1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/Bitcode/BitcodeReader.h"
11 #include "MetadataLoader.h"
12 #include "ValueList.h"
13 #include "llvm/ADT/APFloat.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Bitcode/BitstreamReader.h"
25 #include "llvm/Bitcode/LLVMBitCodes.h"
26 #include "llvm/Config/llvm-config.h"
27 #include "llvm/IR/Argument.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/AutoUpgrade.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallSite.h"
32 #include "llvm/IR/CallingConv.h"
33 #include "llvm/IR/Comdat.h"
34 #include "llvm/IR/Constant.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/DebugInfo.h"
38 #include "llvm/IR/DebugInfoMetadata.h"
39 #include "llvm/IR/DebugLoc.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/GVMaterializer.h"
43 #include "llvm/IR/GlobalAlias.h"
44 #include "llvm/IR/GlobalIFunc.h"
45 #include "llvm/IR/GlobalIndirectSymbol.h"
46 #include "llvm/IR/GlobalObject.h"
47 #include "llvm/IR/GlobalValue.h"
48 #include "llvm/IR/GlobalVariable.h"
49 #include "llvm/IR/InlineAsm.h"
50 #include "llvm/IR/InstIterator.h"
51 #include "llvm/IR/InstrTypes.h"
52 #include "llvm/IR/Instruction.h"
53 #include "llvm/IR/Instructions.h"
54 #include "llvm/IR/Intrinsics.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/ModuleSummaryIndex.h"
59 #include "llvm/IR/Operator.h"
60 #include "llvm/IR/Type.h"
61 #include "llvm/IR/Value.h"
62 #include "llvm/IR/Verifier.h"
63 #include "llvm/Support/AtomicOrdering.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Compiler.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/Error.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/ErrorOr.h"
71 #include "llvm/Support/ManagedStatic.h"
72 #include "llvm/Support/MathExtras.h"
73 #include "llvm/Support/MemoryBuffer.h"
74 #include "llvm/Support/raw_ostream.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cstddef>
78 #include <cstdint>
79 #include <deque>
80 #include <map>
81 #include <memory>
82 #include <set>
83 #include <string>
84 #include <system_error>
85 #include <tuple>
86 #include <utility>
87 #include <vector>
88 
89 using namespace llvm;
90 
91 static cl::opt<bool> PrintSummaryGUIDs(
92     "print-summary-global-ids", cl::init(false), cl::Hidden,
93     cl::desc(
94         "Print the global id for each value when reading the module summary"));
95 
96 namespace {
97 
98 enum {
99   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
100 };
101 
102 } // end anonymous namespace
103 
104 static Error error(const Twine &Message) {
105   return make_error<StringError>(
106       Message, make_error_code(BitcodeError::CorruptedBitcode));
107 }
108 
109 /// Helper to read the header common to all bitcode files.
110 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) {
111   // Sniff for the signature.
112   if (!Stream.canSkipToPos(4) ||
113       Stream.Read(8) != 'B' ||
114       Stream.Read(8) != 'C' ||
115       Stream.Read(4) != 0x0 ||
116       Stream.Read(4) != 0xC ||
117       Stream.Read(4) != 0xE ||
118       Stream.Read(4) != 0xD)
119     return false;
120   return true;
121 }
122 
123 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
124   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
125   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
126 
127   if (Buffer.getBufferSize() & 3)
128     return error("Invalid bitcode signature");
129 
130   // If we have a wrapper header, parse it and ignore the non-bc file contents.
131   // The magic number is 0x0B17C0DE stored in little endian.
132   if (isBitcodeWrapper(BufPtr, BufEnd))
133     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
134       return error("Invalid bitcode wrapper header");
135 
136   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
137   if (!hasValidBitcodeHeader(Stream))
138     return error("Invalid bitcode signature");
139 
140   return std::move(Stream);
141 }
142 
143 /// Convert a string from a record into an std::string, return true on failure.
144 template <typename StrTy>
145 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
146                             StrTy &Result) {
147   if (Idx > Record.size())
148     return true;
149 
150   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
151     Result += (char)Record[i];
152   return false;
153 }
154 
155 // Strip all the TBAA attachment for the module.
156 static void stripTBAA(Module *M) {
157   for (auto &F : *M) {
158     if (F.isMaterializable())
159       continue;
160     for (auto &I : instructions(F))
161       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
162   }
163 }
164 
165 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
166 /// "epoch" encoded in the bitcode, and return the producer name if any.
167 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
168   if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
169     return error("Invalid record");
170 
171   // Read all the records.
172   SmallVector<uint64_t, 64> Record;
173 
174   std::string ProducerIdentification;
175 
176   while (true) {
177     BitstreamEntry Entry = Stream.advance();
178 
179     switch (Entry.Kind) {
180     default:
181     case BitstreamEntry::Error:
182       return error("Malformed block");
183     case BitstreamEntry::EndBlock:
184       return ProducerIdentification;
185     case BitstreamEntry::Record:
186       // The interesting case.
187       break;
188     }
189 
190     // Read a record.
191     Record.clear();
192     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
193     switch (BitCode) {
194     default: // Default behavior: reject
195       return error("Invalid value");
196     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
197       convertToString(Record, 0, ProducerIdentification);
198       break;
199     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
200       unsigned epoch = (unsigned)Record[0];
201       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
202         return error(
203           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
204           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
205       }
206     }
207     }
208   }
209 }
210 
211 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
212   // We expect a number of well-defined blocks, though we don't necessarily
213   // need to understand them all.
214   while (true) {
215     if (Stream.AtEndOfStream())
216       return "";
217 
218     BitstreamEntry Entry = Stream.advance();
219     switch (Entry.Kind) {
220     case BitstreamEntry::EndBlock:
221     case BitstreamEntry::Error:
222       return error("Malformed block");
223 
224     case BitstreamEntry::SubBlock:
225       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
226         return readIdentificationBlock(Stream);
227 
228       // Ignore other sub-blocks.
229       if (Stream.SkipBlock())
230         return error("Malformed block");
231       continue;
232     case BitstreamEntry::Record:
233       Stream.skipRecord(Entry.ID);
234       continue;
235     }
236   }
237 }
238 
239 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
240   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
241     return error("Invalid record");
242 
243   SmallVector<uint64_t, 64> Record;
244   // Read all the records for this module.
245 
246   while (true) {
247     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
248 
249     switch (Entry.Kind) {
250     case BitstreamEntry::SubBlock: // Handled for us already.
251     case BitstreamEntry::Error:
252       return error("Malformed block");
253     case BitstreamEntry::EndBlock:
254       return false;
255     case BitstreamEntry::Record:
256       // The interesting case.
257       break;
258     }
259 
260     // Read a record.
261     switch (Stream.readRecord(Entry.ID, Record)) {
262     default:
263       break; // Default behavior, ignore unknown content.
264     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
265       std::string S;
266       if (convertToString(Record, 0, S))
267         return error("Invalid record");
268       // Check for the i386 and other (x86_64, ARM) conventions
269       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
270           S.find("__OBJC,__category") != std::string::npos)
271         return true;
272       break;
273     }
274     }
275     Record.clear();
276   }
277   llvm_unreachable("Exit infinite loop");
278 }
279 
280 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
281   // We expect a number of well-defined blocks, though we don't necessarily
282   // need to understand them all.
283   while (true) {
284     BitstreamEntry Entry = Stream.advance();
285 
286     switch (Entry.Kind) {
287     case BitstreamEntry::Error:
288       return error("Malformed block");
289     case BitstreamEntry::EndBlock:
290       return false;
291 
292     case BitstreamEntry::SubBlock:
293       if (Entry.ID == bitc::MODULE_BLOCK_ID)
294         return hasObjCCategoryInModule(Stream);
295 
296       // Ignore other sub-blocks.
297       if (Stream.SkipBlock())
298         return error("Malformed block");
299       continue;
300 
301     case BitstreamEntry::Record:
302       Stream.skipRecord(Entry.ID);
303       continue;
304     }
305   }
306 }
307 
308 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
309   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
310     return error("Invalid record");
311 
312   SmallVector<uint64_t, 64> Record;
313 
314   std::string Triple;
315 
316   // Read all the records for this module.
317   while (true) {
318     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
319 
320     switch (Entry.Kind) {
321     case BitstreamEntry::SubBlock: // Handled for us already.
322     case BitstreamEntry::Error:
323       return error("Malformed block");
324     case BitstreamEntry::EndBlock:
325       return Triple;
326     case BitstreamEntry::Record:
327       // The interesting case.
328       break;
329     }
330 
331     // Read a record.
332     switch (Stream.readRecord(Entry.ID, Record)) {
333     default: break;  // Default behavior, ignore unknown content.
334     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
335       std::string S;
336       if (convertToString(Record, 0, S))
337         return error("Invalid record");
338       Triple = S;
339       break;
340     }
341     }
342     Record.clear();
343   }
344   llvm_unreachable("Exit infinite loop");
345 }
346 
347 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
348   // We expect a number of well-defined blocks, though we don't necessarily
349   // need to understand them all.
350   while (true) {
351     BitstreamEntry Entry = Stream.advance();
352 
353     switch (Entry.Kind) {
354     case BitstreamEntry::Error:
355       return error("Malformed block");
356     case BitstreamEntry::EndBlock:
357       return "";
358 
359     case BitstreamEntry::SubBlock:
360       if (Entry.ID == bitc::MODULE_BLOCK_ID)
361         return readModuleTriple(Stream);
362 
363       // Ignore other sub-blocks.
364       if (Stream.SkipBlock())
365         return error("Malformed block");
366       continue;
367 
368     case BitstreamEntry::Record:
369       Stream.skipRecord(Entry.ID);
370       continue;
371     }
372   }
373 }
374 
375 namespace {
376 
377 class BitcodeReaderBase {
378 protected:
379   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
380       : Stream(std::move(Stream)), Strtab(Strtab) {
381     this->Stream.setBlockInfo(&BlockInfo);
382   }
383 
384   BitstreamBlockInfo BlockInfo;
385   BitstreamCursor Stream;
386   StringRef Strtab;
387 
388   /// In version 2 of the bitcode we store names of global values and comdats in
389   /// a string table rather than in the VST.
390   bool UseStrtab = false;
391 
392   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
393 
394   /// If this module uses a string table, pop the reference to the string table
395   /// and return the referenced string and the rest of the record. Otherwise
396   /// just return the record itself.
397   std::pair<StringRef, ArrayRef<uint64_t>>
398   readNameFromStrtab(ArrayRef<uint64_t> Record);
399 
400   bool readBlockInfo();
401 
402   // Contains an arbitrary and optional string identifying the bitcode producer
403   std::string ProducerIdentification;
404 
405   Error error(const Twine &Message);
406 };
407 
408 } // end anonymous namespace
409 
410 Error BitcodeReaderBase::error(const Twine &Message) {
411   std::string FullMsg = Message.str();
412   if (!ProducerIdentification.empty())
413     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
414                LLVM_VERSION_STRING "')";
415   return ::error(FullMsg);
416 }
417 
418 Expected<unsigned>
419 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
420   if (Record.empty())
421     return error("Invalid record");
422   unsigned ModuleVersion = Record[0];
423   if (ModuleVersion > 2)
424     return error("Invalid value");
425   UseStrtab = ModuleVersion >= 2;
426   return ModuleVersion;
427 }
428 
429 std::pair<StringRef, ArrayRef<uint64_t>>
430 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
431   if (!UseStrtab)
432     return {"", Record};
433   // Invalid reference. Let the caller complain about the record being empty.
434   if (Record[0] + Record[1] > Strtab.size())
435     return {"", {}};
436   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
437 }
438 
439 namespace {
440 
441 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
442   LLVMContext &Context;
443   Module *TheModule = nullptr;
444   // Next offset to start scanning for lazy parsing of function bodies.
445   uint64_t NextUnreadBit = 0;
446   // Last function offset found in the VST.
447   uint64_t LastFunctionBlockBit = 0;
448   bool SeenValueSymbolTable = false;
449   uint64_t VSTOffset = 0;
450 
451   std::vector<std::string> SectionTable;
452   std::vector<std::string> GCTable;
453 
454   std::vector<Type*> TypeList;
455   BitcodeReaderValueList ValueList;
456   Optional<MetadataLoader> MDLoader;
457   std::vector<Comdat *> ComdatList;
458   SmallVector<Instruction *, 64> InstructionList;
459 
460   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
461   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits;
462   std::vector<std::pair<Function *, unsigned>> FunctionPrefixes;
463   std::vector<std::pair<Function *, unsigned>> FunctionPrologues;
464   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns;
465 
466   /// The set of attributes by index.  Index zero in the file is for null, and
467   /// is thus not represented here.  As such all indices are off by one.
468   std::vector<AttributeList> MAttributes;
469 
470   /// The set of attribute groups.
471   std::map<unsigned, AttributeList> MAttributeGroups;
472 
473   /// While parsing a function body, this is a list of the basic blocks for the
474   /// function.
475   std::vector<BasicBlock*> FunctionBBs;
476 
477   // When reading the module header, this list is populated with functions that
478   // have bodies later in the file.
479   std::vector<Function*> FunctionsWithBodies;
480 
481   // When intrinsic functions are encountered which require upgrading they are
482   // stored here with their replacement function.
483   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
484   UpdatedIntrinsicMap UpgradedIntrinsics;
485   // Intrinsics which were remangled because of types rename
486   UpdatedIntrinsicMap RemangledIntrinsics;
487 
488   // Several operations happen after the module header has been read, but
489   // before function bodies are processed. This keeps track of whether
490   // we've done this yet.
491   bool SeenFirstFunctionBody = false;
492 
493   /// When function bodies are initially scanned, this map contains info about
494   /// where to find deferred function body in the stream.
495   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
496 
497   /// When Metadata block is initially scanned when parsing the module, we may
498   /// choose to defer parsing of the metadata. This vector contains info about
499   /// which Metadata blocks are deferred.
500   std::vector<uint64_t> DeferredMetadataInfo;
501 
502   /// These are basic blocks forward-referenced by block addresses.  They are
503   /// inserted lazily into functions when they're loaded.  The basic block ID is
504   /// its index into the vector.
505   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
506   std::deque<Function *> BasicBlockFwdRefQueue;
507 
508   /// Indicates that we are using a new encoding for instruction operands where
509   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
510   /// instruction number, for a more compact encoding.  Some instruction
511   /// operands are not relative to the instruction ID: basic block numbers, and
512   /// types. Once the old style function blocks have been phased out, we would
513   /// not need this flag.
514   bool UseRelativeIDs = false;
515 
516   /// True if all functions will be materialized, negating the need to process
517   /// (e.g.) blockaddress forward references.
518   bool WillMaterializeAllForwardRefs = false;
519 
520   bool StripDebugInfo = false;
521   TBAAVerifier TBAAVerifyHelper;
522 
523   std::vector<std::string> BundleTags;
524   SmallVector<SyncScope::ID, 8> SSIDs;
525 
526 public:
527   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
528                 StringRef ProducerIdentification, LLVMContext &Context);
529 
530   Error materializeForwardReferencedFunctions();
531 
532   Error materialize(GlobalValue *GV) override;
533   Error materializeModule() override;
534   std::vector<StructType *> getIdentifiedStructTypes() const override;
535 
536   /// Main interface to parsing a bitcode buffer.
537   /// \returns true if an error occurred.
538   Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false,
539                          bool IsImporting = false);
540 
541   static uint64_t decodeSignRotatedValue(uint64_t V);
542 
543   /// Materialize any deferred Metadata block.
544   Error materializeMetadata() override;
545 
546   void setStripDebugInfo() override;
547 
548 private:
549   std::vector<StructType *> IdentifiedStructTypes;
550   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
551   StructType *createIdentifiedStructType(LLVMContext &Context);
552 
553   Type *getTypeByID(unsigned ID);
554 
555   Value *getFnValueByID(unsigned ID, Type *Ty) {
556     if (Ty && Ty->isMetadataTy())
557       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
558     return ValueList.getValueFwdRef(ID, Ty);
559   }
560 
561   Metadata *getFnMetadataByID(unsigned ID) {
562     return MDLoader->getMetadataFwdRefOrLoad(ID);
563   }
564 
565   BasicBlock *getBasicBlock(unsigned ID) const {
566     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
567     return FunctionBBs[ID];
568   }
569 
570   AttributeList getAttributes(unsigned i) const {
571     if (i-1 < MAttributes.size())
572       return MAttributes[i-1];
573     return AttributeList();
574   }
575 
576   /// Read a value/type pair out of the specified record from slot 'Slot'.
577   /// Increment Slot past the number of slots used in the record. Return true on
578   /// failure.
579   bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
580                         unsigned InstNum, Value *&ResVal) {
581     if (Slot == Record.size()) return true;
582     unsigned ValNo = (unsigned)Record[Slot++];
583     // Adjust the ValNo, if it was encoded relative to the InstNum.
584     if (UseRelativeIDs)
585       ValNo = InstNum - ValNo;
586     if (ValNo < InstNum) {
587       // If this is not a forward reference, just return the value we already
588       // have.
589       ResVal = getFnValueByID(ValNo, nullptr);
590       return ResVal == nullptr;
591     }
592     if (Slot == Record.size())
593       return true;
594 
595     unsigned TypeNo = (unsigned)Record[Slot++];
596     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
597     return ResVal == nullptr;
598   }
599 
600   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
601   /// past the number of slots used by the value in the record. Return true if
602   /// there is an error.
603   bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
604                 unsigned InstNum, Type *Ty, Value *&ResVal) {
605     if (getValue(Record, Slot, InstNum, Ty, ResVal))
606       return true;
607     // All values currently take a single record slot.
608     ++Slot;
609     return false;
610   }
611 
612   /// Like popValue, but does not increment the Slot number.
613   bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
614                 unsigned InstNum, Type *Ty, Value *&ResVal) {
615     ResVal = getValue(Record, Slot, InstNum, Ty);
616     return ResVal == nullptr;
617   }
618 
619   /// Version of getValue that returns ResVal directly, or 0 if there is an
620   /// error.
621   Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
622                   unsigned InstNum, Type *Ty) {
623     if (Slot == Record.size()) return nullptr;
624     unsigned ValNo = (unsigned)Record[Slot];
625     // Adjust the ValNo, if it was encoded relative to the InstNum.
626     if (UseRelativeIDs)
627       ValNo = InstNum - ValNo;
628     return getFnValueByID(ValNo, Ty);
629   }
630 
631   /// Like getValue, but decodes signed VBRs.
632   Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
633                         unsigned InstNum, Type *Ty) {
634     if (Slot == Record.size()) return nullptr;
635     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
636     // Adjust the ValNo, if it was encoded relative to the InstNum.
637     if (UseRelativeIDs)
638       ValNo = InstNum - ValNo;
639     return getFnValueByID(ValNo, Ty);
640   }
641 
642   /// Converts alignment exponent (i.e. power of two (or zero)) to the
643   /// corresponding alignment to use. If alignment is too large, returns
644   /// a corresponding error code.
645   Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment);
646   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
647   Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false);
648 
649   Error parseComdatRecord(ArrayRef<uint64_t> Record);
650   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
651   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
652   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
653                                         ArrayRef<uint64_t> Record);
654 
655   Error parseAttributeBlock();
656   Error parseAttributeGroupBlock();
657   Error parseTypeTable();
658   Error parseTypeTableBody();
659   Error parseOperandBundleTags();
660   Error parseSyncScopeNames();
661 
662   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
663                                 unsigned NameIndex, Triple &TT);
664   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
665                                ArrayRef<uint64_t> Record);
666   Error parseValueSymbolTable(uint64_t Offset = 0);
667   Error parseGlobalValueSymbolTable();
668   Error parseConstants();
669   Error rememberAndSkipFunctionBodies();
670   Error rememberAndSkipFunctionBody();
671   /// Save the positions of the Metadata blocks and skip parsing the blocks.
672   Error rememberAndSkipMetadata();
673   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
674   Error parseFunctionBody(Function *F);
675   Error globalCleanup();
676   Error resolveGlobalAndIndirectSymbolInits();
677   Error parseUseLists();
678   Error findFunctionInStream(
679       Function *F,
680       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
681 
682   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
683 };
684 
685 /// Class to manage reading and parsing function summary index bitcode
686 /// files/sections.
687 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
688   /// The module index built during parsing.
689   ModuleSummaryIndex &TheIndex;
690 
691   /// Indicates whether we have encountered a global value summary section
692   /// yet during parsing.
693   bool SeenGlobalValSummary = false;
694 
695   /// Indicates whether we have already parsed the VST, used for error checking.
696   bool SeenValueSymbolTable = false;
697 
698   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
699   /// Used to enable on-demand parsing of the VST.
700   uint64_t VSTOffset = 0;
701 
702   // Map to save ValueId to ValueInfo association that was recorded in the
703   // ValueSymbolTable. It is used after the VST is parsed to convert
704   // call graph edges read from the function summary from referencing
705   // callees by their ValueId to using the ValueInfo instead, which is how
706   // they are recorded in the summary index being built.
707   // We save a GUID which refers to the same global as the ValueInfo, but
708   // ignoring the linkage, i.e. for values other than local linkage they are
709   // identical.
710   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
711       ValueIdToValueInfoMap;
712 
713   /// Map populated during module path string table parsing, from the
714   /// module ID to a string reference owned by the index's module
715   /// path string table, used to correlate with combined index
716   /// summary records.
717   DenseMap<uint64_t, StringRef> ModuleIdMap;
718 
719   /// Original source file name recorded in a bitcode record.
720   std::string SourceFileName;
721 
722   /// The string identifier given to this module by the client, normally the
723   /// path to the bitcode file.
724   StringRef ModulePath;
725 
726   /// For per-module summary indexes, the unique numerical identifier given to
727   /// this module by the client.
728   unsigned ModuleId;
729 
730 public:
731   ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
732                                   ModuleSummaryIndex &TheIndex,
733                                   StringRef ModulePath, unsigned ModuleId);
734 
735   Error parseModule();
736 
737 private:
738   void setValueGUID(uint64_t ValueID, StringRef ValueName,
739                     GlobalValue::LinkageTypes Linkage,
740                     StringRef SourceFileName);
741   Error parseValueSymbolTable(
742       uint64_t Offset,
743       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
744   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
745   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
746                                                     bool IsOldProfileFormat,
747                                                     bool HasProfile,
748                                                     bool HasRelBF);
749   Error parseEntireSummary(unsigned ID);
750   Error parseModuleStringTable();
751 
752   std::pair<ValueInfo, GlobalValue::GUID>
753   getValueInfoFromValueId(unsigned ValueId);
754 
755   void addThisModule();
756   ModuleSummaryIndex::ModuleInfo *getThisModule();
757 };
758 
759 } // end anonymous namespace
760 
761 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
762                                                     Error Err) {
763   if (Err) {
764     std::error_code EC;
765     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
766       EC = EIB.convertToErrorCode();
767       Ctx.emitError(EIB.message());
768     });
769     return EC;
770   }
771   return std::error_code();
772 }
773 
774 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
775                              StringRef ProducerIdentification,
776                              LLVMContext &Context)
777     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
778       ValueList(Context) {
779   this->ProducerIdentification = ProducerIdentification;
780 }
781 
782 Error BitcodeReader::materializeForwardReferencedFunctions() {
783   if (WillMaterializeAllForwardRefs)
784     return Error::success();
785 
786   // Prevent recursion.
787   WillMaterializeAllForwardRefs = true;
788 
789   while (!BasicBlockFwdRefQueue.empty()) {
790     Function *F = BasicBlockFwdRefQueue.front();
791     BasicBlockFwdRefQueue.pop_front();
792     assert(F && "Expected valid function");
793     if (!BasicBlockFwdRefs.count(F))
794       // Already materialized.
795       continue;
796 
797     // Check for a function that isn't materializable to prevent an infinite
798     // loop.  When parsing a blockaddress stored in a global variable, there
799     // isn't a trivial way to check if a function will have a body without a
800     // linear search through FunctionsWithBodies, so just check it here.
801     if (!F->isMaterializable())
802       return error("Never resolved function from blockaddress");
803 
804     // Try to materialize F.
805     if (Error Err = materialize(F))
806       return Err;
807   }
808   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
809 
810   // Reset state.
811   WillMaterializeAllForwardRefs = false;
812   return Error::success();
813 }
814 
815 //===----------------------------------------------------------------------===//
816 //  Helper functions to implement forward reference resolution, etc.
