1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This header defines the BitcodeReader class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "BitcodeReader.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/InlineAsm.h"
19 #include "llvm/IntrinsicInst.h"
20 #include "llvm/LLVMContext.h"
21 #include "llvm/Metadata.h"
22 #include "llvm/Module.h"
23 #include "llvm/Operator.h"
24 #include "llvm/AutoUpgrade.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/MemoryBuffer.h"
29 #include "llvm/OperandTraits.h"
30 using namespace llvm;
31 
32 void BitcodeReader::FreeState() {
33   delete Buffer;
34   Buffer = 0;
35   std::vector<PATypeHolder>().swap(TypeList);
36   ValueList.clear();
37   MDValueList.clear();
38 
39   std::vector<AttrListPtr>().swap(MAttributes);
40   std::vector<BasicBlock*>().swap(FunctionBBs);
41   std::vector<Function*>().swap(FunctionsWithBodies);
42   DeferredFunctionInfo.clear();
43 }
44 
45 //===----------------------------------------------------------------------===//
46 //  Helper functions to implement forward reference resolution, etc.
47 //===----------------------------------------------------------------------===//
48 
49 /// ConvertToString - Convert a string from a record into an std::string, return
50 /// true on failure.
51 template<typename StrTy>
52 static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
53                             StrTy &Result) {
54   if (Idx > Record.size())
55     return true;
56 
57   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
58     Result += (char)Record[i];
59   return false;
60 }
61 
62 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
63   switch (Val) {
64   default: // Map unknown/new linkages to external
65   case 0:  return GlobalValue::ExternalLinkage;
66   case 1:  return GlobalValue::WeakAnyLinkage;
67   case 2:  return GlobalValue::AppendingLinkage;
68   case 3:  return GlobalValue::InternalLinkage;
69   case 4:  return GlobalValue::LinkOnceAnyLinkage;
70   case 5:  return GlobalValue::DLLImportLinkage;
71   case 6:  return GlobalValue::DLLExportLinkage;
72   case 7:  return GlobalValue::ExternalWeakLinkage;
73   case 8:  return GlobalValue::CommonLinkage;
74   case 9:  return GlobalValue::PrivateLinkage;
75   case 10: return GlobalValue::WeakODRLinkage;
76   case 11: return GlobalValue::LinkOnceODRLinkage;
77   case 12: return GlobalValue::AvailableExternallyLinkage;
78   case 13: return GlobalValue::LinkerPrivateLinkage;
79   }
80 }
81 
82 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
83   switch (Val) {
84   default: // Map unknown visibilities to default.
85   case 0: return GlobalValue::DefaultVisibility;
86   case 1: return GlobalValue::HiddenVisibility;
87   case 2: return GlobalValue::ProtectedVisibility;
88   }
89 }
90 
91 static int GetDecodedCastOpcode(unsigned Val) {
92   switch (Val) {
93   default: return -1;
94   case bitc::CAST_TRUNC   : return Instruction::Trunc;
95   case bitc::CAST_ZEXT    : return Instruction::ZExt;
96   case bitc::CAST_SEXT    : return Instruction::SExt;
97   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
98   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
99   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
100   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
101   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
102   case bitc::CAST_FPEXT   : return Instruction::FPExt;
103   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
104   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
105   case bitc::CAST_BITCAST : return Instruction::BitCast;
106   }
107 }
108 static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) {
109   switch (Val) {
110   default: return -1;
111   case bitc::BINOP_ADD:
112     return Ty->isFPOrFPVector() ? Instruction::FAdd : Instruction::Add;
113   case bitc::BINOP_SUB:
114     return Ty->isFPOrFPVector() ? Instruction::FSub : Instruction::Sub;
115   case bitc::BINOP_MUL:
116     return Ty->isFPOrFPVector() ? Instruction::FMul : Instruction::Mul;
117   case bitc::BINOP_UDIV: return Instruction::UDiv;
118   case bitc::BINOP_SDIV:
119     return Ty->isFPOrFPVector() ? Instruction::FDiv : Instruction::SDiv;
120   case bitc::BINOP_UREM: return Instruction::URem;
121   case bitc::BINOP_SREM:
122     return Ty->isFPOrFPVector() ? Instruction::FRem : Instruction::SRem;
123   case bitc::BINOP_SHL:  return Instruction::Shl;
124   case bitc::BINOP_LSHR: return Instruction::LShr;
125   case bitc::BINOP_ASHR: return Instruction::AShr;
126   case bitc::BINOP_AND:  return Instruction::And;
127   case bitc::BINOP_OR:   return Instruction::Or;
128   case bitc::BINOP_XOR:  return Instruction::Xor;
129   }
130 }
131 
132 namespace llvm {
133 namespace {
134   /// @brief A class for maintaining the slot number definition
135   /// as a placeholder for the actual definition for forward constants defs.
136   class ConstantPlaceHolder : public ConstantExpr {
137     ConstantPlaceHolder();                       // DO NOT IMPLEMENT
138     void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
139   public:
140     // allocate space for exactly one operand
141     void *operator new(size_t s) {
142       return User::operator new(s, 1);
143     }
144     explicit ConstantPlaceHolder(const Type *Ty, LLVMContext& Context)
145       : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
146       Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
147     }
148 
149     /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
150     static inline bool classof(const ConstantPlaceHolder *) { return true; }
151     static bool classof(const Value *V) {
152       return isa<ConstantExpr>(V) &&
153              cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
154     }
155 
156 
157     /// Provide fast operand accessors
158     //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
159   };
160 }
161 
162 // FIXME: can we inherit this from ConstantExpr?
163 template <>
164 struct OperandTraits<ConstantPlaceHolder> : public FixedNumOperandTraits<1> {
165 };
166 }
167 
168 
169 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
170   if (Idx == size()) {
171     push_back(V);
172     return;
173   }
174 
175   if (Idx >= size())
176     resize(Idx+1);
177 
178   WeakVH &OldV = ValuePtrs[Idx];
179   if (OldV == 0) {
180     OldV = V;
181     return;
182   }
183 
184   // Handle constants and non-constants (e.g. instrs) differently for
185   // efficiency.
186   if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
187     ResolveConstants.push_back(std::make_pair(PHC, Idx));
188     OldV = V;
189   } else {
190     // If there was a forward reference to this value, replace it.
191     Value *PrevVal = OldV;
192     OldV->replaceAllUsesWith(V);
193     delete PrevVal;
194   }
195 }
196 
197 
198 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
199                                                     const Type *Ty) {
200   if (Idx >= size())
201     resize(Idx + 1);
202 
203   if (Value *V = ValuePtrs[Idx]) {
204     assert(Ty == V->getType() && "Type mismatch in constant table!");
205     return cast<Constant>(V);
206   }
207 
208   // Create and return a placeholder, which will later be RAUW'd.
209   Constant *C = new ConstantPlaceHolder(Ty, Context);
210   ValuePtrs[Idx] = C;
211   return C;
212 }
213 
214 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) {
215   if (Idx >= size())
216     resize(Idx + 1);
217 
218   if (Value *V = ValuePtrs[Idx]) {
219     assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
220     return V;
221   }
222 
223   // No type specified, must be invalid reference.
224   if (Ty == 0) return 0;
225 
226   // Create and return a placeholder, which will later be RAUW'd.
227   Value *V = new Argument(Ty);
228   ValuePtrs[Idx] = V;
229   return V;
230 }
231 
232 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk
233 /// resolves any forward references.  The idea behind this is that we sometimes
234 /// get constants (such as large arrays) which reference *many* forward ref
235 /// constants.  Replacing each of these causes a lot of thrashing when
236 /// building/reuniquing the constant.  Instead of doing this, we look at all the
237 /// uses and rewrite all the place holders at once for any constant that uses
238 /// a placeholder.
239 void BitcodeReaderValueList::ResolveConstantForwardRefs() {
240   // Sort the values by-pointer so that they are efficient to look up with a
241   // binary search.
242   std::sort(ResolveConstants.begin(), ResolveConstants.end());
243 
244   SmallVector<Constant*, 64> NewOps;
245 
246   while (!ResolveConstants.empty()) {
247     Value *RealVal = operator[](ResolveConstants.back().second);
248     Constant *Placeholder = ResolveConstants.back().first;
249     ResolveConstants.pop_back();
250 
251     // Loop over all users of the placeholder, updating them to reference the
252     // new value.  If they reference more than one placeholder, update them all
253     // at once.
254     while (!Placeholder->use_empty()) {
255       Value::use_iterator UI = Placeholder->use_begin();
256 
257       // If the using object isn't uniqued, just update the operands.  This
258       // handles instructions and initializers for global variables.
259       if (!isa<Constant>(*UI) || isa<GlobalValue>(*UI)) {
260         UI.getUse().set(RealVal);
261         continue;
262       }
263 
264       // Otherwise, we have a constant that uses the placeholder.  Replace that
265       // constant with a new constant that has *all* placeholder uses updated.
266       Constant *UserC = cast<Constant>(*UI);
267       for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
268            I != E; ++I) {
269         Value *NewOp;
270         if (!isa<ConstantPlaceHolder>(*I)) {
271           // Not a placeholder reference.
272           NewOp = *I;
273         } else if (*I == Placeholder) {
274           // Common case is that it just references this one placeholder.
275           NewOp = RealVal;
276         } else {
277           // Otherwise, look up the placeholder in ResolveConstants.
278           ResolveConstantsTy::iterator It =
279             std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
280                              std::pair<Constant*, unsigned>(cast<Constant>(*I),
281                                                             0));
282           assert(It != ResolveConstants.end() && It->first == *I);
283           NewOp = operator[](It->second);
284         }
285 
286         NewOps.push_back(cast<Constant>(NewOp));
287       }
288 
289       // Make the new constant.
290       Constant *NewC;
291       if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
292         NewC = ConstantArray::get(UserCA->getType(), &NewOps[0],
293                                         NewOps.size());
294       } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
295         NewC = ConstantStruct::get(Context, &NewOps[0], NewOps.size(),
296                                          UserCS->getType()->isPacked());
297       } else if (isa<ConstantVector>(UserC)) {
298         NewC = ConstantVector::get(&NewOps[0], NewOps.size());
299       } else {
300         assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
301         NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0],
302                                                           NewOps.size());
303       }
304 
305       UserC->replaceAllUsesWith(NewC);
306       UserC->destroyConstant();
307       NewOps.clear();
308     }
309 
310     // Update all ValueHandles, they should be the only users at this point.
