1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/Bitcode/ReaderWriter.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/ADT/SmallString.h"
13 #include "llvm/ADT/SmallVector.h"
14 #include "llvm/ADT/Triple.h"
15 #include "llvm/Bitcode/BitstreamReader.h"
16 #include "llvm/Bitcode/LLVMBitCodes.h"
17 #include "llvm/IR/AutoUpgrade.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/DebugInfo.h"
20 #include "llvm/IR/DebugInfoMetadata.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/DiagnosticPrinter.h"
23 #include "llvm/IR/GVMaterializer.h"
24 #include "llvm/IR/InlineAsm.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/OperandTraits.h"
29 #include "llvm/IR/Operator.h"
30 #include "llvm/IR/FunctionInfo.h"
31 #include "llvm/IR/ValueHandle.h"
32 #include "llvm/Support/DataStream.h"
33 #include "llvm/Support/ManagedStatic.h"
34 #include "llvm/Support/MathExtras.h"
35 #include "llvm/Support/MemoryBuffer.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include <deque>
38 using namespace llvm;
39 
40 namespace {
41 enum {
42   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
43 };
44 
45 class BitcodeReaderValueList {
46   std::vector<WeakVH> ValuePtrs;
47 
48   /// As we resolve forward-referenced constants, we add information about them
49   /// to this vector.  This allows us to resolve them in bulk instead of
50   /// resolving each reference at a time.  See the code in
51   /// ResolveConstantForwardRefs for more information about this.
52   ///
53   /// The key of this vector is the placeholder constant, the value is the slot
54   /// number that holds the resolved value.
55   typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy;
56   ResolveConstantsTy ResolveConstants;
57   LLVMContext &Context;
58 public:
59   BitcodeReaderValueList(LLVMContext &C) : Context(C) {}
60   ~BitcodeReaderValueList() {
61     assert(ResolveConstants.empty() && "Constants not resolved?");
62   }
63 
64   // vector compatibility methods
65   unsigned size() const { return ValuePtrs.size(); }
66   void resize(unsigned N) { ValuePtrs.resize(N); }
67   void push_back(Value *V) { ValuePtrs.emplace_back(V); }
68 
69   void clear() {
70     assert(ResolveConstants.empty() && "Constants not resolved?");
71     ValuePtrs.clear();
72   }
73 
74   Value *operator[](unsigned i) const {
75     assert(i < ValuePtrs.size());
76     return ValuePtrs[i];
77   }
78 
79   Value *back() const { return ValuePtrs.back(); }
80     void pop_back() { ValuePtrs.pop_back(); }
81   bool empty() const { return ValuePtrs.empty(); }
82   void shrinkTo(unsigned N) {
83     assert(N <= size() && "Invalid shrinkTo request!");
84     ValuePtrs.resize(N);
85   }
86 
87   Constant *getConstantFwdRef(unsigned Idx, Type *Ty);
88   Value *getValueFwdRef(unsigned Idx, Type *Ty);
89 
90   void assignValue(Value *V, unsigned Idx);
91 
92   /// Once all constants are read, this method bulk resolves any forward
93   /// references.
94   void resolveConstantForwardRefs();
95 };
96 
97 class BitcodeReaderMetadataList {
98   unsigned NumFwdRefs;
99   bool AnyFwdRefs;
100   unsigned MinFwdRef;
101   unsigned MaxFwdRef;
102   std::vector<TrackingMDRef> MetadataPtrs;
103 
104   LLVMContext &Context;
105 public:
106   BitcodeReaderMetadataList(LLVMContext &C)
107       : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {}
108 
109   // vector compatibility methods
110   unsigned size() const { return MetadataPtrs.size(); }
111   void resize(unsigned N) { MetadataPtrs.resize(N); }
112   void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); }
113   void clear() { MetadataPtrs.clear(); }
114   Metadata *back() const { return MetadataPtrs.back(); }
115   void pop_back() { MetadataPtrs.pop_back(); }
116   bool empty() const { return MetadataPtrs.empty(); }
117 
118   Metadata *operator[](unsigned i) const {
119     assert(i < MetadataPtrs.size());
120     return MetadataPtrs[i];
121   }
122 
123   void shrinkTo(unsigned N) {
124     assert(N <= size() && "Invalid shrinkTo request!");
125     MetadataPtrs.resize(N);
126   }
127 
128   Metadata *getValueFwdRef(unsigned Idx);
129   void assignValue(Metadata *MD, unsigned Idx);
130   void tryToResolveCycles();
131 };
132 
133 class BitcodeReader : public GVMaterializer {
134   LLVMContext &Context;
135   Module *TheModule = nullptr;
136   std::unique_ptr<MemoryBuffer> Buffer;
137   std::unique_ptr<BitstreamReader> StreamFile;
138   BitstreamCursor Stream;
139   // Next offset to start scanning for lazy parsing of function bodies.
140   uint64_t NextUnreadBit = 0;
141   // Last function offset found in the VST.
142   uint64_t LastFunctionBlockBit = 0;
143   bool SeenValueSymbolTable = false;
144   uint64_t VSTOffset = 0;
145   // Contains an arbitrary and optional string identifying the bitcode producer
146   std::string ProducerIdentification;
147   // Number of module level metadata records specified by the
148   // MODULE_CODE_METADATA_VALUES record.
149   unsigned NumModuleMDs = 0;
150   // Support older bitcode without the MODULE_CODE_METADATA_VALUES record.
151   bool SeenModuleValuesRecord = false;
152 
153   std::vector<Type*> TypeList;
154   BitcodeReaderValueList ValueList;
155   BitcodeReaderMetadataList MetadataList;
156   std::vector<Comdat *> ComdatList;
157   SmallVector<Instruction *, 64> InstructionList;
158 
159   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits;
160   std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits;
161   std::vector<std::pair<Function*, unsigned> > FunctionPrefixes;
162   std::vector<std::pair<Function*, unsigned> > FunctionPrologues;
163   std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns;
164 
165   SmallVector<Instruction*, 64> InstsWithTBAATag;
166 
167   /// The set of attributes by index.  Index zero in the file is for null, and
168   /// is thus not represented here.  As such all indices are off by one.
169   std::vector<AttributeSet> MAttributes;
170 
171   /// The set of attribute groups.
172   std::map<unsigned, AttributeSet> MAttributeGroups;
173 
174   /// While parsing a function body, this is a list of the basic blocks for the
175   /// function.
176   std::vector<BasicBlock*> FunctionBBs;
177 
178   // When reading the module header, this list is populated with functions that
179   // have bodies later in the file.
180   std::vector<Function*> FunctionsWithBodies;
181 
182   // When intrinsic functions are encountered which require upgrading they are
183   // stored here with their replacement function.
184   typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap;
185   UpgradedIntrinsicMap UpgradedIntrinsics;
186 
187   // Map the bitcode's custom MDKind ID to the Module's MDKind ID.
188   DenseMap<unsigned, unsigned> MDKindMap;
189 
190   // Several operations happen after the module header has been read, but
191   // before function bodies are processed. This keeps track of whether
192   // we've done this yet.
193   bool SeenFirstFunctionBody = false;
194 
195   /// When function bodies are initially scanned, this map contains info about
196   /// where to find deferred function body in the stream.
197   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
198 
199   /// When Metadata block is initially scanned when parsing the module, we may
200   /// choose to defer parsing of the metadata. This vector contains info about
201   /// which Metadata blocks are deferred.
202   std::vector<uint64_t> DeferredMetadataInfo;
203 
204   /// These are basic blocks forward-referenced by block addresses.  They are
205   /// inserted lazily into functions when they're loaded.  The basic block ID is
206   /// its index into the vector.
207   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
208   std::deque<Function *> BasicBlockFwdRefQueue;
209 
210   /// Indicates that we are using a new encoding for instruction operands where
211   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
212   /// instruction number, for a more compact encoding.  Some instruction
213   /// operands are not relative to the instruction ID: basic block numbers, and
214   /// types. Once the old style function blocks have been phased out, we would
215   /// not need this flag.
216   bool UseRelativeIDs = false;
217 
218   /// True if all functions will be materialized, negating the need to process
219   /// (e.g.) blockaddress forward references.
220   bool WillMaterializeAllForwardRefs = false;
221 
222   /// True if any Metadata block has been materialized.
223   bool IsMetadataMaterialized = false;
224 
225   bool StripDebugInfo = false;
226 
227   /// Functions that need to be matched with subprograms when upgrading old
228   /// metadata.
229   SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs;
230 
231   std::vector<std::string> BundleTags;
232 
233 public:
234   std::error_code error(BitcodeError E, const Twine &Message);
235   std::error_code error(BitcodeError E);
236   std::error_code error(const Twine &Message);
237 
238   BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context);
239   BitcodeReader(LLVMContext &Context);
240   ~BitcodeReader() override { freeState(); }
241 
242   std::error_code materializeForwardReferencedFunctions();
243 
244   void freeState();
245 
246   void releaseBuffer();
247 
248   std::error_code materialize(GlobalValue *GV) override;
249   std::error_code materializeModule() override;
250   std::vector<StructType *> getIdentifiedStructTypes() const override;
251 
252   /// \brief Main interface to parsing a bitcode buffer.
253   /// \returns true if an error occurred.
254   std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer,
255                                    Module *M,
256                                    bool ShouldLazyLoadMetadata = false);
257 
258   /// \brief Cheap mechanism to just extract module triple
259   /// \returns true if an error occurred.
260   ErrorOr<std::string> parseTriple();
261 
262   /// Cheap mechanism to just extract the identification block out of bitcode.
263   ErrorOr<std::string> parseIdentificationBlock();
264 
265   static uint64_t decodeSignRotatedValue(uint64_t V);
266 
267   /// Materialize any deferred Metadata block.
268   std::error_code materializeMetadata() override;
269 
270   void setStripDebugInfo() override;
271 
272   /// Save the mapping between the metadata values and the corresponding
273   /// value id that were recorded in the MetadataList during parsing. If
274   /// OnlyTempMD is true, then only record those entries that are still
275   /// temporary metadata. This interface is used when metadata linking is
276   /// performed as a postpass, such as during function importing.
277   void saveMetadataList(DenseMap<const Metadata *, unsigned> &MetadataToIDs,
278                         bool OnlyTempMD) override;
279 
280 private:
281   /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the
282   // ProducerIdentification data member, and do some basic enforcement on the
283   // "epoch" encoded in the bitcode.
284   std::error_code parseBitcodeVersion();
285 
286   std::vector<StructType *> IdentifiedStructTypes;
287   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
288   StructType *createIdentifiedStructType(LLVMContext &Context);
289 
290   Type *getTypeByID(unsigned ID);
291   Value *getFnValueByID(unsigned ID, Type *Ty) {
292     if (Ty && Ty->isMetadataTy())
293       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
294     return ValueList.getValueFwdRef(ID, Ty);
295   }
296   Metadata *getFnMetadataByID(unsigned ID) {
297     return MetadataList.getValueFwdRef(ID);
298   }
299   BasicBlock *getBasicBlock(unsigned ID) const {
300     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
301     return FunctionBBs[ID];
302   }
303   AttributeSet getAttributes(unsigned i) const {
304     if (i-1 < MAttributes.size())
305       return MAttributes[i-1];
306     return AttributeSet();
307   }
308 
309   /// Read a value/type pair out of the specified record from slot 'Slot'.
310   /// Increment Slot past the number of slots used in the record. Return true on
311   /// failure.
312   bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
313                         unsigned InstNum, Value *&ResVal) {
314     if (Slot == Record.size()) return true;
315     unsigned ValNo = (unsigned)Record[Slot++];
316     // Adjust the ValNo, if it was encoded relative to the InstNum.
317     if (UseRelativeIDs)
318       ValNo = InstNum - ValNo;
319     if (ValNo < InstNum) {
320       // If this is not a forward reference, just return the value we already
321       // have.
322       ResVal = getFnValueByID(ValNo, nullptr);
323       return ResVal == nullptr;
324     }
325     if (Slot == Record.size())
326       return true;
327 
328     unsigned TypeNo = (unsigned)Record[Slot++];
329     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
330     return ResVal == nullptr;
331   }
332 
333   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
334   /// past the number of slots used by the value in the record. Return true if
335   /// there is an error.
336   bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
337                 unsigned InstNum, Type *Ty, Value *&ResVal) {
338     if (getValue(Record, Slot, InstNum, Ty, ResVal))
339       return true;
340     // All values currently take a single record slot.
341     ++Slot;
342     return false;
343   }
344 
345   /// Like popValue, but does not increment the Slot number.
346   bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
347                 unsigned InstNum, Type *Ty, Value *&ResVal) {
348     ResVal = getValue(Record, Slot, InstNum, Ty);
349     return ResVal == nullptr;
350   }
351 
352   /// Version of getValue that returns ResVal directly, or 0 if there is an
353   /// error.
354   Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
355                   unsigned InstNum, Type *Ty) {
356     if (Slot == Record.size()) return nullptr;
357     unsigned ValNo = (unsigned)Record[Slot];
358     // Adjust the ValNo, if it was encoded relative to the InstNum.
359     if (UseRelativeIDs)
360       ValNo = InstNum - ValNo;
361     return getFnValueByID(ValNo, Ty);
362   }
363 
364   /// Like getValue, but decodes signed VBRs.
365   Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
366                         unsigned InstNum, Type *Ty) {
367     if (Slot == Record.size()) return nullptr;
368     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
369     // Adjust the ValNo, if it was encoded relative to the InstNum.
370     if (UseRelativeIDs)
371       ValNo = InstNum - ValNo;
372     return getFnValueByID(ValNo, Ty);
373   }
374 
375   /// Converts alignment exponent (i.e. power of two (or zero)) to the
376   /// corresponding alignment to use. If alignment is too large, returns
377   /// a corresponding error code.
378   std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment);
379   std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
380   std::error_code parseModule(uint64_t ResumeBit,
381                               bool ShouldLazyLoadMetadata = false);
382   std::error_code parseAttributeBlock();
383   std::error_code parseAttributeGroupBlock();
384   std::error_code parseTypeTable();
385   std::error_code parseTypeTableBody();
386   std::error_code parseOperandBundleTags();
387 
388   ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
389                                unsigned NameIndex, Triple &TT);
390   std::error_code parseValueSymbolTable(uint64_t Offset = 0);
391   std::error_code parseConstants();
392   std::error_code rememberAndSkipFunctionBodies();
393   std::error_code rememberAndSkipFunctionBody();
394   /// Save the positions of the Metadata blocks and skip parsing the blocks.
395   std::error_code rememberAndSkipMetadata();
396   std::error_code parseFunctionBody(Function *F);
397   std::error_code globalCleanup();
398   std::error_code resolveGlobalAndAliasInits();
399   std::error_code parseMetadata(bool ModuleLevel = false);
400   std::error_code parseMetadataKinds();
401   std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record);
402   std::error_code parseMetadataAttachment(Function &F);
403   ErrorOr<std::string> parseModuleTriple();
404   std::error_code parseUseLists();
405   std::error_code initStream(std::unique_ptr<DataStreamer> Streamer);
406   std::error_code initStreamFromBuffer();
407   std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer);
408   std::error_code findFunctionInStream(
409       Function *F,
410       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
411 };
412 
413 /// Class to manage reading and parsing function summary index bitcode
414 /// files/sections.
415 class FunctionIndexBitcodeReader {
416   DiagnosticHandlerFunction DiagnosticHandler;
417 
418   /// Eventually points to the function index built during parsing.
419   FunctionInfoIndex *TheIndex = nullptr;
420 
421   std::unique_ptr<MemoryBuffer> Buffer;
422   std::unique_ptr<BitstreamReader> StreamFile;
423   BitstreamCursor Stream;
424 
425   /// \brief Used to indicate whether we are doing lazy parsing of summary data.
426   ///
427   /// If false, the summary section is fully parsed into the index during
428   /// the initial parse. Otherwise, if true, the caller is expected to
429   /// invoke \a readFunctionSummary for each summary needed, and the summary
430   /// section is thus parsed lazily.
431   bool IsLazy = false;
432 
433   /// Used to indicate whether caller only wants to check for the presence
434   /// of the function summary bitcode section. All blocks are skipped,
435   /// but the SeenFuncSummary boolean is set.
436   bool CheckFuncSummaryPresenceOnly = false;
437 
438   /// Indicates whether we have encountered a function summary section
439   /// yet during parsing, used when checking if file contains function
440   /// summary section.
441   bool SeenFuncSummary = false;
442 
443   /// \brief Map populated during function summary section parsing, and
444   /// consumed during ValueSymbolTable parsing.
445   ///
446   /// Used to correlate summary records with VST entries. For the per-module
447   /// index this maps the ValueID to the parsed function summary, and
448   /// for the combined index this maps the summary record's bitcode
449   /// offset to the function summary (since in the combined index the
450   /// VST records do not hold value IDs but rather hold the function
451   /// summary record offset).
452   DenseMap<uint64_t, std::unique_ptr<FunctionSummary>> SummaryMap;
453 
454   /// Map populated during module path string table parsing, from the
455   /// module ID to a string reference owned by the index's module
456   /// path string table, used to correlate with combined index function
457   /// summary records.
458   DenseMap<uint64_t, StringRef> ModuleIdMap;
459 
460 public:
461   std::error_code error(BitcodeError E, const Twine &Message);
462   std::error_code error(BitcodeError E);
463   std::error_code error(const Twine &Message);
464 
465   FunctionIndexBitcodeReader(MemoryBuffer *Buffer,
466                              DiagnosticHandlerFunction DiagnosticHandler,
467                              bool IsLazy = false,
468                              bool CheckFuncSummaryPresenceOnly = false);
469   FunctionIndexBitcodeReader(DiagnosticHandlerFunction DiagnosticHandler,
470                              bool IsLazy = false,
471                              bool CheckFuncSummaryPresenceOnly = false);
472   ~FunctionIndexBitcodeReader() { freeState(); }
473 
474   void freeState();
475 
476   void releaseBuffer();
477 
478   /// Check if the parser has encountered a function summary section.
479   bool foundFuncSummary() { return SeenFuncSummary; }
480 
481   /// \brief Main interface to parsing a bitcode buffer.
482   /// \returns true if an error occurred.
483   std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer,
484                                         FunctionInfoIndex *I);
485 
486   /// \brief Interface for parsing a function summary lazily.
487   std::error_code parseFunctionSummary(std::unique_ptr<DataStreamer> Streamer,
488                                        FunctionInfoIndex *I,
489                                        size_t FunctionSummaryOffset);
490 
491 private:
492   std::error_code parseModule();
493   std::error_code parseValueSymbolTable();
494   std::error_code parseEntireSummary();
495   std::error_code parseModuleStringTable();
496   std::error_code initStream(std::unique_ptr<DataStreamer> Streamer);
497   std::error_code initStreamFromBuffer();
498   std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer);
499 };
500 } // namespace
501 
502 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC,
503                                              DiagnosticSeverity Severity,
504                                              const Twine &Msg)
505     : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {}
506 
507 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
508 
509 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler,
510                              std::error_code EC, const Twine &Message) {
511   BitcodeDiagnosticInfo DI(EC, DS_Error, Message);
512   DiagnosticHandler(DI);
513   return EC;
514 }
515 
516 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler,
517                              std::error_code EC) {
518   return error(DiagnosticHandler, EC, EC.message());
519 }
520 
521 static std::error_code error(LLVMContext &Context, std::error_code EC,
522                              const Twine &Message) {
523   return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC,
524                Message);
525 }
526 
527 static std::error_code error(LLVMContext &Context, std::error_code EC) {
528   return error(Context, EC, EC.message());
529 }
530 
531 static std::error_code error(LLVMContext &Context, const Twine &Message) {
532   return error(Context, make_error_code(BitcodeError::CorruptedBitcode),
533                Message);
534 }
535 
536 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) {
537   if (!ProducerIdentification.empty()) {
538     return ::error(Context, make_error_code(E),
539                    Message + " (Producer: '" + ProducerIdentification +
540                        "' Reader: 'LLVM " + LLVM_VERSION_STRING "')");
541   }
542   return ::error(Context, make_error_code(E), Message);
543 }
544 
545 std::error_code BitcodeReader::error(const Twine &Message) {
546   if (!ProducerIdentification.empty()) {
547     return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode),
548                    Message + " (Producer: '" + ProducerIdentification +
549                        "' Reader: 'LLVM " + LLVM_VERSION_STRING "')");
550   }
551   return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode),
552                  Message);
553 }
554 
555 std::error_code BitcodeReader::error(BitcodeError E) {
556   return ::error(Context, make_error_code(E));
557 }
558 
559 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context)
560     : Context(Context), Buffer(Buffer), ValueList(Context),
561       MetadataList(Context) {}
562 
563 BitcodeReader::BitcodeReader(LLVMContext &Context)
564     : Context(Context), Buffer(nullptr), ValueList(Context),
565       MetadataList(Context) {}
566 
567 std::error_code BitcodeReader::materializeForwardReferencedFunctions() {
568   if (WillMaterializeAllForwardRefs)
569     return std::error_code();
570 
571   // Prevent recursion.
572   WillMaterializeAllForwardRefs = true;
573 
574   while (!BasicBlockFwdRefQueue.empty()) {
575     Function *F = BasicBlockFwdRefQueue.front();
576     BasicBlockFwdRefQueue.pop_front();
577     assert(F && "Expected valid function");
578     if (!BasicBlockFwdRefs.count(F))
579       // Already materialized.
580       continue;
581 
582     // Check for a function that isn't materializable to prevent an infinite
583     // loop.  When parsing a blockaddress stored in a global variable, there
584     // isn't a trivial way to check if a function will have a body without a
585     // linear search through FunctionsWithBodies, so just check it here.
586     if (!F->isMaterializable())
587       return error("Never resolved function from blockaddress");
588 
589     // Try to materialize F.
590     if (std::error_code EC = materialize(F))
591       return EC;
592   }
593   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
594 
595   // Reset state.
596   WillMaterializeAllForwardRefs = false;
597   return std::error_code();
598 }
599 
600 void BitcodeReader::freeState() {
601   Buffer = nullptr;
602   std::vector<Type*>().swap(TypeList);
603   ValueList.clear();
604   MetadataList.clear();
605   std::vector<Comdat *>().swap(ComdatList);
606 
607   std::vector<AttributeSet>().swap(MAttributes);
608   std::vector<BasicBlock*>().swap(FunctionBBs);
609   std::vector<Function*>().swap(FunctionsWithBodies);
610   DeferredFunctionInfo.clear();
611   DeferredMetadataInfo.clear();
612   MDKindMap.clear();
613 
614   assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references");
615   BasicBlockFwdRefQueue.clear();
616 }
617 
618 //===----------------------------------------------------------------------===//
619 //  Helper functions to implement forward reference resolution, etc.
620 //===----------------------------------------------------------------------===//
621 
622 /// Convert a string from a record into an std::string, return true on failure.
623 template <typename StrTy>
624 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
625                             StrTy &Result) {
626   if (Idx > Record.size())
627     return true;
628 
629   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
630     Result += (char)Record[i];
631   return false;
632 }
633 
634 static bool hasImplicitComdat(size_t Val) {
635   switch (Val) {
636   default:
637     return false;
638   case 1:  // Old WeakAnyLinkage
639   case 4:  // Old LinkOnceAnyLinkage
640   case 10: // Old WeakODRLinkage
641   case 11: // Old LinkOnceODRLinkage
642     return true;
643   }
644 }
645 
646 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
647   switch (Val) {
648   default: // Map unknown/new linkages to external
649   case 0:
650     return GlobalValue::ExternalLinkage;
651   case 2:
652     return GlobalValue::AppendingLinkage;
653   case 3:
654     return GlobalValue::InternalLinkage;
655   case 5:
656     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
657   case 6:
658     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
659   case 7:
660     return GlobalValue::ExternalWeakLinkage;
661   case 8:
662     return GlobalValue::CommonLinkage;
663   case 9:
664     return GlobalValue::PrivateLinkage;
665   case 12:
666     return GlobalValue::AvailableExternallyLinkage;
667   case 13:
668     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
669   case 14:
670     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
671   case 15:
672     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
673   case 1: // Old value with implicit comdat.
674   case 16:
675     return GlobalValue::WeakAnyLinkage;
676   case 10: // Old value with implicit comdat.
677   case 17:
678     return GlobalValue::WeakODRLinkage;
679   case 4: // Old value with implicit comdat.
680   case 18:
681     return GlobalValue::LinkOnceAnyLinkage;
682   case 11: // Old value with implicit comdat.
683   case 19:
684     return GlobalValue::LinkOnceODRLinkage;
685   }
686 }
687 
688 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
689   switch (Val) {
690   default: // Map unknown visibilities to default.
691   case 0: return GlobalValue::DefaultVisibility;
692   case 1: return GlobalValue::HiddenVisibility;
693   case 2: return GlobalValue::ProtectedVisibility;
694   }
695 }
696 
697 static GlobalValue::DLLStorageClassTypes
698 getDecodedDLLStorageClass(unsigned Val) {
699   switch (Val) {
700   default: // Map unknown values to default.
701   case 0: return GlobalValue::DefaultStorageClass;
702   case 1: return GlobalValue::DLLImportStorageClass;
703   case 2: return GlobalValue::DLLExportStorageClass;
704   }
705 }
706 
707 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
708   switch (Val) {
709     case 0: return GlobalVariable::NotThreadLocal;
710     default: // Map unknown non-zero value to general dynamic.