817 //===----------------------------------------------------------------------===//
818 
819 static bool hasImplicitComdat(size_t Val) {
820   switch (Val) {
821   default:
822     return false;
823   case 1:  // Old WeakAnyLinkage
824   case 4:  // Old LinkOnceAnyLinkage
825   case 10: // Old WeakODRLinkage
826   case 11: // Old LinkOnceODRLinkage
827     return true;
828   }
829 }
830 
831 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
832   switch (Val) {
833   default: // Map unknown/new linkages to external
834   case 0:
835     return GlobalValue::ExternalLinkage;
836   case 2:
837     return GlobalValue::AppendingLinkage;
838   case 3:
839     return GlobalValue::InternalLinkage;
840   case 5:
841     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
842   case 6:
843     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
844   case 7:
845     return GlobalValue::ExternalWeakLinkage;
846   case 8:
847     return GlobalValue::CommonLinkage;
848   case 9:
849     return GlobalValue::PrivateLinkage;
850   case 12:
851     return GlobalValue::AvailableExternallyLinkage;
852   case 13:
853     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
854   case 14:
855     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
856   case 15:
857     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
858   case 1: // Old value with implicit comdat.
859   case 16:
860     return GlobalValue::WeakAnyLinkage;
861   case 10: // Old value with implicit comdat.
862   case 17:
863     return GlobalValue::WeakODRLinkage;
864   case 4: // Old value with implicit comdat.
865   case 18:
866     return GlobalValue::LinkOnceAnyLinkage;
867   case 11: // Old value with implicit comdat.
868   case 19:
869     return GlobalValue::LinkOnceODRLinkage;
870   }
871 }
872 
873 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
874   FunctionSummary::FFlags Flags;
875   Flags.ReadNone = RawFlags & 0x1;
876   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
877   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
878   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
879   return Flags;
880 }
881 
882 /// Decode the flags for GlobalValue in the summary.
883 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
884                                                             uint64_t Version) {
885   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
886   // like getDecodedLinkage() above. Any future change to the linkage enum and
887   // to getDecodedLinkage() will need to be taken into account here as above.
888   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
889   RawFlags = RawFlags >> 4;
890   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
891   // The Live flag wasn't introduced until version 3. For dead stripping
892   // to work correctly on earlier versions, we must conservatively treat all
893   // values as live.
894   bool Live = (RawFlags & 0x2) || Version < 3;
895   bool Local = (RawFlags & 0x4);
896 
897   return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local);
898 }
899 
900 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
901   switch (Val) {
902   default: // Map unknown visibilities to default.
903   case 0: return GlobalValue::DefaultVisibility;
904   case 1: return GlobalValue::HiddenVisibility;
905   case 2: return GlobalValue::ProtectedVisibility;
906   }
907 }
908 
909 static GlobalValue::DLLStorageClassTypes
910 getDecodedDLLStorageClass(unsigned Val) {
911   switch (Val) {
912   default: // Map unknown values to default.
913   case 0: return GlobalValue::DefaultStorageClass;
914   case 1: return GlobalValue::DLLImportStorageClass;
915   case 2: return GlobalValue::DLLExportStorageClass;
916   }
917 }
918 
919 static bool getDecodedDSOLocal(unsigned Val) {
920   switch(Val) {
921   default: // Map unknown values to preemptable.
922   case 0:  return false;
923   case 1:  return true;
924   }
925 }
926 
927 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
928   switch (Val) {
929     case 0: return GlobalVariable::NotThreadLocal;
930     default: // Map unknown non-zero value to general dynamic.
931     case 1: return GlobalVariable::GeneralDynamicTLSModel;
932     case 2: return GlobalVariable::LocalDynamicTLSModel;
933     case 3: return GlobalVariable::InitialExecTLSModel;
934     case 4: return GlobalVariable::LocalExecTLSModel;
935   }
936 }
937 
938 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
939   switch (Val) {
940     default: // Map unknown to UnnamedAddr::None.
941     case 0: return GlobalVariable::UnnamedAddr::None;
942     case 1: return GlobalVariable::UnnamedAddr::Global;
943     case 2: return GlobalVariable::UnnamedAddr::Local;
944   }
945 }
946 
947 static int getDecodedCastOpcode(unsigned Val) {
948   switch (Val) {
949   default: return -1;
950   case bitc::CAST_TRUNC   : return Instruction::Trunc;
951   case bitc::CAST_ZEXT    : return Instruction::ZExt;
952   case bitc::CAST_SEXT    : return Instruction::SExt;
953   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
954   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
955   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
956   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
957   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
958   case bitc::CAST_FPEXT   : return Instruction::FPExt;
959   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
960   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
961   case bitc::CAST_BITCAST : return Instruction::BitCast;
962   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
963   }
964 }
965 
966 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
967   bool IsFP = Ty->isFPOrFPVectorTy();
968   // BinOps are only valid for int/fp or vector of int/fp types
969   if (!IsFP && !Ty->isIntOrIntVectorTy())
970     return -1;
971 
972   switch (Val) {
973   default:
974     return -1;
975   case bitc::BINOP_ADD:
976     return IsFP ? Instruction::FAdd : Instruction::Add;
977   case bitc::BINOP_SUB:
978     return IsFP ? Instruction::FSub : Instruction::Sub;
979   case bitc::BINOP_MUL:
980     return IsFP ? Instruction::FMul : Instruction::Mul;
981   case bitc::BINOP_UDIV:
982     return IsFP ? -1 : Instruction::UDiv;
983   case bitc::BINOP_SDIV:
984     return IsFP ? Instruction::FDiv : Instruction::SDiv;
985   case bitc::BINOP_UREM:
986     return IsFP ? -1 : Instruction::URem;
987   case bitc::BINOP_SREM:
988     return IsFP ? Instruction::FRem : Instruction::SRem;
989   case bitc::BINOP_SHL:
990     return IsFP ? -1 : Instruction::Shl;
991   case bitc::BINOP_LSHR:
992     return IsFP ? -1 : Instruction::LShr;
993   case bitc::BINOP_ASHR:
994     return IsFP ? -1 : Instruction::AShr;
995   case bitc::BINOP_AND:
996     return IsFP ? -1 : Instruction::And;
997   case bitc::BINOP_OR:
998     return IsFP ? -1 : Instruction::Or;
999   case bitc::BINOP_XOR:
1000     return IsFP ? -1 : Instruction::Xor;
1001   }
1002 }
1003 
1004 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1005   switch (Val) {
1006   default: return AtomicRMWInst::BAD_BINOP;
1007   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1008   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1009   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1010   case bitc::RMW_AND: return AtomicRMWInst::And;
1011   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1012   case bitc::RMW_OR: return AtomicRMWInst::Or;
1013   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1014   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1015   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1016   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1017   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1018   }
1019 }
1020 
1021 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1022   switch (Val) {
1023   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1024   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1025   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1026   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1027   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1028   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1029   default: // Map unknown orderings to sequentially-consistent.
1030   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1031   }
1032 }
1033 
1034 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1035   switch (Val) {
1036   default: // Map unknown selection kinds to any.
1037   case bitc::COMDAT_SELECTION_KIND_ANY:
1038     return Comdat::Any;
1039   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1040     return Comdat::ExactMatch;
1041   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1042     return Comdat::Largest;
1043   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1044     return Comdat::NoDuplicates;
1045   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1046     return Comdat::SameSize;
1047   }
1048 }
1049 
1050 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1051   FastMathFlags FMF;
1052   if (0 != (Val & bitc::UnsafeAlgebra))
1053     FMF.setFast();
1054   if (0 != (Val & bitc::AllowReassoc))
1055     FMF.setAllowReassoc();
1056   if (0 != (Val & bitc::NoNaNs))
1057     FMF.setNoNaNs();
1058   if (0 != (Val & bitc::NoInfs))
1059     FMF.setNoInfs();
1060   if (0 != (Val & bitc::NoSignedZeros))
1061     FMF.setNoSignedZeros();
1062   if (0 != (Val & bitc::AllowReciprocal))
1063     FMF.setAllowReciprocal();
1064   if (0 != (Val & bitc::AllowContract))
1065     FMF.setAllowContract(true);
1066   if (0 != (Val & bitc::ApproxFunc))
1067     FMF.setApproxFunc();
1068   return FMF;
1069 }
1070 
1071 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1072   switch (Val) {
1073   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1074   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1075   }
1076 }
1077 
1078 Type *BitcodeReader::getTypeByID(unsigned ID) {
1079   // The type table size is always specified correctly.
1080   if (ID >= TypeList.size())
1081     return nullptr;
1082 
1083   if (Type *Ty = TypeList[ID])
1084     return Ty;
1085 
1086   // If we have a forward reference, the only possible case is when it is to a
1087   // named struct.  Just create a placeholder for now.
1088   return TypeList[ID] = createIdentifiedStructType(Context);
1089 }
1090 
1091 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1092                                                       StringRef Name) {
1093   auto *Ret = StructType::create(Context, Name);
1094   IdentifiedStructTypes.push_back(Ret);
1095   return Ret;
1096 }
1097 
1098 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1099   auto *Ret = StructType::create(Context);
1100   IdentifiedStructTypes.push_back(Ret);
1101   return Ret;
1102 }
1103 
1104 //===----------------------------------------------------------------------===//
1105 //  Functions for parsing blocks from the bitcode file
1106 //===----------------------------------------------------------------------===//
1107 
1108 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1109   switch (Val) {
1110   case Attribute::EndAttrKinds:
1111     llvm_unreachable("Synthetic enumerators which should never get here");
1112 
1113   case Attribute::None:            return 0;
1114   case Attribute::ZExt:            return 1 << 0;
1115   case Attribute::SExt:            return 1 << 1;
1116   case Attribute::NoReturn:        return 1 << 2;
1117   case Attribute::InReg:           return 1 << 3;
1118   case Attribute::StructRet:       return 1 << 4;
1119   case Attribute::NoUnwind:        return 1 << 5;
1120   case Attribute::NoAlias:         return 1 << 6;
1121   case Attribute::ByVal:           return 1 << 7;
1122   case Attribute::Nest:            return 1 << 8;
1123   case Attribute::ReadNone:        return 1 << 9;
1124   case Attribute::ReadOnly:        return 1 << 10;
1125   case Attribute::NoInline:        return 1 << 11;
1126   case Attribute::AlwaysInline:    return 1 << 12;
1127   case Attribute::OptimizeForSize: return 1 << 13;
1128   case Attribute::StackProtect:    return 1 << 14;
1129   case Attribute::StackProtectReq: return 1 << 15;
1130   case Attribute::Alignment:       return 31 << 16;
1131   case Attribute::NoCapture:       return 1 << 21;
1132   case Attribute::NoRedZone:       return 1 << 22;
1133   case Attribute::NoImplicitFloat: return 1 << 23;
1134   case Attribute::Naked:           return 1 << 24;
1135   case Attribute::InlineHint:      return 1 << 25;
1136   case Attribute::StackAlignment:  return 7 << 26;
1137   case Attribute::ReturnsTwice:    return 1 << 29;
1138   case Attribute::UWTable:         return 1 << 30;
1139   case Attribute::NonLazyBind:     return 1U << 31;
1140   case Attribute::SanitizeAddress: return 1ULL << 32;
1141   case Attribute::MinSize:         return 1ULL << 33;
1142   case Attribute::NoDuplicate:     return 1ULL << 34;
1143   case Attribute::StackProtectStrong: return 1ULL << 35;
1144   case Attribute::SanitizeThread:  return 1ULL << 36;
1145   case Attribute::SanitizeMemory:  return 1ULL << 37;
1146   case Attribute::NoBuiltin:       return 1ULL << 38;
1147   case Attribute::Returned:        return 1ULL << 39;
1148   case Attribute::Cold:            return 1ULL << 40;
1149   case Attribute::Builtin:         return 1ULL << 41;
1150   case Attribute::OptimizeNone:    return 1ULL << 42;
1151   case Attribute::InAlloca:        return 1ULL << 43;
1152   case Attribute::NonNull:         return 1ULL << 44;
1153   case Attribute::JumpTable:       return 1ULL << 45;
1154   case Attribute::Convergent:      return 1ULL << 46;
1155   case Attribute::SafeStack:       return 1ULL << 47;
1156   case Attribute::NoRecurse:       return 1ULL << 48;
1157   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1158   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1159   case Attribute::SwiftSelf:       return 1ULL << 51;
1160   case Attribute::SwiftError:      return 1ULL << 52;
1161   case Attribute::WriteOnly:       return 1ULL << 53;
1162   case Attribute::Speculatable:    return 1ULL << 54;
1163   case Attribute::StrictFP:        return 1ULL << 55;
1164   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1165   case Attribute::NoCfCheck:       return 1ULL << 57;
1166   case Attribute::OptForFuzzing:   return 1ULL << 58;
1167   case Attribute::ShadowCallStack: return 1ULL << 59;
1168   case Attribute::SpeculativeLoadHardening:
1169     return 1ULL << 60;
1170   case Attribute::Dereferenceable:
1171     llvm_unreachable("dereferenceable attribute not supported in raw format");
1172     break;
1173   case Attribute::DereferenceableOrNull:
1174     llvm_unreachable("dereferenceable_or_null attribute not supported in raw "
1175                      "format");
1176     break;
1177   case Attribute::ArgMemOnly:
1178     llvm_unreachable("argmemonly attribute not supported in raw format");
1179     break;
1180   case Attribute::AllocSize:
1181     llvm_unreachable("allocsize not supported in raw format");
1182     break;
1183   }
1184   llvm_unreachable("Unsupported attribute type");
1185 }
1186 
1187 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1188   if (!Val) return;
1189 
1190   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1191        I = Attribute::AttrKind(I + 1)) {
1192     if (I == Attribute::Dereferenceable ||
1193         I == Attribute::DereferenceableOrNull ||
1194         I == Attribute::ArgMemOnly ||
1195         I == Attribute::AllocSize)
1196       continue;
1197     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1198       if (I == Attribute::Alignment)
1199         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1200       else if (I == Attribute::StackAlignment)
1201         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1202       else
1203         B.addAttribute(I);
1204     }
1205   }
1206 }
1207 
1208 /// This fills an AttrBuilder object with the LLVM attributes that have
1209 /// been decoded from the given integer. This function must stay in sync with
1210 /// 'encodeLLVMAttributesForBitcode'.
1211 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1212                                            uint64_t EncodedAttrs) {
1213   // FIXME: Remove in 4.0.
1214 
1215   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1216   // the bits above 31 down by 11 bits.
1217   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1218   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1219          "Alignment must be a power of two.");
1220 
1221   if (Alignment)
1222     B.addAlignmentAttr(Alignment);
1223   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1224                           (EncodedAttrs & 0xffff));
1225 }
1226 
1227 Error BitcodeReader::parseAttributeBlock() {
1228   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1229     return error("Invalid record");
1230 
1231   if (!MAttributes.empty())
1232     return error("Invalid multiple blocks");
1233 
1234   SmallVector<uint64_t, 64> Record;
1235 
1236   SmallVector<AttributeList, 8> Attrs;
1237 
1238   // Read all the records.
1239   while (true) {
1240     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1241 
1242     switch (Entry.Kind) {
1243     case BitstreamEntry::SubBlock: // Handled for us already.
1244     case BitstreamEntry::Error:
1245       return error("Malformed block");
1246     case BitstreamEntry::EndBlock:
1247       return Error::success();
1248     case BitstreamEntry::Record:
1249       // The interesting case.
1250       break;
1251     }
1252 
1253     // Read a record.
1254     Record.clear();
1255     switch (Stream.readRecord(Entry.ID, Record)) {
1256     default:  // Default behavior: ignore.
1257       break;
1258     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1259       // FIXME: Remove in 4.0.
1260       if (Record.size() & 1)
1261         return error("Invalid record");
1262 
1263       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1264         AttrBuilder B;
1265         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1266         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1267       }
1268 
1269       MAttributes.push_back(AttributeList::get(Context, Attrs));
1270       Attrs.clear();
1271       break;
1272     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1273       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1274         Attrs.push_back(MAttributeGroups[Record[i]]);
1275 
1276       MAttributes.push_back(AttributeList::get(Context, Attrs));
1277       Attrs.clear();
1278       break;
1279     }
1280   }
1281 }
1282 
1283 // Returns Attribute::None on unrecognized codes.
1284 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1285   switch (Code) {
1286   default:
1287     return Attribute::None;
1288   case bitc::ATTR_KIND_ALIGNMENT:
1289     return Attribute::Alignment;
1290   case bitc::ATTR_KIND_ALWAYS_INLINE:
1291     return Attribute::AlwaysInline;
1292   case bitc::ATTR_KIND_ARGMEMONLY:
1293     return Attribute::ArgMemOnly;
1294   case bitc::ATTR_KIND_BUILTIN:
1295     return Attribute::Builtin;
1296   case bitc::ATTR_KIND_BY_VAL:
1297     return Attribute::ByVal;
1298   case bitc::ATTR_KIND_IN_ALLOCA:
1299     return Attribute::InAlloca;
1300   case bitc::ATTR_KIND_COLD:
1301     return Attribute::Cold;
1302   case bitc::ATTR_KIND_CONVERGENT:
1303     return Attribute::Convergent;
1304   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1305     return Attribute::InaccessibleMemOnly;
1306   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1307     return Attribute::InaccessibleMemOrArgMemOnly;
1308   case bitc::ATTR_KIND_INLINE_HINT:
1309     return Attribute::InlineHint;
1310   case bitc::ATTR_KIND_IN_REG:
1311     return Attribute::InReg;
1312   case bitc::ATTR_KIND_JUMP_TABLE:
1313     return Attribute::JumpTable;
1314   case bitc::ATTR_KIND_MIN_SIZE:
1315     return Attribute::MinSize;
1316   case bitc::ATTR_KIND_NAKED:
1317     return Attribute::Naked;
1318   case bitc::ATTR_KIND_NEST:
1319     return Attribute::Nest;
1320   case bitc::ATTR_KIND_NO_ALIAS:
1321     return Attribute::NoAlias;
1322   case bitc::ATTR_KIND_NO_BUILTIN:
1323     return Attribute::NoBuiltin;
1324   case bitc::ATTR_KIND_NO_CAPTURE:
1325     return Attribute::NoCapture;
1326   case bitc::ATTR_KIND_NO_DUPLICATE:
1327     return Attribute::NoDuplicate;
1328   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1329     return Attribute::NoImplicitFloat;
1330   case bitc::ATTR_KIND_NO_INLINE:
1331     return Attribute::NoInline;
1332   case bitc::ATTR_KIND_NO_RECURSE:
1333     return Attribute::NoRecurse;
1334   case bitc::ATTR_KIND_NON_LAZY_BIND:
1335     return Attribute::NonLazyBind;
1336   case bitc::ATTR_KIND_NON_NULL:
1337     return Attribute::NonNull;
1338   case bitc::ATTR_KIND_DEREFERENCEABLE:
1339     return Attribute::Dereferenceable;
1340   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1341     return Attribute::DereferenceableOrNull;
1342   case bitc::ATTR_KIND_ALLOC_SIZE:
1343     return Attribute::AllocSize;
1344   case bitc::ATTR_KIND_NO_RED_ZONE:
1345     return Attribute::NoRedZone;
1346   case bitc::ATTR_KIND_NO_RETURN:
1347     return Attribute::NoReturn;
1348   case bitc::ATTR_KIND_NOCF_CHECK:
1349     return Attribute::NoCfCheck;
1350   case bitc::ATTR_KIND_NO_UNWIND:
1351     return Attribute::NoUnwind;
1352   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1353     return Attribute::OptForFuzzing;
1354   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1355     return Attribute::OptimizeForSize;
1356   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1357     return Attribute::OptimizeNone;
1358   case bitc::ATTR_KIND_READ_NONE:
1359     return Attribute::ReadNone;
1360   case bitc::ATTR_KIND_READ_ONLY:
1361     return Attribute::ReadOnly;
1362   case bitc::ATTR_KIND_RETURNED:
1363     return Attribute::Returned;
1364   case bitc::ATTR_KIND_RETURNS_TWICE:
1365     return Attribute::ReturnsTwice;
1366   case bitc::ATTR_KIND_S_EXT:
1367     return Attribute::SExt;
1368   case bitc::ATTR_KIND_SPECULATABLE:
1369     return Attribute::Speculatable;
1370   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1371     return Attribute::StackAlignment;
1372   case bitc::ATTR_KIND_STACK_PROTECT:
1373     return Attribute::StackProtect;
1374   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1375     return Attribute::StackProtectReq;
1376   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1377     return Attribute::StackProtectStrong;
1378   case bitc::ATTR_KIND_SAFESTACK:
1379     return Attribute::SafeStack;
1380   case bitc::ATTR_KIND_SHADOWCALLSTACK:
1381     return Attribute::ShadowCallStack;
1382   case bitc::ATTR_KIND_STRICT_FP:
1383     return Attribute::StrictFP;
1384   case bitc::ATTR_KIND_STRUCT_RET:
1385     return Attribute::StructRet;
1386   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1387     return Attribute::SanitizeAddress;
1388   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
1389     return Attribute::SanitizeHWAddress;
1390   case bitc::ATTR_KIND_SANITIZE_THREAD:
1391     return Attribute::SanitizeThread;
1392   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1393     return Attribute::SanitizeMemory;
1394   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
1395     return Attribute::SpeculativeLoadHardening;
1396   case bitc::ATTR_KIND_SWIFT_ERROR:
1397     return Attribute::SwiftError;
1398   case bitc::ATTR_KIND_SWIFT_SELF:
1399     return Attribute::SwiftSelf;
1400   case bitc::ATTR_KIND_UW_TABLE:
1401     return Attribute::UWTable;
1402   case bitc::ATTR_KIND_WRITEONLY:
1403     return Attribute::WriteOnly;
1404   case bitc::ATTR_KIND_Z_EXT:
1405     return Attribute::ZExt;
1406   }
1407 }
1408 
1409 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1410                                          unsigned &Alignment) {
1411   // Note: Alignment in bitcode files is incremented by 1, so that zero
1412   // can be used for default alignment.
1413   if (Exponent > Value::MaxAlignmentExponent + 1)
1414     return error("Invalid alignment value");
1415   Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1;
1416   return Error::success();
1417 }
1418 
1419 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1420   *Kind = getAttrFromCode(Code);
1421   if (*Kind == Attribute::None)
1422     return error("Unknown attribute kind (" + Twine(Code) + ")");
1423   return Error::success();
1424 }
1425 
1426 Error BitcodeReader::parseAttributeGroupBlock() {
1427   if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1428     return error("Invalid record");
1429 
1430   if (!MAttributeGroups.empty())
1431     return error("Invalid multiple blocks");
1432 
1433   SmallVector<uint64_t, 64> Record;
1434 
1435   // Read all the records.
1436   while (true) {
1437     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1438 
1439     switch (Entry.Kind) {
1440     case BitstreamEntry::SubBlock: // Handled for us already.
1441     case BitstreamEntry::Error:
1442       return error("Malformed block");
1443     case BitstreamEntry::EndBlock:
1444       return Error::success();
1445     case BitstreamEntry::Record:
1446       // The interesting case.
1447       break;
1448     }
1449 
1450     // Read a record.
1451     Record.clear();
1452     switch (Stream.readRecord(Entry.ID, Record)) {
1453     default:  // Default behavior: ignore.
1454       break;
1455     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1456       if (Record.size() < 3)
1457         return error("Invalid record");
1458 
1459       uint64_t GrpID = Record[0];
1460       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1461 
1462       AttrBuilder B;
1463       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1464         if (Record[i] == 0) {        // Enum attribute
1465           Attribute::AttrKind Kind;
1466           if (Error Err = parseAttrKind(Record[++i], &Kind))
1467             return Err;
1468 
1469           B.addAttribute(Kind);
1470         } else if (Record[i] == 1) { // Integer attribute
1471           Attribute::AttrKind Kind;
1472           if (Error Err = parseAttrKind(Record[++i], &Kind))
1473             return Err;
1474           if (Kind == Attribute::Alignment)
1475             B.addAlignmentAttr(Record[++i]);
1476           else if (Kind == Attribute::StackAlignment)
1477             B.addStackAlignmentAttr(Record[++i]);
1478           else if (Kind == Attribute::Dereferenceable)
1479             B.addDereferenceableAttr(Record[++i]);
1480           else if (Kind == Attribute::DereferenceableOrNull)
1481             B.addDereferenceableOrNullAttr(Record[++i]);
1482           else if (Kind == Attribute::AllocSize)
1483             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1484         } else {                     // String attribute
1485           assert((Record[i] == 3 || Record[i] == 4) &&
1486                  "Invalid attribute group entry");
1487           bool HasValue = (Record[i++] == 4);
1488           SmallString<64> KindStr;
1489           SmallString<64> ValStr;
1490 
1491           while (Record[i] != 0 && i != e)
1492             KindStr += Record[i++];
1493           assert(Record[i] == 0 && "Kind string not null terminated");
1494 
1495           if (HasValue) {
1496             // Has a value associated with it.
1497             ++i; // Skip the '0' that terminates the "kind" string.
