1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Bitstream/BitstreamReader.h"
24 #include "llvm/Bitcode/LLVMBitCodes.h"
25 #include "llvm/Config/llvm-config.h"
26 #include "llvm/IR/Argument.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/AutoUpgrade.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CallingConv.h"
31 #include "llvm/IR/Comdat.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DebugInfo.h"
36 #include "llvm/IR/DebugInfoMetadata.h"
37 #include "llvm/IR/DebugLoc.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GVMaterializer.h"
41 #include "llvm/IR/GlobalAlias.h"
42 #include "llvm/IR/GlobalIFunc.h"
43 #include "llvm/IR/GlobalIndirectSymbol.h"
44 #include "llvm/IR/GlobalObject.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstIterator.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Metadata.h"
55 #include "llvm/IR/Module.h"
56 #include "llvm/IR/ModuleSummaryIndex.h"
57 #include "llvm/IR/Operator.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/Value.h"
60 #include "llvm/IR/Verifier.h"
61 #include "llvm/Support/AtomicOrdering.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Compiler.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/Error.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/ErrorOr.h"
69 #include "llvm/Support/ManagedStatic.h"
70 #include "llvm/Support/MathExtras.h"
71 #include "llvm/Support/MemoryBuffer.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include <algorithm>
74 #include <cassert>
75 #include <cstddef>
76 #include <cstdint>
77 #include <deque>
78 #include <map>
79 #include <memory>
80 #include <set>
81 #include <string>
82 #include <system_error>
83 #include <tuple>
84 #include <utility>
85 #include <vector>
86 
87 using namespace llvm;
88 
89 static cl::opt<bool> PrintSummaryGUIDs(
90     "print-summary-global-ids", cl::init(false), cl::Hidden,
91     cl::desc(
92         "Print the global id for each value when reading the module summary"));
93 
94 namespace {
95 
96 enum {
97   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
98 };
99 
100 } // end anonymous namespace
101 
102 static Error error(const Twine &Message) {
103   return make_error<StringError>(
104       Message, make_error_code(BitcodeError::CorruptedBitcode));
105 }
106 
107 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
108   if (!Stream.canSkipToPos(4))
109     return createStringError(std::errc::illegal_byte_sequence,
110                              "file too small to contain bitcode header");
111   for (unsigned C : {'B', 'C'})
112     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
113       if (Res.get() != C)
114         return createStringError(std::errc::illegal_byte_sequence,
115                                  "file doesn't start with bitcode header");
116     } else
117       return Res.takeError();
118   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
119     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
120       if (Res.get() != C)
121         return createStringError(std::errc::illegal_byte_sequence,
122                                  "file doesn't start with bitcode header");
123     } else
124       return Res.takeError();
125   return Error::success();
126 }
127 
128 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
129   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
130   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
131 
132   if (Buffer.getBufferSize() & 3)
133     return error("Invalid bitcode signature");
134 
135   // If we have a wrapper header, parse it and ignore the non-bc file contents.
136   // The magic number is 0x0B17C0DE stored in little endian.
137   if (isBitcodeWrapper(BufPtr, BufEnd))
138     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
139       return error("Invalid bitcode wrapper header");
140 
141   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
142   if (Error Err = hasInvalidBitcodeHeader(Stream))
143     return std::move(Err);
144 
145   return std::move(Stream);
146 }
147 
148 /// Convert a string from a record into an std::string, return true on failure.
149 template <typename StrTy>
150 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
151                             StrTy &Result) {
152   if (Idx > Record.size())
153     return true;
154 
155   Result.append(Record.begin() + Idx, Record.end());
156   return false;
157 }
158 
159 // Strip all the TBAA attachment for the module.
160 static void stripTBAA(Module *M) {
161   for (auto &F : *M) {
162     if (F.isMaterializable())
163       continue;
164     for (auto &I : instructions(F))
165       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
166   }
167 }
168 
169 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
170 /// "epoch" encoded in the bitcode, and return the producer name if any.
171 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
172   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
173     return std::move(Err);
174 
175   // Read all the records.
176   SmallVector<uint64_t, 64> Record;
177 
178   std::string ProducerIdentification;
179 
180   while (true) {
181     BitstreamEntry Entry;
182     if (Expected<BitstreamEntry> Res = Stream.advance())
183       Entry = Res.get();
184     else
185       return Res.takeError();
186 
187     switch (Entry.Kind) {
188     default:
189     case BitstreamEntry::Error:
190       return error("Malformed block");
191     case BitstreamEntry::EndBlock:
192       return ProducerIdentification;
193     case BitstreamEntry::Record:
194       // The interesting case.
195       break;
196     }
197 
198     // Read a record.
199     Record.clear();
200     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
201     if (!MaybeBitCode)
202       return MaybeBitCode.takeError();
203     switch (MaybeBitCode.get()) {
204     default: // Default behavior: reject
205       return error("Invalid value");
206     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
207       convertToString(Record, 0, ProducerIdentification);
208       break;
209     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
210       unsigned epoch = (unsigned)Record[0];
211       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
212         return error(
213           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
214           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
215       }
216     }
217     }
218   }
219 }
220 
221 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
222   // We expect a number of well-defined blocks, though we don't necessarily
223   // need to understand them all.
224   while (true) {
225     if (Stream.AtEndOfStream())
226       return "";
227 
228     BitstreamEntry Entry;
229     if (Expected<BitstreamEntry> Res = Stream.advance())
230       Entry = std::move(Res.get());
231     else
232       return Res.takeError();
233 
234     switch (Entry.Kind) {
235     case BitstreamEntry::EndBlock:
236     case BitstreamEntry::Error:
237       return error("Malformed block");
238 
239     case BitstreamEntry::SubBlock:
240       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
241         return readIdentificationBlock(Stream);
242 
243       // Ignore other sub-blocks.
244       if (Error Err = Stream.SkipBlock())
245         return std::move(Err);
246       continue;
247     case BitstreamEntry::Record:
248       if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
249         continue;
250       else
251         return Skipped.takeError();
252     }
253   }
254 }
255 
256 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
257   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
258     return std::move(Err);
259 
260   SmallVector<uint64_t, 64> Record;
261   // Read all the records for this module.
262 
263   while (true) {
264     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
265     if (!MaybeEntry)
266       return MaybeEntry.takeError();
267     BitstreamEntry Entry = MaybeEntry.get();
268 
269     switch (Entry.Kind) {
270     case BitstreamEntry::SubBlock: // Handled for us already.
271     case BitstreamEntry::Error:
272       return error("Malformed block");
273     case BitstreamEntry::EndBlock:
274       return false;
275     case BitstreamEntry::Record:
276       // The interesting case.
277       break;
278     }
279 
280     // Read a record.
281     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
282     if (!MaybeRecord)
283       return MaybeRecord.takeError();
284     switch (MaybeRecord.get()) {
285     default:
286       break; // Default behavior, ignore unknown content.
287     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
288       std::string S;
289       if (convertToString(Record, 0, S))
290         return error("Invalid record");
291       // Check for the i386 and other (x86_64, ARM) conventions
292       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
293           S.find("__OBJC,__category") != std::string::npos)
294         return true;
295       break;
296     }
297     }
298     Record.clear();
299   }
300   llvm_unreachable("Exit infinite loop");
301 }
302 
303 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
304   // We expect a number of well-defined blocks, though we don't necessarily
305   // need to understand them all.
306   while (true) {
307     BitstreamEntry Entry;
308     if (Expected<BitstreamEntry> Res = Stream.advance())
309       Entry = std::move(Res.get());
310     else
311       return Res.takeError();
312 
313     switch (Entry.Kind) {
314     case BitstreamEntry::Error:
315       return error("Malformed block");
316     case BitstreamEntry::EndBlock:
317       return false;
318 
319     case BitstreamEntry::SubBlock:
320       if (Entry.ID == bitc::MODULE_BLOCK_ID)
321         return hasObjCCategoryInModule(Stream);
322 
323       // Ignore other sub-blocks.
324       if (Error Err = Stream.SkipBlock())
325         return std::move(Err);
326       continue;
327 
328     case BitstreamEntry::Record:
329       if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
330         continue;
331       else
332         return Skipped.takeError();
333     }
334   }
335 }
336 
337 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
338   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
339     return std::move(Err);
340 
341   SmallVector<uint64_t, 64> Record;
342 
343   std::string Triple;
344 
345   // Read all the records for this module.
346   while (true) {
347     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
348     if (!MaybeEntry)
349       return MaybeEntry.takeError();
350     BitstreamEntry Entry = MaybeEntry.get();
351 
352     switch (Entry.Kind) {
353     case BitstreamEntry::SubBlock: // Handled for us already.
354     case BitstreamEntry::Error:
355       return error("Malformed block");
356     case BitstreamEntry::EndBlock:
357       return Triple;
358     case BitstreamEntry::Record:
359       // The interesting case.
360       break;
361     }
362 
363     // Read a record.
364     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
365     if (!MaybeRecord)
366       return MaybeRecord.takeError();
367     switch (MaybeRecord.get()) {
368     default: break;  // Default behavior, ignore unknown content.
369     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
370       std::string S;
371       if (convertToString(Record, 0, S))
372         return error("Invalid record");
373       Triple = S;
374       break;
375     }
376     }
377     Record.clear();
378   }
379   llvm_unreachable("Exit infinite loop");
380 }
381 
382 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
383   // We expect a number of well-defined blocks, though we don't necessarily
384   // need to understand them all.
385   while (true) {
386     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
387     if (!MaybeEntry)
388       return MaybeEntry.takeError();
389     BitstreamEntry Entry = MaybeEntry.get();
390 
391     switch (Entry.Kind) {
392     case BitstreamEntry::Error:
393       return error("Malformed block");
394     case BitstreamEntry::EndBlock:
395       return "";
396 
397     case BitstreamEntry::SubBlock:
398       if (Entry.ID == bitc::MODULE_BLOCK_ID)
399         return readModuleTriple(Stream);
400 
401       // Ignore other sub-blocks.
402       if (Error Err = Stream.SkipBlock())
403         return std::move(Err);
404       continue;
405 
406     case BitstreamEntry::Record:
407       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
408         continue;
409       else
410         return Skipped.takeError();
411     }
412   }
413 }
414 
415 namespace {
416 
417 class BitcodeReaderBase {
418 protected:
419   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
420       : Stream(std::move(Stream)), Strtab(Strtab) {
421     this->Stream.setBlockInfo(&BlockInfo);
422   }
423 
424   BitstreamBlockInfo BlockInfo;
425   BitstreamCursor Stream;
426   StringRef Strtab;
427 
428   /// In version 2 of the bitcode we store names of global values and comdats in
429   /// a string table rather than in the VST.
430   bool UseStrtab = false;
431 
432   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
433 
434   /// If this module uses a string table, pop the reference to the string table
435   /// and return the referenced string and the rest of the record. Otherwise
436   /// just return the record itself.
437   std::pair<StringRef, ArrayRef<uint64_t>>
438   readNameFromStrtab(ArrayRef<uint64_t> Record);
439 
440   bool readBlockInfo();
441 
442   // Contains an arbitrary and optional string identifying the bitcode producer
443   std::string ProducerIdentification;
444 
445   Error error(const Twine &Message);
446 };
447 
448 } // end anonymous namespace
449 
450 Error BitcodeReaderBase::error(const Twine &Message) {
451   std::string FullMsg = Message.str();
452   if (!ProducerIdentification.empty())
453     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
454                LLVM_VERSION_STRING "')";
455   return ::error(FullMsg);
456 }
457 
458 Expected<unsigned>
459 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
460   if (Record.empty())
461     return error("Invalid record");
462   unsigned ModuleVersion = Record[0];
463   if (ModuleVersion > 2)
464     return error("Invalid value");
465   UseStrtab = ModuleVersion >= 2;
466   return ModuleVersion;
467 }
468 
469 std::pair<StringRef, ArrayRef<uint64_t>>
470 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
471   if (!UseStrtab)
472     return {"", Record};
473   // Invalid reference. Let the caller complain about the record being empty.
474   if (Record[0] + Record[1] > Strtab.size())
475     return {"", {}};
476   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
477 }
478 
479 namespace {
480 
481 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
482   LLVMContext &Context;
483   Module *TheModule = nullptr;
484   // Next offset to start scanning for lazy parsing of function bodies.
485   uint64_t NextUnreadBit = 0;
486   // Last function offset found in the VST.
487   uint64_t LastFunctionBlockBit = 0;
488   bool SeenValueSymbolTable = false;
489   uint64_t VSTOffset = 0;
490 
491   std::vector<std::string> SectionTable;
492   std::vector<std::string> GCTable;
493 
494   std::vector<Type*> TypeList;
495   DenseMap<Function *, FunctionType *> FunctionTypes;
496   BitcodeReaderValueList ValueList;
497   Optional<MetadataLoader> MDLoader;
498   std::vector<Comdat *> ComdatList;
499   SmallVector<Instruction *, 64> InstructionList;
500 
501   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
502   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits;
503   std::vector<std::pair<Function *, unsigned>> FunctionPrefixes;
504   std::vector<std::pair<Function *, unsigned>> FunctionPrologues;
505   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns;
506 
507   /// The set of attributes by index.  Index zero in the file is for null, and
508   /// is thus not represented here.  As such all indices are off by one.
509   std::vector<AttributeList> MAttributes;
510 
511   /// The set of attribute groups.
512   std::map<unsigned, AttributeList> MAttributeGroups;
513 
514   /// While parsing a function body, this is a list of the basic blocks for the
515   /// function.
516   std::vector<BasicBlock*> FunctionBBs;
517 
518   // When reading the module header, this list is populated with functions that
519   // have bodies later in the file.
520   std::vector<Function*> FunctionsWithBodies;
521 
522   // When intrinsic functions are encountered which require upgrading they are
523   // stored here with their replacement function.
524   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
525   UpdatedIntrinsicMap UpgradedIntrinsics;
526   // Intrinsics which were remangled because of types rename
527   UpdatedIntrinsicMap RemangledIntrinsics;
528 
529   // Several operations happen after the module header has been read, but
530   // before function bodies are processed. This keeps track of whether
531   // we've done this yet.
532   bool SeenFirstFunctionBody = false;
533 
534   /// When function bodies are initially scanned, this map contains info about
535   /// where to find deferred function body in the stream.
536   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
537 
538   /// When Metadata block is initially scanned when parsing the module, we may
539   /// choose to defer parsing of the metadata. This vector contains info about
540   /// which Metadata blocks are deferred.
541   std::vector<uint64_t> DeferredMetadataInfo;
542 
543   /// These are basic blocks forward-referenced by block addresses.  They are
544   /// inserted lazily into functions when they're loaded.  The basic block ID is
545   /// its index into the vector.
546   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
547   std::deque<Function *> BasicBlockFwdRefQueue;
548 
549   /// Indicates that we are using a new encoding for instruction operands where
550   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
551   /// instruction number, for a more compact encoding.  Some instruction
552   /// operands are not relative to the instruction ID: basic block numbers, and
553   /// types. Once the old style function blocks have been phased out, we would
554   /// not need this flag.
555   bool UseRelativeIDs = false;
556 
557   /// True if all functions will be materialized, negating the need to process
558   /// (e.g.) blockaddress forward references.
559   bool WillMaterializeAllForwardRefs = false;
560 
561   bool StripDebugInfo = false;
562   TBAAVerifier TBAAVerifyHelper;
563 
564   std::vector<std::string> BundleTags;
565   SmallVector<SyncScope::ID, 8> SSIDs;
566 
567 public:
568   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
569                 StringRef ProducerIdentification, LLVMContext &Context);
570 
571   Error materializeForwardReferencedFunctions();
572 
573   Error materialize(GlobalValue *GV) override;
574   Error materializeModule() override;
575   std::vector<StructType *> getIdentifiedStructTypes() const override;
576 
577   /// Main interface to parsing a bitcode buffer.
578   /// \returns true if an error occurred.
579   Error parseBitcodeInto(
580       Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false,
581       DataLayoutCallbackTy DataLayoutCallback = [](std::string) {
582         return None;
583       });
584 
585   static uint64_t decodeSignRotatedValue(uint64_t V);
586 
587   /// Materialize any deferred Metadata block.
588   Error materializeMetadata() override;
589 
590   void setStripDebugInfo() override;
591 
592 private:
593   std::vector<StructType *> IdentifiedStructTypes;
594   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
595   StructType *createIdentifiedStructType(LLVMContext &Context);
596 
597   /// Map all pointer types within \param Ty to the opaque pointer
598   /// type in the same address space if opaque pointers are being
599   /// used, otherwise nop. This converts a bitcode-reader internal
600   /// type into one suitable for use in a Value.
601   Type *flattenPointerTypes(Type *Ty) {
602     return Ty;
603   }
604 
605   /// Given a fully structured pointer type (i.e. not opaque), return
606   /// the flattened form of its element, suitable for use in a Value.
607   Type *getPointerElementFlatType(Type *Ty) {
608     return flattenPointerTypes(cast<PointerType>(Ty)->getElementType());
609   }
610 
611   /// Given a fully structured pointer type, get its element type in
612   /// both fully structured form, and flattened form suitable for use
613   /// in a Value.
614   std::pair<Type *, Type *> getPointerElementTypes(Type *FullTy) {
615     Type *ElTy = cast<PointerType>(FullTy)->getElementType();
616     return std::make_pair(ElTy, flattenPointerTypes(ElTy));
617   }
618 
619   /// Return the flattened type (suitable for use in a Value)
620   /// specified by the given \param ID .
621   Type *getTypeByID(unsigned ID) {
622     return flattenPointerTypes(getFullyStructuredTypeByID(ID));
623   }
624 
625   /// Return the fully structured (bitcode-reader internal) type
626   /// corresponding to the given \param ID .
627   Type *getFullyStructuredTypeByID(unsigned ID);
628 
629   Value *getFnValueByID(unsigned ID, Type *Ty, Type **FullTy = nullptr) {
630     if (Ty && Ty->isMetadataTy())
631       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
632     return ValueList.getValueFwdRef(ID, Ty, FullTy);
633   }
634 
635   Metadata *getFnMetadataByID(unsigned ID) {
636     return MDLoader->getMetadataFwdRefOrLoad(ID);
637   }
638 
639   BasicBlock *getBasicBlock(unsigned ID) const {
640     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
641     return FunctionBBs[ID];
642   }
643 
644   AttributeList getAttributes(unsigned i) const {
645     if (i-1 < MAttributes.size())
646       return MAttributes[i-1];
647     return AttributeList();
648   }
649 
650   /// Read a value/type pair out of the specified record from slot 'Slot'.
651   /// Increment Slot past the number of slots used in the record. Return true on
652   /// failure.
653   bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
654                         unsigned InstNum, Value *&ResVal,
655                         Type **FullTy = nullptr) {
656     if (Slot == Record.size()) return true;
657     unsigned ValNo = (unsigned)Record[Slot++];
658     // Adjust the ValNo, if it was encoded relative to the InstNum.
659     if (UseRelativeIDs)
660       ValNo = InstNum - ValNo;
661     if (ValNo < InstNum) {
662       // If this is not a forward reference, just return the value we already
663       // have.
664       ResVal = getFnValueByID(ValNo, nullptr, FullTy);
665       return ResVal == nullptr;
666     }
667     if (Slot == Record.size())
668       return true;
669 
670     unsigned TypeNo = (unsigned)Record[Slot++];
671     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
672     if (FullTy)
673       *FullTy = getFullyStructuredTypeByID(TypeNo);
674     return ResVal == nullptr;
675   }
676 
677   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
678   /// past the number of slots used by the value in the record. Return true if
679   /// there is an error.
680   bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
681                 unsigned InstNum, Type *Ty, Value *&ResVal) {
682     if (getValue(Record, Slot, InstNum, Ty, ResVal))
683       return true;
684     // All values currently take a single record slot.
685     ++Slot;
686     return false;
687   }
688 
689   /// Like popValue, but does not increment the Slot number.
690   bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
691                 unsigned InstNum, Type *Ty, Value *&ResVal) {
692     ResVal = getValue(Record, Slot, InstNum, Ty);
693     return ResVal == nullptr;
694   }
695 
696   /// Version of getValue that returns ResVal directly, or 0 if there is an
697   /// error.
698   Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
699                   unsigned InstNum, Type *Ty) {
700     if (Slot == Record.size()) return nullptr;
701     unsigned ValNo = (unsigned)Record[Slot];
702     // Adjust the ValNo, if it was encoded relative to the InstNum.
703     if (UseRelativeIDs)
704       ValNo = InstNum - ValNo;
705     return getFnValueByID(ValNo, Ty);
706   }
707 
708   /// Like getValue, but decodes signed VBRs.
709   Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
710                         unsigned InstNum, Type *Ty) {
711     if (Slot == Record.size()) return nullptr;
712     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
713     // Adjust the ValNo, if it was encoded relative to the InstNum.
714     if (UseRelativeIDs)
715       ValNo = InstNum - ValNo;
716     return getFnValueByID(ValNo, Ty);
717   }
718 
719   /// Upgrades old-style typeless byval attributes by adding the corresponding
720   /// argument's pointee type.
721   void propagateByValTypes(CallBase *CB, ArrayRef<Type *> ArgsFullTys);
722 
723   /// Converts alignment exponent (i.e. power of two (or zero)) to the
724   /// corresponding alignment to use. If alignment is too large, returns
725   /// a corresponding error code.
726   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
727   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
728   Error parseModule(
729       uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
730       DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
731 
732   Error parseComdatRecord(ArrayRef<uint64_t> Record);
733   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
734   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
735   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
736                                         ArrayRef<uint64_t> Record);
737 
738   Error parseAttributeBlock();
739   Error parseAttributeGroupBlock();
740   Error parseTypeTable();
741   Error parseTypeTableBody();
742   Error parseOperandBundleTags();
743   Error parseSyncScopeNames();
744 
745   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
746                                 unsigned NameIndex, Triple &TT);
747   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
748                                ArrayRef<uint64_t> Record);
749   Error parseValueSymbolTable(uint64_t Offset = 0);
750   Error parseGlobalValueSymbolTable();
751   Error parseConstants();
752   Error rememberAndSkipFunctionBodies();
753   Error rememberAndSkipFunctionBody();
754   /// Save the positions of the Metadata blocks and skip parsing the blocks.
755   Error rememberAndSkipMetadata();
756   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
757   Error parseFunctionBody(Function *F);
758   Error globalCleanup();
759   Error resolveGlobalAndIndirectSymbolInits();
760   Error parseUseLists();
761   Error findFunctionInStream(
762       Function *F,
763       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
764 
765   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
766 };
767 
768 /// Class to manage reading and parsing function summary index bitcode
769 /// files/sections.
770 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
771   /// The module index built during parsing.
772   ModuleSummaryIndex &TheIndex;
773 
774   /// Indicates whether we have encountered a global value summary section
775   /// yet during parsing.
776   bool SeenGlobalValSummary = false;
777 
778   /// Indicates whether we have already parsed the VST, used for error checking.
779   bool SeenValueSymbolTable = false;
780 
781   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
782   /// Used to enable on-demand parsing of the VST.
783   uint64_t VSTOffset = 0;
784 
785   // Map to save ValueId to ValueInfo association that was recorded in the
786   // ValueSymbolTable. It is used after the VST is parsed to convert
787   // call graph edges read from the function summary from referencing
788   // callees by their ValueId to using the ValueInfo instead, which is how
789   // they are recorded in the summary index being built.
790   // We save a GUID which refers to the same global as the ValueInfo, but
791   // ignoring the linkage, i.e. for values other than local linkage they are
792   // identical.
793   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
794       ValueIdToValueInfoMap;
795 
796   /// Map populated during module path string table parsing, from the
797   /// module ID to a string reference owned by the index's module
798   /// path string table, used to correlate with combined index
799   /// summary records.
800   DenseMap<uint64_t, StringRef> ModuleIdMap;
801 
802   /// Original source file name recorded in a bitcode record.
803   std::string SourceFileName;
804 
805   /// The string identifier given to this module by the client, normally the
806   /// path to the bitcode file.
807   StringRef ModulePath;
808 
809   /// For per-module summary indexes, the unique numerical identifier given to
810   /// this module by the client.
811   unsigned ModuleId;
812 
813 public:
814   ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
815                                   ModuleSummaryIndex &TheIndex,
816                                   StringRef ModulePath, unsigned ModuleId);
817 
818   Error parseModule();
819 
820 private:
821   void setValueGUID(uint64_t ValueID, StringRef ValueName,
822                     GlobalValue::LinkageTypes Linkage,
823                     StringRef SourceFileName);
824   Error parseValueSymbolTable(
825       uint64_t Offset,
826       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
827   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
828   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
829                                                     bool IsOldProfileFormat,
830                                                     bool HasProfile,
831                                                     bool HasRelBF);
832   Error parseEntireSummary(unsigned ID);
833   Error parseModuleStringTable();
834   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
835   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
836                                        TypeIdCompatibleVtableInfo &TypeId);
837 
838   std::pair<ValueInfo, GlobalValue::GUID>
839   getValueInfoFromValueId(unsigned ValueId);
840 
841   void addThisModule();
842   ModuleSummaryIndex::ModuleInfo *getThisModule();
843 };
844 
845 } // end anonymous namespace
846 
847 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
848                                                     Error Err) {
849   if (Err) {
850     std::error_code EC;
851     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
852       EC = EIB.convertToErrorCode();
853       Ctx.emitError(EIB.message());
854     });
855     return EC;
856   }
857   return std::error_code();
858 }
859 
860 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
861                              StringRef ProducerIdentification,
862                              LLVMContext &Context)
863     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
864       ValueList(Context, Stream.SizeInBytes()) {
865   this->ProducerIdentification = std::string(ProducerIdentification);
866 }
867 
868 Error BitcodeReader::materializeForwardReferencedFunctions() {
869   if (WillMaterializeAllForwardRefs)
870     return Error::success();
871 
872   // Prevent recursion.
873   WillMaterializeAllForwardRefs = true;
874 
875   while (!BasicBlockFwdRefQueue.empty()) {
876     Function *F = BasicBlockFwdRefQueue.front();
877     BasicBlockFwdRefQueue.pop_front();
878     assert(F && "Expected valid function");
879     if (!BasicBlockFwdRefs.count(F))
880       // Already materialized.
881       continue;
882 
883     // Check for a function that isn't materializable to prevent an infinite
884     // loop.  When parsing a blockaddress stored in a global variable, there
885     // isn't a trivial way to check if a function will have a body without a
886     // linear search through FunctionsWithBodies, so just check it here.
887     if (!F->isMaterializable())
888       return error("Never resolved function from blockaddress");
889 
890     // Try to materialize F.
891     if (Error Err = materialize(F))
892       return Err;
893   }
894   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
895 
896   // Reset state.
897   WillMaterializeAllForwardRefs = false;
898   return Error::success();
899 }
900 
901 //===----------------------------------------------------------------------===//
902 //  Helper functions to implement forward reference resolution, etc.
903 //===----------------------------------------------------------------------===//
904 
905 static bool hasImplicitComdat(size_t Val) {
906   switch (Val) {
907   default:
908     return false;
909   case 1:  // Old WeakAnyLinkage
910   case 4:  // Old LinkOnceAnyLinkage
911   case 10: // Old WeakODRLinkage
912   case 11: // Old LinkOnceODRLinkage
913     return true;
914   }
915 }
916 
917 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
918   switch (Val) {
919   default: // Map unknown/new linkages to external
920   case 0:
921     return GlobalValue::ExternalLinkage;
922   case 2:
923     return GlobalValue::AppendingLinkage;
924   case 3:
925     return GlobalValue::InternalLinkage;
926   case 5:
927     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
928   case 6:
929     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
930   case 7:
931     return GlobalValue::ExternalWeakLinkage;
932   case 8:
933     return GlobalValue::CommonLinkage;
934   case 9:
935     return GlobalValue::PrivateLinkage;
936   case 12:
937     return GlobalValue::AvailableExternallyLinkage;
938   case 13:
939     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
940   case 14:
941     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
942   case 15:
943     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
944   case 1: // Old value with implicit comdat.
945   case 16:
946     return GlobalValue::WeakAnyLinkage;
947   case 10: // Old value with implicit comdat.
948   case 17:
949     return GlobalValue::WeakODRLinkage;
950   case 4: // Old value with implicit comdat.
951   case 18:
952     return GlobalValue::LinkOnceAnyLinkage;
953   case 11: // Old value with implicit comdat.