711     case 1: return GlobalVariable::GeneralDynamicTLSModel;
712     case 2: return GlobalVariable::LocalDynamicTLSModel;
713     case 3: return GlobalVariable::InitialExecTLSModel;
714     case 4: return GlobalVariable::LocalExecTLSModel;
715   }
716 }
717 
718 static int getDecodedCastOpcode(unsigned Val) {
719   switch (Val) {
720   default: return -1;
721   case bitc::CAST_TRUNC   : return Instruction::Trunc;
722   case bitc::CAST_ZEXT    : return Instruction::ZExt;
723   case bitc::CAST_SEXT    : return Instruction::SExt;
724   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
725   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
726   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
727   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
728   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
729   case bitc::CAST_FPEXT   : return Instruction::FPExt;
730   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
731   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
732   case bitc::CAST_BITCAST : return Instruction::BitCast;
733   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
734   }
735 }
736 
737 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
738   bool IsFP = Ty->isFPOrFPVectorTy();
739   // BinOps are only valid for int/fp or vector of int/fp types
740   if (!IsFP && !Ty->isIntOrIntVectorTy())
741     return -1;
742 
743   switch (Val) {
744   default:
745     return -1;
746   case bitc::BINOP_ADD:
747     return IsFP ? Instruction::FAdd : Instruction::Add;
748   case bitc::BINOP_SUB:
749     return IsFP ? Instruction::FSub : Instruction::Sub;
750   case bitc::BINOP_MUL:
751     return IsFP ? Instruction::FMul : Instruction::Mul;
752   case bitc::BINOP_UDIV:
753     return IsFP ? -1 : Instruction::UDiv;
754   case bitc::BINOP_SDIV:
755     return IsFP ? Instruction::FDiv : Instruction::SDiv;
756   case bitc::BINOP_UREM:
757     return IsFP ? -1 : Instruction::URem;
758   case bitc::BINOP_SREM:
759     return IsFP ? Instruction::FRem : Instruction::SRem;
760   case bitc::BINOP_SHL:
761     return IsFP ? -1 : Instruction::Shl;
762   case bitc::BINOP_LSHR:
763     return IsFP ? -1 : Instruction::LShr;
764   case bitc::BINOP_ASHR:
765     return IsFP ? -1 : Instruction::AShr;
766   case bitc::BINOP_AND:
767     return IsFP ? -1 : Instruction::And;
768   case bitc::BINOP_OR:
769     return IsFP ? -1 : Instruction::Or;
770   case bitc::BINOP_XOR:
771     return IsFP ? -1 : Instruction::Xor;
772   }
773 }
774 
775 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
776   switch (Val) {
777   default: return AtomicRMWInst::BAD_BINOP;
778   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
779   case bitc::RMW_ADD: return AtomicRMWInst::Add;
780   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
781   case bitc::RMW_AND: return AtomicRMWInst::And;
782   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
783   case bitc::RMW_OR: return AtomicRMWInst::Or;
784   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
785   case bitc::RMW_MAX: return AtomicRMWInst::Max;
786   case bitc::RMW_MIN: return AtomicRMWInst::Min;
787   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
788   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
789   }
790 }
791 
792 static AtomicOrdering getDecodedOrdering(unsigned Val) {
793   switch (Val) {
794   case bitc::ORDERING_NOTATOMIC: return NotAtomic;
795   case bitc::ORDERING_UNORDERED: return Unordered;
796   case bitc::ORDERING_MONOTONIC: return Monotonic;
797   case bitc::ORDERING_ACQUIRE: return Acquire;
798   case bitc::ORDERING_RELEASE: return Release;
799   case bitc::ORDERING_ACQREL: return AcquireRelease;
800   default: // Map unknown orderings to sequentially-consistent.
801   case bitc::ORDERING_SEQCST: return SequentiallyConsistent;
802   }
803 }
804 
805 static SynchronizationScope getDecodedSynchScope(unsigned Val) {
806   switch (Val) {
807   case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
808   default: // Map unknown scopes to cross-thread.
809   case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
810   }
811 }
812 
813 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
814   switch (Val) {
815   default: // Map unknown selection kinds to any.
816   case bitc::COMDAT_SELECTION_KIND_ANY:
817     return Comdat::Any;
818   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
819     return Comdat::ExactMatch;
820   case bitc::COMDAT_SELECTION_KIND_LARGEST:
821     return Comdat::Largest;
822   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
823     return Comdat::NoDuplicates;
824   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
825     return Comdat::SameSize;
826   }
827 }
828 
829 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
830   FastMathFlags FMF;
831   if (0 != (Val & FastMathFlags::UnsafeAlgebra))
832     FMF.setUnsafeAlgebra();
833   if (0 != (Val & FastMathFlags::NoNaNs))
834     FMF.setNoNaNs();
835   if (0 != (Val & FastMathFlags::NoInfs))
836     FMF.setNoInfs();
837   if (0 != (Val & FastMathFlags::NoSignedZeros))
838     FMF.setNoSignedZeros();
839   if (0 != (Val & FastMathFlags::AllowReciprocal))
840     FMF.setAllowReciprocal();
841   return FMF;
842 }
843 
844 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) {
845   switch (Val) {
846   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
847   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
848   }
849 }
850 
851 namespace llvm {
852 namespace {
853 /// \brief A class for maintaining the slot number definition
854 /// as a placeholder for the actual definition for forward constants defs.
855 class ConstantPlaceHolder : public ConstantExpr {
856   void operator=(const ConstantPlaceHolder &) = delete;
857 
858 public:
859   // allocate space for exactly one operand
860   void *operator new(size_t s) { return User::operator new(s, 1); }
861   explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context)
862       : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
863     Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
864   }
865 
866   /// \brief Methods to support type inquiry through isa, cast, and dyn_cast.
867   static bool classof(const Value *V) {
868     return isa<ConstantExpr>(V) &&
869            cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
870   }
871 
872   /// Provide fast operand accessors
873   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
874 };
875 }
876 
877 // FIXME: can we inherit this from ConstantExpr?
878 template <>
879 struct OperandTraits<ConstantPlaceHolder> :
880   public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
881 };
882 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value)
883 }
884 
885 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) {
886   if (Idx == size()) {
887     push_back(V);
888     return;
889   }
890 
891   if (Idx >= size())
892     resize(Idx+1);
893 
894   WeakVH &OldV = ValuePtrs[Idx];
895   if (!OldV) {
896     OldV = V;
897     return;
898   }
899 
900   // Handle constants and non-constants (e.g. instrs) differently for
901   // efficiency.
902   if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
903     ResolveConstants.push_back(std::make_pair(PHC, Idx));
904     OldV = V;
905   } else {
906     // If there was a forward reference to this value, replace it.
907     Value *PrevVal = OldV;
908     OldV->replaceAllUsesWith(V);
909     delete PrevVal;
910   }
911 
912   return;
913 }
914 
915 
916 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
917                                                     Type *Ty) {
918   if (Idx >= size())
919     resize(Idx + 1);
920 
921   if (Value *V = ValuePtrs[Idx]) {
922     if (Ty != V->getType())
923       report_fatal_error("Type mismatch in constant table!");
924     return cast<Constant>(V);
925   }
926 
927   // Create and return a placeholder, which will later be RAUW'd.
928   Constant *C = new ConstantPlaceHolder(Ty, Context);
929   ValuePtrs[Idx] = C;
930   return C;
931 }
932 
933 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
934   // Bail out for a clearly invalid value. This would make us call resize(0)
935   if (Idx == UINT_MAX)
936     return nullptr;
937 
938   if (Idx >= size())
939     resize(Idx + 1);
940 
941   if (Value *V = ValuePtrs[Idx]) {
942     // If the types don't match, it's invalid.
943     if (Ty && Ty != V->getType())
944       return nullptr;
945     return V;
946   }
947 
948   // No type specified, must be invalid reference.
949   if (!Ty) return nullptr;
950 
951   // Create and return a placeholder, which will later be RAUW'd.
952   Value *V = new Argument(Ty);
953   ValuePtrs[Idx] = V;
954   return V;
955 }
956 
957 /// Once all constants are read, this method bulk resolves any forward
958 /// references.  The idea behind this is that we sometimes get constants (such
959 /// as large arrays) which reference *many* forward ref constants.  Replacing
960 /// each of these causes a lot of thrashing when building/reuniquing the
961 /// constant.  Instead of doing this, we look at all the uses and rewrite all
962 /// the place holders at once for any constant that uses a placeholder.
963 void BitcodeReaderValueList::resolveConstantForwardRefs() {
964   // Sort the values by-pointer so that they are efficient to look up with a
965   // binary search.
966   std::sort(ResolveConstants.begin(), ResolveConstants.end());
967 
968   SmallVector<Constant*, 64> NewOps;
969 
970   while (!ResolveConstants.empty()) {
971     Value *RealVal = operator[](ResolveConstants.back().second);
972     Constant *Placeholder = ResolveConstants.back().first;
973     ResolveConstants.pop_back();
974 
975     // Loop over all users of the placeholder, updating them to reference the
976     // new value.  If they reference more than one placeholder, update them all
977     // at once.
978     while (!Placeholder->use_empty()) {
979       auto UI = Placeholder->user_begin();
980       User *U = *UI;
981 
982       // If the using object isn't uniqued, just update the operands.  This
983       // handles instructions and initializers for global variables.
984       if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
985         UI.getUse().set(RealVal);
986         continue;
987       }
988 
989       // Otherwise, we have a constant that uses the placeholder.  Replace that
990       // constant with a new constant that has *all* placeholder uses updated.
991       Constant *UserC = cast<Constant>(U);
992       for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
993            I != E; ++I) {
994         Value *NewOp;
995         if (!isa<ConstantPlaceHolder>(*I)) {
996           // Not a placeholder reference.
997           NewOp = *I;
998         } else if (*I == Placeholder) {
999           // Common case is that it just references this one placeholder.
1000           NewOp = RealVal;
1001         } else {
1002           // Otherwise, look up the placeholder in ResolveConstants.
1003           ResolveConstantsTy::iterator It =
1004             std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
1005                              std::pair<Constant*, unsigned>(cast<Constant>(*I),
1006                                                             0));
1007           assert(It != ResolveConstants.end() && It->first == *I);
1008           NewOp = operator[](It->second);
1009         }
1010 
1011         NewOps.push_back(cast<Constant>(NewOp));
1012       }
1013 
1014       // Make the new constant.
1015       Constant *NewC;
1016       if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
1017         NewC = ConstantArray::get(UserCA->getType(), NewOps);
1018       } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
1019         NewC = ConstantStruct::get(UserCS->getType(), NewOps);
1020       } else if (isa<ConstantVector>(UserC)) {
1021         NewC = ConstantVector::get(NewOps);
1022       } else {
1023         assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
1024         NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
1025       }
1026 
1027       UserC->replaceAllUsesWith(NewC);
1028       UserC->destroyConstant();
1029       NewOps.clear();
1030     }
1031 
1032     // Update all ValueHandles, they should be the only users at this point.
1033     Placeholder->replaceAllUsesWith(RealVal);
1034     delete Placeholder;
1035   }
1036 }
1037 
1038 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) {
1039   if (Idx == size()) {
1040     push_back(MD);
1041     return;
1042   }
1043 
1044   if (Idx >= size())
1045     resize(Idx+1);
1046 
1047   TrackingMDRef &OldMD = MetadataPtrs[Idx];
1048   if (!OldMD) {
1049     OldMD.reset(MD);
1050     return;
1051   }
1052 
1053   // If there was a forward reference to this value, replace it.
1054   TempMDTuple PrevMD(cast<MDTuple>(OldMD.get()));
1055   PrevMD->replaceAllUsesWith(MD);
1056   --NumFwdRefs;
1057 }
1058 
1059 Metadata *BitcodeReaderMetadataList::getValueFwdRef(unsigned Idx) {
1060   if (Idx >= size())
1061     resize(Idx + 1);
1062 
1063   if (Metadata *MD = MetadataPtrs[Idx])
1064     return MD;
1065 
1066   // Track forward refs to be resolved later.
1067   if (AnyFwdRefs) {
1068     MinFwdRef = std::min(MinFwdRef, Idx);
1069     MaxFwdRef = std::max(MaxFwdRef, Idx);
1070   } else {
1071     AnyFwdRefs = true;
1072     MinFwdRef = MaxFwdRef = Idx;
1073   }
1074   ++NumFwdRefs;
1075 
1076   // Create and return a placeholder, which will later be RAUW'd.
1077   Metadata *MD = MDNode::getTemporary(Context, None).release();
1078   MetadataPtrs[Idx].reset(MD);
1079   return MD;
1080 }
1081 
1082 void BitcodeReaderMetadataList::tryToResolveCycles() {
1083   if (!AnyFwdRefs)
1084     // Nothing to do.
1085     return;
1086 
1087   if (NumFwdRefs)
1088     // Still forward references... can't resolve cycles.
1089     return;
1090 
1091   // Resolve any cycles.
1092   for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) {
1093     auto &MD = MetadataPtrs[I];
1094     auto *N = dyn_cast_or_null<MDNode>(MD);
1095     if (!N)
1096       continue;
1097 
1098     assert(!N->isTemporary() && "Unexpected forward reference");
1099     N->resolveCycles();
1100   }
1101 
1102   // Make sure we return early again until there's another forward ref.
1103   AnyFwdRefs = false;
1104 }
1105 
1106 Type *BitcodeReader::getTypeByID(unsigned ID) {
1107   // The type table size is always specified correctly.
1108   if (ID >= TypeList.size())
1109     return nullptr;
1110 
1111   if (Type *Ty = TypeList[ID])
1112     return Ty;
1113 
1114   // If we have a forward reference, the only possible case is when it is to a
1115   // named struct.  Just create a placeholder for now.
1116   return TypeList[ID] = createIdentifiedStructType(Context);
1117 }
1118 
1119 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1120                                                       StringRef Name) {
1121   auto *Ret = StructType::create(Context, Name);
1122   IdentifiedStructTypes.push_back(Ret);
1123   return Ret;
1124 }
1125 
1126 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1127   auto *Ret = StructType::create(Context);
1128   IdentifiedStructTypes.push_back(Ret);
1129   return Ret;
1130 }
1131 
1132 
1133 //===----------------------------------------------------------------------===//
1134 //  Functions for parsing blocks from the bitcode file
1135 //===----------------------------------------------------------------------===//
1136 
1137 
1138 /// \brief This fills an AttrBuilder object with the LLVM attributes that have
1139 /// been decoded from the given integer. This function must stay in sync with
1140 /// 'encodeLLVMAttributesForBitcode'.
1141 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1142                                            uint64_t EncodedAttrs) {
1143   // FIXME: Remove in 4.0.
1144 
1145   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1146   // the bits above 31 down by 11 bits.
1147   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1148   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1149          "Alignment must be a power of two.");
1150 
1151   if (Alignment)
1152     B.addAlignmentAttr(Alignment);
1153   B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1154                 (EncodedAttrs & 0xffff));
1155 }
1156 
1157 std::error_code BitcodeReader::parseAttributeBlock() {
1158   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1159     return error("Invalid record");
1160 
1161   if (!MAttributes.empty())
1162     return error("Invalid multiple blocks");
1163 
1164   SmallVector<uint64_t, 64> Record;
1165 
1166   SmallVector<AttributeSet, 8> Attrs;
1167 
1168   // Read all the records.
1169   while (1) {
1170     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1171 
1172     switch (Entry.Kind) {
1173     case BitstreamEntry::SubBlock: // Handled for us already.
1174     case BitstreamEntry::Error:
1175       return error("Malformed block");
1176     case BitstreamEntry::EndBlock:
1177       return std::error_code();
1178     case BitstreamEntry::Record:
1179       // The interesting case.
1180       break;
1181     }
1182 
1183     // Read a record.
1184     Record.clear();
1185     switch (Stream.readRecord(Entry.ID, Record)) {
1186     default:  // Default behavior: ignore.
1187       break;
1188     case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...]
1189       // FIXME: Remove in 4.0.
1190       if (Record.size() & 1)
1191         return error("Invalid record");
1192 
1193       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1194         AttrBuilder B;
1195         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1196         Attrs.push_back(AttributeSet::get(Context, Record[i], B));
1197       }
1198 
1199       MAttributes.push_back(AttributeSet::get(Context, Attrs));
1200       Attrs.clear();
1201       break;
1202     }
1203     case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...]
1204       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1205         Attrs.push_back(MAttributeGroups[Record[i]]);
1206 
1207       MAttributes.push_back(AttributeSet::get(Context, Attrs));
1208       Attrs.clear();
1209       break;
1210     }
1211     }
1212   }
1213 }
1214 
1215 // Returns Attribute::None on unrecognized codes.
1216 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1217   switch (Code) {
1218   default:
1219     return Attribute::None;
1220   case bitc::ATTR_KIND_ALIGNMENT:
1221     return Attribute::Alignment;
1222   case bitc::ATTR_KIND_ALWAYS_INLINE:
1223     return Attribute::AlwaysInline;
1224   case bitc::ATTR_KIND_ARGMEMONLY:
1225     return Attribute::ArgMemOnly;
1226   case bitc::ATTR_KIND_BUILTIN:
1227     return Attribute::Builtin;
1228   case bitc::ATTR_KIND_BY_VAL:
1229     return Attribute::ByVal;
1230   case bitc::ATTR_KIND_IN_ALLOCA:
1231     return Attribute::InAlloca;
1232   case bitc::ATTR_KIND_COLD:
1233     return Attribute::Cold;
1234   case bitc::ATTR_KIND_CONVERGENT:
1235     return Attribute::Convergent;
1236   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1237     return Attribute::InaccessibleMemOnly;
1238   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1239     return Attribute::InaccessibleMemOrArgMemOnly;
1240   case bitc::ATTR_KIND_INLINE_HINT:
1241     return Attribute::InlineHint;
1242   case bitc::ATTR_KIND_IN_REG:
1243     return Attribute::InReg;
1244   case bitc::ATTR_KIND_JUMP_TABLE:
1245     return Attribute::JumpTable;
1246   case bitc::ATTR_KIND_MIN_SIZE:
1247     return Attribute::MinSize;
1248   case bitc::ATTR_KIND_NAKED:
1249     return Attribute::Naked;
1250   case bitc::ATTR_KIND_NEST:
1251     return Attribute::Nest;
1252   case bitc::ATTR_KIND_NO_ALIAS:
1253     return Attribute::NoAlias;
1254   case bitc::ATTR_KIND_NO_BUILTIN:
1255     return Attribute::NoBuiltin;
1256   case bitc::ATTR_KIND_NO_CAPTURE:
1257     return Attribute::NoCapture;
1258   case bitc::ATTR_KIND_NO_DUPLICATE:
1259     return Attribute::NoDuplicate;
1260   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1261     return Attribute::NoImplicitFloat;
1262   case bitc::ATTR_KIND_NO_INLINE:
1263     return Attribute::NoInline;
1264   case bitc::ATTR_KIND_NO_RECURSE:
1265     return Attribute::NoRecurse;
1266   case bitc::ATTR_KIND_NON_LAZY_BIND:
1267     return Attribute::NonLazyBind;
1268   case bitc::ATTR_KIND_NON_NULL:
1269     return Attribute::NonNull;
1270   case bitc::ATTR_KIND_DEREFERENCEABLE:
1271     return Attribute::Dereferenceable;
1272   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1273     return Attribute::DereferenceableOrNull;
1274   case bitc::ATTR_KIND_NO_RED_ZONE:
1275     return Attribute::NoRedZone;
1276   case bitc::ATTR_KIND_NO_RETURN:
1277     return Attribute::NoReturn;
1278   case bitc::ATTR_KIND_NO_UNWIND:
1279     return Attribute::NoUnwind;
1280   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1281     return Attribute::OptimizeForSize;
1282   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1283     return Attribute::OptimizeNone;
1284   case bitc::ATTR_KIND_READ_NONE:
1285     return Attribute::ReadNone;
1286   case bitc::ATTR_KIND_READ_ONLY:
1287     return Attribute::ReadOnly;
1288   case bitc::ATTR_KIND_RETURNED:
1289     return Attribute::Returned;
1290   case bitc::ATTR_KIND_RETURNS_TWICE:
1291     return Attribute::ReturnsTwice;
1292   case bitc::ATTR_KIND_S_EXT:
1293     return Attribute::SExt;
1294   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1295     return Attribute::StackAlignment;
1296   case bitc::ATTR_KIND_STACK_PROTECT:
1297     return Attribute::StackProtect;
1298   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1299     return Attribute::StackProtectReq;
1300   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1301     return Attribute::StackProtectStrong;
1302   case bitc::ATTR_KIND_SAFESTACK:
1303     return Attribute::SafeStack;
1304   case bitc::ATTR_KIND_STRUCT_RET:
1305     return Attribute::StructRet;
1306   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1307     return Attribute::SanitizeAddress;
1308   case bitc::ATTR_KIND_SANITIZE_THREAD:
1309     return Attribute::SanitizeThread;
1310   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1311     return Attribute::SanitizeMemory;
1312   case bitc::ATTR_KIND_UW_TABLE:
1313     return Attribute::UWTable;
1314   case bitc::ATTR_KIND_Z_EXT:
1315     return Attribute::ZExt;
1316   }
1317 }
1318 
1319 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1320                                                    unsigned &Alignment) {
1321   // Note: Alignment in bitcode files is incremented by 1, so that zero
1322   // can be used for default alignment.
1323   if (Exponent > Value::MaxAlignmentExponent + 1)
1324     return error("Invalid alignment value");
1325   Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1;
1326   return std::error_code();
1327 }
1328 
1329 std::error_code BitcodeReader::parseAttrKind(uint64_t Code,
1330                                              Attribute::AttrKind *Kind) {
1331   *Kind = getAttrFromCode(Code);
1332   if (*Kind == Attribute::None)
1333     return error(BitcodeError::CorruptedBitcode,
1334                  "Unknown attribute kind (" + Twine(Code) + ")");
1335   return std::error_code();
1336 }
1337 
1338 std::error_code BitcodeReader::parseAttributeGroupBlock() {
1339   if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1340     return error("Invalid record");
1341 
1342   if (!MAttributeGroups.empty())
1343     return error("Invalid multiple blocks");
1344 
1345   SmallVector<uint64_t, 64> Record;
1346 
1347   // Read all the records.
1348   while (1) {
1349     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1350 
1351     switch (Entry.Kind) {
1352     case BitstreamEntry::SubBlock: // Handled for us already.
1353     case BitstreamEntry::Error:
1354       return error("Malformed block");
1355     case BitstreamEntry::EndBlock:
1356       return std::error_code();
1357     case BitstreamEntry::Record:
1358       // The interesting case.
1359       break;
1360     }
1361 
1362     // Read a record.
1363     Record.clear();
1364     switch (Stream.readRecord(Entry.ID, Record)) {
1365     default:  // Default behavior: ignore.
1366       break;
1367     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1368       if (Record.size() < 3)
1369         return error("Invalid record");
1370 
1371       uint64_t GrpID = Record[0];
1372       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1373 
1374       AttrBuilder B;
1375       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1376         if (Record[i] == 0) {        // Enum attribute
1377           Attribute::AttrKind Kind;
1378           if (std::error_code EC = parseAttrKind(Record[++i], &Kind))
1379             return EC;
1380 
1381           B.addAttribute(Kind);
1382         } else if (Record[i] == 1) { // Integer attribute
1383           Attribute::AttrKind Kind;
1384           if (std::error_code EC = parseAttrKind(Record[++i], &Kind))
1385             return EC;
1386           if (Kind == Attribute::Alignment)
1387             B.addAlignmentAttr(Record[++i]);
1388           else if (Kind == Attribute::StackAlignment)
1389             B.addStackAlignmentAttr(Record[++i]);
1390           else if (Kind == Attribute::Dereferenceable)
1391             B.addDereferenceableAttr(Record[++i]);
1392           else if (Kind == Attribute::DereferenceableOrNull)
1393             B.addDereferenceableOrNullAttr(Record[++i]);
1394         } else {                     // String attribute
1395           assert((Record[i] == 3 || Record[i] == 4) &&
1396                  "Invalid attribute group entry");
1397           bool HasValue = (Record[i++] == 4);
1398           SmallString<64> KindStr;
1399           SmallString<64> ValStr;
1400 
1401           while (Record[i] != 0 && i != e)
1402             KindStr += Record[i++];
1403           assert(Record[i] == 0 && "Kind string not null terminated");
1404 
1405           if (HasValue) {
1406             // Has a value associated with it.
1407             ++i; // Skip the '0' that terminates the "kind" string.
1408             while (Record[i] != 0 && i != e)
1409               ValStr += Record[i++];
1410             assert(Record[i] == 0 && "Value string not null terminated");
1411           }
1412 
1413           B.addAttribute(KindStr.str(), ValStr.str());
1414         }
1415       }
1416 
1417       MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B);
1418       break;
1419     }
1420     }
1421   }
1422 }
1423 
1424 std::error_code BitcodeReader::parseTypeTable() {
1425   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1426     return error("Invalid record");
1427 
1428   return parseTypeTableBody();
1429 }
1430 
1431 std::error_code BitcodeReader::parseTypeTableBody() {
1432   if (!TypeList.empty())
1433     return error("Invalid multiple blocks");
1434 
1435   SmallVector<uint64_t, 64> Record;
1436   unsigned NumRecords = 0;
1437 
1438   SmallString<64> TypeName;
1439 
1440   // Read all the records for this type table.
1441   while (1) {
1442     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1443 
1444     switch (Entry.Kind) {
1445     case BitstreamEntry::SubBlock: // Handled for us already.
1446     case BitstreamEntry::Error:
1447       return error("Malformed block");
1448     case BitstreamEntry::EndBlock:
1449       if (NumRecords != TypeList.size())
1450         return error("Malformed block");
1451       return std::error_code();
1452     case BitstreamEntry::Record:
1453       // The interesting case.
1454       break;
1455     }
1456 
1457     // Read a record.
1458     Record.clear();
1459     Type *ResultTy = nullptr;
1460     switch (Stream.readRecord(Entry.ID, Record)) {
1461     default:
1462       return error("Invalid value");
1463     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1464       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1465       // type list.  This allows us to reserve space.