311     Placeholder->replaceAllUsesWith(RealVal);
312     delete Placeholder;
313   }
314 }
315 
316 void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
317   if (Idx == size()) {
318     push_back(V);
319     return;
320   }
321 
322   if (Idx >= size())
323     resize(Idx+1);
324 
325   WeakVH &OldV = MDValuePtrs[Idx];
326   if (OldV == 0) {
327     OldV = V;
328     return;
329   }
330 
331   // If there was a forward reference to this value, replace it.
332   Value *PrevVal = OldV;
333   OldV->replaceAllUsesWith(V);
334   delete PrevVal;
335   // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
336   // value for Idx.
337   MDValuePtrs[Idx] = V;
338 }
339 
340 Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
341   if (Idx >= size())
342     resize(Idx + 1);
343 
344   if (Value *V = MDValuePtrs[Idx]) {
345     assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
346     return V;
347   }
348 
349   // Create and return a placeholder, which will later be RAUW'd.
350   Value *V = new Argument(Type::getMetadataTy(Context));
351   MDValuePtrs[Idx] = V;
352   return V;
353 }
354 
355 const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) {
356   // If the TypeID is in range, return it.
357   if (ID < TypeList.size())
358     return TypeList[ID].get();
359   if (!isTypeTable) return 0;
360 
361   // The type table allows forward references.  Push as many Opaque types as
362   // needed to get up to ID.
363   while (TypeList.size() <= ID)
364     TypeList.push_back(OpaqueType::get(Context));
365   return TypeList.back().get();
366 }
367 
368 //===----------------------------------------------------------------------===//
369 //  Functions for parsing blocks from the bitcode file
370 //===----------------------------------------------------------------------===//
371 
372 bool BitcodeReader::ParseAttributeBlock() {
373   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
374     return Error("Malformed block record");
375 
376   if (!MAttributes.empty())
377     return Error("Multiple PARAMATTR blocks found!");
378 
379   SmallVector<uint64_t, 64> Record;
380 
381   SmallVector<AttributeWithIndex, 8> Attrs;
382 
383   // Read all the records.
384   while (1) {
385     unsigned Code = Stream.ReadCode();
386     if (Code == bitc::END_BLOCK) {
387       if (Stream.ReadBlockEnd())
388         return Error("Error at end of PARAMATTR block");
389       return false;
390     }
391 
392     if (Code == bitc::ENTER_SUBBLOCK) {
393       // No known subblocks, always skip them.
394       Stream.ReadSubBlockID();
395       if (Stream.SkipBlock())
396         return Error("Malformed block record");
397       continue;
398     }
399 
400     if (Code == bitc::DEFINE_ABBREV) {
401       Stream.ReadAbbrevRecord();
402       continue;
403     }
404 
405     // Read a record.
406     Record.clear();
407     switch (Stream.ReadRecord(Code, Record)) {
408     default:  // Default behavior: ignore.
409       break;
410     case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
411       if (Record.size() & 1)
412         return Error("Invalid ENTRY record");
413 
414       // FIXME : Remove this autoupgrade code in LLVM 3.0.
415       // If Function attributes are using index 0 then transfer them
416       // to index ~0. Index 0 is used for return value attributes but used to be
417       // used for function attributes.
418       Attributes RetAttribute = Attribute::None;
419       Attributes FnAttribute = Attribute::None;
420       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
421         // FIXME: remove in LLVM 3.0
422         // The alignment is stored as a 16-bit raw value from bits 31--16.
423         // We shift the bits above 31 down by 11 bits.
424 
425         unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
426         if (Alignment && !isPowerOf2_32(Alignment))
427           return Error("Alignment is not a power of two.");
428 
429         Attributes ReconstitutedAttr = Record[i+1] & 0xffff;
430         if (Alignment)
431           ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
432         ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11;
433         Record[i+1] = ReconstitutedAttr;
434 
435         if (Record[i] == 0)
436           RetAttribute = Record[i+1];
437         else if (Record[i] == ~0U)
438           FnAttribute = Record[i+1];
439       }
440 
441       unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
442                               Attribute::ReadOnly|Attribute::ReadNone);
443 
444       if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
445           (RetAttribute & OldRetAttrs) != 0) {
446         if (FnAttribute == Attribute::None) { // add a slot so they get added.
447           Record.push_back(~0U);
448           Record.push_back(0);
449         }
450 
451         FnAttribute  |= RetAttribute & OldRetAttrs;
452         RetAttribute &= ~OldRetAttrs;
453       }
454 
455       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
456         if (Record[i] == 0) {
457           if (RetAttribute != Attribute::None)
458             Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
459         } else if (Record[i] == ~0U) {
460           if (FnAttribute != Attribute::None)
461             Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
462         } else if (Record[i+1] != Attribute::None)
463           Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
464       }
465 
466       MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
467       Attrs.clear();
468       break;
469     }
470     }
471   }
472 }
473 
474 
475 bool BitcodeReader::ParseTypeTable() {
476   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID))
477     return Error("Malformed block record");
478 
479   if (!TypeList.empty())
480     return Error("Multiple TYPE_BLOCKs found!");
481 
482   SmallVector<uint64_t, 64> Record;
483   unsigned NumRecords = 0;
484 
485   // Read all the records for this type table.
486   while (1) {
487     unsigned Code = Stream.ReadCode();
488     if (Code == bitc::END_BLOCK) {
489       if (NumRecords != TypeList.size())
490         return Error("Invalid type forward reference in TYPE_BLOCK");
491       if (Stream.ReadBlockEnd())
492         return Error("Error at end of type table block");
493       return false;
494     }
495 
496     if (Code == bitc::ENTER_SUBBLOCK) {
497       // No known subblocks, always skip them.
498       Stream.ReadSubBlockID();
499       if (Stream.SkipBlock())
500         return Error("Malformed block record");
501       continue;
502     }
503 
504     if (Code == bitc::DEFINE_ABBREV) {
505       Stream.ReadAbbrevRecord();
506       continue;
507     }
508 
509     // Read a record.
510     Record.clear();
511     const Type *ResultTy = 0;
512     switch (Stream.ReadRecord(Code, Record)) {
513     default:  // Default behavior: unknown type.
514       ResultTy = 0;
515       break;
516     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
517       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
518       // type list.  This allows us to reserve space.
519       if (Record.size() < 1)
520         return Error("Invalid TYPE_CODE_NUMENTRY record");
521       TypeList.reserve(Record[0]);
522       continue;
523     case bitc::TYPE_CODE_VOID:      // VOID
524       ResultTy = Type::getVoidTy(Context);
525       break;
526     case bitc::TYPE_CODE_FLOAT:     // FLOAT
527       ResultTy = Type::getFloatTy(Context);
528       break;
529     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
530       ResultTy = Type::getDoubleTy(Context);
531       break;
532     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
533       ResultTy = Type::getX86_FP80Ty(Context);
534       break;
535     case bitc::TYPE_CODE_FP128:     // FP128
536       ResultTy = Type::getFP128Ty(Context);
537       break;
538     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
539       ResultTy = Type::getPPC_FP128Ty(Context);
540       break;
541     case bitc::TYPE_CODE_LABEL:     // LABEL
542       ResultTy = Type::getLabelTy(Context);
543       break;
544     case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
545       ResultTy = 0;
546       break;
547     case bitc::TYPE_CODE_METADATA:  // METADATA
548       ResultTy = Type::getMetadataTy(Context);
549       break;
550     case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
551       if (Record.size() < 1)
552         return Error("Invalid Integer type record");
553 
554       ResultTy = IntegerType::get(Context, Record[0]);
555       break;
556     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
557                                     //          [pointee type, address space]
558       if (Record.size() < 1)
559         return Error("Invalid POINTER type record");
560       unsigned AddressSpace = 0;
561       if (Record.size() == 2)
562         AddressSpace = Record[1];
563       ResultTy = PointerType::get(getTypeByID(Record[0], true),
564                                         AddressSpace);
565       break;
566     }
567     case bitc::TYPE_CODE_FUNCTION: {
568       // FIXME: attrid is dead, remove it in LLVM 3.0
569       // FUNCTION: [vararg, attrid, retty, paramty x N]
570       if (Record.size() < 3)
571         return Error("Invalid FUNCTION type record");
572       std::vector<const Type*> ArgTys;
573       for (unsigned i = 3, e = Record.size(); i != e; ++i)
574         ArgTys.push_back(getTypeByID(Record[i], true));
575 
576       ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys,
577                                    Record[0]);
578       break;
579     }
580     case bitc::TYPE_CODE_STRUCT: {  // STRUCT: [ispacked, eltty x N]
581       if (Record.size() < 1)
582         return Error("Invalid STRUCT type record");
583       std::vector<const Type*> EltTys;
584       for (unsigned i = 1, e = Record.size(); i != e; ++i)
585         EltTys.push_back(getTypeByID(Record[i], true));
586       ResultTy = StructType::get(Context, EltTys, Record[0]);
587       break;
588     }
589     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
590       if (Record.size() < 2)
591         return Error("Invalid ARRAY type record");
592       ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]);
593       break;
594     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
595       if (Record.size() < 2)
596         return Error("Invalid VECTOR type record");
597       ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]);
598       break;
599     }
600 
601     if (NumRecords == TypeList.size()) {
602       // If this is a new type slot, just append it.
603       TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get(Context));
604       ++NumRecords;
605     } else if (ResultTy == 0) {
606       // Otherwise, this was forward referenced, so an opaque type was created,
607       // but the result type is actually just an opaque.  Leave the one we
608       // created previously.
609       ++NumRecords;
610     } else {
611       // Otherwise, this was forward referenced, so an opaque type was created.
612       // Resolve the opaque type to the real type now.
613       assert(NumRecords < TypeList.size() && "Typelist imbalance");
614       const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get());
615 
616       // Don't directly push the new type on the Tab. Instead we want to replace
617       // the opaque type we previously inserted with the new concrete value. The
618       // refinement from the abstract (opaque) type to the new type causes all
619       // uses of the abstract type to use the concrete type (NewTy). This will
620       // also cause the opaque type to be deleted.
