1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Bitcode/BitcodeCommon.h" 24 #include "llvm/Bitcode/LLVMBitCodes.h" 25 #include "llvm/Bitstream/BitstreamReader.h" 26 #include "llvm/Config/llvm-config.h" 27 #include "llvm/IR/Argument.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/AutoUpgrade.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Comdat.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstIterator.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/IR/ModuleSummaryIndex.h" 57 #include "llvm/IR/Operator.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/Value.h" 60 #include "llvm/IR/Verifier.h" 61 #include "llvm/Support/AtomicOrdering.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Compiler.h" 65 #include "llvm/Support/Debug.h" 66 #include "llvm/Support/Error.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/ErrorOr.h" 69 #include "llvm/Support/ManagedStatic.h" 70 #include "llvm/Support/MathExtras.h" 71 #include "llvm/Support/MemoryBuffer.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstddef> 76 #include <cstdint> 77 #include <deque> 78 #include <map> 79 #include <memory> 80 #include <set> 81 #include <string> 82 #include <system_error> 83 #include <tuple> 84 #include <utility> 85 #include <vector> 86 87 using namespace llvm; 88 89 static cl::opt<bool> PrintSummaryGUIDs( 90 "print-summary-global-ids", cl::init(false), cl::Hidden, 91 cl::desc( 92 "Print the global id for each value when reading the module summary")); 93 94 namespace { 95 96 enum { 97 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 98 }; 99 100 } // end anonymous namespace 101 102 static Error error(const Twine &Message) { 103 return make_error<StringError>( 104 Message, make_error_code(BitcodeError::CorruptedBitcode)); 105 } 106 107 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 108 if (!Stream.canSkipToPos(4)) 109 return createStringError(std::errc::illegal_byte_sequence, 110 "file too small to contain bitcode header"); 111 for (unsigned C : {'B', 'C'}) 112 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 113 if (Res.get() != C) 114 return createStringError(std::errc::illegal_byte_sequence, 115 "file doesn't start with bitcode header"); 116 } else 117 return Res.takeError(); 118 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 119 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 120 if (Res.get() != C) 121 return createStringError(std::errc::illegal_byte_sequence, 122 "file doesn't start with bitcode header"); 123 } else 124 return Res.takeError(); 125 return Error::success(); 126 } 127 128 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 129 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 130 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 131 132 if (Buffer.getBufferSize() & 3) 133 return error("Invalid bitcode signature"); 134 135 // If we have a wrapper header, parse it and ignore the non-bc file contents. 136 // The magic number is 0x0B17C0DE stored in little endian. 137 if (isBitcodeWrapper(BufPtr, BufEnd)) 138 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 139 return error("Invalid bitcode wrapper header"); 140 141 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 142 if (Error Err = hasInvalidBitcodeHeader(Stream)) 143 return std::move(Err); 144 145 return std::move(Stream); 146 } 147 148 /// Convert a string from a record into an std::string, return true on failure. 149 template <typename StrTy> 150 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 151 StrTy &Result) { 152 if (Idx > Record.size()) 153 return true; 154 155 Result.append(Record.begin() + Idx, Record.end()); 156 return false; 157 } 158 159 // Strip all the TBAA attachment for the module. 160 static void stripTBAA(Module *M) { 161 for (auto &F : *M) { 162 if (F.isMaterializable()) 163 continue; 164 for (auto &I : instructions(F)) 165 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 166 } 167 } 168 169 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 170 /// "epoch" encoded in the bitcode, and return the producer name if any. 171 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 172 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 173 return std::move(Err); 174 175 // Read all the records. 176 SmallVector<uint64_t, 64> Record; 177 178 std::string ProducerIdentification; 179 180 while (true) { 181 BitstreamEntry Entry; 182 if (Expected<BitstreamEntry> Res = Stream.advance()) 183 Entry = Res.get(); 184 else 185 return Res.takeError(); 186 187 switch (Entry.Kind) { 188 default: 189 case BitstreamEntry::Error: 190 return error("Malformed block"); 191 case BitstreamEntry::EndBlock: 192 return ProducerIdentification; 193 case BitstreamEntry::Record: 194 // The interesting case. 195 break; 196 } 197 198 // Read a record. 199 Record.clear(); 200 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 201 if (!MaybeBitCode) 202 return MaybeBitCode.takeError(); 203 switch (MaybeBitCode.get()) { 204 default: // Default behavior: reject 205 return error("Invalid value"); 206 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 207 convertToString(Record, 0, ProducerIdentification); 208 break; 209 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 210 unsigned epoch = (unsigned)Record[0]; 211 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 212 return error( 213 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 214 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 215 } 216 } 217 } 218 } 219 } 220 221 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 222 // We expect a number of well-defined blocks, though we don't necessarily 223 // need to understand them all. 224 while (true) { 225 if (Stream.AtEndOfStream()) 226 return ""; 227 228 BitstreamEntry Entry; 229 if (Expected<BitstreamEntry> Res = Stream.advance()) 230 Entry = std::move(Res.get()); 231 else 232 return Res.takeError(); 233 234 switch (Entry.Kind) { 235 case BitstreamEntry::EndBlock: 236 case BitstreamEntry::Error: 237 return error("Malformed block"); 238 239 case BitstreamEntry::SubBlock: 240 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 241 return readIdentificationBlock(Stream); 242 243 // Ignore other sub-blocks. 244 if (Error Err = Stream.SkipBlock()) 245 return std::move(Err); 246 continue; 247 case BitstreamEntry::Record: 248 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 249 continue; 250 else 251 return Skipped.takeError(); 252 } 253 } 254 } 255 256 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 257 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 258 return std::move(Err); 259 260 SmallVector<uint64_t, 64> Record; 261 // Read all the records for this module. 262 263 while (true) { 264 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 265 if (!MaybeEntry) 266 return MaybeEntry.takeError(); 267 BitstreamEntry Entry = MaybeEntry.get(); 268 269 switch (Entry.Kind) { 270 case BitstreamEntry::SubBlock: // Handled for us already. 271 case BitstreamEntry::Error: 272 return error("Malformed block"); 273 case BitstreamEntry::EndBlock: 274 return false; 275 case BitstreamEntry::Record: 276 // The interesting case. 277 break; 278 } 279 280 // Read a record. 281 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 282 if (!MaybeRecord) 283 return MaybeRecord.takeError(); 284 switch (MaybeRecord.get()) { 285 default: 286 break; // Default behavior, ignore unknown content. 287 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 288 std::string S; 289 if (convertToString(Record, 0, S)) 290 return error("Invalid record"); 291 // Check for the i386 and other (x86_64, ARM) conventions 292 if (S.find("__DATA,__objc_catlist") != std::string::npos || 293 S.find("__OBJC,__category") != std::string::npos) 294 return true; 295 break; 296 } 297 } 298 Record.clear(); 299 } 300 llvm_unreachable("Exit infinite loop"); 301 } 302 303 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 304 // We expect a number of well-defined blocks, though we don't necessarily 305 // need to understand them all. 306 while (true) { 307 BitstreamEntry Entry; 308 if (Expected<BitstreamEntry> Res = Stream.advance()) 309 Entry = std::move(Res.get()); 310 else 311 return Res.takeError(); 312 313 switch (Entry.Kind) { 314 case BitstreamEntry::Error: 315 return error("Malformed block"); 316 case BitstreamEntry::EndBlock: 317 return false; 318 319 case BitstreamEntry::SubBlock: 320 if (Entry.ID == bitc::MODULE_BLOCK_ID) 321 return hasObjCCategoryInModule(Stream); 322 323 // Ignore other sub-blocks. 324 if (Error Err = Stream.SkipBlock()) 325 return std::move(Err); 326 continue; 327 328 case BitstreamEntry::Record: 329 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 330 continue; 331 else 332 return Skipped.takeError(); 333 } 334 } 335 } 336 337 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 338 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 339 return std::move(Err); 340 341 SmallVector<uint64_t, 64> Record; 342 343 std::string Triple; 344 345 // Read all the records for this module. 346 while (true) { 347 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 348 if (!MaybeEntry) 349 return MaybeEntry.takeError(); 350 BitstreamEntry Entry = MaybeEntry.get(); 351 352 switch (Entry.Kind) { 353 case BitstreamEntry::SubBlock: // Handled for us already. 354 case BitstreamEntry::Error: 355 return error("Malformed block"); 356 case BitstreamEntry::EndBlock: 357 return Triple; 358 case BitstreamEntry::Record: 359 // The interesting case. 360 break; 361 } 362 363 // Read a record. 364 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 365 if (!MaybeRecord) 366 return MaybeRecord.takeError(); 367 switch (MaybeRecord.get()) { 368 default: break; // Default behavior, ignore unknown content. 369 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 370 std::string S; 371 if (convertToString(Record, 0, S)) 372 return error("Invalid record"); 373 Triple = S; 374 break; 375 } 376 } 377 Record.clear(); 378 } 379 llvm_unreachable("Exit infinite loop"); 380 } 381 382 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 383 // We expect a number of well-defined blocks, though we don't necessarily 384 // need to understand them all. 385 while (true) { 386 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 387 if (!MaybeEntry) 388 return MaybeEntry.takeError(); 389 BitstreamEntry Entry = MaybeEntry.get(); 390 391 switch (Entry.Kind) { 392 case BitstreamEntry::Error: 393 return error("Malformed block"); 394 case BitstreamEntry::EndBlock: 395 return ""; 396 397 case BitstreamEntry::SubBlock: 398 if (Entry.ID == bitc::MODULE_BLOCK_ID) 399 return readModuleTriple(Stream); 400 401 // Ignore other sub-blocks. 402 if (Error Err = Stream.SkipBlock()) 403 return std::move(Err); 404 continue; 405 406 case BitstreamEntry::Record: 407 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 408 continue; 409 else 410 return Skipped.takeError(); 411 } 412 } 413 } 414 415 namespace { 416 417 class BitcodeReaderBase { 418 protected: 419 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 420 : Stream(std::move(Stream)), Strtab(Strtab) { 421 this->Stream.setBlockInfo(&BlockInfo); 422 } 423 424 BitstreamBlockInfo BlockInfo; 425 BitstreamCursor Stream; 426 StringRef Strtab; 427 428 /// In version 2 of the bitcode we store names of global values and comdats in 429 /// a string table rather than in the VST. 430 bool UseStrtab = false; 431 432 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 433 434 /// If this module uses a string table, pop the reference to the string table 435 /// and return the referenced string and the rest of the record. Otherwise 436 /// just return the record itself. 437 std::pair<StringRef, ArrayRef<uint64_t>> 438 readNameFromStrtab(ArrayRef<uint64_t> Record); 439 440 bool readBlockInfo(); 441 442 // Contains an arbitrary and optional string identifying the bitcode producer 443 std::string ProducerIdentification; 444 445 Error error(const Twine &Message); 446 }; 447 448 } // end anonymous namespace 449 450 Error BitcodeReaderBase::error(const Twine &Message) { 451 std::string FullMsg = Message.str(); 452 if (!ProducerIdentification.empty()) 453 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 454 LLVM_VERSION_STRING "')"; 455 return ::error(FullMsg); 456 } 457 458 Expected<unsigned> 459 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 460 if (Record.empty()) 461 return error("Invalid record"); 462 unsigned ModuleVersion = Record[0]; 463 if (ModuleVersion > 2) 464 return error("Invalid value"); 465 UseStrtab = ModuleVersion >= 2; 466 return ModuleVersion; 467 } 468 469 std::pair<StringRef, ArrayRef<uint64_t>> 470 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 471 if (!UseStrtab) 472 return {"", Record}; 473 // Invalid reference. Let the caller complain about the record being empty. 474 if (Record[0] + Record[1] > Strtab.size()) 475 return {"", {}}; 476 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 477 } 478 479 namespace { 480 481 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 482 LLVMContext &Context; 483 Module *TheModule = nullptr; 484 // Next offset to start scanning for lazy parsing of function bodies. 485 uint64_t NextUnreadBit = 0; 486 // Last function offset found in the VST. 487 uint64_t LastFunctionBlockBit = 0; 488 bool SeenValueSymbolTable = false; 489 uint64_t VSTOffset = 0; 490 491 std::vector<std::string> SectionTable; 492 std::vector<std::string> GCTable; 493 494 std::vector<Type*> TypeList; 495 DenseMap<Function *, FunctionType *> FunctionTypes; 496 BitcodeReaderValueList ValueList; 497 Optional<MetadataLoader> MDLoader; 498 std::vector<Comdat *> ComdatList; 499 SmallVector<Instruction *, 64> InstructionList; 500 501 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 502 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits; 503 504 struct FunctionOperandInfo { 505 Function *F; 506 unsigned PersonalityFn; 507 unsigned Prefix; 508 unsigned Prologue; 509 }; 510 std::vector<FunctionOperandInfo> FunctionOperands; 511 512 /// The set of attributes by index. Index zero in the file is for null, and 513 /// is thus not represented here. As such all indices are off by one. 514 std::vector<AttributeList> MAttributes; 515 516 /// The set of attribute groups. 517 std::map<unsigned, AttributeList> MAttributeGroups; 518 519 /// While parsing a function body, this is a list of the basic blocks for the 520 /// function. 521 std::vector<BasicBlock*> FunctionBBs; 522 523 // When reading the module header, this list is populated with functions that 524 // have bodies later in the file. 525 std::vector<Function*> FunctionsWithBodies; 526 527 // When intrinsic functions are encountered which require upgrading they are 528 // stored here with their replacement function. 529 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 530 UpdatedIntrinsicMap UpgradedIntrinsics; 531 // Intrinsics which were remangled because of types rename 532 UpdatedIntrinsicMap RemangledIntrinsics; 533 534 // Several operations happen after the module header has been read, but 535 // before function bodies are processed. This keeps track of whether 536 // we've done this yet. 537 bool SeenFirstFunctionBody = false; 538 539 /// When function bodies are initially scanned, this map contains info about 540 /// where to find deferred function body in the stream. 541 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 542 543 /// When Metadata block is initially scanned when parsing the module, we may 544 /// choose to defer parsing of the metadata. This vector contains info about 545 /// which Metadata blocks are deferred. 546 std::vector<uint64_t> DeferredMetadataInfo; 547 548 /// These are basic blocks forward-referenced by block addresses. They are 549 /// inserted lazily into functions when they're loaded. The basic block ID is 550 /// its index into the vector. 551 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 552 std::deque<Function *> BasicBlockFwdRefQueue; 553 554 /// Indicates that we are using a new encoding for instruction operands where 555 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 556 /// instruction number, for a more compact encoding. Some instruction 557 /// operands are not relative to the instruction ID: basic block numbers, and 558 /// types. Once the old style function blocks have been phased out, we would 559 /// not need this flag. 560 bool UseRelativeIDs = false; 561 562 /// True if all functions will be materialized, negating the need to process 563 /// (e.g.) blockaddress forward references. 564 bool WillMaterializeAllForwardRefs = false; 565 566 bool StripDebugInfo = false; 567 TBAAVerifier TBAAVerifyHelper; 568 569 std::vector<std::string> BundleTags; 570 SmallVector<SyncScope::ID, 8> SSIDs; 571 572 public: 573 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 574 StringRef ProducerIdentification, LLVMContext &Context); 575 576 Error materializeForwardReferencedFunctions(); 577 578 Error materialize(GlobalValue *GV) override; 579 Error materializeModule() override; 580 std::vector<StructType *> getIdentifiedStructTypes() const override; 581 582 /// Main interface to parsing a bitcode buffer. 583 /// \returns true if an error occurred. 584 Error parseBitcodeInto( 585 Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false, 586 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 587 588 static uint64_t decodeSignRotatedValue(uint64_t V); 589 590 /// Materialize any deferred Metadata block. 591 Error materializeMetadata() override; 592 593 void setStripDebugInfo() override; 594 595 private: 596 std::vector<StructType *> IdentifiedStructTypes; 597 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 598 StructType *createIdentifiedStructType(LLVMContext &Context); 599 600 Type *getTypeByID(unsigned ID); 601 602 Value *getFnValueByID(unsigned ID, Type *Ty) { 603 if (Ty && Ty->isMetadataTy()) 604 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 605 return ValueList.getValueFwdRef(ID, Ty); 606 } 607 608 Metadata *getFnMetadataByID(unsigned ID) { 609 return MDLoader->getMetadataFwdRefOrLoad(ID); 610 } 611 612 BasicBlock *getBasicBlock(unsigned ID) const { 613 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 614 return FunctionBBs[ID]; 615 } 616 617 AttributeList getAttributes(unsigned i) const { 618 if (i-1 < MAttributes.size()) 619 return MAttributes[i-1]; 620 return AttributeList(); 621 } 622 623 /// Read a value/type pair out of the specified record from slot 'Slot'. 624 /// Increment Slot past the number of slots used in the record. Return true on 625 /// failure. 626 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 627 unsigned InstNum, Value *&ResVal) { 628 if (Slot == Record.size()) return true; 629 unsigned ValNo = (unsigned)Record[Slot++]; 630 // Adjust the ValNo, if it was encoded relative to the InstNum. 631 if (UseRelativeIDs) 632 ValNo = InstNum - ValNo; 633 if (ValNo < InstNum) { 634 // If this is not a forward reference, just return the value we already 635 // have. 636 ResVal = getFnValueByID(ValNo, nullptr); 637 return ResVal == nullptr; 638 } 639 if (Slot == Record.size()) 640 return true; 641 642 unsigned TypeNo = (unsigned)Record[Slot++]; 643 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 644 return ResVal == nullptr; 645 } 646 647 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 648 /// past the number of slots used by the value in the record. Return true if 649 /// there is an error. 650 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 651 unsigned InstNum, Type *Ty, Value *&ResVal) { 652 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 653 return true; 654 // All values currently take a single record slot. 655 ++Slot; 656 return false; 657 } 658 659 /// Like popValue, but does not increment the Slot number. 660 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 661 unsigned InstNum, Type *Ty, Value *&ResVal) { 662 ResVal = getValue(Record, Slot, InstNum, Ty); 663 return ResVal == nullptr; 664 } 665 666 /// Version of getValue that returns ResVal directly, or 0 if there is an 667 /// error. 668 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 669 unsigned InstNum, Type *Ty) { 670 if (Slot == Record.size()) return nullptr; 671 unsigned ValNo = (unsigned)Record[Slot]; 672 // Adjust the ValNo, if it was encoded relative to the InstNum. 673 if (UseRelativeIDs) 674 ValNo = InstNum - ValNo; 675 return getFnValueByID(ValNo, Ty); 676 } 677 678 /// Like getValue, but decodes signed VBRs. 679 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 680 unsigned InstNum, Type *Ty) { 681 if (Slot == Record.size()) return nullptr; 682 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 683 // Adjust the ValNo, if it was encoded relative to the InstNum. 684 if (UseRelativeIDs) 685 ValNo = InstNum - ValNo; 686 return getFnValueByID(ValNo, Ty); 687 } 688 689 /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the 690 /// corresponding argument's pointee type. Also upgrades intrinsics that now 691 /// require an elementtype attribute. 692 void propagateAttributeTypes(CallBase *CB, ArrayRef<Type *> ArgsTys); 693 694 /// Converts alignment exponent (i.e. power of two (or zero)) to the 695 /// corresponding alignment to use. If alignment is too large, returns 696 /// a corresponding error code. 697 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 698 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 699 Error parseModule( 700 uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 701 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 702 703 Error parseComdatRecord(ArrayRef<uint64_t> Record); 704 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 705 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 706 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 707 ArrayRef<uint64_t> Record); 708 709 Error parseAttributeBlock(); 710 Error parseAttributeGroupBlock(); 711 Error parseTypeTable(); 712 Error parseTypeTableBody(); 713 Error parseOperandBundleTags(); 714 Error parseSyncScopeNames(); 715 716 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 717 unsigned NameIndex, Triple &TT); 718 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 719 ArrayRef<uint64_t> Record); 720 Error parseValueSymbolTable(uint64_t Offset = 0); 721 Error parseGlobalValueSymbolTable(); 722 Error parseConstants(); 723 Error rememberAndSkipFunctionBodies(); 724 Error rememberAndSkipFunctionBody(); 725 /// Save the positions of the Metadata blocks and skip parsing the blocks. 726 Error rememberAndSkipMetadata(); 727 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 728 Error parseFunctionBody(Function *F); 729 Error globalCleanup(); 730 Error resolveGlobalAndIndirectSymbolInits(); 731 Error parseUseLists(); 732 Error findFunctionInStream( 733 Function *F, 734 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 735 736 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 737 }; 738 739 /// Class to manage reading and parsing function summary index bitcode 740 /// files/sections. 741 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 742 /// The module index built during parsing. 743 ModuleSummaryIndex &TheIndex; 744 745 /// Indicates whether we have encountered a global value summary section 746 /// yet during parsing. 747 bool SeenGlobalValSummary = false; 748 749 /// Indicates whether we have already parsed the VST, used for error checking. 750 bool SeenValueSymbolTable = false; 751 752 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 753 /// Used to enable on-demand parsing of the VST. 754 uint64_t VSTOffset = 0; 755 756 // Map to save ValueId to ValueInfo association that was recorded in the 757 // ValueSymbolTable. It is used after the VST is parsed to convert 758 // call graph edges read from the function summary from referencing 759 // callees by their ValueId to using the ValueInfo instead, which is how 760 // they are recorded in the summary index being built. 761 // We save a GUID which refers to the same global as the ValueInfo, but 762 // ignoring the linkage, i.e. for values other than local linkage they are 763 // identical. 764 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 765 ValueIdToValueInfoMap; 766 767 /// Map populated during module path string table parsing, from the 768 /// module ID to a string reference owned by the index's module 769 /// path string table, used to correlate with combined index 770 /// summary records. 771 DenseMap<uint64_t, StringRef> ModuleIdMap; 772 773 /// Original source file name recorded in a bitcode record. 774 std::string SourceFileName; 775 776 /// The string identifier given to this module by the client, normally the 777 /// path to the bitcode file. 778 StringRef ModulePath; 779 780 /// For per-module summary indexes, the unique numerical identifier given to 781 /// this module by the client. 782 unsigned ModuleId; 783 784 public: 785 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 786 ModuleSummaryIndex &TheIndex, 787 StringRef ModulePath, unsigned ModuleId); 788 789 Error parseModule(); 790 791 private: 792 void setValueGUID(uint64_t ValueID, StringRef ValueName, 793 GlobalValue::LinkageTypes Linkage, 794 StringRef SourceFileName); 795 Error parseValueSymbolTable( 796 uint64_t Offset, 797 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 798 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 799 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 800 bool IsOldProfileFormat, 801 bool HasProfile, 802 bool HasRelBF); 803 Error parseEntireSummary(unsigned ID); 804 Error parseModuleStringTable(); 805 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 806 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 807 TypeIdCompatibleVtableInfo &TypeId); 808 std::vector<FunctionSummary::ParamAccess> 809 parseParamAccesses(ArrayRef<uint64_t> Record); 810 811 std::pair<ValueInfo, GlobalValue::GUID> 812 getValueInfoFromValueId(unsigned ValueId); 813 814 void addThisModule(); 815 ModuleSummaryIndex::ModuleInfo *getThisModule(); 816 }; 817 818 } // end anonymous namespace 819 820 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 821 Error Err) { 822 if (Err) { 823 std::error_code EC; 824 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 825 EC = EIB.convertToErrorCode(); 826 Ctx.emitError(EIB.message()); 827 }); 828 return EC; 829 } 830 return std::error_code(); 831 } 832 833 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 834 StringRef ProducerIdentification, 835 LLVMContext &Context) 836 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 837 ValueList(Context, Stream.SizeInBytes()) { 838 this->ProducerIdentification = std::string(ProducerIdentification); 839 } 840 841 Error BitcodeReader::materializeForwardReferencedFunctions() { 842 if (WillMaterializeAllForwardRefs) 843 return Error::success(); 844 845 // Prevent recursion. 846 WillMaterializeAllForwardRefs = true; 847 848 while (!BasicBlockFwdRefQueue.empty()) { 849 Function *F = BasicBlockFwdRefQueue.front(); 850 BasicBlockFwdRefQueue.pop_front(); 851 assert(F && "Expected valid function"); 852 if (!BasicBlockFwdRefs.count(F)) 853 // Already materialized. 854 continue; 855 856 // Check for a function that isn't materializable to prevent an infinite 857 // loop. When parsing a blockaddress stored in a global variable, there 858 // isn't a trivial way to check if a function will have a body without a 859 // linear search through FunctionsWithBodies, so just check it here. 860 if (!F->isMaterializable()) 861 return error("Never resolved function from blockaddress"); 862 863 // Try to materialize F. 864 if (Error Err = materialize(F)) 865 return Err; 866 } 867 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 868 869 // Reset state. 870 WillMaterializeAllForwardRefs = false; 871 return Error::success(); 872 } 873 874 //===----------------------------------------------------------------------===// 875 // Helper functions to implement forward reference resolution, etc. 876 //===----------------------------------------------------------------------===// 877 878 static bool hasImplicitComdat(size_t Val) { 879 switch (Val) { 880 default: 881 return false; 882 case 1: // Old WeakAnyLinkage 883 case 4: // Old LinkOnceAnyLinkage 884 case 10: // Old WeakODRLinkage 885 case 11: // Old LinkOnceODRLinkage 886 return true; 887 } 888 } 889 890 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 891 switch (Val) { 892 default: // Map unknown/new linkages to external 893 case 0: 894 return GlobalValue::ExternalLinkage; 895 case 2: 896 return GlobalValue::AppendingLinkage; 897 case 3: 898 return GlobalValue::InternalLinkage; 899 case 5: 900 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 901 case 6: 902 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 903 case 7: 904 return GlobalValue::ExternalWeakLinkage; 905 case 8: 906 return GlobalValue::CommonLinkage; 907 case 9: 908 return GlobalValue::PrivateLinkage; 909 case 12: 910 return GlobalValue::AvailableExternallyLinkage; 911 case 13: 912 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 913 case 14: 914 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 915 case 15: 916 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 917 case 1: // Old value with implicit comdat. 918 case 16: 919 return GlobalValue::WeakAnyLinkage; 920 case 10: // Old value with implicit comdat. 921 case 17: 922 return GlobalValue::WeakODRLinkage; 923 case 4: // Old value with implicit comdat. 924 case 18: 925 return GlobalValue::LinkOnceAnyLinkage; 926 case 11: // Old value with implicit comdat. 927 case 19: 928 return GlobalValue::LinkOnceODRLinkage; 929 } 930 } 931 932 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 933 FunctionSummary::FFlags Flags; 934 Flags.ReadNone = RawFlags & 0x1; 935 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 936 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 937 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 938 Flags.NoInline = (RawFlags >> 4) & 0x1; 939 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 940 Flags.NoUnwind = (RawFlags >> 6) & 0x1; 941 Flags.MayThrow = (RawFlags >> 7) & 0x1; 942 Flags.HasUnknownCall = (RawFlags >> 8) & 0x1; 943 return Flags; 944 } 945 946 // Decode the flags for GlobalValue in the summary. The bits for each attribute: 947 // 948 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7, 949 // visibility: [8, 10). 950 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 951 uint64_t Version) { 952 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 953 // like getDecodedLinkage() above. Any future change to the linkage enum and 954 // to getDecodedLinkage() will need to be taken into account here as above. 