1466       if (Record.size() < 1)
1467         return error("Invalid record");
1468       TypeList.resize(Record[0]);
1469       continue;
1470     case bitc::TYPE_CODE_VOID:      // VOID
1471       ResultTy = Type::getVoidTy(Context);
1472       break;
1473     case bitc::TYPE_CODE_HALF:     // HALF
1474       ResultTy = Type::getHalfTy(Context);
1475       break;
1476     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1477       ResultTy = Type::getFloatTy(Context);
1478       break;
1479     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1480       ResultTy = Type::getDoubleTy(Context);
1481       break;
1482     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1483       ResultTy = Type::getX86_FP80Ty(Context);
1484       break;
1485     case bitc::TYPE_CODE_FP128:     // FP128
1486       ResultTy = Type::getFP128Ty(Context);
1487       break;
1488     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1489       ResultTy = Type::getPPC_FP128Ty(Context);
1490       break;
1491     case bitc::TYPE_CODE_LABEL:     // LABEL
1492       ResultTy = Type::getLabelTy(Context);
1493       break;
1494     case bitc::TYPE_CODE_METADATA:  // METADATA
1495       ResultTy = Type::getMetadataTy(Context);
1496       break;
1497     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1498       ResultTy = Type::getX86_MMXTy(Context);
1499       break;
1500     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1501       ResultTy = Type::getTokenTy(Context);
1502       break;
1503     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1504       if (Record.size() < 1)
1505         return error("Invalid record");
1506 
1507       uint64_t NumBits = Record[0];
1508       if (NumBits < IntegerType::MIN_INT_BITS ||
1509           NumBits > IntegerType::MAX_INT_BITS)
1510         return error("Bitwidth for integer type out of range");
1511       ResultTy = IntegerType::get(Context, NumBits);
1512       break;
1513     }
1514     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1515                                     //          [pointee type, address space]
1516       if (Record.size() < 1)
1517         return error("Invalid record");
1518       unsigned AddressSpace = 0;
1519       if (Record.size() == 2)
1520         AddressSpace = Record[1];
1521       ResultTy = getTypeByID(Record[0]);
1522       if (!ResultTy ||
1523           !PointerType::isValidElementType(ResultTy))
1524         return error("Invalid type");
1525       ResultTy = PointerType::get(ResultTy, AddressSpace);
1526       break;
1527     }
1528     case bitc::TYPE_CODE_FUNCTION_OLD: {
1529       // FIXME: attrid is dead, remove it in LLVM 4.0
1530       // FUNCTION: [vararg, attrid, retty, paramty x N]
1531       if (Record.size() < 3)
1532         return error("Invalid record");
1533       SmallVector<Type*, 8> ArgTys;
1534       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1535         if (Type *T = getTypeByID(Record[i]))
1536           ArgTys.push_back(T);
1537         else
1538           break;
1539       }
1540 
1541       ResultTy = getTypeByID(Record[2]);
1542       if (!ResultTy || ArgTys.size() < Record.size()-3)
1543         return error("Invalid type");
1544 
1545       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1546       break;
1547     }
1548     case bitc::TYPE_CODE_FUNCTION: {
1549       // FUNCTION: [vararg, retty, paramty x N]
1550       if (Record.size() < 2)
1551         return error("Invalid record");
1552       SmallVector<Type*, 8> ArgTys;
1553       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1554         if (Type *T = getTypeByID(Record[i])) {
1555           if (!FunctionType::isValidArgumentType(T))
1556             return error("Invalid function argument type");
1557           ArgTys.push_back(T);
1558         }
1559         else
1560           break;
1561       }
1562 
1563       ResultTy = getTypeByID(Record[1]);
1564       if (!ResultTy || ArgTys.size() < Record.size()-2)
1565         return error("Invalid type");
1566 
1567       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1568       break;
1569     }
1570     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1571       if (Record.size() < 1)
1572         return error("Invalid record");
1573       SmallVector<Type*, 8> EltTys;
1574       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1575         if (Type *T = getTypeByID(Record[i]))
1576           EltTys.push_back(T);
1577         else
1578           break;
1579       }
1580       if (EltTys.size() != Record.size()-1)
1581         return error("Invalid type");
1582       ResultTy = StructType::get(Context, EltTys, Record[0]);
1583       break;
1584     }
1585     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1586       if (convertToString(Record, 0, TypeName))
1587         return error("Invalid record");
1588       continue;
1589 
1590     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1591       if (Record.size() < 1)
1592         return error("Invalid record");
1593 
1594       if (NumRecords >= TypeList.size())
1595         return error("Invalid TYPE table");
1596 
1597       // Check to see if this was forward referenced, if so fill in the temp.
1598       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1599       if (Res) {
1600         Res->setName(TypeName);
1601         TypeList[NumRecords] = nullptr;
1602       } else  // Otherwise, create a new struct.
1603         Res = createIdentifiedStructType(Context, TypeName);
1604       TypeName.clear();
1605 
1606       SmallVector<Type*, 8> EltTys;
1607       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1608         if (Type *T = getTypeByID(Record[i]))
1609           EltTys.push_back(T);
1610         else
1611           break;
1612       }
1613       if (EltTys.size() != Record.size()-1)
1614         return error("Invalid record");
1615       Res->setBody(EltTys, Record[0]);
1616       ResultTy = Res;
1617       break;
1618     }
1619     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1620       if (Record.size() != 1)
1621         return error("Invalid record");
1622 
1623       if (NumRecords >= TypeList.size())
1624         return error("Invalid TYPE table");
1625 
1626       // Check to see if this was forward referenced, if so fill in the temp.
1627       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1628       if (Res) {
1629         Res->setName(TypeName);
1630         TypeList[NumRecords] = nullptr;
1631       } else  // Otherwise, create a new struct with no body.
1632         Res = createIdentifiedStructType(Context, TypeName);
1633       TypeName.clear();
1634       ResultTy = Res;
1635       break;
1636     }
1637     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1638       if (Record.size() < 2)
1639         return error("Invalid record");
1640       ResultTy = getTypeByID(Record[1]);
1641       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1642         return error("Invalid type");
1643       ResultTy = ArrayType::get(ResultTy, Record[0]);
1644       break;
1645     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
1646       if (Record.size() < 2)
1647         return error("Invalid record");
1648       if (Record[0] == 0)
1649         return error("Invalid vector length");
1650       ResultTy = getTypeByID(Record[1]);
1651       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1652         return error("Invalid type");
1653       ResultTy = VectorType::get(ResultTy, Record[0]);
1654       break;
1655     }
1656 
1657     if (NumRecords >= TypeList.size())
1658       return error("Invalid TYPE table");
1659     if (TypeList[NumRecords])
1660       return error(
1661           "Invalid TYPE table: Only named structs can be forward referenced");
1662     assert(ResultTy && "Didn't read a type?");
1663     TypeList[NumRecords++] = ResultTy;
1664   }
1665 }
1666 
1667 std::error_code BitcodeReader::parseOperandBundleTags() {
1668   if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1669     return error("Invalid record");
1670 
1671   if (!BundleTags.empty())
1672     return error("Invalid multiple blocks");
1673 
1674   SmallVector<uint64_t, 64> Record;
1675 
1676   while (1) {
1677     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1678 
1679     switch (Entry.Kind) {
1680     case BitstreamEntry::SubBlock: // Handled for us already.
1681     case BitstreamEntry::Error:
1682       return error("Malformed block");
1683     case BitstreamEntry::EndBlock:
1684       return std::error_code();
1685     case BitstreamEntry::Record:
1686       // The interesting case.
1687       break;
1688     }
1689 
1690     // Tags are implicitly mapped to integers by their order.
1691 
1692     if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG)
1693       return error("Invalid record");
1694 
1695     // OPERAND_BUNDLE_TAG: [strchr x N]
1696     BundleTags.emplace_back();
1697     if (convertToString(Record, 0, BundleTags.back()))
1698       return error("Invalid record");
1699     Record.clear();
1700   }
1701 }
1702 
1703 /// Associate a value with its name from the given index in the provided record.
1704 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
1705                                             unsigned NameIndex, Triple &TT) {
1706   SmallString<128> ValueName;
1707   if (convertToString(Record, NameIndex, ValueName))
1708     return error("Invalid record");
1709   unsigned ValueID = Record[0];
1710   if (ValueID >= ValueList.size() || !ValueList[ValueID])
1711     return error("Invalid record");
1712   Value *V = ValueList[ValueID];
1713 
1714   StringRef NameStr(ValueName.data(), ValueName.size());
1715   if (NameStr.find_first_of(0) != StringRef::npos)
1716     return error("Invalid value name");
1717   V->setName(NameStr);
1718   auto *GO = dyn_cast<GlobalObject>(V);
1719   if (GO) {
1720     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
1721       if (TT.isOSBinFormatMachO())
1722         GO->setComdat(nullptr);
1723       else
1724         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
1725     }
1726   }
1727   return V;
1728 }
1729 
1730 /// Parse the value symbol table at either the current parsing location or
1731 /// at the given bit offset if provided.
1732 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
1733   uint64_t CurrentBit;
1734   // Pass in the Offset to distinguish between calling for the module-level
1735   // VST (where we want to jump to the VST offset) and the function-level
1736   // VST (where we don't).
1737   if (Offset > 0) {
1738     // Save the current parsing location so we can jump back at the end
1739     // of the VST read.
1740     CurrentBit = Stream.GetCurrentBitNo();
1741     Stream.JumpToBit(Offset * 32);
1742 #ifndef NDEBUG
1743     // Do some checking if we are in debug mode.
1744     BitstreamEntry Entry = Stream.advance();
1745     assert(Entry.Kind == BitstreamEntry::SubBlock);
1746     assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID);
1747 #else
1748     // In NDEBUG mode ignore the output so we don't get an unused variable
1749     // warning.
1750     Stream.advance();
1751 #endif
1752   }
1753 
1754   // Compute the delta between the bitcode indices in the VST (the word offset
1755   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
1756   // expected by the lazy reader. The reader's EnterSubBlock expects to have
1757   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
1758   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
1759   // just before entering the VST subblock because: 1) the EnterSubBlock
1760   // changes the AbbrevID width; 2) the VST block is nested within the same
1761   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
1762   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
1763   // jump to the FUNCTION_BLOCK using this offset later, we don't want
1764   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
1765   unsigned FuncBitcodeOffsetDelta =
1766       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
1767 
1768   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
1769     return error("Invalid record");
1770 
1771   SmallVector<uint64_t, 64> Record;
1772 
1773   Triple TT(TheModule->getTargetTriple());
1774 
1775   // Read all the records for this value table.
1776   SmallString<128> ValueName;
1777   while (1) {
1778     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1779 
1780     switch (Entry.Kind) {
1781     case BitstreamEntry::SubBlock: // Handled for us already.
1782     case BitstreamEntry::Error:
1783       return error("Malformed block");
1784     case BitstreamEntry::EndBlock:
1785       if (Offset > 0)
1786         Stream.JumpToBit(CurrentBit);
1787       return std::error_code();
1788     case BitstreamEntry::Record:
1789       // The interesting case.
1790       break;
1791     }
1792 
1793     // Read a record.
1794     Record.clear();
1795     switch (Stream.readRecord(Entry.ID, Record)) {
1796     default:  // Default behavior: unknown type.
1797       break;
1798     case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
1799       ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT);
1800       if (std::error_code EC = ValOrErr.getError())
1801         return EC;
1802       ValOrErr.get();
1803       break;
1804     }
1805     case bitc::VST_CODE_FNENTRY: {
1806       // VST_FNENTRY: [valueid, offset, namechar x N]
1807       ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT);
1808       if (std::error_code EC = ValOrErr.getError())
1809         return EC;
1810       Value *V = ValOrErr.get();
1811 
1812       auto *GO = dyn_cast<GlobalObject>(V);
1813       if (!GO) {
1814         // If this is an alias, need to get the actual Function object
1815         // it aliases, in order to set up the DeferredFunctionInfo entry below.
1816         auto *GA = dyn_cast<GlobalAlias>(V);
1817         if (GA)
1818           GO = GA->getBaseObject();
1819         assert(GO);
1820       }
1821 
1822       uint64_t FuncWordOffset = Record[1];
1823       Function *F = dyn_cast<Function>(GO);
1824       assert(F);
1825       uint64_t FuncBitOffset = FuncWordOffset * 32;
1826       DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
1827       // Set the LastFunctionBlockBit to point to the last function block.
1828       // Later when parsing is resumed after function materialization,
1829       // we can simply skip that last function block.
1830       if (FuncBitOffset > LastFunctionBlockBit)
1831         LastFunctionBlockBit = FuncBitOffset;
1832       break;
1833     }
1834     case bitc::VST_CODE_BBENTRY: {
1835       if (convertToString(Record, 1, ValueName))
1836         return error("Invalid record");
1837       BasicBlock *BB = getBasicBlock(Record[0]);
1838       if (!BB)
1839         return error("Invalid record");
1840 
1841       BB->setName(StringRef(ValueName.data(), ValueName.size()));
1842       ValueName.clear();
1843       break;
1844     }
1845     }
1846   }
1847 }
1848 
1849 /// Parse a single METADATA_KIND record, inserting result in MDKindMap.
1850 std::error_code
1851 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) {
1852   if (Record.size() < 2)
1853     return error("Invalid record");
1854 
1855   unsigned Kind = Record[0];
1856   SmallString<8> Name(Record.begin() + 1, Record.end());
1857 
1858   unsigned NewKind = TheModule->getMDKindID(Name.str());
1859   if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
1860     return error("Conflicting METADATA_KIND records");
1861   return std::error_code();
1862 }
1863 
1864 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; }
1865 
1866 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing
1867 /// module level metadata.
1868 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) {
1869   IsMetadataMaterialized = true;
1870   unsigned NextMetadataNo = MetadataList.size();
1871   if (ModuleLevel && SeenModuleValuesRecord) {
1872     // Now that we are parsing the module level metadata, we want to restart
1873     // the numbering of the MD values, and replace temp MD created earlier
1874     // with their real values. If we saw a METADATA_VALUE record then we
1875     // would have set the MetadataList size to the number specified in that
1876     // record, to support parsing function-level metadata first, and we need
1877     // to reset back to 0 to fill the MetadataList in with the parsed module
1878     // The function-level metadata parsing should have reset the MetadataList
1879     // size back to the value reported by the METADATA_VALUE record, saved in
1880     // NumModuleMDs.
1881     assert(NumModuleMDs == MetadataList.size() &&
1882            "Expected MetadataList to only contain module level values");
1883     NextMetadataNo = 0;
1884   }
1885 
1886   if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
1887     return error("Invalid record");
1888 
1889   SmallVector<uint64_t, 64> Record;
1890 
1891   auto getMD = [&](unsigned ID) -> Metadata * {
1892     return MetadataList.getValueFwdRef(ID);
1893   };
1894   auto getMDOrNull = [&](unsigned ID) -> Metadata *{
1895     if (ID)
1896       return getMD(ID - 1);
1897     return nullptr;
1898   };
1899   auto getMDString = [&](unsigned ID) -> MDString *{
1900     // This requires that the ID is not really a forward reference.  In
1901     // particular, the MDString must already have been resolved.
1902     return cast_or_null<MDString>(getMDOrNull(ID));
1903   };
1904 
1905 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS)                                 \
1906   (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS)
1907 
1908   // Read all the records.
1909   while (1) {
1910     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1911 
1912     switch (Entry.Kind) {
1913     case BitstreamEntry::SubBlock: // Handled for us already.
1914     case BitstreamEntry::Error:
1915       return error("Malformed block");
1916     case BitstreamEntry::EndBlock:
1917       MetadataList.tryToResolveCycles();
1918       assert((!(ModuleLevel && SeenModuleValuesRecord) ||
1919               NumModuleMDs == MetadataList.size()) &&
1920              "Inconsistent bitcode: METADATA_VALUES mismatch");
1921       return std::error_code();
1922     case BitstreamEntry::Record:
1923       // The interesting case.
1924       break;
1925     }
1926 
1927     // Read a record.
1928     Record.clear();
1929     unsigned Code = Stream.readRecord(Entry.ID, Record);
1930     bool IsDistinct = false;
1931     switch (Code) {
1932     default:  // Default behavior: ignore.
1933       break;
1934     case bitc::METADATA_NAME: {
1935       // Read name of the named metadata.
1936       SmallString<8> Name(Record.begin(), Record.end());
1937       Record.clear();
1938       Code = Stream.ReadCode();
1939 
1940       unsigned NextBitCode = Stream.readRecord(Code, Record);
1941       if (NextBitCode != bitc::METADATA_NAMED_NODE)
1942         return error("METADATA_NAME not followed by METADATA_NAMED_NODE");
1943 
1944       // Read named metadata elements.
1945       unsigned Size = Record.size();
1946       NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
1947       for (unsigned i = 0; i != Size; ++i) {
1948         MDNode *MD =
1949             dyn_cast_or_null<MDNode>(MetadataList.getValueFwdRef(Record[i]));
1950         if (!MD)
1951           return error("Invalid record");
1952         NMD->addOperand(MD);
1953       }
1954       break;
1955     }
1956     case bitc::METADATA_OLD_FN_NODE: {
1957       // FIXME: Remove in 4.0.
1958       // This is a LocalAsMetadata record, the only type of function-local
1959       // metadata.
1960       if (Record.size() % 2 == 1)
1961         return error("Invalid record");
1962 
1963       // If this isn't a LocalAsMetadata record, we're dropping it.  This used
1964       // to be legal, but there's no upgrade path.
1965       auto dropRecord = [&] {
1966         MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++);
1967       };
1968       if (Record.size() != 2) {
1969         dropRecord();
1970         break;
1971       }
1972 
1973       Type *Ty = getTypeByID(Record[0]);
1974       if (Ty->isMetadataTy() || Ty->isVoidTy()) {
1975         dropRecord();
1976         break;
1977       }
1978 
1979       MetadataList.assignValue(
1980           LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
1981           NextMetadataNo++);
1982       break;
1983     }
1984     case bitc::METADATA_OLD_NODE: {
1985       // FIXME: Remove in 4.0.
1986       if (Record.size() % 2 == 1)
1987         return error("Invalid record");
1988 
1989       unsigned Size = Record.size();
1990       SmallVector<Metadata *, 8> Elts;
1991       for (unsigned i = 0; i != Size; i += 2) {
1992         Type *Ty = getTypeByID(Record[i]);
1993         if (!Ty)
1994           return error("Invalid record");
1995         if (Ty->isMetadataTy())
1996           Elts.push_back(MetadataList.getValueFwdRef(Record[i + 1]));
1997         else if (!Ty->isVoidTy()) {
1998           auto *MD =
1999               ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty));
2000           assert(isa<ConstantAsMetadata>(MD) &&
2001                  "Expected non-function-local metadata");
2002           Elts.push_back(MD);
2003         } else
2004           Elts.push_back(nullptr);
2005       }
2006       MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++);
2007       break;
2008     }
2009     case bitc::METADATA_VALUE: {
2010       if (Record.size() != 2)
2011         return error("Invalid record");
2012 
2013       Type *Ty = getTypeByID(Record[0]);
2014       if (Ty->isMetadataTy() || Ty->isVoidTy())
2015         return error("Invalid record");
2016 
2017       MetadataList.assignValue(
2018           ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
2019           NextMetadataNo++);
2020       break;
2021     }
2022     case bitc::METADATA_DISTINCT_NODE:
2023       IsDistinct = true;
2024       // fallthrough...
2025     case bitc::METADATA_NODE: {
2026       SmallVector<Metadata *, 8> Elts;
2027       Elts.reserve(Record.size());
2028       for (unsigned ID : Record)
2029         Elts.push_back(ID ? MetadataList.getValueFwdRef(ID - 1) : nullptr);
2030       MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts)
2031                                           : MDNode::get(Context, Elts),
2032                                NextMetadataNo++);
2033       break;
2034     }
2035     case bitc::METADATA_LOCATION: {
2036       if (Record.size() != 5)
2037         return error("Invalid record");
2038 
2039       unsigned Line = Record[1];
2040       unsigned Column = Record[2];
2041       MDNode *Scope = cast<MDNode>(MetadataList.getValueFwdRef(Record[3]));
2042       Metadata *InlinedAt =
2043           Record[4] ? MetadataList.getValueFwdRef(Record[4] - 1) : nullptr;
2044       MetadataList.assignValue(
2045           GET_OR_DISTINCT(DILocation, Record[0],
2046                           (Context, Line, Column, Scope, InlinedAt)),
2047           NextMetadataNo++);
2048       break;
2049     }
2050     case bitc::METADATA_GENERIC_DEBUG: {
2051       if (Record.size() < 4)
2052         return error("Invalid record");
2053 
2054       unsigned Tag = Record[1];
2055       unsigned Version = Record[2];
2056 
2057       if (Tag >= 1u << 16 || Version != 0)
2058         return error("Invalid record");
2059 
2060       auto *Header = getMDString(Record[3]);
2061       SmallVector<Metadata *, 8> DwarfOps;
2062       for (unsigned I = 4, E = Record.size(); I != E; ++I)
2063         DwarfOps.push_back(
2064             Record[I] ? MetadataList.getValueFwdRef(Record[I] - 1) : nullptr);
2065       MetadataList.assignValue(
2066           GET_OR_DISTINCT(GenericDINode, Record[0],
2067                           (Context, Tag, Header, DwarfOps)),
2068           NextMetadataNo++);
2069       break;
2070     }
2071     case bitc::METADATA_SUBRANGE: {
2072       if (Record.size() != 3)
2073         return error("Invalid record");
2074 
2075       MetadataList.assignValue(
2076           GET_OR_DISTINCT(DISubrange, Record[0],
2077                           (Context, Record[1], unrotateSign(Record[2]))),
2078           NextMetadataNo++);
2079       break;
2080     }
2081     case bitc::METADATA_ENUMERATOR: {
2082       if (Record.size() != 3)
2083         return error("Invalid record");
2084 
2085       MetadataList.assignValue(
2086           GET_OR_DISTINCT(
2087               DIEnumerator, Record[0],
2088               (Context, unrotateSign(Record[1]), getMDString(Record[2]))),
2089           NextMetadataNo++);
2090       break;
2091     }
2092     case bitc::METADATA_BASIC_TYPE: {
2093       if (Record.size() != 6)
2094         return error("Invalid record");
2095 
2096       MetadataList.assignValue(
2097           GET_OR_DISTINCT(DIBasicType, Record[0],
2098                           (Context, Record[1], getMDString(Record[2]),
2099                            Record[3], Record[4], Record[5])),
2100           NextMetadataNo++);
2101       break;
2102     }
2103     case bitc::METADATA_DERIVED_TYPE: {
2104       if (Record.size() != 12)
2105         return error("Invalid record");
2106 
2107       MetadataList.assignValue(
2108           GET_OR_DISTINCT(DIDerivedType, Record[0],
2109                           (Context, Record[1], getMDString(Record[2]),
2110                            getMDOrNull(Record[3]), Record[4],
2111                            getMDOrNull(Record[5]), getMDOrNull(Record[6]),
2112                            Record[7], Record[8], Record[9], Record[10],
2113                            getMDOrNull(Record[11]))),
2114           NextMetadataNo++);
2115       break;
2116     }
2117     case bitc::METADATA_COMPOSITE_TYPE: {
2118       if (Record.size() != 16)
2119         return error("Invalid record");
2120 
2121       MetadataList.assignValue(
2122           GET_OR_DISTINCT(DICompositeType, Record[0],
2123                           (Context, Record[1], getMDString(Record[2]),
2124                            getMDOrNull(Record[3]), Record[4],
2125                            getMDOrNull(Record[5]), getMDOrNull(Record[6]),
2126                            Record[7], Record[8], Record[9], Record[10],
2127                            getMDOrNull(Record[11]), Record[12],
2128                            getMDOrNull(Record[13]), getMDOrNull(Record[14]),
2129                            getMDString(Record[15]))),
2130           NextMetadataNo++);
2131       break;
2132     }
2133     case bitc::METADATA_SUBROUTINE_TYPE: {
2134       if (Record.size() != 3)
2135         return error("Invalid record");
2136 
2137       MetadataList.assignValue(
2138           GET_OR_DISTINCT(DISubroutineType, Record[0],
2139                           (Context, Record[1], getMDOrNull(Record[2]))),
2140           NextMetadataNo++);
2141       break;
2142     }
2143 
2144     case bitc::METADATA_MODULE: {
2145       if (Record.size() != 6)
2146         return error("Invalid record");
2147 
2148       MetadataList.assignValue(
2149           GET_OR_DISTINCT(DIModule, Record[0],
2150                           (Context, getMDOrNull(Record[1]),
2151                            getMDString(Record[2]), getMDString(Record[3]),
2152                            getMDString(Record[4]), getMDString(Record[5]))),
2153           NextMetadataNo++);
2154       break;
2155     }
2156 
2157     case bitc::METADATA_FILE: {
2158       if (Record.size() != 3)
2159         return error("Invalid record");
2160 
2161       MetadataList.assignValue(
2162           GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]),
2163                                               getMDString(Record[2]))),
2164           NextMetadataNo++);
2165       break;
2166     }
2167     case bitc::METADATA_COMPILE_UNIT: {
2168       if (Record.size() < 14 || Record.size() > 16)
2169         return error("Invalid record");
2170 
2171       // Ignore Record[0], which indicates whether this compile unit is
2172       // distinct.  It's always distinct.
2173       MetadataList.assignValue(
2174           DICompileUnit::getDistinct(
2175               Context, Record[1], getMDOrNull(Record[2]),
2176               getMDString(Record[3]), Record[4], getMDString(Record[5]),
2177               Record[6], getMDString(Record[7]), Record[8],
2178               getMDOrNull(Record[9]), getMDOrNull(Record[10]),
2179               getMDOrNull(Record[11]), getMDOrNull(Record[12]),
2180               getMDOrNull(Record[13]),
2181               Record.size() <= 15 ? 0 : getMDOrNull(Record[15]),
2182               Record.size() <= 14 ? 0 : Record[14]),
2183           NextMetadataNo++);
2184       break;
2185     }
2186     case bitc::METADATA_SUBPROGRAM: {
2187       if (Record.size() != 18 && Record.size() != 19)
2188         return error("Invalid record");
2189 
2190       bool HasFn = Record.size() == 19;
2191       DISubprogram *SP = GET_OR_DISTINCT(
2192           DISubprogram,
2193           Record[0] || Record[8], // All definitions should be distinct.
2194           (Context, getMDOrNull(Record[1]), getMDString(Record[2]),
2195            getMDString(Record[3]), getMDOrNull(Record[4]), Record[5],
2196            getMDOrNull(Record[6]), Record[7], Record[8], Record[9],
2197            getMDOrNull(Record[10]), Record[11], Record[12], Record[13],
2198            Record[14], getMDOrNull(Record[15 + HasFn]),
2199            getMDOrNull(Record[16 + HasFn]), getMDOrNull(Record[17 + HasFn])));
2200       MetadataList.assignValue(SP, NextMetadataNo++);
2201 
2202       // Upgrade sp->function mapping to function->sp mapping.
2203       if (HasFn && Record[15]) {
2204         if (auto *CMD = dyn_cast<ConstantAsMetadata>(getMDOrNull(Record[15])))
2205           if (auto *F = dyn_cast<Function>(CMD->getValue())) {
2206             if (F->isMaterializable())
2207               // Defer until materialized; unmaterialized functions may not have
2208               // metadata.