1498             while (Record[i] != 0 && i != e)
1499               ValStr += Record[i++];
1500             assert(Record[i] == 0 && "Value string not null terminated");
1501           }
1502 
1503           B.addAttribute(KindStr.str(), ValStr.str());
1504         }
1505       }
1506 
1507       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1508       break;
1509     }
1510     }
1511   }
1512 }
1513 
1514 Error BitcodeReader::parseTypeTable() {
1515   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1516     return error("Invalid record");
1517 
1518   return parseTypeTableBody();
1519 }
1520 
1521 Error BitcodeReader::parseTypeTableBody() {
1522   if (!TypeList.empty())
1523     return error("Invalid multiple blocks");
1524 
1525   SmallVector<uint64_t, 64> Record;
1526   unsigned NumRecords = 0;
1527 
1528   SmallString<64> TypeName;
1529 
1530   // Read all the records for this type table.
1531   while (true) {
1532     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1533 
1534     switch (Entry.Kind) {
1535     case BitstreamEntry::SubBlock: // Handled for us already.
1536     case BitstreamEntry::Error:
1537       return error("Malformed block");
1538     case BitstreamEntry::EndBlock:
1539       if (NumRecords != TypeList.size())
1540         return error("Malformed block");
1541       return Error::success();
1542     case BitstreamEntry::Record:
1543       // The interesting case.
1544       break;
1545     }
1546 
1547     // Read a record.
1548     Record.clear();
1549     Type *ResultTy = nullptr;
1550     switch (Stream.readRecord(Entry.ID, Record)) {
1551     default:
1552       return error("Invalid value");
1553     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1554       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1555       // type list.  This allows us to reserve space.
1556       if (Record.size() < 1)
1557         return error("Invalid record");
1558       TypeList.resize(Record[0]);
1559       continue;
1560     case bitc::TYPE_CODE_VOID:      // VOID
1561       ResultTy = Type::getVoidTy(Context);
1562       break;
1563     case bitc::TYPE_CODE_HALF:     // HALF
1564       ResultTy = Type::getHalfTy(Context);
1565       break;
1566     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1567       ResultTy = Type::getFloatTy(Context);
1568       break;
1569     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1570       ResultTy = Type::getDoubleTy(Context);
1571       break;
1572     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1573       ResultTy = Type::getX86_FP80Ty(Context);
1574       break;
1575     case bitc::TYPE_CODE_FP128:     // FP128
1576       ResultTy = Type::getFP128Ty(Context);
1577       break;
1578     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1579       ResultTy = Type::getPPC_FP128Ty(Context);
1580       break;
1581     case bitc::TYPE_CODE_LABEL:     // LABEL
1582       ResultTy = Type::getLabelTy(Context);
1583       break;
1584     case bitc::TYPE_CODE_METADATA:  // METADATA
1585       ResultTy = Type::getMetadataTy(Context);
1586       break;
1587     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1588       ResultTy = Type::getX86_MMXTy(Context);
1589       break;
1590     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1591       ResultTy = Type::getTokenTy(Context);
1592       break;
1593     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1594       if (Record.size() < 1)
1595         return error("Invalid record");
1596 
1597       uint64_t NumBits = Record[0];
1598       if (NumBits < IntegerType::MIN_INT_BITS ||
1599           NumBits > IntegerType::MAX_INT_BITS)
1600         return error("Bitwidth for integer type out of range");
1601       ResultTy = IntegerType::get(Context, NumBits);
1602       break;
1603     }
1604     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1605                                     //          [pointee type, address space]
1606       if (Record.size() < 1)
1607         return error("Invalid record");
1608       unsigned AddressSpace = 0;
1609       if (Record.size() == 2)
1610         AddressSpace = Record[1];
1611       ResultTy = getTypeByID(Record[0]);
1612       if (!ResultTy ||
1613           !PointerType::isValidElementType(ResultTy))
1614         return error("Invalid type");
1615       ResultTy = PointerType::get(ResultTy, AddressSpace);
1616       break;
1617     }
1618     case bitc::TYPE_CODE_FUNCTION_OLD: {
1619       // FIXME: attrid is dead, remove it in LLVM 4.0
1620       // FUNCTION: [vararg, attrid, retty, paramty x N]
1621       if (Record.size() < 3)
1622         return error("Invalid record");
1623       SmallVector<Type*, 8> ArgTys;
1624       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1625         if (Type *T = getTypeByID(Record[i]))
1626           ArgTys.push_back(T);
1627         else
1628           break;
1629       }
1630 
1631       ResultTy = getTypeByID(Record[2]);
1632       if (!ResultTy || ArgTys.size() < Record.size()-3)
1633         return error("Invalid type");
1634 
1635       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1636       break;
1637     }
1638     case bitc::TYPE_CODE_FUNCTION: {
1639       // FUNCTION: [vararg, retty, paramty x N]
1640       if (Record.size() < 2)
1641         return error("Invalid record");
1642       SmallVector<Type*, 8> ArgTys;
1643       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1644         if (Type *T = getTypeByID(Record[i])) {
1645           if (!FunctionType::isValidArgumentType(T))
1646             return error("Invalid function argument type");
1647           ArgTys.push_back(T);
1648         }
1649         else
1650           break;
1651       }
1652 
1653       ResultTy = getTypeByID(Record[1]);
1654       if (!ResultTy || ArgTys.size() < Record.size()-2)
1655         return error("Invalid type");
1656 
1657       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1658       break;
1659     }
1660     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1661       if (Record.size() < 1)
1662         return error("Invalid record");
1663       SmallVector<Type*, 8> EltTys;
1664       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1665         if (Type *T = getTypeByID(Record[i]))
1666           EltTys.push_back(T);
1667         else
1668           break;
1669       }
1670       if (EltTys.size() != Record.size()-1)
1671         return error("Invalid type");
1672       ResultTy = StructType::get(Context, EltTys, Record[0]);
1673       break;
1674     }
1675     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1676       if (convertToString(Record, 0, TypeName))
1677         return error("Invalid record");
1678       continue;
1679 
1680     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1681       if (Record.size() < 1)
1682         return error("Invalid record");
1683 
1684       if (NumRecords >= TypeList.size())
1685         return error("Invalid TYPE table");
1686 
1687       // Check to see if this was forward referenced, if so fill in the temp.
1688       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1689       if (Res) {
1690         Res->setName(TypeName);
1691         TypeList[NumRecords] = nullptr;
1692       } else  // Otherwise, create a new struct.
1693         Res = createIdentifiedStructType(Context, TypeName);
1694       TypeName.clear();
1695 
1696       SmallVector<Type*, 8> EltTys;
1697       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1698         if (Type *T = getTypeByID(Record[i]))
1699           EltTys.push_back(T);
1700         else
1701           break;
1702       }
1703       if (EltTys.size() != Record.size()-1)
1704         return error("Invalid record");
1705       Res->setBody(EltTys, Record[0]);
1706       ResultTy = Res;
1707       break;
1708     }
1709     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1710       if (Record.size() != 1)
1711         return error("Invalid record");
1712 
1713       if (NumRecords >= TypeList.size())
1714         return error("Invalid TYPE table");
1715 
1716       // Check to see if this was forward referenced, if so fill in the temp.
1717       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1718       if (Res) {
1719         Res->setName(TypeName);
1720         TypeList[NumRecords] = nullptr;
1721       } else  // Otherwise, create a new struct with no body.
1722         Res = createIdentifiedStructType(Context, TypeName);
1723       TypeName.clear();
1724       ResultTy = Res;
1725       break;
1726     }
1727     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1728       if (Record.size() < 2)
1729         return error("Invalid record");
1730       ResultTy = getTypeByID(Record[1]);
1731       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1732         return error("Invalid type");
1733       ResultTy = ArrayType::get(ResultTy, Record[0]);
1734       break;
1735     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
1736       if (Record.size() < 2)
1737         return error("Invalid record");
1738       if (Record[0] == 0)
1739         return error("Invalid vector length");
1740       ResultTy = getTypeByID(Record[1]);
1741       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1742         return error("Invalid type");
1743       ResultTy = VectorType::get(ResultTy, Record[0]);
1744       break;
1745     }
1746 
1747     if (NumRecords >= TypeList.size())
1748       return error("Invalid TYPE table");
1749     if (TypeList[NumRecords])
1750       return error(
1751           "Invalid TYPE table: Only named structs can be forward referenced");
1752     assert(ResultTy && "Didn't read a type?");
1753     TypeList[NumRecords++] = ResultTy;
1754   }
1755 }
1756 
1757 Error BitcodeReader::parseOperandBundleTags() {
1758   if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1759     return error("Invalid record");
1760 
1761   if (!BundleTags.empty())
1762     return error("Invalid multiple blocks");
1763 
1764   SmallVector<uint64_t, 64> Record;
1765 
1766   while (true) {
1767     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1768 
1769     switch (Entry.Kind) {
1770     case BitstreamEntry::SubBlock: // Handled for us already.
1771     case BitstreamEntry::Error:
1772       return error("Malformed block");
1773     case BitstreamEntry::EndBlock:
1774       return Error::success();
1775     case BitstreamEntry::Record:
1776       // The interesting case.
1777       break;
1778     }
1779 
1780     // Tags are implicitly mapped to integers by their order.
1781 
1782     if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG)
1783       return error("Invalid record");
1784 
1785     // OPERAND_BUNDLE_TAG: [strchr x N]
1786     BundleTags.emplace_back();
1787     if (convertToString(Record, 0, BundleTags.back()))
1788       return error("Invalid record");
1789     Record.clear();
1790   }
1791 }
1792 
1793 Error BitcodeReader::parseSyncScopeNames() {
1794   if (Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
1795     return error("Invalid record");
1796 
1797   if (!SSIDs.empty())
1798     return error("Invalid multiple synchronization scope names blocks");
1799 
1800   SmallVector<uint64_t, 64> Record;
1801   while (true) {
1802     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1803     switch (Entry.Kind) {
1804     case BitstreamEntry::SubBlock: // Handled for us already.
1805     case BitstreamEntry::Error:
1806       return error("Malformed block");
1807     case BitstreamEntry::EndBlock:
1808       if (SSIDs.empty())
1809         return error("Invalid empty synchronization scope names block");
1810       return Error::success();
1811     case BitstreamEntry::Record:
1812       // The interesting case.
1813       break;
1814     }
1815 
1816     // Synchronization scope names are implicitly mapped to synchronization
1817     // scope IDs by their order.
1818 
1819     if (Stream.readRecord(Entry.ID, Record) != bitc::SYNC_SCOPE_NAME)
1820       return error("Invalid record");
1821 
1822     SmallString<16> SSN;
1823     if (convertToString(Record, 0, SSN))
1824       return error("Invalid record");
1825 
1826     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
1827     Record.clear();
1828   }
1829 }
1830 
1831 /// Associate a value with its name from the given index in the provided record.
1832 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
1833                                              unsigned NameIndex, Triple &TT) {
1834   SmallString<128> ValueName;
1835   if (convertToString(Record, NameIndex, ValueName))
1836     return error("Invalid record");
1837   unsigned ValueID = Record[0];
1838   if (ValueID >= ValueList.size() || !ValueList[ValueID])
1839     return error("Invalid record");
1840   Value *V = ValueList[ValueID];
1841 
1842   StringRef NameStr(ValueName.data(), ValueName.size());
1843   if (NameStr.find_first_of(0) != StringRef::npos)
1844     return error("Invalid value name");
1845   V->setName(NameStr);
1846   auto *GO = dyn_cast<GlobalObject>(V);
1847   if (GO) {
1848     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
1849       if (TT.supportsCOMDAT())
1850         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
1851       else
1852         GO->setComdat(nullptr);
1853     }
1854   }
1855   return V;
1856 }
1857 
1858 /// Helper to note and return the current location, and jump to the given
1859 /// offset.
1860 static uint64_t jumpToValueSymbolTable(uint64_t Offset,
1861                                        BitstreamCursor &Stream) {
1862   // Save the current parsing location so we can jump back at the end
1863   // of the VST read.
1864   uint64_t CurrentBit = Stream.GetCurrentBitNo();
1865   Stream.JumpToBit(Offset * 32);
1866 #ifndef NDEBUG
1867   // Do some checking if we are in debug mode.
1868   BitstreamEntry Entry = Stream.advance();
1869   assert(Entry.Kind == BitstreamEntry::SubBlock);
1870   assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID);
1871 #else
1872   // In NDEBUG mode ignore the output so we don't get an unused variable
1873   // warning.
1874   Stream.advance();
1875 #endif
1876   return CurrentBit;
1877 }
1878 
1879 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
1880                                             Function *F,
1881                                             ArrayRef<uint64_t> Record) {
1882   // Note that we subtract 1 here because the offset is relative to one word
1883   // before the start of the identification or module block, which was
1884   // historically always the start of the regular bitcode header.
1885   uint64_t FuncWordOffset = Record[1] - 1;
1886   uint64_t FuncBitOffset = FuncWordOffset * 32;
1887   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
1888   // Set the LastFunctionBlockBit to point to the last function block.
1889   // Later when parsing is resumed after function materialization,
1890   // we can simply skip that last function block.
1891   if (FuncBitOffset > LastFunctionBlockBit)
1892     LastFunctionBlockBit = FuncBitOffset;
1893 }
1894 
1895 /// Read a new-style GlobalValue symbol table.
1896 Error BitcodeReader::parseGlobalValueSymbolTable() {
1897   unsigned FuncBitcodeOffsetDelta =
1898       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
1899 
1900   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
1901     return error("Invalid record");
1902 
1903   SmallVector<uint64_t, 64> Record;
1904   while (true) {
1905     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1906 
1907     switch (Entry.Kind) {
1908     case BitstreamEntry::SubBlock:
1909     case BitstreamEntry::Error:
1910       return error("Malformed block");
1911     case BitstreamEntry::EndBlock:
1912       return Error::success();
1913     case BitstreamEntry::Record:
1914       break;
1915     }
1916 
1917     Record.clear();
1918     switch (Stream.readRecord(Entry.ID, Record)) {
1919     case bitc::VST_CODE_FNENTRY: // [valueid, offset]
1920       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
1921                               cast<Function>(ValueList[Record[0]]), Record);
1922       break;
1923     }
1924   }
1925 }
1926 
1927 /// Parse the value symbol table at either the current parsing location or
1928 /// at the given bit offset if provided.
1929 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
1930   uint64_t CurrentBit;
1931   // Pass in the Offset to distinguish between calling for the module-level
1932   // VST (where we want to jump to the VST offset) and the function-level
1933   // VST (where we don't).
1934   if (Offset > 0) {
1935     CurrentBit = jumpToValueSymbolTable(Offset, Stream);
1936     // If this module uses a string table, read this as a module-level VST.
1937     if (UseStrtab) {
1938       if (Error Err = parseGlobalValueSymbolTable())
1939         return Err;
1940       Stream.JumpToBit(CurrentBit);
1941       return Error::success();
1942     }
1943     // Otherwise, the VST will be in a similar format to a function-level VST,
1944     // and will contain symbol names.
1945   }
1946 
1947   // Compute the delta between the bitcode indices in the VST (the word offset
1948   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
1949   // expected by the lazy reader. The reader's EnterSubBlock expects to have
1950   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
1951   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
1952   // just before entering the VST subblock because: 1) the EnterSubBlock
1953   // changes the AbbrevID width; 2) the VST block is nested within the same
1954   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
1955   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
1956   // jump to the FUNCTION_BLOCK using this offset later, we don't want
1957   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
1958   unsigned FuncBitcodeOffsetDelta =
1959       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
1960 
1961   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
1962     return error("Invalid record");
1963 
1964   SmallVector<uint64_t, 64> Record;
1965 
1966   Triple TT(TheModule->getTargetTriple());
1967 
1968   // Read all the records for this value table.
1969   SmallString<128> ValueName;
1970 
1971   while (true) {
1972     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1973 
1974     switch (Entry.Kind) {
1975     case BitstreamEntry::SubBlock: // Handled for us already.
1976     case BitstreamEntry::Error:
1977       return error("Malformed block");
1978     case BitstreamEntry::EndBlock:
1979       if (Offset > 0)
1980         Stream.JumpToBit(CurrentBit);
1981       return Error::success();
1982     case BitstreamEntry::Record:
1983       // The interesting case.
1984       break;
1985     }
1986 
1987     // Read a record.
1988     Record.clear();
1989     switch (Stream.readRecord(Entry.ID, Record)) {
1990     default:  // Default behavior: unknown type.
1991       break;
1992     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
1993       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
1994       if (Error Err = ValOrErr.takeError())
1995         return Err;
1996       ValOrErr.get();
1997       break;
1998     }
1999     case bitc::VST_CODE_FNENTRY: {
2000       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2001       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2002       if (Error Err = ValOrErr.takeError())
2003         return Err;
2004       Value *V = ValOrErr.get();
2005 
2006       // Ignore function offsets emitted for aliases of functions in older
2007       // versions of LLVM.
2008       if (auto *F = dyn_cast<Function>(V))
2009         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2010       break;
2011     }
2012     case bitc::VST_CODE_BBENTRY: {
2013       if (convertToString(Record, 1, ValueName))
2014         return error("Invalid record");
2015       BasicBlock *BB = getBasicBlock(Record[0]);
2016       if (!BB)
2017         return error("Invalid record");
2018 
2019       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2020       ValueName.clear();
2021       break;
2022     }
2023     }
2024   }
2025 }
2026 
2027 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2028 /// encoding.
2029 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2030   if ((V & 1) == 0)
2031     return V >> 1;
2032   if (V != 1)
2033     return -(V >> 1);
2034   // There is no such thing as -0 with integers.  "-0" really means MININT.
2035   return 1ULL << 63;
2036 }
2037 
2038 /// Resolve all of the initializers for global values and aliases that we can.
2039 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2040   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2041   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>
2042       IndirectSymbolInitWorklist;
2043   std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist;
2044   std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist;
2045   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist;
2046 
2047   GlobalInitWorklist.swap(GlobalInits);
2048   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2049   FunctionPrefixWorklist.swap(FunctionPrefixes);
2050   FunctionPrologueWorklist.swap(FunctionPrologues);
2051   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2052 
2053   while (!GlobalInitWorklist.empty()) {
2054     unsigned ValID = GlobalInitWorklist.back().second;
2055     if (ValID >= ValueList.size()) {
2056       // Not ready to resolve this yet, it requires something later in the file.
2057       GlobalInits.push_back(GlobalInitWorklist.back());
2058     } else {
2059       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2060         GlobalInitWorklist.back().first->setInitializer(C);
2061       else
2062         return error("Expected a constant");
2063     }
2064     GlobalInitWorklist.pop_back();
2065   }
2066 
2067   while (!IndirectSymbolInitWorklist.empty()) {
2068     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2069     if (ValID >= ValueList.size()) {
2070       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2071     } else {
2072       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2073       if (!C)
2074         return error("Expected a constant");
2075       GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2076       if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2077         return error("Alias and aliasee types don't match");
2078       GIS->setIndirectSymbol(C);
2079     }
2080     IndirectSymbolInitWorklist.pop_back();
2081   }
2082 
2083   while (!FunctionPrefixWorklist.empty()) {
2084     unsigned ValID = FunctionPrefixWorklist.back().second;
2085     if (ValID >= ValueList.size()) {
2086       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2087     } else {
2088       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2089         FunctionPrefixWorklist.back().first->setPrefixData(C);
2090       else
2091         return error("Expected a constant");
2092     }
2093     FunctionPrefixWorklist.pop_back();
2094   }
2095 
2096   while (!FunctionPrologueWorklist.empty()) {
2097     unsigned ValID = FunctionPrologueWorklist.back().second;
2098     if (ValID >= ValueList.size()) {
2099       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2100     } else {
2101       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2102         FunctionPrologueWorklist.back().first->setPrologueData(C);
2103       else
2104         return error("Expected a constant");
2105     }
2106     FunctionPrologueWorklist.pop_back();
2107   }
2108 
2109   while (!FunctionPersonalityFnWorklist.empty()) {
2110     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2111     if (ValID >= ValueList.size()) {
2112       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2113     } else {
2114       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2115         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2116       else
2117         return error("Expected a constant");
2118     }
2119     FunctionPersonalityFnWorklist.pop_back();
2120   }
2121 
2122   return Error::success();
2123 }
2124 
2125 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2126   SmallVector<uint64_t, 8> Words(Vals.size());
2127   transform(Vals, Words.begin(),
2128                  BitcodeReader::decodeSignRotatedValue);
2129 
2130   return APInt(TypeBits, Words);
2131 }
2132 
2133 Error BitcodeReader::parseConstants() {
2134   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2135     return error("Invalid record");
2136 
2137   SmallVector<uint64_t, 64> Record;
2138 
2139   // Read all the records for this value table.
2140   Type *CurTy = Type::getInt32Ty(Context);
2141   unsigned NextCstNo = ValueList.size();
2142 
2143   while (true) {
2144     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2145 
2146     switch (Entry.Kind) {
2147     case BitstreamEntry::SubBlock: // Handled for us already.
2148     case BitstreamEntry::Error:
2149       return error("Malformed block");
2150     case BitstreamEntry::EndBlock:
2151       if (NextCstNo != ValueList.size())
2152         return error("Invalid constant reference");
2153 
2154       // Once all the constants have been read, go through and resolve forward
2155       // references.
2156       ValueList.resolveConstantForwardRefs();
2157       return Error::success();
2158     case BitstreamEntry::Record:
2159       // The interesting case.
2160       break;
2161     }
2162 
2163     // Read a record.
2164     Record.clear();
2165     Type *VoidType = Type::getVoidTy(Context);
2166     Value *V = nullptr;
2167     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
2168     switch (BitCode) {
2169     default:  // Default behavior: unknown constant
2170     case bitc::CST_CODE_UNDEF:     // UNDEF
2171       V = UndefValue::get(CurTy);
2172       break;
2173     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2174       if (Record.empty())
2175         return error("Invalid record");
2176       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2177         return error("Invalid record");
2178       if (TypeList[Record[0]] == VoidType)
2179         return error("Invalid constant type");
2180       CurTy = TypeList[Record[0]];
2181       continue;  // Skip the ValueList manipulation.
2182     case bitc::CST_CODE_NULL:      // NULL
2183       V = Constant::getNullValue(CurTy);
2184       break;
2185     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2186       if (!CurTy->isIntegerTy() || Record.empty())
2187         return error("Invalid record");
2188       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2189       break;
2190     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2191       if (!CurTy->isIntegerTy() || Record.empty())
2192         return error("Invalid record");
2193 
2194       APInt VInt =
2195           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2196       V = ConstantInt::get(Context, VInt);
2197 
2198       break;
2199     }
2200     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2201       if (Record.empty())
2202         return error("Invalid record");
2203       if (CurTy->isHalfTy())
2204         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2205                                              APInt(16, (uint16_t)Record[0])));
2206       else if (CurTy->isFloatTy())
2207         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2208                                              APInt(32, (uint32_t)Record[0])));
2209       else if (CurTy->isDoubleTy())
2210         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2211                                              APInt(64, Record[0])));
2212       else if (CurTy->isX86_FP80Ty()) {
2213         // Bits are not stored the same way as a normal i80 APInt, compensate.
