1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This header defines the BitcodeReader class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "BitcodeReader.h" 16 #include "llvm/Constants.h" 17 #include "llvm/DerivedTypes.h" 18 #include "llvm/InlineAsm.h" 19 #include "llvm/IntrinsicInst.h" 20 #include "llvm/LLVMContext.h" 21 #include "llvm/Metadata.h" 22 #include "llvm/Module.h" 23 #include "llvm/Operator.h" 24 #include "llvm/AutoUpgrade.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/Support/MathExtras.h" 28 #include "llvm/Support/MemoryBuffer.h" 29 #include "llvm/OperandTraits.h" 30 using namespace llvm; 31 32 void BitcodeReader::FreeState() { 33 delete Buffer; 34 Buffer = 0; 35 std::vector<PATypeHolder>().swap(TypeList); 36 ValueList.clear(); 37 MDValueList.clear(); 38 39 std::vector<AttrListPtr>().swap(MAttributes); 40 std::vector<BasicBlock*>().swap(FunctionBBs); 41 std::vector<Function*>().swap(FunctionsWithBodies); 42 DeferredFunctionInfo.clear(); 43 } 44 45 //===----------------------------------------------------------------------===// 46 // Helper functions to implement forward reference resolution, etc. 47 //===----------------------------------------------------------------------===// 48 49 /// ConvertToString - Convert a string from a record into an std::string, return 50 /// true on failure. 51 template<typename StrTy> 52 static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx, 53 StrTy &Result) { 54 if (Idx > Record.size()) 55 return true; 56 57 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 58 Result += (char)Record[i]; 59 return false; 60 } 61 62 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) { 63 switch (Val) { 64 default: // Map unknown/new linkages to external 65 case 0: return GlobalValue::ExternalLinkage; 66 case 1: return GlobalValue::WeakAnyLinkage; 67 case 2: return GlobalValue::AppendingLinkage; 68 case 3: return GlobalValue::InternalLinkage; 69 case 4: return GlobalValue::LinkOnceAnyLinkage; 70 case 5: return GlobalValue::DLLImportLinkage; 71 case 6: return GlobalValue::DLLExportLinkage; 72 case 7: return GlobalValue::ExternalWeakLinkage; 73 case 8: return GlobalValue::CommonLinkage; 74 case 9: return GlobalValue::PrivateLinkage; 75 case 10: return GlobalValue::WeakODRLinkage; 76 case 11: return GlobalValue::LinkOnceODRLinkage; 77 case 12: return GlobalValue::AvailableExternallyLinkage; 78 case 13: return GlobalValue::LinkerPrivateLinkage; 79 } 80 } 81 82 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 83 switch (Val) { 84 default: // Map unknown visibilities to default. 85 case 0: return GlobalValue::DefaultVisibility; 86 case 1: return GlobalValue::HiddenVisibility; 87 case 2: return GlobalValue::ProtectedVisibility; 88 } 89 } 90 91 static int GetDecodedCastOpcode(unsigned Val) { 92 switch (Val) { 93 default: return -1; 94 case bitc::CAST_TRUNC : return Instruction::Trunc; 95 case bitc::CAST_ZEXT : return Instruction::ZExt; 96 case bitc::CAST_SEXT : return Instruction::SExt; 97 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 98 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 99 case bitc::CAST_UITOFP : return Instruction::UIToFP; 100 case bitc::CAST_SITOFP : return Instruction::SIToFP; 101 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 102 case bitc::CAST_FPEXT : return Instruction::FPExt; 103 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 104 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 105 case bitc::CAST_BITCAST : return Instruction::BitCast; 106 } 107 } 108 static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) { 109 switch (Val) { 110 default: return -1; 111 case bitc::BINOP_ADD: 112 return Ty->isFPOrFPVector() ? Instruction::FAdd : Instruction::Add; 113 case bitc::BINOP_SUB: 114 return Ty->isFPOrFPVector() ? Instruction::FSub : Instruction::Sub; 115 case bitc::BINOP_MUL: 116 return Ty->isFPOrFPVector() ? Instruction::FMul : Instruction::Mul; 117 case bitc::BINOP_UDIV: return Instruction::UDiv; 118 case bitc::BINOP_SDIV: 119 return Ty->isFPOrFPVector() ? Instruction::FDiv : Instruction::SDiv; 120 case bitc::BINOP_UREM: return Instruction::URem; 121 case bitc::BINOP_SREM: 122 return Ty->isFPOrFPVector() ? Instruction::FRem : Instruction::SRem; 123 case bitc::BINOP_SHL: return Instruction::Shl; 124 case bitc::BINOP_LSHR: return Instruction::LShr; 125 case bitc::BINOP_ASHR: return Instruction::AShr; 126 case bitc::BINOP_AND: return Instruction::And; 127 case bitc::BINOP_OR: return Instruction::Or; 128 case bitc::BINOP_XOR: return Instruction::Xor; 129 } 130 } 131 132 namespace llvm { 133 namespace { 134 /// @brief A class for maintaining the slot number definition 135 /// as a placeholder for the actual definition for forward constants defs. 136 class ConstantPlaceHolder : public ConstantExpr { 137 ConstantPlaceHolder(); // DO NOT IMPLEMENT 138 void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT 139 public: 140 // allocate space for exactly one operand 141 void *operator new(size_t s) { 142 return User::operator new(s, 1); 143 } 144 explicit ConstantPlaceHolder(const Type *Ty, LLVMContext& Context) 145 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 146 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 147 } 148 149 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 150 static inline bool classof(const ConstantPlaceHolder *) { return true; } 151 static bool classof(const Value *V) { 152 return isa<ConstantExpr>(V) && 153 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 154 } 155 156 157 /// Provide fast operand accessors 158 //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 159 }; 160 } 161 162 // FIXME: can we inherit this from ConstantExpr? 163 template <> 164 struct OperandTraits<ConstantPlaceHolder> : public FixedNumOperandTraits<1> { 165 }; 166 } 167 168 169 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 170 if (Idx == size()) { 171 push_back(V); 172 return; 173 } 174 175 if (Idx >= size()) 176 resize(Idx+1); 177 178 WeakVH &OldV = ValuePtrs[Idx]; 179 if (OldV == 0) { 180 OldV = V; 181 return; 182 } 183 184 // Handle constants and non-constants (e.g. instrs) differently for 185 // efficiency. 186 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 187 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 188 OldV = V; 189 } else { 190 // If there was a forward reference to this value, replace it. 191 Value *PrevVal = OldV; 192 OldV->replaceAllUsesWith(V); 193 delete PrevVal; 194 } 195 } 196 197 198 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 199 const Type *Ty) { 200 if (Idx >= size()) 201 resize(Idx + 1); 202 203 if (Value *V = ValuePtrs[Idx]) { 204 assert(Ty == V->getType() && "Type mismatch in constant table!"); 205 return cast<Constant>(V); 206 } 207 208 // Create and return a placeholder, which will later be RAUW'd. 209 Constant *C = new ConstantPlaceHolder(Ty, Context); 210 ValuePtrs[Idx] = C; 211 return C; 212 } 213 214 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) { 215 if (Idx >= size()) 216 resize(Idx + 1); 217 218 if (Value *V = ValuePtrs[Idx]) { 219 assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!"); 220 return V; 221 } 222 223 // No type specified, must be invalid reference. 224 if (Ty == 0) return 0; 225 226 // Create and return a placeholder, which will later be RAUW'd. 227 Value *V = new Argument(Ty); 228 ValuePtrs[Idx] = V; 229 return V; 230 } 231 232 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 233 /// resolves any forward references. The idea behind this is that we sometimes 234 /// get constants (such as large arrays) which reference *many* forward ref 235 /// constants. Replacing each of these causes a lot of thrashing when 236 /// building/reuniquing the constant. Instead of doing this, we look at all the 237 /// uses and rewrite all the place holders at once for any constant that uses 238 /// a placeholder. 239 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 240 // Sort the values by-pointer so that they are efficient to look up with a 241 // binary search. 242 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 243 244 SmallVector<Constant*, 64> NewOps; 245 246 while (!ResolveConstants.empty()) { 247 Value *RealVal = operator[](ResolveConstants.back().second); 248 Constant *Placeholder = ResolveConstants.back().first; 249 ResolveConstants.pop_back(); 250 251 // Loop over all users of the placeholder, updating them to reference the 252 // new value. If they reference more than one placeholder, update them all 253 // at once. 254 while (!Placeholder->use_empty()) { 255 Value::use_iterator UI = Placeholder->use_begin(); 256 257 // If the using object isn't uniqued, just update the operands. This 258 // handles instructions and initializers for global variables. 259 if (!isa<Constant>(*UI) || isa<GlobalValue>(*UI)) { 260 UI.getUse().set(RealVal); 261 continue; 262 } 263 264 // Otherwise, we have a constant that uses the placeholder. Replace that 265 // constant with a new constant that has *all* placeholder uses updated. 266 Constant *UserC = cast<Constant>(*UI); 267 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 268 I != E; ++I) { 269 Value *NewOp; 270 if (!isa<ConstantPlaceHolder>(*I)) { 271 // Not a placeholder reference. 272 NewOp = *I; 273 } else if (*I == Placeholder) { 274 // Common case is that it just references this one placeholder. 275 NewOp = RealVal; 276 } else { 277 // Otherwise, look up the placeholder in ResolveConstants. 278 ResolveConstantsTy::iterator It = 279 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 280 std::pair<Constant*, unsigned>(cast<Constant>(*I), 281 0)); 282 assert(It != ResolveConstants.end() && It->first == *I); 283 NewOp = operator[](It->second); 284 } 285 286 NewOps.push_back(cast<Constant>(NewOp)); 287 } 288 289 // Make the new constant. 