621       const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy);
622 
623       // This should have replaced the old opaque type with the new type in the
624       // value table... or with a preexisting type that was already in the
625       // system.  Let's just make sure it did.
626       assert(TypeList[NumRecords-1].get() != OldTy &&
627              "refineAbstractType didn't work!");
628     }
629   }
630 }
631 
632 
633 bool BitcodeReader::ParseTypeSymbolTable() {
634   if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID))
635     return Error("Malformed block record");
636 
637   SmallVector<uint64_t, 64> Record;
638 
639   // Read all the records for this type table.
640   std::string TypeName;
641   while (1) {
642     unsigned Code = Stream.ReadCode();
643     if (Code == bitc::END_BLOCK) {
644       if (Stream.ReadBlockEnd())
645         return Error("Error at end of type symbol table block");
646       return false;
647     }
648 
649     if (Code == bitc::ENTER_SUBBLOCK) {
650       // No known subblocks, always skip them.
651       Stream.ReadSubBlockID();
652       if (Stream.SkipBlock())
653         return Error("Malformed block record");
654       continue;
655     }
656 
657     if (Code == bitc::DEFINE_ABBREV) {
658       Stream.ReadAbbrevRecord();
659       continue;
660     }
661 
662     // Read a record.
663     Record.clear();
664     switch (Stream.ReadRecord(Code, Record)) {
665     default:  // Default behavior: unknown type.
666       break;
667     case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
668       if (ConvertToString(Record, 1, TypeName))
669         return Error("Invalid TST_ENTRY record");
670       unsigned TypeID = Record[0];
671       if (TypeID >= TypeList.size())
672         return Error("Invalid Type ID in TST_ENTRY record");
673 
674       TheModule->addTypeName(TypeName, TypeList[TypeID].get());
675       TypeName.clear();
676       break;
677     }
678   }
679 }
680 
681 bool BitcodeReader::ParseValueSymbolTable() {
682   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
683     return Error("Malformed block record");
684 
685   SmallVector<uint64_t, 64> Record;
686 
687   // Read all the records for this value table.
688   SmallString<128> ValueName;
689   while (1) {
690     unsigned Code = Stream.ReadCode();
691     if (Code == bitc::END_BLOCK) {
692       if (Stream.ReadBlockEnd())
693         return Error("Error at end of value symbol table block");
694       return false;
695     }
696     if (Code == bitc::ENTER_SUBBLOCK) {
697       // No known subblocks, always skip them.
698       Stream.ReadSubBlockID();
699       if (Stream.SkipBlock())
700         return Error("Malformed block record");
701       continue;
702     }
703 
704     if (Code == bitc::DEFINE_ABBREV) {
705       Stream.ReadAbbrevRecord();
706       continue;
707     }
708 
709     // Read a record.
710     Record.clear();
711     switch (Stream.ReadRecord(Code, Record)) {
712     default:  // Default behavior: unknown type.
713       break;
714     case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
715       if (ConvertToString(Record, 1, ValueName))
716         return Error("Invalid VST_ENTRY record");
717       unsigned ValueID = Record[0];
718       if (ValueID >= ValueList.size())
719         return Error("Invalid Value ID in VST_ENTRY record");
720       Value *V = ValueList[ValueID];
721 
722       V->setName(StringRef(ValueName.data(), ValueName.size()));
723       ValueName.clear();
724       break;
725     }
726     case bitc::VST_CODE_BBENTRY: {
727       if (ConvertToString(Record, 1, ValueName))
728         return Error("Invalid VST_BBENTRY record");
729       BasicBlock *BB = getBasicBlock(Record[0]);
730       if (BB == 0)
731         return Error("Invalid BB ID in VST_BBENTRY record");
732 
733       BB->setName(StringRef(ValueName.data(), ValueName.size()));
734       ValueName.clear();
735       break;
736     }
737     }
738   }
739 }
740 
741 bool BitcodeReader::ParseMetadata() {
742   unsigned NextValueNo = MDValueList.size();
743 
744   if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
745     return Error("Malformed block record");
746 
747   SmallVector<uint64_t, 64> Record;
748 
749   // Read all the records.
750   while (1) {
751     unsigned Code = Stream.ReadCode();
752     if (Code == bitc::END_BLOCK) {
753       if (Stream.ReadBlockEnd())
754         return Error("Error at end of PARAMATTR block");
755       return false;
756     }
757 
758     if (Code == bitc::ENTER_SUBBLOCK) {
759       // No known subblocks, always skip them.
760       Stream.ReadSubBlockID();
761       if (Stream.SkipBlock())
762         return Error("Malformed block record");
763       continue;
764     }
765 
766     if (Code == bitc::DEFINE_ABBREV) {
767       Stream.ReadAbbrevRecord();
768       continue;
769     }
770 
771     // Read a record.
772     Record.clear();
773     switch (Stream.ReadRecord(Code, Record)) {
774     default:  // Default behavior: ignore.
775       break;
776     case bitc::METADATA_NAME: {
777       // Read named of the named metadata.
778       unsigned NameLength = Record.size();
779       SmallString<8> Name;
780       Name.resize(NameLength);
781       for (unsigned i = 0; i != NameLength; ++i)
782         Name[i] = Record[i];
783       Record.clear();
784       Code = Stream.ReadCode();
785 
786       // METADATA_NAME is always followed by METADATA_NAMED_NODE.
787       if (Stream.ReadRecord(Code, Record) != bitc::METADATA_NAMED_NODE)
788         assert ( 0 && "Inavlid Named Metadata record");
789 
790       // Read named metadata elements.
791       unsigned Size = Record.size();
792       SmallVector<MetadataBase*, 8> Elts;
793       for (unsigned i = 0; i != Size; ++i) {
794         Value *MD = MDValueList.getValueFwdRef(Record[i]);
795         if (MetadataBase *B = dyn_cast<MetadataBase>(MD))
796         Elts.push_back(B);
797       }
798       Value *V = NamedMDNode::Create(Context, Name.str(), Elts.data(),
799                                      Elts.size(), TheModule);
800       MDValueList.AssignValue(V, NextValueNo++);
801       break;
802     }
803     case bitc::METADATA_NODE: {
804       if (Record.empty() || Record.size() % 2 == 1)
805         return Error("Invalid METADATA_NODE record");
806 
807       unsigned Size = Record.size();
808       SmallVector<Value*, 8> Elts;
809       for (unsigned i = 0; i != Size; i += 2) {
810         const Type *Ty = getTypeByID(Record[i], false);
811         if (Ty->isMetadataTy())
812           Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
813         else if (Ty != Type::getVoidTy(Context))
814           Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
815         else
816           Elts.push_back(NULL);
817       }
818       Value *V = MDNode::get(Context, &Elts[0], Elts.size());
819       MDValueList.AssignValue(V, NextValueNo++);
820       break;
821     }
822     case bitc::METADATA_STRING: {
823       unsigned MDStringLength = Record.size();
824       SmallString<8> String;
825       String.resize(MDStringLength);
826       for (unsigned i = 0; i != MDStringLength; ++i)
827         String[i] = Record[i];
828       Value *V = MDString::get(Context,
829                                StringRef(String.data(), String.size()));
830       MDValueList.AssignValue(V, NextValueNo++);
831       break;
832     }
833     case bitc::METADATA_KIND: {
834       unsigned RecordLength = Record.size();
835       if (Record.empty() || RecordLength < 2)
836         return Error("Invalid METADATA_KIND record");
837       SmallString<8> Name;
838       Name.resize(RecordLength-1);
839       unsigned Kind = Record[0];
840       for (unsigned i = 1; i != RecordLength; ++i)
841         Name[i-1] = Record[i];
842       MetadataContext &TheMetadata = Context.getMetadata();
843       TheMetadata.MDHandlerNames[Name.str()] = Kind;
844       break;
845     }
846     }
847   }
848 }
849 
850 /// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
851 /// the LSB for dense VBR encoding.
852 static uint64_t DecodeSignRotatedValue(uint64_t V) {
853   if ((V & 1) == 0)
854     return V >> 1;
855   if (V != 1)
856     return -(V >> 1);
857   // There is no such thing as -0 with integers.  "-0" really means MININT.
858   return 1ULL << 63;
859 }
860 
861 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
862 /// values and aliases that we can.
863 bool BitcodeReader::ResolveGlobalAndAliasInits() {
864   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
865   std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
866 
867   GlobalInitWorklist.swap(GlobalInits);
868   AliasInitWorklist.swap(AliasInits);
869 
870   while (!GlobalInitWorklist.empty()) {
871     unsigned ValID = GlobalInitWorklist.back().second;
872     if (ValID >= ValueList.size()) {
873       // Not ready to resolve this yet, it requires something later in the file.
874       GlobalInits.push_back(GlobalInitWorklist.back());
875     } else {
876       if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
877         GlobalInitWorklist.back().first->setInitializer(C);
878       else
879         return Error("Global variable initializer is not a constant!");
880     }
881     GlobalInitWorklist.pop_back();
882   }
883 
884   while (!AliasInitWorklist.empty()) {
885     unsigned ValID = AliasInitWorklist.back().second;
886     if (ValID >= ValueList.size()) {
887       AliasInits.push_back(AliasInitWorklist.back());
888     } else {
889       if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
890         AliasInitWorklist.back().first->setAliasee(C);
891       else
892         return Error("Alias initializer is not a constant!");
893     }
894     AliasInitWorklist.pop_back();
895   }
896   return false;
897 }
898 
899 bool BitcodeReader::ParseConstants() {
900   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
901     return Error("Malformed block record");
902 
903   SmallVector<uint64_t, 64> Record;
904 
905   // Read all the records for this value table.
906   const Type *CurTy = Type::getInt32Ty(Context);
907   unsigned NextCstNo = ValueList.size();
908   while (1) {
909     unsigned Code = Stream.ReadCode();
910     if (Code == bitc::END_BLOCK)
911       break;
912 
913     if (Code == bitc::ENTER_SUBBLOCK) {
914       // No known subblocks, always skip them.
915       Stream.ReadSubBlockID();
916       if (Stream.SkipBlock())
917         return Error("Malformed block record");
918       continue;
919     }
920 
921     if (Code == bitc::DEFINE_ABBREV) {
922       Stream.ReadAbbrevRecord();
923       continue;
924     }
925 
926     // Read a record.