955 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 956 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits 957 RawFlags = RawFlags >> 4; 958 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 959 // The Live flag wasn't introduced until version 3. For dead stripping 960 // to work correctly on earlier versions, we must conservatively treat all 961 // values as live. 962 bool Live = (RawFlags & 0x2) || Version < 3; 963 bool Local = (RawFlags & 0x4); 964 bool AutoHide = (RawFlags & 0x8); 965 966 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport, 967 Live, Local, AutoHide); 968 } 969 970 // Decode the flags for GlobalVariable in the summary 971 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 972 return GlobalVarSummary::GVarFlags( 973 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 974 (RawFlags & 0x4) ? true : false, 975 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 976 } 977 978 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 979 switch (Val) { 980 default: // Map unknown visibilities to default. 981 case 0: return GlobalValue::DefaultVisibility; 982 case 1: return GlobalValue::HiddenVisibility; 983 case 2: return GlobalValue::ProtectedVisibility; 984 } 985 } 986 987 static GlobalValue::DLLStorageClassTypes 988 getDecodedDLLStorageClass(unsigned Val) { 989 switch (Val) { 990 default: // Map unknown values to default. 991 case 0: return GlobalValue::DefaultStorageClass; 992 case 1: return GlobalValue::DLLImportStorageClass; 993 case 2: return GlobalValue::DLLExportStorageClass; 994 } 995 } 996 997 static bool getDecodedDSOLocal(unsigned Val) { 998 switch(Val) { 999 default: // Map unknown values to preemptable. 1000 case 0: return false; 1001 case 1: return true; 1002 } 1003 } 1004 1005 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1006 switch (Val) { 1007 case 0: return GlobalVariable::NotThreadLocal; 1008 default: // Map unknown non-zero value to general dynamic. 1009 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1010 case 2: return GlobalVariable::LocalDynamicTLSModel; 1011 case 3: return GlobalVariable::InitialExecTLSModel; 1012 case 4: return GlobalVariable::LocalExecTLSModel; 1013 } 1014 } 1015 1016 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1017 switch (Val) { 1018 default: // Map unknown to UnnamedAddr::None. 1019 case 0: return GlobalVariable::UnnamedAddr::None; 1020 case 1: return GlobalVariable::UnnamedAddr::Global; 1021 case 2: return GlobalVariable::UnnamedAddr::Local; 1022 } 1023 } 1024 1025 static int getDecodedCastOpcode(unsigned Val) { 1026 switch (Val) { 1027 default: return -1; 1028 case bitc::CAST_TRUNC : return Instruction::Trunc; 1029 case bitc::CAST_ZEXT : return Instruction::ZExt; 1030 case bitc::CAST_SEXT : return Instruction::SExt; 1031 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1032 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1033 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1034 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1035 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1036 case bitc::CAST_FPEXT : return Instruction::FPExt; 1037 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1038 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1039 case bitc::CAST_BITCAST : return Instruction::BitCast; 1040 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1041 } 1042 } 1043 1044 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1045 bool IsFP = Ty->isFPOrFPVectorTy(); 1046 // UnOps are only valid for int/fp or vector of int/fp types 1047 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1048 return -1; 1049 1050 switch (Val) { 1051 default: 1052 return -1; 1053 case bitc::UNOP_FNEG: 1054 return IsFP ? Instruction::FNeg : -1; 1055 } 1056 } 1057 1058 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1059 bool IsFP = Ty->isFPOrFPVectorTy(); 1060 // BinOps are only valid for int/fp or vector of int/fp types 1061 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1062 return -1; 1063 1064 switch (Val) { 1065 default: 1066 return -1; 1067 case bitc::BINOP_ADD: 1068 return IsFP ? Instruction::FAdd : Instruction::Add; 1069 case bitc::BINOP_SUB: 1070 return IsFP ? Instruction::FSub : Instruction::Sub; 1071 case bitc::BINOP_MUL: 1072 return IsFP ? Instruction::FMul : Instruction::Mul; 1073 case bitc::BINOP_UDIV: 1074 return IsFP ? -1 : Instruction::UDiv; 1075 case bitc::BINOP_SDIV: 1076 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1077 case bitc::BINOP_UREM: 1078 return IsFP ? -1 : Instruction::URem; 1079 case bitc::BINOP_SREM: 1080 return IsFP ? Instruction::FRem : Instruction::SRem; 1081 case bitc::BINOP_SHL: 1082 return IsFP ? -1 : Instruction::Shl; 1083 case bitc::BINOP_LSHR: 1084 return IsFP ? -1 : Instruction::LShr; 1085 case bitc::BINOP_ASHR: 1086 return IsFP ? -1 : Instruction::AShr; 1087 case bitc::BINOP_AND: 1088 return IsFP ? -1 : Instruction::And; 1089 case bitc::BINOP_OR: 1090 return IsFP ? -1 : Instruction::Or; 1091 case bitc::BINOP_XOR: 1092 return IsFP ? -1 : Instruction::Xor; 1093 } 1094 } 1095 1096 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1097 switch (Val) { 1098 default: return AtomicRMWInst::BAD_BINOP; 1099 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1100 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1101 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1102 case bitc::RMW_AND: return AtomicRMWInst::And; 1103 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1104 case bitc::RMW_OR: return AtomicRMWInst::Or; 1105 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1106 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1107 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1108 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1109 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1110 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1111 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1112 } 1113 } 1114 1115 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1116 switch (Val) { 1117 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1118 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1119 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1120 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1121 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1122 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1123 default: // Map unknown orderings to sequentially-consistent. 1124 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1125 } 1126 } 1127 1128 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1129 switch (Val) { 1130 default: // Map unknown selection kinds to any. 1131 case bitc::COMDAT_SELECTION_KIND_ANY: 1132 return Comdat::Any; 1133 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1134 return Comdat::ExactMatch; 1135 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1136 return Comdat::Largest; 1137 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1138 return Comdat::NoDeduplicate; 1139 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1140 return Comdat::SameSize; 1141 } 1142 } 1143 1144 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1145 FastMathFlags FMF; 1146 if (0 != (Val & bitc::UnsafeAlgebra)) 1147 FMF.setFast(); 1148 if (0 != (Val & bitc::AllowReassoc)) 1149 FMF.setAllowReassoc(); 1150 if (0 != (Val & bitc::NoNaNs)) 1151 FMF.setNoNaNs(); 1152 if (0 != (Val & bitc::NoInfs)) 1153 FMF.setNoInfs(); 1154 if (0 != (Val & bitc::NoSignedZeros)) 1155 FMF.setNoSignedZeros(); 1156 if (0 != (Val & bitc::AllowReciprocal)) 1157 FMF.setAllowReciprocal(); 1158 if (0 != (Val & bitc::AllowContract)) 1159 FMF.setAllowContract(true); 1160 if (0 != (Val & bitc::ApproxFunc)) 1161 FMF.setApproxFunc(); 1162 return FMF; 1163 } 1164 1165 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1166 switch (Val) { 1167 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1168 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1169 } 1170 } 1171 1172 Type *BitcodeReader::getTypeByID(unsigned ID) { 1173 // The type table size is always specified correctly. 1174 if (ID >= TypeList.size()) 1175 return nullptr; 1176 1177 if (Type *Ty = TypeList[ID]) 1178 return Ty; 1179 1180 // If we have a forward reference, the only possible case is when it is to a 1181 // named struct. Just create a placeholder for now. 1182 return TypeList[ID] = createIdentifiedStructType(Context); 1183 } 1184 1185 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1186 StringRef Name) { 1187 auto *Ret = StructType::create(Context, Name); 1188 IdentifiedStructTypes.push_back(Ret); 1189 return Ret; 1190 } 1191 1192 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1193 auto *Ret = StructType::create(Context); 1194 IdentifiedStructTypes.push_back(Ret); 1195 return Ret; 1196 } 1197 1198 //===----------------------------------------------------------------------===// 1199 // Functions for parsing blocks from the bitcode file 1200 //===----------------------------------------------------------------------===// 1201 1202 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1203 switch (Val) { 1204 case Attribute::EndAttrKinds: 1205 case Attribute::EmptyKey: 1206 case Attribute::TombstoneKey: 1207 llvm_unreachable("Synthetic enumerators which should never get here"); 1208 1209 case Attribute::None: return 0; 1210 case Attribute::ZExt: return 1 << 0; 1211 case Attribute::SExt: return 1 << 1; 1212 case Attribute::NoReturn: return 1 << 2; 1213 case Attribute::InReg: return 1 << 3; 1214 case Attribute::StructRet: return 1 << 4; 1215 case Attribute::NoUnwind: return 1 << 5; 1216 case Attribute::NoAlias: return 1 << 6; 1217 case Attribute::ByVal: return 1 << 7; 1218 case Attribute::Nest: return 1 << 8; 1219 case Attribute::ReadNone: return 1 << 9; 1220 case Attribute::ReadOnly: return 1 << 10; 1221 case Attribute::NoInline: return 1 << 11; 1222 case Attribute::AlwaysInline: return 1 << 12; 1223 case Attribute::OptimizeForSize: return 1 << 13; 1224 case Attribute::StackProtect: return 1 << 14; 1225 case Attribute::StackProtectReq: return 1 << 15; 1226 case Attribute::Alignment: return 31 << 16; 1227 case Attribute::NoCapture: return 1 << 21; 1228 case Attribute::NoRedZone: return 1 << 22; 1229 case Attribute::NoImplicitFloat: return 1 << 23; 1230 case Attribute::Naked: return 1 << 24; 1231 case Attribute::InlineHint: return 1 << 25; 1232 case Attribute::StackAlignment: return 7 << 26; 1233 case Attribute::ReturnsTwice: return 1 << 29; 1234 case Attribute::UWTable: return 1 << 30; 1235 case Attribute::NonLazyBind: return 1U << 31; 1236 case Attribute::SanitizeAddress: return 1ULL << 32; 1237 case Attribute::MinSize: return 1ULL << 33; 1238 case Attribute::NoDuplicate: return 1ULL << 34; 1239 case Attribute::StackProtectStrong: return 1ULL << 35; 1240 case Attribute::SanitizeThread: return 1ULL << 36; 1241 case Attribute::SanitizeMemory: return 1ULL << 37; 1242 case Attribute::NoBuiltin: return 1ULL << 38; 1243 case Attribute::Returned: return 1ULL << 39; 1244 case Attribute::Cold: return 1ULL << 40; 1245 case Attribute::Builtin: return 1ULL << 41; 1246 case Attribute::OptimizeNone: return 1ULL << 42; 1247 case Attribute::InAlloca: return 1ULL << 43; 1248 case Attribute::NonNull: return 1ULL << 44; 1249 case Attribute::JumpTable: return 1ULL << 45; 1250 case Attribute::Convergent: return 1ULL << 46; 1251 case Attribute::SafeStack: return 1ULL << 47; 1252 case Attribute::NoRecurse: return 1ULL << 48; 1253 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1254 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1255 case Attribute::SwiftSelf: return 1ULL << 51; 1256 case Attribute::SwiftError: return 1ULL << 52; 1257 case Attribute::WriteOnly: return 1ULL << 53; 1258 case Attribute::Speculatable: return 1ULL << 54; 1259 case Attribute::StrictFP: return 1ULL << 55; 1260 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1261 case Attribute::NoCfCheck: return 1ULL << 57; 1262 case Attribute::OptForFuzzing: return 1ULL << 58; 1263 case Attribute::ShadowCallStack: return 1ULL << 59; 1264 case Attribute::SpeculativeLoadHardening: 1265 return 1ULL << 60; 1266 case Attribute::ImmArg: 1267 return 1ULL << 61; 1268 case Attribute::WillReturn: 1269 return 1ULL << 62; 1270 case Attribute::NoFree: 1271 return 1ULL << 63; 1272 default: 1273 // Other attributes are not supported in the raw format, 1274 // as we ran out of space. 1275 return 0; 1276 } 1277 llvm_unreachable("Unsupported attribute type"); 1278 } 1279 1280 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1281 if (!Val) return; 1282 1283 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1284 I = Attribute::AttrKind(I + 1)) { 1285 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1286 if (I == Attribute::Alignment) 1287 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1288 else if (I == Attribute::StackAlignment) 1289 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1290 else if (Attribute::isTypeAttrKind(I)) 1291 B.addTypeAttr(I, nullptr); // Type will be auto-upgraded. 1292 else 1293 B.addAttribute(I); 1294 } 1295 } 1296 } 1297 1298 /// This fills an AttrBuilder object with the LLVM attributes that have 1299 /// been decoded from the given integer. This function must stay in sync with 1300 /// 'encodeLLVMAttributesForBitcode'. 1301 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1302 uint64_t EncodedAttrs) { 1303 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1304 // the bits above 31 down by 11 bits. 1305 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1306 assert((!Alignment || isPowerOf2_32(Alignment)) && 1307 "Alignment must be a power of two."); 1308 1309 if (Alignment) 1310 B.addAlignmentAttr(Alignment); 1311 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1312 (EncodedAttrs & 0xffff)); 1313 } 1314 1315 Error BitcodeReader::parseAttributeBlock() { 1316 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1317 return Err; 1318 1319 if (!MAttributes.empty()) 1320 return error("Invalid multiple blocks"); 1321 1322 SmallVector<uint64_t, 64> Record; 1323 1324 SmallVector<AttributeList, 8> Attrs; 1325 1326 // Read all the records. 1327 while (true) { 1328 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1329 if (!MaybeEntry) 1330 return MaybeEntry.takeError(); 1331 BitstreamEntry Entry = MaybeEntry.get(); 1332 1333 switch (Entry.Kind) { 1334 case BitstreamEntry::SubBlock: // Handled for us already. 1335 case BitstreamEntry::Error: 1336 return error("Malformed block"); 1337 case BitstreamEntry::EndBlock: 1338 return Error::success(); 1339 case BitstreamEntry::Record: 1340 // The interesting case. 1341 break; 1342 } 1343 1344 // Read a record. 1345 Record.clear(); 1346 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1347 if (!MaybeRecord) 1348 return MaybeRecord.takeError(); 1349 switch (MaybeRecord.get()) { 1350 default: // Default behavior: ignore. 1351 break; 1352 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1353 // Deprecated, but still needed to read old bitcode files. 1354 if (Record.size() & 1) 1355 return error("Invalid record"); 1356 1357 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1358 AttrBuilder B; 1359 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1360 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1361 } 1362 1363 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1364 Attrs.clear(); 1365 break; 1366 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1367 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1368 Attrs.push_back(MAttributeGroups[Record[i]]); 1369 1370 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1371 Attrs.clear(); 1372 break; 1373 } 1374 } 1375 } 1376 1377 // Returns Attribute::None on unrecognized codes. 1378 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1379 switch (Code) { 1380 default: 1381 return Attribute::None; 1382 case bitc::ATTR_KIND_ALIGNMENT: 1383 return Attribute::Alignment; 1384 case bitc::ATTR_KIND_ALWAYS_INLINE: 1385 return Attribute::AlwaysInline; 1386 case bitc::ATTR_KIND_ARGMEMONLY: 1387 return Attribute::ArgMemOnly; 1388 case bitc::ATTR_KIND_BUILTIN: 1389 return Attribute::Builtin; 1390 case bitc::ATTR_KIND_BY_VAL: 1391 return Attribute::ByVal; 1392 case bitc::ATTR_KIND_IN_ALLOCA: 1393 return Attribute::InAlloca; 1394 case bitc::ATTR_KIND_COLD: 1395 return Attribute::Cold; 1396 case bitc::ATTR_KIND_CONVERGENT: 1397 return Attribute::Convergent; 1398 case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION: 1399 return Attribute::DisableSanitizerInstrumentation; 1400 case bitc::ATTR_KIND_ELEMENTTYPE: 1401 return Attribute::ElementType; 1402 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1403 return Attribute::InaccessibleMemOnly; 1404 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1405 return Attribute::InaccessibleMemOrArgMemOnly; 1406 case bitc::ATTR_KIND_INLINE_HINT: 1407 return Attribute::InlineHint; 1408 case bitc::ATTR_KIND_IN_REG: 1409 return Attribute::InReg; 1410 case bitc::ATTR_KIND_JUMP_TABLE: 1411 return Attribute::JumpTable; 1412 case bitc::ATTR_KIND_MIN_SIZE: 1413 return Attribute::MinSize; 1414 case bitc::ATTR_KIND_NAKED: 1415 return Attribute::Naked; 1416 case bitc::ATTR_KIND_NEST: 1417 return Attribute::Nest; 1418 case bitc::ATTR_KIND_NO_ALIAS: 1419 return Attribute::NoAlias; 1420 case bitc::ATTR_KIND_NO_BUILTIN: 1421 return Attribute::NoBuiltin; 1422 case bitc::ATTR_KIND_NO_CALLBACK: 1423 return Attribute::NoCallback; 1424 case bitc::ATTR_KIND_NO_CAPTURE: 1425 return Attribute::NoCapture; 1426 case bitc::ATTR_KIND_NO_DUPLICATE: 1427 return Attribute::NoDuplicate; 1428 case bitc::ATTR_KIND_NOFREE: 1429 return Attribute::NoFree; 1430 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1431 return Attribute::NoImplicitFloat; 1432 case bitc::ATTR_KIND_NO_INLINE: 1433 return Attribute::NoInline; 1434 case bitc::ATTR_KIND_NO_RECURSE: 1435 return Attribute::NoRecurse; 1436 case bitc::ATTR_KIND_NO_MERGE: 1437 return Attribute::NoMerge; 1438 case bitc::ATTR_KIND_NON_LAZY_BIND: 1439 return Attribute::NonLazyBind; 1440 case bitc::ATTR_KIND_NON_NULL: 1441 return Attribute::NonNull; 1442 case bitc::ATTR_KIND_DEREFERENCEABLE: 1443 return Attribute::Dereferenceable; 1444 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1445 return Attribute::DereferenceableOrNull; 1446 case bitc::ATTR_KIND_ALLOC_SIZE: 1447 return Attribute::AllocSize; 1448 case bitc::ATTR_KIND_NO_RED_ZONE: 1449 return Attribute::NoRedZone; 1450 case bitc::ATTR_KIND_NO_RETURN: 1451 return Attribute::NoReturn; 1452 case bitc::ATTR_KIND_NOSYNC: 1453 return Attribute::NoSync; 1454 case bitc::ATTR_KIND_NOCF_CHECK: 1455 return Attribute::NoCfCheck; 1456 case bitc::ATTR_KIND_NO_PROFILE: 1457 return Attribute::NoProfile; 1458 case bitc::ATTR_KIND_NO_UNWIND: 1459 return Attribute::NoUnwind; 1460 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE: 1461 return Attribute::NoSanitizeCoverage; 1462 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 1463 return Attribute::NullPointerIsValid; 1464 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1465 return Attribute::OptForFuzzing; 1466 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1467 return Attribute::OptimizeForSize; 1468 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1469 return Attribute::OptimizeNone; 1470 case bitc::ATTR_KIND_READ_NONE: 1471 return Attribute::ReadNone; 1472 case bitc::ATTR_KIND_READ_ONLY: 1473 return Attribute::ReadOnly; 1474 case bitc::ATTR_KIND_RETURNED: 1475 return Attribute::Returned; 1476 case bitc::ATTR_KIND_RETURNS_TWICE: 1477 return Attribute::ReturnsTwice; 1478 case bitc::ATTR_KIND_S_EXT: 1479 return Attribute::SExt; 1480 case bitc::ATTR_KIND_SPECULATABLE: 1481 return Attribute::Speculatable; 1482 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1483 return Attribute::StackAlignment; 1484 case bitc::ATTR_KIND_STACK_PROTECT: 1485 return Attribute::StackProtect; 1486 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1487 return Attribute::StackProtectReq; 1488 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1489 return Attribute::StackProtectStrong; 1490 case bitc::ATTR_KIND_SAFESTACK: 1491 return Attribute::SafeStack; 1492 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1493 return Attribute::ShadowCallStack; 1494 case bitc::ATTR_KIND_STRICT_FP: 1495 return Attribute::StrictFP; 1496 case bitc::ATTR_KIND_STRUCT_RET: 1497 return Attribute::StructRet; 1498 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1499 return Attribute::SanitizeAddress; 1500 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1501 return Attribute::SanitizeHWAddress; 1502 case bitc::ATTR_KIND_SANITIZE_THREAD: 1503 return Attribute::SanitizeThread; 1504 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1505 return Attribute::SanitizeMemory; 1506 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1507 return Attribute::SpeculativeLoadHardening; 1508 case bitc::ATTR_KIND_SWIFT_ERROR: 1509 return Attribute::SwiftError; 1510 case bitc::ATTR_KIND_SWIFT_SELF: 1511 return Attribute::SwiftSelf; 1512 case bitc::ATTR_KIND_SWIFT_ASYNC: 1513 return Attribute::SwiftAsync; 1514 case bitc::ATTR_KIND_UW_TABLE: 1515 return Attribute::UWTable; 1516 case bitc::ATTR_KIND_VSCALE_RANGE: 1517 return Attribute::VScaleRange; 1518 case bitc::ATTR_KIND_WILLRETURN: 1519 return Attribute::WillReturn; 1520 case bitc::ATTR_KIND_WRITEONLY: 1521 return Attribute::WriteOnly; 1522 case bitc::ATTR_KIND_Z_EXT: 1523 return Attribute::ZExt; 1524 case bitc::ATTR_KIND_IMMARG: 1525 return Attribute::ImmArg; 1526 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 1527 return Attribute::SanitizeMemTag; 1528 case bitc::ATTR_KIND_PREALLOCATED: 1529 return Attribute::Preallocated; 1530 case bitc::ATTR_KIND_NOUNDEF: 1531 return Attribute::NoUndef; 1532 case bitc::ATTR_KIND_BYREF: 1533 return Attribute::ByRef; 1534 case bitc::ATTR_KIND_MUSTPROGRESS: 1535 return Attribute::MustProgress; 1536 case bitc::ATTR_KIND_HOT: 1537 return Attribute::Hot; 1538 } 1539 } 1540 1541 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1542 MaybeAlign &Alignment) { 1543 // Note: Alignment in bitcode files is incremented by 1, so that zero 1544 // can be used for default alignment. 1545 if (Exponent > Value::MaxAlignmentExponent + 1) 1546 return error("Invalid alignment value"); 1547 Alignment = decodeMaybeAlign(Exponent); 1548 return Error::success(); 1549 } 1550 1551 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1552 *Kind = getAttrFromCode(Code); 1553 if (*Kind == Attribute::None) 1554 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1555 return Error::success(); 1556 } 1557 1558 Error BitcodeReader::parseAttributeGroupBlock() { 1559 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1560 return Err; 1561 1562 if (!MAttributeGroups.empty()) 1563 return error("Invalid multiple blocks"); 1564 1565 SmallVector<uint64_t, 64> Record; 1566 1567 // Read all the records. 1568 while (true) { 1569 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1570 if (!MaybeEntry) 1571 return MaybeEntry.takeError(); 1572 BitstreamEntry Entry = MaybeEntry.get(); 1573 1574 switch (Entry.Kind) { 1575 case BitstreamEntry::SubBlock: // Handled for us already. 1576 case BitstreamEntry::Error: 1577 return error("Malformed block"); 1578 case BitstreamEntry::EndBlock: 1579 return Error::success(); 1580 case BitstreamEntry::Record: 1581 // The interesting case. 1582 break; 1583 } 1584 1585 // Read a record. 1586 Record.clear(); 1587 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1588 if (!MaybeRecord) 1589 return MaybeRecord.takeError(); 1590 switch (MaybeRecord.get()) { 1591 default: // Default behavior: ignore. 1592 break; 1593 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1594 if (Record.size() < 3) 1595 return error("Invalid record"); 1596 1597 uint64_t GrpID = Record[0]; 1598 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1599 1600 AttrBuilder B; 1601 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1602 if (Record[i] == 0) { // Enum attribute 1603 Attribute::AttrKind Kind; 1604 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1605 return Err; 1606 1607 // Upgrade old-style byval attribute to one with a type, even if it's 1608 // nullptr. We will have to insert the real type when we associate 1609 // this AttributeList with a function. 1610 if (Kind == Attribute::ByVal) 1611 B.addByValAttr(nullptr); 1612 else if (Kind == Attribute::StructRet) 1613 B.addStructRetAttr(nullptr); 1614 else if (Kind == Attribute::InAlloca) 1615 B.addInAllocaAttr(nullptr); 1616 else if (Attribute::isEnumAttrKind(Kind)) 1617 B.addAttribute(Kind); 1618 else 1619 return error("Not an enum attribute"); 1620 } else if (Record[i] == 1) { // Integer attribute 1621 Attribute::AttrKind Kind; 1622 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1623 return Err; 1624 if (!Attribute::isIntAttrKind(Kind)) 1625 return error("Not an int attribute"); 1626 if (Kind == Attribute::Alignment) 1627 B.addAlignmentAttr(Record[++i]); 1628 else if (Kind == Attribute::StackAlignment) 1629 B.addStackAlignmentAttr(Record[++i]); 1630 else if (Kind == Attribute::Dereferenceable) 1631 B.addDereferenceableAttr(Record[++i]); 1632 else if (Kind == Attribute::DereferenceableOrNull) 1633 B.addDereferenceableOrNullAttr(Record[++i]); 1634 else if (Kind == Attribute::AllocSize) 1635 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1636 else if (Kind == Attribute::VScaleRange) 1637 B.addVScaleRangeAttrFromRawRepr(Record[++i]); 1638 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 1639 bool HasValue = (Record[i++] == 4); 1640 SmallString<64> KindStr; 1641 SmallString<64> ValStr; 1642 1643 while (Record[i] != 0 && i != e) 1644 KindStr += Record[i++]; 1645 assert(Record[i] == 0 && "Kind string not null terminated"); 1646 1647 if (HasValue) { 1648 // Has a value associated with it. 1649 ++i; // Skip the '0' that terminates the "kind" string. 1650 while (Record[i] != 0 && i != e) 1651 ValStr += Record[i++]; 1652 assert(Record[i] == 0 && "Value string not null terminated"); 1653 } 1654 1655 B.addAttribute(KindStr.str(), ValStr.str()); 1656 } else { 1657 assert((Record[i] == 5 || Record[i] == 6) && 1658 "Invalid attribute group entry"); 1659 bool HasType = Record[i] == 6; 1660 Attribute::AttrKind Kind; 1661 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1662 return Err; 1663 if (!Attribute::isTypeAttrKind(Kind)) 1664 return error("Not a type attribute"); 1665 1666 B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr); 1667 } 1668 } 1669 1670 UpgradeAttributes(B); 1671 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1672 break; 1673 } 1674 } 1675 } 1676 } 1677 1678 Error BitcodeReader::parseTypeTable() { 1679 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1680 return Err; 1681 1682 return parseTypeTableBody(); 1683 } 1684 1685 Error BitcodeReader::parseTypeTableBody() { 1686 if (!TypeList.empty()) 1687 return error("Invalid multiple blocks"); 1688 1689 SmallVector<uint64_t, 64> Record; 1690 unsigned NumRecords = 0; 1691 1692 SmallString<64> TypeName; 1693 1694 // Read all the records for this type table. 1695 while (true) { 1696 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1697 if (!MaybeEntry) 1698 return MaybeEntry.takeError(); 1699 BitstreamEntry Entry = MaybeEntry.get(); 1700 1701 switch (Entry.Kind) { 1702 case BitstreamEntry::SubBlock: // Handled for us already. 1703 case BitstreamEntry::Error: 1704 return error("Malformed block"); 1705 case BitstreamEntry::EndBlock: 1706 if (NumRecords != TypeList.size()) 1707 return error("Malformed block"); 1708 return Error::success(); 1709 case BitstreamEntry::Record: 1710 // The interesting case. 1711 break; 1712 } 1713 1714 // Read a record. 1715 Record.clear(); 1716 Type *ResultTy = nullptr; 1717 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1718 if (!MaybeRecord) 1719 return MaybeRecord.takeError(); 1720 switch (MaybeRecord.get()) { 1721 default: 1722 return error("Invalid value"); 1723 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1724 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1725 // type list. This allows us to reserve space. 1726 if (Record.empty()) 1727 return error("Invalid record"); 1728 TypeList.resize(Record[0]); 1729 continue; 1730 case bitc::TYPE_CODE_VOID: // VOID 1731 ResultTy = Type::getVoidTy(Context); 1732 break; 1733 case bitc::TYPE_CODE_HALF: // HALF 1734 ResultTy = Type::getHalfTy(Context); 1735 break; 1736 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 1737 ResultTy = Type::getBFloatTy(Context); 1738 break; 1739 case bitc::TYPE_CODE_FLOAT: // FLOAT 1740 ResultTy = Type::getFloatTy(Context); 1741 break; 1742 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1743 ResultTy = Type::getDoubleTy(Context); 1744 break; 1745 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1746 ResultTy = Type::getX86_FP80Ty(Context); 1747 break; 1748 case bitc::TYPE_CODE_FP128: // FP128 1749 ResultTy = Type::getFP128Ty(Context); 1750 break; 1751 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1752 ResultTy = Type::getPPC_FP128Ty(Context); 1753 break; 1754 case bitc::TYPE_CODE_LABEL: // LABEL 1755 ResultTy = Type::getLabelTy(Context); 1756 break; 1757 case bitc::TYPE_CODE_METADATA: // METADATA 1758 ResultTy = Type::getMetadataTy(Context); 1759 break; 1760 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1761 ResultTy = Type::getX86_MMXTy(Context); 1762 break; 1763 case bitc::TYPE_CODE_X86_AMX: // X86_AMX 1764 ResultTy = Type::getX86_AMXTy(Context); 1765 break; 1766 case bitc::TYPE_CODE_TOKEN: // TOKEN 1767 ResultTy = Type::getTokenTy(Context); 1768 break; 1769 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1770 if (Record.empty()) 1771 return error("Invalid record"); 1772 1773 uint64_t NumBits = Record[0]; 1774 if (NumBits < IntegerType::MIN_INT_BITS || 1775 NumBits > IntegerType::MAX_INT_BITS) 1776 return error("Bitwidth for integer type out of range"); 1777 ResultTy = IntegerType::get(Context, NumBits); 1778 break; 1779 } 1780 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1781 // [pointee type, address space] 1782 if (Record.empty()) 1783 return error("Invalid record"); 1784 unsigned AddressSpace = 0; 1785 if (Record.size() == 2) 1786 AddressSpace = Record[1]; 1787 ResultTy = getTypeByID(Record[0]); 1788 if (!ResultTy || 1789 !PointerType::isValidElementType(ResultTy)) 1790 return error("Invalid type"); 1791 ResultTy = PointerType::get(ResultTy, AddressSpace); 1792 break; 1793 } 1794 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace] 1795 if (Record.size() != 1) 1796 return error("Invalid record"); 1797 if (Context.supportsTypedPointers()) 1798 return error( 1799 "Opaque pointers are only supported in -opaque-pointers mode"); 1800 unsigned AddressSpace = Record[0]; 1801 ResultTy = PointerType::get(Context, AddressSpace); 1802 break; 1803 } 1804 case bitc::TYPE_CODE_FUNCTION_OLD: { 1805 // Deprecated, but still needed to read old bitcode files. 