290 Constant *NewC; 291 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 292 NewC = ConstantArray::get(UserCA->getType(), &NewOps[0], 293 NewOps.size()); 294 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 295 NewC = ConstantStruct::get(Context, &NewOps[0], NewOps.size(), 296 UserCS->getType()->isPacked()); 297 } else if (isa<ConstantVector>(UserC)) { 298 NewC = ConstantVector::get(&NewOps[0], NewOps.size()); 299 } else { 300 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 301 NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0], 302 NewOps.size()); 303 } 304 305 UserC->replaceAllUsesWith(NewC); 306 UserC->destroyConstant(); 307 NewOps.clear(); 308 } 309 310 // Update all ValueHandles, they should be the only users at this point. 311 Placeholder->replaceAllUsesWith(RealVal); 312 delete Placeholder; 313 } 314 } 315 316 void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) { 317 if (Idx == size()) { 318 push_back(V); 319 return; 320 } 321 322 if (Idx >= size()) 323 resize(Idx+1); 324 325 WeakVH &OldV = MDValuePtrs[Idx]; 326 if (OldV == 0) { 327 OldV = V; 328 return; 329 } 330 331 // If there was a forward reference to this value, replace it. 332 Value *PrevVal = OldV; 333 OldV->replaceAllUsesWith(V); 334 delete PrevVal; 335 // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new 336 // value for Idx. 337 MDValuePtrs[Idx] = V; 338 } 339 340 Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 341 if (Idx >= size()) 342 resize(Idx + 1); 343 344 if (Value *V = MDValuePtrs[Idx]) { 345 assert(V->getType()->isMetadataTy() && "Type mismatch in value table!"); 346 return V; 347 } 348 349 // Create and return a placeholder, which will later be RAUW'd. 350 Value *V = new Argument(Type::getMetadataTy(Context)); 351 MDValuePtrs[Idx] = V; 352 return V; 353 } 354 355 const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) { 356 // If the TypeID is in range, return it. 357 if (ID < TypeList.size()) 358 return TypeList[ID].get(); 359 if (!isTypeTable) return 0; 360 361 // The type table allows forward references. Push as many Opaque types as 362 // needed to get up to ID. 363 while (TypeList.size() <= ID) 364 TypeList.push_back(OpaqueType::get(Context)); 365 return TypeList.back().get(); 366 } 367 368 //===----------------------------------------------------------------------===// 369 // Functions for parsing blocks from the bitcode file 370 //===----------------------------------------------------------------------===// 371 372 bool BitcodeReader::ParseAttributeBlock() { 373 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 374 return Error("Malformed block record"); 375 376 if (!MAttributes.empty()) 377 return Error("Multiple PARAMATTR blocks found!"); 378 379 SmallVector<uint64_t, 64> Record; 380 381 SmallVector<AttributeWithIndex, 8> Attrs; 382 383 // Read all the records. 384 while (1) { 385 unsigned Code = Stream.ReadCode(); 386 if (Code == bitc::END_BLOCK) { 387 if (Stream.ReadBlockEnd()) 388 return Error("Error at end of PARAMATTR block"); 389 return false; 390 } 391 392 if (Code == bitc::ENTER_SUBBLOCK) { 393 // No known subblocks, always skip them. 394 Stream.ReadSubBlockID(); 395 if (Stream.SkipBlock()) 396 return Error("Malformed block record"); 397 continue; 398 } 399 400 if (Code == bitc::DEFINE_ABBREV) { 401 Stream.ReadAbbrevRecord(); 402 continue; 403 } 404 405 // Read a record. 406 Record.clear(); 407 switch (Stream.ReadRecord(Code, Record)) { 408 default: // Default behavior: ignore. 409 break; 410 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...] 411 if (Record.size() & 1) 412 return Error("Invalid ENTRY record"); 413 414 // FIXME : Remove this autoupgrade code in LLVM 3.0. 415 // If Function attributes are using index 0 then transfer them 416 // to index ~0. Index 0 is used for return value attributes but used to be 417 // used for function attributes. 418 Attributes RetAttribute = Attribute::None; 419 Attributes FnAttribute = Attribute::None; 420 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 421 // FIXME: remove in LLVM 3.0 422 // The alignment is stored as a 16-bit raw value from bits 31--16. 423 // We shift the bits above 31 down by 11 bits. 424 425 unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16; 426 if (Alignment && !isPowerOf2_32(Alignment)) 427 return Error("Alignment is not a power of two."); 428 429 Attributes ReconstitutedAttr = Record[i+1] & 0xffff; 430 if (Alignment) 431 ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment); 432 ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11; 433 Record[i+1] = ReconstitutedAttr; 434 435 if (Record[i] == 0) 436 RetAttribute = Record[i+1]; 437 else if (Record[i] == ~0U) 438 FnAttribute = Record[i+1]; 439 } 440 441 unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn| 442 Attribute::ReadOnly|Attribute::ReadNone); 443 444 if (FnAttribute == Attribute::None && RetAttribute != Attribute::None && 445 (RetAttribute & OldRetAttrs) != 0) { 446 if (FnAttribute == Attribute::None) { // add a slot so they get added. 447 Record.push_back(~0U); 448 Record.push_back(0); 449 } 450 451 FnAttribute |= RetAttribute & OldRetAttrs; 452 RetAttribute &= ~OldRetAttrs; 453 } 454 455 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 456 if (Record[i] == 0) { 457 if (RetAttribute != Attribute::None) 458 Attrs.push_back(AttributeWithIndex::get(0, RetAttribute)); 459 } else if (Record[i] == ~0U) { 460 if (FnAttribute != Attribute::None) 461 Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute)); 462 } else if (Record[i+1] != Attribute::None) 463 Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1])); 464 } 465 466 MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end())); 467 Attrs.clear(); 468 break; 469 } 470 } 471 } 472 } 473 474 475 bool BitcodeReader::ParseTypeTable() { 476 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID)) 477 return Error("Malformed block record"); 478 479 if (!TypeList.empty()) 480 return Error("Multiple TYPE_BLOCKs found!"); 481 482 SmallVector<uint64_t, 64> Record; 483 unsigned NumRecords = 0; 484 485 // Read all the records for this type table. 486 while (1) { 487 unsigned Code = Stream.ReadCode(); 488 if (Code == bitc::END_BLOCK) { 489 if (NumRecords != TypeList.size()) 490 return Error("Invalid type forward reference in TYPE_BLOCK"); 491 if (Stream.ReadBlockEnd()) 492 return Error("Error at end of type table block"); 493 return false; 494 } 495 496 if (Code == bitc::ENTER_SUBBLOCK) { 497 // No known subblocks, always skip them. 498 Stream.ReadSubBlockID(); 499 if (Stream.SkipBlock()) 500 return Error("Malformed block record"); 501 continue; 502 } 503 504 if (Code == bitc::DEFINE_ABBREV) { 505 Stream.ReadAbbrevRecord(); 506 continue; 507 } 508 509 // Read a record. 510 Record.clear(); 511 const Type *ResultTy = 0; 512 switch (Stream.ReadRecord(Code, Record)) { 513 default: // Default behavior: unknown type. 514 ResultTy = 0; 515 break; 516 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 517 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 518 // type list. This allows us to reserve space. 519 if (Record.size() < 1) 520 return Error("Invalid TYPE_CODE_NUMENTRY record"); 521 TypeList.reserve(Record[0]); 522 continue; 523 case bitc::TYPE_CODE_VOID: // VOID 524 ResultTy = Type::getVoidTy(Context); 525 break; 526 case bitc::TYPE_CODE_FLOAT: // FLOAT 527 ResultTy = Type::getFloatTy(Context); 528 break; 529 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 530 ResultTy = Type::getDoubleTy(Context); 531 break; 532 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 533 ResultTy = Type::getX86_FP80Ty(Context); 534 break; 535 case bitc::TYPE_CODE_FP128: // FP128 536 ResultTy = Type::getFP128Ty(Context); 537 break; 538 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 539 ResultTy = Type::getPPC_FP128Ty(Context); 540 break; 541 case bitc::TYPE_CODE_LABEL: // LABEL 542 ResultTy = Type::getLabelTy(Context); 543 break; 544 case bitc::TYPE_CODE_OPAQUE: // OPAQUE 545 ResultTy = 0; 546 break; 547 case bitc::TYPE_CODE_METADATA: // METADATA 548 ResultTy = Type::getMetadataTy(Context); 549 break; 550 case bitc::TYPE_CODE_INTEGER: // INTEGER: [width] 551 if (Record.size() < 1) 552 return Error("Invalid Integer type record"); 553 554 ResultTy = IntegerType::get(Context, Record[0]); 555 break; 556 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 557 // [pointee type, address space] 558 if (Record.size() < 1) 559 return Error("Invalid POINTER type record"); 560 unsigned AddressSpace = 0; 561 if (Record.size() == 2) 562 AddressSpace = Record[1]; 563 ResultTy = PointerType::get(getTypeByID(Record[0], true), 564 AddressSpace); 565 break; 566 } 567 case bitc::TYPE_CODE_FUNCTION: { 568 // FIXME: attrid is dead, remove it in LLVM 3.0 569 // FUNCTION: [vararg, attrid, retty, paramty x N] 570 if (Record.size() < 3) 571 return Error("Invalid FUNCTION type record"); 572 std::vector<const Type*> ArgTys; 573 for (unsigned i = 3, e = Record.size(); i != e; ++i) 574 ArgTys.push_back(getTypeByID(Record[i], true)); 575 576 ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys, 577 Record[0]); 578 break; 579 } 580 case bitc::TYPE_CODE_STRUCT: { // STRUCT: [ispacked, eltty x N] 581 if (Record.size() < 1) 582 return Error("Invalid STRUCT type record"); 583 std::vector<const Type*> EltTys; 584 for (unsigned i = 1, e = Record.size(); i != e; ++i) 585 EltTys.push_back(getTypeByID(Record[i], true)); 586 ResultTy = StructType::get(Context, EltTys, Record[0]); 587 break; 588 } 589 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 590 if (Record.size() < 2) 591 return Error("Invalid ARRAY type record"); 592 ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]); 593 break; 594 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 595 if (Record.size() < 2) 596 return Error("Invalid VECTOR type record"); 597 ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]); 598 break; 599 } 600 601 if (NumRecords == TypeList.size()) { 602 // If this is a new type slot, just append it. 603 TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get(Context)); 604 ++NumRecords; 605 } else if (ResultTy == 0) { 606 // Otherwise, this was forward referenced, so an opaque type was created, 607 // but the result type is actually just an opaque. Leave the one we 608 // created previously. 609 ++NumRecords; 610 } else { 611 // Otherwise, this was forward referenced, so an opaque type was created. 