927     Record.clear();
928     Value *V = 0;
929     unsigned BitCode = Stream.ReadRecord(Code, Record);
930     switch (BitCode) {
931     default:  // Default behavior: unknown constant
932     case bitc::CST_CODE_UNDEF:     // UNDEF
933       V = UndefValue::get(CurTy);
934       break;
935     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
936       if (Record.empty())
937         return Error("Malformed CST_SETTYPE record");
938       if (Record[0] >= TypeList.size())
939         return Error("Invalid Type ID in CST_SETTYPE record");
940       CurTy = TypeList[Record[0]];
941       continue;  // Skip the ValueList manipulation.
942     case bitc::CST_CODE_NULL:      // NULL
943       V = Constant::getNullValue(CurTy);
944       break;
945     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
946       if (!isa<IntegerType>(CurTy) || Record.empty())
947         return Error("Invalid CST_INTEGER record");
948       V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
949       break;
950     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
951       if (!isa<IntegerType>(CurTy) || Record.empty())
952         return Error("Invalid WIDE_INTEGER record");
953 
954       unsigned NumWords = Record.size();
955       SmallVector<uint64_t, 8> Words;
956       Words.resize(NumWords);
957       for (unsigned i = 0; i != NumWords; ++i)
958         Words[i] = DecodeSignRotatedValue(Record[i]);
959       V = ConstantInt::get(Context,
960                            APInt(cast<IntegerType>(CurTy)->getBitWidth(),
961                            NumWords, &Words[0]));
962       break;
963     }
964     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
965       if (Record.empty())
966         return Error("Invalid FLOAT record");
967       if (CurTy->isFloatTy())
968         V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0])));
969       else if (CurTy->isDoubleTy())
970         V = ConstantFP::get(Context, APFloat(APInt(64, Record[0])));
971       else if (CurTy->isX86_FP80Ty()) {
972         // Bits are not stored the same way as a normal i80 APInt, compensate.
973         uint64_t Rearrange[2];
974         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
975         Rearrange[1] = Record[0] >> 48;
976         V = ConstantFP::get(Context, APFloat(APInt(80, 2, Rearrange)));
977       } else if (CurTy->isFP128Ty())
978         V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]), true));
979       else if (CurTy->isPPC_FP128Ty())
980         V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0])));
981       else
982         V = UndefValue::get(CurTy);
983       break;
984     }
985 
986     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
987       if (Record.empty())
988         return Error("Invalid CST_AGGREGATE record");
989 
990       unsigned Size = Record.size();
991       std::vector<Constant*> Elts;
992 
993       if (const StructType *STy = dyn_cast<StructType>(CurTy)) {
994         for (unsigned i = 0; i != Size; ++i)
995           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
996                                                      STy->getElementType(i)));
997         V = ConstantStruct::get(STy, Elts);
998       } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
999         const Type *EltTy = ATy->getElementType();
1000         for (unsigned i = 0; i != Size; ++i)
1001           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1002         V = ConstantArray::get(ATy, Elts);
1003       } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
1004         const Type *EltTy = VTy->getElementType();
1005         for (unsigned i = 0; i != Size; ++i)
1006           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1007         V = ConstantVector::get(Elts);
1008       } else {
1009         V = UndefValue::get(CurTy);
1010       }
1011       break;
1012     }
1013     case bitc::CST_CODE_STRING: { // STRING: [values]
1014       if (Record.empty())
1015         return Error("Invalid CST_AGGREGATE record");
1016 
1017       const ArrayType *ATy = cast<ArrayType>(CurTy);
1018       const Type *EltTy = ATy->getElementType();
1019 
1020       unsigned Size = Record.size();
1021       std::vector<Constant*> Elts;
1022       for (unsigned i = 0; i != Size; ++i)
1023         Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1024       V = ConstantArray::get(ATy, Elts);
1025       break;
1026     }
1027     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1028       if (Record.empty())
1029         return Error("Invalid CST_AGGREGATE record");
1030 
1031       const ArrayType *ATy = cast<ArrayType>(CurTy);
1032       const Type *EltTy = ATy->getElementType();
1033 
1034       unsigned Size = Record.size();
1035       std::vector<Constant*> Elts;
1036       for (unsigned i = 0; i != Size; ++i)
1037         Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1038       Elts.push_back(Constant::getNullValue(EltTy));
1039       V = ConstantArray::get(ATy, Elts);
1040       break;
1041     }
1042     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
1043       if (Record.size() < 3) return Error("Invalid CE_BINOP record");
1044       int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1045       if (Opc < 0) {
1046         V = UndefValue::get(CurTy);  // Unknown binop.
1047       } else {
1048         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1049         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1050         unsigned Flags = 0;
1051         if (Record.size() >= 4) {
1052           if (Opc == Instruction::Add ||
1053               Opc == Instruction::Sub ||
1054               Opc == Instruction::Mul) {
1055             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1056               Flags |= OverflowingBinaryOperator::NoSignedWrap;
1057             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1058               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
1059           } else if (Opc == Instruction::SDiv) {
1060             if (Record[3] & (1 << bitc::SDIV_EXACT))
1061               Flags |= SDivOperator::IsExact;
1062           }
1063         }
1064         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
1065       }
1066       break;
1067     }
1068     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
1069       if (Record.size() < 3) return Error("Invalid CE_CAST record");
1070       int Opc = GetDecodedCastOpcode(Record[0]);
1071       if (Opc < 0) {
1072         V = UndefValue::get(CurTy);  // Unknown cast.
1073       } else {
1074         const Type *OpTy = getTypeByID(Record[1]);
1075         if (!OpTy) return Error("Invalid CE_CAST record");
1076         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1077         V = ConstantExpr::getCast(Opc, Op, CurTy);
1078       }
1079       break;
1080     }
1081     case bitc::CST_CODE_CE_INBOUNDS_GEP:
1082     case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
1083       if (Record.size() & 1) return Error("Invalid CE_GEP record");
1084       SmallVector<Constant*, 16> Elts;
1085       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1086         const Type *ElTy = getTypeByID(Record[i]);
1087         if (!ElTy) return Error("Invalid CE_GEP record");
1088         Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1089       }
1090       if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
1091         V = ConstantExpr::getInBoundsGetElementPtr(Elts[0], &Elts[1],
1092                                                    Elts.size()-1);
1093       else
1094         V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1],
1095                                            Elts.size()-1);
1096       break;
1097     }
1098     case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
1099       if (Record.size() < 3) return Error("Invalid CE_SELECT record");
1100       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
1101                                                               Type::getInt1Ty(Context)),
1102                                   ValueList.getConstantFwdRef(Record[1],CurTy),
1103                                   ValueList.getConstantFwdRef(Record[2],CurTy));
1104       break;
1105     case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1106       if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
1107       const VectorType *OpTy =
1108         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1109       if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
1110       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1111       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1112       V = ConstantExpr::getExtractElement(Op0, Op1);
1113       break;
1114     }
1115     case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1116       const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1117       if (Record.size() < 3 || OpTy == 0)
1118         return Error("Invalid CE_INSERTELT record");
1119       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1120       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1121                                                   OpTy->getElementType());
1122       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1123       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1124       break;
1125     }
1126     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1127       const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1128       if (Record.size() < 3 || OpTy == 0)
1129         return Error("Invalid CE_SHUFFLEVEC record");
1130       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1131       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1132       const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1133                                                  OpTy->getNumElements());
1134       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1135       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1136       break;
1137     }
1138     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1139       const VectorType *RTy = dyn_cast<VectorType>(CurTy);
1140       const VectorType *OpTy = dyn_cast<VectorType>(getTypeByID(Record[0]));
1141       if (Record.size() < 4 || RTy == 0 || OpTy == 0)
1142         return Error("Invalid CE_SHUFVEC_EX record");
1143       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1144       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1145       const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1146                                                  RTy->getNumElements());
1147       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1148       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1149       break;
1150     }
1151     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
1152       if (Record.size() < 4) return Error("Invalid CE_CMP record");
1153       const Type *OpTy = getTypeByID(Record[0]);
1154       if (OpTy == 0) return Error("Invalid CE_CMP record");
1155       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1156       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1157 
1158       if (OpTy->isFloatingPoint())
1159         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1160       else
1161         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1162       break;
1163     }
1164     case bitc::CST_CODE_INLINEASM: {
1165       if (Record.size() < 2) return Error("Invalid INLINEASM record");
1166       std::string AsmStr, ConstrStr;
1167       bool HasSideEffects = Record[0];
1168       unsigned AsmStrSize = Record[1];
1169       if (2+AsmStrSize >= Record.size())
1170         return Error("Invalid INLINEASM record");
1171       unsigned ConstStrSize = Record[2+AsmStrSize];
1172       if (3+AsmStrSize+ConstStrSize > Record.size())
1173         return Error("Invalid INLINEASM record");
1174 
1175       for (unsigned i = 0; i != AsmStrSize; ++i)
1176         AsmStr += (char)Record[2+i];
1177       for (unsigned i = 0; i != ConstStrSize; ++i)
1178         ConstrStr += (char)Record[3+AsmStrSize+i];
1179       const PointerType *PTy = cast<PointerType>(CurTy);
1180       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1181                          AsmStr, ConstrStr, HasSideEffects);
1182       break;
1183     }
1184     }
1185 
1186     ValueList.AssignValue(V, NextCstNo);
1187     ++NextCstNo;
1188   }
1189 
1190   if (NextCstNo != ValueList.size())
1191     return Error("Invalid constant reference!");
1192 
1193   if (Stream.ReadBlockEnd())
1194     return Error("Error at end of constants block");
1195 
1196   // Once all the constants have been read, go through and resolve forward
1197   // references.
1198   ValueList.ResolveConstantForwardRefs();
1199   return false;
1200 }
1201 
1202 /// RememberAndSkipFunctionBody - When we see the block for a function body,
1203 /// remember where it is and then skip it.  This lets us lazily deserialize the
1204 /// functions.
1205 bool BitcodeReader::RememberAndSkipFunctionBody() {
1206   // Get the function we are talking about.