2214         uint64_t Rearrange[2];
2215         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2216         Rearrange[1] = Record[0] >> 48;
2217         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2218                                              APInt(80, Rearrange)));
2219       } else if (CurTy->isFP128Ty())
2220         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2221                                              APInt(128, Record)));
2222       else if (CurTy->isPPC_FP128Ty())
2223         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2224                                              APInt(128, Record)));
2225       else
2226         V = UndefValue::get(CurTy);
2227       break;
2228     }
2229 
2230     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2231       if (Record.empty())
2232         return error("Invalid record");
2233 
2234       unsigned Size = Record.size();
2235       SmallVector<Constant*, 16> Elts;
2236 
2237       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2238         for (unsigned i = 0; i != Size; ++i)
2239           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2240                                                      STy->getElementType(i)));
2241         V = ConstantStruct::get(STy, Elts);
2242       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2243         Type *EltTy = ATy->getElementType();
2244         for (unsigned i = 0; i != Size; ++i)
2245           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2246         V = ConstantArray::get(ATy, Elts);
2247       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2248         Type *EltTy = VTy->getElementType();
2249         for (unsigned i = 0; i != Size; ++i)
2250           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2251         V = ConstantVector::get(Elts);
2252       } else {
2253         V = UndefValue::get(CurTy);
2254       }
2255       break;
2256     }
2257     case bitc::CST_CODE_STRING:    // STRING: [values]
2258     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2259       if (Record.empty())
2260         return error("Invalid record");
2261 
2262       SmallString<16> Elts(Record.begin(), Record.end());
2263       V = ConstantDataArray::getString(Context, Elts,
2264                                        BitCode == bitc::CST_CODE_CSTRING);
2265       break;
2266     }
2267     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2268       if (Record.empty())
2269         return error("Invalid record");
2270 
2271       Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
2272       if (EltTy->isIntegerTy(8)) {
2273         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2274         if (isa<VectorType>(CurTy))
2275           V = ConstantDataVector::get(Context, Elts);
2276         else
2277           V = ConstantDataArray::get(Context, Elts);
2278       } else if (EltTy->isIntegerTy(16)) {
2279         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2280         if (isa<VectorType>(CurTy))
2281           V = ConstantDataVector::get(Context, Elts);
2282         else
2283           V = ConstantDataArray::get(Context, Elts);
2284       } else if (EltTy->isIntegerTy(32)) {
2285         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2286         if (isa<VectorType>(CurTy))
2287           V = ConstantDataVector::get(Context, Elts);
2288         else
2289           V = ConstantDataArray::get(Context, Elts);
2290       } else if (EltTy->isIntegerTy(64)) {
2291         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2292         if (isa<VectorType>(CurTy))
2293           V = ConstantDataVector::get(Context, Elts);
2294         else
2295           V = ConstantDataArray::get(Context, Elts);
2296       } else if (EltTy->isHalfTy()) {
2297         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2298         if (isa<VectorType>(CurTy))
2299           V = ConstantDataVector::getFP(Context, Elts);
2300         else
2301           V = ConstantDataArray::getFP(Context, Elts);
2302       } else if (EltTy->isFloatTy()) {
2303         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2304         if (isa<VectorType>(CurTy))
2305           V = ConstantDataVector::getFP(Context, Elts);
2306         else
2307           V = ConstantDataArray::getFP(Context, Elts);
2308       } else if (EltTy->isDoubleTy()) {
2309         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2310         if (isa<VectorType>(CurTy))
2311           V = ConstantDataVector::getFP(Context, Elts);
2312         else
2313           V = ConstantDataArray::getFP(Context, Elts);
2314       } else {
2315         return error("Invalid type for value");
2316       }
2317       break;
2318     }
2319     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2320       if (Record.size() < 3)
2321         return error("Invalid record");
2322       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2323       if (Opc < 0) {
2324         V = UndefValue::get(CurTy);  // Unknown binop.
2325       } else {
2326         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2327         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2328         unsigned Flags = 0;
2329         if (Record.size() >= 4) {
2330           if (Opc == Instruction::Add ||
2331               Opc == Instruction::Sub ||
2332               Opc == Instruction::Mul ||
2333               Opc == Instruction::Shl) {
2334             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2335               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2336             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2337               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2338           } else if (Opc == Instruction::SDiv ||
2339                      Opc == Instruction::UDiv ||
2340                      Opc == Instruction::LShr ||
2341                      Opc == Instruction::AShr) {
2342             if (Record[3] & (1 << bitc::PEO_EXACT))
2343               Flags |= SDivOperator::IsExact;
2344           }
2345         }
2346         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2347       }
2348       break;
2349     }
2350     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2351       if (Record.size() < 3)
2352         return error("Invalid record");
2353       int Opc = getDecodedCastOpcode(Record[0]);
2354       if (Opc < 0) {
2355         V = UndefValue::get(CurTy);  // Unknown cast.
2356       } else {
2357         Type *OpTy = getTypeByID(Record[1]);
2358         if (!OpTy)
2359           return error("Invalid record");
2360         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2361         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2362         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2363       }
2364       break;
2365     }
2366     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2367     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2368     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2369                                                      // operands]
2370       unsigned OpNum = 0;
2371       Type *PointeeType = nullptr;
2372       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
2373           Record.size() % 2)
2374         PointeeType = getTypeByID(Record[OpNum++]);
2375 
2376       bool InBounds = false;
2377       Optional<unsigned> InRangeIndex;
2378       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
2379         uint64_t Op = Record[OpNum++];
2380         InBounds = Op & 1;
2381         InRangeIndex = Op >> 1;
2382       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2383         InBounds = true;
2384 
2385       SmallVector<Constant*, 16> Elts;
2386       while (OpNum != Record.size()) {
2387         Type *ElTy = getTypeByID(Record[OpNum++]);
2388         if (!ElTy)
2389           return error("Invalid record");
2390         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2391       }
2392 
2393       if (PointeeType &&
2394           PointeeType !=
2395               cast<PointerType>(Elts[0]->getType()->getScalarType())
2396                   ->getElementType())
2397         return error("Explicit gep operator type does not match pointee type "
2398                      "of pointer operand");
2399 
2400       if (Elts.size() < 1)
2401         return error("Invalid gep with no operands");
2402 
2403       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2404       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2405                                          InBounds, InRangeIndex);
2406       break;
2407     }
2408     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2409       if (Record.size() < 3)
2410         return error("Invalid record");
2411 
2412       Type *SelectorTy = Type::getInt1Ty(Context);
2413 
2414       // The selector might be an i1 or an <n x i1>
2415       // Get the type from the ValueList before getting a forward ref.
2416       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2417         if (Value *V = ValueList[Record[0]])
2418           if (SelectorTy != V->getType())
2419             SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements());
2420 
2421       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2422                                                               SelectorTy),
2423                                   ValueList.getConstantFwdRef(Record[1],CurTy),
2424                                   ValueList.getConstantFwdRef(Record[2],CurTy));
2425       break;
2426     }
2427     case bitc::CST_CODE_CE_EXTRACTELT
2428         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2429       if (Record.size() < 3)
2430         return error("Invalid record");
2431       VectorType *OpTy =
2432         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2433       if (!OpTy)
2434         return error("Invalid record");
2435       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2436       Constant *Op1 = nullptr;
2437       if (Record.size() == 4) {
2438         Type *IdxTy = getTypeByID(Record[2]);
2439         if (!IdxTy)
2440           return error("Invalid record");
2441         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2442       } else // TODO: Remove with llvm 4.0
2443         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2444       if (!Op1)
2445         return error("Invalid record");
2446       V = ConstantExpr::getExtractElement(Op0, Op1);
2447       break;
2448     }
2449     case bitc::CST_CODE_CE_INSERTELT
2450         : { // CE_INSERTELT: [opval, opval, opty, opval]
2451       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2452       if (Record.size() < 3 || !OpTy)
2453         return error("Invalid record");
2454       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2455       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2456                                                   OpTy->getElementType());
2457       Constant *Op2 = nullptr;
2458       if (Record.size() == 4) {
2459         Type *IdxTy = getTypeByID(Record[2]);
2460         if (!IdxTy)
2461           return error("Invalid record");
2462         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2463       } else // TODO: Remove with llvm 4.0
2464         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2465       if (!Op2)
2466         return error("Invalid record");
2467       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2468       break;
2469     }
2470     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2471       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2472       if (Record.size() < 3 || !OpTy)
2473         return error("Invalid record");
2474       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2475       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
2476       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2477                                                  OpTy->getNumElements());
2478       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
2479       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2480       break;
2481     }
2482     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2483       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2484       VectorType *OpTy =
2485         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2486       if (Record.size() < 4 || !RTy || !OpTy)
2487         return error("Invalid record");
2488       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2489       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2490       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2491                                                  RTy->getNumElements());
2492       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
2493       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2494       break;
2495     }
2496     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2497       if (Record.size() < 4)
2498         return error("Invalid record");
2499       Type *OpTy = getTypeByID(Record[0]);
2500       if (!OpTy)
2501         return error("Invalid record");
2502       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2503       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2504 
2505       if (OpTy->isFPOrFPVectorTy())
2506         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2507       else
2508         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2509       break;
2510     }
2511     // This maintains backward compatibility, pre-asm dialect keywords.
2512     // FIXME: Remove with the 4.0 release.
2513     case bitc::CST_CODE_INLINEASM_OLD: {
2514       if (Record.size() < 2)
2515         return error("Invalid record");
2516       std::string AsmStr, ConstrStr;
2517       bool HasSideEffects = Record[0] & 1;
2518       bool IsAlignStack = Record[0] >> 1;
2519       unsigned AsmStrSize = Record[1];
2520       if (2+AsmStrSize >= Record.size())
2521         return error("Invalid record");
2522       unsigned ConstStrSize = Record[2+AsmStrSize];
2523       if (3+AsmStrSize+ConstStrSize > Record.size())
2524         return error("Invalid record");
2525 
2526       for (unsigned i = 0; i != AsmStrSize; ++i)
2527         AsmStr += (char)Record[2+i];
2528       for (unsigned i = 0; i != ConstStrSize; ++i)
2529         ConstrStr += (char)Record[3+AsmStrSize+i];
2530       PointerType *PTy = cast<PointerType>(CurTy);
2531       UpgradeInlineAsmString(&AsmStr);
2532       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2533                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
2534       break;
2535     }
2536     // This version adds support for the asm dialect keywords (e.g.,
2537     // inteldialect).
2538     case bitc::CST_CODE_INLINEASM: {
2539       if (Record.size() < 2)
2540         return error("Invalid record");
2541       std::string AsmStr, ConstrStr;
2542       bool HasSideEffects = Record[0] & 1;
2543       bool IsAlignStack = (Record[0] >> 1) & 1;
2544       unsigned AsmDialect = Record[0] >> 2;
2545       unsigned AsmStrSize = Record[1];
2546       if (2+AsmStrSize >= Record.size())
2547         return error("Invalid record");
2548       unsigned ConstStrSize = Record[2+AsmStrSize];
2549       if (3+AsmStrSize+ConstStrSize > Record.size())
2550         return error("Invalid record");
2551 
2552       for (unsigned i = 0; i != AsmStrSize; ++i)
2553         AsmStr += (char)Record[2+i];
2554       for (unsigned i = 0; i != ConstStrSize; ++i)
2555         ConstrStr += (char)Record[3+AsmStrSize+i];
2556       PointerType *PTy = cast<PointerType>(CurTy);
2557       UpgradeInlineAsmString(&AsmStr);
2558       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2559                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2560                          InlineAsm::AsmDialect(AsmDialect));
2561       break;
2562     }
2563     case bitc::CST_CODE_BLOCKADDRESS:{
2564       if (Record.size() < 3)
2565         return error("Invalid record");
2566       Type *FnTy = getTypeByID(Record[0]);
2567       if (!FnTy)
2568         return error("Invalid record");
2569       Function *Fn =
2570         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2571       if (!Fn)
2572         return error("Invalid record");
2573 
2574       // If the function is already parsed we can insert the block address right
2575       // away.
2576       BasicBlock *BB;
2577       unsigned BBID = Record[2];
2578       if (!BBID)
2579         // Invalid reference to entry block.
2580         return error("Invalid ID");
2581       if (!Fn->empty()) {
2582         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2583         for (size_t I = 0, E = BBID; I != E; ++I) {
2584           if (BBI == BBE)
2585             return error("Invalid ID");
2586           ++BBI;
2587         }
2588         BB = &*BBI;
2589       } else {
2590         // Otherwise insert a placeholder and remember it so it can be inserted
2591         // when the function is parsed.
2592         auto &FwdBBs = BasicBlockFwdRefs[Fn];
2593         if (FwdBBs.empty())
2594           BasicBlockFwdRefQueue.push_back(Fn);
2595         if (FwdBBs.size() < BBID + 1)
2596           FwdBBs.resize(BBID + 1);
2597         if (!FwdBBs[BBID])
2598           FwdBBs[BBID] = BasicBlock::Create(Context);
2599         BB = FwdBBs[BBID];
2600       }
2601       V = BlockAddress::get(Fn, BB);
2602       break;
2603     }
2604     }
2605 
2606     ValueList.assignValue(V, NextCstNo);
2607     ++NextCstNo;
2608   }
2609 }
2610 
2611 Error BitcodeReader::parseUseLists() {
2612   if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
2613     return error("Invalid record");
2614 
2615   // Read all the records.
2616   SmallVector<uint64_t, 64> Record;
2617 
2618   while (true) {
2619     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2620 
2621     switch (Entry.Kind) {
2622     case BitstreamEntry::SubBlock: // Handled for us already.
2623     case BitstreamEntry::Error:
2624       return error("Malformed block");
2625     case BitstreamEntry::EndBlock:
2626       return Error::success();
2627     case BitstreamEntry::Record:
2628       // The interesting case.
2629       break;
2630     }
2631 
2632     // Read a use list record.
2633     Record.clear();
2634     bool IsBB = false;
2635     switch (Stream.readRecord(Entry.ID, Record)) {
2636     default:  // Default behavior: unknown type.
2637       break;
2638     case bitc::USELIST_CODE_BB:
2639       IsBB = true;
2640       LLVM_FALLTHROUGH;
2641     case bitc::USELIST_CODE_DEFAULT: {
2642       unsigned RecordLength = Record.size();
2643       if (RecordLength < 3)
2644         // Records should have at least an ID and two indexes.
2645         return error("Invalid record");
2646       unsigned ID = Record.back();
2647       Record.pop_back();
2648 
2649       Value *V;
2650       if (IsBB) {
2651         assert(ID < FunctionBBs.size() && "Basic block not found");
2652         V = FunctionBBs[ID];
2653       } else
2654         V = ValueList[ID];
2655       unsigned NumUses = 0;
2656       SmallDenseMap<const Use *, unsigned, 16> Order;
2657       for (const Use &U : V->materialized_uses()) {
2658         if (++NumUses > Record.size())
2659           break;
2660         Order[&U] = Record[NumUses - 1];
2661       }
2662       if (Order.size() != Record.size() || NumUses > Record.size())
2663         // Mismatches can happen if the functions are being materialized lazily
2664         // (out-of-order), or a value has been upgraded.
2665         break;
2666 
2667       V->sortUseList([&](const Use &L, const Use &R) {
2668         return Order.lookup(&L) < Order.lookup(&R);
2669       });
2670       break;
2671     }
2672     }
2673   }
2674 }
2675 
2676 /// When we see the block for metadata, remember where it is and then skip it.
2677 /// This lets us lazily deserialize the metadata.
2678 Error BitcodeReader::rememberAndSkipMetadata() {
2679   // Save the current stream state.
2680   uint64_t CurBit = Stream.GetCurrentBitNo();
2681   DeferredMetadataInfo.push_back(CurBit);
2682 
2683   // Skip over the block for now.
2684   if (Stream.SkipBlock())
2685     return error("Invalid record");
2686   return Error::success();
2687 }
2688 
2689 Error BitcodeReader::materializeMetadata() {
2690   for (uint64_t BitPos : DeferredMetadataInfo) {
2691     // Move the bit stream to the saved position.
2692     Stream.JumpToBit(BitPos);
2693     if (Error Err = MDLoader->parseModuleMetadata())
2694       return Err;
2695   }
2696 
2697   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
2698   // metadata.
2699   if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
2700     NamedMDNode *LinkerOpts =
2701         TheModule->getOrInsertNamedMetadata("llvm.linker.options");
2702     for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
2703       LinkerOpts->addOperand(cast<MDNode>(MDOptions));
2704   }
2705 
2706   DeferredMetadataInfo.clear();
2707   return Error::success();
2708 }
2709 
2710 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
2711 
2712 /// When we see the block for a function body, remember where it is and then
2713 /// skip it.  This lets us lazily deserialize the functions.
2714 Error BitcodeReader::rememberAndSkipFunctionBody() {
2715   // Get the function we are talking about.
2716   if (FunctionsWithBodies.empty())
2717     return error("Insufficient function protos");
2718 
2719   Function *Fn = FunctionsWithBodies.back();
2720   FunctionsWithBodies.pop_back();
2721 
2722   // Save the current stream state.
2723   uint64_t CurBit = Stream.GetCurrentBitNo();
2724   assert(
2725       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
2726       "Mismatch between VST and scanned function offsets");
2727   DeferredFunctionInfo[Fn] = CurBit;
2728 
2729   // Skip over the function block for now.
2730   if (Stream.SkipBlock())
2731     return error("Invalid record");
2732   return Error::success();
2733 }
2734 
2735 Error BitcodeReader::globalCleanup() {
2736   // Patch the initializers for globals and aliases up.
2737   if (Error Err = resolveGlobalAndIndirectSymbolInits())
2738     return Err;
2739   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
2740     return error("Malformed global initializer set");
2741 
2742   // Look for intrinsic functions which need to be upgraded at some point
2743   for (Function &F : *TheModule) {
2744     MDLoader->upgradeDebugIntrinsics(F);
2745     Function *NewFn;
2746     if (UpgradeIntrinsicFunction(&F, NewFn))
2747       UpgradedIntrinsics[&F] = NewFn;
2748     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
2749       // Some types could be renamed during loading if several modules are
2750       // loaded in the same LLVMContext (LTO scenario). In this case we should
2751       // remangle intrinsics names as well.
2752       RemangledIntrinsics[&F] = Remangled.getValue();
2753   }
2754 
2755   // Look for global variables which need to be renamed.
2756   for (GlobalVariable &GV : TheModule->globals())
2757     UpgradeGlobalVariable(&GV);
2758 
2759   // Force deallocation of memory for these vectors to favor the client that
2760   // want lazy deserialization.
2761   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
2762   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap(
2763       IndirectSymbolInits);
2764   return Error::success();
2765 }
2766 
2767 /// Support for lazy parsing of function bodies. This is required if we
2768 /// either have an old bitcode file without a VST forward declaration record,
2769 /// or if we have an anonymous function being materialized, since anonymous
2770 /// functions do not have a name and are therefore not in the VST.
2771 Error BitcodeReader::rememberAndSkipFunctionBodies() {
2772   Stream.JumpToBit(NextUnreadBit);
2773 
2774   if (Stream.AtEndOfStream())
2775     return error("Could not find function in stream");
2776 
2777   if (!SeenFirstFunctionBody)
2778     return error("Trying to materialize functions before seeing function blocks");
2779 
2780   // An old bitcode file with the symbol table at the end would have
2781   // finished the parse greedily.
2782   assert(SeenValueSymbolTable);
2783 
2784   SmallVector<uint64_t, 64> Record;
2785 
2786   while (true) {
2787     BitstreamEntry Entry = Stream.advance();
2788     switch (Entry.Kind) {
2789     default:
2790       return error("Expect SubBlock");
2791     case BitstreamEntry::SubBlock:
2792       switch (Entry.ID) {
2793       default:
2794         return error("Expect function block");
2795       case bitc::FUNCTION_BLOCK_ID:
2796         if (Error Err = rememberAndSkipFunctionBody())
2797           return Err;
2798         NextUnreadBit = Stream.GetCurrentBitNo();
2799         return Error::success();
2800       }
2801     }
2802   }
2803 }
2804 
2805 bool BitcodeReaderBase::readBlockInfo() {
2806   Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock();
2807   if (!NewBlockInfo)
2808     return true;
2809   BlockInfo = std::move(*NewBlockInfo);
2810   return false;
2811 }
2812 
2813 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
2814   // v1: [selection_kind, name]
2815   // v2: [strtab_offset, strtab_size, selection_kind]
2816   StringRef Name;
2817   std::tie(Name, Record) = readNameFromStrtab(Record);
2818 
2819   if (Record.empty())
2820     return error("Invalid record");
2821   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
2822   std::string OldFormatName;
2823   if (!UseStrtab) {
2824     if (Record.size() < 2)
2825       return error("Invalid record");
2826     unsigned ComdatNameSize = Record[1];
2827     OldFormatName.reserve(ComdatNameSize);
2828     for (unsigned i = 0; i != ComdatNameSize; ++i)
2829       OldFormatName += (char)Record[2 + i];
2830     Name = OldFormatName;
2831   }
2832   Comdat *C = TheModule->getOrInsertComdat(Name);
2833   C->setSelectionKind(SK);
2834   ComdatList.push_back(C);
2835   return Error::success();
2836 }
2837 
2838 static void inferDSOLocal(GlobalValue *GV) {
2839   // infer dso_local from linkage and visibility if it is not encoded.
2840   if (GV->hasLocalLinkage() ||
2841       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
2842     GV->setDSOLocal(true);
2843 }
2844 
2845 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
2846   // v1: [pointer type, isconst, initid, linkage, alignment, section,
2847   // visibility, threadlocal, unnamed_addr, externally_initialized,
2848   // dllstorageclass, comdat, attributes, preemption specifier] (name in VST)
2849   // v2: [strtab_offset, strtab_size, v1]
2850   StringRef Name;
2851   std::tie(Name, Record) = readNameFromStrtab(Record);
2852 
2853   if (Record.size() < 6)
2854     return error("Invalid record");
2855   Type *Ty = getTypeByID(Record[0]);
2856   if (!Ty)
2857     return error("Invalid record");
2858   bool isConstant = Record[1] & 1;
2859   bool explicitType = Record[1] & 2;
2860   unsigned AddressSpace;
2861   if (explicitType) {
2862     AddressSpace = Record[1] >> 2;
2863   } else {
2864     if (!Ty->isPointerTy())
2865       return error("Invalid type for value");
2866     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
2867     Ty = cast<PointerType>(Ty)->getElementType();
2868   }
2869 
2870   uint64_t RawLinkage = Record[3];
2871   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
2872   unsigned Alignment;
2873   if (Error Err = parseAlignmentValue(Record[4], Alignment))
2874     return Err;
2875   std::string Section;
2876   if (Record[5]) {
2877     if (Record[5] - 1 >= SectionTable.size())
2878       return error("Invalid ID");
2879     Section = SectionTable[Record[5] - 1];
2880   }
2881   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
2882   // Local linkage must have default visibility.
2883   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
2884     // FIXME: Change to an error if non-default in 4.0.
2885     Visibility = getDecodedVisibility(Record[6]);
2886 
2887   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
2888   if (Record.size() > 7)
2889     TLM = getDecodedThreadLocalMode(Record[7]);
2890 
2891   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
2892   if (Record.size() > 8)
2893     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
2894 
2895   bool ExternallyInitialized = false;
2896   if (Record.size() > 9)
2897     ExternallyInitialized = Record[9];
2898 
2899   GlobalVariable *NewGV =
2900       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
2901                          nullptr, TLM, AddressSpace, ExternallyInitialized);
2902   NewGV->setAlignment(Alignment);
2903   if (!Section.empty())
2904     NewGV->setSection(Section);
2905   NewGV->setVisibility(Visibility);
2906   NewGV->setUnnamedAddr(UnnamedAddr);
2907 
2908   if (Record.size() > 10)
2909     NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
2910   else
2911     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
2912 
2913   ValueList.push_back(NewGV);
2914 
2915   // Remember which value to use for the global initializer.
2916   if (unsigned InitID = Record[2])
2917     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
2918 
2919   if (Record.size() > 11) {
2920     if (unsigned ComdatID = Record[11]) {
2921       if (ComdatID > ComdatList.size())
2922         return error("Invalid global variable comdat ID");
2923       NewGV->setComdat(ComdatList[ComdatID - 1]);
2924     }
2925   } else if (hasImplicitComdat(RawLinkage)) {
2926     NewGV->setComdat(reinterpret_cast<Comdat *>(1));
2927   }
2928 
2929   if (Record.size() > 12) {
2930     auto AS = getAttributes(Record[12]).getFnAttributes();
2931     NewGV->setAttributes(AS);
2932   }
2933 
2934   if (Record.size() > 13) {
2935     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
2936   }
2937   inferDSOLocal(NewGV);
2938 
2939   return Error::success();
2940 }
2941 
2942 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
2943   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
2944   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
2945   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
2946   // v2: [strtab_offset, strtab_size, v1]
2947   StringRef Name;
2948   std::tie(Name, Record) = readNameFromStrtab(Record);
2949 
2950   if (Record.size() < 8)
2951     return error("Invalid record");
2952   Type *Ty = getTypeByID(Record[0]);
2953   if (!Ty)
2954     return error("Invalid record");
2955   if (auto *PTy = dyn_cast<PointerType>(Ty))
2956     Ty = PTy->getElementType();
2957   auto *FTy = dyn_cast<FunctionType>(Ty);
2958   if (!FTy)
2959     return error("Invalid type for value");
2960   auto CC = static_cast<CallingConv::ID>(Record[1]);
2961   if (CC & ~CallingConv::MaxID)
2962     return error("Invalid calling convention ID");
2963 
2964   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
2965   if (Record.size() > 16)
2966     AddrSpace = Record[16];
2967 
2968   Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
2969                                     AddrSpace, Name, TheModule);
2970 
2971   Func->setCallingConv(CC);
2972   bool isProto = Record[2];
2973   uint64_t RawLinkage = Record[3];
2974   Func->setLinkage(getDecodedLinkage(RawLinkage));
2975   Func->setAttributes(getAttributes(Record[4]));
2976 
2977   unsigned Alignment;
2978   if (Error Err = parseAlignmentValue(Record[5], Alignment))
2979     return Err;
2980   Func->setAlignment(Alignment);
2981   if (Record[6]) {
2982     if (Record[6] - 1 >= SectionTable.size())
2983       return error("Invalid ID");
2984     Func->setSection(SectionTable[Record[6] - 1]);
2985   }
2986   // Local linkage must have default visibility.
2987   if (!Func->hasLocalLinkage())
2988     // FIXME: Change to an error if non-default in 4.0.