612 // Resolve the opaque type to the real type now. 613 assert(NumRecords < TypeList.size() && "Typelist imbalance"); 614 const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get()); 615 616 // Don't directly push the new type on the Tab. Instead we want to replace 617 // the opaque type we previously inserted with the new concrete value. The 618 // refinement from the abstract (opaque) type to the new type causes all 619 // uses of the abstract type to use the concrete type (NewTy). This will 620 // also cause the opaque type to be deleted. 621 const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy); 622 623 // This should have replaced the old opaque type with the new type in the 624 // value table... or with a preexisting type that was already in the 625 // system. Let's just make sure it did. 626 assert(TypeList[NumRecords-1].get() != OldTy && 627 "refineAbstractType didn't work!"); 628 } 629 } 630 } 631 632 633 bool BitcodeReader::ParseTypeSymbolTable() { 634 if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID)) 635 return Error("Malformed block record"); 636 637 SmallVector<uint64_t, 64> Record; 638 639 // Read all the records for this type table. 640 std::string TypeName; 641 while (1) { 642 unsigned Code = Stream.ReadCode(); 643 if (Code == bitc::END_BLOCK) { 644 if (Stream.ReadBlockEnd()) 645 return Error("Error at end of type symbol table block"); 646 return false; 647 } 648 649 if (Code == bitc::ENTER_SUBBLOCK) { 650 // No known subblocks, always skip them. 651 Stream.ReadSubBlockID(); 652 if (Stream.SkipBlock()) 653 return Error("Malformed block record"); 654 continue; 655 } 656 657 if (Code == bitc::DEFINE_ABBREV) { 658 Stream.ReadAbbrevRecord(); 659 continue; 660 } 661 662 // Read a record. 663 Record.clear(); 664 switch (Stream.ReadRecord(Code, Record)) { 665 default: // Default behavior: unknown type. 666 break; 667 case bitc::TST_CODE_ENTRY: // TST_ENTRY: [typeid, namechar x N] 668 if (ConvertToString(Record, 1, TypeName)) 669 return Error("Invalid TST_ENTRY record"); 670 unsigned TypeID = Record[0]; 671 if (TypeID >= TypeList.size()) 672 return Error("Invalid Type ID in TST_ENTRY record"); 673 674 TheModule->addTypeName(TypeName, TypeList[TypeID].get()); 675 TypeName.clear(); 676 break; 677 } 678 } 679 } 680 681 bool BitcodeReader::ParseValueSymbolTable() { 682 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 683 return Error("Malformed block record"); 684 685 SmallVector<uint64_t, 64> Record; 686 687 // Read all the records for this value table. 688 SmallString<128> ValueName; 689 while (1) { 690 unsigned Code = Stream.ReadCode(); 691 if (Code == bitc::END_BLOCK) { 692 if (Stream.ReadBlockEnd()) 693 return Error("Error at end of value symbol table block"); 694 return false; 695 } 696 if (Code == bitc::ENTER_SUBBLOCK) { 697 // No known subblocks, always skip them. 698 Stream.ReadSubBlockID(); 699 if (Stream.SkipBlock()) 700 return Error("Malformed block record"); 701 continue; 702 } 703 704 if (Code == bitc::DEFINE_ABBREV) { 705 Stream.ReadAbbrevRecord(); 706 continue; 707 } 708 709 // Read a record. 710 Record.clear(); 711 switch (Stream.ReadRecord(Code, Record)) { 712 default: // Default behavior: unknown type. 713 break; 714 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 715 if (ConvertToString(Record, 1, ValueName)) 716 return Error("Invalid VST_ENTRY record"); 717 unsigned ValueID = Record[0]; 718 if (ValueID >= ValueList.size()) 719 return Error("Invalid Value ID in VST_ENTRY record"); 720 Value *V = ValueList[ValueID]; 721 722 V->setName(StringRef(ValueName.data(), ValueName.size())); 723 ValueName.clear(); 724 break; 725 } 726 case bitc::VST_CODE_BBENTRY: { 727 if (ConvertToString(Record, 1, ValueName)) 728 return Error("Invalid VST_BBENTRY record"); 729 BasicBlock *BB = getBasicBlock(Record[0]); 730 if (BB == 0) 731 return Error("Invalid BB ID in VST_BBENTRY record"); 732 733 BB->setName(StringRef(ValueName.data(), ValueName.size())); 734 ValueName.clear(); 735 break; 736 } 737 } 738 } 739 } 740 741 bool BitcodeReader::ParseMetadata() { 742 unsigned NextValueNo = MDValueList.size(); 743 744 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 745 return Error("Malformed block record"); 746 747 SmallVector<uint64_t, 64> Record; 748 749 // Read all the records. 750 while (1) { 751 unsigned Code = Stream.ReadCode(); 752 if (Code == bitc::END_BLOCK) { 753 if (Stream.ReadBlockEnd()) 754 return Error("Error at end of PARAMATTR block"); 755 return false; 756 } 757 758 if (Code == bitc::ENTER_SUBBLOCK) { 759 // No known subblocks, always skip them. 760 Stream.ReadSubBlockID(); 761 if (Stream.SkipBlock()) 762 return Error("Malformed block record"); 763 continue; 764 } 765 766 if (Code == bitc::DEFINE_ABBREV) { 767 Stream.ReadAbbrevRecord(); 768 continue; 769 } 770 771 // Read a record. 772 Record.clear(); 773 switch (Stream.ReadRecord(Code, Record)) { 774 default: // Default behavior: ignore. 775 break; 776 case bitc::METADATA_NAME: { 777 // Read named of the named metadata. 778 unsigned NameLength = Record.size(); 779 SmallString<8> Name; 780 Name.resize(NameLength); 781 for (unsigned i = 0; i != NameLength; ++i) 782 Name[i] = Record[i]; 783 Record.clear(); 784 Code = Stream.ReadCode(); 785 786 // METADATA_NAME is always followed by METADATA_NAMED_NODE. 787 if (Stream.ReadRecord(Code, Record) != bitc::METADATA_NAMED_NODE) 788 assert ( 0 && "Inavlid Named Metadata record"); 789 790 // Read named metadata elements. 791 unsigned Size = Record.size(); 792 SmallVector<MetadataBase*, 8> Elts; 793 for (unsigned i = 0; i != Size; ++i) { 794 Value *MD = MDValueList.getValueFwdRef(Record[i]); 795 if (MetadataBase *B = dyn_cast<MetadataBase>(MD)) 796 Elts.push_back(B); 797 } 798 Value *V = NamedMDNode::Create(Context, Name.str(), Elts.data(), 799 Elts.size(), TheModule); 800 MDValueList.AssignValue(V, NextValueNo++); 801 break; 802 } 803 case bitc::METADATA_NODE: { 804 if (Record.empty() || Record.size() % 2 == 1) 805 return Error("Invalid METADATA_NODE record"); 806 807 unsigned Size = Record.size(); 808 SmallVector<Value*, 8> Elts; 809 for (unsigned i = 0; i != Size; i += 2) { 810 const Type *Ty = getTypeByID(Record[i], false); 811 if (Ty->isMetadataTy()) 812 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 813 else if (Ty != Type::getVoidTy(Context)) 814 Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty)); 815 else 816 Elts.push_back(NULL); 817 } 818 Value *V = MDNode::get(Context, &Elts[0], Elts.size()); 819 MDValueList.AssignValue(V, NextValueNo++); 820 break; 821 } 822 case bitc::METADATA_STRING: { 823 unsigned MDStringLength = Record.size(); 824 SmallString<8> String; 825 String.resize(MDStringLength); 826 for (unsigned i = 0; i != MDStringLength; ++i) 827 String[i] = Record[i]; 828 Value *V = MDString::get(Context, 829 StringRef(String.data(), String.size())); 830 MDValueList.AssignValue(V, NextValueNo++); 831 break; 832 } 833 case bitc::METADATA_KIND: { 834 unsigned RecordLength = Record.size(); 835 if (Record.empty() || RecordLength < 2) 836 return Error("Invalid METADATA_KIND record"); 837 SmallString<8> Name; 838 Name.resize(RecordLength-1); 839 unsigned Kind = Record[0]; 840 for (unsigned i = 1; i != RecordLength; ++i) 841 Name[i-1] = Record[i]; 842 MetadataContext &TheMetadata = Context.getMetadata(); 843 TheMetadata.MDHandlerNames[Name.str()] = Kind; 844 break; 845 } 846 } 847 } 848 } 849 850 /// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in 851 /// the LSB for dense VBR encoding. 852 static uint64_t DecodeSignRotatedValue(uint64_t V) { 853 if ((V & 1) == 0) 854 return V >> 1; 855 if (V != 1) 856 return -(V >> 1); 857 // There is no such thing as -0 with integers. "-0" really means MININT. 858 return 1ULL << 63; 859 } 860 861 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 862 /// values and aliases that we can. 863 bool BitcodeReader::ResolveGlobalAndAliasInits() { 864 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 865 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 866 867 GlobalInitWorklist.swap(GlobalInits); 868 AliasInitWorklist.swap(AliasInits); 869 870 while (!GlobalInitWorklist.empty()) { 871 unsigned ValID = GlobalInitWorklist.back().second; 872 if (ValID >= ValueList.size()) { 873 // Not ready to resolve this yet, it requires something later in the file. 874 GlobalInits.push_back(GlobalInitWorklist.back()); 875 } else { 876 if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) 877 GlobalInitWorklist.back().first->setInitializer(C); 878 else 879 return Error("Global variable initializer is not a constant!"); 880 } 881 GlobalInitWorklist.pop_back(); 882 } 883 884 while (!AliasInitWorklist.empty()) { 885 unsigned ValID = AliasInitWorklist.back().second; 886 if (ValID >= ValueList.size()) { 887 AliasInits.push_back(AliasInitWorklist.back()); 888 } else { 889 if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) 890 AliasInitWorklist.back().first->setAliasee(C); 891 else 892 return Error("Alias initializer is not a constant!"); 893 } 894 AliasInitWorklist.pop_back(); 895 } 896 return false; 897 } 898 899 bool BitcodeReader::ParseConstants() { 900 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 901 return Error("Malformed block record"); 902 903 SmallVector<uint64_t, 64> Record; 904 905 // Read all the records for this value table. 906 const Type *CurTy = Type::getInt32Ty(Context); 907 unsigned NextCstNo = ValueList.size(); 908 while (1) { 909 unsigned Code = Stream.ReadCode(); 910 if (Code == bitc::END_BLOCK) 911 break; 912 913 if (Code == bitc::ENTER_SUBBLOCK) { 914 // No known subblocks, always skip them. 915 Stream.ReadSubBlockID(); 916 if (Stream.SkipBlock()) 917 return Error("Malformed block record"); 918 continue; 919 } 920 921 if (Code == bitc::DEFINE_ABBREV) { 922 Stream.ReadAbbrevRecord(); 923 continue; 924 } 925 926 // Read a record. 927 Record.clear(); 928 Value *V = 0; 929 unsigned BitCode = Stream.ReadRecord(Code, Record); 930 switch (BitCode) { 931 default: // Default behavior: unknown constant 932 case bitc::CST_CODE_UNDEF: // UNDEF 933 V = UndefValue::get(CurTy); 934 break; 935 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 936 if (Record.empty()) 937 return Error("Malformed CST_SETTYPE record"); 938 if (Record[0] >= TypeList.size()) 939 return Error("Invalid Type ID in CST_SETTYPE record"); 940 CurTy = TypeList[Record[0]]; 941 continue; // Skip the ValueList manipulation. 