1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/BitcodeReader.h" 11 #include "MetadataLoader.h" 12 #include "ValueList.h" 13 14 #include "llvm/ADT/APFloat.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallString.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/Triple.h" 24 #include "llvm/ADT/Twine.h" 25 #include "llvm/Bitcode/BitstreamReader.h" 26 #include "llvm/Bitcode/LLVMBitCodes.h" 27 #include "llvm/IR/Argument.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/AutoUpgrade.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallSite.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/Comdat.h" 34 #include "llvm/IR/Constant.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/DiagnosticInfo.h" 41 #include "llvm/IR/DiagnosticPrinter.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/GVMaterializer.h" 44 #include "llvm/IR/GlobalAlias.h" 45 #include "llvm/IR/GlobalIFunc.h" 46 #include "llvm/IR/GlobalIndirectSymbol.h" 47 #include "llvm/IR/GlobalObject.h" 48 #include "llvm/IR/GlobalValue.h" 49 #include "llvm/IR/GlobalVariable.h" 50 #include "llvm/IR/InlineAsm.h" 51 #include "llvm/IR/InstIterator.h" 52 #include "llvm/IR/InstrTypes.h" 53 #include "llvm/IR/Instruction.h" 54 #include "llvm/IR/Instructions.h" 55 #include "llvm/IR/Intrinsics.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/ModuleSummaryIndex.h" 59 #include "llvm/IR/OperandTraits.h" 60 #include "llvm/IR/Operator.h" 61 #include "llvm/IR/TrackingMDRef.h" 62 #include "llvm/IR/Type.h" 63 #include "llvm/IR/ValueHandle.h" 64 #include "llvm/IR/Verifier.h" 65 #include "llvm/Support/AtomicOrdering.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Compiler.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/Error.h" 71 #include "llvm/Support/ErrorHandling.h" 72 #include "llvm/Support/ManagedStatic.h" 73 #include "llvm/Support/MemoryBuffer.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cstddef> 78 #include <cstdint> 79 #include <deque> 80 #include <limits> 81 #include <map> 82 #include <memory> 83 #include <string> 84 #include <system_error> 85 #include <tuple> 86 #include <utility> 87 #include <vector> 88 89 using namespace llvm; 90 91 static cl::opt<bool> PrintSummaryGUIDs( 92 "print-summary-global-ids", cl::init(false), cl::Hidden, 93 cl::desc( 94 "Print the global id for each value when reading the module summary")); 95 96 namespace { 97 98 enum { 99 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 100 }; 101 102 Error error(const Twine &Message) { 103 return make_error<StringError>( 104 Message, make_error_code(BitcodeError::CorruptedBitcode)); 105 } 106 107 /// Helper to read the header common to all bitcode files. 108 bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 109 // Sniff for the signature. 110 if (!Stream.canSkipToPos(4) || 111 Stream.Read(8) != 'B' || 112 Stream.Read(8) != 'C' || 113 Stream.Read(4) != 0x0 || 114 Stream.Read(4) != 0xC || 115 Stream.Read(4) != 0xE || 116 Stream.Read(4) != 0xD) 117 return false; 118 return true; 119 } 120 121 Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 122 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 123 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 124 125 if (Buffer.getBufferSize() & 3) 126 return error("Invalid bitcode signature"); 127 128 // If we have a wrapper header, parse it and ignore the non-bc file contents. 129 // The magic number is 0x0B17C0DE stored in little endian. 130 if (isBitcodeWrapper(BufPtr, BufEnd)) 131 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 132 return error("Invalid bitcode wrapper header"); 133 134 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 135 if (!hasValidBitcodeHeader(Stream)) 136 return error("Invalid bitcode signature"); 137 138 return std::move(Stream); 139 } 140 141 /// Convert a string from a record into an std::string, return true on failure. 142 template <typename StrTy> 143 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 144 StrTy &Result) { 145 if (Idx > Record.size()) 146 return true; 147 148 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 149 Result += (char)Record[i]; 150 return false; 151 } 152 153 // Strip all the TBAA attachment for the module. 154 void stripTBAA(Module *M) { 155 for (auto &F : *M) { 156 if (F.isMaterializable()) 157 continue; 158 for (auto &I : instructions(F)) 159 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 160 } 161 } 162 163 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 164 /// "epoch" encoded in the bitcode, and return the producer name if any. 165 Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 166 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 167 return error("Invalid record"); 168 169 // Read all the records. 170 SmallVector<uint64_t, 64> Record; 171 172 std::string ProducerIdentification; 173 174 while (true) { 175 BitstreamEntry Entry = Stream.advance(); 176 177 switch (Entry.Kind) { 178 default: 179 case BitstreamEntry::Error: 180 return error("Malformed block"); 181 case BitstreamEntry::EndBlock: 182 return ProducerIdentification; 183 case BitstreamEntry::Record: 184 // The interesting case. 185 break; 186 } 187 188 // Read a record. 189 Record.clear(); 190 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 191 switch (BitCode) { 192 default: // Default behavior: reject 193 return error("Invalid value"); 194 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 195 convertToString(Record, 0, ProducerIdentification); 196 break; 197 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 198 unsigned epoch = (unsigned)Record[0]; 199 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 200 return error( 201 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 202 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 203 } 204 } 205 } 206 } 207 } 208 209 Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 210 // We expect a number of well-defined blocks, though we don't necessarily 211 // need to understand them all. 212 while (true) { 213 if (Stream.AtEndOfStream()) 214 return ""; 215 216 BitstreamEntry Entry = Stream.advance(); 217 switch (Entry.Kind) { 218 case BitstreamEntry::EndBlock: 219 case BitstreamEntry::Error: 220 return error("Malformed block"); 221 222 case BitstreamEntry::SubBlock: 223 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 224 return readIdentificationBlock(Stream); 225 226 // Ignore other sub-blocks. 227 if (Stream.SkipBlock()) 228 return error("Malformed block"); 229 continue; 230 case BitstreamEntry::Record: 231 Stream.skipRecord(Entry.ID); 232 continue; 233 } 234 } 235 } 236 237 Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 238 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 239 return error("Invalid record"); 240 241 SmallVector<uint64_t, 64> Record; 242 // Read all the records for this module. 243 244 while (true) { 245 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 246 247 switch (Entry.Kind) { 248 case BitstreamEntry::SubBlock: // Handled for us already. 249 case BitstreamEntry::Error: 250 return error("Malformed block"); 251 case BitstreamEntry::EndBlock: 252 return false; 253 case BitstreamEntry::Record: 254 // The interesting case. 255 break; 256 } 257 258 // Read a record. 259 switch (Stream.readRecord(Entry.ID, Record)) { 260 default: 261 break; // Default behavior, ignore unknown content. 262 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 263 std::string S; 264 if (convertToString(Record, 0, S)) 265 return error("Invalid record"); 266 // Check for the i386 and other (x86_64, ARM) conventions 267 if (S.find("__DATA, __objc_catlist") != std::string::npos || 268 S.find("__OBJC,__category") != std::string::npos) 269 return true; 270 break; 271 } 272 } 273 Record.clear(); 274 } 275 llvm_unreachable("Exit infinite loop"); 276 } 277 278 Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 279 // We expect a number of well-defined blocks, though we don't necessarily 280 // need to understand them all. 281 while (true) { 282 BitstreamEntry Entry = Stream.advance(); 283 284 switch (Entry.Kind) { 285 case BitstreamEntry::Error: 286 return error("Malformed block"); 287 case BitstreamEntry::EndBlock: 288 return false; 289 290 case BitstreamEntry::SubBlock: 291 if (Entry.ID == bitc::MODULE_BLOCK_ID) 292 return hasObjCCategoryInModule(Stream); 293 294 // Ignore other sub-blocks. 295 if (Stream.SkipBlock()) 296 return error("Malformed block"); 297 continue; 298 299 case BitstreamEntry::Record: 300 Stream.skipRecord(Entry.ID); 301 continue; 302 } 303 } 304 } 305 306 Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 307 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 308 return error("Invalid record"); 309 310 SmallVector<uint64_t, 64> Record; 311 312 std::string Triple; 313 314 // Read all the records for this module. 315 while (true) { 316 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 317 318 switch (Entry.Kind) { 319 case BitstreamEntry::SubBlock: // Handled for us already. 320 case BitstreamEntry::Error: 321 return error("Malformed block"); 322 case BitstreamEntry::EndBlock: 323 return Triple; 324 case BitstreamEntry::Record: 325 // The interesting case. 326 break; 327 } 328 329 // Read a record. 330 switch (Stream.readRecord(Entry.ID, Record)) { 331 default: break; // Default behavior, ignore unknown content. 332 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 333 std::string S; 334 if (convertToString(Record, 0, S)) 335 return error("Invalid record"); 336 Triple = S; 337 break; 338 } 339 } 340 Record.clear(); 341 } 342 llvm_unreachable("Exit infinite loop"); 343 } 344 345 Expected<std::string> readTriple(BitstreamCursor &Stream) { 346 // We expect a number of well-defined blocks, though we don't necessarily 347 // need to understand them all. 348 while (true) { 349 BitstreamEntry Entry = Stream.advance(); 350 351 switch (Entry.Kind) { 352 case BitstreamEntry::Error: 353 return error("Malformed block"); 354 case BitstreamEntry::EndBlock: 355 return ""; 356 357 case BitstreamEntry::SubBlock: 358 if (Entry.ID == bitc::MODULE_BLOCK_ID) 359 return readModuleTriple(Stream); 360 361 // Ignore other sub-blocks. 362 if (Stream.SkipBlock()) 363 return error("Malformed block"); 364 continue; 365 366 case BitstreamEntry::Record: 367 Stream.skipRecord(Entry.ID); 368 continue; 369 } 370 } 371 } 372 373 class BitcodeReaderBase { 374 protected: 375 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 376 : Stream(std::move(Stream)), Strtab(Strtab) { 377 this->Stream.setBlockInfo(&BlockInfo); 378 } 379 380 BitstreamBlockInfo BlockInfo; 381 BitstreamCursor Stream; 382 StringRef Strtab; 383 384 /// In version 2 of the bitcode we store names of global values and comdats in 385 /// a string table rather than in the VST. 386 bool UseStrtab = false; 387 388 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 389 390 /// If this module uses a string table, pop the reference to the string table 391 /// and return the referenced string and the rest of the record. Otherwise 392 /// just return the record itself. 393 std::pair<StringRef, ArrayRef<uint64_t>> 394 readNameFromStrtab(ArrayRef<uint64_t> Record); 395 396 bool readBlockInfo(); 397 398 // Contains an arbitrary and optional string identifying the bitcode producer 399 std::string ProducerIdentification; 400 401 Error error(const Twine &Message); 402 }; 403 404 Error BitcodeReaderBase::error(const Twine &Message) { 405 std::string FullMsg = Message.str(); 406 if (!ProducerIdentification.empty()) 407 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 408 LLVM_VERSION_STRING "')"; 409 return ::error(FullMsg); 410 } 411 412 Expected<unsigned> 413 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 414 if (Record.size() < 1) 415 return error("Invalid record"); 416 unsigned ModuleVersion = Record[0]; 417 if (ModuleVersion > 2) 418 return error("Invalid value"); 419 UseStrtab = ModuleVersion >= 2; 420 return ModuleVersion; 421 } 422 423 std::pair<StringRef, ArrayRef<uint64_t>> 424 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 425 if (!UseStrtab) 426 return {"", Record}; 427 // Invalid reference. Let the caller complain about the record being empty. 428 if (Record[0] + Record[1] > Strtab.size()) 429 return {"", {}}; 430 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 431 } 432 433 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 434 LLVMContext &Context; 435 Module *TheModule = nullptr; 436 // Next offset to start scanning for lazy parsing of function bodies. 437 uint64_t NextUnreadBit = 0; 438 // Last function offset found in the VST. 439 uint64_t LastFunctionBlockBit = 0; 440 bool SeenValueSymbolTable = false; 441 uint64_t VSTOffset = 0; 442 443 std::vector<std::string> SectionTable; 444 std::vector<std::string> GCTable; 445 446 std::vector<Type*> TypeList; 447 BitcodeReaderValueList ValueList; 448 Optional<MetadataLoader> MDLoader; 449 std::vector<Comdat *> ComdatList; 450 SmallVector<Instruction *, 64> InstructionList; 451 452 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 453 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits; 454 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 455 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 456 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 457 458 /// The set of attributes by index. Index zero in the file is for null, and 459 /// is thus not represented here. As such all indices are off by one. 460 std::vector<AttributeList> MAttributes; 461 462 /// The set of attribute groups. 463 std::map<unsigned, AttributeList> MAttributeGroups; 464 465 /// While parsing a function body, this is a list of the basic blocks for the 466 /// function. 467 std::vector<BasicBlock*> FunctionBBs; 468 469 // When reading the module header, this list is populated with functions that 470 // have bodies later in the file. 471 std::vector<Function*> FunctionsWithBodies; 472 473 // When intrinsic functions are encountered which require upgrading they are 474 // stored here with their replacement function. 475 typedef DenseMap<Function*, Function*> UpdatedIntrinsicMap; 476 UpdatedIntrinsicMap UpgradedIntrinsics; 477 // Intrinsics which were remangled because of types rename 478 UpdatedIntrinsicMap RemangledIntrinsics; 479 480 // Several operations happen after the module header has been read, but 481 // before function bodies are processed. This keeps track of whether 482 // we've done this yet. 483 bool SeenFirstFunctionBody = false; 484 485 /// When function bodies are initially scanned, this map contains info about 486 /// where to find deferred function body in the stream. 487 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 488 489 /// When Metadata block is initially scanned when parsing the module, we may 490 /// choose to defer parsing of the metadata. This vector contains info about 491 /// which Metadata blocks are deferred. 492 std::vector<uint64_t> DeferredMetadataInfo; 493 494 /// These are basic blocks forward-referenced by block addresses. They are 495 /// inserted lazily into functions when they're loaded. The basic block ID is 496 /// its index into the vector. 497 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 498 std::deque<Function *> BasicBlockFwdRefQueue; 499 500 /// Indicates that we are using a new encoding for instruction operands where 501 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 502 /// instruction number, for a more compact encoding. Some instruction 503 /// operands are not relative to the instruction ID: basic block numbers, and 504 /// types. Once the old style function blocks have been phased out, we would 505 /// not need this flag. 506 bool UseRelativeIDs = false; 507 508 /// True if all functions will be materialized, negating the need to process 509 /// (e.g.) blockaddress forward references. 510 bool WillMaterializeAllForwardRefs = false; 511 512 bool StripDebugInfo = false; 513 TBAAVerifier TBAAVerifyHelper; 514 515 std::vector<std::string> BundleTags; 516 SmallVector<SyncScope::ID, 8> SSIDs; 517 518 public: 519 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 520 StringRef ProducerIdentification, LLVMContext &Context); 521 522 Error materializeForwardReferencedFunctions(); 523 524 Error materialize(GlobalValue *GV) override; 525 Error materializeModule() override; 526 std::vector<StructType *> getIdentifiedStructTypes() const override; 527 528 /// \brief Main interface to parsing a bitcode buffer. 529 /// \returns true if an error occurred. 530 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false, 531 bool IsImporting = false); 532 533 static uint64_t decodeSignRotatedValue(uint64_t V); 534 535 /// Materialize any deferred Metadata block. 536 Error materializeMetadata() override; 537 538 void setStripDebugInfo() override; 539 540 private: 541 std::vector<StructType *> IdentifiedStructTypes; 542 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 543 StructType *createIdentifiedStructType(LLVMContext &Context); 544 545 Type *getTypeByID(unsigned ID); 546 547 Value *getFnValueByID(unsigned ID, Type *Ty) { 548 if (Ty && Ty->isMetadataTy()) 549 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 550 return ValueList.getValueFwdRef(ID, Ty); 551 } 552 553 Metadata *getFnMetadataByID(unsigned ID) { 554 return MDLoader->getMetadataFwdRefOrLoad(ID); 555 } 556 557 BasicBlock *getBasicBlock(unsigned ID) const { 558 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 559 return FunctionBBs[ID]; 560 } 561 562 AttributeList getAttributes(unsigned i) const { 563 if (i-1 < MAttributes.size()) 564 return MAttributes[i-1]; 565 return AttributeList(); 566 } 567 568 /// Read a value/type pair out of the specified record from slot 'Slot'. 569 /// Increment Slot past the number of slots used in the record. Return true on 570 /// failure. 571 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 572 unsigned InstNum, Value *&ResVal) { 573 if (Slot == Record.size()) return true; 574 unsigned ValNo = (unsigned)Record[Slot++]; 575 // Adjust the ValNo, if it was encoded relative to the InstNum. 576 if (UseRelativeIDs) 577 ValNo = InstNum - ValNo; 578 if (ValNo < InstNum) { 579 // If this is not a forward reference, just return the value we already 580 // have. 581 ResVal = getFnValueByID(ValNo, nullptr); 582 return ResVal == nullptr; 583 } 584 if (Slot == Record.size()) 585 return true; 586 587 unsigned TypeNo = (unsigned)Record[Slot++]; 588 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 589 return ResVal == nullptr; 590 } 591 592 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 593 /// past the number of slots used by the value in the record. Return true if 594 /// there is an error. 595 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 596 unsigned InstNum, Type *Ty, Value *&ResVal) { 597 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 598 return true; 599 // All values currently take a single record slot. 600 ++Slot; 601 return false; 602 } 603 604 /// Like popValue, but does not increment the Slot number. 