1806 // FUNCTION: [vararg, attrid, retty, paramty x N] 1807 if (Record.size() < 3) 1808 return error("Invalid record"); 1809 SmallVector<Type*, 8> ArgTys; 1810 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1811 if (Type *T = getTypeByID(Record[i])) 1812 ArgTys.push_back(T); 1813 else 1814 break; 1815 } 1816 1817 ResultTy = getTypeByID(Record[2]); 1818 if (!ResultTy || ArgTys.size() < Record.size()-3) 1819 return error("Invalid type"); 1820 1821 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1822 break; 1823 } 1824 case bitc::TYPE_CODE_FUNCTION: { 1825 // FUNCTION: [vararg, retty, paramty x N] 1826 if (Record.size() < 2) 1827 return error("Invalid record"); 1828 SmallVector<Type*, 8> ArgTys; 1829 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1830 if (Type *T = getTypeByID(Record[i])) { 1831 if (!FunctionType::isValidArgumentType(T)) 1832 return error("Invalid function argument type"); 1833 ArgTys.push_back(T); 1834 } 1835 else 1836 break; 1837 } 1838 1839 ResultTy = getTypeByID(Record[1]); 1840 if (!ResultTy || ArgTys.size() < Record.size()-2) 1841 return error("Invalid type"); 1842 1843 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1844 break; 1845 } 1846 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1847 if (Record.empty()) 1848 return error("Invalid record"); 1849 SmallVector<Type*, 8> EltTys; 1850 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1851 if (Type *T = getTypeByID(Record[i])) 1852 EltTys.push_back(T); 1853 else 1854 break; 1855 } 1856 if (EltTys.size() != Record.size()-1) 1857 return error("Invalid type"); 1858 ResultTy = StructType::get(Context, EltTys, Record[0]); 1859 break; 1860 } 1861 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1862 if (convertToString(Record, 0, TypeName)) 1863 return error("Invalid record"); 1864 continue; 1865 1866 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1867 if (Record.empty()) 1868 return error("Invalid record"); 1869 1870 if (NumRecords >= TypeList.size()) 1871 return error("Invalid TYPE table"); 1872 1873 // Check to see if this was forward referenced, if so fill in the temp. 1874 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1875 if (Res) { 1876 Res->setName(TypeName); 1877 TypeList[NumRecords] = nullptr; 1878 } else // Otherwise, create a new struct. 1879 Res = createIdentifiedStructType(Context, TypeName); 1880 TypeName.clear(); 1881 1882 SmallVector<Type*, 8> EltTys; 1883 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1884 if (Type *T = getTypeByID(Record[i])) 1885 EltTys.push_back(T); 1886 else 1887 break; 1888 } 1889 if (EltTys.size() != Record.size()-1) 1890 return error("Invalid record"); 1891 Res->setBody(EltTys, Record[0]); 1892 ResultTy = Res; 1893 break; 1894 } 1895 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1896 if (Record.size() != 1) 1897 return error("Invalid record"); 1898 1899 if (NumRecords >= TypeList.size()) 1900 return error("Invalid TYPE table"); 1901 1902 // Check to see if this was forward referenced, if so fill in the temp. 1903 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1904 if (Res) { 1905 Res->setName(TypeName); 1906 TypeList[NumRecords] = nullptr; 1907 } else // Otherwise, create a new struct with no body. 1908 Res = createIdentifiedStructType(Context, TypeName); 1909 TypeName.clear(); 1910 ResultTy = Res; 1911 break; 1912 } 1913 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1914 if (Record.size() < 2) 1915 return error("Invalid record"); 1916 ResultTy = getTypeByID(Record[1]); 1917 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1918 return error("Invalid type"); 1919 ResultTy = ArrayType::get(ResultTy, Record[0]); 1920 break; 1921 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 1922 // [numelts, eltty, scalable] 1923 if (Record.size() < 2) 1924 return error("Invalid record"); 1925 if (Record[0] == 0) 1926 return error("Invalid vector length"); 1927 ResultTy = getTypeByID(Record[1]); 1928 if (!ResultTy || !VectorType::isValidElementType(ResultTy)) 1929 return error("Invalid type"); 1930 bool Scalable = Record.size() > 2 ? Record[2] : false; 1931 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 1932 break; 1933 } 1934 1935 if (NumRecords >= TypeList.size()) 1936 return error("Invalid TYPE table"); 1937 if (TypeList[NumRecords]) 1938 return error( 1939 "Invalid TYPE table: Only named structs can be forward referenced"); 1940 assert(ResultTy && "Didn't read a type?"); 1941 TypeList[NumRecords++] = ResultTy; 1942 } 1943 } 1944 1945 Error BitcodeReader::parseOperandBundleTags() { 1946 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1947 return Err; 1948 1949 if (!BundleTags.empty()) 1950 return error("Invalid multiple blocks"); 1951 1952 SmallVector<uint64_t, 64> Record; 1953 1954 while (true) { 1955 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1956 if (!MaybeEntry) 1957 return MaybeEntry.takeError(); 1958 BitstreamEntry Entry = MaybeEntry.get(); 1959 1960 switch (Entry.Kind) { 1961 case BitstreamEntry::SubBlock: // Handled for us already. 1962 case BitstreamEntry::Error: 1963 return error("Malformed block"); 1964 case BitstreamEntry::EndBlock: 1965 return Error::success(); 1966 case BitstreamEntry::Record: 1967 // The interesting case. 1968 break; 1969 } 1970 1971 // Tags are implicitly mapped to integers by their order. 1972 1973 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1974 if (!MaybeRecord) 1975 return MaybeRecord.takeError(); 1976 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 1977 return error("Invalid record"); 1978 1979 // OPERAND_BUNDLE_TAG: [strchr x N] 1980 BundleTags.emplace_back(); 1981 if (convertToString(Record, 0, BundleTags.back())) 1982 return error("Invalid record"); 1983 Record.clear(); 1984 } 1985 } 1986 1987 Error BitcodeReader::parseSyncScopeNames() { 1988 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1989 return Err; 1990 1991 if (!SSIDs.empty()) 1992 return error("Invalid multiple synchronization scope names blocks"); 1993 1994 SmallVector<uint64_t, 64> Record; 1995 while (true) { 1996 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1997 if (!MaybeEntry) 1998 return MaybeEntry.takeError(); 1999 BitstreamEntry Entry = MaybeEntry.get(); 2000 2001 switch (Entry.Kind) { 2002 case BitstreamEntry::SubBlock: // Handled for us already. 2003 case BitstreamEntry::Error: 2004 return error("Malformed block"); 2005 case BitstreamEntry::EndBlock: 2006 if (SSIDs.empty()) 2007 return error("Invalid empty synchronization scope names block"); 2008 return Error::success(); 2009 case BitstreamEntry::Record: 2010 // The interesting case. 2011 break; 2012 } 2013 2014 // Synchronization scope names are implicitly mapped to synchronization 2015 // scope IDs by their order. 2016 2017 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2018 if (!MaybeRecord) 2019 return MaybeRecord.takeError(); 2020 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2021 return error("Invalid record"); 2022 2023 SmallString<16> SSN; 2024 if (convertToString(Record, 0, SSN)) 2025 return error("Invalid record"); 2026 2027 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2028 Record.clear(); 2029 } 2030 } 2031 2032 /// Associate a value with its name from the given index in the provided record. 2033 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2034 unsigned NameIndex, Triple &TT) { 2035 SmallString<128> ValueName; 2036 if (convertToString(Record, NameIndex, ValueName)) 2037 return error("Invalid record"); 2038 unsigned ValueID = Record[0]; 2039 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2040 return error("Invalid record"); 2041 Value *V = ValueList[ValueID]; 2042 2043 StringRef NameStr(ValueName.data(), ValueName.size()); 2044 if (NameStr.find_first_of(0) != StringRef::npos) 2045 return error("Invalid value name"); 2046 V->setName(NameStr); 2047 auto *GO = dyn_cast<GlobalObject>(V); 2048 if (GO) { 2049 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 2050 if (TT.supportsCOMDAT()) 2051 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2052 else 2053 GO->setComdat(nullptr); 2054 } 2055 } 2056 return V; 2057 } 2058 2059 /// Helper to note and return the current location, and jump to the given 2060 /// offset. 2061 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2062 BitstreamCursor &Stream) { 2063 // Save the current parsing location so we can jump back at the end 2064 // of the VST read. 2065 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2066 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2067 return std::move(JumpFailed); 2068 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2069 if (!MaybeEntry) 2070 return MaybeEntry.takeError(); 2071 assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock); 2072 assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID); 2073 return CurrentBit; 2074 } 2075 2076 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2077 Function *F, 2078 ArrayRef<uint64_t> Record) { 2079 // Note that we subtract 1 here because the offset is relative to one word 2080 // before the start of the identification or module block, which was 2081 // historically always the start of the regular bitcode header. 2082 uint64_t FuncWordOffset = Record[1] - 1; 2083 uint64_t FuncBitOffset = FuncWordOffset * 32; 2084 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2085 // Set the LastFunctionBlockBit to point to the last function block. 2086 // Later when parsing is resumed after function materialization, 2087 // we can simply skip that last function block. 2088 if (FuncBitOffset > LastFunctionBlockBit) 2089 LastFunctionBlockBit = FuncBitOffset; 2090 } 2091 2092 /// Read a new-style GlobalValue symbol table. 2093 Error BitcodeReader::parseGlobalValueSymbolTable() { 2094 unsigned FuncBitcodeOffsetDelta = 2095 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2096 2097 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2098 return Err; 2099 2100 SmallVector<uint64_t, 64> Record; 2101 while (true) { 2102 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2103 if (!MaybeEntry) 2104 return MaybeEntry.takeError(); 2105 BitstreamEntry Entry = MaybeEntry.get(); 2106 2107 switch (Entry.Kind) { 2108 case BitstreamEntry::SubBlock: 2109 case BitstreamEntry::Error: 2110 return error("Malformed block"); 2111 case BitstreamEntry::EndBlock: 2112 return Error::success(); 2113 case BitstreamEntry::Record: 2114 break; 2115 } 2116 2117 Record.clear(); 2118 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2119 if (!MaybeRecord) 2120 return MaybeRecord.takeError(); 2121 switch (MaybeRecord.get()) { 2122 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 2123 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2124 cast<Function>(ValueList[Record[0]]), Record); 2125 break; 2126 } 2127 } 2128 } 2129 2130 /// Parse the value symbol table at either the current parsing location or 2131 /// at the given bit offset if provided. 2132 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2133 uint64_t CurrentBit; 2134 // Pass in the Offset to distinguish between calling for the module-level 2135 // VST (where we want to jump to the VST offset) and the function-level 2136 // VST (where we don't). 2137 if (Offset > 0) { 2138 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2139 if (!MaybeCurrentBit) 2140 return MaybeCurrentBit.takeError(); 2141 CurrentBit = MaybeCurrentBit.get(); 2142 // If this module uses a string table, read this as a module-level VST. 2143 if (UseStrtab) { 2144 if (Error Err = parseGlobalValueSymbolTable()) 2145 return Err; 2146 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2147 return JumpFailed; 2148 return Error::success(); 2149 } 2150 // Otherwise, the VST will be in a similar format to a function-level VST, 2151 // and will contain symbol names. 2152 } 2153 2154 // Compute the delta between the bitcode indices in the VST (the word offset 2155 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2156 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2157 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2158 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2159 // just before entering the VST subblock because: 1) the EnterSubBlock 2160 // changes the AbbrevID width; 2) the VST block is nested within the same 2161 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2162 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2163 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2164 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2165 unsigned FuncBitcodeOffsetDelta = 2166 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2167 2168 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2169 return Err; 2170 2171 SmallVector<uint64_t, 64> Record; 2172 2173 Triple TT(TheModule->getTargetTriple()); 2174 2175 // Read all the records for this value table. 2176 SmallString<128> ValueName; 2177 2178 while (true) { 2179 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2180 if (!MaybeEntry) 2181 return MaybeEntry.takeError(); 2182 BitstreamEntry Entry = MaybeEntry.get(); 2183 2184 switch (Entry.Kind) { 2185 case BitstreamEntry::SubBlock: // Handled for us already. 2186 case BitstreamEntry::Error: 2187 return error("Malformed block"); 2188 case BitstreamEntry::EndBlock: 2189 if (Offset > 0) 2190 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2191 return JumpFailed; 2192 return Error::success(); 2193 case BitstreamEntry::Record: 2194 // The interesting case. 2195 break; 2196 } 2197 2198 // Read a record. 2199 Record.clear(); 2200 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2201 if (!MaybeRecord) 2202 return MaybeRecord.takeError(); 2203 switch (MaybeRecord.get()) { 2204 default: // Default behavior: unknown type. 2205 break; 2206 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2207 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2208 if (Error Err = ValOrErr.takeError()) 2209 return Err; 2210 ValOrErr.get(); 2211 break; 2212 } 2213 case bitc::VST_CODE_FNENTRY: { 2214 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2215 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2216 if (Error Err = ValOrErr.takeError()) 2217 return Err; 2218 Value *V = ValOrErr.get(); 2219 2220 // Ignore function offsets emitted for aliases of functions in older 2221 // versions of LLVM. 2222 if (auto *F = dyn_cast<Function>(V)) 2223 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2224 break; 2225 } 2226 case bitc::VST_CODE_BBENTRY: { 2227 if (convertToString(Record, 1, ValueName)) 2228 return error("Invalid record"); 2229 BasicBlock *BB = getBasicBlock(Record[0]); 2230 if (!BB) 2231 return error("Invalid record"); 2232 2233 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2234 ValueName.clear(); 2235 break; 2236 } 2237 } 2238 } 2239 } 2240 2241 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2242 /// encoding. 2243 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2244 if ((V & 1) == 0) 2245 return V >> 1; 2246 if (V != 1) 2247 return -(V >> 1); 2248 // There is no such thing as -0 with integers. "-0" really means MININT. 2249 return 1ULL << 63; 2250 } 2251 2252 /// Resolve all of the initializers for global values and aliases that we can. 2253 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2254 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2255 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist; 2256 std::vector<FunctionOperandInfo> FunctionOperandWorklist; 2257 2258 GlobalInitWorklist.swap(GlobalInits); 2259 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2260 FunctionOperandWorklist.swap(FunctionOperands); 2261 2262 while (!GlobalInitWorklist.empty()) { 2263 unsigned ValID = GlobalInitWorklist.back().second; 2264 if (ValID >= ValueList.size()) { 2265 // Not ready to resolve this yet, it requires something later in the file. 2266 GlobalInits.push_back(GlobalInitWorklist.back()); 2267 } else { 2268 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2269 GlobalInitWorklist.back().first->setInitializer(C); 2270 else 2271 return error("Expected a constant"); 2272 } 2273 GlobalInitWorklist.pop_back(); 2274 } 2275 2276 while (!IndirectSymbolInitWorklist.empty()) { 2277 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2278 if (ValID >= ValueList.size()) { 2279 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2280 } else { 2281 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2282 if (!C) 2283 return error("Expected a constant"); 2284 GlobalValue *GV = IndirectSymbolInitWorklist.back().first; 2285 if (auto *GA = dyn_cast<GlobalAlias>(GV)) { 2286 if (C->getType() != GV->getType()) 2287 return error("Alias and aliasee types don't match"); 2288 GA->setAliasee(C); 2289 } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) { 2290 GI->setResolver(C); 2291 } else { 2292 return error("Expected an alias or an ifunc"); 2293 } 2294 } 2295 IndirectSymbolInitWorklist.pop_back(); 2296 } 2297 2298 while (!FunctionOperandWorklist.empty()) { 2299 FunctionOperandInfo &Info = FunctionOperandWorklist.back(); 2300 if (Info.PersonalityFn) { 2301 unsigned ValID = Info.PersonalityFn - 1; 2302 if (ValID < ValueList.size()) { 2303 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2304 Info.F->setPersonalityFn(C); 2305 else 2306 return error("Expected a constant"); 2307 Info.PersonalityFn = 0; 2308 } 2309 } 2310 if (Info.Prefix) { 2311 unsigned ValID = Info.Prefix - 1; 2312 if (ValID < ValueList.size()) { 2313 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2314 Info.F->setPrefixData(C); 2315 else 2316 return error("Expected a constant"); 2317 Info.Prefix = 0; 2318 } 2319 } 2320 if (Info.Prologue) { 2321 unsigned ValID = Info.Prologue - 1; 2322 if (ValID < ValueList.size()) { 2323 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2324 Info.F->setPrologueData(C); 2325 else 2326 return error("Expected a constant"); 2327 Info.Prologue = 0; 2328 } 2329 } 2330 if (Info.PersonalityFn || Info.Prefix || Info.Prologue) 2331 FunctionOperands.push_back(Info); 2332 FunctionOperandWorklist.pop_back(); 2333 } 2334 2335 return Error::success(); 2336 } 2337 2338 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2339 SmallVector<uint64_t, 8> Words(Vals.size()); 2340 transform(Vals, Words.begin(), 2341 BitcodeReader::decodeSignRotatedValue); 2342 2343 return APInt(TypeBits, Words); 2344 } 2345 2346 Error BitcodeReader::parseConstants() { 2347 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2348 return Err; 2349 2350 SmallVector<uint64_t, 64> Record; 2351 2352 // Read all the records for this value table. 2353 Type *CurTy = Type::getInt32Ty(Context); 2354 unsigned NextCstNo = ValueList.size(); 2355 2356 struct DelayedShufTy { 2357 VectorType *OpTy; 2358 VectorType *RTy; 2359 uint64_t Op0Idx; 2360 uint64_t Op1Idx; 2361 uint64_t Op2Idx; 2362 unsigned CstNo; 2363 }; 2364 std::vector<DelayedShufTy> DelayedShuffles; 2365 struct DelayedSelTy { 2366 Type *OpTy; 2367 uint64_t Op0Idx; 2368 uint64_t Op1Idx; 2369 uint64_t Op2Idx; 2370 unsigned CstNo; 2371 }; 2372 std::vector<DelayedSelTy> DelayedSelectors; 2373 2374 while (true) { 2375 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2376 if (!MaybeEntry) 2377 return MaybeEntry.takeError(); 2378 BitstreamEntry Entry = MaybeEntry.get(); 2379 2380 switch (Entry.Kind) { 2381 case BitstreamEntry::SubBlock: // Handled for us already. 2382 case BitstreamEntry::Error: 2383 return error("Malformed block"); 2384 case BitstreamEntry::EndBlock: 2385 // Once all the constants have been read, go through and resolve forward 2386 // references. 2387 // 2388 // We have to treat shuffles specially because they don't have three 2389 // operands anymore. We need to convert the shuffle mask into an array, 2390 // and we can't convert a forward reference. 2391 for (auto &DelayedShuffle : DelayedShuffles) { 2392 VectorType *OpTy = DelayedShuffle.OpTy; 2393 VectorType *RTy = DelayedShuffle.RTy; 2394 uint64_t Op0Idx = DelayedShuffle.Op0Idx; 2395 uint64_t Op1Idx = DelayedShuffle.Op1Idx; 2396 uint64_t Op2Idx = DelayedShuffle.Op2Idx; 2397 uint64_t CstNo = DelayedShuffle.CstNo; 2398 Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy); 2399 Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy); 2400 Type *ShufTy = 2401 VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount()); 2402 Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy); 2403 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 2404 return error("Invalid shufflevector operands"); 2405 SmallVector<int, 16> Mask; 2406 ShuffleVectorInst::getShuffleMask(Op2, Mask); 2407 Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask); 2408 ValueList.assignValue(V, CstNo); 2409 } 2410 for (auto &DelayedSelector : DelayedSelectors) { 2411 Type *OpTy = DelayedSelector.OpTy; 2412 Type *SelectorTy = Type::getInt1Ty(Context); 2413 uint64_t Op0Idx = DelayedSelector.Op0Idx; 2414 uint64_t Op1Idx = DelayedSelector.Op1Idx; 2415 uint64_t Op2Idx = DelayedSelector.Op2Idx; 2416 uint64_t CstNo = DelayedSelector.CstNo; 2417 Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy); 2418 Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, OpTy); 2419 // The selector might be an i1 or an <n x i1> 2420 // Get the type from the ValueList before getting a forward ref. 2421 if (VectorType *VTy = dyn_cast<VectorType>(OpTy)) { 2422 Value *V = ValueList[Op0Idx]; 2423 assert(V); 2424 if (SelectorTy != V->getType()) 2425 SelectorTy = VectorType::get(SelectorTy, VTy->getElementCount()); 2426 } 2427 Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, SelectorTy); 2428 Value *V = ConstantExpr::getSelect(Op0, Op1, Op2); 2429 ValueList.assignValue(V, CstNo); 2430 } 2431 2432 if (NextCstNo != ValueList.size()) 2433 return error("Invalid constant reference"); 2434 2435 ValueList.resolveConstantForwardRefs(); 2436 return Error::success(); 2437 case BitstreamEntry::Record: 2438 // The interesting case. 2439 break; 2440 } 2441 2442 // Read a record. 2443 Record.clear(); 2444 Type *VoidType = Type::getVoidTy(Context); 2445 Value *V = nullptr; 2446 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 2447 if (!MaybeBitCode) 2448 return MaybeBitCode.takeError(); 2449 switch (unsigned BitCode = MaybeBitCode.get()) { 2450 default: // Default behavior: unknown constant 2451 case bitc::CST_CODE_UNDEF: // UNDEF 2452 V = UndefValue::get(CurTy); 2453 break; 2454 case bitc::CST_CODE_POISON: // POISON 2455 V = PoisonValue::get(CurTy); 2456 break; 2457 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2458 if (Record.empty()) 2459 return error("Invalid record"); 2460 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2461 return error("Invalid record"); 2462 if (TypeList[Record[0]] == VoidType) 2463 return error("Invalid constant type"); 2464 CurTy = TypeList[Record[0]]; 2465 continue; // Skip the ValueList manipulation. 2466 case bitc::CST_CODE_NULL: // NULL 2467 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 2468 return error("Invalid type for a constant null value"); 2469 V = Constant::getNullValue(CurTy); 2470 break; 2471 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2472 if (!CurTy->isIntegerTy() || Record.empty()) 2473 return error("Invalid record"); 2474 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2475 break; 2476 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2477 if (!CurTy->isIntegerTy() || Record.empty()) 2478 return error("Invalid record"); 2479 2480 APInt VInt = 2481 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2482 V = ConstantInt::get(Context, VInt); 2483 2484 break; 2485 } 2486 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2487 if (Record.empty()) 2488 return error("Invalid record"); 2489 if (CurTy->isHalfTy()) 2490 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2491 APInt(16, (uint16_t)Record[0]))); 2492 else if (CurTy->isBFloatTy()) 2493 V = ConstantFP::get(Context, APFloat(APFloat::BFloat(), 2494 APInt(16, (uint32_t)Record[0]))); 2495 else if (CurTy->isFloatTy()) 2496 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2497 APInt(32, (uint32_t)Record[0]))); 2498 else if (CurTy->isDoubleTy()) 2499 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2500 APInt(64, Record[0]))); 2501 else if (CurTy->isX86_FP80Ty()) { 2502 // Bits are not stored the same way as a normal i80 APInt, compensate. 2503 uint64_t Rearrange[2]; 2504 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2505 Rearrange[1] = Record[0] >> 48; 2506 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2507 APInt(80, Rearrange))); 2508 } else if (CurTy->isFP128Ty()) 2509 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2510 APInt(128, Record))); 2511 else if (CurTy->isPPC_FP128Ty()) 2512 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2513 APInt(128, Record))); 2514 else 2515 V = UndefValue::get(CurTy); 2516 break; 2517 } 2518 2519 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2520 if (Record.empty()) 2521 return error("Invalid record"); 2522 2523 unsigned Size = Record.size(); 2524 SmallVector<Constant*, 16> Elts; 2525 2526 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2527 for (unsigned i = 0; i != Size; ++i) 2528 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2529 STy->getElementType(i))); 2530 V = ConstantStruct::get(STy, Elts); 2531 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2532 Type *EltTy = ATy->getElementType(); 2533 for (unsigned i = 0; i != Size; ++i) 2534 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2535 V = ConstantArray::get(ATy, Elts); 2536 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2537 Type *EltTy = VTy->getElementType(); 2538 for (unsigned i = 0; i != Size; ++i) 2539 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2540 V = ConstantVector::get(Elts); 2541 } else { 2542 V = UndefValue::get(CurTy); 2543 } 2544 break; 2545 } 2546 case bitc::CST_CODE_STRING: // STRING: [values] 2547 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2548 if (Record.empty()) 2549 return error("Invalid record"); 2550 2551 SmallString<16> Elts(Record.begin(), Record.end()); 2552 V = ConstantDataArray::getString(Context, Elts, 2553 BitCode == bitc::CST_CODE_CSTRING); 2554 break; 2555 } 2556 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2557 if (Record.empty()) 2558 return error("Invalid record"); 2559 2560 Type *EltTy; 2561 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 2562 EltTy = Array->getElementType(); 2563 else 2564 EltTy = cast<VectorType>(CurTy)->getElementType(); 2565 if (EltTy->isIntegerTy(8)) { 2566 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2567 if (isa<VectorType>(CurTy)) 2568 V = ConstantDataVector::get(Context, Elts); 2569 else 2570 V = ConstantDataArray::get(Context, Elts); 2571 } else if (EltTy->isIntegerTy(16)) { 2572 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2573 if (isa<VectorType>(CurTy)) 2574 V = ConstantDataVector::get(Context, Elts); 2575 else 2576 V = ConstantDataArray::get(Context, Elts); 2577 } else if (EltTy->isIntegerTy(32)) { 2578 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2579 if (isa<VectorType>(CurTy)) 2580 V = ConstantDataVector::get(Context, Elts); 2581 else 2582 V = ConstantDataArray::get(Context, Elts); 2583 } else if (EltTy->isIntegerTy(64)) { 2584 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2585 if (isa<VectorType>(CurTy)) 2586 V = ConstantDataVector::get(Context, Elts); 2587 else 2588 V = ConstantDataArray::get(Context, Elts); 2589 } else if (EltTy->isHalfTy()) { 2590 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2591 if (isa<VectorType>(CurTy)) 2592 V = ConstantDataVector::getFP(EltTy, Elts); 2593 else 2594 V = ConstantDataArray::getFP(EltTy, Elts); 2595 } else if (EltTy->isBFloatTy()) { 2596 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2597 if (isa<VectorType>(CurTy)) 2598 V = ConstantDataVector::getFP(EltTy, Elts); 2599 else 2600 V = ConstantDataArray::getFP(EltTy, Elts); 2601 } else if (EltTy->isFloatTy()) { 2602 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2603 if (isa<VectorType>(CurTy)) 2604 V = ConstantDataVector::getFP(EltTy, Elts); 2605 else 2606 V = ConstantDataArray::getFP(EltTy, Elts); 2607 } else if (EltTy->isDoubleTy()) { 2608 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2609 if (isa<VectorType>(CurTy)) 2610 V = ConstantDataVector::getFP(EltTy, Elts); 2611 else 2612 V = ConstantDataArray::getFP(EltTy, Elts); 2613 } else { 2614 return error("Invalid type for value"); 2615 } 2616 break; 2617 } 2618 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 2619 if (Record.size() < 2) 2620 return error("Invalid record"); 2621 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 2622 if (Opc < 0) { 2623 V = UndefValue::get(CurTy); // Unknown unop. 2624 } else { 2625 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2626 unsigned Flags = 0; 2627 V = ConstantExpr::get(Opc, LHS, Flags); 2628 } 2629 break; 2630 } 2631 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2632 if (Record.size() < 3) 2633 return error("Invalid record"); 2634 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2635 if (Opc < 0) { 2636 V = UndefValue::get(CurTy); // Unknown binop. 