1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "BitcodeReader.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/Bitcode/LLVMBitCodes.h" 16 #include "llvm/IR/AutoUpgrade.h" 17 #include "llvm/IR/Constants.h" 18 #include "llvm/IR/DebugInfoMetadata.h" 19 #include "llvm/IR/DerivedTypes.h" 20 #include "llvm/IR/DiagnosticPrinter.h" 21 #include "llvm/IR/InlineAsm.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/OperandTraits.h" 26 #include "llvm/IR/Operator.h" 27 #include "llvm/Support/DataStream.h" 28 #include "llvm/Support/ManagedStatic.h" 29 #include "llvm/Support/MathExtras.h" 30 #include "llvm/Support/MemoryBuffer.h" 31 #include "llvm/Support/raw_ostream.h" 32 33 using namespace llvm; 34 35 enum { 36 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 37 }; 38 39 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 40 DiagnosticSeverity Severity, 41 const Twine &Msg) 42 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 43 44 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 45 46 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 47 std::error_code EC, const Twine &Message) { 48 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 49 DiagnosticHandler(DI); 50 return EC; 51 } 52 53 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 54 std::error_code EC) { 55 return Error(DiagnosticHandler, EC, EC.message()); 56 } 57 58 std::error_code BitcodeReader::Error(BitcodeError E, const Twine &Message) { 59 return ::Error(DiagnosticHandler, make_error_code(E), Message); 60 } 61 62 std::error_code BitcodeReader::Error(const Twine &Message) { 63 return ::Error(DiagnosticHandler, 64 make_error_code(BitcodeError::CorruptedBitcode), Message); 65 } 66 67 std::error_code BitcodeReader::Error(BitcodeError E) { 68 return ::Error(DiagnosticHandler, make_error_code(E)); 69 } 70 71 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F, 72 LLVMContext &C) { 73 if (F) 74 return F; 75 return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); }; 76 } 77 78 BitcodeReader::BitcodeReader(MemoryBuffer *buffer, LLVMContext &C, 79 DiagnosticHandlerFunction DiagnosticHandler) 80 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 81 TheModule(nullptr), Buffer(buffer), LazyStreamer(nullptr), 82 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 83 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 84 WillMaterializeAllForwardRefs(false) {} 85 86 BitcodeReader::BitcodeReader(DataStreamer *streamer, LLVMContext &C, 87 DiagnosticHandlerFunction DiagnosticHandler) 88 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 89 TheModule(nullptr), Buffer(nullptr), LazyStreamer(streamer), 90 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 91 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 92 WillMaterializeAllForwardRefs(false) {} 93 94 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 95 if (WillMaterializeAllForwardRefs) 96 return std::error_code(); 97 98 // Prevent recursion. 99 WillMaterializeAllForwardRefs = true; 100 101 while (!BasicBlockFwdRefQueue.empty()) { 102 Function *F = BasicBlockFwdRefQueue.front(); 103 BasicBlockFwdRefQueue.pop_front(); 104 assert(F && "Expected valid function"); 105 if (!BasicBlockFwdRefs.count(F)) 106 // Already materialized. 107 continue; 108 109 // Check for a function that isn't materializable to prevent an infinite 110 // loop. When parsing a blockaddress stored in a global variable, there 111 // isn't a trivial way to check if a function will have a body without a 112 // linear search through FunctionsWithBodies, so just check it here. 113 if (!F->isMaterializable()) 114 return Error("Never resolved function from blockaddress"); 115 116 // Try to materialize F. 117 if (std::error_code EC = materialize(F)) 118 return EC; 119 } 120 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 121 122 // Reset state. 123 WillMaterializeAllForwardRefs = false; 124 return std::error_code(); 125 } 126 127 void BitcodeReader::FreeState() { 128 Buffer = nullptr; 129 std::vector<Type*>().swap(TypeList); 130 ValueList.clear(); 131 MDValueList.clear(); 132 std::vector<Comdat *>().swap(ComdatList); 133 134 std::vector<AttributeSet>().swap(MAttributes); 135 std::vector<BasicBlock*>().swap(FunctionBBs); 136 std::vector<Function*>().swap(FunctionsWithBodies); 137 DeferredFunctionInfo.clear(); 138 MDKindMap.clear(); 139 140 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 141 BasicBlockFwdRefQueue.clear(); 142 } 143 144 //===----------------------------------------------------------------------===// 145 // Helper functions to implement forward reference resolution, etc. 146 //===----------------------------------------------------------------------===// 147 148 /// ConvertToString - Convert a string from a record into an std::string, return 149 /// true on failure. 150 template<typename StrTy> 151 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx, 152 StrTy &Result) { 153 if (Idx > Record.size()) 154 return true; 155 156 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 157 Result += (char)Record[i]; 158 return false; 159 } 160 161 static bool hasImplicitComdat(size_t Val) { 162 switch (Val) { 163 default: 164 return false; 165 case 1: // Old WeakAnyLinkage 166 case 4: // Old LinkOnceAnyLinkage 167 case 10: // Old WeakODRLinkage 168 case 11: // Old LinkOnceODRLinkage 169 return true; 170 } 171 } 172 173 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 174 switch (Val) { 175 default: // Map unknown/new linkages to external 176 case 0: 177 return GlobalValue::ExternalLinkage; 178 case 2: 179 return GlobalValue::AppendingLinkage; 180 case 3: 181 return GlobalValue::InternalLinkage; 182 case 5: 183 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 184 case 6: 185 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 186 case 7: 187 return GlobalValue::ExternalWeakLinkage; 188 case 8: 189 return GlobalValue::CommonLinkage; 190 case 9: 191 return GlobalValue::PrivateLinkage; 192 case 12: 193 return GlobalValue::AvailableExternallyLinkage; 194 case 13: 195 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 196 case 14: 197 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 198 case 15: 199 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 200 case 1: // Old value with implicit comdat. 201 case 16: 202 return GlobalValue::WeakAnyLinkage; 203 case 10: // Old value with implicit comdat. 204 case 17: 205 return GlobalValue::WeakODRLinkage; 206 case 4: // Old value with implicit comdat. 207 case 18: 208 return GlobalValue::LinkOnceAnyLinkage; 209 case 11: // Old value with implicit comdat. 210 case 19: 211 return GlobalValue::LinkOnceODRLinkage; 212 } 213 } 214 215 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 216 switch (Val) { 217 default: // Map unknown visibilities to default. 218 case 0: return GlobalValue::DefaultVisibility; 219 case 1: return GlobalValue::HiddenVisibility; 220 case 2: return GlobalValue::ProtectedVisibility; 221 } 222 } 223 224 static GlobalValue::DLLStorageClassTypes 225 GetDecodedDLLStorageClass(unsigned Val) { 226 switch (Val) { 227 default: // Map unknown values to default. 228 case 0: return GlobalValue::DefaultStorageClass; 229 case 1: return GlobalValue::DLLImportStorageClass; 230 case 2: return GlobalValue::DLLExportStorageClass; 231 } 232 } 233 234 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) { 235 switch (Val) { 236 case 0: return GlobalVariable::NotThreadLocal; 237 default: // Map unknown non-zero value to general dynamic. 238 case 1: return GlobalVariable::GeneralDynamicTLSModel; 239 case 2: return GlobalVariable::LocalDynamicTLSModel; 240 case 3: return GlobalVariable::InitialExecTLSModel; 241 case 4: return GlobalVariable::LocalExecTLSModel; 242 } 243 } 244 245 static int GetDecodedCastOpcode(unsigned Val) { 246 switch (Val) { 247 default: return -1; 248 case bitc::CAST_TRUNC : return Instruction::Trunc; 249 case bitc::CAST_ZEXT : return Instruction::ZExt; 250 case bitc::CAST_SEXT : return Instruction::SExt; 251 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 252 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 253 case bitc::CAST_UITOFP : return Instruction::UIToFP; 254 case bitc::CAST_SITOFP : return Instruction::SIToFP; 255 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 256 case bitc::CAST_FPEXT : return Instruction::FPExt; 257 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 258 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 259 case bitc::CAST_BITCAST : return Instruction::BitCast; 260 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 261 } 262 } 263 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) { 264 switch (Val) { 265 default: return -1; 266 case bitc::BINOP_ADD: 267 return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add; 268 case bitc::BINOP_SUB: 269 return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub; 270 case bitc::BINOP_MUL: 271 return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul; 272 case bitc::BINOP_UDIV: return Instruction::UDiv; 273 case bitc::BINOP_SDIV: 274 return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv; 275 case bitc::BINOP_UREM: return Instruction::URem; 276 case bitc::BINOP_SREM: 277 return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem; 278 case bitc::BINOP_SHL: return Instruction::Shl; 279 case bitc::BINOP_LSHR: return Instruction::LShr; 280 case bitc::BINOP_ASHR: return Instruction::AShr; 281 case bitc::BINOP_AND: return Instruction::And; 282 case bitc::BINOP_OR: return Instruction::Or; 283 case bitc::BINOP_XOR: return Instruction::Xor; 284 } 285 } 286 287 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) { 288 switch (Val) { 289 default: return AtomicRMWInst::BAD_BINOP; 290 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 291 case bitc::RMW_ADD: return AtomicRMWInst::Add; 292 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 293 case bitc::RMW_AND: return AtomicRMWInst::And; 294 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 295 case bitc::RMW_OR: return AtomicRMWInst::Or; 296 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 297 case bitc::RMW_MAX: return AtomicRMWInst::Max; 298 case bitc::RMW_MIN: return AtomicRMWInst::Min; 299 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 300 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 301 } 302 } 303 304 static AtomicOrdering GetDecodedOrdering(unsigned Val) { 305 switch (Val) { 306 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 307 case bitc::ORDERING_UNORDERED: return Unordered; 308 case bitc::ORDERING_MONOTONIC: return Monotonic; 309 case bitc::ORDERING_ACQUIRE: return Acquire; 310 case bitc::ORDERING_RELEASE: return Release; 311 case bitc::ORDERING_ACQREL: return AcquireRelease; 312 default: // Map unknown orderings to sequentially-consistent. 313 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 314 } 315 } 316 317 static SynchronizationScope GetDecodedSynchScope(unsigned Val) { 318 switch (Val) { 319 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 320 default: // Map unknown scopes to cross-thread. 321 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 322 } 323 } 324 325 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 326 switch (Val) { 327 default: // Map unknown selection kinds to any. 328 case bitc::COMDAT_SELECTION_KIND_ANY: 329 return Comdat::Any; 330 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 331 return Comdat::ExactMatch; 332 case bitc::COMDAT_SELECTION_KIND_LARGEST: 333 return Comdat::Largest; 334 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 335 return Comdat::NoDuplicates; 336 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 337 return Comdat::SameSize; 338 } 339 } 340 341 static void UpgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 342 switch (Val) { 343 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 344 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 345 } 346 } 347 348 namespace llvm { 349 namespace { 350 /// @brief A class for maintaining the slot number definition 351 /// as a placeholder for the actual definition for forward constants defs. 352 class ConstantPlaceHolder : public ConstantExpr { 353 void operator=(const ConstantPlaceHolder &) LLVM_DELETED_FUNCTION; 354 public: 355 // allocate space for exactly one operand 356 void *operator new(size_t s) { 357 return User::operator new(s, 1); 358 } 359 explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context) 360 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 361 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 362 } 363 364 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 365 static bool classof(const Value *V) { 366 return isa<ConstantExpr>(V) && 367 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 368 } 369 370 371 /// Provide fast operand accessors 372 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 373 }; 374 } 375 376 // FIXME: can we inherit this from ConstantExpr? 377 template <> 378 struct OperandTraits<ConstantPlaceHolder> : 379 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 380 }; 381 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 382 } 383 384 385 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 386 if (Idx == size()) { 387 push_back(V); 388 return; 389 } 390 391 if (Idx >= size()) 392 resize(Idx+1); 393 394 WeakVH &OldV = ValuePtrs[Idx]; 395 if (!OldV) { 396 OldV = V; 397 return; 398 } 399 400 // Handle constants and non-constants (e.g. instrs) differently for 401 // efficiency. 402 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 403 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 404 OldV = V; 405 } else { 406 // If there was a forward reference to this value, replace it. 407 Value *PrevVal = OldV; 408 OldV->replaceAllUsesWith(V); 409 delete PrevVal; 410 } 411 } 412 413 414 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 415 Type *Ty) { 416 if (Idx >= size()) 417 resize(Idx + 1); 418 419 if (Value *V = ValuePtrs[Idx]) { 420 assert(Ty == V->getType() && "Type mismatch in constant table!"); 421 return cast<Constant>(V); 422 } 423 424 // Create and return a placeholder, which will later be RAUW'd. 425 Constant *C = new ConstantPlaceHolder(Ty, Context); 426 ValuePtrs[Idx] = C; 427 return C; 428 } 429 430 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 431 if (Idx >= size()) 432 resize(Idx + 1); 433 434 if (Value *V = ValuePtrs[Idx]) { 435 assert((!Ty || Ty == V->getType()) && "Type mismatch in value table!"); 436 return V; 437 } 438 439 // No type specified, must be invalid reference. 440 if (!Ty) return nullptr; 441 442 // Create and return a placeholder, which will later be RAUW'd. 443 Value *V = new Argument(Ty); 444 ValuePtrs[Idx] = V; 445 return V; 446 } 447 448 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 449 /// resolves any forward references. The idea behind this is that we sometimes 450 /// get constants (such as large arrays) which reference *many* forward ref 451 /// constants. Replacing each of these causes a lot of thrashing when 452 /// building/reuniquing the constant. Instead of doing this, we look at all the 453 /// uses and rewrite all the place holders at once for any constant that uses 454 /// a placeholder. 455 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 456 // Sort the values by-pointer so that they are efficient to look up with a 457 // binary search. 458 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 459 460 SmallVector<Constant*, 64> NewOps; 461 462 while (!ResolveConstants.empty()) { 463 Value *RealVal = operator[](ResolveConstants.back().second); 464 Constant *Placeholder = ResolveConstants.back().first; 465 ResolveConstants.pop_back(); 466 467 // Loop over all users of the placeholder, updating them to reference the 468 // new value. If they reference more than one placeholder, update them all 469 // at once. 470 while (!Placeholder->use_empty()) { 471 auto UI = Placeholder->user_begin(); 472 User *U = *UI; 473 474 // If the using object isn't uniqued, just update the operands. This 475 // handles instructions and initializers for global variables. 476 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 477 UI.getUse().set(RealVal); 478 continue; 479 } 480 481 // Otherwise, we have a constant that uses the placeholder. Replace that 482 // constant with a new constant that has *all* placeholder uses updated. 