1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/Bitcode/BitstreamReader.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/OperandTraits.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/IR/FunctionInfo.h" 31 #include "llvm/IR/ValueHandle.h" 32 #include "llvm/Support/DataStream.h" 33 #include "llvm/Support/ManagedStatic.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Support/MemoryBuffer.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <deque> 38 using namespace llvm; 39 40 namespace { 41 enum { 42 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 43 }; 44 45 class BitcodeReaderValueList { 46 std::vector<WeakVH> ValuePtrs; 47 48 /// As we resolve forward-referenced constants, we add information about them 49 /// to this vector. This allows us to resolve them in bulk instead of 50 /// resolving each reference at a time. See the code in 51 /// ResolveConstantForwardRefs for more information about this. 52 /// 53 /// The key of this vector is the placeholder constant, the value is the slot 54 /// number that holds the resolved value. 55 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 56 ResolveConstantsTy ResolveConstants; 57 LLVMContext &Context; 58 public: 59 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 60 ~BitcodeReaderValueList() { 61 assert(ResolveConstants.empty() && "Constants not resolved?"); 62 } 63 64 // vector compatibility methods 65 unsigned size() const { return ValuePtrs.size(); } 66 void resize(unsigned N) { ValuePtrs.resize(N); } 67 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 68 69 void clear() { 70 assert(ResolveConstants.empty() && "Constants not resolved?"); 71 ValuePtrs.clear(); 72 } 73 74 Value *operator[](unsigned i) const { 75 assert(i < ValuePtrs.size()); 76 return ValuePtrs[i]; 77 } 78 79 Value *back() const { return ValuePtrs.back(); } 80 void pop_back() { ValuePtrs.pop_back(); } 81 bool empty() const { return ValuePtrs.empty(); } 82 void shrinkTo(unsigned N) { 83 assert(N <= size() && "Invalid shrinkTo request!"); 84 ValuePtrs.resize(N); 85 } 86 87 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 88 Value *getValueFwdRef(unsigned Idx, Type *Ty); 89 90 void assignValue(Value *V, unsigned Idx); 91 92 /// Once all constants are read, this method bulk resolves any forward 93 /// references. 94 void resolveConstantForwardRefs(); 95 }; 96 97 class BitcodeReaderMetadataList { 98 unsigned NumFwdRefs; 99 bool AnyFwdRefs; 100 unsigned MinFwdRef; 101 unsigned MaxFwdRef; 102 std::vector<TrackingMDRef> MetadataPtrs; 103 104 LLVMContext &Context; 105 public: 106 BitcodeReaderMetadataList(LLVMContext &C) 107 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 108 109 // vector compatibility methods 110 unsigned size() const { return MetadataPtrs.size(); } 111 void resize(unsigned N) { MetadataPtrs.resize(N); } 112 void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); } 113 void clear() { MetadataPtrs.clear(); } 114 Metadata *back() const { return MetadataPtrs.back(); } 115 void pop_back() { MetadataPtrs.pop_back(); } 116 bool empty() const { return MetadataPtrs.empty(); } 117 118 Metadata *operator[](unsigned i) const { 119 assert(i < MetadataPtrs.size()); 120 return MetadataPtrs[i]; 121 } 122 123 void shrinkTo(unsigned N) { 124 assert(N <= size() && "Invalid shrinkTo request!"); 125 MetadataPtrs.resize(N); 126 } 127 128 Metadata *getValueFwdRef(unsigned Idx); 129 void assignValue(Metadata *MD, unsigned Idx); 130 void tryToResolveCycles(); 131 }; 132 133 class BitcodeReader : public GVMaterializer { 134 LLVMContext &Context; 135 Module *TheModule = nullptr; 136 std::unique_ptr<MemoryBuffer> Buffer; 137 std::unique_ptr<BitstreamReader> StreamFile; 138 BitstreamCursor Stream; 139 // Next offset to start scanning for lazy parsing of function bodies. 140 uint64_t NextUnreadBit = 0; 141 // Last function offset found in the VST. 142 uint64_t LastFunctionBlockBit = 0; 143 bool SeenValueSymbolTable = false; 144 uint64_t VSTOffset = 0; 145 // Contains an arbitrary and optional string identifying the bitcode producer 146 std::string ProducerIdentification; 147 // Number of module level metadata records specified by the 148 // MODULE_CODE_METADATA_VALUES record. 149 unsigned NumModuleMDs = 0; 150 // Support older bitcode without the MODULE_CODE_METADATA_VALUES record. 151 bool SeenModuleValuesRecord = false; 152 153 std::vector<Type*> TypeList; 154 BitcodeReaderValueList ValueList; 155 BitcodeReaderMetadataList MetadataList; 156 std::vector<Comdat *> ComdatList; 157 SmallVector<Instruction *, 64> InstructionList; 158 159 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 160 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits; 161 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 162 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 163 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 164 165 SmallVector<Instruction*, 64> InstsWithTBAATag; 166 167 /// The set of attributes by index. Index zero in the file is for null, and 168 /// is thus not represented here. As such all indices are off by one. 169 std::vector<AttributeSet> MAttributes; 170 171 /// The set of attribute groups. 172 std::map<unsigned, AttributeSet> MAttributeGroups; 173 174 /// While parsing a function body, this is a list of the basic blocks for the 175 /// function. 176 std::vector<BasicBlock*> FunctionBBs; 177 178 // When reading the module header, this list is populated with functions that 179 // have bodies later in the file. 180 std::vector<Function*> FunctionsWithBodies; 181 182 // When intrinsic functions are encountered which require upgrading they are 183 // stored here with their replacement function. 184 typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap; 185 UpgradedIntrinsicMap UpgradedIntrinsics; 186 187 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 188 DenseMap<unsigned, unsigned> MDKindMap; 189 190 // Several operations happen after the module header has been read, but 191 // before function bodies are processed. This keeps track of whether 192 // we've done this yet. 193 bool SeenFirstFunctionBody = false; 194 195 /// When function bodies are initially scanned, this map contains info about 196 /// where to find deferred function body in the stream. 197 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 198 199 /// When Metadata block is initially scanned when parsing the module, we may 200 /// choose to defer parsing of the metadata. This vector contains info about 201 /// which Metadata blocks are deferred. 202 std::vector<uint64_t> DeferredMetadataInfo; 203 204 /// These are basic blocks forward-referenced by block addresses. They are 205 /// inserted lazily into functions when they're loaded. The basic block ID is 206 /// its index into the vector. 207 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 208 std::deque<Function *> BasicBlockFwdRefQueue; 209 210 /// Indicates that we are using a new encoding for instruction operands where 211 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 212 /// instruction number, for a more compact encoding. Some instruction 213 /// operands are not relative to the instruction ID: basic block numbers, and 214 /// types. Once the old style function blocks have been phased out, we would 215 /// not need this flag. 216 bool UseRelativeIDs = false; 217 218 /// True if all functions will be materialized, negating the need to process 219 /// (e.g.) blockaddress forward references. 220 bool WillMaterializeAllForwardRefs = false; 221 222 /// True if any Metadata block has been materialized. 223 bool IsMetadataMaterialized = false; 224 225 bool StripDebugInfo = false; 226 227 /// Functions that need to be matched with subprograms when upgrading old 228 /// metadata. 229 SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs; 230 231 std::vector<std::string> BundleTags; 232 233 public: 234 std::error_code error(BitcodeError E, const Twine &Message); 235 std::error_code error(BitcodeError E); 236 std::error_code error(const Twine &Message); 237 238 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context); 239 BitcodeReader(LLVMContext &Context); 240 ~BitcodeReader() override { freeState(); } 241 242 std::error_code materializeForwardReferencedFunctions(); 243 244 void freeState(); 245 246 void releaseBuffer(); 247 248 std::error_code materialize(GlobalValue *GV) override; 249 std::error_code materializeModule() override; 250 std::vector<StructType *> getIdentifiedStructTypes() const override; 251 252 /// \brief Main interface to parsing a bitcode buffer. 253 /// \returns true if an error occurred. 254 std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 255 Module *M, 256 bool ShouldLazyLoadMetadata = false); 257 258 /// \brief Cheap mechanism to just extract module triple 259 /// \returns true if an error occurred. 260 ErrorOr<std::string> parseTriple(); 261 262 /// Cheap mechanism to just extract the identification block out of bitcode. 263 ErrorOr<std::string> parseIdentificationBlock(); 264 265 static uint64_t decodeSignRotatedValue(uint64_t V); 266 267 /// Materialize any deferred Metadata block. 268 std::error_code materializeMetadata() override; 269 270 void setStripDebugInfo() override; 271 272 /// Save the mapping between the metadata values and the corresponding 273 /// value id that were recorded in the MetadataList during parsing. If 274 /// OnlyTempMD is true, then only record those entries that are still 275 /// temporary metadata. This interface is used when metadata linking is 276 /// performed as a postpass, such as during function importing. 277 void saveMetadataList(DenseMap<const Metadata *, unsigned> &MetadataToIDs, 278 bool OnlyTempMD) override; 279 280 private: 281 /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the 282 // ProducerIdentification data member, and do some basic enforcement on the 283 // "epoch" encoded in the bitcode. 284 std::error_code parseBitcodeVersion(); 285 286 std::vector<StructType *> IdentifiedStructTypes; 287 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 288 StructType *createIdentifiedStructType(LLVMContext &Context); 289 290 Type *getTypeByID(unsigned ID); 291 Value *getFnValueByID(unsigned ID, Type *Ty) { 292 if (Ty && Ty->isMetadataTy()) 293 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 294 return ValueList.getValueFwdRef(ID, Ty); 295 } 296 Metadata *getFnMetadataByID(unsigned ID) { 297 return MetadataList.getValueFwdRef(ID); 298 } 299 BasicBlock *getBasicBlock(unsigned ID) const { 300 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 301 return FunctionBBs[ID]; 302 } 303 AttributeSet getAttributes(unsigned i) const { 304 if (i-1 < MAttributes.size()) 305 return MAttributes[i-1]; 306 return AttributeSet(); 307 } 308 309 /// Read a value/type pair out of the specified record from slot 'Slot'. 310 /// Increment Slot past the number of slots used in the record. Return true on 311 /// failure. 312 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 313 unsigned InstNum, Value *&ResVal) { 314 if (Slot == Record.size()) return true; 315 unsigned ValNo = (unsigned)Record[Slot++]; 316 // Adjust the ValNo, if it was encoded relative to the InstNum. 317 if (UseRelativeIDs) 318 ValNo = InstNum - ValNo; 319 if (ValNo < InstNum) { 320 // If this is not a forward reference, just return the value we already 321 // have. 322 ResVal = getFnValueByID(ValNo, nullptr); 323 return ResVal == nullptr; 324 } 325 if (Slot == Record.size()) 326 return true; 327 328 unsigned TypeNo = (unsigned)Record[Slot++]; 329 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 330 return ResVal == nullptr; 331 } 332 333 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 334 /// past the number of slots used by the value in the record. Return true if 335 /// there is an error. 336 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 337 unsigned InstNum, Type *Ty, Value *&ResVal) { 338 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 339 return true; 340 // All values currently take a single record slot. 341 ++Slot; 342 return false; 343 } 344 345 /// Like popValue, but does not increment the Slot number. 346 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 347 unsigned InstNum, Type *Ty, Value *&ResVal) { 348 ResVal = getValue(Record, Slot, InstNum, Ty); 349 return ResVal == nullptr; 350 } 351 352 /// Version of getValue that returns ResVal directly, or 0 if there is an 353 /// error. 354 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 355 unsigned InstNum, Type *Ty) { 356 if (Slot == Record.size()) return nullptr; 357 unsigned ValNo = (unsigned)Record[Slot]; 358 // Adjust the ValNo, if it was encoded relative to the InstNum. 359 if (UseRelativeIDs) 360 ValNo = InstNum - ValNo; 361 return getFnValueByID(ValNo, Ty); 362 } 363 364 /// Like getValue, but decodes signed VBRs. 365 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 366 unsigned InstNum, Type *Ty) { 367 if (Slot == Record.size()) return nullptr; 368 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 369 // Adjust the ValNo, if it was encoded relative to the InstNum. 370 if (UseRelativeIDs) 371 ValNo = InstNum - ValNo; 372 return getFnValueByID(ValNo, Ty); 373 } 374 375 /// Converts alignment exponent (i.e. power of two (or zero)) to the 376 /// corresponding alignment to use. If alignment is too large, returns 377 /// a corresponding error code. 378 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 379 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 380 std::error_code parseModule(uint64_t ResumeBit, 381 bool ShouldLazyLoadMetadata = false); 382 std::error_code parseAttributeBlock(); 383 std::error_code parseAttributeGroupBlock(); 384 std::error_code parseTypeTable(); 385 std::error_code parseTypeTableBody(); 386 std::error_code parseOperandBundleTags(); 387 388 ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 389 unsigned NameIndex, Triple &TT); 390 std::error_code parseValueSymbolTable(uint64_t Offset = 0); 391 std::error_code parseConstants(); 392 std::error_code rememberAndSkipFunctionBodies(); 393 std::error_code rememberAndSkipFunctionBody(); 394 /// Save the positions of the Metadata blocks and skip parsing the blocks. 395 std::error_code rememberAndSkipMetadata(); 396 std::error_code parseFunctionBody(Function *F); 397 std::error_code globalCleanup(); 398 std::error_code resolveGlobalAndAliasInits(); 399 std::error_code parseMetadata(bool ModuleLevel = false); 400 std::error_code parseMetadataKinds(); 401 std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record); 402 std::error_code parseMetadataAttachment(Function &F); 403 ErrorOr<std::string> parseModuleTriple(); 404 std::error_code parseUseLists(); 405 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 406 std::error_code initStreamFromBuffer(); 407 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 408 std::error_code findFunctionInStream( 409 Function *F, 410 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 411 }; 412 413 /// Class to manage reading and parsing function summary index bitcode 414 /// files/sections. 415 class FunctionIndexBitcodeReader { 416 DiagnosticHandlerFunction DiagnosticHandler; 417 418 /// Eventually points to the function index built during parsing. 419 FunctionInfoIndex *TheIndex = nullptr; 420 421 std::unique_ptr<MemoryBuffer> Buffer; 422 std::unique_ptr<BitstreamReader> StreamFile; 423 BitstreamCursor Stream; 424 425 /// \brief Used to indicate whether we are doing lazy parsing of summary data. 426 /// 427 /// If false, the summary section is fully parsed into the index during 428 /// the initial parse. Otherwise, if true, the caller is expected to 429 /// invoke \a readFunctionSummary for each summary needed, and the summary 430 /// section is thus parsed lazily. 431 bool IsLazy = false; 432 433 /// Used to indicate whether caller only wants to check for the presence 434 /// of the function summary bitcode section. All blocks are skipped, 435 /// but the SeenFuncSummary boolean is set. 436 bool CheckFuncSummaryPresenceOnly = false; 437 438 /// Indicates whether we have encountered a function summary section 439 /// yet during parsing, used when checking if file contains function 440 /// summary section. 441 bool SeenFuncSummary = false; 442 443 /// \brief Map populated during function summary section parsing, and 444 /// consumed during ValueSymbolTable parsing. 445 /// 446 /// Used to correlate summary records with VST entries. For the per-module 447 /// index this maps the ValueID to the parsed function summary, and 448 /// for the combined index this maps the summary record's bitcode 449 /// offset to the function summary (since in the combined index the 450 /// VST records do not hold value IDs but rather hold the function 451 /// summary record offset). 452 DenseMap<uint64_t, std::unique_ptr<FunctionSummary>> SummaryMap; 453 454 /// Map populated during module path string table parsing, from the 455 /// module ID to a string reference owned by the index's module 456 /// path string table, used to correlate with combined index function 457 /// summary records. 458 DenseMap<uint64_t, StringRef> ModuleIdMap; 459 460 public: 461 std::error_code error(BitcodeError E, const Twine &Message); 462 std::error_code error(BitcodeError E); 463 std::error_code error(const Twine &Message); 464 465 FunctionIndexBitcodeReader(MemoryBuffer *Buffer, 466 DiagnosticHandlerFunction DiagnosticHandler, 467 bool IsLazy = false, 468 bool CheckFuncSummaryPresenceOnly = false); 469 FunctionIndexBitcodeReader(DiagnosticHandlerFunction DiagnosticHandler, 470 bool IsLazy = false, 471 bool CheckFuncSummaryPresenceOnly = false); 472 ~FunctionIndexBitcodeReader() { freeState(); } 473 474 void freeState(); 475 476 void releaseBuffer(); 477 478 /// Check if the parser has encountered a function summary section. 479 bool foundFuncSummary() { return SeenFuncSummary; } 480 481 /// \brief Main interface to parsing a bitcode buffer. 482 /// \returns true if an error occurred. 483 std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer, 484 FunctionInfoIndex *I); 485 486 /// \brief Interface for parsing a function summary lazily. 487 std::error_code parseFunctionSummary(std::unique_ptr<DataStreamer> Streamer, 488 FunctionInfoIndex *I, 489 size_t FunctionSummaryOffset); 490 491 private: 492 std::error_code parseModule(); 493 std::error_code parseValueSymbolTable(); 494 std::error_code parseEntireSummary(); 495 std::error_code parseModuleStringTable(); 496 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 497 std::error_code initStreamFromBuffer(); 498 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 499 }; 500 } // namespace 501 502 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 503 DiagnosticSeverity Severity, 504 const Twine &Msg) 505 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 506 507 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 508 509 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 510 std::error_code EC, const Twine &Message) { 511 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 512 DiagnosticHandler(DI); 513 return EC; 514 } 515 516 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 517 std::error_code EC) { 518 return error(DiagnosticHandler, EC, EC.message()); 519 } 520 521 static std::error_code error(LLVMContext &Context, std::error_code EC, 522 const Twine &Message) { 523 return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC, 524 Message); 525 } 526 527 static std::error_code error(LLVMContext &Context, std::error_code EC) { 528 return error(Context, EC, EC.message()); 529 } 530 531 static std::error_code error(LLVMContext &Context, const Twine &Message) { 532 return error(Context, make_error_code(BitcodeError::CorruptedBitcode), 533 Message); 534 } 535 536 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) { 537 if (!ProducerIdentification.empty()) { 538 return ::error(Context, make_error_code(E), 539 Message + " (Producer: '" + ProducerIdentification + 540 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 541 } 542 return ::error(Context, make_error_code(E), Message); 543 } 544 545 std::error_code BitcodeReader::error(const Twine &Message) { 546 if (!ProducerIdentification.empty()) { 547 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 548 Message + " (Producer: '" + ProducerIdentification + 549 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 550 } 551 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 552 Message); 553 } 554 555 std::error_code BitcodeReader::error(BitcodeError E) { 556 return ::error(Context, make_error_code(E)); 557 } 558 559 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context) 560 : Context(Context), Buffer(Buffer), ValueList(Context), 561 MetadataList(Context) {} 562 563 BitcodeReader::BitcodeReader(LLVMContext &Context) 564 : Context(Context), Buffer(nullptr), ValueList(Context), 565 MetadataList(Context) {} 566 567 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 568 if (WillMaterializeAllForwardRefs) 569 return std::error_code(); 570 571 // Prevent recursion. 572 WillMaterializeAllForwardRefs = true; 573 574 while (!BasicBlockFwdRefQueue.empty()) { 575 Function *F = BasicBlockFwdRefQueue.front(); 576 BasicBlockFwdRefQueue.pop_front(); 577 assert(F && "Expected valid function"); 578 if (!BasicBlockFwdRefs.count(F)) 579 // Already materialized. 580 continue; 581 582 // Check for a function that isn't materializable to prevent an infinite 583 // loop. When parsing a blockaddress stored in a global variable, there 584 // isn't a trivial way to check if a function will have a body without a 585 // linear search through FunctionsWithBodies, so just check it here. 586 if (!F->isMaterializable()) 587 return error("Never resolved function from blockaddress"); 588 589 // Try to materialize F. 590 if (std::error_code EC = materialize(F)) 591 return EC; 592 } 593 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 594 595 // Reset state. 596 WillMaterializeAllForwardRefs = false; 597 return std::error_code(); 598 } 599 600 void BitcodeReader::freeState() { 601 Buffer = nullptr; 602 std::vector<Type*>().swap(TypeList); 603 ValueList.clear(); 604 MetadataList.clear(); 605 std::vector<Comdat *>().swap(ComdatList); 606 607 std::vector<AttributeSet>().swap(MAttributes); 608 std::vector<BasicBlock*>().swap(FunctionBBs); 609 std::vector<Function*>().swap(FunctionsWithBodies); 610 DeferredFunctionInfo.clear(); 611 DeferredMetadataInfo.clear(); 612 MDKindMap.clear(); 613 614 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 615 BasicBlockFwdRefQueue.clear(); 616 } 617 618 //===----------------------------------------------------------------------===// 619 // Helper functions to implement forward reference resolution, etc. 620 //===----------------------------------------------------------------------===// 621 622 /// Convert a string from a record into an std::string, return true on failure. 623 template <typename StrTy> 624 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 625 StrTy &Result) { 626 if (Idx > Record.size()) 627 return true; 628 629 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 630 Result += (char)Record[i]; 631 return false; 632 } 633 634 static bool hasImplicitComdat(size_t Val) { 635 switch (Val) { 636 default: 637 return false; 638 case 1: // Old WeakAnyLinkage 639 case 4: // Old LinkOnceAnyLinkage 640 case 10: // Old WeakODRLinkage 641 case 11: // Old LinkOnceODRLinkage 642 return true; 643 } 644 } 645 646 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 647 switch (Val) { 648 default: // Map unknown/new linkages to external 649 case 0: 650 return GlobalValue::ExternalLinkage; 651 case 2: 652 return GlobalValue::AppendingLinkage; 653 case 3: 654 return GlobalValue::InternalLinkage; 655 case 5: 656 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 657 case 6: 658 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 659 case 7: 660 return GlobalValue::ExternalWeakLinkage; 661 case 8: 662 return GlobalValue::CommonLinkage; 663 case 9: 664 return GlobalValue::PrivateLinkage; 665 case 12: 666 return GlobalValue::AvailableExternallyLinkage; 667 case 13: 668 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 669 case 14: 670 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 671 case 15: 672 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 673 case 1: // Old value with implicit comdat. 674 case 16: 675 return GlobalValue::WeakAnyLinkage; 676 case 10: // Old value with implicit comdat. 677 case 17: 678 return GlobalValue::WeakODRLinkage; 679 case 4: // Old value with implicit comdat. 680 case 18: 681 return GlobalValue::LinkOnceAnyLinkage; 682 case 11: // Old value with implicit comdat. 683 case 19: 684 return GlobalValue::LinkOnceODRLinkage; 685 } 686 } 687 688 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 689 switch (Val) { 690 default: // Map unknown visibilities to default. 691 case 0: return GlobalValue::DefaultVisibility; 692 case 1: return GlobalValue::HiddenVisibility; 693 case 2: return GlobalValue::ProtectedVisibility; 694 } 695 } 696 697 static GlobalValue::DLLStorageClassTypes 698 getDecodedDLLStorageClass(unsigned Val) { 699 switch (Val) { 700 default: // Map unknown values to default. 701 case 0: return GlobalValue::DefaultStorageClass; 702 case 1: return GlobalValue::DLLImportStorageClass; 703 case 2: return GlobalValue::DLLExportStorageClass; 704 } 705 } 706 707 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 708 switch (Val) { 709 case 0: return GlobalVariable::NotThreadLocal; 710 default: // Map unknown non-zero value to general dynamic. 