2209               FunctionsWithSPs[F] = SP;
2210             else if (!F->empty())
2211               F->setSubprogram(SP);
2212           }
2213       }
2214       break;
2215     }
2216     case bitc::METADATA_LEXICAL_BLOCK: {
2217       if (Record.size() != 5)
2218         return error("Invalid record");
2219 
2220       MetadataList.assignValue(
2221           GET_OR_DISTINCT(DILexicalBlock, Record[0],
2222                           (Context, getMDOrNull(Record[1]),
2223                            getMDOrNull(Record[2]), Record[3], Record[4])),
2224           NextMetadataNo++);
2225       break;
2226     }
2227     case bitc::METADATA_LEXICAL_BLOCK_FILE: {
2228       if (Record.size() != 4)
2229         return error("Invalid record");
2230 
2231       MetadataList.assignValue(
2232           GET_OR_DISTINCT(DILexicalBlockFile, Record[0],
2233                           (Context, getMDOrNull(Record[1]),
2234                            getMDOrNull(Record[2]), Record[3])),
2235           NextMetadataNo++);
2236       break;
2237     }
2238     case bitc::METADATA_NAMESPACE: {
2239       if (Record.size() != 5)
2240         return error("Invalid record");
2241 
2242       MetadataList.assignValue(
2243           GET_OR_DISTINCT(DINamespace, Record[0],
2244                           (Context, getMDOrNull(Record[1]),
2245                            getMDOrNull(Record[2]), getMDString(Record[3]),
2246                            Record[4])),
2247           NextMetadataNo++);
2248       break;
2249     }
2250     case bitc::METADATA_MACRO: {
2251       if (Record.size() != 5)
2252         return error("Invalid record");
2253 
2254       MetadataList.assignValue(
2255           GET_OR_DISTINCT(DIMacro, Record[0],
2256                           (Context, Record[1], Record[2],
2257                            getMDString(Record[3]), getMDString(Record[4]))),
2258           NextMetadataNo++);
2259       break;
2260     }
2261     case bitc::METADATA_MACRO_FILE: {
2262       if (Record.size() != 5)
2263         return error("Invalid record");
2264 
2265       MetadataList.assignValue(
2266           GET_OR_DISTINCT(DIMacroFile, Record[0],
2267                           (Context, Record[1], Record[2],
2268                            getMDOrNull(Record[3]), getMDOrNull(Record[4]))),
2269           NextMetadataNo++);
2270       break;
2271     }
2272     case bitc::METADATA_TEMPLATE_TYPE: {
2273       if (Record.size() != 3)
2274         return error("Invalid record");
2275 
2276       MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter,
2277                                                Record[0],
2278                                                (Context, getMDString(Record[1]),
2279                                                 getMDOrNull(Record[2]))),
2280                                NextMetadataNo++);
2281       break;
2282     }
2283     case bitc::METADATA_TEMPLATE_VALUE: {
2284       if (Record.size() != 5)
2285         return error("Invalid record");
2286 
2287       MetadataList.assignValue(
2288           GET_OR_DISTINCT(DITemplateValueParameter, Record[0],
2289                           (Context, Record[1], getMDString(Record[2]),
2290                            getMDOrNull(Record[3]), getMDOrNull(Record[4]))),
2291           NextMetadataNo++);
2292       break;
2293     }
2294     case bitc::METADATA_GLOBAL_VAR: {
2295       if (Record.size() != 11)
2296         return error("Invalid record");
2297 
2298       MetadataList.assignValue(
2299           GET_OR_DISTINCT(DIGlobalVariable, Record[0],
2300                           (Context, getMDOrNull(Record[1]),
2301                            getMDString(Record[2]), getMDString(Record[3]),
2302                            getMDOrNull(Record[4]), Record[5],
2303                            getMDOrNull(Record[6]), Record[7], Record[8],
2304                            getMDOrNull(Record[9]), getMDOrNull(Record[10]))),
2305           NextMetadataNo++);
2306       break;
2307     }
2308     case bitc::METADATA_LOCAL_VAR: {
2309       // 10th field is for the obseleted 'inlinedAt:' field.
2310       if (Record.size() < 8 || Record.size() > 10)
2311         return error("Invalid record");
2312 
2313       // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or
2314       // DW_TAG_arg_variable.
2315       bool HasTag = Record.size() > 8;
2316       MetadataList.assignValue(
2317           GET_OR_DISTINCT(DILocalVariable, Record[0],
2318                           (Context, getMDOrNull(Record[1 + HasTag]),
2319                            getMDString(Record[2 + HasTag]),
2320                            getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag],
2321                            getMDOrNull(Record[5 + HasTag]), Record[6 + HasTag],
2322                            Record[7 + HasTag])),
2323           NextMetadataNo++);
2324       break;
2325     }
2326     case bitc::METADATA_EXPRESSION: {
2327       if (Record.size() < 1)
2328         return error("Invalid record");
2329 
2330       MetadataList.assignValue(
2331           GET_OR_DISTINCT(DIExpression, Record[0],
2332                           (Context, makeArrayRef(Record).slice(1))),
2333           NextMetadataNo++);
2334       break;
2335     }
2336     case bitc::METADATA_OBJC_PROPERTY: {
2337       if (Record.size() != 8)
2338         return error("Invalid record");
2339 
2340       MetadataList.assignValue(
2341           GET_OR_DISTINCT(DIObjCProperty, Record[0],
2342                           (Context, getMDString(Record[1]),
2343                            getMDOrNull(Record[2]), Record[3],
2344                            getMDString(Record[4]), getMDString(Record[5]),
2345                            Record[6], getMDOrNull(Record[7]))),
2346           NextMetadataNo++);
2347       break;
2348     }
2349     case bitc::METADATA_IMPORTED_ENTITY: {
2350       if (Record.size() != 6)
2351         return error("Invalid record");
2352 
2353       MetadataList.assignValue(
2354           GET_OR_DISTINCT(DIImportedEntity, Record[0],
2355                           (Context, Record[1], getMDOrNull(Record[2]),
2356                            getMDOrNull(Record[3]), Record[4],
2357                            getMDString(Record[5]))),
2358           NextMetadataNo++);
2359       break;
2360     }
2361     case bitc::METADATA_STRING: {
2362       std::string String(Record.begin(), Record.end());
2363       llvm::UpgradeMDStringConstant(String);
2364       Metadata *MD = MDString::get(Context, String);
2365       MetadataList.assignValue(MD, NextMetadataNo++);
2366       break;
2367     }
2368     case bitc::METADATA_KIND: {
2369       // Support older bitcode files that had METADATA_KIND records in a
2370       // block with METADATA_BLOCK_ID.
2371       if (std::error_code EC = parseMetadataKindRecord(Record))
2372         return EC;
2373       break;
2374     }
2375     }
2376   }
2377 #undef GET_OR_DISTINCT
2378 }
2379 
2380 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK.
2381 std::error_code BitcodeReader::parseMetadataKinds() {
2382   if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID))
2383     return error("Invalid record");
2384 
2385   SmallVector<uint64_t, 64> Record;
2386 
2387   // Read all the records.
2388   while (1) {
2389     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2390 
2391     switch (Entry.Kind) {
2392     case BitstreamEntry::SubBlock: // Handled for us already.
2393     case BitstreamEntry::Error:
2394       return error("Malformed block");
2395     case BitstreamEntry::EndBlock:
2396       return std::error_code();
2397     case BitstreamEntry::Record:
2398       // The interesting case.
2399       break;
2400     }
2401 
2402     // Read a record.
2403     Record.clear();
2404     unsigned Code = Stream.readRecord(Entry.ID, Record);
2405     switch (Code) {
2406     default: // Default behavior: ignore.
2407       break;
2408     case bitc::METADATA_KIND: {
2409       if (std::error_code EC = parseMetadataKindRecord(Record))
2410         return EC;
2411       break;
2412     }
2413     }
2414   }
2415 }
2416 
2417 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2418 /// encoding.
2419 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2420   if ((V & 1) == 0)
2421     return V >> 1;
2422   if (V != 1)
2423     return -(V >> 1);
2424   // There is no such thing as -0 with integers.  "-0" really means MININT.
2425   return 1ULL << 63;
2426 }
2427 
2428 /// Resolve all of the initializers for global values and aliases that we can.
2429 std::error_code BitcodeReader::resolveGlobalAndAliasInits() {
2430   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
2431   std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
2432   std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist;
2433   std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist;
2434   std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist;
2435 
2436   GlobalInitWorklist.swap(GlobalInits);
2437   AliasInitWorklist.swap(AliasInits);
2438   FunctionPrefixWorklist.swap(FunctionPrefixes);
2439   FunctionPrologueWorklist.swap(FunctionPrologues);
2440   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2441 
2442   while (!GlobalInitWorklist.empty()) {
2443     unsigned ValID = GlobalInitWorklist.back().second;
2444     if (ValID >= ValueList.size()) {
2445       // Not ready to resolve this yet, it requires something later in the file.
2446       GlobalInits.push_back(GlobalInitWorklist.back());
2447     } else {
2448       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2449         GlobalInitWorklist.back().first->setInitializer(C);
2450       else
2451         return error("Expected a constant");
2452     }
2453     GlobalInitWorklist.pop_back();
2454   }
2455 
2456   while (!AliasInitWorklist.empty()) {
2457     unsigned ValID = AliasInitWorklist.back().second;
2458     if (ValID >= ValueList.size()) {
2459       AliasInits.push_back(AliasInitWorklist.back());
2460     } else {
2461       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2462       if (!C)
2463         return error("Expected a constant");
2464       GlobalAlias *Alias = AliasInitWorklist.back().first;
2465       if (C->getType() != Alias->getType())
2466         return error("Alias and aliasee types don't match");
2467       Alias->setAliasee(C);
2468     }
2469     AliasInitWorklist.pop_back();
2470   }
2471 
2472   while (!FunctionPrefixWorklist.empty()) {
2473     unsigned ValID = FunctionPrefixWorklist.back().second;
2474     if (ValID >= ValueList.size()) {
2475       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2476     } else {
2477       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2478         FunctionPrefixWorklist.back().first->setPrefixData(C);
2479       else
2480         return error("Expected a constant");
2481     }
2482     FunctionPrefixWorklist.pop_back();
2483   }
2484 
2485   while (!FunctionPrologueWorklist.empty()) {
2486     unsigned ValID = FunctionPrologueWorklist.back().second;
2487     if (ValID >= ValueList.size()) {
2488       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2489     } else {
2490       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2491         FunctionPrologueWorklist.back().first->setPrologueData(C);
2492       else
2493         return error("Expected a constant");
2494     }
2495     FunctionPrologueWorklist.pop_back();
2496   }
2497 
2498   while (!FunctionPersonalityFnWorklist.empty()) {
2499     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2500     if (ValID >= ValueList.size()) {
2501       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2502     } else {
2503       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2504         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2505       else
2506         return error("Expected a constant");
2507     }
2508     FunctionPersonalityFnWorklist.pop_back();
2509   }
2510 
2511   return std::error_code();
2512 }
2513 
2514 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2515   SmallVector<uint64_t, 8> Words(Vals.size());
2516   std::transform(Vals.begin(), Vals.end(), Words.begin(),
2517                  BitcodeReader::decodeSignRotatedValue);
2518 
2519   return APInt(TypeBits, Words);
2520 }
2521 
2522 std::error_code BitcodeReader::parseConstants() {
2523   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2524     return error("Invalid record");
2525 
2526   SmallVector<uint64_t, 64> Record;
2527 
2528   // Read all the records for this value table.
2529   Type *CurTy = Type::getInt32Ty(Context);
2530   unsigned NextCstNo = ValueList.size();
2531   while (1) {
2532     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2533 
2534     switch (Entry.Kind) {
2535     case BitstreamEntry::SubBlock: // Handled for us already.
2536     case BitstreamEntry::Error:
2537       return error("Malformed block");
2538     case BitstreamEntry::EndBlock:
2539       if (NextCstNo != ValueList.size())
2540         return error("Invalid constant reference");
2541 
2542       // Once all the constants have been read, go through and resolve forward
2543       // references.
2544       ValueList.resolveConstantForwardRefs();
2545       return std::error_code();
2546     case BitstreamEntry::Record:
2547       // The interesting case.
2548       break;
2549     }
2550 
2551     // Read a record.
2552     Record.clear();
2553     Value *V = nullptr;
2554     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
2555     switch (BitCode) {
2556     default:  // Default behavior: unknown constant
2557     case bitc::CST_CODE_UNDEF:     // UNDEF
2558       V = UndefValue::get(CurTy);
2559       break;
2560     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2561       if (Record.empty())
2562         return error("Invalid record");
2563       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2564         return error("Invalid record");
2565       CurTy = TypeList[Record[0]];
2566       continue;  // Skip the ValueList manipulation.
2567     case bitc::CST_CODE_NULL:      // NULL
2568       V = Constant::getNullValue(CurTy);
2569       break;
2570     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2571       if (!CurTy->isIntegerTy() || Record.empty())
2572         return error("Invalid record");
2573       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2574       break;
2575     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2576       if (!CurTy->isIntegerTy() || Record.empty())
2577         return error("Invalid record");
2578 
2579       APInt VInt =
2580           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2581       V = ConstantInt::get(Context, VInt);
2582 
2583       break;
2584     }
2585     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2586       if (Record.empty())
2587         return error("Invalid record");
2588       if (CurTy->isHalfTy())
2589         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf,
2590                                              APInt(16, (uint16_t)Record[0])));
2591       else if (CurTy->isFloatTy())
2592         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle,
2593                                              APInt(32, (uint32_t)Record[0])));
2594       else if (CurTy->isDoubleTy())
2595         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble,
2596                                              APInt(64, Record[0])));
2597       else if (CurTy->isX86_FP80Ty()) {
2598         // Bits are not stored the same way as a normal i80 APInt, compensate.
2599         uint64_t Rearrange[2];
2600         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2601         Rearrange[1] = Record[0] >> 48;
2602         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended,
2603                                              APInt(80, Rearrange)));
2604       } else if (CurTy->isFP128Ty())
2605         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad,
2606                                              APInt(128, Record)));
2607       else if (CurTy->isPPC_FP128Ty())
2608         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble,
2609                                              APInt(128, Record)));
2610       else
2611         V = UndefValue::get(CurTy);
2612       break;
2613     }
2614 
2615     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2616       if (Record.empty())
2617         return error("Invalid record");
2618 
2619       unsigned Size = Record.size();
2620       SmallVector<Constant*, 16> Elts;
2621 
2622       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2623         for (unsigned i = 0; i != Size; ++i)
2624           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2625                                                      STy->getElementType(i)));
2626         V = ConstantStruct::get(STy, Elts);
2627       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2628         Type *EltTy = ATy->getElementType();
2629         for (unsigned i = 0; i != Size; ++i)
2630           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2631         V = ConstantArray::get(ATy, Elts);
2632       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2633         Type *EltTy = VTy->getElementType();
2634         for (unsigned i = 0; i != Size; ++i)
2635           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2636         V = ConstantVector::get(Elts);
2637       } else {
2638         V = UndefValue::get(CurTy);
2639       }
2640       break;
2641     }
2642     case bitc::CST_CODE_STRING:    // STRING: [values]
2643     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2644       if (Record.empty())
2645         return error("Invalid record");
2646 
2647       SmallString<16> Elts(Record.begin(), Record.end());
2648       V = ConstantDataArray::getString(Context, Elts,
2649                                        BitCode == bitc::CST_CODE_CSTRING);
2650       break;
2651     }
2652     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2653       if (Record.empty())
2654         return error("Invalid record");
2655 
2656       Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
2657       if (EltTy->isIntegerTy(8)) {
2658         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2659         if (isa<VectorType>(CurTy))
2660           V = ConstantDataVector::get(Context, Elts);
2661         else
2662           V = ConstantDataArray::get(Context, Elts);
2663       } else if (EltTy->isIntegerTy(16)) {
2664         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2665         if (isa<VectorType>(CurTy))
2666           V = ConstantDataVector::get(Context, Elts);
2667         else
2668           V = ConstantDataArray::get(Context, Elts);
2669       } else if (EltTy->isIntegerTy(32)) {
2670         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2671         if (isa<VectorType>(CurTy))
2672           V = ConstantDataVector::get(Context, Elts);
2673         else
2674           V = ConstantDataArray::get(Context, Elts);
2675       } else if (EltTy->isIntegerTy(64)) {
2676         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2677         if (isa<VectorType>(CurTy))
2678           V = ConstantDataVector::get(Context, Elts);
2679         else
2680           V = ConstantDataArray::get(Context, Elts);
2681       } else if (EltTy->isHalfTy()) {
2682         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2683         if (isa<VectorType>(CurTy))
2684           V = ConstantDataVector::getFP(Context, Elts);
2685         else
2686           V = ConstantDataArray::getFP(Context, Elts);
2687       } else if (EltTy->isFloatTy()) {
2688         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2689         if (isa<VectorType>(CurTy))
2690           V = ConstantDataVector::getFP(Context, Elts);
2691         else
2692           V = ConstantDataArray::getFP(Context, Elts);
2693       } else if (EltTy->isDoubleTy()) {
2694         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2695         if (isa<VectorType>(CurTy))
2696           V = ConstantDataVector::getFP(Context, Elts);
2697         else
2698           V = ConstantDataArray::getFP(Context, Elts);
2699       } else {
2700         return error("Invalid type for value");
2701       }
2702       break;
2703     }
2704 
2705     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2706       if (Record.size() < 3)
2707         return error("Invalid record");
2708       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2709       if (Opc < 0) {
2710         V = UndefValue::get(CurTy);  // Unknown binop.
2711       } else {
2712         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2713         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2714         unsigned Flags = 0;
2715         if (Record.size() >= 4) {
2716           if (Opc == Instruction::Add ||
2717               Opc == Instruction::Sub ||
2718               Opc == Instruction::Mul ||
2719               Opc == Instruction::Shl) {
2720             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2721               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2722             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2723               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2724           } else if (Opc == Instruction::SDiv ||
2725                      Opc == Instruction::UDiv ||
2726                      Opc == Instruction::LShr ||
2727                      Opc == Instruction::AShr) {
2728             if (Record[3] & (1 << bitc::PEO_EXACT))
2729               Flags |= SDivOperator::IsExact;
2730           }
2731         }
2732         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2733       }
2734       break;
2735     }
2736     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2737       if (Record.size() < 3)
2738         return error("Invalid record");
2739       int Opc = getDecodedCastOpcode(Record[0]);
2740       if (Opc < 0) {
2741         V = UndefValue::get(CurTy);  // Unknown cast.
2742       } else {
2743         Type *OpTy = getTypeByID(Record[1]);
2744         if (!OpTy)
2745           return error("Invalid record");
2746         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2747         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2748         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2749       }
2750       break;
2751     }
2752     case bitc::CST_CODE_CE_INBOUNDS_GEP:
2753     case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
2754       unsigned OpNum = 0;
2755       Type *PointeeType = nullptr;
2756       if (Record.size() % 2)
2757         PointeeType = getTypeByID(Record[OpNum++]);
2758       SmallVector<Constant*, 16> Elts;
2759       while (OpNum != Record.size()) {
2760         Type *ElTy = getTypeByID(Record[OpNum++]);
2761         if (!ElTy)
2762           return error("Invalid record");
2763         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2764       }
2765 
2766       if (PointeeType &&
2767           PointeeType !=
2768               cast<SequentialType>(Elts[0]->getType()->getScalarType())
2769                   ->getElementType())
2770         return error("Explicit gep operator type does not match pointee type "
2771                      "of pointer operand");
2772 
2773       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2774       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2775                                          BitCode ==
2776                                              bitc::CST_CODE_CE_INBOUNDS_GEP);
2777       break;
2778     }
2779     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2780       if (Record.size() < 3)
2781         return error("Invalid record");
2782 
2783       Type *SelectorTy = Type::getInt1Ty(Context);
2784 
2785       // The selector might be an i1 or an <n x i1>
2786       // Get the type from the ValueList before getting a forward ref.
2787       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2788         if (Value *V = ValueList[Record[0]])
2789           if (SelectorTy != V->getType())
2790             SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements());
2791 
2792       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2793                                                               SelectorTy),
2794                                   ValueList.getConstantFwdRef(Record[1],CurTy),
2795                                   ValueList.getConstantFwdRef(Record[2],CurTy));
2796       break;
2797     }
2798     case bitc::CST_CODE_CE_EXTRACTELT
2799         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2800       if (Record.size() < 3)
2801         return error("Invalid record");
2802       VectorType *OpTy =
2803         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2804       if (!OpTy)
2805         return error("Invalid record");
2806       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2807       Constant *Op1 = nullptr;
2808       if (Record.size() == 4) {
2809         Type *IdxTy = getTypeByID(Record[2]);
2810         if (!IdxTy)
2811           return error("Invalid record");
2812         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2813       } else // TODO: Remove with llvm 4.0
2814         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2815       if (!Op1)
2816         return error("Invalid record");
2817       V = ConstantExpr::getExtractElement(Op0, Op1);
2818       break;
2819     }
2820     case bitc::CST_CODE_CE_INSERTELT
2821         : { // CE_INSERTELT: [opval, opval, opty, opval]
2822       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2823       if (Record.size() < 3 || !OpTy)
2824         return error("Invalid record");
2825       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2826       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2827                                                   OpTy->getElementType());
2828       Constant *Op2 = nullptr;
2829       if (Record.size() == 4) {
2830         Type *IdxTy = getTypeByID(Record[2]);
2831         if (!IdxTy)
2832           return error("Invalid record");
2833         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2834       } else // TODO: Remove with llvm 4.0
2835         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2836       if (!Op2)
2837         return error("Invalid record");
2838       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2839       break;
2840     }
2841     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2842       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2843       if (Record.size() < 3 || !OpTy)
2844         return error("Invalid record");
2845       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2846       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
2847       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2848                                                  OpTy->getNumElements());
2849       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
2850       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2851       break;
2852     }
2853     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2854       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2855       VectorType *OpTy =
2856         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2857       if (Record.size() < 4 || !RTy || !OpTy)
2858         return error("Invalid record");
2859       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2860       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2861       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2862                                                  RTy->getNumElements());
2863       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
2864       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2865       break;
2866     }
2867     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2868       if (Record.size() < 4)
2869         return error("Invalid record");
2870       Type *OpTy = getTypeByID(Record[0]);
2871       if (!OpTy)
2872         return error("Invalid record");
2873       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2874       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2875 
2876       if (OpTy->isFPOrFPVectorTy())
2877         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2878       else
2879         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2880       break;
2881     }
2882     // This maintains backward compatibility, pre-asm dialect keywords.
2883     // FIXME: Remove with the 4.0 release.
2884     case bitc::CST_CODE_INLINEASM_OLD: {
2885       if (Record.size() < 2)
2886         return error("Invalid record");
2887       std::string AsmStr, ConstrStr;
2888       bool HasSideEffects = Record[0] & 1;
2889       bool IsAlignStack = Record[0] >> 1;
2890       unsigned AsmStrSize = Record[1];
2891       if (2+AsmStrSize >= Record.size())
2892         return error("Invalid record");
2893       unsigned ConstStrSize = Record[2+AsmStrSize];
2894       if (3+AsmStrSize+ConstStrSize > Record.size())
2895         return error("Invalid record");
2896 
2897       for (unsigned i = 0; i != AsmStrSize; ++i)
2898         AsmStr += (char)Record[2+i];
2899       for (unsigned i = 0; i != ConstStrSize; ++i)
2900         ConstrStr += (char)Record[3+AsmStrSize+i];
2901       PointerType *PTy = cast<PointerType>(CurTy);
2902       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2903                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
2904       break;
2905     }
2906     // This version adds support for the asm dialect keywords (e.g.,
2907     // inteldialect).
2908     case bitc::CST_CODE_INLINEASM: {
2909       if (Record.size() < 2)
2910         return error("Invalid record");
2911       std::string AsmStr, ConstrStr;
2912       bool HasSideEffects = Record[0] & 1;
2913       bool IsAlignStack = (Record[0] >> 1) & 1;
2914       unsigned AsmDialect = Record[0] >> 2;
2915       unsigned AsmStrSize = Record[1];
2916       if (2+AsmStrSize >= Record.size())
2917         return error("Invalid record");
2918       unsigned ConstStrSize = Record[2+AsmStrSize];
2919       if (3+AsmStrSize+ConstStrSize > Record.size())
2920         return error("Invalid record");
2921 
2922       for (unsigned i = 0; i != AsmStrSize; ++i)
2923         AsmStr += (char)Record[2+i];
2924       for (unsigned i = 0; i != ConstStrSize; ++i)
2925         ConstrStr += (char)Record[3+AsmStrSize+i];
2926       PointerType *PTy = cast<PointerType>(CurTy);
2927       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2928                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2929                          InlineAsm::AsmDialect(AsmDialect));
2930       break;
2931     }
2932     case bitc::CST_CODE_BLOCKADDRESS:{
2933       if (Record.size() < 3)
2934         return error("Invalid record");
2935       Type *FnTy = getTypeByID(Record[0]);
2936       if (!FnTy)
2937         return error("Invalid record");
2938       Function *Fn =
2939         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2940       if (!Fn)
2941         return error("Invalid record");
2942 
2943       // If the function is already parsed we can insert the block address right
2944       // away.
2945       BasicBlock *BB;
2946       unsigned BBID = Record[2];
2947       if (!BBID)
2948         // Invalid reference to entry block.
2949         return error("Invalid ID");
2950       if (!Fn->empty()) {
2951         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2952         for (size_t I = 0, E = BBID; I != E; ++I) {
2953           if (BBI == BBE)
2954             return error("Invalid ID");
2955           ++BBI;
2956         }
2957         BB = &*BBI;
2958       } else {
2959         // Otherwise insert a placeholder and remember it so it can be inserted
2960         // when the function is parsed.
2961         auto &FwdBBs = BasicBlockFwdRefs[Fn];
2962         if (FwdBBs.empty())
2963           BasicBlockFwdRefQueue.push_back(Fn);
2964         if (FwdBBs.size() < BBID + 1)
2965           FwdBBs.resize(BBID + 1);
2966         if (!FwdBBs[BBID])
2967           FwdBBs[BBID] = BasicBlock::Create(Context);
2968         BB = FwdBBs[BBID];
2969       }
2970       V = BlockAddress::get(Fn, BB);
2971       break;
2972     }
2973     }
2974 
2975     ValueList.assignValue(V, NextCstNo);
2976     ++NextCstNo;
2977   }
2978 }
2979 
2980 std::error_code BitcodeReader::parseUseLists() {
2981   if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
2982     return error("Invalid record");
2983 
2984   // Read all the records.
