cast<PointerType>(Op->getType())->getElementType(); 4292 4293 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4294 if (Ordering == NotAtomic || Ordering == Release || 4295 Ordering == AcquireRelease) 4296 return error("Invalid record"); 4297 if (Ordering != NotAtomic && Record[OpNum] == 0) 4298 return error("Invalid record"); 4299 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4300 4301 unsigned Align; 4302 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4303 return EC; 4304 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4305 4306 InstructionList.push_back(I); 4307 break; 4308 } 4309 case bitc::FUNC_CODE_INST_STORE: 4310 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4311 unsigned OpNum = 0; 4312 Value *Val, *Ptr; 4313 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4314 (BitCode == bitc::FUNC_CODE_INST_STORE 4315 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4316 : popValue(Record, OpNum, NextValueNo, 4317 cast<PointerType>(Ptr->getType())->getElementType(), 4318 Val)) || 4319 OpNum + 2 != Record.size()) 4320 return error("Invalid record"); 4321 4322 if (std::error_code EC = typeCheckLoadStoreInst( 4323 DiagnosticHandler, Val->getType(), Ptr->getType())) 4324 return EC; 4325 unsigned Align; 4326 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4327 return EC; 4328 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4329 InstructionList.push_back(I); 4330 break; 4331 } 4332 case bitc::FUNC_CODE_INST_STOREATOMIC: 4333 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4334 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 4335 unsigned OpNum = 0; 4336 Value *Val, *Ptr; 4337 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4338 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4339 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4340 : popValue(Record, OpNum, NextValueNo, 4341 cast<PointerType>(Ptr->getType())->getElementType(), 4342 Val)) || 4343 OpNum + 4 != Record.size()) 4344 return error("Invalid record"); 4345 4346 if (std::error_code EC = typeCheckLoadStoreInst( 4347 DiagnosticHandler, Val->getType(), Ptr->getType())) 4348 return EC; 4349 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4350 if (Ordering == NotAtomic || Ordering == Acquire || 4351 Ordering == AcquireRelease) 4352 return error("Invalid record"); 4353 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4354 if (Ordering != NotAtomic && Record[OpNum] == 0) 4355 return error("Invalid record"); 4356 4357 unsigned Align; 4358 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4359 return EC; 4360 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 4361 InstructionList.push_back(I); 4362 break; 4363 } 4364 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4365 case bitc::FUNC_CODE_INST_CMPXCHG: { 4366 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 4367 // failureordering?, isweak?] 4368 unsigned OpNum = 0; 4369 Value *Ptr, *Cmp, *New; 4370 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4371 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4372 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4373 : popValue(Record, OpNum, NextValueNo, 4374 cast<PointerType>(Ptr->getType())->getElementType(), 4375 Cmp)) || 4376 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4377 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4378 return error("Invalid record"); 4379 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4380 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 4381 return error("Invalid record"); 4382 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 4383 4384 if (std::error_code EC = typeCheckLoadStoreInst( 4385 DiagnosticHandler, Cmp->getType(), Ptr->getType())) 4386 return EC; 4387 AtomicOrdering FailureOrdering; 4388 if (Record.size() < 7) 4389 FailureOrdering = 4390 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4391 else 4392 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4393 4394 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4395 SynchScope); 4396 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4397 4398 if (Record.size() < 8) { 4399 // Before weak cmpxchgs existed, the instruction simply returned the 4400 // value loaded from memory, so bitcode files from that era will be 4401 // expecting the first component of a modern cmpxchg. 