711 case 1: return GlobalVariable::GeneralDynamicTLSModel; 712 case 2: return GlobalVariable::LocalDynamicTLSModel; 713 case 3: return GlobalVariable::InitialExecTLSModel; 714 case 4: return GlobalVariable::LocalExecTLSModel; 715 } 716 } 717 718 static int getDecodedCastOpcode(unsigned Val) { 719 switch (Val) { 720 default: return -1; 721 case bitc::CAST_TRUNC : return Instruction::Trunc; 722 case bitc::CAST_ZEXT : return Instruction::ZExt; 723 case bitc::CAST_SEXT : return Instruction::SExt; 724 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 725 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 726 case bitc::CAST_UITOFP : return Instruction::UIToFP; 727 case bitc::CAST_SITOFP : return Instruction::SIToFP; 728 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 729 case bitc::CAST_FPEXT : return Instruction::FPExt; 730 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 731 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 732 case bitc::CAST_BITCAST : return Instruction::BitCast; 733 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 734 } 735 } 736 737 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 738 bool IsFP = Ty->isFPOrFPVectorTy(); 739 // BinOps are only valid for int/fp or vector of int/fp types 740 if (!IsFP && !Ty->isIntOrIntVectorTy()) 741 return -1; 742 743 switch (Val) { 744 default: 745 return -1; 746 case bitc::BINOP_ADD: 747 return IsFP ? Instruction::FAdd : Instruction::Add; 748 case bitc::BINOP_SUB: 749 return IsFP ? Instruction::FSub : Instruction::Sub; 750 case bitc::BINOP_MUL: 751 return IsFP ? Instruction::FMul : Instruction::Mul; 752 case bitc::BINOP_UDIV: 753 return IsFP ? -1 : Instruction::UDiv; 754 case bitc::BINOP_SDIV: 755 return IsFP ? Instruction::FDiv : Instruction::SDiv; 756 case bitc::BINOP_UREM: 757 return IsFP ? -1 : Instruction::URem; 758 case bitc::BINOP_SREM: 759 return IsFP ? Instruction::FRem : Instruction::SRem; 760 case bitc::BINOP_SHL: 761 return IsFP ? -1 : Instruction::Shl; 762 case bitc::BINOP_LSHR: 763 return IsFP ? -1 : Instruction::LShr; 764 case bitc::BINOP_ASHR: 765 return IsFP ? -1 : Instruction::AShr; 766 case bitc::BINOP_AND: 767 return IsFP ? -1 : Instruction::And; 768 case bitc::BINOP_OR: 769 return IsFP ? -1 : Instruction::Or; 770 case bitc::BINOP_XOR: 771 return IsFP ? -1 : Instruction::Xor; 772 } 773 } 774 775 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 776 switch (Val) { 777 default: return AtomicRMWInst::BAD_BINOP; 778 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 779 case bitc::RMW_ADD: return AtomicRMWInst::Add; 780 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 781 case bitc::RMW_AND: return AtomicRMWInst::And; 782 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 783 case bitc::RMW_OR: return AtomicRMWInst::Or; 784 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 785 case bitc::RMW_MAX: return AtomicRMWInst::Max; 786 case bitc::RMW_MIN: return AtomicRMWInst::Min; 787 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 788 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 789 } 790 } 791 792 static AtomicOrdering getDecodedOrdering(unsigned Val) { 793 switch (Val) { 794 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 795 case bitc::ORDERING_UNORDERED: return Unordered; 796 case bitc::ORDERING_MONOTONIC: return Monotonic; 797 case bitc::ORDERING_ACQUIRE: return Acquire; 798 case bitc::ORDERING_RELEASE: return Release; 799 case bitc::ORDERING_ACQREL: return AcquireRelease; 800 default: // Map unknown orderings to sequentially-consistent. 801 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 802 } 803 } 804 805 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 806 switch (Val) { 807 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 808 default: // Map unknown scopes to cross-thread. 809 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 810 } 811 } 812 813 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 814 switch (Val) { 815 default: // Map unknown selection kinds to any. 816 case bitc::COMDAT_SELECTION_KIND_ANY: 817 return Comdat::Any; 818 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 819 return Comdat::ExactMatch; 820 case bitc::COMDAT_SELECTION_KIND_LARGEST: 821 return Comdat::Largest; 822 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 823 return Comdat::NoDuplicates; 824 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 825 return Comdat::SameSize; 826 } 827 } 828 829 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 830 FastMathFlags FMF; 831 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 832 FMF.setUnsafeAlgebra(); 833 if (0 != (Val & FastMathFlags::NoNaNs)) 834 FMF.setNoNaNs(); 835 if (0 != (Val & FastMathFlags::NoInfs)) 836 FMF.setNoInfs(); 837 if (0 != (Val & FastMathFlags::NoSignedZeros)) 838 FMF.setNoSignedZeros(); 839 if (0 != (Val & FastMathFlags::AllowReciprocal)) 840 FMF.setAllowReciprocal(); 841 return FMF; 842 } 843 844 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 845 switch (Val) { 846 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 847 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 848 } 849 } 850 851 namespace llvm { 852 namespace { 853 /// \brief A class for maintaining the slot number definition 854 /// as a placeholder for the actual definition for forward constants defs. 855 class ConstantPlaceHolder : public ConstantExpr { 856 void operator=(const ConstantPlaceHolder &) = delete; 857 858 public: 859 // allocate space for exactly one operand 860 void *operator new(size_t s) { return User::operator new(s, 1); } 861 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 862 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 863 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 864 } 865 866 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 867 static bool classof(const Value *V) { 868 return isa<ConstantExpr>(V) && 869 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 870 } 871 872 /// Provide fast operand accessors 873 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 874 }; 875 } 876 877 // FIXME: can we inherit this from ConstantExpr? 878 template <> 879 struct OperandTraits<ConstantPlaceHolder> : 880 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 881 }; 882 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 883 } 884 885 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 886 if (Idx == size()) { 887 push_back(V); 888 return; 889 } 890 891 if (Idx >= size()) 892 resize(Idx+1); 893 894 WeakVH &OldV = ValuePtrs[Idx]; 895 if (!OldV) { 896 OldV = V; 897 return; 898 } 899 900 // Handle constants and non-constants (e.g. instrs) differently for 901 // efficiency. 902 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 903 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 904 OldV = V; 905 } else { 906 // If there was a forward reference to this value, replace it. 907 Value *PrevVal = OldV; 908 OldV->replaceAllUsesWith(V); 909 delete PrevVal; 910 } 911 912 return; 913 } 914 915 916 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 917 Type *Ty) { 918 if (Idx >= size()) 919 resize(Idx + 1); 920 921 if (Value *V = ValuePtrs[Idx]) { 922 if (Ty != V->getType()) 923 report_fatal_error("Type mismatch in constant table!"); 924 return cast<Constant>(V); 925 } 926 927 // Create and return a placeholder, which will later be RAUW'd. 928 Constant *C = new ConstantPlaceHolder(Ty, Context); 929 ValuePtrs[Idx] = C; 930 return C; 931 } 932 933 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 934 // Bail out for a clearly invalid value. This would make us call resize(0) 935 if (Idx == UINT_MAX) 936 return nullptr; 937 938 if (Idx >= size()) 939 resize(Idx + 1); 940 941 if (Value *V = ValuePtrs[Idx]) { 942 // If the types don't match, it's invalid. 943 if (Ty && Ty != V->getType()) 944 return nullptr; 945 return V; 946 } 947 948 // No type specified, must be invalid reference. 949 if (!Ty) return nullptr; 950 951 // Create and return a placeholder, which will later be RAUW'd. 952 Value *V = new Argument(Ty); 953 ValuePtrs[Idx] = V; 954 return V; 955 } 956 957 /// Once all constants are read, this method bulk resolves any forward 958 /// references. The idea behind this is that we sometimes get constants (such 959 /// as large arrays) which reference *many* forward ref constants. Replacing 960 /// each of these causes a lot of thrashing when building/reuniquing the 961 /// constant. Instead of doing this, we look at all the uses and rewrite all 962 /// the place holders at once for any constant that uses a placeholder. 963 void BitcodeReaderValueList::resolveConstantForwardRefs() { 964 // Sort the values by-pointer so that they are efficient to look up with a 965 // binary search. 966 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 967 968 SmallVector<Constant*, 64> NewOps; 969 970 while (!ResolveConstants.empty()) { 971 Value *RealVal = operator[](ResolveConstants.back().second); 972 Constant *Placeholder = ResolveConstants.back().first; 973 ResolveConstants.pop_back(); 974 975 // Loop over all users of the placeholder, updating them to reference the 976 // new value. If they reference more than one placeholder, update them all 977 // at once. 978 while (!Placeholder->use_empty()) { 979 auto UI = Placeholder->user_begin(); 980 User *U = *UI; 981 982 // If the using object isn't uniqued, just update the operands. This 983 // handles instructions and initializers for global variables. 984 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 985 UI.getUse().set(RealVal); 986 continue; 987 } 988 989 // Otherwise, we have a constant that uses the placeholder. Replace that 990 // constant with a new constant that has *all* placeholder uses updated. 991 Constant *UserC = cast<Constant>(U); 992 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 993 I != E; ++I) { 994 Value *NewOp; 995 if (!isa<ConstantPlaceHolder>(*I)) { 996 // Not a placeholder reference. 997 NewOp = *I; 998 } else if (*I == Placeholder) { 999 // Common case is that it just references this one placeholder. 1000 NewOp = RealVal; 1001 } else { 1002 // Otherwise, look up the placeholder in ResolveConstants. 1003 ResolveConstantsTy::iterator It = 1004 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 1005 std::pair<Constant*, unsigned>(cast<Constant>(*I), 1006 0)); 1007 assert(It != ResolveConstants.end() && It->first == *I); 1008 NewOp = operator[](It->second); 1009 } 1010 1011 NewOps.push_back(cast<Constant>(NewOp)); 1012 } 1013 1014 // Make the new constant. 1015 Constant *NewC; 1016 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 1017 NewC = ConstantArray::get(UserCA->getType(), NewOps); 1018 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 1019 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 1020 } else if (isa<ConstantVector>(UserC)) { 1021 NewC = ConstantVector::get(NewOps); 1022 } else { 1023 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 1024 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 1025 } 1026 1027 UserC->replaceAllUsesWith(NewC); 1028 UserC->destroyConstant(); 1029 NewOps.clear(); 1030 } 1031 1032 // Update all ValueHandles, they should be the only users at this point. 1033 Placeholder->replaceAllUsesWith(RealVal); 1034 delete Placeholder; 1035 } 1036 } 1037 1038 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) { 1039 if (Idx == size()) { 1040 push_back(MD); 1041 return; 1042 } 1043 1044 if (Idx >= size()) 1045 resize(Idx+1); 1046 1047 TrackingMDRef &OldMD = MetadataPtrs[Idx]; 1048 if (!OldMD) { 1049 OldMD.reset(MD); 1050 return; 1051 } 1052 1053 // If there was a forward reference to this value, replace it. 1054 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 1055 PrevMD->replaceAllUsesWith(MD); 1056 --NumFwdRefs; 1057 } 1058 1059 Metadata *BitcodeReaderMetadataList::getValueFwdRef(unsigned Idx) { 1060 if (Idx >= size()) 1061 resize(Idx + 1); 1062 1063 if (Metadata *MD = MetadataPtrs[Idx]) 1064 return MD; 1065 1066 // Track forward refs to be resolved later. 1067 if (AnyFwdRefs) { 1068 MinFwdRef = std::min(MinFwdRef, Idx); 1069 MaxFwdRef = std::max(MaxFwdRef, Idx); 1070 } else { 1071 AnyFwdRefs = true; 1072 MinFwdRef = MaxFwdRef = Idx; 1073 } 1074 ++NumFwdRefs; 1075 1076 // Create and return a placeholder, which will later be RAUW'd. 1077 Metadata *MD = MDNode::getTemporary(Context, None).release(); 1078 MetadataPtrs[Idx].reset(MD); 1079 return MD; 1080 } 1081 1082 void BitcodeReaderMetadataList::tryToResolveCycles() { 1083 if (!AnyFwdRefs) 1084 // Nothing to do. 1085 return; 1086 1087 if (NumFwdRefs) 1088 // Still forward references... can't resolve cycles. 1089 return; 1090 1091 // Resolve any cycles. 1092 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 1093 auto &MD = MetadataPtrs[I]; 1094 auto *N = dyn_cast_or_null<MDNode>(MD); 1095 if (!N) 1096 continue; 1097 1098 assert(!N->isTemporary() && "Unexpected forward reference"); 1099 N->resolveCycles(); 1100 } 1101 1102 // Make sure we return early again until there's another forward ref. 1103 AnyFwdRefs = false; 1104 } 1105 1106 Type *BitcodeReader::getTypeByID(unsigned ID) { 1107 // The type table size is always specified correctly. 1108 if (ID >= TypeList.size()) 1109 return nullptr; 1110 1111 if (Type *Ty = TypeList[ID]) 1112 return Ty; 1113 1114 // If we have a forward reference, the only possible case is when it is to a 1115 // named struct. Just create a placeholder for now. 1116 return TypeList[ID] = createIdentifiedStructType(Context); 1117 } 1118 1119 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1120 StringRef Name) { 1121 auto *Ret = StructType::create(Context, Name); 1122 IdentifiedStructTypes.push_back(Ret); 1123 return Ret; 1124 } 1125 1126 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1127 auto *Ret = StructType::create(Context); 1128 IdentifiedStructTypes.push_back(Ret); 1129 return Ret; 1130 } 1131 1132 1133 //===----------------------------------------------------------------------===// 1134 // Functions for parsing blocks from the bitcode file 1135 //===----------------------------------------------------------------------===// 1136 1137 1138 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1139 /// been decoded from the given integer. This function must stay in sync with 1140 /// 'encodeLLVMAttributesForBitcode'. 1141 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1142 uint64_t EncodedAttrs) { 1143 // FIXME: Remove in 4.0. 1144 1145 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1146 // the bits above 31 down by 11 bits. 1147 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1148 assert((!Alignment || isPowerOf2_32(Alignment)) && 1149 "Alignment must be a power of two."); 1150 1151 if (Alignment) 1152 B.addAlignmentAttr(Alignment); 1153 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1154 (EncodedAttrs & 0xffff)); 1155 } 1156 1157 std::error_code BitcodeReader::parseAttributeBlock() { 1158 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1159 return error("Invalid record"); 1160 1161 if (!MAttributes.empty()) 1162 return error("Invalid multiple blocks"); 1163 1164 SmallVector<uint64_t, 64> Record; 1165 1166 SmallVector<AttributeSet, 8> Attrs; 1167 1168 // Read all the records. 1169 while (1) { 1170 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1171 1172 switch (Entry.Kind) { 1173 case BitstreamEntry::SubBlock: // Handled for us already. 1174 case BitstreamEntry::Error: 1175 return error("Malformed block"); 1176 case BitstreamEntry::EndBlock: 1177 return std::error_code(); 1178 case BitstreamEntry::Record: 1179 // The interesting case. 1180 break; 1181 } 1182 1183 // Read a record. 1184 Record.clear(); 1185 switch (Stream.readRecord(Entry.ID, Record)) { 1186 default: // Default behavior: ignore. 1187 break; 1188 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1189 // FIXME: Remove in 4.0. 1190 if (Record.size() & 1) 1191 return error("Invalid record"); 1192 1193 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1194 AttrBuilder B; 1195 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1196 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1197 } 1198 1199 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1200 Attrs.clear(); 1201 break; 1202 } 1203 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1204 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1205 Attrs.push_back(MAttributeGroups[Record[i]]); 1206 1207 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1208 Attrs.clear(); 1209 break; 1210 } 1211 } 1212 } 1213 } 1214 1215 // Returns Attribute::None on unrecognized codes. 1216 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1217 switch (Code) { 1218 default: 1219 return Attribute::None; 1220 case bitc::ATTR_KIND_ALIGNMENT: 1221 return Attribute::Alignment; 1222 case bitc::ATTR_KIND_ALWAYS_INLINE: 1223 return Attribute::AlwaysInline; 1224 case bitc::ATTR_KIND_ARGMEMONLY: 1225 return Attribute::ArgMemOnly; 1226 case bitc::ATTR_KIND_BUILTIN: 1227 return Attribute::Builtin; 1228 case bitc::ATTR_KIND_BY_VAL: 1229 return Attribute::ByVal; 1230 case bitc::ATTR_KIND_IN_ALLOCA: 1231 return Attribute::InAlloca; 1232 case bitc::ATTR_KIND_COLD: 1233 return Attribute::Cold; 1234 case bitc::ATTR_KIND_CONVERGENT: 1235 return Attribute::Convergent; 1236 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1237 return Attribute::InaccessibleMemOnly; 1238 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1239 return Attribute::InaccessibleMemOrArgMemOnly; 1240 case bitc::ATTR_KIND_INLINE_HINT: 1241 return Attribute::InlineHint; 1242 case bitc::ATTR_KIND_IN_REG: 1243 return Attribute::InReg; 1244 case bitc::ATTR_KIND_JUMP_TABLE: 1245 return Attribute::JumpTable; 1246 case bitc::ATTR_KIND_MIN_SIZE: 1247 return Attribute::MinSize; 1248 case bitc::ATTR_KIND_NAKED: 1249 return Attribute::Naked; 1250 case bitc::ATTR_KIND_NEST: 1251 return Attribute::Nest; 1252 case bitc::ATTR_KIND_NO_ALIAS: 1253 return Attribute::NoAlias; 1254 case bitc::ATTR_KIND_NO_BUILTIN: 1255 return Attribute::NoBuiltin; 1256 case bitc::ATTR_KIND_NO_CAPTURE: 1257 return Attribute::NoCapture; 1258 case bitc::ATTR_KIND_NO_DUPLICATE: 1259 return Attribute::NoDuplicate; 1260 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1261 return Attribute::NoImplicitFloat; 1262 case bitc::ATTR_KIND_NO_INLINE: 1263 return Attribute::NoInline; 1264 case bitc::ATTR_KIND_NO_RECURSE: 1265 return Attribute::NoRecurse; 1266 case bitc::ATTR_KIND_NON_LAZY_BIND: 1267 return Attribute::NonLazyBind; 1268 case bitc::ATTR_KIND_NON_NULL: 1269 return Attribute::NonNull; 1270 case bitc::ATTR_KIND_DEREFERENCEABLE: 1271 return Attribute::Dereferenceable; 1272 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1273 return Attribute::DereferenceableOrNull; 1274 case bitc::ATTR_KIND_NO_RED_ZONE: 1275 return Attribute::NoRedZone; 1276 case bitc::ATTR_KIND_NO_RETURN: 1277 return Attribute::NoReturn; 1278 case bitc::ATTR_KIND_NO_UNWIND: 1279 return Attribute::NoUnwind; 1280 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1281 return Attribute::OptimizeForSize; 1282 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1283 return Attribute::OptimizeNone; 1284 case bitc::ATTR_KIND_READ_NONE: 1285 return Attribute::ReadNone; 1286 case bitc::ATTR_KIND_READ_ONLY: 1287 return Attribute::ReadOnly; 1288 case bitc::ATTR_KIND_RETURNED: 1289 return Attribute::Returned; 1290 case bitc::ATTR_KIND_RETURNS_TWICE: 1291 return Attribute::ReturnsTwice; 1292 case bitc::ATTR_KIND_S_EXT: 1293 return Attribute::SExt; 1294 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1295 return Attribute::StackAlignment; 1296 case bitc::ATTR_KIND_STACK_PROTECT: 1297 return Attribute::StackProtect; 1298 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1299 return Attribute::StackProtectReq; 1300 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1301 return Attribute::StackProtectStrong; 1302 case bitc::ATTR_KIND_SAFESTACK: 1303 return Attribute::SafeStack; 1304 case bitc::ATTR_KIND_STRUCT_RET: 1305 return Attribute::StructRet; 1306 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1307 return Attribute::SanitizeAddress; 1308 case bitc::ATTR_KIND_SANITIZE_THREAD: 1309 return Attribute::SanitizeThread; 1310 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1311 return Attribute::SanitizeMemory; 1312 case bitc::ATTR_KIND_UW_TABLE: 1313 return Attribute::UWTable; 1314 case bitc::ATTR_KIND_Z_EXT: 1315 return Attribute::ZExt; 1316 } 1317 } 1318 1319 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1320 unsigned &Alignment) { 1321 // Note: Alignment in bitcode files is incremented by 1, so that zero 1322 // can be used for default alignment. 1323 if (Exponent > Value::MaxAlignmentExponent + 1) 1324 return error("Invalid alignment value"); 1325 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1326 return std::error_code(); 1327 } 1328 1329 std::error_code BitcodeReader::parseAttrKind(uint64_t Code, 1330 Attribute::AttrKind *Kind) { 1331 *Kind = getAttrFromCode(Code); 1332 if (*Kind == Attribute::None) 1333 return error(BitcodeError::CorruptedBitcode, 1334 "Unknown attribute kind (" + Twine(Code) + ")"); 1335 return std::error_code(); 1336 } 1337 1338 std::error_code BitcodeReader::parseAttributeGroupBlock() { 1339 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1340 return error("Invalid record"); 1341 1342 if (!MAttributeGroups.empty()) 1343 return error("Invalid multiple blocks"); 1344 1345 SmallVector<uint64_t, 64> Record; 1346 1347 // Read all the records. 1348 while (1) { 1349 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1350 1351 switch (Entry.Kind) { 1352 case BitstreamEntry::SubBlock: // Handled for us already. 1353 case BitstreamEntry::Error: 1354 return error("Malformed block"); 1355 case BitstreamEntry::EndBlock: 1356 return std::error_code(); 1357 case BitstreamEntry::Record: 1358 // The interesting case. 1359 break; 1360 } 1361 1362 // Read a record. 1363 Record.clear(); 1364 switch (Stream.readRecord(Entry.ID, Record)) { 1365 default: // Default behavior: ignore. 1366 break; 1367 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1368 if (Record.size() < 3) 1369 return error("Invalid record"); 1370 1371 uint64_t GrpID = Record[0]; 1372 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1373 1374 AttrBuilder B; 1375 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1376 if (Record[i] == 0) { // Enum attribute 1377 Attribute::AttrKind Kind; 1378 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1379 return EC; 1380 1381 B.addAttribute(Kind); 1382 } else if (Record[i] == 1) { // Integer attribute 1383 Attribute::AttrKind Kind; 1384 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1385 return EC; 1386 if (Kind == Attribute::Alignment) 1387 B.addAlignmentAttr(Record[++i]); 1388 else if (Kind == Attribute::StackAlignment) 1389 B.addStackAlignmentAttr(Record[++i]); 1390 else if (Kind == Attribute::Dereferenceable) 1391 B.addDereferenceableAttr(Record[++i]); 1392 else if (Kind == Attribute::DereferenceableOrNull) 1393 B.addDereferenceableOrNullAttr(Record[++i]); 1394 } else { // String attribute 1395 assert((Record[i] == 3 || Record[i] == 4) && 1396 "Invalid attribute group entry"); 1397 bool HasValue = (Record[i++] == 4); 1398 SmallString<64> KindStr; 1399 SmallString<64> ValStr; 1400 1401 while (Record[i] != 0 && i != e) 1402 KindStr += Record[i++]; 1403 assert(Record[i] == 0 && "Kind string not null terminated"); 1404 1405 if (HasValue) { 1406 // Has a value associated with it. 1407 ++i; // Skip the '0' that terminates the "kind" string. 1408 while (Record[i] != 0 && i != e) 1409 ValStr += Record[i++]; 1410 assert(Record[i] == 0 && "Value string not null terminated"); 1411 } 1412 1413 B.addAttribute(KindStr.str(), ValStr.str()); 1414 } 1415 } 1416 1417 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1418 break; 1419 } 1420 } 1421 } 1422 } 1423 1424 std::error_code BitcodeReader::parseTypeTable() { 1425 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1426 return error("Invalid record"); 1427 1428 return parseTypeTableBody(); 1429 } 1430 1431 std::error_code BitcodeReader::parseTypeTableBody() { 1432 if (!TypeList.empty()) 1433 return error("Invalid multiple blocks"); 1434 1435 SmallVector<uint64_t, 64> Record; 1436 unsigned NumRecords = 0; 1437 1438 SmallString<64> TypeName; 1439 1440 // Read all the records for this type table. 1441 while (1) { 1442 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1443 1444 switch (Entry.Kind) { 1445 case BitstreamEntry::SubBlock: // Handled for us already. 1446 case BitstreamEntry::Error: 1447 return error("Malformed block"); 1448 case BitstreamEntry::EndBlock: 1449 if (NumRecords != TypeList.size()) 1450 return error("Malformed block"); 1451 return std::error_code(); 1452 case BitstreamEntry::Record: 1453 // The interesting case. 1454 break; 1455 } 1456 1457 // Read a record. 1458 Record.clear(); 1459 Type *ResultTy = nullptr; 1460 switch (Stream.readRecord(Entry.ID, Record)) { 1461 default: 1462 return error("Invalid value"); 1463 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1464 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1465 // type list. This allows us to reserve space. 