954   case 19:
955     return GlobalValue::LinkOnceODRLinkage;
956   }
957 }
958 
959 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
960   FunctionSummary::FFlags Flags;
961   Flags.ReadNone = RawFlags & 0x1;
962   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
963   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
964   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
965   Flags.NoInline = (RawFlags >> 4) & 0x1;
966   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
967   return Flags;
968 }
969 
970 /// Decode the flags for GlobalValue in the summary.
971 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
972                                                             uint64_t Version) {
973   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
974   // like getDecodedLinkage() above. Any future change to the linkage enum and
975   // to getDecodedLinkage() will need to be taken into account here as above.
976   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
977   RawFlags = RawFlags >> 4;
978   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
979   // The Live flag wasn't introduced until version 3. For dead stripping
980   // to work correctly on earlier versions, we must conservatively treat all
981   // values as live.
982   bool Live = (RawFlags & 0x2) || Version < 3;
983   bool Local = (RawFlags & 0x4);
984   bool AutoHide = (RawFlags & 0x8);
985 
986   return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local, AutoHide);
987 }
988 
989 // Decode the flags for GlobalVariable in the summary
990 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
991   return GlobalVarSummary::GVarFlags(
992       (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
993       (RawFlags & 0x4) ? true : false,
994       (GlobalObject::VCallVisibility)(RawFlags >> 3));
995 }
996 
997 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
998   switch (Val) {
999   default: // Map unknown visibilities to default.
1000   case 0: return GlobalValue::DefaultVisibility;
1001   case 1: return GlobalValue::HiddenVisibility;
1002   case 2: return GlobalValue::ProtectedVisibility;
1003   }
1004 }
1005 
1006 static GlobalValue::DLLStorageClassTypes
1007 getDecodedDLLStorageClass(unsigned Val) {
1008   switch (Val) {
1009   default: // Map unknown values to default.
1010   case 0: return GlobalValue::DefaultStorageClass;
1011   case 1: return GlobalValue::DLLImportStorageClass;
1012   case 2: return GlobalValue::DLLExportStorageClass;
1013   }
1014 }
1015 
1016 static bool getDecodedDSOLocal(unsigned Val) {
1017   switch(Val) {
1018   default: // Map unknown values to preemptable.
1019   case 0:  return false;
1020   case 1:  return true;
1021   }
1022 }
1023 
1024 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1025   switch (Val) {
1026     case 0: return GlobalVariable::NotThreadLocal;
1027     default: // Map unknown non-zero value to general dynamic.
1028     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1029     case 2: return GlobalVariable::LocalDynamicTLSModel;
1030     case 3: return GlobalVariable::InitialExecTLSModel;
1031     case 4: return GlobalVariable::LocalExecTLSModel;
1032   }
1033 }
1034 
1035 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1036   switch (Val) {
1037     default: // Map unknown to UnnamedAddr::None.
1038     case 0: return GlobalVariable::UnnamedAddr::None;
1039     case 1: return GlobalVariable::UnnamedAddr::Global;
1040     case 2: return GlobalVariable::UnnamedAddr::Local;
1041   }
1042 }
1043 
1044 static int getDecodedCastOpcode(unsigned Val) {
1045   switch (Val) {
1046   default: return -1;
1047   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1048   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1049   case bitc::CAST_SEXT    : return Instruction::SExt;
1050   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1051   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1052   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1053   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1054   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1055   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1056   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1057   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1058   case bitc::CAST_BITCAST : return Instruction::BitCast;
1059   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1060   }
1061 }
1062 
1063 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1064   bool IsFP = Ty->isFPOrFPVectorTy();
1065   // UnOps are only valid for int/fp or vector of int/fp types
1066   if (!IsFP && !Ty->isIntOrIntVectorTy())
1067     return -1;
1068 
1069   switch (Val) {
1070   default:
1071     return -1;
1072   case bitc::UNOP_FNEG:
1073     return IsFP ? Instruction::FNeg : -1;
1074   }
1075 }
1076 
1077 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1078   bool IsFP = Ty->isFPOrFPVectorTy();
1079   // BinOps are only valid for int/fp or vector of int/fp types
1080   if (!IsFP && !Ty->isIntOrIntVectorTy())
1081     return -1;
1082 
1083   switch (Val) {
1084   default:
1085     return -1;
1086   case bitc::BINOP_ADD:
1087     return IsFP ? Instruction::FAdd : Instruction::Add;
1088   case bitc::BINOP_SUB:
1089     return IsFP ? Instruction::FSub : Instruction::Sub;
1090   case bitc::BINOP_MUL:
1091     return IsFP ? Instruction::FMul : Instruction::Mul;
1092   case bitc::BINOP_UDIV:
1093     return IsFP ? -1 : Instruction::UDiv;
1094   case bitc::BINOP_SDIV:
1095     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1096   case bitc::BINOP_UREM:
1097     return IsFP ? -1 : Instruction::URem;
1098   case bitc::BINOP_SREM:
1099     return IsFP ? Instruction::FRem : Instruction::SRem;
1100   case bitc::BINOP_SHL:
1101     return IsFP ? -1 : Instruction::Shl;
1102   case bitc::BINOP_LSHR:
1103     return IsFP ? -1 : Instruction::LShr;
1104   case bitc::BINOP_ASHR:
1105     return IsFP ? -1 : Instruction::AShr;
1106   case bitc::BINOP_AND:
1107     return IsFP ? -1 : Instruction::And;
1108   case bitc::BINOP_OR:
1109     return IsFP ? -1 : Instruction::Or;
1110   case bitc::BINOP_XOR:
1111     return IsFP ? -1 : Instruction::Xor;
1112   }
1113 }
1114 
1115 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1116   switch (Val) {
1117   default: return AtomicRMWInst::BAD_BINOP;
1118   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1119   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1120   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1121   case bitc::RMW_AND: return AtomicRMWInst::And;
1122   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1123   case bitc::RMW_OR: return AtomicRMWInst::Or;
1124   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1125   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1126   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1127   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1128   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1129   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1130   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1131   }
1132 }
1133 
1134 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1135   switch (Val) {
1136   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1137   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1138   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1139   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1140   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1141   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1142   default: // Map unknown orderings to sequentially-consistent.
1143   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1144   }
1145 }
1146 
1147 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1148   switch (Val) {
1149   default: // Map unknown selection kinds to any.
1150   case bitc::COMDAT_SELECTION_KIND_ANY:
1151     return Comdat::Any;
1152   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1153     return Comdat::ExactMatch;
1154   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1155     return Comdat::Largest;
1156   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1157     return Comdat::NoDuplicates;
1158   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1159     return Comdat::SameSize;
1160   }
1161 }
1162 
1163 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1164   FastMathFlags FMF;
1165   if (0 != (Val & bitc::UnsafeAlgebra))
1166     FMF.setFast();
1167   if (0 != (Val & bitc::AllowReassoc))
1168     FMF.setAllowReassoc();
1169   if (0 != (Val & bitc::NoNaNs))
1170     FMF.setNoNaNs();
1171   if (0 != (Val & bitc::NoInfs))
1172     FMF.setNoInfs();
1173   if (0 != (Val & bitc::NoSignedZeros))
1174     FMF.setNoSignedZeros();
1175   if (0 != (Val & bitc::AllowReciprocal))
1176     FMF.setAllowReciprocal();
1177   if (0 != (Val & bitc::AllowContract))
1178     FMF.setAllowContract(true);
1179   if (0 != (Val & bitc::ApproxFunc))
1180     FMF.setApproxFunc();
1181   return FMF;
1182 }
1183 
1184 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1185   switch (Val) {
1186   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1187   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1188   }
1189 }
1190 
1191 Type *BitcodeReader::getFullyStructuredTypeByID(unsigned ID) {
1192   // The type table size is always specified correctly.
1193   if (ID >= TypeList.size())
1194     return nullptr;
1195 
1196   if (Type *Ty = TypeList[ID])
1197     return Ty;
1198 
1199   // If we have a forward reference, the only possible case is when it is to a
1200   // named struct.  Just create a placeholder for now.
1201   return TypeList[ID] = createIdentifiedStructType(Context);
1202 }
1203 
1204 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1205                                                       StringRef Name) {
1206   auto *Ret = StructType::create(Context, Name);
1207   IdentifiedStructTypes.push_back(Ret);
1208   return Ret;
1209 }
1210 
1211 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1212   auto *Ret = StructType::create(Context);
1213   IdentifiedStructTypes.push_back(Ret);
1214   return Ret;
1215 }
1216 
1217 //===----------------------------------------------------------------------===//
1218 //  Functions for parsing blocks from the bitcode file
1219 //===----------------------------------------------------------------------===//
1220 
1221 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1222   switch (Val) {
1223   case Attribute::EndAttrKinds:
1224   case Attribute::EmptyKey:
1225   case Attribute::TombstoneKey:
1226     llvm_unreachable("Synthetic enumerators which should never get here");
1227 
1228   case Attribute::None:            return 0;
1229   case Attribute::ZExt:            return 1 << 0;
1230   case Attribute::SExt:            return 1 << 1;
1231   case Attribute::NoReturn:        return 1 << 2;
1232   case Attribute::InReg:           return 1 << 3;
1233   case Attribute::StructRet:       return 1 << 4;
1234   case Attribute::NoUnwind:        return 1 << 5;
1235   case Attribute::NoAlias:         return 1 << 6;
1236   case Attribute::ByVal:           return 1 << 7;
1237   case Attribute::Nest:            return 1 << 8;
1238   case Attribute::ReadNone:        return 1 << 9;
1239   case Attribute::ReadOnly:        return 1 << 10;
1240   case Attribute::NoInline:        return 1 << 11;
1241   case Attribute::AlwaysInline:    return 1 << 12;
1242   case Attribute::OptimizeForSize: return 1 << 13;
1243   case Attribute::StackProtect:    return 1 << 14;
1244   case Attribute::StackProtectReq: return 1 << 15;
1245   case Attribute::Alignment:       return 31 << 16;
1246   case Attribute::NoCapture:       return 1 << 21;
1247   case Attribute::NoRedZone:       return 1 << 22;
1248   case Attribute::NoImplicitFloat: return 1 << 23;
1249   case Attribute::Naked:           return 1 << 24;
1250   case Attribute::InlineHint:      return 1 << 25;
1251   case Attribute::StackAlignment:  return 7 << 26;
1252   case Attribute::ReturnsTwice:    return 1 << 29;
1253   case Attribute::UWTable:         return 1 << 30;
1254   case Attribute::NonLazyBind:     return 1U << 31;
1255   case Attribute::SanitizeAddress: return 1ULL << 32;
1256   case Attribute::MinSize:         return 1ULL << 33;
1257   case Attribute::NoDuplicate:     return 1ULL << 34;
1258   case Attribute::StackProtectStrong: return 1ULL << 35;
1259   case Attribute::SanitizeThread:  return 1ULL << 36;
1260   case Attribute::SanitizeMemory:  return 1ULL << 37;
1261   case Attribute::NoBuiltin:       return 1ULL << 38;
1262   case Attribute::Returned:        return 1ULL << 39;
1263   case Attribute::Cold:            return 1ULL << 40;
1264   case Attribute::Builtin:         return 1ULL << 41;
1265   case Attribute::OptimizeNone:    return 1ULL << 42;
1266   case Attribute::InAlloca:        return 1ULL << 43;
1267   case Attribute::NonNull:         return 1ULL << 44;
1268   case Attribute::JumpTable:       return 1ULL << 45;
1269   case Attribute::Convergent:      return 1ULL << 46;
1270   case Attribute::SafeStack:       return 1ULL << 47;
1271   case Attribute::NoRecurse:       return 1ULL << 48;
1272   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1273   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1274   case Attribute::SwiftSelf:       return 1ULL << 51;
1275   case Attribute::SwiftError:      return 1ULL << 52;
1276   case Attribute::WriteOnly:       return 1ULL << 53;
1277   case Attribute::Speculatable:    return 1ULL << 54;
1278   case Attribute::StrictFP:        return 1ULL << 55;
1279   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1280   case Attribute::NoCfCheck:       return 1ULL << 57;
1281   case Attribute::OptForFuzzing:   return 1ULL << 58;
1282   case Attribute::ShadowCallStack: return 1ULL << 59;
1283   case Attribute::SpeculativeLoadHardening:
1284     return 1ULL << 60;
1285   case Attribute::ImmArg:
1286     return 1ULL << 61;
1287   case Attribute::WillReturn:
1288     return 1ULL << 62;
1289   case Attribute::NoFree:
1290     return 1ULL << 63;
1291   default:
1292     // Other attributes are not supported in the raw format,
1293     // as we ran out of space.
1294     return 0;
1295   }
1296   llvm_unreachable("Unsupported attribute type");
1297 }
1298 
1299 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1300   if (!Val) return;
1301 
1302   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1303        I = Attribute::AttrKind(I + 1)) {
1304     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1305       if (I == Attribute::Alignment)
1306         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1307       else if (I == Attribute::StackAlignment)
1308         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1309       else
1310         B.addAttribute(I);
1311     }
1312   }
1313 }
1314 
1315 /// This fills an AttrBuilder object with the LLVM attributes that have
1316 /// been decoded from the given integer. This function must stay in sync with
1317 /// 'encodeLLVMAttributesForBitcode'.
1318 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1319                                            uint64_t EncodedAttrs) {
1320   // FIXME: Remove in 4.0.
1321 
1322   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1323   // the bits above 31 down by 11 bits.
1324   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1325   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1326          "Alignment must be a power of two.");
1327 
1328   if (Alignment)
1329     B.addAlignmentAttr(Alignment);
1330   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1331                           (EncodedAttrs & 0xffff));
1332 }
1333 
1334 Error BitcodeReader::parseAttributeBlock() {
1335   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1336     return Err;
1337 
1338   if (!MAttributes.empty())
1339     return error("Invalid multiple blocks");
1340 
1341   SmallVector<uint64_t, 64> Record;
1342 
1343   SmallVector<AttributeList, 8> Attrs;
1344 
1345   // Read all the records.
1346   while (true) {
1347     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1348     if (!MaybeEntry)
1349       return MaybeEntry.takeError();
1350     BitstreamEntry Entry = MaybeEntry.get();
1351 
1352     switch (Entry.Kind) {
1353     case BitstreamEntry::SubBlock: // Handled for us already.
1354     case BitstreamEntry::Error:
1355       return error("Malformed block");
1356     case BitstreamEntry::EndBlock:
1357       return Error::success();
1358     case BitstreamEntry::Record:
1359       // The interesting case.
1360       break;
1361     }
1362 
1363     // Read a record.
1364     Record.clear();
1365     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1366     if (!MaybeRecord)
1367       return MaybeRecord.takeError();
1368     switch (MaybeRecord.get()) {
1369     default:  // Default behavior: ignore.
1370       break;
1371     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1372       // FIXME: Remove in 4.0.
1373       if (Record.size() & 1)
1374         return error("Invalid record");
1375 
1376       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1377         AttrBuilder B;
1378         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1379         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1380       }
1381 
1382       MAttributes.push_back(AttributeList::get(Context, Attrs));
1383       Attrs.clear();
1384       break;
1385     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1386       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1387         Attrs.push_back(MAttributeGroups[Record[i]]);
1388 
1389       MAttributes.push_back(AttributeList::get(Context, Attrs));
1390       Attrs.clear();
1391       break;
1392     }
1393   }
1394 }
1395 
1396 // Returns Attribute::None on unrecognized codes.
1397 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1398   switch (Code) {
1399   default:
1400     return Attribute::None;
1401   case bitc::ATTR_KIND_ALIGNMENT:
1402     return Attribute::Alignment;
1403   case bitc::ATTR_KIND_ALWAYS_INLINE:
1404     return Attribute::AlwaysInline;
1405   case bitc::ATTR_KIND_ARGMEMONLY:
1406     return Attribute::ArgMemOnly;
1407   case bitc::ATTR_KIND_BUILTIN:
1408     return Attribute::Builtin;
1409   case bitc::ATTR_KIND_BY_VAL:
1410     return Attribute::ByVal;
1411   case bitc::ATTR_KIND_IN_ALLOCA:
1412     return Attribute::InAlloca;
1413   case bitc::ATTR_KIND_COLD:
1414     return Attribute::Cold;
1415   case bitc::ATTR_KIND_CONVERGENT:
1416     return Attribute::Convergent;
1417   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1418     return Attribute::InaccessibleMemOnly;
1419   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1420     return Attribute::InaccessibleMemOrArgMemOnly;
1421   case bitc::ATTR_KIND_INLINE_HINT:
1422     return Attribute::InlineHint;
1423   case bitc::ATTR_KIND_IN_REG:
1424     return Attribute::InReg;
1425   case bitc::ATTR_KIND_JUMP_TABLE:
1426     return Attribute::JumpTable;
1427   case bitc::ATTR_KIND_MIN_SIZE:
1428     return Attribute::MinSize;
1429   case bitc::ATTR_KIND_NAKED:
1430     return Attribute::Naked;
1431   case bitc::ATTR_KIND_NEST:
1432     return Attribute::Nest;
1433   case bitc::ATTR_KIND_NO_ALIAS:
1434     return Attribute::NoAlias;
1435   case bitc::ATTR_KIND_NO_BUILTIN:
1436     return Attribute::NoBuiltin;
1437   case bitc::ATTR_KIND_NO_CAPTURE:
1438     return Attribute::NoCapture;
1439   case bitc::ATTR_KIND_NO_DUPLICATE:
1440     return Attribute::NoDuplicate;
1441   case bitc::ATTR_KIND_NOFREE:
1442     return Attribute::NoFree;
1443   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1444     return Attribute::NoImplicitFloat;
1445   case bitc::ATTR_KIND_NO_INLINE:
1446     return Attribute::NoInline;
1447   case bitc::ATTR_KIND_NO_RECURSE:
1448     return Attribute::NoRecurse;
1449   case bitc::ATTR_KIND_NO_MERGE:
1450     return Attribute::NoMerge;
1451   case bitc::ATTR_KIND_NON_LAZY_BIND:
1452     return Attribute::NonLazyBind;
1453   case bitc::ATTR_KIND_NON_NULL:
1454     return Attribute::NonNull;
1455   case bitc::ATTR_KIND_DEREFERENCEABLE:
1456     return Attribute::Dereferenceable;
1457   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1458     return Attribute::DereferenceableOrNull;
1459   case bitc::ATTR_KIND_ALLOC_SIZE:
1460     return Attribute::AllocSize;
1461   case bitc::ATTR_KIND_NO_RED_ZONE:
1462     return Attribute::NoRedZone;
1463   case bitc::ATTR_KIND_NO_RETURN:
1464     return Attribute::NoReturn;
1465   case bitc::ATTR_KIND_NOSYNC:
1466     return Attribute::NoSync;
1467   case bitc::ATTR_KIND_NOCF_CHECK:
1468     return Attribute::NoCfCheck;
1469   case bitc::ATTR_KIND_NO_UNWIND:
1470     return Attribute::NoUnwind;
1471   case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
1472     return Attribute::NullPointerIsValid;
1473   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1474     return Attribute::OptForFuzzing;
1475   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1476     return Attribute::OptimizeForSize;
1477   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1478     return Attribute::OptimizeNone;
1479   case bitc::ATTR_KIND_READ_NONE:
1480     return Attribute::ReadNone;
1481   case bitc::ATTR_KIND_READ_ONLY:
1482     return Attribute::ReadOnly;
1483   case bitc::ATTR_KIND_RETURNED:
1484     return Attribute::Returned;
1485   case bitc::ATTR_KIND_RETURNS_TWICE:
1486     return Attribute::ReturnsTwice;
1487   case bitc::ATTR_KIND_S_EXT:
1488     return Attribute::SExt;
1489   case bitc::ATTR_KIND_SPECULATABLE:
1490     return Attribute::Speculatable;
1491   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1492     return Attribute::StackAlignment;
1493   case bitc::ATTR_KIND_STACK_PROTECT:
1494     return Attribute::StackProtect;
1495   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1496     return Attribute::StackProtectReq;
1497   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1498     return Attribute::StackProtectStrong;
1499   case bitc::ATTR_KIND_SAFESTACK:
1500     return Attribute::SafeStack;
1501   case bitc::ATTR_KIND_SHADOWCALLSTACK:
1502     return Attribute::ShadowCallStack;
1503   case bitc::ATTR_KIND_STRICT_FP:
1504     return Attribute::StrictFP;
1505   case bitc::ATTR_KIND_STRUCT_RET:
1506     return Attribute::StructRet;
1507   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1508     return Attribute::SanitizeAddress;
1509   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
1510     return Attribute::SanitizeHWAddress;
1511   case bitc::ATTR_KIND_SANITIZE_THREAD:
1512     return Attribute::SanitizeThread;
1513   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1514     return Attribute::SanitizeMemory;
1515   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
1516     return Attribute::SpeculativeLoadHardening;
1517   case bitc::ATTR_KIND_SWIFT_ERROR:
1518     return Attribute::SwiftError;
1519   case bitc::ATTR_KIND_SWIFT_SELF:
1520     return Attribute::SwiftSelf;
1521   case bitc::ATTR_KIND_UW_TABLE:
1522     return Attribute::UWTable;
1523   case bitc::ATTR_KIND_WILLRETURN:
1524     return Attribute::WillReturn;
1525   case bitc::ATTR_KIND_WRITEONLY:
1526     return Attribute::WriteOnly;
1527   case bitc::ATTR_KIND_Z_EXT:
1528     return Attribute::ZExt;
1529   case bitc::ATTR_KIND_IMMARG:
1530     return Attribute::ImmArg;
1531   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
1532     return Attribute::SanitizeMemTag;
1533   case bitc::ATTR_KIND_PREALLOCATED:
1534     return Attribute::Preallocated;
1535   }
1536 }
1537 
1538 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1539                                          MaybeAlign &Alignment) {
1540   // Note: Alignment in bitcode files is incremented by 1, so that zero
1541   // can be used for default alignment.
1542   if (Exponent > Value::MaxAlignmentExponent + 1)
1543     return error("Invalid alignment value");
1544   Alignment = decodeMaybeAlign(Exponent);
1545   return Error::success();
1546 }
1547 
1548 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1549   *Kind = getAttrFromCode(Code);
1550   if (*Kind == Attribute::None)
1551     return error("Unknown attribute kind (" + Twine(Code) + ")");
1552   return Error::success();
1553 }
1554 
1555 Error BitcodeReader::parseAttributeGroupBlock() {
1556   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1557     return Err;
1558 
1559   if (!MAttributeGroups.empty())
1560     return error("Invalid multiple blocks");
1561 
1562   SmallVector<uint64_t, 64> Record;
1563 
1564   // Read all the records.
1565   while (true) {
1566     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1567     if (!MaybeEntry)
1568       return MaybeEntry.takeError();
1569     BitstreamEntry Entry = MaybeEntry.get();
1570 
1571     switch (Entry.Kind) {
1572     case BitstreamEntry::SubBlock: // Handled for us already.
1573     case BitstreamEntry::Error:
1574       return error("Malformed block");
1575     case BitstreamEntry::EndBlock:
1576       return Error::success();
1577     case BitstreamEntry::Record:
1578       // The interesting case.
1579       break;
1580     }
1581 
1582     // Read a record.
1583     Record.clear();
1584     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1585     if (!MaybeRecord)
1586       return MaybeRecord.takeError();
1587     switch (MaybeRecord.get()) {
1588     default:  // Default behavior: ignore.
1589       break;
1590     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1591       if (Record.size() < 3)
1592         return error("Invalid record");
1593 
1594       uint64_t GrpID = Record[0];
1595       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1596 
1597       AttrBuilder B;
1598       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1599         if (Record[i] == 0) {        // Enum attribute
1600           Attribute::AttrKind Kind;
1601           if (Error Err = parseAttrKind(Record[++i], &Kind))
1602             return Err;
1603 
1604           // Upgrade old-style byval attribute to one with a type, even if it's
1605           // nullptr. We will have to insert the real type when we associate
1606           // this AttributeList with a function.
1607           if (Kind == Attribute::ByVal)
1608             B.addByValAttr(nullptr);
1609 
1610           B.addAttribute(Kind);
1611         } else if (Record[i] == 1) { // Integer attribute
1612           Attribute::AttrKind Kind;
1613           if (Error Err = parseAttrKind(Record[++i], &Kind))
1614             return Err;
1615           if (Kind == Attribute::Alignment)
1616             B.addAlignmentAttr(Record[++i]);
1617           else if (Kind == Attribute::StackAlignment)
1618             B.addStackAlignmentAttr(Record[++i]);
1619           else if (Kind == Attribute::Dereferenceable)
1620             B.addDereferenceableAttr(Record[++i]);
1621           else if (Kind == Attribute::DereferenceableOrNull)
1622             B.addDereferenceableOrNullAttr(Record[++i]);
1623           else if (Kind == Attribute::AllocSize)
1624             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1625         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
1626           bool HasValue = (Record[i++] == 4);
1627           SmallString<64> KindStr;
1628           SmallString<64> ValStr;
1629 
1630           while (Record[i] != 0 && i != e)
1631             KindStr += Record[i++];
1632           assert(Record[i] == 0 && "Kind string not null terminated");
1633 
1634           if (HasValue) {
1635             // Has a value associated with it.
1636             ++i; // Skip the '0' that terminates the "kind" string.
1637             while (Record[i] != 0 && i != e)
1638               ValStr += Record[i++];
1639             assert(Record[i] == 0 && "Value string not null terminated");
1640           }
1641 
1642           B.addAttribute(KindStr.str(), ValStr.str());
1643         } else {
1644           assert((Record[i] == 5 || Record[i] == 6) &&
1645                  "Invalid attribute group entry");
1646           bool HasType = Record[i] == 6;
1647           Attribute::AttrKind Kind;
1648           if (Error Err = parseAttrKind(Record[++i], &Kind))
1649             return Err;
1650           if (Kind == Attribute::ByVal) {
1651             B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr);
1652           } else if (Kind == Attribute::Preallocated) {
1653             B.addPreallocatedAttr(getTypeByID(Record[++i]));
1654           }
1655         }
1656       }
1657 
1658       UpgradeAttributes(B);
1659       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1660       break;
1661     }
1662     }
1663   }
1664 }
1665 
1666 Error BitcodeReader::parseTypeTable() {
1667   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1668     return Err;
1669 
1670   return parseTypeTableBody();
1671 }
1672 
1673 Error BitcodeReader::parseTypeTableBody() {
1674   if (!TypeList.empty())
1675     return error("Invalid multiple blocks");
1676 
1677   SmallVector<uint64_t, 64> Record;
1678   unsigned NumRecords = 0;
1679 
1680   SmallString<64> TypeName;
1681 
1682   // Read all the records for this type table.
1683   while (true) {
1684     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1685     if (!MaybeEntry)
1686       return MaybeEntry.takeError();
1687     BitstreamEntry Entry = MaybeEntry.get();
1688 
1689     switch (Entry.Kind) {
1690     case BitstreamEntry::SubBlock: // Handled for us already.
1691     case BitstreamEntry::Error:
1692       return error("Malformed block");
1693     case BitstreamEntry::EndBlock:
1694       if (NumRecords != TypeList.size())
1695         return error("Malformed block");
1696       return Error::success();
1697     case BitstreamEntry::Record:
1698       // The interesting case.
1699       break;
1700     }
1701 
1702     // Read a record.
1703     Record.clear();
1704     Type *ResultTy = nullptr;
1705     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1706     if (!MaybeRecord)
1707       return MaybeRecord.takeError();
1708     switch (MaybeRecord.get()) {
1709     default:
1710       return error("Invalid value");
1711     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1712       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1713       // type list.  This allows us to reserve space.
