1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Bitcode/BitcodeCommon.h"
24 #include "llvm/Bitcode/LLVMBitCodes.h"
25 #include "llvm/Bitstream/BitstreamReader.h"
26 #include "llvm/Config/llvm-config.h"
27 #include "llvm/IR/Argument.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/AutoUpgrade.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Comdat.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalIndirectSymbol.h"
45 #include "llvm/IR/GlobalObject.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstIterator.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/ModuleSummaryIndex.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/Verifier.h"
62 #include "llvm/Support/AtomicOrdering.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Compiler.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/Error.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/ErrorOr.h"
70 #include "llvm/Support/ManagedStatic.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/MemoryBuffer.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <deque>
79 #include <map>
80 #include <memory>
81 #include <set>
82 #include <string>
83 #include <system_error>
84 #include <tuple>
85 #include <utility>
86 #include <vector>
87 
88 using namespace llvm;
89 
90 static cl::opt<bool> PrintSummaryGUIDs(
91     "print-summary-global-ids", cl::init(false), cl::Hidden,
92     cl::desc(
93         "Print the global id for each value when reading the module summary"));
94 
95 namespace {
96 
97 enum {
98   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
99 };
100 
101 } // end anonymous namespace
102 
103 static Error error(const Twine &Message) {
104   return make_error<StringError>(
105       Message, make_error_code(BitcodeError::CorruptedBitcode));
106 }
107 
108 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
109   if (!Stream.canSkipToPos(4))
110     return createStringError(std::errc::illegal_byte_sequence,
111                              "file too small to contain bitcode header");
112   for (unsigned C : {'B', 'C'})
113     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
114       if (Res.get() != C)
115         return createStringError(std::errc::illegal_byte_sequence,
116                                  "file doesn't start with bitcode header");
117     } else
118       return Res.takeError();
119   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
120     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
121       if (Res.get() != C)
122         return createStringError(std::errc::illegal_byte_sequence,
123                                  "file doesn't start with bitcode header");
124     } else
125       return Res.takeError();
126   return Error::success();
127 }
128 
129 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
130   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
131   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
132 
133   if (Buffer.getBufferSize() & 3)
134     return error("Invalid bitcode signature");
135 
136   // If we have a wrapper header, parse it and ignore the non-bc file contents.
137   // The magic number is 0x0B17C0DE stored in little endian.
138   if (isBitcodeWrapper(BufPtr, BufEnd))
139     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
140       return error("Invalid bitcode wrapper header");
141 
142   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
143   if (Error Err = hasInvalidBitcodeHeader(Stream))
144     return std::move(Err);
145 
146   return std::move(Stream);
147 }
148 
149 /// Convert a string from a record into an std::string, return true on failure.
150 template <typename StrTy>
151 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
152                             StrTy &Result) {
153   if (Idx > Record.size())
154     return true;
155 
156   Result.append(Record.begin() + Idx, Record.end());
157   return false;
158 }
159 
160 // Strip all the TBAA attachment for the module.
161 static void stripTBAA(Module *M) {
162   for (auto &F : *M) {
163     if (F.isMaterializable())
164       continue;
165     for (auto &I : instructions(F))
166       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
167   }
168 }
169 
170 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
171 /// "epoch" encoded in the bitcode, and return the producer name if any.
172 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
173   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
174     return std::move(Err);
175 
176   // Read all the records.
177   SmallVector<uint64_t, 64> Record;
178 
179   std::string ProducerIdentification;
180 
181   while (true) {
182     BitstreamEntry Entry;
183     if (Expected<BitstreamEntry> Res = Stream.advance())
184       Entry = Res.get();
185     else
186       return Res.takeError();
187 
188     switch (Entry.Kind) {
189     default:
190     case BitstreamEntry::Error:
191       return error("Malformed block");
192     case BitstreamEntry::EndBlock:
193       return ProducerIdentification;
194     case BitstreamEntry::Record:
195       // The interesting case.
196       break;
197     }
198 
199     // Read a record.
200     Record.clear();
201     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
202     if (!MaybeBitCode)
203       return MaybeBitCode.takeError();
204     switch (MaybeBitCode.get()) {
205     default: // Default behavior: reject
206       return error("Invalid value");
207     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
208       convertToString(Record, 0, ProducerIdentification);
209       break;
210     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
211       unsigned epoch = (unsigned)Record[0];
212       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
213         return error(
214           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
215           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
216       }
217     }
218     }
219   }
220 }
221 
222 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
223   // We expect a number of well-defined blocks, though we don't necessarily
224   // need to understand them all.
225   while (true) {
226     if (Stream.AtEndOfStream())
227       return "";
228 
229     BitstreamEntry Entry;
230     if (Expected<BitstreamEntry> Res = Stream.advance())
231       Entry = std::move(Res.get());
232     else
233       return Res.takeError();
234 
235     switch (Entry.Kind) {
236     case BitstreamEntry::EndBlock:
237     case BitstreamEntry::Error:
238       return error("Malformed block");
239 
240     case BitstreamEntry::SubBlock:
241       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
242         return readIdentificationBlock(Stream);
243 
244       // Ignore other sub-blocks.
245       if (Error Err = Stream.SkipBlock())
246         return std::move(Err);
247       continue;
248     case BitstreamEntry::Record:
249       if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
250         continue;
251       else
252         return Skipped.takeError();
253     }
254   }
255 }
256 
257 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
258   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
259     return std::move(Err);
260 
261   SmallVector<uint64_t, 64> Record;
262   // Read all the records for this module.
263 
264   while (true) {
265     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
266     if (!MaybeEntry)
267       return MaybeEntry.takeError();
268     BitstreamEntry Entry = MaybeEntry.get();
269 
270     switch (Entry.Kind) {
271     case BitstreamEntry::SubBlock: // Handled for us already.
272     case BitstreamEntry::Error:
273       return error("Malformed block");
274     case BitstreamEntry::EndBlock:
275       return false;
276     case BitstreamEntry::Record:
277       // The interesting case.
278       break;
279     }
280 
281     // Read a record.
282     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
283     if (!MaybeRecord)
284       return MaybeRecord.takeError();
285     switch (MaybeRecord.get()) {
286     default:
287       break; // Default behavior, ignore unknown content.
288     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
289       std::string S;
290       if (convertToString(Record, 0, S))
291         return error("Invalid record");
292       // Check for the i386 and other (x86_64, ARM) conventions
293       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
294           S.find("__OBJC,__category") != std::string::npos)
295         return true;
296       break;
297     }
298     }
299     Record.clear();
300   }
301   llvm_unreachable("Exit infinite loop");
302 }
303 
304 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
305   // We expect a number of well-defined blocks, though we don't necessarily
306   // need to understand them all.
307   while (true) {
308     BitstreamEntry Entry;
309     if (Expected<BitstreamEntry> Res = Stream.advance())
310       Entry = std::move(Res.get());
311     else
312       return Res.takeError();
313 
314     switch (Entry.Kind) {
315     case BitstreamEntry::Error:
316       return error("Malformed block");
317     case BitstreamEntry::EndBlock:
318       return false;
319 
320     case BitstreamEntry::SubBlock:
321       if (Entry.ID == bitc::MODULE_BLOCK_ID)
322         return hasObjCCategoryInModule(Stream);
323 
324       // Ignore other sub-blocks.
325       if (Error Err = Stream.SkipBlock())
326         return std::move(Err);
327       continue;
328 
329     case BitstreamEntry::Record:
330       if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
331         continue;
332       else
333         return Skipped.takeError();
334     }
335   }
336 }
337 
338 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
339   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
340     return std::move(Err);
341 
342   SmallVector<uint64_t, 64> Record;
343 
344   std::string Triple;
345 
346   // Read all the records for this module.
347   while (true) {
348     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
349     if (!MaybeEntry)
350       return MaybeEntry.takeError();
351     BitstreamEntry Entry = MaybeEntry.get();
352 
353     switch (Entry.Kind) {
354     case BitstreamEntry::SubBlock: // Handled for us already.
355     case BitstreamEntry::Error:
356       return error("Malformed block");
357     case BitstreamEntry::EndBlock:
358       return Triple;
359     case BitstreamEntry::Record:
360       // The interesting case.
361       break;
362     }
363 
364     // Read a record.
365     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
366     if (!MaybeRecord)
367       return MaybeRecord.takeError();
368     switch (MaybeRecord.get()) {
369     default: break;  // Default behavior, ignore unknown content.
370     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
371       std::string S;
372       if (convertToString(Record, 0, S))
373         return error("Invalid record");
374       Triple = S;
375       break;
376     }
377     }
378     Record.clear();
379   }
380   llvm_unreachable("Exit infinite loop");
381 }
382 
383 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
384   // We expect a number of well-defined blocks, though we don't necessarily
385   // need to understand them all.
386   while (true) {
387     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
388     if (!MaybeEntry)
389       return MaybeEntry.takeError();
390     BitstreamEntry Entry = MaybeEntry.get();
391 
392     switch (Entry.Kind) {
393     case BitstreamEntry::Error:
394       return error("Malformed block");
395     case BitstreamEntry::EndBlock:
396       return "";
397 
398     case BitstreamEntry::SubBlock:
399       if (Entry.ID == bitc::MODULE_BLOCK_ID)
400         return readModuleTriple(Stream);
401 
402       // Ignore other sub-blocks.
403       if (Error Err = Stream.SkipBlock())
404         return std::move(Err);
405       continue;
406 
407     case BitstreamEntry::Record:
408       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
409         continue;
410       else
411         return Skipped.takeError();
412     }
413   }
414 }
415 
416 namespace {
417 
418 class BitcodeReaderBase {
419 protected:
420   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
421       : Stream(std::move(Stream)), Strtab(Strtab) {
422     this->Stream.setBlockInfo(&BlockInfo);
423   }
424 
425   BitstreamBlockInfo BlockInfo;
426   BitstreamCursor Stream;
427   StringRef Strtab;
428 
429   /// In version 2 of the bitcode we store names of global values and comdats in
430   /// a string table rather than in the VST.
431   bool UseStrtab = false;
432 
433   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
434 
435   /// If this module uses a string table, pop the reference to the string table
436   /// and return the referenced string and the rest of the record. Otherwise
437   /// just return the record itself.
438   std::pair<StringRef, ArrayRef<uint64_t>>
439   readNameFromStrtab(ArrayRef<uint64_t> Record);
440 
441   bool readBlockInfo();
442 
443   // Contains an arbitrary and optional string identifying the bitcode producer
444   std::string ProducerIdentification;
445 
446   Error error(const Twine &Message);
447 };
448 
449 } // end anonymous namespace
450 
451 Error BitcodeReaderBase::error(const Twine &Message) {
452   std::string FullMsg = Message.str();
453   if (!ProducerIdentification.empty())
454     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
455                LLVM_VERSION_STRING "')";
456   return ::error(FullMsg);
457 }
458 
459 Expected<unsigned>
460 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
461   if (Record.empty())
462     return error("Invalid record");
463   unsigned ModuleVersion = Record[0];
464   if (ModuleVersion > 2)
465     return error("Invalid value");
466   UseStrtab = ModuleVersion >= 2;
467   return ModuleVersion;
468 }
469 
470 std::pair<StringRef, ArrayRef<uint64_t>>
471 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
472   if (!UseStrtab)
473     return {"", Record};
474   // Invalid reference. Let the caller complain about the record being empty.
475   if (Record[0] + Record[1] > Strtab.size())
476     return {"", {}};
477   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
478 }
479 
480 namespace {
481 
482 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
483   LLVMContext &Context;
484   Module *TheModule = nullptr;
485   // Next offset to start scanning for lazy parsing of function bodies.
486   uint64_t NextUnreadBit = 0;
487   // Last function offset found in the VST.
488   uint64_t LastFunctionBlockBit = 0;
489   bool SeenValueSymbolTable = false;
490   uint64_t VSTOffset = 0;
491 
492   std::vector<std::string> SectionTable;
493   std::vector<std::string> GCTable;
494 
495   std::vector<Type*> TypeList;
496   DenseMap<Function *, FunctionType *> FunctionTypes;
497   BitcodeReaderValueList ValueList;
498   Optional<MetadataLoader> MDLoader;
499   std::vector<Comdat *> ComdatList;
500   SmallVector<Instruction *, 64> InstructionList;
501 
502   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
503   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits;
504   std::vector<std::pair<Function *, unsigned>> FunctionPrefixes;
505   std::vector<std::pair<Function *, unsigned>> FunctionPrologues;
506   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns;
507 
508   /// The set of attributes by index.  Index zero in the file is for null, and
509   /// is thus not represented here.  As such all indices are off by one.
510   std::vector<AttributeList> MAttributes;
511 
512   /// The set of attribute groups.
513   std::map<unsigned, AttributeList> MAttributeGroups;
514 
515   /// While parsing a function body, this is a list of the basic blocks for the
516   /// function.
517   std::vector<BasicBlock*> FunctionBBs;
518 
519   // When reading the module header, this list is populated with functions that
520   // have bodies later in the file.
521   std::vector<Function*> FunctionsWithBodies;
522 
523   // When intrinsic functions are encountered which require upgrading they are
524   // stored here with their replacement function.
525   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
526   UpdatedIntrinsicMap UpgradedIntrinsics;
527   // Intrinsics which were remangled because of types rename
528   UpdatedIntrinsicMap RemangledIntrinsics;
529 
530   // Several operations happen after the module header has been read, but
531   // before function bodies are processed. This keeps track of whether
532   // we've done this yet.
533   bool SeenFirstFunctionBody = false;
534 
535   /// When function bodies are initially scanned, this map contains info about
536   /// where to find deferred function body in the stream.
537   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
538 
539   /// When Metadata block is initially scanned when parsing the module, we may
540   /// choose to defer parsing of the metadata. This vector contains info about
541   /// which Metadata blocks are deferred.
542   std::vector<uint64_t> DeferredMetadataInfo;
543 
544   /// These are basic blocks forward-referenced by block addresses.  They are
545   /// inserted lazily into functions when they're loaded.  The basic block ID is
546   /// its index into the vector.
547   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
548   std::deque<Function *> BasicBlockFwdRefQueue;
549 
550   /// Indicates that we are using a new encoding for instruction operands where
551   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
552   /// instruction number, for a more compact encoding.  Some instruction
553   /// operands are not relative to the instruction ID: basic block numbers, and
554   /// types. Once the old style function blocks have been phased out, we would
555   /// not need this flag.
556   bool UseRelativeIDs = false;
557 
558   /// True if all functions will be materialized, negating the need to process
559   /// (e.g.) blockaddress forward references.
560   bool WillMaterializeAllForwardRefs = false;
561 
562   bool StripDebugInfo = false;
563   TBAAVerifier TBAAVerifyHelper;
564 
565   std::vector<std::string> BundleTags;
566   SmallVector<SyncScope::ID, 8> SSIDs;
567 
568 public:
569   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
570                 StringRef ProducerIdentification, LLVMContext &Context);
571 
572   Error materializeForwardReferencedFunctions();
573 
574   Error materialize(GlobalValue *GV) override;
575   Error materializeModule() override;
576   std::vector<StructType *> getIdentifiedStructTypes() const override;
577 
578   /// Main interface to parsing a bitcode buffer.
579   /// \returns true if an error occurred.
580   Error parseBitcodeInto(
581       Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false,
582       DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
583 
584   static uint64_t decodeSignRotatedValue(uint64_t V);
585 
586   /// Materialize any deferred Metadata block.
587   Error materializeMetadata() override;
588 
589   void setStripDebugInfo() override;
590 
591 private:
592   std::vector<StructType *> IdentifiedStructTypes;
593   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
594   StructType *createIdentifiedStructType(LLVMContext &Context);
595 
596   /// Map all pointer types within \param Ty to the opaque pointer
597   /// type in the same address space if opaque pointers are being
598   /// used, otherwise nop. This converts a bitcode-reader internal
599   /// type into one suitable for use in a Value.
600   Type *flattenPointerTypes(Type *Ty) {
601     return Ty;
602   }
603 
604   /// Given a fully structured pointer type (i.e. not opaque), return
605   /// the flattened form of its element, suitable for use in a Value.
606   Type *getPointerElementFlatType(Type *Ty) {
607     return flattenPointerTypes(cast<PointerType>(Ty)->getElementType());
608   }
609 
610   /// Given a fully structured pointer type, get its element type in
611   /// both fully structured form, and flattened form suitable for use
612   /// in a Value.
613   std::pair<Type *, Type *> getPointerElementTypes(Type *FullTy) {
614     Type *ElTy = cast<PointerType>(FullTy)->getElementType();
615     return std::make_pair(ElTy, flattenPointerTypes(ElTy));
616   }
617 
618   /// Return the flattened type (suitable for use in a Value)
619   /// specified by the given \param ID .
620   Type *getTypeByID(unsigned ID) {
621     return flattenPointerTypes(getFullyStructuredTypeByID(ID));
622   }
623 
624   /// Return the fully structured (bitcode-reader internal) type
625   /// corresponding to the given \param ID .
626   Type *getFullyStructuredTypeByID(unsigned ID);
627 
628   Value *getFnValueByID(unsigned ID, Type *Ty, Type **FullTy = nullptr) {
629     if (Ty && Ty->isMetadataTy())
630       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
631     return ValueList.getValueFwdRef(ID, Ty, FullTy);
632   }
633 
634   Metadata *getFnMetadataByID(unsigned ID) {
635     return MDLoader->getMetadataFwdRefOrLoad(ID);
636   }
637 
638   BasicBlock *getBasicBlock(unsigned ID) const {
639     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
640     return FunctionBBs[ID];
641   }
642 
643   AttributeList getAttributes(unsigned i) const {
644     if (i-1 < MAttributes.size())
645       return MAttributes[i-1];
646     return AttributeList();
647   }
648 
649   /// Read a value/type pair out of the specified record from slot 'Slot'.
650   /// Increment Slot past the number of slots used in the record. Return true on
651   /// failure.
652   bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
653                         unsigned InstNum, Value *&ResVal,
654                         Type **FullTy = nullptr) {
655     if (Slot == Record.size()) return true;
656     unsigned ValNo = (unsigned)Record[Slot++];
657     // Adjust the ValNo, if it was encoded relative to the InstNum.
658     if (UseRelativeIDs)
659       ValNo = InstNum - ValNo;
660     if (ValNo < InstNum) {
661       // If this is not a forward reference, just return the value we already
662       // have.
663       ResVal = getFnValueByID(ValNo, nullptr, FullTy);
664       return ResVal == nullptr;
665     }
666     if (Slot == Record.size())
667       return true;
668 
669     unsigned TypeNo = (unsigned)Record[Slot++];
670     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
671     if (FullTy)
672       *FullTy = getFullyStructuredTypeByID(TypeNo);
673     return ResVal == nullptr;
674   }
675 
676   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
677   /// past the number of slots used by the value in the record. Return true if
678   /// there is an error.
679   bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
680                 unsigned InstNum, Type *Ty, Value *&ResVal) {
681     if (getValue(Record, Slot, InstNum, Ty, ResVal))
682       return true;
683     // All values currently take a single record slot.
684     ++Slot;
685     return false;
686   }
687 
688   /// Like popValue, but does not increment the Slot number.
689   bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
690                 unsigned InstNum, Type *Ty, Value *&ResVal) {
691     ResVal = getValue(Record, Slot, InstNum, Ty);
692     return ResVal == nullptr;
693   }
694 
695   /// Version of getValue that returns ResVal directly, or 0 if there is an
696   /// error.
697   Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
698                   unsigned InstNum, Type *Ty) {
699     if (Slot == Record.size()) return nullptr;
700     unsigned ValNo = (unsigned)Record[Slot];
701     // Adjust the ValNo, if it was encoded relative to the InstNum.
702     if (UseRelativeIDs)
703       ValNo = InstNum - ValNo;
704     return getFnValueByID(ValNo, Ty);
705   }
706 
707   /// Like getValue, but decodes signed VBRs.
708   Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
709                         unsigned InstNum, Type *Ty) {
710     if (Slot == Record.size()) return nullptr;
711     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
712     // Adjust the ValNo, if it was encoded relative to the InstNum.
713     if (UseRelativeIDs)
714       ValNo = InstNum - ValNo;
715     return getFnValueByID(ValNo, Ty);
716   }
717 
718   /// Upgrades old-style typeless byval or sret attributes by adding the
719   /// corresponding argument's pointee type.
720   void propagateByValSRetTypes(CallBase *CB, ArrayRef<Type *> ArgsFullTys);
721 
722   /// Converts alignment exponent (i.e. power of two (or zero)) to the
723   /// corresponding alignment to use. If alignment is too large, returns
724   /// a corresponding error code.
725   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
726   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
727   Error parseModule(
728       uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
729       DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
730 
731   Error parseComdatRecord(ArrayRef<uint64_t> Record);
732   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
733   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
734   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
735                                         ArrayRef<uint64_t> Record);
736 
737   Error parseAttributeBlock();
738   Error parseAttributeGroupBlock();
739   Error parseTypeTable();
740   Error parseTypeTableBody();
741   Error parseOperandBundleTags();
742   Error parseSyncScopeNames();
743 
744   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
745                                 unsigned NameIndex, Triple &TT);
746   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
747                                ArrayRef<uint64_t> Record);
748   Error parseValueSymbolTable(uint64_t Offset = 0);
749   Error parseGlobalValueSymbolTable();
750   Error parseConstants();
751   Error rememberAndSkipFunctionBodies();
752   Error rememberAndSkipFunctionBody();
753   /// Save the positions of the Metadata blocks and skip parsing the blocks.
754   Error rememberAndSkipMetadata();
755   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
756   Error parseFunctionBody(Function *F);
757   Error globalCleanup();
758   Error resolveGlobalAndIndirectSymbolInits();
759   Error parseUseLists();
760   Error findFunctionInStream(
761       Function *F,
762       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
763 
764   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
765 };
766 
767 /// Class to manage reading and parsing function summary index bitcode
768 /// files/sections.
769 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
770   /// The module index built during parsing.
771   ModuleSummaryIndex &TheIndex;
772 
773   /// Indicates whether we have encountered a global value summary section
774   /// yet during parsing.
775   bool SeenGlobalValSummary = false;
776 
777   /// Indicates whether we have already parsed the VST, used for error checking.
778   bool SeenValueSymbolTable = false;
779 
780   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
781   /// Used to enable on-demand parsing of the VST.
782   uint64_t VSTOffset = 0;
783 
784   // Map to save ValueId to ValueInfo association that was recorded in the
785   // ValueSymbolTable. It is used after the VST is parsed to convert
786   // call graph edges read from the function summary from referencing
787   // callees by their ValueId to using the ValueInfo instead, which is how
788   // they are recorded in the summary index being built.
789   // We save a GUID which refers to the same global as the ValueInfo, but
790   // ignoring the linkage, i.e. for values other than local linkage they are
791   // identical.
792   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
793       ValueIdToValueInfoMap;
794 
795   /// Map populated during module path string table parsing, from the
796   /// module ID to a string reference owned by the index's module
797   /// path string table, used to correlate with combined index
798   /// summary records.
799   DenseMap<uint64_t, StringRef> ModuleIdMap;
800 
801   /// Original source file name recorded in a bitcode record.
802   std::string SourceFileName;
803 
804   /// The string identifier given to this module by the client, normally the
805   /// path to the bitcode file.
806   StringRef ModulePath;
807 
808   /// For per-module summary indexes, the unique numerical identifier given to
809   /// this module by the client.
810   unsigned ModuleId;
811 
812 public:
813   ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
814                                   ModuleSummaryIndex &TheIndex,
815                                   StringRef ModulePath, unsigned ModuleId);
816 
817   Error parseModule();
818 
819 private:
820   void setValueGUID(uint64_t ValueID, StringRef ValueName,
821                     GlobalValue::LinkageTypes Linkage,
822                     StringRef SourceFileName);
823   Error parseValueSymbolTable(
824       uint64_t Offset,
825       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
826   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
827   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
828                                                     bool IsOldProfileFormat,
829                                                     bool HasProfile,
830                                                     bool HasRelBF);
831   Error parseEntireSummary(unsigned ID);
832   Error parseModuleStringTable();
833   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
834   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
835                                        TypeIdCompatibleVtableInfo &TypeId);
836   std::vector<FunctionSummary::ParamAccess>
837   parseParamAccesses(ArrayRef<uint64_t> Record);
838 
839   std::pair<ValueInfo, GlobalValue::GUID>
840   getValueInfoFromValueId(unsigned ValueId);
841 
842   void addThisModule();
843   ModuleSummaryIndex::ModuleInfo *getThisModule();
844 };
845 
846 } // end anonymous namespace
847 
848 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
849                                                     Error Err) {
850   if (Err) {
851     std::error_code EC;
852     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
853       EC = EIB.convertToErrorCode();
854       Ctx.emitError(EIB.message());
855     });
856     return EC;
857   }
858   return std::error_code();
859 }
860 
861 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
862                              StringRef ProducerIdentification,
863                              LLVMContext &Context)
864     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
865       ValueList(Context, Stream.SizeInBytes()) {
866   this->ProducerIdentification = std::string(ProducerIdentification);
867 }
868 
869 Error BitcodeReader::materializeForwardReferencedFunctions() {
870   if (WillMaterializeAllForwardRefs)
871     return Error::success();
872 
873   // Prevent recursion.
874   WillMaterializeAllForwardRefs = true;
875 
876   while (!BasicBlockFwdRefQueue.empty()) {
877     Function *F = BasicBlockFwdRefQueue.front();
878     BasicBlockFwdRefQueue.pop_front();
879     assert(F && "Expected valid function");
880     if (!BasicBlockFwdRefs.count(F))
881       // Already materialized.
882       continue;
883 
884     // Check for a function that isn't materializable to prevent an infinite
885     // loop.  When parsing a blockaddress stored in a global variable, there
886     // isn't a trivial way to check if a function will have a body without a
887     // linear search through FunctionsWithBodies, so just check it here.
888     if (!F->isMaterializable())
889       return error("Never resolved function from blockaddress");
890 
891     // Try to materialize F.
892     if (Error Err = materialize(F))
893       return Err;
894   }
895   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
896 
897   // Reset state.
898   WillMaterializeAllForwardRefs = false;
899   return Error::success();
900 }
901 
902 //===----------------------------------------------------------------------===//
903 //  Helper functions to implement forward reference resolution, etc.
904 //===----------------------------------------------------------------------===//
905 
906 static bool hasImplicitComdat(size_t Val) {
907   switch (Val) {
908   default:
909     return false;
910   case 1:  // Old WeakAnyLinkage
911   case 4:  // Old LinkOnceAnyLinkage
912   case 10: // Old WeakODRLinkage
913   case 11: // Old LinkOnceODRLinkage
914     return true;
915   }
916 }
917 
918 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
919   switch (Val) {
920   default: // Map unknown/new linkages to external
921   case 0:
922     return GlobalValue::ExternalLinkage;
923   case 2:
924     return GlobalValue::AppendingLinkage;
925   case 3:
926     return GlobalValue::InternalLinkage;
927   case 5:
928     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
929   case 6:
930     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
931   case 7:
932     return GlobalValue::ExternalWeakLinkage;
933   case 8:
934     return GlobalValue::CommonLinkage;
935   case 9:
936     return GlobalValue::PrivateLinkage;
937   case 12:
938     return GlobalValue::AvailableExternallyLinkage;
939   case 13:
940     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
941   case 14:
942     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
943   case 15:
944     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
945   case 1: // Old value with implicit comdat.
946   case 16:
947     return GlobalValue::WeakAnyLinkage;
948   case 10: // Old value with implicit comdat.
949   case 17:
950     return GlobalValue::WeakODRLinkage;
951   case 4: // Old value with implicit comdat.
952   case 18:
953     return GlobalValue::LinkOnceAnyLinkage;
954   case 11: // Old value with implicit comdat.
955   case 19:
956     return GlobalValue::LinkOnceODRLinkage;
957   }
958 }
959 
960 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
961   FunctionSummary::FFlags Flags;
962   Flags.ReadNone = RawFlags & 0x1;
963   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
964   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
965   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
966   Flags.NoInline = (RawFlags >> 4) & 0x1;
967   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
968   return Flags;
969 }
970 
971 // Decode the flags for GlobalValue in the summary. The bits for each attribute:
972 //
973 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7,
974 // visibility: [8, 10).
975 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
976                                                             uint64_t Version) {
977   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
978   // like getDecodedLinkage() above. Any future change to the linkage enum and
979   // to getDecodedLinkage() will need to be taken into account here as above.
980   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
981   auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits
982   RawFlags = RawFlags >> 4;
983   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
984   // The Live flag wasn't introduced until version 3. For dead stripping
985   // to work correctly on earlier versions, we must conservatively treat all
986   // values as live.
987   bool Live = (RawFlags & 0x2) || Version < 3;
988   bool Local = (RawFlags & 0x4);
989   bool AutoHide = (RawFlags & 0x8);
990 
991   return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport,
992                                      Live, Local, AutoHide);
993 }
994 
995 // Decode the flags for GlobalVariable in the summary
996 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
997   return GlobalVarSummary::GVarFlags(
998       (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
999       (RawFlags & 0x4) ? true : false,
1000       (GlobalObject::VCallVisibility)(RawFlags >> 3));
1001 }
1002 
1003 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
1004   switch (Val) {
1005   default: // Map unknown visibilities to default.