942 case bitc::CST_CODE_NULL: // NULL 943 V = Constant::getNullValue(CurTy); 944 break; 945 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 946 if (!isa<IntegerType>(CurTy) || Record.empty()) 947 return Error("Invalid CST_INTEGER record"); 948 V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0])); 949 break; 950 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 951 if (!isa<IntegerType>(CurTy) || Record.empty()) 952 return Error("Invalid WIDE_INTEGER record"); 953 954 unsigned NumWords = Record.size(); 955 SmallVector<uint64_t, 8> Words; 956 Words.resize(NumWords); 957 for (unsigned i = 0; i != NumWords; ++i) 958 Words[i] = DecodeSignRotatedValue(Record[i]); 959 V = ConstantInt::get(Context, 960 APInt(cast<IntegerType>(CurTy)->getBitWidth(), 961 NumWords, &Words[0])); 962 break; 963 } 964 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 965 if (Record.empty()) 966 return Error("Invalid FLOAT record"); 967 if (CurTy->isFloatTy()) 968 V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0]))); 969 else if (CurTy->isDoubleTy()) 970 V = ConstantFP::get(Context, APFloat(APInt(64, Record[0]))); 971 else if (CurTy->isX86_FP80Ty()) { 972 // Bits are not stored the same way as a normal i80 APInt, compensate. 973 uint64_t Rearrange[2]; 974 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 975 Rearrange[1] = Record[0] >> 48; 976 V = ConstantFP::get(Context, APFloat(APInt(80, 2, Rearrange))); 977 } else if (CurTy->isFP128Ty()) 978 V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]), true)); 979 else if (CurTy->isPPC_FP128Ty()) 980 V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]))); 981 else 982 V = UndefValue::get(CurTy); 983 break; 984 } 985 986 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 987 if (Record.empty()) 988 return Error("Invalid CST_AGGREGATE record"); 989 990 unsigned Size = Record.size(); 991 std::vector<Constant*> Elts; 992 993 if (const StructType *STy = dyn_cast<StructType>(CurTy)) { 994 for (unsigned i = 0; i != Size; ++i) 995 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 996 STy->getElementType(i))); 997 V = ConstantStruct::get(STy, Elts); 998 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 999 const Type *EltTy = ATy->getElementType(); 1000 for (unsigned i = 0; i != Size; ++i) 1001 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1002 V = ConstantArray::get(ATy, Elts); 1003 } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 1004 const Type *EltTy = VTy->getElementType(); 1005 for (unsigned i = 0; i != Size; ++i) 1006 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1007 V = ConstantVector::get(Elts); 1008 } else { 1009 V = UndefValue::get(CurTy); 1010 } 1011 break; 1012 } 1013 case bitc::CST_CODE_STRING: { // STRING: [values] 1014 if (Record.empty()) 1015 return Error("Invalid CST_AGGREGATE record"); 1016 1017 const ArrayType *ATy = cast<ArrayType>(CurTy); 1018 const Type *EltTy = ATy->getElementType(); 1019 1020 unsigned Size = Record.size(); 1021 std::vector<Constant*> Elts; 1022 for (unsigned i = 0; i != Size; ++i) 1023 Elts.push_back(ConstantInt::get(EltTy, Record[i])); 1024 V = ConstantArray::get(ATy, Elts); 1025 break; 1026 } 1027 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 1028 if (Record.empty()) 1029 return Error("Invalid CST_AGGREGATE record"); 1030 1031 const ArrayType *ATy = cast<ArrayType>(CurTy); 1032 const Type *EltTy = ATy->getElementType(); 1033 1034 unsigned Size = Record.size(); 1035 std::vector<Constant*> Elts; 1036 for (unsigned i = 0; i != Size; ++i) 1037 Elts.push_back(ConstantInt::get(EltTy, Record[i])); 1038 Elts.push_back(Constant::getNullValue(EltTy)); 1039 V = ConstantArray::get(ATy, Elts); 1040 break; 1041 } 1042 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 1043 if (Record.size() < 3) return Error("Invalid CE_BINOP record"); 1044 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 1045 if (Opc < 0) { 1046 V = UndefValue::get(CurTy); // Unknown binop. 1047 } else { 1048 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 1049 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 1050 unsigned Flags = 0; 1051 if (Record.size() >= 4) { 1052 if (Opc == Instruction::Add || 1053 Opc == Instruction::Sub || 1054 Opc == Instruction::Mul) { 1055 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1056 Flags |= OverflowingBinaryOperator::NoSignedWrap; 1057 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1058 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 1059 } else if (Opc == Instruction::SDiv) { 1060 if (Record[3] & (1 << bitc::SDIV_EXACT)) 1061 Flags |= SDivOperator::IsExact; 1062 } 1063 } 1064 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 1065 } 1066 break; 1067 } 1068 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 1069 if (Record.size() < 3) return Error("Invalid CE_CAST record"); 1070 int Opc = GetDecodedCastOpcode(Record[0]); 1071 if (Opc < 0) { 1072 V = UndefValue::get(CurTy); // Unknown cast. 1073 } else { 1074 const Type *OpTy = getTypeByID(Record[1]); 1075 if (!OpTy) return Error("Invalid CE_CAST record"); 1076 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 1077 V = ConstantExpr::getCast(Opc, Op, CurTy); 1078 } 1079 break; 1080 } 1081 case bitc::CST_CODE_CE_INBOUNDS_GEP: 1082 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 1083 if (Record.size() & 1) return Error("Invalid CE_GEP record"); 1084 SmallVector<Constant*, 16> Elts; 1085 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1086 const Type *ElTy = getTypeByID(Record[i]); 1087 if (!ElTy) return Error("Invalid CE_GEP record"); 1088 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 1089 } 1090 if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 1091 V = ConstantExpr::getInBoundsGetElementPtr(Elts[0], &Elts[1], 1092 Elts.size()-1); 1093 else 1094 V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1], 1095 Elts.size()-1); 1096 break; 1097 } 1098 case bitc::CST_CODE_CE_SELECT: // CE_SELECT: [opval#, opval#, opval#] 1099 if (Record.size() < 3) return Error("Invalid CE_SELECT record"); 1100 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 1101 Type::getInt1Ty(Context)), 1102 ValueList.getConstantFwdRef(Record[1],CurTy), 1103 ValueList.getConstantFwdRef(Record[2],CurTy)); 1104 break; 1105 case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval] 1106 if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record"); 1107 const VectorType *OpTy = 1108 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1109 if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record"); 1110 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1111 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1112 V = ConstantExpr::getExtractElement(Op0, Op1); 1113 break; 1114 } 1115 case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval] 1116 const VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1117 if (Record.size() < 3 || OpTy == 0) 1118 return Error("Invalid CE_INSERTELT record"); 1119 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1120 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 1121 OpTy->getElementType()); 1122 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1123 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 1124 break; 1125 } 1126 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 1127 const VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1128 if (Record.size() < 3 || OpTy == 0) 1129 return Error("Invalid CE_SHUFFLEVEC record"); 1130 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1131 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 1132 const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1133 OpTy->getNumElements()); 1134 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 1135 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1136 break; 1137 } 1138 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 1139 const VectorType *RTy = dyn_cast<VectorType>(CurTy); 1140 const VectorType *OpTy = dyn_cast<VectorType>(getTypeByID(Record[0])); 1141 if (Record.size() < 4 || RTy == 0 || OpTy == 0) 1142 return Error("Invalid CE_SHUFVEC_EX record"); 1143 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1144 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1145 const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1146 RTy->getNumElements()); 1147 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 1148 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1149 break; 1150 } 1151 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 1152 if (Record.size() < 4) return Error("Invalid CE_CMP record"); 1153 const Type *OpTy = getTypeByID(Record[0]); 1154 if (OpTy == 0) return Error("Invalid CE_CMP record"); 1155 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1156 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1157 1158 if (OpTy->isFloatingPoint()) 1159 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 1160 else 1161 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 1162 break; 1163 } 1164 case bitc::CST_CODE_INLINEASM: { 1165 if (Record.size() < 2) return Error("Invalid INLINEASM record"); 1166 std::string AsmStr, ConstrStr; 1167 bool HasSideEffects = Record[0]; 1168 unsigned AsmStrSize = Record[1]; 1169 if (2+AsmStrSize >= Record.size()) 1170 return Error("Invalid INLINEASM record"); 1171 unsigned ConstStrSize = Record[2+AsmStrSize]; 1172 if (3+AsmStrSize+ConstStrSize > Record.size()) 1173 return Error("Invalid INLINEASM record"); 1174 1175 for (unsigned i = 0; i != AsmStrSize; ++i) 1176 AsmStr += (char)Record[2+i]; 1177 for (unsigned i = 0; i != ConstStrSize; ++i) 1178 ConstrStr += (char)Record[3+AsmStrSize+i]; 1179 const PointerType *PTy = cast<PointerType>(CurTy); 1180 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1181 AsmStr, ConstrStr, HasSideEffects); 1182 break; 1183 } 1184 } 1185 1186 ValueList.AssignValue(V, NextCstNo); 1187 ++NextCstNo; 1188 } 1189 1190 if (NextCstNo != ValueList.size()) 1191 return Error("Invalid constant reference!"); 1192 1193 if (Stream.ReadBlockEnd()) 1194 return Error("Error at end of constants block"); 1195 1196 // Once all the constants have been read, go through and resolve forward 1197 // references. 