1714       if (Record.size() < 1)
1715         return error("Invalid record");
1716       TypeList.resize(Record[0]);
1717       continue;
1718     case bitc::TYPE_CODE_VOID:      // VOID
1719       ResultTy = Type::getVoidTy(Context);
1720       break;
1721     case bitc::TYPE_CODE_HALF:     // HALF
1722       ResultTy = Type::getHalfTy(Context);
1723       break;
1724     case bitc::TYPE_CODE_BFLOAT:    // BFLOAT
1725       ResultTy = Type::getBFloatTy(Context);
1726       break;
1727     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1728       ResultTy = Type::getFloatTy(Context);
1729       break;
1730     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1731       ResultTy = Type::getDoubleTy(Context);
1732       break;
1733     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1734       ResultTy = Type::getX86_FP80Ty(Context);
1735       break;
1736     case bitc::TYPE_CODE_FP128:     // FP128
1737       ResultTy = Type::getFP128Ty(Context);
1738       break;
1739     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1740       ResultTy = Type::getPPC_FP128Ty(Context);
1741       break;
1742     case bitc::TYPE_CODE_LABEL:     // LABEL
1743       ResultTy = Type::getLabelTy(Context);
1744       break;
1745     case bitc::TYPE_CODE_METADATA:  // METADATA
1746       ResultTy = Type::getMetadataTy(Context);
1747       break;
1748     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1749       ResultTy = Type::getX86_MMXTy(Context);
1750       break;
1751     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1752       ResultTy = Type::getTokenTy(Context);
1753       break;
1754     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1755       if (Record.size() < 1)
1756         return error("Invalid record");
1757 
1758       uint64_t NumBits = Record[0];
1759       if (NumBits < IntegerType::MIN_INT_BITS ||
1760           NumBits > IntegerType::MAX_INT_BITS)
1761         return error("Bitwidth for integer type out of range");
1762       ResultTy = IntegerType::get(Context, NumBits);
1763       break;
1764     }
1765     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1766                                     //          [pointee type, address space]
1767       if (Record.size() < 1)
1768         return error("Invalid record");
1769       unsigned AddressSpace = 0;
1770       if (Record.size() == 2)
1771         AddressSpace = Record[1];
1772       ResultTy = getTypeByID(Record[0]);
1773       if (!ResultTy ||
1774           !PointerType::isValidElementType(ResultTy))
1775         return error("Invalid type");
1776       ResultTy = PointerType::get(ResultTy, AddressSpace);
1777       break;
1778     }
1779     case bitc::TYPE_CODE_FUNCTION_OLD: {
1780       // FIXME: attrid is dead, remove it in LLVM 4.0
1781       // FUNCTION: [vararg, attrid, retty, paramty x N]
1782       if (Record.size() < 3)
1783         return error("Invalid record");
1784       SmallVector<Type*, 8> ArgTys;
1785       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1786         if (Type *T = getTypeByID(Record[i]))
1787           ArgTys.push_back(T);
1788         else
1789           break;
1790       }
1791 
1792       ResultTy = getTypeByID(Record[2]);
1793       if (!ResultTy || ArgTys.size() < Record.size()-3)
1794         return error("Invalid type");
1795 
1796       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1797       break;
1798     }
1799     case bitc::TYPE_CODE_FUNCTION: {
1800       // FUNCTION: [vararg, retty, paramty x N]
1801       if (Record.size() < 2)
1802         return error("Invalid record");
1803       SmallVector<Type*, 8> ArgTys;
1804       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1805         if (Type *T = getTypeByID(Record[i])) {
1806           if (!FunctionType::isValidArgumentType(T))
1807             return error("Invalid function argument type");
1808           ArgTys.push_back(T);
1809         }
1810         else
1811           break;
1812       }
1813 
1814       ResultTy = getTypeByID(Record[1]);
1815       if (!ResultTy || ArgTys.size() < Record.size()-2)
1816         return error("Invalid type");
1817 
1818       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1819       break;
1820     }
1821     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1822       if (Record.size() < 1)
1823         return error("Invalid record");
1824       SmallVector<Type*, 8> EltTys;
1825       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1826         if (Type *T = getTypeByID(Record[i]))
1827           EltTys.push_back(T);
1828         else
1829           break;
1830       }
1831       if (EltTys.size() != Record.size()-1)
1832         return error("Invalid type");
1833       ResultTy = StructType::get(Context, EltTys, Record[0]);
1834       break;
1835     }
1836     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1837       if (convertToString(Record, 0, TypeName))
1838         return error("Invalid record");
1839       continue;
1840 
1841     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1842       if (Record.size() < 1)
1843         return error("Invalid record");
1844 
1845       if (NumRecords >= TypeList.size())
1846         return error("Invalid TYPE table");
1847 
1848       // Check to see if this was forward referenced, if so fill in the temp.
1849       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1850       if (Res) {
1851         Res->setName(TypeName);
1852         TypeList[NumRecords] = nullptr;
1853       } else  // Otherwise, create a new struct.
1854         Res = createIdentifiedStructType(Context, TypeName);
1855       TypeName.clear();
1856 
1857       SmallVector<Type*, 8> EltTys;
1858       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1859         if (Type *T = getTypeByID(Record[i]))
1860           EltTys.push_back(T);
1861         else
1862           break;
1863       }
1864       if (EltTys.size() != Record.size()-1)
1865         return error("Invalid record");
1866       Res->setBody(EltTys, Record[0]);
1867       ResultTy = Res;
1868       break;
1869     }
1870     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1871       if (Record.size() != 1)
1872         return error("Invalid record");
1873 
1874       if (NumRecords >= TypeList.size())
1875         return error("Invalid TYPE table");
1876 
1877       // Check to see if this was forward referenced, if so fill in the temp.
1878       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1879       if (Res) {
1880         Res->setName(TypeName);
1881         TypeList[NumRecords] = nullptr;
1882       } else  // Otherwise, create a new struct with no body.
1883         Res = createIdentifiedStructType(Context, TypeName);
1884       TypeName.clear();
1885       ResultTy = Res;
1886       break;
1887     }
1888     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1889       if (Record.size() < 2)
1890         return error("Invalid record");
1891       ResultTy = getTypeByID(Record[1]);
1892       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1893         return error("Invalid type");
1894       ResultTy = ArrayType::get(ResultTy, Record[0]);
1895       break;
1896     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
1897                                     //         [numelts, eltty, scalable]
1898       if (Record.size() < 2)
1899         return error("Invalid record");
1900       if (Record[0] == 0)
1901         return error("Invalid vector length");
1902       ResultTy = getTypeByID(Record[1]);
1903       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1904         return error("Invalid type");
1905       bool Scalable = Record.size() > 2 ? Record[2] : false;
1906       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
1907       break;
1908     }
1909 
1910     if (NumRecords >= TypeList.size())
1911       return error("Invalid TYPE table");
1912     if (TypeList[NumRecords])
1913       return error(
1914           "Invalid TYPE table: Only named structs can be forward referenced");
1915     assert(ResultTy && "Didn't read a type?");
1916     TypeList[NumRecords++] = ResultTy;
1917   }
1918 }
1919 
1920 Error BitcodeReader::parseOperandBundleTags() {
1921   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1922     return Err;
1923 
1924   if (!BundleTags.empty())
1925     return error("Invalid multiple blocks");
1926 
1927   SmallVector<uint64_t, 64> Record;
1928 
1929   while (true) {
1930     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1931     if (!MaybeEntry)
1932       return MaybeEntry.takeError();
1933     BitstreamEntry Entry = MaybeEntry.get();
1934 
1935     switch (Entry.Kind) {
1936     case BitstreamEntry::SubBlock: // Handled for us already.
1937     case BitstreamEntry::Error:
1938       return error("Malformed block");
1939     case BitstreamEntry::EndBlock:
1940       return Error::success();
1941     case BitstreamEntry::Record:
1942       // The interesting case.
1943       break;
1944     }
1945 
1946     // Tags are implicitly mapped to integers by their order.
1947 
1948     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1949     if (!MaybeRecord)
1950       return MaybeRecord.takeError();
1951     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
1952       return error("Invalid record");
1953 
1954     // OPERAND_BUNDLE_TAG: [strchr x N]
1955     BundleTags.emplace_back();
1956     if (convertToString(Record, 0, BundleTags.back()))
1957       return error("Invalid record");
1958     Record.clear();
1959   }
1960 }
1961 
1962 Error BitcodeReader::parseSyncScopeNames() {
1963   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
1964     return Err;
1965 
1966   if (!SSIDs.empty())
1967     return error("Invalid multiple synchronization scope names blocks");
1968 
1969   SmallVector<uint64_t, 64> Record;
1970   while (true) {
1971     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1972     if (!MaybeEntry)
1973       return MaybeEntry.takeError();
1974     BitstreamEntry Entry = MaybeEntry.get();
1975 
1976     switch (Entry.Kind) {
1977     case BitstreamEntry::SubBlock: // Handled for us already.
1978     case BitstreamEntry::Error:
1979       return error("Malformed block");
1980     case BitstreamEntry::EndBlock:
1981       if (SSIDs.empty())
1982         return error("Invalid empty synchronization scope names block");
1983       return Error::success();
1984     case BitstreamEntry::Record:
1985       // The interesting case.
1986       break;
1987     }
1988 
1989     // Synchronization scope names are implicitly mapped to synchronization
1990     // scope IDs by their order.
1991 
1992     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1993     if (!MaybeRecord)
1994       return MaybeRecord.takeError();
1995     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
1996       return error("Invalid record");
1997 
1998     SmallString<16> SSN;
1999     if (convertToString(Record, 0, SSN))
2000       return error("Invalid record");
2001 
2002     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2003     Record.clear();
2004   }
2005 }
2006 
2007 /// Associate a value with its name from the given index in the provided record.
2008 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2009                                              unsigned NameIndex, Triple &TT) {
2010   SmallString<128> ValueName;
2011   if (convertToString(Record, NameIndex, ValueName))
2012     return error("Invalid record");
2013   unsigned ValueID = Record[0];
2014   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2015     return error("Invalid record");
2016   Value *V = ValueList[ValueID];
2017 
2018   StringRef NameStr(ValueName.data(), ValueName.size());
2019   if (NameStr.find_first_of(0) != StringRef::npos)
2020     return error("Invalid value name");
2021   V->setName(NameStr);
2022   auto *GO = dyn_cast<GlobalObject>(V);
2023   if (GO) {
2024     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
2025       if (TT.supportsCOMDAT())
2026         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2027       else
2028         GO->setComdat(nullptr);
2029     }
2030   }
2031   return V;
2032 }
2033 
2034 /// Helper to note and return the current location, and jump to the given
2035 /// offset.
2036 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2037                                                  BitstreamCursor &Stream) {
2038   // Save the current parsing location so we can jump back at the end
2039   // of the VST read.
2040   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2041   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2042     return std::move(JumpFailed);
2043   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2044   if (!MaybeEntry)
2045     return MaybeEntry.takeError();
2046   assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock);
2047   assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID);
2048   return CurrentBit;
2049 }
2050 
2051 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2052                                             Function *F,
2053                                             ArrayRef<uint64_t> Record) {
2054   // Note that we subtract 1 here because the offset is relative to one word
2055   // before the start of the identification or module block, which was
2056   // historically always the start of the regular bitcode header.
2057   uint64_t FuncWordOffset = Record[1] - 1;
2058   uint64_t FuncBitOffset = FuncWordOffset * 32;
2059   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2060   // Set the LastFunctionBlockBit to point to the last function block.
2061   // Later when parsing is resumed after function materialization,
2062   // we can simply skip that last function block.
2063   if (FuncBitOffset > LastFunctionBlockBit)
2064     LastFunctionBlockBit = FuncBitOffset;
2065 }
2066 
2067 /// Read a new-style GlobalValue symbol table.
2068 Error BitcodeReader::parseGlobalValueSymbolTable() {
2069   unsigned FuncBitcodeOffsetDelta =
2070       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2071 
2072   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2073     return Err;
2074 
2075   SmallVector<uint64_t, 64> Record;
2076   while (true) {
2077     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2078     if (!MaybeEntry)
2079       return MaybeEntry.takeError();
2080     BitstreamEntry Entry = MaybeEntry.get();
2081 
2082     switch (Entry.Kind) {
2083     case BitstreamEntry::SubBlock:
2084     case BitstreamEntry::Error:
2085       return error("Malformed block");
2086     case BitstreamEntry::EndBlock:
2087       return Error::success();
2088     case BitstreamEntry::Record:
2089       break;
2090     }
2091 
2092     Record.clear();
2093     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2094     if (!MaybeRecord)
2095       return MaybeRecord.takeError();
2096     switch (MaybeRecord.get()) {
2097     case bitc::VST_CODE_FNENTRY: // [valueid, offset]
2098       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2099                               cast<Function>(ValueList[Record[0]]), Record);
2100       break;
2101     }
2102   }
2103 }
2104 
2105 /// Parse the value symbol table at either the current parsing location or
2106 /// at the given bit offset if provided.
2107 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2108   uint64_t CurrentBit;
2109   // Pass in the Offset to distinguish between calling for the module-level
2110   // VST (where we want to jump to the VST offset) and the function-level
2111   // VST (where we don't).
2112   if (Offset > 0) {
2113     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2114     if (!MaybeCurrentBit)
2115       return MaybeCurrentBit.takeError();
2116     CurrentBit = MaybeCurrentBit.get();
2117     // If this module uses a string table, read this as a module-level VST.
2118     if (UseStrtab) {
2119       if (Error Err = parseGlobalValueSymbolTable())
2120         return Err;
2121       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2122         return JumpFailed;
2123       return Error::success();
2124     }
2125     // Otherwise, the VST will be in a similar format to a function-level VST,
2126     // and will contain symbol names.
2127   }
2128 
2129   // Compute the delta between the bitcode indices in the VST (the word offset
2130   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2131   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2132   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2133   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2134   // just before entering the VST subblock because: 1) the EnterSubBlock
2135   // changes the AbbrevID width; 2) the VST block is nested within the same
2136   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2137   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2138   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2139   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2140   unsigned FuncBitcodeOffsetDelta =
2141       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2142 
2143   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2144     return Err;
2145 
2146   SmallVector<uint64_t, 64> Record;
2147 
2148   Triple TT(TheModule->getTargetTriple());
2149 
2150   // Read all the records for this value table.
2151   SmallString<128> ValueName;
2152 
2153   while (true) {
2154     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2155     if (!MaybeEntry)
2156       return MaybeEntry.takeError();
2157     BitstreamEntry Entry = MaybeEntry.get();
2158 
2159     switch (Entry.Kind) {
2160     case BitstreamEntry::SubBlock: // Handled for us already.
2161     case BitstreamEntry::Error:
2162       return error("Malformed block");
2163     case BitstreamEntry::EndBlock:
2164       if (Offset > 0)
2165         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2166           return JumpFailed;
2167       return Error::success();
2168     case BitstreamEntry::Record:
2169       // The interesting case.
2170       break;
2171     }
2172 
2173     // Read a record.
2174     Record.clear();
2175     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2176     if (!MaybeRecord)
2177       return MaybeRecord.takeError();
2178     switch (MaybeRecord.get()) {
2179     default:  // Default behavior: unknown type.
2180       break;
2181     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2182       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2183       if (Error Err = ValOrErr.takeError())
2184         return Err;
2185       ValOrErr.get();
2186       break;
2187     }
2188     case bitc::VST_CODE_FNENTRY: {
2189       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2190       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2191       if (Error Err = ValOrErr.takeError())
2192         return Err;
2193       Value *V = ValOrErr.get();
2194 
2195       // Ignore function offsets emitted for aliases of functions in older
2196       // versions of LLVM.
2197       if (auto *F = dyn_cast<Function>(V))
2198         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2199       break;
2200     }
2201     case bitc::VST_CODE_BBENTRY: {
2202       if (convertToString(Record, 1, ValueName))
2203         return error("Invalid record");
2204       BasicBlock *BB = getBasicBlock(Record[0]);
2205       if (!BB)
2206         return error("Invalid record");
2207 
2208       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2209       ValueName.clear();
2210       break;
2211     }
2212     }
2213   }
2214 }
2215 
2216 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2217 /// encoding.
2218 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2219   if ((V & 1) == 0)
2220     return V >> 1;
2221   if (V != 1)
2222     return -(V >> 1);
2223   // There is no such thing as -0 with integers.  "-0" really means MININT.
2224   return 1ULL << 63;
2225 }
2226 
2227 /// Resolve all of the initializers for global values and aliases that we can.
2228 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2229   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2230   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>
2231       IndirectSymbolInitWorklist;
2232   std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist;
2233   std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist;
2234   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist;
2235 
2236   GlobalInitWorklist.swap(GlobalInits);
2237   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2238   FunctionPrefixWorklist.swap(FunctionPrefixes);
2239   FunctionPrologueWorklist.swap(FunctionPrologues);
2240   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2241 
2242   while (!GlobalInitWorklist.empty()) {
2243     unsigned ValID = GlobalInitWorklist.back().second;
2244     if (ValID >= ValueList.size()) {
2245       // Not ready to resolve this yet, it requires something later in the file.
2246       GlobalInits.push_back(GlobalInitWorklist.back());
2247     } else {
2248       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2249         GlobalInitWorklist.back().first->setInitializer(C);
2250       else
2251         return error("Expected a constant");
2252     }
2253     GlobalInitWorklist.pop_back();
2254   }
2255 
2256   while (!IndirectSymbolInitWorklist.empty()) {
2257     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2258     if (ValID >= ValueList.size()) {
2259       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2260     } else {
2261       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2262       if (!C)
2263         return error("Expected a constant");
2264       GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2265       if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2266         return error("Alias and aliasee types don't match");
2267       GIS->setIndirectSymbol(C);
2268     }
2269     IndirectSymbolInitWorklist.pop_back();
2270   }
2271 
2272   while (!FunctionPrefixWorklist.empty()) {
2273     unsigned ValID = FunctionPrefixWorklist.back().second;
2274     if (ValID >= ValueList.size()) {
2275       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2276     } else {
2277       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2278         FunctionPrefixWorklist.back().first->setPrefixData(C);
2279       else
2280         return error("Expected a constant");
2281     }
2282     FunctionPrefixWorklist.pop_back();
2283   }
2284 
2285   while (!FunctionPrologueWorklist.empty()) {
2286     unsigned ValID = FunctionPrologueWorklist.back().second;
2287     if (ValID >= ValueList.size()) {
2288       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2289     } else {
2290       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2291         FunctionPrologueWorklist.back().first->setPrologueData(C);
2292       else
2293         return error("Expected a constant");
2294     }
2295     FunctionPrologueWorklist.pop_back();
2296   }
2297 
2298   while (!FunctionPersonalityFnWorklist.empty()) {
2299     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2300     if (ValID >= ValueList.size()) {
2301       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2302     } else {
2303       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2304         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2305       else
2306         return error("Expected a constant");
2307     }
2308     FunctionPersonalityFnWorklist.pop_back();
2309   }
2310 
2311   return Error::success();
2312 }
2313 
2314 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2315   SmallVector<uint64_t, 8> Words(Vals.size());
2316   transform(Vals, Words.begin(),
2317                  BitcodeReader::decodeSignRotatedValue);
2318 
2319   return APInt(TypeBits, Words);
2320 }
2321 
2322 Error BitcodeReader::parseConstants() {
2323   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2324     return Err;
2325 
2326   SmallVector<uint64_t, 64> Record;
2327 
2328   // Read all the records for this value table.
2329   Type *CurTy = Type::getInt32Ty(Context);
2330   Type *CurFullTy = Type::getInt32Ty(Context);
2331   unsigned NextCstNo = ValueList.size();
2332 
2333   struct DelayedShufTy {
2334     VectorType *OpTy;
2335     VectorType *RTy;
2336     Type *CurFullTy;
2337     uint64_t Op0Idx;
2338     uint64_t Op1Idx;
2339     uint64_t Op2Idx;
2340   };
2341   std::vector<DelayedShufTy> DelayedShuffles;
2342   while (true) {
2343     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2344     if (!MaybeEntry)
2345       return MaybeEntry.takeError();
2346     BitstreamEntry Entry = MaybeEntry.get();
2347 
2348     switch (Entry.Kind) {
2349     case BitstreamEntry::SubBlock: // Handled for us already.
2350     case BitstreamEntry::Error:
2351       return error("Malformed block");
2352     case BitstreamEntry::EndBlock:
2353       if (NextCstNo != ValueList.size())
2354         return error("Invalid constant reference");
2355 
2356       // Once all the constants have been read, go through and resolve forward
2357       // references.
2358       //
2359       // We have to treat shuffles specially because they don't have three
2360       // operands anymore.  We need to convert the shuffle mask into an array,
2361       // and we can't convert a forward reference.
2362       for (auto &DelayedShuffle : DelayedShuffles) {
2363         VectorType *OpTy = DelayedShuffle.OpTy;
2364         VectorType *RTy = DelayedShuffle.RTy;
2365         uint64_t Op0Idx = DelayedShuffle.Op0Idx;
2366         uint64_t Op1Idx = DelayedShuffle.Op1Idx;
2367         uint64_t Op2Idx = DelayedShuffle.Op2Idx;
2368         Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy);
2369         Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy);
2370         Type *ShufTy =
2371             VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount());
2372         Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy);
2373         if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
2374           return error("Invalid shufflevector operands");
2375         SmallVector<int, 16> Mask;
2376         ShuffleVectorInst::getShuffleMask(Op2, Mask);
2377         Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask);
2378         ValueList.assignValue(V, NextCstNo, DelayedShuffle.CurFullTy);
2379         ++NextCstNo;
2380       }
2381       ValueList.resolveConstantForwardRefs();
2382       return Error::success();
2383     case BitstreamEntry::Record:
2384       // The interesting case.
2385       break;
2386     }
2387 
2388     // Read a record.
2389     Record.clear();
2390     Type *VoidType = Type::getVoidTy(Context);
2391     Value *V = nullptr;
2392     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
2393     if (!MaybeBitCode)
2394       return MaybeBitCode.takeError();
2395     switch (unsigned BitCode = MaybeBitCode.get()) {
2396     default:  // Default behavior: unknown constant
2397     case bitc::CST_CODE_UNDEF:     // UNDEF
2398       V = UndefValue::get(CurTy);
2399       break;
2400     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2401       if (Record.empty())
2402         return error("Invalid record");
2403       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2404         return error("Invalid record");
2405       if (TypeList[Record[0]] == VoidType)
2406         return error("Invalid constant type");
2407       CurFullTy = TypeList[Record[0]];
2408       CurTy = flattenPointerTypes(CurFullTy);
2409       continue;  // Skip the ValueList manipulation.
2410     case bitc::CST_CODE_NULL:      // NULL
2411       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
2412         return error("Invalid type for a constant null value");
2413       V = Constant::getNullValue(CurTy);
2414       break;
2415     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2416       if (!CurTy->isIntegerTy() || Record.empty())
2417         return error("Invalid record");
2418       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2419       break;
2420     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2421       if (!CurTy->isIntegerTy() || Record.empty())
2422         return error("Invalid record");
2423 
2424       APInt VInt =
2425           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2426       V = ConstantInt::get(Context, VInt);
2427 
2428       break;
2429     }
2430     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2431       if (Record.empty())
2432         return error("Invalid record");
2433       if (CurTy->isHalfTy())
2434         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2435                                              APInt(16, (uint16_t)Record[0])));
2436       else if (CurTy->isBFloatTy())
2437         V = ConstantFP::get(Context, APFloat(APFloat::BFloat(),
2438                                              APInt(16, (uint32_t)Record[0])));
2439       else if (CurTy->isFloatTy())
2440         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2441                                              APInt(32, (uint32_t)Record[0])));
2442       else if (CurTy->isDoubleTy())
2443         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2444                                              APInt(64, Record[0])));
2445       else if (CurTy->isX86_FP80Ty()) {
2446         // Bits are not stored the same way as a normal i80 APInt, compensate.
2447         uint64_t Rearrange[2];
2448         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2449         Rearrange[1] = Record[0] >> 48;
2450         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2451                                              APInt(80, Rearrange)));
2452       } else if (CurTy->isFP128Ty())
2453         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2454                                              APInt(128, Record)));
2455       else if (CurTy->isPPC_FP128Ty())
2456         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2457                                              APInt(128, Record)));
2458       else
2459         V = UndefValue::get(CurTy);
2460       break;
2461     }
2462 
2463     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2464       if (Record.empty())
2465         return error("Invalid record");
2466 
2467       unsigned Size = Record.size();
2468       SmallVector<Constant*, 16> Elts;
2469 
2470       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2471         for (unsigned i = 0; i != Size; ++i)
2472           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2473                                                      STy->getElementType(i)));
2474         V = ConstantStruct::get(STy, Elts);
2475       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2476         Type *EltTy = ATy->getElementType();
2477         for (unsigned i = 0; i != Size; ++i)
2478           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2479         V = ConstantArray::get(ATy, Elts);
2480       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2481         Type *EltTy = VTy->getElementType();
2482         for (unsigned i = 0; i != Size; ++i)
2483           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2484         V = ConstantVector::get(Elts);
2485       } else {
2486         V = UndefValue::get(CurTy);
2487       }
2488       break;
2489     }
2490     case bitc::CST_CODE_STRING:    // STRING: [values]
2491     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2492       if (Record.empty())
2493         return error("Invalid record");
2494 
2495       SmallString<16> Elts(Record.begin(), Record.end());
2496       V = ConstantDataArray::getString(Context, Elts,
2497                                        BitCode == bitc::CST_CODE_CSTRING);
2498       break;
2499     }
2500     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2501       if (Record.empty())
2502         return error("Invalid record");
2503 
2504       Type *EltTy;
2505       if (auto *Array = dyn_cast<ArrayType>(CurTy))
2506         EltTy = Array->getElementType();
2507       else
2508         EltTy = cast<VectorType>(CurTy)->getElementType();
2509       if (EltTy->isIntegerTy(8)) {
2510         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2511         if (isa<VectorType>(CurTy))
2512           V = ConstantDataVector::get(Context, Elts);
2513         else
2514           V = ConstantDataArray::get(Context, Elts);
2515       } else if (EltTy->isIntegerTy(16)) {
2516         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2517         if (isa<VectorType>(CurTy))
2518           V = ConstantDataVector::get(Context, Elts);
2519         else
2520           V = ConstantDataArray::get(Context, Elts);
2521       } else if (EltTy->isIntegerTy(32)) {
2522         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2523         if (isa<VectorType>(CurTy))
2524           V = ConstantDataVector::get(Context, Elts);
2525         else
2526           V = ConstantDataArray::get(Context, Elts);
2527       } else if (EltTy->isIntegerTy(64)) {
2528         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2529         if (isa<VectorType>(CurTy))
2530           V = ConstantDataVector::get(Context, Elts);
2531         else
2532           V = ConstantDataArray::get(Context, Elts);
2533       } else if (EltTy->isHalfTy()) {
2534         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2535         if (isa<VectorType>(CurTy))
2536           V = ConstantDataVector::getFP(EltTy, Elts);
2537         else
2538           V = ConstantDataArray::getFP(EltTy, Elts);
2539       } else if (EltTy->isBFloatTy()) {
2540         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2541         if (isa<VectorType>(CurTy))
2542           V = ConstantDataVector::getFP(EltTy, Elts);
2543         else
2544           V = ConstantDataArray::getFP(EltTy, Elts);
2545       } else if (EltTy->isFloatTy()) {
2546         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2547         if (isa<VectorType>(CurTy))
2548           V = ConstantDataVector::getFP(EltTy, Elts);
2549         else
2550           V = ConstantDataArray::getFP(EltTy, Elts);
2551       } else if (EltTy->isDoubleTy()) {
2552         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2553         if (isa<VectorType>(CurTy))
2554           V = ConstantDataVector::getFP(EltTy, Elts);
2555         else
2556           V = ConstantDataArray::getFP(EltTy, Elts);
2557       } else {
2558         return error("Invalid type for value");
2559       }
2560       break;
2561     }
2562     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
2563       if (Record.size() < 2)
2564         return error("Invalid record");
2565       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
2566       if (Opc < 0) {
2567         V = UndefValue::get(CurTy);  // Unknown unop.
2568       } else {
2569         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2570         unsigned Flags = 0;
2571         V = ConstantExpr::get(Opc, LHS, Flags);
2572       }
2573       break;
2574     }
2575     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2576       if (Record.size() < 3)
2577         return error("Invalid record");
2578       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2579       if (Opc < 0) {
2580         V = UndefValue::get(CurTy);  // Unknown binop.
2581       } else {
2582         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2583         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2584         unsigned Flags = 0;
2585         if (Record.size() >= 4) {
2586           if (Opc == Instruction::Add ||
2587               Opc == Instruction::Sub ||
2588               Opc == Instruction::Mul ||
2589               Opc == Instruction::Shl) {
2590             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2591               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2592             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2593               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2594           } else if (Opc == Instruction::SDiv ||
2595                      Opc == Instruction::UDiv ||
2596                      Opc == Instruction::LShr ||
2597                      Opc == Instruction::AShr) {
2598             if (Record[3] & (1 << bitc::PEO_EXACT))
2599               Flags |= SDivOperator::IsExact;
2600           }
2601         }
2602         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2603       }
2604       break;
2605     }
2606     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2607       if (Record.size() < 3)
2608         return error("Invalid record");
2609       int Opc = getDecodedCastOpcode(Record[0]);
2610       if (Opc < 0) {
2611         V = UndefValue::get(CurTy);  // Unknown cast.
2612       } else {
2613         Type *OpTy = getTypeByID(Record[1]);
2614         if (!OpTy)
2615           return error("Invalid record");
2616         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2617         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2618         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2619       }
2620       break;
2621     }
2622     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2623     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2624     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2625                                                      // operands]
2626       unsigned OpNum = 0;
2627       Type *PointeeType = nullptr;
2628       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
2629           Record.size() % 2)
2630         PointeeType = getTypeByID(Record[OpNum++]);
2631 
2632       bool InBounds = false;
2633       Optional<unsigned> InRangeIndex;
2634       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
2635         uint64_t Op = Record[OpNum++];
2636         InBounds = Op & 1;
2637         InRangeIndex = Op >> 1;
2638       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2639         InBounds = true;
2640 
2641       SmallVector<Constant*, 16> Elts;
2642       Type *Elt0FullTy = nullptr;
2643       while (OpNum != Record.size()) {
2644         if (!Elt0FullTy)
2645           Elt0FullTy = getFullyStructuredTypeByID(Record[OpNum]);
2646         Type *ElTy = getTypeByID(Record[OpNum++]);
2647         if (!ElTy)
2648           return error("Invalid record");
2649         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2650       }
2651 
2652       if (Elts.size() < 1)
2653         return error("Invalid gep with no operands");
2654 
2655       Type *ImplicitPointeeType =
2656           getPointerElementFlatType(Elt0FullTy->getScalarType());
2657       if (!PointeeType)
2658         PointeeType = ImplicitPointeeType;
2659       else if (PointeeType != ImplicitPointeeType)
2660         return error("Explicit gep operator type does not match pointee type "
2661                      "of pointer operand");
2662 
2663       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2664       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2665                                          InBounds, InRangeIndex);
2666       break;
2667     }
2668     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2669       if (Record.size() < 3)
2670         return error("Invalid record");
2671 
2672       Type *SelectorTy = Type::getInt1Ty(Context);
2673 
2674       // The selector might be an i1, an <n x i1>, or a <vscale x n x i1>
2675       // Get the type from the ValueList before getting a forward ref.