1006   case 0: return GlobalValue::DefaultVisibility;
1007   case 1: return GlobalValue::HiddenVisibility;
1008   case 2: return GlobalValue::ProtectedVisibility;
1009   }
1010 }
1011 
1012 static GlobalValue::DLLStorageClassTypes
1013 getDecodedDLLStorageClass(unsigned Val) {
1014   switch (Val) {
1015   default: // Map unknown values to default.
1016   case 0: return GlobalValue::DefaultStorageClass;
1017   case 1: return GlobalValue::DLLImportStorageClass;
1018   case 2: return GlobalValue::DLLExportStorageClass;
1019   }
1020 }
1021 
1022 static bool getDecodedDSOLocal(unsigned Val) {
1023   switch(Val) {
1024   default: // Map unknown values to preemptable.
1025   case 0:  return false;
1026   case 1:  return true;
1027   }
1028 }
1029 
1030 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1031   switch (Val) {
1032     case 0: return GlobalVariable::NotThreadLocal;
1033     default: // Map unknown non-zero value to general dynamic.
1034     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1035     case 2: return GlobalVariable::LocalDynamicTLSModel;
1036     case 3: return GlobalVariable::InitialExecTLSModel;
1037     case 4: return GlobalVariable::LocalExecTLSModel;
1038   }
1039 }
1040 
1041 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1042   switch (Val) {
1043     default: // Map unknown to UnnamedAddr::None.
1044     case 0: return GlobalVariable::UnnamedAddr::None;
1045     case 1: return GlobalVariable::UnnamedAddr::Global;
1046     case 2: return GlobalVariable::UnnamedAddr::Local;
1047   }
1048 }
1049 
1050 static int getDecodedCastOpcode(unsigned Val) {
1051   switch (Val) {
1052   default: return -1;
1053   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1054   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1055   case bitc::CAST_SEXT    : return Instruction::SExt;
1056   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1057   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1058   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1059   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1060   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1061   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1062   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1063   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1064   case bitc::CAST_BITCAST : return Instruction::BitCast;
1065   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1066   }
1067 }
1068 
1069 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1070   bool IsFP = Ty->isFPOrFPVectorTy();
1071   // UnOps are only valid for int/fp or vector of int/fp types
1072   if (!IsFP && !Ty->isIntOrIntVectorTy())
1073     return -1;
1074 
1075   switch (Val) {
1076   default:
1077     return -1;
1078   case bitc::UNOP_FNEG:
1079     return IsFP ? Instruction::FNeg : -1;
1080   }
1081 }
1082 
1083 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1084   bool IsFP = Ty->isFPOrFPVectorTy();
1085   // BinOps are only valid for int/fp or vector of int/fp types
1086   if (!IsFP && !Ty->isIntOrIntVectorTy())
1087     return -1;
1088 
1089   switch (Val) {
1090   default:
1091     return -1;
1092   case bitc::BINOP_ADD:
1093     return IsFP ? Instruction::FAdd : Instruction::Add;
1094   case bitc::BINOP_SUB:
1095     return IsFP ? Instruction::FSub : Instruction::Sub;
1096   case bitc::BINOP_MUL:
1097     return IsFP ? Instruction::FMul : Instruction::Mul;
1098   case bitc::BINOP_UDIV:
1099     return IsFP ? -1 : Instruction::UDiv;
1100   case bitc::BINOP_SDIV:
1101     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1102   case bitc::BINOP_UREM:
1103     return IsFP ? -1 : Instruction::URem;
1104   case bitc::BINOP_SREM:
1105     return IsFP ? Instruction::FRem : Instruction::SRem;
1106   case bitc::BINOP_SHL:
1107     return IsFP ? -1 : Instruction::Shl;
1108   case bitc::BINOP_LSHR:
1109     return IsFP ? -1 : Instruction::LShr;
1110   case bitc::BINOP_ASHR:
1111     return IsFP ? -1 : Instruction::AShr;
1112   case bitc::BINOP_AND:
1113     return IsFP ? -1 : Instruction::And;
1114   case bitc::BINOP_OR:
1115     return IsFP ? -1 : Instruction::Or;
1116   case bitc::BINOP_XOR:
1117     return IsFP ? -1 : Instruction::Xor;
1118   }
1119 }
1120 
1121 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1122   switch (Val) {
1123   default: return AtomicRMWInst::BAD_BINOP;
1124   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1125   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1126   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1127   case bitc::RMW_AND: return AtomicRMWInst::And;
1128   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1129   case bitc::RMW_OR: return AtomicRMWInst::Or;
1130   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1131   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1132   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1133   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1134   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1135   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1136   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1137   }
1138 }
1139 
1140 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1141   switch (Val) {
1142   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1143   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1144   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1145   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1146   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1147   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1148   default: // Map unknown orderings to sequentially-consistent.
1149   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1150   }
1151 }
1152 
1153 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1154   switch (Val) {
1155   default: // Map unknown selection kinds to any.
1156   case bitc::COMDAT_SELECTION_KIND_ANY:
1157     return Comdat::Any;
1158   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1159     return Comdat::ExactMatch;
1160   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1161     return Comdat::Largest;
1162   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1163     return Comdat::NoDuplicates;
1164   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1165     return Comdat::SameSize;
1166   }
1167 }
1168 
1169 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1170   FastMathFlags FMF;
1171   if (0 != (Val & bitc::UnsafeAlgebra))
1172     FMF.setFast();
1173   if (0 != (Val & bitc::AllowReassoc))
1174     FMF.setAllowReassoc();
1175   if (0 != (Val & bitc::NoNaNs))
1176     FMF.setNoNaNs();
1177   if (0 != (Val & bitc::NoInfs))
1178     FMF.setNoInfs();
1179   if (0 != (Val & bitc::NoSignedZeros))
1180     FMF.setNoSignedZeros();
1181   if (0 != (Val & bitc::AllowReciprocal))
1182     FMF.setAllowReciprocal();
1183   if (0 != (Val & bitc::AllowContract))
1184     FMF.setAllowContract(true);
1185   if (0 != (Val & bitc::ApproxFunc))
1186     FMF.setApproxFunc();
1187   return FMF;
1188 }
1189 
1190 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1191   switch (Val) {
1192   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1193   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1194   }
1195 }
1196 
1197 Type *BitcodeReader::getFullyStructuredTypeByID(unsigned ID) {
1198   // The type table size is always specified correctly.
1199   if (ID >= TypeList.size())
1200     return nullptr;
1201 
1202   if (Type *Ty = TypeList[ID])
1203     return Ty;
1204 
1205   // If we have a forward reference, the only possible case is when it is to a
1206   // named struct.  Just create a placeholder for now.
1207   return TypeList[ID] = createIdentifiedStructType(Context);
1208 }
1209 
1210 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1211                                                       StringRef Name) {
1212   auto *Ret = StructType::create(Context, Name);
1213   IdentifiedStructTypes.push_back(Ret);
1214   return Ret;
1215 }
1216 
1217 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1218   auto *Ret = StructType::create(Context);
1219   IdentifiedStructTypes.push_back(Ret);
1220   return Ret;
1221 }
1222 
1223 //===----------------------------------------------------------------------===//
1224 //  Functions for parsing blocks from the bitcode file
1225 //===----------------------------------------------------------------------===//
1226 
1227 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1228   switch (Val) {
1229   case Attribute::EndAttrKinds:
1230   case Attribute::EmptyKey:
1231   case Attribute::TombstoneKey:
1232     llvm_unreachable("Synthetic enumerators which should never get here");
1233 
1234   case Attribute::None:            return 0;
1235   case Attribute::ZExt:            return 1 << 0;
1236   case Attribute::SExt:            return 1 << 1;
1237   case Attribute::NoReturn:        return 1 << 2;
1238   case Attribute::InReg:           return 1 << 3;
1239   case Attribute::StructRet:       return 1 << 4;
1240   case Attribute::NoUnwind:        return 1 << 5;
1241   case Attribute::NoAlias:         return 1 << 6;
1242   case Attribute::ByVal:           return 1 << 7;
1243   case Attribute::Nest:            return 1 << 8;
1244   case Attribute::ReadNone:        return 1 << 9;
1245   case Attribute::ReadOnly:        return 1 << 10;
1246   case Attribute::NoInline:        return 1 << 11;
1247   case Attribute::AlwaysInline:    return 1 << 12;
1248   case Attribute::OptimizeForSize: return 1 << 13;
1249   case Attribute::StackProtect:    return 1 << 14;
1250   case Attribute::StackProtectReq: return 1 << 15;
1251   case Attribute::Alignment:       return 31 << 16;
1252   case Attribute::NoCapture:       return 1 << 21;
1253   case Attribute::NoRedZone:       return 1 << 22;
1254   case Attribute::NoImplicitFloat: return 1 << 23;
1255   case Attribute::Naked:           return 1 << 24;
1256   case Attribute::InlineHint:      return 1 << 25;
1257   case Attribute::StackAlignment:  return 7 << 26;
1258   case Attribute::ReturnsTwice:    return 1 << 29;
1259   case Attribute::UWTable:         return 1 << 30;
1260   case Attribute::NonLazyBind:     return 1U << 31;
1261   case Attribute::SanitizeAddress: return 1ULL << 32;
1262   case Attribute::MinSize:         return 1ULL << 33;
1263   case Attribute::NoDuplicate:     return 1ULL << 34;
1264   case Attribute::StackProtectStrong: return 1ULL << 35;
1265   case Attribute::SanitizeThread:  return 1ULL << 36;
1266   case Attribute::SanitizeMemory:  return 1ULL << 37;
1267   case Attribute::NoBuiltin:       return 1ULL << 38;
1268   case Attribute::Returned:        return 1ULL << 39;
1269   case Attribute::Cold:            return 1ULL << 40;
1270   case Attribute::Builtin:         return 1ULL << 41;
1271   case Attribute::OptimizeNone:    return 1ULL << 42;
1272   case Attribute::InAlloca:        return 1ULL << 43;
1273   case Attribute::NonNull:         return 1ULL << 44;
1274   case Attribute::JumpTable:       return 1ULL << 45;
1275   case Attribute::Convergent:      return 1ULL << 46;
1276   case Attribute::SafeStack:       return 1ULL << 47;
1277   case Attribute::NoRecurse:       return 1ULL << 48;
1278   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1279   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1280   case Attribute::SwiftSelf:       return 1ULL << 51;
1281   case Attribute::SwiftError:      return 1ULL << 52;
1282   case Attribute::WriteOnly:       return 1ULL << 53;
1283   case Attribute::Speculatable:    return 1ULL << 54;
1284   case Attribute::StrictFP:        return 1ULL << 55;
1285   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1286   case Attribute::NoCfCheck:       return 1ULL << 57;
1287   case Attribute::OptForFuzzing:   return 1ULL << 58;
1288   case Attribute::ShadowCallStack: return 1ULL << 59;
1289   case Attribute::SpeculativeLoadHardening:
1290     return 1ULL << 60;
1291   case Attribute::ImmArg:
1292     return 1ULL << 61;
1293   case Attribute::WillReturn:
1294     return 1ULL << 62;
1295   case Attribute::NoFree:
1296     return 1ULL << 63;
1297   default:
1298     // Other attributes are not supported in the raw format,
1299     // as we ran out of space.
1300     return 0;
1301   }
1302   llvm_unreachable("Unsupported attribute type");
1303 }
1304 
1305 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1306   if (!Val) return;
1307 
1308   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1309        I = Attribute::AttrKind(I + 1)) {
1310     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1311       if (I == Attribute::Alignment)
1312         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1313       else if (I == Attribute::StackAlignment)
1314         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1315       else
1316         B.addAttribute(I);
1317     }
1318   }
1319 }
1320 
1321 /// This fills an AttrBuilder object with the LLVM attributes that have
1322 /// been decoded from the given integer. This function must stay in sync with
1323 /// 'encodeLLVMAttributesForBitcode'.
1324 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1325                                            uint64_t EncodedAttrs) {
1326   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1327   // the bits above 31 down by 11 bits.
1328   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1329   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1330          "Alignment must be a power of two.");
1331 
1332   if (Alignment)
1333     B.addAlignmentAttr(Alignment);
1334   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1335                           (EncodedAttrs & 0xffff));
1336 }
1337 
1338 Error BitcodeReader::parseAttributeBlock() {
1339   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1340     return Err;
1341 
1342   if (!MAttributes.empty())
1343     return error("Invalid multiple blocks");
1344 
1345   SmallVector<uint64_t, 64> Record;
1346 
1347   SmallVector<AttributeList, 8> Attrs;
1348 
1349   // Read all the records.
1350   while (true) {
1351     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1352     if (!MaybeEntry)
1353       return MaybeEntry.takeError();
1354     BitstreamEntry Entry = MaybeEntry.get();
1355 
1356     switch (Entry.Kind) {
1357     case BitstreamEntry::SubBlock: // Handled for us already.
1358     case BitstreamEntry::Error:
1359       return error("Malformed block");
1360     case BitstreamEntry::EndBlock:
1361       return Error::success();
1362     case BitstreamEntry::Record:
1363       // The interesting case.
1364       break;
1365     }
1366 
1367     // Read a record.
1368     Record.clear();
1369     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1370     if (!MaybeRecord)
1371       return MaybeRecord.takeError();
1372     switch (MaybeRecord.get()) {
1373     default:  // Default behavior: ignore.
1374       break;
1375     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1376       // Deprecated, but still needed to read old bitcode files.
1377       if (Record.size() & 1)
1378         return error("Invalid record");
1379 
1380       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1381         AttrBuilder B;
1382         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1383         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1384       }
1385 
1386       MAttributes.push_back(AttributeList::get(Context, Attrs));
1387       Attrs.clear();
1388       break;
1389     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1390       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1391         Attrs.push_back(MAttributeGroups[Record[i]]);
1392 
1393       MAttributes.push_back(AttributeList::get(Context, Attrs));
1394       Attrs.clear();
1395       break;
1396     }
1397   }
1398 }
1399 
1400 // Returns Attribute::None on unrecognized codes.
1401 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1402   switch (Code) {
1403   default:
1404     return Attribute::None;
1405   case bitc::ATTR_KIND_ALIGNMENT:
1406     return Attribute::Alignment;
1407   case bitc::ATTR_KIND_ALWAYS_INLINE:
1408     return Attribute::AlwaysInline;
1409   case bitc::ATTR_KIND_ARGMEMONLY:
1410     return Attribute::ArgMemOnly;
1411   case bitc::ATTR_KIND_BUILTIN:
1412     return Attribute::Builtin;
1413   case bitc::ATTR_KIND_BY_VAL:
1414     return Attribute::ByVal;
1415   case bitc::ATTR_KIND_IN_ALLOCA:
1416     return Attribute::InAlloca;
1417   case bitc::ATTR_KIND_COLD:
1418     return Attribute::Cold;
1419   case bitc::ATTR_KIND_CONVERGENT:
1420     return Attribute::Convergent;
1421   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1422     return Attribute::InaccessibleMemOnly;
1423   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1424     return Attribute::InaccessibleMemOrArgMemOnly;
1425   case bitc::ATTR_KIND_INLINE_HINT:
1426     return Attribute::InlineHint;
1427   case bitc::ATTR_KIND_IN_REG:
1428     return Attribute::InReg;
1429   case bitc::ATTR_KIND_JUMP_TABLE:
1430     return Attribute::JumpTable;
1431   case bitc::ATTR_KIND_MIN_SIZE:
1432     return Attribute::MinSize;
1433   case bitc::ATTR_KIND_NAKED:
1434     return Attribute::Naked;
1435   case bitc::ATTR_KIND_NEST:
1436     return Attribute::Nest;
1437   case bitc::ATTR_KIND_NO_ALIAS:
1438     return Attribute::NoAlias;
1439   case bitc::ATTR_KIND_NO_BUILTIN:
1440     return Attribute::NoBuiltin;
1441   case bitc::ATTR_KIND_NO_CALLBACK:
1442     return Attribute::NoCallback;
1443   case bitc::ATTR_KIND_NO_CAPTURE:
1444     return Attribute::NoCapture;
1445   case bitc::ATTR_KIND_NO_DUPLICATE:
1446     return Attribute::NoDuplicate;
1447   case bitc::ATTR_KIND_NOFREE:
1448     return Attribute::NoFree;
1449   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1450     return Attribute::NoImplicitFloat;
1451   case bitc::ATTR_KIND_NO_INLINE:
1452     return Attribute::NoInline;
1453   case bitc::ATTR_KIND_NO_RECURSE:
1454     return Attribute::NoRecurse;
1455   case bitc::ATTR_KIND_NO_MERGE:
1456     return Attribute::NoMerge;
1457   case bitc::ATTR_KIND_NON_LAZY_BIND:
1458     return Attribute::NonLazyBind;
1459   case bitc::ATTR_KIND_NON_NULL:
1460     return Attribute::NonNull;
1461   case bitc::ATTR_KIND_DEREFERENCEABLE:
1462     return Attribute::Dereferenceable;
1463   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1464     return Attribute::DereferenceableOrNull;
1465   case bitc::ATTR_KIND_ALLOC_SIZE:
1466     return Attribute::AllocSize;
1467   case bitc::ATTR_KIND_NO_RED_ZONE:
1468     return Attribute::NoRedZone;
1469   case bitc::ATTR_KIND_NO_RETURN:
1470     return Attribute::NoReturn;
1471   case bitc::ATTR_KIND_NOSYNC:
1472     return Attribute::NoSync;
1473   case bitc::ATTR_KIND_NOCF_CHECK:
1474     return Attribute::NoCfCheck;
1475   case bitc::ATTR_KIND_NO_UNWIND:
1476     return Attribute::NoUnwind;
1477   case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
1478     return Attribute::NullPointerIsValid;
1479   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1480     return Attribute::OptForFuzzing;
1481   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1482     return Attribute::OptimizeForSize;
1483   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1484     return Attribute::OptimizeNone;
1485   case bitc::ATTR_KIND_READ_NONE:
1486     return Attribute::ReadNone;
1487   case bitc::ATTR_KIND_READ_ONLY:
1488     return Attribute::ReadOnly;
1489   case bitc::ATTR_KIND_RETURNED:
1490     return Attribute::Returned;
1491   case bitc::ATTR_KIND_RETURNS_TWICE:
1492     return Attribute::ReturnsTwice;
1493   case bitc::ATTR_KIND_S_EXT:
1494     return Attribute::SExt;
1495   case bitc::ATTR_KIND_SPECULATABLE:
1496     return Attribute::Speculatable;
1497   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1498     return Attribute::StackAlignment;
1499   case bitc::ATTR_KIND_STACK_PROTECT:
1500     return Attribute::StackProtect;
1501   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1502     return Attribute::StackProtectReq;
1503   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1504     return Attribute::StackProtectStrong;
1505   case bitc::ATTR_KIND_SAFESTACK:
1506     return Attribute::SafeStack;
1507   case bitc::ATTR_KIND_SHADOWCALLSTACK:
1508     return Attribute::ShadowCallStack;
1509   case bitc::ATTR_KIND_STRICT_FP:
1510     return Attribute::StrictFP;
1511   case bitc::ATTR_KIND_STRUCT_RET:
1512     return Attribute::StructRet;
1513   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1514     return Attribute::SanitizeAddress;
1515   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
1516     return Attribute::SanitizeHWAddress;
1517   case bitc::ATTR_KIND_SANITIZE_THREAD:
1518     return Attribute::SanitizeThread;
1519   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1520     return Attribute::SanitizeMemory;
1521   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
1522     return Attribute::SpeculativeLoadHardening;
1523   case bitc::ATTR_KIND_SWIFT_ERROR:
1524     return Attribute::SwiftError;
1525   case bitc::ATTR_KIND_SWIFT_SELF:
1526     return Attribute::SwiftSelf;
1527   case bitc::ATTR_KIND_UW_TABLE:
1528     return Attribute::UWTable;
1529   case bitc::ATTR_KIND_VSCALE_RANGE:
1530     return Attribute::VScaleRange;
1531   case bitc::ATTR_KIND_WILLRETURN:
1532     return Attribute::WillReturn;
1533   case bitc::ATTR_KIND_WRITEONLY:
1534     return Attribute::WriteOnly;
1535   case bitc::ATTR_KIND_Z_EXT:
1536     return Attribute::ZExt;
1537   case bitc::ATTR_KIND_IMMARG:
1538     return Attribute::ImmArg;
1539   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
1540     return Attribute::SanitizeMemTag;
1541   case bitc::ATTR_KIND_PREALLOCATED:
1542     return Attribute::Preallocated;
1543   case bitc::ATTR_KIND_NOUNDEF:
1544     return Attribute::NoUndef;
1545   case bitc::ATTR_KIND_BYREF:
1546     return Attribute::ByRef;
1547   case bitc::ATTR_KIND_MUSTPROGRESS:
1548     return Attribute::MustProgress;
1549   case bitc::ATTR_KIND_HOT:
1550     return Attribute::Hot;
1551   }
1552 }
1553 
1554 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1555                                          MaybeAlign &Alignment) {
1556   // Note: Alignment in bitcode files is incremented by 1, so that zero
1557   // can be used for default alignment.
1558   if (Exponent > Value::MaxAlignmentExponent + 1)
1559     return error("Invalid alignment value");
1560   Alignment = decodeMaybeAlign(Exponent);
1561   return Error::success();
1562 }
1563 
1564 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1565   *Kind = getAttrFromCode(Code);
1566   if (*Kind == Attribute::None)
1567     return error("Unknown attribute kind (" + Twine(Code) + ")");
1568   return Error::success();
1569 }
1570 
1571 Error BitcodeReader::parseAttributeGroupBlock() {
1572   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1573     return Err;
1574 
1575   if (!MAttributeGroups.empty())
1576     return error("Invalid multiple blocks");
1577 
1578   SmallVector<uint64_t, 64> Record;
1579 
1580   // Read all the records.
1581   while (true) {
1582     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1583     if (!MaybeEntry)
1584       return MaybeEntry.takeError();
1585     BitstreamEntry Entry = MaybeEntry.get();
1586 
1587     switch (Entry.Kind) {
1588     case BitstreamEntry::SubBlock: // Handled for us already.
1589     case BitstreamEntry::Error:
1590       return error("Malformed block");
1591     case BitstreamEntry::EndBlock:
1592       return Error::success();
1593     case BitstreamEntry::Record:
1594       // The interesting case.
1595       break;
1596     }
1597 
1598     // Read a record.
1599     Record.clear();
1600     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1601     if (!MaybeRecord)
1602       return MaybeRecord.takeError();
1603     switch (MaybeRecord.get()) {
1604     default:  // Default behavior: ignore.
1605       break;
1606     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1607       if (Record.size() < 3)
1608         return error("Invalid record");
1609 
1610       uint64_t GrpID = Record[0];
1611       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1612 
1613       AttrBuilder B;
1614       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1615         if (Record[i] == 0) {        // Enum attribute
1616           Attribute::AttrKind Kind;
1617           if (Error Err = parseAttrKind(Record[++i], &Kind))
1618             return Err;
1619 
1620           // Upgrade old-style byval attribute to one with a type, even if it's
1621           // nullptr. We will have to insert the real type when we associate
1622           // this AttributeList with a function.
1623           if (Kind == Attribute::ByVal)
1624             B.addByValAttr(nullptr);
1625           else if (Kind == Attribute::StructRet)
1626             B.addStructRetAttr(nullptr);
1627 
1628           B.addAttribute(Kind);
1629         } else if (Record[i] == 1) { // Integer attribute
1630           Attribute::AttrKind Kind;
1631           if (Error Err = parseAttrKind(Record[++i], &Kind))
1632             return Err;
1633           if (Kind == Attribute::Alignment)
1634             B.addAlignmentAttr(Record[++i]);
1635           else if (Kind == Attribute::StackAlignment)
1636             B.addStackAlignmentAttr(Record[++i]);
1637           else if (Kind == Attribute::Dereferenceable)
1638             B.addDereferenceableAttr(Record[++i]);
1639           else if (Kind == Attribute::DereferenceableOrNull)
1640             B.addDereferenceableOrNullAttr(Record[++i]);
1641           else if (Kind == Attribute::AllocSize)
1642             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1643           else if (Kind == Attribute::VScaleRange)
1644             B.addVScaleRangeAttrFromRawRepr(Record[++i]);
1645         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
1646           bool HasValue = (Record[i++] == 4);
1647           SmallString<64> KindStr;
1648           SmallString<64> ValStr;
1649 
1650           while (Record[i] != 0 && i != e)
1651             KindStr += Record[i++];
1652           assert(Record[i] == 0 && "Kind string not null terminated");
1653 
1654           if (HasValue) {
1655             // Has a value associated with it.
1656             ++i; // Skip the '0' that terminates the "kind" string.
1657             while (Record[i] != 0 && i != e)
1658               ValStr += Record[i++];
1659             assert(Record[i] == 0 && "Value string not null terminated");
1660           }
1661 
1662           B.addAttribute(KindStr.str(), ValStr.str());
1663         } else {
1664           assert((Record[i] == 5 || Record[i] == 6) &&
1665                  "Invalid attribute group entry");
1666           bool HasType = Record[i] == 6;
1667           Attribute::AttrKind Kind;
1668           if (Error Err = parseAttrKind(Record[++i], &Kind))
1669             return Err;
1670           if (Kind == Attribute::ByVal) {
1671             B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr);
1672           } else if (Kind == Attribute::StructRet) {
1673             B.addStructRetAttr(HasType ? getTypeByID(Record[++i]) : nullptr);
1674           } else if (Kind == Attribute::ByRef) {
1675             B.addByRefAttr(getTypeByID(Record[++i]));
1676           } else if (Kind == Attribute::Preallocated) {
1677             B.addPreallocatedAttr(getTypeByID(Record[++i]));
1678           }
1679         }
1680       }
1681 
1682       UpgradeAttributes(B);
1683       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1684       break;
1685     }
1686     }
1687   }
1688 }
1689 
1690 Error BitcodeReader::parseTypeTable() {
1691   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1692     return Err;
1693 
1694   return parseTypeTableBody();
1695 }
1696 
1697 Error BitcodeReader::parseTypeTableBody() {
1698   if (!TypeList.empty())
1699     return error("Invalid multiple blocks");
1700 
1701   SmallVector<uint64_t, 64> Record;
1702   unsigned NumRecords = 0;
1703 
1704   SmallString<64> TypeName;
1705 
1706   // Read all the records for this type table.
1707   while (true) {
1708     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1709     if (!MaybeEntry)
1710       return MaybeEntry.takeError();
1711     BitstreamEntry Entry = MaybeEntry.get();
1712 
1713     switch (Entry.Kind) {
1714     case BitstreamEntry::SubBlock: // Handled for us already.
1715     case BitstreamEntry::Error:
1716       return error("Malformed block");
1717     case BitstreamEntry::EndBlock:
1718       if (NumRecords != TypeList.size())
1719         return error("Malformed block");
1720       return Error::success();
1721     case BitstreamEntry::Record:
1722       // The interesting case.
1723       break;
1724     }
1725 
1726     // Read a record.
1727     Record.clear();
1728     Type *ResultTy = nullptr;
1729     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1730     if (!MaybeRecord)
1731       return MaybeRecord.takeError();
1732     switch (MaybeRecord.get()) {
1733     default:
1734       return error("Invalid value");
1735     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1736       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1737       // type list.  This allows us to reserve space.
1738       if (Record.empty())
1739         return error("Invalid record");
1740       TypeList.resize(Record[0]);
1741       continue;
1742     case bitc::TYPE_CODE_VOID:      // VOID
1743       ResultTy = Type::getVoidTy(Context);
1744       break;
1745     case bitc::TYPE_CODE_HALF:     // HALF
1746       ResultTy = Type::getHalfTy(Context);
1747       break;
1748     case bitc::TYPE_CODE_BFLOAT:    // BFLOAT
1749       ResultTy = Type::getBFloatTy(Context);
1750       break;
1751     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1752       ResultTy = Type::getFloatTy(Context);
1753       break;
1754     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1755       ResultTy = Type::getDoubleTy(Context);
1756       break;
1757     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1758       ResultTy = Type::getX86_FP80Ty(Context);
1759       break;
1760     case bitc::TYPE_CODE_FP128:     // FP128
1761       ResultTy = Type::getFP128Ty(Context);
1762       break;
1763     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1764       ResultTy = Type::getPPC_FP128Ty(Context);
1765       break;
1766     case bitc::TYPE_CODE_LABEL:     // LABEL
1767       ResultTy = Type::getLabelTy(Context);
1768       break;
1769     case bitc::TYPE_CODE_METADATA:  // METADATA
1770       ResultTy = Type::getMetadataTy(Context);
1771       break;
1772     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1773       ResultTy = Type::getX86_MMXTy(Context);
1774       break;
1775     case bitc::TYPE_CODE_X86_AMX:   // X86_AMX
1776       ResultTy = Type::getX86_AMXTy(Context);
1777       break;
1778     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1779       ResultTy = Type::getTokenTy(Context);
1780       break;
1781     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1782       if (Record.empty())
1783         return error("Invalid record");
1784 
1785       uint64_t NumBits = Record[0];
1786       if (NumBits < IntegerType::MIN_INT_BITS ||
1787           NumBits > IntegerType::MAX_INT_BITS)
1788         return error("Bitwidth for integer type out of range");
1789       ResultTy = IntegerType::get(Context, NumBits);
1790       break;
1791     }
1792     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1793                                     //          [pointee type, address space]
1794       if (Record.empty())
1795         return error("Invalid record");
1796       unsigned AddressSpace = 0;
1797       if (Record.size() == 2)
1798         AddressSpace = Record[1];
1799       ResultTy = getTypeByID(Record[0]);
1800       if (!ResultTy ||
1801           !PointerType::isValidElementType(ResultTy))
1802         return error("Invalid type");
1803       ResultTy = PointerType::get(ResultTy, AddressSpace);
1804       break;
1805     }
1806     case bitc::TYPE_CODE_FUNCTION_OLD: {
1807       // Deprecated, but still needed to read old bitcode files.