2985   SmallVector<uint64_t, 64> Record;
2986   while (1) {
2987     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2988 
2989     switch (Entry.Kind) {
2990     case BitstreamEntry::SubBlock: // Handled for us already.
2991     case BitstreamEntry::Error:
2992       return error("Malformed block");
2993     case BitstreamEntry::EndBlock:
2994       return std::error_code();
2995     case BitstreamEntry::Record:
2996       // The interesting case.
2997       break;
2998     }
2999 
3000     // Read a use list record.
3001     Record.clear();
3002     bool IsBB = false;
3003     switch (Stream.readRecord(Entry.ID, Record)) {
3004     default:  // Default behavior: unknown type.
3005       break;
3006     case bitc::USELIST_CODE_BB:
3007       IsBB = true;
3008       // fallthrough
3009     case bitc::USELIST_CODE_DEFAULT: {
3010       unsigned RecordLength = Record.size();
3011       if (RecordLength < 3)
3012         // Records should have at least an ID and two indexes.
3013         return error("Invalid record");
3014       unsigned ID = Record.back();
3015       Record.pop_back();
3016 
3017       Value *V;
3018       if (IsBB) {
3019         assert(ID < FunctionBBs.size() && "Basic block not found");
3020         V = FunctionBBs[ID];
3021       } else
3022         V = ValueList[ID];
3023       unsigned NumUses = 0;
3024       SmallDenseMap<const Use *, unsigned, 16> Order;
3025       for (const Use &U : V->materialized_uses()) {
3026         if (++NumUses > Record.size())
3027           break;
3028         Order[&U] = Record[NumUses - 1];
3029       }
3030       if (Order.size() != Record.size() || NumUses > Record.size())
3031         // Mismatches can happen if the functions are being materialized lazily
3032         // (out-of-order), or a value has been upgraded.
3033         break;
3034 
3035       V->sortUseList([&](const Use &L, const Use &R) {
3036         return Order.lookup(&L) < Order.lookup(&R);
3037       });
3038       break;
3039     }
3040     }
3041   }
3042 }
3043 
3044 /// When we see the block for metadata, remember where it is and then skip it.
3045 /// This lets us lazily deserialize the metadata.
3046 std::error_code BitcodeReader::rememberAndSkipMetadata() {
3047   // Save the current stream state.
3048   uint64_t CurBit = Stream.GetCurrentBitNo();
3049   DeferredMetadataInfo.push_back(CurBit);
3050 
3051   // Skip over the block for now.
3052   if (Stream.SkipBlock())
3053     return error("Invalid record");
3054   return std::error_code();
3055 }
3056 
3057 std::error_code BitcodeReader::materializeMetadata() {
3058   for (uint64_t BitPos : DeferredMetadataInfo) {
3059     // Move the bit stream to the saved position.
3060     Stream.JumpToBit(BitPos);
3061     if (std::error_code EC = parseMetadata(true))
3062       return EC;
3063   }
3064   DeferredMetadataInfo.clear();
3065   return std::error_code();
3066 }
3067 
3068 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3069 
3070 void BitcodeReader::saveMetadataList(
3071     DenseMap<const Metadata *, unsigned> &MetadataToIDs, bool OnlyTempMD) {
3072   for (unsigned ID = 0; ID < MetadataList.size(); ++ID) {
3073     Metadata *MD = MetadataList[ID];
3074     auto *N = dyn_cast_or_null<MDNode>(MD);
3075     assert((!N || (N->isResolved() || N->isTemporary())) &&
3076            "Found non-resolved non-temp MDNode while saving metadata");
3077     // Save all values if !OnlyTempMD, otherwise just the temporary metadata.
3078     // Note that in the !OnlyTempMD case we need to save all Metadata, not
3079     // just MDNode, as we may have references to other types of module-level
3080     // metadata (e.g. ValueAsMetadata) from instructions.
3081     if (!OnlyTempMD || (N && N->isTemporary())) {
3082       // Will call this after materializing each function, in order to
3083       // handle remapping of the function's instructions/metadata.
3084       auto IterBool = MetadataToIDs.insert(std::make_pair(MD, ID));
3085       // See if we already have an entry in that case.
3086       if (OnlyTempMD && !IterBool.second) {
3087         assert(IterBool.first->second == ID &&
3088                "Inconsistent metadata value id");
3089         continue;
3090       }
3091       if (N && N->isTemporary())
3092         // Ensure that we assert if someone tries to RAUW this temporary
3093         // metadata while it is the key of a map. The flag will be set back
3094         // to true when the saved metadata list is destroyed.
3095         N->setCanReplace(false);
3096     }
3097   }
3098 }
3099 
3100 /// When we see the block for a function body, remember where it is and then
3101 /// skip it.  This lets us lazily deserialize the functions.
3102 std::error_code BitcodeReader::rememberAndSkipFunctionBody() {
3103   // Get the function we are talking about.
3104   if (FunctionsWithBodies.empty())
3105     return error("Insufficient function protos");
3106 
3107   Function *Fn = FunctionsWithBodies.back();
3108   FunctionsWithBodies.pop_back();
3109 
3110   // Save the current stream state.
3111   uint64_t CurBit = Stream.GetCurrentBitNo();
3112   assert(
3113       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3114       "Mismatch between VST and scanned function offsets");
3115   DeferredFunctionInfo[Fn] = CurBit;
3116 
3117   // Skip over the function block for now.
3118   if (Stream.SkipBlock())
3119     return error("Invalid record");
3120   return std::error_code();
3121 }
3122 
3123 std::error_code BitcodeReader::globalCleanup() {
3124   // Patch the initializers for globals and aliases up.
3125   resolveGlobalAndAliasInits();
3126   if (!GlobalInits.empty() || !AliasInits.empty())
3127     return error("Malformed global initializer set");
3128 
3129   // Look for intrinsic functions which need to be upgraded at some point
3130   for (Function &F : *TheModule) {
3131     Function *NewFn;
3132     if (UpgradeIntrinsicFunction(&F, NewFn))
3133       UpgradedIntrinsics[&F] = NewFn;
3134   }
3135 
3136   // Look for global variables which need to be renamed.
3137   for (GlobalVariable &GV : TheModule->globals())
3138     UpgradeGlobalVariable(&GV);
3139 
3140   // Force deallocation of memory for these vectors to favor the client that
3141   // want lazy deserialization.
3142   std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
3143   std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
3144   return std::error_code();
3145 }
3146 
3147 /// Support for lazy parsing of function bodies. This is required if we
3148 /// either have an old bitcode file without a VST forward declaration record,
3149 /// or if we have an anonymous function being materialized, since anonymous
3150 /// functions do not have a name and are therefore not in the VST.
3151 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() {
3152   Stream.JumpToBit(NextUnreadBit);
3153 
3154   if (Stream.AtEndOfStream())
3155     return error("Could not find function in stream");
3156 
3157   if (!SeenFirstFunctionBody)
3158     return error("Trying to materialize functions before seeing function blocks");
3159 
3160   // An old bitcode file with the symbol table at the end would have
3161   // finished the parse greedily.
3162   assert(SeenValueSymbolTable);
3163 
3164   SmallVector<uint64_t, 64> Record;
3165 
3166   while (1) {
3167     BitstreamEntry Entry = Stream.advance();
3168     switch (Entry.Kind) {
3169     default:
3170       return error("Expect SubBlock");
3171     case BitstreamEntry::SubBlock:
3172       switch (Entry.ID) {
3173       default:
3174         return error("Expect function block");
3175       case bitc::FUNCTION_BLOCK_ID:
3176         if (std::error_code EC = rememberAndSkipFunctionBody())
3177           return EC;
3178         NextUnreadBit = Stream.GetCurrentBitNo();
3179         return std::error_code();
3180       }
3181     }
3182   }
3183 }
3184 
3185 std::error_code BitcodeReader::parseBitcodeVersion() {
3186   if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
3187     return error("Invalid record");
3188 
3189   // Read all the records.
3190   SmallVector<uint64_t, 64> Record;
3191   while (1) {
3192     BitstreamEntry Entry = Stream.advance();
3193 
3194     switch (Entry.Kind) {
3195     default:
3196     case BitstreamEntry::Error:
3197       return error("Malformed block");
3198     case BitstreamEntry::EndBlock:
3199       return std::error_code();
3200     case BitstreamEntry::Record:
3201       // The interesting case.
3202       break;
3203     }
3204 
3205     // Read a record.
3206     Record.clear();
3207     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
3208     switch (BitCode) {
3209     default: // Default behavior: reject
3210       return error("Invalid value");
3211     case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION:      [strchr x
3212                                              // N]
3213       convertToString(Record, 0, ProducerIdentification);
3214       break;
3215     }
3216     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH:      [epoch#]
3217       unsigned epoch = (unsigned)Record[0];
3218       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
3219         return error(
3220           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
3221           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
3222       }
3223     }
3224     }
3225   }
3226 }
3227 
3228 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit,
3229                                            bool ShouldLazyLoadMetadata) {
3230   if (ResumeBit)
3231     Stream.JumpToBit(ResumeBit);
3232   else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3233     return error("Invalid record");
3234 
3235   SmallVector<uint64_t, 64> Record;
3236   std::vector<std::string> SectionTable;
3237   std::vector<std::string> GCTable;
3238 
3239   // Read all the records for this module.
3240   while (1) {
3241     BitstreamEntry Entry = Stream.advance();
3242 
3243     switch (Entry.Kind) {
3244     case BitstreamEntry::Error:
3245       return error("Malformed block");
3246     case BitstreamEntry::EndBlock:
3247       return globalCleanup();
3248 
3249     case BitstreamEntry::SubBlock:
3250       switch (Entry.ID) {
3251       default:  // Skip unknown content.
3252         if (Stream.SkipBlock())
3253           return error("Invalid record");
3254         break;
3255       case bitc::BLOCKINFO_BLOCK_ID:
3256         if (Stream.ReadBlockInfoBlock())
3257           return error("Malformed block");
3258         break;
3259       case bitc::PARAMATTR_BLOCK_ID:
3260         if (std::error_code EC = parseAttributeBlock())
3261           return EC;
3262         break;
3263       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3264         if (std::error_code EC = parseAttributeGroupBlock())
3265           return EC;
3266         break;
3267       case bitc::TYPE_BLOCK_ID_NEW:
3268         if (std::error_code EC = parseTypeTable())
3269           return EC;
3270         break;
3271       case bitc::VALUE_SYMTAB_BLOCK_ID:
3272         if (!SeenValueSymbolTable) {
3273           // Either this is an old form VST without function index and an
3274           // associated VST forward declaration record (which would have caused
3275           // the VST to be jumped to and parsed before it was encountered
3276           // normally in the stream), or there were no function blocks to
3277           // trigger an earlier parsing of the VST.
3278           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3279           if (std::error_code EC = parseValueSymbolTable())
3280             return EC;
3281           SeenValueSymbolTable = true;
3282         } else {
3283           // We must have had a VST forward declaration record, which caused
3284           // the parser to jump to and parse the VST earlier.
3285           assert(VSTOffset > 0);
3286           if (Stream.SkipBlock())
3287             return error("Invalid record");
3288         }
3289         break;
3290       case bitc::CONSTANTS_BLOCK_ID:
3291         if (std::error_code EC = parseConstants())
3292           return EC;
3293         if (std::error_code EC = resolveGlobalAndAliasInits())
3294           return EC;
3295         break;
3296       case bitc::METADATA_BLOCK_ID:
3297         if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) {
3298           if (std::error_code EC = rememberAndSkipMetadata())
3299             return EC;
3300           break;
3301         }
3302         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3303         if (std::error_code EC = parseMetadata(true))
3304           return EC;
3305         break;
3306       case bitc::METADATA_KIND_BLOCK_ID:
3307         if (std::error_code EC = parseMetadataKinds())
3308           return EC;
3309         break;
3310       case bitc::FUNCTION_BLOCK_ID:
3311         // If this is the first function body we've seen, reverse the
3312         // FunctionsWithBodies list.
3313         if (!SeenFirstFunctionBody) {
3314           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3315           if (std::error_code EC = globalCleanup())
3316             return EC;
3317           SeenFirstFunctionBody = true;
3318         }
3319 
3320         if (VSTOffset > 0) {
3321           // If we have a VST forward declaration record, make sure we
3322           // parse the VST now if we haven't already. It is needed to
3323           // set up the DeferredFunctionInfo vector for lazy reading.
3324           if (!SeenValueSymbolTable) {
3325             if (std::error_code EC =
3326                     BitcodeReader::parseValueSymbolTable(VSTOffset))
3327               return EC;
3328             SeenValueSymbolTable = true;
3329             // Fall through so that we record the NextUnreadBit below.
3330             // This is necessary in case we have an anonymous function that
3331             // is later materialized. Since it will not have a VST entry we
3332             // need to fall back to the lazy parse to find its offset.
3333           } else {
3334             // If we have a VST forward declaration record, but have already
3335             // parsed the VST (just above, when the first function body was
3336             // encountered here), then we are resuming the parse after
3337             // materializing functions. The ResumeBit points to the
3338             // start of the last function block recorded in the
3339             // DeferredFunctionInfo map. Skip it.
3340             if (Stream.SkipBlock())
3341               return error("Invalid record");
3342             continue;
3343           }
3344         }
3345 
3346         // Support older bitcode files that did not have the function
3347         // index in the VST, nor a VST forward declaration record, as
3348         // well as anonymous functions that do not have VST entries.
3349         // Build the DeferredFunctionInfo vector on the fly.
3350         if (std::error_code EC = rememberAndSkipFunctionBody())
3351           return EC;
3352 
3353         // Suspend parsing when we reach the function bodies. Subsequent
3354         // materialization calls will resume it when necessary. If the bitcode
3355         // file is old, the symbol table will be at the end instead and will not
3356         // have been seen yet. In this case, just finish the parse now.
3357         if (SeenValueSymbolTable) {
3358           NextUnreadBit = Stream.GetCurrentBitNo();
3359           return std::error_code();
3360         }
3361         break;
3362       case bitc::USELIST_BLOCK_ID:
3363         if (std::error_code EC = parseUseLists())
3364           return EC;
3365         break;
3366       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3367         if (std::error_code EC = parseOperandBundleTags())
3368           return EC;
3369         break;
3370       }
3371       continue;
3372 
3373     case BitstreamEntry::Record:
3374       // The interesting case.
3375       break;
3376     }
3377 
3378 
3379     // Read a record.
3380     auto BitCode = Stream.readRecord(Entry.ID, Record);
3381     switch (BitCode) {
3382     default: break;  // Default behavior, ignore unknown content.
3383     case bitc::MODULE_CODE_VERSION: {  // VERSION: [version#]
3384       if (Record.size() < 1)
3385         return error("Invalid record");
3386       // Only version #0 and #1 are supported so far.
3387       unsigned module_version = Record[0];
3388       switch (module_version) {
3389         default:
3390           return error("Invalid value");
3391         case 0:
3392           UseRelativeIDs = false;
3393           break;
3394         case 1:
3395           UseRelativeIDs = true;
3396           break;
3397       }
3398       break;
3399     }
3400     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3401       std::string S;
3402       if (convertToString(Record, 0, S))
3403         return error("Invalid record");
3404       TheModule->setTargetTriple(S);
3405       break;
3406     }
3407     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3408       std::string S;
3409       if (convertToString(Record, 0, S))
3410         return error("Invalid record");
3411       TheModule->setDataLayout(S);
3412       break;
3413     }
3414     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3415       std::string S;
3416       if (convertToString(Record, 0, S))
3417         return error("Invalid record");
3418       TheModule->setModuleInlineAsm(S);
3419       break;
3420     }
3421     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3422       // FIXME: Remove in 4.0.
3423       std::string S;
3424       if (convertToString(Record, 0, S))
3425         return error("Invalid record");
3426       // Ignore value.
3427       break;
3428     }
3429     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3430       std::string S;
3431       if (convertToString(Record, 0, S))
3432         return error("Invalid record");
3433       SectionTable.push_back(S);
3434       break;
3435     }
3436     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3437       std::string S;
3438       if (convertToString(Record, 0, S))
3439         return error("Invalid record");
3440       GCTable.push_back(S);
3441       break;
3442     }
3443     case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name]
3444       if (Record.size() < 2)
3445         return error("Invalid record");
3446       Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3447       unsigned ComdatNameSize = Record[1];
3448       std::string ComdatName;
3449       ComdatName.reserve(ComdatNameSize);
3450       for (unsigned i = 0; i != ComdatNameSize; ++i)
3451         ComdatName += (char)Record[2 + i];
3452       Comdat *C = TheModule->getOrInsertComdat(ComdatName);
3453       C->setSelectionKind(SK);
3454       ComdatList.push_back(C);
3455       break;
3456     }
3457     // GLOBALVAR: [pointer type, isconst, initid,
3458     //             linkage, alignment, section, visibility, threadlocal,
3459     //             unnamed_addr, externally_initialized, dllstorageclass,
3460     //             comdat]
3461     case bitc::MODULE_CODE_GLOBALVAR: {
3462       if (Record.size() < 6)
3463         return error("Invalid record");
3464       Type *Ty = getTypeByID(Record[0]);
3465       if (!Ty)
3466         return error("Invalid record");
3467       bool isConstant = Record[1] & 1;
3468       bool explicitType = Record[1] & 2;
3469       unsigned AddressSpace;
3470       if (explicitType) {
3471         AddressSpace = Record[1] >> 2;
3472       } else {
3473         if (!Ty->isPointerTy())
3474           return error("Invalid type for value");
3475         AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3476         Ty = cast<PointerType>(Ty)->getElementType();
3477       }
3478 
3479       uint64_t RawLinkage = Record[3];
3480       GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3481       unsigned Alignment;
3482       if (std::error_code EC = parseAlignmentValue(Record[4], Alignment))
3483         return EC;
3484       std::string Section;
3485       if (Record[5]) {
3486         if (Record[5]-1 >= SectionTable.size())
3487           return error("Invalid ID");
3488         Section = SectionTable[Record[5]-1];
3489       }
3490       GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3491       // Local linkage must have default visibility.
3492       if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3493         // FIXME: Change to an error if non-default in 4.0.
3494         Visibility = getDecodedVisibility(Record[6]);
3495 
3496       GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3497       if (Record.size() > 7)
3498         TLM = getDecodedThreadLocalMode(Record[7]);
3499 
3500       bool UnnamedAddr = false;
3501       if (Record.size() > 8)
3502         UnnamedAddr = Record[8];
3503 
3504       bool ExternallyInitialized = false;
3505       if (Record.size() > 9)
3506         ExternallyInitialized = Record[9];
3507 
3508       GlobalVariable *NewGV =
3509         new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr,
3510                            TLM, AddressSpace, ExternallyInitialized);
3511       NewGV->setAlignment(Alignment);
3512       if (!Section.empty())
3513         NewGV->setSection(Section);
3514       NewGV->setVisibility(Visibility);
3515       NewGV->setUnnamedAddr(UnnamedAddr);
3516 
3517       if (Record.size() > 10)
3518         NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3519       else
3520         upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3521 
3522       ValueList.push_back(NewGV);
3523 
3524       // Remember which value to use for the global initializer.
3525       if (unsigned InitID = Record[2])
3526         GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
3527 
3528       if (Record.size() > 11) {
3529         if (unsigned ComdatID = Record[11]) {
3530           if (ComdatID > ComdatList.size())
3531             return error("Invalid global variable comdat ID");
3532           NewGV->setComdat(ComdatList[ComdatID - 1]);
3533         }
3534       } else if (hasImplicitComdat(RawLinkage)) {
3535         NewGV->setComdat(reinterpret_cast<Comdat *>(1));
3536       }
3537       break;
3538     }
3539     // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
3540     //             alignment, section, visibility, gc, unnamed_addr,
3541     //             prologuedata, dllstorageclass, comdat, prefixdata]
3542     case bitc::MODULE_CODE_FUNCTION: {
3543       if (Record.size() < 8)
3544         return error("Invalid record");
3545       Type *Ty = getTypeByID(Record[0]);
3546       if (!Ty)
3547         return error("Invalid record");
3548       if (auto *PTy = dyn_cast<PointerType>(Ty))
3549         Ty = PTy->getElementType();
3550       auto *FTy = dyn_cast<FunctionType>(Ty);
3551       if (!FTy)
3552         return error("Invalid type for value");
3553       auto CC = static_cast<CallingConv::ID>(Record[1]);
3554       if (CC & ~CallingConv::MaxID)
3555         return error("Invalid calling convention ID");
3556 
3557       Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
3558                                         "", TheModule);
3559 
3560       Func->setCallingConv(CC);
3561       bool isProto = Record[2];
3562       uint64_t RawLinkage = Record[3];
3563       Func->setLinkage(getDecodedLinkage(RawLinkage));
3564       Func->setAttributes(getAttributes(Record[4]));
3565 
3566       unsigned Alignment;
3567       if (std::error_code EC = parseAlignmentValue(Record[5], Alignment))
3568         return EC;
3569       Func->setAlignment(Alignment);
3570       if (Record[6]) {
3571         if (Record[6]-1 >= SectionTable.size())
3572           return error("Invalid ID");
3573         Func->setSection(SectionTable[Record[6]-1]);
3574       }
3575       // Local linkage must have default visibility.
3576       if (!Func->hasLocalLinkage())
3577         // FIXME: Change to an error if non-default in 4.0.
3578         Func->setVisibility(getDecodedVisibility(Record[7]));
3579       if (Record.size() > 8 && Record[8]) {
3580         if (Record[8]-1 >= GCTable.size())
3581           return error("Invalid ID");
3582         Func->setGC(GCTable[Record[8]-1].c_str());
3583       }
3584       bool UnnamedAddr = false;
3585       if (Record.size() > 9)
3586         UnnamedAddr = Record[9];
3587       Func->setUnnamedAddr(UnnamedAddr);
3588       if (Record.size() > 10 && Record[10] != 0)
3589         FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1));
3590 
3591       if (Record.size() > 11)
3592         Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3593       else
3594         upgradeDLLImportExportLinkage(Func, RawLinkage);
3595 
3596       if (Record.size() > 12) {
3597         if (unsigned ComdatID = Record[12]) {
3598           if (ComdatID > ComdatList.size())
3599             return error("Invalid function comdat ID");
3600           Func->setComdat(ComdatList[ComdatID - 1]);
3601         }
3602       } else if (hasImplicitComdat(RawLinkage)) {
3603         Func->setComdat(reinterpret_cast<Comdat *>(1));
3604       }
3605 
3606       if (Record.size() > 13 && Record[13] != 0)
3607         FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1));
3608 
3609       if (Record.size() > 14 && Record[14] != 0)
3610         FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
3611 
3612       ValueList.push_back(Func);
3613 
3614       // If this is a function with a body, remember the prototype we are
3615       // creating now, so that we can match up the body with them later.
3616       if (!isProto) {
3617         Func->setIsMaterializable(true);
3618         FunctionsWithBodies.push_back(Func);
3619         DeferredFunctionInfo[Func] = 0;
3620       }
3621       break;
3622     }
3623     // ALIAS: [alias type, addrspace, aliasee val#, linkage]
3624     // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass]
3625     case bitc::MODULE_CODE_ALIAS:
3626     case bitc::MODULE_CODE_ALIAS_OLD: {
3627       bool NewRecord = BitCode == bitc::MODULE_CODE_ALIAS;
3628       if (Record.size() < (3 + (unsigned)NewRecord))
3629         return error("Invalid record");
3630       unsigned OpNum = 0;
3631       Type *Ty = getTypeByID(Record[OpNum++]);
3632       if (!Ty)
3633         return error("Invalid record");
3634 
3635       unsigned AddrSpace;
3636       if (!NewRecord) {
3637         auto *PTy = dyn_cast<PointerType>(Ty);
3638         if (!PTy)
3639           return error("Invalid type for value");
3640         Ty = PTy->getElementType();
3641         AddrSpace = PTy->getAddressSpace();
3642       } else {
3643         AddrSpace = Record[OpNum++];
3644       }
3645 
3646       auto Val = Record[OpNum++];
3647       auto Linkage = Record[OpNum++];
3648       auto *NewGA = GlobalAlias::create(
3649           Ty, AddrSpace, getDecodedLinkage(Linkage), "", TheModule);
3650       // Old bitcode files didn't have visibility field.
3651       // Local linkage must have default visibility.
3652       if (OpNum != Record.size()) {
3653         auto VisInd = OpNum++;
3654         if (!NewGA->hasLocalLinkage())
3655           // FIXME: Change to an error if non-default in 4.0.
3656           NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3657       }
3658       if (OpNum != Record.size())
3659         NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3660       else
3661         upgradeDLLImportExportLinkage(NewGA, Linkage);
3662       if (OpNum != Record.size())
3663         NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3664       if (OpNum != Record.size())
3665         NewGA->setUnnamedAddr(Record[OpNum++]);
3666       ValueList.push_back(NewGA);
3667       AliasInits.push_back(std::make_pair(NewGA, Val));
3668       break;
3669     }
3670     /// MODULE_CODE_PURGEVALS: [numvals]
3671     case bitc::MODULE_CODE_PURGEVALS:
3672       // Trim down the value list to the specified size.
3673       if (Record.size() < 1 || Record[0] > ValueList.size())
3674         return error("Invalid record");
3675       ValueList.shrinkTo(Record[0]);
3676       break;
3677     /// MODULE_CODE_VSTOFFSET: [offset]
3678     case bitc::MODULE_CODE_VSTOFFSET:
3679       if (Record.size() < 1)
3680         return error("Invalid record");
3681       VSTOffset = Record[0];
3682       break;
3683     /// MODULE_CODE_METADATA_VALUES: [numvals]
3684     case bitc::MODULE_CODE_METADATA_VALUES:
3685       if (Record.size() < 1)
3686         return error("Invalid record");
3687       assert(!IsMetadataMaterialized);
3688       // This record contains the number of metadata values in the module-level
3689       // METADATA_BLOCK. It is used to support lazy parsing of metadata as
3690       // a postpass, where we will parse function-level metadata first.