2637 } else { 2638 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2639 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2640 unsigned Flags = 0; 2641 if (Record.size() >= 4) { 2642 if (Opc == Instruction::Add || 2643 Opc == Instruction::Sub || 2644 Opc == Instruction::Mul || 2645 Opc == Instruction::Shl) { 2646 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2647 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2648 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2649 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2650 } else if (Opc == Instruction::SDiv || 2651 Opc == Instruction::UDiv || 2652 Opc == Instruction::LShr || 2653 Opc == Instruction::AShr) { 2654 if (Record[3] & (1 << bitc::PEO_EXACT)) 2655 Flags |= SDivOperator::IsExact; 2656 } 2657 } 2658 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2659 } 2660 break; 2661 } 2662 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2663 if (Record.size() < 3) 2664 return error("Invalid record"); 2665 int Opc = getDecodedCastOpcode(Record[0]); 2666 if (Opc < 0) { 2667 V = UndefValue::get(CurTy); // Unknown cast. 2668 } else { 2669 Type *OpTy = getTypeByID(Record[1]); 2670 if (!OpTy) 2671 return error("Invalid record"); 2672 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2673 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2674 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2675 } 2676 break; 2677 } 2678 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2679 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2680 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2681 // operands] 2682 unsigned OpNum = 0; 2683 Type *PointeeType = nullptr; 2684 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2685 Record.size() % 2) 2686 PointeeType = getTypeByID(Record[OpNum++]); 2687 2688 bool InBounds = false; 2689 Optional<unsigned> InRangeIndex; 2690 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2691 uint64_t Op = Record[OpNum++]; 2692 InBounds = Op & 1; 2693 InRangeIndex = Op >> 1; 2694 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2695 InBounds = true; 2696 2697 SmallVector<Constant*, 16> Elts; 2698 Type *Elt0FullTy = nullptr; 2699 while (OpNum != Record.size()) { 2700 if (!Elt0FullTy) 2701 Elt0FullTy = getTypeByID(Record[OpNum]); 2702 Type *ElTy = getTypeByID(Record[OpNum++]); 2703 if (!ElTy) 2704 return error("Invalid record"); 2705 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2706 } 2707 2708 if (Elts.size() < 1) 2709 return error("Invalid gep with no operands"); 2710 2711 PointerType *OrigPtrTy = cast<PointerType>(Elt0FullTy->getScalarType()); 2712 if (!PointeeType) 2713 PointeeType = OrigPtrTy->getElementType(); 2714 else if (!OrigPtrTy->isOpaqueOrPointeeTypeMatches(PointeeType)) 2715 return error("Explicit gep operator type does not match pointee type " 2716 "of pointer operand"); 2717 2718 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2719 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2720 InBounds, InRangeIndex); 2721 break; 2722 } 2723 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2724 if (Record.size() < 3) 2725 return error("Invalid record"); 2726 2727 DelayedSelectors.push_back( 2728 {CurTy, Record[0], Record[1], Record[2], NextCstNo}); 2729 (void)ValueList.getConstantFwdRef(NextCstNo, CurTy); 2730 ++NextCstNo; 2731 continue; 2732 } 2733 case bitc::CST_CODE_CE_EXTRACTELT 2734 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2735 if (Record.size() < 3) 2736 return error("Invalid record"); 2737 VectorType *OpTy = 2738 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2739 if (!OpTy) 2740 return error("Invalid record"); 2741 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2742 Constant *Op1 = nullptr; 2743 if (Record.size() == 4) { 2744 Type *IdxTy = getTypeByID(Record[2]); 2745 if (!IdxTy) 2746 return error("Invalid record"); 2747 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2748 } else { 2749 // Deprecated, but still needed to read old bitcode files. 2750 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2751 } 2752 if (!Op1) 2753 return error("Invalid record"); 2754 V = ConstantExpr::getExtractElement(Op0, Op1); 2755 break; 2756 } 2757 case bitc::CST_CODE_CE_INSERTELT 2758 : { // CE_INSERTELT: [opval, opval, opty, opval] 2759 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2760 if (Record.size() < 3 || !OpTy) 2761 return error("Invalid record"); 2762 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2763 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2764 OpTy->getElementType()); 2765 Constant *Op2 = nullptr; 2766 if (Record.size() == 4) { 2767 Type *IdxTy = getTypeByID(Record[2]); 2768 if (!IdxTy) 2769 return error("Invalid record"); 2770 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2771 } else { 2772 // Deprecated, but still needed to read old bitcode files. 2773 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2774 } 2775 if (!Op2) 2776 return error("Invalid record"); 2777 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2778 break; 2779 } 2780 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2781 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2782 if (Record.size() < 3 || !OpTy) 2783 return error("Invalid record"); 2784 DelayedShuffles.push_back( 2785 {OpTy, OpTy, Record[0], Record[1], Record[2], NextCstNo}); 2786 ++NextCstNo; 2787 continue; 2788 } 2789 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2790 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2791 VectorType *OpTy = 2792 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2793 if (Record.size() < 4 || !RTy || !OpTy) 2794 return error("Invalid record"); 2795 DelayedShuffles.push_back( 2796 {OpTy, RTy, Record[1], Record[2], Record[3], NextCstNo}); 2797 ++NextCstNo; 2798 continue; 2799 } 2800 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2801 if (Record.size() < 4) 2802 return error("Invalid record"); 2803 Type *OpTy = getTypeByID(Record[0]); 2804 if (!OpTy) 2805 return error("Invalid record"); 2806 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2807 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2808 2809 if (OpTy->isFPOrFPVectorTy()) 2810 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2811 else 2812 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2813 break; 2814 } 2815 // This maintains backward compatibility, pre-asm dialect keywords. 2816 // Deprecated, but still needed to read old bitcode files. 2817 case bitc::CST_CODE_INLINEASM_OLD: { 2818 if (Record.size() < 2) 2819 return error("Invalid record"); 2820 std::string AsmStr, ConstrStr; 2821 bool HasSideEffects = Record[0] & 1; 2822 bool IsAlignStack = Record[0] >> 1; 2823 unsigned AsmStrSize = Record[1]; 2824 if (2+AsmStrSize >= Record.size()) 2825 return error("Invalid record"); 2826 unsigned ConstStrSize = Record[2+AsmStrSize]; 2827 if (3+AsmStrSize+ConstStrSize > Record.size()) 2828 return error("Invalid record"); 2829 2830 for (unsigned i = 0; i != AsmStrSize; ++i) 2831 AsmStr += (char)Record[2+i]; 2832 for (unsigned i = 0; i != ConstStrSize; ++i) 2833 ConstrStr += (char)Record[3+AsmStrSize+i]; 2834 UpgradeInlineAsmString(&AsmStr); 2835 V = InlineAsm::get( 2836 cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()), 2837 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2838 break; 2839 } 2840 // This version adds support for the asm dialect keywords (e.g., 2841 // inteldialect). 2842 case bitc::CST_CODE_INLINEASM_OLD2: { 2843 if (Record.size() < 2) 2844 return error("Invalid record"); 2845 std::string AsmStr, ConstrStr; 2846 bool HasSideEffects = Record[0] & 1; 2847 bool IsAlignStack = (Record[0] >> 1) & 1; 2848 unsigned AsmDialect = Record[0] >> 2; 2849 unsigned AsmStrSize = Record[1]; 2850 if (2+AsmStrSize >= Record.size()) 2851 return error("Invalid record"); 2852 unsigned ConstStrSize = Record[2+AsmStrSize]; 2853 if (3+AsmStrSize+ConstStrSize > Record.size()) 2854 return error("Invalid record"); 2855 2856 for (unsigned i = 0; i != AsmStrSize; ++i) 2857 AsmStr += (char)Record[2+i]; 2858 for (unsigned i = 0; i != ConstStrSize; ++i) 2859 ConstrStr += (char)Record[3+AsmStrSize+i]; 2860 UpgradeInlineAsmString(&AsmStr); 2861 V = InlineAsm::get( 2862 cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()), 2863 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2864 InlineAsm::AsmDialect(AsmDialect)); 2865 break; 2866 } 2867 // This version adds support for the unwind keyword. 2868 case bitc::CST_CODE_INLINEASM: { 2869 if (Record.size() < 2) 2870 return error("Invalid record"); 2871 std::string AsmStr, ConstrStr; 2872 bool HasSideEffects = Record[0] & 1; 2873 bool IsAlignStack = (Record[0] >> 1) & 1; 2874 unsigned AsmDialect = (Record[0] >> 2) & 1; 2875 bool CanThrow = (Record[0] >> 3) & 1; 2876 unsigned AsmStrSize = Record[1]; 2877 if (2 + AsmStrSize >= Record.size()) 2878 return error("Invalid record"); 2879 unsigned ConstStrSize = Record[2 + AsmStrSize]; 2880 if (3 + AsmStrSize + ConstStrSize > Record.size()) 2881 return error("Invalid record"); 2882 2883 for (unsigned i = 0; i != AsmStrSize; ++i) 2884 AsmStr += (char)Record[2 + i]; 2885 for (unsigned i = 0; i != ConstStrSize; ++i) 2886 ConstrStr += (char)Record[3 + AsmStrSize + i]; 2887 UpgradeInlineAsmString(&AsmStr); 2888 V = InlineAsm::get( 2889 cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()), 2890 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2891 InlineAsm::AsmDialect(AsmDialect), CanThrow); 2892 break; 2893 } 2894 case bitc::CST_CODE_BLOCKADDRESS:{ 2895 if (Record.size() < 3) 2896 return error("Invalid record"); 2897 Type *FnTy = getTypeByID(Record[0]); 2898 if (!FnTy) 2899 return error("Invalid record"); 2900 Function *Fn = 2901 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2902 if (!Fn) 2903 return error("Invalid record"); 2904 2905 // If the function is already parsed we can insert the block address right 2906 // away. 2907 BasicBlock *BB; 2908 unsigned BBID = Record[2]; 2909 if (!BBID) 2910 // Invalid reference to entry block. 2911 return error("Invalid ID"); 2912 if (!Fn->empty()) { 2913 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2914 for (size_t I = 0, E = BBID; I != E; ++I) { 2915 if (BBI == BBE) 2916 return error("Invalid ID"); 2917 ++BBI; 2918 } 2919 BB = &*BBI; 2920 } else { 2921 // Otherwise insert a placeholder and remember it so it can be inserted 2922 // when the function is parsed. 2923 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2924 if (FwdBBs.empty()) 2925 BasicBlockFwdRefQueue.push_back(Fn); 2926 if (FwdBBs.size() < BBID + 1) 2927 FwdBBs.resize(BBID + 1); 2928 if (!FwdBBs[BBID]) 2929 FwdBBs[BBID] = BasicBlock::Create(Context); 2930 BB = FwdBBs[BBID]; 2931 } 2932 V = BlockAddress::get(Fn, BB); 2933 break; 2934 } 2935 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: { 2936 if (Record.size() < 2) 2937 return error("Invalid record"); 2938 Type *GVTy = getTypeByID(Record[0]); 2939 if (!GVTy) 2940 return error("Invalid record"); 2941 GlobalValue *GV = dyn_cast_or_null<GlobalValue>( 2942 ValueList.getConstantFwdRef(Record[1], GVTy)); 2943 if (!GV) 2944 return error("Invalid record"); 2945 2946 V = DSOLocalEquivalent::get(GV); 2947 break; 2948 } 2949 } 2950 2951 ValueList.assignValue(V, NextCstNo); 2952 ++NextCstNo; 2953 } 2954 } 2955 2956 Error BitcodeReader::parseUseLists() { 2957 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2958 return Err; 2959 2960 // Read all the records. 2961 SmallVector<uint64_t, 64> Record; 2962 2963 while (true) { 2964 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2965 if (!MaybeEntry) 2966 return MaybeEntry.takeError(); 2967 BitstreamEntry Entry = MaybeEntry.get(); 2968 2969 switch (Entry.Kind) { 2970 case BitstreamEntry::SubBlock: // Handled for us already. 2971 case BitstreamEntry::Error: 2972 return error("Malformed block"); 2973 case BitstreamEntry::EndBlock: 2974 return Error::success(); 2975 case BitstreamEntry::Record: 2976 // The interesting case. 2977 break; 2978 } 2979 2980 // Read a use list record. 2981 Record.clear(); 2982 bool IsBB = false; 2983 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2984 if (!MaybeRecord) 2985 return MaybeRecord.takeError(); 2986 switch (MaybeRecord.get()) { 2987 default: // Default behavior: unknown type. 2988 break; 2989 case bitc::USELIST_CODE_BB: 2990 IsBB = true; 2991 LLVM_FALLTHROUGH; 2992 case bitc::USELIST_CODE_DEFAULT: { 2993 unsigned RecordLength = Record.size(); 2994 if (RecordLength < 3) 2995 // Records should have at least an ID and two indexes. 2996 return error("Invalid record"); 2997 unsigned ID = Record.pop_back_val(); 2998 2999 Value *V; 3000 if (IsBB) { 3001 assert(ID < FunctionBBs.size() && "Basic block not found"); 3002 V = FunctionBBs[ID]; 3003 } else 3004 V = ValueList[ID]; 3005 unsigned NumUses = 0; 3006 SmallDenseMap<const Use *, unsigned, 16> Order; 3007 for (const Use &U : V->materialized_uses()) { 3008 if (++NumUses > Record.size()) 3009 break; 3010 Order[&U] = Record[NumUses - 1]; 3011 } 3012 if (Order.size() != Record.size() || NumUses > Record.size()) 3013 // Mismatches can happen if the functions are being materialized lazily 3014 // (out-of-order), or a value has been upgraded. 3015 break; 3016 3017 V->sortUseList([&](const Use &L, const Use &R) { 3018 return Order.lookup(&L) < Order.lookup(&R); 3019 }); 3020 break; 3021 } 3022 } 3023 } 3024 } 3025 3026 /// When we see the block for metadata, remember where it is and then skip it. 3027 /// This lets us lazily deserialize the metadata. 3028 Error BitcodeReader::rememberAndSkipMetadata() { 3029 // Save the current stream state. 3030 uint64_t CurBit = Stream.GetCurrentBitNo(); 3031 DeferredMetadataInfo.push_back(CurBit); 3032 3033 // Skip over the block for now. 3034 if (Error Err = Stream.SkipBlock()) 3035 return Err; 3036 return Error::success(); 3037 } 3038 3039 Error BitcodeReader::materializeMetadata() { 3040 for (uint64_t BitPos : DeferredMetadataInfo) { 3041 // Move the bit stream to the saved position. 3042 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 3043 return JumpFailed; 3044 if (Error Err = MDLoader->parseModuleMetadata()) 3045 return Err; 3046 } 3047 3048 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 3049 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 3050 // multiple times. 3051 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 3052 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 3053 NamedMDNode *LinkerOpts = 3054 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 3055 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 3056 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 3057 } 3058 } 3059 3060 DeferredMetadataInfo.clear(); 3061 return Error::success(); 3062 } 3063 3064 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3065 3066 /// When we see the block for a function body, remember where it is and then 3067 /// skip it. This lets us lazily deserialize the functions. 3068 Error BitcodeReader::rememberAndSkipFunctionBody() { 3069 // Get the function we are talking about. 3070 if (FunctionsWithBodies.empty()) 3071 return error("Insufficient function protos"); 3072 3073 Function *Fn = FunctionsWithBodies.back(); 3074 FunctionsWithBodies.pop_back(); 3075 3076 // Save the current stream state. 3077 uint64_t CurBit = Stream.GetCurrentBitNo(); 3078 assert( 3079 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3080 "Mismatch between VST and scanned function offsets"); 3081 DeferredFunctionInfo[Fn] = CurBit; 3082 3083 // Skip over the function block for now. 3084 if (Error Err = Stream.SkipBlock()) 3085 return Err; 3086 return Error::success(); 3087 } 3088 3089 Error BitcodeReader::globalCleanup() { 3090 // Patch the initializers for globals and aliases up. 3091 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3092 return Err; 3093 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3094 return error("Malformed global initializer set"); 3095 3096 // Look for intrinsic functions which need to be upgraded at some point 3097 // and functions that need to have their function attributes upgraded. 3098 for (Function &F : *TheModule) { 3099 MDLoader->upgradeDebugIntrinsics(F); 3100 Function *NewFn; 3101 if (UpgradeIntrinsicFunction(&F, NewFn)) 3102 UpgradedIntrinsics[&F] = NewFn; 3103 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 3104 // Some types could be renamed during loading if several modules are 3105 // loaded in the same LLVMContext (LTO scenario). In this case we should 3106 // remangle intrinsics names as well. 3107 RemangledIntrinsics[&F] = Remangled.getValue(); 3108 // Look for functions that rely on old function attribute behavior. 3109 UpgradeFunctionAttributes(F); 3110 } 3111 3112 // Look for global variables which need to be renamed. 3113 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3114 for (GlobalVariable &GV : TheModule->globals()) 3115 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3116 UpgradedVariables.emplace_back(&GV, Upgraded); 3117 for (auto &Pair : UpgradedVariables) { 3118 Pair.first->eraseFromParent(); 3119 TheModule->getGlobalList().push_back(Pair.second); 3120 } 3121 3122 // Force deallocation of memory for these vectors to favor the client that 3123 // want lazy deserialization. 3124 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3125 std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits); 3126 return Error::success(); 3127 } 3128 3129 /// Support for lazy parsing of function bodies. This is required if we 3130 /// either have an old bitcode file without a VST forward declaration record, 3131 /// or if we have an anonymous function being materialized, since anonymous 3132 /// functions do not have a name and are therefore not in the VST. 3133 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3134 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3135 return JumpFailed; 3136 3137 if (Stream.AtEndOfStream()) 3138 return error("Could not find function in stream"); 3139 3140 if (!SeenFirstFunctionBody) 3141 return error("Trying to materialize functions before seeing function blocks"); 3142 3143 // An old bitcode file with the symbol table at the end would have 3144 // finished the parse greedily. 3145 assert(SeenValueSymbolTable); 3146 3147 SmallVector<uint64_t, 64> Record; 3148 3149 while (true) { 3150 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3151 if (!MaybeEntry) 3152 return MaybeEntry.takeError(); 3153 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3154 3155 switch (Entry.Kind) { 3156 default: 3157 return error("Expect SubBlock"); 3158 case BitstreamEntry::SubBlock: 3159 switch (Entry.ID) { 3160 default: 3161 return error("Expect function block"); 3162 case bitc::FUNCTION_BLOCK_ID: 3163 if (Error Err = rememberAndSkipFunctionBody()) 3164 return Err; 3165 NextUnreadBit = Stream.GetCurrentBitNo(); 3166 return Error::success(); 3167 } 3168 } 3169 } 3170 } 3171 3172 bool BitcodeReaderBase::readBlockInfo() { 3173 Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3174 Stream.ReadBlockInfoBlock(); 3175 if (!MaybeNewBlockInfo) 3176 return true; // FIXME Handle the error. 3177 Optional<BitstreamBlockInfo> NewBlockInfo = 3178 std::move(MaybeNewBlockInfo.get()); 3179 if (!NewBlockInfo) 3180 return true; 3181 BlockInfo = std::move(*NewBlockInfo); 3182 return false; 3183 } 3184 3185 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3186 // v1: [selection_kind, name] 3187 // v2: [strtab_offset, strtab_size, selection_kind] 3188 StringRef Name; 3189 std::tie(Name, Record) = readNameFromStrtab(Record); 3190 3191 if (Record.empty()) 3192 return error("Invalid record"); 3193 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3194 std::string OldFormatName; 3195 if (!UseStrtab) { 3196 if (Record.size() < 2) 3197 return error("Invalid record"); 3198 unsigned ComdatNameSize = Record[1]; 3199 OldFormatName.reserve(ComdatNameSize); 3200 for (unsigned i = 0; i != ComdatNameSize; ++i) 3201 OldFormatName += (char)Record[2 + i]; 3202 Name = OldFormatName; 3203 } 3204 Comdat *C = TheModule->getOrInsertComdat(Name); 3205 C->setSelectionKind(SK); 3206 ComdatList.push_back(C); 3207 return Error::success(); 3208 } 3209 3210 static void inferDSOLocal(GlobalValue *GV) { 3211 // infer dso_local from linkage and visibility if it is not encoded. 3212 if (GV->hasLocalLinkage() || 3213 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3214 GV->setDSOLocal(true); 3215 } 3216 3217 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3218 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3219 // visibility, threadlocal, unnamed_addr, externally_initialized, 3220 // dllstorageclass, comdat, attributes, preemption specifier, 3221 // partition strtab offset, partition strtab size] (name in VST) 3222 // v2: [strtab_offset, strtab_size, v1] 3223 StringRef Name; 3224 std::tie(Name, Record) = readNameFromStrtab(Record); 3225 3226 if (Record.size() < 6) 3227 return error("Invalid record"); 3228 Type *Ty = getTypeByID(Record[0]); 3229 if (!Ty) 3230 return error("Invalid record"); 3231 bool isConstant = Record[1] & 1; 3232 bool explicitType = Record[1] & 2; 3233 unsigned AddressSpace; 3234 if (explicitType) { 3235 AddressSpace = Record[1] >> 2; 3236 } else { 3237 if (!Ty->isPointerTy()) 3238 return error("Invalid type for value"); 3239 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3240 Ty = cast<PointerType>(Ty)->getElementType(); 3241 } 3242 3243 uint64_t RawLinkage = Record[3]; 3244 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3245 MaybeAlign Alignment; 3246 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3247 return Err; 3248 std::string Section; 3249 if (Record[5]) { 3250 if (Record[5] - 1 >= SectionTable.size()) 3251 return error("Invalid ID"); 3252 Section = SectionTable[Record[5] - 1]; 3253 } 3254 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3255 // Local linkage must have default visibility. 3256 // auto-upgrade `hidden` and `protected` for old bitcode. 3257 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3258 Visibility = getDecodedVisibility(Record[6]); 3259 3260 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3261 if (Record.size() > 7) 3262 TLM = getDecodedThreadLocalMode(Record[7]); 3263 3264 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3265 if (Record.size() > 8) 3266 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3267 3268 bool ExternallyInitialized = false; 3269 if (Record.size() > 9) 3270 ExternallyInitialized = Record[9]; 3271 3272 GlobalVariable *NewGV = 3273 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3274 nullptr, TLM, AddressSpace, ExternallyInitialized); 3275 NewGV->setAlignment(Alignment); 3276 if (!Section.empty()) 3277 NewGV->setSection(Section); 3278 NewGV->setVisibility(Visibility); 3279 NewGV->setUnnamedAddr(UnnamedAddr); 3280 3281 if (Record.size() > 10) 3282 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3283 else 3284 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3285 3286 ValueList.push_back(NewGV); 3287 3288 // Remember which value to use for the global initializer. 3289 if (unsigned InitID = Record[2]) 3290 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3291 3292 if (Record.size() > 11) { 3293 if (unsigned ComdatID = Record[11]) { 3294 if (ComdatID > ComdatList.size()) 3295 return error("Invalid global variable comdat ID"); 3296 NewGV->setComdat(ComdatList[ComdatID - 1]); 3297 } 3298 } else if (hasImplicitComdat(RawLinkage)) { 3299 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3300 } 3301 3302 if (Record.size() > 12) { 3303 auto AS = getAttributes(Record[12]).getFnAttrs(); 3304 NewGV->setAttributes(AS); 3305 } 3306 3307 if (Record.size() > 13) { 3308 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3309 } 3310 inferDSOLocal(NewGV); 3311 3312 // Check whether we have enough values to read a partition name. 3313 if (Record.size() > 15) 3314 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3315 3316 return Error::success(); 3317 } 3318 3319 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3320 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3321 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3322 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3323 // v2: [strtab_offset, strtab_size, v1] 3324 StringRef Name; 3325 std::tie(Name, Record) = readNameFromStrtab(Record); 3326 3327 if (Record.size() < 8) 3328 return error("Invalid record"); 3329 Type *FTy = getTypeByID(Record[0]); 3330 if (!FTy) 3331 return error("Invalid record"); 3332 if (auto *PTy = dyn_cast<PointerType>(FTy)) 3333 FTy = PTy->getElementType(); 3334 3335 if (!isa<FunctionType>(FTy)) 3336 return error("Invalid type for value"); 3337 auto CC = static_cast<CallingConv::ID>(Record[1]); 3338 if (CC & ~CallingConv::MaxID) 3339 return error("Invalid calling convention ID"); 3340 3341 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3342 if (Record.size() > 16) 3343 AddrSpace = Record[16]; 3344 3345 Function *Func = 3346 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 3347 AddrSpace, Name, TheModule); 3348 3349 assert(Func->getFunctionType() == FTy && 3350 "Incorrect fully specified type provided for function"); 3351 FunctionTypes[Func] = cast<FunctionType>(FTy); 3352 3353 Func->setCallingConv(CC); 3354 bool isProto = Record[2]; 3355 uint64_t RawLinkage = Record[3]; 3356 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3357 Func->setAttributes(getAttributes(Record[4])); 3358 3359 // Upgrade any old-style byval or sret without a type by propagating the 3360 // argument's pointee type. There should be no opaque pointers where the byval 3361 // type is implicit. 3362 for (unsigned i = 0; i != Func->arg_size(); ++i) { 3363 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 3364 Attribute::InAlloca}) { 3365 if (!Func->hasParamAttribute(i, Kind)) 3366 continue; 3367 3368 if (Func->getParamAttribute(i, Kind).getValueAsType()) 3369 continue; 3370 3371 Func->removeParamAttr(i, Kind); 3372 3373 Type *PTy = cast<FunctionType>(FTy)->getParamType(i); 3374 Type *PtrEltTy = cast<PointerType>(PTy)->getElementType(); 3375 Attribute NewAttr; 3376 switch (Kind) { 3377 case Attribute::ByVal: 3378 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 3379 break; 3380 case Attribute::StructRet: 3381 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 3382 break; 3383 case Attribute::InAlloca: 3384 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 3385 break; 3386 default: 3387 llvm_unreachable("not an upgraded type attribute"); 3388 } 3389 3390 Func->addParamAttr(i, NewAttr); 3391 } 3392 } 3393 3394 MaybeAlign Alignment; 3395 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 3396 return Err; 3397 Func->setAlignment(Alignment); 3398 if (Record[6]) { 3399 if (Record[6] - 1 >= SectionTable.size()) 3400 return error("Invalid ID"); 3401 Func->setSection(SectionTable[Record[6] - 1]); 3402 } 3403 // Local linkage must have default visibility. 3404 // auto-upgrade `hidden` and `protected` for old bitcode. 3405 if (!Func->hasLocalLinkage()) 3406 Func->setVisibility(getDecodedVisibility(Record[7])); 3407 if (Record.size() > 8 && Record[8]) { 3408 if (Record[8] - 1 >= GCTable.size()) 3409 return error("Invalid ID"); 3410 Func->setGC(GCTable[Record[8] - 1]); 3411 } 3412 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3413 if (Record.size() > 9) 3414 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3415 Func->setUnnamedAddr(UnnamedAddr); 3416 3417 FunctionOperandInfo OperandInfo = {Func, 0, 0, 0}; 3418 if (Record.size() > 10) 3419 OperandInfo.Prologue = Record[10]; 3420 3421 if (Record.size() > 11) 3422 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3423 else 3424 upgradeDLLImportExportLinkage(Func, RawLinkage); 3425 3426 if (Record.size() > 12) { 3427 if (unsigned ComdatID = Record[12]) { 3428 if (ComdatID > ComdatList.size()) 3429 return error("Invalid function comdat ID"); 3430 Func->setComdat(ComdatList[ComdatID - 1]); 3431 } 3432 } else if (hasImplicitComdat(RawLinkage)) { 3433 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3434 } 3435 3436 if (Record.size() > 13) 3437 OperandInfo.Prefix = Record[13]; 3438 3439 if (Record.size() > 14) 3440 OperandInfo.PersonalityFn = Record[14]; 3441 3442 if (Record.size() > 15) { 3443 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3444 } 3445 inferDSOLocal(Func); 3446 3447 // Record[16] is the address space number. 3448 3449 // Check whether we have enough values to read a partition name. Also make 3450 // sure Strtab has enough values. 3451 if (Record.size() > 18 && Strtab.data() && 3452 Record[17] + Record[18] <= Strtab.size()) { 3453 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 3454 } 3455 3456 ValueList.push_back(Func); 3457 3458 if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue) 3459 FunctionOperands.push_back(OperandInfo); 3460 3461 // If this is a function with a body, remember the prototype we are 3462 // creating now, so that we can match up the body with them later. 3463 if (!isProto) { 3464 Func->setIsMaterializable(true); 3465 FunctionsWithBodies.push_back(Func); 3466 DeferredFunctionInfo[Func] = 0; 3467 } 3468 return Error::success(); 3469 } 3470 3471 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3472 unsigned BitCode, ArrayRef<uint64_t> Record) { 3473 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3474 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3475 // dllstorageclass, threadlocal, unnamed_addr, 3476 // preemption specifier] (name in VST) 3477 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3478 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3479 // preemption specifier] (name in VST) 3480 // v2: [strtab_offset, strtab_size, v1] 3481 StringRef Name; 3482 std::tie(Name, Record) = readNameFromStrtab(Record); 3483 3484 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3485 if (Record.size() < (3 + (unsigned)NewRecord)) 3486 return error("Invalid record"); 3487 unsigned OpNum = 0; 3488 Type *Ty = getTypeByID(Record[OpNum++]); 3489 if (!Ty) 3490 return error("Invalid record"); 3491 3492 unsigned AddrSpace; 3493 if (!NewRecord) { 3494 auto *PTy = dyn_cast<PointerType>(Ty); 3495 if (!PTy) 3496 return error("Invalid type for value"); 3497 Ty = PTy->getElementType(); 3498 AddrSpace = PTy->getAddressSpace(); 3499 } else { 3500 AddrSpace = Record[OpNum++]; 3501 } 3502 3503 auto Val = Record[OpNum++]; 3504 auto Linkage = Record[OpNum++]; 3505 GlobalValue *NewGA; 3506 if (BitCode == bitc::MODULE_CODE_ALIAS || 3507 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3508 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3509 TheModule); 3510 else 3511 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3512 nullptr, TheModule); 3513 3514 // Local linkage must have default visibility. 3515 // auto-upgrade `hidden` and `protected` for old bitcode. 3516 if (OpNum != Record.size()) { 3517 auto VisInd = OpNum++; 3518 if (!NewGA->hasLocalLinkage()) 3519 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3520 } 3521 if (BitCode == bitc::MODULE_CODE_ALIAS || 3522 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3523 if (OpNum != Record.size()) 3524 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3525 else 3526 upgradeDLLImportExportLinkage(NewGA, Linkage); 3527 if (OpNum != Record.size()) 3528 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3529 if (OpNum != Record.size()) 3530 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3531 } 3532 if (OpNum != Record.size()) 3533 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3534 inferDSOLocal(NewGA); 3535 3536 // Check whether we have enough values to read a partition name. 3537 if (OpNum + 1 < Record.size()) { 3538 NewGA->setPartition( 3539 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 3540 OpNum += 2; 3541 } 3542 3543 ValueList.push_back(NewGA); 3544 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3545 return Error::success(); 3546 } 3547 3548 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3549 bool ShouldLazyLoadMetadata, 3550 DataLayoutCallbackTy DataLayoutCallback) { 3551 if (ResumeBit) { 3552 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 3553 return JumpFailed; 3554 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3555 return Err; 3556 3557 SmallVector<uint64_t, 64> Record; 3558 3559 // Parts of bitcode parsing depend on the datalayout. Make sure we 3560 // finalize the datalayout before we run any of that code. 3561 bool ResolvedDataLayout = false; 3562 auto ResolveDataLayout = [&] { 3563 if (ResolvedDataLayout) 3564 return; 3565 3566 // datalayout and triple can't be parsed after this point. 