2676       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2677         if (Value *V = ValueList[Record[0]])
2678           if (SelectorTy != V->getType())
2679             SelectorTy = VectorType::get(SelectorTy,
2680                                          VTy->getElementCount());
2681 
2682       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2683                                                               SelectorTy),
2684                                   ValueList.getConstantFwdRef(Record[1],CurTy),
2685                                   ValueList.getConstantFwdRef(Record[2],CurTy));
2686       break;
2687     }
2688     case bitc::CST_CODE_CE_EXTRACTELT
2689         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2690       if (Record.size() < 3)
2691         return error("Invalid record");
2692       VectorType *OpTy =
2693         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2694       if (!OpTy)
2695         return error("Invalid record");
2696       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2697       Constant *Op1 = nullptr;
2698       if (Record.size() == 4) {
2699         Type *IdxTy = getTypeByID(Record[2]);
2700         if (!IdxTy)
2701           return error("Invalid record");
2702         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2703       } else // TODO: Remove with llvm 4.0
2704         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2705       if (!Op1)
2706         return error("Invalid record");
2707       V = ConstantExpr::getExtractElement(Op0, Op1);
2708       break;
2709     }
2710     case bitc::CST_CODE_CE_INSERTELT
2711         : { // CE_INSERTELT: [opval, opval, opty, opval]
2712       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2713       if (Record.size() < 3 || !OpTy)
2714         return error("Invalid record");
2715       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2716       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2717                                                   OpTy->getElementType());
2718       Constant *Op2 = nullptr;
2719       if (Record.size() == 4) {
2720         Type *IdxTy = getTypeByID(Record[2]);
2721         if (!IdxTy)
2722           return error("Invalid record");
2723         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2724       } else // TODO: Remove with llvm 4.0
2725         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2726       if (!Op2)
2727         return error("Invalid record");
2728       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2729       break;
2730     }
2731     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2732       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2733       if (Record.size() < 3 || !OpTy)
2734         return error("Invalid record");
2735       DelayedShuffles.push_back(
2736           {OpTy, OpTy, CurFullTy, Record[0], Record[1], Record[2]});
2737       continue;
2738     }
2739     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2740       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2741       VectorType *OpTy =
2742         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2743       if (Record.size() < 4 || !RTy || !OpTy)
2744         return error("Invalid record");
2745       DelayedShuffles.push_back(
2746           {OpTy, RTy, CurFullTy, Record[1], Record[2], Record[3]});
2747       continue;
2748     }
2749     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2750       if (Record.size() < 4)
2751         return error("Invalid record");
2752       Type *OpTy = getTypeByID(Record[0]);
2753       if (!OpTy)
2754         return error("Invalid record");
2755       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2756       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2757 
2758       if (OpTy->isFPOrFPVectorTy())
2759         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2760       else
2761         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2762       break;
2763     }
2764     // This maintains backward compatibility, pre-asm dialect keywords.
2765     // FIXME: Remove with the 4.0 release.
2766     case bitc::CST_CODE_INLINEASM_OLD: {
2767       if (Record.size() < 2)
2768         return error("Invalid record");
2769       std::string AsmStr, ConstrStr;
2770       bool HasSideEffects = Record[0] & 1;
2771       bool IsAlignStack = Record[0] >> 1;
2772       unsigned AsmStrSize = Record[1];
2773       if (2+AsmStrSize >= Record.size())
2774         return error("Invalid record");
2775       unsigned ConstStrSize = Record[2+AsmStrSize];
2776       if (3+AsmStrSize+ConstStrSize > Record.size())
2777         return error("Invalid record");
2778 
2779       for (unsigned i = 0; i != AsmStrSize; ++i)
2780         AsmStr += (char)Record[2+i];
2781       for (unsigned i = 0; i != ConstStrSize; ++i)
2782         ConstrStr += (char)Record[3+AsmStrSize+i];
2783       UpgradeInlineAsmString(&AsmStr);
2784       V = InlineAsm::get(
2785           cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr,
2786           ConstrStr, HasSideEffects, IsAlignStack);
2787       break;
2788     }
2789     // This version adds support for the asm dialect keywords (e.g.,
2790     // inteldialect).
2791     case bitc::CST_CODE_INLINEASM: {
2792       if (Record.size() < 2)
2793         return error("Invalid record");
2794       std::string AsmStr, ConstrStr;
2795       bool HasSideEffects = Record[0] & 1;
2796       bool IsAlignStack = (Record[0] >> 1) & 1;
2797       unsigned AsmDialect = Record[0] >> 2;
2798       unsigned AsmStrSize = Record[1];
2799       if (2+AsmStrSize >= Record.size())
2800         return error("Invalid record");
2801       unsigned ConstStrSize = Record[2+AsmStrSize];
2802       if (3+AsmStrSize+ConstStrSize > Record.size())
2803         return error("Invalid record");
2804 
2805       for (unsigned i = 0; i != AsmStrSize; ++i)
2806         AsmStr += (char)Record[2+i];
2807       for (unsigned i = 0; i != ConstStrSize; ++i)
2808         ConstrStr += (char)Record[3+AsmStrSize+i];
2809       UpgradeInlineAsmString(&AsmStr);
2810       V = InlineAsm::get(
2811           cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr,
2812           ConstrStr, HasSideEffects, IsAlignStack,
2813           InlineAsm::AsmDialect(AsmDialect));
2814       break;
2815     }
2816     case bitc::CST_CODE_BLOCKADDRESS:{
2817       if (Record.size() < 3)
2818         return error("Invalid record");
2819       Type *FnTy = getTypeByID(Record[0]);
2820       if (!FnTy)
2821         return error("Invalid record");
2822       Function *Fn =
2823         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2824       if (!Fn)
2825         return error("Invalid record");
2826 
2827       // If the function is already parsed we can insert the block address right
2828       // away.
2829       BasicBlock *BB;
2830       unsigned BBID = Record[2];
2831       if (!BBID)
2832         // Invalid reference to entry block.
2833         return error("Invalid ID");
2834       if (!Fn->empty()) {
2835         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2836         for (size_t I = 0, E = BBID; I != E; ++I) {
2837           if (BBI == BBE)
2838             return error("Invalid ID");
2839           ++BBI;
2840         }
2841         BB = &*BBI;
2842       } else {
2843         // Otherwise insert a placeholder and remember it so it can be inserted
2844         // when the function is parsed.
2845         auto &FwdBBs = BasicBlockFwdRefs[Fn];
2846         if (FwdBBs.empty())
2847           BasicBlockFwdRefQueue.push_back(Fn);
2848         if (FwdBBs.size() < BBID + 1)
2849           FwdBBs.resize(BBID + 1);
2850         if (!FwdBBs[BBID])
2851           FwdBBs[BBID] = BasicBlock::Create(Context);
2852         BB = FwdBBs[BBID];
2853       }
2854       V = BlockAddress::get(Fn, BB);
2855       break;
2856     }
2857     }
2858 
2859     assert(V->getType() == flattenPointerTypes(CurFullTy) &&
2860            "Incorrect fully structured type provided for Constant");
2861     ValueList.assignValue(V, NextCstNo, CurFullTy);
2862     ++NextCstNo;
2863   }
2864 }
2865 
2866 Error BitcodeReader::parseUseLists() {
2867   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
2868     return Err;
2869 
2870   // Read all the records.
2871   SmallVector<uint64_t, 64> Record;
2872 
2873   while (true) {
2874     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2875     if (!MaybeEntry)
2876       return MaybeEntry.takeError();
2877     BitstreamEntry Entry = MaybeEntry.get();
2878 
2879     switch (Entry.Kind) {
2880     case BitstreamEntry::SubBlock: // Handled for us already.
2881     case BitstreamEntry::Error:
2882       return error("Malformed block");
2883     case BitstreamEntry::EndBlock:
2884       return Error::success();
2885     case BitstreamEntry::Record:
2886       // The interesting case.
2887       break;
2888     }
2889 
2890     // Read a use list record.
2891     Record.clear();
2892     bool IsBB = false;
2893     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2894     if (!MaybeRecord)
2895       return MaybeRecord.takeError();
2896     switch (MaybeRecord.get()) {
2897     default:  // Default behavior: unknown type.
2898       break;
2899     case bitc::USELIST_CODE_BB:
2900       IsBB = true;
2901       LLVM_FALLTHROUGH;
2902     case bitc::USELIST_CODE_DEFAULT: {
2903       unsigned RecordLength = Record.size();
2904       if (RecordLength < 3)
2905         // Records should have at least an ID and two indexes.
2906         return error("Invalid record");
2907       unsigned ID = Record.back();
2908       Record.pop_back();
2909 
2910       Value *V;
2911       if (IsBB) {
2912         assert(ID < FunctionBBs.size() && "Basic block not found");
2913         V = FunctionBBs[ID];
2914       } else
2915         V = ValueList[ID];
2916       unsigned NumUses = 0;
2917       SmallDenseMap<const Use *, unsigned, 16> Order;
2918       for (const Use &U : V->materialized_uses()) {
2919         if (++NumUses > Record.size())
2920           break;
2921         Order[&U] = Record[NumUses - 1];
2922       }
2923       if (Order.size() != Record.size() || NumUses > Record.size())
2924         // Mismatches can happen if the functions are being materialized lazily
2925         // (out-of-order), or a value has been upgraded.
2926         break;
2927 
2928       V->sortUseList([&](const Use &L, const Use &R) {
2929         return Order.lookup(&L) < Order.lookup(&R);
2930       });
2931       break;
2932     }
2933     }
2934   }
2935 }
2936 
2937 /// When we see the block for metadata, remember where it is and then skip it.
2938 /// This lets us lazily deserialize the metadata.
2939 Error BitcodeReader::rememberAndSkipMetadata() {
2940   // Save the current stream state.
2941   uint64_t CurBit = Stream.GetCurrentBitNo();
2942   DeferredMetadataInfo.push_back(CurBit);
2943 
2944   // Skip over the block for now.
2945   if (Error Err = Stream.SkipBlock())
2946     return Err;
2947   return Error::success();
2948 }
2949 
2950 Error BitcodeReader::materializeMetadata() {
2951   for (uint64_t BitPos : DeferredMetadataInfo) {
2952     // Move the bit stream to the saved position.
2953     if (Error JumpFailed = Stream.JumpToBit(BitPos))
2954       return JumpFailed;
2955     if (Error Err = MDLoader->parseModuleMetadata())
2956       return Err;
2957   }
2958 
2959   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
2960   // metadata.
2961   if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
2962     NamedMDNode *LinkerOpts =
2963         TheModule->getOrInsertNamedMetadata("llvm.linker.options");
2964     for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
2965       LinkerOpts->addOperand(cast<MDNode>(MDOptions));
2966   }
2967 
2968   DeferredMetadataInfo.clear();
2969   return Error::success();
2970 }
2971 
2972 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
2973 
2974 /// When we see the block for a function body, remember where it is and then
2975 /// skip it.  This lets us lazily deserialize the functions.
2976 Error BitcodeReader::rememberAndSkipFunctionBody() {
2977   // Get the function we are talking about.
2978   if (FunctionsWithBodies.empty())
2979     return error("Insufficient function protos");
2980 
2981   Function *Fn = FunctionsWithBodies.back();
2982   FunctionsWithBodies.pop_back();
2983 
2984   // Save the current stream state.
2985   uint64_t CurBit = Stream.GetCurrentBitNo();
2986   assert(
2987       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
2988       "Mismatch between VST and scanned function offsets");
2989   DeferredFunctionInfo[Fn] = CurBit;
2990 
2991   // Skip over the function block for now.
2992   if (Error Err = Stream.SkipBlock())
2993     return Err;
2994   return Error::success();
2995 }
2996 
2997 Error BitcodeReader::globalCleanup() {
2998   // Patch the initializers for globals and aliases up.
2999   if (Error Err = resolveGlobalAndIndirectSymbolInits())
3000     return Err;
3001   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3002     return error("Malformed global initializer set");
3003 
3004   // Look for intrinsic functions which need to be upgraded at some point
3005   // and functions that need to have their function attributes upgraded.
3006   for (Function &F : *TheModule) {
3007     MDLoader->upgradeDebugIntrinsics(F);
3008     Function *NewFn;
3009     if (UpgradeIntrinsicFunction(&F, NewFn))
3010       UpgradedIntrinsics[&F] = NewFn;
3011     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
3012       // Some types could be renamed during loading if several modules are
3013       // loaded in the same LLVMContext (LTO scenario). In this case we should
3014       // remangle intrinsics names as well.
3015       RemangledIntrinsics[&F] = Remangled.getValue();
3016     // Look for functions that rely on old function attribute behavior.
3017     UpgradeFunctionAttributes(F);
3018   }
3019 
3020   // Look for global variables which need to be renamed.
3021   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3022   for (GlobalVariable &GV : TheModule->globals())
3023     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3024       UpgradedVariables.emplace_back(&GV, Upgraded);
3025   for (auto &Pair : UpgradedVariables) {
3026     Pair.first->eraseFromParent();
3027     TheModule->getGlobalList().push_back(Pair.second);
3028   }
3029 
3030   // Force deallocation of memory for these vectors to favor the client that
3031   // want lazy deserialization.
3032   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3033   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap(
3034       IndirectSymbolInits);
3035   return Error::success();
3036 }
3037 
3038 /// Support for lazy parsing of function bodies. This is required if we
3039 /// either have an old bitcode file without a VST forward declaration record,
3040 /// or if we have an anonymous function being materialized, since anonymous
3041 /// functions do not have a name and are therefore not in the VST.
3042 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3043   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3044     return JumpFailed;
3045 
3046   if (Stream.AtEndOfStream())
3047     return error("Could not find function in stream");
3048 
3049   if (!SeenFirstFunctionBody)
3050     return error("Trying to materialize functions before seeing function blocks");
3051 
3052   // An old bitcode file with the symbol table at the end would have
3053   // finished the parse greedily.
3054   assert(SeenValueSymbolTable);
3055 
3056   SmallVector<uint64_t, 64> Record;
3057 
3058   while (true) {
3059     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3060     if (!MaybeEntry)
3061       return MaybeEntry.takeError();
3062     llvm::BitstreamEntry Entry = MaybeEntry.get();
3063 
3064     switch (Entry.Kind) {
3065     default:
3066       return error("Expect SubBlock");
3067     case BitstreamEntry::SubBlock:
3068       switch (Entry.ID) {
3069       default:
3070         return error("Expect function block");
3071       case bitc::FUNCTION_BLOCK_ID:
3072         if (Error Err = rememberAndSkipFunctionBody())
3073           return Err;
3074         NextUnreadBit = Stream.GetCurrentBitNo();
3075         return Error::success();
3076       }
3077     }
3078   }
3079 }
3080 
3081 bool BitcodeReaderBase::readBlockInfo() {
3082   Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3083       Stream.ReadBlockInfoBlock();
3084   if (!MaybeNewBlockInfo)
3085     return true; // FIXME Handle the error.
3086   Optional<BitstreamBlockInfo> NewBlockInfo =
3087       std::move(MaybeNewBlockInfo.get());
3088   if (!NewBlockInfo)
3089     return true;
3090   BlockInfo = std::move(*NewBlockInfo);
3091   return false;
3092 }
3093 
3094 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3095   // v1: [selection_kind, name]
3096   // v2: [strtab_offset, strtab_size, selection_kind]
3097   StringRef Name;
3098   std::tie(Name, Record) = readNameFromStrtab(Record);
3099 
3100   if (Record.empty())
3101     return error("Invalid record");
3102   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3103   std::string OldFormatName;
3104   if (!UseStrtab) {
3105     if (Record.size() < 2)
3106       return error("Invalid record");
3107     unsigned ComdatNameSize = Record[1];
3108     OldFormatName.reserve(ComdatNameSize);
3109     for (unsigned i = 0; i != ComdatNameSize; ++i)
3110       OldFormatName += (char)Record[2 + i];
3111     Name = OldFormatName;
3112   }
3113   Comdat *C = TheModule->getOrInsertComdat(Name);
3114   C->setSelectionKind(SK);
3115   ComdatList.push_back(C);
3116   return Error::success();
3117 }
3118 
3119 static void inferDSOLocal(GlobalValue *GV) {
3120   // infer dso_local from linkage and visibility if it is not encoded.
3121   if (GV->hasLocalLinkage() ||
3122       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3123     GV->setDSOLocal(true);
3124 }
3125 
3126 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3127   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3128   // visibility, threadlocal, unnamed_addr, externally_initialized,
3129   // dllstorageclass, comdat, attributes, preemption specifier,
3130   // partition strtab offset, partition strtab size] (name in VST)
3131   // v2: [strtab_offset, strtab_size, v1]
3132   StringRef Name;
3133   std::tie(Name, Record) = readNameFromStrtab(Record);
3134 
3135   if (Record.size() < 6)
3136     return error("Invalid record");
3137   Type *FullTy = getFullyStructuredTypeByID(Record[0]);
3138   Type *Ty = flattenPointerTypes(FullTy);
3139   if (!Ty)
3140     return error("Invalid record");
3141   bool isConstant = Record[1] & 1;
3142   bool explicitType = Record[1] & 2;
3143   unsigned AddressSpace;
3144   if (explicitType) {
3145     AddressSpace = Record[1] >> 2;
3146   } else {
3147     if (!Ty->isPointerTy())
3148       return error("Invalid type for value");
3149     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3150     std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
3151   }
3152 
3153   uint64_t RawLinkage = Record[3];
3154   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3155   MaybeAlign Alignment;
3156   if (Error Err = parseAlignmentValue(Record[4], Alignment))
3157     return Err;
3158   std::string Section;
3159   if (Record[5]) {
3160     if (Record[5] - 1 >= SectionTable.size())
3161       return error("Invalid ID");
3162     Section = SectionTable[Record[5] - 1];
3163   }
3164   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3165   // Local linkage must have default visibility.
3166   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3167     // FIXME: Change to an error if non-default in 4.0.
3168     Visibility = getDecodedVisibility(Record[6]);
3169 
3170   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3171   if (Record.size() > 7)
3172     TLM = getDecodedThreadLocalMode(Record[7]);
3173 
3174   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3175   if (Record.size() > 8)
3176     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3177 
3178   bool ExternallyInitialized = false;
3179   if (Record.size() > 9)
3180     ExternallyInitialized = Record[9];
3181 
3182   GlobalVariable *NewGV =
3183       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3184                          nullptr, TLM, AddressSpace, ExternallyInitialized);
3185   NewGV->setAlignment(Alignment);
3186   if (!Section.empty())
3187     NewGV->setSection(Section);
3188   NewGV->setVisibility(Visibility);
3189   NewGV->setUnnamedAddr(UnnamedAddr);
3190 
3191   if (Record.size() > 10)
3192     NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3193   else
3194     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3195 
3196   FullTy = PointerType::get(FullTy, AddressSpace);
3197   assert(NewGV->getType() == flattenPointerTypes(FullTy) &&
3198          "Incorrect fully specified type for GlobalVariable");
3199   ValueList.push_back(NewGV, FullTy);
3200 
3201   // Remember which value to use for the global initializer.
3202   if (unsigned InitID = Record[2])
3203     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3204 
3205   if (Record.size() > 11) {
3206     if (unsigned ComdatID = Record[11]) {
3207       if (ComdatID > ComdatList.size())
3208         return error("Invalid global variable comdat ID");
3209       NewGV->setComdat(ComdatList[ComdatID - 1]);
3210     }
3211   } else if (hasImplicitComdat(RawLinkage)) {
3212     NewGV->setComdat(reinterpret_cast<Comdat *>(1));
3213   }
3214 
3215   if (Record.size() > 12) {
3216     auto AS = getAttributes(Record[12]).getFnAttributes();
3217     NewGV->setAttributes(AS);
3218   }
3219 
3220   if (Record.size() > 13) {
3221     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3222   }
3223   inferDSOLocal(NewGV);
3224 
3225   // Check whether we have enough values to read a partition name.
3226   if (Record.size() > 15)
3227     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3228 
3229   return Error::success();
3230 }
3231 
3232 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3233   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3234   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3235   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
3236   // v2: [strtab_offset, strtab_size, v1]
3237   StringRef Name;
3238   std::tie(Name, Record) = readNameFromStrtab(Record);
3239 
3240   if (Record.size() < 8)
3241     return error("Invalid record");
3242   Type *FullFTy = getFullyStructuredTypeByID(Record[0]);
3243   Type *FTy = flattenPointerTypes(FullFTy);
3244   if (!FTy)
3245     return error("Invalid record");
3246   if (isa<PointerType>(FTy))
3247     std::tie(FullFTy, FTy) = getPointerElementTypes(FullFTy);
3248 
3249   if (!isa<FunctionType>(FTy))
3250     return error("Invalid type for value");
3251   auto CC = static_cast<CallingConv::ID>(Record[1]);
3252   if (CC & ~CallingConv::MaxID)
3253     return error("Invalid calling convention ID");
3254 
3255   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3256   if (Record.size() > 16)
3257     AddrSpace = Record[16];
3258 
3259   Function *Func =
3260       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
3261                        AddrSpace, Name, TheModule);
3262 
3263   assert(Func->getFunctionType() == flattenPointerTypes(FullFTy) &&
3264          "Incorrect fully specified type provided for function");
3265   FunctionTypes[Func] = cast<FunctionType>(FullFTy);
3266 
3267   Func->setCallingConv(CC);
3268   bool isProto = Record[2];
3269   uint64_t RawLinkage = Record[3];
3270   Func->setLinkage(getDecodedLinkage(RawLinkage));
3271   Func->setAttributes(getAttributes(Record[4]));
3272 
3273   // Upgrade any old-style byval without a type by propagating the argument's
3274   // pointee type. There should be no opaque pointers where the byval type is
3275   // implicit.
3276   for (unsigned i = 0; i != Func->arg_size(); ++i) {
3277     if (!Func->hasParamAttribute(i, Attribute::ByVal))
3278       continue;
3279 
3280     Type *PTy = cast<FunctionType>(FullFTy)->getParamType(i);
3281     Func->removeParamAttr(i, Attribute::ByVal);
3282     Func->addParamAttr(i, Attribute::getWithByValType(
3283                               Context, getPointerElementFlatType(PTy)));
3284   }
3285 
3286   MaybeAlign Alignment;
3287   if (Error Err = parseAlignmentValue(Record[5], Alignment))
3288     return Err;
3289   Func->setAlignment(Alignment);
3290   if (Record[6]) {
3291     if (Record[6] - 1 >= SectionTable.size())
3292       return error("Invalid ID");
3293     Func->setSection(SectionTable[Record[6] - 1]);
3294   }
3295   // Local linkage must have default visibility.
3296   if (!Func->hasLocalLinkage())
3297     // FIXME: Change to an error if non-default in 4.0.
3298     Func->setVisibility(getDecodedVisibility(Record[7]));
3299   if (Record.size() > 8 && Record[8]) {
3300     if (Record[8] - 1 >= GCTable.size())
3301       return error("Invalid ID");
3302     Func->setGC(GCTable[Record[8] - 1]);
3303   }
3304   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3305   if (Record.size() > 9)
3306     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3307   Func->setUnnamedAddr(UnnamedAddr);
3308   if (Record.size() > 10 && Record[10] != 0)
3309     FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1));
3310 
3311   if (Record.size() > 11)
3312     Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3313   else
3314     upgradeDLLImportExportLinkage(Func, RawLinkage);
3315 
3316   if (Record.size() > 12) {
3317     if (unsigned ComdatID = Record[12]) {
3318       if (ComdatID > ComdatList.size())
3319         return error("Invalid function comdat ID");
3320       Func->setComdat(ComdatList[ComdatID - 1]);
3321     }
3322   } else if (hasImplicitComdat(RawLinkage)) {
3323     Func->setComdat(reinterpret_cast<Comdat *>(1));
3324   }
3325 
3326   if (Record.size() > 13 && Record[13] != 0)
3327     FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1));
3328 
3329   if (Record.size() > 14 && Record[14] != 0)
3330     FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
3331 
3332   if (Record.size() > 15) {
3333     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3334   }
3335   inferDSOLocal(Func);
3336 
3337   // Record[16] is the address space number.
3338 
3339   // Check whether we have enough values to read a partition name.
3340   if (Record.size() > 18)
3341     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
3342 
3343   Type *FullTy = PointerType::get(FullFTy, AddrSpace);
3344   assert(Func->getType() == flattenPointerTypes(FullTy) &&
3345          "Incorrect fully specified type provided for Function");
3346   ValueList.push_back(Func, FullTy);
3347 
3348   // If this is a function with a body, remember the prototype we are
3349   // creating now, so that we can match up the body with them later.
3350   if (!isProto) {
3351     Func->setIsMaterializable(true);
3352     FunctionsWithBodies.push_back(Func);
3353     DeferredFunctionInfo[Func] = 0;
3354   }
3355   return Error::success();
3356 }
3357 
3358 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3359     unsigned BitCode, ArrayRef<uint64_t> Record) {
3360   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3361   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3362   // dllstorageclass, threadlocal, unnamed_addr,
3363   // preemption specifier] (name in VST)
3364   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3365   // visibility, dllstorageclass, threadlocal, unnamed_addr,
3366   // preemption specifier] (name in VST)
3367   // v2: [strtab_offset, strtab_size, v1]
3368   StringRef Name;
3369   std::tie(Name, Record) = readNameFromStrtab(Record);
3370 
3371   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3372   if (Record.size() < (3 + (unsigned)NewRecord))
3373     return error("Invalid record");
3374   unsigned OpNum = 0;
3375   Type *FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
3376   Type *Ty = flattenPointerTypes(FullTy);
3377   if (!Ty)
3378     return error("Invalid record");
3379 
3380   unsigned AddrSpace;
3381   if (!NewRecord) {
3382     auto *PTy = dyn_cast<PointerType>(Ty);
3383     if (!PTy)
3384       return error("Invalid type for value");
3385     std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
3386     AddrSpace = PTy->getAddressSpace();
3387   } else {
3388     AddrSpace = Record[OpNum++];
3389   }
3390 
3391   auto Val = Record[OpNum++];
3392   auto Linkage = Record[OpNum++];
3393   GlobalIndirectSymbol *NewGA;
3394   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3395       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3396     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3397                                 TheModule);
3398   else
3399     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3400                                 nullptr, TheModule);
3401 
3402   assert(NewGA->getValueType() == flattenPointerTypes(FullTy) &&
3403          "Incorrect fully structured type provided for GlobalIndirectSymbol");
3404   // Old bitcode files didn't have visibility field.