1198 ValueList.ResolveConstantForwardRefs(); 1199 return false; 1200 } 1201 1202 /// RememberAndSkipFunctionBody - When we see the block for a function body, 1203 /// remember where it is and then skip it. This lets us lazily deserialize the 1204 /// functions. 1205 bool BitcodeReader::RememberAndSkipFunctionBody() { 1206 // Get the function we are talking about. 1207 if (FunctionsWithBodies.empty()) 1208 return Error("Insufficient function protos"); 1209 1210 Function *Fn = FunctionsWithBodies.back(); 1211 FunctionsWithBodies.pop_back(); 1212 1213 // Save the current stream state. 1214 uint64_t CurBit = Stream.GetCurrentBitNo(); 1215 DeferredFunctionInfo[Fn] = std::make_pair(CurBit, Fn->getLinkage()); 1216 1217 // Set the functions linkage to GhostLinkage so we know it is lazily 1218 // deserialized. 1219 Fn->setLinkage(GlobalValue::GhostLinkage); 1220 1221 // Skip over the function block for now. 1222 if (Stream.SkipBlock()) 1223 return Error("Malformed block record"); 1224 return false; 1225 } 1226 1227 bool BitcodeReader::ParseModule(const std::string &ModuleID) { 1228 // Reject multiple MODULE_BLOCK's in a single bitstream. 1229 if (TheModule) 1230 return Error("Multiple MODULE_BLOCKs in same stream"); 1231 1232 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 1233 return Error("Malformed block record"); 1234 1235 // Otherwise, create the module. 1236 TheModule = new Module(ModuleID, Context); 1237 1238 SmallVector<uint64_t, 64> Record; 1239 std::vector<std::string> SectionTable; 1240 std::vector<std::string> GCTable; 1241 1242 // Read all the records for this module. 1243 while (!Stream.AtEndOfStream()) { 1244 unsigned Code = Stream.ReadCode(); 1245 if (Code == bitc::END_BLOCK) { 1246 if (Stream.ReadBlockEnd()) 1247 return Error("Error at end of module block"); 1248 1249 // Patch the initializers for globals and aliases up. 1250 ResolveGlobalAndAliasInits(); 1251 if (!GlobalInits.empty() || !AliasInits.empty()) 1252 return Error("Malformed global initializer set"); 1253 if (!FunctionsWithBodies.empty()) 1254 return Error("Too few function bodies found"); 1255 1256 // Look for intrinsic functions which need to be upgraded at some point 1257 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 1258 FI != FE; ++FI) { 1259 Function* NewFn; 1260 if (UpgradeIntrinsicFunction(FI, NewFn)) 1261 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 1262 } 1263 1264 // Force deallocation of memory for these vectors to favor the client that 1265 // want lazy deserialization. 1266 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 1267 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 1268 std::vector<Function*>().swap(FunctionsWithBodies); 1269 return false; 1270 } 1271 1272 if (Code == bitc::ENTER_SUBBLOCK) { 1273 switch (Stream.ReadSubBlockID()) { 1274 default: // Skip unknown content. 1275 if (Stream.SkipBlock()) 1276 return Error("Malformed block record"); 1277 break; 1278 case bitc::BLOCKINFO_BLOCK_ID: 1279 if (Stream.ReadBlockInfoBlock()) 1280 return Error("Malformed BlockInfoBlock"); 1281 break; 1282 case bitc::PARAMATTR_BLOCK_ID: 1283 if (ParseAttributeBlock()) 1284 return true; 1285 break; 1286 case bitc::TYPE_BLOCK_ID: 1287 if (ParseTypeTable()) 1288 return true; 1289 break; 1290 case bitc::TYPE_SYMTAB_BLOCK_ID: 1291 if (ParseTypeSymbolTable()) 1292 return true; 1293 break; 1294 case bitc::VALUE_SYMTAB_BLOCK_ID: 1295 if (ParseValueSymbolTable()) 1296 return true; 1297 break; 1298 case bitc::CONSTANTS_BLOCK_ID: 1299 if (ParseConstants() || ResolveGlobalAndAliasInits()) 1300 return true; 1301 break; 1302 case bitc::METADATA_BLOCK_ID: 1303 if (ParseMetadata()) 1304 return true; 1305 break; 1306 case bitc::FUNCTION_BLOCK_ID: 1307 // If this is the first function body we've seen, reverse the 1308 // FunctionsWithBodies list. 1309 if (!HasReversedFunctionsWithBodies) { 1310 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 1311 HasReversedFunctionsWithBodies = true; 1312 } 1313 1314 if (RememberAndSkipFunctionBody()) 1315 return true; 1316 break; 1317 } 1318 continue; 1319 } 1320 1321 if (Code == bitc::DEFINE_ABBREV) { 1322 Stream.ReadAbbrevRecord(); 1323 continue; 1324 } 1325 1326 // Read a record. 1327 switch (Stream.ReadRecord(Code, Record)) { 1328 default: break; // Default behavior, ignore unknown content. 1329 case bitc::MODULE_CODE_VERSION: // VERSION: [version#] 1330 if (Record.size() < 1) 1331 return Error("Malformed MODULE_CODE_VERSION"); 1332 // Only version #0 is supported so far. 1333 if (Record[0] != 0) 1334 return Error("Unknown bitstream version!"); 1335 break; 1336 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 1337 std::string S; 1338 if (ConvertToString(Record, 0, S)) 1339 return Error("Invalid MODULE_CODE_TRIPLE record"); 1340 TheModule->setTargetTriple(S); 1341 break; 1342 } 1343 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 1344 std::string S; 1345 if (ConvertToString(Record, 0, S)) 1346 return Error("Invalid MODULE_CODE_DATALAYOUT record"); 1347 TheModule->setDataLayout(S); 1348 break; 1349 } 1350 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 1351 std::string S; 1352 if (ConvertToString(Record, 0, S)) 1353 return Error("Invalid MODULE_CODE_ASM record"); 1354 TheModule->setModuleInlineAsm(S); 1355 break; 1356 } 1357 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 1358 std::string S; 1359 if (ConvertToString(Record, 0, S)) 1360 return Error("Invalid MODULE_CODE_DEPLIB record"); 1361 TheModule->addLibrary(S); 1362 break; 1363 } 1364 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 1365 std::string S; 1366 if (ConvertToString(Record, 0, S)) 1367 return Error("Invalid MODULE_CODE_SECTIONNAME record"); 1368 SectionTable.push_back(S); 1369 break; 1370 } 1371 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 1372 std::string S; 1373 if (ConvertToString(Record, 0, S)) 1374 return Error("Invalid MODULE_CODE_GCNAME record"); 1375 GCTable.push_back(S); 1376 break; 1377 } 1378 // GLOBALVAR: [pointer type, isconst, initid, 1379 // linkage, alignment, section, visibility, threadlocal] 1380 case bitc::MODULE_CODE_GLOBALVAR: { 1381 if (Record.size() < 6) 1382 return Error("Invalid MODULE_CODE_GLOBALVAR record"); 1383 const Type *Ty = getTypeByID(Record[0]); 1384 if (!isa<PointerType>(Ty)) 1385 return Error("Global not a pointer type!"); 1386 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 1387 Ty = cast<PointerType>(Ty)->getElementType(); 1388 1389 bool isConstant = Record[1]; 1390 GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]); 1391 unsigned Alignment = (1 << Record[4]) >> 1; 1392 std::string Section; 1393 if (Record[5]) { 1394 if (Record[5]-1 >= SectionTable.size()) 1395 return Error("Invalid section ID"); 1396 Section = SectionTable[Record[5]-1]; 1397 } 1398 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 1399 if (Record.size() > 6) 1400 Visibility = GetDecodedVisibility(Record[6]); 1401 bool isThreadLocal = false; 1402 if (Record.size() > 7) 1403 isThreadLocal = Record[7]; 1404 1405 GlobalVariable *NewGV = 1406 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0, 1407 isThreadLocal, AddressSpace); 1408 NewGV->setAlignment(Alignment); 1409 if (!Section.empty()) 1410 NewGV->setSection(Section); 1411 NewGV->setVisibility(Visibility); 1412 NewGV->setThreadLocal(isThreadLocal); 1413 1414 ValueList.push_back(NewGV); 1415 1416 // Remember which value to use for the global initializer. 1417 if (unsigned InitID = Record[2]) 1418 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 1419 break; 1420 } 1421 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 1422 // alignment, section, visibility, gc] 1423 case bitc::MODULE_CODE_FUNCTION: { 1424 if (Record.size() < 8) 1425 return Error("Invalid MODULE_CODE_FUNCTION record"); 1426 const Type *Ty = getTypeByID(Record[0]); 1427 if (!isa<PointerType>(Ty)) 1428 return Error("Function not a pointer type!"); 1429 const FunctionType *FTy = 1430 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 1431 if (!FTy) 1432 return Error("Function not a pointer to function type!"); 1433 1434 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 1435 "", TheModule); 1436 1437 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 1438 bool isProto = Record[2]; 1439 Func->setLinkage(GetDecodedLinkage(Record[3])); 1440 Func->setAttributes(getAttributes(Record[4])); 1441 1442 Func->setAlignment((1 << Record[5]) >> 1); 1443 if (Record[6]) { 1444 if (Record[6]-1 >= SectionTable.size()) 1445 return Error("Invalid section ID"); 1446 Func->setSection(SectionTable[Record[6]-1]); 1447 } 1448 Func->setVisibility(GetDecodedVisibility(Record[7])); 1449 if (Record.size() > 8 && Record[8]) { 1450 if (Record[8]-1 > GCTable.size()) 1451 return Error("Invalid GC ID"); 1452 Func->setGC(GCTable[Record[8]-1].c_str()); 1453 } 1454 ValueList.push_back(Func); 1455 1456 // If this is a function with a body, remember the prototype we are 1457 // creating now, so that we can match up the body with them later. 1458 if (!isProto) 1459 FunctionsWithBodies.push_back(Func); 1460 break; 1461 } 1462 // ALIAS: [alias type, aliasee val#, linkage] 1463 // ALIAS: [alias type, aliasee val#, linkage, visibility] 1464 case bitc::MODULE_CODE_ALIAS: { 1465 if (Record.size() < 3) 1466 return Error("Invalid MODULE_ALIAS record"); 1467 const Type *Ty = getTypeByID(Record[0]); 1468 if (!isa<PointerType>(Ty)) 1469 return Error("Function not a pointer type!"); 1470 1471 GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]), 1472 "", 0, TheModule); 1473 // Old bitcode files didn't have visibility field. 