1207   if (FunctionsWithBodies.empty())
1208     return Error("Insufficient function protos");
1209 
1210   Function *Fn = FunctionsWithBodies.back();
1211   FunctionsWithBodies.pop_back();
1212 
1213   // Save the current stream state.
1214   uint64_t CurBit = Stream.GetCurrentBitNo();
1215   DeferredFunctionInfo[Fn] = std::make_pair(CurBit, Fn->getLinkage());
1216 
1217   // Set the functions linkage to GhostLinkage so we know it is lazily
1218   // deserialized.
1219   Fn->setLinkage(GlobalValue::GhostLinkage);
1220 
1221   // Skip over the function block for now.
1222   if (Stream.SkipBlock())
1223     return Error("Malformed block record");
1224   return false;
1225 }
1226 
1227 bool BitcodeReader::ParseModule(const std::string &ModuleID) {
1228   // Reject multiple MODULE_BLOCK's in a single bitstream.
1229   if (TheModule)
1230     return Error("Multiple MODULE_BLOCKs in same stream");
1231 
1232   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1233     return Error("Malformed block record");
1234 
1235   // Otherwise, create the module.
1236   TheModule = new Module(ModuleID, Context);
1237 
1238   SmallVector<uint64_t, 64> Record;
1239   std::vector<std::string> SectionTable;
1240   std::vector<std::string> GCTable;
1241 
1242   // Read all the records for this module.
1243   while (!Stream.AtEndOfStream()) {
1244     unsigned Code = Stream.ReadCode();
1245     if (Code == bitc::END_BLOCK) {
1246       if (Stream.ReadBlockEnd())
1247         return Error("Error at end of module block");
1248 
1249       // Patch the initializers for globals and aliases up.
1250       ResolveGlobalAndAliasInits();
1251       if (!GlobalInits.empty() || !AliasInits.empty())
1252         return Error("Malformed global initializer set");
1253       if (!FunctionsWithBodies.empty())
1254         return Error("Too few function bodies found");
1255 
1256       // Look for intrinsic functions which need to be upgraded at some point
1257       for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1258            FI != FE; ++FI) {
1259         Function* NewFn;
1260         if (UpgradeIntrinsicFunction(FI, NewFn))
1261           UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1262       }
1263 
1264       // Force deallocation of memory for these vectors to favor the client that
1265       // want lazy deserialization.
1266       std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1267       std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1268       std::vector<Function*>().swap(FunctionsWithBodies);
1269       return false;
1270     }
1271 
1272     if (Code == bitc::ENTER_SUBBLOCK) {
1273       switch (Stream.ReadSubBlockID()) {
1274       default:  // Skip unknown content.
1275         if (Stream.SkipBlock())
1276           return Error("Malformed block record");
1277         break;
1278       case bitc::BLOCKINFO_BLOCK_ID:
1279         if (Stream.ReadBlockInfoBlock())
1280           return Error("Malformed BlockInfoBlock");
1281         break;
1282       case bitc::PARAMATTR_BLOCK_ID:
1283         if (ParseAttributeBlock())
1284           return true;
1285         break;
1286       case bitc::TYPE_BLOCK_ID:
1287         if (ParseTypeTable())
1288           return true;
1289         break;
1290       case bitc::TYPE_SYMTAB_BLOCK_ID:
1291         if (ParseTypeSymbolTable())
1292           return true;
1293         break;
1294       case bitc::VALUE_SYMTAB_BLOCK_ID:
1295         if (ParseValueSymbolTable())
1296           return true;
1297         break;
1298       case bitc::CONSTANTS_BLOCK_ID:
1299         if (ParseConstants() || ResolveGlobalAndAliasInits())
1300           return true;
1301         break;
1302       case bitc::METADATA_BLOCK_ID:
1303         if (ParseMetadata())
1304           return true;
1305         break;
1306       case bitc::FUNCTION_BLOCK_ID:
1307         // If this is the first function body we've seen, reverse the
1308         // FunctionsWithBodies list.
1309         if (!HasReversedFunctionsWithBodies) {
1310           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1311           HasReversedFunctionsWithBodies = true;
1312         }
1313 
1314         if (RememberAndSkipFunctionBody())
1315           return true;
1316         break;
1317       }
1318       continue;
1319     }
1320 
1321     if (Code == bitc::DEFINE_ABBREV) {
1322       Stream.ReadAbbrevRecord();
1323       continue;
1324     }
1325 
1326     // Read a record.
1327     switch (Stream.ReadRecord(Code, Record)) {
1328     default: break;  // Default behavior, ignore unknown content.
1329     case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1330       if (Record.size() < 1)
1331         return Error("Malformed MODULE_CODE_VERSION");
1332       // Only version #0 is supported so far.
1333       if (Record[0] != 0)
1334         return Error("Unknown bitstream version!");
1335       break;
1336     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1337       std::string S;
1338       if (ConvertToString(Record, 0, S))
1339         return Error("Invalid MODULE_CODE_TRIPLE record");
1340       TheModule->setTargetTriple(S);
1341       break;
1342     }
1343     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1344       std::string S;
1345       if (ConvertToString(Record, 0, S))
1346         return Error("Invalid MODULE_CODE_DATALAYOUT record");
1347       TheModule->setDataLayout(S);
1348       break;
1349     }
1350     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1351       std::string S;
1352       if (ConvertToString(Record, 0, S))
1353         return Error("Invalid MODULE_CODE_ASM record");
1354       TheModule->setModuleInlineAsm(S);
1355       break;
1356     }
1357     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1358       std::string S;
1359       if (ConvertToString(Record, 0, S))
1360         return Error("Invalid MODULE_CODE_DEPLIB record");
1361       TheModule->addLibrary(S);
1362       break;
1363     }
1364     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1365       std::string S;
1366       if (ConvertToString(Record, 0, S))
1367         return Error("Invalid MODULE_CODE_SECTIONNAME record");
1368       SectionTable.push_back(S);
1369       break;
1370     }
1371     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1372       std::string S;
1373       if (ConvertToString(Record, 0, S))
1374         return Error("Invalid MODULE_CODE_GCNAME record");
1375       GCTable.push_back(S);
1376       break;
1377     }
1378     // GLOBALVAR: [pointer type, isconst, initid,
1379     //             linkage, alignment, section, visibility, threadlocal]
1380     case bitc::MODULE_CODE_GLOBALVAR: {
1381       if (Record.size() < 6)
1382         return Error("Invalid MODULE_CODE_GLOBALVAR record");
1383       const Type *Ty = getTypeByID(Record[0]);
1384       if (!isa<PointerType>(Ty))
1385         return Error("Global not a pointer type!");
1386       unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1387       Ty = cast<PointerType>(Ty)->getElementType();
1388 
1389       bool isConstant = Record[1];
1390       GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1391       unsigned Alignment = (1 << Record[4]) >> 1;
1392       std::string Section;
1393       if (Record[5]) {
1394         if (Record[5]-1 >= SectionTable.size())
1395           return Error("Invalid section ID");
1396         Section = SectionTable[Record[5]-1];
1397       }
1398       GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1399       if (Record.size() > 6)
1400         Visibility = GetDecodedVisibility(Record[6]);
1401       bool isThreadLocal = false;
1402       if (Record.size() > 7)
1403         isThreadLocal = Record[7];
1404 
1405       GlobalVariable *NewGV =
1406         new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1407                            isThreadLocal, AddressSpace);
1408       NewGV->setAlignment(Alignment);
1409       if (!Section.empty())
1410         NewGV->setSection(Section);
1411       NewGV->setVisibility(Visibility);
1412       NewGV->setThreadLocal(isThreadLocal);
1413 
1414       ValueList.push_back(NewGV);
1415 
1416       // Remember which value to use for the global initializer.
1417       if (unsigned InitID = Record[2])
1418         GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1419       break;
1420     }
1421     // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1422     //             alignment, section, visibility, gc]
1423     case bitc::MODULE_CODE_FUNCTION: {
1424       if (Record.size() < 8)
1425         return Error("Invalid MODULE_CODE_FUNCTION record");
1426       const Type *Ty = getTypeByID(Record[0]);
1427       if (!isa<PointerType>(Ty))
1428         return Error("Function not a pointer type!");
1429       const FunctionType *FTy =
1430         dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1431       if (!FTy)
1432         return Error("Function not a pointer to function type!");
1433 
1434       Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1435                                         "", TheModule);
1436 
1437       Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
1438       bool isProto = Record[2];
1439       Func->setLinkage(GetDecodedLinkage(Record[3]));
1440       Func->setAttributes(getAttributes(Record[4]));
1441 
1442       Func->setAlignment((1 << Record[5]) >> 1);
1443       if (Record[6]) {
1444         if (Record[6]-1 >= SectionTable.size())
1445           return Error("Invalid section ID");
1446         Func->setSection(SectionTable[Record[6]-1]);
1447       }
1448       Func->setVisibility(GetDecodedVisibility(Record[7]));
1449       if (Record.size() > 8 && Record[8]) {
1450         if (Record[8]-1 > GCTable.size())
1451           return Error("Invalid GC ID");
1452         Func->setGC(GCTable[Record[8]-1].c_str());
1453       }
1454       ValueList.push_back(Func);
1455 
1456       // If this is a function with a body, remember the prototype we are
1457       // creating now, so that we can match up the body with them later.
1458       if (!isProto)
1459         FunctionsWithBodies.push_back(Func);
1460       break;
1461     }
1462     // ALIAS: [alias type, aliasee val#, linkage]
1463     // ALIAS: [alias type, aliasee val#, linkage, visibility]
1464     case bitc::MODULE_CODE_ALIAS: {
1465       if (Record.size() < 3)
1466         return Error("Invalid MODULE_ALIAS record");
1467       const Type *Ty = getTypeByID(Record[0]);
1468       if (!isa<PointerType>(Ty))
1469         return Error("Function not a pointer type!");
1470 
1471       GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1472                                            "", 0, TheModule);
1473       // Old bitcode files didn't have visibility field.
1474       if (Record.size() > 3)
1475         NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1476       ValueList.push_back(NewGA);
1477       AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1478       break;
1479     }
1480     /// MODULE_CODE_PURGEVALS: [numvals]
1481     case bitc::MODULE_CODE_PURGEVALS:
1482       // Trim down the value list to the specified size.