1466 if (Record.size() < 1) 1467 return error("Invalid record"); 1468 TypeList.resize(Record[0]); 1469 continue; 1470 case bitc::TYPE_CODE_VOID: // VOID 1471 ResultTy = Type::getVoidTy(Context); 1472 break; 1473 case bitc::TYPE_CODE_HALF: // HALF 1474 ResultTy = Type::getHalfTy(Context); 1475 break; 1476 case bitc::TYPE_CODE_FLOAT: // FLOAT 1477 ResultTy = Type::getFloatTy(Context); 1478 break; 1479 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1480 ResultTy = Type::getDoubleTy(Context); 1481 break; 1482 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1483 ResultTy = Type::getX86_FP80Ty(Context); 1484 break; 1485 case bitc::TYPE_CODE_FP128: // FP128 1486 ResultTy = Type::getFP128Ty(Context); 1487 break; 1488 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1489 ResultTy = Type::getPPC_FP128Ty(Context); 1490 break; 1491 case bitc::TYPE_CODE_LABEL: // LABEL 1492 ResultTy = Type::getLabelTy(Context); 1493 break; 1494 case bitc::TYPE_CODE_METADATA: // METADATA 1495 ResultTy = Type::getMetadataTy(Context); 1496 break; 1497 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1498 ResultTy = Type::getX86_MMXTy(Context); 1499 break; 1500 case bitc::TYPE_CODE_TOKEN: // TOKEN 1501 ResultTy = Type::getTokenTy(Context); 1502 break; 1503 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1504 if (Record.size() < 1) 1505 return error("Invalid record"); 1506 1507 uint64_t NumBits = Record[0]; 1508 if (NumBits < IntegerType::MIN_INT_BITS || 1509 NumBits > IntegerType::MAX_INT_BITS) 1510 return error("Bitwidth for integer type out of range"); 1511 ResultTy = IntegerType::get(Context, NumBits); 1512 break; 1513 } 1514 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1515 // [pointee type, address space] 1516 if (Record.size() < 1) 1517 return error("Invalid record"); 1518 unsigned AddressSpace = 0; 1519 if (Record.size() == 2) 1520 AddressSpace = Record[1]; 1521 ResultTy = getTypeByID(Record[0]); 1522 if (!ResultTy || 1523 !PointerType::isValidElementType(ResultTy)) 1524 return error("Invalid type"); 1525 ResultTy = PointerType::get(ResultTy, AddressSpace); 1526 break; 1527 } 1528 case bitc::TYPE_CODE_FUNCTION_OLD: { 1529 // FIXME: attrid is dead, remove it in LLVM 4.0 1530 // FUNCTION: [vararg, attrid, retty, paramty x N] 1531 if (Record.size() < 3) 1532 return error("Invalid record"); 1533 SmallVector<Type*, 8> ArgTys; 1534 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1535 if (Type *T = getTypeByID(Record[i])) 1536 ArgTys.push_back(T); 1537 else 1538 break; 1539 } 1540 1541 ResultTy = getTypeByID(Record[2]); 1542 if (!ResultTy || ArgTys.size() < Record.size()-3) 1543 return error("Invalid type"); 1544 1545 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1546 break; 1547 } 1548 case bitc::TYPE_CODE_FUNCTION: { 1549 // FUNCTION: [vararg, retty, paramty x N] 1550 if (Record.size() < 2) 1551 return error("Invalid record"); 1552 SmallVector<Type*, 8> ArgTys; 1553 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1554 if (Type *T = getTypeByID(Record[i])) { 1555 if (!FunctionType::isValidArgumentType(T)) 1556 return error("Invalid function argument type"); 1557 ArgTys.push_back(T); 1558 } 1559 else 1560 break; 1561 } 1562 1563 ResultTy = getTypeByID(Record[1]); 1564 if (!ResultTy || ArgTys.size() < Record.size()-2) 1565 return error("Invalid type"); 1566 1567 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1568 break; 1569 } 1570 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1571 if (Record.size() < 1) 1572 return error("Invalid record"); 1573 SmallVector<Type*, 8> EltTys; 1574 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1575 if (Type *T = getTypeByID(Record[i])) 1576 EltTys.push_back(T); 1577 else 1578 break; 1579 } 1580 if (EltTys.size() != Record.size()-1) 1581 return error("Invalid type"); 1582 ResultTy = StructType::get(Context, EltTys, Record[0]); 1583 break; 1584 } 1585 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1586 if (convertToString(Record, 0, TypeName)) 1587 return error("Invalid record"); 1588 continue; 1589 1590 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1591 if (Record.size() < 1) 1592 return error("Invalid record"); 1593 1594 if (NumRecords >= TypeList.size()) 1595 return error("Invalid TYPE table"); 1596 1597 // Check to see if this was forward referenced, if so fill in the temp. 1598 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1599 if (Res) { 1600 Res->setName(TypeName); 1601 TypeList[NumRecords] = nullptr; 1602 } else // Otherwise, create a new struct. 1603 Res = createIdentifiedStructType(Context, TypeName); 1604 TypeName.clear(); 1605 1606 SmallVector<Type*, 8> EltTys; 1607 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1608 if (Type *T = getTypeByID(Record[i])) 1609 EltTys.push_back(T); 1610 else 1611 break; 1612 } 1613 if (EltTys.size() != Record.size()-1) 1614 return error("Invalid record"); 1615 Res->setBody(EltTys, Record[0]); 1616 ResultTy = Res; 1617 break; 1618 } 1619 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1620 if (Record.size() != 1) 1621 return error("Invalid record"); 1622 1623 if (NumRecords >= TypeList.size()) 1624 return error("Invalid TYPE table"); 1625 1626 // Check to see if this was forward referenced, if so fill in the temp. 1627 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1628 if (Res) { 1629 Res->setName(TypeName); 1630 TypeList[NumRecords] = nullptr; 1631 } else // Otherwise, create a new struct with no body. 1632 Res = createIdentifiedStructType(Context, TypeName); 1633 TypeName.clear(); 1634 ResultTy = Res; 1635 break; 1636 } 1637 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1638 if (Record.size() < 2) 1639 return error("Invalid record"); 1640 ResultTy = getTypeByID(Record[1]); 1641 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1642 return error("Invalid type"); 1643 ResultTy = ArrayType::get(ResultTy, Record[0]); 1644 break; 1645 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1646 if (Record.size() < 2) 1647 return error("Invalid record"); 1648 if (Record[0] == 0) 1649 return error("Invalid vector length"); 1650 ResultTy = getTypeByID(Record[1]); 1651 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1652 return error("Invalid type"); 1653 ResultTy = VectorType::get(ResultTy, Record[0]); 1654 break; 1655 } 1656 1657 if (NumRecords >= TypeList.size()) 1658 return error("Invalid TYPE table"); 1659 if (TypeList[NumRecords]) 1660 return error( 1661 "Invalid TYPE table: Only named structs can be forward referenced"); 1662 assert(ResultTy && "Didn't read a type?"); 1663 TypeList[NumRecords++] = ResultTy; 1664 } 1665 } 1666 1667 std::error_code BitcodeReader::parseOperandBundleTags() { 1668 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1669 return error("Invalid record"); 1670 1671 if (!BundleTags.empty()) 1672 return error("Invalid multiple blocks"); 1673 1674 SmallVector<uint64_t, 64> Record; 1675 1676 while (1) { 1677 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1678 1679 switch (Entry.Kind) { 1680 case BitstreamEntry::SubBlock: // Handled for us already. 1681 case BitstreamEntry::Error: 1682 return error("Malformed block"); 1683 case BitstreamEntry::EndBlock: 1684 return std::error_code(); 1685 case BitstreamEntry::Record: 1686 // The interesting case. 1687 break; 1688 } 1689 1690 // Tags are implicitly mapped to integers by their order. 1691 1692 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1693 return error("Invalid record"); 1694 1695 // OPERAND_BUNDLE_TAG: [strchr x N] 1696 BundleTags.emplace_back(); 1697 if (convertToString(Record, 0, BundleTags.back())) 1698 return error("Invalid record"); 1699 Record.clear(); 1700 } 1701 } 1702 1703 /// Associate a value with its name from the given index in the provided record. 1704 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1705 unsigned NameIndex, Triple &TT) { 1706 SmallString<128> ValueName; 1707 if (convertToString(Record, NameIndex, ValueName)) 1708 return error("Invalid record"); 1709 unsigned ValueID = Record[0]; 1710 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1711 return error("Invalid record"); 1712 Value *V = ValueList[ValueID]; 1713 1714 StringRef NameStr(ValueName.data(), ValueName.size()); 1715 if (NameStr.find_first_of(0) != StringRef::npos) 1716 return error("Invalid value name"); 1717 V->setName(NameStr); 1718 auto *GO = dyn_cast<GlobalObject>(V); 1719 if (GO) { 1720 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1721 if (TT.isOSBinFormatMachO()) 1722 GO->setComdat(nullptr); 1723 else 1724 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1725 } 1726 } 1727 return V; 1728 } 1729 1730 /// Parse the value symbol table at either the current parsing location or 1731 /// at the given bit offset if provided. 1732 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1733 uint64_t CurrentBit; 1734 // Pass in the Offset to distinguish between calling for the module-level 1735 // VST (where we want to jump to the VST offset) and the function-level 1736 // VST (where we don't). 1737 if (Offset > 0) { 1738 // Save the current parsing location so we can jump back at the end 1739 // of the VST read. 1740 CurrentBit = Stream.GetCurrentBitNo(); 1741 Stream.JumpToBit(Offset * 32); 1742 #ifndef NDEBUG 1743 // Do some checking if we are in debug mode. 1744 BitstreamEntry Entry = Stream.advance(); 1745 assert(Entry.Kind == BitstreamEntry::SubBlock); 1746 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1747 #else 1748 // In NDEBUG mode ignore the output so we don't get an unused variable 1749 // warning. 1750 Stream.advance(); 1751 #endif 1752 } 1753 1754 // Compute the delta between the bitcode indices in the VST (the word offset 1755 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1756 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1757 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1758 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1759 // just before entering the VST subblock because: 1) the EnterSubBlock 1760 // changes the AbbrevID width; 2) the VST block is nested within the same 1761 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1762 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1763 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1764 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1765 unsigned FuncBitcodeOffsetDelta = 1766 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1767 1768 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1769 return error("Invalid record"); 1770 1771 SmallVector<uint64_t, 64> Record; 1772 1773 Triple TT(TheModule->getTargetTriple()); 1774 1775 // Read all the records for this value table. 1776 SmallString<128> ValueName; 1777 while (1) { 1778 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1779 1780 switch (Entry.Kind) { 1781 case BitstreamEntry::SubBlock: // Handled for us already. 1782 case BitstreamEntry::Error: 1783 return error("Malformed block"); 1784 case BitstreamEntry::EndBlock: 1785 if (Offset > 0) 1786 Stream.JumpToBit(CurrentBit); 1787 return std::error_code(); 1788 case BitstreamEntry::Record: 1789 // The interesting case. 1790 break; 1791 } 1792 1793 // Read a record. 1794 Record.clear(); 1795 switch (Stream.readRecord(Entry.ID, Record)) { 1796 default: // Default behavior: unknown type. 1797 break; 1798 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1799 ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT); 1800 if (std::error_code EC = ValOrErr.getError()) 1801 return EC; 1802 ValOrErr.get(); 1803 break; 1804 } 1805 case bitc::VST_CODE_FNENTRY: { 1806 // VST_FNENTRY: [valueid, offset, namechar x N] 1807 ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT); 1808 if (std::error_code EC = ValOrErr.getError()) 1809 return EC; 1810 Value *V = ValOrErr.get(); 1811 1812 auto *GO = dyn_cast<GlobalObject>(V); 1813 if (!GO) { 1814 // If this is an alias, need to get the actual Function object 1815 // it aliases, in order to set up the DeferredFunctionInfo entry below. 1816 auto *GA = dyn_cast<GlobalAlias>(V); 1817 if (GA) 1818 GO = GA->getBaseObject(); 1819 assert(GO); 1820 } 1821 1822 uint64_t FuncWordOffset = Record[1]; 1823 Function *F = dyn_cast<Function>(GO); 1824 assert(F); 1825 uint64_t FuncBitOffset = FuncWordOffset * 32; 1826 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1827 // Set the LastFunctionBlockBit to point to the last function block. 1828 // Later when parsing is resumed after function materialization, 1829 // we can simply skip that last function block. 1830 if (FuncBitOffset > LastFunctionBlockBit) 1831 LastFunctionBlockBit = FuncBitOffset; 1832 break; 1833 } 1834 case bitc::VST_CODE_BBENTRY: { 1835 if (convertToString(Record, 1, ValueName)) 1836 return error("Invalid record"); 1837 BasicBlock *BB = getBasicBlock(Record[0]); 1838 if (!BB) 1839 return error("Invalid record"); 1840 1841 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1842 ValueName.clear(); 1843 break; 1844 } 1845 } 1846 } 1847 } 1848 1849 /// Parse a single METADATA_KIND record, inserting result in MDKindMap. 1850 std::error_code 1851 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) { 1852 if (Record.size() < 2) 1853 return error("Invalid record"); 1854 1855 unsigned Kind = Record[0]; 1856 SmallString<8> Name(Record.begin() + 1, Record.end()); 1857 1858 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1859 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1860 return error("Conflicting METADATA_KIND records"); 1861 return std::error_code(); 1862 } 1863 1864 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1865 1866 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing 1867 /// module level metadata. 1868 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) { 1869 IsMetadataMaterialized = true; 1870 unsigned NextMetadataNo = MetadataList.size(); 1871 if (ModuleLevel && SeenModuleValuesRecord) { 1872 // Now that we are parsing the module level metadata, we want to restart 1873 // the numbering of the MD values, and replace temp MD created earlier 1874 // with their real values. If we saw a METADATA_VALUE record then we 1875 // would have set the MetadataList size to the number specified in that 1876 // record, to support parsing function-level metadata first, and we need 1877 // to reset back to 0 to fill the MetadataList in with the parsed module 1878 // The function-level metadata parsing should have reset the MetadataList 1879 // size back to the value reported by the METADATA_VALUE record, saved in 1880 // NumModuleMDs. 1881 assert(NumModuleMDs == MetadataList.size() && 1882 "Expected MetadataList to only contain module level values"); 1883 NextMetadataNo = 0; 1884 } 1885 1886 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1887 return error("Invalid record"); 1888 1889 SmallVector<uint64_t, 64> Record; 1890 1891 auto getMD = [&](unsigned ID) -> Metadata * { 1892 return MetadataList.getValueFwdRef(ID); 1893 }; 1894 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1895 if (ID) 1896 return getMD(ID - 1); 1897 return nullptr; 1898 }; 1899 auto getMDString = [&](unsigned ID) -> MDString *{ 1900 // This requires that the ID is not really a forward reference. In 1901 // particular, the MDString must already have been resolved. 1902 return cast_or_null<MDString>(getMDOrNull(ID)); 1903 }; 1904 1905 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1906 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1907 1908 // Read all the records. 1909 while (1) { 1910 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1911 1912 switch (Entry.Kind) { 1913 case BitstreamEntry::SubBlock: // Handled for us already. 1914 case BitstreamEntry::Error: 1915 return error("Malformed block"); 1916 case BitstreamEntry::EndBlock: 1917 MetadataList.tryToResolveCycles(); 1918 assert((!(ModuleLevel && SeenModuleValuesRecord) || 1919 NumModuleMDs == MetadataList.size()) && 1920 "Inconsistent bitcode: METADATA_VALUES mismatch"); 1921 return std::error_code(); 1922 case BitstreamEntry::Record: 1923 // The interesting case. 1924 break; 1925 } 1926 1927 // Read a record. 1928 Record.clear(); 1929 unsigned Code = Stream.readRecord(Entry.ID, Record); 1930 bool IsDistinct = false; 1931 switch (Code) { 1932 default: // Default behavior: ignore. 1933 break; 1934 case bitc::METADATA_NAME: { 1935 // Read name of the named metadata. 1936 SmallString<8> Name(Record.begin(), Record.end()); 1937 Record.clear(); 1938 Code = Stream.ReadCode(); 1939 1940 unsigned NextBitCode = Stream.readRecord(Code, Record); 1941 if (NextBitCode != bitc::METADATA_NAMED_NODE) 1942 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 1943 1944 // Read named metadata elements. 1945 unsigned Size = Record.size(); 1946 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1947 for (unsigned i = 0; i != Size; ++i) { 1948 MDNode *MD = 1949 dyn_cast_or_null<MDNode>(MetadataList.getValueFwdRef(Record[i])); 1950 if (!MD) 1951 return error("Invalid record"); 1952 NMD->addOperand(MD); 1953 } 1954 break; 1955 } 1956 case bitc::METADATA_OLD_FN_NODE: { 1957 // FIXME: Remove in 4.0. 1958 // This is a LocalAsMetadata record, the only type of function-local 1959 // metadata. 1960 if (Record.size() % 2 == 1) 1961 return error("Invalid record"); 1962 1963 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1964 // to be legal, but there's no upgrade path. 1965 auto dropRecord = [&] { 1966 MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++); 1967 }; 1968 if (Record.size() != 2) { 1969 dropRecord(); 1970 break; 1971 } 1972 1973 Type *Ty = getTypeByID(Record[0]); 1974 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1975 dropRecord(); 1976 break; 1977 } 1978 1979 MetadataList.assignValue( 1980 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1981 NextMetadataNo++); 1982 break; 1983 } 1984 case bitc::METADATA_OLD_NODE: { 1985 // FIXME: Remove in 4.0. 1986 if (Record.size() % 2 == 1) 1987 return error("Invalid record"); 1988 1989 unsigned Size = Record.size(); 1990 SmallVector<Metadata *, 8> Elts; 1991 for (unsigned i = 0; i != Size; i += 2) { 1992 Type *Ty = getTypeByID(Record[i]); 1993 if (!Ty) 1994 return error("Invalid record"); 1995 if (Ty->isMetadataTy()) 1996 Elts.push_back(MetadataList.getValueFwdRef(Record[i + 1])); 1997 else if (!Ty->isVoidTy()) { 1998 auto *MD = 1999 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 2000 assert(isa<ConstantAsMetadata>(MD) && 2001 "Expected non-function-local metadata"); 2002 Elts.push_back(MD); 2003 } else 2004 Elts.push_back(nullptr); 2005 } 2006 MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++); 2007 break; 2008 } 2009 case bitc::METADATA_VALUE: { 2010 if (Record.size() != 2) 2011 return error("Invalid record"); 2012 2013 Type *Ty = getTypeByID(Record[0]); 2014 if (Ty->isMetadataTy() || Ty->isVoidTy()) 2015 return error("Invalid record"); 2016 2017 MetadataList.assignValue( 2018 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2019 NextMetadataNo++); 2020 break; 2021 } 2022 case bitc::METADATA_DISTINCT_NODE: 2023 IsDistinct = true; 2024 // fallthrough... 2025 case bitc::METADATA_NODE: { 2026 SmallVector<Metadata *, 8> Elts; 2027 Elts.reserve(Record.size()); 2028 for (unsigned ID : Record) 2029 Elts.push_back(ID ? MetadataList.getValueFwdRef(ID - 1) : nullptr); 2030 MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 2031 : MDNode::get(Context, Elts), 2032 NextMetadataNo++); 2033 break; 2034 } 2035 case bitc::METADATA_LOCATION: { 2036 if (Record.size() != 5) 2037 return error("Invalid record"); 2038 2039 unsigned Line = Record[1]; 2040 unsigned Column = Record[2]; 2041 MDNode *Scope = cast<MDNode>(MetadataList.getValueFwdRef(Record[3])); 2042 Metadata *InlinedAt = 2043 Record[4] ? MetadataList.getValueFwdRef(Record[4] - 1) : nullptr; 2044 MetadataList.assignValue( 2045 GET_OR_DISTINCT(DILocation, Record[0], 2046 (Context, Line, Column, Scope, InlinedAt)), 2047 NextMetadataNo++); 2048 break; 2049 } 2050 case bitc::METADATA_GENERIC_DEBUG: { 2051 if (Record.size() < 4) 2052 return error("Invalid record"); 2053 2054 unsigned Tag = Record[1]; 2055 unsigned Version = Record[2]; 2056 2057 if (Tag >= 1u << 16 || Version != 0) 2058 return error("Invalid record"); 2059 2060 auto *Header = getMDString(Record[3]); 2061 SmallVector<Metadata *, 8> DwarfOps; 2062 for (unsigned I = 4, E = Record.size(); I != E; ++I) 2063 DwarfOps.push_back( 2064 Record[I] ? MetadataList.getValueFwdRef(Record[I] - 1) : nullptr); 2065 MetadataList.assignValue( 2066 GET_OR_DISTINCT(GenericDINode, Record[0], 2067 (Context, Tag, Header, DwarfOps)), 2068 NextMetadataNo++); 2069 break; 2070 } 2071 case bitc::METADATA_SUBRANGE: { 2072 if (Record.size() != 3) 2073 return error("Invalid record"); 2074 2075 MetadataList.assignValue( 2076 GET_OR_DISTINCT(DISubrange, Record[0], 2077 (Context, Record[1], unrotateSign(Record[2]))), 2078 NextMetadataNo++); 2079 break; 2080 } 2081 case bitc::METADATA_ENUMERATOR: { 2082 if (Record.size() != 3) 2083 return error("Invalid record"); 2084 2085 MetadataList.assignValue( 2086 GET_OR_DISTINCT( 2087 DIEnumerator, Record[0], 2088 (Context, unrotateSign(Record[1]), getMDString(Record[2]))), 2089 NextMetadataNo++); 2090 break; 2091 } 2092 case bitc::METADATA_BASIC_TYPE: { 2093 if (Record.size() != 6) 2094 return error("Invalid record"); 2095 2096 MetadataList.assignValue( 2097 GET_OR_DISTINCT(DIBasicType, Record[0], 2098 (Context, Record[1], getMDString(Record[2]), 2099 Record[3], Record[4], Record[5])), 2100 NextMetadataNo++); 2101 break; 2102 } 2103 case bitc::METADATA_DERIVED_TYPE: { 2104 if (Record.size() != 12) 2105 return error("Invalid record"); 2106 2107 MetadataList.assignValue( 2108 GET_OR_DISTINCT(DIDerivedType, Record[0], 2109 (Context, Record[1], getMDString(Record[2]), 2110 getMDOrNull(Record[3]), Record[4], 2111 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2112 Record[7], Record[8], Record[9], Record[10], 2113 getMDOrNull(Record[11]))), 2114 NextMetadataNo++); 2115 break; 2116 } 2117 case bitc::METADATA_COMPOSITE_TYPE: { 2118 if (Record.size() != 16) 2119 return error("Invalid record"); 2120 2121 MetadataList.assignValue( 2122 GET_OR_DISTINCT(DICompositeType, Record[0], 2123 (Context, Record[1], getMDString(Record[2]), 2124 getMDOrNull(Record[3]), Record[4], 2125 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2126 Record[7], Record[8], Record[9], Record[10], 2127 getMDOrNull(Record[11]), Record[12], 2128 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 2129 getMDString(Record[15]))), 2130 NextMetadataNo++); 2131 break; 2132 } 2133 case bitc::METADATA_SUBROUTINE_TYPE: { 2134 if (Record.size() != 3) 2135 return error("Invalid record"); 2136 2137 MetadataList.assignValue( 2138 GET_OR_DISTINCT(DISubroutineType, Record[0], 2139 (Context, Record[1], getMDOrNull(Record[2]))), 2140 NextMetadataNo++); 2141 break; 2142 } 2143 2144 case bitc::METADATA_MODULE: { 2145 if (Record.size() != 6) 2146 return error("Invalid record"); 2147 2148 MetadataList.assignValue( 2149 GET_OR_DISTINCT(DIModule, Record[0], 2150 (Context, getMDOrNull(Record[1]), 2151 getMDString(Record[2]), getMDString(Record[3]), 2152 getMDString(Record[4]), getMDString(Record[5]))), 2153 NextMetadataNo++); 2154 break; 2155 } 2156 2157 case bitc::METADATA_FILE: { 2158 if (Record.size() != 3) 2159 return error("Invalid record"); 2160 2161 MetadataList.assignValue( 2162 GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]), 2163 getMDString(Record[2]))), 2164 NextMetadataNo++); 2165 break; 2166 } 2167 case bitc::METADATA_COMPILE_UNIT: { 2168 if (Record.size() < 14 || Record.size() > 16) 2169 return error("Invalid record"); 2170 2171 // Ignore Record[0], which indicates whether this compile unit is 2172 // distinct. It's always distinct. 2173 MetadataList.assignValue( 2174 DICompileUnit::getDistinct( 2175 Context, Record[1], getMDOrNull(Record[2]), 2176 getMDString(Record[3]), Record[4], getMDString(Record[5]), 2177 Record[6], getMDString(Record[7]), Record[8], 2178 getMDOrNull(Record[9]), getMDOrNull(Record[10]), 2179 getMDOrNull(Record[11]), getMDOrNull(Record[12]), 2180 getMDOrNull(Record[13]), 2181 Record.size() <= 15 ? 0 : getMDOrNull(Record[15]), 2182 Record.size() <= 14 ? 0 : Record[14]), 2183 NextMetadataNo++); 2184 break; 2185 } 2186 case bitc::METADATA_SUBPROGRAM: { 2187 if (Record.size() != 18 && Record.size() != 19) 2188 return error("Invalid record"); 2189 2190 bool HasFn = Record.size() == 19; 2191 DISubprogram *SP = GET_OR_DISTINCT( 2192 DISubprogram, 2193 Record[0] || Record[8], // All definitions should be distinct. 2194 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 2195 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 2196 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 2197 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 2198 Record[14], getMDOrNull(Record[15 + HasFn]), 2199 getMDOrNull(Record[16 + HasFn]), getMDOrNull(Record[17 + HasFn]))); 2200 MetadataList.assignValue(SP, NextMetadataNo++); 2201 2202 // Upgrade sp->function mapping to function->sp mapping. 2203 if (HasFn && Record[15]) { 2204 if (auto *CMD = dyn_cast<ConstantAsMetadata>(getMDOrNull(Record[15]))) 2205 if (auto *F = dyn_cast<Function>(CMD->getValue())) { 2206 if (F->isMaterializable()) 2207 // Defer until materialized; unmaterialized functions may not have 2208 // metadata. 2209 FunctionsWithSPs[F] = SP; 2210 else if (!F->empty()) 2211 F->setSubprogram(SP); 2212 } 2213 } 2214 break; 2215 } 2216 case bitc::METADATA_LEXICAL_BLOCK: { 2217 if (Record.size() != 5) 2218 return error("Invalid record"); 2219 2220 MetadataList.assignValue( 2221 GET_OR_DISTINCT(DILexicalBlock, Record[0], 2222 (Context, getMDOrNull(Record[1]), 2223 getMDOrNull(Record[2]), Record[3], Record[4])), 2224 NextMetadataNo++); 2225 break; 2226 } 2227 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 2228 if (Record.size() != 4) 2229 return error("Invalid record"); 2230 2231 MetadataList.assignValue( 2232 GET_OR_DISTINCT(DILexicalBlockFile, Record[0], 2233 (Context, getMDOrNull(Record[1]), 2234 getMDOrNull(Record[2]), Record[3])), 2235 NextMetadataNo++); 2236 break; 2237 } 2238 case bitc::METADATA_NAMESPACE: { 2239 if (Record.size() != 5) 2240 return error("Invalid record"); 2241 2242 MetadataList.assignValue( 2243 GET_OR_DISTINCT(DINamespace, Record[0], 2244 (Context, getMDOrNull(Record[1]), 2245 getMDOrNull(Record[2]), getMDString(Record[3]), 2246 Record[4])), 2247 NextMetadataNo++); 2248 break; 2249 } 2250 case bitc::METADATA_MACRO: { 2251 if (Record.size() != 5) 2252 return error("Invalid record"); 2253 2254 MetadataList.assignValue( 2255 GET_OR_DISTINCT(DIMacro, Record[0], 2256 (Context, Record[1], Record[2], 2257 getMDString(Record[3]), getMDString(Record[4]))), 2258 NextMetadataNo++); 2259 break; 2260 } 2261 case bitc::METADATA_MACRO_FILE: { 2262 if (Record.size() != 5) 2263 return error("Invalid record"); 2264 2265 MetadataList.assignValue( 2266 GET_OR_DISTINCT(DIMacroFile, Record[0], 2267 (Context, Record[1], Record[2], 2268 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2269 NextMetadataNo++); 2270 break; 2271 } 2272 case bitc::METADATA_TEMPLATE_TYPE: { 2273 if (Record.size() != 3) 2274 return error("Invalid record"); 2275 2276 MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 2277 Record[0], 2278 (Context, getMDString(Record[1]), 2279 getMDOrNull(Record[2]))), 2280 NextMetadataNo++); 2281 break; 2282 } 2283 case bitc::METADATA_TEMPLATE_VALUE: { 2284 if (Record.size() != 5) 2285 return error("Invalid record"); 2286 2287 MetadataList.assignValue( 2288 GET_OR_DISTINCT(DITemplateValueParameter, Record[0], 2289 (Context, Record[1], getMDString(Record[2]), 2290 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2291 NextMetadataNo++); 2292 break; 2293 } 2294 case bitc::METADATA_GLOBAL_VAR: { 2295 if (Record.size() != 11) 2296 return error("Invalid record"); 2297 2298 MetadataList.assignValue( 2299 GET_OR_DISTINCT(DIGlobalVariable, Record[0], 2300 (Context, getMDOrNull(Record[1]), 2301 getMDString(Record[2]), getMDString(Record[3]), 2302 getMDOrNull(Record[4]), Record[5], 2303 getMDOrNull(Record[6]), Record[7], Record[8], 2304 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 2305 NextMetadataNo++); 2306 break; 2307 } 2308 case bitc::METADATA_LOCAL_VAR: { 2309 // 10th field is for the obseleted 'inlinedAt:' field. 