605 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 606 unsigned InstNum, Type *Ty, Value *&ResVal) { 607 ResVal = getValue(Record, Slot, InstNum, Ty); 608 return ResVal == nullptr; 609 } 610 611 /// Version of getValue that returns ResVal directly, or 0 if there is an 612 /// error. 613 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 614 unsigned InstNum, Type *Ty) { 615 if (Slot == Record.size()) return nullptr; 616 unsigned ValNo = (unsigned)Record[Slot]; 617 // Adjust the ValNo, if it was encoded relative to the InstNum. 618 if (UseRelativeIDs) 619 ValNo = InstNum - ValNo; 620 return getFnValueByID(ValNo, Ty); 621 } 622 623 /// Like getValue, but decodes signed VBRs. 624 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 625 unsigned InstNum, Type *Ty) { 626 if (Slot == Record.size()) return nullptr; 627 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 628 // Adjust the ValNo, if it was encoded relative to the InstNum. 629 if (UseRelativeIDs) 630 ValNo = InstNum - ValNo; 631 return getFnValueByID(ValNo, Ty); 632 } 633 634 /// Converts alignment exponent (i.e. power of two (or zero)) to the 635 /// corresponding alignment to use. If alignment is too large, returns 636 /// a corresponding error code. 637 Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 638 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 639 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false); 640 641 Error parseComdatRecord(ArrayRef<uint64_t> Record); 642 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 643 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 644 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 645 ArrayRef<uint64_t> Record); 646 647 Error parseAttributeBlock(); 648 Error parseAttributeGroupBlock(); 649 Error parseTypeTable(); 650 Error parseTypeTableBody(); 651 Error parseOperandBundleTags(); 652 Error parseSyncScopeNames(); 653 654 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 655 unsigned NameIndex, Triple &TT); 656 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 657 ArrayRef<uint64_t> Record); 658 Error parseValueSymbolTable(uint64_t Offset = 0); 659 Error parseGlobalValueSymbolTable(); 660 Error parseConstants(); 661 Error rememberAndSkipFunctionBodies(); 662 Error rememberAndSkipFunctionBody(); 663 /// Save the positions of the Metadata blocks and skip parsing the blocks. 664 Error rememberAndSkipMetadata(); 665 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 666 Error parseFunctionBody(Function *F); 667 Error globalCleanup(); 668 Error resolveGlobalAndIndirectSymbolInits(); 669 Error parseUseLists(); 670 Error findFunctionInStream( 671 Function *F, 672 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 673 674 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 675 }; 676 677 /// Class to manage reading and parsing function summary index bitcode 678 /// files/sections. 679 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 680 /// The module index built during parsing. 681 ModuleSummaryIndex &TheIndex; 682 683 /// Indicates whether we have encountered a global value summary section 684 /// yet during parsing. 685 bool SeenGlobalValSummary = false; 686 687 /// Indicates whether we have already parsed the VST, used for error checking. 688 bool SeenValueSymbolTable = false; 689 690 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 691 /// Used to enable on-demand parsing of the VST. 692 uint64_t VSTOffset = 0; 693 694 // Map to save ValueId to ValueInfo association that was recorded in the 695 // ValueSymbolTable. It is used after the VST is parsed to convert 696 // call graph edges read from the function summary from referencing 697 // callees by their ValueId to using the ValueInfo instead, which is how 698 // they are recorded in the summary index being built. 699 // We save a GUID which refers to the same global as the ValueInfo, but 700 // ignoring the linkage, i.e. for values other than local linkage they are 701 // identical. 702 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 703 ValueIdToValueInfoMap; 704 705 /// Map populated during module path string table parsing, from the 706 /// module ID to a string reference owned by the index's module 707 /// path string table, used to correlate with combined index 708 /// summary records. 709 DenseMap<uint64_t, StringRef> ModuleIdMap; 710 711 /// Original source file name recorded in a bitcode record. 712 std::string SourceFileName; 713 714 /// The string identifier given to this module by the client, normally the 715 /// path to the bitcode file. 716 StringRef ModulePath; 717 718 /// For per-module summary indexes, the unique numerical identifier given to 719 /// this module by the client. 720 unsigned ModuleId; 721 722 public: 723 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 724 ModuleSummaryIndex &TheIndex, 725 StringRef ModulePath, unsigned ModuleId); 726 727 Error parseModule(); 728 729 private: 730 void setValueGUID(uint64_t ValueID, StringRef ValueName, 731 GlobalValue::LinkageTypes Linkage, 732 StringRef SourceFileName); 733 Error parseValueSymbolTable( 734 uint64_t Offset, 735 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 736 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 737 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 738 bool IsOldProfileFormat, 739 bool HasProfile); 740 Error parseEntireSummary(unsigned ID); 741 Error parseModuleStringTable(); 742 743 std::pair<ValueInfo, GlobalValue::GUID> 744 getValueInfoFromValueId(unsigned ValueId); 745 746 ModuleSummaryIndex::ModuleInfo *addThisModule(); 747 }; 748 749 } // end anonymous namespace 750 751 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 752 Error Err) { 753 if (Err) { 754 std::error_code EC; 755 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 756 EC = EIB.convertToErrorCode(); 757 Ctx.emitError(EIB.message()); 758 }); 759 return EC; 760 } 761 return std::error_code(); 762 } 763 764 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 765 StringRef ProducerIdentification, 766 LLVMContext &Context) 767 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 768 ValueList(Context) { 769 this->ProducerIdentification = ProducerIdentification; 770 } 771 772 Error BitcodeReader::materializeForwardReferencedFunctions() { 773 if (WillMaterializeAllForwardRefs) 774 return Error::success(); 775 776 // Prevent recursion. 777 WillMaterializeAllForwardRefs = true; 778 779 while (!BasicBlockFwdRefQueue.empty()) { 780 Function *F = BasicBlockFwdRefQueue.front(); 781 BasicBlockFwdRefQueue.pop_front(); 782 assert(F && "Expected valid function"); 783 if (!BasicBlockFwdRefs.count(F)) 784 // Already materialized. 785 continue; 786 787 // Check for a function that isn't materializable to prevent an infinite 788 // loop. When parsing a blockaddress stored in a global variable, there 789 // isn't a trivial way to check if a function will have a body without a 790 // linear search through FunctionsWithBodies, so just check it here. 791 if (!F->isMaterializable()) 792 return error("Never resolved function from blockaddress"); 793 794 // Try to materialize F. 795 if (Error Err = materialize(F)) 796 return Err; 797 } 798 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 799 800 // Reset state. 801 WillMaterializeAllForwardRefs = false; 802 return Error::success(); 803 } 804 805 //===----------------------------------------------------------------------===// 806 // Helper functions to implement forward reference resolution, etc. 807 //===----------------------------------------------------------------------===// 808 809 static bool hasImplicitComdat(size_t Val) { 810 switch (Val) { 811 default: 812 return false; 813 case 1: // Old WeakAnyLinkage 814 case 4: // Old LinkOnceAnyLinkage 815 case 10: // Old WeakODRLinkage 816 case 11: // Old LinkOnceODRLinkage 817 return true; 818 } 819 } 820 821 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 822 switch (Val) { 823 default: // Map unknown/new linkages to external 824 case 0: 825 return GlobalValue::ExternalLinkage; 826 case 2: 827 return GlobalValue::AppendingLinkage; 828 case 3: 829 return GlobalValue::InternalLinkage; 830 case 5: 831 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 832 case 6: 833 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 834 case 7: 835 return GlobalValue::ExternalWeakLinkage; 836 case 8: 837 return GlobalValue::CommonLinkage; 838 case 9: 839 return GlobalValue::PrivateLinkage; 840 case 12: 841 return GlobalValue::AvailableExternallyLinkage; 842 case 13: 843 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 844 case 14: 845 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 846 case 15: 847 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 848 case 1: // Old value with implicit comdat. 849 case 16: 850 return GlobalValue::WeakAnyLinkage; 851 case 10: // Old value with implicit comdat. 852 case 17: 853 return GlobalValue::WeakODRLinkage; 854 case 4: // Old value with implicit comdat. 855 case 18: 856 return GlobalValue::LinkOnceAnyLinkage; 857 case 11: // Old value with implicit comdat. 858 case 19: 859 return GlobalValue::LinkOnceODRLinkage; 860 } 861 } 862 863 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 864 FunctionSummary::FFlags Flags; 865 Flags.ReadNone = RawFlags & 0x1; 866 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 867 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 868 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 869 return Flags; 870 } 871 872 /// Decode the flags for GlobalValue in the summary. 873 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 874 uint64_t Version) { 875 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 876 // like getDecodedLinkage() above. Any future change to the linkage enum and 877 // to getDecodedLinkage() will need to be taken into account here as above. 878 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 879 RawFlags = RawFlags >> 4; 880 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 881 // The Live flag wasn't introduced until version 3. For dead stripping 882 // to work correctly on earlier versions, we must conservatively treat all 883 // values as live. 884 bool Live = (RawFlags & 0x2) || Version < 3; 885 return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live); 886 } 887 888 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 889 switch (Val) { 890 default: // Map unknown visibilities to default. 891 case 0: return GlobalValue::DefaultVisibility; 892 case 1: return GlobalValue::HiddenVisibility; 893 case 2: return GlobalValue::ProtectedVisibility; 894 } 895 } 896 897 static GlobalValue::DLLStorageClassTypes 898 getDecodedDLLStorageClass(unsigned Val) { 899 switch (Val) { 900 default: // Map unknown values to default. 901 case 0: return GlobalValue::DefaultStorageClass; 902 case 1: return GlobalValue::DLLImportStorageClass; 903 case 2: return GlobalValue::DLLExportStorageClass; 904 } 905 } 906 907 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 908 switch (Val) { 909 case 0: return GlobalVariable::NotThreadLocal; 910 default: // Map unknown non-zero value to general dynamic. 911 case 1: return GlobalVariable::GeneralDynamicTLSModel; 912 case 2: return GlobalVariable::LocalDynamicTLSModel; 913 case 3: return GlobalVariable::InitialExecTLSModel; 914 case 4: return GlobalVariable::LocalExecTLSModel; 915 } 916 } 917 918 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 919 switch (Val) { 920 default: // Map unknown to UnnamedAddr::None. 921 case 0: return GlobalVariable::UnnamedAddr::None; 922 case 1: return GlobalVariable::UnnamedAddr::Global; 923 case 2: return GlobalVariable::UnnamedAddr::Local; 924 } 925 } 926 927 static int getDecodedCastOpcode(unsigned Val) { 928 switch (Val) { 929 default: return -1; 930 case bitc::CAST_TRUNC : return Instruction::Trunc; 931 case bitc::CAST_ZEXT : return Instruction::ZExt; 932 case bitc::CAST_SEXT : return Instruction::SExt; 933 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 934 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 935 case bitc::CAST_UITOFP : return Instruction::UIToFP; 936 case bitc::CAST_SITOFP : return Instruction::SIToFP; 937 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 938 case bitc::CAST_FPEXT : return Instruction::FPExt; 939 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 940 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 941 case bitc::CAST_BITCAST : return Instruction::BitCast; 942 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 943 } 944 } 945 946 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 947 bool IsFP = Ty->isFPOrFPVectorTy(); 948 // BinOps are only valid for int/fp or vector of int/fp types 949 if (!IsFP && !Ty->isIntOrIntVectorTy()) 950 return -1; 951 952 switch (Val) { 953 default: 954 return -1; 955 case bitc::BINOP_ADD: 956 return IsFP ? Instruction::FAdd : Instruction::Add; 957 case bitc::BINOP_SUB: 958 return IsFP ? Instruction::FSub : Instruction::Sub; 959 case bitc::BINOP_MUL: 960 return IsFP ? Instruction::FMul : Instruction::Mul; 961 case bitc::BINOP_UDIV: 962 return IsFP ? -1 : Instruction::UDiv; 963 case bitc::BINOP_SDIV: 964 return IsFP ? Instruction::FDiv : Instruction::SDiv; 965 case bitc::BINOP_UREM: 966 return IsFP ? -1 : Instruction::URem; 967 case bitc::BINOP_SREM: 968 return IsFP ? Instruction::FRem : Instruction::SRem; 969 case bitc::BINOP_SHL: 970 return IsFP ? -1 : Instruction::Shl; 971 case bitc::BINOP_LSHR: 972 return IsFP ? -1 : Instruction::LShr; 973 case bitc::BINOP_ASHR: 974 return IsFP ? -1 : Instruction::AShr; 975 case bitc::BINOP_AND: 976 return IsFP ? -1 : Instruction::And; 977 case bitc::BINOP_OR: 978 return IsFP ? -1 : Instruction::Or; 979 case bitc::BINOP_XOR: 980 return IsFP ? -1 : Instruction::Xor; 981 } 982 } 983 984 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 985 switch (Val) { 986 default: return AtomicRMWInst::BAD_BINOP; 987 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 988 case bitc::RMW_ADD: return AtomicRMWInst::Add; 989 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 990 case bitc::RMW_AND: return AtomicRMWInst::And; 991 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 992 case bitc::RMW_OR: return AtomicRMWInst::Or; 993 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 994 case bitc::RMW_MAX: return AtomicRMWInst::Max; 995 case bitc::RMW_MIN: return AtomicRMWInst::Min; 996 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 997 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 998 } 999 } 1000 1001 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1002 switch (Val) { 1003 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1004 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1005 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1006 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1007 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1008 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1009 default: // Map unknown orderings to sequentially-consistent. 1010 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1011 } 1012 } 1013 1014 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1015 switch (Val) { 1016 default: // Map unknown selection kinds to any. 1017 case bitc::COMDAT_SELECTION_KIND_ANY: 1018 return Comdat::Any; 1019 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1020 return Comdat::ExactMatch; 1021 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1022 return Comdat::Largest; 1023 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1024 return Comdat::NoDuplicates; 1025 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1026 return Comdat::SameSize; 1027 } 1028 } 1029 1030 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1031 FastMathFlags FMF; 1032 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 1033 FMF.setUnsafeAlgebra(); 1034 if (0 != (Val & FastMathFlags::NoNaNs)) 1035 FMF.setNoNaNs(); 1036 if (0 != (Val & FastMathFlags::NoInfs)) 1037 FMF.setNoInfs(); 1038 if (0 != (Val & FastMathFlags::NoSignedZeros)) 1039 FMF.setNoSignedZeros(); 1040 if (0 != (Val & FastMathFlags::AllowReciprocal)) 1041 FMF.setAllowReciprocal(); 1042 if (0 != (Val & FastMathFlags::AllowContract)) 1043 FMF.setAllowContract(true); 1044 return FMF; 1045 } 1046 1047 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1048 switch (Val) { 1049 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1050 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1051 } 1052 } 1053 1054 1055 Type *BitcodeReader::getTypeByID(unsigned ID) { 1056 // The type table size is always specified correctly. 