1483       if (Record.size() < 1 || Record[0] > ValueList.size())
1484         return Error("Invalid MODULE_PURGEVALS record");
1485       ValueList.shrinkTo(Record[0]);
1486       break;
1487     }
1488     Record.clear();
1489   }
1490 
1491   return Error("Premature end of bitstream");
1492 }
1493 
1494 bool BitcodeReader::ParseBitcode() {
1495   TheModule = 0;
1496 
1497   if (Buffer->getBufferSize() & 3)
1498     return Error("Bitcode stream should be a multiple of 4 bytes in length");
1499 
1500   unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1501   unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1502 
1503   // If we have a wrapper header, parse it and ignore the non-bc file contents.
1504   // The magic number is 0x0B17C0DE stored in little endian.
1505   if (isBitcodeWrapper(BufPtr, BufEnd))
1506     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1507       return Error("Invalid bitcode wrapper header");
1508 
1509   StreamFile.init(BufPtr, BufEnd);
1510   Stream.init(StreamFile);
1511 
1512   // Sniff for the signature.
1513   if (Stream.Read(8) != 'B' ||
1514       Stream.Read(8) != 'C' ||
1515       Stream.Read(4) != 0x0 ||
1516       Stream.Read(4) != 0xC ||
1517       Stream.Read(4) != 0xE ||
1518       Stream.Read(4) != 0xD)
1519     return Error("Invalid bitcode signature");
1520 
1521   // We expect a number of well-defined blocks, though we don't necessarily
1522   // need to understand them all.
1523   while (!Stream.AtEndOfStream()) {
1524     unsigned Code = Stream.ReadCode();
1525 
1526     if (Code != bitc::ENTER_SUBBLOCK)
1527       return Error("Invalid record at top-level");
1528 
1529     unsigned BlockID = Stream.ReadSubBlockID();
1530 
1531     // We only know the MODULE subblock ID.
1532     switch (BlockID) {
1533     case bitc::BLOCKINFO_BLOCK_ID:
1534       if (Stream.ReadBlockInfoBlock())
1535         return Error("Malformed BlockInfoBlock");
1536       break;
1537     case bitc::MODULE_BLOCK_ID:
1538       if (ParseModule(Buffer->getBufferIdentifier()))
1539         return true;
1540       break;
1541     default:
1542       if (Stream.SkipBlock())
1543         return Error("Malformed block record");
1544       break;
1545     }
1546   }
1547 
1548   return false;
1549 }
1550 
1551 /// ParseMetadataAttachment - Parse metadata attachments.
1552 bool BitcodeReader::ParseMetadataAttachment() {
1553   if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
1554     return Error("Malformed block record");
1555 
1556   MetadataContext &TheMetadata = Context.getMetadata();
1557   SmallVector<uint64_t, 64> Record;
1558   while(1) {
1559     unsigned Code = Stream.ReadCode();
1560     if (Code == bitc::END_BLOCK) {
1561       if (Stream.ReadBlockEnd())
1562         return Error("Error at end of PARAMATTR block");
1563       break;
1564     }
1565     if (Code == bitc::DEFINE_ABBREV) {
1566       Stream.ReadAbbrevRecord();
1567       continue;
1568     }
1569     // Read a metadata attachment record.
1570     Record.clear();
1571     switch (Stream.ReadRecord(Code, Record)) {
1572     default:  // Default behavior: ignore.
1573       break;
1574     case bitc::METADATA_ATTACHMENT: {
1575       unsigned RecordLength = Record.size();
1576       if (Record.empty() || (RecordLength - 1) % 2 == 1)
1577         return Error ("Invalid METADATA_ATTACHMENT reader!");
1578       Instruction *Inst = InstructionList[Record[0]];
1579       for (unsigned i = 1; i != RecordLength; i = i+2) {
1580         unsigned Kind = Record[i];
1581         Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
1582         TheMetadata.addMD(Kind, cast<MDNode>(Node), Inst);
1583       }
1584       break;
1585     }
1586     }
1587   }
1588   return false;
1589 }
1590 
1591 /// ParseFunctionBody - Lazily parse the specified function body block.
1592 bool BitcodeReader::ParseFunctionBody(Function *F) {
1593   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
1594     return Error("Malformed block record");
1595 
1596   unsigned ModuleValueListSize = ValueList.size();
1597 
1598   // Add all the function arguments to the value table.
1599   for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
1600     ValueList.push_back(I);
1601 
1602   unsigned NextValueNo = ValueList.size();
1603   BasicBlock *CurBB = 0;
1604   unsigned CurBBNo = 0;
1605 
1606   // Read all the records.
1607   SmallVector<uint64_t, 64> Record;
1608   while (1) {
1609     unsigned Code = Stream.ReadCode();
1610     if (Code == bitc::END_BLOCK) {
1611       if (Stream.ReadBlockEnd())
1612         return Error("Error at end of function block");
1613       break;
1614     }
1615 
1616     if (Code == bitc::ENTER_SUBBLOCK) {
1617       switch (Stream.ReadSubBlockID()) {
1618       default:  // Skip unknown content.
1619         if (Stream.SkipBlock())
1620           return Error("Malformed block record");
1621         break;
1622       case bitc::CONSTANTS_BLOCK_ID:
1623         if (ParseConstants()) return true;
1624         NextValueNo = ValueList.size();
1625         break;
1626       case bitc::VALUE_SYMTAB_BLOCK_ID:
1627         if (ParseValueSymbolTable()) return true;
1628         break;
1629       case bitc::METADATA_ATTACHMENT_ID:
1630         if (ParseMetadataAttachment()) return true;
1631         break;
1632       }
1633       continue;
1634     }
1635 
1636     if (Code == bitc::DEFINE_ABBREV) {
1637       Stream.ReadAbbrevRecord();
1638       continue;
1639     }
1640 
1641     // Read a record.
1642     Record.clear();
1643     Instruction *I = 0;
1644     unsigned BitCode = Stream.ReadRecord(Code, Record);
1645     switch (BitCode) {
1646     default: // Default behavior: reject
1647       return Error("Unknown instruction");
1648     case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
1649       if (Record.size() < 1 || Record[0] == 0)
1650         return Error("Invalid DECLAREBLOCKS record");
1651       // Create all the basic blocks for the function.
1652       FunctionBBs.resize(Record[0]);
1653       for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
1654         FunctionBBs[i] = BasicBlock::Create(Context, "", F);
1655       CurBB = FunctionBBs[0];
1656       continue;
1657 
1658     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
1659       unsigned OpNum = 0;
1660       Value *LHS, *RHS;
1661       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1662           getValue(Record, OpNum, LHS->getType(), RHS) ||
1663           OpNum+1 > Record.size())
1664         return Error("Invalid BINOP record");
1665 
1666       int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
1667       if (Opc == -1) return Error("Invalid BINOP record");
1668       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
1669       InstructionList.push_back(I);
1670       if (OpNum < Record.size()) {
1671         if (Opc == Instruction::Add ||
1672             Opc == Instruction::Sub ||
1673             Opc == Instruction::Mul) {
1674           if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1675             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
1676           if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1677             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
1678         } else if (Opc == Instruction::SDiv) {
1679           if (Record[3] & (1 << bitc::SDIV_EXACT))
1680             cast<BinaryOperator>(I)->setIsExact(true);
1681         }
1682       }
1683       break;
1684     }
1685     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
1686       unsigned OpNum = 0;
1687       Value *Op;
1688       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1689           OpNum+2 != Record.size())
1690         return Error("Invalid CAST record");
1691 
1692       const Type *ResTy = getTypeByID(Record[OpNum]);
1693       int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
1694       if (Opc == -1 || ResTy == 0)
1695         return Error("Invalid CAST record");
1696       I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
1697       InstructionList.push_back(I);
1698       break;
1699     }
1700     case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
1701     case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
1702       unsigned OpNum = 0;
1703       Value *BasePtr;
1704       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
1705         return Error("Invalid GEP record");
1706 
1707       SmallVector<Value*, 16> GEPIdx;
1708       while (OpNum != Record.size()) {
1709         Value *Op;
1710         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1711           return Error("Invalid GEP record");
1712         GEPIdx.push_back(Op);
1713       }
1714 
1715       I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end());
1716       InstructionList.push_back(I);
1717       if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
1718         cast<GetElementPtrInst>(I)->setIsInBounds(true);
1719       break;
1720     }
1721 
1722     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
1723                                        // EXTRACTVAL: [opty, opval, n x indices]
1724       unsigned OpNum = 0;
1725       Value *Agg;
1726       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1727         return Error("Invalid EXTRACTVAL record");
1728 
1729       SmallVector<unsigned, 4> EXTRACTVALIdx;
1730       for (unsigned RecSize = Record.size();
1731            OpNum != RecSize; ++OpNum) {
1732         uint64_t Index = Record[OpNum];
1733         if ((unsigned)Index != Index)
1734           return Error("Invalid EXTRACTVAL index");
1735         EXTRACTVALIdx.push_back((unsigned)Index);
1736       }
1737 
1738       I = ExtractValueInst::Create(Agg,
1739                                    EXTRACTVALIdx.begin(), EXTRACTVALIdx.end());
1740       InstructionList.push_back(I);
1741       break;
1742     }
1743 
1744     case bitc::FUNC_CODE_INST_INSERTVAL: {
1745                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
1746       unsigned OpNum = 0;
1747       Value *Agg;
1748       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1749         return Error("Invalid INSERTVAL record");
1750       Value *Val;
1751       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
1752         return Error("Invalid INSERTVAL record");
1753 
1754       SmallVector<unsigned, 4> INSERTVALIdx;
1755       for (unsigned RecSize = Record.size();
1756            OpNum != RecSize; ++OpNum) {
1757         uint64_t Index = Record[OpNum];
1758         if ((unsigned)Index != Index)
1759           return Error("Invalid INSERTVAL index");
1760         INSERTVALIdx.push_back((unsigned)Index);
1761       }
1762 
1763       I = InsertValueInst::Create(Agg, Val,
1764                                   INSERTVALIdx.begin(), INSERTVALIdx.end());
1765       InstructionList.push_back(I);
1766       break;
1767     }
1768 
1769     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
1770       // obsolete form of select
1771       // handles select i1 ... in old bitcode
1772       unsigned OpNum = 0;
1773       Value *TrueVal, *FalseVal, *Cond;
1774       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1775           getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1776           getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
1777         return Error("Invalid SELECT record");
1778 
1779       I = SelectInst::Create(Cond, TrueVal, FalseVal);
1780       InstructionList.push_back(I);
1781       break;
1782     }
1783 
1784     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
1785       // new form of select
1786       // handles select i1 or select [N x i1]
1787       unsigned OpNum = 0;
1788       Value *TrueVal, *FalseVal, *Cond;
1789       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1790           getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1791           getValueTypePair(Record, OpNum, NextValueNo, Cond))
1792         return Error("Invalid SELECT record");
1793 
1794       // select condition can be either i1 or [N x i1]
1795       if (const VectorType* vector_type =
1796           dyn_cast<const VectorType>(Cond->getType())) {
1797         // expect <n x i1>
1798         if (vector_type->getElementType() != Type::getInt1Ty(Context))
1799           return Error("Invalid SELECT condition type");
1800       } else {
1801         // expect i1
1802         if (Cond->getType() != Type::getInt1Ty(Context))
1803           return Error("Invalid SELECT condition type");
1804       }
1805 
1806       I = SelectInst::Create(Cond, TrueVal, FalseVal);
1807       InstructionList.push_back(I);
1808       break;
1809     }
1810 
1811     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
1812       unsigned OpNum = 0;
1813       Value *Vec, *Idx;
1814       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1815           getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
1816         return Error("Invalid EXTRACTELT record");
1817       I = ExtractElementInst::Create(Vec, Idx);
1818       InstructionList.push_back(I);
1819       break;
1820     }
1821 
1822     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
1823       unsigned OpNum = 0;
1824       Value *Vec, *Elt, *Idx;
1825       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1826           getValue(Record, OpNum,
1827                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
1828           getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
1829         return Error("Invalid INSERTELT record");
1830       I = InsertElementInst::Create(Vec, Elt, Idx);
1831       InstructionList.push_back(I);
1832       break;
1833     }
1834 
1835     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
1836       unsigned OpNum = 0;
1837       Value *Vec1, *Vec2, *Mask;
1838       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
1839           getValue(Record, OpNum, Vec1->getType(), Vec2))
1840         return Error("Invalid SHUFFLEVEC record");
1841 
1842       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
1843         return Error("Invalid SHUFFLEVEC record");
1844       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
1845       InstructionList.push_back(I);
1846       break;
1847     }
1848 
1849     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
1850       // Old form of ICmp/FCmp returning bool
1851       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
1852       // both legal on vectors but had different behaviour.