2310 if (Record.size() < 8 || Record.size() > 10) 2311 return error("Invalid record"); 2312 2313 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or 2314 // DW_TAG_arg_variable. 2315 bool HasTag = Record.size() > 8; 2316 MetadataList.assignValue( 2317 GET_OR_DISTINCT(DILocalVariable, Record[0], 2318 (Context, getMDOrNull(Record[1 + HasTag]), 2319 getMDString(Record[2 + HasTag]), 2320 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag], 2321 getMDOrNull(Record[5 + HasTag]), Record[6 + HasTag], 2322 Record[7 + HasTag])), 2323 NextMetadataNo++); 2324 break; 2325 } 2326 case bitc::METADATA_EXPRESSION: { 2327 if (Record.size() < 1) 2328 return error("Invalid record"); 2329 2330 MetadataList.assignValue( 2331 GET_OR_DISTINCT(DIExpression, Record[0], 2332 (Context, makeArrayRef(Record).slice(1))), 2333 NextMetadataNo++); 2334 break; 2335 } 2336 case bitc::METADATA_OBJC_PROPERTY: { 2337 if (Record.size() != 8) 2338 return error("Invalid record"); 2339 2340 MetadataList.assignValue( 2341 GET_OR_DISTINCT(DIObjCProperty, Record[0], 2342 (Context, getMDString(Record[1]), 2343 getMDOrNull(Record[2]), Record[3], 2344 getMDString(Record[4]), getMDString(Record[5]), 2345 Record[6], getMDOrNull(Record[7]))), 2346 NextMetadataNo++); 2347 break; 2348 } 2349 case bitc::METADATA_IMPORTED_ENTITY: { 2350 if (Record.size() != 6) 2351 return error("Invalid record"); 2352 2353 MetadataList.assignValue( 2354 GET_OR_DISTINCT(DIImportedEntity, Record[0], 2355 (Context, Record[1], getMDOrNull(Record[2]), 2356 getMDOrNull(Record[3]), Record[4], 2357 getMDString(Record[5]))), 2358 NextMetadataNo++); 2359 break; 2360 } 2361 case bitc::METADATA_STRING: { 2362 std::string String(Record.begin(), Record.end()); 2363 llvm::UpgradeMDStringConstant(String); 2364 Metadata *MD = MDString::get(Context, String); 2365 MetadataList.assignValue(MD, NextMetadataNo++); 2366 break; 2367 } 2368 case bitc::METADATA_KIND: { 2369 // Support older bitcode files that had METADATA_KIND records in a 2370 // block with METADATA_BLOCK_ID. 2371 if (std::error_code EC = parseMetadataKindRecord(Record)) 2372 return EC; 2373 break; 2374 } 2375 } 2376 } 2377 #undef GET_OR_DISTINCT 2378 } 2379 2380 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK. 2381 std::error_code BitcodeReader::parseMetadataKinds() { 2382 if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID)) 2383 return error("Invalid record"); 2384 2385 SmallVector<uint64_t, 64> Record; 2386 2387 // Read all the records. 2388 while (1) { 2389 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2390 2391 switch (Entry.Kind) { 2392 case BitstreamEntry::SubBlock: // Handled for us already. 2393 case BitstreamEntry::Error: 2394 return error("Malformed block"); 2395 case BitstreamEntry::EndBlock: 2396 return std::error_code(); 2397 case BitstreamEntry::Record: 2398 // The interesting case. 2399 break; 2400 } 2401 2402 // Read a record. 2403 Record.clear(); 2404 unsigned Code = Stream.readRecord(Entry.ID, Record); 2405 switch (Code) { 2406 default: // Default behavior: ignore. 2407 break; 2408 case bitc::METADATA_KIND: { 2409 if (std::error_code EC = parseMetadataKindRecord(Record)) 2410 return EC; 2411 break; 2412 } 2413 } 2414 } 2415 } 2416 2417 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2418 /// encoding. 2419 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2420 if ((V & 1) == 0) 2421 return V >> 1; 2422 if (V != 1) 2423 return -(V >> 1); 2424 // There is no such thing as -0 with integers. "-0" really means MININT. 2425 return 1ULL << 63; 2426 } 2427 2428 /// Resolve all of the initializers for global values and aliases that we can. 2429 std::error_code BitcodeReader::resolveGlobalAndAliasInits() { 2430 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2431 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 2432 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2433 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2434 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 2435 2436 GlobalInitWorklist.swap(GlobalInits); 2437 AliasInitWorklist.swap(AliasInits); 2438 FunctionPrefixWorklist.swap(FunctionPrefixes); 2439 FunctionPrologueWorklist.swap(FunctionPrologues); 2440 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2441 2442 while (!GlobalInitWorklist.empty()) { 2443 unsigned ValID = GlobalInitWorklist.back().second; 2444 if (ValID >= ValueList.size()) { 2445 // Not ready to resolve this yet, it requires something later in the file. 2446 GlobalInits.push_back(GlobalInitWorklist.back()); 2447 } else { 2448 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2449 GlobalInitWorklist.back().first->setInitializer(C); 2450 else 2451 return error("Expected a constant"); 2452 } 2453 GlobalInitWorklist.pop_back(); 2454 } 2455 2456 while (!AliasInitWorklist.empty()) { 2457 unsigned ValID = AliasInitWorklist.back().second; 2458 if (ValID >= ValueList.size()) { 2459 AliasInits.push_back(AliasInitWorklist.back()); 2460 } else { 2461 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2462 if (!C) 2463 return error("Expected a constant"); 2464 GlobalAlias *Alias = AliasInitWorklist.back().first; 2465 if (C->getType() != Alias->getType()) 2466 return error("Alias and aliasee types don't match"); 2467 Alias->setAliasee(C); 2468 } 2469 AliasInitWorklist.pop_back(); 2470 } 2471 2472 while (!FunctionPrefixWorklist.empty()) { 2473 unsigned ValID = FunctionPrefixWorklist.back().second; 2474 if (ValID >= ValueList.size()) { 2475 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2476 } else { 2477 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2478 FunctionPrefixWorklist.back().first->setPrefixData(C); 2479 else 2480 return error("Expected a constant"); 2481 } 2482 FunctionPrefixWorklist.pop_back(); 2483 } 2484 2485 while (!FunctionPrologueWorklist.empty()) { 2486 unsigned ValID = FunctionPrologueWorklist.back().second; 2487 if (ValID >= ValueList.size()) { 2488 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2489 } else { 2490 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2491 FunctionPrologueWorklist.back().first->setPrologueData(C); 2492 else 2493 return error("Expected a constant"); 2494 } 2495 FunctionPrologueWorklist.pop_back(); 2496 } 2497 2498 while (!FunctionPersonalityFnWorklist.empty()) { 2499 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2500 if (ValID >= ValueList.size()) { 2501 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2502 } else { 2503 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2504 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2505 else 2506 return error("Expected a constant"); 2507 } 2508 FunctionPersonalityFnWorklist.pop_back(); 2509 } 2510 2511 return std::error_code(); 2512 } 2513 2514 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2515 SmallVector<uint64_t, 8> Words(Vals.size()); 2516 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2517 BitcodeReader::decodeSignRotatedValue); 2518 2519 return APInt(TypeBits, Words); 2520 } 2521 2522 std::error_code BitcodeReader::parseConstants() { 2523 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2524 return error("Invalid record"); 2525 2526 SmallVector<uint64_t, 64> Record; 2527 2528 // Read all the records for this value table. 2529 Type *CurTy = Type::getInt32Ty(Context); 2530 unsigned NextCstNo = ValueList.size(); 2531 while (1) { 2532 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2533 2534 switch (Entry.Kind) { 2535 case BitstreamEntry::SubBlock: // Handled for us already. 2536 case BitstreamEntry::Error: 2537 return error("Malformed block"); 2538 case BitstreamEntry::EndBlock: 2539 if (NextCstNo != ValueList.size()) 2540 return error("Invalid constant reference"); 2541 2542 // Once all the constants have been read, go through and resolve forward 2543 // references. 2544 ValueList.resolveConstantForwardRefs(); 2545 return std::error_code(); 2546 case BitstreamEntry::Record: 2547 // The interesting case. 2548 break; 2549 } 2550 2551 // Read a record. 2552 Record.clear(); 2553 Value *V = nullptr; 2554 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2555 switch (BitCode) { 2556 default: // Default behavior: unknown constant 2557 case bitc::CST_CODE_UNDEF: // UNDEF 2558 V = UndefValue::get(CurTy); 2559 break; 2560 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2561 if (Record.empty()) 2562 return error("Invalid record"); 2563 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2564 return error("Invalid record"); 2565 CurTy = TypeList[Record[0]]; 2566 continue; // Skip the ValueList manipulation. 2567 case bitc::CST_CODE_NULL: // NULL 2568 V = Constant::getNullValue(CurTy); 2569 break; 2570 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2571 if (!CurTy->isIntegerTy() || Record.empty()) 2572 return error("Invalid record"); 2573 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2574 break; 2575 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2576 if (!CurTy->isIntegerTy() || Record.empty()) 2577 return error("Invalid record"); 2578 2579 APInt VInt = 2580 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2581 V = ConstantInt::get(Context, VInt); 2582 2583 break; 2584 } 2585 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2586 if (Record.empty()) 2587 return error("Invalid record"); 2588 if (CurTy->isHalfTy()) 2589 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2590 APInt(16, (uint16_t)Record[0]))); 2591 else if (CurTy->isFloatTy()) 2592 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2593 APInt(32, (uint32_t)Record[0]))); 2594 else if (CurTy->isDoubleTy()) 2595 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2596 APInt(64, Record[0]))); 2597 else if (CurTy->isX86_FP80Ty()) { 2598 // Bits are not stored the same way as a normal i80 APInt, compensate. 2599 uint64_t Rearrange[2]; 2600 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2601 Rearrange[1] = Record[0] >> 48; 2602 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2603 APInt(80, Rearrange))); 2604 } else if (CurTy->isFP128Ty()) 2605 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2606 APInt(128, Record))); 2607 else if (CurTy->isPPC_FP128Ty()) 2608 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2609 APInt(128, Record))); 2610 else 2611 V = UndefValue::get(CurTy); 2612 break; 2613 } 2614 2615 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2616 if (Record.empty()) 2617 return error("Invalid record"); 2618 2619 unsigned Size = Record.size(); 2620 SmallVector<Constant*, 16> Elts; 2621 2622 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2623 for (unsigned i = 0; i != Size; ++i) 2624 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2625 STy->getElementType(i))); 2626 V = ConstantStruct::get(STy, Elts); 2627 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2628 Type *EltTy = ATy->getElementType(); 2629 for (unsigned i = 0; i != Size; ++i) 2630 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2631 V = ConstantArray::get(ATy, Elts); 2632 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2633 Type *EltTy = VTy->getElementType(); 2634 for (unsigned i = 0; i != Size; ++i) 2635 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2636 V = ConstantVector::get(Elts); 2637 } else { 2638 V = UndefValue::get(CurTy); 2639 } 2640 break; 2641 } 2642 case bitc::CST_CODE_STRING: // STRING: [values] 2643 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2644 if (Record.empty()) 2645 return error("Invalid record"); 2646 2647 SmallString<16> Elts(Record.begin(), Record.end()); 2648 V = ConstantDataArray::getString(Context, Elts, 2649 BitCode == bitc::CST_CODE_CSTRING); 2650 break; 2651 } 2652 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2653 if (Record.empty()) 2654 return error("Invalid record"); 2655 2656 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2657 if (EltTy->isIntegerTy(8)) { 2658 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2659 if (isa<VectorType>(CurTy)) 2660 V = ConstantDataVector::get(Context, Elts); 2661 else 2662 V = ConstantDataArray::get(Context, Elts); 2663 } else if (EltTy->isIntegerTy(16)) { 2664 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2665 if (isa<VectorType>(CurTy)) 2666 V = ConstantDataVector::get(Context, Elts); 2667 else 2668 V = ConstantDataArray::get(Context, Elts); 2669 } else if (EltTy->isIntegerTy(32)) { 2670 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2671 if (isa<VectorType>(CurTy)) 2672 V = ConstantDataVector::get(Context, Elts); 2673 else 2674 V = ConstantDataArray::get(Context, Elts); 2675 } else if (EltTy->isIntegerTy(64)) { 2676 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2677 if (isa<VectorType>(CurTy)) 2678 V = ConstantDataVector::get(Context, Elts); 2679 else 2680 V = ConstantDataArray::get(Context, Elts); 2681 } else if (EltTy->isHalfTy()) { 2682 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2683 if (isa<VectorType>(CurTy)) 2684 V = ConstantDataVector::getFP(Context, Elts); 2685 else 2686 V = ConstantDataArray::getFP(Context, Elts); 2687 } else if (EltTy->isFloatTy()) { 2688 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2689 if (isa<VectorType>(CurTy)) 2690 V = ConstantDataVector::getFP(Context, Elts); 2691 else 2692 V = ConstantDataArray::getFP(Context, Elts); 2693 } else if (EltTy->isDoubleTy()) { 2694 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2695 if (isa<VectorType>(CurTy)) 2696 V = ConstantDataVector::getFP(Context, Elts); 2697 else 2698 V = ConstantDataArray::getFP(Context, Elts); 2699 } else { 2700 return error("Invalid type for value"); 2701 } 2702 break; 2703 } 2704 2705 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2706 if (Record.size() < 3) 2707 return error("Invalid record"); 2708 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2709 if (Opc < 0) { 2710 V = UndefValue::get(CurTy); // Unknown binop. 2711 } else { 2712 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2713 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2714 unsigned Flags = 0; 2715 if (Record.size() >= 4) { 2716 if (Opc == Instruction::Add || 2717 Opc == Instruction::Sub || 2718 Opc == Instruction::Mul || 2719 Opc == Instruction::Shl) { 2720 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2721 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2722 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2723 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2724 } else if (Opc == Instruction::SDiv || 2725 Opc == Instruction::UDiv || 2726 Opc == Instruction::LShr || 2727 Opc == Instruction::AShr) { 2728 if (Record[3] & (1 << bitc::PEO_EXACT)) 2729 Flags |= SDivOperator::IsExact; 2730 } 2731 } 2732 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2733 } 2734 break; 2735 } 2736 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2737 if (Record.size() < 3) 2738 return error("Invalid record"); 2739 int Opc = getDecodedCastOpcode(Record[0]); 2740 if (Opc < 0) { 2741 V = UndefValue::get(CurTy); // Unknown cast. 2742 } else { 2743 Type *OpTy = getTypeByID(Record[1]); 2744 if (!OpTy) 2745 return error("Invalid record"); 2746 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2747 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2748 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2749 } 2750 break; 2751 } 2752 case bitc::CST_CODE_CE_INBOUNDS_GEP: 2753 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 2754 unsigned OpNum = 0; 2755 Type *PointeeType = nullptr; 2756 if (Record.size() % 2) 2757 PointeeType = getTypeByID(Record[OpNum++]); 2758 SmallVector<Constant*, 16> Elts; 2759 while (OpNum != Record.size()) { 2760 Type *ElTy = getTypeByID(Record[OpNum++]); 2761 if (!ElTy) 2762 return error("Invalid record"); 2763 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2764 } 2765 2766 if (PointeeType && 2767 PointeeType != 2768 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 2769 ->getElementType()) 2770 return error("Explicit gep operator type does not match pointee type " 2771 "of pointer operand"); 2772 2773 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2774 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2775 BitCode == 2776 bitc::CST_CODE_CE_INBOUNDS_GEP); 2777 break; 2778 } 2779 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2780 if (Record.size() < 3) 2781 return error("Invalid record"); 2782 2783 Type *SelectorTy = Type::getInt1Ty(Context); 2784 2785 // The selector might be an i1 or an <n x i1> 2786 // Get the type from the ValueList before getting a forward ref. 2787 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2788 if (Value *V = ValueList[Record[0]]) 2789 if (SelectorTy != V->getType()) 2790 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2791 2792 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2793 SelectorTy), 2794 ValueList.getConstantFwdRef(Record[1],CurTy), 2795 ValueList.getConstantFwdRef(Record[2],CurTy)); 2796 break; 2797 } 2798 case bitc::CST_CODE_CE_EXTRACTELT 2799 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2800 if (Record.size() < 3) 2801 return error("Invalid record"); 2802 VectorType *OpTy = 2803 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2804 if (!OpTy) 2805 return error("Invalid record"); 2806 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2807 Constant *Op1 = nullptr; 2808 if (Record.size() == 4) { 2809 Type *IdxTy = getTypeByID(Record[2]); 2810 if (!IdxTy) 2811 return error("Invalid record"); 2812 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2813 } else // TODO: Remove with llvm 4.0 2814 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2815 if (!Op1) 2816 return error("Invalid record"); 2817 V = ConstantExpr::getExtractElement(Op0, Op1); 2818 break; 2819 } 2820 case bitc::CST_CODE_CE_INSERTELT 2821 : { // CE_INSERTELT: [opval, opval, opty, opval] 2822 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2823 if (Record.size() < 3 || !OpTy) 2824 return error("Invalid record"); 2825 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2826 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2827 OpTy->getElementType()); 2828 Constant *Op2 = nullptr; 2829 if (Record.size() == 4) { 2830 Type *IdxTy = getTypeByID(Record[2]); 2831 if (!IdxTy) 2832 return error("Invalid record"); 2833 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2834 } else // TODO: Remove with llvm 4.0 2835 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2836 if (!Op2) 2837 return error("Invalid record"); 2838 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2839 break; 2840 } 2841 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2842 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2843 if (Record.size() < 3 || !OpTy) 2844 return error("Invalid record"); 2845 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2846 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2847 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2848 OpTy->getNumElements()); 2849 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2850 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2851 break; 2852 } 2853 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2854 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2855 VectorType *OpTy = 2856 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2857 if (Record.size() < 4 || !RTy || !OpTy) 2858 return error("Invalid record"); 2859 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2860 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2861 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2862 RTy->getNumElements()); 2863 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2864 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2865 break; 2866 } 2867 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2868 if (Record.size() < 4) 2869 return error("Invalid record"); 2870 Type *OpTy = getTypeByID(Record[0]); 2871 if (!OpTy) 2872 return error("Invalid record"); 2873 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2874 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2875 2876 if (OpTy->isFPOrFPVectorTy()) 2877 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2878 else 2879 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2880 break; 2881 } 2882 // This maintains backward compatibility, pre-asm dialect keywords. 2883 // FIXME: Remove with the 4.0 release. 2884 case bitc::CST_CODE_INLINEASM_OLD: { 2885 if (Record.size() < 2) 2886 return error("Invalid record"); 2887 std::string AsmStr, ConstrStr; 2888 bool HasSideEffects = Record[0] & 1; 2889 bool IsAlignStack = Record[0] >> 1; 2890 unsigned AsmStrSize = Record[1]; 2891 if (2+AsmStrSize >= Record.size()) 2892 return error("Invalid record"); 2893 unsigned ConstStrSize = Record[2+AsmStrSize]; 2894 if (3+AsmStrSize+ConstStrSize > Record.size()) 2895 return error("Invalid record"); 2896 2897 for (unsigned i = 0; i != AsmStrSize; ++i) 2898 AsmStr += (char)Record[2+i]; 2899 for (unsigned i = 0; i != ConstStrSize; ++i) 2900 ConstrStr += (char)Record[3+AsmStrSize+i]; 2901 PointerType *PTy = cast<PointerType>(CurTy); 2902 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2903 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2904 break; 2905 } 2906 // This version adds support for the asm dialect keywords (e.g., 2907 // inteldialect). 2908 case bitc::CST_CODE_INLINEASM: { 2909 if (Record.size() < 2) 2910 return error("Invalid record"); 2911 std::string AsmStr, ConstrStr; 2912 bool HasSideEffects = Record[0] & 1; 2913 bool IsAlignStack = (Record[0] >> 1) & 1; 2914 unsigned AsmDialect = Record[0] >> 2; 2915 unsigned AsmStrSize = Record[1]; 2916 if (2+AsmStrSize >= Record.size()) 2917 return error("Invalid record"); 2918 unsigned ConstStrSize = Record[2+AsmStrSize]; 2919 if (3+AsmStrSize+ConstStrSize > Record.size()) 2920 return error("Invalid record"); 2921 2922 for (unsigned i = 0; i != AsmStrSize; ++i) 2923 AsmStr += (char)Record[2+i]; 2924 for (unsigned i = 0; i != ConstStrSize; ++i) 2925 ConstrStr += (char)Record[3+AsmStrSize+i]; 2926 PointerType *PTy = cast<PointerType>(CurTy); 2927 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2928 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2929 InlineAsm::AsmDialect(AsmDialect)); 2930 break; 2931 } 2932 case bitc::CST_CODE_BLOCKADDRESS:{ 2933 if (Record.size() < 3) 2934 return error("Invalid record"); 2935 Type *FnTy = getTypeByID(Record[0]); 2936 if (!FnTy) 2937 return error("Invalid record"); 2938 Function *Fn = 2939 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2940 if (!Fn) 2941 return error("Invalid record"); 2942 2943 // If the function is already parsed we can insert the block address right 2944 // away. 2945 BasicBlock *BB; 2946 unsigned BBID = Record[2]; 2947 if (!BBID) 2948 // Invalid reference to entry block. 2949 return error("Invalid ID"); 2950 if (!Fn->empty()) { 2951 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2952 for (size_t I = 0, E = BBID; I != E; ++I) { 2953 if (BBI == BBE) 2954 return error("Invalid ID"); 2955 ++BBI; 2956 } 2957 BB = &*BBI; 2958 } else { 2959 // Otherwise insert a placeholder and remember it so it can be inserted 2960 // when the function is parsed. 2961 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2962 if (FwdBBs.empty()) 2963 BasicBlockFwdRefQueue.push_back(Fn); 2964 if (FwdBBs.size() < BBID + 1) 2965 FwdBBs.resize(BBID + 1); 2966 if (!FwdBBs[BBID]) 2967 FwdBBs[BBID] = BasicBlock::Create(Context); 2968 BB = FwdBBs[BBID]; 2969 } 2970 V = BlockAddress::get(Fn, BB); 2971 break; 2972 } 2973 } 2974 2975 ValueList.assignValue(V, NextCstNo); 2976 ++NextCstNo; 2977 } 2978 } 2979 2980 std::error_code BitcodeReader::parseUseLists() { 2981 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2982 return error("Invalid record"); 2983 2984 // Read all the records. 2985 SmallVector<uint64_t, 64> Record; 2986 while (1) { 2987 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2988 2989 switch (Entry.Kind) { 2990 case BitstreamEntry::SubBlock: // Handled for us already. 2991 case BitstreamEntry::Error: 2992 return error("Malformed block"); 2993 case BitstreamEntry::EndBlock: 2994 return std::error_code(); 2995 case BitstreamEntry::Record: 2996 // The interesting case. 2997 break; 2998 } 2999 3000 // Read a use list record. 3001 Record.clear(); 3002 bool IsBB = false; 3003 switch (Stream.readRecord(Entry.ID, Record)) { 3004 default: // Default behavior: unknown type. 3005 break; 3006 case bitc::USELIST_CODE_BB: 3007 IsBB = true; 3008 // fallthrough 3009 case bitc::USELIST_CODE_DEFAULT: { 3010 unsigned RecordLength = Record.size(); 3011 if (RecordLength < 3) 3012 // Records should have at least an ID and two indexes. 