3405   // Local linkage must have default visibility.
3406   if (OpNum != Record.size()) {
3407     auto VisInd = OpNum++;
3408     if (!NewGA->hasLocalLinkage())
3409       // FIXME: Change to an error if non-default in 4.0.
3410       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3411   }
3412   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3413       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
3414     if (OpNum != Record.size())
3415       NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3416     else
3417       upgradeDLLImportExportLinkage(NewGA, Linkage);
3418     if (OpNum != Record.size())
3419       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3420     if (OpNum != Record.size())
3421       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3422   }
3423   if (OpNum != Record.size())
3424     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3425   inferDSOLocal(NewGA);
3426 
3427   // Check whether we have enough values to read a partition name.
3428   if (OpNum + 1 < Record.size()) {
3429     NewGA->setPartition(
3430         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
3431     OpNum += 2;
3432   }
3433 
3434   FullTy = PointerType::get(FullTy, AddrSpace);
3435   assert(NewGA->getType() == flattenPointerTypes(FullTy) &&
3436          "Incorrect fully structured type provided for GlobalIndirectSymbol");
3437   ValueList.push_back(NewGA, FullTy);
3438   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3439   return Error::success();
3440 }
3441 
3442 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3443                                  bool ShouldLazyLoadMetadata,
3444                                  DataLayoutCallbackTy DataLayoutCallback) {
3445   if (ResumeBit) {
3446     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
3447       return JumpFailed;
3448   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3449     return Err;
3450 
3451   SmallVector<uint64_t, 64> Record;
3452 
3453   // Parts of bitcode parsing depend on the datalayout.  Make sure we
3454   // finalize the datalayout before we run any of that code.
3455   bool ResolvedDataLayout = false;
3456   auto ResolveDataLayout = [&] {
3457     if (ResolvedDataLayout)
3458       return;
3459 
3460     // datalayout and triple can't be parsed after this point.
3461     ResolvedDataLayout = true;
3462 
3463     // Upgrade data layout string.
3464     std::string DL = llvm::UpgradeDataLayoutString(
3465         TheModule->getDataLayoutStr(), TheModule->getTargetTriple());
3466     TheModule->setDataLayout(DL);
3467 
3468     if (auto LayoutOverride =
3469             DataLayoutCallback(TheModule->getTargetTriple()))
3470       TheModule->setDataLayout(*LayoutOverride);
3471   };
3472 
3473   // Read all the records for this module.
3474   while (true) {
3475     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3476     if (!MaybeEntry)
3477       return MaybeEntry.takeError();
3478     llvm::BitstreamEntry Entry = MaybeEntry.get();
3479 
3480     switch (Entry.Kind) {
3481     case BitstreamEntry::Error:
3482       return error("Malformed block");
3483     case BitstreamEntry::EndBlock:
3484       ResolveDataLayout();
3485       return globalCleanup();
3486 
3487     case BitstreamEntry::SubBlock:
3488       switch (Entry.ID) {
3489       default:  // Skip unknown content.
3490         if (Error Err = Stream.SkipBlock())
3491           return Err;
3492         break;
3493       case bitc::BLOCKINFO_BLOCK_ID:
3494         if (readBlockInfo())
3495           return error("Malformed block");
3496         break;
3497       case bitc::PARAMATTR_BLOCK_ID:
3498         if (Error Err = parseAttributeBlock())
3499           return Err;
3500         break;
3501       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3502         if (Error Err = parseAttributeGroupBlock())
3503           return Err;
3504         break;
3505       case bitc::TYPE_BLOCK_ID_NEW:
3506         if (Error Err = parseTypeTable())
3507           return Err;
3508         break;
3509       case bitc::VALUE_SYMTAB_BLOCK_ID:
3510         if (!SeenValueSymbolTable) {
3511           // Either this is an old form VST without function index and an
3512           // associated VST forward declaration record (which would have caused
3513           // the VST to be jumped to and parsed before it was encountered
3514           // normally in the stream), or there were no function blocks to
3515           // trigger an earlier parsing of the VST.
3516           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3517           if (Error Err = parseValueSymbolTable())
3518             return Err;
3519           SeenValueSymbolTable = true;
3520         } else {
3521           // We must have had a VST forward declaration record, which caused
3522           // the parser to jump to and parse the VST earlier.
3523           assert(VSTOffset > 0);
3524           if (Error Err = Stream.SkipBlock())
3525             return Err;
3526         }
3527         break;
3528       case bitc::CONSTANTS_BLOCK_ID:
3529         if (Error Err = parseConstants())
3530           return Err;
3531         if (Error Err = resolveGlobalAndIndirectSymbolInits())
3532           return Err;
3533         break;
3534       case bitc::METADATA_BLOCK_ID:
3535         if (ShouldLazyLoadMetadata) {
3536           if (Error Err = rememberAndSkipMetadata())
3537             return Err;
3538           break;
3539         }
3540         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3541         if (Error Err = MDLoader->parseModuleMetadata())
3542           return Err;
3543         break;
3544       case bitc::METADATA_KIND_BLOCK_ID:
3545         if (Error Err = MDLoader->parseMetadataKinds())
3546           return Err;
3547         break;
3548       case bitc::FUNCTION_BLOCK_ID:
3549         ResolveDataLayout();
3550 
3551         // If this is the first function body we've seen, reverse the
3552         // FunctionsWithBodies list.
3553         if (!SeenFirstFunctionBody) {
3554           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3555           if (Error Err = globalCleanup())
3556             return Err;
3557           SeenFirstFunctionBody = true;
3558         }
3559 
3560         if (VSTOffset > 0) {
3561           // If we have a VST forward declaration record, make sure we
3562           // parse the VST now if we haven't already. It is needed to
3563           // set up the DeferredFunctionInfo vector for lazy reading.
3564           if (!SeenValueSymbolTable) {
3565             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3566               return Err;
3567             SeenValueSymbolTable = true;
3568             // Fall through so that we record the NextUnreadBit below.
3569             // This is necessary in case we have an anonymous function that
3570             // is later materialized. Since it will not have a VST entry we
3571             // need to fall back to the lazy parse to find its offset.
3572           } else {
3573             // If we have a VST forward declaration record, but have already
3574             // parsed the VST (just above, when the first function body was
3575             // encountered here), then we are resuming the parse after
3576             // materializing functions. The ResumeBit points to the
3577             // start of the last function block recorded in the
3578             // DeferredFunctionInfo map. Skip it.
3579             if (Error Err = Stream.SkipBlock())
3580               return Err;
3581             continue;
3582           }
3583         }
3584 
3585         // Support older bitcode files that did not have the function
3586         // index in the VST, nor a VST forward declaration record, as
3587         // well as anonymous functions that do not have VST entries.
3588         // Build the DeferredFunctionInfo vector on the fly.
3589         if (Error Err = rememberAndSkipFunctionBody())
3590           return Err;
3591 
3592         // Suspend parsing when we reach the function bodies. Subsequent
3593         // materialization calls will resume it when necessary. If the bitcode
3594         // file is old, the symbol table will be at the end instead and will not
3595         // have been seen yet. In this case, just finish the parse now.
3596         if (SeenValueSymbolTable) {
3597           NextUnreadBit = Stream.GetCurrentBitNo();
3598           // After the VST has been parsed, we need to make sure intrinsic name
3599           // are auto-upgraded.
3600           return globalCleanup();
3601         }
3602         break;
3603       case bitc::USELIST_BLOCK_ID:
3604         if (Error Err = parseUseLists())
3605           return Err;
3606         break;
3607       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3608         if (Error Err = parseOperandBundleTags())
3609           return Err;
3610         break;
3611       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
3612         if (Error Err = parseSyncScopeNames())
3613           return Err;
3614         break;
3615       }
3616       continue;
3617 
3618     case BitstreamEntry::Record:
3619       // The interesting case.
3620       break;
3621     }
3622 
3623     // Read a record.
3624     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3625     if (!MaybeBitCode)
3626       return MaybeBitCode.takeError();
3627     switch (unsigned BitCode = MaybeBitCode.get()) {
3628     default: break;  // Default behavior, ignore unknown content.
3629     case bitc::MODULE_CODE_VERSION: {
3630       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3631       if (!VersionOrErr)
3632         return VersionOrErr.takeError();
3633       UseRelativeIDs = *VersionOrErr >= 1;
3634       break;
3635     }
3636     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3637       if (ResolvedDataLayout)
3638         return error("target triple too late in module");
3639       std::string S;
3640       if (convertToString(Record, 0, S))
3641         return error("Invalid record");
3642       TheModule->setTargetTriple(S);
3643       break;
3644     }
3645     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3646       if (ResolvedDataLayout)
3647         return error("datalayout too late in module");
3648       std::string S;
3649       if (convertToString(Record, 0, S))
3650         return error("Invalid record");
3651       TheModule->setDataLayout(S);
3652       break;
3653     }
3654     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3655       std::string S;
3656       if (convertToString(Record, 0, S))
3657         return error("Invalid record");
3658       TheModule->setModuleInlineAsm(S);
3659       break;
3660     }
3661     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3662       // FIXME: Remove in 4.0.
3663       std::string S;
3664       if (convertToString(Record, 0, S))
3665         return error("Invalid record");
3666       // Ignore value.
3667       break;
3668     }
3669     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3670       std::string S;
3671       if (convertToString(Record, 0, S))
3672         return error("Invalid record");
3673       SectionTable.push_back(S);
3674       break;
3675     }
3676     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3677       std::string S;
3678       if (convertToString(Record, 0, S))
3679         return error("Invalid record");
3680       GCTable.push_back(S);
3681       break;
3682     }
3683     case bitc::MODULE_CODE_COMDAT:
3684       if (Error Err = parseComdatRecord(Record))
3685         return Err;
3686       break;
3687     case bitc::MODULE_CODE_GLOBALVAR:
3688       if (Error Err = parseGlobalVarRecord(Record))
3689         return Err;
3690       break;
3691     case bitc::MODULE_CODE_FUNCTION:
3692       ResolveDataLayout();
3693       if (Error Err = parseFunctionRecord(Record))
3694         return Err;
3695       break;
3696     case bitc::MODULE_CODE_IFUNC:
3697     case bitc::MODULE_CODE_ALIAS:
3698     case bitc::MODULE_CODE_ALIAS_OLD:
3699       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
3700         return Err;
3701       break;
3702     /// MODULE_CODE_VSTOFFSET: [offset]
3703     case bitc::MODULE_CODE_VSTOFFSET:
3704       if (Record.size() < 1)
3705         return error("Invalid record");
3706       // Note that we subtract 1 here because the offset is relative to one word
3707       // before the start of the identification or module block, which was
3708       // historically always the start of the regular bitcode header.
3709       VSTOffset = Record[0] - 1;
3710       break;
3711     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3712     case bitc::MODULE_CODE_SOURCE_FILENAME:
3713       SmallString<128> ValueName;
3714       if (convertToString(Record, 0, ValueName))
3715         return error("Invalid record");
3716       TheModule->setSourceFileName(ValueName);
3717       break;
3718     }
3719     Record.clear();
3720   }
3721 }
3722 
3723 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3724                                       bool IsImporting,
3725                                       DataLayoutCallbackTy DataLayoutCallback) {
3726   TheModule = M;
3727   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3728                             [&](unsigned ID) { return getTypeByID(ID); });
3729   return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback);
3730 }
3731 
3732 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3733   if (!isa<PointerType>(PtrType))
3734     return error("Load/Store operand is not a pointer type");
3735   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
3736 
3737   if (ValType && ValType != ElemType)
3738     return error("Explicit load/store type does not match pointee "
3739                  "type of pointer operand");
3740   if (!PointerType::isLoadableOrStorableType(ElemType))
3741     return error("Cannot load/store from pointer");
3742   return Error::success();
3743 }
3744 
3745 void BitcodeReader::propagateByValTypes(CallBase *CB,
3746                                         ArrayRef<Type *> ArgsFullTys) {
3747   for (unsigned i = 0; i != CB->arg_size(); ++i) {
3748     if (!CB->paramHasAttr(i, Attribute::ByVal))
3749       continue;
3750 
3751     CB->removeParamAttr(i, Attribute::ByVal);
3752     CB->addParamAttr(
3753         i, Attribute::getWithByValType(
3754                Context, getPointerElementFlatType(ArgsFullTys[i])));
3755   }
3756 }
3757 
3758 /// Lazily parse the specified function body block.
3759 Error BitcodeReader::parseFunctionBody(Function *F) {
3760   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3761     return Err;
3762 
3763   // Unexpected unresolved metadata when parsing function.
3764   if (MDLoader->hasFwdRefs())
3765     return error("Invalid function metadata: incoming forward references");
3766 
3767   InstructionList.clear();
3768   unsigned ModuleValueListSize = ValueList.size();
3769   unsigned ModuleMDLoaderSize = MDLoader->size();
3770 
3771   // Add all the function arguments to the value table.
3772   unsigned ArgNo = 0;
3773   FunctionType *FullFTy = FunctionTypes[F];
3774   for (Argument &I : F->args()) {
3775     assert(I.getType() == flattenPointerTypes(FullFTy->getParamType(ArgNo)) &&
3776            "Incorrect fully specified type for Function Argument");
3777     ValueList.push_back(&I, FullFTy->getParamType(ArgNo++));
3778   }
3779   unsigned NextValueNo = ValueList.size();
3780   BasicBlock *CurBB = nullptr;
3781   unsigned CurBBNo = 0;
3782 
3783   DebugLoc LastLoc;
3784   auto getLastInstruction = [&]() -> Instruction * {
3785     if (CurBB && !CurBB->empty())
3786       return &CurBB->back();
3787     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3788              !FunctionBBs[CurBBNo - 1]->empty())
3789       return &FunctionBBs[CurBBNo - 1]->back();
3790     return nullptr;
3791   };
3792 
3793   std::vector<OperandBundleDef> OperandBundles;
3794 
3795   // Read all the records.
3796   SmallVector<uint64_t, 64> Record;
3797 
3798   while (true) {
3799     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3800     if (!MaybeEntry)
3801       return MaybeEntry.takeError();
3802     llvm::BitstreamEntry Entry = MaybeEntry.get();
3803 
3804     switch (Entry.Kind) {
3805     case BitstreamEntry::Error:
3806       return error("Malformed block");
3807     case BitstreamEntry::EndBlock:
3808       goto OutOfRecordLoop;
3809 
3810     case BitstreamEntry::SubBlock:
3811       switch (Entry.ID) {
3812       default:  // Skip unknown content.
3813         if (Error Err = Stream.SkipBlock())
3814           return Err;
3815         break;
3816       case bitc::CONSTANTS_BLOCK_ID:
3817         if (Error Err = parseConstants())
3818           return Err;
3819         NextValueNo = ValueList.size();
3820         break;
3821       case bitc::VALUE_SYMTAB_BLOCK_ID:
3822         if (Error Err = parseValueSymbolTable())
3823           return Err;
3824         break;
3825       case bitc::METADATA_ATTACHMENT_ID:
3826         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
3827           return Err;
3828         break;
3829       case bitc::METADATA_BLOCK_ID:
3830         assert(DeferredMetadataInfo.empty() &&
3831                "Must read all module-level metadata before function-level");
3832         if (Error Err = MDLoader->parseFunctionMetadata())
3833           return Err;
3834         break;
3835       case bitc::USELIST_BLOCK_ID:
3836         if (Error Err = parseUseLists())
3837           return Err;
3838         break;
3839       }
3840       continue;
3841 
3842     case BitstreamEntry::Record:
3843       // The interesting case.
3844       break;
3845     }
3846 
3847     // Read a record.
3848     Record.clear();
3849     Instruction *I = nullptr;
3850     Type *FullTy = nullptr;
3851     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3852     if (!MaybeBitCode)
3853       return MaybeBitCode.takeError();
3854     switch (unsigned BitCode = MaybeBitCode.get()) {
3855     default: // Default behavior: reject
3856       return error("Invalid value");
3857     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
3858       if (Record.size() < 1 || Record[0] == 0)
3859         return error("Invalid record");
3860       // Create all the basic blocks for the function.
3861       FunctionBBs.resize(Record[0]);
3862 
3863       // See if anything took the address of blocks in this function.
3864       auto BBFRI = BasicBlockFwdRefs.find(F);
3865       if (BBFRI == BasicBlockFwdRefs.end()) {
3866         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
3867           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
3868       } else {
3869         auto &BBRefs = BBFRI->second;
3870         // Check for invalid basic block references.
3871         if (BBRefs.size() > FunctionBBs.size())
3872           return error("Invalid ID");
3873         assert(!BBRefs.empty() && "Unexpected empty array");
3874         assert(!BBRefs.front() && "Invalid reference to entry block");
3875         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
3876              ++I)
3877           if (I < RE && BBRefs[I]) {
3878             BBRefs[I]->insertInto(F);
3879             FunctionBBs[I] = BBRefs[I];
3880           } else {
3881             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
3882           }
3883 
3884         // Erase from the table.
3885         BasicBlockFwdRefs.erase(BBFRI);
3886       }
3887 
3888       CurBB = FunctionBBs[0];
3889       continue;
3890     }
3891 
3892     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
3893       // This record indicates that the last instruction is at the same
3894       // location as the previous instruction with a location.
3895       I = getLastInstruction();
3896 
3897       if (!I)
3898         return error("Invalid record");
3899       I->setDebugLoc(LastLoc);
3900       I = nullptr;
3901       continue;
3902 
3903     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
3904       I = getLastInstruction();
3905       if (!I || Record.size() < 4)
3906         return error("Invalid record");
3907 
3908       unsigned Line = Record[0], Col = Record[1];
3909       unsigned ScopeID = Record[2], IAID = Record[3];
3910       bool isImplicitCode = Record.size() == 5 && Record[4];
3911 
3912       MDNode *Scope = nullptr, *IA = nullptr;
3913       if (ScopeID) {
3914         Scope = dyn_cast_or_null<MDNode>(
3915             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
3916         if (!Scope)
3917           return error("Invalid record");
3918       }
3919       if (IAID) {
3920         IA = dyn_cast_or_null<MDNode>(
3921             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
3922         if (!IA)
3923           return error("Invalid record");
3924       }
3925       LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode);
3926       I->setDebugLoc(LastLoc);
3927       I = nullptr;
3928       continue;
3929     }
3930     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
3931       unsigned OpNum = 0;
3932       Value *LHS;
3933       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3934           OpNum+1 > Record.size())
3935         return error("Invalid record");
3936 
3937       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
3938       if (Opc == -1)
3939         return error("Invalid record");
3940       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
3941       InstructionList.push_back(I);
3942       if (OpNum < Record.size()) {
3943         if (isa<FPMathOperator>(I)) {
3944           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3945           if (FMF.any())
3946             I->setFastMathFlags(FMF);
3947         }
3948       }
3949       break;
3950     }
3951     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
3952       unsigned OpNum = 0;
3953       Value *LHS, *RHS;
3954       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3955           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
3956           OpNum+1 > Record.size())
3957         return error("Invalid record");
3958 
3959       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
3960       if (Opc == -1)
3961         return error("Invalid record");
3962       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3963       InstructionList.push_back(I);
3964       if (OpNum < Record.size()) {
3965         if (Opc == Instruction::Add ||
3966             Opc == Instruction::Sub ||
3967             Opc == Instruction::Mul ||
3968             Opc == Instruction::Shl) {
3969           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3970             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
3971           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3972             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
3973         } else if (Opc == Instruction::SDiv ||
3974                    Opc == Instruction::UDiv ||
3975                    Opc == Instruction::LShr ||
3976                    Opc == Instruction::AShr) {
3977           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
3978             cast<BinaryOperator>(I)->setIsExact(true);
3979         } else if (isa<FPMathOperator>(I)) {
3980           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3981           if (FMF.any())
3982             I->setFastMathFlags(FMF);
3983         }
3984 
3985       }
3986       break;
3987     }
3988     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
3989       unsigned OpNum = 0;
3990       Value *Op;
3991       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
3992           OpNum+2 != Record.size())
3993         return error("Invalid record");
3994 
3995       FullTy = getFullyStructuredTypeByID(Record[OpNum]);
3996       Type *ResTy = flattenPointerTypes(FullTy);
3997       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
3998       if (Opc == -1 || !ResTy)
3999         return error("Invalid record");
4000       Instruction *Temp = nullptr;
4001       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4002         if (Temp) {
4003           InstructionList.push_back(Temp);
4004           assert(CurBB && "No current BB?");
4005           CurBB->getInstList().push_back(Temp);
4006         }
4007       } else {
4008         auto CastOp = (Instruction::CastOps)Opc;
4009         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4010           return error("Invalid cast");
4011         I = CastInst::Create(CastOp, Op, ResTy);
4012       }
4013       InstructionList.push_back(I);
4014       break;
4015     }
4016     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4017     case bitc::FUNC_CODE_INST_GEP_OLD:
4018     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4019       unsigned OpNum = 0;
4020 
4021       Type *Ty;
4022       bool InBounds;
4023 
4024       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4025         InBounds = Record[OpNum++];
4026         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4027         Ty = flattenPointerTypes(FullTy);
4028       } else {
4029         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4030         Ty = nullptr;
4031       }
4032 
4033       Value *BasePtr;
4034       Type *FullBaseTy = nullptr;
4035       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, &FullBaseTy))
4036         return error("Invalid record");
4037 
4038       if (!Ty) {
4039         std::tie(FullTy, Ty) =
4040             getPointerElementTypes(FullBaseTy->getScalarType());
4041       } else if (Ty != getPointerElementFlatType(FullBaseTy->getScalarType()))
4042         return error(
4043             "Explicit gep type does not match pointee type of pointer operand");
4044 
4045       SmallVector<Value*, 16> GEPIdx;
4046       while (OpNum != Record.size()) {
4047         Value *Op;
4048         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4049           return error("Invalid record");
4050         GEPIdx.push_back(Op);
4051       }
4052 
4053       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4054       FullTy = GetElementPtrInst::getGEPReturnType(FullTy, I, GEPIdx);
4055 
4056       InstructionList.push_back(I);
4057       if (InBounds)
4058         cast<GetElementPtrInst>(I)->setIsInBounds(true);
4059       break;
4060     }
4061 
4062     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4063                                        // EXTRACTVAL: [opty, opval, n x indices]
4064       unsigned OpNum = 0;
4065       Value *Agg;
4066       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy))
4067         return error("Invalid record");
4068 
4069       unsigned RecSize = Record.size();
4070       if (OpNum == RecSize)
4071         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4072 
4073       SmallVector<unsigned, 4> EXTRACTVALIdx;
4074       for (; OpNum != RecSize; ++OpNum) {
4075         bool IsArray = FullTy->isArrayTy();
4076         bool IsStruct = FullTy->isStructTy();
4077         uint64_t Index = Record[OpNum];
4078 
4079         if (!IsStruct && !IsArray)
4080           return error("EXTRACTVAL: Invalid type");
4081         if ((unsigned)Index != Index)
4082           return error("Invalid value");
4083         if (IsStruct && Index >= FullTy->getStructNumElements())
4084           return error("EXTRACTVAL: Invalid struct index");
4085         if (IsArray && Index >= FullTy->getArrayNumElements())
4086           return error("EXTRACTVAL: Invalid array index");
4087         EXTRACTVALIdx.push_back((unsigned)Index);
4088 
4089         if (IsStruct)
4090           FullTy = FullTy->getStructElementType(Index);
4091         else
4092           FullTy = FullTy->getArrayElementType();
4093       }
4094 
4095       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4096       InstructionList.push_back(I);
4097       break;
4098     }
4099 
4100     case bitc::FUNC_CODE_INST_INSERTVAL: {
4101                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4102       unsigned OpNum = 0;
4103       Value *Agg;
4104       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy))
4105         return error("Invalid record");
4106       Value *Val;
4107       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4108         return error("Invalid record");
4109 
4110       unsigned RecSize = Record.size();
4111       if (OpNum == RecSize)
4112         return error("INSERTVAL: Invalid instruction with 0 indices");
4113 
4114       SmallVector<unsigned, 4> INSERTVALIdx;
4115       Type *CurTy = Agg->getType();
4116       for (; OpNum != RecSize; ++OpNum) {
4117         bool IsArray = CurTy->isArrayTy();
4118         bool IsStruct = CurTy->isStructTy();
4119         uint64_t Index = Record[OpNum];
4120 
4121         if (!IsStruct && !IsArray)
4122           return error("INSERTVAL: Invalid type");
4123         if ((unsigned)Index != Index)
4124           return error("Invalid value");
4125         if (IsStruct && Index >= CurTy->getStructNumElements())
4126           return error("INSERTVAL: Invalid struct index");
4127         if (IsArray && Index >= CurTy->getArrayNumElements())
4128           return error("INSERTVAL: Invalid array index");
4129 
4130         INSERTVALIdx.push_back((unsigned)Index);
4131         if (IsStruct)
4132           CurTy = CurTy->getStructElementType(Index);
4133         else
4134           CurTy = CurTy->getArrayElementType();
4135       }
4136 
4137       if (CurTy != Val->getType())
4138         return error("Inserted value type doesn't match aggregate type");
4139 
4140       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4141       InstructionList.push_back(I);
4142       break;
4143     }
4144 
4145     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4146       // obsolete form of select
4147       // handles select i1 ... in old bitcode
4148       unsigned OpNum = 0;
4149       Value *TrueVal, *FalseVal, *Cond;
4150       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) ||
4151           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4152           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4153         return error("Invalid record");
4154 
4155       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4156       InstructionList.push_back(I);
4157       break;
4158     }
4159 
4160     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4161       // new form of select
4162       // handles select i1 or select [N x i1]
4163       unsigned OpNum = 0;
4164       Value *TrueVal, *FalseVal, *Cond;
4165       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) ||
4166           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4167           getValueTypePair(Record, OpNum, NextValueNo, Cond))
4168         return error("Invalid record");
4169 
4170       // select condition can be either i1 or [N x i1]
4171       if (VectorType* vector_type =
4172           dyn_cast<VectorType>(Cond->getType())) {
4173         // expect <n x i1>
4174         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4175           return error("Invalid type for value");
4176       } else {
4177         // expect i1
4178         if (Cond->getType() != Type::getInt1Ty(Context))
4179           return error("Invalid type for value");
4180       }
4181 
4182       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4183       InstructionList.push_back(I);
4184       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
4185         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4186         if (FMF.any())
4187           I->setFastMathFlags(FMF);
4188       }
4189       break;
4190     }
4191 
4192     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4193       unsigned OpNum = 0;
4194       Value *Vec, *Idx;
4195       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy) ||
4196           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4197         return error("Invalid record");
4198       if (!Vec->getType()->isVectorTy())
4199         return error("Invalid type for value");
4200       I = ExtractElementInst::Create(Vec, Idx);
4201       FullTy = cast<VectorType>(FullTy)->getElementType();
4202       InstructionList.push_back(I);
4203       break;
4204     }
4205 
4206     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4207       unsigned OpNum = 0;
4208       Value *Vec, *Elt, *Idx;
4209       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy))
4210         return error("Invalid record");
4211       if (!Vec->getType()->isVectorTy())
4212         return error("Invalid type for value");
4213       if (popValue(Record, OpNum, NextValueNo,
4214                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4215           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4216         return error("Invalid record");
4217       I = InsertElementInst::Create(Vec, Elt, Idx);
4218       InstructionList.push_back(I);
4219       break;
4220     }
4221 
4222     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4223       unsigned OpNum = 0;
4224       Value *Vec1, *Vec2, *Mask;
4225       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, &FullTy) ||
4226           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4227         return error("Invalid record");
4228 
4229       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4230         return error("Invalid record");
4231       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4232         return error("Invalid type for value");
4233 
4234       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4235       FullTy =
4236           VectorType::get(cast<VectorType>(FullTy)->getElementType(),
4237                           cast<VectorType>(Mask->getType())->getElementCount());
4238       InstructionList.push_back(I);
4239       break;
4240     }
4241 
4242     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4243       // Old form of ICmp/FCmp returning bool
4244       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4245       // both legal on vectors but had different behaviour.