1853     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
1854       // FCmp/ICmp returning bool or vector of bool
1855 
1856       unsigned OpNum = 0;
1857       Value *LHS, *RHS;
1858       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1859           getValue(Record, OpNum, LHS->getType(), RHS) ||
1860           OpNum+1 != Record.size())
1861         return Error("Invalid CMP record");
1862 
1863       if (LHS->getType()->isFPOrFPVector())
1864         I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1865       else
1866         I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1867       InstructionList.push_back(I);
1868       break;
1869     }
1870 
1871     case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n]
1872       if (Record.size() != 2)
1873         return Error("Invalid GETRESULT record");
1874       unsigned OpNum = 0;
1875       Value *Op;
1876       getValueTypePair(Record, OpNum, NextValueNo, Op);
1877       unsigned Index = Record[1];
1878       I = ExtractValueInst::Create(Op, Index);
1879       InstructionList.push_back(I);
1880       break;
1881     }
1882 
1883     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
1884       {
1885         unsigned Size = Record.size();
1886         if (Size == 0) {
1887           I = ReturnInst::Create(Context);
1888           InstructionList.push_back(I);
1889           break;
1890         }
1891 
1892         unsigned OpNum = 0;
1893         SmallVector<Value *,4> Vs;
1894         do {
1895           Value *Op = NULL;
1896           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1897             return Error("Invalid RET record");
1898           Vs.push_back(Op);
1899         } while(OpNum != Record.size());
1900 
1901         const Type *ReturnType = F->getReturnType();
1902         if (Vs.size() > 1 ||
1903             (isa<StructType>(ReturnType) &&
1904              (Vs.empty() || Vs[0]->getType() != ReturnType))) {
1905           Value *RV = UndefValue::get(ReturnType);
1906           for (unsigned i = 0, e = Vs.size(); i != e; ++i) {
1907             I = InsertValueInst::Create(RV, Vs[i], i, "mrv");
1908             InstructionList.push_back(I);
1909             CurBB->getInstList().push_back(I);
1910             ValueList.AssignValue(I, NextValueNo++);
1911             RV = I;
1912           }
1913           I = ReturnInst::Create(Context, RV);
1914           InstructionList.push_back(I);
1915           break;
1916         }
1917 
1918         I = ReturnInst::Create(Context, Vs[0]);
1919         InstructionList.push_back(I);
1920         break;
1921       }
1922     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
1923       if (Record.size() != 1 && Record.size() != 3)
1924         return Error("Invalid BR record");
1925       BasicBlock *TrueDest = getBasicBlock(Record[0]);
1926       if (TrueDest == 0)
1927         return Error("Invalid BR record");
1928 
1929       if (Record.size() == 1) {
1930         I = BranchInst::Create(TrueDest);
1931         InstructionList.push_back(I);
1932       }
1933       else {
1934         BasicBlock *FalseDest = getBasicBlock(Record[1]);
1935         Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
1936         if (FalseDest == 0 || Cond == 0)
1937           return Error("Invalid BR record");
1938         I = BranchInst::Create(TrueDest, FalseDest, Cond);
1939         InstructionList.push_back(I);
1940       }
1941       break;
1942     }
1943     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, opval, n, n x ops]
1944       if (Record.size() < 3 || (Record.size() & 1) == 0)
1945         return Error("Invalid SWITCH record");
1946       const Type *OpTy = getTypeByID(Record[0]);
1947       Value *Cond = getFnValueByID(Record[1], OpTy);
1948       BasicBlock *Default = getBasicBlock(Record[2]);
1949       if (OpTy == 0 || Cond == 0 || Default == 0)
1950         return Error("Invalid SWITCH record");
1951       unsigned NumCases = (Record.size()-3)/2;
1952       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
1953       InstructionList.push_back(SI);
1954       for (unsigned i = 0, e = NumCases; i != e; ++i) {
1955         ConstantInt *CaseVal =
1956           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
1957         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
1958         if (CaseVal == 0 || DestBB == 0) {
1959           delete SI;
1960           return Error("Invalid SWITCH record!");
1961         }
1962         SI->addCase(CaseVal, DestBB);
1963       }
1964       I = SI;
1965       break;
1966     }
1967 
1968     case bitc::FUNC_CODE_INST_INVOKE: {
1969       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
1970       if (Record.size() < 4) return Error("Invalid INVOKE record");
1971       AttrListPtr PAL = getAttributes(Record[0]);
1972       unsigned CCInfo = Record[1];
1973       BasicBlock *NormalBB = getBasicBlock(Record[2]);
1974       BasicBlock *UnwindBB = getBasicBlock(Record[3]);
1975 
1976       unsigned OpNum = 4;
1977       Value *Callee;
1978       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
1979         return Error("Invalid INVOKE record");
1980 
1981       const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
1982       const FunctionType *FTy = !CalleeTy ? 0 :
1983         dyn_cast<FunctionType>(CalleeTy->getElementType());
1984 
1985       // Check that the right number of fixed parameters are here.
1986       if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
1987           Record.size() < OpNum+FTy->getNumParams())
1988         return Error("Invalid INVOKE record");
1989 
1990       SmallVector<Value*, 16> Ops;
1991       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
1992         Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
1993         if (Ops.back() == 0) return Error("Invalid INVOKE record");
1994       }
1995 
1996       if (!FTy->isVarArg()) {
1997         if (Record.size() != OpNum)
1998           return Error("Invalid INVOKE record");
1999       } else {
2000         // Read type/value pairs for varargs params.
2001         while (OpNum != Record.size()) {
2002           Value *Op;
2003           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2004             return Error("Invalid INVOKE record");
2005           Ops.push_back(Op);
2006         }
2007       }
2008 
2009       I = InvokeInst::Create(Callee, NormalBB, UnwindBB,
2010                              Ops.begin(), Ops.end());
2011       InstructionList.push_back(I);
2012       cast<InvokeInst>(I)->setCallingConv(
2013         static_cast<CallingConv::ID>(CCInfo));
2014       cast<InvokeInst>(I)->setAttributes(PAL);
2015       break;
2016     }
2017     case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
2018       I = new UnwindInst(Context);
2019       InstructionList.push_back(I);
2020       break;
2021     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
2022       I = new UnreachableInst(Context);
2023       InstructionList.push_back(I);
2024       break;
2025     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
2026       if (Record.size() < 1 || ((Record.size()-1)&1))
2027         return Error("Invalid PHI record");
2028       const Type *Ty = getTypeByID(Record[0]);
2029       if (!Ty) return Error("Invalid PHI record");
2030 
2031       PHINode *PN = PHINode::Create(Ty);
2032       InstructionList.push_back(PN);
2033       PN->reserveOperandSpace((Record.size()-1)/2);
2034 
2035       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
2036         Value *V = getFnValueByID(Record[1+i], Ty);
2037         BasicBlock *BB = getBasicBlock(Record[2+i]);
2038         if (!V || !BB) return Error("Invalid PHI record");
2039         PN->addIncoming(V, BB);
2040       }
2041       I = PN;
2042       break;
2043     }
2044 
2045     case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align]
2046       if (Record.size() < 3)
2047         return Error("Invalid MALLOC record");
2048       const PointerType *Ty =
2049         dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2050       Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context));
2051       unsigned Align = Record[2];
2052       if (!Ty || !Size) return Error("Invalid MALLOC record");
2053       I = new MallocInst(Ty->getElementType(), Size, (1 << Align) >> 1);
2054       InstructionList.push_back(I);
2055       break;
2056     }
2057     case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty]
2058       unsigned OpNum = 0;
2059       Value *Op;
2060       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2061           OpNum != Record.size())
2062         return Error("Invalid FREE record");
2063       I = new FreeInst(Op);
2064       InstructionList.push_back(I);
2065       break;
2066     }
2067     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, op, align]
2068       if (Record.size() < 3)
2069         return Error("Invalid ALLOCA record");
2070       const PointerType *Ty =
2071         dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2072       Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context));
2073       unsigned Align = Record[2];
2074       if (!Ty || !Size) return Error("Invalid ALLOCA record");
2075       I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
2076       InstructionList.push_back(I);
2077       break;
2078     }
2079     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
2080       unsigned OpNum = 0;
2081       Value *Op;
2082       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2083           OpNum+2 != Record.size())
2084         return Error("Invalid LOAD record");
2085 
2086       I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2087       InstructionList.push_back(I);
2088       break;
2089     }
2090     case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol]
2091       unsigned OpNum = 0;
2092       Value *Val, *Ptr;
2093       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2094           getValue(Record, OpNum,
2095                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2096           OpNum+2 != Record.size())
2097         return Error("Invalid STORE record");
2098 
2099       I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2100       InstructionList.push_back(I);
2101       break;
2102     }
2103     case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol]
2104       // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0.