3013 return error("Invalid record"); 3014 unsigned ID = Record.back(); 3015 Record.pop_back(); 3016 3017 Value *V; 3018 if (IsBB) { 3019 assert(ID < FunctionBBs.size() && "Basic block not found"); 3020 V = FunctionBBs[ID]; 3021 } else 3022 V = ValueList[ID]; 3023 unsigned NumUses = 0; 3024 SmallDenseMap<const Use *, unsigned, 16> Order; 3025 for (const Use &U : V->materialized_uses()) { 3026 if (++NumUses > Record.size()) 3027 break; 3028 Order[&U] = Record[NumUses - 1]; 3029 } 3030 if (Order.size() != Record.size() || NumUses > Record.size()) 3031 // Mismatches can happen if the functions are being materialized lazily 3032 // (out-of-order), or a value has been upgraded. 3033 break; 3034 3035 V->sortUseList([&](const Use &L, const Use &R) { 3036 return Order.lookup(&L) < Order.lookup(&R); 3037 }); 3038 break; 3039 } 3040 } 3041 } 3042 } 3043 3044 /// When we see the block for metadata, remember where it is and then skip it. 3045 /// This lets us lazily deserialize the metadata. 3046 std::error_code BitcodeReader::rememberAndSkipMetadata() { 3047 // Save the current stream state. 3048 uint64_t CurBit = Stream.GetCurrentBitNo(); 3049 DeferredMetadataInfo.push_back(CurBit); 3050 3051 // Skip over the block for now. 3052 if (Stream.SkipBlock()) 3053 return error("Invalid record"); 3054 return std::error_code(); 3055 } 3056 3057 std::error_code BitcodeReader::materializeMetadata() { 3058 for (uint64_t BitPos : DeferredMetadataInfo) { 3059 // Move the bit stream to the saved position. 3060 Stream.JumpToBit(BitPos); 3061 if (std::error_code EC = parseMetadata(true)) 3062 return EC; 3063 } 3064 DeferredMetadataInfo.clear(); 3065 return std::error_code(); 3066 } 3067 3068 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3069 3070 void BitcodeReader::saveMetadataList( 3071 DenseMap<const Metadata *, unsigned> &MetadataToIDs, bool OnlyTempMD) { 3072 for (unsigned ID = 0; ID < MetadataList.size(); ++ID) { 3073 Metadata *MD = MetadataList[ID]; 3074 auto *N = dyn_cast_or_null<MDNode>(MD); 3075 assert((!N || (N->isResolved() || N->isTemporary())) && 3076 "Found non-resolved non-temp MDNode while saving metadata"); 3077 // Save all values if !OnlyTempMD, otherwise just the temporary metadata. 3078 // Note that in the !OnlyTempMD case we need to save all Metadata, not 3079 // just MDNode, as we may have references to other types of module-level 3080 // metadata (e.g. ValueAsMetadata) from instructions. 3081 if (!OnlyTempMD || (N && N->isTemporary())) { 3082 // Will call this after materializing each function, in order to 3083 // handle remapping of the function's instructions/metadata. 3084 auto IterBool = MetadataToIDs.insert(std::make_pair(MD, ID)); 3085 // See if we already have an entry in that case. 3086 if (OnlyTempMD && !IterBool.second) { 3087 assert(IterBool.first->second == ID && 3088 "Inconsistent metadata value id"); 3089 continue; 3090 } 3091 if (N && N->isTemporary()) 3092 // Ensure that we assert if someone tries to RAUW this temporary 3093 // metadata while it is the key of a map. The flag will be set back 3094 // to true when the saved metadata list is destroyed. 3095 N->setCanReplace(false); 3096 } 3097 } 3098 } 3099 3100 /// When we see the block for a function body, remember where it is and then 3101 /// skip it. This lets us lazily deserialize the functions. 3102 std::error_code BitcodeReader::rememberAndSkipFunctionBody() { 3103 // Get the function we are talking about. 3104 if (FunctionsWithBodies.empty()) 3105 return error("Insufficient function protos"); 3106 3107 Function *Fn = FunctionsWithBodies.back(); 3108 FunctionsWithBodies.pop_back(); 3109 3110 // Save the current stream state. 3111 uint64_t CurBit = Stream.GetCurrentBitNo(); 3112 assert( 3113 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3114 "Mismatch between VST and scanned function offsets"); 3115 DeferredFunctionInfo[Fn] = CurBit; 3116 3117 // Skip over the function block for now. 3118 if (Stream.SkipBlock()) 3119 return error("Invalid record"); 3120 return std::error_code(); 3121 } 3122 3123 std::error_code BitcodeReader::globalCleanup() { 3124 // Patch the initializers for globals and aliases up. 3125 resolveGlobalAndAliasInits(); 3126 if (!GlobalInits.empty() || !AliasInits.empty()) 3127 return error("Malformed global initializer set"); 3128 3129 // Look for intrinsic functions which need to be upgraded at some point 3130 for (Function &F : *TheModule) { 3131 Function *NewFn; 3132 if (UpgradeIntrinsicFunction(&F, NewFn)) 3133 UpgradedIntrinsics[&F] = NewFn; 3134 } 3135 3136 // Look for global variables which need to be renamed. 3137 for (GlobalVariable &GV : TheModule->globals()) 3138 UpgradeGlobalVariable(&GV); 3139 3140 // Force deallocation of memory for these vectors to favor the client that 3141 // want lazy deserialization. 3142 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 3143 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 3144 return std::error_code(); 3145 } 3146 3147 /// Support for lazy parsing of function bodies. This is required if we 3148 /// either have an old bitcode file without a VST forward declaration record, 3149 /// or if we have an anonymous function being materialized, since anonymous 3150 /// functions do not have a name and are therefore not in the VST. 3151 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() { 3152 Stream.JumpToBit(NextUnreadBit); 3153 3154 if (Stream.AtEndOfStream()) 3155 return error("Could not find function in stream"); 3156 3157 if (!SeenFirstFunctionBody) 3158 return error("Trying to materialize functions before seeing function blocks"); 3159 3160 // An old bitcode file with the symbol table at the end would have 3161 // finished the parse greedily. 3162 assert(SeenValueSymbolTable); 3163 3164 SmallVector<uint64_t, 64> Record; 3165 3166 while (1) { 3167 BitstreamEntry Entry = Stream.advance(); 3168 switch (Entry.Kind) { 3169 default: 3170 return error("Expect SubBlock"); 3171 case BitstreamEntry::SubBlock: 3172 switch (Entry.ID) { 3173 default: 3174 return error("Expect function block"); 3175 case bitc::FUNCTION_BLOCK_ID: 3176 if (std::error_code EC = rememberAndSkipFunctionBody()) 3177 return EC; 3178 NextUnreadBit = Stream.GetCurrentBitNo(); 3179 return std::error_code(); 3180 } 3181 } 3182 } 3183 } 3184 3185 std::error_code BitcodeReader::parseBitcodeVersion() { 3186 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 3187 return error("Invalid record"); 3188 3189 // Read all the records. 3190 SmallVector<uint64_t, 64> Record; 3191 while (1) { 3192 BitstreamEntry Entry = Stream.advance(); 3193 3194 switch (Entry.Kind) { 3195 default: 3196 case BitstreamEntry::Error: 3197 return error("Malformed block"); 3198 case BitstreamEntry::EndBlock: 3199 return std::error_code(); 3200 case BitstreamEntry::Record: 3201 // The interesting case. 3202 break; 3203 } 3204 3205 // Read a record. 3206 Record.clear(); 3207 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3208 switch (BitCode) { 3209 default: // Default behavior: reject 3210 return error("Invalid value"); 3211 case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION: [strchr x 3212 // N] 3213 convertToString(Record, 0, ProducerIdentification); 3214 break; 3215 } 3216 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 3217 unsigned epoch = (unsigned)Record[0]; 3218 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 3219 return error( 3220 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 3221 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 3222 } 3223 } 3224 } 3225 } 3226 } 3227 3228 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit, 3229 bool ShouldLazyLoadMetadata) { 3230 if (ResumeBit) 3231 Stream.JumpToBit(ResumeBit); 3232 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3233 return error("Invalid record"); 3234 3235 SmallVector<uint64_t, 64> Record; 3236 std::vector<std::string> SectionTable; 3237 std::vector<std::string> GCTable; 3238 3239 // Read all the records for this module. 3240 while (1) { 3241 BitstreamEntry Entry = Stream.advance(); 3242 3243 switch (Entry.Kind) { 3244 case BitstreamEntry::Error: 3245 return error("Malformed block"); 3246 case BitstreamEntry::EndBlock: 3247 return globalCleanup(); 3248 3249 case BitstreamEntry::SubBlock: 3250 switch (Entry.ID) { 3251 default: // Skip unknown content. 3252 if (Stream.SkipBlock()) 3253 return error("Invalid record"); 3254 break; 3255 case bitc::BLOCKINFO_BLOCK_ID: 3256 if (Stream.ReadBlockInfoBlock()) 3257 return error("Malformed block"); 3258 break; 3259 case bitc::PARAMATTR_BLOCK_ID: 3260 if (std::error_code EC = parseAttributeBlock()) 3261 return EC; 3262 break; 3263 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3264 if (std::error_code EC = parseAttributeGroupBlock()) 3265 return EC; 3266 break; 3267 case bitc::TYPE_BLOCK_ID_NEW: 3268 if (std::error_code EC = parseTypeTable()) 3269 return EC; 3270 break; 3271 case bitc::VALUE_SYMTAB_BLOCK_ID: 3272 if (!SeenValueSymbolTable) { 3273 // Either this is an old form VST without function index and an 3274 // associated VST forward declaration record (which would have caused 3275 // the VST to be jumped to and parsed before it was encountered 3276 // normally in the stream), or there were no function blocks to 3277 // trigger an earlier parsing of the VST. 3278 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3279 if (std::error_code EC = parseValueSymbolTable()) 3280 return EC; 3281 SeenValueSymbolTable = true; 3282 } else { 3283 // We must have had a VST forward declaration record, which caused 3284 // the parser to jump to and parse the VST earlier. 3285 assert(VSTOffset > 0); 3286 if (Stream.SkipBlock()) 3287 return error("Invalid record"); 3288 } 3289 break; 3290 case bitc::CONSTANTS_BLOCK_ID: 3291 if (std::error_code EC = parseConstants()) 3292 return EC; 3293 if (std::error_code EC = resolveGlobalAndAliasInits()) 3294 return EC; 3295 break; 3296 case bitc::METADATA_BLOCK_ID: 3297 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 3298 if (std::error_code EC = rememberAndSkipMetadata()) 3299 return EC; 3300 break; 3301 } 3302 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3303 if (std::error_code EC = parseMetadata(true)) 3304 return EC; 3305 break; 3306 case bitc::METADATA_KIND_BLOCK_ID: 3307 if (std::error_code EC = parseMetadataKinds()) 3308 return EC; 3309 break; 3310 case bitc::FUNCTION_BLOCK_ID: 3311 // If this is the first function body we've seen, reverse the 3312 // FunctionsWithBodies list. 3313 if (!SeenFirstFunctionBody) { 3314 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3315 if (std::error_code EC = globalCleanup()) 3316 return EC; 3317 SeenFirstFunctionBody = true; 3318 } 3319 3320 if (VSTOffset > 0) { 3321 // If we have a VST forward declaration record, make sure we 3322 // parse the VST now if we haven't already. It is needed to 3323 // set up the DeferredFunctionInfo vector for lazy reading. 3324 if (!SeenValueSymbolTable) { 3325 if (std::error_code EC = 3326 BitcodeReader::parseValueSymbolTable(VSTOffset)) 3327 return EC; 3328 SeenValueSymbolTable = true; 3329 // Fall through so that we record the NextUnreadBit below. 3330 // This is necessary in case we have an anonymous function that 3331 // is later materialized. Since it will not have a VST entry we 3332 // need to fall back to the lazy parse to find its offset. 3333 } else { 3334 // If we have a VST forward declaration record, but have already 3335 // parsed the VST (just above, when the first function body was 3336 // encountered here), then we are resuming the parse after 3337 // materializing functions. The ResumeBit points to the 3338 // start of the last function block recorded in the 3339 // DeferredFunctionInfo map. Skip it. 3340 if (Stream.SkipBlock()) 3341 return error("Invalid record"); 3342 continue; 3343 } 3344 } 3345 3346 // Support older bitcode files that did not have the function 3347 // index in the VST, nor a VST forward declaration record, as 3348 // well as anonymous functions that do not have VST entries. 3349 // Build the DeferredFunctionInfo vector on the fly. 3350 if (std::error_code EC = rememberAndSkipFunctionBody()) 3351 return EC; 3352 3353 // Suspend parsing when we reach the function bodies. Subsequent 3354 // materialization calls will resume it when necessary. If the bitcode 3355 // file is old, the symbol table will be at the end instead and will not 3356 // have been seen yet. In this case, just finish the parse now. 3357 if (SeenValueSymbolTable) { 3358 NextUnreadBit = Stream.GetCurrentBitNo(); 3359 return std::error_code(); 3360 } 3361 break; 3362 case bitc::USELIST_BLOCK_ID: 3363 if (std::error_code EC = parseUseLists()) 3364 return EC; 3365 break; 3366 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3367 if (std::error_code EC = parseOperandBundleTags()) 3368 return EC; 3369 break; 3370 } 3371 continue; 3372 3373 case BitstreamEntry::Record: 3374 // The interesting case. 3375 break; 3376 } 3377 3378 3379 // Read a record. 3380 auto BitCode = Stream.readRecord(Entry.ID, Record); 3381 switch (BitCode) { 3382 default: break; // Default behavior, ignore unknown content. 3383 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 3384 if (Record.size() < 1) 3385 return error("Invalid record"); 3386 // Only version #0 and #1 are supported so far. 3387 unsigned module_version = Record[0]; 3388 switch (module_version) { 3389 default: 3390 return error("Invalid value"); 3391 case 0: 3392 UseRelativeIDs = false; 3393 break; 3394 case 1: 3395 UseRelativeIDs = true; 3396 break; 3397 } 3398 break; 3399 } 3400 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3401 std::string S; 3402 if (convertToString(Record, 0, S)) 3403 return error("Invalid record"); 3404 TheModule->setTargetTriple(S); 3405 break; 3406 } 3407 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3408 std::string S; 3409 if (convertToString(Record, 0, S)) 3410 return error("Invalid record"); 3411 TheModule->setDataLayout(S); 3412 break; 3413 } 3414 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3415 std::string S; 3416 if (convertToString(Record, 0, S)) 3417 return error("Invalid record"); 3418 TheModule->setModuleInlineAsm(S); 3419 break; 3420 } 3421 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3422 // FIXME: Remove in 4.0. 3423 std::string S; 3424 if (convertToString(Record, 0, S)) 3425 return error("Invalid record"); 3426 // Ignore value. 3427 break; 3428 } 3429 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3430 std::string S; 3431 if (convertToString(Record, 0, S)) 3432 return error("Invalid record"); 3433 SectionTable.push_back(S); 3434 break; 3435 } 3436 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3437 std::string S; 3438 if (convertToString(Record, 0, S)) 3439 return error("Invalid record"); 3440 GCTable.push_back(S); 3441 break; 3442 } 3443 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 3444 if (Record.size() < 2) 3445 return error("Invalid record"); 3446 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3447 unsigned ComdatNameSize = Record[1]; 3448 std::string ComdatName; 3449 ComdatName.reserve(ComdatNameSize); 3450 for (unsigned i = 0; i != ComdatNameSize; ++i) 3451 ComdatName += (char)Record[2 + i]; 3452 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 3453 C->setSelectionKind(SK); 3454 ComdatList.push_back(C); 3455 break; 3456 } 3457 // GLOBALVAR: [pointer type, isconst, initid, 3458 // linkage, alignment, section, visibility, threadlocal, 3459 // unnamed_addr, externally_initialized, dllstorageclass, 3460 // comdat] 3461 case bitc::MODULE_CODE_GLOBALVAR: { 3462 if (Record.size() < 6) 3463 return error("Invalid record"); 3464 Type *Ty = getTypeByID(Record[0]); 3465 if (!Ty) 3466 return error("Invalid record"); 3467 bool isConstant = Record[1] & 1; 3468 bool explicitType = Record[1] & 2; 3469 unsigned AddressSpace; 3470 if (explicitType) { 3471 AddressSpace = Record[1] >> 2; 3472 } else { 3473 if (!Ty->isPointerTy()) 3474 return error("Invalid type for value"); 3475 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3476 Ty = cast<PointerType>(Ty)->getElementType(); 3477 } 3478 3479 uint64_t RawLinkage = Record[3]; 3480 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3481 unsigned Alignment; 3482 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 3483 return EC; 3484 std::string Section; 3485 if (Record[5]) { 3486 if (Record[5]-1 >= SectionTable.size()) 3487 return error("Invalid ID"); 3488 Section = SectionTable[Record[5]-1]; 3489 } 3490 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3491 // Local linkage must have default visibility. 3492 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3493 // FIXME: Change to an error if non-default in 4.0. 3494 Visibility = getDecodedVisibility(Record[6]); 3495 3496 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3497 if (Record.size() > 7) 3498 TLM = getDecodedThreadLocalMode(Record[7]); 3499 3500 bool UnnamedAddr = false; 3501 if (Record.size() > 8) 3502 UnnamedAddr = Record[8]; 3503 3504 bool ExternallyInitialized = false; 3505 if (Record.size() > 9) 3506 ExternallyInitialized = Record[9]; 3507 3508 GlobalVariable *NewGV = 3509 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 3510 TLM, AddressSpace, ExternallyInitialized); 3511 NewGV->setAlignment(Alignment); 3512 if (!Section.empty()) 3513 NewGV->setSection(Section); 3514 NewGV->setVisibility(Visibility); 3515 NewGV->setUnnamedAddr(UnnamedAddr); 3516 3517 if (Record.size() > 10) 3518 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3519 else 3520 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3521 3522 ValueList.push_back(NewGV); 3523 3524 // Remember which value to use for the global initializer. 3525 if (unsigned InitID = Record[2]) 3526 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 3527 3528 if (Record.size() > 11) { 3529 if (unsigned ComdatID = Record[11]) { 3530 if (ComdatID > ComdatList.size()) 3531 return error("Invalid global variable comdat ID"); 3532 NewGV->setComdat(ComdatList[ComdatID - 1]); 3533 } 3534 } else if (hasImplicitComdat(RawLinkage)) { 3535 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3536 } 3537 break; 3538 } 3539 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 3540 // alignment, section, visibility, gc, unnamed_addr, 3541 // prologuedata, dllstorageclass, comdat, prefixdata] 3542 case bitc::MODULE_CODE_FUNCTION: { 3543 if (Record.size() < 8) 3544 return error("Invalid record"); 3545 Type *Ty = getTypeByID(Record[0]); 3546 if (!Ty) 3547 return error("Invalid record"); 3548 if (auto *PTy = dyn_cast<PointerType>(Ty)) 3549 Ty = PTy->getElementType(); 3550 auto *FTy = dyn_cast<FunctionType>(Ty); 3551 if (!FTy) 3552 return error("Invalid type for value"); 3553 auto CC = static_cast<CallingConv::ID>(Record[1]); 3554 if (CC & ~CallingConv::MaxID) 3555 return error("Invalid calling convention ID"); 3556 3557 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3558 "", TheModule); 3559 3560 Func->setCallingConv(CC); 3561 bool isProto = Record[2]; 3562 uint64_t RawLinkage = Record[3]; 3563 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3564 Func->setAttributes(getAttributes(Record[4])); 3565 3566 unsigned Alignment; 3567 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 3568 return EC; 3569 Func->setAlignment(Alignment); 3570 if (Record[6]) { 3571 if (Record[6]-1 >= SectionTable.size()) 3572 return error("Invalid ID"); 3573 Func->setSection(SectionTable[Record[6]-1]); 3574 } 3575 // Local linkage must have default visibility. 3576 if (!Func->hasLocalLinkage()) 3577 // FIXME: Change to an error if non-default in 4.0. 3578 Func->setVisibility(getDecodedVisibility(Record[7])); 3579 if (Record.size() > 8 && Record[8]) { 3580 if (Record[8]-1 >= GCTable.size()) 3581 return error("Invalid ID"); 3582 Func->setGC(GCTable[Record[8]-1].c_str()); 3583 } 3584 bool UnnamedAddr = false; 3585 if (Record.size() > 9) 3586 UnnamedAddr = Record[9]; 3587 Func->setUnnamedAddr(UnnamedAddr); 3588 if (Record.size() > 10 && Record[10] != 0) 3589 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3590 3591 if (Record.size() > 11) 3592 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3593 else 3594 upgradeDLLImportExportLinkage(Func, RawLinkage); 3595 3596 if (Record.size() > 12) { 3597 if (unsigned ComdatID = Record[12]) { 3598 if (ComdatID > ComdatList.size()) 3599 return error("Invalid function comdat ID"); 3600 Func->setComdat(ComdatList[ComdatID - 1]); 3601 } 3602 } else if (hasImplicitComdat(RawLinkage)) { 3603 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3604 } 3605 3606 if (Record.size() > 13 && Record[13] != 0) 3607 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3608 3609 if (Record.size() > 14 && Record[14] != 0) 3610 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3611 3612 ValueList.push_back(Func); 3613 3614 // If this is a function with a body, remember the prototype we are 3615 // creating now, so that we can match up the body with them later. 3616 if (!isProto) { 3617 Func->setIsMaterializable(true); 3618 FunctionsWithBodies.push_back(Func); 3619 DeferredFunctionInfo[Func] = 0; 3620 } 3621 break; 3622 } 3623 // ALIAS: [alias type, addrspace, aliasee val#, linkage] 3624 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3625 case bitc::MODULE_CODE_ALIAS: 3626 case bitc::MODULE_CODE_ALIAS_OLD: { 3627 bool NewRecord = BitCode == bitc::MODULE_CODE_ALIAS; 3628 if (Record.size() < (3 + (unsigned)NewRecord)) 3629 return error("Invalid record"); 3630 unsigned OpNum = 0; 3631 Type *Ty = getTypeByID(Record[OpNum++]); 3632 if (!Ty) 3633 return error("Invalid record"); 3634 3635 unsigned AddrSpace; 3636 if (!NewRecord) { 3637 auto *PTy = dyn_cast<PointerType>(Ty); 3638 if (!PTy) 3639 return error("Invalid type for value"); 3640 Ty = PTy->getElementType(); 3641 AddrSpace = PTy->getAddressSpace(); 3642 } else { 3643 AddrSpace = Record[OpNum++]; 3644 } 3645 3646 auto Val = Record[OpNum++]; 3647 auto Linkage = Record[OpNum++]; 3648 auto *NewGA = GlobalAlias::create( 3649 Ty, AddrSpace, getDecodedLinkage(Linkage), "", TheModule); 3650 // Old bitcode files didn't have visibility field. 3651 // Local linkage must have default visibility. 3652 if (OpNum != Record.size()) { 3653 auto VisInd = OpNum++; 3654 if (!NewGA->hasLocalLinkage()) 3655 // FIXME: Change to an error if non-default in 4.0. 3656 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3657 } 3658 if (OpNum != Record.size()) 3659 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3660 else 3661 upgradeDLLImportExportLinkage(NewGA, Linkage); 3662 if (OpNum != Record.size()) 3663 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3664 if (OpNum != Record.size()) 3665 NewGA->setUnnamedAddr(Record[OpNum++]); 3666 ValueList.push_back(NewGA); 3667 AliasInits.push_back(std::make_pair(NewGA, Val)); 3668 break; 3669 } 3670 /// MODULE_CODE_PURGEVALS: [numvals] 3671 case bitc::MODULE_CODE_PURGEVALS: 3672 // Trim down the value list to the specified size. 3673 if (Record.size() < 1 || Record[0] > ValueList.size()) 3674 return error("Invalid record"); 3675 ValueList.shrinkTo(Record[0]); 3676 break; 3677 /// MODULE_CODE_VSTOFFSET: [offset] 3678 case bitc::MODULE_CODE_VSTOFFSET: 3679 if (Record.size() < 1) 3680 return error("Invalid record"); 3681 VSTOffset = Record[0]; 3682 break; 3683 /// MODULE_CODE_METADATA_VALUES: [numvals] 3684 case bitc::MODULE_CODE_METADATA_VALUES: 3685 if (Record.size() < 1) 3686 return error("Invalid record"); 3687 assert(!IsMetadataMaterialized); 3688 // This record contains the number of metadata values in the module-level 3689 // METADATA_BLOCK. It is used to support lazy parsing of metadata as 3690 // a postpass, where we will parse function-level metadata first. 3691 // This is needed because the ids of metadata are assigned implicitly 3692 // based on their ordering in the bitcode, with the function-level 3693 // metadata ids starting after the module-level metadata ids. Otherwise, 3694 // we would have to parse the module-level metadata block to prime the 3695 // MetadataList when we are lazy loading metadata during function 3696 // importing. Initialize the MetadataList size here based on the 3697 // record value, regardless of whether we are doing lazy metadata 3698 // loading, so that we have consistent handling and assertion 3699 // checking in parseMetadata for module-level metadata. 3700 NumModuleMDs = Record[0]; 3701 SeenModuleValuesRecord = true; 3702 assert(MetadataList.size() == 0); 3703 MetadataList.resize(NumModuleMDs); 3704 break; 3705 } 3706 Record.clear(); 3707 } 3708 } 3709 3710 /// Helper to read the header common to all bitcode files. 3711 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 3712 // Sniff for the signature. 3713 if (Stream.Read(8) != 'B' || 3714 Stream.Read(8) != 'C' || 3715 Stream.Read(4) != 0x0 || 3716 Stream.Read(4) != 0xC || 3717 Stream.Read(4) != 0xE || 3718 Stream.Read(4) != 0xD) 3719 return false; 3720 return true; 3721 } 3722 3723 std::error_code 3724 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 3725 Module *M, bool ShouldLazyLoadMetadata) { 3726 TheModule = M; 3727 3728 if (std::error_code EC = initStream(std::move(Streamer))) 3729 return EC; 3730 3731 // Sniff for the signature. 3732 if (!hasValidBitcodeHeader(Stream)) 3733 return error("Invalid bitcode signature"); 3734 3735 // We expect a number of well-defined blocks, though we don't necessarily 3736 // need to understand them all. 3737 while (1) { 3738 if (Stream.AtEndOfStream()) { 3739 // We didn't really read a proper Module. 3740 return error("Malformed IR file"); 3741 } 3742 3743 BitstreamEntry Entry = 3744 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 3745 3746 if (Entry.Kind != BitstreamEntry::SubBlock) 3747 return error("Malformed block"); 3748 3749 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3750 parseBitcodeVersion(); 3751 continue; 3752 } 3753 3754 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3755 return parseModule(0, ShouldLazyLoadMetadata); 3756 3757 if (Stream.SkipBlock()) 3758 return error("Invalid record"); 3759 } 3760 } 3761 3762 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 3763 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3764 return error("Invalid record"); 3765 3766 SmallVector<uint64_t, 64> Record; 3767 3768 std::string Triple; 3769 // Read all the records for this module. 