483 Constant *UserC = cast<Constant>(U); 484 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 485 I != E; ++I) { 486 Value *NewOp; 487 if (!isa<ConstantPlaceHolder>(*I)) { 488 // Not a placeholder reference. 489 NewOp = *I; 490 } else if (*I == Placeholder) { 491 // Common case is that it just references this one placeholder. 492 NewOp = RealVal; 493 } else { 494 // Otherwise, look up the placeholder in ResolveConstants. 495 ResolveConstantsTy::iterator It = 496 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 497 std::pair<Constant*, unsigned>(cast<Constant>(*I), 498 0)); 499 assert(It != ResolveConstants.end() && It->first == *I); 500 NewOp = operator[](It->second); 501 } 502 503 NewOps.push_back(cast<Constant>(NewOp)); 504 } 505 506 // Make the new constant. 507 Constant *NewC; 508 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 509 NewC = ConstantArray::get(UserCA->getType(), NewOps); 510 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 511 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 512 } else if (isa<ConstantVector>(UserC)) { 513 NewC = ConstantVector::get(NewOps); 514 } else { 515 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 516 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 517 } 518 519 UserC->replaceAllUsesWith(NewC); 520 UserC->destroyConstant(); 521 NewOps.clear(); 522 } 523 524 // Update all ValueHandles, they should be the only users at this point. 525 Placeholder->replaceAllUsesWith(RealVal); 526 delete Placeholder; 527 } 528 } 529 530 void BitcodeReaderMDValueList::AssignValue(Metadata *MD, unsigned Idx) { 531 if (Idx == size()) { 532 push_back(MD); 533 return; 534 } 535 536 if (Idx >= size()) 537 resize(Idx+1); 538 539 TrackingMDRef &OldMD = MDValuePtrs[Idx]; 540 if (!OldMD) { 541 OldMD.reset(MD); 542 return; 543 } 544 545 // If there was a forward reference to this value, replace it. 546 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 547 PrevMD->replaceAllUsesWith(MD); 548 --NumFwdRefs; 549 } 550 551 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 552 if (Idx >= size()) 553 resize(Idx + 1); 554 555 if (Metadata *MD = MDValuePtrs[Idx]) 556 return MD; 557 558 // Create and return a placeholder, which will later be RAUW'd. 559 AnyFwdRefs = true; 560 ++NumFwdRefs; 561 Metadata *MD = MDNode::getTemporary(Context, None).release(); 562 MDValuePtrs[Idx].reset(MD); 563 return MD; 564 } 565 566 void BitcodeReaderMDValueList::tryToResolveCycles() { 567 if (!AnyFwdRefs) 568 // Nothing to do. 569 return; 570 571 if (NumFwdRefs) 572 // Still forward references... can't resolve cycles. 573 return; 574 575 // Resolve any cycles. 576 for (auto &MD : MDValuePtrs) { 577 auto *N = dyn_cast_or_null<MDNode>(MD); 578 if (!N) 579 continue; 580 581 assert(!N->isTemporary() && "Unexpected forward reference"); 582 N->resolveCycles(); 583 } 584 } 585 586 Type *BitcodeReader::getTypeByID(unsigned ID) { 587 // The type table size is always specified correctly. 588 if (ID >= TypeList.size()) 589 return nullptr; 590 591 if (Type *Ty = TypeList[ID]) 592 return Ty; 593 594 // If we have a forward reference, the only possible case is when it is to a 595 // named struct. Just create a placeholder for now. 596 return TypeList[ID] = createIdentifiedStructType(Context); 597 } 598 599 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 600 StringRef Name) { 601 auto *Ret = StructType::create(Context, Name); 602 IdentifiedStructTypes.push_back(Ret); 603 return Ret; 604 } 605 606 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 607 auto *Ret = StructType::create(Context); 608 IdentifiedStructTypes.push_back(Ret); 609 return Ret; 610 } 611 612 613 //===----------------------------------------------------------------------===// 614 // Functions for parsing blocks from the bitcode file 615 //===----------------------------------------------------------------------===// 616 617 618 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 619 /// been decoded from the given integer. This function must stay in sync with 620 /// 'encodeLLVMAttributesForBitcode'. 621 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 622 uint64_t EncodedAttrs) { 623 // FIXME: Remove in 4.0. 624 625 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 626 // the bits above 31 down by 11 bits. 627 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 628 assert((!Alignment || isPowerOf2_32(Alignment)) && 629 "Alignment must be a power of two."); 630 631 if (Alignment) 632 B.addAlignmentAttr(Alignment); 633 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 634 (EncodedAttrs & 0xffff)); 635 } 636 637 std::error_code BitcodeReader::ParseAttributeBlock() { 638 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 639 return Error("Invalid record"); 640 641 if (!MAttributes.empty()) 642 return Error("Invalid multiple blocks"); 643 644 SmallVector<uint64_t, 64> Record; 645 646 SmallVector<AttributeSet, 8> Attrs; 647 648 // Read all the records. 649 while (1) { 650 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 651 652 switch (Entry.Kind) { 653 case BitstreamEntry::SubBlock: // Handled for us already. 654 case BitstreamEntry::Error: 655 return Error("Malformed block"); 656 case BitstreamEntry::EndBlock: 657 return std::error_code(); 658 case BitstreamEntry::Record: 659 // The interesting case. 660 break; 661 } 662 663 // Read a record. 664 Record.clear(); 665 switch (Stream.readRecord(Entry.ID, Record)) { 666 default: // Default behavior: ignore. 667 break; 668 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 669 // FIXME: Remove in 4.0. 670 if (Record.size() & 1) 671 return Error("Invalid record"); 672 673 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 674 AttrBuilder B; 675 decodeLLVMAttributesForBitcode(B, Record[i+1]); 676 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 677 } 678 679 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 680 Attrs.clear(); 681 break; 682 } 683 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 684 for (unsigned i = 0, e = Record.size(); i != e; ++i) 685 Attrs.push_back(MAttributeGroups[Record[i]]); 686 687 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 688 Attrs.clear(); 689 break; 690 } 691 } 692 } 693 } 694 695 // Returns Attribute::None on unrecognized codes. 696 static Attribute::AttrKind GetAttrFromCode(uint64_t Code) { 697 switch (Code) { 698 default: 699 return Attribute::None; 700 case bitc::ATTR_KIND_ALIGNMENT: 701 return Attribute::Alignment; 702 case bitc::ATTR_KIND_ALWAYS_INLINE: 703 return Attribute::AlwaysInline; 704 case bitc::ATTR_KIND_BUILTIN: 705 return Attribute::Builtin; 706 case bitc::ATTR_KIND_BY_VAL: 707 return Attribute::ByVal; 708 case bitc::ATTR_KIND_IN_ALLOCA: 709 return Attribute::InAlloca; 710 case bitc::ATTR_KIND_COLD: 711 return Attribute::Cold; 712 case bitc::ATTR_KIND_INLINE_HINT: 713 return Attribute::InlineHint; 714 case bitc::ATTR_KIND_IN_REG: 715 return Attribute::InReg; 716 case bitc::ATTR_KIND_JUMP_TABLE: 717 return Attribute::JumpTable; 718 case bitc::ATTR_KIND_MIN_SIZE: 719 return Attribute::MinSize; 720 case bitc::ATTR_KIND_NAKED: 721 return Attribute::Naked; 722 case bitc::ATTR_KIND_NEST: 723 return Attribute::Nest; 724 case bitc::ATTR_KIND_NO_ALIAS: 725 return Attribute::NoAlias; 726 case bitc::ATTR_KIND_NO_BUILTIN: 727 return Attribute::NoBuiltin; 728 case bitc::ATTR_KIND_NO_CAPTURE: 729 return Attribute::NoCapture; 730 case bitc::ATTR_KIND_NO_DUPLICATE: 731 return Attribute::NoDuplicate; 732 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 733 return Attribute::NoImplicitFloat; 734 case bitc::ATTR_KIND_NO_INLINE: 735 return Attribute::NoInline; 736 case bitc::ATTR_KIND_NON_LAZY_BIND: 737 return Attribute::NonLazyBind; 738 case bitc::ATTR_KIND_NON_NULL: 739 return Attribute::NonNull; 740 case bitc::ATTR_KIND_DEREFERENCEABLE: 741 return Attribute::Dereferenceable; 742 case bitc::ATTR_KIND_NO_RED_ZONE: 743 return Attribute::NoRedZone; 744 case bitc::ATTR_KIND_NO_RETURN: 745 return Attribute::NoReturn; 746 case bitc::ATTR_KIND_NO_UNWIND: 747 return Attribute::NoUnwind; 748 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 749 return Attribute::OptimizeForSize; 750 case bitc::ATTR_KIND_OPTIMIZE_NONE: 751 return Attribute::OptimizeNone; 752 case bitc::ATTR_KIND_READ_NONE: 753 return Attribute::ReadNone; 754 case bitc::ATTR_KIND_READ_ONLY: 755 return Attribute::ReadOnly; 756 case bitc::ATTR_KIND_RETURNED: 757 return Attribute::Returned; 758 case bitc::ATTR_KIND_RETURNS_TWICE: 759 return Attribute::ReturnsTwice; 760 case bitc::ATTR_KIND_S_EXT: 761 return Attribute::SExt; 762 case bitc::ATTR_KIND_STACK_ALIGNMENT: 763 return Attribute::StackAlignment; 764 case bitc::ATTR_KIND_STACK_PROTECT: 765 return Attribute::StackProtect; 766 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 767 return Attribute::StackProtectReq; 768 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 769 return Attribute::StackProtectStrong; 770 case bitc::ATTR_KIND_STRUCT_RET: 771 return Attribute::StructRet; 772 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 773 return Attribute::SanitizeAddress; 774 case bitc::ATTR_KIND_SANITIZE_THREAD: 775 return Attribute::SanitizeThread; 776 case bitc::ATTR_KIND_SANITIZE_MEMORY: 777 return Attribute::SanitizeMemory; 778 case bitc::ATTR_KIND_UW_TABLE: 779 return Attribute::UWTable; 780 case bitc::ATTR_KIND_Z_EXT: 781 return Attribute::ZExt; 782 } 783 } 784 785 std::error_code BitcodeReader::ParseAttrKind(uint64_t Code, 786 Attribute::AttrKind *Kind) { 787 *Kind = GetAttrFromCode(Code); 788 if (*Kind == Attribute::None) 789 return Error(BitcodeError::CorruptedBitcode, 790 "Unknown attribute kind (" + Twine(Code) + ")"); 791 return std::error_code(); 792 } 793 794 std::error_code BitcodeReader::ParseAttributeGroupBlock() { 795 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 796 return Error("Invalid record"); 797 798 if (!MAttributeGroups.empty()) 799 return Error("Invalid multiple blocks"); 800 801 SmallVector<uint64_t, 64> Record; 802 803 // Read all the records. 804 while (1) { 805 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 806 807 switch (Entry.Kind) { 808 case BitstreamEntry::SubBlock: // Handled for us already. 809 case BitstreamEntry::Error: 810 return Error("Malformed block"); 811 case BitstreamEntry::EndBlock: 812 return std::error_code(); 813 case BitstreamEntry::Record: 814 // The interesting case. 815 break; 816 } 817 818 // Read a record. 819 Record.clear(); 820 switch (Stream.readRecord(Entry.ID, Record)) { 821 default: // Default behavior: ignore. 822 break; 823 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 824 if (Record.size() < 3) 825 return Error("Invalid record"); 826 827 uint64_t GrpID = Record[0]; 828 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 829 830 AttrBuilder B; 831 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 832 if (Record[i] == 0) { // Enum attribute 833 Attribute::AttrKind Kind; 834 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 835 return EC; 836 837 B.addAttribute(Kind); 838 } else if (Record[i] == 1) { // Integer attribute 839 Attribute::AttrKind Kind; 840 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 841 return EC; 842 if (Kind == Attribute::Alignment) 843 B.addAlignmentAttr(Record[++i]); 844 else if (Kind == Attribute::StackAlignment) 845 B.addStackAlignmentAttr(Record[++i]); 846 else if (Kind == Attribute::Dereferenceable) 847 B.addDereferenceableAttr(Record[++i]); 848 } else { // String attribute 849 assert((Record[i] == 3 || Record[i] == 4) && 850 "Invalid attribute group entry"); 851 bool HasValue = (Record[i++] == 4); 852 SmallString<64> KindStr; 853 SmallString<64> ValStr; 854 855 while (Record[i] != 0 && i != e) 856 KindStr += Record[i++]; 857 assert(Record[i] == 0 && "Kind string not null terminated"); 858 859 if (HasValue) { 860 // Has a value associated with it. 861 ++i; // Skip the '0' that terminates the "kind" string. 862 while (Record[i] != 0 && i != e) 863 ValStr += Record[i++]; 864 assert(Record[i] == 0 && "Value string not null terminated"); 865 } 866 867 B.addAttribute(KindStr.str(), ValStr.str()); 868 } 869 } 870 871 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 872 break; 873 } 874 } 875 } 876 } 877 878 std::error_code BitcodeReader::ParseTypeTable() { 879 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 880 return Error("Invalid record"); 881 882 return ParseTypeTableBody(); 883 } 884 885 std::error_code BitcodeReader::ParseTypeTableBody() { 886 if (!TypeList.empty()) 887 return Error("Invalid multiple blocks"); 888 889 SmallVector<uint64_t, 64> Record; 890 unsigned NumRecords = 0; 891 892 SmallString<64> TypeName; 893 894 // Read all the records for this type table. 895 while (1) { 896 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 897 898 switch (Entry.Kind) { 899 case BitstreamEntry::SubBlock: // Handled for us already. 900 case BitstreamEntry::Error: 901 return Error("Malformed block"); 902 case BitstreamEntry::EndBlock: 903 if (NumRecords != TypeList.size()) 904 return Error("Malformed block"); 905 return std::error_code(); 906 case BitstreamEntry::Record: 907 // The interesting case. 908 break; 909 } 910 911 // Read a record. 912 Record.clear(); 913 Type *ResultTy = nullptr; 914 switch (Stream.readRecord(Entry.ID, Record)) { 915 default: 916 return Error("Invalid value"); 917 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 918 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 919 // type list. This allows us to reserve space. 920 if (Record.size() < 1) 921 return Error("Invalid record"); 922 TypeList.resize(Record[0]); 923 continue; 924 case bitc::TYPE_CODE_VOID: // VOID 925 ResultTy = Type::getVoidTy(Context); 926 break; 927 case bitc::TYPE_CODE_HALF: // HALF 928 ResultTy = Type::getHalfTy(Context); 929 break; 930 case bitc::TYPE_CODE_FLOAT: // FLOAT 931 ResultTy = Type::getFloatTy(Context); 932 break; 933 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 934 ResultTy = Type::getDoubleTy(Context); 935 break; 936 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 937 ResultTy = Type::getX86_FP80Ty(Context); 938 break; 939 case bitc::TYPE_CODE_FP128: // FP128 940 ResultTy = Type::getFP128Ty(Context); 941 break; 942 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 943 ResultTy = Type::getPPC_FP128Ty(Context); 944 break; 945 case bitc::TYPE_CODE_LABEL: // LABEL 946 ResultTy = Type::getLabelTy(Context); 947 break; 948 case bitc::TYPE_CODE_METADATA: // METADATA 949 ResultTy = Type::getMetadataTy(Context); 950 break; 951 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 952 ResultTy = Type::getX86_MMXTy(Context); 953 break; 954 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 955 if (Record.size() < 1) 956 return Error("Invalid record"); 957 958 uint64_t NumBits = Record[0]; 959 if (NumBits < IntegerType::MIN_INT_BITS || 960 NumBits > IntegerType::MAX_INT_BITS) 961 return Error("Bitwidth for integer type out of range"); 962 ResultTy = IntegerType::get(Context, NumBits); 963 break; 964 } 965 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 966 // [pointee type, address space] 967 if (Record.size() < 1) 968 return Error("Invalid record"); 969 unsigned AddressSpace = 0; 970 if (Record.size() == 2) 971 AddressSpace = Record[1]; 972 ResultTy = getTypeByID(Record[0]); 973 if (!ResultTy) 974 return Error("Invalid type"); 975 ResultTy = PointerType::get(ResultTy, AddressSpace); 976 break; 977 } 978 case bitc::TYPE_CODE_FUNCTION_OLD: { 979 // FIXME: attrid is dead, remove it in LLVM 4.0 980 // FUNCTION: [vararg, attrid, retty, paramty x N] 981 if (Record.size() < 3) 982 return Error("Invalid record"); 983 SmallVector<Type*, 8> ArgTys; 984 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 985 if (Type *T = getTypeByID(Record[i])) 986 ArgTys.push_back(T); 987 else 988 break; 989 } 990 991 ResultTy = getTypeByID(Record[2]); 992 if (!ResultTy || ArgTys.size() < Record.size()-3) 993 return Error("Invalid type"); 994 995 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 996 break; 997 } 998 case bitc::TYPE_CODE_FUNCTION: { 999 // FUNCTION: [vararg, retty, paramty x N] 1000 if (Record.size() < 2) 1001 return Error("Invalid record"); 1002 SmallVector<Type*, 8> ArgTys; 1003 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1004 if (Type *T = getTypeByID(Record[i])) 1005 ArgTys.push_back(T); 1006 else 1007 break; 1008 } 1009 1010 ResultTy = getTypeByID(Record[1]); 1011 if (!ResultTy || ArgTys.size() < Record.size()-2) 1012 return Error("Invalid type"); 1013 1014 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1015 break; 1016 } 1017 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1018 if (Record.size() < 1) 1019 return Error("Invalid record"); 1020 SmallVector<Type*, 8> EltTys; 1021 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1022 if (Type *T = getTypeByID(Record[i])) 1023 EltTys.push_back(T); 1024 else 1025 break; 1026 } 1027 if (EltTys.size() != Record.size()-1) 1028 return Error("Invalid type"); 1029 ResultTy = StructType::get(Context, EltTys, Record[0]); 1030 break; 1031 } 1032 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1033 if (ConvertToString(Record, 0, TypeName)) 1034 return Error("Invalid record"); 1035 continue; 1036 1037 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1038 if (Record.size() < 1) 1039 return Error("Invalid record"); 1040 1041 if (NumRecords >= TypeList.size()) 1042 return Error("Invalid TYPE table"); 1043 1044 // Check to see if this was forward referenced, if so fill in the temp. 1045 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1046 if (Res) { 1047 Res->setName(TypeName); 1048 TypeList[NumRecords] = nullptr; 1049 } else // Otherwise, create a new struct. 