1057 if (ID >= TypeList.size()) 1058 return nullptr; 1059 1060 if (Type *Ty = TypeList[ID]) 1061 return Ty; 1062 1063 // If we have a forward reference, the only possible case is when it is to a 1064 // named struct. Just create a placeholder for now. 1065 return TypeList[ID] = createIdentifiedStructType(Context); 1066 } 1067 1068 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1069 StringRef Name) { 1070 auto *Ret = StructType::create(Context, Name); 1071 IdentifiedStructTypes.push_back(Ret); 1072 return Ret; 1073 } 1074 1075 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1076 auto *Ret = StructType::create(Context); 1077 IdentifiedStructTypes.push_back(Ret); 1078 return Ret; 1079 } 1080 1081 //===----------------------------------------------------------------------===// 1082 // Functions for parsing blocks from the bitcode file 1083 //===----------------------------------------------------------------------===// 1084 1085 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1086 switch (Val) { 1087 case Attribute::EndAttrKinds: 1088 llvm_unreachable("Synthetic enumerators which should never get here"); 1089 1090 case Attribute::None: return 0; 1091 case Attribute::ZExt: return 1 << 0; 1092 case Attribute::SExt: return 1 << 1; 1093 case Attribute::NoReturn: return 1 << 2; 1094 case Attribute::InReg: return 1 << 3; 1095 case Attribute::StructRet: return 1 << 4; 1096 case Attribute::NoUnwind: return 1 << 5; 1097 case Attribute::NoAlias: return 1 << 6; 1098 case Attribute::ByVal: return 1 << 7; 1099 case Attribute::Nest: return 1 << 8; 1100 case Attribute::ReadNone: return 1 << 9; 1101 case Attribute::ReadOnly: return 1 << 10; 1102 case Attribute::NoInline: return 1 << 11; 1103 case Attribute::AlwaysInline: return 1 << 12; 1104 case Attribute::OptimizeForSize: return 1 << 13; 1105 case Attribute::StackProtect: return 1 << 14; 1106 case Attribute::StackProtectReq: return 1 << 15; 1107 case Attribute::Alignment: return 31 << 16; 1108 case Attribute::NoCapture: return 1 << 21; 1109 case Attribute::NoRedZone: return 1 << 22; 1110 case Attribute::NoImplicitFloat: return 1 << 23; 1111 case Attribute::Naked: return 1 << 24; 1112 case Attribute::InlineHint: return 1 << 25; 1113 case Attribute::StackAlignment: return 7 << 26; 1114 case Attribute::ReturnsTwice: return 1 << 29; 1115 case Attribute::UWTable: return 1 << 30; 1116 case Attribute::NonLazyBind: return 1U << 31; 1117 case Attribute::SanitizeAddress: return 1ULL << 32; 1118 case Attribute::MinSize: return 1ULL << 33; 1119 case Attribute::NoDuplicate: return 1ULL << 34; 1120 case Attribute::StackProtectStrong: return 1ULL << 35; 1121 case Attribute::SanitizeThread: return 1ULL << 36; 1122 case Attribute::SanitizeMemory: return 1ULL << 37; 1123 case Attribute::NoBuiltin: return 1ULL << 38; 1124 case Attribute::Returned: return 1ULL << 39; 1125 case Attribute::Cold: return 1ULL << 40; 1126 case Attribute::Builtin: return 1ULL << 41; 1127 case Attribute::OptimizeNone: return 1ULL << 42; 1128 case Attribute::InAlloca: return 1ULL << 43; 1129 case Attribute::NonNull: return 1ULL << 44; 1130 case Attribute::JumpTable: return 1ULL << 45; 1131 case Attribute::Convergent: return 1ULL << 46; 1132 case Attribute::SafeStack: return 1ULL << 47; 1133 case Attribute::NoRecurse: return 1ULL << 48; 1134 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1135 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1136 case Attribute::SwiftSelf: return 1ULL << 51; 1137 case Attribute::SwiftError: return 1ULL << 52; 1138 case Attribute::WriteOnly: return 1ULL << 53; 1139 case Attribute::Speculatable: return 1ULL << 54; 1140 case Attribute::StrictFP: return 1ULL << 55; 1141 case Attribute::Dereferenceable: 1142 llvm_unreachable("dereferenceable attribute not supported in raw format"); 1143 break; 1144 case Attribute::DereferenceableOrNull: 1145 llvm_unreachable("dereferenceable_or_null attribute not supported in raw " 1146 "format"); 1147 break; 1148 case Attribute::ArgMemOnly: 1149 llvm_unreachable("argmemonly attribute not supported in raw format"); 1150 break; 1151 case Attribute::AllocSize: 1152 llvm_unreachable("allocsize not supported in raw format"); 1153 break; 1154 } 1155 llvm_unreachable("Unsupported attribute type"); 1156 } 1157 1158 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1159 if (!Val) return; 1160 1161 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1162 I = Attribute::AttrKind(I + 1)) { 1163 if (I == Attribute::Dereferenceable || 1164 I == Attribute::DereferenceableOrNull || 1165 I == Attribute::ArgMemOnly || 1166 I == Attribute::AllocSize) 1167 continue; 1168 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1169 if (I == Attribute::Alignment) 1170 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1171 else if (I == Attribute::StackAlignment) 1172 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1173 else 1174 B.addAttribute(I); 1175 } 1176 } 1177 } 1178 1179 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1180 /// been decoded from the given integer. This function must stay in sync with 1181 /// 'encodeLLVMAttributesForBitcode'. 1182 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1183 uint64_t EncodedAttrs) { 1184 // FIXME: Remove in 4.0. 1185 1186 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1187 // the bits above 31 down by 11 bits. 1188 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1189 assert((!Alignment || isPowerOf2_32(Alignment)) && 1190 "Alignment must be a power of two."); 1191 1192 if (Alignment) 1193 B.addAlignmentAttr(Alignment); 1194 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1195 (EncodedAttrs & 0xffff)); 1196 } 1197 1198 Error BitcodeReader::parseAttributeBlock() { 1199 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1200 return error("Invalid record"); 1201 1202 if (!MAttributes.empty()) 1203 return error("Invalid multiple blocks"); 1204 1205 SmallVector<uint64_t, 64> Record; 1206 1207 SmallVector<AttributeList, 8> Attrs; 1208 1209 // Read all the records. 1210 while (true) { 1211 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1212 1213 switch (Entry.Kind) { 1214 case BitstreamEntry::SubBlock: // Handled for us already. 1215 case BitstreamEntry::Error: 1216 return error("Malformed block"); 1217 case BitstreamEntry::EndBlock: 1218 return Error::success(); 1219 case BitstreamEntry::Record: 1220 // The interesting case. 1221 break; 1222 } 1223 1224 // Read a record. 1225 Record.clear(); 1226 switch (Stream.readRecord(Entry.ID, Record)) { 1227 default: // Default behavior: ignore. 1228 break; 1229 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1230 // FIXME: Remove in 4.0. 1231 if (Record.size() & 1) 1232 return error("Invalid record"); 1233 1234 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1235 AttrBuilder B; 1236 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1237 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1238 } 1239 1240 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1241 Attrs.clear(); 1242 break; 1243 } 1244 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1245 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1246 Attrs.push_back(MAttributeGroups[Record[i]]); 1247 1248 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1249 Attrs.clear(); 1250 break; 1251 } 1252 } 1253 } 1254 } 1255 1256 // Returns Attribute::None on unrecognized codes. 1257 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1258 switch (Code) { 1259 default: 1260 return Attribute::None; 1261 case bitc::ATTR_KIND_ALIGNMENT: 1262 return Attribute::Alignment; 1263 case bitc::ATTR_KIND_ALWAYS_INLINE: 1264 return Attribute::AlwaysInline; 1265 case bitc::ATTR_KIND_ARGMEMONLY: 1266 return Attribute::ArgMemOnly; 1267 case bitc::ATTR_KIND_BUILTIN: 1268 return Attribute::Builtin; 1269 case bitc::ATTR_KIND_BY_VAL: 1270 return Attribute::ByVal; 1271 case bitc::ATTR_KIND_IN_ALLOCA: 1272 return Attribute::InAlloca; 1273 case bitc::ATTR_KIND_COLD: 1274 return Attribute::Cold; 1275 case bitc::ATTR_KIND_CONVERGENT: 1276 return Attribute::Convergent; 1277 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1278 return Attribute::InaccessibleMemOnly; 1279 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1280 return Attribute::InaccessibleMemOrArgMemOnly; 1281 case bitc::ATTR_KIND_INLINE_HINT: 1282 return Attribute::InlineHint; 1283 case bitc::ATTR_KIND_IN_REG: 1284 return Attribute::InReg; 1285 case bitc::ATTR_KIND_JUMP_TABLE: 1286 return Attribute::JumpTable; 1287 case bitc::ATTR_KIND_MIN_SIZE: 1288 return Attribute::MinSize; 1289 case bitc::ATTR_KIND_NAKED: 1290 return Attribute::Naked; 1291 case bitc::ATTR_KIND_NEST: 1292 return Attribute::Nest; 1293 case bitc::ATTR_KIND_NO_ALIAS: 1294 return Attribute::NoAlias; 1295 case bitc::ATTR_KIND_NO_BUILTIN: 1296 return Attribute::NoBuiltin; 1297 case bitc::ATTR_KIND_NO_CAPTURE: 1298 return Attribute::NoCapture; 1299 case bitc::ATTR_KIND_NO_DUPLICATE: 1300 return Attribute::NoDuplicate; 1301 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1302 return Attribute::NoImplicitFloat; 1303 case bitc::ATTR_KIND_NO_INLINE: 1304 return Attribute::NoInline; 1305 case bitc::ATTR_KIND_NO_RECURSE: 1306 return Attribute::NoRecurse; 1307 case bitc::ATTR_KIND_NON_LAZY_BIND: 1308 return Attribute::NonLazyBind; 1309 case bitc::ATTR_KIND_NON_NULL: 1310 return Attribute::NonNull; 1311 case bitc::ATTR_KIND_DEREFERENCEABLE: 1312 return Attribute::Dereferenceable; 1313 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1314 return Attribute::DereferenceableOrNull; 1315 case bitc::ATTR_KIND_ALLOC_SIZE: 1316 return Attribute::AllocSize; 1317 case bitc::ATTR_KIND_NO_RED_ZONE: 1318 return Attribute::NoRedZone; 1319 case bitc::ATTR_KIND_NO_RETURN: 1320 return Attribute::NoReturn; 1321 case bitc::ATTR_KIND_NO_UNWIND: 1322 return Attribute::NoUnwind; 1323 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1324 return Attribute::OptimizeForSize; 1325 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1326 return Attribute::OptimizeNone; 1327 case bitc::ATTR_KIND_READ_NONE: 1328 return Attribute::ReadNone; 1329 case bitc::ATTR_KIND_READ_ONLY: 1330 return Attribute::ReadOnly; 1331 case bitc::ATTR_KIND_RETURNED: 1332 return Attribute::Returned; 1333 case bitc::ATTR_KIND_RETURNS_TWICE: 1334 return Attribute::ReturnsTwice; 1335 case bitc::ATTR_KIND_S_EXT: 1336 return Attribute::SExt; 1337 case bitc::ATTR_KIND_SPECULATABLE: 1338 return Attribute::Speculatable; 1339 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1340 return Attribute::StackAlignment; 1341 case bitc::ATTR_KIND_STACK_PROTECT: 1342 return Attribute::StackProtect; 1343 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1344 return Attribute::StackProtectReq; 1345 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1346 return Attribute::StackProtectStrong; 1347 case bitc::ATTR_KIND_SAFESTACK: 1348 return Attribute::SafeStack; 1349 case bitc::ATTR_KIND_STRICT_FP: 1350 return Attribute::StrictFP; 1351 case bitc::ATTR_KIND_STRUCT_RET: 1352 return Attribute::StructRet; 1353 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1354 return Attribute::SanitizeAddress; 1355 case bitc::ATTR_KIND_SANITIZE_THREAD: 1356 return Attribute::SanitizeThread; 1357 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1358 return Attribute::SanitizeMemory; 1359 case bitc::ATTR_KIND_SWIFT_ERROR: 1360 return Attribute::SwiftError; 1361 case bitc::ATTR_KIND_SWIFT_SELF: 1362 return Attribute::SwiftSelf; 1363 case bitc::ATTR_KIND_UW_TABLE: 1364 return Attribute::UWTable; 1365 case bitc::ATTR_KIND_WRITEONLY: 1366 return Attribute::WriteOnly; 1367 case bitc::ATTR_KIND_Z_EXT: 1368 return Attribute::ZExt; 1369 } 1370 } 1371 1372 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1373 unsigned &Alignment) { 1374 // Note: Alignment in bitcode files is incremented by 1, so that zero 1375 // can be used for default alignment. 1376 if (Exponent > Value::MaxAlignmentExponent + 1) 1377 return error("Invalid alignment value"); 1378 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1379 return Error::success(); 1380 } 1381 1382 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1383 *Kind = getAttrFromCode(Code); 1384 if (*Kind == Attribute::None) 1385 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1386 return Error::success(); 1387 } 1388 1389 Error BitcodeReader::parseAttributeGroupBlock() { 1390 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1391 return error("Invalid record"); 1392 1393 if (!MAttributeGroups.empty()) 1394 return error("Invalid multiple blocks"); 1395 1396 SmallVector<uint64_t, 64> Record; 1397 1398 // Read all the records. 1399 while (true) { 1400 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1401 1402 switch (Entry.Kind) { 1403 case BitstreamEntry::SubBlock: // Handled for us already. 1404 case BitstreamEntry::Error: 1405 return error("Malformed block"); 1406 case BitstreamEntry::EndBlock: 1407 return Error::success(); 1408 case BitstreamEntry::Record: 1409 // The interesting case. 1410 break; 1411 } 1412 1413 // Read a record. 1414 Record.clear(); 1415 switch (Stream.readRecord(Entry.ID, Record)) { 1416 default: // Default behavior: ignore. 1417 break; 1418 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1419 if (Record.size() < 3) 1420 return error("Invalid record"); 1421 1422 uint64_t GrpID = Record[0]; 1423 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1424 1425 AttrBuilder B; 1426 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1427 if (Record[i] == 0) { // Enum attribute 1428 Attribute::AttrKind Kind; 1429 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1430 return Err; 1431 1432 B.addAttribute(Kind); 1433 } else if (Record[i] == 1) { // Integer attribute 1434 Attribute::AttrKind Kind; 1435 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1436 return Err; 1437 if (Kind == Attribute::Alignment) 1438 B.addAlignmentAttr(Record[++i]); 1439 else if (Kind == Attribute::StackAlignment) 1440 B.addStackAlignmentAttr(Record[++i]); 1441 else if (Kind == Attribute::Dereferenceable) 1442 B.addDereferenceableAttr(Record[++i]); 1443 else if (Kind == Attribute::DereferenceableOrNull) 1444 B.addDereferenceableOrNullAttr(Record[++i]); 1445 else if (Kind == Attribute::AllocSize) 1446 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1447 } else { // String attribute 1448 assert((Record[i] == 3 || Record[i] == 4) && 1449 "Invalid attribute group entry"); 1450 bool HasValue = (Record[i++] == 4); 1451 SmallString<64> KindStr; 1452 SmallString<64> ValStr; 1453 1454 while (Record[i] != 0 && i != e) 1455 KindStr += Record[i++]; 1456 assert(Record[i] == 0 && "Kind string not null terminated"); 1457 1458 if (HasValue) { 1459 // Has a value associated with it. 1460 ++i; // Skip the '0' that terminates the "kind" string. 1461 while (Record[i] != 0 && i != e) 1462 ValStr += Record[i++]; 1463 assert(Record[i] == 0 && "Value string not null terminated"); 1464 } 1465 1466 B.addAttribute(KindStr.str(), ValStr.str()); 1467 } 1468 } 1469 1470 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1471 break; 1472 } 1473 } 1474 } 1475 } 1476 1477 Error BitcodeReader::parseTypeTable() { 1478 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1479 return error("Invalid record"); 1480 1481 return parseTypeTableBody(); 1482 } 1483 1484 Error BitcodeReader::parseTypeTableBody() { 1485 if (!TypeList.empty()) 1486 return error("Invalid multiple blocks"); 1487 1488 SmallVector<uint64_t, 64> Record; 1489 unsigned NumRecords = 0; 1490 1491 SmallString<64> TypeName; 1492 1493 // Read all the records for this type table. 1494 while (true) { 1495 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1496 1497 switch (Entry.Kind) { 1498 case BitstreamEntry::SubBlock: // Handled for us already. 1499 case BitstreamEntry::Error: 1500 return error("Malformed block"); 1501 case BitstreamEntry::EndBlock: 1502 if (NumRecords != TypeList.size()) 1503 return error("Malformed block"); 1504 return Error::success(); 1505 case BitstreamEntry::Record: 1506 // The interesting case. 1507 break; 1508 } 1509 1510 // Read a record. 1511 Record.clear(); 1512 Type *ResultTy = nullptr; 1513 switch (Stream.readRecord(Entry.ID, Record)) { 1514 default: 1515 return error("Invalid value"); 1516 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1517 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1518 // type list. This allows us to reserve space. 1519 if (Record.size() < 1) 1520 return error("Invalid record"); 1521 TypeList.resize(Record[0]); 1522 continue; 1523 case bitc::TYPE_CODE_VOID: // VOID 1524 ResultTy = Type::getVoidTy(Context); 1525 break; 1526 case bitc::TYPE_CODE_HALF: // HALF 1527 ResultTy = Type::getHalfTy(Context); 1528 break; 1529 case bitc::TYPE_CODE_FLOAT: // FLOAT 1530 ResultTy = Type::getFloatTy(Context); 1531 break; 1532 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1533 ResultTy = Type::getDoubleTy(Context); 1534 break; 1535 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1536 ResultTy = Type::getX86_FP80Ty(Context); 1537 break; 1538 case bitc::TYPE_CODE_FP128: // FP128 1539 ResultTy = Type::getFP128Ty(Context); 1540 break; 1541 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1542 ResultTy = Type::getPPC_FP128Ty(Context); 1543 break; 1544 case bitc::TYPE_CODE_LABEL: // LABEL 1545 ResultTy = Type::getLabelTy(Context); 1546 break; 1547 case bitc::TYPE_CODE_METADATA: // METADATA 1548 ResultTy = Type::getMetadataTy(Context); 1549 break; 1550 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1551 ResultTy = Type::getX86_MMXTy(Context); 1552 break; 1553 case bitc::TYPE_CODE_TOKEN: // TOKEN 1554 ResultTy = Type::getTokenTy(Context); 1555 break; 1556 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1557 if (Record.size() < 1) 1558 return error("Invalid record"); 1559 1560 uint64_t NumBits = Record[0]; 1561 if (NumBits < IntegerType::MIN_INT_BITS || 1562 NumBits > IntegerType::MAX_INT_BITS) 1563 return error("Bitwidth for integer type out of range"); 1564 ResultTy = IntegerType::get(Context, NumBits); 1565 break; 1566 } 1567 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1568 // [pointee type, address space] 1569 if (Record.size() < 1) 1570 return error("Invalid record"); 1571 unsigned AddressSpace = 0; 1572 if (Record.size() == 2) 1573 AddressSpace = Record[1]; 1574 ResultTy = getTypeByID(Record[0]); 1575 if (!ResultTy || 1576 !PointerType::isValidElementType(ResultTy)) 1577 return error("Invalid type"); 1578 ResultTy = PointerType::get(ResultTy, AddressSpace); 1579 break; 1580 } 1581 case bitc::TYPE_CODE_FUNCTION_OLD: { 1582 // FIXME: attrid is dead, remove it in LLVM 4.0 1583 // FUNCTION: [vararg, attrid, retty, paramty x N] 1584 if (Record.size() < 3) 1585 return error("Invalid record"); 1586 SmallVector<Type*, 8> ArgTys; 1587 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1588 if (Type *T = getTypeByID(Record[i])) 1589 ArgTys.push_back(T); 1590 else 1591 break; 1592 } 1593 1594 ResultTy = getTypeByID(Record[2]); 1595 if (!ResultTy || ArgTys.size() < Record.size()-3) 1596 return error("Invalid type"); 1597 1598 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1599 break; 1600 } 1601 case bitc::TYPE_CODE_FUNCTION: { 1602 // FUNCTION: [vararg, retty, paramty x N] 1603 if (Record.size() < 2) 1604 return error("Invalid record"); 1605 SmallVector<Type*, 8> ArgTys; 1606 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1607 if (Type *T = getTypeByID(Record[i])) { 1608 if (!FunctionType::isValidArgumentType(T)) 1609 return error("Invalid function argument type"); 1610 ArgTys.push_back(T); 1611 } 1612 else 1613 break; 1614 } 1615 1616 ResultTy = getTypeByID(Record[1]); 1617 if (!ResultTy || ArgTys.size() < Record.size()-2) 1618 return error("Invalid type"); 1619 1620 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1621 break; 1622 } 1623 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1624 if (Record.size() < 1) 1625 return error("Invalid record"); 1626 SmallVector<Type*, 8> EltTys; 1627 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1628 if (Type *T = getTypeByID(Record[i])) 1629 EltTys.push_back(T); 1630 else 1631 break; 1632 } 1633 if (EltTys.size() != Record.size()-1) 1634 return error("Invalid type"); 1635 ResultTy = StructType::get(Context, EltTys, Record[0]); 1636 break; 1637 } 1638 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1639 if (convertToString(Record, 0, TypeName)) 1640 return error("Invalid record"); 1641 continue; 1642 1643 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1644 if (Record.size() < 1) 1645 return error("Invalid record"); 1646 1647 if (NumRecords >= TypeList.size()) 1648 return error("Invalid TYPE table"); 1649 1650 // Check to see if this was forward referenced, if so fill in the temp. 1651 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1652 if (Res) { 1653 Res->setName(TypeName); 1654 TypeList[NumRecords] = nullptr; 1655 } else // Otherwise, create a new struct. 