3770 while (1) { 3771 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3772 3773 switch (Entry.Kind) { 3774 case BitstreamEntry::SubBlock: // Handled for us already. 3775 case BitstreamEntry::Error: 3776 return error("Malformed block"); 3777 case BitstreamEntry::EndBlock: 3778 return Triple; 3779 case BitstreamEntry::Record: 3780 // The interesting case. 3781 break; 3782 } 3783 3784 // Read a record. 3785 switch (Stream.readRecord(Entry.ID, Record)) { 3786 default: break; // Default behavior, ignore unknown content. 3787 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3788 std::string S; 3789 if (convertToString(Record, 0, S)) 3790 return error("Invalid record"); 3791 Triple = S; 3792 break; 3793 } 3794 } 3795 Record.clear(); 3796 } 3797 llvm_unreachable("Exit infinite loop"); 3798 } 3799 3800 ErrorOr<std::string> BitcodeReader::parseTriple() { 3801 if (std::error_code EC = initStream(nullptr)) 3802 return EC; 3803 3804 // Sniff for the signature. 3805 if (!hasValidBitcodeHeader(Stream)) 3806 return error("Invalid bitcode signature"); 3807 3808 // We expect a number of well-defined blocks, though we don't necessarily 3809 // need to understand them all. 3810 while (1) { 3811 BitstreamEntry Entry = Stream.advance(); 3812 3813 switch (Entry.Kind) { 3814 case BitstreamEntry::Error: 3815 return error("Malformed block"); 3816 case BitstreamEntry::EndBlock: 3817 return std::error_code(); 3818 3819 case BitstreamEntry::SubBlock: 3820 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3821 return parseModuleTriple(); 3822 3823 // Ignore other sub-blocks. 3824 if (Stream.SkipBlock()) 3825 return error("Malformed block"); 3826 continue; 3827 3828 case BitstreamEntry::Record: 3829 Stream.skipRecord(Entry.ID); 3830 continue; 3831 } 3832 } 3833 } 3834 3835 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() { 3836 if (std::error_code EC = initStream(nullptr)) 3837 return EC; 3838 3839 // Sniff for the signature. 3840 if (!hasValidBitcodeHeader(Stream)) 3841 return error("Invalid bitcode signature"); 3842 3843 // We expect a number of well-defined blocks, though we don't necessarily 3844 // need to understand them all. 3845 while (1) { 3846 BitstreamEntry Entry = Stream.advance(); 3847 switch (Entry.Kind) { 3848 case BitstreamEntry::Error: 3849 return error("Malformed block"); 3850 case BitstreamEntry::EndBlock: 3851 return std::error_code(); 3852 3853 case BitstreamEntry::SubBlock: 3854 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3855 if (std::error_code EC = parseBitcodeVersion()) 3856 return EC; 3857 return ProducerIdentification; 3858 } 3859 // Ignore other sub-blocks. 3860 if (Stream.SkipBlock()) 3861 return error("Malformed block"); 3862 continue; 3863 case BitstreamEntry::Record: 3864 Stream.skipRecord(Entry.ID); 3865 continue; 3866 } 3867 } 3868 } 3869 3870 /// Parse metadata attachments. 3871 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) { 3872 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 3873 return error("Invalid record"); 3874 3875 SmallVector<uint64_t, 64> Record; 3876 while (1) { 3877 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3878 3879 switch (Entry.Kind) { 3880 case BitstreamEntry::SubBlock: // Handled for us already. 3881 case BitstreamEntry::Error: 3882 return error("Malformed block"); 3883 case BitstreamEntry::EndBlock: 3884 return std::error_code(); 3885 case BitstreamEntry::Record: 3886 // The interesting case. 3887 break; 3888 } 3889 3890 // Read a metadata attachment record. 3891 Record.clear(); 3892 switch (Stream.readRecord(Entry.ID, Record)) { 3893 default: // Default behavior: ignore. 3894 break; 3895 case bitc::METADATA_ATTACHMENT: { 3896 unsigned RecordLength = Record.size(); 3897 if (Record.empty()) 3898 return error("Invalid record"); 3899 if (RecordLength % 2 == 0) { 3900 // A function attachment. 3901 for (unsigned I = 0; I != RecordLength; I += 2) { 3902 auto K = MDKindMap.find(Record[I]); 3903 if (K == MDKindMap.end()) 3904 return error("Invalid ID"); 3905 Metadata *MD = MetadataList.getValueFwdRef(Record[I + 1]); 3906 F.setMetadata(K->second, cast<MDNode>(MD)); 3907 } 3908 continue; 3909 } 3910 3911 // An instruction attachment. 3912 Instruction *Inst = InstructionList[Record[0]]; 3913 for (unsigned i = 1; i != RecordLength; i = i+2) { 3914 unsigned Kind = Record[i]; 3915 DenseMap<unsigned, unsigned>::iterator I = 3916 MDKindMap.find(Kind); 3917 if (I == MDKindMap.end()) 3918 return error("Invalid ID"); 3919 Metadata *Node = MetadataList.getValueFwdRef(Record[i + 1]); 3920 if (isa<LocalAsMetadata>(Node)) 3921 // Drop the attachment. This used to be legal, but there's no 3922 // upgrade path. 3923 break; 3924 Inst->setMetadata(I->second, cast<MDNode>(Node)); 3925 if (I->second == LLVMContext::MD_tbaa) 3926 InstsWithTBAATag.push_back(Inst); 3927 } 3928 break; 3929 } 3930 } 3931 } 3932 } 3933 3934 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3935 LLVMContext &Context = PtrType->getContext(); 3936 if (!isa<PointerType>(PtrType)) 3937 return error(Context, "Load/Store operand is not a pointer type"); 3938 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3939 3940 if (ValType && ValType != ElemType) 3941 return error(Context, "Explicit load/store type does not match pointee " 3942 "type of pointer operand"); 3943 if (!PointerType::isLoadableOrStorableType(ElemType)) 3944 return error(Context, "Cannot load/store from pointer"); 3945 return std::error_code(); 3946 } 3947 3948 /// Lazily parse the specified function body block. 3949 std::error_code BitcodeReader::parseFunctionBody(Function *F) { 3950 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3951 return error("Invalid record"); 3952 3953 InstructionList.clear(); 3954 unsigned ModuleValueListSize = ValueList.size(); 3955 unsigned ModuleMetadataListSize = MetadataList.size(); 3956 3957 // Add all the function arguments to the value table. 3958 for (Argument &I : F->args()) 3959 ValueList.push_back(&I); 3960 3961 unsigned NextValueNo = ValueList.size(); 3962 BasicBlock *CurBB = nullptr; 3963 unsigned CurBBNo = 0; 3964 3965 DebugLoc LastLoc; 3966 auto getLastInstruction = [&]() -> Instruction * { 3967 if (CurBB && !CurBB->empty()) 3968 return &CurBB->back(); 3969 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3970 !FunctionBBs[CurBBNo - 1]->empty()) 3971 return &FunctionBBs[CurBBNo - 1]->back(); 3972 return nullptr; 3973 }; 3974 3975 std::vector<OperandBundleDef> OperandBundles; 3976 3977 // Read all the records. 3978 SmallVector<uint64_t, 64> Record; 3979 while (1) { 3980 BitstreamEntry Entry = Stream.advance(); 3981 3982 switch (Entry.Kind) { 3983 case BitstreamEntry::Error: 3984 return error("Malformed block"); 3985 case BitstreamEntry::EndBlock: 3986 goto OutOfRecordLoop; 3987 3988 case BitstreamEntry::SubBlock: 3989 switch (Entry.ID) { 3990 default: // Skip unknown content. 3991 if (Stream.SkipBlock()) 3992 return error("Invalid record"); 3993 break; 3994 case bitc::CONSTANTS_BLOCK_ID: 3995 if (std::error_code EC = parseConstants()) 3996 return EC; 3997 NextValueNo = ValueList.size(); 3998 break; 3999 case bitc::VALUE_SYMTAB_BLOCK_ID: 4000 if (std::error_code EC = parseValueSymbolTable()) 4001 return EC; 4002 break; 4003 case bitc::METADATA_ATTACHMENT_ID: 4004 if (std::error_code EC = parseMetadataAttachment(*F)) 4005 return EC; 4006 break; 4007 case bitc::METADATA_BLOCK_ID: 4008 if (std::error_code EC = parseMetadata()) 4009 return EC; 4010 break; 4011 case bitc::USELIST_BLOCK_ID: 4012 if (std::error_code EC = parseUseLists()) 4013 return EC; 4014 break; 4015 } 4016 continue; 4017 4018 case BitstreamEntry::Record: 4019 // The interesting case. 4020 break; 4021 } 4022 4023 // Read a record. 4024 Record.clear(); 4025 Instruction *I = nullptr; 4026 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 4027 switch (BitCode) { 4028 default: // Default behavior: reject 4029 return error("Invalid value"); 4030 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4031 if (Record.size() < 1 || Record[0] == 0) 4032 return error("Invalid record"); 4033 // Create all the basic blocks for the function. 4034 FunctionBBs.resize(Record[0]); 4035 4036 // See if anything took the address of blocks in this function. 4037 auto BBFRI = BasicBlockFwdRefs.find(F); 4038 if (BBFRI == BasicBlockFwdRefs.end()) { 4039 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 4040 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 4041 } else { 4042 auto &BBRefs = BBFRI->second; 4043 // Check for invalid basic block references. 4044 if (BBRefs.size() > FunctionBBs.size()) 4045 return error("Invalid ID"); 4046 assert(!BBRefs.empty() && "Unexpected empty array"); 4047 assert(!BBRefs.front() && "Invalid reference to entry block"); 4048 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4049 ++I) 4050 if (I < RE && BBRefs[I]) { 4051 BBRefs[I]->insertInto(F); 4052 FunctionBBs[I] = BBRefs[I]; 4053 } else { 4054 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4055 } 4056 4057 // Erase from the table. 4058 BasicBlockFwdRefs.erase(BBFRI); 4059 } 4060 4061 CurBB = FunctionBBs[0]; 4062 continue; 4063 } 4064 4065 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4066 // This record indicates that the last instruction is at the same 4067 // location as the previous instruction with a location. 4068 I = getLastInstruction(); 4069 4070 if (!I) 4071 return error("Invalid record"); 4072 I->setDebugLoc(LastLoc); 4073 I = nullptr; 4074 continue; 4075 4076 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4077 I = getLastInstruction(); 4078 if (!I || Record.size() < 4) 4079 return error("Invalid record"); 4080 4081 unsigned Line = Record[0], Col = Record[1]; 4082 unsigned ScopeID = Record[2], IAID = Record[3]; 4083 4084 MDNode *Scope = nullptr, *IA = nullptr; 4085 if (ScopeID) 4086 Scope = cast<MDNode>(MetadataList.getValueFwdRef(ScopeID - 1)); 4087 if (IAID) 4088 IA = cast<MDNode>(MetadataList.getValueFwdRef(IAID - 1)); 4089 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 4090 I->setDebugLoc(LastLoc); 4091 I = nullptr; 4092 continue; 4093 } 4094 4095 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4096 unsigned OpNum = 0; 4097 Value *LHS, *RHS; 4098 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4099 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4100 OpNum+1 > Record.size()) 4101 return error("Invalid record"); 4102 4103 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4104 if (Opc == -1) 4105 return error("Invalid record"); 4106 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4107 InstructionList.push_back(I); 4108 if (OpNum < Record.size()) { 4109 if (Opc == Instruction::Add || 4110 Opc == Instruction::Sub || 4111 Opc == Instruction::Mul || 4112 Opc == Instruction::Shl) { 4113 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4114 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4115 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4116 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4117 } else if (Opc == Instruction::SDiv || 4118 Opc == Instruction::UDiv || 4119 Opc == Instruction::LShr || 4120 Opc == Instruction::AShr) { 4121 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4122 cast<BinaryOperator>(I)->setIsExact(true); 4123 } else if (isa<FPMathOperator>(I)) { 4124 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4125 if (FMF.any()) 4126 I->setFastMathFlags(FMF); 4127 } 4128 4129 } 4130 break; 4131 } 4132 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4133 unsigned OpNum = 0; 4134 Value *Op; 4135 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4136 OpNum+2 != Record.size()) 4137 return error("Invalid record"); 4138 4139 Type *ResTy = getTypeByID(Record[OpNum]); 4140 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4141 if (Opc == -1 || !ResTy) 4142 return error("Invalid record"); 4143 Instruction *Temp = nullptr; 4144 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4145 if (Temp) { 4146 InstructionList.push_back(Temp); 4147 CurBB->getInstList().push_back(Temp); 4148 } 4149 } else { 4150 auto CastOp = (Instruction::CastOps)Opc; 4151 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4152 return error("Invalid cast"); 4153 I = CastInst::Create(CastOp, Op, ResTy); 4154 } 4155 InstructionList.push_back(I); 4156 break; 4157 } 4158 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4159 case bitc::FUNC_CODE_INST_GEP_OLD: 4160 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4161 unsigned OpNum = 0; 4162 4163 Type *Ty; 4164 bool InBounds; 4165 4166 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4167 InBounds = Record[OpNum++]; 4168 Ty = getTypeByID(Record[OpNum++]); 4169 } else { 4170 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4171 Ty = nullptr; 4172 } 4173 4174 Value *BasePtr; 4175 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4176 return error("Invalid record"); 4177 4178 if (!Ty) 4179 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 4180 ->getElementType(); 4181 else if (Ty != 4182 cast<SequentialType>(BasePtr->getType()->getScalarType()) 4183 ->getElementType()) 4184 return error( 4185 "Explicit gep type does not match pointee type of pointer operand"); 4186 4187 SmallVector<Value*, 16> GEPIdx; 4188 while (OpNum != Record.size()) { 4189 Value *Op; 4190 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4191 return error("Invalid record"); 4192 GEPIdx.push_back(Op); 4193 } 4194 4195 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4196 4197 InstructionList.push_back(I); 4198 if (InBounds) 4199 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4200 break; 4201 } 4202 4203 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4204 // EXTRACTVAL: [opty, opval, n x indices] 4205 unsigned OpNum = 0; 4206 Value *Agg; 4207 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4208 return error("Invalid record"); 4209 4210 unsigned RecSize = Record.size(); 4211 if (OpNum == RecSize) 4212 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4213 4214 SmallVector<unsigned, 4> EXTRACTVALIdx; 4215 Type *CurTy = Agg->getType(); 4216 for (; OpNum != RecSize; ++OpNum) { 4217 bool IsArray = CurTy->isArrayTy(); 4218 bool IsStruct = CurTy->isStructTy(); 4219 uint64_t Index = Record[OpNum]; 4220 4221 if (!IsStruct && !IsArray) 4222 return error("EXTRACTVAL: Invalid type"); 4223 if ((unsigned)Index != Index) 4224 return error("Invalid value"); 4225 if (IsStruct && Index >= CurTy->subtypes().size()) 4226 return error("EXTRACTVAL: Invalid struct index"); 4227 if (IsArray && Index >= CurTy->getArrayNumElements()) 4228 return error("EXTRACTVAL: Invalid array index"); 4229 EXTRACTVALIdx.push_back((unsigned)Index); 4230 4231 if (IsStruct) 4232 CurTy = CurTy->subtypes()[Index]; 4233 else 4234 CurTy = CurTy->subtypes()[0]; 4235 } 4236 4237 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4238 InstructionList.push_back(I); 4239 break; 4240 } 4241 4242 case bitc::FUNC_CODE_INST_INSERTVAL: { 4243 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4244 unsigned OpNum = 0; 4245 Value *Agg; 4246 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4247 return error("Invalid record"); 4248 Value *Val; 4249 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4250 return error("Invalid record"); 4251 4252 unsigned RecSize = Record.size(); 4253 if (OpNum == RecSize) 4254 return error("INSERTVAL: Invalid instruction with 0 indices"); 4255 4256 SmallVector<unsigned, 4> INSERTVALIdx; 4257 Type *CurTy = Agg->getType(); 4258 for (; OpNum != RecSize; ++OpNum) { 4259 bool IsArray = CurTy->isArrayTy(); 4260 bool IsStruct = CurTy->isStructTy(); 4261 uint64_t Index = Record[OpNum]; 4262 4263 if (!IsStruct && !IsArray) 4264 return error("INSERTVAL: Invalid type"); 4265 if ((unsigned)Index != Index) 4266 return error("Invalid value"); 4267 if (IsStruct && Index >= CurTy->subtypes().size()) 4268 return error("INSERTVAL: Invalid struct index"); 4269 if (IsArray && Index >= CurTy->getArrayNumElements()) 4270 return error("INSERTVAL: Invalid array index"); 4271 4272 INSERTVALIdx.push_back((unsigned)Index); 4273 if (IsStruct) 4274 CurTy = CurTy->subtypes()[Index]; 4275 else 4276 CurTy = CurTy->subtypes()[0]; 4277 } 4278 4279 if (CurTy != Val->getType()) 4280 return error("Inserted value type doesn't match aggregate type"); 4281 4282 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4283 InstructionList.push_back(I); 4284 break; 4285 } 4286 4287 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4288 // obsolete form of select 4289 // handles select i1 ... in old bitcode 4290 unsigned OpNum = 0; 4291 Value *TrueVal, *FalseVal, *Cond; 4292 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4293 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4294 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4295 return error("Invalid record"); 4296 4297 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4298 InstructionList.push_back(I); 4299 break; 4300 } 4301 4302 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4303 // new form of select 4304 // handles select i1 or select [N x i1] 4305 unsigned OpNum = 0; 4306 Value *TrueVal, *FalseVal, *Cond; 4307 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4308 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4309 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4310 return error("Invalid record"); 4311 4312 // select condition can be either i1 or [N x i1] 4313 if (VectorType* vector_type = 4314 dyn_cast<VectorType>(Cond->getType())) { 4315 // expect <n x i1> 4316 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4317 return error("Invalid type for value"); 4318 } else { 4319 // expect i1 4320 if (Cond->getType() != Type::getInt1Ty(Context)) 4321 return error("Invalid type for value"); 4322 } 4323 4324 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4325 InstructionList.push_back(I); 4326 break; 4327 } 4328 4329 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4330 unsigned OpNum = 0; 4331 Value *Vec, *Idx; 4332 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4333 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4334 return error("Invalid record"); 4335 if (!Vec->getType()->isVectorTy()) 4336 return error("Invalid type for value"); 4337 I = ExtractElementInst::Create(Vec, Idx); 4338 InstructionList.push_back(I); 4339 break; 4340 } 4341 4342 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4343 unsigned OpNum = 0; 4344 Value *Vec, *Elt, *Idx; 4345 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4346 return error("Invalid record"); 4347 if (!Vec->getType()->isVectorTy()) 4348 return error("Invalid type for value"); 4349 if (popValue(Record, OpNum, NextValueNo, 4350 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4351 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4352 return error("Invalid record"); 4353 I = InsertElementInst::Create(Vec, Elt, Idx); 4354 InstructionList.push_back(I); 4355 break; 4356 } 4357 4358 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4359 unsigned OpNum = 0; 4360 Value *Vec1, *Vec2, *Mask; 4361 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4362 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4363 return error("Invalid record"); 4364 4365 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4366 return error("Invalid record"); 4367 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4368 return error("Invalid type for value"); 4369 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4370 InstructionList.push_back(I); 4371 break; 4372 } 4373 4374 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4375 // Old form of ICmp/FCmp returning bool 4376 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4377 // both legal on vectors but had different behaviour. 4378 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4379 // FCmp/ICmp returning bool or vector of bool 4380 4381 unsigned OpNum = 0; 4382 Value *LHS, *RHS; 4383 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4384 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4385 return error("Invalid record"); 4386 4387 unsigned PredVal = Record[OpNum]; 4388 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4389 FastMathFlags FMF; 4390 if (IsFP && Record.size() > OpNum+1) 4391 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4392 4393 if (OpNum+1 != Record.size()) 4394 return error("Invalid record"); 4395 4396 if (LHS->getType()->isFPOrFPVectorTy()) 4397 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4398 else 4399 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4400 4401 if (FMF.any()) 4402 I->setFastMathFlags(FMF); 4403 InstructionList.push_back(I); 4404 break; 4405 } 4406 4407 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4408 { 4409 unsigned Size = Record.size(); 4410 if (Size == 0) { 4411 I = ReturnInst::Create(Context); 4412 InstructionList.push_back(I); 4413 break; 4414 } 4415 4416 unsigned OpNum = 0; 4417 Value *Op = nullptr; 4418 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4419 return error("Invalid record"); 4420 if (OpNum != Record.size()) 4421 return error("Invalid record"); 4422 4423 I = ReturnInst::Create(Context, Op); 4424 InstructionList.push_back(I); 4425 break; 4426 } 4427 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4428 if (Record.size() != 1 && Record.size() != 3) 4429 return error("Invalid record"); 4430 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4431 if (!TrueDest) 4432 return error("Invalid record"); 4433 4434 if (Record.size() == 1) { 4435 I = BranchInst::Create(TrueDest); 4436 InstructionList.push_back(I); 4437 } 4438 else { 4439 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4440 Value *Cond = getValue(Record, 2, NextValueNo, 4441 Type::getInt1Ty(Context)); 4442 if (!FalseDest || !Cond) 4443 return error("Invalid record"); 4444 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4445 InstructionList.push_back(I); 4446 } 4447 break; 4448 } 4449 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4450 if (Record.size() != 1 && Record.size() != 2) 4451 return error("Invalid record"); 4452 unsigned Idx = 0; 4453 Value *CleanupPad = 4454 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4455 if (!CleanupPad) 4456 return error("Invalid record"); 4457 BasicBlock *UnwindDest = nullptr; 4458 if (Record.size() == 2) { 4459 UnwindDest = getBasicBlock(Record[Idx++]); 4460 if (!UnwindDest) 4461 return error("Invalid record"); 4462 } 4463 4464 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4465 InstructionList.push_back(I); 4466 break; 4467 } 4468 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4469 if (Record.size() != 2) 4470 return error("Invalid record"); 4471 unsigned Idx = 0; 4472 Value *CatchPad = 4473 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4474 if (!CatchPad) 4475 return error("Invalid record"); 4476 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4477 if (!BB) 4478 return error("Invalid record"); 4479 4480 I = CatchReturnInst::Create(CatchPad, BB); 4481 InstructionList.push_back(I); 4482 break; 4483 } 4484 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4485 // We must have, at minimum, the outer scope and the number of arguments. 4486 if (Record.size() < 2) 4487 return error("Invalid record"); 4488 4489 unsigned Idx = 0; 4490 4491 Value *ParentPad = 4492 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4493 4494 unsigned NumHandlers = Record[Idx++]; 4495 4496 SmallVector<BasicBlock *, 2> Handlers; 4497 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4498 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4499 if (!BB) 4500 return error("Invalid record"); 4501 Handlers.push_back(BB); 4502 } 4503 4504 BasicBlock *UnwindDest = nullptr; 4505 if (Idx + 1 == Record.size()) { 4506 UnwindDest = getBasicBlock(Record[Idx++]); 4507 if (!UnwindDest) 4508 return error("Invalid record"); 4509 } 4510 4511 if (Record.size() != Idx) 4512 return error("Invalid record"); 4513 4514 auto *CatchSwitch = 4515 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4516 for (BasicBlock *Handler : Handlers) 4517 CatchSwitch->addHandler(Handler); 4518 I = CatchSwitch; 4519 InstructionList.push_back(I); 4520 break; 4521 } 4522 case bitc::FUNC_CODE_INST_CATCHPAD: 4523 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4524 // We must have, at minimum, the outer scope and the number of arguments. 4525 if (Record.size() < 2) 4526 return error("Invalid record"); 4527 4528 unsigned Idx = 0; 4529 4530 Value *ParentPad = 4531 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4532 4533 unsigned NumArgOperands = Record[Idx++]; 4534 4535 SmallVector<Value *, 2> Args; 4536 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4537 Value *Val; 4538 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4539 return error("Invalid record"); 4540 Args.push_back(Val); 4541 } 4542 4543 if (Record.size() != Idx) 4544 return error("Invalid record"); 4545 4546 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4547 I = CleanupPadInst::Create(ParentPad, Args); 4548 else 4549 I = CatchPadInst::Create(ParentPad, Args); 4550 InstructionList.push_back(I); 4551 break; 4552 } 4553 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4554 // Check magic 4555 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4556 // "New" SwitchInst format with case ranges. The changes to write this 4557 // format were reverted but we still recognize bitcode that uses it. 4558 // Hopefully someday we will have support for case ranges and can use 4559 // this format again. 