3691       // This is needed because the ids of metadata are assigned implicitly
3692       // based on their ordering in the bitcode, with the function-level
3693       // metadata ids starting after the module-level metadata ids. Otherwise,
3694       // we would have to parse the module-level metadata block to prime the
3695       // MetadataList when we are lazy loading metadata during function
3696       // importing. Initialize the MetadataList size here based on the
3697       // record value, regardless of whether we are doing lazy metadata
3698       // loading, so that we have consistent handling and assertion
3699       // checking in parseMetadata for module-level metadata.
3700       NumModuleMDs = Record[0];
3701       SeenModuleValuesRecord = true;
3702       assert(MetadataList.size() == 0);
3703       MetadataList.resize(NumModuleMDs);
3704       break;
3705     }
3706     Record.clear();
3707   }
3708 }
3709 
3710 /// Helper to read the header common to all bitcode files.
3711 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) {
3712   // Sniff for the signature.
3713   if (Stream.Read(8) != 'B' ||
3714       Stream.Read(8) != 'C' ||
3715       Stream.Read(4) != 0x0 ||
3716       Stream.Read(4) != 0xC ||
3717       Stream.Read(4) != 0xE ||
3718       Stream.Read(4) != 0xD)
3719     return false;
3720   return true;
3721 }
3722 
3723 std::error_code
3724 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer,
3725                                 Module *M, bool ShouldLazyLoadMetadata) {
3726   TheModule = M;
3727 
3728   if (std::error_code EC = initStream(std::move(Streamer)))
3729     return EC;
3730 
3731   // Sniff for the signature.
3732   if (!hasValidBitcodeHeader(Stream))
3733     return error("Invalid bitcode signature");
3734 
3735   // We expect a number of well-defined blocks, though we don't necessarily
3736   // need to understand them all.
3737   while (1) {
3738     if (Stream.AtEndOfStream()) {
3739       // We didn't really read a proper Module.
3740       return error("Malformed IR file");
3741     }
3742 
3743     BitstreamEntry Entry =
3744       Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
3745 
3746     if (Entry.Kind != BitstreamEntry::SubBlock)
3747       return error("Malformed block");
3748 
3749     if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
3750       parseBitcodeVersion();
3751       continue;
3752     }
3753 
3754     if (Entry.ID == bitc::MODULE_BLOCK_ID)
3755       return parseModule(0, ShouldLazyLoadMetadata);
3756 
3757     if (Stream.SkipBlock())
3758       return error("Invalid record");
3759   }
3760 }
3761 
3762 ErrorOr<std::string> BitcodeReader::parseModuleTriple() {
3763   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3764     return error("Invalid record");
3765 
3766   SmallVector<uint64_t, 64> Record;
3767 
3768   std::string Triple;
3769   // Read all the records for this module.
3770   while (1) {
3771     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
3772 
3773     switch (Entry.Kind) {
3774     case BitstreamEntry::SubBlock: // Handled for us already.
3775     case BitstreamEntry::Error:
3776       return error("Malformed block");
3777     case BitstreamEntry::EndBlock:
3778       return Triple;
3779     case BitstreamEntry::Record:
3780       // The interesting case.
3781       break;
3782     }
3783 
3784     // Read a record.
3785     switch (Stream.readRecord(Entry.ID, Record)) {
3786     default: break;  // Default behavior, ignore unknown content.
3787     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3788       std::string S;
3789       if (convertToString(Record, 0, S))
3790         return error("Invalid record");
3791       Triple = S;
3792       break;
3793     }
3794     }
3795     Record.clear();
3796   }
3797   llvm_unreachable("Exit infinite loop");
3798 }
3799 
3800 ErrorOr<std::string> BitcodeReader::parseTriple() {
3801   if (std::error_code EC = initStream(nullptr))
3802     return EC;
3803 
3804   // Sniff for the signature.
3805   if (!hasValidBitcodeHeader(Stream))
3806     return error("Invalid bitcode signature");
3807 
3808   // We expect a number of well-defined blocks, though we don't necessarily
3809   // need to understand them all.
3810   while (1) {
3811     BitstreamEntry Entry = Stream.advance();
3812 
3813     switch (Entry.Kind) {
3814     case BitstreamEntry::Error:
3815       return error("Malformed block");
3816     case BitstreamEntry::EndBlock:
3817       return std::error_code();
3818 
3819     case BitstreamEntry::SubBlock:
3820       if (Entry.ID == bitc::MODULE_BLOCK_ID)
3821         return parseModuleTriple();
3822 
3823       // Ignore other sub-blocks.
3824       if (Stream.SkipBlock())
3825         return error("Malformed block");
3826       continue;
3827 
3828     case BitstreamEntry::Record:
3829       Stream.skipRecord(Entry.ID);
3830       continue;
3831     }
3832   }
3833 }
3834 
3835 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() {
3836   if (std::error_code EC = initStream(nullptr))
3837     return EC;
3838 
3839   // Sniff for the signature.
3840   if (!hasValidBitcodeHeader(Stream))
3841     return error("Invalid bitcode signature");
3842 
3843   // We expect a number of well-defined blocks, though we don't necessarily
3844   // need to understand them all.
3845   while (1) {
3846     BitstreamEntry Entry = Stream.advance();
3847     switch (Entry.Kind) {
3848     case BitstreamEntry::Error:
3849       return error("Malformed block");
3850     case BitstreamEntry::EndBlock:
3851       return std::error_code();
3852 
3853     case BitstreamEntry::SubBlock:
3854       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
3855         if (std::error_code EC = parseBitcodeVersion())
3856           return EC;
3857         return ProducerIdentification;
3858       }
3859       // Ignore other sub-blocks.
3860       if (Stream.SkipBlock())
3861         return error("Malformed block");
3862       continue;
3863     case BitstreamEntry::Record:
3864       Stream.skipRecord(Entry.ID);
3865       continue;
3866     }
3867   }
3868 }
3869 
3870 /// Parse metadata attachments.
3871 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) {
3872   if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
3873     return error("Invalid record");
3874 
3875   SmallVector<uint64_t, 64> Record;
3876   while (1) {
3877     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
3878 
3879     switch (Entry.Kind) {
3880     case BitstreamEntry::SubBlock: // Handled for us already.
3881     case BitstreamEntry::Error:
3882       return error("Malformed block");
3883     case BitstreamEntry::EndBlock:
3884       return std::error_code();
3885     case BitstreamEntry::Record:
3886       // The interesting case.
3887       break;
3888     }
3889 
3890     // Read a metadata attachment record.
3891     Record.clear();
3892     switch (Stream.readRecord(Entry.ID, Record)) {
3893     default:  // Default behavior: ignore.
3894       break;
3895     case bitc::METADATA_ATTACHMENT: {
3896       unsigned RecordLength = Record.size();
3897       if (Record.empty())
3898         return error("Invalid record");
3899       if (RecordLength % 2 == 0) {
3900         // A function attachment.
3901         for (unsigned I = 0; I != RecordLength; I += 2) {
3902           auto K = MDKindMap.find(Record[I]);
3903           if (K == MDKindMap.end())
3904             return error("Invalid ID");
3905           Metadata *MD = MetadataList.getValueFwdRef(Record[I + 1]);
3906           F.setMetadata(K->second, cast<MDNode>(MD));
3907         }
3908         continue;
3909       }
3910 
3911       // An instruction attachment.
3912       Instruction *Inst = InstructionList[Record[0]];
3913       for (unsigned i = 1; i != RecordLength; i = i+2) {
3914         unsigned Kind = Record[i];
3915         DenseMap<unsigned, unsigned>::iterator I =
3916           MDKindMap.find(Kind);
3917         if (I == MDKindMap.end())
3918           return error("Invalid ID");
3919         Metadata *Node = MetadataList.getValueFwdRef(Record[i + 1]);
3920         if (isa<LocalAsMetadata>(Node))
3921           // Drop the attachment.  This used to be legal, but there's no
3922           // upgrade path.
3923           break;
3924         Inst->setMetadata(I->second, cast<MDNode>(Node));
3925         if (I->second == LLVMContext::MD_tbaa)
3926           InstsWithTBAATag.push_back(Inst);
3927       }
3928       break;
3929     }
3930     }
3931   }
3932 }
3933 
3934 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3935   LLVMContext &Context = PtrType->getContext();
3936   if (!isa<PointerType>(PtrType))
3937     return error(Context, "Load/Store operand is not a pointer type");
3938   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
3939 
3940   if (ValType && ValType != ElemType)
3941     return error(Context, "Explicit load/store type does not match pointee "
3942                           "type of pointer operand");
3943   if (!PointerType::isLoadableOrStorableType(ElemType))
3944     return error(Context, "Cannot load/store from pointer");
3945   return std::error_code();
3946 }
3947 
3948 /// Lazily parse the specified function body block.
3949 std::error_code BitcodeReader::parseFunctionBody(Function *F) {
3950   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3951     return error("Invalid record");
3952 
3953   InstructionList.clear();
3954   unsigned ModuleValueListSize = ValueList.size();
3955   unsigned ModuleMetadataListSize = MetadataList.size();
3956 
3957   // Add all the function arguments to the value table.
3958   for (Argument &I : F->args())
3959     ValueList.push_back(&I);
3960 
3961   unsigned NextValueNo = ValueList.size();
3962   BasicBlock *CurBB = nullptr;
3963   unsigned CurBBNo = 0;
3964 
3965   DebugLoc LastLoc;
3966   auto getLastInstruction = [&]() -> Instruction * {
3967     if (CurBB && !CurBB->empty())
3968       return &CurBB->back();
3969     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3970              !FunctionBBs[CurBBNo - 1]->empty())
3971       return &FunctionBBs[CurBBNo - 1]->back();
3972     return nullptr;
3973   };
3974 
3975   std::vector<OperandBundleDef> OperandBundles;
3976 
3977   // Read all the records.
3978   SmallVector<uint64_t, 64> Record;
3979   while (1) {
3980     BitstreamEntry Entry = Stream.advance();
3981 
3982     switch (Entry.Kind) {
3983     case BitstreamEntry::Error:
3984       return error("Malformed block");
3985     case BitstreamEntry::EndBlock:
3986       goto OutOfRecordLoop;
3987 
3988     case BitstreamEntry::SubBlock:
3989       switch (Entry.ID) {
3990       default:  // Skip unknown content.
3991         if (Stream.SkipBlock())
3992           return error("Invalid record");
3993         break;
3994       case bitc::CONSTANTS_BLOCK_ID:
3995         if (std::error_code EC = parseConstants())
3996           return EC;
3997         NextValueNo = ValueList.size();
3998         break;
3999       case bitc::VALUE_SYMTAB_BLOCK_ID:
4000         if (std::error_code EC = parseValueSymbolTable())
4001           return EC;
4002         break;
4003       case bitc::METADATA_ATTACHMENT_ID:
4004         if (std::error_code EC = parseMetadataAttachment(*F))
4005           return EC;
4006         break;
4007       case bitc::METADATA_BLOCK_ID:
4008         if (std::error_code EC = parseMetadata())
4009           return EC;
4010         break;
4011       case bitc::USELIST_BLOCK_ID:
4012         if (std::error_code EC = parseUseLists())
4013           return EC;
4014         break;
4015       }
4016       continue;
4017 
4018     case BitstreamEntry::Record:
4019       // The interesting case.
4020       break;
4021     }
4022 
4023     // Read a record.
4024     Record.clear();
4025     Instruction *I = nullptr;
4026     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
4027     switch (BitCode) {
4028     default: // Default behavior: reject
4029       return error("Invalid value");
4030     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
4031       if (Record.size() < 1 || Record[0] == 0)
4032         return error("Invalid record");
4033       // Create all the basic blocks for the function.
4034       FunctionBBs.resize(Record[0]);
4035 
4036       // See if anything took the address of blocks in this function.
4037       auto BBFRI = BasicBlockFwdRefs.find(F);
4038       if (BBFRI == BasicBlockFwdRefs.end()) {
4039         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
4040           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
4041       } else {
4042         auto &BBRefs = BBFRI->second;
4043         // Check for invalid basic block references.
4044         if (BBRefs.size() > FunctionBBs.size())
4045           return error("Invalid ID");
4046         assert(!BBRefs.empty() && "Unexpected empty array");
4047         assert(!BBRefs.front() && "Invalid reference to entry block");
4048         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4049              ++I)
4050           if (I < RE && BBRefs[I]) {
4051             BBRefs[I]->insertInto(F);
4052             FunctionBBs[I] = BBRefs[I];
4053           } else {
4054             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4055           }
4056 
4057         // Erase from the table.
4058         BasicBlockFwdRefs.erase(BBFRI);
4059       }
4060 
4061       CurBB = FunctionBBs[0];
4062       continue;
4063     }
4064 
4065     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
4066       // This record indicates that the last instruction is at the same
4067       // location as the previous instruction with a location.
4068       I = getLastInstruction();
4069 
4070       if (!I)
4071         return error("Invalid record");
4072       I->setDebugLoc(LastLoc);
4073       I = nullptr;
4074       continue;
4075 
4076     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
4077       I = getLastInstruction();
4078       if (!I || Record.size() < 4)
4079         return error("Invalid record");
4080 
4081       unsigned Line = Record[0], Col = Record[1];
4082       unsigned ScopeID = Record[2], IAID = Record[3];
4083 
4084       MDNode *Scope = nullptr, *IA = nullptr;
4085       if (ScopeID)
4086         Scope = cast<MDNode>(MetadataList.getValueFwdRef(ScopeID - 1));
4087       if (IAID)
4088         IA = cast<MDNode>(MetadataList.getValueFwdRef(IAID - 1));
4089       LastLoc = DebugLoc::get(Line, Col, Scope, IA);
4090       I->setDebugLoc(LastLoc);
4091       I = nullptr;
4092       continue;
4093     }
4094 
4095     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
4096       unsigned OpNum = 0;
4097       Value *LHS, *RHS;
4098       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4099           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
4100           OpNum+1 > Record.size())
4101         return error("Invalid record");
4102 
4103       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4104       if (Opc == -1)
4105         return error("Invalid record");
4106       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4107       InstructionList.push_back(I);
4108       if (OpNum < Record.size()) {
4109         if (Opc == Instruction::Add ||
4110             Opc == Instruction::Sub ||
4111             Opc == Instruction::Mul ||
4112             Opc == Instruction::Shl) {
4113           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4114             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4115           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4116             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4117         } else if (Opc == Instruction::SDiv ||
4118                    Opc == Instruction::UDiv ||
4119                    Opc == Instruction::LShr ||
4120                    Opc == Instruction::AShr) {
4121           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4122             cast<BinaryOperator>(I)->setIsExact(true);
4123         } else if (isa<FPMathOperator>(I)) {
4124           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4125           if (FMF.any())
4126             I->setFastMathFlags(FMF);
4127         }
4128 
4129       }
4130       break;
4131     }
4132     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4133       unsigned OpNum = 0;
4134       Value *Op;
4135       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4136           OpNum+2 != Record.size())
4137         return error("Invalid record");
4138 
4139       Type *ResTy = getTypeByID(Record[OpNum]);
4140       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4141       if (Opc == -1 || !ResTy)
4142         return error("Invalid record");
4143       Instruction *Temp = nullptr;
4144       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4145         if (Temp) {
4146           InstructionList.push_back(Temp);
4147           CurBB->getInstList().push_back(Temp);
4148         }
4149       } else {
4150         auto CastOp = (Instruction::CastOps)Opc;
4151         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4152           return error("Invalid cast");
4153         I = CastInst::Create(CastOp, Op, ResTy);
4154       }
4155       InstructionList.push_back(I);
4156       break;
4157     }
4158     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4159     case bitc::FUNC_CODE_INST_GEP_OLD:
4160     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4161       unsigned OpNum = 0;
4162 
4163       Type *Ty;
4164       bool InBounds;
4165 
4166       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4167         InBounds = Record[OpNum++];
4168         Ty = getTypeByID(Record[OpNum++]);
4169       } else {
4170         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4171         Ty = nullptr;
4172       }
4173 
4174       Value *BasePtr;
4175       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
4176         return error("Invalid record");
4177 
4178       if (!Ty)
4179         Ty = cast<SequentialType>(BasePtr->getType()->getScalarType())
4180                  ->getElementType();
4181       else if (Ty !=
4182                cast<SequentialType>(BasePtr->getType()->getScalarType())
4183                    ->getElementType())
4184         return error(
4185             "Explicit gep type does not match pointee type of pointer operand");
4186 
4187       SmallVector<Value*, 16> GEPIdx;
4188       while (OpNum != Record.size()) {
4189         Value *Op;
4190         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4191           return error("Invalid record");
4192         GEPIdx.push_back(Op);
4193       }
4194 
4195       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4196 
4197       InstructionList.push_back(I);
4198       if (InBounds)
4199         cast<GetElementPtrInst>(I)->setIsInBounds(true);
4200       break;
4201     }
4202 
4203     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4204                                        // EXTRACTVAL: [opty, opval, n x indices]
4205       unsigned OpNum = 0;
4206       Value *Agg;
4207       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4208         return error("Invalid record");
4209 
4210       unsigned RecSize = Record.size();
4211       if (OpNum == RecSize)
4212         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4213 
4214       SmallVector<unsigned, 4> EXTRACTVALIdx;
4215       Type *CurTy = Agg->getType();
4216       for (; OpNum != RecSize; ++OpNum) {
4217         bool IsArray = CurTy->isArrayTy();
4218         bool IsStruct = CurTy->isStructTy();
4219         uint64_t Index = Record[OpNum];
4220 
4221         if (!IsStruct && !IsArray)
4222           return error("EXTRACTVAL: Invalid type");
4223         if ((unsigned)Index != Index)
4224           return error("Invalid value");
4225         if (IsStruct && Index >= CurTy->subtypes().size())
4226           return error("EXTRACTVAL: Invalid struct index");
4227         if (IsArray && Index >= CurTy->getArrayNumElements())
4228           return error("EXTRACTVAL: Invalid array index");
4229         EXTRACTVALIdx.push_back((unsigned)Index);
4230 
4231         if (IsStruct)
4232           CurTy = CurTy->subtypes()[Index];
4233         else
4234           CurTy = CurTy->subtypes()[0];
4235       }
4236 
4237       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4238       InstructionList.push_back(I);
4239       break;
4240     }
4241 
4242     case bitc::FUNC_CODE_INST_INSERTVAL: {
4243                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4244       unsigned OpNum = 0;
4245       Value *Agg;
4246       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4247         return error("Invalid record");
4248       Value *Val;
4249       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4250         return error("Invalid record");
4251 
4252       unsigned RecSize = Record.size();
4253       if (OpNum == RecSize)
4254         return error("INSERTVAL: Invalid instruction with 0 indices");
4255 
4256       SmallVector<unsigned, 4> INSERTVALIdx;
4257       Type *CurTy = Agg->getType();
4258       for (; OpNum != RecSize; ++OpNum) {
4259         bool IsArray = CurTy->isArrayTy();
4260         bool IsStruct = CurTy->isStructTy();
4261         uint64_t Index = Record[OpNum];
4262 
4263         if (!IsStruct && !IsArray)
4264           return error("INSERTVAL: Invalid type");
4265         if ((unsigned)Index != Index)
4266           return error("Invalid value");
4267         if (IsStruct && Index >= CurTy->subtypes().size())
4268           return error("INSERTVAL: Invalid struct index");
4269         if (IsArray && Index >= CurTy->getArrayNumElements())
4270           return error("INSERTVAL: Invalid array index");
4271 
4272         INSERTVALIdx.push_back((unsigned)Index);
4273         if (IsStruct)
4274           CurTy = CurTy->subtypes()[Index];
4275         else
4276           CurTy = CurTy->subtypes()[0];
4277       }
4278 
4279       if (CurTy != Val->getType())
4280         return error("Inserted value type doesn't match aggregate type");
4281 
4282       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4283       InstructionList.push_back(I);
4284       break;
4285     }
4286 
4287     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4288       // obsolete form of select
4289       // handles select i1 ... in old bitcode
4290       unsigned OpNum = 0;
4291       Value *TrueVal, *FalseVal, *Cond;
4292       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4293           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4294           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4295         return error("Invalid record");
4296 
4297       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4298       InstructionList.push_back(I);
4299       break;
4300     }
4301 
4302     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4303       // new form of select
4304       // handles select i1 or select [N x i1]
4305       unsigned OpNum = 0;
4306       Value *TrueVal, *FalseVal, *Cond;
4307       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4308           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4309           getValueTypePair(Record, OpNum, NextValueNo, Cond))
4310         return error("Invalid record");
4311 
4312       // select condition can be either i1 or [N x i1]
4313       if (VectorType* vector_type =
4314           dyn_cast<VectorType>(Cond->getType())) {
4315         // expect <n x i1>
4316         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4317           return error("Invalid type for value");
4318       } else {
4319         // expect i1
4320         if (Cond->getType() != Type::getInt1Ty(Context))
4321           return error("Invalid type for value");
4322       }
4323 
4324       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4325       InstructionList.push_back(I);
4326       break;
4327     }
4328 
4329     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4330       unsigned OpNum = 0;
4331       Value *Vec, *Idx;
4332       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
4333           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4334         return error("Invalid record");
4335       if (!Vec->getType()->isVectorTy())
4336         return error("Invalid type for value");
4337       I = ExtractElementInst::Create(Vec, Idx);
4338       InstructionList.push_back(I);
4339       break;
4340     }
4341 
4342     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4343       unsigned OpNum = 0;
4344       Value *Vec, *Elt, *Idx;
4345       if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
4346         return error("Invalid record");
4347       if (!Vec->getType()->isVectorTy())
4348         return error("Invalid type for value");
4349       if (popValue(Record, OpNum, NextValueNo,
4350                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4351           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4352         return error("Invalid record");
4353       I = InsertElementInst::Create(Vec, Elt, Idx);
4354       InstructionList.push_back(I);
4355       break;
4356     }
4357 
4358     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4359       unsigned OpNum = 0;
4360       Value *Vec1, *Vec2, *Mask;
4361       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
4362           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4363         return error("Invalid record");
4364 
4365       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4366         return error("Invalid record");
4367       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4368         return error("Invalid type for value");
4369       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4370       InstructionList.push_back(I);
4371       break;
4372     }
4373 
4374     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4375       // Old form of ICmp/FCmp returning bool
4376       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4377       // both legal on vectors but had different behaviour.
4378     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4379       // FCmp/ICmp returning bool or vector of bool
4380 
4381       unsigned OpNum = 0;
4382       Value *LHS, *RHS;
4383       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4384           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4385         return error("Invalid record");
4386 
4387       unsigned PredVal = Record[OpNum];
4388       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4389       FastMathFlags FMF;
4390       if (IsFP && Record.size() > OpNum+1)
4391         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4392 
4393       if (OpNum+1 != Record.size())
4394         return error("Invalid record");
4395 
4396       if (LHS->getType()->isFPOrFPVectorTy())
4397         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4398       else
4399         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4400 
4401       if (FMF.any())
4402         I->setFastMathFlags(FMF);
4403       InstructionList.push_back(I);
4404       break;
4405     }
4406 
4407     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4408       {
4409         unsigned Size = Record.size();
4410         if (Size == 0) {
4411           I = ReturnInst::Create(Context);
4412           InstructionList.push_back(I);
4413           break;
4414         }
4415 
4416         unsigned OpNum = 0;
4417         Value *Op = nullptr;
4418         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4419           return error("Invalid record");
4420         if (OpNum != Record.size())
4421           return error("Invalid record");
4422 
4423         I = ReturnInst::Create(Context, Op);
4424         InstructionList.push_back(I);
4425         break;
4426       }
4427     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4428       if (Record.size() != 1 && Record.size() != 3)
4429         return error("Invalid record");
4430       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4431       if (!TrueDest)
4432         return error("Invalid record");
4433 
4434       if (Record.size() == 1) {
4435         I = BranchInst::Create(TrueDest);
4436         InstructionList.push_back(I);
4437       }
4438       else {
4439         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4440         Value *Cond = getValue(Record, 2, NextValueNo,
4441                                Type::getInt1Ty(Context));
4442         if (!FalseDest || !Cond)
4443           return error("Invalid record");
4444         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4445         InstructionList.push_back(I);
4446       }
4447       break;
4448     }
4449     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4450       if (Record.size() != 1 && Record.size() != 2)
4451         return error("Invalid record");
4452       unsigned Idx = 0;
4453       Value *CleanupPad =
4454           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4455       if (!CleanupPad)
4456         return error("Invalid record");
4457       BasicBlock *UnwindDest = nullptr;
4458       if (Record.size() == 2) {
4459         UnwindDest = getBasicBlock(Record[Idx++]);
4460         if (!UnwindDest)
4461           return error("Invalid record");
4462       }
4463 
4464       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4465       InstructionList.push_back(I);
4466       break;
4467     }
4468     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4469       if (Record.size() != 2)
4470         return error("Invalid record");
4471       unsigned Idx = 0;
4472       Value *CatchPad =
4473           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4474       if (!CatchPad)
4475         return error("Invalid record");
4476       BasicBlock *BB = getBasicBlock(Record[Idx++]);
4477       if (!BB)
4478         return error("Invalid record");
4479 
4480       I = CatchReturnInst::Create(CatchPad, BB);
4481       InstructionList.push_back(I);
4482       break;
4483     }
4484     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4485       // We must have, at minimum, the outer scope and the number of arguments.
4486       if (Record.size() < 2)
4487         return error("Invalid record");
4488 
4489       unsigned Idx = 0;
4490 
4491       Value *ParentPad =
4492           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4493 
4494       unsigned NumHandlers = Record[Idx++];
4495 
4496       SmallVector<BasicBlock *, 2> Handlers;
4497       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4498         BasicBlock *BB = getBasicBlock(Record[Idx++]);
4499         if (!BB)
4500           return error("Invalid record");
4501         Handlers.push_back(BB);
4502       }
4503 
4504       BasicBlock *UnwindDest = nullptr;
4505       if (Idx + 1 == Record.size()) {
4506         UnwindDest = getBasicBlock(Record[Idx++]);
4507         if (!UnwindDest)
4508           return error("Invalid record");
4509       }
4510 
4511       if (Record.size() != Idx)
4512         return error("Invalid record");
4513 
4514       auto *CatchSwitch =
4515           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4516       for (BasicBlock *Handler : Handlers)
4517         CatchSwitch->addHandler(Handler);
4518       I = CatchSwitch;
4519       InstructionList.push_back(I);
4520       break;
4521     }
4522     case bitc::FUNC_CODE_INST_CATCHPAD:
4523     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4524       // We must have, at minimum, the outer scope and the number of arguments.