1808       // FUNCTION: [vararg, attrid, retty, paramty x N]
1809       if (Record.size() < 3)
1810         return error("Invalid record");
1811       SmallVector<Type*, 8> ArgTys;
1812       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1813         if (Type *T = getTypeByID(Record[i]))
1814           ArgTys.push_back(T);
1815         else
1816           break;
1817       }
1818 
1819       ResultTy = getTypeByID(Record[2]);
1820       if (!ResultTy || ArgTys.size() < Record.size()-3)
1821         return error("Invalid type");
1822 
1823       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1824       break;
1825     }
1826     case bitc::TYPE_CODE_FUNCTION: {
1827       // FUNCTION: [vararg, retty, paramty x N]
1828       if (Record.size() < 2)
1829         return error("Invalid record");
1830       SmallVector<Type*, 8> ArgTys;
1831       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1832         if (Type *T = getTypeByID(Record[i])) {
1833           if (!FunctionType::isValidArgumentType(T))
1834             return error("Invalid function argument type");
1835           ArgTys.push_back(T);
1836         }
1837         else
1838           break;
1839       }
1840 
1841       ResultTy = getTypeByID(Record[1]);
1842       if (!ResultTy || ArgTys.size() < Record.size()-2)
1843         return error("Invalid type");
1844 
1845       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1846       break;
1847     }
1848     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1849       if (Record.empty())
1850         return error("Invalid record");
1851       SmallVector<Type*, 8> EltTys;
1852       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1853         if (Type *T = getTypeByID(Record[i]))
1854           EltTys.push_back(T);
1855         else
1856           break;
1857       }
1858       if (EltTys.size() != Record.size()-1)
1859         return error("Invalid type");
1860       ResultTy = StructType::get(Context, EltTys, Record[0]);
1861       break;
1862     }
1863     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1864       if (convertToString(Record, 0, TypeName))
1865         return error("Invalid record");
1866       continue;
1867 
1868     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1869       if (Record.empty())
1870         return error("Invalid record");
1871 
1872       if (NumRecords >= TypeList.size())
1873         return error("Invalid TYPE table");
1874 
1875       // Check to see if this was forward referenced, if so fill in the temp.
1876       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1877       if (Res) {
1878         Res->setName(TypeName);
1879         TypeList[NumRecords] = nullptr;
1880       } else  // Otherwise, create a new struct.
1881         Res = createIdentifiedStructType(Context, TypeName);
1882       TypeName.clear();
1883 
1884       SmallVector<Type*, 8> EltTys;
1885       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1886         if (Type *T = getTypeByID(Record[i]))
1887           EltTys.push_back(T);
1888         else
1889           break;
1890       }
1891       if (EltTys.size() != Record.size()-1)
1892         return error("Invalid record");
1893       Res->setBody(EltTys, Record[0]);
1894       ResultTy = Res;
1895       break;
1896     }
1897     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1898       if (Record.size() != 1)
1899         return error("Invalid record");
1900 
1901       if (NumRecords >= TypeList.size())
1902         return error("Invalid TYPE table");
1903 
1904       // Check to see if this was forward referenced, if so fill in the temp.
1905       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1906       if (Res) {
1907         Res->setName(TypeName);
1908         TypeList[NumRecords] = nullptr;
1909       } else  // Otherwise, create a new struct with no body.
1910         Res = createIdentifiedStructType(Context, TypeName);
1911       TypeName.clear();
1912       ResultTy = Res;
1913       break;
1914     }
1915     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1916       if (Record.size() < 2)
1917         return error("Invalid record");
1918       ResultTy = getTypeByID(Record[1]);
1919       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1920         return error("Invalid type");
1921       ResultTy = ArrayType::get(ResultTy, Record[0]);
1922       break;
1923     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
1924                                     //         [numelts, eltty, scalable]
1925       if (Record.size() < 2)
1926         return error("Invalid record");
1927       if (Record[0] == 0)
1928         return error("Invalid vector length");
1929       ResultTy = getTypeByID(Record[1]);
1930       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1931         return error("Invalid type");
1932       bool Scalable = Record.size() > 2 ? Record[2] : false;
1933       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
1934       break;
1935     }
1936 
1937     if (NumRecords >= TypeList.size())
1938       return error("Invalid TYPE table");
1939     if (TypeList[NumRecords])
1940       return error(
1941           "Invalid TYPE table: Only named structs can be forward referenced");
1942     assert(ResultTy && "Didn't read a type?");
1943     TypeList[NumRecords++] = ResultTy;
1944   }
1945 }
1946 
1947 Error BitcodeReader::parseOperandBundleTags() {
1948   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1949     return Err;
1950 
1951   if (!BundleTags.empty())
1952     return error("Invalid multiple blocks");
1953 
1954   SmallVector<uint64_t, 64> Record;
1955 
1956   while (true) {
1957     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1958     if (!MaybeEntry)
1959       return MaybeEntry.takeError();
1960     BitstreamEntry Entry = MaybeEntry.get();
1961 
1962     switch (Entry.Kind) {
1963     case BitstreamEntry::SubBlock: // Handled for us already.
1964     case BitstreamEntry::Error:
1965       return error("Malformed block");
1966     case BitstreamEntry::EndBlock:
1967       return Error::success();
1968     case BitstreamEntry::Record:
1969       // The interesting case.
1970       break;
1971     }
1972 
1973     // Tags are implicitly mapped to integers by their order.
1974 
1975     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1976     if (!MaybeRecord)
1977       return MaybeRecord.takeError();
1978     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
1979       return error("Invalid record");
1980 
1981     // OPERAND_BUNDLE_TAG: [strchr x N]
1982     BundleTags.emplace_back();
1983     if (convertToString(Record, 0, BundleTags.back()))
1984       return error("Invalid record");
1985     Record.clear();
1986   }
1987 }
1988 
1989 Error BitcodeReader::parseSyncScopeNames() {
1990   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
1991     return Err;
1992 
1993   if (!SSIDs.empty())
1994     return error("Invalid multiple synchronization scope names blocks");
1995 
1996   SmallVector<uint64_t, 64> Record;
1997   while (true) {
1998     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1999     if (!MaybeEntry)
2000       return MaybeEntry.takeError();
2001     BitstreamEntry Entry = MaybeEntry.get();
2002 
2003     switch (Entry.Kind) {
2004     case BitstreamEntry::SubBlock: // Handled for us already.
2005     case BitstreamEntry::Error:
2006       return error("Malformed block");
2007     case BitstreamEntry::EndBlock:
2008       if (SSIDs.empty())
2009         return error("Invalid empty synchronization scope names block");
2010       return Error::success();
2011     case BitstreamEntry::Record:
2012       // The interesting case.
2013       break;
2014     }
2015 
2016     // Synchronization scope names are implicitly mapped to synchronization
2017     // scope IDs by their order.
2018 
2019     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2020     if (!MaybeRecord)
2021       return MaybeRecord.takeError();
2022     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2023       return error("Invalid record");
2024 
2025     SmallString<16> SSN;
2026     if (convertToString(Record, 0, SSN))
2027       return error("Invalid record");
2028 
2029     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2030     Record.clear();
2031   }
2032 }
2033 
2034 /// Associate a value with its name from the given index in the provided record.
2035 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2036                                              unsigned NameIndex, Triple &TT) {
2037   SmallString<128> ValueName;
2038   if (convertToString(Record, NameIndex, ValueName))
2039     return error("Invalid record");
2040   unsigned ValueID = Record[0];
2041   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2042     return error("Invalid record");
2043   Value *V = ValueList[ValueID];
2044 
2045   StringRef NameStr(ValueName.data(), ValueName.size());
2046   if (NameStr.find_first_of(0) != StringRef::npos)
2047     return error("Invalid value name");
2048   V->setName(NameStr);
2049   auto *GO = dyn_cast<GlobalObject>(V);
2050   if (GO) {
2051     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
2052       if (TT.supportsCOMDAT())
2053         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2054       else
2055         GO->setComdat(nullptr);
2056     }
2057   }
2058   return V;
2059 }
2060 
2061 /// Helper to note and return the current location, and jump to the given
2062 /// offset.
2063 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2064                                                  BitstreamCursor &Stream) {
2065   // Save the current parsing location so we can jump back at the end
2066   // of the VST read.
2067   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2068   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2069     return std::move(JumpFailed);
2070   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2071   if (!MaybeEntry)
2072     return MaybeEntry.takeError();
2073   assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock);
2074   assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID);
2075   return CurrentBit;
2076 }
2077 
2078 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2079                                             Function *F,
2080                                             ArrayRef<uint64_t> Record) {
2081   // Note that we subtract 1 here because the offset is relative to one word
2082   // before the start of the identification or module block, which was
2083   // historically always the start of the regular bitcode header.
2084   uint64_t FuncWordOffset = Record[1] - 1;
2085   uint64_t FuncBitOffset = FuncWordOffset * 32;
2086   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2087   // Set the LastFunctionBlockBit to point to the last function block.
2088   // Later when parsing is resumed after function materialization,
2089   // we can simply skip that last function block.
2090   if (FuncBitOffset > LastFunctionBlockBit)
2091     LastFunctionBlockBit = FuncBitOffset;
2092 }
2093 
2094 /// Read a new-style GlobalValue symbol table.
2095 Error BitcodeReader::parseGlobalValueSymbolTable() {
2096   unsigned FuncBitcodeOffsetDelta =
2097       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2098 
2099   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2100     return Err;
2101 
2102   SmallVector<uint64_t, 64> Record;
2103   while (true) {
2104     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2105     if (!MaybeEntry)
2106       return MaybeEntry.takeError();
2107     BitstreamEntry Entry = MaybeEntry.get();
2108 
2109     switch (Entry.Kind) {
2110     case BitstreamEntry::SubBlock:
2111     case BitstreamEntry::Error:
2112       return error("Malformed block");
2113     case BitstreamEntry::EndBlock:
2114       return Error::success();
2115     case BitstreamEntry::Record:
2116       break;
2117     }
2118 
2119     Record.clear();
2120     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2121     if (!MaybeRecord)
2122       return MaybeRecord.takeError();
2123     switch (MaybeRecord.get()) {
2124     case bitc::VST_CODE_FNENTRY: // [valueid, offset]
2125       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2126                               cast<Function>(ValueList[Record[0]]), Record);
2127       break;
2128     }
2129   }
2130 }
2131 
2132 /// Parse the value symbol table at either the current parsing location or
2133 /// at the given bit offset if provided.
2134 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2135   uint64_t CurrentBit;
2136   // Pass in the Offset to distinguish between calling for the module-level
2137   // VST (where we want to jump to the VST offset) and the function-level
2138   // VST (where we don't).
2139   if (Offset > 0) {
2140     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2141     if (!MaybeCurrentBit)
2142       return MaybeCurrentBit.takeError();
2143     CurrentBit = MaybeCurrentBit.get();
2144     // If this module uses a string table, read this as a module-level VST.
2145     if (UseStrtab) {
2146       if (Error Err = parseGlobalValueSymbolTable())
2147         return Err;
2148       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2149         return JumpFailed;
2150       return Error::success();
2151     }
2152     // Otherwise, the VST will be in a similar format to a function-level VST,
2153     // and will contain symbol names.
2154   }
2155 
2156   // Compute the delta between the bitcode indices in the VST (the word offset
2157   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2158   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2159   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2160   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2161   // just before entering the VST subblock because: 1) the EnterSubBlock
2162   // changes the AbbrevID width; 2) the VST block is nested within the same
2163   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2164   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2165   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2166   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2167   unsigned FuncBitcodeOffsetDelta =
2168       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2169 
2170   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2171     return Err;
2172 
2173   SmallVector<uint64_t, 64> Record;
2174 
2175   Triple TT(TheModule->getTargetTriple());
2176 
2177   // Read all the records for this value table.
2178   SmallString<128> ValueName;
2179 
2180   while (true) {
2181     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2182     if (!MaybeEntry)
2183       return MaybeEntry.takeError();
2184     BitstreamEntry Entry = MaybeEntry.get();
2185 
2186     switch (Entry.Kind) {
2187     case BitstreamEntry::SubBlock: // Handled for us already.
2188     case BitstreamEntry::Error:
2189       return error("Malformed block");
2190     case BitstreamEntry::EndBlock:
2191       if (Offset > 0)
2192         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2193           return JumpFailed;
2194       return Error::success();
2195     case BitstreamEntry::Record:
2196       // The interesting case.
2197       break;
2198     }
2199 
2200     // Read a record.
2201     Record.clear();
2202     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2203     if (!MaybeRecord)
2204       return MaybeRecord.takeError();
2205     switch (MaybeRecord.get()) {
2206     default:  // Default behavior: unknown type.
2207       break;
2208     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2209       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2210       if (Error Err = ValOrErr.takeError())
2211         return Err;
2212       ValOrErr.get();
2213       break;
2214     }
2215     case bitc::VST_CODE_FNENTRY: {
2216       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2217       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2218       if (Error Err = ValOrErr.takeError())
2219         return Err;
2220       Value *V = ValOrErr.get();
2221 
2222       // Ignore function offsets emitted for aliases of functions in older
2223       // versions of LLVM.
2224       if (auto *F = dyn_cast<Function>(V))
2225         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2226       break;
2227     }
2228     case bitc::VST_CODE_BBENTRY: {
2229       if (convertToString(Record, 1, ValueName))
2230         return error("Invalid record");
2231       BasicBlock *BB = getBasicBlock(Record[0]);
2232       if (!BB)
2233         return error("Invalid record");
2234 
2235       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2236       ValueName.clear();
2237       break;
2238     }
2239     }
2240   }
2241 }
2242 
2243 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2244 /// encoding.
2245 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2246   if ((V & 1) == 0)
2247     return V >> 1;
2248   if (V != 1)
2249     return -(V >> 1);
2250   // There is no such thing as -0 with integers.  "-0" really means MININT.
2251   return 1ULL << 63;
2252 }
2253 
2254 /// Resolve all of the initializers for global values and aliases that we can.
2255 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2256   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2257   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>
2258       IndirectSymbolInitWorklist;
2259   std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist;
2260   std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist;
2261   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist;
2262 
2263   GlobalInitWorklist.swap(GlobalInits);
2264   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2265   FunctionPrefixWorklist.swap(FunctionPrefixes);
2266   FunctionPrologueWorklist.swap(FunctionPrologues);
2267   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2268 
2269   while (!GlobalInitWorklist.empty()) {
2270     unsigned ValID = GlobalInitWorklist.back().second;
2271     if (ValID >= ValueList.size()) {
2272       // Not ready to resolve this yet, it requires something later in the file.
2273       GlobalInits.push_back(GlobalInitWorklist.back());
2274     } else {
2275       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2276         GlobalInitWorklist.back().first->setInitializer(C);
2277       else
2278         return error("Expected a constant");
2279     }
2280     GlobalInitWorklist.pop_back();
2281   }
2282 
2283   while (!IndirectSymbolInitWorklist.empty()) {
2284     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2285     if (ValID >= ValueList.size()) {
2286       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2287     } else {
2288       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2289       if (!C)
2290         return error("Expected a constant");
2291       GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2292       if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2293         return error("Alias and aliasee types don't match");
2294       GIS->setIndirectSymbol(C);
2295     }
2296     IndirectSymbolInitWorklist.pop_back();
2297   }
2298 
2299   while (!FunctionPrefixWorklist.empty()) {
2300     unsigned ValID = FunctionPrefixWorklist.back().second;
2301     if (ValID >= ValueList.size()) {
2302       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2303     } else {
2304       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2305         FunctionPrefixWorklist.back().first->setPrefixData(C);
2306       else
2307         return error("Expected a constant");
2308     }
2309     FunctionPrefixWorklist.pop_back();
2310   }
2311 
2312   while (!FunctionPrologueWorklist.empty()) {
2313     unsigned ValID = FunctionPrologueWorklist.back().second;
2314     if (ValID >= ValueList.size()) {
2315       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2316     } else {
2317       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2318         FunctionPrologueWorklist.back().first->setPrologueData(C);
2319       else
2320         return error("Expected a constant");
2321     }
2322     FunctionPrologueWorklist.pop_back();
2323   }
2324 
2325   while (!FunctionPersonalityFnWorklist.empty()) {
2326     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2327     if (ValID >= ValueList.size()) {
2328       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2329     } else {
2330       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2331         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2332       else
2333         return error("Expected a constant");
2334     }
2335     FunctionPersonalityFnWorklist.pop_back();
2336   }
2337 
2338   return Error::success();
2339 }
2340 
2341 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2342   SmallVector<uint64_t, 8> Words(Vals.size());
2343   transform(Vals, Words.begin(),
2344                  BitcodeReader::decodeSignRotatedValue);
2345 
2346   return APInt(TypeBits, Words);
2347 }
2348 
2349 Error BitcodeReader::parseConstants() {
2350   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2351     return Err;
2352 
2353   SmallVector<uint64_t, 64> Record;
2354 
2355   // Read all the records for this value table.
2356   Type *CurTy = Type::getInt32Ty(Context);
2357   Type *CurFullTy = Type::getInt32Ty(Context);
2358   unsigned NextCstNo = ValueList.size();
2359 
2360   struct DelayedShufTy {
2361     VectorType *OpTy;
2362     VectorType *RTy;
2363     Type *CurFullTy;
2364     uint64_t Op0Idx;
2365     uint64_t Op1Idx;
2366     uint64_t Op2Idx;
2367     unsigned CstNo;
2368   };
2369   std::vector<DelayedShufTy> DelayedShuffles;
2370   while (true) {
2371     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2372     if (!MaybeEntry)
2373       return MaybeEntry.takeError();
2374     BitstreamEntry Entry = MaybeEntry.get();
2375 
2376     switch (Entry.Kind) {
2377     case BitstreamEntry::SubBlock: // Handled for us already.
2378     case BitstreamEntry::Error:
2379       return error("Malformed block");
2380     case BitstreamEntry::EndBlock:
2381       // Once all the constants have been read, go through and resolve forward
2382       // references.
2383       //
2384       // We have to treat shuffles specially because they don't have three
2385       // operands anymore.  We need to convert the shuffle mask into an array,
2386       // and we can't convert a forward reference.
2387       for (auto &DelayedShuffle : DelayedShuffles) {
2388         VectorType *OpTy = DelayedShuffle.OpTy;
2389         VectorType *RTy = DelayedShuffle.RTy;
2390         uint64_t Op0Idx = DelayedShuffle.Op0Idx;
2391         uint64_t Op1Idx = DelayedShuffle.Op1Idx;
2392         uint64_t Op2Idx = DelayedShuffle.Op2Idx;
2393         uint64_t CstNo = DelayedShuffle.CstNo;
2394         Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy);
2395         Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy);
2396         Type *ShufTy =
2397             VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount());
2398         Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy);
2399         if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
2400           return error("Invalid shufflevector operands");
2401         SmallVector<int, 16> Mask;
2402         ShuffleVectorInst::getShuffleMask(Op2, Mask);
2403         Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask);
2404         ValueList.assignValue(V, CstNo, DelayedShuffle.CurFullTy);
2405       }
2406 
2407       if (NextCstNo != ValueList.size())
2408         return error("Invalid constant reference");
2409 
2410       ValueList.resolveConstantForwardRefs();
2411       return Error::success();
2412     case BitstreamEntry::Record:
2413       // The interesting case.
2414       break;
2415     }
2416 
2417     // Read a record.
2418     Record.clear();
2419     Type *VoidType = Type::getVoidTy(Context);
2420     Value *V = nullptr;
2421     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
2422     if (!MaybeBitCode)
2423       return MaybeBitCode.takeError();
2424     switch (unsigned BitCode = MaybeBitCode.get()) {
2425     default:  // Default behavior: unknown constant
2426     case bitc::CST_CODE_UNDEF:     // UNDEF
2427       V = UndefValue::get(CurTy);
2428       break;
2429     case bitc::CST_CODE_POISON:    // POISON
2430       V = PoisonValue::get(CurTy);
2431       break;
2432     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2433       if (Record.empty())
2434         return error("Invalid record");
2435       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2436         return error("Invalid record");
2437       if (TypeList[Record[0]] == VoidType)
2438         return error("Invalid constant type");
2439       CurFullTy = TypeList[Record[0]];
2440       CurTy = flattenPointerTypes(CurFullTy);
2441       continue;  // Skip the ValueList manipulation.
2442     case bitc::CST_CODE_NULL:      // NULL
2443       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
2444         return error("Invalid type for a constant null value");
2445       V = Constant::getNullValue(CurTy);
2446       break;
2447     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2448       if (!CurTy->isIntegerTy() || Record.empty())
2449         return error("Invalid record");
2450       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2451       break;
2452     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2453       if (!CurTy->isIntegerTy() || Record.empty())
2454         return error("Invalid record");
2455 
2456       APInt VInt =
2457           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2458       V = ConstantInt::get(Context, VInt);
2459 
2460       break;
2461     }
2462     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2463       if (Record.empty())
2464         return error("Invalid record");
2465       if (CurTy->isHalfTy())
2466         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2467                                              APInt(16, (uint16_t)Record[0])));
2468       else if (CurTy->isBFloatTy())
2469         V = ConstantFP::get(Context, APFloat(APFloat::BFloat(),
2470                                              APInt(16, (uint32_t)Record[0])));
2471       else if (CurTy->isFloatTy())
2472         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2473                                              APInt(32, (uint32_t)Record[0])));
2474       else if (CurTy->isDoubleTy())
2475         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2476                                              APInt(64, Record[0])));
2477       else if (CurTy->isX86_FP80Ty()) {
2478         // Bits are not stored the same way as a normal i80 APInt, compensate.
2479         uint64_t Rearrange[2];
2480         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2481         Rearrange[1] = Record[0] >> 48;
2482         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2483                                              APInt(80, Rearrange)));
2484       } else if (CurTy->isFP128Ty())
2485         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2486                                              APInt(128, Record)));
2487       else if (CurTy->isPPC_FP128Ty())
2488         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2489                                              APInt(128, Record)));
2490       else
2491         V = UndefValue::get(CurTy);
2492       break;
2493     }
2494 
2495     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2496       if (Record.empty())
2497         return error("Invalid record");
2498 
2499       unsigned Size = Record.size();
2500       SmallVector<Constant*, 16> Elts;
2501 
2502       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2503         for (unsigned i = 0; i != Size; ++i)
2504           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2505                                                      STy->getElementType(i)));
2506         V = ConstantStruct::get(STy, Elts);
2507       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2508         Type *EltTy = ATy->getElementType();
2509         for (unsigned i = 0; i != Size; ++i)
2510           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2511         V = ConstantArray::get(ATy, Elts);
2512       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2513         Type *EltTy = VTy->getElementType();
2514         for (unsigned i = 0; i != Size; ++i)
2515           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2516         V = ConstantVector::get(Elts);
2517       } else {
2518         V = UndefValue::get(CurTy);
2519       }
2520       break;
2521     }
2522     case bitc::CST_CODE_STRING:    // STRING: [values]
2523     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2524       if (Record.empty())
2525         return error("Invalid record");
2526 
2527       SmallString<16> Elts(Record.begin(), Record.end());
2528       V = ConstantDataArray::getString(Context, Elts,
2529                                        BitCode == bitc::CST_CODE_CSTRING);
2530       break;
2531     }
2532     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2533       if (Record.empty())
2534         return error("Invalid record");
2535 
2536       Type *EltTy;
2537       if (auto *Array = dyn_cast<ArrayType>(CurTy))
2538         EltTy = Array->getElementType();
2539       else
2540         EltTy = cast<VectorType>(CurTy)->getElementType();
2541       if (EltTy->isIntegerTy(8)) {
2542         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2543         if (isa<VectorType>(CurTy))
2544           V = ConstantDataVector::get(Context, Elts);
2545         else
2546           V = ConstantDataArray::get(Context, Elts);
2547       } else if (EltTy->isIntegerTy(16)) {
2548         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2549         if (isa<VectorType>(CurTy))
2550           V = ConstantDataVector::get(Context, Elts);
2551         else
2552           V = ConstantDataArray::get(Context, Elts);
2553       } else if (EltTy->isIntegerTy(32)) {
2554         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2555         if (isa<VectorType>(CurTy))
2556           V = ConstantDataVector::get(Context, Elts);
2557         else
2558           V = ConstantDataArray::get(Context, Elts);
2559       } else if (EltTy->isIntegerTy(64)) {
2560         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2561         if (isa<VectorType>(CurTy))
2562           V = ConstantDataVector::get(Context, Elts);
2563         else
2564           V = ConstantDataArray::get(Context, Elts);
2565       } else if (EltTy->isHalfTy()) {
2566         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2567         if (isa<VectorType>(CurTy))
2568           V = ConstantDataVector::getFP(EltTy, Elts);
2569         else
2570           V = ConstantDataArray::getFP(EltTy, Elts);
2571       } else if (EltTy->isBFloatTy()) {
2572         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2573         if (isa<VectorType>(CurTy))
2574           V = ConstantDataVector::getFP(EltTy, Elts);
2575         else
2576           V = ConstantDataArray::getFP(EltTy, Elts);
2577       } else if (EltTy->isFloatTy()) {
2578         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2579         if (isa<VectorType>(CurTy))
2580           V = ConstantDataVector::getFP(EltTy, Elts);
2581         else
2582           V = ConstantDataArray::getFP(EltTy, Elts);
2583       } else if (EltTy->isDoubleTy()) {
2584         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2585         if (isa<VectorType>(CurTy))
2586           V = ConstantDataVector::getFP(EltTy, Elts);
2587         else
2588           V = ConstantDataArray::getFP(EltTy, Elts);
2589       } else {
2590         return error("Invalid type for value");
2591       }
2592       break;
2593     }
2594     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
2595       if (Record.size() < 2)
2596         return error("Invalid record");
2597       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
2598       if (Opc < 0) {
2599         V = UndefValue::get(CurTy);  // Unknown unop.
2600       } else {
2601         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2602         unsigned Flags = 0;
2603         V = ConstantExpr::get(Opc, LHS, Flags);
2604       }
2605       break;
2606     }
2607     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2608       if (Record.size() < 3)
2609         return error("Invalid record");
2610       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2611       if (Opc < 0) {
2612         V = UndefValue::get(CurTy);  // Unknown binop.
2613       } else {
2614         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2615         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2616         unsigned Flags = 0;
2617         if (Record.size() >= 4) {
2618           if (Opc == Instruction::Add ||
2619               Opc == Instruction::Sub ||
2620               Opc == Instruction::Mul ||
2621               Opc == Instruction::Shl) {
2622             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2623               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2624             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2625               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2626           } else if (Opc == Instruction::SDiv ||
2627                      Opc == Instruction::UDiv ||
2628                      Opc == Instruction::LShr ||
2629                      Opc == Instruction::AShr) {
2630             if (Record[3] & (1 << bitc::PEO_EXACT))
2631               Flags |= SDivOperator::IsExact;
2632           }
2633         }
2634         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2635       }
2636       break;
2637     }
2638     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2639       if (Record.size() < 3)
2640         return error("Invalid record");
2641       int Opc = getDecodedCastOpcode(Record[0]);
2642       if (Opc < 0) {
2643         V = UndefValue::get(CurTy);  // Unknown cast.
2644       } else {
2645         Type *OpTy = getTypeByID(Record[1]);
2646         if (!OpTy)
2647           return error("Invalid record");
2648         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2649         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2650         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2651       }
2652       break;
2653     }
2654     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2655     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2656     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2657                                                      // operands]
2658       unsigned OpNum = 0;
2659       Type *PointeeType = nullptr;
2660       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
2661           Record.size() % 2)
2662         PointeeType = getTypeByID(Record[OpNum++]);
2663 
2664       bool InBounds = false;
2665       Optional<unsigned> InRangeIndex;
2666       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
2667         uint64_t Op = Record[OpNum++];
2668         InBounds = Op & 1;
2669         InRangeIndex = Op >> 1;
2670       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2671         InBounds = true;
2672 
2673       SmallVector<Constant*, 16> Elts;
2674       Type *Elt0FullTy = nullptr;
2675       while (OpNum != Record.size()) {
2676         if (!Elt0FullTy)
2677           Elt0FullTy = getFullyStructuredTypeByID(Record[OpNum]);
2678         Type *ElTy = getTypeByID(Record[OpNum++]);
2679         if (!ElTy)
2680           return error("Invalid record");
2681         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2682       }
2683 
2684       if (Elts.size() < 1)
2685         return error("Invalid gep with no operands");
2686 
2687       Type *ImplicitPointeeType =
2688           getPointerElementFlatType(Elt0FullTy->getScalarType());
2689       if (!PointeeType)
2690         PointeeType = ImplicitPointeeType;
2691       else if (PointeeType != ImplicitPointeeType)
2692         return error("Explicit gep operator type does not match pointee type "
2693                      "of pointer operand");
2694 
2695       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2696       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2697                                          InBounds, InRangeIndex);
2698       break;
2699     }
2700     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2701       if (Record.size() < 3)
2702         return error("Invalid record");
2703 
2704       Type *SelectorTy = Type::getInt1Ty(Context);
2705 
2706       // The selector might be an i1, an <n x i1>, or a <vscale x n x i1>
2707       // Get the type from the ValueList before getting a forward ref.