2105       unsigned OpNum = 0;
2106       Value *Val, *Ptr;
2107       if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
2108           getValue(Record, OpNum,
2109                    PointerType::getUnqual(Val->getType()), Ptr)||
2110           OpNum+2 != Record.size())
2111         return Error("Invalid STORE record");
2112 
2113       I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2114       InstructionList.push_back(I);
2115       break;
2116     }
2117     case bitc::FUNC_CODE_INST_CALL: {
2118       // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
2119       if (Record.size() < 3)
2120         return Error("Invalid CALL record");
2121 
2122       AttrListPtr PAL = getAttributes(Record[0]);
2123       unsigned CCInfo = Record[1];
2124 
2125       unsigned OpNum = 2;
2126       Value *Callee;
2127       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2128         return Error("Invalid CALL record");
2129 
2130       const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
2131       const FunctionType *FTy = 0;
2132       if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
2133       if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
2134         return Error("Invalid CALL record");
2135 
2136       SmallVector<Value*, 16> Args;
2137       // Read the fixed params.
2138       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2139         if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID)
2140           Args.push_back(getBasicBlock(Record[OpNum]));
2141         else
2142           Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2143         if (Args.back() == 0) return Error("Invalid CALL record");
2144       }
2145 
2146       // Read type/value pairs for varargs params.
2147       if (!FTy->isVarArg()) {
2148         if (OpNum != Record.size())
2149           return Error("Invalid CALL record");
2150       } else {
2151         while (OpNum != Record.size()) {
2152           Value *Op;
2153           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2154             return Error("Invalid CALL record");
2155           Args.push_back(Op);
2156         }
2157       }
2158 
2159       I = CallInst::Create(Callee, Args.begin(), Args.end());
2160       InstructionList.push_back(I);
2161       cast<CallInst>(I)->setCallingConv(
2162         static_cast<CallingConv::ID>(CCInfo>>1));
2163       cast<CallInst>(I)->setTailCall(CCInfo & 1);
2164       cast<CallInst>(I)->setAttributes(PAL);
2165       break;
2166     }
2167     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
2168       if (Record.size() < 3)
2169         return Error("Invalid VAARG record");
2170       const Type *OpTy = getTypeByID(Record[0]);
2171       Value *Op = getFnValueByID(Record[1], OpTy);
2172       const Type *ResTy = getTypeByID(Record[2]);
2173       if (!OpTy || !Op || !ResTy)
2174         return Error("Invalid VAARG record");
2175       I = new VAArgInst(Op, ResTy);
2176       InstructionList.push_back(I);
2177       break;
2178     }
2179     }
2180 
2181     // Add instruction to end of current BB.  If there is no current BB, reject
2182     // this file.
2183     if (CurBB == 0) {
2184       delete I;
2185       return Error("Invalid instruction with no BB");
2186     }
2187     CurBB->getInstList().push_back(I);
2188 
2189     // If this was a terminator instruction, move to the next block.
2190     if (isa<TerminatorInst>(I)) {
2191       ++CurBBNo;
2192       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
2193     }
2194 
2195     // Non-void values get registered in the value table for future use.
2196     if (I && I->getType() != Type::getVoidTy(Context))
2197       ValueList.AssignValue(I, NextValueNo++);
2198   }
2199 
2200   // Check the function list for unresolved values.
2201   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
2202     if (A->getParent() == 0) {
2203       // We found at least one unresolved value.  Nuke them all to avoid leaks.
2204       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
2205         if ((A = dyn_cast<Argument>(ValueList.back())) && A->getParent() == 0) {
2206           A->replaceAllUsesWith(UndefValue::get(A->getType()));
2207           delete A;
2208         }
2209       }
2210       return Error("Never resolved value found in function!");
2211     }
2212   }
2213 
2214   // Trim the value list down to the size it was before we parsed this function.
2215   ValueList.shrinkTo(ModuleValueListSize);
2216   std::vector<BasicBlock*>().swap(FunctionBBs);
2217 
2218   return false;
2219 }
2220 
2221 //===----------------------------------------------------------------------===//
2222 // ModuleProvider implementation
2223 //===----------------------------------------------------------------------===//
2224 
2225 
2226 bool BitcodeReader::materializeFunction(Function *F, std::string *ErrInfo) {
2227   // If it already is material, ignore the request.
2228   if (!F->hasNotBeenReadFromBitcode()) return false;
2229 
2230   DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator DFII =
2231     DeferredFunctionInfo.find(F);
2232   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
2233 
2234   // Move the bit stream to the saved position of the deferred function body and
2235   // restore the real linkage type for the function.
2236   Stream.JumpToBit(DFII->second.first);
2237   F->setLinkage((GlobalValue::LinkageTypes)DFII->second.second);
2238 
2239   if (ParseFunctionBody(F)) {
2240     if (ErrInfo) *ErrInfo = ErrorString;
2241     return true;
2242   }
2243 
2244   // Upgrade any old intrinsic calls in the function.
2245   for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2246        E = UpgradedIntrinsics.end(); I != E; ++I) {
2247     if (I->first != I->second) {
2248       for (Value::use_iterator UI = I->first->use_begin(),
2249            UE = I->first->use_end(); UI != UE; ) {
2250         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2251           UpgradeIntrinsicCall(CI, I->second);
2252       }
2253     }
2254   }
2255 
2256   return false;
2257 }
2258 
2259 void BitcodeReader::dematerializeFunction(Function *F) {
2260   // If this function isn't materialized, or if it is a proto, this is a noop.
2261   if (F->hasNotBeenReadFromBitcode() || F->isDeclaration())
2262     return;
2263 
2264   assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2265 
2266   // Just forget the function body, we can remat it later.
2267   F->deleteBody();
2268   F->setLinkage(GlobalValue::GhostLinkage);
2269 }
2270 
2271 
2272 Module *BitcodeReader::materializeModule(std::string *ErrInfo) {
2273   // Iterate over the module, deserializing any functions that are still on
2274   // disk.
2275   for (Module::iterator F = TheModule->begin(), E = TheModule->end();
2276        F != E; ++F)
2277     if (F->hasNotBeenReadFromBitcode() &&
2278         materializeFunction(F, ErrInfo))
2279       return 0;
2280 
2281   // Upgrade any intrinsic calls that slipped through (should not happen!) and
2282   // delete the old functions to clean up. We can't do this unless the entire
2283   // module is materialized because there could always be another function body
2284   // with calls to the old function.
2285   for (std::vector<std::pair<Function*, Function*> >::iterator I =
2286        UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2287     if (I->first != I->second) {
2288       for (Value::use_iterator UI = I->first->use_begin(),
2289            UE = I->first->use_end(); UI != UE; ) {
2290         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2291           UpgradeIntrinsicCall(CI, I->second);
2292       }
2293       if (!I->first->use_empty())
2294         I->first->replaceAllUsesWith(I->second);
2295       I->first->eraseFromParent();
2296     }
2297   }
2298   std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2299 
2300   // Check debug info intrinsics.
2301   CheckDebugInfoIntrinsics(TheModule);
2302 
2303   return TheModule;
2304 }
2305 
2306 
2307 /// This method is provided by the parent ModuleProvde class and overriden
2308 /// here. It simply releases the module from its provided and frees up our
2309 /// state.
2310 /// @brief Release our hold on the generated module
2311 Module *BitcodeReader::releaseModule(std::string *ErrInfo) {
2312   // Since we're losing control of this Module, we must hand it back complete
2313   Module *M = ModuleProvider::releaseModule(ErrInfo);
2314   FreeState();
2315   return M;
2316 }
2317 
2318 
2319 //===----------------------------------------------------------------------===//
2320 // External interface
2321 //===----------------------------------------------------------------------===//
2322 
2323 /// getBitcodeModuleProvider - lazy function-at-a-time loading from a file.
2324 ///
2325 ModuleProvider *llvm::getBitcodeModuleProvider(MemoryBuffer *Buffer,
2326                                                LLVMContext& Context,
2327                                                std::string *ErrMsg) {
2328   BitcodeReader *R = new BitcodeReader(Buffer, Context);
2329   if (R->ParseBitcode()) {
2330     if (ErrMsg)
2331       *ErrMsg = R->getErrorString();
2332 
2333     // Don't let the BitcodeReader dtor delete 'Buffer'.
2334     R->releaseMemoryBuffer();
2335     delete R;
2336     return 0;
2337   }
2338   return R;
2339 }
2340 
2341 /// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2342 /// If an error occurs, return null and fill in *ErrMsg if non-null.
2343 Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
2344                                std::string *ErrMsg){
2345   BitcodeReader *R;
2346   R = static_cast<BitcodeReader*>(getBitcodeModuleProvider(Buffer, Context,
2347                                                            ErrMsg));
2348   if (!R) return 0;
2349 
2350   // Read in the entire module.
2351   Module *M = R->materializeModule(ErrMsg);
2352 
2353   // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2354   // there was an error.
2355   R->releaseMemoryBuffer();
2356 
2357   // If there was no error, tell ModuleProvider not to delete it when its dtor
2358   // is run.
2359   if (M)
2360     M = R->releaseModule(ErrMsg);
2361 
2362   delete R;
2363   return M;
2364 }
2365