3567 ResolvedDataLayout = true; 3568 3569 // Upgrade data layout string. 3570 std::string DL = llvm::UpgradeDataLayoutString( 3571 TheModule->getDataLayoutStr(), TheModule->getTargetTriple()); 3572 TheModule->setDataLayout(DL); 3573 3574 if (auto LayoutOverride = 3575 DataLayoutCallback(TheModule->getTargetTriple())) 3576 TheModule->setDataLayout(*LayoutOverride); 3577 }; 3578 3579 // Read all the records for this module. 3580 while (true) { 3581 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3582 if (!MaybeEntry) 3583 return MaybeEntry.takeError(); 3584 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3585 3586 switch (Entry.Kind) { 3587 case BitstreamEntry::Error: 3588 return error("Malformed block"); 3589 case BitstreamEntry::EndBlock: 3590 ResolveDataLayout(); 3591 return globalCleanup(); 3592 3593 case BitstreamEntry::SubBlock: 3594 switch (Entry.ID) { 3595 default: // Skip unknown content. 3596 if (Error Err = Stream.SkipBlock()) 3597 return Err; 3598 break; 3599 case bitc::BLOCKINFO_BLOCK_ID: 3600 if (readBlockInfo()) 3601 return error("Malformed block"); 3602 break; 3603 case bitc::PARAMATTR_BLOCK_ID: 3604 if (Error Err = parseAttributeBlock()) 3605 return Err; 3606 break; 3607 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3608 if (Error Err = parseAttributeGroupBlock()) 3609 return Err; 3610 break; 3611 case bitc::TYPE_BLOCK_ID_NEW: 3612 if (Error Err = parseTypeTable()) 3613 return Err; 3614 break; 3615 case bitc::VALUE_SYMTAB_BLOCK_ID: 3616 if (!SeenValueSymbolTable) { 3617 // Either this is an old form VST without function index and an 3618 // associated VST forward declaration record (which would have caused 3619 // the VST to be jumped to and parsed before it was encountered 3620 // normally in the stream), or there were no function blocks to 3621 // trigger an earlier parsing of the VST. 3622 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3623 if (Error Err = parseValueSymbolTable()) 3624 return Err; 3625 SeenValueSymbolTable = true; 3626 } else { 3627 // We must have had a VST forward declaration record, which caused 3628 // the parser to jump to and parse the VST earlier. 3629 assert(VSTOffset > 0); 3630 if (Error Err = Stream.SkipBlock()) 3631 return Err; 3632 } 3633 break; 3634 case bitc::CONSTANTS_BLOCK_ID: 3635 if (Error Err = parseConstants()) 3636 return Err; 3637 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3638 return Err; 3639 break; 3640 case bitc::METADATA_BLOCK_ID: 3641 if (ShouldLazyLoadMetadata) { 3642 if (Error Err = rememberAndSkipMetadata()) 3643 return Err; 3644 break; 3645 } 3646 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3647 if (Error Err = MDLoader->parseModuleMetadata()) 3648 return Err; 3649 break; 3650 case bitc::METADATA_KIND_BLOCK_ID: 3651 if (Error Err = MDLoader->parseMetadataKinds()) 3652 return Err; 3653 break; 3654 case bitc::FUNCTION_BLOCK_ID: 3655 ResolveDataLayout(); 3656 3657 // If this is the first function body we've seen, reverse the 3658 // FunctionsWithBodies list. 3659 if (!SeenFirstFunctionBody) { 3660 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3661 if (Error Err = globalCleanup()) 3662 return Err; 3663 SeenFirstFunctionBody = true; 3664 } 3665 3666 if (VSTOffset > 0) { 3667 // If we have a VST forward declaration record, make sure we 3668 // parse the VST now if we haven't already. It is needed to 3669 // set up the DeferredFunctionInfo vector for lazy reading. 3670 if (!SeenValueSymbolTable) { 3671 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3672 return Err; 3673 SeenValueSymbolTable = true; 3674 // Fall through so that we record the NextUnreadBit below. 3675 // This is necessary in case we have an anonymous function that 3676 // is later materialized. Since it will not have a VST entry we 3677 // need to fall back to the lazy parse to find its offset. 3678 } else { 3679 // If we have a VST forward declaration record, but have already 3680 // parsed the VST (just above, when the first function body was 3681 // encountered here), then we are resuming the parse after 3682 // materializing functions. The ResumeBit points to the 3683 // start of the last function block recorded in the 3684 // DeferredFunctionInfo map. Skip it. 3685 if (Error Err = Stream.SkipBlock()) 3686 return Err; 3687 continue; 3688 } 3689 } 3690 3691 // Support older bitcode files that did not have the function 3692 // index in the VST, nor a VST forward declaration record, as 3693 // well as anonymous functions that do not have VST entries. 3694 // Build the DeferredFunctionInfo vector on the fly. 3695 if (Error Err = rememberAndSkipFunctionBody()) 3696 return Err; 3697 3698 // Suspend parsing when we reach the function bodies. Subsequent 3699 // materialization calls will resume it when necessary. If the bitcode 3700 // file is old, the symbol table will be at the end instead and will not 3701 // have been seen yet. In this case, just finish the parse now. 3702 if (SeenValueSymbolTable) { 3703 NextUnreadBit = Stream.GetCurrentBitNo(); 3704 // After the VST has been parsed, we need to make sure intrinsic name 3705 // are auto-upgraded. 3706 return globalCleanup(); 3707 } 3708 break; 3709 case bitc::USELIST_BLOCK_ID: 3710 if (Error Err = parseUseLists()) 3711 return Err; 3712 break; 3713 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3714 if (Error Err = parseOperandBundleTags()) 3715 return Err; 3716 break; 3717 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3718 if (Error Err = parseSyncScopeNames()) 3719 return Err; 3720 break; 3721 } 3722 continue; 3723 3724 case BitstreamEntry::Record: 3725 // The interesting case. 3726 break; 3727 } 3728 3729 // Read a record. 3730 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3731 if (!MaybeBitCode) 3732 return MaybeBitCode.takeError(); 3733 switch (unsigned BitCode = MaybeBitCode.get()) { 3734 default: break; // Default behavior, ignore unknown content. 3735 case bitc::MODULE_CODE_VERSION: { 3736 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3737 if (!VersionOrErr) 3738 return VersionOrErr.takeError(); 3739 UseRelativeIDs = *VersionOrErr >= 1; 3740 break; 3741 } 3742 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3743 if (ResolvedDataLayout) 3744 return error("target triple too late in module"); 3745 std::string S; 3746 if (convertToString(Record, 0, S)) 3747 return error("Invalid record"); 3748 TheModule->setTargetTriple(S); 3749 break; 3750 } 3751 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3752 if (ResolvedDataLayout) 3753 return error("datalayout too late in module"); 3754 std::string S; 3755 if (convertToString(Record, 0, S)) 3756 return error("Invalid record"); 3757 TheModule->setDataLayout(S); 3758 break; 3759 } 3760 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3761 std::string S; 3762 if (convertToString(Record, 0, S)) 3763 return error("Invalid record"); 3764 TheModule->setModuleInlineAsm(S); 3765 break; 3766 } 3767 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3768 // Deprecated, but still needed to read old bitcode files. 3769 std::string S; 3770 if (convertToString(Record, 0, S)) 3771 return error("Invalid record"); 3772 // Ignore value. 3773 break; 3774 } 3775 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3776 std::string S; 3777 if (convertToString(Record, 0, S)) 3778 return error("Invalid record"); 3779 SectionTable.push_back(S); 3780 break; 3781 } 3782 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3783 std::string S; 3784 if (convertToString(Record, 0, S)) 3785 return error("Invalid record"); 3786 GCTable.push_back(S); 3787 break; 3788 } 3789 case bitc::MODULE_CODE_COMDAT: 3790 if (Error Err = parseComdatRecord(Record)) 3791 return Err; 3792 break; 3793 case bitc::MODULE_CODE_GLOBALVAR: 3794 if (Error Err = parseGlobalVarRecord(Record)) 3795 return Err; 3796 break; 3797 case bitc::MODULE_CODE_FUNCTION: 3798 ResolveDataLayout(); 3799 if (Error Err = parseFunctionRecord(Record)) 3800 return Err; 3801 break; 3802 case bitc::MODULE_CODE_IFUNC: 3803 case bitc::MODULE_CODE_ALIAS: 3804 case bitc::MODULE_CODE_ALIAS_OLD: 3805 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3806 return Err; 3807 break; 3808 /// MODULE_CODE_VSTOFFSET: [offset] 3809 case bitc::MODULE_CODE_VSTOFFSET: 3810 if (Record.empty()) 3811 return error("Invalid record"); 3812 // Note that we subtract 1 here because the offset is relative to one word 3813 // before the start of the identification or module block, which was 3814 // historically always the start of the regular bitcode header. 3815 VSTOffset = Record[0] - 1; 3816 break; 3817 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3818 case bitc::MODULE_CODE_SOURCE_FILENAME: 3819 SmallString<128> ValueName; 3820 if (convertToString(Record, 0, ValueName)) 3821 return error("Invalid record"); 3822 TheModule->setSourceFileName(ValueName); 3823 break; 3824 } 3825 Record.clear(); 3826 } 3827 } 3828 3829 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3830 bool IsImporting, 3831 DataLayoutCallbackTy DataLayoutCallback) { 3832 TheModule = M; 3833 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3834 [&](unsigned ID) { return getTypeByID(ID); }); 3835 return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback); 3836 } 3837 3838 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3839 if (!isa<PointerType>(PtrType)) 3840 return error("Load/Store operand is not a pointer type"); 3841 3842 if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType)) 3843 return error("Explicit load/store type does not match pointee " 3844 "type of pointer operand"); 3845 if (!PointerType::isLoadableOrStorableType(ValType)) 3846 return error("Cannot load/store from pointer"); 3847 return Error::success(); 3848 } 3849 3850 void BitcodeReader::propagateAttributeTypes(CallBase *CB, 3851 ArrayRef<Type *> ArgsTys) { 3852 for (unsigned i = 0; i != CB->arg_size(); ++i) { 3853 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 3854 Attribute::InAlloca}) { 3855 if (!CB->paramHasAttr(i, Kind)) 3856 continue; 3857 3858 CB->removeParamAttr(i, Kind); 3859 3860 Type *PtrEltTy = cast<PointerType>(ArgsTys[i])->getElementType(); 3861 Attribute NewAttr; 3862 switch (Kind) { 3863 case Attribute::ByVal: 3864 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 3865 break; 3866 case Attribute::StructRet: 3867 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 3868 break; 3869 case Attribute::InAlloca: 3870 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 3871 break; 3872 default: 3873 llvm_unreachable("not an upgraded type attribute"); 3874 } 3875 3876 CB->addParamAttr(i, NewAttr); 3877 } 3878 } 3879 3880 switch (CB->getIntrinsicID()) { 3881 case Intrinsic::preserve_array_access_index: 3882 case Intrinsic::preserve_struct_access_index: 3883 if (!CB->getAttributes().getParamElementType(0)) { 3884 Type *ElTy = cast<PointerType>(ArgsTys[0])->getElementType(); 3885 Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy); 3886 CB->addParamAttr(0, NewAttr); 3887 } 3888 break; 3889 default: 3890 break; 3891 } 3892 } 3893 3894 /// Lazily parse the specified function body block. 3895 Error BitcodeReader::parseFunctionBody(Function *F) { 3896 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3897 return Err; 3898 3899 // Unexpected unresolved metadata when parsing function. 3900 if (MDLoader->hasFwdRefs()) 3901 return error("Invalid function metadata: incoming forward references"); 3902 3903 InstructionList.clear(); 3904 unsigned ModuleValueListSize = ValueList.size(); 3905 unsigned ModuleMDLoaderSize = MDLoader->size(); 3906 3907 // Add all the function arguments to the value table. 3908 #ifndef NDEBUG 3909 unsigned ArgNo = 0; 3910 FunctionType *FTy = FunctionTypes[F]; 3911 #endif 3912 for (Argument &I : F->args()) { 3913 assert(I.getType() == FTy->getParamType(ArgNo++) && 3914 "Incorrect fully specified type for Function Argument"); 3915 ValueList.push_back(&I); 3916 } 3917 unsigned NextValueNo = ValueList.size(); 3918 BasicBlock *CurBB = nullptr; 3919 unsigned CurBBNo = 0; 3920 3921 DebugLoc LastLoc; 3922 auto getLastInstruction = [&]() -> Instruction * { 3923 if (CurBB && !CurBB->empty()) 3924 return &CurBB->back(); 3925 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3926 !FunctionBBs[CurBBNo - 1]->empty()) 3927 return &FunctionBBs[CurBBNo - 1]->back(); 3928 return nullptr; 3929 }; 3930 3931 std::vector<OperandBundleDef> OperandBundles; 3932 3933 // Read all the records. 3934 SmallVector<uint64_t, 64> Record; 3935 3936 while (true) { 3937 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3938 if (!MaybeEntry) 3939 return MaybeEntry.takeError(); 3940 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3941 3942 switch (Entry.Kind) { 3943 case BitstreamEntry::Error: 3944 return error("Malformed block"); 3945 case BitstreamEntry::EndBlock: 3946 goto OutOfRecordLoop; 3947 3948 case BitstreamEntry::SubBlock: 3949 switch (Entry.ID) { 3950 default: // Skip unknown content. 3951 if (Error Err = Stream.SkipBlock()) 3952 return Err; 3953 break; 3954 case bitc::CONSTANTS_BLOCK_ID: 3955 if (Error Err = parseConstants()) 3956 return Err; 3957 NextValueNo = ValueList.size(); 3958 break; 3959 case bitc::VALUE_SYMTAB_BLOCK_ID: 3960 if (Error Err = parseValueSymbolTable()) 3961 return Err; 3962 break; 3963 case bitc::METADATA_ATTACHMENT_ID: 3964 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3965 return Err; 3966 break; 3967 case bitc::METADATA_BLOCK_ID: 3968 assert(DeferredMetadataInfo.empty() && 3969 "Must read all module-level metadata before function-level"); 3970 if (Error Err = MDLoader->parseFunctionMetadata()) 3971 return Err; 3972 break; 3973 case bitc::USELIST_BLOCK_ID: 3974 if (Error Err = parseUseLists()) 3975 return Err; 3976 break; 3977 } 3978 continue; 3979 3980 case BitstreamEntry::Record: 3981 // The interesting case. 3982 break; 3983 } 3984 3985 // Read a record. 3986 Record.clear(); 3987 Instruction *I = nullptr; 3988 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3989 if (!MaybeBitCode) 3990 return MaybeBitCode.takeError(); 3991 switch (unsigned BitCode = MaybeBitCode.get()) { 3992 default: // Default behavior: reject 3993 return error("Invalid value"); 3994 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3995 if (Record.empty() || Record[0] == 0) 3996 return error("Invalid record"); 3997 // Create all the basic blocks for the function. 3998 FunctionBBs.resize(Record[0]); 3999 4000 // See if anything took the address of blocks in this function. 4001 auto BBFRI = BasicBlockFwdRefs.find(F); 4002 if (BBFRI == BasicBlockFwdRefs.end()) { 4003 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 4004 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 4005 } else { 4006 auto &BBRefs = BBFRI->second; 4007 // Check for invalid basic block references. 4008 if (BBRefs.size() > FunctionBBs.size()) 4009 return error("Invalid ID"); 4010 assert(!BBRefs.empty() && "Unexpected empty array"); 4011 assert(!BBRefs.front() && "Invalid reference to entry block"); 4012 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4013 ++I) 4014 if (I < RE && BBRefs[I]) { 4015 BBRefs[I]->insertInto(F); 4016 FunctionBBs[I] = BBRefs[I]; 4017 } else { 4018 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4019 } 4020 4021 // Erase from the table. 4022 BasicBlockFwdRefs.erase(BBFRI); 4023 } 4024 4025 CurBB = FunctionBBs[0]; 4026 continue; 4027 } 4028 4029 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4030 // This record indicates that the last instruction is at the same 4031 // location as the previous instruction with a location. 4032 I = getLastInstruction(); 4033 4034 if (!I) 4035 return error("Invalid record"); 4036 I->setDebugLoc(LastLoc); 4037 I = nullptr; 4038 continue; 4039 4040 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4041 I = getLastInstruction(); 4042 if (!I || Record.size() < 4) 4043 return error("Invalid record"); 4044 4045 unsigned Line = Record[0], Col = Record[1]; 4046 unsigned ScopeID = Record[2], IAID = Record[3]; 4047 bool isImplicitCode = Record.size() == 5 && Record[4]; 4048 4049 MDNode *Scope = nullptr, *IA = nullptr; 4050 if (ScopeID) { 4051 Scope = dyn_cast_or_null<MDNode>( 4052 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 4053 if (!Scope) 4054 return error("Invalid record"); 4055 } 4056 if (IAID) { 4057 IA = dyn_cast_or_null<MDNode>( 4058 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 4059 if (!IA) 4060 return error("Invalid record"); 4061 } 4062 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA, 4063 isImplicitCode); 4064 I->setDebugLoc(LastLoc); 4065 I = nullptr; 4066 continue; 4067 } 4068 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 4069 unsigned OpNum = 0; 4070 Value *LHS; 4071 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4072 OpNum+1 > Record.size()) 4073 return error("Invalid record"); 4074 4075 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 4076 if (Opc == -1) 4077 return error("Invalid record"); 4078 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 4079 InstructionList.push_back(I); 4080 if (OpNum < Record.size()) { 4081 if (isa<FPMathOperator>(I)) { 4082 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4083 if (FMF.any()) 4084 I->setFastMathFlags(FMF); 4085 } 4086 } 4087 break; 4088 } 4089 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4090 unsigned OpNum = 0; 4091 Value *LHS, *RHS; 4092 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4093 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4094 OpNum+1 > Record.size()) 4095 return error("Invalid record"); 4096 4097 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4098 if (Opc == -1) 4099 return error("Invalid record"); 4100 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4101 InstructionList.push_back(I); 4102 if (OpNum < Record.size()) { 4103 if (Opc == Instruction::Add || 4104 Opc == Instruction::Sub || 4105 Opc == Instruction::Mul || 4106 Opc == Instruction::Shl) { 4107 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4108 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4109 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4110 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4111 } else if (Opc == Instruction::SDiv || 4112 Opc == Instruction::UDiv || 4113 Opc == Instruction::LShr || 4114 Opc == Instruction::AShr) { 4115 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4116 cast<BinaryOperator>(I)->setIsExact(true); 4117 } else if (isa<FPMathOperator>(I)) { 4118 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4119 if (FMF.any()) 4120 I->setFastMathFlags(FMF); 4121 } 4122 4123 } 4124 break; 4125 } 4126 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4127 unsigned OpNum = 0; 4128 Value *Op; 4129 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4130 OpNum+2 != Record.size()) 4131 return error("Invalid record"); 4132 4133 Type *ResTy = getTypeByID(Record[OpNum]); 4134 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4135 if (Opc == -1 || !ResTy) 4136 return error("Invalid record"); 4137 Instruction *Temp = nullptr; 4138 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4139 if (Temp) { 4140 InstructionList.push_back(Temp); 4141 assert(CurBB && "No current BB?"); 4142 CurBB->getInstList().push_back(Temp); 4143 } 4144 } else { 4145 auto CastOp = (Instruction::CastOps)Opc; 4146 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4147 return error("Invalid cast"); 4148 I = CastInst::Create(CastOp, Op, ResTy); 4149 } 4150 InstructionList.push_back(I); 4151 break; 4152 } 4153 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4154 case bitc::FUNC_CODE_INST_GEP_OLD: 4155 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4156 unsigned OpNum = 0; 4157 4158 Type *Ty; 4159 bool InBounds; 4160 4161 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4162 InBounds = Record[OpNum++]; 4163 Ty = getTypeByID(Record[OpNum++]); 4164 } else { 4165 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4166 Ty = nullptr; 4167 } 4168 4169 Value *BasePtr; 4170 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4171 return error("Invalid record"); 4172 4173 if (!Ty) { 4174 Ty = cast<PointerType>(BasePtr->getType()->getScalarType()) 4175 ->getElementType(); 4176 } else if (!cast<PointerType>(BasePtr->getType()->getScalarType()) 4177 ->isOpaqueOrPointeeTypeMatches(Ty)) { 4178 return error( 4179 "Explicit gep type does not match pointee type of pointer operand"); 4180 } 4181 4182 SmallVector<Value*, 16> GEPIdx; 4183 while (OpNum != Record.size()) { 4184 Value *Op; 4185 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4186 return error("Invalid record"); 4187 GEPIdx.push_back(Op); 4188 } 4189 4190 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4191 4192 InstructionList.push_back(I); 4193 if (InBounds) 4194 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4195 break; 4196 } 4197 4198 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4199 // EXTRACTVAL: [opty, opval, n x indices] 4200 unsigned OpNum = 0; 4201 Value *Agg; 4202 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4203 return error("Invalid record"); 4204 Type *Ty = Agg->getType(); 4205 4206 unsigned RecSize = Record.size(); 4207 if (OpNum == RecSize) 4208 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4209 4210 SmallVector<unsigned, 4> EXTRACTVALIdx; 4211 for (; OpNum != RecSize; ++OpNum) { 4212 bool IsArray = Ty->isArrayTy(); 4213 bool IsStruct = Ty->isStructTy(); 4214 uint64_t Index = Record[OpNum]; 4215 4216 if (!IsStruct && !IsArray) 4217 return error("EXTRACTVAL: Invalid type"); 4218 if ((unsigned)Index != Index) 4219 return error("Invalid value"); 4220 if (IsStruct && Index >= Ty->getStructNumElements()) 4221 return error("EXTRACTVAL: Invalid struct index"); 4222 if (IsArray && Index >= Ty->getArrayNumElements()) 4223 return error("EXTRACTVAL: Invalid array index"); 4224 EXTRACTVALIdx.push_back((unsigned)Index); 4225 4226 if (IsStruct) 4227 Ty = Ty->getStructElementType(Index); 4228 else 4229 Ty = Ty->getArrayElementType(); 4230 } 4231 4232 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4233 InstructionList.push_back(I); 4234 break; 4235 } 4236 4237 case bitc::FUNC_CODE_INST_INSERTVAL: { 4238 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4239 unsigned OpNum = 0; 4240 Value *Agg; 4241 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4242 return error("Invalid record"); 4243 Value *Val; 4244 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4245 return error("Invalid record"); 4246 4247 unsigned RecSize = Record.size(); 4248 if (OpNum == RecSize) 4249 return error("INSERTVAL: Invalid instruction with 0 indices"); 4250 4251 SmallVector<unsigned, 4> INSERTVALIdx; 4252 Type *CurTy = Agg->getType(); 4253 for (; OpNum != RecSize; ++OpNum) { 4254 bool IsArray = CurTy->isArrayTy(); 4255 bool IsStruct = CurTy->isStructTy(); 4256 uint64_t Index = Record[OpNum]; 4257 4258 if (!IsStruct && !IsArray) 4259 return error("INSERTVAL: Invalid type"); 4260 if ((unsigned)Index != Index) 4261 return error("Invalid value"); 4262 if (IsStruct && Index >= CurTy->getStructNumElements()) 4263 return error("INSERTVAL: Invalid struct index"); 4264 if (IsArray && Index >= CurTy->getArrayNumElements()) 4265 return error("INSERTVAL: Invalid array index"); 4266 4267 INSERTVALIdx.push_back((unsigned)Index); 4268 if (IsStruct) 4269 CurTy = CurTy->getStructElementType(Index); 4270 else 4271 CurTy = CurTy->getArrayElementType(); 4272 } 4273 4274 if (CurTy != Val->getType()) 4275 return error("Inserted value type doesn't match aggregate type"); 4276 4277 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4278 InstructionList.push_back(I); 4279 break; 4280 } 4281 4282 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4283 // obsolete form of select 4284 // handles select i1 ... in old bitcode 4285 unsigned OpNum = 0; 4286 Value *TrueVal, *FalseVal, *Cond; 4287 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4288 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4289 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4290 return error("Invalid record"); 4291 4292 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4293 InstructionList.push_back(I); 4294 break; 4295 } 4296 4297 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4298 // new form of select 4299 // handles select i1 or select [N x i1] 4300 unsigned OpNum = 0; 4301 Value *TrueVal, *FalseVal, *Cond; 4302 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4303 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4304 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4305 return error("Invalid record"); 4306 4307 // select condition can be either i1 or [N x i1] 4308 if (VectorType* vector_type = 4309 dyn_cast<VectorType>(Cond->getType())) { 4310 // expect <n x i1> 4311 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4312 return error("Invalid type for value"); 4313 } else { 4314 // expect i1 4315 if (Cond->getType() != Type::getInt1Ty(Context)) 4316 return error("Invalid type for value"); 4317 } 4318 4319 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4320 InstructionList.push_back(I); 4321 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 4322 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4323 if (FMF.any()) 4324 I->setFastMathFlags(FMF); 4325 } 4326 break; 4327 } 4328 4329 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4330 unsigned OpNum = 0; 4331 Value *Vec, *Idx; 4332 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4333 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4334 return error("Invalid record"); 4335 if (!Vec->getType()->isVectorTy()) 4336 return error("Invalid type for value"); 4337 I = ExtractElementInst::Create(Vec, Idx); 4338 InstructionList.push_back(I); 4339 break; 4340 } 4341 4342 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4343 unsigned OpNum = 0; 4344 Value *Vec, *Elt, *Idx; 4345 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4346 return error("Invalid record"); 4347 if (!Vec->getType()->isVectorTy()) 4348 return error("Invalid type for value"); 4349 if (popValue(Record, OpNum, NextValueNo, 4350 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4351 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4352 return error("Invalid record"); 4353 I = InsertElementInst::Create(Vec, Elt, Idx); 4354 InstructionList.push_back(I); 4355 break; 4356 } 4357 4358 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4359 unsigned OpNum = 0; 4360 Value *Vec1, *Vec2, *Mask; 4361 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4362 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4363 return error("Invalid record"); 4364 4365 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4366 return error("Invalid record"); 4367 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4368 return error("Invalid type for value"); 4369 4370 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4371 InstructionList.push_back(I); 4372 break; 4373 } 4374 4375 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4376 // Old form of ICmp/FCmp returning bool 4377 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4378 // both legal on vectors but had different behaviour. 4379 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4380 // FCmp/ICmp returning bool or vector of bool 4381 4382 unsigned OpNum = 0; 4383 Value *LHS, *RHS; 4384 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4385 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4386 return error("Invalid record"); 4387 4388 if (OpNum >= Record.size()) 4389 return error( 4390 "Invalid record: operand number exceeded available operands"); 4391 4392 unsigned PredVal = Record[OpNum]; 4393 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4394 FastMathFlags FMF; 4395 if (IsFP && Record.size() > OpNum+1) 4396 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4397 4398 if (OpNum+1 != Record.size()) 4399 return error("Invalid record"); 4400 4401 if (LHS->getType()->isFPOrFPVectorTy()) 4402 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4403 else 4404 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4405 4406 if (FMF.any()) 4407 I->setFastMathFlags(FMF); 4408 InstructionList.push_back(I); 4409 break; 4410 } 4411 4412 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4413 { 4414 unsigned Size = Record.size(); 4415 if (Size == 0) { 4416 I = ReturnInst::Create(Context); 4417 InstructionList.push_back(I); 4418 break; 4419 } 4420 4421 unsigned OpNum = 0; 4422 Value *Op = nullptr; 4423 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4424 return error("Invalid record"); 4425 if (OpNum != Record.size()) 4426 return error("Invalid record"); 4427 4428 I = ReturnInst::Create(Context, Op); 4429 InstructionList.push_back(I); 4430 break; 4431 } 4432 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4433 if (Record.size() != 1 && Record.size() != 3) 4434 return error("Invalid record"); 4435 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4436 if (!TrueDest) 4437 return error("Invalid record"); 4438 4439 if (Record.size() == 1) { 4440 I = BranchInst::Create(TrueDest); 4441 InstructionList.push_back(I); 4442 } 4443 else { 4444 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4445 Value *Cond = getValue(Record, 2, NextValueNo, 4446 Type::getInt1Ty(Context)); 4447 if (!FalseDest || !Cond) 4448 return error("Invalid record"); 4449 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4450 InstructionList.push_back(I); 4451 } 4452 break; 4453 } 4454 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4455 if (Record.size() != 1 && Record.size() != 2) 4456 return error("Invalid record"); 4457 unsigned Idx = 0; 4458 Value *CleanupPad = 4459 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4460 if (!CleanupPad) 4461 return error("Invalid record"); 4462 BasicBlock *UnwindDest = nullptr; 4463 if (Record.size() == 2) { 4464 UnwindDest = getBasicBlock(Record[Idx++]); 4465 if (!UnwindDest) 4466 return error("Invalid record"); 4467 } 4468 4469 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4470 InstructionList.push_back(I); 4471 break; 4472 } 4473 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4474 if (Record.size() != 2) 4475 return error("Invalid record"); 4476 unsigned Idx = 0; 4477 Value *CatchPad = 4478 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4479 if (!CatchPad) 4480 return error("Invalid record"); 4481 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4482 if (!BB) 4483 return error("Invalid record"); 4484 4485 I = CatchReturnInst::Create(CatchPad, BB); 4486 InstructionList.push_back(I); 4487 break; 4488 } 4489 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4490 // We must have, at minimum, the outer scope and the number of arguments. 