1050 Res = createIdentifiedStructType(Context, TypeName); 1051 TypeName.clear(); 1052 1053 SmallVector<Type*, 8> EltTys; 1054 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1055 if (Type *T = getTypeByID(Record[i])) 1056 EltTys.push_back(T); 1057 else 1058 break; 1059 } 1060 if (EltTys.size() != Record.size()-1) 1061 return Error("Invalid record"); 1062 Res->setBody(EltTys, Record[0]); 1063 ResultTy = Res; 1064 break; 1065 } 1066 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1067 if (Record.size() != 1) 1068 return Error("Invalid record"); 1069 1070 if (NumRecords >= TypeList.size()) 1071 return Error("Invalid TYPE table"); 1072 1073 // Check to see if this was forward referenced, if so fill in the temp. 1074 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1075 if (Res) { 1076 Res->setName(TypeName); 1077 TypeList[NumRecords] = nullptr; 1078 } else // Otherwise, create a new struct with no body. 1079 Res = createIdentifiedStructType(Context, TypeName); 1080 TypeName.clear(); 1081 ResultTy = Res; 1082 break; 1083 } 1084 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1085 if (Record.size() < 2) 1086 return Error("Invalid record"); 1087 if ((ResultTy = getTypeByID(Record[1]))) 1088 ResultTy = ArrayType::get(ResultTy, Record[0]); 1089 else 1090 return Error("Invalid type"); 1091 break; 1092 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1093 if (Record.size() < 2) 1094 return Error("Invalid record"); 1095 if ((ResultTy = getTypeByID(Record[1]))) 1096 ResultTy = VectorType::get(ResultTy, Record[0]); 1097 else 1098 return Error("Invalid type"); 1099 break; 1100 } 1101 1102 if (NumRecords >= TypeList.size()) 1103 return Error("Invalid TYPE table"); 1104 if (TypeList[NumRecords]) 1105 return Error( 1106 "Invalid TYPE table: Only named structs can be forward referenced"); 1107 assert(ResultTy && "Didn't read a type?"); 1108 TypeList[NumRecords++] = ResultTy; 1109 } 1110 } 1111 1112 std::error_code BitcodeReader::ParseValueSymbolTable() { 1113 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1114 return Error("Invalid record"); 1115 1116 SmallVector<uint64_t, 64> Record; 1117 1118 Triple TT(TheModule->getTargetTriple()); 1119 1120 // Read all the records for this value table. 1121 SmallString<128> ValueName; 1122 while (1) { 1123 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1124 1125 switch (Entry.Kind) { 1126 case BitstreamEntry::SubBlock: // Handled for us already. 1127 case BitstreamEntry::Error: 1128 return Error("Malformed block"); 1129 case BitstreamEntry::EndBlock: 1130 return std::error_code(); 1131 case BitstreamEntry::Record: 1132 // The interesting case. 1133 break; 1134 } 1135 1136 // Read a record. 1137 Record.clear(); 1138 switch (Stream.readRecord(Entry.ID, Record)) { 1139 default: // Default behavior: unknown type. 1140 break; 1141 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1142 if (ConvertToString(Record, 1, ValueName)) 1143 return Error("Invalid record"); 1144 unsigned ValueID = Record[0]; 1145 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1146 return Error("Invalid record"); 1147 Value *V = ValueList[ValueID]; 1148 1149 V->setName(StringRef(ValueName.data(), ValueName.size())); 1150 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1151 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1152 if (TT.isOSBinFormatMachO()) 1153 GO->setComdat(nullptr); 1154 else 1155 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1156 } 1157 } 1158 ValueName.clear(); 1159 break; 1160 } 1161 case bitc::VST_CODE_BBENTRY: { 1162 if (ConvertToString(Record, 1, ValueName)) 1163 return Error("Invalid record"); 1164 BasicBlock *BB = getBasicBlock(Record[0]); 1165 if (!BB) 1166 return Error("Invalid record"); 1167 1168 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1169 ValueName.clear(); 1170 break; 1171 } 1172 } 1173 } 1174 } 1175 1176 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1177 1178 std::error_code BitcodeReader::ParseMetadata() { 1179 unsigned NextMDValueNo = MDValueList.size(); 1180 1181 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1182 return Error("Invalid record"); 1183 1184 SmallVector<uint64_t, 64> Record; 1185 1186 auto getMDString = [&](unsigned ID) -> MDString *{ 1187 // This requires that the ID is not really a forward reference. In 1188 // particular, the MDString must already have been resolved. 1189 if (ID) 1190 return cast<MDString>(MDValueList.getValueFwdRef(ID - 1)); 1191 return nullptr; 1192 }; 1193 1194 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1195 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1196 1197 // Read all the records. 1198 while (1) { 1199 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1200 1201 switch (Entry.Kind) { 1202 case BitstreamEntry::SubBlock: // Handled for us already. 1203 case BitstreamEntry::Error: 1204 return Error("Malformed block"); 1205 case BitstreamEntry::EndBlock: 1206 MDValueList.tryToResolveCycles(); 1207 return std::error_code(); 1208 case BitstreamEntry::Record: 1209 // The interesting case. 1210 break; 1211 } 1212 1213 // Read a record. 1214 Record.clear(); 1215 unsigned Code = Stream.readRecord(Entry.ID, Record); 1216 bool IsDistinct = false; 1217 switch (Code) { 1218 default: // Default behavior: ignore. 1219 break; 1220 case bitc::METADATA_NAME: { 1221 // Read name of the named metadata. 1222 SmallString<8> Name(Record.begin(), Record.end()); 1223 Record.clear(); 1224 Code = Stream.ReadCode(); 1225 1226 // METADATA_NAME is always followed by METADATA_NAMED_NODE. 1227 unsigned NextBitCode = Stream.readRecord(Code, Record); 1228 assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode; 1229 1230 // Read named metadata elements. 1231 unsigned Size = Record.size(); 1232 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1233 for (unsigned i = 0; i != Size; ++i) { 1234 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1235 if (!MD) 1236 return Error("Invalid record"); 1237 NMD->addOperand(MD); 1238 } 1239 break; 1240 } 1241 case bitc::METADATA_OLD_FN_NODE: { 1242 // FIXME: Remove in 4.0. 1243 // This is a LocalAsMetadata record, the only type of function-local 1244 // metadata. 1245 if (Record.size() % 2 == 1) 1246 return Error("Invalid record"); 1247 1248 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1249 // to be legal, but there's no upgrade path. 1250 auto dropRecord = [&] { 1251 MDValueList.AssignValue(MDNode::get(Context, None), NextMDValueNo++); 1252 }; 1253 if (Record.size() != 2) { 1254 dropRecord(); 1255 break; 1256 } 1257 1258 Type *Ty = getTypeByID(Record[0]); 1259 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1260 dropRecord(); 1261 break; 1262 } 1263 1264 MDValueList.AssignValue( 1265 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1266 NextMDValueNo++); 1267 break; 1268 } 1269 case bitc::METADATA_OLD_NODE: { 1270 // FIXME: Remove in 4.0. 1271 if (Record.size() % 2 == 1) 1272 return Error("Invalid record"); 1273 1274 unsigned Size = Record.size(); 1275 SmallVector<Metadata *, 8> Elts; 1276 for (unsigned i = 0; i != Size; i += 2) { 1277 Type *Ty = getTypeByID(Record[i]); 1278 if (!Ty) 1279 return Error("Invalid record"); 1280 if (Ty->isMetadataTy()) 1281 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1282 else if (!Ty->isVoidTy()) { 1283 auto *MD = 1284 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 1285 assert(isa<ConstantAsMetadata>(MD) && 1286 "Expected non-function-local metadata"); 1287 Elts.push_back(MD); 1288 } else 1289 Elts.push_back(nullptr); 1290 } 1291 MDValueList.AssignValue(MDNode::get(Context, Elts), NextMDValueNo++); 1292 break; 1293 } 1294 case bitc::METADATA_VALUE: { 1295 if (Record.size() != 2) 1296 return Error("Invalid record"); 1297 1298 Type *Ty = getTypeByID(Record[0]); 1299 if (Ty->isMetadataTy() || Ty->isVoidTy()) 1300 return Error("Invalid record"); 1301 1302 MDValueList.AssignValue( 1303 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1304 NextMDValueNo++); 1305 break; 1306 } 1307 case bitc::METADATA_DISTINCT_NODE: 1308 IsDistinct = true; 1309 // fallthrough... 1310 case bitc::METADATA_NODE: { 1311 SmallVector<Metadata *, 8> Elts; 1312 Elts.reserve(Record.size()); 1313 for (unsigned ID : Record) 1314 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); 1315 MDValueList.AssignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 1316 : MDNode::get(Context, Elts), 1317 NextMDValueNo++); 1318 break; 1319 } 1320 case bitc::METADATA_LOCATION: { 1321 if (Record.size() != 5) 1322 return Error("Invalid record"); 1323 1324 auto get = Record[0] ? MDLocation::getDistinct : MDLocation::get; 1325 unsigned Line = Record[1]; 1326 unsigned Column = Record[2]; 1327 MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3])); 1328 Metadata *InlinedAt = 1329 Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr; 1330 MDValueList.AssignValue(get(Context, Line, Column, Scope, InlinedAt), 1331 NextMDValueNo++); 1332 break; 1333 } 1334 case bitc::METADATA_GENERIC_DEBUG: { 1335 if (Record.size() < 4) 1336 return Error("Invalid record"); 1337 1338 unsigned Tag = Record[1]; 1339 unsigned Version = Record[2]; 1340 1341 if (Tag >= 1u << 16 || Version != 0) 1342 return Error("Invalid record"); 1343 1344 auto *Header = getMDString(Record[3]); 1345 SmallVector<Metadata *, 8> DwarfOps; 1346 for (unsigned I = 4, E = Record.size(); I != E; ++I) 1347 DwarfOps.push_back(Record[I] ? MDValueList.getValueFwdRef(Record[I] - 1) 1348 : nullptr); 1349 MDValueList.AssignValue(GET_OR_DISTINCT(GenericDebugNode, Record[0], 1350 (Context, Tag, Header, DwarfOps)), 1351 NextMDValueNo++); 1352 break; 1353 } 1354 case bitc::METADATA_SUBRANGE: { 1355 if (Record.size() != 3) 1356 return Error("Invalid record"); 1357 1358 MDValueList.AssignValue( 1359 GET_OR_DISTINCT(MDSubrange, Record[0], 1360 (Context, Record[1], unrotateSign(Record[2]))), 1361 NextMDValueNo++); 1362 break; 1363 } 1364 case bitc::METADATA_ENUMERATOR: { 1365 if (Record.size() != 3) 1366 return Error("Invalid record"); 1367 1368 MDValueList.AssignValue(GET_OR_DISTINCT(MDEnumerator, Record[0], 1369 (Context, unrotateSign(Record[1]), 1370 getMDString(Record[2]))), 1371 NextMDValueNo++); 1372 break; 1373 } 1374 case bitc::METADATA_BASIC_TYPE: { 1375 if (Record.size() != 6) 1376 return Error("Invalid record"); 1377 1378 MDValueList.AssignValue( 1379 GET_OR_DISTINCT(MDBasicType, Record[0], 1380 (Context, Record[1], getMDString(Record[2]), 1381 Record[3], Record[4], Record[5])), 1382 NextMDValueNo++); 1383 break; 1384 } 1385 case bitc::METADATA_STRING: { 1386 std::string String(Record.begin(), Record.end()); 1387 llvm::UpgradeMDStringConstant(String); 1388 Metadata *MD = MDString::get(Context, String); 1389 MDValueList.AssignValue(MD, NextMDValueNo++); 1390 break; 1391 } 1392 case bitc::METADATA_KIND: { 1393 if (Record.size() < 2) 1394 return Error("Invalid record"); 1395 1396 unsigned Kind = Record[0]; 1397 SmallString<8> Name(Record.begin()+1, Record.end()); 1398 1399 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1400 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1401 return Error("Conflicting METADATA_KIND records"); 1402 break; 1403 } 1404 } 1405 } 1406 #undef GET_OR_DISTINCT 1407 } 1408 1409 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in 1410 /// the LSB for dense VBR encoding. 1411 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 1412 if ((V & 1) == 0) 1413 return V >> 1; 1414 if (V != 1) 1415 return -(V >> 1); 1416 // There is no such thing as -0 with integers. "-0" really means MININT. 1417 return 1ULL << 63; 1418 } 1419 1420 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 1421 /// values and aliases that we can. 1422 std::error_code BitcodeReader::ResolveGlobalAndAliasInits() { 1423 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 1424 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 1425 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 1426 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 1427 1428 GlobalInitWorklist.swap(GlobalInits); 1429 AliasInitWorklist.swap(AliasInits); 1430 FunctionPrefixWorklist.swap(FunctionPrefixes); 1431 FunctionPrologueWorklist.swap(FunctionPrologues); 1432 1433 while (!GlobalInitWorklist.empty()) { 1434 unsigned ValID = GlobalInitWorklist.back().second; 1435 if (ValID >= ValueList.size()) { 1436 // Not ready to resolve this yet, it requires something later in the file. 1437 GlobalInits.push_back(GlobalInitWorklist.back()); 1438 } else { 1439 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1440 GlobalInitWorklist.back().first->setInitializer(C); 1441 else 1442 return Error("Expected a constant"); 1443 } 1444 GlobalInitWorklist.pop_back(); 1445 } 1446 1447 while (!AliasInitWorklist.empty()) { 1448 unsigned ValID = AliasInitWorklist.back().second; 1449 if (ValID >= ValueList.size()) { 1450 AliasInits.push_back(AliasInitWorklist.back()); 1451 } else { 1452 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1453 AliasInitWorklist.back().first->setAliasee(C); 1454 else 1455 return Error("Expected a constant"); 1456 } 1457 AliasInitWorklist.pop_back(); 1458 } 1459 1460 while (!FunctionPrefixWorklist.empty()) { 1461 unsigned ValID = FunctionPrefixWorklist.back().second; 1462 if (ValID >= ValueList.size()) { 1463 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 1464 } else { 1465 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1466 FunctionPrefixWorklist.back().first->setPrefixData(C); 1467 else 1468 return Error("Expected a constant"); 1469 } 1470 FunctionPrefixWorklist.pop_back(); 1471 } 1472 1473 while (!FunctionPrologueWorklist.empty()) { 1474 unsigned ValID = FunctionPrologueWorklist.back().second; 1475 if (ValID >= ValueList.size()) { 1476 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 1477 } else { 1478 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1479 FunctionPrologueWorklist.back().first->setPrologueData(C); 1480 else 1481 return Error("Expected a constant"); 1482 } 1483 FunctionPrologueWorklist.pop_back(); 1484 } 1485 1486 return std::error_code(); 1487 } 1488 1489 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 1490 SmallVector<uint64_t, 8> Words(Vals.size()); 1491 std::transform(Vals.begin(), Vals.end(), Words.begin(), 1492 BitcodeReader::decodeSignRotatedValue); 1493 1494 return APInt(TypeBits, Words); 1495 } 1496 1497 std::error_code BitcodeReader::ParseConstants() { 1498 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 1499 return Error("Invalid record"); 1500 1501 SmallVector<uint64_t, 64> Record; 1502 1503 // Read all the records for this value table. 