2708       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2709         if (Value *V = ValueList[Record[0]])
2710           if (SelectorTy != V->getType())
2711             SelectorTy = VectorType::get(SelectorTy,
2712                                          VTy->getElementCount());
2713 
2714       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2715                                                               SelectorTy),
2716                                   ValueList.getConstantFwdRef(Record[1],CurTy),
2717                                   ValueList.getConstantFwdRef(Record[2],CurTy));
2718       break;
2719     }
2720     case bitc::CST_CODE_CE_EXTRACTELT
2721         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2722       if (Record.size() < 3)
2723         return error("Invalid record");
2724       VectorType *OpTy =
2725         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2726       if (!OpTy)
2727         return error("Invalid record");
2728       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2729       Constant *Op1 = nullptr;
2730       if (Record.size() == 4) {
2731         Type *IdxTy = getTypeByID(Record[2]);
2732         if (!IdxTy)
2733           return error("Invalid record");
2734         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2735       } else {
2736         // Deprecated, but still needed to read old bitcode files.
2737         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2738       }
2739       if (!Op1)
2740         return error("Invalid record");
2741       V = ConstantExpr::getExtractElement(Op0, Op1);
2742       break;
2743     }
2744     case bitc::CST_CODE_CE_INSERTELT
2745         : { // CE_INSERTELT: [opval, opval, opty, opval]
2746       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2747       if (Record.size() < 3 || !OpTy)
2748         return error("Invalid record");
2749       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2750       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2751                                                   OpTy->getElementType());
2752       Constant *Op2 = nullptr;
2753       if (Record.size() == 4) {
2754         Type *IdxTy = getTypeByID(Record[2]);
2755         if (!IdxTy)
2756           return error("Invalid record");
2757         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2758       } else {
2759         // Deprecated, but still needed to read old bitcode files.
2760         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2761       }
2762       if (!Op2)
2763         return error("Invalid record");
2764       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2765       break;
2766     }
2767     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2768       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2769       if (Record.size() < 3 || !OpTy)
2770         return error("Invalid record");
2771       DelayedShuffles.push_back(
2772           {OpTy, OpTy, CurFullTy, Record[0], Record[1], Record[2], NextCstNo});
2773       ++NextCstNo;
2774       continue;
2775     }
2776     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2777       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2778       VectorType *OpTy =
2779         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2780       if (Record.size() < 4 || !RTy || !OpTy)
2781         return error("Invalid record");
2782       DelayedShuffles.push_back(
2783           {OpTy, RTy, CurFullTy, Record[1], Record[2], Record[3], NextCstNo});
2784       ++NextCstNo;
2785       continue;
2786     }
2787     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2788       if (Record.size() < 4)
2789         return error("Invalid record");
2790       Type *OpTy = getTypeByID(Record[0]);
2791       if (!OpTy)
2792         return error("Invalid record");
2793       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2794       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2795 
2796       if (OpTy->isFPOrFPVectorTy())
2797         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2798       else
2799         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2800       break;
2801     }
2802     // This maintains backward compatibility, pre-asm dialect keywords.
2803     // Deprecated, but still needed to read old bitcode files.
2804     case bitc::CST_CODE_INLINEASM_OLD: {
2805       if (Record.size() < 2)
2806         return error("Invalid record");
2807       std::string AsmStr, ConstrStr;
2808       bool HasSideEffects = Record[0] & 1;
2809       bool IsAlignStack = Record[0] >> 1;
2810       unsigned AsmStrSize = Record[1];
2811       if (2+AsmStrSize >= Record.size())
2812         return error("Invalid record");
2813       unsigned ConstStrSize = Record[2+AsmStrSize];
2814       if (3+AsmStrSize+ConstStrSize > Record.size())
2815         return error("Invalid record");
2816 
2817       for (unsigned i = 0; i != AsmStrSize; ++i)
2818         AsmStr += (char)Record[2+i];
2819       for (unsigned i = 0; i != ConstStrSize; ++i)
2820         ConstrStr += (char)Record[3+AsmStrSize+i];
2821       UpgradeInlineAsmString(&AsmStr);
2822       V = InlineAsm::get(
2823           cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr,
2824           ConstrStr, HasSideEffects, IsAlignStack);
2825       break;
2826     }
2827     // This version adds support for the asm dialect keywords (e.g.,
2828     // inteldialect).
2829     case bitc::CST_CODE_INLINEASM: {
2830       if (Record.size() < 2)
2831         return error("Invalid record");
2832       std::string AsmStr, ConstrStr;
2833       bool HasSideEffects = Record[0] & 1;
2834       bool IsAlignStack = (Record[0] >> 1) & 1;
2835       unsigned AsmDialect = Record[0] >> 2;
2836       unsigned AsmStrSize = Record[1];
2837       if (2+AsmStrSize >= Record.size())
2838         return error("Invalid record");
2839       unsigned ConstStrSize = Record[2+AsmStrSize];
2840       if (3+AsmStrSize+ConstStrSize > Record.size())
2841         return error("Invalid record");
2842 
2843       for (unsigned i = 0; i != AsmStrSize; ++i)
2844         AsmStr += (char)Record[2+i];
2845       for (unsigned i = 0; i != ConstStrSize; ++i)
2846         ConstrStr += (char)Record[3+AsmStrSize+i];
2847       UpgradeInlineAsmString(&AsmStr);
2848       V = InlineAsm::get(
2849           cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr,
2850           ConstrStr, HasSideEffects, IsAlignStack,
2851           InlineAsm::AsmDialect(AsmDialect));
2852       break;
2853     }
2854     case bitc::CST_CODE_BLOCKADDRESS:{
2855       if (Record.size() < 3)
2856         return error("Invalid record");
2857       Type *FnTy = getTypeByID(Record[0]);
2858       if (!FnTy)
2859         return error("Invalid record");
2860       Function *Fn =
2861         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2862       if (!Fn)
2863         return error("Invalid record");
2864 
2865       // If the function is already parsed we can insert the block address right
2866       // away.
2867       BasicBlock *BB;
2868       unsigned BBID = Record[2];
2869       if (!BBID)
2870         // Invalid reference to entry block.
2871         return error("Invalid ID");
2872       if (!Fn->empty()) {
2873         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2874         for (size_t I = 0, E = BBID; I != E; ++I) {
2875           if (BBI == BBE)
2876             return error("Invalid ID");
2877           ++BBI;
2878         }
2879         BB = &*BBI;
2880       } else {
2881         // Otherwise insert a placeholder and remember it so it can be inserted
2882         // when the function is parsed.
2883         auto &FwdBBs = BasicBlockFwdRefs[Fn];
2884         if (FwdBBs.empty())
2885           BasicBlockFwdRefQueue.push_back(Fn);
2886         if (FwdBBs.size() < BBID + 1)
2887           FwdBBs.resize(BBID + 1);
2888         if (!FwdBBs[BBID])
2889           FwdBBs[BBID] = BasicBlock::Create(Context);
2890         BB = FwdBBs[BBID];
2891       }
2892       V = BlockAddress::get(Fn, BB);
2893       break;
2894     }
2895     case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: {
2896       if (Record.size() < 2)
2897         return error("Invalid record");
2898       Type *GVTy = getTypeByID(Record[0]);
2899       if (!GVTy)
2900         return error("Invalid record");
2901       GlobalValue *GV = dyn_cast_or_null<GlobalValue>(
2902           ValueList.getConstantFwdRef(Record[1], GVTy));
2903       if (!GV)
2904         return error("Invalid record");
2905 
2906       V = DSOLocalEquivalent::get(GV);
2907       break;
2908     }
2909     }
2910 
2911     assert(V->getType() == flattenPointerTypes(CurFullTy) &&
2912            "Incorrect fully structured type provided for Constant");
2913     ValueList.assignValue(V, NextCstNo, CurFullTy);
2914     ++NextCstNo;
2915   }
2916 }
2917 
2918 Error BitcodeReader::parseUseLists() {
2919   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
2920     return Err;
2921 
2922   // Read all the records.
2923   SmallVector<uint64_t, 64> Record;
2924 
2925   while (true) {
2926     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2927     if (!MaybeEntry)
2928       return MaybeEntry.takeError();
2929     BitstreamEntry Entry = MaybeEntry.get();
2930 
2931     switch (Entry.Kind) {
2932     case BitstreamEntry::SubBlock: // Handled for us already.
2933     case BitstreamEntry::Error:
2934       return error("Malformed block");
2935     case BitstreamEntry::EndBlock:
2936       return Error::success();
2937     case BitstreamEntry::Record:
2938       // The interesting case.
2939       break;
2940     }
2941 
2942     // Read a use list record.
2943     Record.clear();
2944     bool IsBB = false;
2945     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2946     if (!MaybeRecord)
2947       return MaybeRecord.takeError();
2948     switch (MaybeRecord.get()) {
2949     default:  // Default behavior: unknown type.
2950       break;
2951     case bitc::USELIST_CODE_BB:
2952       IsBB = true;
2953       LLVM_FALLTHROUGH;
2954     case bitc::USELIST_CODE_DEFAULT: {
2955       unsigned RecordLength = Record.size();
2956       if (RecordLength < 3)
2957         // Records should have at least an ID and two indexes.
2958         return error("Invalid record");
2959       unsigned ID = Record.pop_back_val();
2960 
2961       Value *V;
2962       if (IsBB) {
2963         assert(ID < FunctionBBs.size() && "Basic block not found");
2964         V = FunctionBBs[ID];
2965       } else
2966         V = ValueList[ID];
2967       unsigned NumUses = 0;
2968       SmallDenseMap<const Use *, unsigned, 16> Order;
2969       for (const Use &U : V->materialized_uses()) {
2970         if (++NumUses > Record.size())
2971           break;
2972         Order[&U] = Record[NumUses - 1];
2973       }
2974       if (Order.size() != Record.size() || NumUses > Record.size())
2975         // Mismatches can happen if the functions are being materialized lazily
2976         // (out-of-order), or a value has been upgraded.
2977         break;
2978 
2979       V->sortUseList([&](const Use &L, const Use &R) {
2980         return Order.lookup(&L) < Order.lookup(&R);
2981       });
2982       break;
2983     }
2984     }
2985   }
2986 }
2987 
2988 /// When we see the block for metadata, remember where it is and then skip it.
2989 /// This lets us lazily deserialize the metadata.
2990 Error BitcodeReader::rememberAndSkipMetadata() {
2991   // Save the current stream state.
2992   uint64_t CurBit = Stream.GetCurrentBitNo();
2993   DeferredMetadataInfo.push_back(CurBit);
2994 
2995   // Skip over the block for now.
2996   if (Error Err = Stream.SkipBlock())
2997     return Err;
2998   return Error::success();
2999 }
3000 
3001 Error BitcodeReader::materializeMetadata() {
3002   for (uint64_t BitPos : DeferredMetadataInfo) {
3003     // Move the bit stream to the saved position.
3004     if (Error JumpFailed = Stream.JumpToBit(BitPos))
3005       return JumpFailed;
3006     if (Error Err = MDLoader->parseModuleMetadata())
3007       return Err;
3008   }
3009 
3010   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
3011   // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
3012   // multiple times.
3013   if (!TheModule->getNamedMetadata("llvm.linker.options")) {
3014     if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
3015       NamedMDNode *LinkerOpts =
3016           TheModule->getOrInsertNamedMetadata("llvm.linker.options");
3017       for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
3018         LinkerOpts->addOperand(cast<MDNode>(MDOptions));
3019     }
3020   }
3021 
3022   DeferredMetadataInfo.clear();
3023   return Error::success();
3024 }
3025 
3026 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3027 
3028 /// When we see the block for a function body, remember where it is and then
3029 /// skip it.  This lets us lazily deserialize the functions.
3030 Error BitcodeReader::rememberAndSkipFunctionBody() {
3031   // Get the function we are talking about.
3032   if (FunctionsWithBodies.empty())
3033     return error("Insufficient function protos");
3034 
3035   Function *Fn = FunctionsWithBodies.back();
3036   FunctionsWithBodies.pop_back();
3037 
3038   // Save the current stream state.
3039   uint64_t CurBit = Stream.GetCurrentBitNo();
3040   assert(
3041       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3042       "Mismatch between VST and scanned function offsets");
3043   DeferredFunctionInfo[Fn] = CurBit;
3044 
3045   // Skip over the function block for now.
3046   if (Error Err = Stream.SkipBlock())
3047     return Err;
3048   return Error::success();
3049 }
3050 
3051 Error BitcodeReader::globalCleanup() {
3052   // Patch the initializers for globals and aliases up.
3053   if (Error Err = resolveGlobalAndIndirectSymbolInits())
3054     return Err;
3055   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3056     return error("Malformed global initializer set");
3057 
3058   // Look for intrinsic functions which need to be upgraded at some point
3059   // and functions that need to have their function attributes upgraded.
3060   for (Function &F : *TheModule) {
3061     MDLoader->upgradeDebugIntrinsics(F);
3062     Function *NewFn;
3063     if (UpgradeIntrinsicFunction(&F, NewFn))
3064       UpgradedIntrinsics[&F] = NewFn;
3065     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
3066       // Some types could be renamed during loading if several modules are
3067       // loaded in the same LLVMContext (LTO scenario). In this case we should
3068       // remangle intrinsics names as well.
3069       RemangledIntrinsics[&F] = Remangled.getValue();
3070     // Look for functions that rely on old function attribute behavior.
3071     UpgradeFunctionAttributes(F);
3072   }
3073 
3074   // Look for global variables which need to be renamed.
3075   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3076   for (GlobalVariable &GV : TheModule->globals())
3077     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3078       UpgradedVariables.emplace_back(&GV, Upgraded);
3079   for (auto &Pair : UpgradedVariables) {
3080     Pair.first->eraseFromParent();
3081     TheModule->getGlobalList().push_back(Pair.second);
3082   }
3083 
3084   // Force deallocation of memory for these vectors to favor the client that
3085   // want lazy deserialization.
3086   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3087   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap(
3088       IndirectSymbolInits);
3089   return Error::success();
3090 }
3091 
3092 /// Support for lazy parsing of function bodies. This is required if we
3093 /// either have an old bitcode file without a VST forward declaration record,
3094 /// or if we have an anonymous function being materialized, since anonymous
3095 /// functions do not have a name and are therefore not in the VST.
3096 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3097   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3098     return JumpFailed;
3099 
3100   if (Stream.AtEndOfStream())
3101     return error("Could not find function in stream");
3102 
3103   if (!SeenFirstFunctionBody)
3104     return error("Trying to materialize functions before seeing function blocks");
3105 
3106   // An old bitcode file with the symbol table at the end would have
3107   // finished the parse greedily.
3108   assert(SeenValueSymbolTable);
3109 
3110   SmallVector<uint64_t, 64> Record;
3111 
3112   while (true) {
3113     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3114     if (!MaybeEntry)
3115       return MaybeEntry.takeError();
3116     llvm::BitstreamEntry Entry = MaybeEntry.get();
3117 
3118     switch (Entry.Kind) {
3119     default:
3120       return error("Expect SubBlock");
3121     case BitstreamEntry::SubBlock:
3122       switch (Entry.ID) {
3123       default:
3124         return error("Expect function block");
3125       case bitc::FUNCTION_BLOCK_ID:
3126         if (Error Err = rememberAndSkipFunctionBody())
3127           return Err;
3128         NextUnreadBit = Stream.GetCurrentBitNo();
3129         return Error::success();
3130       }
3131     }
3132   }
3133 }
3134 
3135 bool BitcodeReaderBase::readBlockInfo() {
3136   Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3137       Stream.ReadBlockInfoBlock();
3138   if (!MaybeNewBlockInfo)
3139     return true; // FIXME Handle the error.
3140   Optional<BitstreamBlockInfo> NewBlockInfo =
3141       std::move(MaybeNewBlockInfo.get());
3142   if (!NewBlockInfo)
3143     return true;
3144   BlockInfo = std::move(*NewBlockInfo);
3145   return false;
3146 }
3147 
3148 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3149   // v1: [selection_kind, name]
3150   // v2: [strtab_offset, strtab_size, selection_kind]
3151   StringRef Name;
3152   std::tie(Name, Record) = readNameFromStrtab(Record);
3153 
3154   if (Record.empty())
3155     return error("Invalid record");
3156   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3157   std::string OldFormatName;
3158   if (!UseStrtab) {
3159     if (Record.size() < 2)
3160       return error("Invalid record");
3161     unsigned ComdatNameSize = Record[1];
3162     OldFormatName.reserve(ComdatNameSize);
3163     for (unsigned i = 0; i != ComdatNameSize; ++i)
3164       OldFormatName += (char)Record[2 + i];
3165     Name = OldFormatName;
3166   }
3167   Comdat *C = TheModule->getOrInsertComdat(Name);
3168   C->setSelectionKind(SK);
3169   ComdatList.push_back(C);
3170   return Error::success();
3171 }
3172 
3173 static void inferDSOLocal(GlobalValue *GV) {
3174   // infer dso_local from linkage and visibility if it is not encoded.
3175   if (GV->hasLocalLinkage() ||
3176       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3177     GV->setDSOLocal(true);
3178 }
3179 
3180 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3181   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3182   // visibility, threadlocal, unnamed_addr, externally_initialized,
3183   // dllstorageclass, comdat, attributes, preemption specifier,
3184   // partition strtab offset, partition strtab size] (name in VST)
3185   // v2: [strtab_offset, strtab_size, v1]
3186   StringRef Name;
3187   std::tie(Name, Record) = readNameFromStrtab(Record);
3188 
3189   if (Record.size() < 6)
3190     return error("Invalid record");
3191   Type *FullTy = getFullyStructuredTypeByID(Record[0]);
3192   Type *Ty = flattenPointerTypes(FullTy);
3193   if (!Ty)
3194     return error("Invalid record");
3195   bool isConstant = Record[1] & 1;
3196   bool explicitType = Record[1] & 2;
3197   unsigned AddressSpace;
3198   if (explicitType) {
3199     AddressSpace = Record[1] >> 2;
3200   } else {
3201     if (!Ty->isPointerTy())
3202       return error("Invalid type for value");
3203     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3204     std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
3205   }
3206 
3207   uint64_t RawLinkage = Record[3];
3208   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3209   MaybeAlign Alignment;
3210   if (Error Err = parseAlignmentValue(Record[4], Alignment))
3211     return Err;
3212   std::string Section;
3213   if (Record[5]) {
3214     if (Record[5] - 1 >= SectionTable.size())
3215       return error("Invalid ID");
3216     Section = SectionTable[Record[5] - 1];
3217   }
3218   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3219   // Local linkage must have default visibility.
3220   // auto-upgrade `hidden` and `protected` for old bitcode.
3221   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3222     Visibility = getDecodedVisibility(Record[6]);
3223 
3224   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3225   if (Record.size() > 7)
3226     TLM = getDecodedThreadLocalMode(Record[7]);
3227 
3228   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3229   if (Record.size() > 8)
3230     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3231 
3232   bool ExternallyInitialized = false;
3233   if (Record.size() > 9)
3234     ExternallyInitialized = Record[9];
3235 
3236   GlobalVariable *NewGV =
3237       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3238                          nullptr, TLM, AddressSpace, ExternallyInitialized);
3239   NewGV->setAlignment(Alignment);
3240   if (!Section.empty())
3241     NewGV->setSection(Section);
3242   NewGV->setVisibility(Visibility);
3243   NewGV->setUnnamedAddr(UnnamedAddr);
3244 
3245   if (Record.size() > 10)
3246     NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3247   else
3248     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3249 
3250   FullTy = PointerType::get(FullTy, AddressSpace);
3251   assert(NewGV->getType() == flattenPointerTypes(FullTy) &&
3252          "Incorrect fully specified type for GlobalVariable");
3253   ValueList.push_back(NewGV, FullTy);
3254 
3255   // Remember which value to use for the global initializer.
3256   if (unsigned InitID = Record[2])
3257     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3258 
3259   if (Record.size() > 11) {
3260     if (unsigned ComdatID = Record[11]) {
3261       if (ComdatID > ComdatList.size())
3262         return error("Invalid global variable comdat ID");
3263       NewGV->setComdat(ComdatList[ComdatID - 1]);
3264     }
3265   } else if (hasImplicitComdat(RawLinkage)) {
3266     NewGV->setComdat(reinterpret_cast<Comdat *>(1));
3267   }
3268 
3269   if (Record.size() > 12) {
3270     auto AS = getAttributes(Record[12]).getFnAttributes();
3271     NewGV->setAttributes(AS);
3272   }
3273 
3274   if (Record.size() > 13) {
3275     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3276   }
3277   inferDSOLocal(NewGV);
3278 
3279   // Check whether we have enough values to read a partition name.
3280   if (Record.size() > 15)
3281     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3282 
3283   return Error::success();
3284 }
3285 
3286 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3287   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3288   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3289   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
3290   // v2: [strtab_offset, strtab_size, v1]
3291   StringRef Name;
3292   std::tie(Name, Record) = readNameFromStrtab(Record);
3293 
3294   if (Record.size() < 8)
3295     return error("Invalid record");
3296   Type *FullFTy = getFullyStructuredTypeByID(Record[0]);
3297   Type *FTy = flattenPointerTypes(FullFTy);
3298   if (!FTy)
3299     return error("Invalid record");
3300   if (isa<PointerType>(FTy))
3301     std::tie(FullFTy, FTy) = getPointerElementTypes(FullFTy);
3302 
3303   if (!isa<FunctionType>(FTy))
3304     return error("Invalid type for value");
3305   auto CC = static_cast<CallingConv::ID>(Record[1]);
3306   if (CC & ~CallingConv::MaxID)
3307     return error("Invalid calling convention ID");
3308 
3309   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3310   if (Record.size() > 16)
3311     AddrSpace = Record[16];
3312 
3313   Function *Func =
3314       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
3315                        AddrSpace, Name, TheModule);
3316 
3317   assert(Func->getFunctionType() == flattenPointerTypes(FullFTy) &&
3318          "Incorrect fully specified type provided for function");
3319   FunctionTypes[Func] = cast<FunctionType>(FullFTy);
3320 
3321   Func->setCallingConv(CC);
3322   bool isProto = Record[2];
3323   uint64_t RawLinkage = Record[3];
3324   Func->setLinkage(getDecodedLinkage(RawLinkage));
3325   Func->setAttributes(getAttributes(Record[4]));
3326 
3327   // Upgrade any old-style byval or sret without a type by propagating the
3328   // argument's pointee type. There should be no opaque pointers where the byval
3329   // type is implicit.
3330   for (unsigned i = 0; i != Func->arg_size(); ++i) {
3331     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet}) {
3332       if (!Func->hasParamAttribute(i, Kind))
3333         continue;
3334 
3335       Func->removeParamAttr(i, Kind);
3336 
3337       Type *PTy = cast<FunctionType>(FullFTy)->getParamType(i);
3338       Type *PtrEltTy = getPointerElementFlatType(PTy);
3339       Attribute NewAttr =
3340           Kind == Attribute::ByVal
3341               ? Attribute::getWithByValType(Context, PtrEltTy)
3342               : Attribute::getWithStructRetType(Context, PtrEltTy);
3343       Func->addParamAttr(i, NewAttr);
3344     }
3345   }
3346 
3347   MaybeAlign Alignment;
3348   if (Error Err = parseAlignmentValue(Record[5], Alignment))
3349     return Err;
3350   Func->setAlignment(Alignment);
3351   if (Record[6]) {
3352     if (Record[6] - 1 >= SectionTable.size())
3353       return error("Invalid ID");
3354     Func->setSection(SectionTable[Record[6] - 1]);
3355   }
3356   // Local linkage must have default visibility.
3357   // auto-upgrade `hidden` and `protected` for old bitcode.
3358   if (!Func->hasLocalLinkage())
3359     Func->setVisibility(getDecodedVisibility(Record[7]));
3360   if (Record.size() > 8 && Record[8]) {
3361     if (Record[8] - 1 >= GCTable.size())
3362       return error("Invalid ID");
3363     Func->setGC(GCTable[Record[8] - 1]);
3364   }
3365   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3366   if (Record.size() > 9)
3367     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3368   Func->setUnnamedAddr(UnnamedAddr);
3369   if (Record.size() > 10 && Record[10] != 0)
3370     FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1));
3371 
3372   if (Record.size() > 11)
3373     Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3374   else
3375     upgradeDLLImportExportLinkage(Func, RawLinkage);
3376 
3377   if (Record.size() > 12) {
3378     if (unsigned ComdatID = Record[12]) {
3379       if (ComdatID > ComdatList.size())
3380         return error("Invalid function comdat ID");
3381       Func->setComdat(ComdatList[ComdatID - 1]);
3382     }
3383   } else if (hasImplicitComdat(RawLinkage)) {
3384     Func->setComdat(reinterpret_cast<Comdat *>(1));
3385   }
3386 
3387   if (Record.size() > 13 && Record[13] != 0)
3388     FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1));
3389 
3390   if (Record.size() > 14 && Record[14] != 0)
3391     FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
3392 
3393   if (Record.size() > 15) {
3394     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3395   }
3396   inferDSOLocal(Func);
3397 
3398   // Record[16] is the address space number.
3399 
3400   // Check whether we have enough values to read a partition name.
3401   if (Record.size() > 18)
3402     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
3403 
3404   Type *FullTy = PointerType::get(FullFTy, AddrSpace);
3405   assert(Func->getType() == flattenPointerTypes(FullTy) &&
3406          "Incorrect fully specified type provided for Function");
3407   ValueList.push_back(Func, FullTy);
3408 
3409   // If this is a function with a body, remember the prototype we are
3410   // creating now, so that we can match up the body with them later.
3411   if (!isProto) {
3412     Func->setIsMaterializable(true);
3413     FunctionsWithBodies.push_back(Func);
3414     DeferredFunctionInfo[Func] = 0;
3415   }
3416   return Error::success();
3417 }
3418 
3419 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3420     unsigned BitCode, ArrayRef<uint64_t> Record) {
3421   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3422   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3423   // dllstorageclass, threadlocal, unnamed_addr,
3424   // preemption specifier] (name in VST)
3425   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3426   // visibility, dllstorageclass, threadlocal, unnamed_addr,
3427   // preemption specifier] (name in VST)
3428   // v2: [strtab_offset, strtab_size, v1]
3429   StringRef Name;
3430   std::tie(Name, Record) = readNameFromStrtab(Record);
3431 
3432   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3433   if (Record.size() < (3 + (unsigned)NewRecord))
3434     return error("Invalid record");
3435   unsigned OpNum = 0;
3436   Type *FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
3437   Type *Ty = flattenPointerTypes(FullTy);
3438   if (!Ty)
3439     return error("Invalid record");
3440 
3441   unsigned AddrSpace;
3442   if (!NewRecord) {
3443     auto *PTy = dyn_cast<PointerType>(Ty);
3444     if (!PTy)
3445       return error("Invalid type for value");
3446     std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
3447     AddrSpace = PTy->getAddressSpace();
3448   } else {
3449     AddrSpace = Record[OpNum++];
3450   }
3451 
3452   auto Val = Record[OpNum++];
3453   auto Linkage = Record[OpNum++];
3454   GlobalIndirectSymbol *NewGA;
3455   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3456       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3457     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3458                                 TheModule);
3459   else
3460     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3461                                 nullptr, TheModule);
3462 
3463   assert(NewGA->getValueType() == flattenPointerTypes(FullTy) &&
3464          "Incorrect fully structured type provided for GlobalIndirectSymbol");
3465   // Local linkage must have default visibility.
3466   // auto-upgrade `hidden` and `protected` for old bitcode.
3467   if (OpNum != Record.size()) {
3468     auto VisInd = OpNum++;
3469     if (!NewGA->hasLocalLinkage())
3470       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3471   }
3472   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3473       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
3474     if (OpNum != Record.size())
3475       NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3476     else
3477       upgradeDLLImportExportLinkage(NewGA, Linkage);
3478     if (OpNum != Record.size())
3479       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3480     if (OpNum != Record.size())
3481       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3482   }
3483   if (OpNum != Record.size())
3484     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3485   inferDSOLocal(NewGA);
3486 
3487   // Check whether we have enough values to read a partition name.