4246     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4247       // FCmp/ICmp returning bool or vector of bool
4248 
4249       unsigned OpNum = 0;
4250       Value *LHS, *RHS;
4251       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4252           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4253         return error("Invalid record");
4254 
4255       if (OpNum >= Record.size())
4256         return error(
4257             "Invalid record: operand number exceeded available operands");
4258 
4259       unsigned PredVal = Record[OpNum];
4260       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4261       FastMathFlags FMF;
4262       if (IsFP && Record.size() > OpNum+1)
4263         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4264 
4265       if (OpNum+1 != Record.size())
4266         return error("Invalid record");
4267 
4268       if (LHS->getType()->isFPOrFPVectorTy())
4269         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4270       else
4271         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4272 
4273       if (FMF.any())
4274         I->setFastMathFlags(FMF);
4275       InstructionList.push_back(I);
4276       break;
4277     }
4278 
4279     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4280       {
4281         unsigned Size = Record.size();
4282         if (Size == 0) {
4283           I = ReturnInst::Create(Context);
4284           InstructionList.push_back(I);
4285           break;
4286         }
4287 
4288         unsigned OpNum = 0;
4289         Value *Op = nullptr;
4290         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4291           return error("Invalid record");
4292         if (OpNum != Record.size())
4293           return error("Invalid record");
4294 
4295         I = ReturnInst::Create(Context, Op);
4296         InstructionList.push_back(I);
4297         break;
4298       }
4299     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4300       if (Record.size() != 1 && Record.size() != 3)
4301         return error("Invalid record");
4302       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4303       if (!TrueDest)
4304         return error("Invalid record");
4305 
4306       if (Record.size() == 1) {
4307         I = BranchInst::Create(TrueDest);
4308         InstructionList.push_back(I);
4309       }
4310       else {
4311         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4312         Value *Cond = getValue(Record, 2, NextValueNo,
4313                                Type::getInt1Ty(Context));
4314         if (!FalseDest || !Cond)
4315           return error("Invalid record");
4316         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4317         InstructionList.push_back(I);
4318       }
4319       break;
4320     }
4321     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4322       if (Record.size() != 1 && Record.size() != 2)
4323         return error("Invalid record");
4324       unsigned Idx = 0;
4325       Value *CleanupPad =
4326           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4327       if (!CleanupPad)
4328         return error("Invalid record");
4329       BasicBlock *UnwindDest = nullptr;
4330       if (Record.size() == 2) {
4331         UnwindDest = getBasicBlock(Record[Idx++]);
4332         if (!UnwindDest)
4333           return error("Invalid record");
4334       }
4335 
4336       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4337       InstructionList.push_back(I);
4338       break;
4339     }
4340     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4341       if (Record.size() != 2)
4342         return error("Invalid record");
4343       unsigned Idx = 0;
4344       Value *CatchPad =
4345           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4346       if (!CatchPad)
4347         return error("Invalid record");
4348       BasicBlock *BB = getBasicBlock(Record[Idx++]);
4349       if (!BB)
4350         return error("Invalid record");
4351 
4352       I = CatchReturnInst::Create(CatchPad, BB);
4353       InstructionList.push_back(I);
4354       break;
4355     }
4356     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4357       // We must have, at minimum, the outer scope and the number of arguments.
4358       if (Record.size() < 2)
4359         return error("Invalid record");
4360 
4361       unsigned Idx = 0;
4362 
4363       Value *ParentPad =
4364           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4365 
4366       unsigned NumHandlers = Record[Idx++];
4367 
4368       SmallVector<BasicBlock *, 2> Handlers;
4369       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4370         BasicBlock *BB = getBasicBlock(Record[Idx++]);
4371         if (!BB)
4372           return error("Invalid record");
4373         Handlers.push_back(BB);
4374       }
4375 
4376       BasicBlock *UnwindDest = nullptr;
4377       if (Idx + 1 == Record.size()) {
4378         UnwindDest = getBasicBlock(Record[Idx++]);
4379         if (!UnwindDest)
4380           return error("Invalid record");
4381       }
4382 
4383       if (Record.size() != Idx)
4384         return error("Invalid record");
4385 
4386       auto *CatchSwitch =
4387           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4388       for (BasicBlock *Handler : Handlers)
4389         CatchSwitch->addHandler(Handler);
4390       I = CatchSwitch;
4391       InstructionList.push_back(I);
4392       break;
4393     }
4394     case bitc::FUNC_CODE_INST_CATCHPAD:
4395     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4396       // We must have, at minimum, the outer scope and the number of arguments.
4397       if (Record.size() < 2)
4398         return error("Invalid record");
4399 
4400       unsigned Idx = 0;
4401 
4402       Value *ParentPad =
4403           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4404 
4405       unsigned NumArgOperands = Record[Idx++];
4406 
4407       SmallVector<Value *, 2> Args;
4408       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4409         Value *Val;
4410         if (getValueTypePair(Record, Idx, NextValueNo, Val))
4411           return error("Invalid record");
4412         Args.push_back(Val);
4413       }
4414 
4415       if (Record.size() != Idx)
4416         return error("Invalid record");
4417 
4418       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4419         I = CleanupPadInst::Create(ParentPad, Args);
4420       else
4421         I = CatchPadInst::Create(ParentPad, Args);
4422       InstructionList.push_back(I);
4423       break;
4424     }
4425     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4426       // Check magic
4427       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4428         // "New" SwitchInst format with case ranges. The changes to write this
4429         // format were reverted but we still recognize bitcode that uses it.
4430         // Hopefully someday we will have support for case ranges and can use
4431         // this format again.
4432 
4433         Type *OpTy = getTypeByID(Record[1]);
4434         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4435 
4436         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4437         BasicBlock *Default = getBasicBlock(Record[3]);
4438         if (!OpTy || !Cond || !Default)
4439           return error("Invalid record");
4440 
4441         unsigned NumCases = Record[4];
4442 
4443         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4444         InstructionList.push_back(SI);
4445 
4446         unsigned CurIdx = 5;
4447         for (unsigned i = 0; i != NumCases; ++i) {
4448           SmallVector<ConstantInt*, 1> CaseVals;
4449           unsigned NumItems = Record[CurIdx++];
4450           for (unsigned ci = 0; ci != NumItems; ++ci) {
4451             bool isSingleNumber = Record[CurIdx++];
4452 
4453             APInt Low;
4454             unsigned ActiveWords = 1;
4455             if (ValueBitWidth > 64)
4456               ActiveWords = Record[CurIdx++];
4457             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4458                                 ValueBitWidth);
4459             CurIdx += ActiveWords;
4460 
4461             if (!isSingleNumber) {
4462               ActiveWords = 1;
4463               if (ValueBitWidth > 64)
4464                 ActiveWords = Record[CurIdx++];
4465               APInt High = readWideAPInt(
4466                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4467               CurIdx += ActiveWords;
4468 
4469               // FIXME: It is not clear whether values in the range should be
4470               // compared as signed or unsigned values. The partially
4471               // implemented changes that used this format in the past used
4472               // unsigned comparisons.
4473               for ( ; Low.ule(High); ++Low)
4474                 CaseVals.push_back(ConstantInt::get(Context, Low));
4475             } else
4476               CaseVals.push_back(ConstantInt::get(Context, Low));
4477           }
4478           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4479           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4480                  cve = CaseVals.end(); cvi != cve; ++cvi)
4481             SI->addCase(*cvi, DestBB);
4482         }
4483         I = SI;
4484         break;
4485       }
4486 
4487       // Old SwitchInst format without case ranges.
4488 
4489       if (Record.size() < 3 || (Record.size() & 1) == 0)
4490         return error("Invalid record");
4491       Type *OpTy = getTypeByID(Record[0]);
4492       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4493       BasicBlock *Default = getBasicBlock(Record[2]);
4494       if (!OpTy || !Cond || !Default)
4495         return error("Invalid record");
4496       unsigned NumCases = (Record.size()-3)/2;
4497       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4498       InstructionList.push_back(SI);
4499       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4500         ConstantInt *CaseVal =
4501           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4502         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4503         if (!CaseVal || !DestBB) {
4504           delete SI;
4505           return error("Invalid record");
4506         }
4507         SI->addCase(CaseVal, DestBB);
4508       }
4509       I = SI;
4510       break;
4511     }
4512     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4513       if (Record.size() < 2)
4514         return error("Invalid record");
4515       Type *OpTy = getTypeByID(Record[0]);
4516       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4517       if (!OpTy || !Address)
4518         return error("Invalid record");
4519       unsigned NumDests = Record.size()-2;
4520       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4521       InstructionList.push_back(IBI);
4522       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4523         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4524           IBI->addDestination(DestBB);
4525         } else {
4526           delete IBI;
4527           return error("Invalid record");
4528         }
4529       }
4530       I = IBI;
4531       break;
4532     }
4533 
4534     case bitc::FUNC_CODE_INST_INVOKE: {
4535       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4536       if (Record.size() < 4)
4537         return error("Invalid record");
4538       unsigned OpNum = 0;
4539       AttributeList PAL = getAttributes(Record[OpNum++]);
4540       unsigned CCInfo = Record[OpNum++];
4541       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4542       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4543 
4544       FunctionType *FTy = nullptr;
4545       FunctionType *FullFTy = nullptr;
4546       if ((CCInfo >> 13) & 1) {
4547         FullFTy =
4548             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
4549         if (!FullFTy)
4550           return error("Explicit invoke type is not a function type");
4551         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4552       }
4553 
4554       Value *Callee;
4555       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
4556         return error("Invalid record");
4557 
4558       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4559       if (!CalleeTy)
4560         return error("Callee is not a pointer");
4561       if (!FTy) {
4562         FullFTy =
4563             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
4564         if (!FullFTy)
4565           return error("Callee is not of pointer to function type");
4566         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4567       } else if (getPointerElementFlatType(FullTy) != FTy)
4568         return error("Explicit invoke type does not match pointee type of "
4569                      "callee operand");
4570       if (Record.size() < FTy->getNumParams() + OpNum)
4571         return error("Insufficient operands to call");
4572 
4573       SmallVector<Value*, 16> Ops;
4574       SmallVector<Type *, 16> ArgsFullTys;
4575       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4576         Ops.push_back(getValue(Record, OpNum, NextValueNo,
4577                                FTy->getParamType(i)));
4578         ArgsFullTys.push_back(FullFTy->getParamType(i));
4579         if (!Ops.back())
4580           return error("Invalid record");
4581       }
4582 
4583       if (!FTy->isVarArg()) {
4584         if (Record.size() != OpNum)
4585           return error("Invalid record");
4586       } else {
4587         // Read type/value pairs for varargs params.
4588         while (OpNum != Record.size()) {
4589           Value *Op;
4590           Type *FullTy;
4591           if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
4592             return error("Invalid record");
4593           Ops.push_back(Op);
4594           ArgsFullTys.push_back(FullTy);
4595         }
4596       }
4597 
4598       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
4599                              OperandBundles);
4600       FullTy = FullFTy->getReturnType();
4601       OperandBundles.clear();
4602       InstructionList.push_back(I);
4603       cast<InvokeInst>(I)->setCallingConv(
4604           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4605       cast<InvokeInst>(I)->setAttributes(PAL);
4606       propagateByValTypes(cast<CallBase>(I), ArgsFullTys);
4607 
4608       break;
4609     }
4610     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4611       unsigned Idx = 0;
4612       Value *Val = nullptr;
4613       if (getValueTypePair(Record, Idx, NextValueNo, Val))
4614         return error("Invalid record");
4615       I = ResumeInst::Create(Val);
4616       InstructionList.push_back(I);
4617       break;
4618     }
4619     case bitc::FUNC_CODE_INST_CALLBR: {
4620       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
4621       unsigned OpNum = 0;
4622       AttributeList PAL = getAttributes(Record[OpNum++]);
4623       unsigned CCInfo = Record[OpNum++];
4624 
4625       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
4626       unsigned NumIndirectDests = Record[OpNum++];
4627       SmallVector<BasicBlock *, 16> IndirectDests;
4628       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
4629         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
4630 
4631       FunctionType *FTy = nullptr;
4632       FunctionType *FullFTy = nullptr;
4633       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
4634         FullFTy =
4635             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
4636         if (!FullFTy)
4637           return error("Explicit call type is not a function type");
4638         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4639       }
4640 
4641       Value *Callee;
4642       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
4643         return error("Invalid record");
4644 
4645       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4646       if (!OpTy)
4647         return error("Callee is not a pointer type");
4648       if (!FTy) {
4649         FullFTy =
4650             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
4651         if (!FullFTy)
4652           return error("Callee is not of pointer to function type");
4653         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4654       } else if (getPointerElementFlatType(FullTy) != FTy)
4655         return error("Explicit call type does not match pointee type of "
4656                      "callee operand");
4657       if (Record.size() < FTy->getNumParams() + OpNum)
4658         return error("Insufficient operands to call");
4659 
4660       SmallVector<Value*, 16> Args;
4661       // Read the fixed params.
4662       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4663         if (FTy->getParamType(i)->isLabelTy())
4664           Args.push_back(getBasicBlock(Record[OpNum]));
4665         else
4666           Args.push_back(getValue(Record, OpNum, NextValueNo,
4667                                   FTy->getParamType(i)));
4668         if (!Args.back())
4669           return error("Invalid record");
4670       }
4671 
4672       // Read type/value pairs for varargs params.
4673       if (!FTy->isVarArg()) {
4674         if (OpNum != Record.size())
4675           return error("Invalid record");
4676       } else {
4677         while (OpNum != Record.size()) {
4678           Value *Op;
4679           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4680             return error("Invalid record");
4681           Args.push_back(Op);
4682         }
4683       }
4684 
4685       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
4686                              OperandBundles);
4687       FullTy = FullFTy->getReturnType();
4688       OperandBundles.clear();
4689       InstructionList.push_back(I);
4690       cast<CallBrInst>(I)->setCallingConv(
4691           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4692       cast<CallBrInst>(I)->setAttributes(PAL);
4693       break;
4694     }
4695     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4696       I = new UnreachableInst(Context);
4697       InstructionList.push_back(I);
4698       break;
4699     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4700       if (Record.size() < 1)
4701         return error("Invalid record");
4702       // The first record specifies the type.
4703       FullTy = getFullyStructuredTypeByID(Record[0]);
4704       Type *Ty = flattenPointerTypes(FullTy);
4705       if (!Ty)
4706         return error("Invalid record");
4707 
4708       // Phi arguments are pairs of records of [value, basic block].
4709       // There is an optional final record for fast-math-flags if this phi has a
4710       // floating-point type.
4711       size_t NumArgs = (Record.size() - 1) / 2;
4712       PHINode *PN = PHINode::Create(Ty, NumArgs);
4713       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN))
4714         return error("Invalid record");
4715       InstructionList.push_back(PN);
4716 
4717       for (unsigned i = 0; i != NumArgs; i++) {
4718         Value *V;
4719         // With the new function encoding, it is possible that operands have
4720         // negative IDs (for forward references).  Use a signed VBR
4721         // representation to keep the encoding small.
4722         if (UseRelativeIDs)
4723           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty);
4724         else
4725           V = getValue(Record, i * 2 + 1, NextValueNo, Ty);
4726         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
4727         if (!V || !BB)
4728           return error("Invalid record");
4729         PN->addIncoming(V, BB);
4730       }
4731       I = PN;
4732 
4733       // If there are an even number of records, the final record must be FMF.
4734       if (Record.size() % 2 == 0) {
4735         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
4736         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
4737         if (FMF.any())
4738           I->setFastMathFlags(FMF);
4739       }
4740 
4741       break;
4742     }
4743 
4744     case bitc::FUNC_CODE_INST_LANDINGPAD:
4745     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4746       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4747       unsigned Idx = 0;
4748       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4749         if (Record.size() < 3)
4750           return error("Invalid record");
4751       } else {
4752         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4753         if (Record.size() < 4)
4754           return error("Invalid record");
4755       }
4756       FullTy = getFullyStructuredTypeByID(Record[Idx++]);
4757       Type *Ty = flattenPointerTypes(FullTy);
4758       if (!Ty)
4759         return error("Invalid record");
4760       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4761         Value *PersFn = nullptr;
4762         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4763           return error("Invalid record");
4764 
4765         if (!F->hasPersonalityFn())
4766           F->setPersonalityFn(cast<Constant>(PersFn));
4767         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4768           return error("Personality function mismatch");
4769       }
4770 
4771       bool IsCleanup = !!Record[Idx++];
4772       unsigned NumClauses = Record[Idx++];
4773       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4774       LP->setCleanup(IsCleanup);
4775       for (unsigned J = 0; J != NumClauses; ++J) {
4776         LandingPadInst::ClauseType CT =
4777           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4778         Value *Val;
4779 
4780         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4781           delete LP;
4782           return error("Invalid record");
4783         }
4784 
4785         assert((CT != LandingPadInst::Catch ||
4786                 !isa<ArrayType>(Val->getType())) &&
4787                "Catch clause has a invalid type!");
4788         assert((CT != LandingPadInst::Filter ||
4789                 isa<ArrayType>(Val->getType())) &&
4790                "Filter clause has invalid type!");
4791         LP->addClause(cast<Constant>(Val));
4792       }
4793 
4794       I = LP;
4795       InstructionList.push_back(I);
4796       break;
4797     }
4798 
4799     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4800       if (Record.size() != 4)
4801         return error("Invalid record");
4802       uint64_t AlignRecord = Record[3];
4803       const uint64_t InAllocaMask = uint64_t(1) << 5;
4804       const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
4805       const uint64_t SwiftErrorMask = uint64_t(1) << 7;
4806       const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask |
4807                                 SwiftErrorMask;
4808       bool InAlloca = AlignRecord & InAllocaMask;
4809       bool SwiftError = AlignRecord & SwiftErrorMask;
4810       FullTy = getFullyStructuredTypeByID(Record[0]);
4811       Type *Ty = flattenPointerTypes(FullTy);
4812       if ((AlignRecord & ExplicitTypeMask) == 0) {
4813         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4814         if (!PTy)
4815           return error("Old-style alloca with a non-pointer type");
4816         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4817       }
4818       Type *OpTy = getTypeByID(Record[1]);
4819       Value *Size = getFnValueByID(Record[2], OpTy);
4820       MaybeAlign Align;
4821       if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
4822         return Err;
4823       }
4824       if (!Ty || !Size)
4825         return error("Invalid record");
4826 
4827       // FIXME: Make this an optional field.
4828       const DataLayout &DL = TheModule->getDataLayout();
4829       unsigned AS = DL.getAllocaAddrSpace();
4830 
4831       SmallPtrSet<Type *, 4> Visited;
4832       if (!Align && !Ty->isSized(&Visited))
4833         return error("alloca of unsized type");
4834       if (!Align)
4835         Align = DL.getPrefTypeAlign(Ty);
4836 
4837       AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
4838       AI->setUsedWithInAlloca(InAlloca);
4839       AI->setSwiftError(SwiftError);
4840       I = AI;
4841       FullTy = PointerType::get(FullTy, AS);
4842       InstructionList.push_back(I);
4843       break;
4844     }
4845     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4846       unsigned OpNum = 0;
4847       Value *Op;
4848       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) ||
4849           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4850         return error("Invalid record");
4851 
4852       if (!isa<PointerType>(Op->getType()))
4853         return error("Load operand is not a pointer type");
4854 
4855       Type *Ty = nullptr;
4856       if (OpNum + 3 == Record.size()) {
4857         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4858         Ty = flattenPointerTypes(FullTy);
4859       } else
4860         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4861 
4862       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4863         return Err;
4864 
4865       MaybeAlign Align;
4866       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4867         return Err;
4868       SmallPtrSet<Type *, 4> Visited;
4869       if (!Align && !Ty->isSized(&Visited))
4870         return error("load of unsized type");
4871       if (!Align)
4872         Align = TheModule->getDataLayout().getABITypeAlign(Ty);
4873       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
4874       InstructionList.push_back(I);
4875       break;
4876     }
4877     case bitc::FUNC_CODE_INST_LOADATOMIC: {
4878        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
4879       unsigned OpNum = 0;
4880       Value *Op;
4881       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) ||
4882           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4883         return error("Invalid record");
4884 
4885       if (!isa<PointerType>(Op->getType()))
4886         return error("Load operand is not a pointer type");
4887 
4888       Type *Ty = nullptr;
4889       if (OpNum + 5 == Record.size()) {
4890         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4891         Ty = flattenPointerTypes(FullTy);
4892       } else
4893         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4894 
4895       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4896         return Err;
4897 
4898       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4899       if (Ordering == AtomicOrdering::NotAtomic ||
4900           Ordering == AtomicOrdering::Release ||
4901           Ordering == AtomicOrdering::AcquireRelease)
4902         return error("Invalid record");
4903       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4904         return error("Invalid record");
4905       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4906 
4907       MaybeAlign Align;
4908       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4909         return Err;
4910       if (!Align)
4911         return error("Alignment missing from atomic load");
4912       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
4913       InstructionList.push_back(I);
4914       break;
4915     }
4916     case bitc::FUNC_CODE_INST_STORE:
4917     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
4918       unsigned OpNum = 0;
4919       Value *Val, *Ptr;
4920       Type *FullTy;
4921       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
4922           (BitCode == bitc::FUNC_CODE_INST_STORE
4923                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4924                : popValue(Record, OpNum, NextValueNo,
4925                           getPointerElementFlatType(FullTy), Val)) ||
4926           OpNum + 2 != Record.size())
4927         return error("Invalid record");
4928 
4929       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4930         return Err;
4931       MaybeAlign Align;
4932       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4933         return Err;
4934       SmallPtrSet<Type *, 4> Visited;
4935       if (!Align && !Val->getType()->isSized(&Visited))
4936         return error("store of unsized type");
4937       if (!Align)
4938         Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
4939       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
4940       InstructionList.push_back(I);
4941       break;
4942     }
4943     case bitc::FUNC_CODE_INST_STOREATOMIC:
4944     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
4945       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
4946       unsigned OpNum = 0;
4947       Value *Val, *Ptr;
4948       Type *FullTy;
4949       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
4950           !isa<PointerType>(Ptr->getType()) ||
4951           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
4952                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4953                : popValue(Record, OpNum, NextValueNo,
4954                           getPointerElementFlatType(FullTy), Val)) ||
4955           OpNum + 4 != Record.size())
4956         return error("Invalid record");
4957 
4958       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4959         return Err;
4960       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4961       if (Ordering == AtomicOrdering::NotAtomic ||
4962           Ordering == AtomicOrdering::Acquire ||
4963           Ordering == AtomicOrdering::AcquireRelease)
4964         return error("Invalid record");
4965       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4966       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4967         return error("Invalid record");
4968 
4969       MaybeAlign Align;
4970       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4971         return Err;
4972       if (!Align)
4973         return error("Alignment missing from atomic store");
4974       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
4975       InstructionList.push_back(I);
4976       break;
4977     }
4978     case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
4979     case bitc::FUNC_CODE_INST_CMPXCHG: {
4980       // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid,
4981       //          failureordering?, isweak?]
4982       unsigned OpNum = 0;
4983       Value *Ptr, *Cmp, *New;
4984       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy))
4985         return error("Invalid record");
4986 
4987       if (!isa<PointerType>(Ptr->getType()))
4988         return error("Cmpxchg operand is not a pointer type");
4989 
4990       if (BitCode == bitc::FUNC_CODE_INST_CMPXCHG) {
4991         if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, &FullTy))
4992           return error("Invalid record");
4993       } else if (popValue(Record, OpNum, NextValueNo,
4994                           getPointerElementFlatType(FullTy), Cmp))
4995         return error("Invalid record");
4996       else
4997         FullTy = cast<PointerType>(FullTy)->getElementType();
4998 
4999       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
5000           Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
5001         return error("Invalid record");
5002 
5003       AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
5004       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5005           SuccessOrdering == AtomicOrdering::Unordered)
5006         return error("Invalid record");
5007       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5008 
5009       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5010         return Err;
5011       AtomicOrdering FailureOrdering;
5012       if (Record.size() < 7)
5013         FailureOrdering =
5014             AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
5015       else
5016         FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
5017 
5018       I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
5019                                 SSID);
5020       FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)});
5021       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5022 
5023       if (Record.size() < 8) {
5024         // Before weak cmpxchgs existed, the instruction simply returned the
5025         // value loaded from memory, so bitcode files from that era will be
5026         // expecting the first component of a modern cmpxchg.
5027         CurBB->getInstList().push_back(I);
5028         I = ExtractValueInst::Create(I, 0);
5029         FullTy = cast<StructType>(FullTy)->getElementType(0);
5030       } else {
5031         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
5032       }
5033 
5034       InstructionList.push_back(I);
5035       break;
5036     }
5037     case bitc::FUNC_CODE_INST_ATOMICRMW: {
5038       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid]
5039       unsigned OpNum = 0;
5040       Value *Ptr, *Val;
5041       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
5042           !isa<PointerType>(Ptr->getType()) ||
5043           popValue(Record, OpNum, NextValueNo,
5044                    getPointerElementFlatType(FullTy), Val) ||
5045           OpNum + 4 != Record.size())
5046         return error("Invalid record");
5047       AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
5048       if (Operation < AtomicRMWInst::FIRST_BINOP ||
5049           Operation > AtomicRMWInst::LAST_BINOP)
5050         return error("Invalid record");
5051       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5052       if (Ordering == AtomicOrdering::NotAtomic ||
5053           Ordering == AtomicOrdering::Unordered)
5054         return error("Invalid record");
5055       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5056       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
5057       FullTy = getPointerElementFlatType(FullTy);
5058       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
5059       InstructionList.push_back(I);
5060       break;
5061     }
5062     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
5063       if (2 != Record.size())
5064         return error("Invalid record");
5065       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
5066       if (Ordering == AtomicOrdering::NotAtomic ||
5067           Ordering == AtomicOrdering::Unordered ||
5068           Ordering == AtomicOrdering::Monotonic)
5069         return error("Invalid record");
5070       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
5071       I = new FenceInst(Context, Ordering, SSID);
5072       InstructionList.push_back(I);
5073       break;
5074     }
5075     case bitc::FUNC_CODE_INST_CALL: {
5076       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
5077       if (Record.size() < 3)
5078         return error("Invalid record");
5079 
5080       unsigned OpNum = 0;
5081       AttributeList PAL = getAttributes(Record[OpNum++]);
5082       unsigned CCInfo = Record[OpNum++];
5083 
5084       FastMathFlags FMF;
5085       if ((CCInfo >> bitc::CALL_FMF) & 1) {
5086         FMF = getDecodedFastMathFlags(Record[OpNum++]);
5087         if (!FMF.any())
5088           return error("Fast math flags indicator set for call with no FMF");
5089       }
5090 
5091       FunctionType *FTy = nullptr;
5092       FunctionType *FullFTy = nullptr;
5093       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5094         FullFTy =
5095             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
5096         if (!FullFTy)
5097           return error("Explicit call type is not a function type");
5098         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
5099       }
5100 
5101       Value *Callee;
5102       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
5103         return error("Invalid record");
5104 
5105       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5106       if (!OpTy)
5107         return error("Callee is not a pointer type");
5108       if (!FTy) {
5109         FullFTy =
5110             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
5111         if (!FullFTy)
5112           return error("Callee is not of pointer to function type");
5113         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
5114       } else if (getPointerElementFlatType(FullTy) != FTy)
5115         return error("Explicit call type does not match pointee type of "
5116                      "callee operand");
5117       if (Record.size() < FTy->getNumParams() + OpNum)
5118         return error("Insufficient operands to call");
5119 
5120       SmallVector<Value*, 16> Args;
5121       SmallVector<Type*, 16> ArgsFullTys;
5122       // Read the fixed params.
5123       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5124         if (FTy->getParamType(i)->isLabelTy())
5125           Args.push_back(getBasicBlock(Record[OpNum]));
5126         else
5127           Args.push_back(getValue(Record, OpNum, NextValueNo,
5128                                   FTy->getParamType(i)));
5129         ArgsFullTys.push_back(FullFTy->getParamType(i));
5130         if (!Args.back())
5131           return error("Invalid record");
5132       }
5133 
5134       // Read type/value pairs for varargs params.