4491 if (Record.size() < 2) 4492 return error("Invalid record"); 4493 4494 unsigned Idx = 0; 4495 4496 Value *ParentPad = 4497 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4498 4499 unsigned NumHandlers = Record[Idx++]; 4500 4501 SmallVector<BasicBlock *, 2> Handlers; 4502 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4503 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4504 if (!BB) 4505 return error("Invalid record"); 4506 Handlers.push_back(BB); 4507 } 4508 4509 BasicBlock *UnwindDest = nullptr; 4510 if (Idx + 1 == Record.size()) { 4511 UnwindDest = getBasicBlock(Record[Idx++]); 4512 if (!UnwindDest) 4513 return error("Invalid record"); 4514 } 4515 4516 if (Record.size() != Idx) 4517 return error("Invalid record"); 4518 4519 auto *CatchSwitch = 4520 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4521 for (BasicBlock *Handler : Handlers) 4522 CatchSwitch->addHandler(Handler); 4523 I = CatchSwitch; 4524 InstructionList.push_back(I); 4525 break; 4526 } 4527 case bitc::FUNC_CODE_INST_CATCHPAD: 4528 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4529 // We must have, at minimum, the outer scope and the number of arguments. 4530 if (Record.size() < 2) 4531 return error("Invalid record"); 4532 4533 unsigned Idx = 0; 4534 4535 Value *ParentPad = 4536 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4537 4538 unsigned NumArgOperands = Record[Idx++]; 4539 4540 SmallVector<Value *, 2> Args; 4541 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4542 Value *Val; 4543 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4544 return error("Invalid record"); 4545 Args.push_back(Val); 4546 } 4547 4548 if (Record.size() != Idx) 4549 return error("Invalid record"); 4550 4551 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4552 I = CleanupPadInst::Create(ParentPad, Args); 4553 else 4554 I = CatchPadInst::Create(ParentPad, Args); 4555 InstructionList.push_back(I); 4556 break; 4557 } 4558 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4559 // Check magic 4560 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4561 // "New" SwitchInst format with case ranges. The changes to write this 4562 // format were reverted but we still recognize bitcode that uses it. 4563 // Hopefully someday we will have support for case ranges and can use 4564 // this format again. 4565 4566 Type *OpTy = getTypeByID(Record[1]); 4567 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4568 4569 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4570 BasicBlock *Default = getBasicBlock(Record[3]); 4571 if (!OpTy || !Cond || !Default) 4572 return error("Invalid record"); 4573 4574 unsigned NumCases = Record[4]; 4575 4576 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4577 InstructionList.push_back(SI); 4578 4579 unsigned CurIdx = 5; 4580 for (unsigned i = 0; i != NumCases; ++i) { 4581 SmallVector<ConstantInt*, 1> CaseVals; 4582 unsigned NumItems = Record[CurIdx++]; 4583 for (unsigned ci = 0; ci != NumItems; ++ci) { 4584 bool isSingleNumber = Record[CurIdx++]; 4585 4586 APInt Low; 4587 unsigned ActiveWords = 1; 4588 if (ValueBitWidth > 64) 4589 ActiveWords = Record[CurIdx++]; 4590 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4591 ValueBitWidth); 4592 CurIdx += ActiveWords; 4593 4594 if (!isSingleNumber) { 4595 ActiveWords = 1; 4596 if (ValueBitWidth > 64) 4597 ActiveWords = Record[CurIdx++]; 4598 APInt High = readWideAPInt( 4599 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4600 CurIdx += ActiveWords; 4601 4602 // FIXME: It is not clear whether values in the range should be 4603 // compared as signed or unsigned values. The partially 4604 // implemented changes that used this format in the past used 4605 // unsigned comparisons. 4606 for ( ; Low.ule(High); ++Low) 4607 CaseVals.push_back(ConstantInt::get(Context, Low)); 4608 } else 4609 CaseVals.push_back(ConstantInt::get(Context, Low)); 4610 } 4611 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4612 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4613 cve = CaseVals.end(); cvi != cve; ++cvi) 4614 SI->addCase(*cvi, DestBB); 4615 } 4616 I = SI; 4617 break; 4618 } 4619 4620 // Old SwitchInst format without case ranges. 4621 4622 if (Record.size() < 3 || (Record.size() & 1) == 0) 4623 return error("Invalid record"); 4624 Type *OpTy = getTypeByID(Record[0]); 4625 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4626 BasicBlock *Default = getBasicBlock(Record[2]); 4627 if (!OpTy || !Cond || !Default) 4628 return error("Invalid record"); 4629 unsigned NumCases = (Record.size()-3)/2; 4630 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4631 InstructionList.push_back(SI); 4632 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4633 ConstantInt *CaseVal = 4634 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4635 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4636 if (!CaseVal || !DestBB) { 4637 delete SI; 4638 return error("Invalid record"); 4639 } 4640 SI->addCase(CaseVal, DestBB); 4641 } 4642 I = SI; 4643 break; 4644 } 4645 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4646 if (Record.size() < 2) 4647 return error("Invalid record"); 4648 Type *OpTy = getTypeByID(Record[0]); 4649 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4650 if (!OpTy || !Address) 4651 return error("Invalid record"); 4652 unsigned NumDests = Record.size()-2; 4653 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4654 InstructionList.push_back(IBI); 4655 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4656 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4657 IBI->addDestination(DestBB); 4658 } else { 4659 delete IBI; 4660 return error("Invalid record"); 4661 } 4662 } 4663 I = IBI; 4664 break; 4665 } 4666 4667 case bitc::FUNC_CODE_INST_INVOKE: { 4668 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4669 if (Record.size() < 4) 4670 return error("Invalid record"); 4671 unsigned OpNum = 0; 4672 AttributeList PAL = getAttributes(Record[OpNum++]); 4673 unsigned CCInfo = Record[OpNum++]; 4674 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4675 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4676 4677 FunctionType *FTy = nullptr; 4678 if ((CCInfo >> 13) & 1) { 4679 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])); 4680 if (!FTy) 4681 return error("Explicit invoke type is not a function type"); 4682 } 4683 4684 Value *Callee; 4685 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4686 return error("Invalid record"); 4687 4688 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4689 if (!CalleeTy) 4690 return error("Callee is not a pointer"); 4691 if (!FTy) { 4692 FTy = dyn_cast<FunctionType>( 4693 cast<PointerType>(Callee->getType())->getElementType()); 4694 if (!FTy) 4695 return error("Callee is not of pointer to function type"); 4696 } else if (!CalleeTy->isOpaqueOrPointeeTypeMatches(FTy)) 4697 return error("Explicit invoke type does not match pointee type of " 4698 "callee operand"); 4699 if (Record.size() < FTy->getNumParams() + OpNum) 4700 return error("Insufficient operands to call"); 4701 4702 SmallVector<Value*, 16> Ops; 4703 SmallVector<Type *, 16> ArgsTys; 4704 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4705 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4706 FTy->getParamType(i))); 4707 ArgsTys.push_back(FTy->getParamType(i)); 4708 if (!Ops.back()) 4709 return error("Invalid record"); 4710 } 4711 4712 if (!FTy->isVarArg()) { 4713 if (Record.size() != OpNum) 4714 return error("Invalid record"); 4715 } else { 4716 // Read type/value pairs for varargs params. 4717 while (OpNum != Record.size()) { 4718 Value *Op; 4719 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4720 return error("Invalid record"); 4721 Ops.push_back(Op); 4722 ArgsTys.push_back(Op->getType()); 4723 } 4724 } 4725 4726 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 4727 OperandBundles); 4728 OperandBundles.clear(); 4729 InstructionList.push_back(I); 4730 cast<InvokeInst>(I)->setCallingConv( 4731 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4732 cast<InvokeInst>(I)->setAttributes(PAL); 4733 propagateAttributeTypes(cast<CallBase>(I), ArgsTys); 4734 4735 break; 4736 } 4737 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4738 unsigned Idx = 0; 4739 Value *Val = nullptr; 4740 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4741 return error("Invalid record"); 4742 I = ResumeInst::Create(Val); 4743 InstructionList.push_back(I); 4744 break; 4745 } 4746 case bitc::FUNC_CODE_INST_CALLBR: { 4747 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 4748 unsigned OpNum = 0; 4749 AttributeList PAL = getAttributes(Record[OpNum++]); 4750 unsigned CCInfo = Record[OpNum++]; 4751 4752 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 4753 unsigned NumIndirectDests = Record[OpNum++]; 4754 SmallVector<BasicBlock *, 16> IndirectDests; 4755 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 4756 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 4757 4758 FunctionType *FTy = nullptr; 4759 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 4760 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])); 4761 if (!FTy) 4762 return error("Explicit call type is not a function type"); 4763 } 4764 4765 Value *Callee; 4766 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4767 return error("Invalid record"); 4768 4769 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4770 if (!OpTy) 4771 return error("Callee is not a pointer type"); 4772 if (!FTy) { 4773 FTy = dyn_cast<FunctionType>( 4774 cast<PointerType>(Callee->getType())->getElementType()); 4775 if (!FTy) 4776 return error("Callee is not of pointer to function type"); 4777 } else if (cast<PointerType>(Callee->getType())->getElementType() != FTy) 4778 return error("Explicit call type does not match pointee type of " 4779 "callee operand"); 4780 if (Record.size() < FTy->getNumParams() + OpNum) 4781 return error("Insufficient operands to call"); 4782 4783 SmallVector<Value*, 16> Args; 4784 // Read the fixed params. 4785 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4786 if (FTy->getParamType(i)->isLabelTy()) 4787 Args.push_back(getBasicBlock(Record[OpNum])); 4788 else 4789 Args.push_back(getValue(Record, OpNum, NextValueNo, 4790 FTy->getParamType(i))); 4791 if (!Args.back()) 4792 return error("Invalid record"); 4793 } 4794 4795 // Read type/value pairs for varargs params. 4796 if (!FTy->isVarArg()) { 4797 if (OpNum != Record.size()) 4798 return error("Invalid record"); 4799 } else { 4800 while (OpNum != Record.size()) { 4801 Value *Op; 4802 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4803 return error("Invalid record"); 4804 Args.push_back(Op); 4805 } 4806 } 4807 4808 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 4809 OperandBundles); 4810 OperandBundles.clear(); 4811 InstructionList.push_back(I); 4812 cast<CallBrInst>(I)->setCallingConv( 4813 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4814 cast<CallBrInst>(I)->setAttributes(PAL); 4815 break; 4816 } 4817 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4818 I = new UnreachableInst(Context); 4819 InstructionList.push_back(I); 4820 break; 4821 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4822 if (Record.empty()) 4823 return error("Invalid record"); 4824 // The first record specifies the type. 4825 Type *Ty = getTypeByID(Record[0]); 4826 if (!Ty) 4827 return error("Invalid record"); 4828 4829 // Phi arguments are pairs of records of [value, basic block]. 4830 // There is an optional final record for fast-math-flags if this phi has a 4831 // floating-point type. 4832 size_t NumArgs = (Record.size() - 1) / 2; 4833 PHINode *PN = PHINode::Create(Ty, NumArgs); 4834 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) 4835 return error("Invalid record"); 4836 InstructionList.push_back(PN); 4837 4838 for (unsigned i = 0; i != NumArgs; i++) { 4839 Value *V; 4840 // With the new function encoding, it is possible that operands have 4841 // negative IDs (for forward references). Use a signed VBR 4842 // representation to keep the encoding small. 4843 if (UseRelativeIDs) 4844 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty); 4845 else 4846 V = getValue(Record, i * 2 + 1, NextValueNo, Ty); 4847 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 4848 if (!V || !BB) 4849 return error("Invalid record"); 4850 PN->addIncoming(V, BB); 4851 } 4852 I = PN; 4853 4854 // If there are an even number of records, the final record must be FMF. 4855 if (Record.size() % 2 == 0) { 4856 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 4857 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 4858 if (FMF.any()) 4859 I->setFastMathFlags(FMF); 4860 } 4861 4862 break; 4863 } 4864 4865 case bitc::FUNC_CODE_INST_LANDINGPAD: 4866 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4867 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4868 unsigned Idx = 0; 4869 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4870 if (Record.size() < 3) 4871 return error("Invalid record"); 4872 } else { 4873 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4874 if (Record.size() < 4) 4875 return error("Invalid record"); 4876 } 4877 Type *Ty = getTypeByID(Record[Idx++]); 4878 if (!Ty) 4879 return error("Invalid record"); 4880 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4881 Value *PersFn = nullptr; 4882 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4883 return error("Invalid record"); 4884 4885 if (!F->hasPersonalityFn()) 4886 F->setPersonalityFn(cast<Constant>(PersFn)); 4887 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4888 return error("Personality function mismatch"); 4889 } 4890 4891 bool IsCleanup = !!Record[Idx++]; 4892 unsigned NumClauses = Record[Idx++]; 4893 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4894 LP->setCleanup(IsCleanup); 4895 for (unsigned J = 0; J != NumClauses; ++J) { 4896 LandingPadInst::ClauseType CT = 4897 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4898 Value *Val; 4899 4900 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4901 delete LP; 4902 return error("Invalid record"); 4903 } 4904 4905 assert((CT != LandingPadInst::Catch || 4906 !isa<ArrayType>(Val->getType())) && 4907 "Catch clause has a invalid type!"); 4908 assert((CT != LandingPadInst::Filter || 4909 isa<ArrayType>(Val->getType())) && 4910 "Filter clause has invalid type!"); 4911 LP->addClause(cast<Constant>(Val)); 4912 } 4913 4914 I = LP; 4915 InstructionList.push_back(I); 4916 break; 4917 } 4918 4919 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4920 if (Record.size() != 4) 4921 return error("Invalid record"); 4922 using APV = AllocaPackedValues; 4923 const uint64_t Rec = Record[3]; 4924 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 4925 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 4926 Type *Ty = getTypeByID(Record[0]); 4927 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 4928 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4929 if (!PTy) 4930 return error("Old-style alloca with a non-pointer type"); 4931 Ty = PTy->getElementType(); 4932 } 4933 Type *OpTy = getTypeByID(Record[1]); 4934 Value *Size = getFnValueByID(Record[2], OpTy); 4935 MaybeAlign Align; 4936 uint64_t AlignExp = 4937 Bitfield::get<APV::AlignLower>(Rec) | 4938 (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits); 4939 if (Error Err = parseAlignmentValue(AlignExp, Align)) { 4940 return Err; 4941 } 4942 if (!Ty || !Size) 4943 return error("Invalid record"); 4944 4945 // FIXME: Make this an optional field. 4946 const DataLayout &DL = TheModule->getDataLayout(); 4947 unsigned AS = DL.getAllocaAddrSpace(); 4948 4949 SmallPtrSet<Type *, 4> Visited; 4950 if (!Align && !Ty->isSized(&Visited)) 4951 return error("alloca of unsized type"); 4952 if (!Align) 4953 Align = DL.getPrefTypeAlign(Ty); 4954 4955 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 4956 AI->setUsedWithInAlloca(InAlloca); 4957 AI->setSwiftError(SwiftError); 4958 I = AI; 4959 InstructionList.push_back(I); 4960 break; 4961 } 4962 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4963 unsigned OpNum = 0; 4964 Value *Op; 4965 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4966 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4967 return error("Invalid record"); 4968 4969 if (!isa<PointerType>(Op->getType())) 4970 return error("Load operand is not a pointer type"); 4971 4972 Type *Ty = nullptr; 4973 if (OpNum + 3 == Record.size()) { 4974 Ty = getTypeByID(Record[OpNum++]); 4975 } else { 4976 Ty = cast<PointerType>(Op->getType())->getElementType(); 4977 } 4978 4979 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4980 return Err; 4981 4982 MaybeAlign Align; 4983 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4984 return Err; 4985 SmallPtrSet<Type *, 4> Visited; 4986 if (!Align && !Ty->isSized(&Visited)) 4987 return error("load of unsized type"); 4988 if (!Align) 4989 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 4990 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 4991 InstructionList.push_back(I); 4992 break; 4993 } 4994 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4995 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 4996 unsigned OpNum = 0; 4997 Value *Op; 4998 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4999 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 5000 return error("Invalid record"); 5001 5002 if (!isa<PointerType>(Op->getType())) 5003 return error("Load operand is not a pointer type"); 5004 5005 Type *Ty = nullptr; 5006 if (OpNum + 5 == Record.size()) { 5007 Ty = getTypeByID(Record[OpNum++]); 5008 } else { 5009 Ty = cast<PointerType>(Op->getType())->getElementType(); 5010 } 5011 5012 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 5013 return Err; 5014 5015 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5016 if (Ordering == AtomicOrdering::NotAtomic || 5017 Ordering == AtomicOrdering::Release || 5018 Ordering == AtomicOrdering::AcquireRelease) 5019 return error("Invalid record"); 5020 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5021 return error("Invalid record"); 5022 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5023 5024 MaybeAlign Align; 5025 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5026 return Err; 5027 if (!Align) 5028 return error("Alignment missing from atomic load"); 5029 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 5030 InstructionList.push_back(I); 5031 break; 5032 } 5033 case bitc::FUNC_CODE_INST_STORE: 5034 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 5035 unsigned OpNum = 0; 5036 Value *Val, *Ptr; 5037 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5038 (BitCode == bitc::FUNC_CODE_INST_STORE 5039 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5040 : popValue(Record, OpNum, NextValueNo, 5041 cast<PointerType>(Ptr->getType())->getElementType(), 5042 Val)) || 5043 OpNum + 2 != Record.size()) 5044 return error("Invalid record"); 5045 5046 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5047 return Err; 5048 MaybeAlign Align; 5049 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5050 return Err; 5051 SmallPtrSet<Type *, 4> Visited; 5052 if (!Align && !Val->getType()->isSized(&Visited)) 5053 return error("store of unsized type"); 5054 if (!Align) 5055 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 5056 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 5057 InstructionList.push_back(I); 5058 break; 5059 } 5060 case bitc::FUNC_CODE_INST_STOREATOMIC: 5061 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 5062 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 5063 unsigned OpNum = 0; 5064 Value *Val, *Ptr; 5065 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5066 !isa<PointerType>(Ptr->getType()) || 5067 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 5068 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5069 : popValue(Record, OpNum, NextValueNo, 5070 cast<PointerType>(Ptr->getType())->getElementType(), 5071 Val)) || 5072 OpNum + 4 != Record.size()) 5073 return error("Invalid record"); 5074 5075 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5076 return Err; 5077 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5078 if (Ordering == AtomicOrdering::NotAtomic || 5079 Ordering == AtomicOrdering::Acquire || 5080 Ordering == AtomicOrdering::AcquireRelease) 5081 return error("Invalid record"); 5082 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5083 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5084 return error("Invalid record"); 5085 5086 MaybeAlign Align; 5087 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5088 return Err; 5089 if (!Align) 5090 return error("Alignment missing from atomic store"); 5091 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 5092 InstructionList.push_back(I); 5093 break; 5094 } 5095 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 5096 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 5097 // failure_ordering?, weak?] 5098 const size_t NumRecords = Record.size(); 5099 unsigned OpNum = 0; 5100 Value *Ptr = nullptr; 5101 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr)) 5102 return error("Invalid record"); 5103 5104 if (!isa<PointerType>(Ptr->getType())) 5105 return error("Cmpxchg operand is not a pointer type"); 5106 5107 Value *Cmp = nullptr; 5108 if (popValue(Record, OpNum, NextValueNo, 5109 cast<PointerType>(Ptr->getType())->getPointerElementType(), 5110 Cmp)) 5111 return error("Invalid record"); 5112 5113 Value *New = nullptr; 5114 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5115 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 5116 return error("Invalid record"); 5117 5118 const AtomicOrdering SuccessOrdering = 5119 getDecodedOrdering(Record[OpNum + 1]); 5120 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5121 SuccessOrdering == AtomicOrdering::Unordered) 5122 return error("Invalid record"); 5123 5124 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5125 5126 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5127 return Err; 5128 5129 const AtomicOrdering FailureOrdering = 5130 NumRecords < 7 5131 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 5132 : getDecodedOrdering(Record[OpNum + 3]); 5133 5134 if (FailureOrdering == AtomicOrdering::NotAtomic || 5135 FailureOrdering == AtomicOrdering::Unordered) 5136 return error("Invalid record"); 5137 5138 const Align Alignment( 5139 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5140 5141 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 5142 FailureOrdering, SSID); 5143 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5144 5145 if (NumRecords < 8) { 5146 // Before weak cmpxchgs existed, the instruction simply returned the 5147 // value loaded from memory, so bitcode files from that era will be 5148 // expecting the first component of a modern cmpxchg. 5149 CurBB->getInstList().push_back(I); 5150 I = ExtractValueInst::Create(I, 0); 5151 } else { 5152 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 5153 } 5154 5155 InstructionList.push_back(I); 5156 break; 5157 } 5158 case bitc::FUNC_CODE_INST_CMPXCHG: { 5159 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 5160 // failure_ordering, weak, align?] 5161 const size_t NumRecords = Record.size(); 5162 unsigned OpNum = 0; 5163 Value *Ptr = nullptr; 5164 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr)) 5165 return error("Invalid record"); 5166 5167 if (!isa<PointerType>(Ptr->getType())) 5168 return error("Cmpxchg operand is not a pointer type"); 5169 5170 Value *Cmp = nullptr; 5171 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp)) 5172 return error("Invalid record"); 5173 5174 Value *Val = nullptr; 5175 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), Val)) 5176 return error("Invalid record"); 5177 5178 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6) 5179 return error("Invalid record"); 5180 5181 const bool IsVol = Record[OpNum]; 5182 5183 const AtomicOrdering SuccessOrdering = 5184 getDecodedOrdering(Record[OpNum + 1]); 5185 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 5186 return error("Invalid cmpxchg success ordering"); 5187 5188 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5189 5190 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5191 return Err; 5192 5193 const AtomicOrdering FailureOrdering = 5194 getDecodedOrdering(Record[OpNum + 3]); 5195 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 5196 return error("Invalid cmpxchg failure ordering"); 5197 5198 const bool IsWeak = Record[OpNum + 4]; 5199 5200 MaybeAlign Alignment; 5201 5202 if (NumRecords == (OpNum + 6)) { 5203 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment)) 5204 return Err; 5205 } 5206 if (!Alignment) 5207 Alignment = 5208 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5209 5210 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering, 5211 FailureOrdering, SSID); 5212 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol); 5213 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak); 5214 5215 InstructionList.push_back(I); 5216 break; 5217 } 5218 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD: 5219 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5220 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?] 5221 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?] 5222 const size_t NumRecords = Record.size(); 5223 unsigned OpNum = 0; 5224 5225 Value *Ptr = nullptr; 5226 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr)) 5227 return error("Invalid record"); 5228 5229 if (!isa<PointerType>(Ptr->getType())) 5230 return error("Invalid record"); 5231 5232 Value *Val = nullptr; 5233 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) { 5234 if (popValue(Record, OpNum, NextValueNo, 5235 cast<PointerType>(Ptr->getType())->getPointerElementType(), 5236 Val)) 5237 return error("Invalid record"); 5238 } else { 5239 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 5240 return error("Invalid record"); 5241 } 5242 5243 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5))) 5244 return error("Invalid record"); 5245 5246 const AtomicRMWInst::BinOp Operation = 5247 getDecodedRMWOperation(Record[OpNum]); 5248 if (Operation < AtomicRMWInst::FIRST_BINOP || 5249 Operation > AtomicRMWInst::LAST_BINOP) 5250 return error("Invalid record"); 5251 5252 const bool IsVol = Record[OpNum + 1]; 5253 5254 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5255 if (Ordering == AtomicOrdering::NotAtomic || 5256 Ordering == AtomicOrdering::Unordered) 5257 return error("Invalid record"); 5258 5259 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5260 5261 MaybeAlign Alignment; 5262 5263 if (NumRecords == (OpNum + 5)) { 5264 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment)) 5265 return Err; 5266 } 5267 5268 if (!Alignment) 5269 Alignment = 5270 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 5271 5272 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID); 5273 cast<AtomicRMWInst>(I)->setVolatile(IsVol); 5274 5275 InstructionList.push_back(I); 5276 break; 5277 } 5278 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 5279 if (2 != Record.size()) 5280 return error("Invalid record"); 5281 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5282 if (Ordering == AtomicOrdering::NotAtomic || 5283 Ordering == AtomicOrdering::Unordered || 5284 Ordering == AtomicOrdering::Monotonic) 5285 return error("Invalid record"); 5286 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 5287 I = new FenceInst(Context, Ordering, SSID); 5288 InstructionList.push_back(I); 5289 break; 5290 } 5291 case bitc::FUNC_CODE_INST_CALL: { 5292 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5293 if (Record.size() < 3) 5294 return error("Invalid record"); 5295 5296 unsigned OpNum = 0; 5297 AttributeList PAL = getAttributes(Record[OpNum++]); 5298 unsigned CCInfo = Record[OpNum++]; 5299 5300 FastMathFlags FMF; 5301 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5302 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5303 if (!FMF.any()) 5304 return error("Fast math flags indicator set for call with no FMF"); 5305 } 5306 5307 FunctionType *FTy = nullptr; 5308 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5309 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])); 5310 if (!FTy) 5311 return error("Explicit call type is not a function type"); 5312 } 5313 5314 Value *Callee; 5315 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5316 return error("Invalid record"); 5317 5318 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5319 if (!OpTy) 5320 return error("Callee is not a pointer type"); 5321 if (!FTy) { 5322 FTy = dyn_cast<FunctionType>( 5323 cast<PointerType>(Callee->getType())->getElementType()); 5324 if (!FTy) 5325 return error("Callee is not of pointer to function type"); 5326 } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy)) 5327 return error("Explicit call type does not match pointee type of " 5328 "callee operand"); 5329 if (Record.size() < FTy->getNumParams() + OpNum) 5330 return error("Insufficient operands to call"); 5331 5332 SmallVector<Value*, 16> Args; 5333 SmallVector<Type *, 16> ArgsTys; 5334 // Read the fixed params. 5335 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5336 if (FTy->getParamType(i)->isLabelTy()) 5337 Args.push_back(getBasicBlock(Record[OpNum])); 5338 else 5339 Args.push_back(getValue(Record, OpNum, NextValueNo, 5340 FTy->getParamType(i))); 5341 ArgsTys.push_back(FTy->getParamType(i)); 5342 if (!Args.back()) 5343 return error("Invalid record"); 5344 } 5345 5346 // Read type/value pairs for varargs params. 