1504 Type *CurTy = Type::getInt32Ty(Context); 1505 unsigned NextCstNo = ValueList.size(); 1506 while (1) { 1507 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1508 1509 switch (Entry.Kind) { 1510 case BitstreamEntry::SubBlock: // Handled for us already. 1511 case BitstreamEntry::Error: 1512 return Error("Malformed block"); 1513 case BitstreamEntry::EndBlock: 1514 if (NextCstNo != ValueList.size()) 1515 return Error("Invalid ronstant reference"); 1516 1517 // Once all the constants have been read, go through and resolve forward 1518 // references. 1519 ValueList.ResolveConstantForwardRefs(); 1520 return std::error_code(); 1521 case BitstreamEntry::Record: 1522 // The interesting case. 1523 break; 1524 } 1525 1526 // Read a record. 1527 Record.clear(); 1528 Value *V = nullptr; 1529 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 1530 switch (BitCode) { 1531 default: // Default behavior: unknown constant 1532 case bitc::CST_CODE_UNDEF: // UNDEF 1533 V = UndefValue::get(CurTy); 1534 break; 1535 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 1536 if (Record.empty()) 1537 return Error("Invalid record"); 1538 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 1539 return Error("Invalid record"); 1540 CurTy = TypeList[Record[0]]; 1541 continue; // Skip the ValueList manipulation. 1542 case bitc::CST_CODE_NULL: // NULL 1543 V = Constant::getNullValue(CurTy); 1544 break; 1545 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 1546 if (!CurTy->isIntegerTy() || Record.empty()) 1547 return Error("Invalid record"); 1548 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 1549 break; 1550 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 1551 if (!CurTy->isIntegerTy() || Record.empty()) 1552 return Error("Invalid record"); 1553 1554 APInt VInt = ReadWideAPInt(Record, 1555 cast<IntegerType>(CurTy)->getBitWidth()); 1556 V = ConstantInt::get(Context, VInt); 1557 1558 break; 1559 } 1560 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 1561 if (Record.empty()) 1562 return Error("Invalid record"); 1563 if (CurTy->isHalfTy()) 1564 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 1565 APInt(16, (uint16_t)Record[0]))); 1566 else if (CurTy->isFloatTy()) 1567 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 1568 APInt(32, (uint32_t)Record[0]))); 1569 else if (CurTy->isDoubleTy()) 1570 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 1571 APInt(64, Record[0]))); 1572 else if (CurTy->isX86_FP80Ty()) { 1573 // Bits are not stored the same way as a normal i80 APInt, compensate. 1574 uint64_t Rearrange[2]; 1575 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 1576 Rearrange[1] = Record[0] >> 48; 1577 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 1578 APInt(80, Rearrange))); 1579 } else if (CurTy->isFP128Ty()) 1580 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 1581 APInt(128, Record))); 1582 else if (CurTy->isPPC_FP128Ty()) 1583 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 1584 APInt(128, Record))); 1585 else 1586 V = UndefValue::get(CurTy); 1587 break; 1588 } 1589 1590 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 1591 if (Record.empty()) 1592 return Error("Invalid record"); 1593 1594 unsigned Size = Record.size(); 1595 SmallVector<Constant*, 16> Elts; 1596 1597 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 1598 for (unsigned i = 0; i != Size; ++i) 1599 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 1600 STy->getElementType(i))); 1601 V = ConstantStruct::get(STy, Elts); 1602 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 1603 Type *EltTy = ATy->getElementType(); 1604 for (unsigned i = 0; i != Size; ++i) 1605 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1606 V = ConstantArray::get(ATy, Elts); 1607 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 1608 Type *EltTy = VTy->getElementType(); 1609 for (unsigned i = 0; i != Size; ++i) 1610 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1611 V = ConstantVector::get(Elts); 1612 } else { 1613 V = UndefValue::get(CurTy); 1614 } 1615 break; 1616 } 1617 case bitc::CST_CODE_STRING: // STRING: [values] 1618 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 1619 if (Record.empty()) 1620 return Error("Invalid record"); 1621 1622 SmallString<16> Elts(Record.begin(), Record.end()); 1623 V = ConstantDataArray::getString(Context, Elts, 1624 BitCode == bitc::CST_CODE_CSTRING); 1625 break; 1626 } 1627 case bitc::CST_CODE_DATA: {// DATA: [n x value] 1628 if (Record.empty()) 1629 return Error("Invalid record"); 1630 1631 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 1632 unsigned Size = Record.size(); 1633 1634 if (EltTy->isIntegerTy(8)) { 1635 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 1636 if (isa<VectorType>(CurTy)) 1637 V = ConstantDataVector::get(Context, Elts); 1638 else 1639 V = ConstantDataArray::get(Context, Elts); 1640 } else if (EltTy->isIntegerTy(16)) { 1641 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 1642 if (isa<VectorType>(CurTy)) 1643 V = ConstantDataVector::get(Context, Elts); 1644 else 1645 V = ConstantDataArray::get(Context, Elts); 1646 } else if (EltTy->isIntegerTy(32)) { 1647 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 1648 if (isa<VectorType>(CurTy)) 1649 V = ConstantDataVector::get(Context, Elts); 1650 else 1651 V = ConstantDataArray::get(Context, Elts); 1652 } else if (EltTy->isIntegerTy(64)) { 1653 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 1654 if (isa<VectorType>(CurTy)) 1655 V = ConstantDataVector::get(Context, Elts); 1656 else 1657 V = ConstantDataArray::get(Context, Elts); 1658 } else if (EltTy->isFloatTy()) { 1659 SmallVector<float, 16> Elts(Size); 1660 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 1661 if (isa<VectorType>(CurTy)) 1662 V = ConstantDataVector::get(Context, Elts); 1663 else 1664 V = ConstantDataArray::get(Context, Elts); 1665 } else if (EltTy->isDoubleTy()) { 1666 SmallVector<double, 16> Elts(Size); 1667 std::transform(Record.begin(), Record.end(), Elts.begin(), 1668 BitsToDouble); 1669 if (isa<VectorType>(CurTy)) 1670 V = ConstantDataVector::get(Context, Elts); 1671 else 1672 V = ConstantDataArray::get(Context, Elts); 1673 } else { 1674 return Error("Invalid type for value"); 1675 } 1676 break; 1677 } 1678 1679 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 1680 if (Record.size() < 3) 1681 return Error("Invalid record"); 1682 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 1683 if (Opc < 0) { 1684 V = UndefValue::get(CurTy); // Unknown binop. 1685 } else { 1686 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 1687 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 1688 unsigned Flags = 0; 1689 if (Record.size() >= 4) { 1690 if (Opc == Instruction::Add || 1691 Opc == Instruction::Sub || 1692 Opc == Instruction::Mul || 1693 Opc == Instruction::Shl) { 1694 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1695 Flags |= OverflowingBinaryOperator::NoSignedWrap; 1696 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1697 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 1698 } else if (Opc == Instruction::SDiv || 1699 Opc == Instruction::UDiv || 1700 Opc == Instruction::LShr || 1701 Opc == Instruction::AShr) { 1702 if (Record[3] & (1 << bitc::PEO_EXACT)) 1703 Flags |= SDivOperator::IsExact; 1704 } 1705 } 1706 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 1707 } 1708 break; 1709 } 1710 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 1711 if (Record.size() < 3) 1712 return Error("Invalid record"); 1713 int Opc = GetDecodedCastOpcode(Record[0]); 1714 if (Opc < 0) { 1715 V = UndefValue::get(CurTy); // Unknown cast. 1716 } else { 1717 Type *OpTy = getTypeByID(Record[1]); 1718 if (!OpTy) 1719 return Error("Invalid record"); 1720 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 1721 V = UpgradeBitCastExpr(Opc, Op, CurTy); 1722 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 1723 } 1724 break; 1725 } 1726 case bitc::CST_CODE_CE_INBOUNDS_GEP: 1727 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 1728 if (Record.size() & 1) 1729 return Error("Invalid record"); 1730 SmallVector<Constant*, 16> Elts; 1731 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1732 Type *ElTy = getTypeByID(Record[i]); 1733 if (!ElTy) 1734 return Error("Invalid record"); 1735 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 1736 } 1737 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 1738 V = ConstantExpr::getGetElementPtr(Elts[0], Indices, 1739 BitCode == 1740 bitc::CST_CODE_CE_INBOUNDS_GEP); 1741 break; 1742 } 1743 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 1744 if (Record.size() < 3) 1745 return Error("Invalid record"); 1746 1747 Type *SelectorTy = Type::getInt1Ty(Context); 1748 1749 // If CurTy is a vector of length n, then Record[0] must be a <n x i1> 1750 // vector. Otherwise, it must be a single bit. 1751 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 1752 SelectorTy = VectorType::get(Type::getInt1Ty(Context), 1753 VTy->getNumElements()); 1754 1755 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 1756 SelectorTy), 1757 ValueList.getConstantFwdRef(Record[1],CurTy), 1758 ValueList.getConstantFwdRef(Record[2],CurTy)); 1759 break; 1760 } 1761 case bitc::CST_CODE_CE_EXTRACTELT 1762 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 1763 if (Record.size() < 3) 1764 return Error("Invalid record"); 1765 VectorType *OpTy = 1766 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1767 if (!OpTy) 1768 return Error("Invalid record"); 1769 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1770 Constant *Op1 = nullptr; 1771 if (Record.size() == 4) { 1772 Type *IdxTy = getTypeByID(Record[2]); 1773 if (!IdxTy) 1774 return Error("Invalid record"); 1775 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1776 } else // TODO: Remove with llvm 4.0 1777 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1778 if (!Op1) 1779 return Error("Invalid record"); 1780 V = ConstantExpr::getExtractElement(Op0, Op1); 1781 break; 1782 } 1783 case bitc::CST_CODE_CE_INSERTELT 1784 : { // CE_INSERTELT: [opval, opval, opty, opval] 1785 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1786 if (Record.size() < 3 || !OpTy) 1787 return Error("Invalid record"); 1788 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1789 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 1790 OpTy->getElementType()); 1791 Constant *Op2 = nullptr; 1792 if (Record.size() == 4) { 1793 Type *IdxTy = getTypeByID(Record[2]); 1794 if (!IdxTy) 1795 return Error("Invalid record"); 1796 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1797 } else // TODO: Remove with llvm 4.0 1798 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1799 if (!Op2) 1800 return Error("Invalid record"); 1801 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 1802 break; 1803 } 1804 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 1805 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1806 if (Record.size() < 3 || !OpTy) 1807 return Error("Invalid record"); 1808 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1809 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 1810 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1811 OpTy->getNumElements()); 1812 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 1813 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1814 break; 1815 } 1816 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 1817 VectorType *RTy = dyn_cast<VectorType>(CurTy); 1818 VectorType *OpTy = 1819 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1820 if (Record.size() < 4 || !RTy || !OpTy) 1821 return Error("Invalid record"); 1822 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1823 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1824 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1825 RTy->getNumElements()); 1826 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 1827 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1828 break; 1829 } 1830 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 1831 if (Record.size() < 4) 1832 return Error("Invalid record"); 1833 Type *OpTy = getTypeByID(Record[0]); 1834 if (!OpTy) 1835 return Error("Invalid record"); 1836 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1837 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1838 1839 if (OpTy->isFPOrFPVectorTy()) 1840 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 1841 else 1842 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 1843 break; 1844 } 1845 // This maintains backward compatibility, pre-asm dialect keywords. 1846 // FIXME: Remove with the 4.0 release. 1847 case bitc::CST_CODE_INLINEASM_OLD: { 1848 if (Record.size() < 2) 1849 return Error("Invalid record"); 1850 std::string AsmStr, ConstrStr; 1851 bool HasSideEffects = Record[0] & 1; 1852 bool IsAlignStack = Record[0] >> 1; 1853 unsigned AsmStrSize = Record[1]; 1854 if (2+AsmStrSize >= Record.size()) 1855 return Error("Invalid record"); 1856 unsigned ConstStrSize = Record[2+AsmStrSize]; 1857 if (3+AsmStrSize+ConstStrSize > Record.size()) 1858 return Error("Invalid record"); 1859 1860 for (unsigned i = 0; i != AsmStrSize; ++i) 1861 AsmStr += (char)Record[2+i]; 1862 for (unsigned i = 0; i != ConstStrSize; ++i) 1863 ConstrStr += (char)Record[3+AsmStrSize+i]; 1864 PointerType *PTy = cast<PointerType>(CurTy); 1865 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1866 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 1867 break; 1868 } 1869 // This version adds support for the asm dialect keywords (e.g., 1870 // inteldialect). 1871 case bitc::CST_CODE_INLINEASM: { 1872 if (Record.size() < 2) 1873 return Error("Invalid record"); 1874 std::string AsmStr, ConstrStr; 1875 bool HasSideEffects = Record[0] & 1; 1876 bool IsAlignStack = (Record[0] >> 1) & 1; 1877 unsigned AsmDialect = Record[0] >> 2; 1878 unsigned AsmStrSize = Record[1]; 1879 if (2+AsmStrSize >= Record.size()) 1880 return Error("Invalid record"); 1881 unsigned ConstStrSize = Record[2+AsmStrSize]; 1882 if (3+AsmStrSize+ConstStrSize > Record.size()) 1883 return Error("Invalid record"); 1884 1885 for (unsigned i = 0; i != AsmStrSize; ++i) 1886 AsmStr += (char)Record[2+i]; 1887 for (unsigned i = 0; i != ConstStrSize; ++i) 1888 ConstrStr += (char)Record[3+AsmStrSize+i]; 1889 PointerType *PTy = cast<PointerType>(CurTy); 1890 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1891 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 1892 InlineAsm::AsmDialect(AsmDialect)); 1893 break; 1894 } 1895 case bitc::CST_CODE_BLOCKADDRESS:{ 1896 if (Record.size() < 3) 1897 return Error("Invalid record"); 1898 Type *FnTy = getTypeByID(Record[0]); 1899 if (!FnTy) 1900 return Error("Invalid record"); 1901 Function *Fn = 1902 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 1903 if (!Fn) 1904 return Error("Invalid record"); 1905 1906 // Don't let Fn get dematerialized. 1907 BlockAddressesTaken.insert(Fn); 1908 1909 // If the function is already parsed we can insert the block address right 1910 // away. 1911 BasicBlock *BB; 1912 unsigned BBID = Record[2]; 1913 if (!BBID) 1914 // Invalid reference to entry block. 1915 return Error("Invalid ID"); 1916 if (!Fn->empty()) { 1917 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 1918 for (size_t I = 0, E = BBID; I != E; ++I) { 1919 if (BBI == BBE) 1920 return Error("Invalid ID"); 1921 ++BBI; 1922 } 1923 BB = BBI; 1924 } else { 1925 // Otherwise insert a placeholder and remember it so it can be inserted 1926 // when the function is parsed. 1927 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 1928 if (FwdBBs.empty()) 1929 BasicBlockFwdRefQueue.push_back(Fn); 1930 if (FwdBBs.size() < BBID + 1) 1931 FwdBBs.resize(BBID + 1); 1932 if (!FwdBBs[BBID]) 1933 FwdBBs[BBID] = BasicBlock::Create(Context); 1934 BB = FwdBBs[BBID]; 1935 } 1936 V = BlockAddress::get(Fn, BB); 1937 break; 1938 } 1939 } 1940 1941 ValueList.AssignValue(V, NextCstNo); 1942 ++NextCstNo; 1943 } 1944 } 1945 1946 std::error_code BitcodeReader::ParseUseLists() { 1947 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 1948 return Error("Invalid record"); 1949 1950 // Read all the records. 1951 SmallVector<uint64_t, 64> Record; 1952 while (1) { 1953 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1954 1955 switch (Entry.Kind) { 1956 case BitstreamEntry::SubBlock: // Handled for us already. 