5135       if (!FTy->isVarArg()) {
5136         if (OpNum != Record.size())
5137           return error("Invalid record");
5138       } else {
5139         while (OpNum != Record.size()) {
5140           Value *Op;
5141           Type *FullTy;
5142           if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
5143             return error("Invalid record");
5144           Args.push_back(Op);
5145           ArgsFullTys.push_back(FullTy);
5146         }
5147       }
5148 
5149       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5150       FullTy = FullFTy->getReturnType();
5151       OperandBundles.clear();
5152       InstructionList.push_back(I);
5153       cast<CallInst>(I)->setCallingConv(
5154           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5155       CallInst::TailCallKind TCK = CallInst::TCK_None;
5156       if (CCInfo & 1 << bitc::CALL_TAIL)
5157         TCK = CallInst::TCK_Tail;
5158       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5159         TCK = CallInst::TCK_MustTail;
5160       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5161         TCK = CallInst::TCK_NoTail;
5162       cast<CallInst>(I)->setTailCallKind(TCK);
5163       cast<CallInst>(I)->setAttributes(PAL);
5164       propagateByValTypes(cast<CallBase>(I), ArgsFullTys);
5165       if (FMF.any()) {
5166         if (!isa<FPMathOperator>(I))
5167           return error("Fast-math-flags specified for call without "
5168                        "floating-point scalar or vector return type");
5169         I->setFastMathFlags(FMF);
5170       }
5171       break;
5172     }
5173     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5174       if (Record.size() < 3)
5175         return error("Invalid record");
5176       Type *OpTy = getTypeByID(Record[0]);
5177       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5178       FullTy = getFullyStructuredTypeByID(Record[2]);
5179       Type *ResTy = flattenPointerTypes(FullTy);
5180       if (!OpTy || !Op || !ResTy)
5181         return error("Invalid record");
5182       I = new VAArgInst(Op, ResTy);
5183       InstructionList.push_back(I);
5184       break;
5185     }
5186 
5187     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5188       // A call or an invoke can be optionally prefixed with some variable
5189       // number of operand bundle blocks.  These blocks are read into
5190       // OperandBundles and consumed at the next call or invoke instruction.
5191 
5192       if (Record.size() < 1 || Record[0] >= BundleTags.size())
5193         return error("Invalid record");
5194 
5195       std::vector<Value *> Inputs;
5196 
5197       unsigned OpNum = 1;
5198       while (OpNum != Record.size()) {
5199         Value *Op;
5200         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5201           return error("Invalid record");
5202         Inputs.push_back(Op);
5203       }
5204 
5205       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5206       continue;
5207     }
5208 
5209     case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
5210       unsigned OpNum = 0;
5211       Value *Op = nullptr;
5212       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
5213         return error("Invalid record");
5214       if (OpNum != Record.size())
5215         return error("Invalid record");
5216 
5217       I = new FreezeInst(Op);
5218       InstructionList.push_back(I);
5219       break;
5220     }
5221     }
5222 
5223     // Add instruction to end of current BB.  If there is no current BB, reject
5224     // this file.
5225     if (!CurBB) {
5226       I->deleteValue();
5227       return error("Invalid instruction with no BB");
5228     }
5229     if (!OperandBundles.empty()) {
5230       I->deleteValue();
5231       return error("Operand bundles found with no consumer");
5232     }
5233     CurBB->getInstList().push_back(I);
5234 
5235     // If this was a terminator instruction, move to the next block.
5236     if (I->isTerminator()) {
5237       ++CurBBNo;
5238       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5239     }
5240 
5241     // Non-void values get registered in the value table for future use.
5242     if (!I->getType()->isVoidTy()) {
5243       if (!FullTy) {
5244         FullTy = I->getType();
5245         assert(
5246             !FullTy->isPointerTy() && !isa<StructType>(FullTy) &&
5247             !isa<ArrayType>(FullTy) &&
5248             (!isa<VectorType>(FullTy) ||
5249              cast<VectorType>(FullTy)->getElementType()->isFloatingPointTy() ||
5250              cast<VectorType>(FullTy)->getElementType()->isIntegerTy()) &&
5251             "Structured types must be assigned with corresponding non-opaque "
5252             "pointer type");
5253       }
5254 
5255       assert(I->getType() == flattenPointerTypes(FullTy) &&
5256              "Incorrect fully structured type provided for Instruction");
5257       ValueList.assignValue(I, NextValueNo++, FullTy);
5258     }
5259   }
5260 
5261 OutOfRecordLoop:
5262 
5263   if (!OperandBundles.empty())
5264     return error("Operand bundles found with no consumer");
5265 
5266   // Check the function list for unresolved values.
5267   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5268     if (!A->getParent()) {
5269       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5270       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5271         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5272           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5273           delete A;
5274         }
5275       }
5276       return error("Never resolved value found in function");
5277     }
5278   }
5279 
5280   // Unexpected unresolved metadata about to be dropped.
5281   if (MDLoader->hasFwdRefs())
5282     return error("Invalid function metadata: outgoing forward refs");
5283 
5284   // Trim the value list down to the size it was before we parsed this function.
5285   ValueList.shrinkTo(ModuleValueListSize);
5286   MDLoader->shrinkTo(ModuleMDLoaderSize);
5287   std::vector<BasicBlock*>().swap(FunctionBBs);
5288   return Error::success();
5289 }
5290 
5291 /// Find the function body in the bitcode stream
5292 Error BitcodeReader::findFunctionInStream(
5293     Function *F,
5294     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5295   while (DeferredFunctionInfoIterator->second == 0) {
5296     // This is the fallback handling for the old format bitcode that
5297     // didn't contain the function index in the VST, or when we have
5298     // an anonymous function which would not have a VST entry.
5299     // Assert that we have one of those two cases.
5300     assert(VSTOffset == 0 || !F->hasName());
5301     // Parse the next body in the stream and set its position in the
5302     // DeferredFunctionInfo map.
5303     if (Error Err = rememberAndSkipFunctionBodies())
5304       return Err;
5305   }
5306   return Error::success();
5307 }
5308 
5309 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
5310   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
5311     return SyncScope::ID(Val);
5312   if (Val >= SSIDs.size())
5313     return SyncScope::System; // Map unknown synchronization scopes to system.
5314   return SSIDs[Val];
5315 }
5316 
5317 //===----------------------------------------------------------------------===//
5318 // GVMaterializer implementation
5319 //===----------------------------------------------------------------------===//
5320 
5321 Error BitcodeReader::materialize(GlobalValue *GV) {
5322   Function *F = dyn_cast<Function>(GV);
5323   // If it's not a function or is already material, ignore the request.
5324   if (!F || !F->isMaterializable())
5325     return Error::success();
5326 
5327   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5328   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5329   // If its position is recorded as 0, its body is somewhere in the stream
5330   // but we haven't seen it yet.
5331   if (DFII->second == 0)
5332     if (Error Err = findFunctionInStream(F, DFII))
5333       return Err;
5334 
5335   // Materialize metadata before parsing any function bodies.
5336   if (Error Err = materializeMetadata())
5337     return Err;
5338 
5339   // Move the bit stream to the saved position of the deferred function body.
5340   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
5341     return JumpFailed;
5342   if (Error Err = parseFunctionBody(F))
5343     return Err;
5344   F->setIsMaterializable(false);
5345 
5346   if (StripDebugInfo)
5347     stripDebugInfo(*F);
5348 
5349   // Upgrade any old intrinsic calls in the function.
5350   for (auto &I : UpgradedIntrinsics) {
5351     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5352          UI != UE;) {
5353       User *U = *UI;
5354       ++UI;
5355       if (CallInst *CI = dyn_cast<CallInst>(U))
5356         UpgradeIntrinsicCall(CI, I.second);
5357     }
5358   }
5359 
5360   // Update calls to the remangled intrinsics
5361   for (auto &I : RemangledIntrinsics)
5362     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5363          UI != UE;)
5364       // Don't expect any other users than call sites
5365       cast<CallBase>(*UI++)->setCalledFunction(I.second);
5366 
5367   // Finish fn->subprogram upgrade for materialized functions.
5368   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
5369     F->setSubprogram(SP);
5370 
5371   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
5372   if (!MDLoader->isStrippingTBAA()) {
5373     for (auto &I : instructions(F)) {
5374       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
5375       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
5376         continue;
5377       MDLoader->setStripTBAA(true);
5378       stripTBAA(F->getParent());
5379     }
5380   }
5381 
5382   // Look for functions that rely on old function attribute behavior.
5383   UpgradeFunctionAttributes(*F);
5384 
5385   // Bring in any functions that this function forward-referenced via
5386   // blockaddresses.
5387   return materializeForwardReferencedFunctions();
5388 }
5389 
5390 Error BitcodeReader::materializeModule() {
5391   if (Error Err = materializeMetadata())
5392     return Err;
5393 
5394   // Promise to materialize all forward references.
5395   WillMaterializeAllForwardRefs = true;
5396 
5397   // Iterate over the module, deserializing any functions that are still on
5398   // disk.
5399   for (Function &F : *TheModule) {
5400     if (Error Err = materialize(&F))
5401       return Err;
5402   }
5403   // At this point, if there are any function bodies, parse the rest of
5404   // the bits in the module past the last function block we have recorded
5405   // through either lazy scanning or the VST.
5406   if (LastFunctionBlockBit || NextUnreadBit)
5407     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
5408                                     ? LastFunctionBlockBit
5409                                     : NextUnreadBit))
5410       return Err;
5411 
5412   // Check that all block address forward references got resolved (as we
5413   // promised above).
5414   if (!BasicBlockFwdRefs.empty())
5415     return error("Never resolved function from blockaddress");
5416 
5417   // Upgrade any intrinsic calls that slipped through (should not happen!) and
5418   // delete the old functions to clean up. We can't do this unless the entire
5419   // module is materialized because there could always be another function body
5420   // with calls to the old function.
5421   for (auto &I : UpgradedIntrinsics) {
5422     for (auto *U : I.first->users()) {
5423       if (CallInst *CI = dyn_cast<CallInst>(U))
5424         UpgradeIntrinsicCall(CI, I.second);
5425     }
5426     if (!I.first->use_empty())
5427       I.first->replaceAllUsesWith(I.second);
5428     I.first->eraseFromParent();
5429   }
5430   UpgradedIntrinsics.clear();
5431   // Do the same for remangled intrinsics
5432   for (auto &I : RemangledIntrinsics) {
5433     I.first->replaceAllUsesWith(I.second);
5434     I.first->eraseFromParent();
5435   }
5436   RemangledIntrinsics.clear();
5437 
5438   UpgradeDebugInfo(*TheModule);
5439 
5440   UpgradeModuleFlags(*TheModule);
5441 
5442   UpgradeARCRuntime(*TheModule);
5443 
5444   return Error::success();
5445 }
5446 
5447 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5448   return IdentifiedStructTypes;
5449 }
5450 
5451 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5452     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
5453     StringRef ModulePath, unsigned ModuleId)
5454     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
5455       ModulePath(ModulePath), ModuleId(ModuleId) {}
5456 
5457 void ModuleSummaryIndexBitcodeReader::addThisModule() {
5458   TheIndex.addModule(ModulePath, ModuleId);
5459 }
5460 
5461 ModuleSummaryIndex::ModuleInfo *
5462 ModuleSummaryIndexBitcodeReader::getThisModule() {
5463   return TheIndex.getModule(ModulePath);
5464 }
5465 
5466 std::pair<ValueInfo, GlobalValue::GUID>
5467 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
5468   auto VGI = ValueIdToValueInfoMap[ValueId];
5469   assert(VGI.first);
5470   return VGI;
5471 }
5472 
5473 void ModuleSummaryIndexBitcodeReader::setValueGUID(
5474     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
5475     StringRef SourceFileName) {
5476   std::string GlobalId =
5477       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
5478   auto ValueGUID = GlobalValue::getGUID(GlobalId);
5479   auto OriginalNameID = ValueGUID;
5480   if (GlobalValue::isLocalLinkage(Linkage))
5481     OriginalNameID = GlobalValue::getGUID(ValueName);
5482   if (PrintSummaryGUIDs)
5483     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
5484            << ValueName << "\n";
5485 
5486   // UseStrtab is false for legacy summary formats and value names are
5487   // created on stack. In that case we save the name in a string saver in
5488   // the index so that the value name can be recorded.
5489   ValueIdToValueInfoMap[ValueID] = std::make_pair(
5490       TheIndex.getOrInsertValueInfo(
5491           ValueGUID,
5492           UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
5493       OriginalNameID);
5494 }
5495 
5496 // Specialized value symbol table parser used when reading module index
5497 // blocks where we don't actually create global values. The parsed information
5498 // is saved in the bitcode reader for use when later parsing summaries.
5499 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5500     uint64_t Offset,
5501     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5502   // With a strtab the VST is not required to parse the summary.
5503   if (UseStrtab)
5504     return Error::success();
5505 
5506   assert(Offset > 0 && "Expected non-zero VST offset");
5507   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
5508   if (!MaybeCurrentBit)
5509     return MaybeCurrentBit.takeError();
5510   uint64_t CurrentBit = MaybeCurrentBit.get();
5511 
5512   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5513     return Err;
5514 
5515   SmallVector<uint64_t, 64> Record;
5516 
5517   // Read all the records for this value table.
5518   SmallString<128> ValueName;
5519 
5520   while (true) {
5521     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5522     if (!MaybeEntry)
5523       return MaybeEntry.takeError();
5524     BitstreamEntry Entry = MaybeEntry.get();
5525 
5526     switch (Entry.Kind) {
5527     case BitstreamEntry::SubBlock: // Handled for us already.
5528     case BitstreamEntry::Error:
5529       return error("Malformed block");
5530     case BitstreamEntry::EndBlock:
5531       // Done parsing VST, jump back to wherever we came from.
5532       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
5533         return JumpFailed;
5534       return Error::success();
5535     case BitstreamEntry::Record:
5536       // The interesting case.
5537       break;
5538     }
5539 
5540     // Read a record.
5541     Record.clear();
5542     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
5543     if (!MaybeRecord)
5544       return MaybeRecord.takeError();
5545     switch (MaybeRecord.get()) {
5546     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5547       break;
5548     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5549       if (convertToString(Record, 1, ValueName))
5550         return error("Invalid record");
5551       unsigned ValueID = Record[0];
5552       assert(!SourceFileName.empty());
5553       auto VLI = ValueIdToLinkageMap.find(ValueID);
5554       assert(VLI != ValueIdToLinkageMap.end() &&
5555              "No linkage found for VST entry?");
5556       auto Linkage = VLI->second;
5557       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5558       ValueName.clear();
5559       break;
5560     }
5561     case bitc::VST_CODE_FNENTRY: {
5562       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5563       if (convertToString(Record, 2, ValueName))
5564         return error("Invalid record");
5565       unsigned ValueID = Record[0];
5566       assert(!SourceFileName.empty());
5567       auto VLI = ValueIdToLinkageMap.find(ValueID);
5568       assert(VLI != ValueIdToLinkageMap.end() &&
5569              "No linkage found for VST entry?");
5570       auto Linkage = VLI->second;
5571       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5572       ValueName.clear();
5573       break;
5574     }
5575     case bitc::VST_CODE_COMBINED_ENTRY: {
5576       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5577       unsigned ValueID = Record[0];
5578       GlobalValue::GUID RefGUID = Record[1];
5579       // The "original name", which is the second value of the pair will be
5580       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
5581       ValueIdToValueInfoMap[ValueID] =
5582           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5583       break;
5584     }
5585     }
5586   }
5587 }
5588 
5589 // Parse just the blocks needed for building the index out of the module.
5590 // At the end of this routine the module Index is populated with a map
5591 // from global value id to GlobalValueSummary objects.
5592 Error ModuleSummaryIndexBitcodeReader::parseModule() {
5593   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5594     return Err;
5595 
5596   SmallVector<uint64_t, 64> Record;
5597   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
5598   unsigned ValueId = 0;
5599 
5600   // Read the index for this module.
5601   while (true) {
5602     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
5603     if (!MaybeEntry)
5604       return MaybeEntry.takeError();
5605     llvm::BitstreamEntry Entry = MaybeEntry.get();
5606 
5607     switch (Entry.Kind) {
5608     case BitstreamEntry::Error:
5609       return error("Malformed block");
5610     case BitstreamEntry::EndBlock:
5611       return Error::success();
5612 
5613     case BitstreamEntry::SubBlock:
5614       switch (Entry.ID) {
5615       default: // Skip unknown content.
5616         if (Error Err = Stream.SkipBlock())
5617           return Err;
5618         break;
5619       case bitc::BLOCKINFO_BLOCK_ID:
5620         // Need to parse these to get abbrev ids (e.g. for VST)
5621         if (readBlockInfo())
5622           return error("Malformed block");
5623         break;
5624       case bitc::VALUE_SYMTAB_BLOCK_ID:
5625         // Should have been parsed earlier via VSTOffset, unless there
5626         // is no summary section.
5627         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
5628                 !SeenGlobalValSummary) &&
5629                "Expected early VST parse via VSTOffset record");
5630         if (Error Err = Stream.SkipBlock())
5631           return Err;
5632         break;
5633       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
5634       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
5635         // Add the module if it is a per-module index (has a source file name).
5636         if (!SourceFileName.empty())
5637           addThisModule();
5638         assert(!SeenValueSymbolTable &&
5639                "Already read VST when parsing summary block?");
5640         // We might not have a VST if there were no values in the
5641         // summary. An empty summary block generated when we are
5642         // performing ThinLTO compiles so we don't later invoke
5643         // the regular LTO process on them.
5644         if (VSTOffset > 0) {
5645           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
5646             return Err;
5647           SeenValueSymbolTable = true;
5648         }
5649         SeenGlobalValSummary = true;
5650         if (Error Err = parseEntireSummary(Entry.ID))
5651           return Err;
5652         break;
5653       case bitc::MODULE_STRTAB_BLOCK_ID:
5654         if (Error Err = parseModuleStringTable())
5655           return Err;
5656         break;
5657       }
5658       continue;
5659 
5660     case BitstreamEntry::Record: {
5661         Record.clear();
5662         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
5663         if (!MaybeBitCode)
5664           return MaybeBitCode.takeError();
5665         switch (MaybeBitCode.get()) {
5666         default:
5667           break; // Default behavior, ignore unknown content.
5668         case bitc::MODULE_CODE_VERSION: {
5669           if (Error Err = parseVersionRecord(Record).takeError())
5670             return Err;
5671           break;
5672         }
5673         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5674         case bitc::MODULE_CODE_SOURCE_FILENAME: {
5675           SmallString<128> ValueName;
5676           if (convertToString(Record, 0, ValueName))
5677             return error("Invalid record");
5678           SourceFileName = ValueName.c_str();
5679           break;
5680         }
5681         /// MODULE_CODE_HASH: [5*i32]
5682         case bitc::MODULE_CODE_HASH: {
5683           if (Record.size() != 5)
5684             return error("Invalid hash length " + Twine(Record.size()).str());
5685           auto &Hash = getThisModule()->second.second;
5686           int Pos = 0;
5687           for (auto &Val : Record) {
5688             assert(!(Val >> 32) && "Unexpected high bits set");
5689             Hash[Pos++] = Val;
5690           }
5691           break;
5692         }
5693         /// MODULE_CODE_VSTOFFSET: [offset]
5694         case bitc::MODULE_CODE_VSTOFFSET:
5695           if (Record.size() < 1)
5696             return error("Invalid record");
5697           // Note that we subtract 1 here because the offset is relative to one
5698           // word before the start of the identification or module block, which
5699           // was historically always the start of the regular bitcode header.
5700           VSTOffset = Record[0] - 1;
5701           break;
5702         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
5703         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
5704         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
5705         // v2: [strtab offset, strtab size, v1]
5706         case bitc::MODULE_CODE_GLOBALVAR:
5707         case bitc::MODULE_CODE_FUNCTION:
5708         case bitc::MODULE_CODE_ALIAS: {
5709           StringRef Name;
5710           ArrayRef<uint64_t> GVRecord;
5711           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
5712           if (GVRecord.size() <= 3)
5713             return error("Invalid record");
5714           uint64_t RawLinkage = GVRecord[3];
5715           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5716           if (!UseStrtab) {
5717             ValueIdToLinkageMap[ValueId++] = Linkage;
5718             break;
5719           }
5720 
5721           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
5722           break;
5723         }
5724         }
5725       }
5726       continue;
5727     }
5728   }
5729 }
5730 
5731 std::vector<ValueInfo>
5732 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
5733   std::vector<ValueInfo> Ret;
5734   Ret.reserve(Record.size());
5735   for (uint64_t RefValueId : Record)
5736     Ret.push_back(getValueInfoFromValueId(RefValueId).first);
5737   return Ret;
5738 }
5739 
5740 std::vector<FunctionSummary::EdgeTy>
5741 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
5742                                               bool IsOldProfileFormat,
5743                                               bool HasProfile, bool HasRelBF) {
5744   std::vector<FunctionSummary::EdgeTy> Ret;
5745   Ret.reserve(Record.size());
5746   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
5747     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
5748     uint64_t RelBF = 0;
5749     ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
5750     if (IsOldProfileFormat) {
5751       I += 1; // Skip old callsitecount field
5752       if (HasProfile)
5753         I += 1; // Skip old profilecount field
5754     } else if (HasProfile)
5755       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
5756     else if (HasRelBF)
5757       RelBF = Record[++I];
5758     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
5759   }
5760   return Ret;
5761 }
5762 
5763 static void
5764 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
5765                                        WholeProgramDevirtResolution &Wpd) {
5766   uint64_t ArgNum = Record[Slot++];
5767   WholeProgramDevirtResolution::ByArg &B =
5768       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
5769   Slot += ArgNum;
5770 
5771   B.TheKind =
5772       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
5773   B.Info = Record[Slot++];
5774   B.Byte = Record[Slot++];
5775   B.Bit = Record[Slot++];
5776 }
5777 
5778 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
5779                                               StringRef Strtab, size_t &Slot,
5780                                               TypeIdSummary &TypeId) {
5781   uint64_t Id = Record[Slot++];
5782   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
5783 
5784   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
5785   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
5786                         static_cast<size_t>(Record[Slot + 1])};
5787   Slot += 2;
5788 
5789   uint64_t ResByArgNum = Record[Slot++];
5790   for (uint64_t I = 0; I != ResByArgNum; ++I)
5791     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
5792 }
5793 
5794 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
5795                                      StringRef Strtab,
5796                                      ModuleSummaryIndex &TheIndex) {
5797   size_t Slot = 0;
5798   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
5799       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
5800   Slot += 2;
5801 
5802   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
5803   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
5804   TypeId.TTRes.AlignLog2 = Record[Slot++];
5805   TypeId.TTRes.SizeM1 = Record[Slot++];
5806   TypeId.TTRes.BitMask = Record[Slot++];
5807   TypeId.TTRes.InlineBits = Record[Slot++];
5808 
5809   while (Slot < Record.size())
5810     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
5811 }
5812 
5813 static std::vector<FunctionSummary::ParamAccess>
5814 parseParamAccesses(ArrayRef<uint64_t> Record) {
5815   auto ReadRange = [&]() {
5816     APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
5817                 BitcodeReader::decodeSignRotatedValue(Record.front()));
5818     Record = Record.drop_front();
5819     APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
5820                 BitcodeReader::decodeSignRotatedValue(Record.front()));
5821     Record = Record.drop_front();
5822     ConstantRange Range{Lower, Upper};
5823     assert(!Range.isFullSet());
5824     assert(!Range.isUpperSignWrapped());
5825     return Range;
5826   };
5827 
5828   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
5829   while (!Record.empty()) {
5830     PendingParamAccesses.emplace_back();
5831     FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
5832     ParamAccess.ParamNo = Record.front();
5833     Record = Record.drop_front();
5834     ParamAccess.Use = ReadRange();
5835     ParamAccess.Calls.resize(Record.front());
5836     Record = Record.drop_front();
5837     for (auto &Call : ParamAccess.Calls) {
5838       Call.ParamNo = Record.front();
5839       Record = Record.drop_front();
5840       Call.Callee = Record.front();
5841       Record = Record.drop_front();
5842       Call.Offsets = ReadRange();
5843     }
5844   }
5845   return PendingParamAccesses;
5846 }
5847 
5848 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
5849     ArrayRef<uint64_t> Record, size_t &Slot,
5850     TypeIdCompatibleVtableInfo &TypeId) {
5851   uint64_t Offset = Record[Slot++];
5852   ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first;
5853   TypeId.push_back({Offset, Callee});
5854 }
5855 
5856 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
5857     ArrayRef<uint64_t> Record) {
5858   size_t Slot = 0;
5859   TypeIdCompatibleVtableInfo &TypeId =
5860       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
5861           {Strtab.data() + Record[Slot],
5862            static_cast<size_t>(Record[Slot + 1])});
5863   Slot += 2;
5864 
5865   while (Slot < Record.size())
5866     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
5867 }
5868 
5869 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
5870                            unsigned WOCnt) {
5871   // Readonly and writeonly refs are in the end of the refs list.
5872   assert(ROCnt + WOCnt <= Refs.size());
5873   unsigned FirstWORef = Refs.size() - WOCnt;
5874   unsigned RefNo = FirstWORef - ROCnt;
5875   for (; RefNo < FirstWORef; ++RefNo)
5876     Refs[RefNo].setReadOnly();
5877   for (; RefNo < Refs.size(); ++RefNo)
5878     Refs[RefNo].setWriteOnly();
5879 }
5880 
5881 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
5882 // objects in the index.
5883 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
5884   if (Error Err = Stream.EnterSubBlock(ID))
5885     return Err;
5886   SmallVector<uint64_t, 64> Record;
5887 
5888   // Parse version
5889   {
5890     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5891     if (!MaybeEntry)
5892       return MaybeEntry.takeError();
5893     BitstreamEntry Entry = MaybeEntry.get();
5894 
5895     if (Entry.Kind != BitstreamEntry::Record)
5896       return error("Invalid Summary Block: record for version expected");
5897     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
5898     if (!MaybeRecord)
5899       return MaybeRecord.takeError();
5900     if (MaybeRecord.get() != bitc::FS_VERSION)
5901       return error("Invalid Summary Block: version expected");
5902   }
5903   const uint64_t Version = Record[0];
5904   const bool IsOldProfileFormat = Version == 1;
5905   if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
5906     return error("Invalid summary version " + Twine(Version) +
5907                  ". Version should be in the range [1-" +
5908                  Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
5909                  "].");
5910   Record.clear();
5911 
5912   // Keep around the last seen summary to be used when we see an optional
5913   // "OriginalName" attachement.
5914   GlobalValueSummary *LastSeenSummary = nullptr;
5915   GlobalValue::GUID LastSeenGUID = 0;
5916 
5917   // We can expect to see any number of type ID information records before
5918   // each function summary records; these variables store the information
5919   // collected so far so that it can be used to create the summary object.
5920   std::vector<GlobalValue::GUID> PendingTypeTests;
5921   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
5922       PendingTypeCheckedLoadVCalls;
5923   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
5924       PendingTypeCheckedLoadConstVCalls;
5925   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
5926 
5927   while (true) {
5928     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5929     if (!MaybeEntry)
5930       return MaybeEntry.takeError();
5931     BitstreamEntry Entry = MaybeEntry.get();
5932 
5933     switch (Entry.Kind) {
5934     case BitstreamEntry::SubBlock: // Handled for us already.
5935     case BitstreamEntry::Error:
5936       return error("Malformed block");
5937     case BitstreamEntry::EndBlock:
5938       return Error::success();
5939     case BitstreamEntry::Record:
5940       // The interesting case.
5941       break;
5942     }
5943 
5944     // Read a record. The record format depends on whether this
5945     // is a per-module index or a combined index file. In the per-module
5946     // case the records contain the associated value's ID for correlation
5947     // with VST entries. In the combined index the correlation is done
5948     // via the bitcode offset of the summary records (which were saved
5949     // in the combined index VST entries). The records also contain
5950     // information used for ThinLTO renaming and importing.
5951     Record.clear();
5952     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
5953     if (!MaybeBitCode)
5954       return MaybeBitCode.takeError();
5955     switch (unsigned BitCode = MaybeBitCode.get()) {
5956     default: // Default behavior: ignore.