1474 if (Record.size() > 3) 1475 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 1476 ValueList.push_back(NewGA); 1477 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 1478 break; 1479 } 1480 /// MODULE_CODE_PURGEVALS: [numvals] 1481 case bitc::MODULE_CODE_PURGEVALS: 1482 // Trim down the value list to the specified size. 1483 if (Record.size() < 1 || Record[0] > ValueList.size()) 1484 return Error("Invalid MODULE_PURGEVALS record"); 1485 ValueList.shrinkTo(Record[0]); 1486 break; 1487 } 1488 Record.clear(); 1489 } 1490 1491 return Error("Premature end of bitstream"); 1492 } 1493 1494 bool BitcodeReader::ParseBitcode() { 1495 TheModule = 0; 1496 1497 if (Buffer->getBufferSize() & 3) 1498 return Error("Bitcode stream should be a multiple of 4 bytes in length"); 1499 1500 unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart(); 1501 unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 1502 1503 // If we have a wrapper header, parse it and ignore the non-bc file contents. 1504 // The magic number is 0x0B17C0DE stored in little endian. 1505 if (isBitcodeWrapper(BufPtr, BufEnd)) 1506 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd)) 1507 return Error("Invalid bitcode wrapper header"); 1508 1509 StreamFile.init(BufPtr, BufEnd); 1510 Stream.init(StreamFile); 1511 1512 // Sniff for the signature. 1513 if (Stream.Read(8) != 'B' || 1514 Stream.Read(8) != 'C' || 1515 Stream.Read(4) != 0x0 || 1516 Stream.Read(4) != 0xC || 1517 Stream.Read(4) != 0xE || 1518 Stream.Read(4) != 0xD) 1519 return Error("Invalid bitcode signature"); 1520 1521 // We expect a number of well-defined blocks, though we don't necessarily 1522 // need to understand them all. 1523 while (!Stream.AtEndOfStream()) { 1524 unsigned Code = Stream.ReadCode(); 1525 1526 if (Code != bitc::ENTER_SUBBLOCK) 1527 return Error("Invalid record at top-level"); 1528 1529 unsigned BlockID = Stream.ReadSubBlockID(); 1530 1531 // We only know the MODULE subblock ID. 1532 switch (BlockID) { 1533 case bitc::BLOCKINFO_BLOCK_ID: 1534 if (Stream.ReadBlockInfoBlock()) 1535 return Error("Malformed BlockInfoBlock"); 1536 break; 1537 case bitc::MODULE_BLOCK_ID: 1538 if (ParseModule(Buffer->getBufferIdentifier())) 1539 return true; 1540 break; 1541 default: 1542 if (Stream.SkipBlock()) 1543 return Error("Malformed block record"); 1544 break; 1545 } 1546 } 1547 1548 return false; 1549 } 1550 1551 /// ParseMetadataAttachment - Parse metadata attachments. 1552 bool BitcodeReader::ParseMetadataAttachment() { 1553 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 1554 return Error("Malformed block record"); 1555 1556 MetadataContext &TheMetadata = Context.getMetadata(); 1557 SmallVector<uint64_t, 64> Record; 1558 while(1) { 1559 unsigned Code = Stream.ReadCode(); 1560 if (Code == bitc::END_BLOCK) { 1561 if (Stream.ReadBlockEnd()) 1562 return Error("Error at end of PARAMATTR block"); 1563 break; 1564 } 1565 if (Code == bitc::DEFINE_ABBREV) { 1566 Stream.ReadAbbrevRecord(); 1567 continue; 1568 } 1569 // Read a metadata attachment record. 1570 Record.clear(); 1571 switch (Stream.ReadRecord(Code, Record)) { 1572 default: // Default behavior: ignore. 1573 break; 1574 case bitc::METADATA_ATTACHMENT: { 1575 unsigned RecordLength = Record.size(); 1576 if (Record.empty() || (RecordLength - 1) % 2 == 1) 1577 return Error ("Invalid METADATA_ATTACHMENT reader!"); 1578 Instruction *Inst = InstructionList[Record[0]]; 1579 for (unsigned i = 1; i != RecordLength; i = i+2) { 1580 unsigned Kind = Record[i]; 1581 Value *Node = MDValueList.getValueFwdRef(Record[i+1]); 1582 TheMetadata.addMD(Kind, cast<MDNode>(Node), Inst); 1583 } 1584 break; 1585 } 1586 } 1587 } 1588 return false; 1589 } 1590 1591 /// ParseFunctionBody - Lazily parse the specified function body block. 1592 bool BitcodeReader::ParseFunctionBody(Function *F) { 1593 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 1594 return Error("Malformed block record"); 1595 1596 unsigned ModuleValueListSize = ValueList.size(); 1597 1598 // Add all the function arguments to the value table. 1599 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 1600 ValueList.push_back(I); 1601 1602 unsigned NextValueNo = ValueList.size(); 1603 BasicBlock *CurBB = 0; 1604 unsigned CurBBNo = 0; 1605 1606 // Read all the records. 1607 SmallVector<uint64_t, 64> Record; 1608 while (1) { 1609 unsigned Code = Stream.ReadCode(); 1610 if (Code == bitc::END_BLOCK) { 1611 if (Stream.ReadBlockEnd()) 1612 return Error("Error at end of function block"); 1613 break; 1614 } 1615 1616 if (Code == bitc::ENTER_SUBBLOCK) { 1617 switch (Stream.ReadSubBlockID()) { 1618 default: // Skip unknown content. 1619 if (Stream.SkipBlock()) 1620 return Error("Malformed block record"); 1621 break; 1622 case bitc::CONSTANTS_BLOCK_ID: 1623 if (ParseConstants()) return true; 1624 NextValueNo = ValueList.size(); 1625 break; 1626 case bitc::VALUE_SYMTAB_BLOCK_ID: 1627 if (ParseValueSymbolTable()) return true; 1628 break; 1629 case bitc::METADATA_ATTACHMENT_ID: 1630 if (ParseMetadataAttachment()) return true; 1631 break; 1632 } 1633 continue; 1634 } 1635 1636 if (Code == bitc::DEFINE_ABBREV) { 1637 Stream.ReadAbbrevRecord(); 1638 continue; 1639 } 1640 1641 // Read a record. 1642 Record.clear(); 1643 Instruction *I = 0; 1644 unsigned BitCode = Stream.ReadRecord(Code, Record); 1645 switch (BitCode) { 1646 default: // Default behavior: reject 1647 return Error("Unknown instruction"); 1648 case bitc::FUNC_CODE_DECLAREBLOCKS: // DECLAREBLOCKS: [nblocks] 1649 if (Record.size() < 1 || Record[0] == 0) 1650 return Error("Invalid DECLAREBLOCKS record"); 1651 // Create all the basic blocks for the function. 1652 FunctionBBs.resize(Record[0]); 1653 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 1654 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 1655 CurBB = FunctionBBs[0]; 1656 continue; 1657 1658 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 1659 unsigned OpNum = 0; 1660 Value *LHS, *RHS; 1661 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 1662 getValue(Record, OpNum, LHS->getType(), RHS) || 1663 OpNum+1 > Record.size()) 1664 return Error("Invalid BINOP record"); 1665 1666 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 1667 if (Opc == -1) return Error("Invalid BINOP record"); 1668 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 1669 InstructionList.push_back(I); 1670 if (OpNum < Record.size()) { 1671 if (Opc == Instruction::Add || 1672 Opc == Instruction::Sub || 1673 Opc == Instruction::Mul) { 1674 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1675 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 1676 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1677 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 1678 } else if (Opc == Instruction::SDiv) { 1679 if (Record[3] & (1 << bitc::SDIV_EXACT)) 1680 cast<BinaryOperator>(I)->setIsExact(true); 1681 } 1682 } 1683 break; 1684 } 1685 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 1686 unsigned OpNum = 0; 1687 Value *Op; 1688 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 1689 OpNum+2 != Record.size()) 1690 return Error("Invalid CAST record"); 1691 1692 const Type *ResTy = getTypeByID(Record[OpNum]); 1693 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 1694 if (Opc == -1 || ResTy == 0) 1695 return Error("Invalid CAST record"); 1696 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 1697 InstructionList.push_back(I); 1698 break; 1699 } 1700 case bitc::FUNC_CODE_INST_INBOUNDS_GEP: 1701 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] 1702 unsigned OpNum = 0; 1703 Value *BasePtr; 1704 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 1705 return Error("Invalid GEP record"); 1706 1707 SmallVector<Value*, 16> GEPIdx; 1708 while (OpNum != Record.size()) { 1709 Value *Op; 1710 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1711 return Error("Invalid GEP record"); 1712 GEPIdx.push_back(Op); 1713 } 1714 1715 I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end()); 1716 InstructionList.push_back(I); 1717 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP) 1718 cast<GetElementPtrInst>(I)->setIsInBounds(true); 1719 break; 1720 } 1721 1722 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 1723 // EXTRACTVAL: [opty, opval, n x indices] 1724 unsigned OpNum = 0; 1725 Value *Agg; 1726 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 1727 return Error("Invalid EXTRACTVAL record"); 1728 1729 SmallVector<unsigned, 4> EXTRACTVALIdx; 1730 for (unsigned RecSize = Record.size(); 1731 OpNum != RecSize; ++OpNum) { 1732 uint64_t Index = Record[OpNum]; 1733 if ((unsigned)Index != Index) 1734 return Error("Invalid EXTRACTVAL index"); 1735 EXTRACTVALIdx.push_back((unsigned)Index); 1736 } 1737 1738 I = ExtractValueInst::Create(Agg, 1739 EXTRACTVALIdx.begin(), EXTRACTVALIdx.end()); 1740 InstructionList.push_back(I); 1741 break; 1742 } 1743 1744 case bitc::FUNC_CODE_INST_INSERTVAL: { 1745 // INSERTVAL: [opty, opval, opty, opval, n x indices] 1746 unsigned OpNum = 0; 1747 Value *Agg; 1748 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 1749 return Error("Invalid INSERTVAL record"); 1750 Value *Val; 1751 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 1752 return Error("Invalid INSERTVAL record"); 1753 1754 SmallVector<unsigned, 4> INSERTVALIdx; 1755 for (unsigned RecSize = Record.size(); 1756 OpNum != RecSize; ++OpNum) { 1757 uint64_t Index = Record[OpNum]; 1758 if ((unsigned)Index != Index) 1759 return Error("Invalid INSERTVAL index"); 1760 INSERTVALIdx.push_back((unsigned)Index); 1761 } 1762 1763 I = InsertValueInst::Create(Agg, Val, 1764 INSERTVALIdx.begin(), INSERTVALIdx.end()); 1765 InstructionList.push_back(I); 1766 break; 1767 } 1768 1769 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 1770 // obsolete form of select 1771 // handles select i1 ... in old bitcode 1772 unsigned OpNum = 0; 1773 Value *TrueVal, *FalseVal, *Cond; 1774 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 1775 getValue(Record, OpNum, TrueVal->getType(), FalseVal) || 1776 getValue(Record, OpNum, Type::getInt1Ty(Context), Cond)) 1777 return Error("Invalid SELECT record"); 1778 1779 I = SelectInst::Create(Cond, TrueVal, FalseVal); 1780 InstructionList.push_back(I); 1781 break; 1782 } 1783 1784 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 1785 // new form of select 1786 // handles select i1 or select [N x i1] 1787 unsigned OpNum = 0; 1788 Value *TrueVal, *FalseVal, *Cond; 1789 