2989     Func->setVisibility(getDecodedVisibility(Record[7]));
2990   if (Record.size() > 8 && Record[8]) {
2991     if (Record[8] - 1 >= GCTable.size())
2992       return error("Invalid ID");
2993     Func->setGC(GCTable[Record[8] - 1]);
2994   }
2995   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
2996   if (Record.size() > 9)
2997     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
2998   Func->setUnnamedAddr(UnnamedAddr);
2999   if (Record.size() > 10 && Record[10] != 0)
3000     FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1));
3001 
3002   if (Record.size() > 11)
3003     Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3004   else
3005     upgradeDLLImportExportLinkage(Func, RawLinkage);
3006 
3007   if (Record.size() > 12) {
3008     if (unsigned ComdatID = Record[12]) {
3009       if (ComdatID > ComdatList.size())
3010         return error("Invalid function comdat ID");
3011       Func->setComdat(ComdatList[ComdatID - 1]);
3012     }
3013   } else if (hasImplicitComdat(RawLinkage)) {
3014     Func->setComdat(reinterpret_cast<Comdat *>(1));
3015   }
3016 
3017   if (Record.size() > 13 && Record[13] != 0)
3018     FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1));
3019 
3020   if (Record.size() > 14 && Record[14] != 0)
3021     FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
3022 
3023   if (Record.size() > 15) {
3024     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3025   }
3026   inferDSOLocal(Func);
3027 
3028   ValueList.push_back(Func);
3029 
3030   // If this is a function with a body, remember the prototype we are
3031   // creating now, so that we can match up the body with them later.
3032   if (!isProto) {
3033     Func->setIsMaterializable(true);
3034     FunctionsWithBodies.push_back(Func);
3035     DeferredFunctionInfo[Func] = 0;
3036   }
3037   return Error::success();
3038 }
3039 
3040 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3041     unsigned BitCode, ArrayRef<uint64_t> Record) {
3042   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3043   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3044   // dllstorageclass, threadlocal, unnamed_addr,
3045   // preemption specifier] (name in VST)
3046   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3047   // visibility, dllstorageclass, threadlocal, unnamed_addr,
3048   // preemption specifier] (name in VST)
3049   // v2: [strtab_offset, strtab_size, v1]
3050   StringRef Name;
3051   std::tie(Name, Record) = readNameFromStrtab(Record);
3052 
3053   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3054   if (Record.size() < (3 + (unsigned)NewRecord))
3055     return error("Invalid record");
3056   unsigned OpNum = 0;
3057   Type *Ty = getTypeByID(Record[OpNum++]);
3058   if (!Ty)
3059     return error("Invalid record");
3060 
3061   unsigned AddrSpace;
3062   if (!NewRecord) {
3063     auto *PTy = dyn_cast<PointerType>(Ty);
3064     if (!PTy)
3065       return error("Invalid type for value");
3066     Ty = PTy->getElementType();
3067     AddrSpace = PTy->getAddressSpace();
3068   } else {
3069     AddrSpace = Record[OpNum++];
3070   }
3071 
3072   auto Val = Record[OpNum++];
3073   auto Linkage = Record[OpNum++];
3074   GlobalIndirectSymbol *NewGA;
3075   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3076       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3077     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3078                                 TheModule);
3079   else
3080     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3081                                 nullptr, TheModule);
3082   // Old bitcode files didn't have visibility field.
3083   // Local linkage must have default visibility.
3084   if (OpNum != Record.size()) {
3085     auto VisInd = OpNum++;
3086     if (!NewGA->hasLocalLinkage())
3087       // FIXME: Change to an error if non-default in 4.0.
3088       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3089   }
3090   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3091       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
3092     if (OpNum != Record.size())
3093       NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3094     else
3095       upgradeDLLImportExportLinkage(NewGA, Linkage);
3096     if (OpNum != Record.size())
3097       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3098     if (OpNum != Record.size())
3099       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3100   }
3101   if (OpNum != Record.size())
3102     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3103   inferDSOLocal(NewGA);
3104 
3105   ValueList.push_back(NewGA);
3106   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3107   return Error::success();
3108 }
3109 
3110 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3111                                  bool ShouldLazyLoadMetadata) {
3112   if (ResumeBit)
3113     Stream.JumpToBit(ResumeBit);
3114   else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3115     return error("Invalid record");
3116 
3117   SmallVector<uint64_t, 64> Record;
3118 
3119   // Read all the records for this module.
3120   while (true) {
3121     BitstreamEntry Entry = Stream.advance();
3122 
3123     switch (Entry.Kind) {
3124     case BitstreamEntry::Error:
3125       return error("Malformed block");
3126     case BitstreamEntry::EndBlock:
3127       return globalCleanup();
3128 
3129     case BitstreamEntry::SubBlock:
3130       switch (Entry.ID) {
3131       default:  // Skip unknown content.
3132         if (Stream.SkipBlock())
3133           return error("Invalid record");
3134         break;
3135       case bitc::BLOCKINFO_BLOCK_ID:
3136         if (readBlockInfo())
3137           return error("Malformed block");
3138         break;
3139       case bitc::PARAMATTR_BLOCK_ID:
3140         if (Error Err = parseAttributeBlock())
3141           return Err;
3142         break;
3143       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3144         if (Error Err = parseAttributeGroupBlock())
3145           return Err;
3146         break;
3147       case bitc::TYPE_BLOCK_ID_NEW:
3148         if (Error Err = parseTypeTable())
3149           return Err;
3150         break;
3151       case bitc::VALUE_SYMTAB_BLOCK_ID:
3152         if (!SeenValueSymbolTable) {
3153           // Either this is an old form VST without function index and an
3154           // associated VST forward declaration record (which would have caused
3155           // the VST to be jumped to and parsed before it was encountered
3156           // normally in the stream), or there were no function blocks to
3157           // trigger an earlier parsing of the VST.
3158           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3159           if (Error Err = parseValueSymbolTable())
3160             return Err;
3161           SeenValueSymbolTable = true;
3162         } else {
3163           // We must have had a VST forward declaration record, which caused
3164           // the parser to jump to and parse the VST earlier.
3165           assert(VSTOffset > 0);
3166           if (Stream.SkipBlock())
3167             return error("Invalid record");
3168         }
3169         break;
3170       case bitc::CONSTANTS_BLOCK_ID:
3171         if (Error Err = parseConstants())
3172           return Err;
3173         if (Error Err = resolveGlobalAndIndirectSymbolInits())
3174           return Err;
3175         break;
3176       case bitc::METADATA_BLOCK_ID:
3177         if (ShouldLazyLoadMetadata) {
3178           if (Error Err = rememberAndSkipMetadata())
3179             return Err;
3180           break;
3181         }
3182         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3183         if (Error Err = MDLoader->parseModuleMetadata())
3184           return Err;
3185         break;
3186       case bitc::METADATA_KIND_BLOCK_ID:
3187         if (Error Err = MDLoader->parseMetadataKinds())
3188           return Err;
3189         break;
3190       case bitc::FUNCTION_BLOCK_ID:
3191         // If this is the first function body we've seen, reverse the
3192         // FunctionsWithBodies list.
3193         if (!SeenFirstFunctionBody) {
3194           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3195           if (Error Err = globalCleanup())
3196             return Err;
3197           SeenFirstFunctionBody = true;
3198         }
3199 
3200         if (VSTOffset > 0) {
3201           // If we have a VST forward declaration record, make sure we
3202           // parse the VST now if we haven't already. It is needed to
3203           // set up the DeferredFunctionInfo vector for lazy reading.
3204           if (!SeenValueSymbolTable) {
3205             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3206               return Err;
3207             SeenValueSymbolTable = true;
3208             // Fall through so that we record the NextUnreadBit below.
3209             // This is necessary in case we have an anonymous function that
3210             // is later materialized. Since it will not have a VST entry we
3211             // need to fall back to the lazy parse to find its offset.
3212           } else {
3213             // If we have a VST forward declaration record, but have already
3214             // parsed the VST (just above, when the first function body was
3215             // encountered here), then we are resuming the parse after
3216             // materializing functions. The ResumeBit points to the
3217             // start of the last function block recorded in the
3218             // DeferredFunctionInfo map. Skip it.
3219             if (Stream.SkipBlock())
3220               return error("Invalid record");
3221             continue;
3222           }
3223         }
3224 
3225         // Support older bitcode files that did not have the function
3226         // index in the VST, nor a VST forward declaration record, as
3227         // well as anonymous functions that do not have VST entries.
3228         // Build the DeferredFunctionInfo vector on the fly.
3229         if (Error Err = rememberAndSkipFunctionBody())
3230           return Err;
3231 
3232         // Suspend parsing when we reach the function bodies. Subsequent
3233         // materialization calls will resume it when necessary. If the bitcode
3234         // file is old, the symbol table will be at the end instead and will not
3235         // have been seen yet. In this case, just finish the parse now.
3236         if (SeenValueSymbolTable) {
3237           NextUnreadBit = Stream.GetCurrentBitNo();
3238           // After the VST has been parsed, we need to make sure intrinsic name
3239           // are auto-upgraded.
3240           return globalCleanup();
3241         }
3242         break;
3243       case bitc::USELIST_BLOCK_ID:
3244         if (Error Err = parseUseLists())
3245           return Err;
3246         break;
3247       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3248         if (Error Err = parseOperandBundleTags())
3249           return Err;
3250         break;
3251       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
3252         if (Error Err = parseSyncScopeNames())
3253           return Err;
3254         break;
3255       }
3256       continue;
3257 
3258     case BitstreamEntry::Record:
3259       // The interesting case.
3260       break;
3261     }
3262 
3263     // Read a record.
3264     auto BitCode = Stream.readRecord(Entry.ID, Record);
3265     switch (BitCode) {
3266     default: break;  // Default behavior, ignore unknown content.
3267     case bitc::MODULE_CODE_VERSION: {
3268       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3269       if (!VersionOrErr)
3270         return VersionOrErr.takeError();
3271       UseRelativeIDs = *VersionOrErr >= 1;
3272       break;
3273     }
3274     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3275       std::string S;
3276       if (convertToString(Record, 0, S))
3277         return error("Invalid record");
3278       TheModule->setTargetTriple(S);
3279       break;
3280     }
3281     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3282       std::string S;
3283       if (convertToString(Record, 0, S))
3284         return error("Invalid record");
3285       TheModule->setDataLayout(S);
3286       break;
3287     }
3288     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3289       std::string S;
3290       if (convertToString(Record, 0, S))
3291         return error("Invalid record");
3292       TheModule->setModuleInlineAsm(S);
3293       break;
3294     }
3295     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3296       // FIXME: Remove in 4.0.
3297       std::string S;
3298       if (convertToString(Record, 0, S))
3299         return error("Invalid record");
3300       // Ignore value.
3301       break;
3302     }
3303     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3304       std::string S;
3305       if (convertToString(Record, 0, S))
3306         return error("Invalid record");
3307       SectionTable.push_back(S);
3308       break;
3309     }
3310     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3311       std::string S;
3312       if (convertToString(Record, 0, S))
3313         return error("Invalid record");
3314       GCTable.push_back(S);
3315       break;
3316     }
3317     case bitc::MODULE_CODE_COMDAT:
3318       if (Error Err = parseComdatRecord(Record))
3319         return Err;
3320       break;
3321     case bitc::MODULE_CODE_GLOBALVAR:
3322       if (Error Err = parseGlobalVarRecord(Record))
3323         return Err;
3324       break;
3325     case bitc::MODULE_CODE_FUNCTION:
3326       if (Error Err = parseFunctionRecord(Record))
3327         return Err;
3328       break;
3329     case bitc::MODULE_CODE_IFUNC:
3330     case bitc::MODULE_CODE_ALIAS:
3331     case bitc::MODULE_CODE_ALIAS_OLD:
3332       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
3333         return Err;
3334       break;
3335     /// MODULE_CODE_VSTOFFSET: [offset]
3336     case bitc::MODULE_CODE_VSTOFFSET:
3337       if (Record.size() < 1)
3338         return error("Invalid record");
3339       // Note that we subtract 1 here because the offset is relative to one word
3340       // before the start of the identification or module block, which was
3341       // historically always the start of the regular bitcode header.
3342       VSTOffset = Record[0] - 1;
3343       break;
3344     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3345     case bitc::MODULE_CODE_SOURCE_FILENAME:
3346       SmallString<128> ValueName;
3347       if (convertToString(Record, 0, ValueName))
3348         return error("Invalid record");
3349       TheModule->setSourceFileName(ValueName);
3350       break;
3351     }
3352     Record.clear();
3353   }
3354 }
3355 
3356 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3357                                       bool IsImporting) {
3358   TheModule = M;
3359   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3360                             [&](unsigned ID) { return getTypeByID(ID); });
3361   return parseModule(0, ShouldLazyLoadMetadata);
3362 }
3363 
3364 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3365   if (!isa<PointerType>(PtrType))
3366     return error("Load/Store operand is not a pointer type");
3367   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
3368 
3369   if (ValType && ValType != ElemType)
3370     return error("Explicit load/store type does not match pointee "
3371                  "type of pointer operand");
3372   if (!PointerType::isLoadableOrStorableType(ElemType))
3373     return error("Cannot load/store from pointer");
3374   return Error::success();
3375 }
3376 
3377 /// Lazily parse the specified function body block.
3378 Error BitcodeReader::parseFunctionBody(Function *F) {
3379   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3380     return error("Invalid record");
3381 
3382   // Unexpected unresolved metadata when parsing function.
3383   if (MDLoader->hasFwdRefs())
3384     return error("Invalid function metadata: incoming forward references");
3385 
3386   InstructionList.clear();
3387   unsigned ModuleValueListSize = ValueList.size();
3388   unsigned ModuleMDLoaderSize = MDLoader->size();
3389 
3390   // Add all the function arguments to the value table.
3391   for (Argument &I : F->args())
3392     ValueList.push_back(&I);
3393 
3394   unsigned NextValueNo = ValueList.size();
3395   BasicBlock *CurBB = nullptr;
3396   unsigned CurBBNo = 0;
3397 
3398   DebugLoc LastLoc;
3399   auto getLastInstruction = [&]() -> Instruction * {
3400     if (CurBB && !CurBB->empty())
3401       return &CurBB->back();
3402     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3403              !FunctionBBs[CurBBNo - 1]->empty())
3404       return &FunctionBBs[CurBBNo - 1]->back();
3405     return nullptr;
3406   };
3407 
3408   std::vector<OperandBundleDef> OperandBundles;
3409 
3410   // Read all the records.
3411   SmallVector<uint64_t, 64> Record;
3412 
3413   while (true) {
3414     BitstreamEntry Entry = Stream.advance();
3415 
3416     switch (Entry.Kind) {
3417     case BitstreamEntry::Error:
3418       return error("Malformed block");
3419     case BitstreamEntry::EndBlock:
3420       goto OutOfRecordLoop;
3421 
3422     case BitstreamEntry::SubBlock:
3423       switch (Entry.ID) {
3424       default:  // Skip unknown content.
3425         if (Stream.SkipBlock())
3426           return error("Invalid record");
3427         break;
3428       case bitc::CONSTANTS_BLOCK_ID:
3429         if (Error Err = parseConstants())
3430           return Err;
3431         NextValueNo = ValueList.size();
3432         break;
3433       case bitc::VALUE_SYMTAB_BLOCK_ID:
3434         if (Error Err = parseValueSymbolTable())
3435           return Err;
3436         break;
3437       case bitc::METADATA_ATTACHMENT_ID:
3438         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
3439           return Err;
3440         break;
3441       case bitc::METADATA_BLOCK_ID:
3442         assert(DeferredMetadataInfo.empty() &&
3443                "Must read all module-level metadata before function-level");
3444         if (Error Err = MDLoader->parseFunctionMetadata())
3445           return Err;
3446         break;
3447       case bitc::USELIST_BLOCK_ID:
3448         if (Error Err = parseUseLists())
3449           return Err;
3450         break;
3451       }
3452       continue;
3453 
3454     case BitstreamEntry::Record:
3455       // The interesting case.
3456       break;
3457     }
3458 
3459     // Read a record.
3460     Record.clear();
3461     Instruction *I = nullptr;
3462     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
3463     switch (BitCode) {
3464     default: // Default behavior: reject
3465       return error("Invalid value");
3466     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
3467       if (Record.size() < 1 || Record[0] == 0)
3468         return error("Invalid record");
3469       // Create all the basic blocks for the function.
3470       FunctionBBs.resize(Record[0]);
3471 
3472       // See if anything took the address of blocks in this function.
3473       auto BBFRI = BasicBlockFwdRefs.find(F);
3474       if (BBFRI == BasicBlockFwdRefs.end()) {
3475         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
3476           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
3477       } else {
3478         auto &BBRefs = BBFRI->second;
3479         // Check for invalid basic block references.
3480         if (BBRefs.size() > FunctionBBs.size())
3481           return error("Invalid ID");
3482         assert(!BBRefs.empty() && "Unexpected empty array");
3483         assert(!BBRefs.front() && "Invalid reference to entry block");
3484         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
3485              ++I)
3486           if (I < RE && BBRefs[I]) {
3487             BBRefs[I]->insertInto(F);
3488             FunctionBBs[I] = BBRefs[I];
3489           } else {
3490             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
3491           }
3492 
3493         // Erase from the table.
3494         BasicBlockFwdRefs.erase(BBFRI);
3495       }
3496 
3497       CurBB = FunctionBBs[0];
3498       continue;
3499     }
3500 
3501     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
3502       // This record indicates that the last instruction is at the same
3503       // location as the previous instruction with a location.
3504       I = getLastInstruction();
3505 
3506       if (!I)
3507         return error("Invalid record");
3508       I->setDebugLoc(LastLoc);
3509       I = nullptr;
3510       continue;
3511 
3512     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
3513       I = getLastInstruction();
3514       if (!I || Record.size() < 4)
3515         return error("Invalid record");
3516 
3517       unsigned Line = Record[0], Col = Record[1];
3518       unsigned ScopeID = Record[2], IAID = Record[3];
3519       bool isImplicitCode = Record.size() == 5 && Record[4];
3520 
3521       MDNode *Scope = nullptr, *IA = nullptr;
3522       if (ScopeID) {
3523         Scope = MDLoader->getMDNodeFwdRefOrNull(ScopeID - 1);
3524         if (!Scope)
3525           return error("Invalid record");
3526       }
3527       if (IAID) {
3528         IA = MDLoader->getMDNodeFwdRefOrNull(IAID - 1);
3529         if (!IA)
3530           return error("Invalid record");
3531       }
3532       LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode);
3533       I->setDebugLoc(LastLoc);
3534       I = nullptr;
3535       continue;
3536     }
3537 
3538     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
3539       unsigned OpNum = 0;
3540       Value *LHS, *RHS;
3541       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3542           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
3543           OpNum+1 > Record.size())
3544         return error("Invalid record");
3545 
3546       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
3547       if (Opc == -1)
3548         return error("Invalid record");
3549       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3550       InstructionList.push_back(I);
3551       if (OpNum < Record.size()) {
3552         if (Opc == Instruction::Add ||
3553             Opc == Instruction::Sub ||
3554             Opc == Instruction::Mul ||
3555             Opc == Instruction::Shl) {
3556           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3557             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
3558           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3559             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
3560         } else if (Opc == Instruction::SDiv ||
3561                    Opc == Instruction::UDiv ||
3562                    Opc == Instruction::LShr ||
3563                    Opc == Instruction::AShr) {
3564           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
3565             cast<BinaryOperator>(I)->setIsExact(true);
3566         } else if (isa<FPMathOperator>(I)) {
3567           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3568           if (FMF.any())
3569             I->setFastMathFlags(FMF);
3570         }
3571 
3572       }
3573       break;
3574     }
3575     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
3576       unsigned OpNum = 0;
3577       Value *Op;
3578       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
3579           OpNum+2 != Record.size())
3580         return error("Invalid record");
3581 
3582       Type *ResTy = getTypeByID(Record[OpNum]);
3583       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
3584       if (Opc == -1 || !ResTy)
3585         return error("Invalid record");
3586       Instruction *Temp = nullptr;
3587       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
3588         if (Temp) {
3589           InstructionList.push_back(Temp);
3590           CurBB->getInstList().push_back(Temp);
3591         }
3592       } else {
3593         auto CastOp = (Instruction::CastOps)Opc;
3594         if (!CastInst::castIsValid(CastOp, Op, ResTy))
3595           return error("Invalid cast");
3596         I = CastInst::Create(CastOp, Op, ResTy);
3597       }
3598       InstructionList.push_back(I);
3599       break;
3600     }
3601     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
3602     case bitc::FUNC_CODE_INST_GEP_OLD:
3603     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
3604       unsigned OpNum = 0;
3605 
3606       Type *Ty;
3607       bool InBounds;
3608 
3609       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
3610         InBounds = Record[OpNum++];
3611         Ty = getTypeByID(Record[OpNum++]);
3612       } else {
3613         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
3614         Ty = nullptr;
3615       }
3616 
3617       Value *BasePtr;
3618       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
3619         return error("Invalid record");
3620 
3621       if (!Ty)
3622         Ty = cast<PointerType>(BasePtr->getType()->getScalarType())
3623                  ->getElementType();
3624       else if (Ty !=
3625                cast<PointerType>(BasePtr->getType()->getScalarType())
3626                    ->getElementType())
3627         return error(
3628             "Explicit gep type does not match pointee type of pointer operand");
3629 
3630       SmallVector<Value*, 16> GEPIdx;
3631       while (OpNum != Record.size()) {
3632         Value *Op;
3633         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3634           return error("Invalid record");
3635         GEPIdx.push_back(Op);
3636       }
3637 
3638       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
3639 
3640       InstructionList.push_back(I);
3641       if (InBounds)
3642         cast<GetElementPtrInst>(I)->setIsInBounds(true);
3643       break;
3644     }
3645 
3646     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
3647                                        // EXTRACTVAL: [opty, opval, n x indices]
3648       unsigned OpNum = 0;
3649       Value *Agg;
3650       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
3651         return error("Invalid record");
3652 
3653       unsigned RecSize = Record.size();
3654       if (OpNum == RecSize)
3655         return error("EXTRACTVAL: Invalid instruction with 0 indices");
3656 
3657       SmallVector<unsigned, 4> EXTRACTVALIdx;
3658       Type *CurTy = Agg->getType();
3659       for (; OpNum != RecSize; ++OpNum) {
3660         bool IsArray = CurTy->isArrayTy();
3661         bool IsStruct = CurTy->isStructTy();
3662         uint64_t Index = Record[OpNum];
3663 
3664         if (!IsStruct && !IsArray)
3665           return error("EXTRACTVAL: Invalid type");
3666         if ((unsigned)Index != Index)
3667           return error("Invalid value");
3668         if (IsStruct && Index >= CurTy->subtypes().size())
3669           return error("EXTRACTVAL: Invalid struct index");
3670         if (IsArray && Index >= CurTy->getArrayNumElements())
3671           return error("EXTRACTVAL: Invalid array index");
3672         EXTRACTVALIdx.push_back((unsigned)Index);
3673 
3674         if (IsStruct)
3675           CurTy = CurTy->subtypes()[Index];
3676         else
3677           CurTy = CurTy->subtypes()[0];
3678       }
3679 
3680       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
3681       InstructionList.push_back(I);
3682       break;
3683     }
3684 
3685     case bitc::FUNC_CODE_INST_INSERTVAL: {
3686                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
3687       unsigned OpNum = 0;
3688       Value *Agg;
3689       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
3690         return error("Invalid record");
3691       Value *Val;
3692       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
3693         return error("Invalid record");
3694 
3695       unsigned RecSize = Record.size();
3696       if (OpNum == RecSize)
3697         return error("INSERTVAL: Invalid instruction with 0 indices");
3698 
3699       SmallVector<unsigned, 4> INSERTVALIdx;
3700       Type *CurTy = Agg->getType();
3701       for (; OpNum != RecSize; ++OpNum) {
3702         bool IsArray = CurTy->isArrayTy();
3703         bool IsStruct = CurTy->isStructTy();
3704         uint64_t Index = Record[OpNum];
3705 
3706         if (!IsStruct && !IsArray)
3707           return error("INSERTVAL: Invalid type");
3708         if ((unsigned)Index != Index)
3709           return error("Invalid value");
3710         if (IsStruct && Index >= CurTy->subtypes().size())
3711           return error("INSERTVAL: Invalid struct index");
3712         if (IsArray && Index >= CurTy->getArrayNumElements())
3713           return error("INSERTVAL: Invalid array index");
3714 
3715         INSERTVALIdx.push_back((unsigned)Index);
3716         if (IsStruct)
3717           CurTy = CurTy->subtypes()[Index];
3718         else
3719           CurTy = CurTy->subtypes()[0];
3720       }
3721 
3722       if (CurTy != Val->getType())
3723         return error("Inserted value type doesn't match aggregate type");
3724 
3725       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
3726       InstructionList.push_back(I);
3727       break;
3728     }
3729 
3730     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
3731       // obsolete form of select
3732       // handles select i1 ... in old bitcode
3733       unsigned OpNum = 0;
3734       Value *TrueVal, *FalseVal, *Cond;
3735       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
3736           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
3737           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
3738         return error("Invalid record");
3739 
3740       I = SelectInst::Create(Cond, TrueVal, FalseVal);
3741       InstructionList.push_back(I);
3742       break;
3743     }
3744 
3745     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
3746       // new form of select
3747       // handles select i1 or select [N x i1]
3748       unsigned OpNum = 0;
3749       Value *TrueVal, *FalseVal, *Cond;
3750       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
3751           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
3752           getValueTypePair(Record, OpNum, NextValueNo, Cond))
3753         return error("Invalid record");
3754 
3755       // select condition can be either i1 or [N x i1]
3756       if (VectorType* vector_type =
3757           dyn_cast<VectorType>(Cond->getType())) {
3758         // expect <n x i1>
3759         if (vector_type->getElementType() != Type::getInt1Ty(Context))
3760           return error("Invalid type for value");
3761       } else {
3762         // expect i1
3763         if (Cond->getType() != Type::getInt1Ty(Context))
3764           return error("Invalid type for value");
3765       }
3766 
3767       I = SelectInst::Create(Cond, TrueVal, FalseVal);
3768       InstructionList.push_back(I);
3769       break;
3770     }
3771 
3772     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
3773       unsigned OpNum = 0;
3774       Value *Vec, *Idx;
3775       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
3776           getValueTypePair(Record, OpNum, NextValueNo, Idx))
3777         return error("Invalid record");
3778       if (!Vec->getType()->isVectorTy())
3779         return error("Invalid type for value");
3780       I = ExtractElementInst::Create(Vec, Idx);
3781       InstructionList.push_back(I);
3782       break;
3783     }
3784 
3785     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
3786       unsigned OpNum = 0;
3787       Value *Vec, *Elt, *Idx;
3788       if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
3789         return error("Invalid record");
3790       if (!Vec->getType()->isVectorTy())
3791         return error("Invalid type for value");
3792       if (popValue(Record, OpNum, NextValueNo,
3793                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
3794           getValueTypePair(Record, OpNum, NextValueNo, Idx))
3795         return error("Invalid record");
3796       I = InsertElementInst::Create(Vec, Elt, Idx);
3797       InstructionList.push_back(I);
3798       break;
3799     }
3800 
3801     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
3802       unsigned OpNum = 0;
3803       Value *Vec1, *Vec2, *Mask;
3804       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
3805           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
3806         return error("Invalid record");
3807 
3808       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
3809         return error("Invalid record");
3810       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
3811         return error("Invalid type for value");
3812       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
3813       InstructionList.push_back(I);
3814       break;
3815     }
3816 
3817     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
3818       // Old form of ICmp/FCmp returning bool
3819       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
3820       // both legal on vectors but had different behaviour.