1656 Res = createIdentifiedStructType(Context, TypeName); 1657 TypeName.clear(); 1658 1659 SmallVector<Type*, 8> EltTys; 1660 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1661 if (Type *T = getTypeByID(Record[i])) 1662 EltTys.push_back(T); 1663 else 1664 break; 1665 } 1666 if (EltTys.size() != Record.size()-1) 1667 return error("Invalid record"); 1668 Res->setBody(EltTys, Record[0]); 1669 ResultTy = Res; 1670 break; 1671 } 1672 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1673 if (Record.size() != 1) 1674 return error("Invalid record"); 1675 1676 if (NumRecords >= TypeList.size()) 1677 return error("Invalid TYPE table"); 1678 1679 // Check to see if this was forward referenced, if so fill in the temp. 1680 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1681 if (Res) { 1682 Res->setName(TypeName); 1683 TypeList[NumRecords] = nullptr; 1684 } else // Otherwise, create a new struct with no body. 1685 Res = createIdentifiedStructType(Context, TypeName); 1686 TypeName.clear(); 1687 ResultTy = Res; 1688 break; 1689 } 1690 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1691 if (Record.size() < 2) 1692 return error("Invalid record"); 1693 ResultTy = getTypeByID(Record[1]); 1694 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1695 return error("Invalid type"); 1696 ResultTy = ArrayType::get(ResultTy, Record[0]); 1697 break; 1698 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1699 if (Record.size() < 2) 1700 return error("Invalid record"); 1701 if (Record[0] == 0) 1702 return error("Invalid vector length"); 1703 ResultTy = getTypeByID(Record[1]); 1704 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1705 return error("Invalid type"); 1706 ResultTy = VectorType::get(ResultTy, Record[0]); 1707 break; 1708 } 1709 1710 if (NumRecords >= TypeList.size()) 1711 return error("Invalid TYPE table"); 1712 if (TypeList[NumRecords]) 1713 return error( 1714 "Invalid TYPE table: Only named structs can be forward referenced"); 1715 assert(ResultTy && "Didn't read a type?"); 1716 TypeList[NumRecords++] = ResultTy; 1717 } 1718 } 1719 1720 Error BitcodeReader::parseOperandBundleTags() { 1721 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1722 return error("Invalid record"); 1723 1724 if (!BundleTags.empty()) 1725 return error("Invalid multiple blocks"); 1726 1727 SmallVector<uint64_t, 64> Record; 1728 1729 while (true) { 1730 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1731 1732 switch (Entry.Kind) { 1733 case BitstreamEntry::SubBlock: // Handled for us already. 1734 case BitstreamEntry::Error: 1735 return error("Malformed block"); 1736 case BitstreamEntry::EndBlock: 1737 return Error::success(); 1738 case BitstreamEntry::Record: 1739 // The interesting case. 1740 break; 1741 } 1742 1743 // Tags are implicitly mapped to integers by their order. 1744 1745 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1746 return error("Invalid record"); 1747 1748 // OPERAND_BUNDLE_TAG: [strchr x N] 1749 BundleTags.emplace_back(); 1750 if (convertToString(Record, 0, BundleTags.back())) 1751 return error("Invalid record"); 1752 Record.clear(); 1753 } 1754 } 1755 1756 Error BitcodeReader::parseSyncScopeNames() { 1757 if (Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1758 return error("Invalid record"); 1759 1760 if (!SSIDs.empty()) 1761 return error("Invalid multiple synchronization scope names blocks"); 1762 1763 SmallVector<uint64_t, 64> Record; 1764 while (true) { 1765 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1766 switch (Entry.Kind) { 1767 case BitstreamEntry::SubBlock: // Handled for us already. 1768 case BitstreamEntry::Error: 1769 return error("Malformed block"); 1770 case BitstreamEntry::EndBlock: 1771 if (SSIDs.empty()) 1772 return error("Invalid empty synchronization scope names block"); 1773 return Error::success(); 1774 case BitstreamEntry::Record: 1775 // The interesting case. 1776 break; 1777 } 1778 1779 // Synchronization scope names are implicitly mapped to synchronization 1780 // scope IDs by their order. 1781 1782 if (Stream.readRecord(Entry.ID, Record) != bitc::SYNC_SCOPE_NAME) 1783 return error("Invalid record"); 1784 1785 SmallString<16> SSN; 1786 if (convertToString(Record, 0, SSN)) 1787 return error("Invalid record"); 1788 1789 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 1790 Record.clear(); 1791 } 1792 } 1793 1794 /// Associate a value with its name from the given index in the provided record. 1795 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1796 unsigned NameIndex, Triple &TT) { 1797 SmallString<128> ValueName; 1798 if (convertToString(Record, NameIndex, ValueName)) 1799 return error("Invalid record"); 1800 unsigned ValueID = Record[0]; 1801 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1802 return error("Invalid record"); 1803 Value *V = ValueList[ValueID]; 1804 1805 StringRef NameStr(ValueName.data(), ValueName.size()); 1806 if (NameStr.find_first_of(0) != StringRef::npos) 1807 return error("Invalid value name"); 1808 V->setName(NameStr); 1809 auto *GO = dyn_cast<GlobalObject>(V); 1810 if (GO) { 1811 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1812 if (TT.isOSBinFormatMachO()) 1813 GO->setComdat(nullptr); 1814 else 1815 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1816 } 1817 } 1818 return V; 1819 } 1820 1821 /// Helper to note and return the current location, and jump to the given 1822 /// offset. 1823 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1824 BitstreamCursor &Stream) { 1825 // Save the current parsing location so we can jump back at the end 1826 // of the VST read. 1827 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1828 Stream.JumpToBit(Offset * 32); 1829 #ifndef NDEBUG 1830 // Do some checking if we are in debug mode. 1831 BitstreamEntry Entry = Stream.advance(); 1832 assert(Entry.Kind == BitstreamEntry::SubBlock); 1833 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1834 #else 1835 // In NDEBUG mode ignore the output so we don't get an unused variable 1836 // warning. 1837 Stream.advance(); 1838 #endif 1839 return CurrentBit; 1840 } 1841 1842 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 1843 Function *F, 1844 ArrayRef<uint64_t> Record) { 1845 // Note that we subtract 1 here because the offset is relative to one word 1846 // before the start of the identification or module block, which was 1847 // historically always the start of the regular bitcode header. 1848 uint64_t FuncWordOffset = Record[1] - 1; 1849 uint64_t FuncBitOffset = FuncWordOffset * 32; 1850 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1851 // Set the LastFunctionBlockBit to point to the last function block. 1852 // Later when parsing is resumed after function materialization, 1853 // we can simply skip that last function block. 1854 if (FuncBitOffset > LastFunctionBlockBit) 1855 LastFunctionBlockBit = FuncBitOffset; 1856 } 1857 1858 /// Read a new-style GlobalValue symbol table. 1859 Error BitcodeReader::parseGlobalValueSymbolTable() { 1860 unsigned FuncBitcodeOffsetDelta = 1861 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1862 1863 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1864 return error("Invalid record"); 1865 1866 SmallVector<uint64_t, 64> Record; 1867 while (true) { 1868 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1869 1870 switch (Entry.Kind) { 1871 case BitstreamEntry::SubBlock: 1872 case BitstreamEntry::Error: 1873 return error("Malformed block"); 1874 case BitstreamEntry::EndBlock: 1875 return Error::success(); 1876 case BitstreamEntry::Record: 1877 break; 1878 } 1879 1880 Record.clear(); 1881 switch (Stream.readRecord(Entry.ID, Record)) { 1882 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 1883 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 1884 cast<Function>(ValueList[Record[0]]), Record); 1885 break; 1886 } 1887 } 1888 } 1889 1890 /// Parse the value symbol table at either the current parsing location or 1891 /// at the given bit offset if provided. 1892 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1893 uint64_t CurrentBit; 1894 // Pass in the Offset to distinguish between calling for the module-level 1895 // VST (where we want to jump to the VST offset) and the function-level 1896 // VST (where we don't). 1897 if (Offset > 0) { 1898 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1899 // If this module uses a string table, read this as a module-level VST. 1900 if (UseStrtab) { 1901 if (Error Err = parseGlobalValueSymbolTable()) 1902 return Err; 1903 Stream.JumpToBit(CurrentBit); 1904 return Error::success(); 1905 } 1906 // Otherwise, the VST will be in a similar format to a function-level VST, 1907 // and will contain symbol names. 1908 } 1909 1910 // Compute the delta between the bitcode indices in the VST (the word offset 1911 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1912 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1913 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1914 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1915 // just before entering the VST subblock because: 1) the EnterSubBlock 1916 // changes the AbbrevID width; 2) the VST block is nested within the same 1917 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1918 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1919 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1920 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1921 unsigned FuncBitcodeOffsetDelta = 1922 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1923 1924 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1925 return error("Invalid record"); 1926 1927 SmallVector<uint64_t, 64> Record; 1928 1929 Triple TT(TheModule->getTargetTriple()); 1930 1931 // Read all the records for this value table. 1932 SmallString<128> ValueName; 1933 1934 while (true) { 1935 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1936 1937 switch (Entry.Kind) { 1938 case BitstreamEntry::SubBlock: // Handled for us already. 1939 case BitstreamEntry::Error: 1940 return error("Malformed block"); 1941 case BitstreamEntry::EndBlock: 1942 if (Offset > 0) 1943 Stream.JumpToBit(CurrentBit); 1944 return Error::success(); 1945 case BitstreamEntry::Record: 1946 // The interesting case. 1947 break; 1948 } 1949 1950 // Read a record. 1951 Record.clear(); 1952 switch (Stream.readRecord(Entry.ID, Record)) { 1953 default: // Default behavior: unknown type. 1954 break; 1955 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 1956 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 1957 if (Error Err = ValOrErr.takeError()) 1958 return Err; 1959 ValOrErr.get(); 1960 break; 1961 } 1962 case bitc::VST_CODE_FNENTRY: { 1963 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 1964 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 1965 if (Error Err = ValOrErr.takeError()) 1966 return Err; 1967 Value *V = ValOrErr.get(); 1968 1969 // Ignore function offsets emitted for aliases of functions in older 1970 // versions of LLVM. 1971 if (auto *F = dyn_cast<Function>(V)) 1972 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 1973 break; 1974 } 1975 case bitc::VST_CODE_BBENTRY: { 1976 if (convertToString(Record, 1, ValueName)) 1977 return error("Invalid record"); 1978 BasicBlock *BB = getBasicBlock(Record[0]); 1979 if (!BB) 1980 return error("Invalid record"); 1981 1982 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1983 ValueName.clear(); 1984 break; 1985 } 1986 } 1987 } 1988 } 1989 1990 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 1991 /// encoding. 1992 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 1993 if ((V & 1) == 0) 1994 return V >> 1; 1995 if (V != 1) 1996 return -(V >> 1); 1997 // There is no such thing as -0 with integers. "-0" really means MININT. 1998 return 1ULL << 63; 1999 } 2000 2001 /// Resolve all of the initializers for global values and aliases that we can. 2002 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2003 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2004 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > 2005 IndirectSymbolInitWorklist; 2006 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2007 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2008 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 2009 2010 GlobalInitWorklist.swap(GlobalInits); 2011 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2012 FunctionPrefixWorklist.swap(FunctionPrefixes); 2013 FunctionPrologueWorklist.swap(FunctionPrologues); 2014 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2015 2016 while (!GlobalInitWorklist.empty()) { 2017 unsigned ValID = GlobalInitWorklist.back().second; 2018 if (ValID >= ValueList.size()) { 2019 // Not ready to resolve this yet, it requires something later in the file. 2020 GlobalInits.push_back(GlobalInitWorklist.back()); 2021 } else { 2022 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2023 GlobalInitWorklist.back().first->setInitializer(C); 2024 else 2025 return error("Expected a constant"); 2026 } 2027 GlobalInitWorklist.pop_back(); 2028 } 2029 2030 while (!IndirectSymbolInitWorklist.empty()) { 2031 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2032 if (ValID >= ValueList.size()) { 2033 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2034 } else { 2035 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2036 if (!C) 2037 return error("Expected a constant"); 2038 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2039 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2040 return error("Alias and aliasee types don't match"); 2041 GIS->setIndirectSymbol(C); 2042 } 2043 IndirectSymbolInitWorklist.pop_back(); 2044 } 2045 2046 while (!FunctionPrefixWorklist.empty()) { 2047 unsigned ValID = FunctionPrefixWorklist.back().second; 2048 if (ValID >= ValueList.size()) { 2049 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2050 } else { 2051 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2052 FunctionPrefixWorklist.back().first->setPrefixData(C); 2053 else 2054 return error("Expected a constant"); 2055 } 2056 FunctionPrefixWorklist.pop_back(); 2057 } 2058 2059 while (!FunctionPrologueWorklist.empty()) { 2060 unsigned ValID = FunctionPrologueWorklist.back().second; 2061 if (ValID >= ValueList.size()) { 2062 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2063 } else { 2064 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2065 FunctionPrologueWorklist.back().first->setPrologueData(C); 2066 else 2067 return error("Expected a constant"); 2068 } 2069 FunctionPrologueWorklist.pop_back(); 2070 } 2071 2072 while (!FunctionPersonalityFnWorklist.empty()) { 2073 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2074 if (ValID >= ValueList.size()) { 2075 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2076 } else { 2077 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2078 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2079 else 2080 return error("Expected a constant"); 2081 } 2082 FunctionPersonalityFnWorklist.pop_back(); 2083 } 2084 2085 return Error::success(); 2086 } 2087 2088 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2089 SmallVector<uint64_t, 8> Words(Vals.size()); 2090 transform(Vals, Words.begin(), 2091 BitcodeReader::decodeSignRotatedValue); 2092 2093 return APInt(TypeBits, Words); 2094 } 2095 2096 Error BitcodeReader::parseConstants() { 2097 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2098 return error("Invalid record"); 2099 2100 SmallVector<uint64_t, 64> Record; 2101 2102 // Read all the records for this value table. 2103 Type *CurTy = Type::getInt32Ty(Context); 2104 unsigned NextCstNo = ValueList.size(); 2105 2106 while (true) { 2107 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2108 2109 switch (Entry.Kind) { 2110 case BitstreamEntry::SubBlock: // Handled for us already. 2111 case BitstreamEntry::Error: 2112 return error("Malformed block"); 2113 case BitstreamEntry::EndBlock: 2114 if (NextCstNo != ValueList.size()) 2115 return error("Invalid constant reference"); 2116 2117 // Once all the constants have been read, go through and resolve forward 2118 // references. 2119 ValueList.resolveConstantForwardRefs(); 2120 return Error::success(); 2121 case BitstreamEntry::Record: 2122 // The interesting case. 2123 break; 2124 } 2125 2126 // Read a record. 2127 Record.clear(); 2128 Type *VoidType = Type::getVoidTy(Context); 2129 Value *V = nullptr; 2130 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2131 switch (BitCode) { 2132 default: // Default behavior: unknown constant 2133 case bitc::CST_CODE_UNDEF: // UNDEF 2134 V = UndefValue::get(CurTy); 2135 break; 2136 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2137 if (Record.empty()) 2138 return error("Invalid record"); 2139 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2140 return error("Invalid record"); 2141 if (TypeList[Record[0]] == VoidType) 2142 return error("Invalid constant type"); 2143 CurTy = TypeList[Record[0]]; 2144 continue; // Skip the ValueList manipulation. 2145 case bitc::CST_CODE_NULL: // NULL 2146 V = Constant::getNullValue(CurTy); 2147 break; 2148 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2149 if (!CurTy->isIntegerTy() || Record.empty()) 2150 return error("Invalid record"); 2151 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2152 break; 2153 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2154 if (!CurTy->isIntegerTy() || Record.empty()) 2155 return error("Invalid record"); 2156 2157 APInt VInt = 2158 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2159 V = ConstantInt::get(Context, VInt); 2160 2161 break; 2162 } 2163 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2164 if (Record.empty()) 2165 return error("Invalid record"); 2166 if (CurTy->isHalfTy()) 2167 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2168 APInt(16, (uint16_t)Record[0]))); 2169 else if (CurTy->isFloatTy()) 2170 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2171 APInt(32, (uint32_t)Record[0]))); 2172 else if (CurTy->isDoubleTy()) 2173 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2174 APInt(64, Record[0]))); 2175 else if (CurTy->isX86_FP80Ty()) { 2176 // Bits are not stored the same way as a normal i80 APInt, compensate. 