5957       break;
5958     case bitc::FS_FLAGS: {  // [flags]
5959       TheIndex.setFlags(Record[0]);
5960       break;
5961     }
5962     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
5963       uint64_t ValueID = Record[0];
5964       GlobalValue::GUID RefGUID = Record[1];
5965       ValueIdToValueInfoMap[ValueID] =
5966           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5967       break;
5968     }
5969     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
5970     //                numrefs x valueid, n x (valueid)]
5971     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
5972     //                        numrefs x valueid,
5973     //                        n x (valueid, hotness)]
5974     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
5975     //                      numrefs x valueid,
5976     //                      n x (valueid, relblockfreq)]
5977     case bitc::FS_PERMODULE:
5978     case bitc::FS_PERMODULE_RELBF:
5979     case bitc::FS_PERMODULE_PROFILE: {
5980       unsigned ValueID = Record[0];
5981       uint64_t RawFlags = Record[1];
5982       unsigned InstCount = Record[2];
5983       uint64_t RawFunFlags = 0;
5984       unsigned NumRefs = Record[3];
5985       unsigned NumRORefs = 0, NumWORefs = 0;
5986       int RefListStartIndex = 4;
5987       if (Version >= 4) {
5988         RawFunFlags = Record[3];
5989         NumRefs = Record[4];
5990         RefListStartIndex = 5;
5991         if (Version >= 5) {
5992           NumRORefs = Record[5];
5993           RefListStartIndex = 6;
5994           if (Version >= 7) {
5995             NumWORefs = Record[6];
5996             RefListStartIndex = 7;
5997           }
5998         }
5999       }
6000 
6001       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6002       // The module path string ref set in the summary must be owned by the
6003       // index's module string table. Since we don't have a module path
6004       // string table section in the per-module index, we create a single
6005       // module path string table entry with an empty (0) ID to take
6006       // ownership.
6007       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6008       assert(Record.size() >= RefListStartIndex + NumRefs &&
6009              "Record size inconsistent with number of references");
6010       std::vector<ValueInfo> Refs = makeRefList(
6011           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6012       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
6013       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
6014       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
6015           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6016           IsOldProfileFormat, HasProfile, HasRelBF);
6017       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6018       auto FS = std::make_unique<FunctionSummary>(
6019           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
6020           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
6021           std::move(PendingTypeTestAssumeVCalls),
6022           std::move(PendingTypeCheckedLoadVCalls),
6023           std::move(PendingTypeTestAssumeConstVCalls),
6024           std::move(PendingTypeCheckedLoadConstVCalls),
6025           std::move(PendingParamAccesses));
6026       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
6027       FS->setModulePath(getThisModule()->first());
6028       FS->setOriginalName(VIAndOriginalGUID.second);
6029       TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
6030       break;
6031     }
6032     // FS_ALIAS: [valueid, flags, valueid]
6033     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
6034     // they expect all aliasee summaries to be available.
6035     case bitc::FS_ALIAS: {
6036       unsigned ValueID = Record[0];
6037       uint64_t RawFlags = Record[1];
6038       unsigned AliaseeID = Record[2];
6039       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6040       auto AS = std::make_unique<AliasSummary>(Flags);
6041       // The module path string ref set in the summary must be owned by the
6042       // index's module string table. Since we don't have a module path
6043       // string table section in the per-module index, we create a single
6044       // module path string table entry with an empty (0) ID to take
6045       // ownership.
6046       AS->setModulePath(getThisModule()->first());
6047 
6048       auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first;
6049       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
6050       if (!AliaseeInModule)
6051         return error("Alias expects aliasee summary to be parsed");
6052       AS->setAliasee(AliaseeVI, AliaseeInModule);
6053 
6054       auto GUID = getValueInfoFromValueId(ValueID);
6055       AS->setOriginalName(GUID.second);
6056       TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
6057       break;
6058     }
6059     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
6060     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
6061       unsigned ValueID = Record[0];
6062       uint64_t RawFlags = Record[1];
6063       unsigned RefArrayStart = 2;
6064       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6065                                       /* WriteOnly */ false,
6066                                       /* Constant */ false,
6067                                       GlobalObject::VCallVisibilityPublic);
6068       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6069       if (Version >= 5) {
6070         GVF = getDecodedGVarFlags(Record[2]);
6071         RefArrayStart = 3;
6072       }
6073       std::vector<ValueInfo> Refs =
6074           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6075       auto FS =
6076           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6077       FS->setModulePath(getThisModule()->first());
6078       auto GUID = getValueInfoFromValueId(ValueID);
6079       FS->setOriginalName(GUID.second);
6080       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
6081       break;
6082     }
6083     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
6084     //                        numrefs, numrefs x valueid,
6085     //                        n x (valueid, offset)]
6086     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
6087       unsigned ValueID = Record[0];
6088       uint64_t RawFlags = Record[1];
6089       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
6090       unsigned NumRefs = Record[3];
6091       unsigned RefListStartIndex = 4;
6092       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
6093       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6094       std::vector<ValueInfo> Refs = makeRefList(
6095           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6096       VTableFuncList VTableFuncs;
6097       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
6098         ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
6099         uint64_t Offset = Record[++I];
6100         VTableFuncs.push_back({Callee, Offset});
6101       }
6102       auto VS =
6103           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6104       VS->setModulePath(getThisModule()->first());
6105       VS->setVTableFuncs(VTableFuncs);
6106       auto GUID = getValueInfoFromValueId(ValueID);
6107       VS->setOriginalName(GUID.second);
6108       TheIndex.addGlobalValueSummary(GUID.first, std::move(VS));
6109       break;
6110     }
6111     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
6112     //               numrefs x valueid, n x (valueid)]
6113     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
6114     //                       numrefs x valueid, n x (valueid, hotness)]
6115     case bitc::FS_COMBINED:
6116     case bitc::FS_COMBINED_PROFILE: {
6117       unsigned ValueID = Record[0];
6118       uint64_t ModuleId = Record[1];
6119       uint64_t RawFlags = Record[2];
6120       unsigned InstCount = Record[3];
6121       uint64_t RawFunFlags = 0;
6122       uint64_t EntryCount = 0;
6123       unsigned NumRefs = Record[4];
6124       unsigned NumRORefs = 0, NumWORefs = 0;
6125       int RefListStartIndex = 5;
6126 
6127       if (Version >= 4) {
6128         RawFunFlags = Record[4];
6129         RefListStartIndex = 6;
6130         size_t NumRefsIndex = 5;
6131         if (Version >= 5) {
6132           unsigned NumRORefsOffset = 1;
6133           RefListStartIndex = 7;
6134           if (Version >= 6) {
6135             NumRefsIndex = 6;
6136             EntryCount = Record[5];
6137             RefListStartIndex = 8;
6138             if (Version >= 7) {
6139               RefListStartIndex = 9;
6140               NumWORefs = Record[8];
6141               NumRORefsOffset = 2;
6142             }
6143           }
6144           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
6145         }
6146         NumRefs = Record[NumRefsIndex];
6147       }
6148 
6149       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6150       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6151       assert(Record.size() >= RefListStartIndex + NumRefs &&
6152              "Record size inconsistent with number of references");
6153       std::vector<ValueInfo> Refs = makeRefList(
6154           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6155       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
6156       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
6157           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6158           IsOldProfileFormat, HasProfile, false);
6159       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6160       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6161       auto FS = std::make_unique<FunctionSummary>(
6162           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
6163           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
6164           std::move(PendingTypeTestAssumeVCalls),
6165           std::move(PendingTypeCheckedLoadVCalls),
6166           std::move(PendingTypeTestAssumeConstVCalls),
6167           std::move(PendingTypeCheckedLoadConstVCalls),
6168           std::move(PendingParamAccesses));
6169       LastSeenSummary = FS.get();
6170       LastSeenGUID = VI.getGUID();
6171       FS->setModulePath(ModuleIdMap[ModuleId]);
6172       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6173       break;
6174     }
6175     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
6176     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
6177     // they expect all aliasee summaries to be available.
6178     case bitc::FS_COMBINED_ALIAS: {
6179       unsigned ValueID = Record[0];
6180       uint64_t ModuleId = Record[1];
6181       uint64_t RawFlags = Record[2];
6182       unsigned AliaseeValueId = Record[3];
6183       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6184       auto AS = std::make_unique<AliasSummary>(Flags);
6185       LastSeenSummary = AS.get();
6186       AS->setModulePath(ModuleIdMap[ModuleId]);
6187 
6188       auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first;
6189       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
6190       AS->setAliasee(AliaseeVI, AliaseeInModule);
6191 
6192       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6193       LastSeenGUID = VI.getGUID();
6194       TheIndex.addGlobalValueSummary(VI, std::move(AS));
6195       break;
6196     }
6197     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
6198     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
6199       unsigned ValueID = Record[0];
6200       uint64_t ModuleId = Record[1];
6201       uint64_t RawFlags = Record[2];
6202       unsigned RefArrayStart = 3;
6203       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6204                                       /* WriteOnly */ false,
6205                                       /* Constant */ false,
6206                                       GlobalObject::VCallVisibilityPublic);
6207       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6208       if (Version >= 5) {
6209         GVF = getDecodedGVarFlags(Record[3]);
6210         RefArrayStart = 4;
6211       }
6212       std::vector<ValueInfo> Refs =
6213           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6214       auto FS =
6215           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6216       LastSeenSummary = FS.get();
6217       FS->setModulePath(ModuleIdMap[ModuleId]);
6218       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6219       LastSeenGUID = VI.getGUID();
6220       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6221       break;
6222     }
6223     // FS_COMBINED_ORIGINAL_NAME: [original_name]
6224     case bitc::FS_COMBINED_ORIGINAL_NAME: {
6225       uint64_t OriginalName = Record[0];
6226       if (!LastSeenSummary)
6227         return error("Name attachment that does not follow a combined record");
6228       LastSeenSummary->setOriginalName(OriginalName);
6229       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
6230       // Reset the LastSeenSummary
6231       LastSeenSummary = nullptr;
6232       LastSeenGUID = 0;
6233       break;
6234     }
6235     case bitc::FS_TYPE_TESTS:
6236       assert(PendingTypeTests.empty());
6237       PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(),
6238                               Record.end());
6239       break;
6240 
6241     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
6242       assert(PendingTypeTestAssumeVCalls.empty());
6243       for (unsigned I = 0; I != Record.size(); I += 2)
6244         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
6245       break;
6246 
6247     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
6248       assert(PendingTypeCheckedLoadVCalls.empty());
6249       for (unsigned I = 0; I != Record.size(); I += 2)
6250         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
6251       break;
6252 
6253     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
6254       PendingTypeTestAssumeConstVCalls.push_back(
6255           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6256       break;
6257 
6258     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
6259       PendingTypeCheckedLoadConstVCalls.push_back(
6260           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6261       break;
6262 
6263     case bitc::FS_CFI_FUNCTION_DEFS: {
6264       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
6265       for (unsigned I = 0; I != Record.size(); I += 2)
6266         CfiFunctionDefs.insert(
6267             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6268       break;
6269     }
6270 
6271     case bitc::FS_CFI_FUNCTION_DECLS: {
6272       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
6273       for (unsigned I = 0; I != Record.size(); I += 2)
6274         CfiFunctionDecls.insert(
6275             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6276       break;
6277     }
6278 
6279     case bitc::FS_TYPE_ID:
6280       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
6281       break;
6282 
6283     case bitc::FS_TYPE_ID_METADATA:
6284       parseTypeIdCompatibleVtableSummaryRecord(Record);
6285       break;
6286 
6287     case bitc::FS_BLOCK_COUNT:
6288       TheIndex.addBlockCount(Record[0]);
6289       break;
6290 
6291     case bitc::FS_PARAM_ACCESS: {
6292       PendingParamAccesses = parseParamAccesses(Record);
6293       break;
6294     }
6295     }
6296   }
6297   llvm_unreachable("Exit infinite loop");
6298 }
6299 
6300 // Parse the  module string table block into the Index.
6301 // This populates the ModulePathStringTable map in the index.
6302 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
6303   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
6304     return Err;
6305 
6306   SmallVector<uint64_t, 64> Record;
6307 
6308   SmallString<128> ModulePath;
6309   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
6310 
6311   while (true) {
6312     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6313     if (!MaybeEntry)
6314       return MaybeEntry.takeError();
6315     BitstreamEntry Entry = MaybeEntry.get();
6316 
6317     switch (Entry.Kind) {
6318     case BitstreamEntry::SubBlock: // Handled for us already.
6319     case BitstreamEntry::Error:
6320       return error("Malformed block");
6321     case BitstreamEntry::EndBlock:
6322       return Error::success();
6323     case BitstreamEntry::Record:
6324       // The interesting case.
6325       break;
6326     }
6327 
6328     Record.clear();
6329     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6330     if (!MaybeRecord)
6331       return MaybeRecord.takeError();
6332     switch (MaybeRecord.get()) {
6333     default: // Default behavior: ignore.
6334       break;
6335     case bitc::MST_CODE_ENTRY: {
6336       // MST_ENTRY: [modid, namechar x N]
6337       uint64_t ModuleId = Record[0];
6338 
6339       if (convertToString(Record, 1, ModulePath))
6340         return error("Invalid record");
6341 
6342       LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
6343       ModuleIdMap[ModuleId] = LastSeenModule->first();
6344 
6345       ModulePath.clear();
6346       break;
6347     }
6348     /// MST_CODE_HASH: [5*i32]
6349     case bitc::MST_CODE_HASH: {
6350       if (Record.size() != 5)
6351         return error("Invalid hash length " + Twine(Record.size()).str());
6352       if (!LastSeenModule)
6353         return error("Invalid hash that does not follow a module path");
6354       int Pos = 0;
6355       for (auto &Val : Record) {
6356         assert(!(Val >> 32) && "Unexpected high bits set");
6357         LastSeenModule->second.second[Pos++] = Val;
6358       }
6359       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
6360       LastSeenModule = nullptr;
6361       break;
6362     }
6363     }
6364   }
6365   llvm_unreachable("Exit infinite loop");
6366 }
6367 
6368 namespace {
6369 
6370 // FIXME: This class is only here to support the transition to llvm::Error. It
6371 // will be removed once this transition is complete. Clients should prefer to
6372 // deal with the Error value directly, rather than converting to error_code.
6373 class BitcodeErrorCategoryType : public std::error_category {
6374   const char *name() const noexcept override {
6375     return "llvm.bitcode";
6376   }
6377 
6378   std::string message(int IE) const override {
6379     BitcodeError E = static_cast<BitcodeError>(IE);
6380     switch (E) {
6381     case BitcodeError::CorruptedBitcode:
6382       return "Corrupted bitcode";
6383     }
6384     llvm_unreachable("Unknown error type!");
6385   }
6386 };
6387 
6388 } // end anonymous namespace
6389 
6390 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
6391 
6392 const std::error_category &llvm::BitcodeErrorCategory() {
6393   return *ErrorCategory;
6394 }
6395 
6396 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
6397                                             unsigned Block, unsigned RecordID) {
6398   if (Error Err = Stream.EnterSubBlock(Block))
6399     return std::move(Err);
6400 
6401   StringRef Strtab;
6402   while (true) {
6403     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6404     if (!MaybeEntry)
6405       return MaybeEntry.takeError();
6406     llvm::BitstreamEntry Entry = MaybeEntry.get();
6407 
6408     switch (Entry.Kind) {
6409     case BitstreamEntry::EndBlock:
6410       return Strtab;
6411 
6412     case BitstreamEntry::Error:
6413       return error("Malformed block");
6414 
6415     case BitstreamEntry::SubBlock:
6416       if (Error Err = Stream.SkipBlock())
6417         return std::move(Err);
6418       break;
6419 
6420     case BitstreamEntry::Record:
6421       StringRef Blob;
6422       SmallVector<uint64_t, 1> Record;
6423       Expected<unsigned> MaybeRecord =
6424           Stream.readRecord(Entry.ID, Record, &Blob);
6425       if (!MaybeRecord)
6426         return MaybeRecord.takeError();
6427       if (MaybeRecord.get() == RecordID)
6428         Strtab = Blob;
6429       break;
6430     }
6431   }
6432 }
6433 
6434 //===----------------------------------------------------------------------===//
6435 // External interface
6436 //===----------------------------------------------------------------------===//
6437 
6438 Expected<std::vector<BitcodeModule>>
6439 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
6440   auto FOrErr = getBitcodeFileContents(Buffer);
6441   if (!FOrErr)
6442     return FOrErr.takeError();
6443   return std::move(FOrErr->Mods);
6444 }
6445 
6446 Expected<BitcodeFileContents>
6447 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
6448   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6449   if (!StreamOrErr)
6450     return StreamOrErr.takeError();
6451   BitstreamCursor &Stream = *StreamOrErr;
6452 
6453   BitcodeFileContents F;
6454   while (true) {
6455     uint64_t BCBegin = Stream.getCurrentByteNo();
6456 
6457     // We may be consuming bitcode from a client that leaves garbage at the end
6458     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
6459     // the end that there cannot possibly be another module, stop looking.
6460     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
6461       return F;
6462 
6463     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6464     if (!MaybeEntry)
6465       return MaybeEntry.takeError();
6466     llvm::BitstreamEntry Entry = MaybeEntry.get();
6467 
6468     switch (Entry.Kind) {
6469     case BitstreamEntry::EndBlock:
6470     case BitstreamEntry::Error:
6471       return error("Malformed block");
6472 
6473     case BitstreamEntry::SubBlock: {
6474       uint64_t IdentificationBit = -1ull;
6475       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
6476         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6477         if (Error Err = Stream.SkipBlock())
6478           return std::move(Err);
6479 
6480         {
6481           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6482           if (!MaybeEntry)
6483             return MaybeEntry.takeError();
6484           Entry = MaybeEntry.get();
6485         }
6486 
6487         if (Entry.Kind != BitstreamEntry::SubBlock ||
6488             Entry.ID != bitc::MODULE_BLOCK_ID)
6489           return error("Malformed block");
6490       }
6491 
6492       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
6493         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6494         if (Error Err = Stream.SkipBlock())
6495           return std::move(Err);
6496 
6497         F.Mods.push_back({Stream.getBitcodeBytes().slice(
6498                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
6499                           Buffer.getBufferIdentifier(), IdentificationBit,
6500                           ModuleBit});
6501         continue;
6502       }
6503 
6504       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
6505         Expected<StringRef> Strtab =
6506             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
6507         if (!Strtab)
6508           return Strtab.takeError();
6509         // This string table is used by every preceding bitcode module that does
6510         // not have its own string table. A bitcode file may have multiple
6511         // string tables if it was created by binary concatenation, for example
6512         // with "llvm-cat -b".
6513         for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) {
6514           if (!I->Strtab.empty())
6515             break;
6516           I->Strtab = *Strtab;
6517         }
6518         // Similarly, the string table is used by every preceding symbol table;
6519         // normally there will be just one unless the bitcode file was created
6520         // by binary concatenation.
6521         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
6522           F.StrtabForSymtab = *Strtab;
6523         continue;
6524       }
6525 
6526       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
6527         Expected<StringRef> SymtabOrErr =
6528             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
6529         if (!SymtabOrErr)
6530           return SymtabOrErr.takeError();
6531 
6532         // We can expect the bitcode file to have multiple symbol tables if it
6533         // was created by binary concatenation. In that case we silently
6534         // ignore any subsequent symbol tables, which is fine because this is a
6535         // low level function. The client is expected to notice that the number
6536         // of modules in the symbol table does not match the number of modules
6537         // in the input file and regenerate the symbol table.
6538         if (F.Symtab.empty())
6539           F.Symtab = *SymtabOrErr;
6540         continue;
6541       }
6542 
6543       if (Error Err = Stream.SkipBlock())
6544         return std::move(Err);
6545       continue;
6546     }
6547     case BitstreamEntry::Record:
6548       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6549         continue;
6550       else
6551         return StreamFailed.takeError();
6552     }
6553   }
6554 }
6555 
6556 /// Get a lazy one-at-time loading module from bitcode.
6557 ///
6558 /// This isn't always used in a lazy context.  In particular, it's also used by
6559 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
6560 /// in forward-referenced functions from block address references.
6561 ///
6562 /// \param[in] MaterializeAll Set to \c true if we should materialize
6563 /// everything.
6564 Expected<std::unique_ptr<Module>>
6565 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
6566                              bool ShouldLazyLoadMetadata, bool IsImporting,
6567                              DataLayoutCallbackTy DataLayoutCallback) {
6568   BitstreamCursor Stream(Buffer);
6569 
6570   std::string ProducerIdentification;
6571   if (IdentificationBit != -1ull) {
6572     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
6573       return std::move(JumpFailed);
6574     Expected<std::string> ProducerIdentificationOrErr =
6575         readIdentificationBlock(Stream);
6576     if (!ProducerIdentificationOrErr)
6577       return ProducerIdentificationOrErr.takeError();
6578 
6579     ProducerIdentification = *ProducerIdentificationOrErr;
6580   }
6581 
6582   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6583     return std::move(JumpFailed);
6584   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
6585                               Context);
6586 
6587   std::unique_ptr<Module> M =
6588       std::make_unique<Module>(ModuleIdentifier, Context);
6589   M->setMaterializer(R);
6590 
6591   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6592   if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
6593                                       IsImporting, DataLayoutCallback))
6594     return std::move(Err);
6595 
6596   if (MaterializeAll) {
6597     // Read in the entire module, and destroy the BitcodeReader.
6598     if (Error Err = M->materializeAll())
6599       return std::move(Err);
6600   } else {
6601     // Resolve forward references from blockaddresses.
6602     if (Error Err = R->materializeForwardReferencedFunctions())
6603       return std::move(Err);
6604   }
6605   return std::move(M);
6606 }
6607 
6608 Expected<std::unique_ptr<Module>>
6609 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
6610                              bool IsImporting) {
6611   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
6612                        [](StringRef) { return None; });
6613 }
6614 
6615 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
6616 // We don't use ModuleIdentifier here because the client may need to control the
6617 // module path used in the combined summary (e.g. when reading summaries for
6618 // regular LTO modules).
6619 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
6620                                  StringRef ModulePath, uint64_t ModuleId) {
6621   BitstreamCursor Stream(Buffer);
6622   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6623     return JumpFailed;
6624 
6625   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
6626                                     ModulePath, ModuleId);
6627   return R.parseModule();
6628 }
6629 
6630 // Parse the specified bitcode buffer, returning the function info index.
6631 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
6632   BitstreamCursor Stream(Buffer);
6633   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6634     return std::move(JumpFailed);
6635 
6636   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
6637   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
6638                                     ModuleIdentifier, 0);
6639 
6640   if (Error Err = R.parseModule())
6641     return std::move(Err);
6642 
6643   return std::move(Index);
6644 }
6645 
6646 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream,
6647                                                 unsigned ID) {
6648   if (Error Err = Stream.EnterSubBlock(ID))
6649     return std::move(Err);
6650   SmallVector<uint64_t, 64> Record;
6651 
6652   while (true) {
6653     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6654     if (!MaybeEntry)
6655       return MaybeEntry.takeError();
6656     BitstreamEntry Entry = MaybeEntry.get();
6657 
6658     switch (Entry.Kind) {
6659     case BitstreamEntry::SubBlock: // Handled for us already.
6660     case BitstreamEntry::Error:
6661       return error("Malformed block");
6662     case BitstreamEntry::EndBlock:
6663       // If no flags record found, conservatively return true to mimic
6664       // behavior before this flag was added.
6665       return true;
6666     case BitstreamEntry::Record:
6667       // The interesting case.
6668       break;
6669     }
6670 
6671     // Look for the FS_FLAGS record.
6672     Record.clear();
6673     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6674     if (!MaybeBitCode)
6675       return MaybeBitCode.takeError();
6676     switch (MaybeBitCode.get()) {
6677     default: // Default behavior: ignore.
6678       break;
6679     case bitc::FS_FLAGS: { // [flags]
6680       uint64_t Flags = Record[0];
6681       // Scan flags.
6682       assert(Flags <= 0x3f && "Unexpected bits in flag");
6683 
6684       return Flags & 0x8;
6685     }
6686     }
6687   }
6688   llvm_unreachable("Exit infinite loop");
6689 }
6690 
6691 // Check if the given bitcode buffer contains a global value summary block.
6692 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
6693   BitstreamCursor Stream(Buffer);
6694   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6695     return std::move(JumpFailed);
6696 
6697   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6698     return std::move(Err);
6699 
6700   while (true) {
6701     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6702     if (!MaybeEntry)
6703       return MaybeEntry.takeError();
6704     llvm::BitstreamEntry Entry = MaybeEntry.get();
6705 
6706     switch (Entry.Kind) {
6707     case BitstreamEntry::Error:
6708       return error("Malformed block");
6709     case BitstreamEntry::EndBlock:
6710       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
6711                             /*EnableSplitLTOUnit=*/false};
6712 
6713     case BitstreamEntry::SubBlock:
6714       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
6715         Expected<bool> EnableSplitLTOUnit =
6716             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6717         if (!EnableSplitLTOUnit)
6718           return EnableSplitLTOUnit.takeError();
6719         return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true,
6720                               *EnableSplitLTOUnit};
6721       }
6722 
6723       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
6724         Expected<bool> EnableSplitLTOUnit =
6725             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6726         if (!EnableSplitLTOUnit)
6727           return EnableSplitLTOUnit.takeError();
6728         return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true,
6729                               *EnableSplitLTOUnit};
6730       }
6731 
6732       // Ignore other sub-blocks.
6733       if (Error Err = Stream.SkipBlock())
6734         return std::move(Err);
6735       continue;
6736 
6737     case BitstreamEntry::Record:
6738       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6739         continue;
6740       else
6741         return StreamFailed.takeError();
6742     }
6743   }
6744 }
6745 
6746 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
6747   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
6748   if (!MsOrErr)
6749     return MsOrErr.takeError();
6750 
6751   if (MsOrErr->size() != 1)
6752     return error("Expected a single module");
6753 
6754   return (*MsOrErr)[0];
6755 }
6756 
6757 Expected<std::unique_ptr<Module>>
6758 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
6759                            bool ShouldLazyLoadMetadata, bool IsImporting) {
6760   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6761   if (!BM)
6762     return BM.takeError();
6763 
6764   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
6765 }
6766 
6767 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
6768     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
6769     bool ShouldLazyLoadMetadata, bool IsImporting) {
6770   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
6771                                      IsImporting);
6772   if (MOrErr)
6773     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
6774   return MOrErr;
6775 }
6776 
6777 Expected<std::unique_ptr<Module>>
6778 BitcodeModule::parseModule(LLVMContext &Context,
6779                            DataLayoutCallbackTy DataLayoutCallback) {
6780   return getModuleImpl(Context, true, false, false, DataLayoutCallback);
6781   // TODO: Restore the use-lists to the in-memory state when the bitcode was
6782   // written.  We must defer until the Module has been fully materialized.
6783 }
6784 
6785 Expected<std::unique_ptr<Module>>
6786 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
6787                        DataLayoutCallbackTy DataLayoutCallback) {
6788   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6789   if (!BM)
6790     return BM.takeError();
6791 
6792   return BM->parseModule(Context, DataLayoutCallback);
6793 }
6794 
6795 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
6796   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6797   if (!StreamOrErr)
6798     return StreamOrErr.takeError();
6799 
6800   return readTriple(*StreamOrErr);
6801 }
6802 
6803 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
6804   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6805   if (!StreamOrErr)
6806     return StreamOrErr.takeError();
6807 
6808   return hasObjCCategory(*StreamOrErr);
6809 }
6810 
6811 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
6812   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6813   if (!StreamOrErr)
6814     return StreamOrErr.takeError();
6815 
6816   return readIdentificationCode(*StreamOrErr);
6817 }
6818 
6819 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
6820                                    ModuleSummaryIndex &CombinedIndex,
6821                                    uint64_t ModuleId) {
6822   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6823   if (!BM)
6824     return BM.takeError();
6825 
6826   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
6827 }
6828 
6829 Expected<std::unique_ptr<ModuleSummaryIndex>>
6830 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
6831   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6832   if (!BM)
6833     return BM.takeError();
6834 
6835   return BM->getSummary();
6836 }
6837 
6838 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
6839   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6840   if (!BM)
6841     return BM.takeError();
6842 
6843   return BM->getLTOInfo();
6844 }
6845 
6846 Expected<std::unique_ptr<ModuleSummaryIndex>>
6847 llvm::getModuleSummaryIndexForFile(StringRef Path,
6848                                    bool IgnoreEmptyThinLTOIndexFile) {
6849   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
6850       MemoryBuffer::getFileOrSTDIN(Path);
6851   if (!FileOrErr)
6852     return errorCodeToError(FileOrErr.getError());
6853   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
6854     return nullptr;
6855   return getModuleSummaryIndex(**FileOrErr);
6856 }
6857