1957 case BitstreamEntry::Error: 1958 return Error("Malformed block"); 1959 case BitstreamEntry::EndBlock: 1960 return std::error_code(); 1961 case BitstreamEntry::Record: 1962 // The interesting case. 1963 break; 1964 } 1965 1966 // Read a use list record. 1967 Record.clear(); 1968 bool IsBB = false; 1969 switch (Stream.readRecord(Entry.ID, Record)) { 1970 default: // Default behavior: unknown type. 1971 break; 1972 case bitc::USELIST_CODE_BB: 1973 IsBB = true; 1974 // fallthrough 1975 case bitc::USELIST_CODE_DEFAULT: { 1976 unsigned RecordLength = Record.size(); 1977 if (RecordLength < 3) 1978 // Records should have at least an ID and two indexes. 1979 return Error("Invalid record"); 1980 unsigned ID = Record.back(); 1981 Record.pop_back(); 1982 1983 Value *V; 1984 if (IsBB) { 1985 assert(ID < FunctionBBs.size() && "Basic block not found"); 1986 V = FunctionBBs[ID]; 1987 } else 1988 V = ValueList[ID]; 1989 unsigned NumUses = 0; 1990 SmallDenseMap<const Use *, unsigned, 16> Order; 1991 for (const Use &U : V->uses()) { 1992 if (++NumUses > Record.size()) 1993 break; 1994 Order[&U] = Record[NumUses - 1]; 1995 } 1996 if (Order.size() != Record.size() || NumUses > Record.size()) 1997 // Mismatches can happen if the functions are being materialized lazily 1998 // (out-of-order), or a value has been upgraded. 1999 break; 2000 2001 V->sortUseList([&](const Use &L, const Use &R) { 2002 return Order.lookup(&L) < Order.lookup(&R); 2003 }); 2004 break; 2005 } 2006 } 2007 } 2008 } 2009 2010 /// RememberAndSkipFunctionBody - When we see the block for a function body, 2011 /// remember where it is and then skip it. This lets us lazily deserialize the 2012 /// functions. 2013 std::error_code BitcodeReader::RememberAndSkipFunctionBody() { 2014 // Get the function we are talking about. 2015 if (FunctionsWithBodies.empty()) 2016 return Error("Insufficient function protos"); 2017 2018 Function *Fn = FunctionsWithBodies.back(); 2019 FunctionsWithBodies.pop_back(); 2020 2021 // Save the current stream state. 2022 uint64_t CurBit = Stream.GetCurrentBitNo(); 2023 DeferredFunctionInfo[Fn] = CurBit; 2024 2025 // Skip over the function block for now. 2026 if (Stream.SkipBlock()) 2027 return Error("Invalid record"); 2028 return std::error_code(); 2029 } 2030 2031 std::error_code BitcodeReader::GlobalCleanup() { 2032 // Patch the initializers for globals and aliases up. 2033 ResolveGlobalAndAliasInits(); 2034 if (!GlobalInits.empty() || !AliasInits.empty()) 2035 return Error("Malformed global initializer set"); 2036 2037 // Look for intrinsic functions which need to be upgraded at some point 2038 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 2039 FI != FE; ++FI) { 2040 Function *NewFn; 2041 if (UpgradeIntrinsicFunction(FI, NewFn)) 2042 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 2043 } 2044 2045 // Look for global variables which need to be renamed. 2046 for (Module::global_iterator 2047 GI = TheModule->global_begin(), GE = TheModule->global_end(); 2048 GI != GE;) { 2049 GlobalVariable *GV = GI++; 2050 UpgradeGlobalVariable(GV); 2051 } 2052 2053 // Force deallocation of memory for these vectors to favor the client that 2054 // want lazy deserialization. 2055 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 2056 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 2057 return std::error_code(); 2058 } 2059 2060 std::error_code BitcodeReader::ParseModule(bool Resume) { 2061 if (Resume) 2062 Stream.JumpToBit(NextUnreadBit); 2063 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2064 return Error("Invalid record"); 2065 2066 SmallVector<uint64_t, 64> Record; 2067 std::vector<std::string> SectionTable; 2068 std::vector<std::string> GCTable; 2069 2070 // Read all the records for this module. 2071 while (1) { 2072 BitstreamEntry Entry = Stream.advance(); 2073 2074 switch (Entry.Kind) { 2075 case BitstreamEntry::Error: 2076 return Error("Malformed block"); 2077 case BitstreamEntry::EndBlock: 2078 return GlobalCleanup(); 2079 2080 case BitstreamEntry::SubBlock: 2081 switch (Entry.ID) { 2082 default: // Skip unknown content. 2083 if (Stream.SkipBlock()) 2084 return Error("Invalid record"); 2085 break; 2086 case bitc::BLOCKINFO_BLOCK_ID: 2087 if (Stream.ReadBlockInfoBlock()) 2088 return Error("Malformed block"); 2089 break; 2090 case bitc::PARAMATTR_BLOCK_ID: 2091 if (std::error_code EC = ParseAttributeBlock()) 2092 return EC; 2093 break; 2094 case bitc::PARAMATTR_GROUP_BLOCK_ID: 2095 if (std::error_code EC = ParseAttributeGroupBlock()) 2096 return EC; 2097 break; 2098 case bitc::TYPE_BLOCK_ID_NEW: 2099 if (std::error_code EC = ParseTypeTable()) 2100 return EC; 2101 break; 2102 case bitc::VALUE_SYMTAB_BLOCK_ID: 2103 if (std::error_code EC = ParseValueSymbolTable()) 2104 return EC; 2105 SeenValueSymbolTable = true; 2106 break; 2107 case bitc::CONSTANTS_BLOCK_ID: 2108 if (std::error_code EC = ParseConstants()) 2109 return EC; 2110 if (std::error_code EC = ResolveGlobalAndAliasInits()) 2111 return EC; 2112 break; 2113 case bitc::METADATA_BLOCK_ID: 2114 if (std::error_code EC = ParseMetadata()) 2115 return EC; 2116 break; 2117 case bitc::FUNCTION_BLOCK_ID: 2118 // If this is the first function body we've seen, reverse the 2119 // FunctionsWithBodies list. 2120 if (!SeenFirstFunctionBody) { 2121 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 2122 if (std::error_code EC = GlobalCleanup()) 2123 return EC; 2124 SeenFirstFunctionBody = true; 2125 } 2126 2127 if (std::error_code EC = RememberAndSkipFunctionBody()) 2128 return EC; 2129 // For streaming bitcode, suspend parsing when we reach the function 2130 // bodies. Subsequent materialization calls will resume it when 2131 // necessary. For streaming, the function bodies must be at the end of 2132 // the bitcode. If the bitcode file is old, the symbol table will be 2133 // at the end instead and will not have been seen yet. In this case, 2134 // just finish the parse now. 2135 if (LazyStreamer && SeenValueSymbolTable) { 2136 NextUnreadBit = Stream.GetCurrentBitNo(); 2137 return std::error_code(); 2138 } 2139 break; 2140 case bitc::USELIST_BLOCK_ID: 2141 if (std::error_code EC = ParseUseLists()) 2142 return EC; 2143 break; 2144 } 2145 continue; 2146 2147 case BitstreamEntry::Record: 2148 // The interesting case. 2149 break; 2150 } 2151 2152 2153 // Read a record. 2154 switch (Stream.readRecord(Entry.ID, Record)) { 2155 default: break; // Default behavior, ignore unknown content. 2156 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 2157 if (Record.size() < 1) 2158 return Error("Invalid record"); 2159 // Only version #0 and #1 are supported so far. 2160 unsigned module_version = Record[0]; 2161 switch (module_version) { 2162 default: 2163 return Error("Invalid value"); 2164 case 0: 2165 UseRelativeIDs = false; 2166 break; 2167 case 1: 2168 UseRelativeIDs = true; 2169 break; 2170 } 2171 break; 2172 } 2173 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2174 std::string S; 2175 if (ConvertToString(Record, 0, S)) 2176 return Error("Invalid record"); 2177 TheModule->setTargetTriple(S); 2178 break; 2179 } 2180 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 2181 std::string S; 2182 if (ConvertToString(Record, 0, S)) 2183 return Error("Invalid record"); 2184 TheModule->setDataLayout(S); 2185 break; 2186 } 2187 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 2188 std::string S; 2189 if (ConvertToString(Record, 0, S)) 2190 return Error("Invalid record"); 2191 TheModule->setModuleInlineAsm(S); 2192 break; 2193 } 2194 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 2195 // FIXME: Remove in 4.0. 2196 std::string S; 2197 if (ConvertToString(Record, 0, S)) 2198 return Error("Invalid record"); 2199 // Ignore value. 2200 break; 2201 } 2202 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 2203 std::string S; 2204 if (ConvertToString(Record, 0, S)) 2205 return Error("Invalid record"); 2206 SectionTable.push_back(S); 2207 break; 2208 } 2209 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 2210 std::string S; 2211 if (ConvertToString(Record, 0, S)) 2212 return Error("Invalid record"); 2213 GCTable.push_back(S); 2214 break; 2215 } 2216 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 2217 if (Record.size() < 2) 2218 return Error("Invalid record"); 2219 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2220 unsigned ComdatNameSize = Record[1]; 2221 std::string ComdatName; 2222 ComdatName.reserve(ComdatNameSize); 2223 for (unsigned i = 0; i != ComdatNameSize; ++i) 2224 ComdatName += (char)Record[2 + i]; 2225 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 2226 C->setSelectionKind(SK); 2227 ComdatList.push_back(C); 2228 break; 2229 } 2230 // GLOBALVAR: [pointer type, isconst, initid, 2231 // linkage, alignment, section, visibility, threadlocal, 2232 // unnamed_addr, externally_initialized, dllstorageclass, 2233 // comdat] 2234 case bitc::MODULE_CODE_GLOBALVAR: { 2235 if (Record.size() < 6) 2236 return Error("Invalid record"); 2237 Type *Ty = getTypeByID(Record[0]); 2238 if (!Ty) 2239 return Error("Invalid record"); 2240 if (!Ty->isPointerTy()) 2241 return Error("Invalid type for value"); 2242 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2243 Ty = cast<PointerType>(Ty)->getElementType(); 2244 2245 bool isConstant = Record[1]; 2246 uint64_t RawLinkage = Record[3]; 2247 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2248 unsigned Alignment = (1 << Record[4]) >> 1; 2249 std::string Section; 2250 if (Record[5]) { 2251 if (Record[5]-1 >= SectionTable.size()) 2252 return Error("Invalid ID"); 2253 Section = SectionTable[Record[5]-1]; 2254 } 2255 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2256 // Local linkage must have default visibility. 2257 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2258 // FIXME: Change to an error if non-default in 4.0. 2259 Visibility = GetDecodedVisibility(Record[6]); 2260 2261 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2262 if (Record.size() > 7) 2263 TLM = GetDecodedThreadLocalMode(Record[7]); 2264 2265 bool UnnamedAddr = false; 2266 if (Record.size() > 8) 2267 UnnamedAddr = Record[8]; 2268 2269 bool ExternallyInitialized = false; 2270 if (Record.size() > 9) 2271 ExternallyInitialized = Record[9]; 2272 2273 GlobalVariable *NewGV = 2274 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 2275 TLM, AddressSpace, ExternallyInitialized); 2276 NewGV->setAlignment(Alignment); 2277 if (!Section.empty()) 2278 NewGV->setSection(Section); 2279 NewGV->setVisibility(Visibility); 2280 NewGV->setUnnamedAddr(UnnamedAddr); 2281 2282 if (Record.size() > 10) 2283 NewGV->setDLLStorageClass(GetDecodedDLLStorageClass(Record[10])); 2284 else 2285 UpgradeDLLImportExportLinkage(NewGV, RawLinkage); 2286 2287 ValueList.push_back(NewGV); 2288 2289 // Remember which value to use for the global initializer. 2290 if (unsigned InitID = Record[2]) 2291 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 2292 2293 if (Record.size() > 11) { 2294 if (unsigned ComdatID = Record[11]) { 2295 assert(ComdatID <= ComdatList.size()); 2296 NewGV->setComdat(ComdatList[ComdatID - 1]); 2297 } 2298 } else if (hasImplicitComdat(RawLinkage)) { 2299 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2300 } 2301 break; 2302 } 2303 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 2304 // alignment, section, visibility, gc, unnamed_addr, 2305 // prologuedata, dllstorageclass, comdat, prefixdata] 2306 case bitc::MODULE_CODE_FUNCTION: { 2307 if (Record.size() < 8) 2308 return Error("Invalid record"); 2309 Type *Ty = getTypeByID(Record[0]); 2310 if (!Ty) 2311 return Error("Invalid record"); 2312 if (!Ty->isPointerTy()) 2313 return Error("Invalid type for value"); 2314 FunctionType *FTy = 2315 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 2316 if (!FTy) 2317 return Error("Invalid type for value"); 2318 2319 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 2320 "", TheModule); 2321 2322 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 2323 bool isProto = Record[2]; 2324 uint64_t RawLinkage = Record[3]; 2325 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2326 Func->setAttributes(getAttributes(Record[4])); 2327 2328 Func->setAlignment((1 << Record[5]) >> 1); 2329 if (Record[6]) { 2330 if (Record[6]-1 >= SectionTable.size()) 2331 return Error("Invalid ID"); 2332 Func->setSection(SectionTable[Record[6]-1]); 2333 } 2334 // Local linkage must have default visibility. 2335 if (!Func->hasLocalLinkage()) 2336 // FIXME: Change to an error if non-default in 4.0. 2337 Func->setVisibility(GetDecodedVisibility(Record[7])); 2338 if (Record.size() > 8 && Record[8]) { 2339 if (Record[8]-1 > GCTable.size()) 2340 return Error("Invalid ID"); 2341 Func->setGC(GCTable[Record[8]-1].c_str()); 2342 } 2343 bool UnnamedAddr = false; 2344 if (Record.size() > 9) 2345 UnnamedAddr = Record[9]; 2346 Func->setUnnamedAddr(UnnamedAddr); 2347 if (Record.size() > 10 && Record[10] != 0) 2348 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 2349 2350 if (Record.size() > 11) 2351 Func->setDLLStorageClass(GetDecodedDLLStorageClass(Record[11])); 2352 else 2353 UpgradeDLLImportExportLinkage(Func, RawLinkage); 2354 2355 if (Record.size() > 12) { 2356 if (unsigned ComdatID = Record[12]) { 2357 assert(ComdatID <= ComdatList.size()); 2358 Func->setComdat(ComdatList[ComdatID - 1]); 2359 } 2360 } else if (hasImplicitComdat(RawLinkage)) { 2361 Func->setComdat(reinterpret_cast<Comdat *>(1)); 2362 } 2363 2364 if (Record.size() > 13 && Record[13] != 0) 2365 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 2366 2367 ValueList.push_back(Func); 2368 2369 // If this is a function with a body, remember the prototype we are 2370 // creating now, so that we can match up the body with them later. 2371 if (!isProto) { 2372 Func->setIsMaterializable(true); 2373 FunctionsWithBodies.push_back(Func); 2374 if (LazyStreamer) 2375 DeferredFunctionInfo[Func] = 0; 2376 } 2377 break; 2378 } 2379 // ALIAS: [alias type, aliasee val#, linkage] 2380 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass] 2381 case bitc::MODULE_CODE_ALIAS: { 2382 if (Record.size() < 3) 2383 return Error("Invalid record"); 2384 Type *Ty = getTypeByID(Record[0]); 2385 if (!Ty) 2386 return Error("Invalid record"); 2387 auto *PTy = dyn_cast<PointerType>(Ty); 2388 if (!PTy) 2389 return Error("Invalid type for value"); 2390 2391 auto *NewGA = 2392 GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(), 2393 getDecodedLinkage(Record[2]), "", TheModule); 2394 // Old bitcode files didn't have visibility field. 2395 // Local linkage must have default visibility. 2396 if (Record.size() > 3 && !NewGA->hasLocalLinkage()) 2397 // FIXME: Change to an error if non-default in 4.0. 2398 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 2399 if (Record.size() > 4) 2400 NewGA->setDLLStorageClass(GetDecodedDLLStorageClass(Record[4])); 2401 else 2402 UpgradeDLLImportExportLinkage(NewGA, Record[2]); 2403 if (Record.size() > 5) 2404 NewGA->setThreadLocalMode(GetDecodedThreadLocalMode(Record[5])); 2405 if (Record.size() > 6) 2406 NewGA->setUnnamedAddr(Record[6]); 2407 ValueList.push_back(NewGA); 2408 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 2409 break; 2410 } 2411 /// MODULE_CODE_PURGEVALS: [numvals] 2412 case bitc::MODULE_CODE_PURGEVALS: 2413 // Trim down the value list to the specified size. 2414 if (Record.size() < 1 || Record[0] > ValueList.size()) 2415 return Error("Invalid record"); 2416 ValueList.shrinkTo(Record[0]); 2417 break; 2418 } 2419 Record.clear(); 2420 } 2421 } 2422 2423 std::error_code BitcodeReader::ParseBitcodeInto(Module *M) { 2424 TheModule = nullptr; 2425 2426 if (std::error_code EC = InitStream()) 2427 return EC; 2428 2429 // Sniff for the signature. 