3488   if (OpNum + 1 < Record.size()) {
3489     NewGA->setPartition(
3490         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
3491     OpNum += 2;
3492   }
3493 
3494   FullTy = PointerType::get(FullTy, AddrSpace);
3495   assert(NewGA->getType() == flattenPointerTypes(FullTy) &&
3496          "Incorrect fully structured type provided for GlobalIndirectSymbol");
3497   ValueList.push_back(NewGA, FullTy);
3498   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3499   return Error::success();
3500 }
3501 
3502 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3503                                  bool ShouldLazyLoadMetadata,
3504                                  DataLayoutCallbackTy DataLayoutCallback) {
3505   if (ResumeBit) {
3506     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
3507       return JumpFailed;
3508   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3509     return Err;
3510 
3511   SmallVector<uint64_t, 64> Record;
3512 
3513   // Parts of bitcode parsing depend on the datalayout.  Make sure we
3514   // finalize the datalayout before we run any of that code.
3515   bool ResolvedDataLayout = false;
3516   auto ResolveDataLayout = [&] {
3517     if (ResolvedDataLayout)
3518       return;
3519 
3520     // datalayout and triple can't be parsed after this point.
3521     ResolvedDataLayout = true;
3522 
3523     // Upgrade data layout string.
3524     std::string DL = llvm::UpgradeDataLayoutString(
3525         TheModule->getDataLayoutStr(), TheModule->getTargetTriple());
3526     TheModule->setDataLayout(DL);
3527 
3528     if (auto LayoutOverride =
3529             DataLayoutCallback(TheModule->getTargetTriple()))
3530       TheModule->setDataLayout(*LayoutOverride);
3531   };
3532 
3533   // Read all the records for this module.
3534   while (true) {
3535     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3536     if (!MaybeEntry)
3537       return MaybeEntry.takeError();
3538     llvm::BitstreamEntry Entry = MaybeEntry.get();
3539 
3540     switch (Entry.Kind) {
3541     case BitstreamEntry::Error:
3542       return error("Malformed block");
3543     case BitstreamEntry::EndBlock:
3544       ResolveDataLayout();
3545       return globalCleanup();
3546 
3547     case BitstreamEntry::SubBlock:
3548       switch (Entry.ID) {
3549       default:  // Skip unknown content.
3550         if (Error Err = Stream.SkipBlock())
3551           return Err;
3552         break;
3553       case bitc::BLOCKINFO_BLOCK_ID:
3554         if (readBlockInfo())
3555           return error("Malformed block");
3556         break;
3557       case bitc::PARAMATTR_BLOCK_ID:
3558         if (Error Err = parseAttributeBlock())
3559           return Err;
3560         break;
3561       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3562         if (Error Err = parseAttributeGroupBlock())
3563           return Err;
3564         break;
3565       case bitc::TYPE_BLOCK_ID_NEW:
3566         if (Error Err = parseTypeTable())
3567           return Err;
3568         break;
3569       case bitc::VALUE_SYMTAB_BLOCK_ID:
3570         if (!SeenValueSymbolTable) {
3571           // Either this is an old form VST without function index and an
3572           // associated VST forward declaration record (which would have caused
3573           // the VST to be jumped to and parsed before it was encountered
3574           // normally in the stream), or there were no function blocks to
3575           // trigger an earlier parsing of the VST.
3576           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3577           if (Error Err = parseValueSymbolTable())
3578             return Err;
3579           SeenValueSymbolTable = true;
3580         } else {
3581           // We must have had a VST forward declaration record, which caused
3582           // the parser to jump to and parse the VST earlier.
3583           assert(VSTOffset > 0);
3584           if (Error Err = Stream.SkipBlock())
3585             return Err;
3586         }
3587         break;
3588       case bitc::CONSTANTS_BLOCK_ID:
3589         if (Error Err = parseConstants())
3590           return Err;
3591         if (Error Err = resolveGlobalAndIndirectSymbolInits())
3592           return Err;
3593         break;
3594       case bitc::METADATA_BLOCK_ID:
3595         if (ShouldLazyLoadMetadata) {
3596           if (Error Err = rememberAndSkipMetadata())
3597             return Err;
3598           break;
3599         }
3600         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3601         if (Error Err = MDLoader->parseModuleMetadata())
3602           return Err;
3603         break;
3604       case bitc::METADATA_KIND_BLOCK_ID:
3605         if (Error Err = MDLoader->parseMetadataKinds())
3606           return Err;
3607         break;
3608       case bitc::FUNCTION_BLOCK_ID:
3609         ResolveDataLayout();
3610 
3611         // If this is the first function body we've seen, reverse the
3612         // FunctionsWithBodies list.
3613         if (!SeenFirstFunctionBody) {
3614           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3615           if (Error Err = globalCleanup())
3616             return Err;
3617           SeenFirstFunctionBody = true;
3618         }
3619 
3620         if (VSTOffset > 0) {
3621           // If we have a VST forward declaration record, make sure we
3622           // parse the VST now if we haven't already. It is needed to
3623           // set up the DeferredFunctionInfo vector for lazy reading.
3624           if (!SeenValueSymbolTable) {
3625             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3626               return Err;
3627             SeenValueSymbolTable = true;
3628             // Fall through so that we record the NextUnreadBit below.
3629             // This is necessary in case we have an anonymous function that
3630             // is later materialized. Since it will not have a VST entry we
3631             // need to fall back to the lazy parse to find its offset.
3632           } else {
3633             // If we have a VST forward declaration record, but have already
3634             // parsed the VST (just above, when the first function body was
3635             // encountered here), then we are resuming the parse after
3636             // materializing functions. The ResumeBit points to the
3637             // start of the last function block recorded in the
3638             // DeferredFunctionInfo map. Skip it.
3639             if (Error Err = Stream.SkipBlock())
3640               return Err;
3641             continue;
3642           }
3643         }
3644 
3645         // Support older bitcode files that did not have the function
3646         // index in the VST, nor a VST forward declaration record, as
3647         // well as anonymous functions that do not have VST entries.
3648         // Build the DeferredFunctionInfo vector on the fly.
3649         if (Error Err = rememberAndSkipFunctionBody())
3650           return Err;
3651 
3652         // Suspend parsing when we reach the function bodies. Subsequent
3653         // materialization calls will resume it when necessary. If the bitcode
3654         // file is old, the symbol table will be at the end instead and will not
3655         // have been seen yet. In this case, just finish the parse now.
3656         if (SeenValueSymbolTable) {
3657           NextUnreadBit = Stream.GetCurrentBitNo();
3658           // After the VST has been parsed, we need to make sure intrinsic name
3659           // are auto-upgraded.
3660           return globalCleanup();
3661         }
3662         break;
3663       case bitc::USELIST_BLOCK_ID:
3664         if (Error Err = parseUseLists())
3665           return Err;
3666         break;
3667       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3668         if (Error Err = parseOperandBundleTags())
3669           return Err;
3670         break;
3671       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
3672         if (Error Err = parseSyncScopeNames())
3673           return Err;
3674         break;
3675       }
3676       continue;
3677 
3678     case BitstreamEntry::Record:
3679       // The interesting case.
3680       break;
3681     }
3682 
3683     // Read a record.
3684     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3685     if (!MaybeBitCode)
3686       return MaybeBitCode.takeError();
3687     switch (unsigned BitCode = MaybeBitCode.get()) {
3688     default: break;  // Default behavior, ignore unknown content.
3689     case bitc::MODULE_CODE_VERSION: {
3690       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3691       if (!VersionOrErr)
3692         return VersionOrErr.takeError();
3693       UseRelativeIDs = *VersionOrErr >= 1;
3694       break;
3695     }
3696     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3697       if (ResolvedDataLayout)
3698         return error("target triple too late in module");
3699       std::string S;
3700       if (convertToString(Record, 0, S))
3701         return error("Invalid record");
3702       TheModule->setTargetTriple(S);
3703       break;
3704     }
3705     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3706       if (ResolvedDataLayout)
3707         return error("datalayout too late in module");
3708       std::string S;
3709       if (convertToString(Record, 0, S))
3710         return error("Invalid record");
3711       TheModule->setDataLayout(S);
3712       break;
3713     }
3714     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3715       std::string S;
3716       if (convertToString(Record, 0, S))
3717         return error("Invalid record");
3718       TheModule->setModuleInlineAsm(S);
3719       break;
3720     }
3721     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3722       // Deprecated, but still needed to read old bitcode files.
3723       std::string S;
3724       if (convertToString(Record, 0, S))
3725         return error("Invalid record");
3726       // Ignore value.
3727       break;
3728     }
3729     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3730       std::string S;
3731       if (convertToString(Record, 0, S))
3732         return error("Invalid record");
3733       SectionTable.push_back(S);
3734       break;
3735     }
3736     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3737       std::string S;
3738       if (convertToString(Record, 0, S))
3739         return error("Invalid record");
3740       GCTable.push_back(S);
3741       break;
3742     }
3743     case bitc::MODULE_CODE_COMDAT:
3744       if (Error Err = parseComdatRecord(Record))
3745         return Err;
3746       break;
3747     case bitc::MODULE_CODE_GLOBALVAR:
3748       if (Error Err = parseGlobalVarRecord(Record))
3749         return Err;
3750       break;
3751     case bitc::MODULE_CODE_FUNCTION:
3752       ResolveDataLayout();
3753       if (Error Err = parseFunctionRecord(Record))
3754         return Err;
3755       break;
3756     case bitc::MODULE_CODE_IFUNC:
3757     case bitc::MODULE_CODE_ALIAS:
3758     case bitc::MODULE_CODE_ALIAS_OLD:
3759       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
3760         return Err;
3761       break;
3762     /// MODULE_CODE_VSTOFFSET: [offset]
3763     case bitc::MODULE_CODE_VSTOFFSET:
3764       if (Record.empty())
3765         return error("Invalid record");
3766       // Note that we subtract 1 here because the offset is relative to one word
3767       // before the start of the identification or module block, which was
3768       // historically always the start of the regular bitcode header.
3769       VSTOffset = Record[0] - 1;
3770       break;
3771     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3772     case bitc::MODULE_CODE_SOURCE_FILENAME:
3773       SmallString<128> ValueName;
3774       if (convertToString(Record, 0, ValueName))
3775         return error("Invalid record");
3776       TheModule->setSourceFileName(ValueName);
3777       break;
3778     }
3779     Record.clear();
3780   }
3781 }
3782 
3783 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3784                                       bool IsImporting,
3785                                       DataLayoutCallbackTy DataLayoutCallback) {
3786   TheModule = M;
3787   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3788                             [&](unsigned ID) { return getTypeByID(ID); });
3789   return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback);
3790 }
3791 
3792 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3793   if (!isa<PointerType>(PtrType))
3794     return error("Load/Store operand is not a pointer type");
3795   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
3796 
3797   if (ValType && ValType != ElemType)
3798     return error("Explicit load/store type does not match pointee "
3799                  "type of pointer operand");
3800   if (!PointerType::isLoadableOrStorableType(ElemType))
3801     return error("Cannot load/store from pointer");
3802   return Error::success();
3803 }
3804 
3805 void BitcodeReader::propagateByValSRetTypes(CallBase *CB,
3806                                             ArrayRef<Type *> ArgsFullTys) {
3807   for (unsigned i = 0; i != CB->arg_size(); ++i) {
3808     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet}) {
3809       if (!CB->paramHasAttr(i, Kind))
3810         continue;
3811 
3812       CB->removeParamAttr(i, Kind);
3813 
3814       Type *PtrEltTy = getPointerElementFlatType(ArgsFullTys[i]);
3815       Attribute NewAttr =
3816           Kind == Attribute::ByVal
3817               ? Attribute::getWithByValType(Context, PtrEltTy)
3818               : Attribute::getWithStructRetType(Context, PtrEltTy);
3819       CB->addParamAttr(i, NewAttr);
3820     }
3821   }
3822 }
3823 
3824 /// Lazily parse the specified function body block.
3825 Error BitcodeReader::parseFunctionBody(Function *F) {
3826   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3827     return Err;
3828 
3829   // Unexpected unresolved metadata when parsing function.
3830   if (MDLoader->hasFwdRefs())
3831     return error("Invalid function metadata: incoming forward references");
3832 
3833   InstructionList.clear();
3834   unsigned ModuleValueListSize = ValueList.size();
3835   unsigned ModuleMDLoaderSize = MDLoader->size();
3836 
3837   // Add all the function arguments to the value table.
3838   unsigned ArgNo = 0;
3839   FunctionType *FullFTy = FunctionTypes[F];
3840   for (Argument &I : F->args()) {
3841     assert(I.getType() == flattenPointerTypes(FullFTy->getParamType(ArgNo)) &&
3842            "Incorrect fully specified type for Function Argument");
3843     ValueList.push_back(&I, FullFTy->getParamType(ArgNo++));
3844   }
3845   unsigned NextValueNo = ValueList.size();
3846   BasicBlock *CurBB = nullptr;
3847   unsigned CurBBNo = 0;
3848 
3849   DebugLoc LastLoc;
3850   auto getLastInstruction = [&]() -> Instruction * {
3851     if (CurBB && !CurBB->empty())
3852       return &CurBB->back();
3853     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3854              !FunctionBBs[CurBBNo - 1]->empty())
3855       return &FunctionBBs[CurBBNo - 1]->back();
3856     return nullptr;
3857   };
3858 
3859   std::vector<OperandBundleDef> OperandBundles;
3860 
3861   // Read all the records.
3862   SmallVector<uint64_t, 64> Record;
3863 
3864   while (true) {
3865     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3866     if (!MaybeEntry)
3867       return MaybeEntry.takeError();
3868     llvm::BitstreamEntry Entry = MaybeEntry.get();
3869 
3870     switch (Entry.Kind) {
3871     case BitstreamEntry::Error:
3872       return error("Malformed block");
3873     case BitstreamEntry::EndBlock:
3874       goto OutOfRecordLoop;
3875 
3876     case BitstreamEntry::SubBlock:
3877       switch (Entry.ID) {
3878       default:  // Skip unknown content.
3879         if (Error Err = Stream.SkipBlock())
3880           return Err;
3881         break;
3882       case bitc::CONSTANTS_BLOCK_ID:
3883         if (Error Err = parseConstants())
3884           return Err;
3885         NextValueNo = ValueList.size();
3886         break;
3887       case bitc::VALUE_SYMTAB_BLOCK_ID:
3888         if (Error Err = parseValueSymbolTable())
3889           return Err;
3890         break;
3891       case bitc::METADATA_ATTACHMENT_ID:
3892         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
3893           return Err;
3894         break;
3895       case bitc::METADATA_BLOCK_ID:
3896         assert(DeferredMetadataInfo.empty() &&
3897                "Must read all module-level metadata before function-level");
3898         if (Error Err = MDLoader->parseFunctionMetadata())
3899           return Err;
3900         break;
3901       case bitc::USELIST_BLOCK_ID:
3902         if (Error Err = parseUseLists())
3903           return Err;
3904         break;
3905       }
3906       continue;
3907 
3908     case BitstreamEntry::Record:
3909       // The interesting case.
3910       break;
3911     }
3912 
3913     // Read a record.
3914     Record.clear();
3915     Instruction *I = nullptr;
3916     Type *FullTy = nullptr;
3917     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3918     if (!MaybeBitCode)
3919       return MaybeBitCode.takeError();
3920     switch (unsigned BitCode = MaybeBitCode.get()) {
3921     default: // Default behavior: reject
3922       return error("Invalid value");
3923     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
3924       if (Record.empty() || Record[0] == 0)
3925         return error("Invalid record");
3926       // Create all the basic blocks for the function.
3927       FunctionBBs.resize(Record[0]);
3928 
3929       // See if anything took the address of blocks in this function.
3930       auto BBFRI = BasicBlockFwdRefs.find(F);
3931       if (BBFRI == BasicBlockFwdRefs.end()) {
3932         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
3933           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
3934       } else {
3935         auto &BBRefs = BBFRI->second;
3936         // Check for invalid basic block references.
3937         if (BBRefs.size() > FunctionBBs.size())
3938           return error("Invalid ID");
3939         assert(!BBRefs.empty() && "Unexpected empty array");
3940         assert(!BBRefs.front() && "Invalid reference to entry block");
3941         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
3942              ++I)
3943           if (I < RE && BBRefs[I]) {
3944             BBRefs[I]->insertInto(F);
3945             FunctionBBs[I] = BBRefs[I];
3946           } else {
3947             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
3948           }
3949 
3950         // Erase from the table.
3951         BasicBlockFwdRefs.erase(BBFRI);
3952       }
3953 
3954       CurBB = FunctionBBs[0];
3955       continue;
3956     }
3957 
3958     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
3959       // This record indicates that the last instruction is at the same
3960       // location as the previous instruction with a location.
3961       I = getLastInstruction();
3962 
3963       if (!I)
3964         return error("Invalid record");
3965       I->setDebugLoc(LastLoc);
3966       I = nullptr;
3967       continue;
3968 
3969     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
3970       I = getLastInstruction();
3971       if (!I || Record.size() < 4)
3972         return error("Invalid record");
3973 
3974       unsigned Line = Record[0], Col = Record[1];
3975       unsigned ScopeID = Record[2], IAID = Record[3];
3976       bool isImplicitCode = Record.size() == 5 && Record[4];
3977 
3978       MDNode *Scope = nullptr, *IA = nullptr;
3979       if (ScopeID) {
3980         Scope = dyn_cast_or_null<MDNode>(
3981             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
3982         if (!Scope)
3983           return error("Invalid record");
3984       }
3985       if (IAID) {
3986         IA = dyn_cast_or_null<MDNode>(
3987             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
3988         if (!IA)
3989           return error("Invalid record");
3990       }
3991       LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
3992                                 isImplicitCode);
3993       I->setDebugLoc(LastLoc);
3994       I = nullptr;
3995       continue;
3996     }
3997     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
3998       unsigned OpNum = 0;
3999       Value *LHS;
4000       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4001           OpNum+1 > Record.size())
4002         return error("Invalid record");
4003 
4004       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
4005       if (Opc == -1)
4006         return error("Invalid record");
4007       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
4008       InstructionList.push_back(I);
4009       if (OpNum < Record.size()) {
4010         if (isa<FPMathOperator>(I)) {
4011           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4012           if (FMF.any())
4013             I->setFastMathFlags(FMF);
4014         }
4015       }
4016       break;
4017     }
4018     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
4019       unsigned OpNum = 0;
4020       Value *LHS, *RHS;
4021       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4022           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
4023           OpNum+1 > Record.size())
4024         return error("Invalid record");
4025 
4026       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4027       if (Opc == -1)
4028         return error("Invalid record");
4029       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4030       InstructionList.push_back(I);
4031       if (OpNum < Record.size()) {
4032         if (Opc == Instruction::Add ||
4033             Opc == Instruction::Sub ||
4034             Opc == Instruction::Mul ||
4035             Opc == Instruction::Shl) {
4036           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4037             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4038           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4039             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4040         } else if (Opc == Instruction::SDiv ||
4041                    Opc == Instruction::UDiv ||
4042                    Opc == Instruction::LShr ||
4043                    Opc == Instruction::AShr) {
4044           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4045             cast<BinaryOperator>(I)->setIsExact(true);
4046         } else if (isa<FPMathOperator>(I)) {
4047           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4048           if (FMF.any())
4049             I->setFastMathFlags(FMF);
4050         }
4051 
4052       }
4053       break;
4054     }
4055     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4056       unsigned OpNum = 0;
4057       Value *Op;
4058       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4059           OpNum+2 != Record.size())
4060         return error("Invalid record");
4061 
4062       FullTy = getFullyStructuredTypeByID(Record[OpNum]);
4063       Type *ResTy = flattenPointerTypes(FullTy);
4064       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4065       if (Opc == -1 || !ResTy)
4066         return error("Invalid record");
4067       Instruction *Temp = nullptr;
4068       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4069         if (Temp) {
4070           InstructionList.push_back(Temp);
4071           assert(CurBB && "No current BB?");
4072           CurBB->getInstList().push_back(Temp);
4073         }
4074       } else {
4075         auto CastOp = (Instruction::CastOps)Opc;
4076         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4077           return error("Invalid cast");
4078         I = CastInst::Create(CastOp, Op, ResTy);
4079       }
4080       InstructionList.push_back(I);
4081       break;
4082     }
4083     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4084     case bitc::FUNC_CODE_INST_GEP_OLD:
4085     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4086       unsigned OpNum = 0;
4087 
4088       Type *Ty;
4089       bool InBounds;
4090 
4091       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4092         InBounds = Record[OpNum++];
4093         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4094         Ty = flattenPointerTypes(FullTy);
4095       } else {
4096         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4097         Ty = nullptr;
4098       }
4099 
4100       Value *BasePtr;
4101       Type *FullBaseTy = nullptr;
4102       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, &FullBaseTy))
4103         return error("Invalid record");
4104 
4105       if (!Ty) {
4106         std::tie(FullTy, Ty) =
4107             getPointerElementTypes(FullBaseTy->getScalarType());
4108       } else if (Ty != getPointerElementFlatType(FullBaseTy->getScalarType()))
4109         return error(
4110             "Explicit gep type does not match pointee type of pointer operand");
4111 
4112       SmallVector<Value*, 16> GEPIdx;
4113       while (OpNum != Record.size()) {
4114         Value *Op;
4115         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4116           return error("Invalid record");
4117         GEPIdx.push_back(Op);
4118       }
4119 
4120       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4121       FullTy = GetElementPtrInst::getGEPReturnType(FullTy, I, GEPIdx);
4122 
4123       InstructionList.push_back(I);
4124       if (InBounds)
4125         cast<GetElementPtrInst>(I)->setIsInBounds(true);
4126       break;
4127     }
4128 
4129     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4130                                        // EXTRACTVAL: [opty, opval, n x indices]
4131       unsigned OpNum = 0;
4132       Value *Agg;
4133       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy))
4134         return error("Invalid record");
4135 
4136       unsigned RecSize = Record.size();
4137       if (OpNum == RecSize)
4138         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4139 
4140       SmallVector<unsigned, 4> EXTRACTVALIdx;
4141       for (; OpNum != RecSize; ++OpNum) {
4142         bool IsArray = FullTy->isArrayTy();
4143         bool IsStruct = FullTy->isStructTy();
4144         uint64_t Index = Record[OpNum];
4145 
4146         if (!IsStruct && !IsArray)
4147           return error("EXTRACTVAL: Invalid type");
4148         if ((unsigned)Index != Index)
4149           return error("Invalid value");
4150         if (IsStruct && Index >= FullTy->getStructNumElements())
4151           return error("EXTRACTVAL: Invalid struct index");
4152         if (IsArray && Index >= FullTy->getArrayNumElements())
4153           return error("EXTRACTVAL: Invalid array index");
4154         EXTRACTVALIdx.push_back((unsigned)Index);
4155 
4156         if (IsStruct)
4157           FullTy = FullTy->getStructElementType(Index);
4158         else
4159           FullTy = FullTy->getArrayElementType();
4160       }
4161 
4162       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4163       InstructionList.push_back(I);
4164       break;
4165     }
4166 
4167     case bitc::FUNC_CODE_INST_INSERTVAL: {
4168                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4169       unsigned OpNum = 0;
4170       Value *Agg;
4171       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy))
4172         return error("Invalid record");
4173       Value *Val;
4174       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4175         return error("Invalid record");
4176 
4177       unsigned RecSize = Record.size();
4178       if (OpNum == RecSize)
4179         return error("INSERTVAL: Invalid instruction with 0 indices");
4180 
4181       SmallVector<unsigned, 4> INSERTVALIdx;
4182       Type *CurTy = Agg->getType();
4183       for (; OpNum != RecSize; ++OpNum) {
4184         bool IsArray = CurTy->isArrayTy();
4185         bool IsStruct = CurTy->isStructTy();
4186         uint64_t Index = Record[OpNum];
4187 
4188         if (!IsStruct && !IsArray)
4189           return error("INSERTVAL: Invalid type");
4190         if ((unsigned)Index != Index)
4191           return error("Invalid value");
4192         if (IsStruct && Index >= CurTy->getStructNumElements())
4193           return error("INSERTVAL: Invalid struct index");
4194         if (IsArray && Index >= CurTy->getArrayNumElements())
4195           return error("INSERTVAL: Invalid array index");
4196 
4197         INSERTVALIdx.push_back((unsigned)Index);
4198         if (IsStruct)
4199           CurTy = CurTy->getStructElementType(Index);
4200         else
4201           CurTy = CurTy->getArrayElementType();
4202       }
4203 
4204       if (CurTy != Val->getType())
4205         return error("Inserted value type doesn't match aggregate type");
4206 
4207       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4208       InstructionList.push_back(I);
4209       break;
4210     }
4211 
4212     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4213       // obsolete form of select
4214       // handles select i1 ... in old bitcode
4215       unsigned OpNum = 0;
4216       Value *TrueVal, *FalseVal, *Cond;
4217       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) ||
4218           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4219           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4220         return error("Invalid record");
4221 
4222       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4223       InstructionList.push_back(I);
4224       break;
4225     }
4226 
4227     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4228       // new form of select
4229       // handles select i1 or select [N x i1]
4230       unsigned OpNum = 0;
4231       Value *TrueVal, *FalseVal, *Cond;
4232       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) ||
4233           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4234           getValueTypePair(Record, OpNum, NextValueNo, Cond))
4235         return error("Invalid record");
4236 
4237       // select condition can be either i1 or [N x i1]
4238       if (VectorType* vector_type =
4239           dyn_cast<VectorType>(Cond->getType())) {
4240         // expect <n x i1>
4241         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4242           return error("Invalid type for value");
4243       } else {
4244         // expect i1
4245         if (Cond->getType() != Type::getInt1Ty(Context))
4246           return error("Invalid type for value");
4247       }
4248 
4249       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4250       InstructionList.push_back(I);
4251       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
4252         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4253         if (FMF.any())
4254           I->setFastMathFlags(FMF);
4255       }
4256       break;
4257     }
4258 
4259     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4260       unsigned OpNum = 0;
4261       Value *Vec, *Idx;
4262       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy) ||
4263           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4264         return error("Invalid record");
4265       if (!Vec->getType()->isVectorTy())
4266         return error("Invalid type for value");
4267       I = ExtractElementInst::Create(Vec, Idx);
4268       FullTy = cast<VectorType>(FullTy)->getElementType();
4269       InstructionList.push_back(I);
4270       break;
4271     }
4272 
4273     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4274       unsigned OpNum = 0;
4275       Value *Vec, *Elt, *Idx;
4276       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy))
4277         return error("Invalid record");
4278       if (!Vec->getType()->isVectorTy())
4279         return error("Invalid type for value");
4280       if (popValue(Record, OpNum, NextValueNo,
4281                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4282           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4283         return error("Invalid record");
4284       I = InsertElementInst::Create(Vec, Elt, Idx);
4285       InstructionList.push_back(I);
4286       break;
4287     }
4288 
4289     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4290       unsigned OpNum = 0;
4291       Value *Vec1, *Vec2, *Mask;
4292       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, &FullTy) ||
4293           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4294         return error("Invalid record");
4295 
4296       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4297         return error("Invalid record");
4298       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4299         return error("Invalid type for value");
4300 
4301       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4302       FullTy =
4303           VectorType::get(cast<VectorType>(FullTy)->getElementType(),
4304                           cast<VectorType>(Mask->getType())->getElementCount());
4305       InstructionList.push_back(I);
4306       break;
4307     }
4308 
4309     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4310       // Old form of ICmp/FCmp returning bool
4311       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4312       // both legal on vectors but had different behaviour.