2177 uint64_t Rearrange[2]; 2178 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2179 Rearrange[1] = Record[0] >> 48; 2180 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2181 APInt(80, Rearrange))); 2182 } else if (CurTy->isFP128Ty()) 2183 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2184 APInt(128, Record))); 2185 else if (CurTy->isPPC_FP128Ty()) 2186 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2187 APInt(128, Record))); 2188 else 2189 V = UndefValue::get(CurTy); 2190 break; 2191 } 2192 2193 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2194 if (Record.empty()) 2195 return error("Invalid record"); 2196 2197 unsigned Size = Record.size(); 2198 SmallVector<Constant*, 16> Elts; 2199 2200 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2201 for (unsigned i = 0; i != Size; ++i) 2202 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2203 STy->getElementType(i))); 2204 V = ConstantStruct::get(STy, Elts); 2205 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2206 Type *EltTy = ATy->getElementType(); 2207 for (unsigned i = 0; i != Size; ++i) 2208 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2209 V = ConstantArray::get(ATy, Elts); 2210 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2211 Type *EltTy = VTy->getElementType(); 2212 for (unsigned i = 0; i != Size; ++i) 2213 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2214 V = ConstantVector::get(Elts); 2215 } else { 2216 V = UndefValue::get(CurTy); 2217 } 2218 break; 2219 } 2220 case bitc::CST_CODE_STRING: // STRING: [values] 2221 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2222 if (Record.empty()) 2223 return error("Invalid record"); 2224 2225 SmallString<16> Elts(Record.begin(), Record.end()); 2226 V = ConstantDataArray::getString(Context, Elts, 2227 BitCode == bitc::CST_CODE_CSTRING); 2228 break; 2229 } 2230 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2231 if (Record.empty()) 2232 return error("Invalid record"); 2233 2234 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2235 if (EltTy->isIntegerTy(8)) { 2236 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2237 if (isa<VectorType>(CurTy)) 2238 V = ConstantDataVector::get(Context, Elts); 2239 else 2240 V = ConstantDataArray::get(Context, Elts); 2241 } else if (EltTy->isIntegerTy(16)) { 2242 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2243 if (isa<VectorType>(CurTy)) 2244 V = ConstantDataVector::get(Context, Elts); 2245 else 2246 V = ConstantDataArray::get(Context, Elts); 2247 } else if (EltTy->isIntegerTy(32)) { 2248 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2249 if (isa<VectorType>(CurTy)) 2250 V = ConstantDataVector::get(Context, Elts); 2251 else 2252 V = ConstantDataArray::get(Context, Elts); 2253 } else if (EltTy->isIntegerTy(64)) { 2254 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2255 if (isa<VectorType>(CurTy)) 2256 V = ConstantDataVector::get(Context, Elts); 2257 else 2258 V = ConstantDataArray::get(Context, Elts); 2259 } else if (EltTy->isHalfTy()) { 2260 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2261 if (isa<VectorType>(CurTy)) 2262 V = ConstantDataVector::getFP(Context, Elts); 2263 else 2264 V = ConstantDataArray::getFP(Context, Elts); 2265 } else if (EltTy->isFloatTy()) { 2266 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2267 if (isa<VectorType>(CurTy)) 2268 V = ConstantDataVector::getFP(Context, Elts); 2269 else 2270 V = ConstantDataArray::getFP(Context, Elts); 2271 } else if (EltTy->isDoubleTy()) { 2272 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2273 if (isa<VectorType>(CurTy)) 2274 V = ConstantDataVector::getFP(Context, Elts); 2275 else 2276 V = ConstantDataArray::getFP(Context, Elts); 2277 } else { 2278 return error("Invalid type for value"); 2279 } 2280 break; 2281 } 2282 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2283 if (Record.size() < 3) 2284 return error("Invalid record"); 2285 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2286 if (Opc < 0) { 2287 V = UndefValue::get(CurTy); // Unknown binop. 2288 } else { 2289 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2290 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2291 unsigned Flags = 0; 2292 if (Record.size() >= 4) { 2293 if (Opc == Instruction::Add || 2294 Opc == Instruction::Sub || 2295 Opc == Instruction::Mul || 2296 Opc == Instruction::Shl) { 2297 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2298 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2299 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2300 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2301 } else if (Opc == Instruction::SDiv || 2302 Opc == Instruction::UDiv || 2303 Opc == Instruction::LShr || 2304 Opc == Instruction::AShr) { 2305 if (Record[3] & (1 << bitc::PEO_EXACT)) 2306 Flags |= SDivOperator::IsExact; 2307 } 2308 } 2309 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2310 } 2311 break; 2312 } 2313 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2314 if (Record.size() < 3) 2315 return error("Invalid record"); 2316 int Opc = getDecodedCastOpcode(Record[0]); 2317 if (Opc < 0) { 2318 V = UndefValue::get(CurTy); // Unknown cast. 2319 } else { 2320 Type *OpTy = getTypeByID(Record[1]); 2321 if (!OpTy) 2322 return error("Invalid record"); 2323 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2324 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2325 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2326 } 2327 break; 2328 } 2329 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2330 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2331 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2332 // operands] 2333 unsigned OpNum = 0; 2334 Type *PointeeType = nullptr; 2335 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2336 Record.size() % 2) 2337 PointeeType = getTypeByID(Record[OpNum++]); 2338 2339 bool InBounds = false; 2340 Optional<unsigned> InRangeIndex; 2341 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2342 uint64_t Op = Record[OpNum++]; 2343 InBounds = Op & 1; 2344 InRangeIndex = Op >> 1; 2345 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2346 InBounds = true; 2347 2348 SmallVector<Constant*, 16> Elts; 2349 while (OpNum != Record.size()) { 2350 Type *ElTy = getTypeByID(Record[OpNum++]); 2351 if (!ElTy) 2352 return error("Invalid record"); 2353 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2354 } 2355 2356 if (PointeeType && 2357 PointeeType != 2358 cast<PointerType>(Elts[0]->getType()->getScalarType()) 2359 ->getElementType()) 2360 return error("Explicit gep operator type does not match pointee type " 2361 "of pointer operand"); 2362 2363 if (Elts.size() < 1) 2364 return error("Invalid gep with no operands"); 2365 2366 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2367 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2368 InBounds, InRangeIndex); 2369 break; 2370 } 2371 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2372 if (Record.size() < 3) 2373 return error("Invalid record"); 2374 2375 Type *SelectorTy = Type::getInt1Ty(Context); 2376 2377 // The selector might be an i1 or an <n x i1> 2378 // Get the type from the ValueList before getting a forward ref. 2379 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2380 if (Value *V = ValueList[Record[0]]) 2381 if (SelectorTy != V->getType()) 2382 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2383 2384 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2385 SelectorTy), 2386 ValueList.getConstantFwdRef(Record[1],CurTy), 2387 ValueList.getConstantFwdRef(Record[2],CurTy)); 2388 break; 2389 } 2390 case bitc::CST_CODE_CE_EXTRACTELT 2391 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2392 if (Record.size() < 3) 2393 return error("Invalid record"); 2394 VectorType *OpTy = 2395 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2396 if (!OpTy) 2397 return error("Invalid record"); 2398 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2399 Constant *Op1 = nullptr; 2400 if (Record.size() == 4) { 2401 Type *IdxTy = getTypeByID(Record[2]); 2402 if (!IdxTy) 2403 return error("Invalid record"); 2404 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2405 } else // TODO: Remove with llvm 4.0 2406 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2407 if (!Op1) 2408 return error("Invalid record"); 2409 V = ConstantExpr::getExtractElement(Op0, Op1); 2410 break; 2411 } 2412 case bitc::CST_CODE_CE_INSERTELT 2413 : { // CE_INSERTELT: [opval, opval, opty, opval] 2414 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2415 if (Record.size() < 3 || !OpTy) 2416 return error("Invalid record"); 2417 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2418 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2419 OpTy->getElementType()); 2420 Constant *Op2 = nullptr; 2421 if (Record.size() == 4) { 2422 Type *IdxTy = getTypeByID(Record[2]); 2423 if (!IdxTy) 2424 return error("Invalid record"); 2425 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2426 } else // TODO: Remove with llvm 4.0 2427 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2428 if (!Op2) 2429 return error("Invalid record"); 2430 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2431 break; 2432 } 2433 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2434 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2435 if (Record.size() < 3 || !OpTy) 2436 return error("Invalid record"); 2437 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2438 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2439 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2440 OpTy->getNumElements()); 2441 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2442 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2443 break; 2444 } 2445 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2446 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2447 VectorType *OpTy = 2448 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2449 if (Record.size() < 4 || !RTy || !OpTy) 2450 return error("Invalid record"); 2451 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2452 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2453 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2454 RTy->getNumElements()); 2455 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2456 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2457 break; 2458 } 2459 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2460 if (Record.size() < 4) 2461 return error("Invalid record"); 2462 Type *OpTy = getTypeByID(Record[0]); 2463 if (!OpTy) 2464 return error("Invalid record"); 2465 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2466 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2467 2468 if (OpTy->isFPOrFPVectorTy()) 2469 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2470 else 2471 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2472 break; 2473 } 2474 // This maintains backward compatibility, pre-asm dialect keywords. 2475 // FIXME: Remove with the 4.0 release. 2476 case bitc::CST_CODE_INLINEASM_OLD: { 2477 if (Record.size() < 2) 2478 return error("Invalid record"); 2479 std::string AsmStr, ConstrStr; 2480 bool HasSideEffects = Record[0] & 1; 2481 bool IsAlignStack = Record[0] >> 1; 2482 unsigned AsmStrSize = Record[1]; 2483 if (2+AsmStrSize >= Record.size()) 2484 return error("Invalid record"); 2485 unsigned ConstStrSize = Record[2+AsmStrSize]; 2486 if (3+AsmStrSize+ConstStrSize > Record.size()) 2487 return error("Invalid record"); 2488 2489 for (unsigned i = 0; i != AsmStrSize; ++i) 2490 AsmStr += (char)Record[2+i]; 2491 for (unsigned i = 0; i != ConstStrSize; ++i) 2492 ConstrStr += (char)Record[3+AsmStrSize+i]; 2493 PointerType *PTy = cast<PointerType>(CurTy); 2494 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2495 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2496 break; 2497 } 2498 // This version adds support for the asm dialect keywords (e.g., 2499 // inteldialect). 2500 case bitc::CST_CODE_INLINEASM: { 2501 if (Record.size() < 2) 2502 return error("Invalid record"); 2503 std::string AsmStr, ConstrStr; 2504 bool HasSideEffects = Record[0] & 1; 2505 bool IsAlignStack = (Record[0] >> 1) & 1; 2506 unsigned AsmDialect = Record[0] >> 2; 2507 unsigned AsmStrSize = Record[1]; 2508 if (2+AsmStrSize >= Record.size()) 2509 return error("Invalid record"); 2510 unsigned ConstStrSize = Record[2+AsmStrSize]; 2511 if (3+AsmStrSize+ConstStrSize > Record.size()) 2512 return error("Invalid record"); 2513 2514 for (unsigned i = 0; i != AsmStrSize; ++i) 2515 AsmStr += (char)Record[2+i]; 2516 for (unsigned i = 0; i != ConstStrSize; ++i) 2517 ConstrStr += (char)Record[3+AsmStrSize+i]; 2518 PointerType *PTy = cast<PointerType>(CurTy); 2519 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2520 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2521 InlineAsm::AsmDialect(AsmDialect)); 2522 break; 2523 } 2524 case bitc::CST_CODE_BLOCKADDRESS:{ 2525 if (Record.size() < 3) 2526 return error("Invalid record"); 2527 Type *FnTy = getTypeByID(Record[0]); 2528 if (!FnTy) 2529 return error("Invalid record"); 2530 Function *Fn = 2531 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2532 if (!Fn) 2533 return error("Invalid record"); 2534 2535 // If the function is already parsed we can insert the block address right 2536 // away. 2537 BasicBlock *BB; 2538 unsigned BBID = Record[2]; 2539 if (!BBID) 2540 // Invalid reference to entry block. 2541 return error("Invalid ID"); 2542 if (!Fn->empty()) { 2543 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2544 for (size_t I = 0, E = BBID; I != E; ++I) { 2545 if (BBI == BBE) 2546 return error("Invalid ID"); 2547 ++BBI; 2548 } 2549 BB = &*BBI; 2550 } else { 2551 // Otherwise insert a placeholder and remember it so it can be inserted 2552 // when the function is parsed. 2553 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2554 if (FwdBBs.empty()) 2555 BasicBlockFwdRefQueue.push_back(Fn); 2556 if (FwdBBs.size() < BBID + 1) 2557 FwdBBs.resize(BBID + 1); 2558 if (!FwdBBs[BBID]) 2559 FwdBBs[BBID] = BasicBlock::Create(Context); 2560 BB = FwdBBs[BBID]; 2561 } 2562 V = BlockAddress::get(Fn, BB); 2563 break; 2564 } 2565 } 2566 2567 ValueList.assignValue(V, NextCstNo); 2568 ++NextCstNo; 2569 } 2570 } 2571 2572 Error BitcodeReader::parseUseLists() { 2573 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2574 return error("Invalid record"); 2575 2576 // Read all the records. 2577 SmallVector<uint64_t, 64> Record; 2578 2579 while (true) { 2580 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2581 2582 switch (Entry.Kind) { 2583 case BitstreamEntry::SubBlock: // Handled for us already. 2584 case BitstreamEntry::Error: 2585 return error("Malformed block"); 2586 case BitstreamEntry::EndBlock: 2587 return Error::success(); 2588 case BitstreamEntry::Record: 2589 // The interesting case. 2590 break; 2591 } 2592 2593 // Read a use list record. 2594 Record.clear(); 2595 bool IsBB = false; 2596 switch (Stream.readRecord(Entry.ID, Record)) { 2597 default: // Default behavior: unknown type. 2598 break; 2599 case bitc::USELIST_CODE_BB: 2600 IsBB = true; 2601 LLVM_FALLTHROUGH; 2602 case bitc::USELIST_CODE_DEFAULT: { 2603 unsigned RecordLength = Record.size(); 2604 if (RecordLength < 3) 2605 // Records should have at least an ID and two indexes. 2606 return error("Invalid record"); 2607 unsigned ID = Record.back(); 2608 Record.pop_back(); 2609 2610 Value *V; 2611 if (IsBB) { 2612 assert(ID < FunctionBBs.size() && "Basic block not found"); 2613 V = FunctionBBs[ID]; 2614 } else 2615 V = ValueList[ID]; 2616 unsigned NumUses = 0; 2617 SmallDenseMap<const Use *, unsigned, 16> Order; 2618 for (const Use &U : V->materialized_uses()) { 2619 if (++NumUses > Record.size()) 2620 break; 2621 Order[&U] = Record[NumUses - 1]; 2622 } 2623 if (Order.size() != Record.size() || NumUses > Record.size()) 2624 // Mismatches can happen if the functions are being materialized lazily 2625 // (out-of-order), or a value has been upgraded. 2626 break; 2627 2628 V->sortUseList([&](const Use &L, const Use &R) { 2629 return Order.lookup(&L) < Order.lookup(&R); 2630 }); 2631 break; 2632 } 2633 } 2634 } 2635 } 2636 2637 /// When we see the block for metadata, remember where it is and then skip it. 2638 /// This lets us lazily deserialize the metadata. 2639 Error BitcodeReader::rememberAndSkipMetadata() { 2640 // Save the current stream state. 2641 uint64_t CurBit = Stream.GetCurrentBitNo(); 2642 DeferredMetadataInfo.push_back(CurBit); 2643 2644 // Skip over the block for now. 2645 if (Stream.SkipBlock()) 2646 return error("Invalid record"); 2647 return Error::success(); 2648 } 2649 2650 Error BitcodeReader::materializeMetadata() { 2651 for (uint64_t BitPos : DeferredMetadataInfo) { 2652 // Move the bit stream to the saved position. 2653 Stream.JumpToBit(BitPos); 2654 if (Error Err = MDLoader->parseModuleMetadata()) 2655 return Err; 2656 } 2657 2658 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 2659 // metadata. 2660 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 2661 NamedMDNode *LinkerOpts = 2662 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 2663 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 2664 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 2665 } 2666 2667 DeferredMetadataInfo.clear(); 2668 return Error::success(); 2669 } 2670 2671 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2672 2673 /// When we see the block for a function body, remember where it is and then 2674 /// skip it. This lets us lazily deserialize the functions. 2675 Error BitcodeReader::rememberAndSkipFunctionBody() { 2676 // Get the function we are talking about. 2677 if (FunctionsWithBodies.empty()) 2678 return error("Insufficient function protos"); 2679 2680 Function *Fn = FunctionsWithBodies.back(); 2681 FunctionsWithBodies.pop_back(); 2682 2683 // Save the current stream state. 2684 uint64_t CurBit = Stream.GetCurrentBitNo(); 2685 assert( 2686 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 2687 "Mismatch between VST and scanned function offsets"); 2688 DeferredFunctionInfo[Fn] = CurBit; 2689 2690 // Skip over the function block for now. 2691 if (Stream.SkipBlock()) 2692 return error("Invalid record"); 2693 return Error::success(); 2694 } 2695 2696 Error BitcodeReader::globalCleanup() { 2697 // Patch the initializers for globals and aliases up. 2698 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 2699 return Err; 2700 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 2701 return error("Malformed global initializer set"); 2702 2703 // Look for intrinsic functions which need to be upgraded at some point 2704 for (Function &F : *TheModule) { 2705 MDLoader->upgradeDebugIntrinsics(F); 2706 Function *NewFn; 2707 if (UpgradeIntrinsicFunction(&F, NewFn)) 2708 UpgradedIntrinsics[&F] = NewFn; 2709 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 2710 // Some types could be renamed during loading if several modules are 2711 // loaded in the same LLVMContext (LTO scenario). In this case we should 2712 // remangle intrinsics names as well. 2713 RemangledIntrinsics[&F] = Remangled.getValue(); 2714 } 2715 2716 // Look for global variables which need to be renamed. 2717 for (GlobalVariable &GV : TheModule->globals()) 2718 UpgradeGlobalVariable(&GV); 2719 2720 // Force deallocation of memory for these vectors to favor the client that 2721 // want lazy deserialization. 2722 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 2723 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap( 2724 IndirectSymbolInits); 2725 return Error::success(); 2726 } 2727 2728 /// Support for lazy parsing of function bodies. This is required if we 2729 /// either have an old bitcode file without a VST forward declaration record, 2730 /// or if we have an anonymous function being materialized, since anonymous 2731 /// functions do not have a name and are therefore not in the VST. 2732 Error BitcodeReader::rememberAndSkipFunctionBodies() { 2733 Stream.JumpToBit(NextUnreadBit); 2734 2735 if (Stream.AtEndOfStream()) 2736 return error("Could not find function in stream"); 2737 2738 if (!SeenFirstFunctionBody) 2739 return error("Trying to materialize functions before seeing function blocks"); 2740 2741 // An old bitcode file with the symbol table at the end would have 2742 // finished the parse greedily. 