4525       if (Record.size() < 2)
4526         return error("Invalid record");
4527 
4528       unsigned Idx = 0;
4529 
4530       Value *ParentPad =
4531           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4532 
4533       unsigned NumArgOperands = Record[Idx++];
4534 
4535       SmallVector<Value *, 2> Args;
4536       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4537         Value *Val;
4538         if (getValueTypePair(Record, Idx, NextValueNo, Val))
4539           return error("Invalid record");
4540         Args.push_back(Val);
4541       }
4542 
4543       if (Record.size() != Idx)
4544         return error("Invalid record");
4545 
4546       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4547         I = CleanupPadInst::Create(ParentPad, Args);
4548       else
4549         I = CatchPadInst::Create(ParentPad, Args);
4550       InstructionList.push_back(I);
4551       break;
4552     }
4553     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4554       // Check magic
4555       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4556         // "New" SwitchInst format with case ranges. The changes to write this
4557         // format were reverted but we still recognize bitcode that uses it.
4558         // Hopefully someday we will have support for case ranges and can use
4559         // this format again.
4560 
4561         Type *OpTy = getTypeByID(Record[1]);
4562         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4563 
4564         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4565         BasicBlock *Default = getBasicBlock(Record[3]);
4566         if (!OpTy || !Cond || !Default)
4567           return error("Invalid record");
4568 
4569         unsigned NumCases = Record[4];
4570 
4571         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4572         InstructionList.push_back(SI);
4573 
4574         unsigned CurIdx = 5;
4575         for (unsigned i = 0; i != NumCases; ++i) {
4576           SmallVector<ConstantInt*, 1> CaseVals;
4577           unsigned NumItems = Record[CurIdx++];
4578           for (unsigned ci = 0; ci != NumItems; ++ci) {
4579             bool isSingleNumber = Record[CurIdx++];
4580 
4581             APInt Low;
4582             unsigned ActiveWords = 1;
4583             if (ValueBitWidth > 64)
4584               ActiveWords = Record[CurIdx++];
4585             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4586                                 ValueBitWidth);
4587             CurIdx += ActiveWords;
4588 
4589             if (!isSingleNumber) {
4590               ActiveWords = 1;
4591               if (ValueBitWidth > 64)
4592                 ActiveWords = Record[CurIdx++];
4593               APInt High = readWideAPInt(
4594                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4595               CurIdx += ActiveWords;
4596 
4597               // FIXME: It is not clear whether values in the range should be
4598               // compared as signed or unsigned values. The partially
4599               // implemented changes that used this format in the past used
4600               // unsigned comparisons.
4601               for ( ; Low.ule(High); ++Low)
4602                 CaseVals.push_back(ConstantInt::get(Context, Low));
4603             } else
4604               CaseVals.push_back(ConstantInt::get(Context, Low));
4605           }
4606           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4607           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4608                  cve = CaseVals.end(); cvi != cve; ++cvi)
4609             SI->addCase(*cvi, DestBB);
4610         }
4611         I = SI;
4612         break;
4613       }
4614 
4615       // Old SwitchInst format without case ranges.
4616 
4617       if (Record.size() < 3 || (Record.size() & 1) == 0)
4618         return error("Invalid record");
4619       Type *OpTy = getTypeByID(Record[0]);
4620       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4621       BasicBlock *Default = getBasicBlock(Record[2]);
4622       if (!OpTy || !Cond || !Default)
4623         return error("Invalid record");
4624       unsigned NumCases = (Record.size()-3)/2;
4625       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4626       InstructionList.push_back(SI);
4627       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4628         ConstantInt *CaseVal =
4629           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4630         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4631         if (!CaseVal || !DestBB) {
4632           delete SI;
4633           return error("Invalid record");
4634         }
4635         SI->addCase(CaseVal, DestBB);
4636       }
4637       I = SI;
4638       break;
4639     }
4640     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4641       if (Record.size() < 2)
4642         return error("Invalid record");
4643       Type *OpTy = getTypeByID(Record[0]);
4644       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4645       if (!OpTy || !Address)
4646         return error("Invalid record");
4647       unsigned NumDests = Record.size()-2;
4648       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4649       InstructionList.push_back(IBI);
4650       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4651         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4652           IBI->addDestination(DestBB);
4653         } else {
4654           delete IBI;
4655           return error("Invalid record");
4656         }
4657       }
4658       I = IBI;
4659       break;
4660     }
4661 
4662     case bitc::FUNC_CODE_INST_INVOKE: {
4663       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4664       if (Record.size() < 4)
4665         return error("Invalid record");
4666       unsigned OpNum = 0;
4667       AttributeSet PAL = getAttributes(Record[OpNum++]);
4668       unsigned CCInfo = Record[OpNum++];
4669       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4670       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4671 
4672       FunctionType *FTy = nullptr;
4673       if (CCInfo >> 13 & 1 &&
4674           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
4675         return error("Explicit invoke type is not a function type");
4676 
4677       Value *Callee;
4678       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4679         return error("Invalid record");
4680 
4681       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4682       if (!CalleeTy)
4683         return error("Callee is not a pointer");
4684       if (!FTy) {
4685         FTy = dyn_cast<FunctionType>(CalleeTy->getElementType());
4686         if (!FTy)
4687           return error("Callee is not of pointer to function type");
4688       } else if (CalleeTy->getElementType() != FTy)
4689         return error("Explicit invoke type does not match pointee type of "
4690                      "callee operand");
4691       if (Record.size() < FTy->getNumParams() + OpNum)
4692         return error("Insufficient operands to call");
4693 
4694       SmallVector<Value*, 16> Ops;
4695       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4696         Ops.push_back(getValue(Record, OpNum, NextValueNo,
4697                                FTy->getParamType(i)));
4698         if (!Ops.back())
4699           return error("Invalid record");
4700       }
4701 
4702       if (!FTy->isVarArg()) {
4703         if (Record.size() != OpNum)
4704           return error("Invalid record");
4705       } else {
4706         // Read type/value pairs for varargs params.
4707         while (OpNum != Record.size()) {
4708           Value *Op;
4709           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4710             return error("Invalid record");
4711           Ops.push_back(Op);
4712         }
4713       }
4714 
4715       I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles);
4716       OperandBundles.clear();
4717       InstructionList.push_back(I);
4718       cast<InvokeInst>(I)->setCallingConv(
4719           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4720       cast<InvokeInst>(I)->setAttributes(PAL);
4721       break;
4722     }
4723     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4724       unsigned Idx = 0;
4725       Value *Val = nullptr;
4726       if (getValueTypePair(Record, Idx, NextValueNo, Val))
4727         return error("Invalid record");
4728       I = ResumeInst::Create(Val);
4729       InstructionList.push_back(I);
4730       break;
4731     }
4732     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4733       I = new UnreachableInst(Context);
4734       InstructionList.push_back(I);
4735       break;
4736     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4737       if (Record.size() < 1 || ((Record.size()-1)&1))
4738         return error("Invalid record");
4739       Type *Ty = getTypeByID(Record[0]);
4740       if (!Ty)
4741         return error("Invalid record");
4742 
4743       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
4744       InstructionList.push_back(PN);
4745 
4746       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
4747         Value *V;
4748         // With the new function encoding, it is possible that operands have
4749         // negative IDs (for forward references).  Use a signed VBR
4750         // representation to keep the encoding small.
4751         if (UseRelativeIDs)
4752           V = getValueSigned(Record, 1+i, NextValueNo, Ty);
4753         else
4754           V = getValue(Record, 1+i, NextValueNo, Ty);
4755         BasicBlock *BB = getBasicBlock(Record[2+i]);
4756         if (!V || !BB)
4757           return error("Invalid record");
4758         PN->addIncoming(V, BB);
4759       }
4760       I = PN;
4761       break;
4762     }
4763 
4764     case bitc::FUNC_CODE_INST_LANDINGPAD:
4765     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4766       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4767       unsigned Idx = 0;
4768       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4769         if (Record.size() < 3)
4770           return error("Invalid record");
4771       } else {
4772         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4773         if (Record.size() < 4)
4774           return error("Invalid record");
4775       }
4776       Type *Ty = getTypeByID(Record[Idx++]);
4777       if (!Ty)
4778         return error("Invalid record");
4779       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4780         Value *PersFn = nullptr;
4781         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4782           return error("Invalid record");
4783 
4784         if (!F->hasPersonalityFn())
4785           F->setPersonalityFn(cast<Constant>(PersFn));
4786         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4787           return error("Personality function mismatch");
4788       }
4789 
4790       bool IsCleanup = !!Record[Idx++];
4791       unsigned NumClauses = Record[Idx++];
4792       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4793       LP->setCleanup(IsCleanup);
4794       for (unsigned J = 0; J != NumClauses; ++J) {
4795         LandingPadInst::ClauseType CT =
4796           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4797         Value *Val;
4798 
4799         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4800           delete LP;
4801           return error("Invalid record");
4802         }
4803 
4804         assert((CT != LandingPadInst::Catch ||
4805                 !isa<ArrayType>(Val->getType())) &&
4806                "Catch clause has a invalid type!");
4807         assert((CT != LandingPadInst::Filter ||
4808                 isa<ArrayType>(Val->getType())) &&
4809                "Filter clause has invalid type!");
4810         LP->addClause(cast<Constant>(Val));
4811       }
4812 
4813       I = LP;
4814       InstructionList.push_back(I);
4815       break;
4816     }
4817 
4818     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4819       if (Record.size() != 4)
4820         return error("Invalid record");
4821       uint64_t AlignRecord = Record[3];
4822       const uint64_t InAllocaMask = uint64_t(1) << 5;
4823       const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
4824       // Reserve bit 7 for SwiftError flag.
4825       // const uint64_t SwiftErrorMask = uint64_t(1) << 7;
4826       const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask;
4827       bool InAlloca = AlignRecord & InAllocaMask;
4828       Type *Ty = getTypeByID(Record[0]);
4829       if ((AlignRecord & ExplicitTypeMask) == 0) {
4830         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4831         if (!PTy)
4832           return error("Old-style alloca with a non-pointer type");
4833         Ty = PTy->getElementType();
4834       }
4835       Type *OpTy = getTypeByID(Record[1]);
4836       Value *Size = getFnValueByID(Record[2], OpTy);
4837       unsigned Align;
4838       if (std::error_code EC =
4839               parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
4840         return EC;
4841       }
4842       if (!Ty || !Size)
4843         return error("Invalid record");
4844       AllocaInst *AI = new AllocaInst(Ty, Size, Align);
4845       AI->setUsedWithInAlloca(InAlloca);
4846       I = AI;
4847       InstructionList.push_back(I);
4848       break;
4849     }
4850     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4851       unsigned OpNum = 0;
4852       Value *Op;
4853       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4854           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4855         return error("Invalid record");
4856 
4857       Type *Ty = nullptr;
4858       if (OpNum + 3 == Record.size())
4859         Ty = getTypeByID(Record[OpNum++]);
4860       if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType()))
4861         return EC;
4862       if (!Ty)
4863         Ty = cast<PointerType>(Op->getType())->getElementType();
4864 
4865       unsigned Align;
4866       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
4867         return EC;
4868       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
4869 
4870       InstructionList.push_back(I);
4871       break;
4872     }
4873     case bitc::FUNC_CODE_INST_LOADATOMIC: {
4874        // LOADATOMIC: [opty, op, align, vol, ordering, synchscope]
4875       unsigned OpNum = 0;
4876       Value *Op;
4877       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4878           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4879         return error("Invalid record");
4880 
4881       Type *Ty = nullptr;
4882       if (OpNum + 5 == Record.size())
4883         Ty = getTypeByID(Record[OpNum++]);
4884       if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType()))
4885         return EC;
4886       if (!Ty)
4887         Ty = cast<PointerType>(Op->getType())->getElementType();
4888 
4889       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4890       if (Ordering == NotAtomic || Ordering == Release ||
4891           Ordering == AcquireRelease)
4892         return error("Invalid record");
4893       if (Ordering != NotAtomic && Record[OpNum] == 0)
4894         return error("Invalid record");
4895       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
4896 
4897       unsigned Align;
4898       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
4899         return EC;
4900       I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope);
4901 
4902       InstructionList.push_back(I);
4903       break;
4904     }
4905     case bitc::FUNC_CODE_INST_STORE:
4906     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
4907       unsigned OpNum = 0;
4908       Value *Val, *Ptr;
4909       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4910           (BitCode == bitc::FUNC_CODE_INST_STORE
4911                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4912                : popValue(Record, OpNum, NextValueNo,
4913                           cast<PointerType>(Ptr->getType())->getElementType(),
4914                           Val)) ||
4915           OpNum + 2 != Record.size())
4916         return error("Invalid record");
4917 
4918       if (std::error_code EC =
4919               typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4920         return EC;
4921       unsigned Align;
4922       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
4923         return EC;
4924       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align);
4925       InstructionList.push_back(I);
4926       break;
4927     }
4928     case bitc::FUNC_CODE_INST_STOREATOMIC:
4929     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
4930       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope]
4931       unsigned OpNum = 0;
4932       Value *Val, *Ptr;
4933       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4934           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
4935                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4936                : popValue(Record, OpNum, NextValueNo,
4937                           cast<PointerType>(Ptr->getType())->getElementType(),
4938                           Val)) ||
4939           OpNum + 4 != Record.size())
4940         return error("Invalid record");
4941 
4942       if (std::error_code EC =
4943               typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4944         return EC;
4945       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4946       if (Ordering == NotAtomic || Ordering == Acquire ||
4947           Ordering == AcquireRelease)
4948         return error("Invalid record");
4949       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
4950       if (Ordering != NotAtomic && Record[OpNum] == 0)
4951         return error("Invalid record");
4952 
4953       unsigned Align;
4954       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
4955         return EC;
4956       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope);
4957       InstructionList.push_back(I);
4958       break;
4959     }
4960     case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
4961     case bitc::FUNC_CODE_INST_CMPXCHG: {
4962       // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope,
4963       //          failureordering?, isweak?]
4964       unsigned OpNum = 0;
4965       Value *Ptr, *Cmp, *New;
4966       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4967           (BitCode == bitc::FUNC_CODE_INST_CMPXCHG
4968                ? getValueTypePair(Record, OpNum, NextValueNo, Cmp)
4969                : popValue(Record, OpNum, NextValueNo,
4970                           cast<PointerType>(Ptr->getType())->getElementType(),
4971                           Cmp)) ||
4972           popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
4973           Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
4974         return error("Invalid record");
4975       AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
4976       if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered)
4977         return error("Invalid record");
4978       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]);
4979 
4980       if (std::error_code EC =
4981               typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
4982         return EC;
4983       AtomicOrdering FailureOrdering;
4984       if (Record.size() < 7)
4985         FailureOrdering =
4986             AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
4987       else
4988         FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
4989 
4990       I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
4991                                 SynchScope);
4992       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
4993 
4994       if (Record.size() < 8) {
4995         // Before weak cmpxchgs existed, the instruction simply returned the
4996         // value loaded from memory, so bitcode files from that era will be
4997         // expecting the first component of a modern cmpxchg.
4998         CurBB->getInstList().push_back(I);
4999         I = ExtractValueInst::Create(I, 0);
5000       } else {
5001         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
5002       }
5003 
5004       InstructionList.push_back(I);
5005       break;
5006     }
5007     case bitc::FUNC_CODE_INST_ATOMICRMW: {
5008       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope]
5009       unsigned OpNum = 0;
5010       Value *Ptr, *Val;
5011       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5012           popValue(Record, OpNum, NextValueNo,
5013                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
5014           OpNum+4 != Record.size())
5015         return error("Invalid record");
5016       AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
5017       if (Operation < AtomicRMWInst::FIRST_BINOP ||
5018           Operation > AtomicRMWInst::LAST_BINOP)
5019         return error("Invalid record");
5020       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5021       if (Ordering == NotAtomic || Ordering == Unordered)
5022         return error("Invalid record");
5023       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
5024       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope);
5025       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
5026       InstructionList.push_back(I);
5027       break;
5028     }
5029     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope]
5030       if (2 != Record.size())
5031         return error("Invalid record");
5032       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
5033       if (Ordering == NotAtomic || Ordering == Unordered ||
5034           Ordering == Monotonic)
5035         return error("Invalid record");
5036       SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]);
5037       I = new FenceInst(Context, Ordering, SynchScope);
5038       InstructionList.push_back(I);
5039       break;
5040     }
5041     case bitc::FUNC_CODE_INST_CALL: {
5042       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
5043       if (Record.size() < 3)
5044         return error("Invalid record");
5045 
5046       unsigned OpNum = 0;
5047       AttributeSet PAL = getAttributes(Record[OpNum++]);
5048       unsigned CCInfo = Record[OpNum++];
5049 
5050       FastMathFlags FMF;
5051       if ((CCInfo >> bitc::CALL_FMF) & 1) {
5052         FMF = getDecodedFastMathFlags(Record[OpNum++]);
5053         if (!FMF.any())
5054           return error("Fast math flags indicator set for call with no FMF");
5055       }
5056 
5057       FunctionType *FTy = nullptr;
5058       if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 &&
5059           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
5060         return error("Explicit call type is not a function type");
5061 
5062       Value *Callee;
5063       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
5064         return error("Invalid record");
5065 
5066       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5067       if (!OpTy)
5068         return error("Callee is not a pointer type");
5069       if (!FTy) {
5070         FTy = dyn_cast<FunctionType>(OpTy->getElementType());
5071         if (!FTy)
5072           return error("Callee is not of pointer to function type");
5073       } else if (OpTy->getElementType() != FTy)
5074         return error("Explicit call type does not match pointee type of "
5075                      "callee operand");
5076       if (Record.size() < FTy->getNumParams() + OpNum)
5077         return error("Insufficient operands to call");
5078 
5079       SmallVector<Value*, 16> Args;
5080       // Read the fixed params.
5081       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5082         if (FTy->getParamType(i)->isLabelTy())
5083           Args.push_back(getBasicBlock(Record[OpNum]));
5084         else
5085           Args.push_back(getValue(Record, OpNum, NextValueNo,
5086                                   FTy->getParamType(i)));
5087         if (!Args.back())
5088           return error("Invalid record");
5089       }
5090 
5091       // Read type/value pairs for varargs params.
5092       if (!FTy->isVarArg()) {
5093         if (OpNum != Record.size())
5094           return error("Invalid record");
5095       } else {
5096         while (OpNum != Record.size()) {
5097           Value *Op;
5098           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5099             return error("Invalid record");
5100           Args.push_back(Op);
5101         }
5102       }
5103 
5104       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5105       OperandBundles.clear();
5106       InstructionList.push_back(I);
5107       cast<CallInst>(I)->setCallingConv(
5108           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5109       CallInst::TailCallKind TCK = CallInst::TCK_None;
5110       if (CCInfo & 1 << bitc::CALL_TAIL)
5111         TCK = CallInst::TCK_Tail;
5112       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5113         TCK = CallInst::TCK_MustTail;
5114       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5115         TCK = CallInst::TCK_NoTail;
5116       cast<CallInst>(I)->setTailCallKind(TCK);
5117       cast<CallInst>(I)->setAttributes(PAL);
5118       if (FMF.any()) {
5119         if (!isa<FPMathOperator>(I))
5120           return error("Fast-math-flags specified for call without "
5121                        "floating-point scalar or vector return type");
5122         I->setFastMathFlags(FMF);
5123       }
5124       break;
5125     }
5126     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5127       if (Record.size() < 3)
5128         return error("Invalid record");
5129       Type *OpTy = getTypeByID(Record[0]);
5130       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5131       Type *ResTy = getTypeByID(Record[2]);
5132       if (!OpTy || !Op || !ResTy)
5133         return error("Invalid record");
5134       I = new VAArgInst(Op, ResTy);
5135       InstructionList.push_back(I);
5136       break;
5137     }
5138 
5139     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5140       // A call or an invoke can be optionally prefixed with some variable
5141       // number of operand bundle blocks.  These blocks are read into
5142       // OperandBundles and consumed at the next call or invoke instruction.
5143 
5144       if (Record.size() < 1 || Record[0] >= BundleTags.size())
5145         return error("Invalid record");
5146 
5147       std::vector<Value *> Inputs;
5148 
5149       unsigned OpNum = 1;
5150       while (OpNum != Record.size()) {
5151         Value *Op;
5152         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5153           return error("Invalid record");
5154         Inputs.push_back(Op);
5155       }
5156 
5157       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5158       continue;
5159     }
5160     }
5161 
5162     // Add instruction to end of current BB.  If there is no current BB, reject
5163     // this file.
5164     if (!CurBB) {
5165       delete I;
5166       return error("Invalid instruction with no BB");
5167     }
5168     if (!OperandBundles.empty()) {
5169       delete I;
5170       return error("Operand bundles found with no consumer");
5171     }
5172     CurBB->getInstList().push_back(I);
5173 
5174     // If this was a terminator instruction, move to the next block.
5175     if (isa<TerminatorInst>(I)) {
5176       ++CurBBNo;
5177       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5178     }
5179 
5180     // Non-void values get registered in the value table for future use.
5181     if (I && !I->getType()->isVoidTy())
5182       ValueList.assignValue(I, NextValueNo++);
5183   }
5184 
5185 OutOfRecordLoop:
5186 
5187   if (!OperandBundles.empty())
5188     return error("Operand bundles found with no consumer");
5189 
5190   // Check the function list for unresolved values.
5191   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5192     if (!A->getParent()) {
5193       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5194       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5195         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5196           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5197           delete A;
5198         }
5199       }
5200       return error("Never resolved value found in function");
5201     }
5202   }
5203 
5204   // FIXME: Check for unresolved forward-declared metadata references
5205   // and clean up leaks.
5206 
5207   // Trim the value list down to the size it was before we parsed this function.
5208   ValueList.shrinkTo(ModuleValueListSize);
5209   MetadataList.shrinkTo(ModuleMetadataListSize);
5210   std::vector<BasicBlock*>().swap(FunctionBBs);
5211   return std::error_code();
5212 }
5213 
5214 /// Find the function body in the bitcode stream
5215 std::error_code BitcodeReader::findFunctionInStream(
5216     Function *F,
5217     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5218   while (DeferredFunctionInfoIterator->second == 0) {
5219     // This is the fallback handling for the old format bitcode that
5220     // didn't contain the function index in the VST, or when we have
5221     // an anonymous function which would not have a VST entry.
5222     // Assert that we have one of those two cases.
5223     assert(VSTOffset == 0 || !F->hasName());
5224     // Parse the next body in the stream and set its position in the
5225     // DeferredFunctionInfo map.
5226     if (std::error_code EC = rememberAndSkipFunctionBodies())
5227       return EC;
5228   }
5229   return std::error_code();
5230 }
5231 
5232 //===----------------------------------------------------------------------===//
5233 // GVMaterializer implementation
5234 //===----------------------------------------------------------------------===//
5235 
5236 void BitcodeReader::releaseBuffer() { Buffer.release(); }
5237 
5238 std::error_code BitcodeReader::materialize(GlobalValue *GV) {
5239   // In older bitcode we must materialize the metadata before parsing
5240   // any functions, in order to set up the MetadataList properly.
5241   if (!SeenModuleValuesRecord) {
5242     if (std::error_code EC = materializeMetadata())
5243       return EC;
5244   }
5245 
5246   Function *F = dyn_cast<Function>(GV);
5247   // If it's not a function or is already material, ignore the request.
5248   if (!F || !F->isMaterializable())
5249     return std::error_code();
5250 
5251   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5252   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5253   // If its position is recorded as 0, its body is somewhere in the stream
5254   // but we haven't seen it yet.
5255   if (DFII->second == 0)
5256     if (std::error_code EC = findFunctionInStream(F, DFII))
5257       return EC;
5258 
5259   // Move the bit stream to the saved position of the deferred function body.
5260   Stream.JumpToBit(DFII->second);
5261 
5262   if (std::error_code EC = parseFunctionBody(F))
5263     return EC;
5264   F->setIsMaterializable(false);
5265 
5266   if (StripDebugInfo)
5267     stripDebugInfo(*F);
5268 
5269   // Upgrade any old intrinsic calls in the function.
5270   for (auto &I : UpgradedIntrinsics) {
5271     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5272          UI != UE;) {
5273       User *U = *UI;
5274       ++UI;
5275       if (CallInst *CI = dyn_cast<CallInst>(U))
5276         UpgradeIntrinsicCall(CI, I.second);
5277     }
5278   }
5279 
5280   // Finish fn->subprogram upgrade for materialized functions.
5281   if (DISubprogram *SP = FunctionsWithSPs.lookup(F))
5282     F->setSubprogram(SP);
5283 
5284   // Bring in any functions that this function forward-referenced via
5285   // blockaddresses.
5286   return materializeForwardReferencedFunctions();
5287 }
5288 
5289 std::error_code BitcodeReader::materializeModule() {
5290   if (std::error_code EC = materializeMetadata())
5291     return EC;
5292 
5293   // Promise to materialize all forward references.
5294   WillMaterializeAllForwardRefs = true;
5295 
5296   // Iterate over the module, deserializing any functions that are still on
5297   // disk.
5298   for (Function &F : *TheModule) {
5299     if (std::error_code EC = materialize(&F))
5300       return EC;
5301   }
5302   // At this point, if there are any function bodies, parse the rest of
5303   // the bits in the module past the last function block we have recorded
5304   // through either lazy scanning or the VST.
5305   if (LastFunctionBlockBit || NextUnreadBit)
5306     parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit
5307                                                      : NextUnreadBit);
5308 
5309   // Check that all block address forward references got resolved (as we
5310   // promised above).
5311   if (!BasicBlockFwdRefs.empty())
5312     return error("Never resolved function from blockaddress");
5313 
5314   // Upgrade any intrinsic calls that slipped through (should not happen!) and
5315   // delete the old functions to clean up. We can't do this unless the entire
5316   // module is materialized because there could always be another function body
5317   // with calls to the old function.