4313     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4314       // FCmp/ICmp returning bool or vector of bool
4315 
4316       unsigned OpNum = 0;
4317       Value *LHS, *RHS;
4318       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4319           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4320         return error("Invalid record");
4321 
4322       if (OpNum >= Record.size())
4323         return error(
4324             "Invalid record: operand number exceeded available operands");
4325 
4326       unsigned PredVal = Record[OpNum];
4327       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4328       FastMathFlags FMF;
4329       if (IsFP && Record.size() > OpNum+1)
4330         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4331 
4332       if (OpNum+1 != Record.size())
4333         return error("Invalid record");
4334 
4335       if (LHS->getType()->isFPOrFPVectorTy())
4336         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4337       else
4338         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4339 
4340       if (FMF.any())
4341         I->setFastMathFlags(FMF);
4342       InstructionList.push_back(I);
4343       break;
4344     }
4345 
4346     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4347       {
4348         unsigned Size = Record.size();
4349         if (Size == 0) {
4350           I = ReturnInst::Create(Context);
4351           InstructionList.push_back(I);
4352           break;
4353         }
4354 
4355         unsigned OpNum = 0;
4356         Value *Op = nullptr;
4357         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4358           return error("Invalid record");
4359         if (OpNum != Record.size())
4360           return error("Invalid record");
4361 
4362         I = ReturnInst::Create(Context, Op);
4363         InstructionList.push_back(I);
4364         break;
4365       }
4366     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4367       if (Record.size() != 1 && Record.size() != 3)
4368         return error("Invalid record");
4369       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4370       if (!TrueDest)
4371         return error("Invalid record");
4372 
4373       if (Record.size() == 1) {
4374         I = BranchInst::Create(TrueDest);
4375         InstructionList.push_back(I);
4376       }
4377       else {
4378         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4379         Value *Cond = getValue(Record, 2, NextValueNo,
4380                                Type::getInt1Ty(Context));
4381         if (!FalseDest || !Cond)
4382           return error("Invalid record");
4383         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4384         InstructionList.push_back(I);
4385       }
4386       break;
4387     }
4388     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4389       if (Record.size() != 1 && Record.size() != 2)
4390         return error("Invalid record");
4391       unsigned Idx = 0;
4392       Value *CleanupPad =
4393           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4394       if (!CleanupPad)
4395         return error("Invalid record");
4396       BasicBlock *UnwindDest = nullptr;
4397       if (Record.size() == 2) {
4398         UnwindDest = getBasicBlock(Record[Idx++]);
4399         if (!UnwindDest)
4400           return error("Invalid record");
4401       }
4402 
4403       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4404       InstructionList.push_back(I);
4405       break;
4406     }
4407     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4408       if (Record.size() != 2)
4409         return error("Invalid record");
4410       unsigned Idx = 0;
4411       Value *CatchPad =
4412           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4413       if (!CatchPad)
4414         return error("Invalid record");
4415       BasicBlock *BB = getBasicBlock(Record[Idx++]);
4416       if (!BB)
4417         return error("Invalid record");
4418 
4419       I = CatchReturnInst::Create(CatchPad, BB);
4420       InstructionList.push_back(I);
4421       break;
4422     }
4423     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4424       // We must have, at minimum, the outer scope and the number of arguments.
4425       if (Record.size() < 2)
4426         return error("Invalid record");
4427 
4428       unsigned Idx = 0;
4429 
4430       Value *ParentPad =
4431           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4432 
4433       unsigned NumHandlers = Record[Idx++];
4434 
4435       SmallVector<BasicBlock *, 2> Handlers;
4436       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4437         BasicBlock *BB = getBasicBlock(Record[Idx++]);
4438         if (!BB)
4439           return error("Invalid record");
4440         Handlers.push_back(BB);
4441       }
4442 
4443       BasicBlock *UnwindDest = nullptr;
4444       if (Idx + 1 == Record.size()) {
4445         UnwindDest = getBasicBlock(Record[Idx++]);
4446         if (!UnwindDest)
4447           return error("Invalid record");
4448       }
4449 
4450       if (Record.size() != Idx)
4451         return error("Invalid record");
4452 
4453       auto *CatchSwitch =
4454           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4455       for (BasicBlock *Handler : Handlers)
4456         CatchSwitch->addHandler(Handler);
4457       I = CatchSwitch;
4458       InstructionList.push_back(I);
4459       break;
4460     }
4461     case bitc::FUNC_CODE_INST_CATCHPAD:
4462     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4463       // We must have, at minimum, the outer scope and the number of arguments.
4464       if (Record.size() < 2)
4465         return error("Invalid record");
4466 
4467       unsigned Idx = 0;
4468 
4469       Value *ParentPad =
4470           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4471 
4472       unsigned NumArgOperands = Record[Idx++];
4473 
4474       SmallVector<Value *, 2> Args;
4475       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4476         Value *Val;
4477         if (getValueTypePair(Record, Idx, NextValueNo, Val))
4478           return error("Invalid record");
4479         Args.push_back(Val);
4480       }
4481 
4482       if (Record.size() != Idx)
4483         return error("Invalid record");
4484 
4485       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4486         I = CleanupPadInst::Create(ParentPad, Args);
4487       else
4488         I = CatchPadInst::Create(ParentPad, Args);
4489       InstructionList.push_back(I);
4490       break;
4491     }
4492     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4493       // Check magic
4494       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4495         // "New" SwitchInst format with case ranges. The changes to write this
4496         // format were reverted but we still recognize bitcode that uses it.
4497         // Hopefully someday we will have support for case ranges and can use
4498         // this format again.
4499 
4500         Type *OpTy = getTypeByID(Record[1]);
4501         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4502 
4503         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4504         BasicBlock *Default = getBasicBlock(Record[3]);
4505         if (!OpTy || !Cond || !Default)
4506           return error("Invalid record");
4507 
4508         unsigned NumCases = Record[4];
4509 
4510         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4511         InstructionList.push_back(SI);
4512 
4513         unsigned CurIdx = 5;
4514         for (unsigned i = 0; i != NumCases; ++i) {
4515           SmallVector<ConstantInt*, 1> CaseVals;
4516           unsigned NumItems = Record[CurIdx++];
4517           for (unsigned ci = 0; ci != NumItems; ++ci) {
4518             bool isSingleNumber = Record[CurIdx++];
4519 
4520             APInt Low;
4521             unsigned ActiveWords = 1;
4522             if (ValueBitWidth > 64)
4523               ActiveWords = Record[CurIdx++];
4524             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4525                                 ValueBitWidth);
4526             CurIdx += ActiveWords;
4527 
4528             if (!isSingleNumber) {
4529               ActiveWords = 1;
4530               if (ValueBitWidth > 64)
4531                 ActiveWords = Record[CurIdx++];
4532               APInt High = readWideAPInt(
4533                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4534               CurIdx += ActiveWords;
4535 
4536               // FIXME: It is not clear whether values in the range should be
4537               // compared as signed or unsigned values. The partially
4538               // implemented changes that used this format in the past used
4539               // unsigned comparisons.
4540               for ( ; Low.ule(High); ++Low)
4541                 CaseVals.push_back(ConstantInt::get(Context, Low));
4542             } else
4543               CaseVals.push_back(ConstantInt::get(Context, Low));
4544           }
4545           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4546           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4547                  cve = CaseVals.end(); cvi != cve; ++cvi)
4548             SI->addCase(*cvi, DestBB);
4549         }
4550         I = SI;
4551         break;
4552       }
4553 
4554       // Old SwitchInst format without case ranges.
4555 
4556       if (Record.size() < 3 || (Record.size() & 1) == 0)
4557         return error("Invalid record");
4558       Type *OpTy = getTypeByID(Record[0]);
4559       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4560       BasicBlock *Default = getBasicBlock(Record[2]);
4561       if (!OpTy || !Cond || !Default)
4562         return error("Invalid record");
4563       unsigned NumCases = (Record.size()-3)/2;
4564       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4565       InstructionList.push_back(SI);
4566       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4567         ConstantInt *CaseVal =
4568           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4569         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4570         if (!CaseVal || !DestBB) {
4571           delete SI;
4572           return error("Invalid record");
4573         }
4574         SI->addCase(CaseVal, DestBB);
4575       }
4576       I = SI;
4577       break;
4578     }
4579     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4580       if (Record.size() < 2)
4581         return error("Invalid record");
4582       Type *OpTy = getTypeByID(Record[0]);
4583       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4584       if (!OpTy || !Address)
4585         return error("Invalid record");
4586       unsigned NumDests = Record.size()-2;
4587       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4588       InstructionList.push_back(IBI);
4589       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4590         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4591           IBI->addDestination(DestBB);
4592         } else {
4593           delete IBI;
4594           return error("Invalid record");
4595         }
4596       }
4597       I = IBI;
4598       break;
4599     }
4600 
4601     case bitc::FUNC_CODE_INST_INVOKE: {
4602       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4603       if (Record.size() < 4)
4604         return error("Invalid record");
4605       unsigned OpNum = 0;
4606       AttributeList PAL = getAttributes(Record[OpNum++]);
4607       unsigned CCInfo = Record[OpNum++];
4608       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4609       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4610 
4611       FunctionType *FTy = nullptr;
4612       FunctionType *FullFTy = nullptr;
4613       if ((CCInfo >> 13) & 1) {
4614         FullFTy =
4615             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
4616         if (!FullFTy)
4617           return error("Explicit invoke type is not a function type");
4618         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4619       }
4620 
4621       Value *Callee;
4622       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
4623         return error("Invalid record");
4624 
4625       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4626       if (!CalleeTy)
4627         return error("Callee is not a pointer");
4628       if (!FTy) {
4629         FullFTy =
4630             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
4631         if (!FullFTy)
4632           return error("Callee is not of pointer to function type");
4633         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4634       } else if (getPointerElementFlatType(FullTy) != FTy)
4635         return error("Explicit invoke type does not match pointee type of "
4636                      "callee operand");
4637       if (Record.size() < FTy->getNumParams() + OpNum)
4638         return error("Insufficient operands to call");
4639 
4640       SmallVector<Value*, 16> Ops;
4641       SmallVector<Type *, 16> ArgsFullTys;
4642       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4643         Ops.push_back(getValue(Record, OpNum, NextValueNo,
4644                                FTy->getParamType(i)));
4645         ArgsFullTys.push_back(FullFTy->getParamType(i));
4646         if (!Ops.back())
4647           return error("Invalid record");
4648       }
4649 
4650       if (!FTy->isVarArg()) {
4651         if (Record.size() != OpNum)
4652           return error("Invalid record");
4653       } else {
4654         // Read type/value pairs for varargs params.
4655         while (OpNum != Record.size()) {
4656           Value *Op;
4657           Type *FullTy;
4658           if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
4659             return error("Invalid record");
4660           Ops.push_back(Op);
4661           ArgsFullTys.push_back(FullTy);
4662         }
4663       }
4664 
4665       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
4666                              OperandBundles);
4667       FullTy = FullFTy->getReturnType();
4668       OperandBundles.clear();
4669       InstructionList.push_back(I);
4670       cast<InvokeInst>(I)->setCallingConv(
4671           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4672       cast<InvokeInst>(I)->setAttributes(PAL);
4673       propagateByValSRetTypes(cast<CallBase>(I), ArgsFullTys);
4674 
4675       break;
4676     }
4677     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4678       unsigned Idx = 0;
4679       Value *Val = nullptr;
4680       if (getValueTypePair(Record, Idx, NextValueNo, Val))
4681         return error("Invalid record");
4682       I = ResumeInst::Create(Val);
4683       InstructionList.push_back(I);
4684       break;
4685     }
4686     case bitc::FUNC_CODE_INST_CALLBR: {
4687       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
4688       unsigned OpNum = 0;
4689       AttributeList PAL = getAttributes(Record[OpNum++]);
4690       unsigned CCInfo = Record[OpNum++];
4691 
4692       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
4693       unsigned NumIndirectDests = Record[OpNum++];
4694       SmallVector<BasicBlock *, 16> IndirectDests;
4695       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
4696         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
4697 
4698       FunctionType *FTy = nullptr;
4699       FunctionType *FullFTy = nullptr;
4700       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
4701         FullFTy =
4702             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
4703         if (!FullFTy)
4704           return error("Explicit call type is not a function type");
4705         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4706       }
4707 
4708       Value *Callee;
4709       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
4710         return error("Invalid record");
4711 
4712       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4713       if (!OpTy)
4714         return error("Callee is not a pointer type");
4715       if (!FTy) {
4716         FullFTy =
4717             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
4718         if (!FullFTy)
4719           return error("Callee is not of pointer to function type");
4720         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4721       } else if (getPointerElementFlatType(FullTy) != FTy)
4722         return error("Explicit call type does not match pointee type of "
4723                      "callee operand");
4724       if (Record.size() < FTy->getNumParams() + OpNum)
4725         return error("Insufficient operands to call");
4726 
4727       SmallVector<Value*, 16> Args;
4728       // Read the fixed params.
4729       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4730         if (FTy->getParamType(i)->isLabelTy())
4731           Args.push_back(getBasicBlock(Record[OpNum]));
4732         else
4733           Args.push_back(getValue(Record, OpNum, NextValueNo,
4734                                   FTy->getParamType(i)));
4735         if (!Args.back())
4736           return error("Invalid record");
4737       }
4738 
4739       // Read type/value pairs for varargs params.
4740       if (!FTy->isVarArg()) {
4741         if (OpNum != Record.size())
4742           return error("Invalid record");
4743       } else {
4744         while (OpNum != Record.size()) {
4745           Value *Op;
4746           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4747             return error("Invalid record");
4748           Args.push_back(Op);
4749         }
4750       }
4751 
4752       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
4753                              OperandBundles);
4754       FullTy = FullFTy->getReturnType();
4755       OperandBundles.clear();
4756       InstructionList.push_back(I);
4757       cast<CallBrInst>(I)->setCallingConv(
4758           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4759       cast<CallBrInst>(I)->setAttributes(PAL);
4760       break;
4761     }
4762     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4763       I = new UnreachableInst(Context);
4764       InstructionList.push_back(I);
4765       break;
4766     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4767       if (Record.empty())
4768         return error("Invalid record");
4769       // The first record specifies the type.
4770       FullTy = getFullyStructuredTypeByID(Record[0]);
4771       Type *Ty = flattenPointerTypes(FullTy);
4772       if (!Ty)
4773         return error("Invalid record");
4774 
4775       // Phi arguments are pairs of records of [value, basic block].
4776       // There is an optional final record for fast-math-flags if this phi has a
4777       // floating-point type.
4778       size_t NumArgs = (Record.size() - 1) / 2;
4779       PHINode *PN = PHINode::Create(Ty, NumArgs);
4780       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN))
4781         return error("Invalid record");
4782       InstructionList.push_back(PN);
4783 
4784       for (unsigned i = 0; i != NumArgs; i++) {
4785         Value *V;
4786         // With the new function encoding, it is possible that operands have
4787         // negative IDs (for forward references).  Use a signed VBR
4788         // representation to keep the encoding small.
4789         if (UseRelativeIDs)
4790           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty);
4791         else
4792           V = getValue(Record, i * 2 + 1, NextValueNo, Ty);
4793         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
4794         if (!V || !BB)
4795           return error("Invalid record");
4796         PN->addIncoming(V, BB);
4797       }
4798       I = PN;
4799 
4800       // If there are an even number of records, the final record must be FMF.
4801       if (Record.size() % 2 == 0) {
4802         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
4803         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
4804         if (FMF.any())
4805           I->setFastMathFlags(FMF);
4806       }
4807 
4808       break;
4809     }
4810 
4811     case bitc::FUNC_CODE_INST_LANDINGPAD:
4812     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4813       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4814       unsigned Idx = 0;
4815       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4816         if (Record.size() < 3)
4817           return error("Invalid record");
4818       } else {
4819         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4820         if (Record.size() < 4)
4821           return error("Invalid record");
4822       }
4823       FullTy = getFullyStructuredTypeByID(Record[Idx++]);
4824       Type *Ty = flattenPointerTypes(FullTy);
4825       if (!Ty)
4826         return error("Invalid record");
4827       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4828         Value *PersFn = nullptr;
4829         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4830           return error("Invalid record");
4831 
4832         if (!F->hasPersonalityFn())
4833           F->setPersonalityFn(cast<Constant>(PersFn));
4834         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4835           return error("Personality function mismatch");
4836       }
4837 
4838       bool IsCleanup = !!Record[Idx++];
4839       unsigned NumClauses = Record[Idx++];
4840       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4841       LP->setCleanup(IsCleanup);
4842       for (unsigned J = 0; J != NumClauses; ++J) {
4843         LandingPadInst::ClauseType CT =
4844           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4845         Value *Val;
4846 
4847         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4848           delete LP;
4849           return error("Invalid record");
4850         }
4851 
4852         assert((CT != LandingPadInst::Catch ||
4853                 !isa<ArrayType>(Val->getType())) &&
4854                "Catch clause has a invalid type!");
4855         assert((CT != LandingPadInst::Filter ||
4856                 isa<ArrayType>(Val->getType())) &&
4857                "Filter clause has invalid type!");
4858         LP->addClause(cast<Constant>(Val));
4859       }
4860 
4861       I = LP;
4862       InstructionList.push_back(I);
4863       break;
4864     }
4865 
4866     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4867       if (Record.size() != 4)
4868         return error("Invalid record");
4869       using APV = AllocaPackedValues;
4870       const uint64_t Rec = Record[3];
4871       const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
4872       const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
4873       FullTy = getFullyStructuredTypeByID(Record[0]);
4874       Type *Ty = flattenPointerTypes(FullTy);
4875       if (!Bitfield::get<APV::ExplicitType>(Rec)) {
4876         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4877         if (!PTy)
4878           return error("Old-style alloca with a non-pointer type");
4879         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4880       }
4881       Type *OpTy = getTypeByID(Record[1]);
4882       Value *Size = getFnValueByID(Record[2], OpTy);
4883       MaybeAlign Align;
4884       if (Error Err =
4885               parseAlignmentValue(Bitfield::get<APV::Align>(Rec), Align)) {
4886         return Err;
4887       }
4888       if (!Ty || !Size)
4889         return error("Invalid record");
4890 
4891       // FIXME: Make this an optional field.
4892       const DataLayout &DL = TheModule->getDataLayout();
4893       unsigned AS = DL.getAllocaAddrSpace();
4894 
4895       SmallPtrSet<Type *, 4> Visited;
4896       if (!Align && !Ty->isSized(&Visited))
4897         return error("alloca of unsized type");
4898       if (!Align)
4899         Align = DL.getPrefTypeAlign(Ty);
4900 
4901       AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
4902       AI->setUsedWithInAlloca(InAlloca);
4903       AI->setSwiftError(SwiftError);
4904       I = AI;
4905       FullTy = PointerType::get(FullTy, AS);
4906       InstructionList.push_back(I);
4907       break;
4908     }
4909     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4910       unsigned OpNum = 0;
4911       Value *Op;
4912       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) ||
4913           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4914         return error("Invalid record");
4915 
4916       if (!isa<PointerType>(Op->getType()))
4917         return error("Load operand is not a pointer type");
4918 
4919       Type *Ty = nullptr;
4920       if (OpNum + 3 == Record.size()) {
4921         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4922         Ty = flattenPointerTypes(FullTy);
4923       } else
4924         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4925 
4926       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4927         return Err;
4928 
4929       MaybeAlign Align;
4930       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4931         return Err;
4932       SmallPtrSet<Type *, 4> Visited;
4933       if (!Align && !Ty->isSized(&Visited))
4934         return error("load of unsized type");
4935       if (!Align)
4936         Align = TheModule->getDataLayout().getABITypeAlign(Ty);
4937       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
4938       InstructionList.push_back(I);
4939       break;
4940     }
4941     case bitc::FUNC_CODE_INST_LOADATOMIC: {
4942        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
4943       unsigned OpNum = 0;
4944       Value *Op;
4945       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) ||
4946           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4947         return error("Invalid record");
4948 
4949       if (!isa<PointerType>(Op->getType()))
4950         return error("Load operand is not a pointer type");
4951 
4952       Type *Ty = nullptr;
4953       if (OpNum + 5 == Record.size()) {
4954         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4955         Ty = flattenPointerTypes(FullTy);
4956       } else
4957         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4958 
4959       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4960         return Err;
4961 
4962       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4963       if (Ordering == AtomicOrdering::NotAtomic ||
4964           Ordering == AtomicOrdering::Release ||
4965           Ordering == AtomicOrdering::AcquireRelease)
4966         return error("Invalid record");
4967       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4968         return error("Invalid record");
4969       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4970 
4971       MaybeAlign Align;
4972       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4973         return Err;
4974       if (!Align)
4975         return error("Alignment missing from atomic load");
4976       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
4977       InstructionList.push_back(I);
4978       break;
4979     }
4980     case bitc::FUNC_CODE_INST_STORE:
4981     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
4982       unsigned OpNum = 0;
4983       Value *Val, *Ptr;
4984       Type *FullTy;
4985       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
4986           (BitCode == bitc::FUNC_CODE_INST_STORE
4987                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4988                : popValue(Record, OpNum, NextValueNo,
4989                           getPointerElementFlatType(FullTy), Val)) ||
4990           OpNum + 2 != Record.size())
4991         return error("Invalid record");
4992 
4993       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4994         return Err;
4995       MaybeAlign Align;
4996       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4997         return Err;
4998       SmallPtrSet<Type *, 4> Visited;
4999       if (!Align && !Val->getType()->isSized(&Visited))
5000         return error("store of unsized type");
5001       if (!Align)
5002         Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
5003       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
5004       InstructionList.push_back(I);
5005       break;
5006     }
5007     case bitc::FUNC_CODE_INST_STOREATOMIC:
5008     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
5009       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
5010       unsigned OpNum = 0;
5011       Value *Val, *Ptr;
5012       Type *FullTy;
5013       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
5014           !isa<PointerType>(Ptr->getType()) ||
5015           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
5016                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5017                : popValue(Record, OpNum, NextValueNo,
5018                           getPointerElementFlatType(FullTy), Val)) ||
5019           OpNum + 4 != Record.size())
5020         return error("Invalid record");
5021 
5022       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5023         return Err;
5024       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5025       if (Ordering == AtomicOrdering::NotAtomic ||
5026           Ordering == AtomicOrdering::Acquire ||
5027           Ordering == AtomicOrdering::AcquireRelease)
5028         return error("Invalid record");
5029       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5030       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5031         return error("Invalid record");
5032 
5033       MaybeAlign Align;
5034       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5035         return Err;
5036       if (!Align)
5037         return error("Alignment missing from atomic store");
5038       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
5039       InstructionList.push_back(I);
5040       break;
5041     }
5042     case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
5043       // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
5044       // failure_ordering?, weak?]
5045       const size_t NumRecords = Record.size();
5046       unsigned OpNum = 0;
5047       Value *Ptr = nullptr;
5048       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy))
5049         return error("Invalid record");
5050 
5051       if (!isa<PointerType>(Ptr->getType()))
5052         return error("Cmpxchg operand is not a pointer type");
5053 
5054       Value *Cmp = nullptr;
5055       if (popValue(Record, OpNum, NextValueNo,
5056                    getPointerElementFlatType(FullTy), Cmp))
5057         return error("Invalid record");
5058 
5059       FullTy = cast<PointerType>(FullTy)->getElementType();
5060 
5061       Value *New = nullptr;
5062       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
5063           NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
5064         return error("Invalid record");
5065 
5066       const AtomicOrdering SuccessOrdering =
5067           getDecodedOrdering(Record[OpNum + 1]);
5068       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5069           SuccessOrdering == AtomicOrdering::Unordered)
5070         return error("Invalid record");
5071 
5072       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5073 
5074       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5075         return Err;
5076 
5077       const AtomicOrdering FailureOrdering =
5078           NumRecords < 7
5079               ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
5080               : getDecodedOrdering(Record[OpNum + 3]);
5081 
5082       const Align Alignment(
5083           TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5084 
5085       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
5086                                 FailureOrdering, SSID);
5087       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5088       FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)});
5089 
5090       if (NumRecords < 8) {
5091         // Before weak cmpxchgs existed, the instruction simply returned the
5092         // value loaded from memory, so bitcode files from that era will be
5093         // expecting the first component of a modern cmpxchg.
5094         CurBB->getInstList().push_back(I);
5095         I = ExtractValueInst::Create(I, 0);
5096         FullTy = cast<StructType>(FullTy)->getElementType(0);
5097       } else {
5098         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
5099       }
5100 
5101       InstructionList.push_back(I);
5102       break;
5103     }
5104     case bitc::FUNC_CODE_INST_CMPXCHG: {
5105       // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
5106       // failure_ordering, weak, align?]
5107       const size_t NumRecords = Record.size();
5108       unsigned OpNum = 0;
5109       Value *Ptr = nullptr;
5110       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy))
5111         return error("Invalid record");
5112 
5113       if (!isa<PointerType>(Ptr->getType()))
5114         return error("Cmpxchg operand is not a pointer type");
5115 
5116       Value *Cmp = nullptr;
5117       if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, &FullTy))
5118         return error("Invalid record");
5119 
5120       Value *Val = nullptr;
5121       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), Val))
5122         return error("Invalid record");
5123 
5124       if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6)
5125         return error("Invalid record");
5126 
5127       const bool IsVol = Record[OpNum];
5128 
5129       const AtomicOrdering SuccessOrdering =
5130           getDecodedOrdering(Record[OpNum + 1]);
5131       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5132           SuccessOrdering == AtomicOrdering::Unordered)
5133         return error("Invalid record");
5134 
5135       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5136 
5137       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5138         return Err;
5139 
5140       const AtomicOrdering FailureOrdering =
5141           getDecodedOrdering(Record[OpNum + 3]);
5142 
5143       const bool IsWeak = Record[OpNum + 4];
5144 
5145       MaybeAlign Alignment;
5146 
5147       if (NumRecords == (OpNum + 6)) {
5148         if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment))
5149           return Err;
5150       }
5151       if (!Alignment)
5152         Alignment =
5153             Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5154 
5155       I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering,
5156                                 FailureOrdering, SSID);
5157       FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)});
5158       cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol);
5159       cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak);
5160 
5161       InstructionList.push_back(I);
5162       break;
5163     }
5164     case bitc::FUNC_CODE_INST_ATOMICRMW: {
5165       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid, align?]
5166       const size_t NumRecords = Record.size();
5167       unsigned OpNum = 0;
5168 
5169       Value *Ptr = nullptr;
5170       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy))
5171         return error("Invalid record");
5172 
5173       if (!isa<PointerType>(Ptr->getType()))
5174         return error("Invalid record");
5175 
5176       Value *Val = nullptr;
5177       if (popValue(Record, OpNum, NextValueNo,
5178                    getPointerElementFlatType(FullTy), Val))
5179         return error("Invalid record");
5180 
5181       if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5)))
5182         return error("Invalid record");
5183 
5184       const AtomicRMWInst::BinOp Operation =
5185           getDecodedRMWOperation(Record[OpNum]);
5186       if (Operation < AtomicRMWInst::FIRST_BINOP ||
5187           Operation > AtomicRMWInst::LAST_BINOP)
5188         return error("Invalid record");
5189 
5190       const bool IsVol = Record[OpNum + 1];
5191 
5192       const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5193       if (Ordering == AtomicOrdering::NotAtomic ||
5194           Ordering == AtomicOrdering::Unordered)
5195         return error("Invalid record");
5196 
5197       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5198 
5199       MaybeAlign Alignment;
5200 
5201       if (NumRecords == (OpNum + 5)) {
5202         if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment))
5203           return Err;
5204       }
5205 
5206       if (!Alignment)
5207         Alignment =
5208             Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
5209 
5210       I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID);
5211       FullTy = getPointerElementFlatType(FullTy);
5212       cast<AtomicRMWInst>(I)->setVolatile(IsVol);
5213 
5214       InstructionList.push_back(I);
5215       break;
5216     }
5217     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
5218       if (2 != Record.size())
5219         return error("Invalid record");
5220       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
5221       if (Ordering == AtomicOrdering::NotAtomic ||
5222           Ordering == AtomicOrdering::Unordered ||
5223           Ordering == AtomicOrdering::Monotonic)
5224         return error("Invalid record");
5225       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
5226       I = new FenceInst(Context, Ordering, SSID);
5227       InstructionList.push_back(I);
5228       break;
5229     }
5230     case bitc::FUNC_CODE_INST_CALL: {
5231       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
5232       if (Record.size() < 3)
5233         return error("Invalid record");
5234 
5235       unsigned OpNum = 0;
5236       AttributeList PAL = getAttributes(Record[OpNum++]);
5237       unsigned CCInfo = Record[OpNum++];
5238 
5239       FastMathFlags FMF;
5240       if ((CCInfo >> bitc::CALL_FMF) & 1) {
5241         FMF = getDecodedFastMathFlags(Record[OpNum++]);
5242         if (!FMF.any())
5243           return error("Fast math flags indicator set for call with no FMF");
5244       }
5245 
5246       FunctionType *FTy = nullptr;
5247       FunctionType *FullFTy = nullptr;
5248       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5249         FullFTy =
5250             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
5251         if (!FullFTy)
5252           return error("Explicit call type is not a function type");
5253         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
5254       }
5255 
5256       Value *Callee;
5257       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
5258         return error("Invalid record");
5259 
5260       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5261       if (!OpTy)
5262         return error("Callee is not a pointer type");
5263       if (!FTy) {
5264         FullFTy =
5265             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
5266         if (!FullFTy)
5267           return error("Callee is not of pointer to function type");
5268         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
5269       } else if (getPointerElementFlatType(FullTy) != FTy)
5270         return error("Explicit call type does not match pointee type of "
5271                      "callee operand");
5272       if (Record.size() < FTy->getNumParams() + OpNum)
5273         return error("Insufficient operands to call");
5274 
5275       SmallVector<Value*, 16> Args;
5276       SmallVector<Type*, 16> ArgsFullTys;
5277       // Read the fixed params.
5278       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5279         if (FTy->getParamType(i)->isLabelTy())
5280           Args.push_back(getBasicBlock(Record[OpNum]));
5281         else
5282           Args.push_back(getValue(Record, OpNum, NextValueNo,
5283                                   FTy->getParamType(i)));
5284         ArgsFullTys.push_back(FullFTy->getParamType(i));
5285         if (!Args.back())
5286           return error("Invalid record");
5287       }
5288 
5289       // Read type/value pairs for varargs params.