4402 CurBB->getInstList().push_back(I); 4403 I = ExtractValueInst::Create(I, 0); 4404 } else { 4405 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4406 } 4407 4408 InstructionList.push_back(I); 4409 break; 4410 } 4411 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4412 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 4413 unsigned OpNum = 0; 4414 Value *Ptr, *Val; 4415 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4416 popValue(Record, OpNum, NextValueNo, 4417 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4418 OpNum+4 != Record.size()) 4419 return error("Invalid record"); 4420 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 4421 if (Operation < AtomicRMWInst::FIRST_BINOP || 4422 Operation > AtomicRMWInst::LAST_BINOP) 4423 return error("Invalid record"); 4424 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4425 if (Ordering == NotAtomic || Ordering == Unordered) 4426 return error("Invalid record"); 4427 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4428 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 4429 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4430 InstructionList.push_back(I); 4431 break; 4432 } 4433 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 4434 if (2 != Record.size()) 4435 return error("Invalid record"); 4436 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 4437 if (Ordering == NotAtomic || Ordering == Unordered || 4438 Ordering == Monotonic) 4439 return error("Invalid record"); 4440 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 4441 I = new FenceInst(Context, Ordering, SynchScope); 4442 InstructionList.push_back(I); 4443 break; 4444 } 4445 case bitc::FUNC_CODE_INST_CALL: { 4446 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 4447 if (Record.size() < 3) 4448 return error("Invalid record"); 4449 4450 unsigned OpNum = 0; 4451 AttributeSet PAL = getAttributes(Record[OpNum++]); 4452 unsigned CCInfo = Record[OpNum++]; 4453 4454 FunctionType *FTy = nullptr; 4455 if (CCInfo >> 15 & 1 && 4456 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4457 return error("Explicit call type is not a function type"); 4458 4459 Value *Callee; 4460 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4461 return error("Invalid record"); 4462 4463 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4464 if (!OpTy) 4465 return error("Callee is not a pointer type"); 4466 if (!FTy) { 4467 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4468 if (!FTy) 4469 return error("Callee is not of pointer to function type"); 4470 } else if (OpTy->getElementType() != FTy) 4471 return error("Explicit call type does not match pointee type of " 4472 "callee operand"); 4473 if (Record.size() < FTy->getNumParams() + OpNum) 4474 return error("Insufficient operands to call"); 4475 4476 SmallVector<Value*, 16> Args; 4477 // Read the fixed params. 4478 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4479 if (FTy->getParamType(i)->isLabelTy()) 4480 Args.push_back(getBasicBlock(Record[OpNum])); 4481 else 4482 Args.push_back(getValue(Record, OpNum, NextValueNo, 4483 FTy->getParamType(i))); 4484 if (!Args.back()) 4485 return error("Invalid record"); 4486 } 4487 4488 // Read type/value pairs for varargs params. 4489 if (!FTy->isVarArg()) { 4490 if (OpNum != Record.size()) 4491 return error("Invalid record"); 4492 } else { 4493 while (OpNum != Record.size()) { 4494 Value *Op; 4495 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4496 return error("Invalid record"); 4497 Args.push_back(Op); 4498 } 4499 } 4500 4501 I = CallInst::Create(FTy, Callee, Args); 4502 InstructionList.push_back(I); 4503 cast<CallInst>(I)->setCallingConv( 4504 static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1)); 4505 CallInst::TailCallKind TCK = CallInst::TCK_None; 4506 if (CCInfo & 1) 4507 TCK = CallInst::TCK_Tail; 4508 if (CCInfo & (1 << 14)) 4509 TCK = CallInst::TCK_MustTail; 4510 cast<CallInst>(I)->setTailCallKind(TCK); 4511 cast<CallInst>(I)->setAttributes(PAL); 4512 break; 4513 } 4514 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4515 if (Record.size() < 3) 4516 return error("Invalid record"); 4517 Type *OpTy = getTypeByID(Record[0]); 4518 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4519 Type *ResTy = getTypeByID(Record[2]); 4520 if (!OpTy || !Op || !ResTy) 4521 return error("Invalid record"); 4522 I = new VAArgInst(Op, ResTy); 4523 InstructionList.push_back(I); 4524 break; 4525 } 4526 } 4527 4528 // Add instruction to end of current BB. If there is no current BB, reject 4529 // this file. 4530 if (!CurBB) { 4531 delete I; 4532 return error("Invalid instruction with no BB"); 4533 } 4534 CurBB->getInstList().push_back(I); 4535 4536 // If this was a terminator instruction, move to the next block. 