2430 if (Stream.Read(8) != 'B' || 2431 Stream.Read(8) != 'C' || 2432 Stream.Read(4) != 0x0 || 2433 Stream.Read(4) != 0xC || 2434 Stream.Read(4) != 0xE || 2435 Stream.Read(4) != 0xD) 2436 return Error("Invalid bitcode signature"); 2437 2438 // We expect a number of well-defined blocks, though we don't necessarily 2439 // need to understand them all. 2440 while (1) { 2441 if (Stream.AtEndOfStream()) 2442 return std::error_code(); 2443 2444 BitstreamEntry Entry = 2445 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 2446 2447 switch (Entry.Kind) { 2448 case BitstreamEntry::Error: 2449 return Error("Malformed block"); 2450 case BitstreamEntry::EndBlock: 2451 return std::error_code(); 2452 2453 case BitstreamEntry::SubBlock: 2454 switch (Entry.ID) { 2455 case bitc::BLOCKINFO_BLOCK_ID: 2456 if (Stream.ReadBlockInfoBlock()) 2457 return Error("Malformed block"); 2458 break; 2459 case bitc::MODULE_BLOCK_ID: 2460 // Reject multiple MODULE_BLOCK's in a single bitstream. 2461 if (TheModule) 2462 return Error("Invalid multiple blocks"); 2463 TheModule = M; 2464 if (std::error_code EC = ParseModule(false)) 2465 return EC; 2466 if (LazyStreamer) 2467 return std::error_code(); 2468 break; 2469 default: 2470 if (Stream.SkipBlock()) 2471 return Error("Invalid record"); 2472 break; 2473 } 2474 continue; 2475 case BitstreamEntry::Record: 2476 // There should be no records in the top-level of blocks. 2477 2478 // The ranlib in Xcode 4 will align archive members by appending newlines 2479 // to the end of them. If this file size is a multiple of 4 but not 8, we 2480 // have to read and ignore these final 4 bytes :-( 2481 if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 && 2482 Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a && 2483 Stream.AtEndOfStream()) 2484 return std::error_code(); 2485 2486 return Error("Invalid record"); 2487 } 2488 } 2489 } 2490 2491 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 2492 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2493 return Error("Invalid record"); 2494 2495 SmallVector<uint64_t, 64> Record; 2496 2497 std::string Triple; 2498 // Read all the records for this module. 2499 while (1) { 2500 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2501 2502 switch (Entry.Kind) { 2503 case BitstreamEntry::SubBlock: // Handled for us already. 2504 case BitstreamEntry::Error: 2505 return Error("Malformed block"); 2506 case BitstreamEntry::EndBlock: 2507 return Triple; 2508 case BitstreamEntry::Record: 2509 // The interesting case. 2510 break; 2511 } 2512 2513 // Read a record. 2514 switch (Stream.readRecord(Entry.ID, Record)) { 2515 default: break; // Default behavior, ignore unknown content. 2516 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2517 std::string S; 2518 if (ConvertToString(Record, 0, S)) 2519 return Error("Invalid record"); 2520 Triple = S; 2521 break; 2522 } 2523 } 2524 Record.clear(); 2525 } 2526 llvm_unreachable("Exit infinite loop"); 2527 } 2528 2529 ErrorOr<std::string> BitcodeReader::parseTriple() { 2530 if (std::error_code EC = InitStream()) 2531 return EC; 2532 2533 // Sniff for the signature. 2534 if (Stream.Read(8) != 'B' || 2535 Stream.Read(8) != 'C' || 2536 Stream.Read(4) != 0x0 || 2537 Stream.Read(4) != 0xC || 2538 Stream.Read(4) != 0xE || 2539 Stream.Read(4) != 0xD) 2540 return Error("Invalid bitcode signature"); 2541 2542 // We expect a number of well-defined blocks, though we don't necessarily 2543 // need to understand them all. 2544 while (1) { 2545 BitstreamEntry Entry = Stream.advance(); 2546 2547 switch (Entry.Kind) { 2548 case BitstreamEntry::Error: 2549 return Error("Malformed block"); 2550 case BitstreamEntry::EndBlock: 2551 return std::error_code(); 2552 2553 case BitstreamEntry::SubBlock: 2554 if (Entry.ID == bitc::MODULE_BLOCK_ID) 2555 return parseModuleTriple(); 2556 2557 // Ignore other sub-blocks. 2558 if (Stream.SkipBlock()) 2559 return Error("Malformed block"); 2560 continue; 2561 2562 case BitstreamEntry::Record: 2563 Stream.skipRecord(Entry.ID); 2564 continue; 2565 } 2566 } 2567 } 2568 2569 /// ParseMetadataAttachment - Parse metadata attachments. 2570 std::error_code BitcodeReader::ParseMetadataAttachment() { 2571 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 2572 return Error("Invalid record"); 2573 2574 SmallVector<uint64_t, 64> Record; 2575 while (1) { 2576 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2577 2578 switch (Entry.Kind) { 2579 case BitstreamEntry::SubBlock: // Handled for us already. 2580 case BitstreamEntry::Error: 2581 return Error("Malformed block"); 2582 case BitstreamEntry::EndBlock: 2583 return std::error_code(); 2584 case BitstreamEntry::Record: 2585 // The interesting case. 2586 break; 2587 } 2588 2589 // Read a metadata attachment record. 2590 Record.clear(); 2591 switch (Stream.readRecord(Entry.ID, Record)) { 2592 default: // Default behavior: ignore. 2593 break; 2594 case bitc::METADATA_ATTACHMENT: { 2595 unsigned RecordLength = Record.size(); 2596 if (Record.empty() || (RecordLength - 1) % 2 == 1) 2597 return Error("Invalid record"); 2598 Instruction *Inst = InstructionList[Record[0]]; 2599 for (unsigned i = 1; i != RecordLength; i = i+2) { 2600 unsigned Kind = Record[i]; 2601 DenseMap<unsigned, unsigned>::iterator I = 2602 MDKindMap.find(Kind); 2603 if (I == MDKindMap.end()) 2604 return Error("Invalid ID"); 2605 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); 2606 if (isa<LocalAsMetadata>(Node)) 2607 // Drop the attachment. This used to be legal, but there's no 2608 // upgrade path. 2609 break; 2610 Inst->setMetadata(I->second, cast<MDNode>(Node)); 2611 if (I->second == LLVMContext::MD_tbaa) 2612 InstsWithTBAATag.push_back(Inst); 2613 } 2614 break; 2615 } 2616 } 2617 } 2618 } 2619 2620 /// ParseFunctionBody - Lazily parse the specified function body block. 2621 std::error_code BitcodeReader::ParseFunctionBody(Function *F) { 2622 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 2623 return Error("Invalid record"); 2624 2625 InstructionList.clear(); 2626 unsigned ModuleValueListSize = ValueList.size(); 2627 unsigned ModuleMDValueListSize = MDValueList.size(); 2628 2629 // Add all the function arguments to the value table. 2630 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 2631 ValueList.push_back(I); 2632 2633 unsigned NextValueNo = ValueList.size(); 2634 BasicBlock *CurBB = nullptr; 2635 unsigned CurBBNo = 0; 2636 2637 DebugLoc LastLoc; 2638 auto getLastInstruction = [&]() -> Instruction * { 2639 if (CurBB && !CurBB->empty()) 2640 return &CurBB->back(); 2641 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 2642 !FunctionBBs[CurBBNo - 1]->empty()) 2643 return &FunctionBBs[CurBBNo - 1]->back(); 2644 return nullptr; 2645 }; 2646 2647 // Read all the records. 2648 SmallVector<uint64_t, 64> Record; 2649 while (1) { 2650 BitstreamEntry Entry = Stream.advance(); 2651 2652 switch (Entry.Kind) { 2653 case BitstreamEntry::Error: 2654 return Error("Malformed block"); 2655 case BitstreamEntry::EndBlock: 2656 goto OutOfRecordLoop; 2657 2658 case BitstreamEntry::SubBlock: 2659 switch (Entry.ID) { 2660 default: // Skip unknown content. 2661 if (Stream.SkipBlock()) 2662 return Error("Invalid record"); 2663 break; 2664 case bitc::CONSTANTS_BLOCK_ID: 2665 if (std::error_code EC = ParseConstants()) 2666 return EC; 2667 NextValueNo = ValueList.size(); 2668 break; 2669 case bitc::VALUE_SYMTAB_BLOCK_ID: 2670 if (std::error_code EC = ParseValueSymbolTable()) 2671 return EC; 2672 break; 2673 case bitc::METADATA_ATTACHMENT_ID: 2674 if (std::error_code EC = ParseMetadataAttachment()) 2675 return EC; 2676 break; 2677 case bitc::METADATA_BLOCK_ID: 2678 if (std::error_code EC = ParseMetadata()) 2679 return EC; 2680 break; 2681 case bitc::USELIST_BLOCK_ID: 2682 if (std::error_code EC = ParseUseLists()) 2683 return EC; 2684 break; 2685 } 2686 continue; 2687 2688 case BitstreamEntry::Record: 2689 // The interesting case. 2690 break; 2691 } 2692 2693 // Read a record. 2694 Record.clear(); 2695 Instruction *I = nullptr; 2696 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2697 switch (BitCode) { 2698 default: // Default behavior: reject 2699 return Error("Invalid value"); 2700 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 2701 if (Record.size() < 1 || Record[0] == 0) 2702 return Error("Invalid record"); 2703 // Create all the basic blocks for the function. 2704 FunctionBBs.resize(Record[0]); 2705 2706 // See if anything took the address of blocks in this function. 2707 auto BBFRI = BasicBlockFwdRefs.find(F); 2708 if (BBFRI == BasicBlockFwdRefs.end()) { 2709 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 2710 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 2711 } else { 2712 auto &BBRefs = BBFRI->second; 2713 // Check for invalid basic block references. 2714 if (BBRefs.size() > FunctionBBs.size()) 2715 return Error("Invalid ID"); 2716 assert(!BBRefs.empty() && "Unexpected empty array"); 2717 assert(!BBRefs.front() && "Invalid reference to entry block"); 2718 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 2719 ++I) 2720 if (I < RE && BBRefs[I]) { 2721 BBRefs[I]->insertInto(F); 2722 FunctionBBs[I] = BBRefs[I]; 2723 } else { 2724 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 2725 } 2726 2727 // Erase from the table. 2728 BasicBlockFwdRefs.erase(BBFRI); 2729 } 2730 2731 CurBB = FunctionBBs[0]; 2732 continue; 2733 } 2734 2735 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 2736 // This record indicates that the last instruction is at the same 2737 // location as the previous instruction with a location. 2738 I = getLastInstruction(); 2739 2740 if (!I) 2741 return Error("Invalid record"); 2742 I->setDebugLoc(LastLoc); 2743 I = nullptr; 2744 continue; 2745 2746 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 2747 I = getLastInstruction(); 2748 if (!I || Record.size() < 4) 2749 return Error("Invalid record"); 2750 2751 unsigned Line = Record[0], Col = Record[1]; 2752 unsigned ScopeID = Record[2], IAID = Record[3]; 2753 2754 MDNode *Scope = nullptr, *IA = nullptr; 2755 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 2756 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 2757 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 2758 I->setDebugLoc(LastLoc); 2759 I = nullptr; 2760 continue; 2761 } 2762 2763 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 2764 unsigned OpNum = 0; 2765 Value *LHS, *RHS; 2766 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2767 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 2768 OpNum+1 > Record.size()) 2769 return Error("Invalid record"); 2770 2771 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 2772 if (Opc == -1) 2773 return Error("Invalid record"); 2774 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 2775 InstructionList.push_back(I); 2776 if (OpNum < Record.size()) { 2777 if (Opc == Instruction::Add || 2778 Opc == Instruction::Sub || 2779 Opc == Instruction::Mul || 2780 Opc == Instruction::Shl) { 2781 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2782 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 2783 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2784 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 2785 } else if (Opc == Instruction::SDiv || 2786 Opc == Instruction::UDiv || 2787 Opc == Instruction::LShr || 2788 Opc == Instruction::AShr) { 2789 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 2790 cast<BinaryOperator>(I)->setIsExact(true); 2791 } else if (isa<FPMathOperator>(I)) { 2792 FastMathFlags FMF; 2793 if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra)) 2794 FMF.setUnsafeAlgebra(); 2795 if (0 != (Record[OpNum] & FastMathFlags::NoNaNs)) 2796 FMF.setNoNaNs(); 2797 if (0 != (Record[OpNum] & FastMathFlags::NoInfs)) 2798 FMF.setNoInfs(); 2799 if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros)) 2800 FMF.setNoSignedZeros(); 2801 if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal)) 2802 FMF.setAllowReciprocal(); 2803 if (FMF.any()) 2804 I->setFastMathFlags(FMF); 2805 } 2806 2807 } 2808 break; 2809 } 2810 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 2811 unsigned OpNum = 0; 2812 Value *Op; 2813 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2814 OpNum+2 != Record.size()) 2815 return Error("Invalid record"); 2816 2817 Type *ResTy = getTypeByID(Record[OpNum]); 2818 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 2819 if (Opc == -1 || !ResTy) 2820 return Error("Invalid record"); 2821 Instruction *Temp = nullptr; 2822 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 2823 if (Temp) { 2824 InstructionList.push_back(Temp); 2825 CurBB->getInstList().push_back(Temp); 2826 } 2827 } else { 2828 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 2829 } 2830 InstructionList.push_back(I); 2831 break; 2832 } 2833 case bitc::FUNC_CODE_INST_INBOUNDS_GEP: 2834 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] 2835 unsigned OpNum = 0; 2836 Value *BasePtr; 2837 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 2838 return Error("Invalid record"); 2839 2840 SmallVector<Value*, 16> GEPIdx; 2841 while (OpNum != Record.size()) { 2842 Value *Op; 2843 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2844 return Error("Invalid record"); 2845 GEPIdx.push_back(Op); 2846 } 2847 2848 I = GetElementPtrInst::Create(BasePtr, GEPIdx); 2849 InstructionList.push_back(I); 2850 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP) 2851 cast<GetElementPtrInst>(I)->setIsInBounds(true); 2852 break; 2853 } 2854 2855 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 2856 // EXTRACTVAL: [opty, opval, n x indices] 2857 unsigned OpNum = 0; 2858 Value *Agg; 2859 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 2860 return Error("Invalid record"); 2861 2862 SmallVector<unsigned, 4> EXTRACTVALIdx; 2863 for (unsigned RecSize = Record.size(); 2864 OpNum != RecSize; ++OpNum) { 2865 uint64_t Index = Record[OpNum]; 2866 if ((unsigned)Index != Index) 2867 return Error("Invalid value"); 2868 EXTRACTVALIdx.push_back((unsigned)Index); 2869 } 2870 2871 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 2872 InstructionList.push_back(I); 2873 break; 2874 } 2875 2876 case bitc::FUNC_CODE_INST_INSERTVAL: { 2877 // INSERTVAL: [opty, opval, opty, opval, n x indices] 2878 unsigned OpNum = 0; 2879 Value *Agg; 2880 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 2881 return Error("Invalid record"); 2882 Value *Val; 2883 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 2884 return Error("Invalid record"); 2885 2886 SmallVector<unsigned, 4> INSERTVALIdx; 2887 for (unsigned RecSize = Record.size(); 2888 OpNum != RecSize; ++OpNum) { 2889 uint64_t Index = Record[OpNum]; 2890 if ((unsigned)Index != Index) 2891 return Error("Invalid value"); 2892 INSERTVALIdx.push_back((unsigned)Index); 2893 } 2894 2895 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 2896 InstructionList.push_back(I); 2897 break; 2898 } 2899 2900 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 2901 // obsolete form of select 2902 // handles select i1 ... in old bitcode 2903 unsigned OpNum = 0; 2904 Value *TrueVal, *FalseVal, *Cond; 2905 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2906 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 2907 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 2908 return Error("Invalid record"); 2909 2910 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2911 InstructionList.push_back(I); 2912 break; 2913 } 2914 2915 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 2916 // new form of select 2917 // handles select i1 or select [N x i1] 2918 unsigned OpNum = 0; 2919 Value *TrueVal, *FalseVal, *Cond; 2920 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2921 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 2922 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 2923 return Error("Invalid record"); 2924 2925 // select condition can be either i1 or [N x i1] 2926 if (VectorType* vector_type = 2927 dyn_cast<VectorType>(Cond->getType())) { 2928 // expect <n x i1> 2929 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 2930 return Error("Invalid type for value"); 2931 } else { 2932 // expect i1 2933 if (Cond->getType() != Type::getInt1Ty(Context)) 2934 return Error("Invalid type for value"); 2935 } 2936 2937 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2938 InstructionList.push_back(I); 2939 break; 2940 } 2941 2942 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 2943 unsigned OpNum = 0; 2944 Value *Vec, *Idx; 2945 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 2946 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 2947 return Error("Invalid record"); 2948 I = ExtractElementInst::Create(Vec, Idx); 2949 InstructionList.push_back(I); 2950 break; 2951 } 2952 2953 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 2954 unsigned OpNum = 0; 2955 Value *Vec, *Elt, *Idx; 2956 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 2957 popValue(Record, OpNum, NextValueNo, 2958 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 2959 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 2960 return Error("Invalid record"); 2961 I = InsertElementInst::Create(Vec, Elt, Idx); 2962 InstructionList.push_back(I); 2963 break; 2964 } 2965 2966 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 2967 unsigned OpNum = 0; 2968 Value *Vec1, *Vec2, *Mask; 2969 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 2970 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 2971 return Error("Invalid record"); 2972 2973 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 2974 return Error("Invalid record"); 2975 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 2976 InstructionList.push_back(I); 2977 break; 2978 } 2979 2980 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 2981 // Old form of ICmp/FCmp returning bool 2982 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 2983 // both legal on vectors but had different behaviour. 