5290       if (!FTy->isVarArg()) {
5291         if (OpNum != Record.size())
5292           return error("Invalid record");
5293       } else {
5294         while (OpNum != Record.size()) {
5295           Value *Op;
5296           Type *FullTy;
5297           if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
5298             return error("Invalid record");
5299           Args.push_back(Op);
5300           ArgsFullTys.push_back(FullTy);
5301         }
5302       }
5303 
5304       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5305       FullTy = FullFTy->getReturnType();
5306       OperandBundles.clear();
5307       InstructionList.push_back(I);
5308       cast<CallInst>(I)->setCallingConv(
5309           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5310       CallInst::TailCallKind TCK = CallInst::TCK_None;
5311       if (CCInfo & 1 << bitc::CALL_TAIL)
5312         TCK = CallInst::TCK_Tail;
5313       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5314         TCK = CallInst::TCK_MustTail;
5315       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5316         TCK = CallInst::TCK_NoTail;
5317       cast<CallInst>(I)->setTailCallKind(TCK);
5318       cast<CallInst>(I)->setAttributes(PAL);
5319       propagateByValSRetTypes(cast<CallBase>(I), ArgsFullTys);
5320       if (FMF.any()) {
5321         if (!isa<FPMathOperator>(I))
5322           return error("Fast-math-flags specified for call without "
5323                        "floating-point scalar or vector return type");
5324         I->setFastMathFlags(FMF);
5325       }
5326       break;
5327     }
5328     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5329       if (Record.size() < 3)
5330         return error("Invalid record");
5331       Type *OpTy = getTypeByID(Record[0]);
5332       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5333       FullTy = getFullyStructuredTypeByID(Record[2]);
5334       Type *ResTy = flattenPointerTypes(FullTy);
5335       if (!OpTy || !Op || !ResTy)
5336         return error("Invalid record");
5337       I = new VAArgInst(Op, ResTy);
5338       InstructionList.push_back(I);
5339       break;
5340     }
5341 
5342     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5343       // A call or an invoke can be optionally prefixed with some variable
5344       // number of operand bundle blocks.  These blocks are read into
5345       // OperandBundles and consumed at the next call or invoke instruction.
5346 
5347       if (Record.empty() || Record[0] >= BundleTags.size())
5348         return error("Invalid record");
5349 
5350       std::vector<Value *> Inputs;
5351 
5352       unsigned OpNum = 1;
5353       while (OpNum != Record.size()) {
5354         Value *Op;
5355         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5356           return error("Invalid record");
5357         Inputs.push_back(Op);
5358       }
5359 
5360       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5361       continue;
5362     }
5363 
5364     case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
5365       unsigned OpNum = 0;
5366       Value *Op = nullptr;
5367       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
5368         return error("Invalid record");
5369       if (OpNum != Record.size())
5370         return error("Invalid record");
5371 
5372       I = new FreezeInst(Op);
5373       InstructionList.push_back(I);
5374       break;
5375     }
5376     }
5377 
5378     // Add instruction to end of current BB.  If there is no current BB, reject
5379     // this file.
5380     if (!CurBB) {
5381       I->deleteValue();
5382       return error("Invalid instruction with no BB");
5383     }
5384     if (!OperandBundles.empty()) {
5385       I->deleteValue();
5386       return error("Operand bundles found with no consumer");
5387     }
5388     CurBB->getInstList().push_back(I);
5389 
5390     // If this was a terminator instruction, move to the next block.
5391     if (I->isTerminator()) {
5392       ++CurBBNo;
5393       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5394     }
5395 
5396     // Non-void values get registered in the value table for future use.
5397     if (!I->getType()->isVoidTy()) {
5398       if (!FullTy) {
5399         FullTy = I->getType();
5400         assert(
5401             !FullTy->isPointerTy() && !isa<StructType>(FullTy) &&
5402             !isa<ArrayType>(FullTy) &&
5403             (!isa<VectorType>(FullTy) ||
5404              cast<VectorType>(FullTy)->getElementType()->isFloatingPointTy() ||
5405              cast<VectorType>(FullTy)->getElementType()->isIntegerTy()) &&
5406             "Structured types must be assigned with corresponding non-opaque "
5407             "pointer type");
5408       }
5409 
5410       assert(I->getType() == flattenPointerTypes(FullTy) &&
5411              "Incorrect fully structured type provided for Instruction");
5412       ValueList.assignValue(I, NextValueNo++, FullTy);
5413     }
5414   }
5415 
5416 OutOfRecordLoop:
5417 
5418   if (!OperandBundles.empty())
5419     return error("Operand bundles found with no consumer");
5420 
5421   // Check the function list for unresolved values.
5422   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5423     if (!A->getParent()) {
5424       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5425       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5426         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5427           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5428           delete A;
5429         }
5430       }
5431       return error("Never resolved value found in function");
5432     }
5433   }
5434 
5435   // Unexpected unresolved metadata about to be dropped.
5436   if (MDLoader->hasFwdRefs())
5437     return error("Invalid function metadata: outgoing forward refs");
5438 
5439   // Trim the value list down to the size it was before we parsed this function.
5440   ValueList.shrinkTo(ModuleValueListSize);
5441   MDLoader->shrinkTo(ModuleMDLoaderSize);
5442   std::vector<BasicBlock*>().swap(FunctionBBs);
5443   return Error::success();
5444 }
5445 
5446 /// Find the function body in the bitcode stream
5447 Error BitcodeReader::findFunctionInStream(
5448     Function *F,
5449     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5450   while (DeferredFunctionInfoIterator->second == 0) {
5451     // This is the fallback handling for the old format bitcode that
5452     // didn't contain the function index in the VST, or when we have
5453     // an anonymous function which would not have a VST entry.
5454     // Assert that we have one of those two cases.
5455     assert(VSTOffset == 0 || !F->hasName());
5456     // Parse the next body in the stream and set its position in the
5457     // DeferredFunctionInfo map.
5458     if (Error Err = rememberAndSkipFunctionBodies())
5459       return Err;
5460   }
5461   return Error::success();
5462 }
5463 
5464 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
5465   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
5466     return SyncScope::ID(Val);
5467   if (Val >= SSIDs.size())
5468     return SyncScope::System; // Map unknown synchronization scopes to system.
5469   return SSIDs[Val];
5470 }
5471 
5472 //===----------------------------------------------------------------------===//
5473 // GVMaterializer implementation
5474 //===----------------------------------------------------------------------===//
5475 
5476 Error BitcodeReader::materialize(GlobalValue *GV) {
5477   Function *F = dyn_cast<Function>(GV);
5478   // If it's not a function or is already material, ignore the request.
5479   if (!F || !F->isMaterializable())
5480     return Error::success();
5481 
5482   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5483   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5484   // If its position is recorded as 0, its body is somewhere in the stream
5485   // but we haven't seen it yet.
5486   if (DFII->second == 0)
5487     if (Error Err = findFunctionInStream(F, DFII))
5488       return Err;
5489 
5490   // Materialize metadata before parsing any function bodies.
5491   if (Error Err = materializeMetadata())
5492     return Err;
5493 
5494   // Move the bit stream to the saved position of the deferred function body.
5495   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
5496     return JumpFailed;
5497   if (Error Err = parseFunctionBody(F))
5498     return Err;
5499   F->setIsMaterializable(false);
5500 
5501   if (StripDebugInfo)
5502     stripDebugInfo(*F);
5503 
5504   // Upgrade any old intrinsic calls in the function.
5505   for (auto &I : UpgradedIntrinsics) {
5506     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5507          UI != UE;) {
5508       User *U = *UI;
5509       ++UI;
5510       if (CallInst *CI = dyn_cast<CallInst>(U))
5511         UpgradeIntrinsicCall(CI, I.second);
5512     }
5513   }
5514 
5515   // Update calls to the remangled intrinsics
5516   for (auto &I : RemangledIntrinsics)
5517     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5518          UI != UE;)
5519       // Don't expect any other users than call sites
5520       cast<CallBase>(*UI++)->setCalledFunction(I.second);
5521 
5522   // Finish fn->subprogram upgrade for materialized functions.
5523   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
5524     F->setSubprogram(SP);
5525 
5526   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
5527   if (!MDLoader->isStrippingTBAA()) {
5528     for (auto &I : instructions(F)) {
5529       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
5530       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
5531         continue;
5532       MDLoader->setStripTBAA(true);
5533       stripTBAA(F->getParent());
5534     }
5535   }
5536 
5537   // "Upgrade" older incorrect branch weights by dropping them.
5538   for (auto &I : instructions(F)) {
5539     if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
5540       if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
5541         MDString *MDS = cast<MDString>(MD->getOperand(0));
5542         StringRef ProfName = MDS->getString();
5543         // Check consistency of !prof branch_weights metadata.
5544         if (!ProfName.equals("branch_weights"))
5545           continue;
5546         unsigned ExpectedNumOperands = 0;
5547         if (BranchInst *BI = dyn_cast<BranchInst>(&I))
5548           ExpectedNumOperands = BI->getNumSuccessors();
5549         else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
5550           ExpectedNumOperands = SI->getNumSuccessors();
5551         else if (isa<CallInst>(&I))
5552           ExpectedNumOperands = 1;
5553         else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
5554           ExpectedNumOperands = IBI->getNumDestinations();
5555         else if (isa<SelectInst>(&I))
5556           ExpectedNumOperands = 2;
5557         else
5558           continue; // ignore and continue.
5559 
5560         // If branch weight doesn't match, just strip branch weight.
5561         if (MD->getNumOperands() != 1 + ExpectedNumOperands)
5562           I.setMetadata(LLVMContext::MD_prof, nullptr);
5563       }
5564     }
5565   }
5566 
5567   // Look for functions that rely on old function attribute behavior.
5568   UpgradeFunctionAttributes(*F);
5569 
5570   // Bring in any functions that this function forward-referenced via
5571   // blockaddresses.
5572   return materializeForwardReferencedFunctions();
5573 }
5574 
5575 Error BitcodeReader::materializeModule() {
5576   if (Error Err = materializeMetadata())
5577     return Err;
5578 
5579   // Promise to materialize all forward references.
5580   WillMaterializeAllForwardRefs = true;
5581 
5582   // Iterate over the module, deserializing any functions that are still on
5583   // disk.
5584   for (Function &F : *TheModule) {
5585     if (Error Err = materialize(&F))
5586       return Err;
5587   }
5588   // At this point, if there are any function bodies, parse the rest of
5589   // the bits in the module past the last function block we have recorded
5590   // through either lazy scanning or the VST.
5591   if (LastFunctionBlockBit || NextUnreadBit)
5592     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
5593                                     ? LastFunctionBlockBit
5594                                     : NextUnreadBit))
5595       return Err;
5596 
5597   // Check that all block address forward references got resolved (as we
5598   // promised above).
5599   if (!BasicBlockFwdRefs.empty())
5600     return error("Never resolved function from blockaddress");
5601 
5602   // Upgrade any intrinsic calls that slipped through (should not happen!) and
5603   // delete the old functions to clean up. We can't do this unless the entire
5604   // module is materialized because there could always be another function body
5605   // with calls to the old function.
5606   for (auto &I : UpgradedIntrinsics) {
5607     for (auto *U : I.first->users()) {
5608       if (CallInst *CI = dyn_cast<CallInst>(U))
5609         UpgradeIntrinsicCall(CI, I.second);
5610     }
5611     if (!I.first->use_empty())
5612       I.first->replaceAllUsesWith(I.second);
5613     I.first->eraseFromParent();
5614   }
5615   UpgradedIntrinsics.clear();
5616   // Do the same for remangled intrinsics
5617   for (auto &I : RemangledIntrinsics) {
5618     I.first->replaceAllUsesWith(I.second);
5619     I.first->eraseFromParent();
5620   }
5621   RemangledIntrinsics.clear();
5622 
5623   UpgradeDebugInfo(*TheModule);
5624 
5625   UpgradeModuleFlags(*TheModule);
5626 
5627   UpgradeARCRuntime(*TheModule);
5628 
5629   return Error::success();
5630 }
5631 
5632 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5633   return IdentifiedStructTypes;
5634 }
5635 
5636 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5637     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
5638     StringRef ModulePath, unsigned ModuleId)
5639     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
5640       ModulePath(ModulePath), ModuleId(ModuleId) {}
5641 
5642 void ModuleSummaryIndexBitcodeReader::addThisModule() {
5643   TheIndex.addModule(ModulePath, ModuleId);
5644 }
5645 
5646 ModuleSummaryIndex::ModuleInfo *
5647 ModuleSummaryIndexBitcodeReader::getThisModule() {
5648   return TheIndex.getModule(ModulePath);
5649 }
5650 
5651 std::pair<ValueInfo, GlobalValue::GUID>
5652 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
5653   auto VGI = ValueIdToValueInfoMap[ValueId];
5654   assert(VGI.first);
5655   return VGI;
5656 }
5657 
5658 void ModuleSummaryIndexBitcodeReader::setValueGUID(
5659     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
5660     StringRef SourceFileName) {
5661   std::string GlobalId =
5662       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
5663   auto ValueGUID = GlobalValue::getGUID(GlobalId);
5664   auto OriginalNameID = ValueGUID;
5665   if (GlobalValue::isLocalLinkage(Linkage))
5666     OriginalNameID = GlobalValue::getGUID(ValueName);
5667   if (PrintSummaryGUIDs)
5668     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
5669            << ValueName << "\n";
5670 
5671   // UseStrtab is false for legacy summary formats and value names are
5672   // created on stack. In that case we save the name in a string saver in
5673   // the index so that the value name can be recorded.
5674   ValueIdToValueInfoMap[ValueID] = std::make_pair(
5675       TheIndex.getOrInsertValueInfo(
5676           ValueGUID,
5677           UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
5678       OriginalNameID);
5679 }
5680 
5681 // Specialized value symbol table parser used when reading module index
5682 // blocks where we don't actually create global values. The parsed information
5683 // is saved in the bitcode reader for use when later parsing summaries.
5684 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5685     uint64_t Offset,
5686     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5687   // With a strtab the VST is not required to parse the summary.
5688   if (UseStrtab)
5689     return Error::success();
5690 
5691   assert(Offset > 0 && "Expected non-zero VST offset");
5692   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
5693   if (!MaybeCurrentBit)
5694     return MaybeCurrentBit.takeError();
5695   uint64_t CurrentBit = MaybeCurrentBit.get();
5696 
5697   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5698     return Err;
5699 
5700   SmallVector<uint64_t, 64> Record;
5701 
5702   // Read all the records for this value table.
5703   SmallString<128> ValueName;
5704 
5705   while (true) {
5706     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5707     if (!MaybeEntry)
5708       return MaybeEntry.takeError();
5709     BitstreamEntry Entry = MaybeEntry.get();
5710 
5711     switch (Entry.Kind) {
5712     case BitstreamEntry::SubBlock: // Handled for us already.
5713     case BitstreamEntry::Error:
5714       return error("Malformed block");
5715     case BitstreamEntry::EndBlock:
5716       // Done parsing VST, jump back to wherever we came from.
5717       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
5718         return JumpFailed;
5719       return Error::success();
5720     case BitstreamEntry::Record:
5721       // The interesting case.
5722       break;
5723     }
5724 
5725     // Read a record.
5726     Record.clear();
5727     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
5728     if (!MaybeRecord)
5729       return MaybeRecord.takeError();
5730     switch (MaybeRecord.get()) {
5731     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5732       break;
5733     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5734       if (convertToString(Record, 1, ValueName))
5735         return error("Invalid record");
5736       unsigned ValueID = Record[0];
5737       assert(!SourceFileName.empty());
5738       auto VLI = ValueIdToLinkageMap.find(ValueID);
5739       assert(VLI != ValueIdToLinkageMap.end() &&
5740              "No linkage found for VST entry?");
5741       auto Linkage = VLI->second;
5742       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5743       ValueName.clear();
5744       break;
5745     }
5746     case bitc::VST_CODE_FNENTRY: {
5747       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5748       if (convertToString(Record, 2, ValueName))
5749         return error("Invalid record");
5750       unsigned ValueID = Record[0];
5751       assert(!SourceFileName.empty());
5752       auto VLI = ValueIdToLinkageMap.find(ValueID);
5753       assert(VLI != ValueIdToLinkageMap.end() &&
5754              "No linkage found for VST entry?");
5755       auto Linkage = VLI->second;
5756       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5757       ValueName.clear();
5758       break;
5759     }
5760     case bitc::VST_CODE_COMBINED_ENTRY: {
5761       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5762       unsigned ValueID = Record[0];
5763       GlobalValue::GUID RefGUID = Record[1];
5764       // The "original name", which is the second value of the pair will be
5765       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
5766       ValueIdToValueInfoMap[ValueID] =
5767           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5768       break;
5769     }
5770     }
5771   }
5772 }
5773 
5774 // Parse just the blocks needed for building the index out of the module.
5775 // At the end of this routine the module Index is populated with a map
5776 // from global value id to GlobalValueSummary objects.
5777 Error ModuleSummaryIndexBitcodeReader::parseModule() {
5778   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5779     return Err;
5780 
5781   SmallVector<uint64_t, 64> Record;
5782   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
5783   unsigned ValueId = 0;
5784 
5785   // Read the index for this module.
5786   while (true) {
5787     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
5788     if (!MaybeEntry)
5789       return MaybeEntry.takeError();
5790     llvm::BitstreamEntry Entry = MaybeEntry.get();
5791 
5792     switch (Entry.Kind) {
5793     case BitstreamEntry::Error:
5794       return error("Malformed block");
5795     case BitstreamEntry::EndBlock:
5796       return Error::success();
5797 
5798     case BitstreamEntry::SubBlock:
5799       switch (Entry.ID) {
5800       default: // Skip unknown content.
5801         if (Error Err = Stream.SkipBlock())
5802           return Err;
5803         break;
5804       case bitc::BLOCKINFO_BLOCK_ID:
5805         // Need to parse these to get abbrev ids (e.g. for VST)
5806         if (readBlockInfo())
5807           return error("Malformed block");
5808         break;
5809       case bitc::VALUE_SYMTAB_BLOCK_ID:
5810         // Should have been parsed earlier via VSTOffset, unless there
5811         // is no summary section.
5812         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
5813                 !SeenGlobalValSummary) &&
5814                "Expected early VST parse via VSTOffset record");
5815         if (Error Err = Stream.SkipBlock())
5816           return Err;
5817         break;
5818       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
5819       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
5820         // Add the module if it is a per-module index (has a source file name).
5821         if (!SourceFileName.empty())
5822           addThisModule();
5823         assert(!SeenValueSymbolTable &&
5824                "Already read VST when parsing summary block?");
5825         // We might not have a VST if there were no values in the
5826         // summary. An empty summary block generated when we are
5827         // performing ThinLTO compiles so we don't later invoke
5828         // the regular LTO process on them.
5829         if (VSTOffset > 0) {
5830           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
5831             return Err;
5832           SeenValueSymbolTable = true;
5833         }
5834         SeenGlobalValSummary = true;
5835         if (Error Err = parseEntireSummary(Entry.ID))
5836           return Err;
5837         break;
5838       case bitc::MODULE_STRTAB_BLOCK_ID:
5839         if (Error Err = parseModuleStringTable())
5840           return Err;
5841         break;
5842       }
5843       continue;
5844 
5845     case BitstreamEntry::Record: {
5846         Record.clear();
5847         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
5848         if (!MaybeBitCode)
5849           return MaybeBitCode.takeError();
5850         switch (MaybeBitCode.get()) {
5851         default:
5852           break; // Default behavior, ignore unknown content.
5853         case bitc::MODULE_CODE_VERSION: {
5854           if (Error Err = parseVersionRecord(Record).takeError())
5855             return Err;
5856           break;
5857         }
5858         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5859         case bitc::MODULE_CODE_SOURCE_FILENAME: {
5860           SmallString<128> ValueName;
5861           if (convertToString(Record, 0, ValueName))
5862             return error("Invalid record");
5863           SourceFileName = ValueName.c_str();
5864           break;
5865         }
5866         /// MODULE_CODE_HASH: [5*i32]
5867         case bitc::MODULE_CODE_HASH: {
5868           if (Record.size() != 5)
5869             return error("Invalid hash length " + Twine(Record.size()).str());
5870           auto &Hash = getThisModule()->second.second;
5871           int Pos = 0;
5872           for (auto &Val : Record) {
5873             assert(!(Val >> 32) && "Unexpected high bits set");
5874             Hash[Pos++] = Val;
5875           }
5876           break;
5877         }
5878         /// MODULE_CODE_VSTOFFSET: [offset]
5879         case bitc::MODULE_CODE_VSTOFFSET:
5880           if (Record.empty())
5881             return error("Invalid record");
5882           // Note that we subtract 1 here because the offset is relative to one
5883           // word before the start of the identification or module block, which
5884           // was historically always the start of the regular bitcode header.
5885           VSTOffset = Record[0] - 1;
5886           break;
5887         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
5888         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
5889         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
5890         // v2: [strtab offset, strtab size, v1]
5891         case bitc::MODULE_CODE_GLOBALVAR:
5892         case bitc::MODULE_CODE_FUNCTION:
5893         case bitc::MODULE_CODE_ALIAS: {
5894           StringRef Name;
5895           ArrayRef<uint64_t> GVRecord;
5896           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
5897           if (GVRecord.size() <= 3)
5898             return error("Invalid record");
5899           uint64_t RawLinkage = GVRecord[3];
5900           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5901           if (!UseStrtab) {
5902             ValueIdToLinkageMap[ValueId++] = Linkage;
5903             break;
5904           }
5905 
5906           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
5907           break;
5908         }
5909         }
5910       }
5911       continue;
5912     }
5913   }
5914 }
5915 
5916 std::vector<ValueInfo>
5917 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
5918   std::vector<ValueInfo> Ret;
5919   Ret.reserve(Record.size());
5920   for (uint64_t RefValueId : Record)
5921     Ret.push_back(getValueInfoFromValueId(RefValueId).first);
5922   return Ret;
5923 }
5924 
5925 std::vector<FunctionSummary::EdgeTy>
5926 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
5927                                               bool IsOldProfileFormat,
5928                                               bool HasProfile, bool HasRelBF) {
5929   std::vector<FunctionSummary::EdgeTy> Ret;
5930   Ret.reserve(Record.size());
5931   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
5932     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
5933     uint64_t RelBF = 0;
5934     ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
5935     if (IsOldProfileFormat) {
5936       I += 1; // Skip old callsitecount field
5937       if (HasProfile)
5938         I += 1; // Skip old profilecount field
5939     } else if (HasProfile)
5940       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
5941     else if (HasRelBF)
5942       RelBF = Record[++I];
5943     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
5944   }
5945   return Ret;
5946 }
5947 
5948 static void
5949 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
5950                                        WholeProgramDevirtResolution &Wpd) {
5951   uint64_t ArgNum = Record[Slot++];
5952   WholeProgramDevirtResolution::ByArg &B =
5953       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
5954   Slot += ArgNum;
5955 
5956   B.TheKind =
5957       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
5958   B.Info = Record[Slot++];
5959   B.Byte = Record[Slot++];
5960   B.Bit = Record[Slot++];
5961 }
5962 
5963 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
5964                                               StringRef Strtab, size_t &Slot,
5965                                               TypeIdSummary &TypeId) {
5966   uint64_t Id = Record[Slot++];
5967   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
5968 
5969   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
5970   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
5971                         static_cast<size_t>(Record[Slot + 1])};
5972   Slot += 2;
5973 
5974   uint64_t ResByArgNum = Record[Slot++];
5975   for (uint64_t I = 0; I != ResByArgNum; ++I)
5976     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
5977 }
5978 
5979 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
5980                                      StringRef Strtab,
5981                                      ModuleSummaryIndex &TheIndex) {
5982   size_t Slot = 0;
5983   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
5984       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
5985   Slot += 2;
5986 
5987   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
5988   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
5989   TypeId.TTRes.AlignLog2 = Record[Slot++];
5990   TypeId.TTRes.SizeM1 = Record[Slot++];
5991   TypeId.TTRes.BitMask = Record[Slot++];
5992   TypeId.TTRes.InlineBits = Record[Slot++];
5993 
5994   while (Slot < Record.size())
5995     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
5996 }
5997 
5998 std::vector<FunctionSummary::ParamAccess>
5999 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
6000   auto ReadRange = [&]() {
6001     APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
6002                 BitcodeReader::decodeSignRotatedValue(Record.front()));
6003     Record = Record.drop_front();
6004     APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
6005                 BitcodeReader::decodeSignRotatedValue(Record.front()));
6006     Record = Record.drop_front();
6007     ConstantRange Range{Lower, Upper};
6008     assert(!Range.isFullSet());
6009     assert(!Range.isUpperSignWrapped());
6010     return Range;
6011   };
6012 
6013   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
6014   while (!Record.empty()) {
6015     PendingParamAccesses.emplace_back();
6016     FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
6017     ParamAccess.ParamNo = Record.front();
6018     Record = Record.drop_front();
6019     ParamAccess.Use = ReadRange();
6020     ParamAccess.Calls.resize(Record.front());
6021     Record = Record.drop_front();
6022     for (auto &Call : ParamAccess.Calls) {
6023       Call.ParamNo = Record.front();
6024       Record = Record.drop_front();
6025       Call.Callee = getValueInfoFromValueId(Record.front()).first;
6026       Record = Record.drop_front();
6027       Call.Offsets = ReadRange();
6028     }
6029   }
6030   return PendingParamAccesses;
6031 }
6032 
6033 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
6034     ArrayRef<uint64_t> Record, size_t &Slot,
6035     TypeIdCompatibleVtableInfo &TypeId) {
6036   uint64_t Offset = Record[Slot++];
6037   ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first;
6038   TypeId.push_back({Offset, Callee});
6039 }
6040 
6041 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
6042     ArrayRef<uint64_t> Record) {
6043   size_t Slot = 0;
6044   TypeIdCompatibleVtableInfo &TypeId =
6045       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
6046           {Strtab.data() + Record[Slot],
6047            static_cast<size_t>(Record[Slot + 1])});
6048   Slot += 2;
6049 
6050   while (Slot < Record.size())
6051     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
6052 }
6053 
6054 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
6055                            unsigned WOCnt) {
6056   // Readonly and writeonly refs are in the end of the refs list.
6057   assert(ROCnt + WOCnt <= Refs.size());
6058   unsigned FirstWORef = Refs.size() - WOCnt;
6059   unsigned RefNo = FirstWORef - ROCnt;
6060   for (; RefNo < FirstWORef; ++RefNo)
6061     Refs[RefNo].setReadOnly();
6062   for (; RefNo < Refs.size(); ++RefNo)
6063     Refs[RefNo].setWriteOnly();
6064 }
6065 
6066 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
6067 // objects in the index.
6068 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
6069   if (Error Err = Stream.EnterSubBlock(ID))
6070     return Err;
6071   SmallVector<uint64_t, 64> Record;
6072 
6073   // Parse version
6074   {
6075     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6076     if (!MaybeEntry)
6077       return MaybeEntry.takeError();
6078     BitstreamEntry Entry = MaybeEntry.get();
6079 
6080     if (Entry.Kind != BitstreamEntry::Record)
6081       return error("Invalid Summary Block: record for version expected");
6082     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6083     if (!MaybeRecord)
6084       return MaybeRecord.takeError();
6085     if (MaybeRecord.get() != bitc::FS_VERSION)
6086       return error("Invalid Summary Block: version expected");
6087   }
6088   const uint64_t Version = Record[0];
6089   const bool IsOldProfileFormat = Version == 1;
6090   if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
6091     return error("Invalid summary version " + Twine(Version) +
6092                  ". Version should be in the range [1-" +
6093                  Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
6094                  "].");
6095   Record.clear();
6096 
6097   // Keep around the last seen summary to be used when we see an optional
6098   // "OriginalName" attachement.
6099   GlobalValueSummary *LastSeenSummary = nullptr;
6100   GlobalValue::GUID LastSeenGUID = 0;
6101 
6102   // We can expect to see any number of type ID information records before
6103   // each function summary records; these variables store the information
6104   // collected so far so that it can be used to create the summary object.
6105   std::vector<GlobalValue::GUID> PendingTypeTests;
6106   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
6107       PendingTypeCheckedLoadVCalls;
6108   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
6109       PendingTypeCheckedLoadConstVCalls;
6110   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
6111 
6112   while (true) {
6113     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6114     if (!MaybeEntry)
6115       return MaybeEntry.takeError();
6116     BitstreamEntry Entry = MaybeEntry.get();
6117 
6118     switch (Entry.Kind) {
6119     case BitstreamEntry::SubBlock: // Handled for us already.
6120     case BitstreamEntry::Error:
6121       return error("Malformed block");
6122     case BitstreamEntry::EndBlock:
6123       return Error::success();
6124     case BitstreamEntry::Record:
6125       // The interesting case.
6126       break;
6127     }
6128 
6129     // Read a record. The record format depends on whether this
6130     // is a per-module index or a combined index file. In the per-module
6131     // case the records contain the associated value's ID for correlation
6132     // with VST entries. In the combined index the correlation is done
6133     // via the bitcode offset of the summary records (which were saved
6134     // in the combined index VST entries). The records also contain
6135     // information used for ThinLTO renaming and importing.