2743 assert(SeenValueSymbolTable); 2744 2745 SmallVector<uint64_t, 64> Record; 2746 2747 while (true) { 2748 BitstreamEntry Entry = Stream.advance(); 2749 switch (Entry.Kind) { 2750 default: 2751 return error("Expect SubBlock"); 2752 case BitstreamEntry::SubBlock: 2753 switch (Entry.ID) { 2754 default: 2755 return error("Expect function block"); 2756 case bitc::FUNCTION_BLOCK_ID: 2757 if (Error Err = rememberAndSkipFunctionBody()) 2758 return Err; 2759 NextUnreadBit = Stream.GetCurrentBitNo(); 2760 return Error::success(); 2761 } 2762 } 2763 } 2764 } 2765 2766 bool BitcodeReaderBase::readBlockInfo() { 2767 Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock(); 2768 if (!NewBlockInfo) 2769 return true; 2770 BlockInfo = std::move(*NewBlockInfo); 2771 return false; 2772 } 2773 2774 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 2775 // v1: [selection_kind, name] 2776 // v2: [strtab_offset, strtab_size, selection_kind] 2777 StringRef Name; 2778 std::tie(Name, Record) = readNameFromStrtab(Record); 2779 2780 if (Record.size() < 1) 2781 return error("Invalid record"); 2782 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2783 std::string OldFormatName; 2784 if (!UseStrtab) { 2785 if (Record.size() < 2) 2786 return error("Invalid record"); 2787 unsigned ComdatNameSize = Record[1]; 2788 OldFormatName.reserve(ComdatNameSize); 2789 for (unsigned i = 0; i != ComdatNameSize; ++i) 2790 OldFormatName += (char)Record[2 + i]; 2791 Name = OldFormatName; 2792 } 2793 Comdat *C = TheModule->getOrInsertComdat(Name); 2794 C->setSelectionKind(SK); 2795 ComdatList.push_back(C); 2796 return Error::success(); 2797 } 2798 2799 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 2800 // v1: [pointer type, isconst, initid, linkage, alignment, section, 2801 // visibility, threadlocal, unnamed_addr, externally_initialized, 2802 // dllstorageclass, comdat, attributes] (name in VST) 2803 // v2: [strtab_offset, strtab_size, v1] 2804 StringRef Name; 2805 std::tie(Name, Record) = readNameFromStrtab(Record); 2806 2807 if (Record.size() < 6) 2808 return error("Invalid record"); 2809 Type *Ty = getTypeByID(Record[0]); 2810 if (!Ty) 2811 return error("Invalid record"); 2812 bool isConstant = Record[1] & 1; 2813 bool explicitType = Record[1] & 2; 2814 unsigned AddressSpace; 2815 if (explicitType) { 2816 AddressSpace = Record[1] >> 2; 2817 } else { 2818 if (!Ty->isPointerTy()) 2819 return error("Invalid type for value"); 2820 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2821 Ty = cast<PointerType>(Ty)->getElementType(); 2822 } 2823 2824 uint64_t RawLinkage = Record[3]; 2825 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2826 unsigned Alignment; 2827 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 2828 return Err; 2829 std::string Section; 2830 if (Record[5]) { 2831 if (Record[5] - 1 >= SectionTable.size()) 2832 return error("Invalid ID"); 2833 Section = SectionTable[Record[5] - 1]; 2834 } 2835 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2836 // Local linkage must have default visibility. 2837 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2838 // FIXME: Change to an error if non-default in 4.0. 2839 Visibility = getDecodedVisibility(Record[6]); 2840 2841 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2842 if (Record.size() > 7) 2843 TLM = getDecodedThreadLocalMode(Record[7]); 2844 2845 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 2846 if (Record.size() > 8) 2847 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 2848 2849 bool ExternallyInitialized = false; 2850 if (Record.size() > 9) 2851 ExternallyInitialized = Record[9]; 2852 2853 GlobalVariable *NewGV = 2854 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 2855 nullptr, TLM, AddressSpace, ExternallyInitialized); 2856 NewGV->setAlignment(Alignment); 2857 if (!Section.empty()) 2858 NewGV->setSection(Section); 2859 NewGV->setVisibility(Visibility); 2860 NewGV->setUnnamedAddr(UnnamedAddr); 2861 2862 if (Record.size() > 10) 2863 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 2864 else 2865 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 2866 2867 ValueList.push_back(NewGV); 2868 2869 // Remember which value to use for the global initializer. 2870 if (unsigned InitID = Record[2]) 2871 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 2872 2873 if (Record.size() > 11) { 2874 if (unsigned ComdatID = Record[11]) { 2875 if (ComdatID > ComdatList.size()) 2876 return error("Invalid global variable comdat ID"); 2877 NewGV->setComdat(ComdatList[ComdatID - 1]); 2878 } 2879 } else if (hasImplicitComdat(RawLinkage)) { 2880 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2881 } 2882 2883 if (Record.size() > 12) { 2884 auto AS = getAttributes(Record[12]).getFnAttributes(); 2885 NewGV->setAttributes(AS); 2886 } 2887 return Error::success(); 2888 } 2889 2890 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 2891 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 2892 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 2893 // prefixdata] (name in VST) 2894 // v2: [strtab_offset, strtab_size, v1] 2895 StringRef Name; 2896 std::tie(Name, Record) = readNameFromStrtab(Record); 2897 2898 if (Record.size() < 8) 2899 return error("Invalid record"); 2900 Type *Ty = getTypeByID(Record[0]); 2901 if (!Ty) 2902 return error("Invalid record"); 2903 if (auto *PTy = dyn_cast<PointerType>(Ty)) 2904 Ty = PTy->getElementType(); 2905 auto *FTy = dyn_cast<FunctionType>(Ty); 2906 if (!FTy) 2907 return error("Invalid type for value"); 2908 auto CC = static_cast<CallingConv::ID>(Record[1]); 2909 if (CC & ~CallingConv::MaxID) 2910 return error("Invalid calling convention ID"); 2911 2912 Function *Func = 2913 Function::Create(FTy, GlobalValue::ExternalLinkage, Name, TheModule); 2914 2915 Func->setCallingConv(CC); 2916 bool isProto = Record[2]; 2917 uint64_t RawLinkage = Record[3]; 2918 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2919 Func->setAttributes(getAttributes(Record[4])); 2920 2921 unsigned Alignment; 2922 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 2923 return Err; 2924 Func->setAlignment(Alignment); 2925 if (Record[6]) { 2926 if (Record[6] - 1 >= SectionTable.size()) 2927 return error("Invalid ID"); 2928 Func->setSection(SectionTable[Record[6] - 1]); 2929 } 2930 // Local linkage must have default visibility. 2931 if (!Func->hasLocalLinkage()) 2932 // FIXME: Change to an error if non-default in 4.0. 2933 Func->setVisibility(getDecodedVisibility(Record[7])); 2934 if (Record.size() > 8 && Record[8]) { 2935 if (Record[8] - 1 >= GCTable.size()) 2936 return error("Invalid ID"); 2937 Func->setGC(GCTable[Record[8] - 1]); 2938 } 2939 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 2940 if (Record.size() > 9) 2941 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 2942 Func->setUnnamedAddr(UnnamedAddr); 2943 if (Record.size() > 10 && Record[10] != 0) 2944 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 2945 2946 if (Record.size() > 11) 2947 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 2948 else 2949 upgradeDLLImportExportLinkage(Func, RawLinkage); 2950 2951 if (Record.size() > 12) { 2952 if (unsigned ComdatID = Record[12]) { 2953 if (ComdatID > ComdatList.size()) 2954 return error("Invalid function comdat ID"); 2955 Func->setComdat(ComdatList[ComdatID - 1]); 2956 } 2957 } else if (hasImplicitComdat(RawLinkage)) { 2958 Func->setComdat(reinterpret_cast<Comdat *>(1)); 2959 } 2960 2961 if (Record.size() > 13 && Record[13] != 0) 2962 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 2963 2964 if (Record.size() > 14 && Record[14] != 0) 2965 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 2966 2967 ValueList.push_back(Func); 2968 2969 // If this is a function with a body, remember the prototype we are 2970 // creating now, so that we can match up the body with them later. 2971 if (!isProto) { 2972 Func->setIsMaterializable(true); 2973 FunctionsWithBodies.push_back(Func); 2974 DeferredFunctionInfo[Func] = 0; 2975 } 2976 return Error::success(); 2977 } 2978 2979 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 2980 unsigned BitCode, ArrayRef<uint64_t> Record) { 2981 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 2982 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 2983 // dllstorageclass] (name in VST) 2984 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 2985 // visibility, dllstorageclass] (name in VST) 2986 // v2: [strtab_offset, strtab_size, v1] 2987 StringRef Name; 2988 std::tie(Name, Record) = readNameFromStrtab(Record); 2989 2990 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 2991 if (Record.size() < (3 + (unsigned)NewRecord)) 2992 return error("Invalid record"); 2993 unsigned OpNum = 0; 2994 Type *Ty = getTypeByID(Record[OpNum++]); 2995 if (!Ty) 2996 return error("Invalid record"); 2997 2998 unsigned AddrSpace; 2999 if (!NewRecord) { 3000 auto *PTy = dyn_cast<PointerType>(Ty); 3001 if (!PTy) 3002 return error("Invalid type for value"); 3003 Ty = PTy->getElementType(); 3004 AddrSpace = PTy->getAddressSpace(); 3005 } else { 3006 AddrSpace = Record[OpNum++]; 3007 } 3008 3009 auto Val = Record[OpNum++]; 3010 auto Linkage = Record[OpNum++]; 3011 GlobalIndirectSymbol *NewGA; 3012 if (BitCode == bitc::MODULE_CODE_ALIAS || 3013 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3014 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3015 TheModule); 3016 else 3017 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3018 nullptr, TheModule); 3019 // Old bitcode files didn't have visibility field. 3020 // Local linkage must have default visibility. 3021 if (OpNum != Record.size()) { 3022 auto VisInd = OpNum++; 3023 if (!NewGA->hasLocalLinkage()) 3024 // FIXME: Change to an error if non-default in 4.0. 3025 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3026 } 3027 if (OpNum != Record.size()) 3028 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3029 else 3030 upgradeDLLImportExportLinkage(NewGA, Linkage); 3031 if (OpNum != Record.size()) 3032 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3033 if (OpNum != Record.size()) 3034 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3035 ValueList.push_back(NewGA); 3036 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3037 return Error::success(); 3038 } 3039 3040 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3041 bool ShouldLazyLoadMetadata) { 3042 if (ResumeBit) 3043 Stream.JumpToBit(ResumeBit); 3044 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3045 return error("Invalid record"); 3046 3047 SmallVector<uint64_t, 64> Record; 3048 3049 // Read all the records for this module. 3050 while (true) { 3051 BitstreamEntry Entry = Stream.advance(); 3052 3053 switch (Entry.Kind) { 3054 case BitstreamEntry::Error: 3055 return error("Malformed block"); 3056 case BitstreamEntry::EndBlock: 3057 return globalCleanup(); 3058 3059 case BitstreamEntry::SubBlock: 3060 switch (Entry.ID) { 3061 default: // Skip unknown content. 3062 if (Stream.SkipBlock()) 3063 return error("Invalid record"); 3064 break; 3065 case bitc::BLOCKINFO_BLOCK_ID: 3066 if (readBlockInfo()) 3067 return error("Malformed block"); 3068 break; 3069 case bitc::PARAMATTR_BLOCK_ID: 3070 if (Error Err = parseAttributeBlock()) 3071 return Err; 3072 break; 3073 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3074 if (Error Err = parseAttributeGroupBlock()) 3075 return Err; 3076 break; 3077 case bitc::TYPE_BLOCK_ID_NEW: 3078 if (Error Err = parseTypeTable()) 3079 return Err; 3080 break; 3081 case bitc::VALUE_SYMTAB_BLOCK_ID: 3082 if (!SeenValueSymbolTable) { 3083 // Either this is an old form VST without function index and an 3084 // associated VST forward declaration record (which would have caused 3085 // the VST to be jumped to and parsed before it was encountered 3086 // normally in the stream), or there were no function blocks to 3087 // trigger an earlier parsing of the VST. 3088 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3089 if (Error Err = parseValueSymbolTable()) 3090 return Err; 3091 SeenValueSymbolTable = true; 3092 } else { 3093 // We must have had a VST forward declaration record, which caused 3094 // the parser to jump to and parse the VST earlier. 3095 assert(VSTOffset > 0); 3096 if (Stream.SkipBlock()) 3097 return error("Invalid record"); 3098 } 3099 break; 3100 case bitc::CONSTANTS_BLOCK_ID: 3101 if (Error Err = parseConstants()) 3102 return Err; 3103 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3104 return Err; 3105 break; 3106 case bitc::METADATA_BLOCK_ID: 3107 if (ShouldLazyLoadMetadata) { 3108 if (Error Err = rememberAndSkipMetadata()) 3109 return Err; 3110 break; 3111 } 3112 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3113 if (Error Err = MDLoader->parseModuleMetadata()) 3114 return Err; 3115 break; 3116 case bitc::METADATA_KIND_BLOCK_ID: 3117 if (Error Err = MDLoader->parseMetadataKinds()) 3118 return Err; 3119 break; 3120 case bitc::FUNCTION_BLOCK_ID: 3121 // If this is the first function body we've seen, reverse the 3122 // FunctionsWithBodies list. 3123 if (!SeenFirstFunctionBody) { 3124 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3125 if (Error Err = globalCleanup()) 3126 return Err; 3127 SeenFirstFunctionBody = true; 3128 } 3129 3130 if (VSTOffset > 0) { 3131 // If we have a VST forward declaration record, make sure we 3132 // parse the VST now if we haven't already. It is needed to 3133 // set up the DeferredFunctionInfo vector for lazy reading. 3134 if (!SeenValueSymbolTable) { 3135 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3136 return Err; 3137 SeenValueSymbolTable = true; 3138 // Fall through so that we record the NextUnreadBit below. 3139 // This is necessary in case we have an anonymous function that 3140 // is later materialized. Since it will not have a VST entry we 3141 // need to fall back to the lazy parse to find its offset. 3142 } else { 3143 // If we have a VST forward declaration record, but have already 3144 // parsed the VST (just above, when the first function body was 3145 // encountered here), then we are resuming the parse after 3146 // materializing functions. The ResumeBit points to the 3147 // start of the last function block recorded in the 3148 // DeferredFunctionInfo map. Skip it. 3149 if (Stream.SkipBlock()) 3150 return error("Invalid record"); 3151 continue; 3152 } 3153 } 3154 3155 // Support older bitcode files that did not have the function 3156 // index in the VST, nor a VST forward declaration record, as 3157 // well as anonymous functions that do not have VST entries. 3158 // Build the DeferredFunctionInfo vector on the fly. 3159 if (Error Err = rememberAndSkipFunctionBody()) 3160 return Err; 3161 3162 // Suspend parsing when we reach the function bodies. Subsequent 3163 // materialization calls will resume it when necessary. If the bitcode 3164 // file is old, the symbol table will be at the end instead and will not 3165 // have been seen yet. In this case, just finish the parse now. 3166 if (SeenValueSymbolTable) { 3167 NextUnreadBit = Stream.GetCurrentBitNo(); 3168 // After the VST has been parsed, we need to make sure intrinsic name 3169 // are auto-upgraded. 3170 return globalCleanup(); 3171 } 3172 break; 3173 case bitc::USELIST_BLOCK_ID: 3174 if (Error Err = parseUseLists()) 3175 return Err; 3176 break; 3177 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3178 if (Error Err = parseOperandBundleTags()) 3179 return Err; 3180 break; 3181 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3182 if (Error Err = parseSyncScopeNames()) 3183 return Err; 3184 break; 3185 } 3186 continue; 3187 3188 case BitstreamEntry::Record: 3189 // The interesting case. 3190 break; 3191 } 3192 3193 // Read a record. 3194 auto BitCode = Stream.readRecord(Entry.ID, Record); 3195 switch (BitCode) { 3196 default: break; // Default behavior, ignore unknown content. 3197 case bitc::MODULE_CODE_VERSION: { 3198 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3199 if (!VersionOrErr) 3200 return VersionOrErr.takeError(); 3201 UseRelativeIDs = *VersionOrErr >= 1; 3202 break; 3203 } 3204 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3205 std::string S; 3206 if (convertToString(Record, 0, S)) 3207 return error("Invalid record"); 3208 TheModule->setTargetTriple(S); 3209 break; 3210 } 3211 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3212 std::string S; 3213 if (convertToString(Record, 0, S)) 3214 return error("Invalid record"); 3215 TheModule->setDataLayout(S); 3216 break; 3217 } 3218 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3219 std::string S; 3220 if (convertToString(Record, 0, S)) 3221 return error("Invalid record"); 3222 TheModule->setModuleInlineAsm(S); 3223 break; 3224 } 3225 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3226 // FIXME: Remove in 4.0. 3227 std::string S; 3228 if (convertToString(Record, 0, S)) 3229 return error("Invalid record"); 3230 // Ignore value. 3231 break; 3232 } 3233 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3234 std::string S; 3235 if (convertToString(Record, 0, S)) 3236 return error("Invalid record"); 3237 SectionTable.push_back(S); 3238 break; 3239 } 3240 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3241 std::string S; 3242 if (convertToString(Record, 0, S)) 3243 return error("Invalid record"); 3244 GCTable.push_back(S); 3245 break; 3246 } 3247 case bitc::MODULE_CODE_COMDAT: { 3248 if (Error Err = parseComdatRecord(Record)) 3249 return Err; 3250 break; 3251 } 3252 case bitc::MODULE_CODE_GLOBALVAR: { 3253 if (Error Err = parseGlobalVarRecord(Record)) 3254 return Err; 3255 break; 3256 } 3257 case bitc::MODULE_CODE_FUNCTION: { 3258 if (Error Err = parseFunctionRecord(Record)) 3259 return Err; 3260 break; 3261 } 3262 case bitc::MODULE_CODE_IFUNC: 3263 case bitc::MODULE_CODE_ALIAS: 3264 case bitc::MODULE_CODE_ALIAS_OLD: { 3265 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3266 return Err; 3267 break; 3268 } 3269 /// MODULE_CODE_VSTOFFSET: [offset] 3270 case bitc::MODULE_CODE_VSTOFFSET: 3271 if (Record.size() < 1) 3272 return error("Invalid record"); 3273 // Note that we subtract 1 here because the offset is relative to one word 3274 // before the start of the identification or module block, which was 3275 // historically always the start of the regular bitcode header. 