4537 if (isa<TerminatorInst>(I)) { 4538 ++CurBBNo; 4539 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 4540 } 4541 4542 // Non-void values get registered in the value table for future use. 4543 if (I && !I->getType()->isVoidTy()) 4544 ValueList.assignValue(I, NextValueNo++); 4545 } 4546 4547 OutOfRecordLoop: 4548 4549 // Check the function list for unresolved values. 4550 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 4551 if (!A->getParent()) { 4552 // We found at least one unresolved value. Nuke them all to avoid leaks. 4553 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 4554 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 4555 A->replaceAllUsesWith(UndefValue::get(A->getType())); 4556 delete A; 4557 } 4558 } 4559 return error("Never resolved value found in function"); 4560 } 4561 } 4562 4563 // FIXME: Check for unresolved forward-declared metadata references 4564 // and clean up leaks. 4565 4566 // Trim the value list down to the size it was before we parsed this function. 4567 ValueList.shrinkTo(ModuleValueListSize); 4568 MDValueList.shrinkTo(ModuleMDValueListSize); 4569 std::vector<BasicBlock*>().swap(FunctionBBs); 4570 return std::error_code(); 4571 } 4572 4573 /// Find the function body in the bitcode stream 4574 std::error_code BitcodeReader::findFunctionInStream( 4575 Function *F, 4576 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 4577 while (DeferredFunctionInfoIterator->second == 0) { 4578 if (Stream.AtEndOfStream()) 4579 return error("Could not find function in stream"); 4580 // ParseModule will parse the next body in the stream and set its 4581 // position in the DeferredFunctionInfo map. 4582 if (std::error_code EC = parseModule(true)) 4583 return EC; 4584 } 4585 return std::error_code(); 4586 } 4587 4588 //===----------------------------------------------------------------------===// 4589 // GVMaterializer implementation 4590 //===----------------------------------------------------------------------===// 4591 4592 void BitcodeReader::releaseBuffer() { Buffer.release(); } 4593 4594 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 4595 if (std::error_code EC = materializeMetadata()) 4596 return EC; 4597 4598 Function *F = dyn_cast<Function>(GV); 4599 // If it's not a function or is already material, ignore the request. 4600 if (!F || !F->isMaterializable()) 4601 return std::error_code(); 4602 4603 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 4604 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 4605 // If its position is recorded as 0, its body is somewhere in the stream 4606 // but we haven't seen it yet. 4607 if (DFII->second == 0) 4608 if (std::error_code EC = findFunctionInStream(F, DFII)) 4609 return EC; 4610 4611 // Move the bit stream to the saved position of the deferred function body. 4612 Stream.JumpToBit(DFII->second); 4613 4614 if (std::error_code EC = parseFunctionBody(F)) 4615 return EC; 4616 F->setIsMaterializable(false); 4617 4618 if (StripDebugInfo) 4619 stripDebugInfo(*F); 4620 4621 // Upgrade any old intrinsic calls in the function. 4622 for (auto &I : UpgradedIntrinsics) { 4623 for (auto UI = I.first->user_begin(), UE = I.first->user_end(); UI != UE;) { 4624 User *U = *UI; 4625 ++UI; 4626 if (CallInst *CI = dyn_cast<CallInst>(U)) 4627 UpgradeIntrinsicCall(CI, I.second); 4628 } 4629 } 4630 4631 // Bring in any functions that this function forward-referenced via 4632 // blockaddresses. 4633 return materializeForwardReferencedFunctions(); 4634 } 4635 4636 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 4637 const Function *F = dyn_cast<Function>(GV); 4638 if (!F || F->isDeclaration()) 4639 return false; 4640 4641 // Dematerializing F would leave dangling references that wouldn't be 4642 // reconnected on re-materialization. 4643 if (BlockAddressesTaken.count(F)) 4644 return false; 4645 4646 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 4647 } 4648 4649 void BitcodeReader::dematerialize(GlobalValue *GV) { 4650 Function *F = dyn_cast<Function>(GV); 4651 // If this function isn't dematerializable, this is a noop. 4652 if (!F || !isDematerializable(F)) 4653 return; 4654 4655 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 4656 4657 // Just forget the function body, we can remat it later. 