3821     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
3822       // FCmp/ICmp returning bool or vector of bool
3823 
3824       unsigned OpNum = 0;
3825       Value *LHS, *RHS;
3826       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3827           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
3828         return error("Invalid record");
3829 
3830       unsigned PredVal = Record[OpNum];
3831       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
3832       FastMathFlags FMF;
3833       if (IsFP && Record.size() > OpNum+1)
3834         FMF = getDecodedFastMathFlags(Record[++OpNum]);
3835 
3836       if (OpNum+1 != Record.size())
3837         return error("Invalid record");
3838 
3839       if (LHS->getType()->isFPOrFPVectorTy())
3840         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
3841       else
3842         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
3843 
3844       if (FMF.any())
3845         I->setFastMathFlags(FMF);
3846       InstructionList.push_back(I);
3847       break;
3848     }
3849 
3850     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
3851       {
3852         unsigned Size = Record.size();
3853         if (Size == 0) {
3854           I = ReturnInst::Create(Context);
3855           InstructionList.push_back(I);
3856           break;
3857         }
3858 
3859         unsigned OpNum = 0;
3860         Value *Op = nullptr;
3861         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3862           return error("Invalid record");
3863         if (OpNum != Record.size())
3864           return error("Invalid record");
3865 
3866         I = ReturnInst::Create(Context, Op);
3867         InstructionList.push_back(I);
3868         break;
3869       }
3870     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
3871       if (Record.size() != 1 && Record.size() != 3)
3872         return error("Invalid record");
3873       BasicBlock *TrueDest = getBasicBlock(Record[0]);
3874       if (!TrueDest)
3875         return error("Invalid record");
3876 
3877       if (Record.size() == 1) {
3878         I = BranchInst::Create(TrueDest);
3879         InstructionList.push_back(I);
3880       }
3881       else {
3882         BasicBlock *FalseDest = getBasicBlock(Record[1]);
3883         Value *Cond = getValue(Record, 2, NextValueNo,
3884                                Type::getInt1Ty(Context));
3885         if (!FalseDest || !Cond)
3886           return error("Invalid record");
3887         I = BranchInst::Create(TrueDest, FalseDest, Cond);
3888         InstructionList.push_back(I);
3889       }
3890       break;
3891     }
3892     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
3893       if (Record.size() != 1 && Record.size() != 2)
3894         return error("Invalid record");
3895       unsigned Idx = 0;
3896       Value *CleanupPad =
3897           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3898       if (!CleanupPad)
3899         return error("Invalid record");
3900       BasicBlock *UnwindDest = nullptr;
3901       if (Record.size() == 2) {
3902         UnwindDest = getBasicBlock(Record[Idx++]);
3903         if (!UnwindDest)
3904           return error("Invalid record");
3905       }
3906 
3907       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
3908       InstructionList.push_back(I);
3909       break;
3910     }
3911     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
3912       if (Record.size() != 2)
3913         return error("Invalid record");
3914       unsigned Idx = 0;
3915       Value *CatchPad =
3916           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3917       if (!CatchPad)
3918         return error("Invalid record");
3919       BasicBlock *BB = getBasicBlock(Record[Idx++]);
3920       if (!BB)
3921         return error("Invalid record");
3922 
3923       I = CatchReturnInst::Create(CatchPad, BB);
3924       InstructionList.push_back(I);
3925       break;
3926     }
3927     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
3928       // We must have, at minimum, the outer scope and the number of arguments.
3929       if (Record.size() < 2)
3930         return error("Invalid record");
3931 
3932       unsigned Idx = 0;
3933 
3934       Value *ParentPad =
3935           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3936 
3937       unsigned NumHandlers = Record[Idx++];
3938 
3939       SmallVector<BasicBlock *, 2> Handlers;
3940       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
3941         BasicBlock *BB = getBasicBlock(Record[Idx++]);
3942         if (!BB)
3943           return error("Invalid record");
3944         Handlers.push_back(BB);
3945       }
3946 
3947       BasicBlock *UnwindDest = nullptr;
3948       if (Idx + 1 == Record.size()) {
3949         UnwindDest = getBasicBlock(Record[Idx++]);
3950         if (!UnwindDest)
3951           return error("Invalid record");
3952       }
3953 
3954       if (Record.size() != Idx)
3955         return error("Invalid record");
3956 
3957       auto *CatchSwitch =
3958           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
3959       for (BasicBlock *Handler : Handlers)
3960         CatchSwitch->addHandler(Handler);
3961       I = CatchSwitch;
3962       InstructionList.push_back(I);
3963       break;
3964     }
3965     case bitc::FUNC_CODE_INST_CATCHPAD:
3966     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
3967       // We must have, at minimum, the outer scope and the number of arguments.
3968       if (Record.size() < 2)
3969         return error("Invalid record");
3970 
3971       unsigned Idx = 0;
3972 
3973       Value *ParentPad =
3974           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3975 
3976       unsigned NumArgOperands = Record[Idx++];
3977 
3978       SmallVector<Value *, 2> Args;
3979       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
3980         Value *Val;
3981         if (getValueTypePair(Record, Idx, NextValueNo, Val))
3982           return error("Invalid record");
3983         Args.push_back(Val);
3984       }
3985 
3986       if (Record.size() != Idx)
3987         return error("Invalid record");
3988 
3989       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
3990         I = CleanupPadInst::Create(ParentPad, Args);
3991       else
3992         I = CatchPadInst::Create(ParentPad, Args);
3993       InstructionList.push_back(I);
3994       break;
3995     }
3996     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
3997       // Check magic
3998       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
3999         // "New" SwitchInst format with case ranges. The changes to write this
4000         // format were reverted but we still recognize bitcode that uses it.
4001         // Hopefully someday we will have support for case ranges and can use
4002         // this format again.
4003 
4004         Type *OpTy = getTypeByID(Record[1]);
4005         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4006 
4007         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4008         BasicBlock *Default = getBasicBlock(Record[3]);
4009         if (!OpTy || !Cond || !Default)
4010           return error("Invalid record");
4011 
4012         unsigned NumCases = Record[4];
4013 
4014         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4015         InstructionList.push_back(SI);
4016 
4017         unsigned CurIdx = 5;
4018         for (unsigned i = 0; i != NumCases; ++i) {
4019           SmallVector<ConstantInt*, 1> CaseVals;
4020           unsigned NumItems = Record[CurIdx++];
4021           for (unsigned ci = 0; ci != NumItems; ++ci) {
4022             bool isSingleNumber = Record[CurIdx++];
4023 
4024             APInt Low;
4025             unsigned ActiveWords = 1;
4026             if (ValueBitWidth > 64)
4027               ActiveWords = Record[CurIdx++];
4028             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4029                                 ValueBitWidth);
4030             CurIdx += ActiveWords;
4031 
4032             if (!isSingleNumber) {
4033               ActiveWords = 1;
4034               if (ValueBitWidth > 64)
4035                 ActiveWords = Record[CurIdx++];
4036               APInt High = readWideAPInt(
4037                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4038               CurIdx += ActiveWords;
4039 
4040               // FIXME: It is not clear whether values in the range should be
4041               // compared as signed or unsigned values. The partially
4042               // implemented changes that used this format in the past used
4043               // unsigned comparisons.
4044               for ( ; Low.ule(High); ++Low)
4045                 CaseVals.push_back(ConstantInt::get(Context, Low));
4046             } else
4047               CaseVals.push_back(ConstantInt::get(Context, Low));
4048           }
4049           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4050           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4051                  cve = CaseVals.end(); cvi != cve; ++cvi)
4052             SI->addCase(*cvi, DestBB);
4053         }
4054         I = SI;
4055         break;
4056       }
4057 
4058       // Old SwitchInst format without case ranges.
4059 
4060       if (Record.size() < 3 || (Record.size() & 1) == 0)
4061         return error("Invalid record");
4062       Type *OpTy = getTypeByID(Record[0]);
4063       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4064       BasicBlock *Default = getBasicBlock(Record[2]);
4065       if (!OpTy || !Cond || !Default)
4066         return error("Invalid record");
4067       unsigned NumCases = (Record.size()-3)/2;
4068       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4069       InstructionList.push_back(SI);
4070       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4071         ConstantInt *CaseVal =
4072           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4073         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4074         if (!CaseVal || !DestBB) {
4075           delete SI;
4076           return error("Invalid record");
4077         }
4078         SI->addCase(CaseVal, DestBB);
4079       }
4080       I = SI;
4081       break;
4082     }
4083     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4084       if (Record.size() < 2)
4085         return error("Invalid record");
4086       Type *OpTy = getTypeByID(Record[0]);
4087       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4088       if (!OpTy || !Address)
4089         return error("Invalid record");
4090       unsigned NumDests = Record.size()-2;
4091       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4092       InstructionList.push_back(IBI);
4093       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4094         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4095           IBI->addDestination(DestBB);
4096         } else {
4097           delete IBI;
4098           return error("Invalid record");
4099         }
4100       }
4101       I = IBI;
4102       break;
4103     }
4104 
4105     case bitc::FUNC_CODE_INST_INVOKE: {
4106       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4107       if (Record.size() < 4)
4108         return error("Invalid record");
4109       unsigned OpNum = 0;
4110       AttributeList PAL = getAttributes(Record[OpNum++]);
4111       unsigned CCInfo = Record[OpNum++];
4112       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4113       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4114 
4115       FunctionType *FTy = nullptr;
4116       if (CCInfo >> 13 & 1 &&
4117           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
4118         return error("Explicit invoke type is not a function type");
4119 
4120       Value *Callee;
4121       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4122         return error("Invalid record");
4123 
4124       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4125       if (!CalleeTy)
4126         return error("Callee is not a pointer");
4127       if (!FTy) {
4128         FTy = dyn_cast<FunctionType>(CalleeTy->getElementType());
4129         if (!FTy)
4130           return error("Callee is not of pointer to function type");
4131       } else if (CalleeTy->getElementType() != FTy)
4132         return error("Explicit invoke type does not match pointee type of "
4133                      "callee operand");
4134       if (Record.size() < FTy->getNumParams() + OpNum)
4135         return error("Insufficient operands to call");
4136 
4137       SmallVector<Value*, 16> Ops;
4138       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4139         Ops.push_back(getValue(Record, OpNum, NextValueNo,
4140                                FTy->getParamType(i)));
4141         if (!Ops.back())
4142           return error("Invalid record");
4143       }
4144 
4145       if (!FTy->isVarArg()) {
4146         if (Record.size() != OpNum)
4147           return error("Invalid record");
4148       } else {
4149         // Read type/value pairs for varargs params.
4150         while (OpNum != Record.size()) {
4151           Value *Op;
4152           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4153             return error("Invalid record");
4154           Ops.push_back(Op);
4155         }
4156       }
4157 
4158       I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles);
4159       OperandBundles.clear();
4160       InstructionList.push_back(I);
4161       cast<InvokeInst>(I)->setCallingConv(
4162           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4163       cast<InvokeInst>(I)->setAttributes(PAL);
4164       break;
4165     }
4166     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4167       unsigned Idx = 0;
4168       Value *Val = nullptr;
4169       if (getValueTypePair(Record, Idx, NextValueNo, Val))
4170         return error("Invalid record");
4171       I = ResumeInst::Create(Val);
4172       InstructionList.push_back(I);
4173       break;
4174     }
4175     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4176       I = new UnreachableInst(Context);
4177       InstructionList.push_back(I);
4178       break;
4179     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4180       if (Record.size() < 1 || ((Record.size()-1)&1))
4181         return error("Invalid record");
4182       Type *Ty = getTypeByID(Record[0]);
4183       if (!Ty)
4184         return error("Invalid record");
4185 
4186       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
4187       InstructionList.push_back(PN);
4188 
4189       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
4190         Value *V;
4191         // With the new function encoding, it is possible that operands have
4192         // negative IDs (for forward references).  Use a signed VBR
4193         // representation to keep the encoding small.
4194         if (UseRelativeIDs)
4195           V = getValueSigned(Record, 1+i, NextValueNo, Ty);
4196         else
4197           V = getValue(Record, 1+i, NextValueNo, Ty);
4198         BasicBlock *BB = getBasicBlock(Record[2+i]);
4199         if (!V || !BB)
4200           return error("Invalid record");
4201         PN->addIncoming(V, BB);
4202       }
4203       I = PN;
4204       break;
4205     }
4206 
4207     case bitc::FUNC_CODE_INST_LANDINGPAD:
4208     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4209       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4210       unsigned Idx = 0;
4211       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4212         if (Record.size() < 3)
4213           return error("Invalid record");
4214       } else {
4215         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4216         if (Record.size() < 4)
4217           return error("Invalid record");
4218       }
4219       Type *Ty = getTypeByID(Record[Idx++]);
4220       if (!Ty)
4221         return error("Invalid record");
4222       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4223         Value *PersFn = nullptr;
4224         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4225           return error("Invalid record");
4226 
4227         if (!F->hasPersonalityFn())
4228           F->setPersonalityFn(cast<Constant>(PersFn));
4229         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4230           return error("Personality function mismatch");
4231       }
4232 
4233       bool IsCleanup = !!Record[Idx++];
4234       unsigned NumClauses = Record[Idx++];
4235       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4236       LP->setCleanup(IsCleanup);
4237       for (unsigned J = 0; J != NumClauses; ++J) {
4238         LandingPadInst::ClauseType CT =
4239           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4240         Value *Val;
4241 
4242         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4243           delete LP;
4244           return error("Invalid record");
4245         }
4246 
4247         assert((CT != LandingPadInst::Catch ||
4248                 !isa<ArrayType>(Val->getType())) &&
4249                "Catch clause has a invalid type!");
4250         assert((CT != LandingPadInst::Filter ||
4251                 isa<ArrayType>(Val->getType())) &&
4252                "Filter clause has invalid type!");
4253         LP->addClause(cast<Constant>(Val));
4254       }
4255 
4256       I = LP;
4257       InstructionList.push_back(I);
4258       break;
4259     }
4260 
4261     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4262       if (Record.size() != 4)
4263         return error("Invalid record");
4264       uint64_t AlignRecord = Record[3];
4265       const uint64_t InAllocaMask = uint64_t(1) << 5;
4266       const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
4267       const uint64_t SwiftErrorMask = uint64_t(1) << 7;
4268       const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask |
4269                                 SwiftErrorMask;
4270       bool InAlloca = AlignRecord & InAllocaMask;
4271       bool SwiftError = AlignRecord & SwiftErrorMask;
4272       Type *Ty = getTypeByID(Record[0]);
4273       if ((AlignRecord & ExplicitTypeMask) == 0) {
4274         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4275         if (!PTy)
4276           return error("Old-style alloca with a non-pointer type");
4277         Ty = PTy->getElementType();
4278       }
4279       Type *OpTy = getTypeByID(Record[1]);
4280       Value *Size = getFnValueByID(Record[2], OpTy);
4281       unsigned Align;
4282       if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
4283         return Err;
4284       }
4285       if (!Ty || !Size)
4286         return error("Invalid record");
4287 
4288       // FIXME: Make this an optional field.
4289       const DataLayout &DL = TheModule->getDataLayout();
4290       unsigned AS = DL.getAllocaAddrSpace();
4291 
4292       AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align);
4293       AI->setUsedWithInAlloca(InAlloca);
4294       AI->setSwiftError(SwiftError);
4295       I = AI;
4296       InstructionList.push_back(I);
4297       break;
4298     }
4299     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4300       unsigned OpNum = 0;
4301       Value *Op;
4302       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4303           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4304         return error("Invalid record");
4305 
4306       Type *Ty = nullptr;
4307       if (OpNum + 3 == Record.size())
4308         Ty = getTypeByID(Record[OpNum++]);
4309       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4310         return Err;
4311       if (!Ty)
4312         Ty = cast<PointerType>(Op->getType())->getElementType();
4313 
4314       unsigned Align;
4315       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4316         return Err;
4317       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
4318 
4319       InstructionList.push_back(I);
4320       break;
4321     }
4322     case bitc::FUNC_CODE_INST_LOADATOMIC: {
4323        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
4324       unsigned OpNum = 0;
4325       Value *Op;
4326       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4327           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4328         return error("Invalid record");
4329 
4330       Type *Ty = nullptr;
4331       if (OpNum + 5 == Record.size())
4332         Ty = getTypeByID(Record[OpNum++]);
4333       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4334         return Err;
4335       if (!Ty)
4336         Ty = cast<PointerType>(Op->getType())->getElementType();
4337 
4338       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4339       if (Ordering == AtomicOrdering::NotAtomic ||
4340           Ordering == AtomicOrdering::Release ||
4341           Ordering == AtomicOrdering::AcquireRelease)
4342         return error("Invalid record");
4343       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4344         return error("Invalid record");
4345       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4346 
4347       unsigned Align;
4348       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4349         return Err;
4350       I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SSID);
4351 
4352       InstructionList.push_back(I);
4353       break;
4354     }
4355     case bitc::FUNC_CODE_INST_STORE:
4356     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
4357       unsigned OpNum = 0;
4358       Value *Val, *Ptr;
4359       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4360           (BitCode == bitc::FUNC_CODE_INST_STORE
4361                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4362                : popValue(Record, OpNum, NextValueNo,
4363                           cast<PointerType>(Ptr->getType())->getElementType(),
4364                           Val)) ||
4365           OpNum + 2 != Record.size())
4366         return error("Invalid record");
4367 
4368       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4369         return Err;
4370       unsigned Align;
4371       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4372         return Err;
4373       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align);
4374       InstructionList.push_back(I);
4375       break;
4376     }
4377     case bitc::FUNC_CODE_INST_STOREATOMIC:
4378     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
4379       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
4380       unsigned OpNum = 0;
4381       Value *Val, *Ptr;
4382       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4383           !isa<PointerType>(Ptr->getType()) ||
4384           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
4385                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4386                : popValue(Record, OpNum, NextValueNo,
4387                           cast<PointerType>(Ptr->getType())->getElementType(),
4388                           Val)) ||
4389           OpNum + 4 != Record.size())
4390         return error("Invalid record");
4391 
4392       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4393         return Err;
4394       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4395       if (Ordering == AtomicOrdering::NotAtomic ||
4396           Ordering == AtomicOrdering::Acquire ||
4397           Ordering == AtomicOrdering::AcquireRelease)
4398         return error("Invalid record");
4399       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4400       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4401         return error("Invalid record");
4402 
4403       unsigned Align;
4404       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4405         return Err;
4406       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SSID);
4407       InstructionList.push_back(I);
4408       break;
4409     }
4410     case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
4411     case bitc::FUNC_CODE_INST_CMPXCHG: {
4412       // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid,
4413       //          failureordering?, isweak?]
4414       unsigned OpNum = 0;
4415       Value *Ptr, *Cmp, *New;
4416       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4417           (BitCode == bitc::FUNC_CODE_INST_CMPXCHG
4418                ? getValueTypePair(Record, OpNum, NextValueNo, Cmp)
4419                : popValue(Record, OpNum, NextValueNo,
4420                           cast<PointerType>(Ptr->getType())->getElementType(),
4421                           Cmp)) ||
4422           popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
4423           Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
4424         return error("Invalid record");
4425       AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
4426       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
4427           SuccessOrdering == AtomicOrdering::Unordered)
4428         return error("Invalid record");
4429       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
4430 
4431       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
4432         return Err;
4433       AtomicOrdering FailureOrdering;
4434       if (Record.size() < 7)
4435         FailureOrdering =
4436             AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
4437       else
4438         FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
4439 
4440       I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
4441                                 SSID);
4442       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
4443 
4444       if (Record.size() < 8) {
4445         // Before weak cmpxchgs existed, the instruction simply returned the
4446         // value loaded from memory, so bitcode files from that era will be
4447         // expecting the first component of a modern cmpxchg.
4448         CurBB->getInstList().push_back(I);
4449         I = ExtractValueInst::Create(I, 0);
4450       } else {
4451         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
4452       }
4453 
4454       InstructionList.push_back(I);
4455       break;
4456     }
4457     case bitc::FUNC_CODE_INST_ATOMICRMW: {
4458       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid]
4459       unsigned OpNum = 0;
4460       Value *Ptr, *Val;
4461       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4462           !isa<PointerType>(Ptr->getType()) ||
4463           popValue(Record, OpNum, NextValueNo,
4464                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
4465           OpNum+4 != Record.size())
4466         return error("Invalid record");
4467       AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
4468       if (Operation < AtomicRMWInst::FIRST_BINOP ||
4469           Operation > AtomicRMWInst::LAST_BINOP)
4470         return error("Invalid record");
4471       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4472       if (Ordering == AtomicOrdering::NotAtomic ||
4473           Ordering == AtomicOrdering::Unordered)
4474         return error("Invalid record");
4475       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4476       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
4477       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
4478       InstructionList.push_back(I);
4479       break;
4480     }
4481     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
4482       if (2 != Record.size())
4483         return error("Invalid record");
4484       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
4485       if (Ordering == AtomicOrdering::NotAtomic ||
4486           Ordering == AtomicOrdering::Unordered ||
4487           Ordering == AtomicOrdering::Monotonic)
4488         return error("Invalid record");
4489       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
4490       I = new FenceInst(Context, Ordering, SSID);
4491       InstructionList.push_back(I);
4492       break;
4493     }
4494     case bitc::FUNC_CODE_INST_CALL: {
4495       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
4496       if (Record.size() < 3)
4497         return error("Invalid record");
4498 
4499       unsigned OpNum = 0;
4500       AttributeList PAL = getAttributes(Record[OpNum++]);
4501       unsigned CCInfo = Record[OpNum++];
4502 
4503       FastMathFlags FMF;
4504       if ((CCInfo >> bitc::CALL_FMF) & 1) {
4505         FMF = getDecodedFastMathFlags(Record[OpNum++]);
4506         if (!FMF.any())
4507           return error("Fast math flags indicator set for call with no FMF");
4508       }
4509 
4510       FunctionType *FTy = nullptr;
4511       if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 &&
4512           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
4513         return error("Explicit call type is not a function type");
4514 
4515       Value *Callee;
4516       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4517         return error("Invalid record");
4518 
4519       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4520       if (!OpTy)
4521         return error("Callee is not a pointer type");
4522       if (!FTy) {
4523         FTy = dyn_cast<FunctionType>(OpTy->getElementType());
4524         if (!FTy)
4525           return error("Callee is not of pointer to function type");
4526       } else if (OpTy->getElementType() != FTy)
4527         return error("Explicit call type does not match pointee type of "
4528                      "callee operand");
4529       if (Record.size() < FTy->getNumParams() + OpNum)
4530         return error("Insufficient operands to call");
4531 
4532       SmallVector<Value*, 16> Args;
4533       // Read the fixed params.