5347 if (!FTy->isVarArg()) { 5348 if (OpNum != Record.size()) 5349 return error("Invalid record"); 5350 } else { 5351 while (OpNum != Record.size()) { 5352 Value *Op; 5353 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5354 return error("Invalid record"); 5355 Args.push_back(Op); 5356 ArgsTys.push_back(Op->getType()); 5357 } 5358 } 5359 5360 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5361 OperandBundles.clear(); 5362 InstructionList.push_back(I); 5363 cast<CallInst>(I)->setCallingConv( 5364 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5365 CallInst::TailCallKind TCK = CallInst::TCK_None; 5366 if (CCInfo & 1 << bitc::CALL_TAIL) 5367 TCK = CallInst::TCK_Tail; 5368 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5369 TCK = CallInst::TCK_MustTail; 5370 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5371 TCK = CallInst::TCK_NoTail; 5372 cast<CallInst>(I)->setTailCallKind(TCK); 5373 cast<CallInst>(I)->setAttributes(PAL); 5374 propagateAttributeTypes(cast<CallBase>(I), ArgsTys); 5375 if (FMF.any()) { 5376 if (!isa<FPMathOperator>(I)) 5377 return error("Fast-math-flags specified for call without " 5378 "floating-point scalar or vector return type"); 5379 I->setFastMathFlags(FMF); 5380 } 5381 break; 5382 } 5383 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5384 if (Record.size() < 3) 5385 return error("Invalid record"); 5386 Type *OpTy = getTypeByID(Record[0]); 5387 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5388 Type *ResTy = getTypeByID(Record[2]); 5389 if (!OpTy || !Op || !ResTy) 5390 return error("Invalid record"); 5391 I = new VAArgInst(Op, ResTy); 5392 InstructionList.push_back(I); 5393 break; 5394 } 5395 5396 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5397 // A call or an invoke can be optionally prefixed with some variable 5398 // number of operand bundle blocks. These blocks are read into 5399 // OperandBundles and consumed at the next call or invoke instruction. 5400 5401 if (Record.empty() || Record[0] >= BundleTags.size()) 5402 return error("Invalid record"); 5403 5404 std::vector<Value *> Inputs; 5405 5406 unsigned OpNum = 1; 5407 while (OpNum != Record.size()) { 5408 Value *Op; 5409 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5410 return error("Invalid record"); 5411 Inputs.push_back(Op); 5412 } 5413 5414 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5415 continue; 5416 } 5417 5418 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 5419 unsigned OpNum = 0; 5420 Value *Op = nullptr; 5421 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5422 return error("Invalid record"); 5423 if (OpNum != Record.size()) 5424 return error("Invalid record"); 5425 5426 I = new FreezeInst(Op); 5427 InstructionList.push_back(I); 5428 break; 5429 } 5430 } 5431 5432 // Add instruction to end of current BB. If there is no current BB, reject 5433 // this file. 5434 if (!CurBB) { 5435 I->deleteValue(); 5436 return error("Invalid instruction with no BB"); 5437 } 5438 if (!OperandBundles.empty()) { 5439 I->deleteValue(); 5440 return error("Operand bundles found with no consumer"); 5441 } 5442 CurBB->getInstList().push_back(I); 5443 5444 // If this was a terminator instruction, move to the next block. 5445 if (I->isTerminator()) { 5446 ++CurBBNo; 5447 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5448 } 5449 5450 // Non-void values get registered in the value table for future use. 5451 if (!I->getType()->isVoidTy()) 5452 ValueList.assignValue(I, NextValueNo++); 5453 } 5454 5455 OutOfRecordLoop: 5456 5457 if (!OperandBundles.empty()) 5458 return error("Operand bundles found with no consumer"); 5459 5460 // Check the function list for unresolved values. 5461 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5462 if (!A->getParent()) { 5463 // We found at least one unresolved value. Nuke them all to avoid leaks. 5464 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5465 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5466 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5467 delete A; 5468 } 5469 } 5470 return error("Never resolved value found in function"); 5471 } 5472 } 5473 5474 // Unexpected unresolved metadata about to be dropped. 5475 if (MDLoader->hasFwdRefs()) 5476 return error("Invalid function metadata: outgoing forward refs"); 5477 5478 // Trim the value list down to the size it was before we parsed this function. 5479 ValueList.shrinkTo(ModuleValueListSize); 5480 MDLoader->shrinkTo(ModuleMDLoaderSize); 5481 std::vector<BasicBlock*>().swap(FunctionBBs); 5482 return Error::success(); 5483 } 5484 5485 /// Find the function body in the bitcode stream 5486 Error BitcodeReader::findFunctionInStream( 5487 Function *F, 5488 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5489 while (DeferredFunctionInfoIterator->second == 0) { 5490 // This is the fallback handling for the old format bitcode that 5491 // didn't contain the function index in the VST, or when we have 5492 // an anonymous function which would not have a VST entry. 5493 // Assert that we have one of those two cases. 5494 assert(VSTOffset == 0 || !F->hasName()); 5495 // Parse the next body in the stream and set its position in the 5496 // DeferredFunctionInfo map. 5497 if (Error Err = rememberAndSkipFunctionBodies()) 5498 return Err; 5499 } 5500 return Error::success(); 5501 } 5502 5503 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 5504 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 5505 return SyncScope::ID(Val); 5506 if (Val >= SSIDs.size()) 5507 return SyncScope::System; // Map unknown synchronization scopes to system. 5508 return SSIDs[Val]; 5509 } 5510 5511 //===----------------------------------------------------------------------===// 5512 // GVMaterializer implementation 5513 //===----------------------------------------------------------------------===// 5514 5515 Error BitcodeReader::materialize(GlobalValue *GV) { 5516 Function *F = dyn_cast<Function>(GV); 5517 // If it's not a function or is already material, ignore the request. 5518 if (!F || !F->isMaterializable()) 5519 return Error::success(); 5520 5521 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5522 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5523 // If its position is recorded as 0, its body is somewhere in the stream 5524 // but we haven't seen it yet. 5525 if (DFII->second == 0) 5526 if (Error Err = findFunctionInStream(F, DFII)) 5527 return Err; 5528 5529 // Materialize metadata before parsing any function bodies. 5530 if (Error Err = materializeMetadata()) 5531 return Err; 5532 5533 // Move the bit stream to the saved position of the deferred function body. 5534 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 5535 return JumpFailed; 5536 if (Error Err = parseFunctionBody(F)) 5537 return Err; 5538 F->setIsMaterializable(false); 5539 5540 if (StripDebugInfo) 5541 stripDebugInfo(*F); 5542 5543 // Upgrade any old intrinsic calls in the function. 5544 for (auto &I : UpgradedIntrinsics) { 5545 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5546 UI != UE;) { 5547 User *U = *UI; 5548 ++UI; 5549 if (CallInst *CI = dyn_cast<CallInst>(U)) 5550 UpgradeIntrinsicCall(CI, I.second); 5551 } 5552 } 5553 5554 // Update calls to the remangled intrinsics 5555 for (auto &I : RemangledIntrinsics) 5556 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5557 UI != UE;) 5558 // Don't expect any other users than call sites 5559 cast<CallBase>(*UI++)->setCalledFunction(I.second); 5560 5561 // Finish fn->subprogram upgrade for materialized functions. 5562 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 5563 F->setSubprogram(SP); 5564 5565 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 5566 if (!MDLoader->isStrippingTBAA()) { 5567 for (auto &I : instructions(F)) { 5568 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 5569 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 5570 continue; 5571 MDLoader->setStripTBAA(true); 5572 stripTBAA(F->getParent()); 5573 } 5574 } 5575 5576 for (auto &I : instructions(F)) { 5577 // "Upgrade" older incorrect branch weights by dropping them. 5578 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 5579 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 5580 MDString *MDS = cast<MDString>(MD->getOperand(0)); 5581 StringRef ProfName = MDS->getString(); 5582 // Check consistency of !prof branch_weights metadata. 5583 if (!ProfName.equals("branch_weights")) 5584 continue; 5585 unsigned ExpectedNumOperands = 0; 5586 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 5587 ExpectedNumOperands = BI->getNumSuccessors(); 5588 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 5589 ExpectedNumOperands = SI->getNumSuccessors(); 5590 else if (isa<CallInst>(&I)) 5591 ExpectedNumOperands = 1; 5592 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 5593 ExpectedNumOperands = IBI->getNumDestinations(); 5594 else if (isa<SelectInst>(&I)) 5595 ExpectedNumOperands = 2; 5596 else 5597 continue; // ignore and continue. 5598 5599 // If branch weight doesn't match, just strip branch weight. 5600 if (MD->getNumOperands() != 1 + ExpectedNumOperands) 5601 I.setMetadata(LLVMContext::MD_prof, nullptr); 5602 } 5603 } 5604 5605 // Remove incompatible attributes on function calls. 5606 if (auto *CI = dyn_cast<CallBase>(&I)) { 5607 CI->removeRetAttrs(AttributeFuncs::typeIncompatible( 5608 CI->getFunctionType()->getReturnType())); 5609 5610 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo) 5611 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible( 5612 CI->getArgOperand(ArgNo)->getType())); 5613 } 5614 } 5615 5616 // Look for functions that rely on old function attribute behavior. 5617 UpgradeFunctionAttributes(*F); 5618 5619 // Bring in any functions that this function forward-referenced via 5620 // blockaddresses. 5621 return materializeForwardReferencedFunctions(); 5622 } 5623 5624 Error BitcodeReader::materializeModule() { 5625 if (Error Err = materializeMetadata()) 5626 return Err; 5627 5628 // Promise to materialize all forward references. 5629 WillMaterializeAllForwardRefs = true; 5630 5631 // Iterate over the module, deserializing any functions that are still on 5632 // disk. 5633 for (Function &F : *TheModule) { 5634 if (Error Err = materialize(&F)) 5635 return Err; 5636 } 5637 // At this point, if there are any function bodies, parse the rest of 5638 // the bits in the module past the last function block we have recorded 5639 // through either lazy scanning or the VST. 5640 if (LastFunctionBlockBit || NextUnreadBit) 5641 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 5642 ? LastFunctionBlockBit 5643 : NextUnreadBit)) 5644 return Err; 5645 5646 // Check that all block address forward references got resolved (as we 5647 // promised above). 5648 if (!BasicBlockFwdRefs.empty()) 5649 return error("Never resolved function from blockaddress"); 5650 5651 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5652 // delete the old functions to clean up. We can't do this unless the entire 5653 // module is materialized because there could always be another function body 5654 // with calls to the old function. 5655 for (auto &I : UpgradedIntrinsics) { 5656 for (auto *U : I.first->users()) { 5657 if (CallInst *CI = dyn_cast<CallInst>(U)) 5658 UpgradeIntrinsicCall(CI, I.second); 5659 } 5660 if (!I.first->use_empty()) 5661 I.first->replaceAllUsesWith(I.second); 5662 I.first->eraseFromParent(); 5663 } 5664 UpgradedIntrinsics.clear(); 5665 // Do the same for remangled intrinsics 5666 for (auto &I : RemangledIntrinsics) { 5667 I.first->replaceAllUsesWith(I.second); 5668 I.first->eraseFromParent(); 5669 } 5670 RemangledIntrinsics.clear(); 5671 5672 UpgradeDebugInfo(*TheModule); 5673 5674 UpgradeModuleFlags(*TheModule); 5675 5676 UpgradeARCRuntime(*TheModule); 5677 5678 return Error::success(); 5679 } 5680 5681 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5682 return IdentifiedStructTypes; 5683 } 5684 5685 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5686 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 5687 StringRef ModulePath, unsigned ModuleId) 5688 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 5689 ModulePath(ModulePath), ModuleId(ModuleId) {} 5690 5691 void ModuleSummaryIndexBitcodeReader::addThisModule() { 5692 TheIndex.addModule(ModulePath, ModuleId); 5693 } 5694 5695 ModuleSummaryIndex::ModuleInfo * 5696 ModuleSummaryIndexBitcodeReader::getThisModule() { 5697 return TheIndex.getModule(ModulePath); 5698 } 5699 5700 std::pair<ValueInfo, GlobalValue::GUID> 5701 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 5702 auto VGI = ValueIdToValueInfoMap[ValueId]; 5703 assert(VGI.first); 5704 return VGI; 5705 } 5706 5707 void ModuleSummaryIndexBitcodeReader::setValueGUID( 5708 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 5709 StringRef SourceFileName) { 5710 std::string GlobalId = 5711 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5712 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5713 auto OriginalNameID = ValueGUID; 5714 if (GlobalValue::isLocalLinkage(Linkage)) 5715 OriginalNameID = GlobalValue::getGUID(ValueName); 5716 if (PrintSummaryGUIDs) 5717 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5718 << ValueName << "\n"; 5719 5720 // UseStrtab is false for legacy summary formats and value names are 5721 // created on stack. In that case we save the name in a string saver in 5722 // the index so that the value name can be recorded. 5723 ValueIdToValueInfoMap[ValueID] = std::make_pair( 5724 TheIndex.getOrInsertValueInfo( 5725 ValueGUID, 5726 UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 5727 OriginalNameID); 5728 } 5729 5730 // Specialized value symbol table parser used when reading module index 5731 // blocks where we don't actually create global values. The parsed information 5732 // is saved in the bitcode reader for use when later parsing summaries. 5733 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5734 uint64_t Offset, 5735 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5736 // With a strtab the VST is not required to parse the summary. 5737 if (UseStrtab) 5738 return Error::success(); 5739 5740 assert(Offset > 0 && "Expected non-zero VST offset"); 5741 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 5742 if (!MaybeCurrentBit) 5743 return MaybeCurrentBit.takeError(); 5744 uint64_t CurrentBit = MaybeCurrentBit.get(); 5745 5746 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5747 return Err; 5748 5749 SmallVector<uint64_t, 64> Record; 5750 5751 // Read all the records for this value table. 5752 SmallString<128> ValueName; 5753 5754 while (true) { 5755 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5756 if (!MaybeEntry) 5757 return MaybeEntry.takeError(); 5758 BitstreamEntry Entry = MaybeEntry.get(); 5759 5760 switch (Entry.Kind) { 5761 case BitstreamEntry::SubBlock: // Handled for us already. 5762 case BitstreamEntry::Error: 5763 return error("Malformed block"); 5764 case BitstreamEntry::EndBlock: 5765 // Done parsing VST, jump back to wherever we came from. 5766 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 5767 return JumpFailed; 5768 return Error::success(); 5769 case BitstreamEntry::Record: 5770 // The interesting case. 5771 break; 5772 } 5773 5774 // Read a record. 5775 Record.clear(); 5776 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5777 if (!MaybeRecord) 5778 return MaybeRecord.takeError(); 5779 switch (MaybeRecord.get()) { 5780 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5781 break; 5782 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5783 if (convertToString(Record, 1, ValueName)) 5784 return error("Invalid record"); 5785 unsigned ValueID = Record[0]; 5786 assert(!SourceFileName.empty()); 5787 auto VLI = ValueIdToLinkageMap.find(ValueID); 5788 assert(VLI != ValueIdToLinkageMap.end() && 5789 "No linkage found for VST entry?"); 5790 auto Linkage = VLI->second; 5791 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5792 ValueName.clear(); 5793 break; 5794 } 5795 case bitc::VST_CODE_FNENTRY: { 5796 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5797 if (convertToString(Record, 2, ValueName)) 5798 return error("Invalid record"); 5799 unsigned ValueID = Record[0]; 5800 assert(!SourceFileName.empty()); 5801 auto VLI = ValueIdToLinkageMap.find(ValueID); 5802 assert(VLI != ValueIdToLinkageMap.end() && 5803 "No linkage found for VST entry?"); 5804 auto Linkage = VLI->second; 5805 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5806 ValueName.clear(); 5807 break; 5808 } 5809 case bitc::VST_CODE_COMBINED_ENTRY: { 5810 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5811 unsigned ValueID = Record[0]; 5812 GlobalValue::GUID RefGUID = Record[1]; 5813 // The "original name", which is the second value of the pair will be 5814 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5815 ValueIdToValueInfoMap[ValueID] = 5816 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5817 break; 5818 } 5819 } 5820 } 5821 } 5822 5823 // Parse just the blocks needed for building the index out of the module. 5824 // At the end of this routine the module Index is populated with a map 5825 // from global value id to GlobalValueSummary objects. 5826 Error ModuleSummaryIndexBitcodeReader::parseModule() { 5827 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5828 return Err; 5829 5830 SmallVector<uint64_t, 64> Record; 5831 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5832 unsigned ValueId = 0; 5833 5834 // Read the index for this module. 5835 while (true) { 5836 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 5837 if (!MaybeEntry) 5838 return MaybeEntry.takeError(); 5839 llvm::BitstreamEntry Entry = MaybeEntry.get(); 5840 5841 switch (Entry.Kind) { 5842 case BitstreamEntry::Error: 5843 return error("Malformed block"); 5844 case BitstreamEntry::EndBlock: 5845 return Error::success(); 5846 5847 case BitstreamEntry::SubBlock: 5848 switch (Entry.ID) { 5849 default: // Skip unknown content. 5850 if (Error Err = Stream.SkipBlock()) 5851 return Err; 5852 break; 5853 case bitc::BLOCKINFO_BLOCK_ID: 5854 // Need to parse these to get abbrev ids (e.g. for VST) 5855 if (readBlockInfo()) 5856 return error("Malformed block"); 5857 break; 5858 case bitc::VALUE_SYMTAB_BLOCK_ID: 5859 // Should have been parsed earlier via VSTOffset, unless there 5860 // is no summary section. 5861 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5862 !SeenGlobalValSummary) && 5863 "Expected early VST parse via VSTOffset record"); 5864 if (Error Err = Stream.SkipBlock()) 5865 return Err; 5866 break; 5867 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5868 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 5869 // Add the module if it is a per-module index (has a source file name). 5870 if (!SourceFileName.empty()) 5871 addThisModule(); 5872 assert(!SeenValueSymbolTable && 5873 "Already read VST when parsing summary block?"); 5874 // We might not have a VST if there were no values in the 5875 // summary. An empty summary block generated when we are 5876 // performing ThinLTO compiles so we don't later invoke 5877 // the regular LTO process on them. 5878 if (VSTOffset > 0) { 5879 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5880 return Err; 5881 SeenValueSymbolTable = true; 5882 } 5883 SeenGlobalValSummary = true; 5884 if (Error Err = parseEntireSummary(Entry.ID)) 5885 return Err; 5886 break; 5887 case bitc::MODULE_STRTAB_BLOCK_ID: 5888 if (Error Err = parseModuleStringTable()) 5889 return Err; 5890 break; 5891 } 5892 continue; 5893 5894 case BitstreamEntry::Record: { 5895 Record.clear(); 5896 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5897 if (!MaybeBitCode) 5898 return MaybeBitCode.takeError(); 5899 switch (MaybeBitCode.get()) { 5900 default: 5901 break; // Default behavior, ignore unknown content. 5902 case bitc::MODULE_CODE_VERSION: { 5903 if (Error Err = parseVersionRecord(Record).takeError()) 5904 return Err; 5905 break; 5906 } 5907 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5908 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5909 SmallString<128> ValueName; 5910 if (convertToString(Record, 0, ValueName)) 5911 return error("Invalid record"); 5912 SourceFileName = ValueName.c_str(); 5913 break; 5914 } 5915 /// MODULE_CODE_HASH: [5*i32] 5916 case bitc::MODULE_CODE_HASH: { 5917 if (Record.size() != 5) 5918 return error("Invalid hash length " + Twine(Record.size()).str()); 5919 auto &Hash = getThisModule()->second.second; 5920 int Pos = 0; 5921 for (auto &Val : Record) { 5922 assert(!(Val >> 32) && "Unexpected high bits set"); 5923 Hash[Pos++] = Val; 5924 } 5925 break; 5926 } 5927 /// MODULE_CODE_VSTOFFSET: [offset] 5928 case bitc::MODULE_CODE_VSTOFFSET: 5929 if (Record.empty()) 5930 return error("Invalid record"); 5931 // Note that we subtract 1 here because the offset is relative to one 5932 // word before the start of the identification or module block, which 5933 // was historically always the start of the regular bitcode header. 5934 VSTOffset = Record[0] - 1; 5935 break; 5936 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5937 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5938 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5939 // v2: [strtab offset, strtab size, v1] 5940 case bitc::MODULE_CODE_GLOBALVAR: 5941 case bitc::MODULE_CODE_FUNCTION: 5942 case bitc::MODULE_CODE_ALIAS: { 5943 StringRef Name; 5944 ArrayRef<uint64_t> GVRecord; 5945 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5946 if (GVRecord.size() <= 3) 5947 return error("Invalid record"); 5948 uint64_t RawLinkage = GVRecord[3]; 5949 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5950 if (!UseStrtab) { 5951 ValueIdToLinkageMap[ValueId++] = Linkage; 5952 break; 5953 } 5954 5955 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5956 break; 5957 } 5958 } 5959 } 5960 continue; 5961 } 5962 } 5963 } 5964 5965 std::vector<ValueInfo> 5966 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5967 std::vector<ValueInfo> Ret; 5968 Ret.reserve(Record.size()); 5969 for (uint64_t RefValueId : Record) 5970 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5971 return Ret; 5972 } 5973 5974 std::vector<FunctionSummary::EdgeTy> 5975 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 5976 bool IsOldProfileFormat, 5977 bool HasProfile, bool HasRelBF) { 5978 std::vector<FunctionSummary::EdgeTy> Ret; 5979 Ret.reserve(Record.size()); 5980 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5981 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5982 uint64_t RelBF = 0; 5983 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5984 if (IsOldProfileFormat) { 5985 I += 1; // Skip old callsitecount field 5986 if (HasProfile) 5987 I += 1; // Skip old profilecount field 5988 } else if (HasProfile) 5989 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5990 else if (HasRelBF) 5991 RelBF = Record[++I]; 5992 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 5993 } 5994 return Ret; 5995 } 5996 5997 static void 5998 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 5999 WholeProgramDevirtResolution &Wpd) { 6000 uint64_t ArgNum = Record[Slot++]; 6001 WholeProgramDevirtResolution::ByArg &B = 6002 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 6003 Slot += ArgNum; 6004 6005 B.TheKind = 6006 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 6007 B.Info = Record[Slot++]; 6008 B.Byte = Record[Slot++]; 6009 B.Bit = Record[Slot++]; 6010 } 6011 6012 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 6013 StringRef Strtab, size_t &Slot, 6014 TypeIdSummary &TypeId) { 6015 uint64_t Id = Record[Slot++]; 6016 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 6017 6018 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 6019 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 6020 static_cast<size_t>(Record[Slot + 1])}; 6021 Slot += 2; 6022 6023 uint64_t ResByArgNum = Record[Slot++]; 6024 for (uint64_t I = 0; I != ResByArgNum; ++I) 6025 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 6026 } 6027 6028 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 6029 StringRef Strtab, 6030 ModuleSummaryIndex &TheIndex) { 6031 size_t Slot = 0; 6032 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 6033 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 6034 Slot += 2; 6035 6036 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 6037 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 6038 TypeId.TTRes.AlignLog2 = Record[Slot++]; 6039 TypeId.TTRes.SizeM1 = Record[Slot++]; 6040 TypeId.TTRes.BitMask = Record[Slot++]; 6041 TypeId.TTRes.InlineBits = Record[Slot++]; 6042 6043 while (Slot < Record.size()) 6044 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 6045 } 6046 6047 std::vector<FunctionSummary::ParamAccess> 6048 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 6049 auto ReadRange = [&]() { 6050 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 6051 BitcodeReader::decodeSignRotatedValue(Record.front())); 6052 Record = Record.drop_front(); 6053 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 6054 BitcodeReader::decodeSignRotatedValue(Record.front())); 6055 Record = Record.drop_front(); 6056 ConstantRange Range{Lower, Upper}; 6057 assert(!Range.isFullSet()); 6058 assert(!Range.isUpperSignWrapped()); 6059 return Range; 6060 }; 6061 6062 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 6063 while (!Record.empty()) { 6064 PendingParamAccesses.emplace_back(); 6065 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 6066 ParamAccess.ParamNo = Record.front(); 6067 Record = Record.drop_front(); 6068 ParamAccess.Use = ReadRange(); 6069 ParamAccess.Calls.resize(Record.front()); 6070 Record = Record.drop_front(); 6071 for (auto &Call : ParamAccess.Calls) { 6072 Call.ParamNo = Record.front(); 6073 Record = Record.drop_front(); 6074 Call.Callee = getValueInfoFromValueId(Record.front()).first; 6075 Record = Record.drop_front(); 6076 Call.Offsets = ReadRange(); 6077 } 6078 } 6079 return PendingParamAccesses; 6080 } 6081 6082 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 6083 ArrayRef<uint64_t> Record, size_t &Slot, 6084 TypeIdCompatibleVtableInfo &TypeId) { 6085 uint64_t Offset = Record[Slot++]; 6086 ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first; 6087 TypeId.push_back({Offset, Callee}); 6088 } 6089 6090 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 6091 ArrayRef<uint64_t> Record) { 6092 size_t Slot = 0; 6093 TypeIdCompatibleVtableInfo &TypeId = 6094 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 6095 {Strtab.data() + Record[Slot], 6096 static_cast<size_t>(Record[Slot + 1])}); 6097 Slot += 2; 6098 6099 while (Slot < Record.size()) 6100 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 6101 } 6102 6103 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 6104 unsigned WOCnt) { 6105 // Readonly and writeonly refs are in the end of the refs list. 6106 assert(ROCnt + WOCnt <= Refs.size()); 6107 unsigned FirstWORef = Refs.size() - WOCnt; 6108 unsigned RefNo = FirstWORef - ROCnt; 6109 for (; RefNo < FirstWORef; ++RefNo) 6110 Refs[RefNo].setReadOnly(); 6111 for (; RefNo < Refs.size(); ++RefNo) 6112 Refs[RefNo].setWriteOnly(); 6113 } 6114 6115 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 6116 // objects in the index. 6117 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 6118 if (Error Err = Stream.EnterSubBlock(ID)) 6119 return Err; 6120 SmallVector<uint64_t, 64> Record; 6121 6122 // Parse version 6123 { 6124 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6125 if (!MaybeEntry) 6126 return MaybeEntry.takeError(); 6127 BitstreamEntry Entry = MaybeEntry.get(); 6128 6129 if (Entry.Kind != BitstreamEntry::Record) 6130 return error("Invalid Summary Block: record for version expected"); 6131 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6132 if (!MaybeRecord) 6133 return MaybeRecord.takeError(); 6134 if (MaybeRecord.get() != bitc::FS_VERSION) 6135 return error("Invalid Summary Block: version expected"); 6136 } 6137 const uint64_t Version = Record[0]; 6138 const bool IsOldProfileFormat = Version == 1; 6139 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 6140 return error("Invalid summary version " + Twine(Version) + 6141 ". Version should be in the range [1-" + 6142 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 6143 "]."); 6144 Record.clear(); 6145 6146 // Keep around the last seen summary to be used when we see an optional 6147 // "OriginalName" attachement. 6148 GlobalValueSummary *LastSeenSummary = nullptr; 6149 GlobalValue::GUID LastSeenGUID = 0; 6150 6151 // We can expect to see any number of type ID information records before 6152 // each function summary records; these variables store the information 6153 // collected so far so that it can be used to create the summary object. 6154 std::vector<GlobalValue::GUID> PendingTypeTests; 6155 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 6156 PendingTypeCheckedLoadVCalls; 6157 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 6158 PendingTypeCheckedLoadConstVCalls; 6159 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 6160 6161 while (true) { 6162 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6163 if (!MaybeEntry) 6164 return MaybeEntry.takeError(); 6165 BitstreamEntry Entry = MaybeEntry.get(); 6166 6167 switch (Entry.Kind) { 6168 case BitstreamEntry::SubBlock: // Handled for us already. 6169 case BitstreamEntry::Error: 6170 return error("Malformed block"); 6171 case BitstreamEntry::EndBlock: 6172 return Error::success(); 6173 case BitstreamEntry::Record: 6174 // The interesting case. 6175 break; 6176 } 6177 6178 // Read a record. The record format depends on whether this 6179 // is a per-module index or a combined index file. In the per-module 6180 // case the records contain the associated value's ID for correlation 6181 // with VST entries. In the combined index the correlation is done 6182 // via the bitcode offset of the summary records (which were saved 6183 // in the combined index VST entries). The records also contain 6184 // information used for ThinLTO renaming and importing. 6185 Record.clear(); 6186 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6187 if (!MaybeBitCode) 6188 return MaybeBitCode.takeError(); 6189 switch (unsigned BitCode = MaybeBitCode.get()) { 6190 default: // Default behavior: ignore. 6191 break; 6192 case bitc::FS_FLAGS: { // [flags] 6193 TheIndex.setFlags(Record[0]); 6194 break; 6195 } 6196 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 6197 uint64_t ValueID = Record[0]; 6198 GlobalValue::GUID RefGUID = Record[1]; 6199 ValueIdToValueInfoMap[ValueID] = 6200 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 6201 break; 6202 } 6203 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 6204 // numrefs x valueid, n x (valueid)] 6205 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 6206 // numrefs x valueid, 6207 // n x (valueid, hotness)] 6208 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 6209 // numrefs x valueid, 6210 // n x (valueid, relblockfreq)] 6211 case bitc::FS_PERMODULE: 6212 case bitc::FS_PERMODULE_RELBF: 6213 case bitc::FS_PERMODULE_PROFILE: { 6214 unsigned ValueID = Record[0]; 6215 uint64_t RawFlags = Record[1]; 6216 unsigned InstCount = Record[2]; 6217 uint64_t RawFunFlags = 0; 6218 unsigned NumRefs = Record[3]; 6219 unsigned NumRORefs = 0, NumWORefs = 0; 6220 int RefListStartIndex = 4; 6221 if (Version >= 4) { 6222 RawFunFlags = Record[3]; 6223 NumRefs = Record[4]; 6224 RefListStartIndex = 5; 6225 if (Version >= 5) { 6226 NumRORefs = Record[5]; 6227 RefListStartIndex = 6; 6228 if (Version >= 7) { 6229 NumWORefs = Record[6]; 6230 RefListStartIndex = 7; 6231 } 6232 } 6233 } 6234 6235 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6236 // The module path string ref set in the summary must be owned by the 6237 // index's module string table. Since we don't have a module path 6238 // string table section in the per-module index, we create a single 6239 // module path string table entry with an empty (0) ID to take 6240 // ownership. 