4560 4561 Type *OpTy = getTypeByID(Record[1]); 4562 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4563 4564 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4565 BasicBlock *Default = getBasicBlock(Record[3]); 4566 if (!OpTy || !Cond || !Default) 4567 return error("Invalid record"); 4568 4569 unsigned NumCases = Record[4]; 4570 4571 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4572 InstructionList.push_back(SI); 4573 4574 unsigned CurIdx = 5; 4575 for (unsigned i = 0; i != NumCases; ++i) { 4576 SmallVector<ConstantInt*, 1> CaseVals; 4577 unsigned NumItems = Record[CurIdx++]; 4578 for (unsigned ci = 0; ci != NumItems; ++ci) { 4579 bool isSingleNumber = Record[CurIdx++]; 4580 4581 APInt Low; 4582 unsigned ActiveWords = 1; 4583 if (ValueBitWidth > 64) 4584 ActiveWords = Record[CurIdx++]; 4585 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4586 ValueBitWidth); 4587 CurIdx += ActiveWords; 4588 4589 if (!isSingleNumber) { 4590 ActiveWords = 1; 4591 if (ValueBitWidth > 64) 4592 ActiveWords = Record[CurIdx++]; 4593 APInt High = readWideAPInt( 4594 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4595 CurIdx += ActiveWords; 4596 4597 // FIXME: It is not clear whether values in the range should be 4598 // compared as signed or unsigned values. The partially 4599 // implemented changes that used this format in the past used 4600 // unsigned comparisons. 4601 for ( ; Low.ule(High); ++Low) 4602 CaseVals.push_back(ConstantInt::get(Context, Low)); 4603 } else 4604 CaseVals.push_back(ConstantInt::get(Context, Low)); 4605 } 4606 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4607 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4608 cve = CaseVals.end(); cvi != cve; ++cvi) 4609 SI->addCase(*cvi, DestBB); 4610 } 4611 I = SI; 4612 break; 4613 } 4614 4615 // Old SwitchInst format without case ranges. 4616 4617 if (Record.size() < 3 || (Record.size() & 1) == 0) 4618 return error("Invalid record"); 4619 Type *OpTy = getTypeByID(Record[0]); 4620 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4621 BasicBlock *Default = getBasicBlock(Record[2]); 4622 if (!OpTy || !Cond || !Default) 4623 return error("Invalid record"); 4624 unsigned NumCases = (Record.size()-3)/2; 4625 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4626 InstructionList.push_back(SI); 4627 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4628 ConstantInt *CaseVal = 4629 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4630 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4631 if (!CaseVal || !DestBB) { 4632 delete SI; 4633 return error("Invalid record"); 4634 } 4635 SI->addCase(CaseVal, DestBB); 4636 } 4637 I = SI; 4638 break; 4639 } 4640 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4641 if (Record.size() < 2) 4642 return error("Invalid record"); 4643 Type *OpTy = getTypeByID(Record[0]); 4644 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4645 if (!OpTy || !Address) 4646 return error("Invalid record"); 4647 unsigned NumDests = Record.size()-2; 4648 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4649 InstructionList.push_back(IBI); 4650 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4651 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4652 IBI->addDestination(DestBB); 4653 } else { 4654 delete IBI; 4655 return error("Invalid record"); 4656 } 4657 } 4658 I = IBI; 4659 break; 4660 } 4661 4662 case bitc::FUNC_CODE_INST_INVOKE: { 4663 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4664 if (Record.size() < 4) 4665 return error("Invalid record"); 4666 unsigned OpNum = 0; 4667 AttributeSet PAL = getAttributes(Record[OpNum++]); 4668 unsigned CCInfo = Record[OpNum++]; 4669 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4670 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4671 4672 FunctionType *FTy = nullptr; 4673 if (CCInfo >> 13 & 1 && 4674 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4675 return error("Explicit invoke type is not a function type"); 4676 4677 Value *Callee; 4678 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4679 return error("Invalid record"); 4680 4681 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4682 if (!CalleeTy) 4683 return error("Callee is not a pointer"); 4684 if (!FTy) { 4685 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4686 if (!FTy) 4687 return error("Callee is not of pointer to function type"); 4688 } else if (CalleeTy->getElementType() != FTy) 4689 return error("Explicit invoke type does not match pointee type of " 4690 "callee operand"); 4691 if (Record.size() < FTy->getNumParams() + OpNum) 4692 return error("Insufficient operands to call"); 4693 4694 SmallVector<Value*, 16> Ops; 4695 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4696 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4697 FTy->getParamType(i))); 4698 if (!Ops.back()) 4699 return error("Invalid record"); 4700 } 4701 4702 if (!FTy->isVarArg()) { 4703 if (Record.size() != OpNum) 4704 return error("Invalid record"); 4705 } else { 4706 // Read type/value pairs for varargs params. 4707 while (OpNum != Record.size()) { 4708 Value *Op; 4709 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4710 return error("Invalid record"); 4711 Ops.push_back(Op); 4712 } 4713 } 4714 4715 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 4716 OperandBundles.clear(); 4717 InstructionList.push_back(I); 4718 cast<InvokeInst>(I)->setCallingConv( 4719 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4720 cast<InvokeInst>(I)->setAttributes(PAL); 4721 break; 4722 } 4723 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4724 unsigned Idx = 0; 4725 Value *Val = nullptr; 4726 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4727 return error("Invalid record"); 4728 I = ResumeInst::Create(Val); 4729 InstructionList.push_back(I); 4730 break; 4731 } 4732 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4733 I = new UnreachableInst(Context); 4734 InstructionList.push_back(I); 4735 break; 4736 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4737 if (Record.size() < 1 || ((Record.size()-1)&1)) 4738 return error("Invalid record"); 4739 Type *Ty = getTypeByID(Record[0]); 4740 if (!Ty) 4741 return error("Invalid record"); 4742 4743 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4744 InstructionList.push_back(PN); 4745 4746 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4747 Value *V; 4748 // With the new function encoding, it is possible that operands have 4749 // negative IDs (for forward references). Use a signed VBR 4750 // representation to keep the encoding small. 4751 if (UseRelativeIDs) 4752 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4753 else 4754 V = getValue(Record, 1+i, NextValueNo, Ty); 4755 BasicBlock *BB = getBasicBlock(Record[2+i]); 4756 if (!V || !BB) 4757 return error("Invalid record"); 4758 PN->addIncoming(V, BB); 4759 } 4760 I = PN; 4761 break; 4762 } 4763 4764 case bitc::FUNC_CODE_INST_LANDINGPAD: 4765 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4766 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4767 unsigned Idx = 0; 4768 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4769 if (Record.size() < 3) 4770 return error("Invalid record"); 4771 } else { 4772 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4773 if (Record.size() < 4) 4774 return error("Invalid record"); 4775 } 4776 Type *Ty = getTypeByID(Record[Idx++]); 4777 if (!Ty) 4778 return error("Invalid record"); 4779 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4780 Value *PersFn = nullptr; 4781 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4782 return error("Invalid record"); 4783 4784 if (!F->hasPersonalityFn()) 4785 F->setPersonalityFn(cast<Constant>(PersFn)); 4786 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4787 return error("Personality function mismatch"); 4788 } 4789 4790 bool IsCleanup = !!Record[Idx++]; 4791 unsigned NumClauses = Record[Idx++]; 4792 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4793 LP->setCleanup(IsCleanup); 4794 for (unsigned J = 0; J != NumClauses; ++J) { 4795 LandingPadInst::ClauseType CT = 4796 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4797 Value *Val; 4798 4799 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4800 delete LP; 4801 return error("Invalid record"); 4802 } 4803 4804 assert((CT != LandingPadInst::Catch || 4805 !isa<ArrayType>(Val->getType())) && 4806 "Catch clause has a invalid type!"); 4807 assert((CT != LandingPadInst::Filter || 4808 isa<ArrayType>(Val->getType())) && 4809 "Filter clause has invalid type!"); 4810 LP->addClause(cast<Constant>(Val)); 4811 } 4812 4813 I = LP; 4814 InstructionList.push_back(I); 4815 break; 4816 } 4817 4818 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4819 if (Record.size() != 4) 4820 return error("Invalid record"); 4821 uint64_t AlignRecord = Record[3]; 4822 const uint64_t InAllocaMask = uint64_t(1) << 5; 4823 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4824 // Reserve bit 7 for SwiftError flag. 4825 // const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4826 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask; 4827 bool InAlloca = AlignRecord & InAllocaMask; 4828 Type *Ty = getTypeByID(Record[0]); 4829 if ((AlignRecord & ExplicitTypeMask) == 0) { 4830 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4831 if (!PTy) 4832 return error("Old-style alloca with a non-pointer type"); 4833 Ty = PTy->getElementType(); 4834 } 4835 Type *OpTy = getTypeByID(Record[1]); 4836 Value *Size = getFnValueByID(Record[2], OpTy); 4837 unsigned Align; 4838 if (std::error_code EC = 4839 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4840 return EC; 4841 } 4842 if (!Ty || !Size) 4843 return error("Invalid record"); 4844 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 4845 AI->setUsedWithInAlloca(InAlloca); 4846 I = AI; 4847 InstructionList.push_back(I); 4848 break; 4849 } 4850 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4851 unsigned OpNum = 0; 4852 Value *Op; 4853 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4854 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4855 return error("Invalid record"); 4856 4857 Type *Ty = nullptr; 4858 if (OpNum + 3 == Record.size()) 4859 Ty = getTypeByID(Record[OpNum++]); 4860 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 4861 return EC; 4862 if (!Ty) 4863 Ty = cast<PointerType>(Op->getType())->getElementType(); 4864 4865 unsigned Align; 4866 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4867 return EC; 4868 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4869 4870 InstructionList.push_back(I); 4871 break; 4872 } 4873 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4874 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4875 unsigned OpNum = 0; 4876 Value *Op; 4877 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4878 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4879 return error("Invalid record"); 4880 4881 Type *Ty = nullptr; 4882 if (OpNum + 5 == Record.size()) 4883 Ty = getTypeByID(Record[OpNum++]); 4884 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 4885 return EC; 4886 if (!Ty) 4887 Ty = cast<PointerType>(Op->getType())->getElementType(); 4888 4889 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4890 if (Ordering == NotAtomic || Ordering == Release || 4891 Ordering == AcquireRelease) 4892 return error("Invalid record"); 4893 if (Ordering != NotAtomic && Record[OpNum] == 0) 4894 return error("Invalid record"); 4895 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4896 4897 unsigned Align; 4898 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4899 return EC; 4900 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4901 4902 InstructionList.push_back(I); 4903 break; 4904 } 4905 case bitc::FUNC_CODE_INST_STORE: 4906 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4907 unsigned OpNum = 0; 4908 Value *Val, *Ptr; 4909 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4910 (BitCode == bitc::FUNC_CODE_INST_STORE 4911 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4912 : popValue(Record, OpNum, NextValueNo, 4913 cast<PointerType>(Ptr->getType())->getElementType(), 4914 Val)) || 4915 OpNum + 2 != Record.size()) 4916 return error("Invalid record"); 4917 4918 if (std::error_code EC = 4919 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4920 return EC; 4921 unsigned Align; 4922 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4923 return EC; 4924 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4925 InstructionList.push_back(I); 4926 break; 4927 } 4928 case bitc::FUNC_CODE_INST_STOREATOMIC: 4929 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4930 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 4931 unsigned OpNum = 0; 4932 Value *Val, *Ptr; 4933 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4934 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4935 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4936 : popValue(Record, OpNum, NextValueNo, 4937 cast<PointerType>(Ptr->getType())->getElementType(), 4938 Val)) || 4939 OpNum + 4 != Record.size()) 4940 return error("Invalid record"); 4941 4942 if (std::error_code EC = 4943 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4944 return EC; 4945 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4946 if (Ordering == NotAtomic || Ordering == Acquire || 4947 Ordering == AcquireRelease) 4948 return error("Invalid record"); 4949 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4950 if (Ordering != NotAtomic && Record[OpNum] == 0) 4951 return error("Invalid record"); 4952 4953 unsigned Align; 4954 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4955 return EC; 4956 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 4957 InstructionList.push_back(I); 4958 break; 4959 } 4960 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4961 case bitc::FUNC_CODE_INST_CMPXCHG: { 4962 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 4963 // failureordering?, isweak?] 4964 unsigned OpNum = 0; 4965 Value *Ptr, *Cmp, *New; 4966 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4967 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4968 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4969 : popValue(Record, OpNum, NextValueNo, 4970 cast<PointerType>(Ptr->getType())->getElementType(), 4971 Cmp)) || 4972 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4973 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4974 return error("Invalid record"); 4975 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4976 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 4977 return error("Invalid record"); 4978 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 4979 4980 if (std::error_code EC = 4981 typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4982 return EC; 4983 AtomicOrdering FailureOrdering; 4984 if (Record.size() < 7) 4985 FailureOrdering = 4986 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4987 else 4988 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4989 4990 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4991 SynchScope); 4992 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4993 4994 if (Record.size() < 8) { 4995 // Before weak cmpxchgs existed, the instruction simply returned the 4996 // value loaded from memory, so bitcode files from that era will be 4997 // expecting the first component of a modern cmpxchg. 4998 CurBB->getInstList().push_back(I); 4999 I = ExtractValueInst::Create(I, 0); 5000 } else { 5001 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 5002 } 5003 5004 InstructionList.push_back(I); 5005 break; 5006 } 5007 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5008 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 5009 unsigned OpNum = 0; 5010 Value *Ptr, *Val; 5011 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5012 popValue(Record, OpNum, NextValueNo, 5013 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 5014 OpNum+4 != Record.size()) 5015 return error("Invalid record"); 5016 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 5017 if (Operation < AtomicRMWInst::FIRST_BINOP || 5018 Operation > AtomicRMWInst::LAST_BINOP) 5019 return error("Invalid record"); 5020 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5021 if (Ordering == NotAtomic || Ordering == Unordered) 5022 return error("Invalid record"); 5023 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5024 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 5025 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5026 InstructionList.push_back(I); 5027 break; 5028 } 5029 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 5030 if (2 != Record.size()) 5031 return error("Invalid record"); 5032 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5033 if (Ordering == NotAtomic || Ordering == Unordered || 5034 Ordering == Monotonic) 5035 return error("Invalid record"); 5036 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 5037 I = new FenceInst(Context, Ordering, SynchScope); 5038 InstructionList.push_back(I); 5039 break; 5040 } 5041 case bitc::FUNC_CODE_INST_CALL: { 5042 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5043 if (Record.size() < 3) 5044 return error("Invalid record"); 5045 5046 unsigned OpNum = 0; 5047 AttributeSet PAL = getAttributes(Record[OpNum++]); 5048 unsigned CCInfo = Record[OpNum++]; 5049 5050 FastMathFlags FMF; 5051 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5052 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5053 if (!FMF.any()) 5054 return error("Fast math flags indicator set for call with no FMF"); 5055 } 5056 5057 FunctionType *FTy = nullptr; 5058 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 5059 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5060 return error("Explicit call type is not a function type"); 5061 5062 Value *Callee; 5063 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5064 return error("Invalid record"); 5065 5066 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5067 if (!OpTy) 5068 return error("Callee is not a pointer type"); 5069 if (!FTy) { 5070 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 5071 if (!FTy) 5072 return error("Callee is not of pointer to function type"); 5073 } else if (OpTy->getElementType() != FTy) 5074 return error("Explicit call type does not match pointee type of " 5075 "callee operand"); 5076 if (Record.size() < FTy->getNumParams() + OpNum) 5077 return error("Insufficient operands to call"); 5078 5079 SmallVector<Value*, 16> Args; 5080 // Read the fixed params. 5081 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5082 if (FTy->getParamType(i)->isLabelTy()) 5083 Args.push_back(getBasicBlock(Record[OpNum])); 5084 else 5085 Args.push_back(getValue(Record, OpNum, NextValueNo, 5086 FTy->getParamType(i))); 5087 if (!Args.back()) 5088 return error("Invalid record"); 5089 } 5090 5091 // Read type/value pairs for varargs params. 5092 if (!FTy->isVarArg()) { 5093 if (OpNum != Record.size()) 5094 return error("Invalid record"); 5095 } else { 5096 while (OpNum != Record.size()) { 5097 Value *Op; 5098 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5099 return error("Invalid record"); 5100 Args.push_back(Op); 5101 } 5102 } 5103 5104 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5105 OperandBundles.clear(); 5106 InstructionList.push_back(I); 5107 cast<CallInst>(I)->setCallingConv( 5108 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5109 CallInst::TailCallKind TCK = CallInst::TCK_None; 5110 if (CCInfo & 1 << bitc::CALL_TAIL) 5111 TCK = CallInst::TCK_Tail; 5112 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5113 TCK = CallInst::TCK_MustTail; 5114 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5115 TCK = CallInst::TCK_NoTail; 5116 cast<CallInst>(I)->setTailCallKind(TCK); 5117 cast<CallInst>(I)->setAttributes(PAL); 5118 if (FMF.any()) { 5119 if (!isa<FPMathOperator>(I)) 5120 return error("Fast-math-flags specified for call without " 5121 "floating-point scalar or vector return type"); 5122 I->setFastMathFlags(FMF); 5123 } 5124 break; 5125 } 5126 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5127 if (Record.size() < 3) 5128 return error("Invalid record"); 5129 Type *OpTy = getTypeByID(Record[0]); 5130 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5131 Type *ResTy = getTypeByID(Record[2]); 5132 if (!OpTy || !Op || !ResTy) 5133 return error("Invalid record"); 5134 I = new VAArgInst(Op, ResTy); 5135 InstructionList.push_back(I); 5136 break; 5137 } 5138 5139 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5140 // A call or an invoke can be optionally prefixed with some variable 5141 // number of operand bundle blocks. These blocks are read into 5142 // OperandBundles and consumed at the next call or invoke instruction. 5143 5144 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5145 return error("Invalid record"); 5146 5147 std::vector<Value *> Inputs; 5148 5149 unsigned OpNum = 1; 5150 while (OpNum != Record.size()) { 5151 Value *Op; 5152 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5153 return error("Invalid record"); 5154 Inputs.push_back(Op); 5155 } 5156 5157 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5158 continue; 5159 } 5160 } 5161 5162 // Add instruction to end of current BB. If there is no current BB, reject 5163 // this file. 5164 if (!CurBB) { 5165 delete I; 5166 return error("Invalid instruction with no BB"); 5167 } 5168 if (!OperandBundles.empty()) { 5169 delete I; 5170 return error("Operand bundles found with no consumer"); 5171 } 5172 CurBB->getInstList().push_back(I); 5173 5174 // If this was a terminator instruction, move to the next block. 5175 if (isa<TerminatorInst>(I)) { 5176 ++CurBBNo; 5177 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5178 } 5179 5180 // Non-void values get registered in the value table for future use. 5181 if (I && !I->getType()->isVoidTy()) 5182 ValueList.assignValue(I, NextValueNo++); 5183 } 5184 5185 OutOfRecordLoop: 5186 5187 if (!OperandBundles.empty()) 5188 return error("Operand bundles found with no consumer"); 5189 5190 // Check the function list for unresolved values. 5191 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5192 if (!A->getParent()) { 5193 // We found at least one unresolved value. Nuke them all to avoid leaks. 5194 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5195 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5196 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5197 delete A; 5198 } 5199 } 5200 return error("Never resolved value found in function"); 5201 } 5202 } 5203 5204 // FIXME: Check for unresolved forward-declared metadata references 5205 // and clean up leaks. 5206 5207 // Trim the value list down to the size it was before we parsed this function. 5208 ValueList.shrinkTo(ModuleValueListSize); 5209 MetadataList.shrinkTo(ModuleMetadataListSize); 5210 std::vector<BasicBlock*>().swap(FunctionBBs); 5211 return std::error_code(); 5212 } 5213 5214 /// Find the function body in the bitcode stream 5215 std::error_code BitcodeReader::findFunctionInStream( 5216 Function *F, 5217 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5218 while (DeferredFunctionInfoIterator->second == 0) { 5219 // This is the fallback handling for the old format bitcode that 5220 // didn't contain the function index in the VST, or when we have 5221 // an anonymous function which would not have a VST entry. 5222 // Assert that we have one of those two cases. 5223 assert(VSTOffset == 0 || !F->hasName()); 5224 // Parse the next body in the stream and set its position in the 5225 // DeferredFunctionInfo map. 5226 if (std::error_code EC = rememberAndSkipFunctionBodies()) 5227 return EC; 5228 } 5229 return std::error_code(); 5230 } 5231 5232 //===----------------------------------------------------------------------===// 5233 // GVMaterializer implementation 5234 //===----------------------------------------------------------------------===// 5235 5236 void BitcodeReader::releaseBuffer() { Buffer.release(); } 5237 5238 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 5239 // In older bitcode we must materialize the metadata before parsing 5240 // any functions, in order to set up the MetadataList properly. 5241 if (!SeenModuleValuesRecord) { 5242 if (std::error_code EC = materializeMetadata()) 5243 return EC; 5244 } 5245 5246 Function *F = dyn_cast<Function>(GV); 5247 // If it's not a function or is already material, ignore the request. 5248 if (!F || !F->isMaterializable()) 5249 return std::error_code(); 5250 5251 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5252 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5253 // If its position is recorded as 0, its body is somewhere in the stream 5254 // but we haven't seen it yet. 5255 if (DFII->second == 0) 5256 if (std::error_code EC = findFunctionInStream(F, DFII)) 5257 return EC; 5258 5259 // Move the bit stream to the saved position of the deferred function body. 5260 Stream.JumpToBit(DFII->second); 5261 5262 if (std::error_code EC = parseFunctionBody(F)) 5263 return EC; 5264 F->setIsMaterializable(false); 5265 5266 if (StripDebugInfo) 5267 stripDebugInfo(*F); 5268 5269 // Upgrade any old intrinsic calls in the function. 5270 for (auto &I : UpgradedIntrinsics) { 5271 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5272 UI != UE;) { 5273 User *U = *UI; 5274 ++UI; 5275 if (CallInst *CI = dyn_cast<CallInst>(U)) 5276 UpgradeIntrinsicCall(CI, I.second); 5277 } 5278 } 5279 5280 // Finish fn->subprogram upgrade for materialized functions. 5281 if (DISubprogram *SP = FunctionsWithSPs.lookup(F)) 5282 F->setSubprogram(SP); 5283 5284 // Bring in any functions that this function forward-referenced via 5285 // blockaddresses. 5286 return materializeForwardReferencedFunctions(); 5287 } 5288 5289 std::error_code BitcodeReader::materializeModule() { 5290 if (std::error_code EC = materializeMetadata()) 5291 return EC; 5292 5293 // Promise to materialize all forward references. 