2984 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 2985 // FCmp/ICmp returning bool or vector of bool 2986 2987 unsigned OpNum = 0; 2988 Value *LHS, *RHS; 2989 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2990 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 2991 OpNum+1 != Record.size()) 2992 return Error("Invalid record"); 2993 2994 if (LHS->getType()->isFPOrFPVectorTy()) 2995 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 2996 else 2997 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 2998 InstructionList.push_back(I); 2999 break; 3000 } 3001 3002 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3003 { 3004 unsigned Size = Record.size(); 3005 if (Size == 0) { 3006 I = ReturnInst::Create(Context); 3007 InstructionList.push_back(I); 3008 break; 3009 } 3010 3011 unsigned OpNum = 0; 3012 Value *Op = nullptr; 3013 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3014 return Error("Invalid record"); 3015 if (OpNum != Record.size()) 3016 return Error("Invalid record"); 3017 3018 I = ReturnInst::Create(Context, Op); 3019 InstructionList.push_back(I); 3020 break; 3021 } 3022 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3023 if (Record.size() != 1 && Record.size() != 3) 3024 return Error("Invalid record"); 3025 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3026 if (!TrueDest) 3027 return Error("Invalid record"); 3028 3029 if (Record.size() == 1) { 3030 I = BranchInst::Create(TrueDest); 3031 InstructionList.push_back(I); 3032 } 3033 else { 3034 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3035 Value *Cond = getValue(Record, 2, NextValueNo, 3036 Type::getInt1Ty(Context)); 3037 if (!FalseDest || !Cond) 3038 return Error("Invalid record"); 3039 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3040 InstructionList.push_back(I); 3041 } 3042 break; 3043 } 3044 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3045 // Check magic 3046 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3047 // "New" SwitchInst format with case ranges. The changes to write this 3048 // format were reverted but we still recognize bitcode that uses it. 3049 // Hopefully someday we will have support for case ranges and can use 3050 // this format again. 3051 3052 Type *OpTy = getTypeByID(Record[1]); 3053 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 3054 3055 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 3056 BasicBlock *Default = getBasicBlock(Record[3]); 3057 if (!OpTy || !Cond || !Default) 3058 return Error("Invalid record"); 3059 3060 unsigned NumCases = Record[4]; 3061 3062 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3063 InstructionList.push_back(SI); 3064 3065 unsigned CurIdx = 5; 3066 for (unsigned i = 0; i != NumCases; ++i) { 3067 SmallVector<ConstantInt*, 1> CaseVals; 3068 unsigned NumItems = Record[CurIdx++]; 3069 for (unsigned ci = 0; ci != NumItems; ++ci) { 3070 bool isSingleNumber = Record[CurIdx++]; 3071 3072 APInt Low; 3073 unsigned ActiveWords = 1; 3074 if (ValueBitWidth > 64) 3075 ActiveWords = Record[CurIdx++]; 3076 Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3077 ValueBitWidth); 3078 CurIdx += ActiveWords; 3079 3080 if (!isSingleNumber) { 3081 ActiveWords = 1; 3082 if (ValueBitWidth > 64) 3083 ActiveWords = Record[CurIdx++]; 3084 APInt High = 3085 ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3086 ValueBitWidth); 3087 CurIdx += ActiveWords; 3088 3089 // FIXME: It is not clear whether values in the range should be 3090 // compared as signed or unsigned values. The partially 3091 // implemented changes that used this format in the past used 3092 // unsigned comparisons. 3093 for ( ; Low.ule(High); ++Low) 3094 CaseVals.push_back(ConstantInt::get(Context, Low)); 3095 } else 3096 CaseVals.push_back(ConstantInt::get(Context, Low)); 3097 } 3098 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 3099 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 3100 cve = CaseVals.end(); cvi != cve; ++cvi) 3101 SI->addCase(*cvi, DestBB); 3102 } 3103 I = SI; 3104 break; 3105 } 3106 3107 // Old SwitchInst format without case ranges. 3108 3109 if (Record.size() < 3 || (Record.size() & 1) == 0) 3110 return Error("Invalid record"); 3111 Type *OpTy = getTypeByID(Record[0]); 3112 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 3113 BasicBlock *Default = getBasicBlock(Record[2]); 3114 if (!OpTy || !Cond || !Default) 3115 return Error("Invalid record"); 3116 unsigned NumCases = (Record.size()-3)/2; 3117 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3118 InstructionList.push_back(SI); 3119 for (unsigned i = 0, e = NumCases; i != e; ++i) { 3120 ConstantInt *CaseVal = 3121 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 3122 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 3123 if (!CaseVal || !DestBB) { 3124 delete SI; 3125 return Error("Invalid record"); 3126 } 3127 SI->addCase(CaseVal, DestBB); 3128 } 3129 I = SI; 3130 break; 3131 } 3132 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 3133 if (Record.size() < 2) 3134 return Error("Invalid record"); 3135 Type *OpTy = getTypeByID(Record[0]); 3136 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 3137 if (!OpTy || !Address) 3138 return Error("Invalid record"); 3139 unsigned NumDests = Record.size()-2; 3140 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 3141 InstructionList.push_back(IBI); 3142 for (unsigned i = 0, e = NumDests; i != e; ++i) { 3143 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 3144 IBI->addDestination(DestBB); 3145 } else { 3146 delete IBI; 3147 return Error("Invalid record"); 3148 } 3149 } 3150 I = IBI; 3151 break; 3152 } 3153 3154 case bitc::FUNC_CODE_INST_INVOKE: { 3155 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 3156 if (Record.size() < 4) 3157 return Error("Invalid record"); 3158 AttributeSet PAL = getAttributes(Record[0]); 3159 unsigned CCInfo = Record[1]; 3160 BasicBlock *NormalBB = getBasicBlock(Record[2]); 3161 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 3162 3163 unsigned OpNum = 4; 3164 Value *Callee; 3165 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3166 return Error("Invalid record"); 3167 3168 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 3169 FunctionType *FTy = !CalleeTy ? nullptr : 3170 dyn_cast<FunctionType>(CalleeTy->getElementType()); 3171 3172 // Check that the right number of fixed parameters are here. 3173 if (!FTy || !NormalBB || !UnwindBB || 3174 Record.size() < OpNum+FTy->getNumParams()) 3175 return Error("Invalid record"); 3176 3177 SmallVector<Value*, 16> Ops; 3178 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3179 Ops.push_back(getValue(Record, OpNum, NextValueNo, 3180 FTy->getParamType(i))); 3181 if (!Ops.back()) 3182 return Error("Invalid record"); 3183 } 3184 3185 if (!FTy->isVarArg()) { 3186 if (Record.size() != OpNum) 3187 return Error("Invalid record"); 3188 } else { 3189 // Read type/value pairs for varargs params. 3190 while (OpNum != Record.size()) { 3191 Value *Op; 3192 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3193 return Error("Invalid record"); 3194 Ops.push_back(Op); 3195 } 3196 } 3197 3198 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); 3199 InstructionList.push_back(I); 3200 cast<InvokeInst>(I)->setCallingConv( 3201 static_cast<CallingConv::ID>(CCInfo)); 3202 cast<InvokeInst>(I)->setAttributes(PAL); 3203 break; 3204 } 3205 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 3206 unsigned Idx = 0; 3207 Value *Val = nullptr; 3208 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3209 return Error("Invalid record"); 3210 I = ResumeInst::Create(Val); 3211 InstructionList.push_back(I); 3212 break; 3213 } 3214 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 3215 I = new UnreachableInst(Context); 3216 InstructionList.push_back(I); 3217 break; 3218 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 3219 if (Record.size() < 1 || ((Record.size()-1)&1)) 3220 return Error("Invalid record"); 3221 Type *Ty = getTypeByID(Record[0]); 3222 if (!Ty) 3223 return Error("Invalid record"); 3224 3225 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 3226 InstructionList.push_back(PN); 3227 3228 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 3229 Value *V; 3230 // With the new function encoding, it is possible that operands have 3231 // negative IDs (for forward references). Use a signed VBR 3232 // representation to keep the encoding small. 3233 if (UseRelativeIDs) 3234 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 3235 else 3236 V = getValue(Record, 1+i, NextValueNo, Ty); 3237 BasicBlock *BB = getBasicBlock(Record[2+i]); 3238 if (!V || !BB) 3239 return Error("Invalid record"); 3240 PN->addIncoming(V, BB); 3241 } 3242 I = PN; 3243 break; 3244 } 3245 3246 case bitc::FUNC_CODE_INST_LANDINGPAD: { 3247 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 3248 unsigned Idx = 0; 3249 if (Record.size() < 4) 3250 return Error("Invalid record"); 3251 Type *Ty = getTypeByID(Record[Idx++]); 3252 if (!Ty) 3253 return Error("Invalid record"); 3254 Value *PersFn = nullptr; 3255 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 3256 return Error("Invalid record"); 3257 3258 bool IsCleanup = !!Record[Idx++]; 3259 unsigned NumClauses = Record[Idx++]; 3260 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses); 3261 LP->setCleanup(IsCleanup); 3262 for (unsigned J = 0; J != NumClauses; ++J) { 3263 LandingPadInst::ClauseType CT = 3264 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 3265 Value *Val; 3266 3267 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 3268 delete LP; 3269 return Error("Invalid record"); 3270 } 3271 3272 assert((CT != LandingPadInst::Catch || 3273 !isa<ArrayType>(Val->getType())) && 3274 "Catch clause has a invalid type!"); 3275 assert((CT != LandingPadInst::Filter || 3276 isa<ArrayType>(Val->getType())) && 3277 "Filter clause has invalid type!"); 3278 LP->addClause(cast<Constant>(Val)); 3279 } 3280 3281 I = LP; 3282 InstructionList.push_back(I); 3283 break; 3284 } 3285 3286 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 3287 if (Record.size() != 4) 3288 return Error("Invalid record"); 3289 PointerType *Ty = 3290 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 3291 Type *OpTy = getTypeByID(Record[1]); 3292 Value *Size = getFnValueByID(Record[2], OpTy); 3293 unsigned AlignRecord = Record[3]; 3294 bool InAlloca = AlignRecord & (1 << 5); 3295 unsigned Align = AlignRecord & ((1 << 5) - 1); 3296 if (!Ty || !Size) 3297 return Error("Invalid record"); 3298 AllocaInst *AI = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); 3299 AI->setUsedWithInAlloca(InAlloca); 3300 I = AI; 3301 InstructionList.push_back(I); 3302 break; 3303 } 3304 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 3305 unsigned OpNum = 0; 3306 Value *Op; 3307 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3308 OpNum+2 != Record.size()) 3309 return Error("Invalid record"); 3310 3311 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); 3312 InstructionList.push_back(I); 3313 break; 3314 } 3315 case bitc::FUNC_CODE_INST_LOADATOMIC: { 3316 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 3317 unsigned OpNum = 0; 3318 Value *Op; 3319 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3320 OpNum+4 != Record.size()) 3321 return Error("Invalid record"); 3322 3323 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3324 if (Ordering == NotAtomic || Ordering == Release || 3325 Ordering == AcquireRelease) 3326 return Error("Invalid record"); 3327 if (Ordering != NotAtomic && Record[OpNum] == 0) 3328 return Error("Invalid record"); 3329 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3330 3331 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1, 3332 Ordering, SynchScope); 3333 InstructionList.push_back(I); 3334 break; 3335 } 3336 case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol] 3337 unsigned OpNum = 0; 3338 Value *Val, *Ptr; 3339 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3340 popValue(Record, OpNum, NextValueNo, 3341 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3342 OpNum+2 != Record.size()) 3343 return Error("Invalid record"); 3344 3345 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 3346 InstructionList.push_back(I); 3347 break; 3348 } 3349 case bitc::FUNC_CODE_INST_STOREATOMIC: { 3350 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 3351 unsigned OpNum = 0; 3352 Value *Val, *Ptr; 3353 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3354 popValue(Record, OpNum, NextValueNo, 3355 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3356 OpNum+4 != Record.size()) 3357 return Error("Invalid record"); 3358 3359 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3360 if (Ordering == NotAtomic || Ordering == Acquire || 3361 Ordering == AcquireRelease) 3362 return Error("Invalid record"); 3363 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3364 if (Ordering != NotAtomic && Record[OpNum] == 0) 3365 return Error("Invalid record"); 3366 3367 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1, 3368 Ordering, SynchScope); 3369 InstructionList.push_back(I); 3370 break; 3371 } 3372 case bitc::FUNC_CODE_INST_CMPXCHG: { 3373 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 3374 // failureordering?, isweak?] 3375 unsigned OpNum = 0; 3376 Value *Ptr, *Cmp, *New; 3377 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3378 popValue(Record, OpNum, NextValueNo, 3379 cast<PointerType>(Ptr->getType())->getElementType(), Cmp) || 3380 popValue(Record, OpNum, NextValueNo, 3381 cast<PointerType>(Ptr->getType())->getElementType(), New) || 3382 (Record.size() < OpNum + 3 || Record.size() > OpNum + 5)) 3383 return Error("Invalid record"); 3384 AtomicOrdering SuccessOrdering = GetDecodedOrdering(Record[OpNum+1]); 3385 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 3386 return Error("Invalid record"); 3387 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]); 3388 3389 AtomicOrdering FailureOrdering; 3390 if (Record.size() < 7) 3391 FailureOrdering = 3392 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 3393 else 3394 FailureOrdering = GetDecodedOrdering(Record[OpNum+3]); 3395 3396 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 3397 SynchScope); 3398 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 3399 3400 if (Record.size() < 8) { 3401 // Before weak cmpxchgs existed, the instruction simply returned the 3402 // value loaded from memory, so bitcode files from that era will be 3403 // expecting the first component of a modern cmpxchg. 