4658 F->dropAllReferences(); 4659 F->setIsMaterializable(true); 4660 } 4661 4662 std::error_code BitcodeReader::materializeModule(Module *M) { 4663 assert(M == TheModule && 4664 "Can only Materialize the Module this BitcodeReader is attached to."); 4665 4666 if (std::error_code EC = materializeMetadata()) 4667 return EC; 4668 4669 // Promise to materialize all forward references. 4670 WillMaterializeAllForwardRefs = true; 4671 4672 // Iterate over the module, deserializing any functions that are still on 4673 // disk. 4674 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 4675 F != E; ++F) { 4676 if (std::error_code EC = materialize(F)) 4677 return EC; 4678 } 4679 // At this point, if there are any function bodies, the current bit is 4680 // pointing to the END_BLOCK record after them. Now make sure the rest 4681 // of the bits in the module have been read. 4682 if (NextUnreadBit) 4683 parseModule(true); 4684 4685 // Check that all block address forward references got resolved (as we 4686 // promised above). 4687 if (!BasicBlockFwdRefs.empty()) 4688 return error("Never resolved function from blockaddress"); 4689 4690 // Upgrade any intrinsic calls that slipped through (should not happen!) and 4691 // delete the old functions to clean up. We can't do this unless the entire 4692 // module is materialized because there could always be another function body 4693 // with calls to the old function. 4694 for (auto &I : UpgradedIntrinsics) { 4695 for (auto *U : I.first->users()) { 4696 if (CallInst *CI = dyn_cast<CallInst>(U)) 4697 UpgradeIntrinsicCall(CI, I.second); 4698 } 4699 if (!I.first->use_empty()) 4700 I.first->replaceAllUsesWith(I.second); 4701 I.first->eraseFromParent(); 4702 } 4703 UpgradedIntrinsics.clear(); 4704 4705 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 4706 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 4707 4708 UpgradeDebugInfo(*M); 4709 return std::error_code(); 4710 } 4711 4712 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 4713 return IdentifiedStructTypes; 4714 } 4715 4716 std::error_code 4717 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 4718 if (Streamer) 4719 return initLazyStream(std::move(Streamer)); 4720 return initStreamFromBuffer(); 4721 } 4722 4723 std::error_code BitcodeReader::initStreamFromBuffer() { 4724 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 4725 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 4726 4727 if (Buffer->getBufferSize() & 3) 4728 return error("Invalid bitcode signature"); 4729 4730 // If we have a wrapper header, parse it and ignore the non-bc file contents. 4731 // The magic number is 0x0B17C0DE stored in little endian. 4732 if (isBitcodeWrapper(BufPtr, BufEnd)) 4733 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 4734 return error("Invalid bitcode wrapper header"); 4735 4736 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 4737 Stream.init(&*StreamFile); 4738 4739 return std::error_code(); 4740 } 4741 4742 std::error_code 4743 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) { 4744 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 4745 // see it. 4746 auto OwnedBytes = 4747 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 4748 StreamingMemoryObject &Bytes = *OwnedBytes; 4749 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 4750 Stream.init(&*StreamFile); 4751 4752 unsigned char buf[16]; 4753 if (Bytes.readBytes(buf, 16, 0) != 16) 4754 return error("Invalid bitcode signature"); 4755 4756 if (!isBitcode(buf, buf + 16)) 4757 return error("Invalid bitcode signature"); 4758 4759 if (isBitcodeWrapper(buf, buf + 4)) { 4760 const unsigned char *bitcodeStart = buf; 4761 const unsigned char *bitcodeEnd = buf + 16; 4762 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 4763 Bytes.dropLeadingBytes(bitcodeStart - buf); 4764 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 4765 } 4766 return std::error_code(); 4767 } 4768 4769 namespace { 4770 class BitcodeErrorCategoryType : public std::error_category { 4771 const char *name() const LLVM_NOEXCEPT override { 4772 return "llvm.bitcode"; 4773 } 4774 std::string message(int IE) const override { 4775 BitcodeError