5294 WillMaterializeAllForwardRefs = true; 5295 5296 // Iterate over the module, deserializing any functions that are still on 5297 // disk. 5298 for (Function &F : *TheModule) { 5299 if (std::error_code EC = materialize(&F)) 5300 return EC; 5301 } 5302 // At this point, if there are any function bodies, parse the rest of 5303 // the bits in the module past the last function block we have recorded 5304 // through either lazy scanning or the VST. 5305 if (LastFunctionBlockBit || NextUnreadBit) 5306 parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit 5307 : NextUnreadBit); 5308 5309 // Check that all block address forward references got resolved (as we 5310 // promised above). 5311 if (!BasicBlockFwdRefs.empty()) 5312 return error("Never resolved function from blockaddress"); 5313 5314 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5315 // delete the old functions to clean up. We can't do this unless the entire 5316 // module is materialized because there could always be another function body 5317 // with calls to the old function. 5318 for (auto &I : UpgradedIntrinsics) { 5319 for (auto *U : I.first->users()) { 5320 if (CallInst *CI = dyn_cast<CallInst>(U)) 5321 UpgradeIntrinsicCall(CI, I.second); 5322 } 5323 if (!I.first->use_empty()) 5324 I.first->replaceAllUsesWith(I.second); 5325 I.first->eraseFromParent(); 5326 } 5327 UpgradedIntrinsics.clear(); 5328 5329 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 5330 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 5331 5332 UpgradeDebugInfo(*TheModule); 5333 return std::error_code(); 5334 } 5335 5336 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5337 return IdentifiedStructTypes; 5338 } 5339 5340 std::error_code 5341 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5342 if (Streamer) 5343 return initLazyStream(std::move(Streamer)); 5344 return initStreamFromBuffer(); 5345 } 5346 5347 std::error_code BitcodeReader::initStreamFromBuffer() { 5348 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 5349 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 5350 5351 if (Buffer->getBufferSize() & 3) 5352 return error("Invalid bitcode signature"); 5353 5354 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5355 // The magic number is 0x0B17C0DE stored in little endian. 5356 if (isBitcodeWrapper(BufPtr, BufEnd)) 5357 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5358 return error("Invalid bitcode wrapper header"); 5359 5360 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5361 Stream.init(&*StreamFile); 5362 5363 return std::error_code(); 5364 } 5365 5366 std::error_code 5367 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) { 5368 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5369 // see it. 5370 auto OwnedBytes = 5371 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5372 StreamingMemoryObject &Bytes = *OwnedBytes; 5373 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5374 Stream.init(&*StreamFile); 5375 5376 unsigned char buf[16]; 5377 if (Bytes.readBytes(buf, 16, 0) != 16) 5378 return error("Invalid bitcode signature"); 5379 5380 if (!isBitcode(buf, buf + 16)) 5381 return error("Invalid bitcode signature"); 5382 5383 if (isBitcodeWrapper(buf, buf + 4)) { 5384 const unsigned char *bitcodeStart = buf; 5385 const unsigned char *bitcodeEnd = buf + 16; 5386 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5387 Bytes.dropLeadingBytes(bitcodeStart - buf); 5388 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5389 } 5390 return std::error_code(); 5391 } 5392 5393 std::error_code FunctionIndexBitcodeReader::error(BitcodeError E, 5394 const Twine &Message) { 5395 return ::error(DiagnosticHandler, make_error_code(E), Message); 5396 } 5397 5398 std::error_code FunctionIndexBitcodeReader::error(const Twine &Message) { 5399 return ::error(DiagnosticHandler, 5400 make_error_code(BitcodeError::CorruptedBitcode), Message); 5401 } 5402 5403 std::error_code FunctionIndexBitcodeReader::error(BitcodeError E) { 5404 return ::error(DiagnosticHandler, make_error_code(E)); 5405 } 5406 5407 FunctionIndexBitcodeReader::FunctionIndexBitcodeReader( 5408 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 5409 bool IsLazy, bool CheckFuncSummaryPresenceOnly) 5410 : DiagnosticHandler(DiagnosticHandler), Buffer(Buffer), IsLazy(IsLazy), 5411 CheckFuncSummaryPresenceOnly(CheckFuncSummaryPresenceOnly) {} 5412 5413 FunctionIndexBitcodeReader::FunctionIndexBitcodeReader( 5414 DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy, 5415 bool CheckFuncSummaryPresenceOnly) 5416 : DiagnosticHandler(DiagnosticHandler), Buffer(nullptr), IsLazy(IsLazy), 5417 CheckFuncSummaryPresenceOnly(CheckFuncSummaryPresenceOnly) {} 5418 5419 void FunctionIndexBitcodeReader::freeState() { Buffer = nullptr; } 5420 5421 void FunctionIndexBitcodeReader::releaseBuffer() { Buffer.release(); } 5422 5423 // Specialized value symbol table parser used when reading function index 5424 // blocks where we don't actually create global values. 5425 // At the end of this routine the function index is populated with a map 5426 // from function name to FunctionInfo. The function info contains 5427 // the function block's bitcode offset as well as the offset into the 5428 // function summary section. 5429 std::error_code FunctionIndexBitcodeReader::parseValueSymbolTable() { 5430 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5431 return error("Invalid record"); 5432 5433 SmallVector<uint64_t, 64> Record; 5434 5435 // Read all the records for this value table. 5436 SmallString<128> ValueName; 5437 while (1) { 5438 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5439 5440 switch (Entry.Kind) { 5441 case BitstreamEntry::SubBlock: // Handled for us already. 5442 case BitstreamEntry::Error: 5443 return error("Malformed block"); 5444 case BitstreamEntry::EndBlock: 5445 return std::error_code(); 5446 case BitstreamEntry::Record: 5447 // The interesting case. 5448 break; 5449 } 5450 5451 // Read a record. 5452 Record.clear(); 5453 switch (Stream.readRecord(Entry.ID, Record)) { 5454 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5455 break; 5456 case bitc::VST_CODE_FNENTRY: { 5457 // VST_FNENTRY: [valueid, offset, namechar x N] 5458 if (convertToString(Record, 2, ValueName)) 5459 return error("Invalid record"); 5460 unsigned ValueID = Record[0]; 5461 uint64_t FuncOffset = Record[1]; 5462 std::unique_ptr<FunctionInfo> FuncInfo = 5463 llvm::make_unique<FunctionInfo>(FuncOffset); 5464 if (foundFuncSummary() && !IsLazy) { 5465 DenseMap<uint64_t, std::unique_ptr<FunctionSummary>>::iterator SMI = 5466 SummaryMap.find(ValueID); 5467 assert(SMI != SummaryMap.end() && "Summary info not found"); 5468 FuncInfo->setFunctionSummary(std::move(SMI->second)); 5469 } 5470 TheIndex->addFunctionInfo(ValueName, std::move(FuncInfo)); 5471 5472 ValueName.clear(); 5473 break; 5474 } 5475 case bitc::VST_CODE_COMBINED_FNENTRY: { 5476 // VST_FNENTRY: [offset, namechar x N] 5477 if (convertToString(Record, 1, ValueName)) 5478 return error("Invalid record"); 5479 uint64_t FuncSummaryOffset = Record[0]; 5480 std::unique_ptr<FunctionInfo> FuncInfo = 5481 llvm::make_unique<FunctionInfo>(FuncSummaryOffset); 5482 if (foundFuncSummary() && !IsLazy) { 5483 DenseMap<uint64_t, std::unique_ptr<FunctionSummary>>::iterator SMI = 5484 SummaryMap.find(FuncSummaryOffset); 5485 assert(SMI != SummaryMap.end() && "Summary info not found"); 5486 FuncInfo->setFunctionSummary(std::move(SMI->second)); 5487 } 5488 TheIndex->addFunctionInfo(ValueName, std::move(FuncInfo)); 5489 5490 ValueName.clear(); 5491 break; 5492 } 5493 } 5494 } 5495 } 5496 5497 // Parse just the blocks needed for function index building out of the module. 5498 // At the end of this routine the function Index is populated with a map 5499 // from function name to FunctionInfo. The function info contains 5500 // either the parsed function summary information (when parsing summaries 5501 // eagerly), or just to the function summary record's offset 5502 // if parsing lazily (IsLazy). 5503 std::error_code FunctionIndexBitcodeReader::parseModule() { 5504 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5505 return error("Invalid record"); 5506 5507 // Read the function index for this module. 5508 while (1) { 5509 BitstreamEntry Entry = Stream.advance(); 5510 5511 switch (Entry.Kind) { 5512 case BitstreamEntry::Error: 5513 return error("Malformed block"); 5514 case BitstreamEntry::EndBlock: 5515 return std::error_code(); 5516 5517 case BitstreamEntry::SubBlock: 5518 if (CheckFuncSummaryPresenceOnly) { 5519 if (Entry.ID == bitc::FUNCTION_SUMMARY_BLOCK_ID) { 5520 SeenFuncSummary = true; 5521 // No need to parse the rest since we found the summary. 5522 return std::error_code(); 5523 } 5524 if (Stream.SkipBlock()) 5525 return error("Invalid record"); 5526 continue; 5527 } 5528 switch (Entry.ID) { 5529 default: // Skip unknown content. 5530 if (Stream.SkipBlock()) 5531 return error("Invalid record"); 5532 break; 5533 case bitc::BLOCKINFO_BLOCK_ID: 5534 // Need to parse these to get abbrev ids (e.g. for VST) 5535 if (Stream.ReadBlockInfoBlock()) 5536 return error("Malformed block"); 5537 break; 5538 case bitc::VALUE_SYMTAB_BLOCK_ID: 5539 if (std::error_code EC = parseValueSymbolTable()) 5540 return EC; 5541 break; 5542 case bitc::FUNCTION_SUMMARY_BLOCK_ID: 5543 SeenFuncSummary = true; 5544 if (IsLazy) { 5545 // Lazy parsing of summary info, skip it. 5546 if (Stream.SkipBlock()) 5547 return error("Invalid record"); 5548 } else if (std::error_code EC = parseEntireSummary()) 5549 return EC; 5550 break; 5551 case bitc::MODULE_STRTAB_BLOCK_ID: 5552 if (std::error_code EC = parseModuleStringTable()) 5553 return EC; 5554 break; 5555 } 5556 continue; 5557 5558 case BitstreamEntry::Record: 5559 Stream.skipRecord(Entry.ID); 5560 continue; 5561 } 5562 } 5563 } 5564 5565 // Eagerly parse the entire function summary block (i.e. for all functions 5566 // in the index). This populates the FunctionSummary objects in 5567 // the index. 5568 std::error_code FunctionIndexBitcodeReader::parseEntireSummary() { 5569 if (Stream.EnterSubBlock(bitc::FUNCTION_SUMMARY_BLOCK_ID)) 5570 return error("Invalid record"); 5571 5572 SmallVector<uint64_t, 64> Record; 5573 5574 while (1) { 5575 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5576 5577 switch (Entry.Kind) { 5578 case BitstreamEntry::SubBlock: // Handled for us already. 5579 case BitstreamEntry::Error: 5580 return error("Malformed block"); 5581 case BitstreamEntry::EndBlock: 5582 return std::error_code(); 5583 case BitstreamEntry::Record: 5584 // The interesting case. 5585 break; 5586 } 5587 5588 // Read a record. The record format depends on whether this 5589 // is a per-module index or a combined index file. In the per-module 5590 // case the records contain the associated value's ID for correlation 5591 // with VST entries. In the combined index the correlation is done 5592 // via the bitcode offset of the summary records (which were saved 5593 // in the combined index VST entries). The records also contain 5594 // information used for ThinLTO renaming and importing. 5595 Record.clear(); 5596 uint64_t CurRecordBit = Stream.GetCurrentBitNo(); 5597 switch (Stream.readRecord(Entry.ID, Record)) { 5598 default: // Default behavior: ignore. 5599 break; 5600 // FS_PERMODULE_ENTRY: [valueid, islocal, instcount] 5601 case bitc::FS_CODE_PERMODULE_ENTRY: { 5602 unsigned ValueID = Record[0]; 5603 bool IsLocal = Record[1]; 5604 unsigned InstCount = Record[2]; 5605 std::unique_ptr<FunctionSummary> FS = 5606 llvm::make_unique<FunctionSummary>(InstCount); 5607 FS->setLocalFunction(IsLocal); 5608 // The module path string ref set in the summary must be owned by the 5609 // index's module string table. Since we don't have a module path 5610 // string table section in the per-module index, we create a single 5611 // module path string table entry with an empty (0) ID to take 5612 // ownership. 5613 FS->setModulePath( 5614 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)); 5615 SummaryMap[ValueID] = std::move(FS); 5616 } 5617 // FS_COMBINED_ENTRY: [modid, instcount] 5618 case bitc::FS_CODE_COMBINED_ENTRY: { 5619 uint64_t ModuleId = Record[0]; 5620 unsigned InstCount = Record[1]; 5621 std::unique_ptr<FunctionSummary> FS = 5622 llvm::make_unique<FunctionSummary>(InstCount); 5623 FS->setModulePath(ModuleIdMap[ModuleId]); 5624 SummaryMap[CurRecordBit] = std::move(FS); 5625 } 5626 } 5627 } 5628 llvm_unreachable("Exit infinite loop"); 5629 } 5630 5631 // Parse the module string table block into the Index. 5632 // This populates the ModulePathStringTable map in the index. 5633 std::error_code FunctionIndexBitcodeReader::parseModuleStringTable() { 5634 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5635 return error("Invalid record"); 5636 5637 SmallVector<uint64_t, 64> Record; 5638 5639 SmallString<128> ModulePath; 5640 while (1) { 5641 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5642 5643 switch (Entry.Kind) { 5644 case BitstreamEntry::SubBlock: // Handled for us already. 5645 case BitstreamEntry::Error: 5646 return error("Malformed block"); 5647 case BitstreamEntry::EndBlock: 5648 return std::error_code(); 5649 case BitstreamEntry::Record: 5650 // The interesting case. 5651 break; 5652 } 5653 5654 Record.clear(); 5655 switch (Stream.readRecord(Entry.ID, Record)) { 5656 default: // Default behavior: ignore. 5657 break; 5658 case bitc::MST_CODE_ENTRY: { 5659 // MST_ENTRY: [modid, namechar x N] 5660 if (convertToString(Record, 1, ModulePath)) 5661 return error("Invalid record"); 5662 uint64_t ModuleId = Record[0]; 5663 StringRef ModulePathInMap = TheIndex->addModulePath(ModulePath, ModuleId); 5664 ModuleIdMap[ModuleId] = ModulePathInMap; 5665 ModulePath.clear(); 5666 break; 5667 } 5668 } 5669 } 5670 llvm_unreachable("Exit infinite loop"); 5671 } 5672 5673 // Parse the function info index from the bitcode streamer into the given index. 5674 std::error_code FunctionIndexBitcodeReader::parseSummaryIndexInto( 5675 std::unique_ptr<DataStreamer> Streamer, FunctionInfoIndex *I) { 5676 TheIndex = I; 5677 5678 if (std::error_code EC = initStream(std::move(Streamer))) 5679 return EC; 5680 5681 // Sniff for the signature. 5682 if (!hasValidBitcodeHeader(Stream)) 5683 return error("Invalid bitcode signature"); 5684 5685 // We expect a number of well-defined blocks, though we don't necessarily 5686 // need to understand them all. 5687 while (1) { 5688 if (Stream.AtEndOfStream()) { 5689 // We didn't really read a proper Module block. 5690 return error("Malformed block"); 5691 } 5692 5693 BitstreamEntry Entry = 5694 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 5695 5696 if (Entry.Kind != BitstreamEntry::SubBlock) 5697 return error("Malformed block"); 5698 5699 // If we see a MODULE_BLOCK, parse it to find the blocks needed for 5700 // building the function summary index. 5701 if (Entry.ID == bitc::MODULE_BLOCK_ID) 5702 return parseModule(); 5703 5704 if (Stream.SkipBlock()) 5705 return error("Invalid record"); 5706 } 5707 } 5708 5709 // Parse the function information at the given offset in the buffer into 5710 // the index. Used to support lazy parsing of function summaries from the 5711 // combined index during importing. 5712 // TODO: This function is not yet complete as it won't have a consumer 5713 // until ThinLTO function importing is added. 5714 std::error_code FunctionIndexBitcodeReader::parseFunctionSummary( 5715 std::unique_ptr<DataStreamer> Streamer, FunctionInfoIndex *I, 5716 size_t FunctionSummaryOffset) { 5717 TheIndex = I; 5718 5719 if (std::error_code EC = initStream(std::move(Streamer))) 5720 return EC; 5721 5722 // Sniff for the signature. 5723 if (!hasValidBitcodeHeader(Stream)) 5724 return error("Invalid bitcode signature"); 5725 5726 Stream.JumpToBit(FunctionSummaryOffset); 5727 5728 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5729 5730 switch (Entry.Kind) { 5731 default: 5732 return error("Malformed block"); 5733 case BitstreamEntry::Record: 5734 // The expected case. 5735 break; 5736 } 5737 5738 // TODO: Read a record. This interface will be completed when ThinLTO 5739 // importing is added so that it can be tested. 5740 SmallVector<uint64_t, 64> Record; 5741 switch (Stream.readRecord(Entry.ID, Record)) { 5742 case bitc::FS_CODE_COMBINED_ENTRY: 5743 default: 5744 return error("Invalid record"); 5745 } 5746 5747 return std::error_code(); 5748 } 5749 5750 std::error_code 5751 FunctionIndexBitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5752 if (Streamer) 5753 return initLazyStream(std::move(Streamer)); 5754 return initStreamFromBuffer(); 5755 } 5756 5757 std::error_code FunctionIndexBitcodeReader::initStreamFromBuffer() { 5758 const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart(); 5759 const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize(); 5760 5761 if (Buffer->getBufferSize() & 3) 5762 return error("Invalid bitcode signature"); 5763 5764 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5765 // The magic number is 0x0B17C0DE stored in little endian. 5766 if (isBitcodeWrapper(BufPtr, BufEnd)) 5767 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5768 return error("Invalid bitcode wrapper header"); 5769 5770 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5771 Stream.init(&*StreamFile); 5772 5773 return std::error_code(); 5774 } 5775 5776 std::error_code FunctionIndexBitcodeReader::initLazyStream( 5777 std::unique_ptr<DataStreamer> Streamer) { 5778 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5779 // see it. 5780 auto OwnedBytes = 5781 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5782 StreamingMemoryObject &Bytes = *OwnedBytes; 5783 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5784 Stream.init(&*StreamFile); 5785 5786 unsigned char buf[16]; 5787 if (Bytes.readBytes(buf, 16, 0) != 16) 5788 return error("Invalid bitcode signature"); 5789 5790 if (!isBitcode(buf, buf + 16)) 5791 return error("Invalid bitcode signature"); 5792 5793 if (isBitcodeWrapper(buf, buf + 4)) { 5794 const unsigned char *bitcodeStart = buf; 5795 const unsigned char *bitcodeEnd = buf + 16; 5796 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5797 Bytes.dropLeadingBytes(bitcodeStart - buf); 5798 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5799 } 5800 return std::error_code(); 5801 } 5802 5803 namespace { 5804 class BitcodeErrorCategoryType : public std::error_category { 5805 const char *name() const LLVM_NOEXCEPT override { 5806 return "llvm.bitcode"; 5807 } 5808 std::string message(int IE) const override { 5809 BitcodeError E = static_cast<BitcodeError>(IE); 5810 switch (E) { 5811 case BitcodeError::InvalidBitcodeSignature: 5812 return "Invalid bitcode signature"; 5813 case BitcodeError::CorruptedBitcode: 5814 return "Corrupted bitcode"; 5815 } 5816 llvm_unreachable("Unknown error type!"); 5817 } 5818 }; 5819 } 5820 5821 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 5822 5823 const std::error_category &llvm::BitcodeErrorCategory() { 5824 return *ErrorCategory; 5825 } 5826 5827 //===----------------------------------------------------------------------===// 5828 // External interface 5829 //===----------------------------------------------------------------------===// 5830 5831 static ErrorOr<std::unique_ptr<Module>> 5832 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name, 5833 BitcodeReader *R, LLVMContext &Context, 5834 bool MaterializeAll, bool ShouldLazyLoadMetadata) { 5835 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 5836 M->setMaterializer(R); 5837 5838 auto cleanupOnError = [&](std::error_code EC) { 5839 R->releaseBuffer(); // Never take ownership on error. 5840 return EC; 5841 }; 5842 5843 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 5844 if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(), 5845 ShouldLazyLoadMetadata)) 5846 return cleanupOnError(EC); 5847 5848 if (MaterializeAll) { 5849 // Read in the entire module, and destroy the BitcodeReader. 5850 if (std::error_code EC = M->materializeAll()) 5851 return cleanupOnError(EC); 5852 } else { 5853 // Resolve forward references from blockaddresses. 5854 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 5855 return cleanupOnError(EC); 5856 } 5857 return std::move(M); 5858 } 5859 5860 /// \brief Get a lazy one-at-time loading module from bitcode. 5861 /// 5862 /// This isn't always used in a lazy context. In particular, it's also used by 5863 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 5864 /// in forward-referenced functions from block address references. 5865 /// 5866 /// \param[in] MaterializeAll Set to \c true if we should materialize 5867 /// everything. 5868 static ErrorOr<std::unique_ptr<Module>> 5869 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 5870 LLVMContext &Context, bool MaterializeAll, 5871 bool ShouldLazyLoadMetadata = false) { 5872 BitcodeReader *R = new BitcodeReader(Buffer.get(), Context); 5873 5874 ErrorOr<std::unique_ptr<Module>> Ret = 5875 getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context, 5876 MaterializeAll, ShouldLazyLoadMetadata); 5877 if (!Ret) 5878 return Ret; 5879 5880 Buffer.release(); // The BitcodeReader owns it now. 5881 return Ret; 5882 } 5883 5884 ErrorOr<std::unique_ptr<Module>> 5885 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 5886 LLVMContext &Context, bool ShouldLazyLoadMetadata) { 5887 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 5888 ShouldLazyLoadMetadata); 5889 } 5890 5891 ErrorOr<std::unique_ptr<Module>> 5892 llvm::getStreamedBitcodeModule(StringRef Name, 5893 std::unique_ptr<DataStreamer> Streamer, 5894 LLVMContext &Context) { 5895 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 5896 BitcodeReader *R = new BitcodeReader(Context); 5897 5898 return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false, 5899 false); 5900 } 5901 5902 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 5903 LLVMContext &Context) { 5904 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5905 return getLazyBitcodeModuleImpl(std::move(Buf), Context, true); 5906 // TODO: Restore the use-lists to the in-memory state when the bitcode was 5907 // written. We must defer until the Module has been fully materialized. 5908 } 5909 5910 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, 5911 LLVMContext &Context) { 5912 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5913 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context); 5914 ErrorOr<std::string> Triple = R->parseTriple(); 5915 if (Triple.getError()) 5916 return ""; 5917 return Triple.get(); 5918 } 5919 5920 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer, 5921 LLVMContext &Context) { 5922 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5923 BitcodeReader R(Buf.release(), Context); 5924 ErrorOr<std::string> ProducerString = R.parseIdentificationBlock(); 5925 if (ProducerString.getError()) 5926 return ""; 5927 return ProducerString.get(); 5928 } 5929 5930 // Parse the specified bitcode buffer, returning the function info index. 5931 // If IsLazy is false, parse the entire function summary into 5932 // the index. Otherwise skip the function summary section, and only create 5933 // an index object with a map from function name to function summary offset. 5934 // The index is used to perform lazy function summary reading later. 5935 ErrorOr<std::unique_ptr<FunctionInfoIndex>> 5936 llvm::getFunctionInfoIndex(MemoryBufferRef Buffer, 5937 DiagnosticHandlerFunction DiagnosticHandler, 5938 bool IsLazy) { 5939 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5940 FunctionIndexBitcodeReader R(Buf.get(), DiagnosticHandler, IsLazy); 5941 5942 auto Index = llvm::make_unique<FunctionInfoIndex>(); 5943 5944 auto cleanupOnError = [&](std::error_code EC) { 5945 R.releaseBuffer(); // Never take ownership on error. 5946 return EC; 5947 }; 5948 5949 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get())) 5950 return cleanupOnError(EC); 5951 5952 Buf.release(); // The FunctionIndexBitcodeReader owns it now. 5953 return std::move(Index); 5954 } 5955 5956 // Check if the given bitcode buffer contains a function summary block. 5957 bool llvm::hasFunctionSummary(MemoryBufferRef Buffer, 5958 DiagnosticHandlerFunction DiagnosticHandler) { 5959 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5960 FunctionIndexBitcodeReader R(Buf.get(), DiagnosticHandler, false, true); 5961 5962 auto cleanupOnError = [&](std::error_code EC) { 5963 R.releaseBuffer(); // Never take ownership on error. 5964 return false; 5965 }; 5966 5967 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr)) 5968 return cleanupOnError(EC); 5969 5970 Buf.release(); // The FunctionIndexBitcodeReader owns it now. 5971 return R.foundFuncSummary(); 5972 } 5973 5974 // This method supports lazy reading of function summary data from the combined 5975 // index during ThinLTO function importing. When reading the combined index 5976 // file, getFunctionInfoIndex is first invoked with IsLazy=true. 5977 // Then this method is called for each function considered for importing, 5978 // to parse the summary information for the given function name into 5979 // the index. 5980 std::error_code llvm::readFunctionSummary( 5981 MemoryBufferRef Buffer, DiagnosticHandlerFunction DiagnosticHandler, 5982 StringRef FunctionName, std::unique_ptr<FunctionInfoIndex> Index) { 5983 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5984 FunctionIndexBitcodeReader R(Buf.get(), DiagnosticHandler); 5985 5986 auto cleanupOnError = [&](std::error_code EC) { 5987 R.releaseBuffer(); // Never take ownership on error. 5988 return EC; 5989 }; 5990 5991 // Lookup the given function name in the FunctionMap, which may 5992 // contain a list of function infos in the case of a COMDAT. Walk through 5993 // and parse each function summary info at the function summary offset 5994 // recorded when parsing the value symbol table. 5995 for (const auto &FI : Index->getFunctionInfoList(FunctionName)) { 5996 size_t FunctionSummaryOffset = FI->bitcodeIndex(); 5997 if (std::error_code EC = 5998 R.parseFunctionSummary(nullptr, Index.get(), FunctionSummaryOffset)) 5999 return cleanupOnError(EC); 6000 } 6001 6002 Buf.release(); // The FunctionIndexBitcodeReader owns it now. 6003 return std::error_code(); 6004 } 6005