3276 VSTOffset = Record[0] - 1; 3277 break; 3278 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3279 case bitc::MODULE_CODE_SOURCE_FILENAME: 3280 SmallString<128> ValueName; 3281 if (convertToString(Record, 0, ValueName)) 3282 return error("Invalid record"); 3283 TheModule->setSourceFileName(ValueName); 3284 break; 3285 } 3286 Record.clear(); 3287 } 3288 } 3289 3290 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3291 bool IsImporting) { 3292 TheModule = M; 3293 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3294 [&](unsigned ID) { return getTypeByID(ID); }); 3295 return parseModule(0, ShouldLazyLoadMetadata); 3296 } 3297 3298 3299 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3300 if (!isa<PointerType>(PtrType)) 3301 return error("Load/Store operand is not a pointer type"); 3302 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3303 3304 if (ValType && ValType != ElemType) 3305 return error("Explicit load/store type does not match pointee " 3306 "type of pointer operand"); 3307 if (!PointerType::isLoadableOrStorableType(ElemType)) 3308 return error("Cannot load/store from pointer"); 3309 return Error::success(); 3310 } 3311 3312 /// Lazily parse the specified function body block. 3313 Error BitcodeReader::parseFunctionBody(Function *F) { 3314 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3315 return error("Invalid record"); 3316 3317 // Unexpected unresolved metadata when parsing function. 3318 if (MDLoader->hasFwdRefs()) 3319 return error("Invalid function metadata: incoming forward references"); 3320 3321 InstructionList.clear(); 3322 unsigned ModuleValueListSize = ValueList.size(); 3323 unsigned ModuleMDLoaderSize = MDLoader->size(); 3324 3325 // Add all the function arguments to the value table. 3326 for (Argument &I : F->args()) 3327 ValueList.push_back(&I); 3328 3329 unsigned NextValueNo = ValueList.size(); 3330 BasicBlock *CurBB = nullptr; 3331 unsigned CurBBNo = 0; 3332 3333 DebugLoc LastLoc; 3334 auto getLastInstruction = [&]() -> Instruction * { 3335 if (CurBB && !CurBB->empty()) 3336 return &CurBB->back(); 3337 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3338 !FunctionBBs[CurBBNo - 1]->empty()) 3339 return &FunctionBBs[CurBBNo - 1]->back(); 3340 return nullptr; 3341 }; 3342 3343 std::vector<OperandBundleDef> OperandBundles; 3344 3345 // Read all the records. 3346 SmallVector<uint64_t, 64> Record; 3347 3348 while (true) { 3349 BitstreamEntry Entry = Stream.advance(); 3350 3351 switch (Entry.Kind) { 3352 case BitstreamEntry::Error: 3353 return error("Malformed block"); 3354 case BitstreamEntry::EndBlock: 3355 goto OutOfRecordLoop; 3356 3357 case BitstreamEntry::SubBlock: 3358 switch (Entry.ID) { 3359 default: // Skip unknown content. 3360 if (Stream.SkipBlock()) 3361 return error("Invalid record"); 3362 break; 3363 case bitc::CONSTANTS_BLOCK_ID: 3364 if (Error Err = parseConstants()) 3365 return Err; 3366 NextValueNo = ValueList.size(); 3367 break; 3368 case bitc::VALUE_SYMTAB_BLOCK_ID: 3369 if (Error Err = parseValueSymbolTable()) 3370 return Err; 3371 break; 3372 case bitc::METADATA_ATTACHMENT_ID: 3373 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3374 return Err; 3375 break; 3376 case bitc::METADATA_BLOCK_ID: 3377 assert(DeferredMetadataInfo.empty() && 3378 "Must read all module-level metadata before function-level"); 3379 if (Error Err = MDLoader->parseFunctionMetadata()) 3380 return Err; 3381 break; 3382 case bitc::USELIST_BLOCK_ID: 3383 if (Error Err = parseUseLists()) 3384 return Err; 3385 break; 3386 } 3387 continue; 3388 3389 case BitstreamEntry::Record: 3390 // The interesting case. 3391 break; 3392 } 3393 3394 // Read a record. 3395 Record.clear(); 3396 Instruction *I = nullptr; 3397 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3398 switch (BitCode) { 3399 default: // Default behavior: reject 3400 return error("Invalid value"); 3401 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3402 if (Record.size() < 1 || Record[0] == 0) 3403 return error("Invalid record"); 3404 // Create all the basic blocks for the function. 3405 FunctionBBs.resize(Record[0]); 3406 3407 // See if anything took the address of blocks in this function. 3408 auto BBFRI = BasicBlockFwdRefs.find(F); 3409 if (BBFRI == BasicBlockFwdRefs.end()) { 3410 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3411 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3412 } else { 3413 auto &BBRefs = BBFRI->second; 3414 // Check for invalid basic block references. 3415 if (BBRefs.size() > FunctionBBs.size()) 3416 return error("Invalid ID"); 3417 assert(!BBRefs.empty() && "Unexpected empty array"); 3418 assert(!BBRefs.front() && "Invalid reference to entry block"); 3419 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3420 ++I) 3421 if (I < RE && BBRefs[I]) { 3422 BBRefs[I]->insertInto(F); 3423 FunctionBBs[I] = BBRefs[I]; 3424 } else { 3425 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3426 } 3427 3428 // Erase from the table. 3429 BasicBlockFwdRefs.erase(BBFRI); 3430 } 3431 3432 CurBB = FunctionBBs[0]; 3433 continue; 3434 } 3435 3436 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3437 // This record indicates that the last instruction is at the same 3438 // location as the previous instruction with a location. 3439 I = getLastInstruction(); 3440 3441 if (!I) 3442 return error("Invalid record"); 3443 I->setDebugLoc(LastLoc); 3444 I = nullptr; 3445 continue; 3446 3447 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3448 I = getLastInstruction(); 3449 if (!I || Record.size() < 4) 3450 return error("Invalid record"); 3451 3452 unsigned Line = Record[0], Col = Record[1]; 3453 unsigned ScopeID = Record[2], IAID = Record[3]; 3454 3455 MDNode *Scope = nullptr, *IA = nullptr; 3456 if (ScopeID) { 3457 Scope = MDLoader->getMDNodeFwdRefOrNull(ScopeID - 1); 3458 if (!Scope) 3459 return error("Invalid record"); 3460 } 3461 if (IAID) { 3462 IA = MDLoader->getMDNodeFwdRefOrNull(IAID - 1); 3463 if (!IA) 3464 return error("Invalid record"); 3465 } 3466 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 3467 I->setDebugLoc(LastLoc); 3468 I = nullptr; 3469 continue; 3470 } 3471 3472 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3473 unsigned OpNum = 0; 3474 Value *LHS, *RHS; 3475 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3476 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3477 OpNum+1 > Record.size()) 3478 return error("Invalid record"); 3479 3480 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3481 if (Opc == -1) 3482 return error("Invalid record"); 3483 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3484 InstructionList.push_back(I); 3485 if (OpNum < Record.size()) { 3486 if (Opc == Instruction::Add || 3487 Opc == Instruction::Sub || 3488 Opc == Instruction::Mul || 3489 Opc == Instruction::Shl) { 3490 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3491 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3492 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3493 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3494 } else if (Opc == Instruction::SDiv || 3495 Opc == Instruction::UDiv || 3496 Opc == Instruction::LShr || 3497 Opc == Instruction::AShr) { 3498 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3499 cast<BinaryOperator>(I)->setIsExact(true); 3500 } else if (isa<FPMathOperator>(I)) { 3501 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3502 if (FMF.any()) 3503 I->setFastMathFlags(FMF); 3504 } 3505 3506 } 3507 break; 3508 } 3509 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3510 unsigned OpNum = 0; 3511 Value *Op; 3512 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3513 OpNum+2 != Record.size()) 3514 return error("Invalid record"); 3515 3516 Type *ResTy = getTypeByID(Record[OpNum]); 3517 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3518 if (Opc == -1 || !ResTy) 3519 return error("Invalid record"); 3520 Instruction *Temp = nullptr; 3521 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3522 if (Temp) { 3523 InstructionList.push_back(Temp); 3524 CurBB->getInstList().push_back(Temp); 3525 } 3526 } else { 3527 auto CastOp = (Instruction::CastOps)Opc; 3528 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 3529 return error("Invalid cast"); 3530 I = CastInst::Create(CastOp, Op, ResTy); 3531 } 3532 InstructionList.push_back(I); 3533 break; 3534 } 3535 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3536 case bitc::FUNC_CODE_INST_GEP_OLD: 3537 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3538 unsigned OpNum = 0; 3539 3540 Type *Ty; 3541 bool InBounds; 3542 3543 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3544 InBounds = Record[OpNum++]; 3545 Ty = getTypeByID(Record[OpNum++]); 3546 } else { 3547 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3548 Ty = nullptr; 3549 } 3550 3551 Value *BasePtr; 3552 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3553 return error("Invalid record"); 3554 3555 if (!Ty) 3556 Ty = cast<PointerType>(BasePtr->getType()->getScalarType()) 3557 ->getElementType(); 3558 else if (Ty != 3559 cast<PointerType>(BasePtr->getType()->getScalarType()) 3560 ->getElementType()) 3561 return error( 3562 "Explicit gep type does not match pointee type of pointer operand"); 3563 3564 SmallVector<Value*, 16> GEPIdx; 3565 while (OpNum != Record.size()) { 3566 Value *Op; 3567 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3568 return error("Invalid record"); 3569 GEPIdx.push_back(Op); 3570 } 3571 3572 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3573 3574 InstructionList.push_back(I); 3575 if (InBounds) 3576 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3577 break; 3578 } 3579 3580 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3581 // EXTRACTVAL: [opty, opval, n x indices] 3582 unsigned OpNum = 0; 3583 Value *Agg; 3584 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3585 return error("Invalid record"); 3586 3587 unsigned RecSize = Record.size(); 3588 if (OpNum == RecSize) 3589 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 3590 3591 SmallVector<unsigned, 4> EXTRACTVALIdx; 3592 Type *CurTy = Agg->getType(); 3593 for (; OpNum != RecSize; ++OpNum) { 3594 bool IsArray = CurTy->isArrayTy(); 3595 bool IsStruct = CurTy->isStructTy(); 3596 uint64_t Index = Record[OpNum]; 3597 3598 if (!IsStruct && !IsArray) 3599 return error("EXTRACTVAL: Invalid type"); 3600 if ((unsigned)Index != Index) 3601 return error("Invalid value"); 3602 if (IsStruct && Index >= CurTy->subtypes().size()) 3603 return error("EXTRACTVAL: Invalid struct index"); 3604 if (IsArray && Index >= CurTy->getArrayNumElements()) 3605 return error("EXTRACTVAL: Invalid array index"); 3606 EXTRACTVALIdx.push_back((unsigned)Index); 3607 3608 if (IsStruct) 3609 CurTy = CurTy->subtypes()[Index]; 3610 else 3611 CurTy = CurTy->subtypes()[0]; 3612 } 3613 3614 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3615 InstructionList.push_back(I); 3616 break; 3617 } 3618 3619 case bitc::FUNC_CODE_INST_INSERTVAL: { 3620 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3621 unsigned OpNum = 0; 3622 Value *Agg; 3623 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3624 return error("Invalid record"); 3625 Value *Val; 3626 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3627 return error("Invalid record"); 3628 3629 unsigned RecSize = Record.size(); 3630 if (OpNum == RecSize) 3631 return error("INSERTVAL: Invalid instruction with 0 indices"); 3632 3633 SmallVector<unsigned, 4> INSERTVALIdx; 3634 Type *CurTy = Agg->getType(); 3635 for (; OpNum != RecSize; ++OpNum) { 3636 bool IsArray = CurTy->isArrayTy(); 3637 bool IsStruct = CurTy->isStructTy(); 3638 uint64_t Index = Record[OpNum]; 3639 3640 if (!IsStruct && !IsArray) 3641 return error("INSERTVAL: Invalid type"); 3642 if ((unsigned)Index != Index) 3643 return error("Invalid value"); 3644 if (IsStruct && Index >= CurTy->subtypes().size()) 3645 return error("INSERTVAL: Invalid struct index"); 3646 if (IsArray && Index >= CurTy->getArrayNumElements()) 3647 return error("INSERTVAL: Invalid array index"); 3648 3649 INSERTVALIdx.push_back((unsigned)Index); 3650 if (IsStruct) 3651 CurTy = CurTy->subtypes()[Index]; 3652 else 3653 CurTy = CurTy->subtypes()[0]; 3654 } 3655 3656 if (CurTy != Val->getType()) 3657 return error("Inserted value type doesn't match aggregate type"); 3658 3659 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3660 InstructionList.push_back(I); 3661 break; 3662 } 3663 3664 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3665 // obsolete form of select 3666 // handles select i1 ... in old bitcode 3667 unsigned OpNum = 0; 3668 Value *TrueVal, *FalseVal, *Cond; 3669 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3670 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3671 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3672 return error("Invalid record"); 3673 3674 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3675 InstructionList.push_back(I); 3676 break; 3677 } 3678 3679 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3680 // new form of select 3681 // handles select i1 or select [N x i1] 3682 unsigned OpNum = 0; 3683 Value *TrueVal, *FalseVal, *Cond; 3684 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3685 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3686 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3687 return error("Invalid record"); 3688 3689 // select condition can be either i1 or [N x i1] 3690 if (VectorType* vector_type = 3691 dyn_cast<VectorType>(Cond->getType())) { 3692 // expect <n x i1> 3693 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3694 return error("Invalid type for value"); 3695 } else { 3696 // expect i1 3697 if (Cond->getType() != Type::getInt1Ty(Context)) 3698 return error("Invalid type for value"); 3699 } 3700 3701 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3702 InstructionList.push_back(I); 3703 break; 3704 } 3705 3706 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3707 unsigned OpNum = 0; 3708 Value *Vec, *Idx; 3709 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3710 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3711 return error("Invalid record"); 3712 if (!Vec->getType()->isVectorTy()) 3713 return error("Invalid type for value"); 3714 I = ExtractElementInst::Create(Vec, Idx); 3715 InstructionList.push_back(I); 3716 break; 3717 } 3718 3719 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3720 unsigned OpNum = 0; 3721 Value *Vec, *Elt, *Idx; 3722 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 3723 return error("Invalid record"); 3724 if (!Vec->getType()->isVectorTy()) 3725 return error("Invalid type for value"); 3726 if (popValue(Record, OpNum, NextValueNo, 3727 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3728 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3729 return error("Invalid record"); 3730 I = InsertElementInst::Create(Vec, Elt, Idx); 3731 InstructionList.push_back(I); 3732 break; 3733 } 3734 3735 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3736 unsigned OpNum = 0; 3737 Value *Vec1, *Vec2, *Mask; 3738 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3739 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3740 return error("Invalid record"); 3741 3742 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3743 return error("Invalid record"); 3744 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 3745 return error("Invalid type for value"); 3746 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3747 InstructionList.push_back(I); 3748 break; 3749 } 3750 3751 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3752 // Old form of ICmp/FCmp returning bool 3753 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3754 // both legal on vectors but had different behaviour. 3755 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3756 // FCmp/ICmp returning bool or vector of bool 3757 3758 unsigned OpNum = 0; 3759 Value *LHS, *RHS; 3760 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3761 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 3762 return error("Invalid record"); 3763 3764 unsigned PredVal = Record[OpNum]; 3765 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 3766 FastMathFlags FMF; 3767 if (IsFP && Record.size() > OpNum+1) 3768 FMF = getDecodedFastMathFlags(Record[++OpNum]); 3769 3770 if (OpNum+1 != Record.size()) 3771 return error("Invalid record"); 3772 3773 if (LHS->getType()->isFPOrFPVectorTy()) 3774 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 3775 else 3776 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 3777 3778 if (FMF.any()) 3779 I->setFastMathFlags(FMF); 3780 InstructionList.push_back(I); 3781 break; 3782 } 3783 3784 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3785 { 3786 unsigned Size = Record.size(); 3787 if (Size == 0) { 3788 I = ReturnInst::Create(Context); 3789 InstructionList.push_back(I); 3790 break; 3791 } 3792 3793 unsigned OpNum = 0; 3794 Value *Op = nullptr; 3795 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3796 return error("Invalid record"); 3797 if (OpNum != Record.size()) 3798 return error("Invalid record"); 3799 3800 I = ReturnInst::Create(Context, Op); 3801 InstructionList.push_back(I); 3802 break; 3803 } 3804 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3805 if (Record.size() != 1 && Record.size() != 3) 3806 return error("Invalid record"); 3807 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3808 if (!TrueDest) 3809 return error("Invalid record"); 3810 3811 if (Record.size() == 1) { 3812 I = BranchInst::Create(TrueDest); 3813 InstructionList.push_back(I); 3814 } 3815 else { 3816 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3817 Value *Cond = getValue(Record, 2, NextValueNo, 3818 Type::getInt1Ty(Context)); 3819 if (!FalseDest || !Cond) 3820 return error("Invalid record"); 3821 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3822 InstructionList.push_back(I); 3823 } 3824 break; 3825 } 3826 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 3827 if (Record.size() != 1 && Record.size() != 2) 3828 return error("Invalid record"); 3829 unsigned Idx = 0; 3830 Value *CleanupPad = 3831 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3832 if (!CleanupPad) 3833 return error("Invalid record"); 3834 BasicBlock *UnwindDest = nullptr; 3835 if (Record.size() == 2) { 3836 UnwindDest = getBasicBlock(Record[Idx++]); 3837 if (!UnwindDest) 3838 return error("Invalid record"); 3839 } 3840 3841 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 3842 InstructionList.push_back(I); 3843 break; 3844 } 3845 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 3846 if (Record.size() != 2) 3847 return error("Invalid record"); 3848 unsigned Idx = 0; 3849 Value *CatchPad = 3850 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3851 if (!CatchPad) 3852 return error("Invalid record"); 3853 BasicBlock *BB = getBasicBlock(Record[Idx++]); 3854 if (!BB) 3855 return error("Invalid record"); 3856 3857 I = CatchReturnInst::Create(CatchPad, BB); 3858 InstructionList.push_back(I); 3859 break; 3860 } 3861 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 3862 // We must have, at minimum, the outer scope and the number of arguments. 