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 1790 getValue(Record, OpNum, TrueVal->getType(), FalseVal) || 1791 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 1792 return Error("Invalid SELECT record"); 1793 1794 // select condition can be either i1 or [N x i1] 1795 if (const VectorType* vector_type = 1796 dyn_cast<const VectorType>(Cond->getType())) { 1797 // expect <n x i1> 1798 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 1799 return Error("Invalid SELECT condition type"); 1800 } else { 1801 // expect i1 1802 if (Cond->getType() != Type::getInt1Ty(Context)) 1803 return Error("Invalid SELECT condition type"); 1804 } 1805 1806 I = SelectInst::Create(Cond, TrueVal, FalseVal); 1807 InstructionList.push_back(I); 1808 break; 1809 } 1810 1811 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 1812 unsigned OpNum = 0; 1813 Value *Vec, *Idx; 1814 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 1815 getValue(Record, OpNum, Type::getInt32Ty(Context), Idx)) 1816 return Error("Invalid EXTRACTELT record"); 1817 I = ExtractElementInst::Create(Vec, Idx); 1818 InstructionList.push_back(I); 1819 break; 1820 } 1821 1822 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 1823 unsigned OpNum = 0; 1824 Value *Vec, *Elt, *Idx; 1825 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 1826 getValue(Record, OpNum, 1827 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 1828 getValue(Record, OpNum, Type::getInt32Ty(Context), Idx)) 1829 return Error("Invalid INSERTELT record"); 1830 I = InsertElementInst::Create(Vec, Elt, Idx); 1831 InstructionList.push_back(I); 1832 break; 1833 } 1834 1835 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 1836 unsigned OpNum = 0; 1837 Value *Vec1, *Vec2, *Mask; 1838 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 1839 getValue(Record, OpNum, Vec1->getType(), Vec2)) 1840 return Error("Invalid SHUFFLEVEC record"); 1841 1842 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 1843 return Error("Invalid SHUFFLEVEC record"); 1844 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 1845 InstructionList.push_back(I); 1846 break; 1847 } 1848 1849 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 1850 // Old form of ICmp/FCmp returning bool 1851 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 1852 // both legal on vectors but had different behaviour. 1853 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 1854 // FCmp/ICmp returning bool or vector of bool 1855 1856 unsigned OpNum = 0; 1857 Value *LHS, *RHS; 1858 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 1859 getValue(Record, OpNum, LHS->getType(), RHS) || 1860 OpNum+1 != Record.size()) 1861 return Error("Invalid CMP record"); 1862 1863 if (LHS->getType()->isFPOrFPVector()) 1864 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 1865 else 1866 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 1867 InstructionList.push_back(I); 1868 break; 1869 } 1870 1871 case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n] 1872 if (Record.size() != 2) 1873 return Error("Invalid GETRESULT record"); 1874 unsigned OpNum = 0; 1875 Value *Op; 1876 getValueTypePair(Record, OpNum, NextValueNo, Op); 1877 unsigned Index = Record[1]; 1878 I = ExtractValueInst::Create(Op, Index); 1879 InstructionList.push_back(I); 1880 break; 1881 } 1882 1883 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 1884 { 1885 unsigned Size = Record.size(); 1886 if (Size == 0) { 1887 I = ReturnInst::Create(Context); 1888 InstructionList.push_back(I); 1889 break; 1890 } 1891 1892 unsigned OpNum = 0; 1893 SmallVector<Value *,4> Vs; 1894 do { 1895 Value *Op = NULL; 1896 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1897 return Error("Invalid RET record"); 1898 Vs.push_back(Op); 1899 } while(OpNum != Record.size()); 1900 1901 const Type *ReturnType = F->getReturnType(); 1902 if (Vs.size() > 1 || 1903 (isa<StructType>(ReturnType) && 1904 (Vs.empty() || Vs[0]->getType() != ReturnType))) { 1905 Value *RV = UndefValue::get(ReturnType); 1906 for (unsigned i = 0, e = Vs.size(); i != e; ++i) { 1907 I = InsertValueInst::Create(RV, Vs[i], i, "mrv"); 1908 InstructionList.push_back(I); 1909 CurBB->getInstList().push_back(I); 1910 ValueList.AssignValue(I, NextValueNo++); 1911 RV = I; 1912 } 1913 I = ReturnInst::Create(Context, RV); 1914 InstructionList.push_back(I); 1915 break; 1916 } 1917 1918 I = ReturnInst::Create(Context, Vs[0]); 1919 InstructionList.push_back(I); 1920 break; 1921 } 1922 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 1923 if (Record.size() != 1 && Record.size() != 3) 1924 return Error("Invalid BR record"); 1925 BasicBlock *TrueDest = getBasicBlock(Record[0]); 1926 if (TrueDest == 0) 1927 return Error("Invalid BR record"); 1928 1929 if (Record.size() == 1) { 1930 I = BranchInst::Create(TrueDest); 1931 InstructionList.push_back(I); 1932 } 1933 else { 1934 BasicBlock *FalseDest = getBasicBlock(Record[1]); 1935 Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context)); 1936 if (FalseDest == 0 || Cond == 0) 1937 return Error("Invalid BR record"); 1938 I = BranchInst::Create(TrueDest, FalseDest, Cond); 1939 InstructionList.push_back(I); 1940 } 1941 break; 1942 } 1943 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, opval, n, n x ops] 1944 if (Record.size() < 3 || (Record.size() & 1) == 0) 1945 return Error("Invalid SWITCH record"); 1946 const Type *OpTy = getTypeByID(Record[0]); 1947 Value *Cond = getFnValueByID(Record[1], OpTy); 1948 BasicBlock *Default = getBasicBlock(Record[2]); 1949 if (OpTy == 0 || Cond == 0 || Default == 0) 1950 return Error("Invalid SWITCH record"); 1951 unsigned NumCases = (Record.size()-3)/2; 1952 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 1953 InstructionList.push_back(SI); 1954 for (unsigned i = 0, e = NumCases; i != e; ++i) { 1955 ConstantInt *CaseVal = 1956 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 1957 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 1958 if (CaseVal == 0 || DestBB == 0) { 1959 delete SI; 1960 return Error("Invalid SWITCH record!"); 1961 } 1962 SI->addCase(CaseVal, DestBB); 1963 } 1964 I = SI; 1965 break; 1966 } 1967 1968 case bitc::FUNC_CODE_INST_INVOKE: { 1969 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 1970 if (Record.size() < 4) return Error("Invalid INVOKE record"); 1971 AttrListPtr PAL = getAttributes(Record[0]); 1972 unsigned CCInfo = Record[1]; 1973 BasicBlock *NormalBB = getBasicBlock(Record[2]); 1974 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 1975 1976 unsigned OpNum = 4; 1977 Value *Callee; 1978 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 1979 return Error("Invalid INVOKE record"); 1980 1981 const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 1982 const FunctionType *FTy = !CalleeTy ? 0 : 1983 dyn_cast<FunctionType>(CalleeTy->getElementType()); 1984 1985 // Check that the right number of fixed parameters are here. 1986 if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 || 1987 Record.size() < OpNum+FTy->getNumParams()) 1988 return Error("Invalid INVOKE record"); 1989 1990 SmallVector<Value*, 16> Ops; 1991 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 1992 Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i))); 1993 if (Ops.back() == 0) return Error("Invalid INVOKE record"); 1994 } 1995 1996 if (!FTy->isVarArg()) { 1997 if (Record.size() != OpNum) 1998 return Error("Invalid INVOKE record"); 1999 } else { 2000 // Read type/value pairs for varargs params. 2001 while (OpNum != Record.size()) { 2002 Value *Op; 2003 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2004 return Error("Invalid INVOKE record"); 2005 Ops.push_back(Op); 2006 } 2007 } 2008 2009 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, 2010 Ops.begin(), Ops.end()); 2011 InstructionList.push_back(I); 2012 cast<InvokeInst>(I)->setCallingConv( 2013 static_cast<CallingConv::ID>(CCInfo)); 2014 cast<InvokeInst>(I)->setAttributes(PAL); 2015 break; 2016 } 2017 case bitc::FUNC_CODE_INST_UNWIND: // UNWIND 2018 I = new UnwindInst(Context); 2019 InstructionList.push_back(I); 2020 break; 2021 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 2022 I = new UnreachableInst(Context); 2023 InstructionList.push_back(I); 2024 break; 2025 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 2026 if (Record.size() < 1 || ((Record.size()-1)&1)) 2027 return Error("Invalid PHI record"); 2028 const Type *Ty = getTypeByID(Record[0]); 2029 if (!Ty) return Error("Invalid PHI record"); 2030 2031 PHINode *PN = PHINode::Create(Ty); 2032 InstructionList.push_back(PN); 2033 PN->reserveOperandSpace((Record.size()-1)/2); 2034 2035 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 2036 Value *V = getFnValueByID(Record[1+i], Ty); 2037 BasicBlock *BB = getBasicBlock(Record[2+i]); 2038 if (!V || !BB) return Error("Invalid PHI record"); 2039 PN->addIncoming(V, BB); 2040 } 2041 I = PN; 2042 break; 2043 } 2044 2045 case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align] 2046 if (Record.size() < 3) 2047 return Error("Invalid MALLOC record"); 2048 const PointerType *Ty = 2049 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 2050 Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context)); 2051 unsigned Align = Record[2]; 2052 if (!Ty || !Size) return Error("Invalid MALLOC record"); 2053 I = new MallocInst(Ty->getElementType(), Size, (1 << Align) >> 1); 2054 InstructionList.push_back(I); 2055 break; 2056 } 2057 case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty] 2058 unsigned OpNum = 0; 2059 Value *Op; 2060 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2061 OpNum != Record.size()) 2062 return Error("Invalid FREE record"); 2063 I = new FreeInst(Op); 2064 InstructionList.push_back(I); 2065 break; 2066 } 2067 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, op, align] 2068 if (Record.size() < 3) 2069 return Error("Invalid ALLOCA record"); 2070 const PointerType *Ty = 2071 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 2072 Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context)); 2073 unsigned Align = Record[2]; 2074 if (!Ty || !Size) return Error("Invalid ALLOCA record"); 2075 I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); 2076 InstructionList.push_back(I); 2077 break; 2078 } 2079 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 2080 unsigned OpNum = 0; 2081 Value *Op; 2082 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2083 OpNum+2 != Record.size()) 2084 return Error("Invalid LOAD record"); 2085 2086 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); 2087 InstructionList.push_back(I); 2088 break; 2089 } 2090 case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol] 2091 unsigned OpNum = 0; 2092 Value *Val, *Ptr; 2093 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 2094 getValue(Record, OpNum, 2095 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 2096 OpNum+2 != Record.size()) 2097 return Error("Invalid STORE record"); 2098 2099 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 2100 InstructionList.push_back(I); 2101 break; 2102 } 2103 case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol] 2104 // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0. 