4534       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4535         if (FTy->getParamType(i)->isLabelTy())
4536           Args.push_back(getBasicBlock(Record[OpNum]));
4537         else
4538           Args.push_back(getValue(Record, OpNum, NextValueNo,
4539                                   FTy->getParamType(i)));
4540         if (!Args.back())
4541           return error("Invalid record");
4542       }
4543 
4544       // Read type/value pairs for varargs params.
4545       if (!FTy->isVarArg()) {
4546         if (OpNum != Record.size())
4547           return error("Invalid record");
4548       } else {
4549         while (OpNum != Record.size()) {
4550           Value *Op;
4551           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4552             return error("Invalid record");
4553           Args.push_back(Op);
4554         }
4555       }
4556 
4557       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
4558       OperandBundles.clear();
4559       InstructionList.push_back(I);
4560       cast<CallInst>(I)->setCallingConv(
4561           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4562       CallInst::TailCallKind TCK = CallInst::TCK_None;
4563       if (CCInfo & 1 << bitc::CALL_TAIL)
4564         TCK = CallInst::TCK_Tail;
4565       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
4566         TCK = CallInst::TCK_MustTail;
4567       if (CCInfo & (1 << bitc::CALL_NOTAIL))
4568         TCK = CallInst::TCK_NoTail;
4569       cast<CallInst>(I)->setTailCallKind(TCK);
4570       cast<CallInst>(I)->setAttributes(PAL);
4571       if (FMF.any()) {
4572         if (!isa<FPMathOperator>(I))
4573           return error("Fast-math-flags specified for call without "
4574                        "floating-point scalar or vector return type");
4575         I->setFastMathFlags(FMF);
4576       }
4577       break;
4578     }
4579     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
4580       if (Record.size() < 3)
4581         return error("Invalid record");
4582       Type *OpTy = getTypeByID(Record[0]);
4583       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
4584       Type *ResTy = getTypeByID(Record[2]);
4585       if (!OpTy || !Op || !ResTy)
4586         return error("Invalid record");
4587       I = new VAArgInst(Op, ResTy);
4588       InstructionList.push_back(I);
4589       break;
4590     }
4591 
4592     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
4593       // A call or an invoke can be optionally prefixed with some variable
4594       // number of operand bundle blocks.  These blocks are read into
4595       // OperandBundles and consumed at the next call or invoke instruction.
4596 
4597       if (Record.size() < 1 || Record[0] >= BundleTags.size())
4598         return error("Invalid record");
4599 
4600       std::vector<Value *> Inputs;
4601 
4602       unsigned OpNum = 1;
4603       while (OpNum != Record.size()) {
4604         Value *Op;
4605         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4606           return error("Invalid record");
4607         Inputs.push_back(Op);
4608       }
4609 
4610       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
4611       continue;
4612     }
4613     }
4614 
4615     // Add instruction to end of current BB.  If there is no current BB, reject
4616     // this file.
4617     if (!CurBB) {
4618       I->deleteValue();
4619       return error("Invalid instruction with no BB");
4620     }
4621     if (!OperandBundles.empty()) {
4622       I->deleteValue();
4623       return error("Operand bundles found with no consumer");
4624     }
4625     CurBB->getInstList().push_back(I);
4626 
4627     // If this was a terminator instruction, move to the next block.
4628     if (I->isTerminator()) {
4629       ++CurBBNo;
4630       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
4631     }
4632 
4633     // Non-void values get registered in the value table for future use.
4634     if (I && !I->getType()->isVoidTy())
4635       ValueList.assignValue(I, NextValueNo++);
4636   }
4637 
4638 OutOfRecordLoop:
4639 
4640   if (!OperandBundles.empty())
4641     return error("Operand bundles found with no consumer");
4642 
4643   // Check the function list for unresolved values.
4644   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
4645     if (!A->getParent()) {
4646       // We found at least one unresolved value.  Nuke them all to avoid leaks.
4647       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
4648         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
4649           A->replaceAllUsesWith(UndefValue::get(A->getType()));
4650           delete A;
4651         }
4652       }
4653       return error("Never resolved value found in function");
4654     }
4655   }
4656 
4657   // Unexpected unresolved metadata about to be dropped.
4658   if (MDLoader->hasFwdRefs())
4659     return error("Invalid function metadata: outgoing forward refs");
4660 
4661   // Trim the value list down to the size it was before we parsed this function.
4662   ValueList.shrinkTo(ModuleValueListSize);
4663   MDLoader->shrinkTo(ModuleMDLoaderSize);
4664   std::vector<BasicBlock*>().swap(FunctionBBs);
4665   return Error::success();
4666 }
4667 
4668 /// Find the function body in the bitcode stream
4669 Error BitcodeReader::findFunctionInStream(
4670     Function *F,
4671     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
4672   while (DeferredFunctionInfoIterator->second == 0) {
4673     // This is the fallback handling for the old format bitcode that
4674     // didn't contain the function index in the VST, or when we have
4675     // an anonymous function which would not have a VST entry.
4676     // Assert that we have one of those two cases.
4677     assert(VSTOffset == 0 || !F->hasName());
4678     // Parse the next body in the stream and set its position in the
4679     // DeferredFunctionInfo map.
4680     if (Error Err = rememberAndSkipFunctionBodies())
4681       return Err;
4682   }
4683   return Error::success();
4684 }
4685 
4686 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
4687   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
4688     return SyncScope::ID(Val);
4689   if (Val >= SSIDs.size())
4690     return SyncScope::System; // Map unknown synchronization scopes to system.
4691   return SSIDs[Val];
4692 }
4693 
4694 //===----------------------------------------------------------------------===//
4695 // GVMaterializer implementation
4696 //===----------------------------------------------------------------------===//
4697 
4698 Error BitcodeReader::materialize(GlobalValue *GV) {
4699   Function *F = dyn_cast<Function>(GV);
4700   // If it's not a function or is already material, ignore the request.
4701   if (!F || !F->isMaterializable())
4702     return Error::success();
4703 
4704   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
4705   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
4706   // If its position is recorded as 0, its body is somewhere in the stream
4707   // but we haven't seen it yet.
4708   if (DFII->second == 0)
4709     if (Error Err = findFunctionInStream(F, DFII))
4710       return Err;
4711 
4712   // Materialize metadata before parsing any function bodies.
4713   if (Error Err = materializeMetadata())
4714     return Err;
4715 
4716   // Move the bit stream to the saved position of the deferred function body.
4717   Stream.JumpToBit(DFII->second);
4718 
4719   if (Error Err = parseFunctionBody(F))
4720     return Err;
4721   F->setIsMaterializable(false);
4722 
4723   if (StripDebugInfo)
4724     stripDebugInfo(*F);
4725 
4726   // Upgrade any old intrinsic calls in the function.
4727   for (auto &I : UpgradedIntrinsics) {
4728     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
4729          UI != UE;) {
4730       User *U = *UI;
4731       ++UI;
4732       if (CallInst *CI = dyn_cast<CallInst>(U))
4733         UpgradeIntrinsicCall(CI, I.second);
4734     }
4735   }
4736 
4737   // Update calls to the remangled intrinsics
4738   for (auto &I : RemangledIntrinsics)
4739     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
4740          UI != UE;)
4741       // Don't expect any other users than call sites
4742       CallSite(*UI++).setCalledFunction(I.second);
4743 
4744   // Finish fn->subprogram upgrade for materialized functions.
4745   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
4746     F->setSubprogram(SP);
4747 
4748   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
4749   if (!MDLoader->isStrippingTBAA()) {
4750     for (auto &I : instructions(F)) {
4751       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
4752       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
4753         continue;
4754       MDLoader->setStripTBAA(true);
4755       stripTBAA(F->getParent());
4756     }
4757   }
4758 
4759   // Bring in any functions that this function forward-referenced via
4760   // blockaddresses.
4761   return materializeForwardReferencedFunctions();
4762 }
4763 
4764 Error BitcodeReader::materializeModule() {
4765   if (Error Err = materializeMetadata())
4766     return Err;
4767 
4768   // Promise to materialize all forward references.
4769   WillMaterializeAllForwardRefs = true;
4770 
4771   // Iterate over the module, deserializing any functions that are still on
4772   // disk.
4773   for (Function &F : *TheModule) {
4774     if (Error Err = materialize(&F))
4775       return Err;
4776   }
4777   // At this point, if there are any function bodies, parse the rest of
4778   // the bits in the module past the last function block we have recorded
4779   // through either lazy scanning or the VST.
4780   if (LastFunctionBlockBit || NextUnreadBit)
4781     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
4782                                     ? LastFunctionBlockBit
4783                                     : NextUnreadBit))
4784       return Err;
4785 
4786   // Check that all block address forward references got resolved (as we
4787   // promised above).
4788   if (!BasicBlockFwdRefs.empty())
4789     return error("Never resolved function from blockaddress");
4790 
4791   // Upgrade any intrinsic calls that slipped through (should not happen!) and
4792   // delete the old functions to clean up. We can't do this unless the entire
4793   // module is materialized because there could always be another function body
4794   // with calls to the old function.
4795   for (auto &I : UpgradedIntrinsics) {
4796     for (auto *U : I.first->users()) {
4797       if (CallInst *CI = dyn_cast<CallInst>(U))
4798         UpgradeIntrinsicCall(CI, I.second);
4799     }
4800     if (!I.first->use_empty())
4801       I.first->replaceAllUsesWith(I.second);
4802     I.first->eraseFromParent();
4803   }
4804   UpgradedIntrinsics.clear();
4805   // Do the same for remangled intrinsics
4806   for (auto &I : RemangledIntrinsics) {
4807     I.first->replaceAllUsesWith(I.second);
4808     I.first->eraseFromParent();
4809   }
4810   RemangledIntrinsics.clear();
4811 
4812   UpgradeDebugInfo(*TheModule);
4813 
4814   UpgradeModuleFlags(*TheModule);
4815 
4816   UpgradeRetainReleaseMarker(*TheModule);
4817 
4818   return Error::success();
4819 }
4820 
4821 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
4822   return IdentifiedStructTypes;
4823 }
4824 
4825 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
4826     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
4827     StringRef ModulePath, unsigned ModuleId)
4828     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
4829       ModulePath(ModulePath), ModuleId(ModuleId) {}
4830 
4831 void ModuleSummaryIndexBitcodeReader::addThisModule() {
4832   TheIndex.addModule(ModulePath, ModuleId);
4833 }
4834 
4835 ModuleSummaryIndex::ModuleInfo *
4836 ModuleSummaryIndexBitcodeReader::getThisModule() {
4837   return TheIndex.getModule(ModulePath);
4838 }
4839 
4840 std::pair<ValueInfo, GlobalValue::GUID>
4841 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
4842   auto VGI = ValueIdToValueInfoMap[ValueId];
4843   assert(VGI.first);
4844   return VGI;
4845 }
4846 
4847 void ModuleSummaryIndexBitcodeReader::setValueGUID(
4848     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
4849     StringRef SourceFileName) {
4850   std::string GlobalId =
4851       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
4852   auto ValueGUID = GlobalValue::getGUID(GlobalId);
4853   auto OriginalNameID = ValueGUID;
4854   if (GlobalValue::isLocalLinkage(Linkage))
4855     OriginalNameID = GlobalValue::getGUID(ValueName);
4856   if (PrintSummaryGUIDs)
4857     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
4858            << ValueName << "\n";
4859 
4860   // UseStrtab is false for legacy summary formats and value names are
4861   // created on stack. In that case we save the name in a string saver in
4862   // the index so that the value name can be recorded.
4863   ValueIdToValueInfoMap[ValueID] = std::make_pair(
4864       TheIndex.getOrInsertValueInfo(
4865           ValueGUID,
4866           UseStrtab ? ValueName : TheIndex.saveString(ValueName.str())),
4867       OriginalNameID);
4868 }
4869 
4870 // Specialized value symbol table parser used when reading module index
4871 // blocks where we don't actually create global values. The parsed information
4872 // is saved in the bitcode reader for use when later parsing summaries.
4873 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
4874     uint64_t Offset,
4875     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
4876   // With a strtab the VST is not required to parse the summary.
4877   if (UseStrtab)
4878     return Error::success();
4879 
4880   assert(Offset > 0 && "Expected non-zero VST offset");
4881   uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream);
4882 
4883   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
4884     return error("Invalid record");
4885 
4886   SmallVector<uint64_t, 64> Record;
4887 
4888   // Read all the records for this value table.
4889   SmallString<128> ValueName;
4890 
4891   while (true) {
4892     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
4893 
4894     switch (Entry.Kind) {
4895     case BitstreamEntry::SubBlock: // Handled for us already.
4896     case BitstreamEntry::Error:
4897       return error("Malformed block");
4898     case BitstreamEntry::EndBlock:
4899       // Done parsing VST, jump back to wherever we came from.
4900       Stream.JumpToBit(CurrentBit);
4901       return Error::success();
4902     case BitstreamEntry::Record:
4903       // The interesting case.
4904       break;
4905     }
4906 
4907     // Read a record.
4908     Record.clear();
4909     switch (Stream.readRecord(Entry.ID, Record)) {
4910     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
4911       break;
4912     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
4913       if (convertToString(Record, 1, ValueName))
4914         return error("Invalid record");
4915       unsigned ValueID = Record[0];
4916       assert(!SourceFileName.empty());
4917       auto VLI = ValueIdToLinkageMap.find(ValueID);
4918       assert(VLI != ValueIdToLinkageMap.end() &&
4919              "No linkage found for VST entry?");
4920       auto Linkage = VLI->second;
4921       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
4922       ValueName.clear();
4923       break;
4924     }
4925     case bitc::VST_CODE_FNENTRY: {
4926       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
4927       if (convertToString(Record, 2, ValueName))
4928         return error("Invalid record");
4929       unsigned ValueID = Record[0];
4930       assert(!SourceFileName.empty());
4931       auto VLI = ValueIdToLinkageMap.find(ValueID);
4932       assert(VLI != ValueIdToLinkageMap.end() &&
4933              "No linkage found for VST entry?");
4934       auto Linkage = VLI->second;
4935       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
4936       ValueName.clear();
4937       break;
4938     }
4939     case bitc::VST_CODE_COMBINED_ENTRY: {
4940       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
4941       unsigned ValueID = Record[0];
4942       GlobalValue::GUID RefGUID = Record[1];
4943       // The "original name", which is the second value of the pair will be
4944       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
4945       ValueIdToValueInfoMap[ValueID] =
4946           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
4947       break;
4948     }
4949     }
4950   }
4951 }
4952 
4953 // Parse just the blocks needed for building the index out of the module.
4954 // At the end of this routine the module Index is populated with a map
4955 // from global value id to GlobalValueSummary objects.
4956 Error ModuleSummaryIndexBitcodeReader::parseModule() {
4957   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
4958     return error("Invalid record");
4959 
4960   SmallVector<uint64_t, 64> Record;
4961   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
4962   unsigned ValueId = 0;
4963 
4964   // Read the index for this module.
4965   while (true) {
4966     BitstreamEntry Entry = Stream.advance();
4967 
4968     switch (Entry.Kind) {
4969     case BitstreamEntry::Error:
4970       return error("Malformed block");
4971     case BitstreamEntry::EndBlock:
4972       return Error::success();
4973 
4974     case BitstreamEntry::SubBlock:
4975       switch (Entry.ID) {
4976       default: // Skip unknown content.
4977         if (Stream.SkipBlock())
4978           return error("Invalid record");
4979         break;
4980       case bitc::BLOCKINFO_BLOCK_ID:
4981         // Need to parse these to get abbrev ids (e.g. for VST)
4982         if (readBlockInfo())
4983           return error("Malformed block");
4984         break;
4985       case bitc::VALUE_SYMTAB_BLOCK_ID:
4986         // Should have been parsed earlier via VSTOffset, unless there
4987         // is no summary section.
4988         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
4989                 !SeenGlobalValSummary) &&
4990                "Expected early VST parse via VSTOffset record");
4991         if (Stream.SkipBlock())
4992           return error("Invalid record");
4993         break;
4994       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
4995       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
4996         // Add the module if it is a per-module index (has a source file name).
4997         if (!SourceFileName.empty())
4998           addThisModule();
4999         assert(!SeenValueSymbolTable &&
5000                "Already read VST when parsing summary block?");
5001         // We might not have a VST if there were no values in the
5002         // summary. An empty summary block generated when we are
5003         // performing ThinLTO compiles so we don't later invoke
5004         // the regular LTO process on them.
5005         if (VSTOffset > 0) {
5006           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
5007             return Err;
5008           SeenValueSymbolTable = true;
5009         }
5010         SeenGlobalValSummary = true;
5011         if (Error Err = parseEntireSummary(Entry.ID))
5012           return Err;
5013         break;
5014       case bitc::MODULE_STRTAB_BLOCK_ID:
5015         if (Error Err = parseModuleStringTable())
5016           return Err;
5017         break;
5018       }
5019       continue;
5020 
5021     case BitstreamEntry::Record: {
5022         Record.clear();
5023         auto BitCode = Stream.readRecord(Entry.ID, Record);
5024         switch (BitCode) {
5025         default:
5026           break; // Default behavior, ignore unknown content.
5027         case bitc::MODULE_CODE_VERSION: {
5028           if (Error Err = parseVersionRecord(Record).takeError())
5029             return Err;
5030           break;
5031         }
5032         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5033         case bitc::MODULE_CODE_SOURCE_FILENAME: {
5034           SmallString<128> ValueName;
5035           if (convertToString(Record, 0, ValueName))
5036             return error("Invalid record");
5037           SourceFileName = ValueName.c_str();
5038           break;
5039         }
5040         /// MODULE_CODE_HASH: [5*i32]
5041         case bitc::MODULE_CODE_HASH: {
5042           if (Record.size() != 5)
5043             return error("Invalid hash length " + Twine(Record.size()).str());
5044           auto &Hash = getThisModule()->second.second;
5045           int Pos = 0;
5046           for (auto &Val : Record) {
5047             assert(!(Val >> 32) && "Unexpected high bits set");
5048             Hash[Pos++] = Val;
5049           }
5050           break;
5051         }
5052         /// MODULE_CODE_VSTOFFSET: [offset]
5053         case bitc::MODULE_CODE_VSTOFFSET:
5054           if (Record.size() < 1)
5055             return error("Invalid record");
5056           // Note that we subtract 1 here because the offset is relative to one
5057           // word before the start of the identification or module block, which
5058           // was historically always the start of the regular bitcode header.
5059           VSTOffset = Record[0] - 1;
5060           break;
5061         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
5062         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
5063         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
5064         // v2: [strtab offset, strtab size, v1]
5065         case bitc::MODULE_CODE_GLOBALVAR:
5066         case bitc::MODULE_CODE_FUNCTION:
5067         case bitc::MODULE_CODE_ALIAS: {
5068           StringRef Name;
5069           ArrayRef<uint64_t> GVRecord;
5070           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
5071           if (GVRecord.size() <= 3)
5072             return error("Invalid record");
5073           uint64_t RawLinkage = GVRecord[3];
5074           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5075           if (!UseStrtab) {
5076             ValueIdToLinkageMap[ValueId++] = Linkage;
5077             break;
5078           }
5079 
5080           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
5081           break;
5082         }
5083         }
5084       }
5085       continue;
5086     }
5087   }
5088 }
5089 
5090 std::vector<ValueInfo>
5091 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
5092   std::vector<ValueInfo> Ret;
5093   Ret.reserve(Record.size());
5094   for (uint64_t RefValueId : Record)
5095     Ret.push_back(getValueInfoFromValueId(RefValueId).first);
5096   return Ret;
5097 }
5098 
5099 std::vector<FunctionSummary::EdgeTy>
5100 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
5101                                               bool IsOldProfileFormat,
5102                                               bool HasProfile, bool HasRelBF) {
5103   std::vector<FunctionSummary::EdgeTy> Ret;
5104   Ret.reserve(Record.size());
5105   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
5106     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
5107     uint64_t RelBF = 0;
5108     ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
5109     if (IsOldProfileFormat) {
5110       I += 1; // Skip old callsitecount field
5111       if (HasProfile)
5112         I += 1; // Skip old profilecount field
5113     } else if (HasProfile)
5114       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
5115     else if (HasRelBF)
5116       RelBF = Record[++I];
5117     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
5118   }
5119   return Ret;
5120 }
5121 
5122 static void
5123 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
5124                                        WholeProgramDevirtResolution &Wpd) {
5125   uint64_t ArgNum = Record[Slot++];
5126   WholeProgramDevirtResolution::ByArg &B =
5127       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
5128   Slot += ArgNum;
5129 
5130   B.TheKind =
5131       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
5132   B.Info = Record[Slot++];
5133   B.Byte = Record[Slot++];
5134   B.Bit = Record[Slot++];
5135 }
5136 
5137 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
5138                                               StringRef Strtab, size_t &Slot,
5139                                               TypeIdSummary &TypeId) {
5140   uint64_t Id = Record[Slot++];
5141   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
5142 
5143   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
5144   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
5145                         static_cast<size_t>(Record[Slot + 1])};
5146   Slot += 2;
5147 
5148   uint64_t ResByArgNum = Record[Slot++];
5149   for (uint64_t I = 0; I != ResByArgNum; ++I)
5150     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
5151 }
5152 
5153 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
5154                                      StringRef Strtab,
5155                                      ModuleSummaryIndex &TheIndex) {
5156   size_t Slot = 0;
5157   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
5158       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
5159   Slot += 2;
5160 
5161   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
5162   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
5163   TypeId.TTRes.AlignLog2 = Record[Slot++];
5164   TypeId.TTRes.SizeM1 = Record[Slot++];
5165   TypeId.TTRes.BitMask = Record[Slot++];
5166   TypeId.TTRes.InlineBits = Record[Slot++];
5167 
5168   while (Slot < Record.size())
5169     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
5170 }
5171 
5172 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
5173 // objects in the index.
5174 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
5175   if (Stream.EnterSubBlock(ID))
5176     return error("Invalid record");
5177   SmallVector<uint64_t, 64> Record;
5178 
5179   // Parse version
5180   {
5181     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5182     if (Entry.Kind != BitstreamEntry::Record)
5183       return error("Invalid Summary Block: record for version expected");
5184     if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION)
5185       return error("Invalid Summary Block: version expected");
5186   }
5187   const uint64_t Version = Record[0];
5188   const bool IsOldProfileFormat = Version == 1;
5189   if (Version < 1 || Version > 4)
5190     return error("Invalid summary version " + Twine(Version) +
5191                  ", 1, 2, 3 or 4 expected");
5192   Record.clear();
5193 
5194   // Keep around the last seen summary to be used when we see an optional
5195   // "OriginalName" attachement.
5196   GlobalValueSummary *LastSeenSummary = nullptr;
5197   GlobalValue::GUID LastSeenGUID = 0;
5198 
5199   // We can expect to see any number of type ID information records before
5200   // each function summary records; these variables store the information
5201   // collected so far so that it can be used to create the summary object.
5202   std::vector<GlobalValue::GUID> PendingTypeTests;
5203   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
5204       PendingTypeCheckedLoadVCalls;
5205   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
5206       PendingTypeCheckedLoadConstVCalls;
5207 
5208   while (true) {
5209     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5210 
5211     switch (Entry.Kind) {
5212     case BitstreamEntry::SubBlock: // Handled for us already.
5213     case BitstreamEntry::Error:
5214       return error("Malformed block");
5215     case BitstreamEntry::EndBlock:
5216       return Error::success();
5217     case BitstreamEntry::Record:
5218       // The interesting case.
5219       break;
5220     }
5221 
5222     // Read a record. The record format depends on whether this
5223     // is a per-module index or a combined index file. In the per-module
5224     // case the records contain the associated value's ID for correlation
5225     // with VST entries. In the combined index the correlation is done
5226     // via the bitcode offset of the summary records (which were saved
5227     // in the combined index VST entries). The records also contain
5228     // information used for ThinLTO renaming and importing.
5229     Record.clear();
5230     auto BitCode = Stream.readRecord(Entry.ID, Record);
5231     switch (BitCode) {
5232     default: // Default behavior: ignore.