6136     Record.clear();
6137     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6138     if (!MaybeBitCode)
6139       return MaybeBitCode.takeError();
6140     switch (unsigned BitCode = MaybeBitCode.get()) {
6141     default: // Default behavior: ignore.
6142       break;
6143     case bitc::FS_FLAGS: {  // [flags]
6144       TheIndex.setFlags(Record[0]);
6145       break;
6146     }
6147     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
6148       uint64_t ValueID = Record[0];
6149       GlobalValue::GUID RefGUID = Record[1];
6150       ValueIdToValueInfoMap[ValueID] =
6151           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
6152       break;
6153     }
6154     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
6155     //                numrefs x valueid, n x (valueid)]
6156     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
6157     //                        numrefs x valueid,
6158     //                        n x (valueid, hotness)]
6159     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
6160     //                      numrefs x valueid,
6161     //                      n x (valueid, relblockfreq)]
6162     case bitc::FS_PERMODULE:
6163     case bitc::FS_PERMODULE_RELBF:
6164     case bitc::FS_PERMODULE_PROFILE: {
6165       unsigned ValueID = Record[0];
6166       uint64_t RawFlags = Record[1];
6167       unsigned InstCount = Record[2];
6168       uint64_t RawFunFlags = 0;
6169       unsigned NumRefs = Record[3];
6170       unsigned NumRORefs = 0, NumWORefs = 0;
6171       int RefListStartIndex = 4;
6172       if (Version >= 4) {
6173         RawFunFlags = Record[3];
6174         NumRefs = Record[4];
6175         RefListStartIndex = 5;
6176         if (Version >= 5) {
6177           NumRORefs = Record[5];
6178           RefListStartIndex = 6;
6179           if (Version >= 7) {
6180             NumWORefs = Record[6];
6181             RefListStartIndex = 7;
6182           }
6183         }
6184       }
6185 
6186       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6187       // The module path string ref set in the summary must be owned by the
6188       // index's module string table. Since we don't have a module path
6189       // string table section in the per-module index, we create a single
6190       // module path string table entry with an empty (0) ID to take
6191       // ownership.
6192       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6193       assert(Record.size() >= RefListStartIndex + NumRefs &&
6194              "Record size inconsistent with number of references");
6195       std::vector<ValueInfo> Refs = makeRefList(
6196           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6197       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
6198       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
6199       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
6200           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6201           IsOldProfileFormat, HasProfile, HasRelBF);
6202       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6203       auto FS = std::make_unique<FunctionSummary>(
6204           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
6205           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
6206           std::move(PendingTypeTestAssumeVCalls),
6207           std::move(PendingTypeCheckedLoadVCalls),
6208           std::move(PendingTypeTestAssumeConstVCalls),
6209           std::move(PendingTypeCheckedLoadConstVCalls),
6210           std::move(PendingParamAccesses));
6211       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
6212       FS->setModulePath(getThisModule()->first());
6213       FS->setOriginalName(VIAndOriginalGUID.second);
6214       TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
6215       break;
6216     }
6217     // FS_ALIAS: [valueid, flags, valueid]
6218     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
6219     // they expect all aliasee summaries to be available.
6220     case bitc::FS_ALIAS: {
6221       unsigned ValueID = Record[0];
6222       uint64_t RawFlags = Record[1];
6223       unsigned AliaseeID = Record[2];
6224       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6225       auto AS = std::make_unique<AliasSummary>(Flags);
6226       // The module path string ref set in the summary must be owned by the
6227       // index's module string table. Since we don't have a module path
6228       // string table section in the per-module index, we create a single
6229       // module path string table entry with an empty (0) ID to take
6230       // ownership.
6231       AS->setModulePath(getThisModule()->first());
6232 
6233       auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first;
6234       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
6235       if (!AliaseeInModule)
6236         return error("Alias expects aliasee summary to be parsed");
6237       AS->setAliasee(AliaseeVI, AliaseeInModule);
6238 
6239       auto GUID = getValueInfoFromValueId(ValueID);
6240       AS->setOriginalName(GUID.second);
6241       TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
6242       break;
6243     }
6244     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
6245     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
6246       unsigned ValueID = Record[0];
6247       uint64_t RawFlags = Record[1];
6248       unsigned RefArrayStart = 2;
6249       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6250                                       /* WriteOnly */ false,
6251                                       /* Constant */ false,
6252                                       GlobalObject::VCallVisibilityPublic);
6253       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6254       if (Version >= 5) {
6255         GVF = getDecodedGVarFlags(Record[2]);
6256         RefArrayStart = 3;
6257       }
6258       std::vector<ValueInfo> Refs =
6259           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6260       auto FS =
6261           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6262       FS->setModulePath(getThisModule()->first());
6263       auto GUID = getValueInfoFromValueId(ValueID);
6264       FS->setOriginalName(GUID.second);
6265       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
6266       break;
6267     }
6268     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
6269     //                        numrefs, numrefs x valueid,
6270     //                        n x (valueid, offset)]
6271     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
6272       unsigned ValueID = Record[0];
6273       uint64_t RawFlags = Record[1];
6274       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
6275       unsigned NumRefs = Record[3];
6276       unsigned RefListStartIndex = 4;
6277       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
6278       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6279       std::vector<ValueInfo> Refs = makeRefList(
6280           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6281       VTableFuncList VTableFuncs;
6282       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
6283         ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
6284         uint64_t Offset = Record[++I];
6285         VTableFuncs.push_back({Callee, Offset});
6286       }
6287       auto VS =
6288           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6289       VS->setModulePath(getThisModule()->first());
6290       VS->setVTableFuncs(VTableFuncs);
6291       auto GUID = getValueInfoFromValueId(ValueID);
6292       VS->setOriginalName(GUID.second);
6293       TheIndex.addGlobalValueSummary(GUID.first, std::move(VS));
6294       break;
6295     }
6296     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
6297     //               numrefs x valueid, n x (valueid)]
6298     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
6299     //                       numrefs x valueid, n x (valueid, hotness)]
6300     case bitc::FS_COMBINED:
6301     case bitc::FS_COMBINED_PROFILE: {
6302       unsigned ValueID = Record[0];
6303       uint64_t ModuleId = Record[1];
6304       uint64_t RawFlags = Record[2];
6305       unsigned InstCount = Record[3];
6306       uint64_t RawFunFlags = 0;
6307       uint64_t EntryCount = 0;
6308       unsigned NumRefs = Record[4];
6309       unsigned NumRORefs = 0, NumWORefs = 0;
6310       int RefListStartIndex = 5;
6311 
6312       if (Version >= 4) {
6313         RawFunFlags = Record[4];
6314         RefListStartIndex = 6;
6315         size_t NumRefsIndex = 5;
6316         if (Version >= 5) {
6317           unsigned NumRORefsOffset = 1;
6318           RefListStartIndex = 7;
6319           if (Version >= 6) {
6320             NumRefsIndex = 6;
6321             EntryCount = Record[5];
6322             RefListStartIndex = 8;
6323             if (Version >= 7) {
6324               RefListStartIndex = 9;
6325               NumWORefs = Record[8];
6326               NumRORefsOffset = 2;
6327             }
6328           }
6329           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
6330         }
6331         NumRefs = Record[NumRefsIndex];
6332       }
6333 
6334       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6335       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6336       assert(Record.size() >= RefListStartIndex + NumRefs &&
6337              "Record size inconsistent with number of references");
6338       std::vector<ValueInfo> Refs = makeRefList(
6339           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6340       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
6341       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
6342           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6343           IsOldProfileFormat, HasProfile, false);
6344       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6345       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6346       auto FS = std::make_unique<FunctionSummary>(
6347           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
6348           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
6349           std::move(PendingTypeTestAssumeVCalls),
6350           std::move(PendingTypeCheckedLoadVCalls),
6351           std::move(PendingTypeTestAssumeConstVCalls),
6352           std::move(PendingTypeCheckedLoadConstVCalls),
6353           std::move(PendingParamAccesses));
6354       LastSeenSummary = FS.get();
6355       LastSeenGUID = VI.getGUID();
6356       FS->setModulePath(ModuleIdMap[ModuleId]);
6357       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6358       break;
6359     }
6360     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
6361     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
6362     // they expect all aliasee summaries to be available.
6363     case bitc::FS_COMBINED_ALIAS: {
6364       unsigned ValueID = Record[0];
6365       uint64_t ModuleId = Record[1];
6366       uint64_t RawFlags = Record[2];
6367       unsigned AliaseeValueId = Record[3];
6368       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6369       auto AS = std::make_unique<AliasSummary>(Flags);
6370       LastSeenSummary = AS.get();
6371       AS->setModulePath(ModuleIdMap[ModuleId]);
6372 
6373       auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first;
6374       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
6375       AS->setAliasee(AliaseeVI, AliaseeInModule);
6376 
6377       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6378       LastSeenGUID = VI.getGUID();
6379       TheIndex.addGlobalValueSummary(VI, std::move(AS));
6380       break;
6381     }
6382     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
6383     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
6384       unsigned ValueID = Record[0];
6385       uint64_t ModuleId = Record[1];
6386       uint64_t RawFlags = Record[2];
6387       unsigned RefArrayStart = 3;
6388       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6389                                       /* WriteOnly */ false,
6390                                       /* Constant */ false,
6391                                       GlobalObject::VCallVisibilityPublic);
6392       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6393       if (Version >= 5) {
6394         GVF = getDecodedGVarFlags(Record[3]);
6395         RefArrayStart = 4;
6396       }
6397       std::vector<ValueInfo> Refs =
6398           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6399       auto FS =
6400           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6401       LastSeenSummary = FS.get();
6402       FS->setModulePath(ModuleIdMap[ModuleId]);
6403       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6404       LastSeenGUID = VI.getGUID();
6405       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6406       break;
6407     }
6408     // FS_COMBINED_ORIGINAL_NAME: [original_name]
6409     case bitc::FS_COMBINED_ORIGINAL_NAME: {
6410       uint64_t OriginalName = Record[0];
6411       if (!LastSeenSummary)
6412         return error("Name attachment that does not follow a combined record");
6413       LastSeenSummary->setOriginalName(OriginalName);
6414       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
6415       // Reset the LastSeenSummary
6416       LastSeenSummary = nullptr;
6417       LastSeenGUID = 0;
6418       break;
6419     }
6420     case bitc::FS_TYPE_TESTS:
6421       assert(PendingTypeTests.empty());
6422       llvm::append_range(PendingTypeTests, Record);
6423       break;
6424 
6425     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
6426       assert(PendingTypeTestAssumeVCalls.empty());
6427       for (unsigned I = 0; I != Record.size(); I += 2)
6428         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
6429       break;
6430 
6431     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
6432       assert(PendingTypeCheckedLoadVCalls.empty());
6433       for (unsigned I = 0; I != Record.size(); I += 2)
6434         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
6435       break;
6436 
6437     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
6438       PendingTypeTestAssumeConstVCalls.push_back(
6439           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6440       break;
6441 
6442     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
6443       PendingTypeCheckedLoadConstVCalls.push_back(
6444           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6445       break;
6446 
6447     case bitc::FS_CFI_FUNCTION_DEFS: {
6448       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
6449       for (unsigned I = 0; I != Record.size(); I += 2)
6450         CfiFunctionDefs.insert(
6451             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6452       break;
6453     }
6454 
6455     case bitc::FS_CFI_FUNCTION_DECLS: {
6456       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
6457       for (unsigned I = 0; I != Record.size(); I += 2)
6458         CfiFunctionDecls.insert(
6459             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6460       break;
6461     }
6462 
6463     case bitc::FS_TYPE_ID:
6464       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
6465       break;
6466 
6467     case bitc::FS_TYPE_ID_METADATA:
6468       parseTypeIdCompatibleVtableSummaryRecord(Record);
6469       break;
6470 
6471     case bitc::FS_BLOCK_COUNT:
6472       TheIndex.addBlockCount(Record[0]);
6473       break;
6474 
6475     case bitc::FS_PARAM_ACCESS: {
6476       PendingParamAccesses = parseParamAccesses(Record);
6477       break;
6478     }
6479     }
6480   }
6481   llvm_unreachable("Exit infinite loop");
6482 }
6483 
6484 // Parse the  module string table block into the Index.
6485 // This populates the ModulePathStringTable map in the index.
6486 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
6487   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
6488     return Err;
6489 
6490   SmallVector<uint64_t, 64> Record;
6491 
6492   SmallString<128> ModulePath;
6493   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
6494 
6495   while (true) {
6496     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6497     if (!MaybeEntry)
6498       return MaybeEntry.takeError();
6499     BitstreamEntry Entry = MaybeEntry.get();
6500 
6501     switch (Entry.Kind) {
6502     case BitstreamEntry::SubBlock: // Handled for us already.
6503     case BitstreamEntry::Error:
6504       return error("Malformed block");
6505     case BitstreamEntry::EndBlock:
6506       return Error::success();
6507     case BitstreamEntry::Record:
6508       // The interesting case.
6509       break;
6510     }
6511 
6512     Record.clear();
6513     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6514     if (!MaybeRecord)
6515       return MaybeRecord.takeError();
6516     switch (MaybeRecord.get()) {
6517     default: // Default behavior: ignore.
6518       break;
6519     case bitc::MST_CODE_ENTRY: {
6520       // MST_ENTRY: [modid, namechar x N]
6521       uint64_t ModuleId = Record[0];
6522 
6523       if (convertToString(Record, 1, ModulePath))
6524         return error("Invalid record");
6525 
6526       LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
6527       ModuleIdMap[ModuleId] = LastSeenModule->first();
6528 
6529       ModulePath.clear();
6530       break;
6531     }
6532     /// MST_CODE_HASH: [5*i32]
6533     case bitc::MST_CODE_HASH: {
6534       if (Record.size() != 5)
6535         return error("Invalid hash length " + Twine(Record.size()).str());
6536       if (!LastSeenModule)
6537         return error("Invalid hash that does not follow a module path");
6538       int Pos = 0;
6539       for (auto &Val : Record) {
6540         assert(!(Val >> 32) && "Unexpected high bits set");
6541         LastSeenModule->second.second[Pos++] = Val;
6542       }
6543       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
6544       LastSeenModule = nullptr;
6545       break;
6546     }
6547     }
6548   }
6549   llvm_unreachable("Exit infinite loop");
6550 }
6551 
6552 namespace {
6553 
6554 // FIXME: This class is only here to support the transition to llvm::Error. It
6555 // will be removed once this transition is complete. Clients should prefer to
6556 // deal with the Error value directly, rather than converting to error_code.
6557 class BitcodeErrorCategoryType : public std::error_category {
6558   const char *name() const noexcept override {
6559     return "llvm.bitcode";
6560   }
6561 
6562   std::string message(int IE) const override {
6563     BitcodeError E = static_cast<BitcodeError>(IE);
6564     switch (E) {
6565     case BitcodeError::CorruptedBitcode:
6566       return "Corrupted bitcode";
6567     }
6568     llvm_unreachable("Unknown error type!");
6569   }
6570 };
6571 
6572 } // end anonymous namespace
6573 
6574 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
6575 
6576 const std::error_category &llvm::BitcodeErrorCategory() {
6577   return *ErrorCategory;
6578 }
6579 
6580 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
6581                                             unsigned Block, unsigned RecordID) {
6582   if (Error Err = Stream.EnterSubBlock(Block))
6583     return std::move(Err);
6584 
6585   StringRef Strtab;
6586   while (true) {
6587     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6588     if (!MaybeEntry)
6589       return MaybeEntry.takeError();
6590     llvm::BitstreamEntry Entry = MaybeEntry.get();
6591 
6592     switch (Entry.Kind) {
6593     case BitstreamEntry::EndBlock:
6594       return Strtab;
6595 
6596     case BitstreamEntry::Error:
6597       return error("Malformed block");
6598 
6599     case BitstreamEntry::SubBlock:
6600       if (Error Err = Stream.SkipBlock())
6601         return std::move(Err);
6602       break;
6603 
6604     case BitstreamEntry::Record:
6605       StringRef Blob;
6606       SmallVector<uint64_t, 1> Record;
6607       Expected<unsigned> MaybeRecord =
6608           Stream.readRecord(Entry.ID, Record, &Blob);
6609       if (!MaybeRecord)
6610         return MaybeRecord.takeError();
6611       if (MaybeRecord.get() == RecordID)
6612         Strtab = Blob;
6613       break;
6614     }
6615   }
6616 }
6617 
6618 //===----------------------------------------------------------------------===//
6619 // External interface
6620 //===----------------------------------------------------------------------===//
6621 
6622 Expected<std::vector<BitcodeModule>>
6623 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
6624   auto FOrErr = getBitcodeFileContents(Buffer);
6625   if (!FOrErr)
6626     return FOrErr.takeError();
6627   return std::move(FOrErr->Mods);
6628 }
6629 
6630 Expected<BitcodeFileContents>
6631 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
6632   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6633   if (!StreamOrErr)
6634     return StreamOrErr.takeError();
6635   BitstreamCursor &Stream = *StreamOrErr;
6636 
6637   BitcodeFileContents F;
6638   while (true) {
6639     uint64_t BCBegin = Stream.getCurrentByteNo();
6640 
6641     // We may be consuming bitcode from a client that leaves garbage at the end
6642     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
6643     // the end that there cannot possibly be another module, stop looking.
6644     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
6645       return F;
6646 
6647     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6648     if (!MaybeEntry)
6649       return MaybeEntry.takeError();
6650     llvm::BitstreamEntry Entry = MaybeEntry.get();
6651 
6652     switch (Entry.Kind) {
6653     case BitstreamEntry::EndBlock:
6654     case BitstreamEntry::Error:
6655       return error("Malformed block");
6656 
6657     case BitstreamEntry::SubBlock: {
6658       uint64_t IdentificationBit = -1ull;
6659       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
6660         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6661         if (Error Err = Stream.SkipBlock())
6662           return std::move(Err);
6663 
6664         {
6665           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6666           if (!MaybeEntry)
6667             return MaybeEntry.takeError();
6668           Entry = MaybeEntry.get();
6669         }
6670 
6671         if (Entry.Kind != BitstreamEntry::SubBlock ||
6672             Entry.ID != bitc::MODULE_BLOCK_ID)
6673           return error("Malformed block");
6674       }
6675 
6676       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
6677         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6678         if (Error Err = Stream.SkipBlock())
6679           return std::move(Err);
6680 
6681         F.Mods.push_back({Stream.getBitcodeBytes().slice(
6682                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
6683                           Buffer.getBufferIdentifier(), IdentificationBit,
6684                           ModuleBit});
6685         continue;
6686       }
6687 
6688       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
6689         Expected<StringRef> Strtab =
6690             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
6691         if (!Strtab)
6692           return Strtab.takeError();
6693         // This string table is used by every preceding bitcode module that does
6694         // not have its own string table. A bitcode file may have multiple
6695         // string tables if it was created by binary concatenation, for example
6696         // with "llvm-cat -b".
6697         for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) {
6698           if (!I->Strtab.empty())
6699             break;
6700           I->Strtab = *Strtab;
6701         }
6702         // Similarly, the string table is used by every preceding symbol table;
6703         // normally there will be just one unless the bitcode file was created
6704         // by binary concatenation.
6705         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
6706           F.StrtabForSymtab = *Strtab;
6707         continue;
6708       }
6709 
6710       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
6711         Expected<StringRef> SymtabOrErr =
6712             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
6713         if (!SymtabOrErr)
6714           return SymtabOrErr.takeError();
6715 
6716         // We can expect the bitcode file to have multiple symbol tables if it
6717         // was created by binary concatenation. In that case we silently
6718         // ignore any subsequent symbol tables, which is fine because this is a
6719         // low level function. The client is expected to notice that the number
6720         // of modules in the symbol table does not match the number of modules
6721         // in the input file and regenerate the symbol table.
6722         if (F.Symtab.empty())
6723           F.Symtab = *SymtabOrErr;
6724         continue;
6725       }
6726 
6727       if (Error Err = Stream.SkipBlock())
6728         return std::move(Err);
6729       continue;
6730     }
6731     case BitstreamEntry::Record:
6732       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6733         continue;
6734       else
6735         return StreamFailed.takeError();
6736     }
6737   }
6738 }
6739 
6740 /// Get a lazy one-at-time loading module from bitcode.
6741 ///
6742 /// This isn't always used in a lazy context.  In particular, it's also used by
6743 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
6744 /// in forward-referenced functions from block address references.
6745 ///
6746 /// \param[in] MaterializeAll Set to \c true if we should materialize
6747 /// everything.
6748 Expected<std::unique_ptr<Module>>
6749 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
6750                              bool ShouldLazyLoadMetadata, bool IsImporting,
6751                              DataLayoutCallbackTy DataLayoutCallback) {
6752   BitstreamCursor Stream(Buffer);
6753 
6754   std::string ProducerIdentification;
6755   if (IdentificationBit != -1ull) {
6756     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
6757       return std::move(JumpFailed);
6758     Expected<std::string> ProducerIdentificationOrErr =
6759         readIdentificationBlock(Stream);
6760     if (!ProducerIdentificationOrErr)
6761       return ProducerIdentificationOrErr.takeError();
6762 
6763     ProducerIdentification = *ProducerIdentificationOrErr;
6764   }
6765 
6766   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6767     return std::move(JumpFailed);
6768   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
6769                               Context);
6770 
6771   std::unique_ptr<Module> M =
6772       std::make_unique<Module>(ModuleIdentifier, Context);
6773   M->setMaterializer(R);
6774 
6775   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6776   if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
6777                                       IsImporting, DataLayoutCallback))
6778     return std::move(Err);
6779 
6780   if (MaterializeAll) {
6781     // Read in the entire module, and destroy the BitcodeReader.
6782     if (Error Err = M->materializeAll())
6783       return std::move(Err);
6784   } else {
6785     // Resolve forward references from blockaddresses.
6786     if (Error Err = R->materializeForwardReferencedFunctions())
6787       return std::move(Err);
6788   }
6789   return std::move(M);
6790 }
6791 
6792 Expected<std::unique_ptr<Module>>
6793 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
6794                              bool IsImporting) {
6795   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
6796                        [](StringRef) { return None; });
6797 }
6798 
6799 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
6800 // We don't use ModuleIdentifier here because the client may need to control the
6801 // module path used in the combined summary (e.g. when reading summaries for
6802 // regular LTO modules).
6803 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
6804                                  StringRef ModulePath, uint64_t ModuleId) {
6805   BitstreamCursor Stream(Buffer);
6806   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6807     return JumpFailed;
6808 
6809   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
6810                                     ModulePath, ModuleId);
6811   return R.parseModule();
6812 }
6813 
6814 // Parse the specified bitcode buffer, returning the function info index.
6815 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
6816   BitstreamCursor Stream(Buffer);
6817   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6818     return std::move(JumpFailed);
6819 
6820   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
6821   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
6822                                     ModuleIdentifier, 0);
6823 
6824   if (Error Err = R.parseModule())
6825     return std::move(Err);
6826 
6827   return std::move(Index);
6828 }
6829 
6830 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream,
6831                                                 unsigned ID) {
6832   if (Error Err = Stream.EnterSubBlock(ID))
6833     return std::move(Err);
6834   SmallVector<uint64_t, 64> Record;
6835 
6836   while (true) {
6837     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6838     if (!MaybeEntry)
6839       return MaybeEntry.takeError();
6840     BitstreamEntry Entry = MaybeEntry.get();
6841 
6842     switch (Entry.Kind) {
6843     case BitstreamEntry::SubBlock: // Handled for us already.
6844     case BitstreamEntry::Error:
6845       return error("Malformed block");
6846     case BitstreamEntry::EndBlock:
6847       // If no flags record found, conservatively return true to mimic
6848       // behavior before this flag was added.
6849       return true;
6850     case BitstreamEntry::Record:
6851       // The interesting case.
6852       break;
6853     }
6854 
6855     // Look for the FS_FLAGS record.
6856     Record.clear();
6857     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6858     if (!MaybeBitCode)
6859       return MaybeBitCode.takeError();
6860     switch (MaybeBitCode.get()) {
6861     default: // Default behavior: ignore.
6862       break;
6863     case bitc::FS_FLAGS: { // [flags]
6864       uint64_t Flags = Record[0];
6865       // Scan flags.
6866       assert(Flags <= 0x7f && "Unexpected bits in flag");
6867 
6868       return Flags & 0x8;
6869     }
6870     }
6871   }
6872   llvm_unreachable("Exit infinite loop");
6873 }
6874 
6875 // Check if the given bitcode buffer contains a global value summary block.
6876 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
6877   BitstreamCursor Stream(Buffer);
6878   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6879     return std::move(JumpFailed);
6880 
6881   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6882     return std::move(Err);
6883 
6884   while (true) {
6885     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6886     if (!MaybeEntry)
6887       return MaybeEntry.takeError();
6888     llvm::BitstreamEntry Entry = MaybeEntry.get();
6889 
6890     switch (Entry.Kind) {
6891     case BitstreamEntry::Error:
6892       return error("Malformed block");
6893     case BitstreamEntry::EndBlock:
6894       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
6895                             /*EnableSplitLTOUnit=*/false};
6896 
6897     case BitstreamEntry::SubBlock:
6898       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
6899         Expected<bool> EnableSplitLTOUnit =
6900             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6901         if (!EnableSplitLTOUnit)
6902           return EnableSplitLTOUnit.takeError();
6903         return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true,
6904                               *EnableSplitLTOUnit};
6905       }
6906 
6907       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
6908         Expected<bool> EnableSplitLTOUnit =
6909             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6910         if (!EnableSplitLTOUnit)
6911           return EnableSplitLTOUnit.takeError();
6912         return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true,
6913                               *EnableSplitLTOUnit};
6914       }
6915 
6916       // Ignore other sub-blocks.
6917       if (Error Err = Stream.SkipBlock())
6918         return std::move(Err);
6919       continue;
6920 
6921     case BitstreamEntry::Record:
6922       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6923         continue;
6924       else
6925         return StreamFailed.takeError();
6926     }
6927   }
6928 }
6929 
6930 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
6931   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
6932   if (!MsOrErr)
6933     return MsOrErr.takeError();
6934 
6935   if (MsOrErr->size() != 1)
6936     return error("Expected a single module");
6937 
6938   return (*MsOrErr)[0];
6939 }
6940 
6941 Expected<std::unique_ptr<Module>>
6942 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
6943                            bool ShouldLazyLoadMetadata, bool IsImporting) {
6944   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6945   if (!BM)
6946     return BM.takeError();
6947 
6948   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
6949 }
6950 
6951 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
6952     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
6953     bool ShouldLazyLoadMetadata, bool IsImporting) {
6954   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
6955                                      IsImporting);
6956   if (MOrErr)
6957     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
6958   return MOrErr;
6959 }
6960 
6961 Expected<std::unique_ptr<Module>>
6962 BitcodeModule::parseModule(LLVMContext &Context,
6963                            DataLayoutCallbackTy DataLayoutCallback) {
6964   return getModuleImpl(Context, true, false, false, DataLayoutCallback);
6965   // TODO: Restore the use-lists to the in-memory state when the bitcode was
6966   // written.  We must defer until the Module has been fully materialized.
6967 }
6968 
6969 Expected<std::unique_ptr<Module>>
6970 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
6971                        DataLayoutCallbackTy DataLayoutCallback) {
6972   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6973   if (!BM)
6974     return BM.takeError();
6975 
6976   return BM->parseModule(Context, DataLayoutCallback);
6977 }
6978 
6979 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
6980   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6981   if (!StreamOrErr)
6982     return StreamOrErr.takeError();
6983 
6984   return readTriple(*StreamOrErr);
6985 }
6986 
6987 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
6988   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6989   if (!StreamOrErr)
6990     return StreamOrErr.takeError();
6991 
6992   return hasObjCCategory(*StreamOrErr);
6993 }
6994 
6995 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
6996   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6997   if (!StreamOrErr)
6998     return StreamOrErr.takeError();
6999 
7000   return readIdentificationCode(*StreamOrErr);
7001 }
7002 
7003 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
7004                                    ModuleSummaryIndex &CombinedIndex,
7005                                    uint64_t ModuleId) {
7006   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7007   if (!BM)
7008     return BM.takeError();
7009 
7010   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
7011 }
7012 
7013 Expected<std::unique_ptr<ModuleSummaryIndex>>
7014 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
7015   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7016   if (!BM)
7017     return BM.takeError();
7018 
7019   return BM->getSummary();
7020 }
7021 
7022 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
7023   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7024   if (!BM)
7025     return BM.takeError();
7026 
7027   return BM->getLTOInfo();
7028 }
7029 
7030 Expected<std::unique_ptr<ModuleSummaryIndex>>
7031 llvm::getModuleSummaryIndexForFile(StringRef Path,
7032                                    bool IgnoreEmptyThinLTOIndexFile) {
7033   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
7034       MemoryBuffer::getFileOrSTDIN(Path);
7035   if (!FileOrErr)
7036     return errorCodeToError(FileOrErr.getError());
7037   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
7038     return nullptr;
7039   return getModuleSummaryIndex(**FileOrErr);
7040 }
7041