E = static_cast<BitcodeError>(IE); 4776 switch (E) { 4777 case BitcodeError::InvalidBitcodeSignature: 4778 return "Invalid bitcode signature"; 4779 case BitcodeError::CorruptedBitcode: 4780 return "Corrupted bitcode"; 4781 } 4782 llvm_unreachable("Unknown error type!"); 4783 } 4784 }; 4785 } 4786 4787 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 4788 4789 const std::error_category &llvm::BitcodeErrorCategory() { 4790 return *ErrorCategory; 4791 } 4792 4793 //===----------------------------------------------------------------------===// 4794 // External interface 4795 //===----------------------------------------------------------------------===// 4796 4797 static ErrorOr<std::unique_ptr<Module>> 4798 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name, 4799 BitcodeReader *R, LLVMContext &Context, 4800 bool MaterializeAll, bool ShouldLazyLoadMetadata) { 4801 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 4802 M->setMaterializer(R); 4803 4804 auto cleanupOnError = [&](std::error_code EC) { 4805 R->releaseBuffer(); // Never take ownership on error. 4806 return EC; 4807 }; 4808 4809 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 4810 if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(), 4811 ShouldLazyLoadMetadata)) 4812 return cleanupOnError(EC); 4813 4814 if (MaterializeAll) { 4815 // Read in the entire module, and destroy the BitcodeReader. 4816 if (std::error_code EC = M->materializeAllPermanently()) 4817 return cleanupOnError(EC); 4818 } else { 4819 // Resolve forward references from blockaddresses. 4820 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 4821 return cleanupOnError(EC); 4822 } 4823 return std::move(M); 4824 } 4825 4826 /// \brief Get a lazy one-at-time loading module from bitcode. 4827 /// 4828 /// This isn't always used in a lazy context. In particular, it's also used by 4829 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 4830 /// in forward-referenced functions from block address references. 4831 /// 4832 /// \param[in] MaterializeAll Set to \c true if we should materialize 4833 /// everything. 4834 static ErrorOr<std::unique_ptr<Module>> 4835 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 4836 LLVMContext &Context, bool MaterializeAll, 4837 DiagnosticHandlerFunction DiagnosticHandler, 4838 bool ShouldLazyLoadMetadata = false) { 4839 BitcodeReader *R = 4840 new BitcodeReader(Buffer.get(), Context, DiagnosticHandler); 4841 4842 ErrorOr<std::unique_ptr<Module>> Ret = 4843 getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context, 4844 MaterializeAll, ShouldLazyLoadMetadata); 4845 if (!Ret) 4846 return Ret; 4847 4848 Buffer.release(); // The BitcodeReader owns it now. 4849 return Ret; 4850 } 4851 4852 ErrorOr<std::unique_ptr<Module>> llvm::getLazyBitcodeModule( 4853 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 4854 DiagnosticHandlerFunction DiagnosticHandler, bool ShouldLazyLoadMetadata) { 4855 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 4856 DiagnosticHandler, ShouldLazyLoadMetadata); 4857 } 4858 4859 ErrorOr<std::unique_ptr<Module>> llvm::getStreamedBitcodeModule( 4860 StringRef Name, std::unique_ptr<DataStreamer> Streamer, 4861 LLVMContext &Context, DiagnosticHandlerFunction DiagnosticHandler) { 4862 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 4863 BitcodeReader *R = new BitcodeReader(Context, DiagnosticHandler); 4864 4865 return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false, 4866 false); 4867 } 4868 4869 ErrorOr<std::unique_ptr<Module>> 4870 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 4871 DiagnosticHandlerFunction DiagnosticHandler) { 4872 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 4873 return getLazyBitcodeModuleImpl(std::move(Buf), Context, true, 4874 DiagnosticHandler); 4875 // TODO: Restore the use-lists to the in-memory state when the bitcode was 4876 // written. We must defer until the Module has been fully materialized. 4877 } 4878 4879 std::string 4880 llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context, 4881 DiagnosticHandlerFunction DiagnosticHandler) { 4882 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 4883 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context, 4884 DiagnosticHandler); 4885 ErrorOr<std::string> Triple = R->parseTriple(); 4886 if (Triple.getError()) 4887 return ""; 4888 return Triple.get(); 4889 } 4890