3404 CurBB->getInstList().push_back(I); 3405 I = ExtractValueInst::Create(I, 0); 3406 } else { 3407 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 3408 } 3409 3410 InstructionList.push_back(I); 3411 break; 3412 } 3413 case bitc::FUNC_CODE_INST_ATOMICRMW: { 3414 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 3415 unsigned OpNum = 0; 3416 Value *Ptr, *Val; 3417 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3418 popValue(Record, OpNum, NextValueNo, 3419 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3420 OpNum+4 != Record.size()) 3421 return Error("Invalid record"); 3422 AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]); 3423 if (Operation < AtomicRMWInst::FIRST_BINOP || 3424 Operation > AtomicRMWInst::LAST_BINOP) 3425 return Error("Invalid record"); 3426 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3427 if (Ordering == NotAtomic || Ordering == Unordered) 3428 return Error("Invalid record"); 3429 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3430 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 3431 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 3432 InstructionList.push_back(I); 3433 break; 3434 } 3435 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 3436 if (2 != Record.size()) 3437 return Error("Invalid record"); 3438 AtomicOrdering Ordering = GetDecodedOrdering(Record[0]); 3439 if (Ordering == NotAtomic || Ordering == Unordered || 3440 Ordering == Monotonic) 3441 return Error("Invalid record"); 3442 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]); 3443 I = new FenceInst(Context, Ordering, SynchScope); 3444 InstructionList.push_back(I); 3445 break; 3446 } 3447 case bitc::FUNC_CODE_INST_CALL: { 3448 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 3449 if (Record.size() < 3) 3450 return Error("Invalid record"); 3451 3452 AttributeSet PAL = getAttributes(Record[0]); 3453 unsigned CCInfo = Record[1]; 3454 3455 unsigned OpNum = 2; 3456 Value *Callee; 3457 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3458 return Error("Invalid record"); 3459 3460 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 3461 FunctionType *FTy = nullptr; 3462 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 3463 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 3464 return Error("Invalid record"); 3465 3466 SmallVector<Value*, 16> Args; 3467 // Read the fixed params. 3468 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3469 if (FTy->getParamType(i)->isLabelTy()) 3470 Args.push_back(getBasicBlock(Record[OpNum])); 3471 else 3472 Args.push_back(getValue(Record, OpNum, NextValueNo, 3473 FTy->getParamType(i))); 3474 if (!Args.back()) 3475 return Error("Invalid record"); 3476 } 3477 3478 // Read type/value pairs for varargs params. 3479 if (!FTy->isVarArg()) { 3480 if (OpNum != Record.size()) 3481 return Error("Invalid record"); 3482 } else { 3483 while (OpNum != Record.size()) { 3484 Value *Op; 3485 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3486 return Error("Invalid record"); 3487 Args.push_back(Op); 3488 } 3489 } 3490 3491 I = CallInst::Create(Callee, Args); 3492 InstructionList.push_back(I); 3493 cast<CallInst>(I)->setCallingConv( 3494 static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1)); 3495 CallInst::TailCallKind TCK = CallInst::TCK_None; 3496 if (CCInfo & 1) 3497 TCK = CallInst::TCK_Tail; 3498 if (CCInfo & (1 << 14)) 3499 TCK = CallInst::TCK_MustTail; 3500 cast<CallInst>(I)->setTailCallKind(TCK); 3501 cast<CallInst>(I)->setAttributes(PAL); 3502 break; 3503 } 3504 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 3505 if (Record.size() < 3) 3506 return Error("Invalid record"); 3507 Type *OpTy = getTypeByID(Record[0]); 3508 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 3509 Type *ResTy = getTypeByID(Record[2]); 3510 if (!OpTy || !Op || !ResTy) 3511 return Error("Invalid record"); 3512 I = new VAArgInst(Op, ResTy); 3513 InstructionList.push_back(I); 3514 break; 3515 } 3516 } 3517 3518 // Add instruction to end of current BB. If there is no current BB, reject 3519 // this file. 3520 if (!CurBB) { 3521 delete I; 3522 return Error("Invalid instruction with no BB"); 3523 } 3524 CurBB->getInstList().push_back(I); 3525 3526 // If this was a terminator instruction, move to the next block. 3527 if (isa<TerminatorInst>(I)) { 3528 ++CurBBNo; 3529 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 3530 } 3531 3532 // Non-void values get registered in the value table for future use. 3533 if (I && !I->getType()->isVoidTy()) 3534 ValueList.AssignValue(I, NextValueNo++); 3535 } 3536 3537 OutOfRecordLoop: 3538 3539 // Check the function list for unresolved values. 3540 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 3541 if (!A->getParent()) { 3542 // We found at least one unresolved value. Nuke them all to avoid leaks. 3543 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 3544 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 3545 A->replaceAllUsesWith(UndefValue::get(A->getType())); 3546 delete A; 3547 } 3548 } 3549 return Error("Never resolved value found in function"); 3550 } 3551 } 3552 3553 // FIXME: Check for unresolved forward-declared metadata references 3554 // and clean up leaks. 3555 3556 // Trim the value list down to the size it was before we parsed this function. 3557 ValueList.shrinkTo(ModuleValueListSize); 3558 MDValueList.shrinkTo(ModuleMDValueListSize); 3559 std::vector<BasicBlock*>().swap(FunctionBBs); 3560 return std::error_code(); 3561 } 3562 3563 /// Find the function body in the bitcode stream 3564 std::error_code BitcodeReader::FindFunctionInStream( 3565 Function *F, 3566 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 3567 while (DeferredFunctionInfoIterator->second == 0) { 3568 if (Stream.AtEndOfStream()) 3569 return Error("Could not find function in stream"); 3570 // ParseModule will parse the next body in the stream and set its 3571 // position in the DeferredFunctionInfo map. 3572 if (std::error_code EC = ParseModule(true)) 3573 return EC; 3574 } 3575 return std::error_code(); 3576 } 3577 3578 //===----------------------------------------------------------------------===// 3579 // GVMaterializer implementation 3580 //===----------------------------------------------------------------------===// 3581 3582 void BitcodeReader::releaseBuffer() { Buffer.release(); } 3583 3584 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 3585 Function *F = dyn_cast<Function>(GV); 3586 // If it's not a function or is already material, ignore the request. 3587 if (!F || !F->isMaterializable()) 3588 return std::error_code(); 3589 3590 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 3591 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 3592 // If its position is recorded as 0, its body is somewhere in the stream 3593 // but we haven't seen it yet. 3594 if (DFII->second == 0 && LazyStreamer) 3595 if (std::error_code EC = FindFunctionInStream(F, DFII)) 3596 return EC; 3597 3598 // Move the bit stream to the saved position of the deferred function body. 3599 Stream.JumpToBit(DFII->second); 3600 3601 if (std::error_code EC = ParseFunctionBody(F)) 3602 return EC; 3603 F->setIsMaterializable(false); 3604 3605 // Upgrade any old intrinsic calls in the function. 3606 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 3607 E = UpgradedIntrinsics.end(); I != E; ++I) { 3608 if (I->first != I->second) { 3609 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3610 UI != UE;) { 3611 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3612 UpgradeIntrinsicCall(CI, I->second); 3613 } 3614 } 3615 } 3616 3617 // Bring in any functions that this function forward-referenced via 3618 // blockaddresses. 3619 return materializeForwardReferencedFunctions(); 3620 } 3621 3622 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 3623 const Function *F = dyn_cast<Function>(GV); 3624 if (!F || F->isDeclaration()) 3625 return false; 3626 3627 // Dematerializing F would leave dangling references that wouldn't be 3628 // reconnected on re-materialization. 3629 if (BlockAddressesTaken.count(F)) 3630 return false; 3631 3632 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 3633 } 3634 3635 void BitcodeReader::Dematerialize(GlobalValue *GV) { 3636 Function *F = dyn_cast<Function>(GV); 3637 // If this function isn't dematerializable, this is a noop. 3638 if (!F || !isDematerializable(F)) 3639 return; 3640 3641 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 3642 3643 // Just forget the function body, we can remat it later. 3644 F->dropAllReferences(); 3645 F->setIsMaterializable(true); 3646 } 3647 3648 std::error_code BitcodeReader::MaterializeModule(Module *M) { 3649 assert(M == TheModule && 3650 "Can only Materialize the Module this BitcodeReader is attached to."); 3651 3652 // Promise to materialize all forward references. 3653 WillMaterializeAllForwardRefs = true; 3654 3655 // Iterate over the module, deserializing any functions that are still on 3656 // disk. 3657 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 3658 F != E; ++F) { 3659 if (std::error_code EC = materialize(F)) 3660 return EC; 3661 } 3662 // At this point, if there are any function bodies, the current bit is 3663 // pointing to the END_BLOCK record after them. Now make sure the rest 3664 // of the bits in the module have been read. 3665 if (NextUnreadBit) 3666 ParseModule(true); 3667 3668 // Check that all block address forward references got resolved (as we 3669 // promised above). 3670 if (!BasicBlockFwdRefs.empty()) 3671 return Error("Never resolved function from blockaddress"); 3672 3673 // Upgrade any intrinsic calls that slipped through (should not happen!) and 3674 // delete the old functions to clean up. We can't do this unless the entire 3675 // module is materialized because there could always be another function body 3676 // with calls to the old function. 3677 for (std::vector<std::pair<Function*, Function*> >::iterator I = 3678 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 3679 if (I->first != I->second) { 3680 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3681 UI != UE;) { 3682 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3683 UpgradeIntrinsicCall(CI, I->second); 3684 } 3685 if (!I->first->use_empty()) 3686 I->first->replaceAllUsesWith(I->second); 3687 I->first->eraseFromParent(); 3688 } 3689 } 3690 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 3691 3692 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 3693 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 3694 3695 UpgradeDebugInfo(*M); 3696 return std::error_code(); 3697 } 3698 3699 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 3700 return IdentifiedStructTypes; 3701 } 3702 3703 std::error_code BitcodeReader::InitStream() { 3704 if (LazyStreamer) 3705 return InitLazyStream(); 3706 return InitStreamFromBuffer(); 3707 } 3708 3709 std::error_code BitcodeReader::InitStreamFromBuffer() { 3710 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 3711 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 3712 3713 if (Buffer->getBufferSize() & 3) 3714 return Error("Invalid bitcode signature"); 3715 3716 // If we have a wrapper header, parse it and ignore the non-bc file contents. 3717 // The magic number is 0x0B17C0DE stored in little endian. 3718 if (isBitcodeWrapper(BufPtr, BufEnd)) 3719 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 3720 return Error("Invalid bitcode wrapper header"); 3721 3722 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 3723 Stream.init(&*StreamFile); 3724 3725 return std::error_code(); 3726 } 3727 3728 std::error_code BitcodeReader::InitLazyStream() { 3729 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 3730 // see it. 3731 auto OwnedBytes = llvm::make_unique<StreamingMemoryObject>(LazyStreamer); 3732 StreamingMemoryObject &Bytes = *OwnedBytes; 3733 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 3734 Stream.init(&*StreamFile); 3735 3736 unsigned char buf[16]; 3737 if (Bytes.readBytes(buf, 16, 0) != 16) 3738 return Error("Invalid bitcode signature"); 3739 3740 if (!isBitcode(buf, buf + 16)) 3741 return Error("Invalid bitcode signature"); 3742 3743 if (isBitcodeWrapper(buf, buf + 4)) { 3744 const unsigned char *bitcodeStart = buf; 3745 const unsigned char *bitcodeEnd = buf + 16; 3746 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 3747 Bytes.dropLeadingBytes(bitcodeStart - buf); 3748 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 3749 } 3750 return std::error_code(); 3751 } 3752 3753 namespace { 3754 class BitcodeErrorCategoryType : public std::error_category { 3755 const char *name() const LLVM_NOEXCEPT override { 3756 return "llvm.bitcode"; 3757 } 3758 std::string message(int IE) const override { 3759 BitcodeError E = static_cast<BitcodeError>(IE); 3760 switch (E) { 3761 case BitcodeError::InvalidBitcodeSignature: 3762 return "Invalid bitcode signature"; 3763 case BitcodeError::CorruptedBitcode: 3764 return "Corrupted bitcode"; 3765 } 3766 llvm_unreachable("Unknown error type!"); 3767 } 3768 }; 3769 } 3770 3771 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 3772 3773 const std::error_category &llvm::BitcodeErrorCategory() { 3774 return *ErrorCategory; 3775 } 3776 3777 //===----------------------------------------------------------------------===// 3778 // External interface 3779 //===----------------------------------------------------------------------===// 3780 3781 /// \brief Get a lazy one-at-time loading module from bitcode. 3782 /// 3783 /// This isn't always used in a lazy context. In particular, it's also used by 3784 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 3785 /// in forward-referenced functions from block address references. 3786 /// 3787 /// \param[in] WillMaterializeAll Set to \c true if the caller promises to 3788 /// materialize everything -- in particular, if this isn't truly lazy. 3789 static ErrorOr<Module *> 3790 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 3791 LLVMContext &Context, bool WillMaterializeAll, 3792 DiagnosticHandlerFunction DiagnosticHandler) { 3793 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 3794 BitcodeReader *R = 3795 new BitcodeReader(Buffer.get(), Context, DiagnosticHandler); 3796 M->setMaterializer(R); 3797 3798 auto cleanupOnError = [&](std::error_code EC) { 3799 R->releaseBuffer(); // Never take ownership on error. 3800 delete M; // Also deletes R. 3801 return EC; 3802 }; 3803 3804 if (std::error_code EC = R->ParseBitcodeInto(M)) 3805 return cleanupOnError(EC); 3806 3807 if (!WillMaterializeAll) 3808 // Resolve forward references from blockaddresses. 3809 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 3810 return cleanupOnError(EC); 3811 3812 Buffer.release(); // The BitcodeReader owns it now. 3813 return M; 3814 } 3815 3816 ErrorOr<Module *> 3817 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 3818 LLVMContext &Context, 3819 DiagnosticHandlerFunction DiagnosticHandler) { 3820 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 3821 DiagnosticHandler); 3822 } 3823 3824 ErrorOr<std::unique_ptr<Module>> 3825 llvm::getStreamedBitcodeModule(StringRef Name, DataStreamer *Streamer, 3826 LLVMContext &Context, 3827 DiagnosticHandlerFunction DiagnosticHandler) { 3828 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 3829 BitcodeReader *R = new BitcodeReader(Streamer, Context, DiagnosticHandler); 3830 M->setMaterializer(R); 3831 if (std::error_code EC = R->ParseBitcodeInto(M.get())) 3832 return EC; 3833 return std::move(M); 3834 } 3835 3836 ErrorOr<Module *> 3837 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 3838 DiagnosticHandlerFunction DiagnosticHandler) { 3839 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 3840 ErrorOr<Module *> ModuleOrErr = getLazyBitcodeModuleImpl( 3841 std::move(Buf), Context, true, DiagnosticHandler); 3842 if (!ModuleOrErr) 3843 return ModuleOrErr; 3844 Module *M = ModuleOrErr.get(); 3845 // Read in the entire module, and destroy the BitcodeReader. 3846 if (std::error_code EC = M->materializeAllPermanently()) { 3847 delete M; 3848 return EC; 3849 } 3850 3851 // TODO: Restore the use-lists to the in-memory state when the bitcode was 3852 // written. We must defer until the Module has been fully materialized. 3853 3854 return M; 3855 } 3856 3857 std::string 3858 llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context, 3859 DiagnosticHandlerFunction DiagnosticHandler) { 3860 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 3861 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context, 3862 DiagnosticHandler); 3863 ErrorOr<std::string> Triple = R->parseTriple(); 3864 if (Triple.getError()) 3865 return ""; 3866 return Triple.get(); 3867 } 3868