2105 unsigned OpNum = 0; 2106 Value *Val, *Ptr; 2107 if (getValueTypePair(Record, OpNum, NextValueNo, Val) || 2108 getValue(Record, OpNum, 2109 PointerType::getUnqual(Val->getType()), Ptr)|| 2110 OpNum+2 != Record.size()) 2111 return Error("Invalid STORE record"); 2112 2113 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 2114 InstructionList.push_back(I); 2115 break; 2116 } 2117 case bitc::FUNC_CODE_INST_CALL: { 2118 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 2119 if (Record.size() < 3) 2120 return Error("Invalid CALL record"); 2121 2122 AttrListPtr PAL = getAttributes(Record[0]); 2123 unsigned CCInfo = Record[1]; 2124 2125 unsigned OpNum = 2; 2126 Value *Callee; 2127 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 2128 return Error("Invalid CALL record"); 2129 2130 const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 2131 const FunctionType *FTy = 0; 2132 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 2133 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 2134 return Error("Invalid CALL record"); 2135 2136 SmallVector<Value*, 16> Args; 2137 // Read the fixed params. 2138 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 2139 if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID) 2140 Args.push_back(getBasicBlock(Record[OpNum])); 2141 else 2142 Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i))); 2143 if (Args.back() == 0) return Error("Invalid CALL record"); 2144 } 2145 2146 // Read type/value pairs for varargs params. 2147 if (!FTy->isVarArg()) { 2148 if (OpNum != Record.size()) 2149 return Error("Invalid CALL record"); 2150 } else { 2151 while (OpNum != Record.size()) { 2152 Value *Op; 2153 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2154 return Error("Invalid CALL record"); 2155 Args.push_back(Op); 2156 } 2157 } 2158 2159 I = CallInst::Create(Callee, Args.begin(), Args.end()); 2160 InstructionList.push_back(I); 2161 cast<CallInst>(I)->setCallingConv( 2162 static_cast<CallingConv::ID>(CCInfo>>1)); 2163 cast<CallInst>(I)->setTailCall(CCInfo & 1); 2164 cast<CallInst>(I)->setAttributes(PAL); 2165 break; 2166 } 2167 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 2168 if (Record.size() < 3) 2169 return Error("Invalid VAARG record"); 2170 const Type *OpTy = getTypeByID(Record[0]); 2171 Value *Op = getFnValueByID(Record[1], OpTy); 2172 const Type *ResTy = getTypeByID(Record[2]); 2173 if (!OpTy || !Op || !ResTy) 2174 return Error("Invalid VAARG record"); 2175 I = new VAArgInst(Op, ResTy); 2176 InstructionList.push_back(I); 2177 break; 2178 } 2179 } 2180 2181 // Add instruction to end of current BB. If there is no current BB, reject 2182 // this file. 2183 if (CurBB == 0) { 2184 delete I; 2185 return Error("Invalid instruction with no BB"); 2186 } 2187 CurBB->getInstList().push_back(I); 2188 2189 // If this was a terminator instruction, move to the next block. 2190 if (isa<TerminatorInst>(I)) { 2191 ++CurBBNo; 2192 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0; 2193 } 2194 2195 // Non-void values get registered in the value table for future use. 2196 if (I && I->getType() != Type::getVoidTy(Context)) 2197 ValueList.AssignValue(I, NextValueNo++); 2198 } 2199 2200 // Check the function list for unresolved values. 2201 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 2202 if (A->getParent() == 0) { 2203 // We found at least one unresolved value. Nuke them all to avoid leaks. 2204 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 2205 if ((A = dyn_cast<Argument>(ValueList.back())) && A->getParent() == 0) { 2206 A->replaceAllUsesWith(UndefValue::get(A->getType())); 2207 delete A; 2208 } 2209 } 2210 return Error("Never resolved value found in function!"); 2211 } 2212 } 2213 2214 // Trim the value list down to the size it was before we parsed this function. 2215 ValueList.shrinkTo(ModuleValueListSize); 2216 std::vector<BasicBlock*>().swap(FunctionBBs); 2217 2218 return false; 2219 } 2220 2221 //===----------------------------------------------------------------------===// 2222 // ModuleProvider implementation 2223 //===----------------------------------------------------------------------===// 2224 2225 2226 bool BitcodeReader::materializeFunction(Function *F, std::string *ErrInfo) { 2227 // If it already is material, ignore the request. 2228 if (!F->hasNotBeenReadFromBitcode()) return false; 2229 2230 DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator DFII = 2231 DeferredFunctionInfo.find(F); 2232 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 2233 2234 // Move the bit stream to the saved position of the deferred function body and 2235 // restore the real linkage type for the function. 2236 Stream.JumpToBit(DFII->second.first); 2237 F->setLinkage((GlobalValue::LinkageTypes)DFII->second.second); 2238 2239 if (ParseFunctionBody(F)) { 2240 if (ErrInfo) *ErrInfo = ErrorString; 2241 return true; 2242 } 2243 2244 // Upgrade any old intrinsic calls in the function. 2245 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 2246 E = UpgradedIntrinsics.end(); I != E; ++I) { 2247 if (I->first != I->second) { 2248 for (Value::use_iterator UI = I->first->use_begin(), 2249 UE = I->first->use_end(); UI != UE; ) { 2250 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 2251 UpgradeIntrinsicCall(CI, I->second); 2252 } 2253 } 2254 } 2255 2256 return false; 2257 } 2258 2259 void BitcodeReader::dematerializeFunction(Function *F) { 2260 // If this function isn't materialized, or if it is a proto, this is a noop. 2261 if (F->hasNotBeenReadFromBitcode() || F->isDeclaration()) 2262 return; 2263 2264 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 2265 2266 // Just forget the function body, we can remat it later. 2267 F->deleteBody(); 2268 F->setLinkage(GlobalValue::GhostLinkage); 2269 } 2270 2271 2272 Module *BitcodeReader::materializeModule(std::string *ErrInfo) { 2273 // Iterate over the module, deserializing any functions that are still on 2274 // disk. 2275 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 2276 F != E; ++F) 2277 if (F->hasNotBeenReadFromBitcode() && 2278 materializeFunction(F, ErrInfo)) 2279 return 0; 2280 2281 // Upgrade any intrinsic calls that slipped through (should not happen!) and 2282 // delete the old functions to clean up. We can't do this unless the entire 2283 // module is materialized because there could always be another function body 2284 // with calls to the old function. 2285 for (std::vector<std::pair<Function*, Function*> >::iterator I = 2286 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 2287 if (I->first != I->second) { 2288 for (Value::use_iterator UI = I->first->use_begin(), 2289 UE = I->first->use_end(); UI != UE; ) { 2290 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 2291 UpgradeIntrinsicCall(CI, I->second); 2292 } 2293 if (!I->first->use_empty()) 2294 I->first->replaceAllUsesWith(I->second); 2295 I->first->eraseFromParent(); 2296 } 2297 } 2298 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 2299 2300 // Check debug info intrinsics. 2301 CheckDebugInfoIntrinsics(TheModule); 2302 2303 return TheModule; 2304 } 2305 2306 2307 /// This method is provided by the parent ModuleProvde class and overriden 2308 /// here. It simply releases the module from its provided and frees up our 2309 /// state. 2310 /// @brief Release our hold on the generated module 2311 Module *BitcodeReader::releaseModule(std::string *ErrInfo) { 2312 // Since we're losing control of this Module, we must hand it back complete 2313 Module *M = ModuleProvider::releaseModule(ErrInfo); 2314 FreeState(); 2315 return M; 2316 } 2317 2318 2319 //===----------------------------------------------------------------------===// 2320 // External interface 2321 //===----------------------------------------------------------------------===// 2322 2323 /// getBitcodeModuleProvider - lazy function-at-a-time loading from a file. 2324 /// 2325 ModuleProvider *llvm::getBitcodeModuleProvider(MemoryBuffer *Buffer, 2326 LLVMContext& Context, 2327 std::string *ErrMsg) { 2328 BitcodeReader *R = new BitcodeReader(Buffer, Context); 2329 if (R->ParseBitcode()) { 2330 if (ErrMsg) 2331 *ErrMsg = R->getErrorString(); 2332 2333 // Don't let the BitcodeReader dtor delete 'Buffer'. 2334 R->releaseMemoryBuffer(); 2335 delete R; 2336 return 0; 2337 } 2338 return R; 2339 } 2340 2341 /// ParseBitcodeFile - Read the specified bitcode file, returning the module. 2342 /// If an error occurs, return null and fill in *ErrMsg if non-null. 2343 Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context, 2344 std::string *ErrMsg){ 2345 BitcodeReader *R; 2346 R = static_cast<BitcodeReader*>(getBitcodeModuleProvider(Buffer, Context, 2347 ErrMsg)); 2348 if (!R) return 0; 2349 2350 // Read in the entire module. 2351 Module *M = R->materializeModule(ErrMsg); 2352 2353 // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether 2354 // there was an error. 2355 R->releaseMemoryBuffer(); 2356 2357 // If there was no error, tell ModuleProvider not to delete it when its dtor 2358 // is run. 2359 if (M) 2360 M = R->releaseModule(ErrMsg); 2361 2362 delete R; 2363 return M; 2364 } 2365