5318   for (auto &I : UpgradedIntrinsics) {
5319     for (auto *U : I.first->users()) {
5320       if (CallInst *CI = dyn_cast<CallInst>(U))
5321         UpgradeIntrinsicCall(CI, I.second);
5322     }
5323     if (!I.first->use_empty())
5324       I.first->replaceAllUsesWith(I.second);
5325     I.first->eraseFromParent();
5326   }
5327   UpgradedIntrinsics.clear();
5328 
5329   for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++)
5330     UpgradeInstWithTBAATag(InstsWithTBAATag[I]);
5331 
5332   UpgradeDebugInfo(*TheModule);
5333   return std::error_code();
5334 }
5335 
5336 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5337   return IdentifiedStructTypes;
5338 }
5339 
5340 std::error_code
5341 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) {
5342   if (Streamer)
5343     return initLazyStream(std::move(Streamer));
5344   return initStreamFromBuffer();
5345 }
5346 
5347 std::error_code BitcodeReader::initStreamFromBuffer() {
5348   const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart();
5349   const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
5350 
5351   if (Buffer->getBufferSize() & 3)
5352     return error("Invalid bitcode signature");
5353 
5354   // If we have a wrapper header, parse it and ignore the non-bc file contents.
5355   // The magic number is 0x0B17C0DE stored in little endian.
5356   if (isBitcodeWrapper(BufPtr, BufEnd))
5357     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
5358       return error("Invalid bitcode wrapper header");
5359 
5360   StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
5361   Stream.init(&*StreamFile);
5362 
5363   return std::error_code();
5364 }
5365 
5366 std::error_code
5367 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) {
5368   // Check and strip off the bitcode wrapper; BitstreamReader expects never to
5369   // see it.
5370   auto OwnedBytes =
5371       llvm::make_unique<StreamingMemoryObject>(std::move(Streamer));
5372   StreamingMemoryObject &Bytes = *OwnedBytes;
5373   StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes));
5374   Stream.init(&*StreamFile);
5375 
5376   unsigned char buf[16];
5377   if (Bytes.readBytes(buf, 16, 0) != 16)
5378     return error("Invalid bitcode signature");
5379 
5380   if (!isBitcode(buf, buf + 16))
5381     return error("Invalid bitcode signature");
5382 
5383   if (isBitcodeWrapper(buf, buf + 4)) {
5384     const unsigned char *bitcodeStart = buf;
5385     const unsigned char *bitcodeEnd = buf + 16;
5386     SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
5387     Bytes.dropLeadingBytes(bitcodeStart - buf);
5388     Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart);
5389   }
5390   return std::error_code();
5391 }
5392 
5393 std::error_code FunctionIndexBitcodeReader::error(BitcodeError E,
5394                                                   const Twine &Message) {
5395   return ::error(DiagnosticHandler, make_error_code(E), Message);
5396 }
5397 
5398 std::error_code FunctionIndexBitcodeReader::error(const Twine &Message) {
5399   return ::error(DiagnosticHandler,
5400                  make_error_code(BitcodeError::CorruptedBitcode), Message);
5401 }
5402 
5403 std::error_code FunctionIndexBitcodeReader::error(BitcodeError E) {
5404   return ::error(DiagnosticHandler, make_error_code(E));
5405 }
5406 
5407 FunctionIndexBitcodeReader::FunctionIndexBitcodeReader(
5408     MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler,
5409     bool IsLazy, bool CheckFuncSummaryPresenceOnly)
5410     : DiagnosticHandler(DiagnosticHandler), Buffer(Buffer), IsLazy(IsLazy),
5411       CheckFuncSummaryPresenceOnly(CheckFuncSummaryPresenceOnly) {}
5412 
5413 FunctionIndexBitcodeReader::FunctionIndexBitcodeReader(
5414     DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy,
5415     bool CheckFuncSummaryPresenceOnly)
5416     : DiagnosticHandler(DiagnosticHandler), Buffer(nullptr), IsLazy(IsLazy),
5417       CheckFuncSummaryPresenceOnly(CheckFuncSummaryPresenceOnly) {}
5418 
5419 void FunctionIndexBitcodeReader::freeState() { Buffer = nullptr; }
5420 
5421 void FunctionIndexBitcodeReader::releaseBuffer() { Buffer.release(); }
5422 
5423 // Specialized value symbol table parser used when reading function index
5424 // blocks where we don't actually create global values.
5425 // At the end of this routine the function index is populated with a map
5426 // from function name to FunctionInfo. The function info contains
5427 // the function block's bitcode offset as well as the offset into the
5428 // function summary section.
5429 std::error_code FunctionIndexBitcodeReader::parseValueSymbolTable() {
5430   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5431     return error("Invalid record");
5432 
5433   SmallVector<uint64_t, 64> Record;
5434 
5435   // Read all the records for this value table.
5436   SmallString<128> ValueName;
5437   while (1) {
5438     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5439 
5440     switch (Entry.Kind) {
5441     case BitstreamEntry::SubBlock: // Handled for us already.
5442     case BitstreamEntry::Error:
5443       return error("Malformed block");
5444     case BitstreamEntry::EndBlock:
5445       return std::error_code();
5446     case BitstreamEntry::Record:
5447       // The interesting case.
5448       break;
5449     }
5450 
5451     // Read a record.
5452     Record.clear();
5453     switch (Stream.readRecord(Entry.ID, Record)) {
5454     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5455       break;
5456     case bitc::VST_CODE_FNENTRY: {
5457       // VST_FNENTRY: [valueid, offset, namechar x N]
5458       if (convertToString(Record, 2, ValueName))
5459         return error("Invalid record");
5460       unsigned ValueID = Record[0];
5461       uint64_t FuncOffset = Record[1];
5462       std::unique_ptr<FunctionInfo> FuncInfo =
5463           llvm::make_unique<FunctionInfo>(FuncOffset);
5464       if (foundFuncSummary() && !IsLazy) {
5465         DenseMap<uint64_t, std::unique_ptr<FunctionSummary>>::iterator SMI =
5466             SummaryMap.find(ValueID);
5467         assert(SMI != SummaryMap.end() && "Summary info not found");
5468         FuncInfo->setFunctionSummary(std::move(SMI->second));
5469       }
5470       TheIndex->addFunctionInfo(ValueName, std::move(FuncInfo));
5471 
5472       ValueName.clear();
5473       break;
5474     }
5475     case bitc::VST_CODE_COMBINED_FNENTRY: {
5476       // VST_FNENTRY: [offset, namechar x N]
5477       if (convertToString(Record, 1, ValueName))
5478         return error("Invalid record");
5479       uint64_t FuncSummaryOffset = Record[0];
5480       std::unique_ptr<FunctionInfo> FuncInfo =
5481           llvm::make_unique<FunctionInfo>(FuncSummaryOffset);
5482       if (foundFuncSummary() && !IsLazy) {
5483         DenseMap<uint64_t, std::unique_ptr<FunctionSummary>>::iterator SMI =
5484             SummaryMap.find(FuncSummaryOffset);
5485         assert(SMI != SummaryMap.end() && "Summary info not found");
5486         FuncInfo->setFunctionSummary(std::move(SMI->second));
5487       }
5488       TheIndex->addFunctionInfo(ValueName, std::move(FuncInfo));
5489 
5490       ValueName.clear();
5491       break;
5492     }
5493     }
5494   }
5495 }
5496 
5497 // Parse just the blocks needed for function index building out of the module.
5498 // At the end of this routine the function Index is populated with a map
5499 // from function name to FunctionInfo. The function info contains
5500 // either the parsed function summary information (when parsing summaries
5501 // eagerly), or just to the function summary record's offset
5502 // if parsing lazily (IsLazy).
5503 std::error_code FunctionIndexBitcodeReader::parseModule() {
5504   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5505     return error("Invalid record");
5506 
5507   // Read the function index for this module.
5508   while (1) {
5509     BitstreamEntry Entry = Stream.advance();
5510 
5511     switch (Entry.Kind) {
5512     case BitstreamEntry::Error:
5513       return error("Malformed block");
5514     case BitstreamEntry::EndBlock:
5515       return std::error_code();
5516 
5517     case BitstreamEntry::SubBlock:
5518       if (CheckFuncSummaryPresenceOnly) {
5519         if (Entry.ID == bitc::FUNCTION_SUMMARY_BLOCK_ID) {
5520           SeenFuncSummary = true;
5521           // No need to parse the rest since we found the summary.
5522           return std::error_code();
5523         }
5524         if (Stream.SkipBlock())
5525           return error("Invalid record");
5526         continue;
5527       }
5528       switch (Entry.ID) {
5529       default: // Skip unknown content.
5530         if (Stream.SkipBlock())
5531           return error("Invalid record");
5532         break;
5533       case bitc::BLOCKINFO_BLOCK_ID:
5534         // Need to parse these to get abbrev ids (e.g. for VST)
5535         if (Stream.ReadBlockInfoBlock())
5536           return error("Malformed block");
5537         break;
5538       case bitc::VALUE_SYMTAB_BLOCK_ID:
5539         if (std::error_code EC = parseValueSymbolTable())
5540           return EC;
5541         break;
5542       case bitc::FUNCTION_SUMMARY_BLOCK_ID:
5543         SeenFuncSummary = true;
5544         if (IsLazy) {
5545           // Lazy parsing of summary info, skip it.
5546           if (Stream.SkipBlock())
5547             return error("Invalid record");
5548         } else if (std::error_code EC = parseEntireSummary())
5549           return EC;
5550         break;
5551       case bitc::MODULE_STRTAB_BLOCK_ID:
5552         if (std::error_code EC = parseModuleStringTable())
5553           return EC;
5554         break;
5555       }
5556       continue;
5557 
5558     case BitstreamEntry::Record:
5559       Stream.skipRecord(Entry.ID);
5560       continue;
5561     }
5562   }
5563 }
5564 
5565 // Eagerly parse the entire function summary block (i.e. for all functions
5566 // in the index). This populates the FunctionSummary objects in
5567 // the index.
5568 std::error_code FunctionIndexBitcodeReader::parseEntireSummary() {
5569   if (Stream.EnterSubBlock(bitc::FUNCTION_SUMMARY_BLOCK_ID))
5570     return error("Invalid record");
5571 
5572   SmallVector<uint64_t, 64> Record;
5573 
5574   while (1) {
5575     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5576 
5577     switch (Entry.Kind) {
5578     case BitstreamEntry::SubBlock: // Handled for us already.
5579     case BitstreamEntry::Error:
5580       return error("Malformed block");
5581     case BitstreamEntry::EndBlock:
5582       return std::error_code();
5583     case BitstreamEntry::Record:
5584       // The interesting case.
5585       break;
5586     }
5587 
5588     // Read a record. The record format depends on whether this
5589     // is a per-module index or a combined index file. In the per-module
5590     // case the records contain the associated value's ID for correlation
5591     // with VST entries. In the combined index the correlation is done
5592     // via the bitcode offset of the summary records (which were saved
5593     // in the combined index VST entries). The records also contain
5594     // information used for ThinLTO renaming and importing.
5595     Record.clear();
5596     uint64_t CurRecordBit = Stream.GetCurrentBitNo();
5597     switch (Stream.readRecord(Entry.ID, Record)) {
5598     default: // Default behavior: ignore.
5599       break;
5600     // FS_PERMODULE_ENTRY: [valueid, islocal, instcount]
5601     case bitc::FS_CODE_PERMODULE_ENTRY: {
5602       unsigned ValueID = Record[0];
5603       bool IsLocal = Record[1];
5604       unsigned InstCount = Record[2];
5605       std::unique_ptr<FunctionSummary> FS =
5606           llvm::make_unique<FunctionSummary>(InstCount);
5607       FS->setLocalFunction(IsLocal);
5608       // The module path string ref set in the summary must be owned by the
5609       // index's module string table. Since we don't have a module path
5610       // string table section in the per-module index, we create a single
5611       // module path string table entry with an empty (0) ID to take
5612       // ownership.
5613       FS->setModulePath(
5614           TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0));
5615       SummaryMap[ValueID] = std::move(FS);
5616     }
5617     // FS_COMBINED_ENTRY: [modid, instcount]
5618     case bitc::FS_CODE_COMBINED_ENTRY: {
5619       uint64_t ModuleId = Record[0];
5620       unsigned InstCount = Record[1];
5621       std::unique_ptr<FunctionSummary> FS =
5622           llvm::make_unique<FunctionSummary>(InstCount);
5623       FS->setModulePath(ModuleIdMap[ModuleId]);
5624       SummaryMap[CurRecordBit] = std::move(FS);
5625     }
5626     }
5627   }
5628   llvm_unreachable("Exit infinite loop");
5629 }
5630 
5631 // Parse the  module string table block into the Index.
5632 // This populates the ModulePathStringTable map in the index.
5633 std::error_code FunctionIndexBitcodeReader::parseModuleStringTable() {
5634   if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
5635     return error("Invalid record");
5636 
5637   SmallVector<uint64_t, 64> Record;
5638 
5639   SmallString<128> ModulePath;
5640   while (1) {
5641     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5642 
5643     switch (Entry.Kind) {
5644     case BitstreamEntry::SubBlock: // Handled for us already.
5645     case BitstreamEntry::Error:
5646       return error("Malformed block");
5647     case BitstreamEntry::EndBlock:
5648       return std::error_code();
5649     case BitstreamEntry::Record:
5650       // The interesting case.
5651       break;
5652     }
5653 
5654     Record.clear();
5655     switch (Stream.readRecord(Entry.ID, Record)) {
5656     default: // Default behavior: ignore.
5657       break;
5658     case bitc::MST_CODE_ENTRY: {
5659       // MST_ENTRY: [modid, namechar x N]
5660       if (convertToString(Record, 1, ModulePath))
5661         return error("Invalid record");
5662       uint64_t ModuleId = Record[0];
5663       StringRef ModulePathInMap = TheIndex->addModulePath(ModulePath, ModuleId);
5664       ModuleIdMap[ModuleId] = ModulePathInMap;
5665       ModulePath.clear();
5666       break;
5667     }
5668     }
5669   }
5670   llvm_unreachable("Exit infinite loop");
5671 }
5672 
5673 // Parse the function info index from the bitcode streamer into the given index.
5674 std::error_code FunctionIndexBitcodeReader::parseSummaryIndexInto(
5675     std::unique_ptr<DataStreamer> Streamer, FunctionInfoIndex *I) {
5676   TheIndex = I;
5677 
5678   if (std::error_code EC = initStream(std::move(Streamer)))
5679     return EC;
5680 
5681   // Sniff for the signature.
5682   if (!hasValidBitcodeHeader(Stream))
5683     return error("Invalid bitcode signature");
5684 
5685   // We expect a number of well-defined blocks, though we don't necessarily
5686   // need to understand them all.
5687   while (1) {
5688     if (Stream.AtEndOfStream()) {
5689       // We didn't really read a proper Module block.
5690       return error("Malformed block");
5691     }
5692 
5693     BitstreamEntry Entry =
5694         Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
5695 
5696     if (Entry.Kind != BitstreamEntry::SubBlock)
5697       return error("Malformed block");
5698 
5699     // If we see a MODULE_BLOCK, parse it to find the blocks needed for
5700     // building the function summary index.
5701     if (Entry.ID == bitc::MODULE_BLOCK_ID)
5702       return parseModule();
5703 
5704     if (Stream.SkipBlock())
5705       return error("Invalid record");
5706   }
5707 }
5708 
5709 // Parse the function information at the given offset in the buffer into
5710 // the index. Used to support lazy parsing of function summaries from the
5711 // combined index during importing.
5712 // TODO: This function is not yet complete as it won't have a consumer
5713 // until ThinLTO function importing is added.
5714 std::error_code FunctionIndexBitcodeReader::parseFunctionSummary(
5715     std::unique_ptr<DataStreamer> Streamer, FunctionInfoIndex *I,
5716     size_t FunctionSummaryOffset) {
5717   TheIndex = I;
5718 
5719   if (std::error_code EC = initStream(std::move(Streamer)))
5720     return EC;
5721 
5722   // Sniff for the signature.
5723   if (!hasValidBitcodeHeader(Stream))
5724     return error("Invalid bitcode signature");
5725 
5726   Stream.JumpToBit(FunctionSummaryOffset);
5727 
5728   BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5729 
5730   switch (Entry.Kind) {
5731   default:
5732     return error("Malformed block");
5733   case BitstreamEntry::Record:
5734     // The expected case.
5735     break;
5736   }
5737 
5738   // TODO: Read a record. This interface will be completed when ThinLTO
5739   // importing is added so that it can be tested.
5740   SmallVector<uint64_t, 64> Record;
5741   switch (Stream.readRecord(Entry.ID, Record)) {
5742   case bitc::FS_CODE_COMBINED_ENTRY:
5743   default:
5744     return error("Invalid record");
5745   }
5746 
5747   return std::error_code();
5748 }
5749 
5750 std::error_code
5751 FunctionIndexBitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) {
5752   if (Streamer)
5753     return initLazyStream(std::move(Streamer));
5754   return initStreamFromBuffer();
5755 }
5756 
5757 std::error_code FunctionIndexBitcodeReader::initStreamFromBuffer() {
5758   const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart();
5759   const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize();
5760 
5761   if (Buffer->getBufferSize() & 3)
5762     return error("Invalid bitcode signature");
5763 
5764   // If we have a wrapper header, parse it and ignore the non-bc file contents.
5765   // The magic number is 0x0B17C0DE stored in little endian.
5766   if (isBitcodeWrapper(BufPtr, BufEnd))
5767     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
5768       return error("Invalid bitcode wrapper header");
5769 
5770   StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
5771   Stream.init(&*StreamFile);
5772 
5773   return std::error_code();
5774 }
5775 
5776 std::error_code FunctionIndexBitcodeReader::initLazyStream(
5777     std::unique_ptr<DataStreamer> Streamer) {
5778   // Check and strip off the bitcode wrapper; BitstreamReader expects never to
5779   // see it.
5780   auto OwnedBytes =
5781       llvm::make_unique<StreamingMemoryObject>(std::move(Streamer));
5782   StreamingMemoryObject &Bytes = *OwnedBytes;
5783   StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes));
5784   Stream.init(&*StreamFile);
5785 
5786   unsigned char buf[16];
5787   if (Bytes.readBytes(buf, 16, 0) != 16)
5788     return error("Invalid bitcode signature");
5789 
5790   if (!isBitcode(buf, buf + 16))
5791     return error("Invalid bitcode signature");
5792 
5793   if (isBitcodeWrapper(buf, buf + 4)) {
5794     const unsigned char *bitcodeStart = buf;
5795     const unsigned char *bitcodeEnd = buf + 16;
5796     SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
5797     Bytes.dropLeadingBytes(bitcodeStart - buf);
5798     Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart);
5799   }
5800   return std::error_code();
5801 }
5802 
5803 namespace {
5804 class BitcodeErrorCategoryType : public std::error_category {
5805   const char *name() const LLVM_NOEXCEPT override {
5806     return "llvm.bitcode";
5807   }
5808   std::string message(int IE) const override {
5809     BitcodeError E = static_cast<BitcodeError>(IE);
5810     switch (E) {
5811     case BitcodeError::InvalidBitcodeSignature:
5812       return "Invalid bitcode signature";
5813     case BitcodeError::CorruptedBitcode:
5814       return "Corrupted bitcode";
5815     }
5816     llvm_unreachable("Unknown error type!");
5817   }
5818 };
5819 }
5820 
5821 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
5822 
5823 const std::error_category &llvm::BitcodeErrorCategory() {
5824   return *ErrorCategory;
5825 }
5826 
5827 //===----------------------------------------------------------------------===//
5828 // External interface
5829 //===----------------------------------------------------------------------===//
5830 
5831 static ErrorOr<std::unique_ptr<Module>>
5832 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name,
5833                      BitcodeReader *R, LLVMContext &Context,
5834                      bool MaterializeAll, bool ShouldLazyLoadMetadata) {
5835   std::unique_ptr<Module> M = make_unique<Module>(Name, Context);
5836   M->setMaterializer(R);
5837 
5838   auto cleanupOnError = [&](std::error_code EC) {
5839     R->releaseBuffer(); // Never take ownership on error.
5840     return EC;
5841   };
5842 
5843   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
5844   if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(),
5845                                                ShouldLazyLoadMetadata))
5846     return cleanupOnError(EC);
5847 
5848   if (MaterializeAll) {
5849     // Read in the entire module, and destroy the BitcodeReader.
5850     if (std::error_code EC = M->materializeAll())
5851       return cleanupOnError(EC);
5852   } else {
5853     // Resolve forward references from blockaddresses.
5854     if (std::error_code EC = R->materializeForwardReferencedFunctions())
5855       return cleanupOnError(EC);
5856   }
5857   return std::move(M);
5858 }
5859 
5860 /// \brief Get a lazy one-at-time loading module from bitcode.
5861 ///
5862 /// This isn't always used in a lazy context.  In particular, it's also used by
5863 /// \a parseBitcodeFile().  If this is truly lazy, then we need to eagerly pull
5864 /// in forward-referenced functions from block address references.
5865 ///
5866 /// \param[in] MaterializeAll Set to \c true if we should materialize
5867 /// everything.
5868 static ErrorOr<std::unique_ptr<Module>>
5869 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer,
5870                          LLVMContext &Context, bool MaterializeAll,
5871                          bool ShouldLazyLoadMetadata = false) {
5872   BitcodeReader *R = new BitcodeReader(Buffer.get(), Context);
5873 
5874   ErrorOr<std::unique_ptr<Module>> Ret =
5875       getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context,
5876                            MaterializeAll, ShouldLazyLoadMetadata);
5877   if (!Ret)
5878     return Ret;
5879 
5880   Buffer.release(); // The BitcodeReader owns it now.
5881   return Ret;
5882 }
5883 
5884 ErrorOr<std::unique_ptr<Module>>
5885 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer,
5886                            LLVMContext &Context, bool ShouldLazyLoadMetadata) {
5887   return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false,
5888                                   ShouldLazyLoadMetadata);
5889 }
5890 
5891 ErrorOr<std::unique_ptr<Module>>
5892 llvm::getStreamedBitcodeModule(StringRef Name,
5893                                std::unique_ptr<DataStreamer> Streamer,
5894                                LLVMContext &Context) {
5895   std::unique_ptr<Module> M = make_unique<Module>(Name, Context);
5896   BitcodeReader *R = new BitcodeReader(Context);
5897 
5898   return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false,
5899                               false);
5900 }
5901 
5902 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer,
5903                                                         LLVMContext &Context) {
5904   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
5905   return getLazyBitcodeModuleImpl(std::move(Buf), Context, true);
5906   // TODO: Restore the use-lists to the in-memory state when the bitcode was
5907   // written.  We must defer until the Module has been fully materialized.
5908 }
5909 
5910 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer,
5911                                          LLVMContext &Context) {
5912   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
5913   auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context);
5914   ErrorOr<std::string> Triple = R->parseTriple();
5915   if (Triple.getError())
5916     return "";
5917   return Triple.get();
5918 }
5919 
5920 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer,
5921                                            LLVMContext &Context) {
5922   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
5923   BitcodeReader R(Buf.release(), Context);
5924   ErrorOr<std::string> ProducerString = R.parseIdentificationBlock();
5925   if (ProducerString.getError())
5926     return "";
5927   return ProducerString.get();
5928 }
5929 
5930 // Parse the specified bitcode buffer, returning the function info index.
5931 // If IsLazy is false, parse the entire function summary into
5932 // the index. Otherwise skip the function summary section, and only create
5933 // an index object with a map from function name to function summary offset.
5934 // The index is used to perform lazy function summary reading later.
5935 ErrorOr<std::unique_ptr<FunctionInfoIndex>>
5936 llvm::getFunctionInfoIndex(MemoryBufferRef Buffer,
5937                            DiagnosticHandlerFunction DiagnosticHandler,
5938                            bool IsLazy) {
5939   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
5940   FunctionIndexBitcodeReader R(Buf.get(), DiagnosticHandler, IsLazy);
5941 
5942   auto Index = llvm::make_unique<FunctionInfoIndex>();
5943 
5944   auto cleanupOnError = [&](std::error_code EC) {
5945     R.releaseBuffer(); // Never take ownership on error.
5946     return EC;
5947   };
5948 
5949   if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get()))
5950     return cleanupOnError(EC);
5951 
5952   Buf.release(); // The FunctionIndexBitcodeReader owns it now.
5953   return std::move(Index);
5954 }
5955 
5956 // Check if the given bitcode buffer contains a function summary block.
5957 bool llvm::hasFunctionSummary(MemoryBufferRef Buffer,
5958                               DiagnosticHandlerFunction DiagnosticHandler) {
5959   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
5960   FunctionIndexBitcodeReader R(Buf.get(), DiagnosticHandler, false, true);
5961 
5962   auto cleanupOnError = [&](std::error_code EC) {
5963     R.releaseBuffer(); // Never take ownership on error.
5964     return false;
5965   };
5966 
5967   if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr))
5968     return cleanupOnError(EC);
5969 
5970   Buf.release(); // The FunctionIndexBitcodeReader owns it now.
5971   return R.foundFuncSummary();
5972 }
5973 
5974 // This method supports lazy reading of function summary data from the combined
5975 // index during ThinLTO function importing. When reading the combined index
5976 // file, getFunctionInfoIndex is first invoked with IsLazy=true.
5977 // Then this method is called for each function considered for importing,
5978 // to parse the summary information for the given function name into
5979 // the index.
5980 std::error_code llvm::readFunctionSummary(
5981     MemoryBufferRef Buffer, DiagnosticHandlerFunction DiagnosticHandler,
5982     StringRef FunctionName, std::unique_ptr<FunctionInfoIndex> Index) {
5983   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
5984   FunctionIndexBitcodeReader R(Buf.get(), DiagnosticHandler);
5985 
5986   auto cleanupOnError = [&](std::error_code EC) {
5987     R.releaseBuffer(); // Never take ownership on error.
5988     return EC;
5989   };
5990 
5991   // Lookup the given function name in the FunctionMap, which may
5992   // contain a list of function infos in the case of a COMDAT. Walk through
5993   // and parse each function summary info at the function summary offset
5994   // recorded when parsing the value symbol table.
5995   for (const auto &FI : Index->getFunctionInfoList(FunctionName)) {
5996     size_t FunctionSummaryOffset = FI->bitcodeIndex();
5997     if (std::error_code EC =
5998             R.parseFunctionSummary(nullptr, Index.get(), FunctionSummaryOffset))
5999       return cleanupOnError(EC);
6000   }
6001 
6002   Buf.release(); // The FunctionIndexBitcodeReader owns it now.
6003   return std::error_code();
6004 }
6005