5233       break;
5234     case bitc::FS_FLAGS: {  // [flags]
5235       uint64_t Flags = Record[0];
5236       // Scan flags (set only on the combined index).
5237       assert(Flags <= 0x3 && "Unexpected bits in flag");
5238 
5239       // 1 bit: WithGlobalValueDeadStripping flag.
5240       if (Flags & 0x1)
5241         TheIndex.setWithGlobalValueDeadStripping();
5242       // 1 bit: SkipModuleByDistributedBackend flag.
5243       if (Flags & 0x2)
5244         TheIndex.setSkipModuleByDistributedBackend();
5245       break;
5246     }
5247     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
5248       uint64_t ValueID = Record[0];
5249       GlobalValue::GUID RefGUID = Record[1];
5250       ValueIdToValueInfoMap[ValueID] =
5251           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5252       break;
5253     }
5254     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
5255     //                numrefs x valueid, n x (valueid)]
5256     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
5257     //                        numrefs x valueid,
5258     //                        n x (valueid, hotness)]
5259     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
5260     //                      numrefs x valueid,
5261     //                      n x (valueid, relblockfreq)]
5262     case bitc::FS_PERMODULE:
5263     case bitc::FS_PERMODULE_RELBF:
5264     case bitc::FS_PERMODULE_PROFILE: {
5265       unsigned ValueID = Record[0];
5266       uint64_t RawFlags = Record[1];
5267       unsigned InstCount = Record[2];
5268       uint64_t RawFunFlags = 0;
5269       unsigned NumRefs = Record[3];
5270       int RefListStartIndex = 4;
5271       if (Version >= 4) {
5272         RawFunFlags = Record[3];
5273         NumRefs = Record[4];
5274         RefListStartIndex = 5;
5275       }
5276 
5277       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5278       // The module path string ref set in the summary must be owned by the
5279       // index's module string table. Since we don't have a module path
5280       // string table section in the per-module index, we create a single
5281       // module path string table entry with an empty (0) ID to take
5282       // ownership.
5283       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5284       assert(Record.size() >= RefListStartIndex + NumRefs &&
5285              "Record size inconsistent with number of references");
5286       std::vector<ValueInfo> Refs = makeRefList(
5287           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
5288       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
5289       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
5290       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
5291           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
5292           IsOldProfileFormat, HasProfile, HasRelBF);
5293       auto FS = llvm::make_unique<FunctionSummary>(
5294           Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs),
5295           std::move(Calls), std::move(PendingTypeTests),
5296           std::move(PendingTypeTestAssumeVCalls),
5297           std::move(PendingTypeCheckedLoadVCalls),
5298           std::move(PendingTypeTestAssumeConstVCalls),
5299           std::move(PendingTypeCheckedLoadConstVCalls));
5300       PendingTypeTests.clear();
5301       PendingTypeTestAssumeVCalls.clear();
5302       PendingTypeCheckedLoadVCalls.clear();
5303       PendingTypeTestAssumeConstVCalls.clear();
5304       PendingTypeCheckedLoadConstVCalls.clear();
5305       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
5306       FS->setModulePath(getThisModule()->first());
5307       FS->setOriginalName(VIAndOriginalGUID.second);
5308       TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
5309       break;
5310     }
5311     // FS_ALIAS: [valueid, flags, valueid]
5312     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
5313     // they expect all aliasee summaries to be available.
5314     case bitc::FS_ALIAS: {
5315       unsigned ValueID = Record[0];
5316       uint64_t RawFlags = Record[1];
5317       unsigned AliaseeID = Record[2];
5318       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5319       auto AS = llvm::make_unique<AliasSummary>(Flags);
5320       // The module path string ref set in the summary must be owned by the
5321       // index's module string table. Since we don't have a module path
5322       // string table section in the per-module index, we create a single
5323       // module path string table entry with an empty (0) ID to take
5324       // ownership.
5325       AS->setModulePath(getThisModule()->first());
5326 
5327       GlobalValue::GUID AliaseeGUID =
5328           getValueInfoFromValueId(AliaseeID).first.getGUID();
5329       auto AliaseeInModule =
5330           TheIndex.findSummaryInModule(AliaseeGUID, ModulePath);
5331       if (!AliaseeInModule)
5332         return error("Alias expects aliasee summary to be parsed");
5333       AS->setAliasee(AliaseeInModule);
5334       AS->setAliaseeGUID(AliaseeGUID);
5335 
5336       auto GUID = getValueInfoFromValueId(ValueID);
5337       AS->setOriginalName(GUID.second);
5338       TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
5339       break;
5340     }
5341     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid]
5342     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
5343       unsigned ValueID = Record[0];
5344       uint64_t RawFlags = Record[1];
5345       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5346       std::vector<ValueInfo> Refs =
5347           makeRefList(ArrayRef<uint64_t>(Record).slice(2));
5348       auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs));
5349       FS->setModulePath(getThisModule()->first());
5350       auto GUID = getValueInfoFromValueId(ValueID);
5351       FS->setOriginalName(GUID.second);
5352       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
5353       break;
5354     }
5355     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
5356     //               numrefs x valueid, n x (valueid)]
5357     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
5358     //                       numrefs x valueid, n x (valueid, hotness)]
5359     case bitc::FS_COMBINED:
5360     case bitc::FS_COMBINED_PROFILE: {
5361       unsigned ValueID = Record[0];
5362       uint64_t ModuleId = Record[1];
5363       uint64_t RawFlags = Record[2];
5364       unsigned InstCount = Record[3];
5365       uint64_t RawFunFlags = 0;
5366       unsigned NumRefs = Record[4];
5367       int RefListStartIndex = 5;
5368 
5369       if (Version >= 4) {
5370         RawFunFlags = Record[4];
5371         NumRefs = Record[5];
5372         RefListStartIndex = 6;
5373       }
5374 
5375       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5376       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5377       assert(Record.size() >= RefListStartIndex + NumRefs &&
5378              "Record size inconsistent with number of references");
5379       std::vector<ValueInfo> Refs = makeRefList(
5380           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
5381       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
5382       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
5383           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
5384           IsOldProfileFormat, HasProfile, false);
5385       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
5386       auto FS = llvm::make_unique<FunctionSummary>(
5387           Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs),
5388           std::move(Edges), std::move(PendingTypeTests),
5389           std::move(PendingTypeTestAssumeVCalls),
5390           std::move(PendingTypeCheckedLoadVCalls),
5391           std::move(PendingTypeTestAssumeConstVCalls),
5392           std::move(PendingTypeCheckedLoadConstVCalls));
5393       PendingTypeTests.clear();
5394       PendingTypeTestAssumeVCalls.clear();
5395       PendingTypeCheckedLoadVCalls.clear();
5396       PendingTypeTestAssumeConstVCalls.clear();
5397       PendingTypeCheckedLoadConstVCalls.clear();
5398       LastSeenSummary = FS.get();
5399       LastSeenGUID = VI.getGUID();
5400       FS->setModulePath(ModuleIdMap[ModuleId]);
5401       TheIndex.addGlobalValueSummary(VI, std::move(FS));
5402       break;
5403     }
5404     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
5405     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
5406     // they expect all aliasee summaries to be available.
5407     case bitc::FS_COMBINED_ALIAS: {
5408       unsigned ValueID = Record[0];
5409       uint64_t ModuleId = Record[1];
5410       uint64_t RawFlags = Record[2];
5411       unsigned AliaseeValueId = Record[3];
5412       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5413       auto AS = llvm::make_unique<AliasSummary>(Flags);
5414       LastSeenSummary = AS.get();
5415       AS->setModulePath(ModuleIdMap[ModuleId]);
5416 
5417       auto AliaseeGUID =
5418           getValueInfoFromValueId(AliaseeValueId).first.getGUID();
5419       auto AliaseeInModule =
5420           TheIndex.findSummaryInModule(AliaseeGUID, AS->modulePath());
5421       AS->setAliasee(AliaseeInModule);
5422       AS->setAliaseeGUID(AliaseeGUID);
5423 
5424       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
5425       LastSeenGUID = VI.getGUID();
5426       TheIndex.addGlobalValueSummary(VI, std::move(AS));
5427       break;
5428     }
5429     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
5430     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
5431       unsigned ValueID = Record[0];
5432       uint64_t ModuleId = Record[1];
5433       uint64_t RawFlags = Record[2];
5434       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5435       std::vector<ValueInfo> Refs =
5436           makeRefList(ArrayRef<uint64_t>(Record).slice(3));
5437       auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs));
5438       LastSeenSummary = FS.get();
5439       FS->setModulePath(ModuleIdMap[ModuleId]);
5440       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
5441       LastSeenGUID = VI.getGUID();
5442       TheIndex.addGlobalValueSummary(VI, std::move(FS));
5443       break;
5444     }
5445     // FS_COMBINED_ORIGINAL_NAME: [original_name]
5446     case bitc::FS_COMBINED_ORIGINAL_NAME: {
5447       uint64_t OriginalName = Record[0];
5448       if (!LastSeenSummary)
5449         return error("Name attachment that does not follow a combined record");
5450       LastSeenSummary->setOriginalName(OriginalName);
5451       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
5452       // Reset the LastSeenSummary
5453       LastSeenSummary = nullptr;
5454       LastSeenGUID = 0;
5455       break;
5456     }
5457     case bitc::FS_TYPE_TESTS:
5458       assert(PendingTypeTests.empty());
5459       PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(),
5460                               Record.end());
5461       break;
5462 
5463     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
5464       assert(PendingTypeTestAssumeVCalls.empty());
5465       for (unsigned I = 0; I != Record.size(); I += 2)
5466         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
5467       break;
5468 
5469     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
5470       assert(PendingTypeCheckedLoadVCalls.empty());
5471       for (unsigned I = 0; I != Record.size(); I += 2)
5472         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
5473       break;
5474 
5475     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
5476       PendingTypeTestAssumeConstVCalls.push_back(
5477           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
5478       break;
5479 
5480     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
5481       PendingTypeCheckedLoadConstVCalls.push_back(
5482           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
5483       break;
5484 
5485     case bitc::FS_CFI_FUNCTION_DEFS: {
5486       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
5487       for (unsigned I = 0; I != Record.size(); I += 2)
5488         CfiFunctionDefs.insert(
5489             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
5490       break;
5491     }
5492 
5493     case bitc::FS_CFI_FUNCTION_DECLS: {
5494       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
5495       for (unsigned I = 0; I != Record.size(); I += 2)
5496         CfiFunctionDecls.insert(
5497             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
5498       break;
5499     }
5500 
5501     case bitc::FS_TYPE_ID:
5502       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
5503       break;
5504     }
5505   }
5506   llvm_unreachable("Exit infinite loop");
5507 }
5508 
5509 // Parse the  module string table block into the Index.
5510 // This populates the ModulePathStringTable map in the index.
5511 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
5512   if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
5513     return error("Invalid record");
5514 
5515   SmallVector<uint64_t, 64> Record;
5516 
5517   SmallString<128> ModulePath;
5518   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
5519 
5520   while (true) {
5521     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5522 
5523     switch (Entry.Kind) {
5524     case BitstreamEntry::SubBlock: // Handled for us already.
5525     case BitstreamEntry::Error:
5526       return error("Malformed block");
5527     case BitstreamEntry::EndBlock:
5528       return Error::success();
5529     case BitstreamEntry::Record:
5530       // The interesting case.
5531       break;
5532     }
5533 
5534     Record.clear();
5535     switch (Stream.readRecord(Entry.ID, Record)) {
5536     default: // Default behavior: ignore.
5537       break;
5538     case bitc::MST_CODE_ENTRY: {
5539       // MST_ENTRY: [modid, namechar x N]
5540       uint64_t ModuleId = Record[0];
5541 
5542       if (convertToString(Record, 1, ModulePath))
5543         return error("Invalid record");
5544 
5545       LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
5546       ModuleIdMap[ModuleId] = LastSeenModule->first();
5547 
5548       ModulePath.clear();
5549       break;
5550     }
5551     /// MST_CODE_HASH: [5*i32]
5552     case bitc::MST_CODE_HASH: {
5553       if (Record.size() != 5)
5554         return error("Invalid hash length " + Twine(Record.size()).str());
5555       if (!LastSeenModule)
5556         return error("Invalid hash that does not follow a module path");
5557       int Pos = 0;
5558       for (auto &Val : Record) {
5559         assert(!(Val >> 32) && "Unexpected high bits set");
5560         LastSeenModule->second.second[Pos++] = Val;
5561       }
5562       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
5563       LastSeenModule = nullptr;
5564       break;
5565     }
5566     }
5567   }
5568   llvm_unreachable("Exit infinite loop");
5569 }
5570 
5571 namespace {
5572 
5573 // FIXME: This class is only here to support the transition to llvm::Error. It
5574 // will be removed once this transition is complete. Clients should prefer to
5575 // deal with the Error value directly, rather than converting to error_code.
5576 class BitcodeErrorCategoryType : public std::error_category {
5577   const char *name() const noexcept override {
5578     return "llvm.bitcode";
5579   }
5580 
5581   std::string message(int IE) const override {
5582     BitcodeError E = static_cast<BitcodeError>(IE);
5583     switch (E) {
5584     case BitcodeError::CorruptedBitcode:
5585       return "Corrupted bitcode";
5586     }
5587     llvm_unreachable("Unknown error type!");
5588   }
5589 };
5590 
5591 } // end anonymous namespace
5592 
5593 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
5594 
5595 const std::error_category &llvm::BitcodeErrorCategory() {
5596   return *ErrorCategory;
5597 }
5598 
5599 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
5600                                             unsigned Block, unsigned RecordID) {
5601   if (Stream.EnterSubBlock(Block))
5602     return error("Invalid record");
5603 
5604   StringRef Strtab;
5605   while (true) {
5606     BitstreamEntry Entry = Stream.advance();
5607     switch (Entry.Kind) {
5608     case BitstreamEntry::EndBlock:
5609       return Strtab;
5610 
5611     case BitstreamEntry::Error:
5612       return error("Malformed block");
5613 
5614     case BitstreamEntry::SubBlock:
5615       if (Stream.SkipBlock())
5616         return error("Malformed block");
5617       break;
5618 
5619     case BitstreamEntry::Record:
5620       StringRef Blob;
5621       SmallVector<uint64_t, 1> Record;
5622       if (Stream.readRecord(Entry.ID, Record, &Blob) == RecordID)
5623         Strtab = Blob;
5624       break;
5625     }
5626   }
5627 }
5628 
5629 //===----------------------------------------------------------------------===//
5630 // External interface
5631 //===----------------------------------------------------------------------===//
5632 
5633 Expected<std::vector<BitcodeModule>>
5634 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
5635   auto FOrErr = getBitcodeFileContents(Buffer);
5636   if (!FOrErr)
5637     return FOrErr.takeError();
5638   return std::move(FOrErr->Mods);
5639 }
5640 
5641 Expected<BitcodeFileContents>
5642 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
5643   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
5644   if (!StreamOrErr)
5645     return StreamOrErr.takeError();
5646   BitstreamCursor &Stream = *StreamOrErr;
5647 
5648   BitcodeFileContents F;
5649   while (true) {
5650     uint64_t BCBegin = Stream.getCurrentByteNo();
5651 
5652     // We may be consuming bitcode from a client that leaves garbage at the end
5653     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
5654     // the end that there cannot possibly be another module, stop looking.
5655     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
5656       return F;
5657 
5658     BitstreamEntry Entry = Stream.advance();
5659     switch (Entry.Kind) {
5660     case BitstreamEntry::EndBlock:
5661     case BitstreamEntry::Error:
5662       return error("Malformed block");
5663 
5664     case BitstreamEntry::SubBlock: {
5665       uint64_t IdentificationBit = -1ull;
5666       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
5667         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
5668         if (Stream.SkipBlock())
5669           return error("Malformed block");
5670 
5671         Entry = Stream.advance();
5672         if (Entry.Kind != BitstreamEntry::SubBlock ||
5673             Entry.ID != bitc::MODULE_BLOCK_ID)
5674           return error("Malformed block");
5675       }
5676 
5677       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
5678         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
5679         if (Stream.SkipBlock())
5680           return error("Malformed block");
5681 
5682         F.Mods.push_back({Stream.getBitcodeBytes().slice(
5683                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
5684                           Buffer.getBufferIdentifier(), IdentificationBit,
5685                           ModuleBit});
5686         continue;
5687       }
5688 
5689       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
5690         Expected<StringRef> Strtab =
5691             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
5692         if (!Strtab)
5693           return Strtab.takeError();
5694         // This string table is used by every preceding bitcode module that does
5695         // not have its own string table. A bitcode file may have multiple
5696         // string tables if it was created by binary concatenation, for example
5697         // with "llvm-cat -b".
5698         for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) {
5699           if (!I->Strtab.empty())
5700             break;
5701           I->Strtab = *Strtab;
5702         }
5703         // Similarly, the string table is used by every preceding symbol table;
5704         // normally there will be just one unless the bitcode file was created
5705         // by binary concatenation.
5706         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
5707           F.StrtabForSymtab = *Strtab;
5708         continue;
5709       }
5710 
5711       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
5712         Expected<StringRef> SymtabOrErr =
5713             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
5714         if (!SymtabOrErr)
5715           return SymtabOrErr.takeError();
5716 
5717         // We can expect the bitcode file to have multiple symbol tables if it
5718         // was created by binary concatenation. In that case we silently
5719         // ignore any subsequent symbol tables, which is fine because this is a
5720         // low level function. The client is expected to notice that the number
5721         // of modules in the symbol table does not match the number of modules
5722         // in the input file and regenerate the symbol table.
5723         if (F.Symtab.empty())
5724           F.Symtab = *SymtabOrErr;
5725         continue;
5726       }
5727 
5728       if (Stream.SkipBlock())
5729         return error("Malformed block");
5730       continue;
5731     }
5732     case BitstreamEntry::Record:
5733       Stream.skipRecord(Entry.ID);
5734       continue;
5735     }
5736   }
5737 }
5738 
5739 /// Get a lazy one-at-time loading module from bitcode.
5740 ///
5741 /// This isn't always used in a lazy context.  In particular, it's also used by
5742 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
5743 /// in forward-referenced functions from block address references.
5744 ///
5745 /// \param[in] MaterializeAll Set to \c true if we should materialize
5746 /// everything.
5747 Expected<std::unique_ptr<Module>>
5748 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
5749                              bool ShouldLazyLoadMetadata, bool IsImporting) {
5750   BitstreamCursor Stream(Buffer);
5751 
5752   std::string ProducerIdentification;
5753   if (IdentificationBit != -1ull) {
5754     Stream.JumpToBit(IdentificationBit);
5755     Expected<std::string> ProducerIdentificationOrErr =
5756         readIdentificationBlock(Stream);
5757     if (!ProducerIdentificationOrErr)
5758       return ProducerIdentificationOrErr.takeError();
5759 
5760     ProducerIdentification = *ProducerIdentificationOrErr;
5761   }
5762 
5763   Stream.JumpToBit(ModuleBit);
5764   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
5765                               Context);
5766 
5767   std::unique_ptr<Module> M =
5768       llvm::make_unique<Module>(ModuleIdentifier, Context);
5769   M->setMaterializer(R);
5770 
5771   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
5772   if (Error Err =
5773           R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting))
5774     return std::move(Err);
5775 
5776   if (MaterializeAll) {
5777     // Read in the entire module, and destroy the BitcodeReader.
5778     if (Error Err = M->materializeAll())
5779       return std::move(Err);
5780   } else {
5781     // Resolve forward references from blockaddresses.
5782     if (Error Err = R->materializeForwardReferencedFunctions())
5783       return std::move(Err);
5784   }
5785   return std::move(M);
5786 }
5787 
5788 Expected<std::unique_ptr<Module>>
5789 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
5790                              bool IsImporting) {
5791   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting);
5792 }
5793 
5794 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
5795 // We don't use ModuleIdentifier here because the client may need to control the
5796 // module path used in the combined summary (e.g. when reading summaries for
5797 // regular LTO modules).
5798 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
5799                                  StringRef ModulePath, uint64_t ModuleId) {
5800   BitstreamCursor Stream(Buffer);
5801   Stream.JumpToBit(ModuleBit);
5802 
5803   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
5804                                     ModulePath, ModuleId);
5805   return R.parseModule();
5806 }
5807 
5808 // Parse the specified bitcode buffer, returning the function info index.
5809 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
5810   BitstreamCursor Stream(Buffer);
5811   Stream.JumpToBit(ModuleBit);
5812 
5813   auto Index = llvm::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
5814   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
5815                                     ModuleIdentifier, 0);
5816 
5817   if (Error Err = R.parseModule())
5818     return std::move(Err);
5819 
5820   return std::move(Index);
5821 }
5822 
5823 // Check if the given bitcode buffer contains a global value summary block.
5824 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
5825   BitstreamCursor Stream(Buffer);
5826   Stream.JumpToBit(ModuleBit);
5827 
5828   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5829     return error("Invalid record");
5830 
5831   while (true) {
5832     BitstreamEntry Entry = Stream.advance();
5833 
5834     switch (Entry.Kind) {
5835     case BitstreamEntry::Error:
5836       return error("Malformed block");
5837     case BitstreamEntry::EndBlock:
5838       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false};
5839 
5840     case BitstreamEntry::SubBlock:
5841       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID)
5842         return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true};
5843 
5844       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID)
5845         return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true};
5846 
5847       // Ignore other sub-blocks.
5848       if (Stream.SkipBlock())
5849         return error("Malformed block");
5850       continue;
5851 
5852     case BitstreamEntry::Record:
5853       Stream.skipRecord(Entry.ID);
5854       continue;
5855     }
5856   }
5857 }
5858 
5859 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
5860   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
5861   if (!MsOrErr)
5862     return MsOrErr.takeError();
5863 
5864   if (MsOrErr->size() != 1)
5865     return error("Expected a single module");
5866 
5867   return (*MsOrErr)[0];
5868 }
5869 
5870 Expected<std::unique_ptr<Module>>
5871 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
5872                            bool ShouldLazyLoadMetadata, bool IsImporting) {
5873   Expected<BitcodeModule> BM = getSingleModule(Buffer);
5874   if (!BM)
5875     return BM.takeError();
5876 
5877   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
5878 }
5879 
5880 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
5881     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
5882     bool ShouldLazyLoadMetadata, bool IsImporting) {
5883   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
5884                                      IsImporting);
5885   if (MOrErr)
5886     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
5887   return MOrErr;
5888 }
5889 
5890 Expected<std::unique_ptr<Module>>
5891 BitcodeModule::parseModule(LLVMContext &Context) {
5892   return getModuleImpl(Context, true, false, false);
5893   // TODO: Restore the use-lists to the in-memory state when the bitcode was
5894   // written.  We must defer until the Module has been fully materialized.
5895 }
5896 
5897 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer,
5898                                                          LLVMContext &Context) {
5899   Expected<BitcodeModule> BM = getSingleModule(Buffer);
5900   if (!BM)
5901     return BM.takeError();
5902 
5903   return BM->parseModule(Context);
5904 }
5905 
5906 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
5907   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
5908   if (!StreamOrErr)
5909     return StreamOrErr.takeError();
5910 
5911   return readTriple(*StreamOrErr);
5912 }
5913 
5914 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
5915   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
5916   if (!StreamOrErr)
5917     return StreamOrErr.takeError();
5918 
5919   return hasObjCCategory(*StreamOrErr);
5920 }
5921 
5922 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
5923   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
5924   if (!StreamOrErr)
5925     return StreamOrErr.takeError();
5926 
5927   return readIdentificationCode(*StreamOrErr);
5928 }
5929 
5930 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
5931                                    ModuleSummaryIndex &CombinedIndex,
5932                                    uint64_t ModuleId) {
5933   Expected<BitcodeModule> BM = getSingleModule(Buffer);
5934   if (!BM)
5935     return BM.takeError();
5936 
5937   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
5938 }
5939 
5940 Expected<std::unique_ptr<ModuleSummaryIndex>>
5941 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
5942   Expected<BitcodeModule> BM = getSingleModule(Buffer);
5943   if (!BM)
5944     return BM.takeError();
5945 
5946   return BM->getSummary();
5947 }
5948 
5949 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
5950   Expected<BitcodeModule> BM = getSingleModule(Buffer);
5951   if (!BM)
5952     return BM.takeError();
5953 
5954   return BM->getLTOInfo();
5955 }
5956 
5957 Expected<std::unique_ptr<ModuleSummaryIndex>>
5958 llvm::getModuleSummaryIndexForFile(StringRef Path,
5959                                    bool IgnoreEmptyThinLTOIndexFile) {
5960   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
5961       MemoryBuffer::getFileOrSTDIN(Path);
5962   if (!FileOrErr)
5963     return errorCodeToError(FileOrErr.getError());
5964   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
5965     return nullptr;
5966   return getModuleSummaryIndex(**FileOrErr);
5967 }
5968