6241 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6242 assert(Record.size() >= RefListStartIndex + NumRefs && 6243 "Record size inconsistent with number of references"); 6244 std::vector<ValueInfo> Refs = makeRefList( 6245 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6246 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 6247 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 6248 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 6249 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6250 IsOldProfileFormat, HasProfile, HasRelBF); 6251 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6252 auto FS = std::make_unique<FunctionSummary>( 6253 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 6254 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 6255 std::move(PendingTypeTestAssumeVCalls), 6256 std::move(PendingTypeCheckedLoadVCalls), 6257 std::move(PendingTypeTestAssumeConstVCalls), 6258 std::move(PendingTypeCheckedLoadConstVCalls), 6259 std::move(PendingParamAccesses)); 6260 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 6261 FS->setModulePath(getThisModule()->first()); 6262 FS->setOriginalName(VIAndOriginalGUID.second); 6263 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 6264 break; 6265 } 6266 // FS_ALIAS: [valueid, flags, valueid] 6267 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 6268 // they expect all aliasee summaries to be available. 6269 case bitc::FS_ALIAS: { 6270 unsigned ValueID = Record[0]; 6271 uint64_t RawFlags = Record[1]; 6272 unsigned AliaseeID = Record[2]; 6273 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6274 auto AS = std::make_unique<AliasSummary>(Flags); 6275 // The module path string ref set in the summary must be owned by the 6276 // index's module string table. Since we don't have a module path 6277 // string table section in the per-module index, we create a single 6278 // module path string table entry with an empty (0) ID to take 6279 // ownership. 6280 AS->setModulePath(getThisModule()->first()); 6281 6282 auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first; 6283 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 6284 if (!AliaseeInModule) 6285 return error("Alias expects aliasee summary to be parsed"); 6286 AS->setAliasee(AliaseeVI, AliaseeInModule); 6287 6288 auto GUID = getValueInfoFromValueId(ValueID); 6289 AS->setOriginalName(GUID.second); 6290 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 6291 break; 6292 } 6293 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 6294 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 6295 unsigned ValueID = Record[0]; 6296 uint64_t RawFlags = Record[1]; 6297 unsigned RefArrayStart = 2; 6298 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6299 /* WriteOnly */ false, 6300 /* Constant */ false, 6301 GlobalObject::VCallVisibilityPublic); 6302 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6303 if (Version >= 5) { 6304 GVF = getDecodedGVarFlags(Record[2]); 6305 RefArrayStart = 3; 6306 } 6307 std::vector<ValueInfo> Refs = 6308 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6309 auto FS = 6310 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6311 FS->setModulePath(getThisModule()->first()); 6312 auto GUID = getValueInfoFromValueId(ValueID); 6313 FS->setOriginalName(GUID.second); 6314 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 6315 break; 6316 } 6317 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 6318 // numrefs, numrefs x valueid, 6319 // n x (valueid, offset)] 6320 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 6321 unsigned ValueID = Record[0]; 6322 uint64_t RawFlags = Record[1]; 6323 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 6324 unsigned NumRefs = Record[3]; 6325 unsigned RefListStartIndex = 4; 6326 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 6327 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6328 std::vector<ValueInfo> Refs = makeRefList( 6329 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6330 VTableFuncList VTableFuncs; 6331 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 6332 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 6333 uint64_t Offset = Record[++I]; 6334 VTableFuncs.push_back({Callee, Offset}); 6335 } 6336 auto VS = 6337 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6338 VS->setModulePath(getThisModule()->first()); 6339 VS->setVTableFuncs(VTableFuncs); 6340 auto GUID = getValueInfoFromValueId(ValueID); 6341 VS->setOriginalName(GUID.second); 6342 TheIndex.addGlobalValueSummary(GUID.first, std::move(VS)); 6343 break; 6344 } 6345 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 6346 // numrefs x valueid, n x (valueid)] 6347 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 6348 // numrefs x valueid, n x (valueid, hotness)] 6349 case bitc::FS_COMBINED: 6350 case bitc::FS_COMBINED_PROFILE: { 6351 unsigned ValueID = Record[0]; 6352 uint64_t ModuleId = Record[1]; 6353 uint64_t RawFlags = Record[2]; 6354 unsigned InstCount = Record[3]; 6355 uint64_t RawFunFlags = 0; 6356 uint64_t EntryCount = 0; 6357 unsigned NumRefs = Record[4]; 6358 unsigned NumRORefs = 0, NumWORefs = 0; 6359 int RefListStartIndex = 5; 6360 6361 if (Version >= 4) { 6362 RawFunFlags = Record[4]; 6363 RefListStartIndex = 6; 6364 size_t NumRefsIndex = 5; 6365 if (Version >= 5) { 6366 unsigned NumRORefsOffset = 1; 6367 RefListStartIndex = 7; 6368 if (Version >= 6) { 6369 NumRefsIndex = 6; 6370 EntryCount = Record[5]; 6371 RefListStartIndex = 8; 6372 if (Version >= 7) { 6373 RefListStartIndex = 9; 6374 NumWORefs = Record[8]; 6375 NumRORefsOffset = 2; 6376 } 6377 } 6378 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 6379 } 6380 NumRefs = Record[NumRefsIndex]; 6381 } 6382 6383 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6384 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6385 assert(Record.size() >= RefListStartIndex + NumRefs && 6386 "Record size inconsistent with number of references"); 6387 std::vector<ValueInfo> Refs = makeRefList( 6388 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6389 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6390 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 6391 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6392 IsOldProfileFormat, HasProfile, false); 6393 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6394 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6395 auto FS = std::make_unique<FunctionSummary>( 6396 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 6397 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 6398 std::move(PendingTypeTestAssumeVCalls), 6399 std::move(PendingTypeCheckedLoadVCalls), 6400 std::move(PendingTypeTestAssumeConstVCalls), 6401 std::move(PendingTypeCheckedLoadConstVCalls), 6402 std::move(PendingParamAccesses)); 6403 LastSeenSummary = FS.get(); 6404 LastSeenGUID = VI.getGUID(); 6405 FS->setModulePath(ModuleIdMap[ModuleId]); 6406 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6407 break; 6408 } 6409 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6410 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6411 // they expect all aliasee summaries to be available. 6412 case bitc::FS_COMBINED_ALIAS: { 6413 unsigned ValueID = Record[0]; 6414 uint64_t ModuleId = Record[1]; 6415 uint64_t RawFlags = Record[2]; 6416 unsigned AliaseeValueId = Record[3]; 6417 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6418 auto AS = std::make_unique<AliasSummary>(Flags); 6419 LastSeenSummary = AS.get(); 6420 AS->setModulePath(ModuleIdMap[ModuleId]); 6421 6422 auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first; 6423 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 6424 AS->setAliasee(AliaseeVI, AliaseeInModule); 6425 6426 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6427 LastSeenGUID = VI.getGUID(); 6428 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 6429 break; 6430 } 6431 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6432 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6433 unsigned ValueID = Record[0]; 6434 uint64_t ModuleId = Record[1]; 6435 uint64_t RawFlags = Record[2]; 6436 unsigned RefArrayStart = 3; 6437 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6438 /* WriteOnly */ false, 6439 /* Constant */ false, 6440 GlobalObject::VCallVisibilityPublic); 6441 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6442 if (Version >= 5) { 6443 GVF = getDecodedGVarFlags(Record[3]); 6444 RefArrayStart = 4; 6445 } 6446 std::vector<ValueInfo> Refs = 6447 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6448 auto FS = 6449 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6450 LastSeenSummary = FS.get(); 6451 FS->setModulePath(ModuleIdMap[ModuleId]); 6452 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6453 LastSeenGUID = VI.getGUID(); 6454 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6455 break; 6456 } 6457 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6458 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6459 uint64_t OriginalName = Record[0]; 6460 if (!LastSeenSummary) 6461 return error("Name attachment that does not follow a combined record"); 6462 LastSeenSummary->setOriginalName(OriginalName); 6463 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 6464 // Reset the LastSeenSummary 6465 LastSeenSummary = nullptr; 6466 LastSeenGUID = 0; 6467 break; 6468 } 6469 case bitc::FS_TYPE_TESTS: 6470 assert(PendingTypeTests.empty()); 6471 llvm::append_range(PendingTypeTests, Record); 6472 break; 6473 6474 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 6475 assert(PendingTypeTestAssumeVCalls.empty()); 6476 for (unsigned I = 0; I != Record.size(); I += 2) 6477 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 6478 break; 6479 6480 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 6481 assert(PendingTypeCheckedLoadVCalls.empty()); 6482 for (unsigned I = 0; I != Record.size(); I += 2) 6483 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 6484 break; 6485 6486 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 6487 PendingTypeTestAssumeConstVCalls.push_back( 6488 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6489 break; 6490 6491 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 6492 PendingTypeCheckedLoadConstVCalls.push_back( 6493 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6494 break; 6495 6496 case bitc::FS_CFI_FUNCTION_DEFS: { 6497 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 6498 for (unsigned I = 0; I != Record.size(); I += 2) 6499 CfiFunctionDefs.insert( 6500 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6501 break; 6502 } 6503 6504 case bitc::FS_CFI_FUNCTION_DECLS: { 6505 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 6506 for (unsigned I = 0; I != Record.size(); I += 2) 6507 CfiFunctionDecls.insert( 6508 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6509 break; 6510 } 6511 6512 case bitc::FS_TYPE_ID: 6513 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 6514 break; 6515 6516 case bitc::FS_TYPE_ID_METADATA: 6517 parseTypeIdCompatibleVtableSummaryRecord(Record); 6518 break; 6519 6520 case bitc::FS_BLOCK_COUNT: 6521 TheIndex.addBlockCount(Record[0]); 6522 break; 6523 6524 case bitc::FS_PARAM_ACCESS: { 6525 PendingParamAccesses = parseParamAccesses(Record); 6526 break; 6527 } 6528 } 6529 } 6530 llvm_unreachable("Exit infinite loop"); 6531 } 6532 6533 // Parse the module string table block into the Index. 6534 // This populates the ModulePathStringTable map in the index. 6535 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6536 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6537 return Err; 6538 6539 SmallVector<uint64_t, 64> Record; 6540 6541 SmallString<128> ModulePath; 6542 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 6543 6544 while (true) { 6545 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6546 if (!MaybeEntry) 6547 return MaybeEntry.takeError(); 6548 BitstreamEntry Entry = MaybeEntry.get(); 6549 6550 switch (Entry.Kind) { 6551 case BitstreamEntry::SubBlock: // Handled for us already. 6552 case BitstreamEntry::Error: 6553 return error("Malformed block"); 6554 case BitstreamEntry::EndBlock: 6555 return Error::success(); 6556 case BitstreamEntry::Record: 6557 // The interesting case. 6558 break; 6559 } 6560 6561 Record.clear(); 6562 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6563 if (!MaybeRecord) 6564 return MaybeRecord.takeError(); 6565 switch (MaybeRecord.get()) { 6566 default: // Default behavior: ignore. 6567 break; 6568 case bitc::MST_CODE_ENTRY: { 6569 // MST_ENTRY: [modid, namechar x N] 6570 uint64_t ModuleId = Record[0]; 6571 6572 if (convertToString(Record, 1, ModulePath)) 6573 return error("Invalid record"); 6574 6575 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 6576 ModuleIdMap[ModuleId] = LastSeenModule->first(); 6577 6578 ModulePath.clear(); 6579 break; 6580 } 6581 /// MST_CODE_HASH: [5*i32] 6582 case bitc::MST_CODE_HASH: { 6583 if (Record.size() != 5) 6584 return error("Invalid hash length " + Twine(Record.size()).str()); 6585 if (!LastSeenModule) 6586 return error("Invalid hash that does not follow a module path"); 6587 int Pos = 0; 6588 for (auto &Val : Record) { 6589 assert(!(Val >> 32) && "Unexpected high bits set"); 6590 LastSeenModule->second.second[Pos++] = Val; 6591 } 6592 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 6593 LastSeenModule = nullptr; 6594 break; 6595 } 6596 } 6597 } 6598 llvm_unreachable("Exit infinite loop"); 6599 } 6600 6601 namespace { 6602 6603 // FIXME: This class is only here to support the transition to llvm::Error. It 6604 // will be removed once this transition is complete. Clients should prefer to 6605 // deal with the Error value directly, rather than converting to error_code. 6606 class BitcodeErrorCategoryType : public std::error_category { 6607 const char *name() const noexcept override { 6608 return "llvm.bitcode"; 6609 } 6610 6611 std::string message(int IE) const override { 6612 BitcodeError E = static_cast<BitcodeError>(IE); 6613 switch (E) { 6614 case BitcodeError::CorruptedBitcode: 6615 return "Corrupted bitcode"; 6616 } 6617 llvm_unreachable("Unknown error type!"); 6618 } 6619 }; 6620 6621 } // end anonymous namespace 6622 6623 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6624 6625 const std::error_category &llvm::BitcodeErrorCategory() { 6626 return *ErrorCategory; 6627 } 6628 6629 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 6630 unsigned Block, unsigned RecordID) { 6631 if (Error Err = Stream.EnterSubBlock(Block)) 6632 return std::move(Err); 6633 6634 StringRef Strtab; 6635 while (true) { 6636 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6637 if (!MaybeEntry) 6638 return MaybeEntry.takeError(); 6639 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6640 6641 switch (Entry.Kind) { 6642 case BitstreamEntry::EndBlock: 6643 return Strtab; 6644 6645 case BitstreamEntry::Error: 6646 return error("Malformed block"); 6647 6648 case BitstreamEntry::SubBlock: 6649 if (Error Err = Stream.SkipBlock()) 6650 return std::move(Err); 6651 break; 6652 6653 case BitstreamEntry::Record: 6654 StringRef Blob; 6655 SmallVector<uint64_t, 1> Record; 6656 Expected<unsigned> MaybeRecord = 6657 Stream.readRecord(Entry.ID, Record, &Blob); 6658 if (!MaybeRecord) 6659 return MaybeRecord.takeError(); 6660 if (MaybeRecord.get() == RecordID) 6661 Strtab = Blob; 6662 break; 6663 } 6664 } 6665 } 6666 6667 //===----------------------------------------------------------------------===// 6668 // External interface 6669 //===----------------------------------------------------------------------===// 6670 6671 Expected<std::vector<BitcodeModule>> 6672 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 6673 auto FOrErr = getBitcodeFileContents(Buffer); 6674 if (!FOrErr) 6675 return FOrErr.takeError(); 6676 return std::move(FOrErr->Mods); 6677 } 6678 6679 Expected<BitcodeFileContents> 6680 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 6681 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6682 if (!StreamOrErr) 6683 return StreamOrErr.takeError(); 6684 BitstreamCursor &Stream = *StreamOrErr; 6685 6686 BitcodeFileContents F; 6687 while (true) { 6688 uint64_t BCBegin = Stream.getCurrentByteNo(); 6689 6690 // We may be consuming bitcode from a client that leaves garbage at the end 6691 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 6692 // the end that there cannot possibly be another module, stop looking. 6693 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 6694 return F; 6695 6696 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6697 if (!MaybeEntry) 6698 return MaybeEntry.takeError(); 6699 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6700 6701 switch (Entry.Kind) { 6702 case BitstreamEntry::EndBlock: 6703 case BitstreamEntry::Error: 6704 return error("Malformed block"); 6705 6706 case BitstreamEntry::SubBlock: { 6707 uint64_t IdentificationBit = -1ull; 6708 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 6709 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6710 if (Error Err = Stream.SkipBlock()) 6711 return std::move(Err); 6712 6713 { 6714 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6715 if (!MaybeEntry) 6716 return MaybeEntry.takeError(); 6717 Entry = MaybeEntry.get(); 6718 } 6719 6720 if (Entry.Kind != BitstreamEntry::SubBlock || 6721 Entry.ID != bitc::MODULE_BLOCK_ID) 6722 return error("Malformed block"); 6723 } 6724 6725 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 6726 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6727 if (Error Err = Stream.SkipBlock()) 6728 return std::move(Err); 6729 6730 F.Mods.push_back({Stream.getBitcodeBytes().slice( 6731 BCBegin, Stream.getCurrentByteNo() - BCBegin), 6732 Buffer.getBufferIdentifier(), IdentificationBit, 6733 ModuleBit}); 6734 continue; 6735 } 6736 6737 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 6738 Expected<StringRef> Strtab = 6739 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 6740 if (!Strtab) 6741 return Strtab.takeError(); 6742 // This string table is used by every preceding bitcode module that does 6743 // not have its own string table. A bitcode file may have multiple 6744 // string tables if it was created by binary concatenation, for example 6745 // with "llvm-cat -b". 6746 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 6747 if (!I->Strtab.empty()) 6748 break; 6749 I->Strtab = *Strtab; 6750 } 6751 // Similarly, the string table is used by every preceding symbol table; 6752 // normally there will be just one unless the bitcode file was created 6753 // by binary concatenation. 6754 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 6755 F.StrtabForSymtab = *Strtab; 6756 continue; 6757 } 6758 6759 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 6760 Expected<StringRef> SymtabOrErr = 6761 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 6762 if (!SymtabOrErr) 6763 return SymtabOrErr.takeError(); 6764 6765 // We can expect the bitcode file to have multiple symbol tables if it 6766 // was created by binary concatenation. In that case we silently 6767 // ignore any subsequent symbol tables, which is fine because this is a 6768 // low level function. The client is expected to notice that the number 6769 // of modules in the symbol table does not match the number of modules 6770 // in the input file and regenerate the symbol table. 6771 if (F.Symtab.empty()) 6772 F.Symtab = *SymtabOrErr; 6773 continue; 6774 } 6775 6776 if (Error Err = Stream.SkipBlock()) 6777 return std::move(Err); 6778 continue; 6779 } 6780 case BitstreamEntry::Record: 6781 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6782 continue; 6783 else 6784 return StreamFailed.takeError(); 6785 } 6786 } 6787 } 6788 6789 /// Get a lazy one-at-time loading module from bitcode. 6790 /// 6791 /// This isn't always used in a lazy context. In particular, it's also used by 6792 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 6793 /// in forward-referenced functions from block address references. 6794 /// 6795 /// \param[in] MaterializeAll Set to \c true if we should materialize 6796 /// everything. 6797 Expected<std::unique_ptr<Module>> 6798 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 6799 bool ShouldLazyLoadMetadata, bool IsImporting, 6800 DataLayoutCallbackTy DataLayoutCallback) { 6801 BitstreamCursor Stream(Buffer); 6802 6803 std::string ProducerIdentification; 6804 if (IdentificationBit != -1ull) { 6805 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 6806 return std::move(JumpFailed); 6807 Expected<std::string> ProducerIdentificationOrErr = 6808 readIdentificationBlock(Stream); 6809 if (!ProducerIdentificationOrErr) 6810 return ProducerIdentificationOrErr.takeError(); 6811 6812 ProducerIdentification = *ProducerIdentificationOrErr; 6813 } 6814 6815 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6816 return std::move(JumpFailed); 6817 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 6818 Context); 6819 6820 std::unique_ptr<Module> M = 6821 std::make_unique<Module>(ModuleIdentifier, Context); 6822 M->setMaterializer(R); 6823 6824 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6825 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 6826 IsImporting, DataLayoutCallback)) 6827 return std::move(Err); 6828 6829 if (MaterializeAll) { 6830 // Read in the entire module, and destroy the BitcodeReader. 6831 if (Error Err = M->materializeAll()) 6832 return std::move(Err); 6833 } else { 6834 // Resolve forward references from blockaddresses. 6835 if (Error Err = R->materializeForwardReferencedFunctions()) 6836 return std::move(Err); 6837 } 6838 return std::move(M); 6839 } 6840 6841 Expected<std::unique_ptr<Module>> 6842 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 6843 bool IsImporting) { 6844 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 6845 [](StringRef) { return None; }); 6846 } 6847 6848 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 6849 // We don't use ModuleIdentifier here because the client may need to control the 6850 // module path used in the combined summary (e.g. when reading summaries for 6851 // regular LTO modules). 6852 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 6853 StringRef ModulePath, uint64_t ModuleId) { 6854 BitstreamCursor Stream(Buffer); 6855 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6856 return JumpFailed; 6857 6858 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 6859 ModulePath, ModuleId); 6860 return R.parseModule(); 6861 } 6862 6863 // Parse the specified bitcode buffer, returning the function info index. 6864 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 6865 BitstreamCursor Stream(Buffer); 6866 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6867 return std::move(JumpFailed); 6868 6869 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 6870 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 6871 ModuleIdentifier, 0); 6872 6873 if (Error Err = R.parseModule()) 6874 return std::move(Err); 6875 6876 return std::move(Index); 6877 } 6878 6879 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 6880 unsigned ID) { 6881 if (Error Err = Stream.EnterSubBlock(ID)) 6882 return std::move(Err); 6883 SmallVector<uint64_t, 64> Record; 6884 6885 while (true) { 6886 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6887 if (!MaybeEntry) 6888 return MaybeEntry.takeError(); 6889 BitstreamEntry Entry = MaybeEntry.get(); 6890 6891 switch (Entry.Kind) { 6892 case BitstreamEntry::SubBlock: // Handled for us already. 6893 case BitstreamEntry::Error: 6894 return error("Malformed block"); 6895 case BitstreamEntry::EndBlock: 6896 // If no flags record found, conservatively return true to mimic 6897 // behavior before this flag was added. 6898 return true; 6899 case BitstreamEntry::Record: 6900 // The interesting case. 6901 break; 6902 } 6903 6904 // Look for the FS_FLAGS record. 6905 Record.clear(); 6906 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6907 if (!MaybeBitCode) 6908 return MaybeBitCode.takeError(); 6909 switch (MaybeBitCode.get()) { 6910 default: // Default behavior: ignore. 6911 break; 6912 case bitc::FS_FLAGS: { // [flags] 6913 uint64_t Flags = Record[0]; 6914 // Scan flags. 6915 assert(Flags <= 0x7f && "Unexpected bits in flag"); 6916 6917 return Flags & 0x8; 6918 } 6919 } 6920 } 6921 llvm_unreachable("Exit infinite loop"); 6922 } 6923 6924 // Check if the given bitcode buffer contains a global value summary block. 6925 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 6926 BitstreamCursor Stream(Buffer); 6927 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6928 return std::move(JumpFailed); 6929 6930 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6931 return std::move(Err); 6932 6933 while (true) { 6934 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6935 if (!MaybeEntry) 6936 return MaybeEntry.takeError(); 6937 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6938 6939 switch (Entry.Kind) { 6940 case BitstreamEntry::Error: 6941 return error("Malformed block"); 6942 case BitstreamEntry::EndBlock: 6943 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 6944 /*EnableSplitLTOUnit=*/false}; 6945 6946 case BitstreamEntry::SubBlock: 6947 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 6948 Expected<bool> EnableSplitLTOUnit = 6949 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6950 if (!EnableSplitLTOUnit) 6951 return EnableSplitLTOUnit.takeError(); 6952 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 6953 *EnableSplitLTOUnit}; 6954 } 6955 6956 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 6957 Expected<bool> EnableSplitLTOUnit = 6958 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6959 if (!EnableSplitLTOUnit) 6960 return EnableSplitLTOUnit.takeError(); 6961 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 6962 *EnableSplitLTOUnit}; 6963 } 6964 6965 // Ignore other sub-blocks. 6966 if (Error Err = Stream.SkipBlock()) 6967 return std::move(Err); 6968 continue; 6969 6970 case BitstreamEntry::Record: 6971 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6972 continue; 6973 else 6974 return StreamFailed.takeError(); 6975 } 6976 } 6977 } 6978 6979 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 6980 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 6981 if (!MsOrErr) 6982 return MsOrErr.takeError(); 6983 6984 if (MsOrErr->size() != 1) 6985 return error("Expected a single module"); 6986 6987 return (*MsOrErr)[0]; 6988 } 6989 6990 Expected<std::unique_ptr<Module>> 6991 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 6992 bool ShouldLazyLoadMetadata, bool IsImporting) { 6993 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6994 if (!BM) 6995 return BM.takeError(); 6996 6997 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 6998 } 6999 7000 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 7001 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 7002 bool ShouldLazyLoadMetadata, bool IsImporting) { 7003 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 7004 IsImporting); 7005 if (MOrErr) 7006 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 7007 return MOrErr; 7008 } 7009 7010 Expected<std::unique_ptr<Module>> 7011 BitcodeModule::parseModule(LLVMContext &Context, 7012 DataLayoutCallbackTy DataLayoutCallback) { 7013 return getModuleImpl(Context, true, false, false, DataLayoutCallback); 7014 // TODO: Restore the use-lists to the in-memory state when the bitcode was 7015 // written. We must defer until the Module has been fully materialized. 7016 } 7017 7018 Expected<std::unique_ptr<Module>> 7019 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 7020 DataLayoutCallbackTy DataLayoutCallback) { 7021 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7022 if (!BM) 7023 return BM.takeError(); 7024 7025 return BM->parseModule(Context, DataLayoutCallback); 7026 } 7027 7028 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 7029 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7030 if (!StreamOrErr) 7031 return StreamOrErr.takeError(); 7032 7033 return readTriple(*StreamOrErr); 7034 } 7035 7036 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 7037 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7038 if (!StreamOrErr) 7039 return StreamOrErr.takeError(); 7040 7041 return hasObjCCategory(*StreamOrErr); 7042 } 7043 7044 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 7045 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7046 if (!StreamOrErr) 7047 return StreamOrErr.takeError(); 7048 7049 return readIdentificationCode(*StreamOrErr); 7050 } 7051 7052 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 7053 ModuleSummaryIndex &CombinedIndex, 7054 uint64_t ModuleId) { 7055 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7056 if (!BM) 7057 return BM.takeError(); 7058 7059 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 7060 } 7061 7062 Expected<std::unique_ptr<ModuleSummaryIndex>> 7063 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 7064 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7065 if (!BM) 7066 return BM.takeError(); 7067 7068 return BM->getSummary(); 7069 } 7070 7071 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 7072 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7073 if (!BM) 7074 return BM.takeError(); 7075 7076 return BM->getLTOInfo(); 7077 } 7078 7079 Expected<std::unique_ptr<ModuleSummaryIndex>> 7080 llvm::getModuleSummaryIndexForFile(StringRef Path, 7081 bool IgnoreEmptyThinLTOIndexFile) { 7082 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 7083 MemoryBuffer::getFileOrSTDIN(Path); 7084 if (!FileOrErr) 7085 return errorCodeToError(FileOrErr.getError()); 7086 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 7087 return nullptr; 7088 return getModuleSummaryIndex(**FileOrErr); 7089 } 7090