3863 if (Record.size() < 2) 3864 return error("Invalid record"); 3865 3866 unsigned Idx = 0; 3867 3868 Value *ParentPad = 3869 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3870 3871 unsigned NumHandlers = Record[Idx++]; 3872 3873 SmallVector<BasicBlock *, 2> Handlers; 3874 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 3875 BasicBlock *BB = getBasicBlock(Record[Idx++]); 3876 if (!BB) 3877 return error("Invalid record"); 3878 Handlers.push_back(BB); 3879 } 3880 3881 BasicBlock *UnwindDest = nullptr; 3882 if (Idx + 1 == Record.size()) { 3883 UnwindDest = getBasicBlock(Record[Idx++]); 3884 if (!UnwindDest) 3885 return error("Invalid record"); 3886 } 3887 3888 if (Record.size() != Idx) 3889 return error("Invalid record"); 3890 3891 auto *CatchSwitch = 3892 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 3893 for (BasicBlock *Handler : Handlers) 3894 CatchSwitch->addHandler(Handler); 3895 I = CatchSwitch; 3896 InstructionList.push_back(I); 3897 break; 3898 } 3899 case bitc::FUNC_CODE_INST_CATCHPAD: 3900 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 3901 // We must have, at minimum, the outer scope and the number of arguments. 3902 if (Record.size() < 2) 3903 return error("Invalid record"); 3904 3905 unsigned Idx = 0; 3906 3907 Value *ParentPad = 3908 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3909 3910 unsigned NumArgOperands = Record[Idx++]; 3911 3912 SmallVector<Value *, 2> Args; 3913 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 3914 Value *Val; 3915 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3916 return error("Invalid record"); 3917 Args.push_back(Val); 3918 } 3919 3920 if (Record.size() != Idx) 3921 return error("Invalid record"); 3922 3923 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 3924 I = CleanupPadInst::Create(ParentPad, Args); 3925 else 3926 I = CatchPadInst::Create(ParentPad, Args); 3927 InstructionList.push_back(I); 3928 break; 3929 } 3930 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3931 // Check magic 3932 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3933 // "New" SwitchInst format with case ranges. The changes to write this 3934 // format were reverted but we still recognize bitcode that uses it. 3935 // Hopefully someday we will have support for case ranges and can use 3936 // this format again. 3937 3938 Type *OpTy = getTypeByID(Record[1]); 3939 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 3940 3941 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 3942 BasicBlock *Default = getBasicBlock(Record[3]); 3943 if (!OpTy || !Cond || !Default) 3944 return error("Invalid record"); 3945 3946 unsigned NumCases = Record[4]; 3947 3948 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3949 InstructionList.push_back(SI); 3950 3951 unsigned CurIdx = 5; 3952 for (unsigned i = 0; i != NumCases; ++i) { 3953 SmallVector<ConstantInt*, 1> CaseVals; 3954 unsigned NumItems = Record[CurIdx++]; 3955 for (unsigned ci = 0; ci != NumItems; ++ci) { 3956 bool isSingleNumber = Record[CurIdx++]; 3957 3958 APInt Low; 3959 unsigned ActiveWords = 1; 3960 if (ValueBitWidth > 64) 3961 ActiveWords = Record[CurIdx++]; 3962 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3963 ValueBitWidth); 3964 CurIdx += ActiveWords; 3965 3966 if (!isSingleNumber) { 3967 ActiveWords = 1; 3968 if (ValueBitWidth > 64) 3969 ActiveWords = Record[CurIdx++]; 3970 APInt High = readWideAPInt( 3971 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 3972 CurIdx += ActiveWords; 3973 3974 // FIXME: It is not clear whether values in the range should be 3975 // compared as signed or unsigned values. The partially 3976 // implemented changes that used this format in the past used 3977 // unsigned comparisons. 3978 for ( ; Low.ule(High); ++Low) 3979 CaseVals.push_back(ConstantInt::get(Context, Low)); 3980 } else 3981 CaseVals.push_back(ConstantInt::get(Context, Low)); 3982 } 3983 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 3984 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 3985 cve = CaseVals.end(); cvi != cve; ++cvi) 3986 SI->addCase(*cvi, DestBB); 3987 } 3988 I = SI; 3989 break; 3990 } 3991 3992 // Old SwitchInst format without case ranges. 3993 3994 if (Record.size() < 3 || (Record.size() & 1) == 0) 3995 return error("Invalid record"); 3996 Type *OpTy = getTypeByID(Record[0]); 3997 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 3998 BasicBlock *Default = getBasicBlock(Record[2]); 3999 if (!OpTy || !Cond || !Default) 4000 return error("Invalid record"); 4001 unsigned NumCases = (Record.size()-3)/2; 4002 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4003 InstructionList.push_back(SI); 4004 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4005 ConstantInt *CaseVal = 4006 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4007 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4008 if (!CaseVal || !DestBB) { 4009 delete SI; 4010 return error("Invalid record"); 4011 } 4012 SI->addCase(CaseVal, DestBB); 4013 } 4014 I = SI; 4015 break; 4016 } 4017 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4018 if (Record.size() < 2) 4019 return error("Invalid record"); 4020 Type *OpTy = getTypeByID(Record[0]); 4021 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4022 if (!OpTy || !Address) 4023 return error("Invalid record"); 4024 unsigned NumDests = Record.size()-2; 4025 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4026 InstructionList.push_back(IBI); 4027 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4028 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4029 IBI->addDestination(DestBB); 4030 } else { 4031 delete IBI; 4032 return error("Invalid record"); 4033 } 4034 } 4035 I = IBI; 4036 break; 4037 } 4038 4039 case bitc::FUNC_CODE_INST_INVOKE: { 4040 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4041 if (Record.size() < 4) 4042 return error("Invalid record"); 4043 unsigned OpNum = 0; 4044 AttributeList PAL = getAttributes(Record[OpNum++]); 4045 unsigned CCInfo = Record[OpNum++]; 4046 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4047 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4048 4049 FunctionType *FTy = nullptr; 4050 if (CCInfo >> 13 & 1 && 4051 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4052 return error("Explicit invoke type is not a function type"); 4053 4054 Value *Callee; 4055 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4056 return error("Invalid record"); 4057 4058 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4059 if (!CalleeTy) 4060 return error("Callee is not a pointer"); 4061 if (!FTy) { 4062 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4063 if (!FTy) 4064 return error("Callee is not of pointer to function type"); 4065 } else if (CalleeTy->getElementType() != FTy) 4066 return error("Explicit invoke type does not match pointee type of " 4067 "callee operand"); 4068 if (Record.size() < FTy->getNumParams() + OpNum) 4069 return error("Insufficient operands to call"); 4070 4071 SmallVector<Value*, 16> Ops; 4072 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4073 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4074 FTy->getParamType(i))); 4075 if (!Ops.back()) 4076 return error("Invalid record"); 4077 } 4078 4079 if (!FTy->isVarArg()) { 4080 if (Record.size() != OpNum) 4081 return error("Invalid record"); 4082 } else { 4083 // Read type/value pairs for varargs params. 4084 while (OpNum != Record.size()) { 4085 Value *Op; 4086 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4087 return error("Invalid record"); 4088 Ops.push_back(Op); 4089 } 4090 } 4091 4092 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 4093 OperandBundles.clear(); 4094 InstructionList.push_back(I); 4095 cast<InvokeInst>(I)->setCallingConv( 4096 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4097 cast<InvokeInst>(I)->setAttributes(PAL); 4098 break; 4099 } 4100 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4101 unsigned Idx = 0; 4102 Value *Val = nullptr; 4103 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4104 return error("Invalid record"); 4105 I = ResumeInst::Create(Val); 4106 InstructionList.push_back(I); 4107 break; 4108 } 4109 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4110 I = new UnreachableInst(Context); 4111 InstructionList.push_back(I); 4112 break; 4113 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4114 if (Record.size() < 1 || ((Record.size()-1)&1)) 4115 return error("Invalid record"); 4116 Type *Ty = getTypeByID(Record[0]); 4117 if (!Ty) 4118 return error("Invalid record"); 4119 4120 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4121 InstructionList.push_back(PN); 4122 4123 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4124 Value *V; 4125 // With the new function encoding, it is possible that operands have 4126 // negative IDs (for forward references). Use a signed VBR 4127 // representation to keep the encoding small. 4128 if (UseRelativeIDs) 4129 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4130 else 4131 V = getValue(Record, 1+i, NextValueNo, Ty); 4132 BasicBlock *BB = getBasicBlock(Record[2+i]); 4133 if (!V || !BB) 4134 return error("Invalid record"); 4135 PN->addIncoming(V, BB); 4136 } 4137 I = PN; 4138 break; 4139 } 4140 4141 case bitc::FUNC_CODE_INST_LANDINGPAD: 4142 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4143 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4144 unsigned Idx = 0; 4145 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4146 if (Record.size() < 3) 4147 return error("Invalid record"); 4148 } else { 4149 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4150 if (Record.size() < 4) 4151 return error("Invalid record"); 4152 } 4153 Type *Ty = getTypeByID(Record[Idx++]); 4154 if (!Ty) 4155 return error("Invalid record"); 4156 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4157 Value *PersFn = nullptr; 4158 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4159 return error("Invalid record"); 4160 4161 if (!F->hasPersonalityFn()) 4162 F->setPersonalityFn(cast<Constant>(PersFn)); 4163 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4164 return error("Personality function mismatch"); 4165 } 4166 4167 bool IsCleanup = !!Record[Idx++]; 4168 unsigned NumClauses = Record[Idx++]; 4169 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4170 LP->setCleanup(IsCleanup); 4171 for (unsigned J = 0; J != NumClauses; ++J) { 4172 LandingPadInst::ClauseType CT = 4173 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4174 Value *Val; 4175 4176 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4177 delete LP; 4178 return error("Invalid record"); 4179 } 4180 4181 assert((CT != LandingPadInst::Catch || 4182 !isa<ArrayType>(Val->getType())) && 4183 "Catch clause has a invalid type!"); 4184 assert((CT != LandingPadInst::Filter || 4185 isa<ArrayType>(Val->getType())) && 4186 "Filter clause has invalid type!"); 4187 LP->addClause(cast<Constant>(Val)); 4188 } 4189 4190 I = LP; 4191 InstructionList.push_back(I); 4192 break; 4193 } 4194 4195 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4196 if (Record.size() != 4) 4197 return error("Invalid record"); 4198 uint64_t AlignRecord = Record[3]; 4199 const uint64_t InAllocaMask = uint64_t(1) << 5; 4200 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4201 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4202 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4203 SwiftErrorMask; 4204 bool InAlloca = AlignRecord & InAllocaMask; 4205 bool SwiftError = AlignRecord & SwiftErrorMask; 4206 Type *Ty = getTypeByID(Record[0]); 4207 if ((AlignRecord & ExplicitTypeMask) == 0) { 4208 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4209 if (!PTy) 4210 return error("Old-style alloca with a non-pointer type"); 4211 Ty = PTy->getElementType(); 4212 } 4213 Type *OpTy = getTypeByID(Record[1]); 4214 Value *Size = getFnValueByID(Record[2], OpTy); 4215 unsigned Align; 4216 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4217 return Err; 4218 } 4219 if (!Ty || !Size) 4220 return error("Invalid record"); 4221 4222 // FIXME: Make this an optional field. 4223 const DataLayout &DL = TheModule->getDataLayout(); 4224 unsigned AS = DL.getAllocaAddrSpace(); 4225 4226 AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align); 4227 AI->setUsedWithInAlloca(InAlloca); 4228 AI->setSwiftError(SwiftError); 4229 I = AI; 4230 InstructionList.push_back(I); 4231 break; 4232 } 4233 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4234 unsigned OpNum = 0; 4235 Value *Op; 4236 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4237 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4238 return error("Invalid record"); 4239 4240 Type *Ty = nullptr; 4241 if (OpNum + 3 == Record.size()) 4242 Ty = getTypeByID(Record[OpNum++]); 4243 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4244 return Err; 4245 if (!Ty) 4246 Ty = cast<PointerType>(Op->getType())->getElementType(); 4247 4248 unsigned Align; 4249 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4250 return Err; 4251 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4252 4253 InstructionList.push_back(I); 4254 break; 4255 } 4256 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4257 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 4258 unsigned OpNum = 0; 4259 Value *Op; 4260 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4261 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4262 return error("Invalid record"); 4263 4264 Type *Ty = nullptr; 4265 if (OpNum + 5 == Record.size()) 4266 Ty = getTypeByID(Record[OpNum++]); 4267 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4268 return Err; 4269 if (!Ty) 4270 Ty = cast<PointerType>(Op->getType())->getElementType(); 4271 4272 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4273 if (Ordering == AtomicOrdering::NotAtomic || 4274 Ordering == AtomicOrdering::Release || 4275 Ordering == AtomicOrdering::AcquireRelease) 4276 return error("Invalid record"); 4277 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4278 return error("Invalid record"); 4279 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4280 4281 unsigned Align; 4282 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4283 return Err; 4284 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SSID); 4285 4286 InstructionList.push_back(I); 4287 break; 4288 } 4289 case bitc::FUNC_CODE_INST_STORE: 4290 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4291 unsigned OpNum = 0; 4292 Value *Val, *Ptr; 4293 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4294 (BitCode == bitc::FUNC_CODE_INST_STORE 4295 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4296 : popValue(Record, OpNum, NextValueNo, 4297 cast<PointerType>(Ptr->getType())->getElementType(), 4298 Val)) || 4299 OpNum + 2 != Record.size()) 4300 return error("Invalid record"); 4301 4302 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4303 return Err; 4304 unsigned Align; 4305 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4306 return Err; 4307 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4308 InstructionList.push_back(I); 4309 break; 4310 } 4311 case bitc::FUNC_CODE_INST_STOREATOMIC: 4312 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4313 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 4314 unsigned OpNum = 0; 4315 Value *Val, *Ptr; 4316 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4317 !isa<PointerType>(Ptr->getType()) || 4318 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4319 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4320 : popValue(Record, OpNum, NextValueNo, 4321 cast<PointerType>(Ptr->getType())->getElementType(), 4322 Val)) || 4323 OpNum + 4 != Record.size()) 4324 return error("Invalid record"); 4325 4326 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4327 return Err; 4328 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4329 if (Ordering == AtomicOrdering::NotAtomic || 4330 Ordering == AtomicOrdering::Acquire || 4331 Ordering == AtomicOrdering::AcquireRelease) 4332 return error("Invalid record"); 4333 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4334 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4335 return error("Invalid record"); 4336 4337 unsigned Align; 4338 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4339 return Err; 4340 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SSID); 4341 InstructionList.push_back(I); 4342 break; 4343 } 4344 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4345 case bitc::FUNC_CODE_INST_CMPXCHG: { 4346 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid, 4347 // failureordering?, isweak?] 4348 unsigned OpNum = 0; 4349 Value *Ptr, *Cmp, *New; 4350 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4351 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4352 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4353 : popValue(Record, OpNum, NextValueNo, 4354 cast<PointerType>(Ptr->getType())->getElementType(), 4355 Cmp)) || 4356 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4357 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4358 return error("Invalid record"); 4359 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4360 if (SuccessOrdering == AtomicOrdering::NotAtomic || 4361 SuccessOrdering == AtomicOrdering::Unordered) 4362 return error("Invalid record"); 4363 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 4364 4365 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4366 return Err; 4367 AtomicOrdering FailureOrdering; 4368 if (Record.size() < 7) 4369 FailureOrdering = 4370 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4371 else 4372 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4373 4374 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4375 SSID); 4376 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4377 4378 if (Record.size() < 8) { 4379 // Before weak cmpxchgs existed, the instruction simply returned the 4380 // value loaded from memory, so bitcode files from that era will be 4381 // expecting the first component of a modern cmpxchg. 4382 CurBB->getInstList().push_back(I); 4383 I = ExtractValueInst::Create(I, 0); 4384 } else { 4385 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4386 } 4387 4388 InstructionList.push_back(I); 4389 break; 4390 } 4391 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4392 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid] 4393 unsigned OpNum = 0; 4394 Value *Ptr, *Val; 4395 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4396 !isa<PointerType>(Ptr->getType()) || 4397 popValue(Record, OpNum, NextValueNo, 4398 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4399 OpNum+4 != Record.size()) 4400 return error("Invalid record"); 4401 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 4402 if (Operation < AtomicRMWInst::FIRST_BINOP || 4403 Operation > AtomicRMWInst::LAST_BINOP) 4404 return error("Invalid record"); 4405 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4406 if (Ordering == AtomicOrdering::NotAtomic || 4407 Ordering == AtomicOrdering::Unordered) 4408 return error("Invalid record"); 4409 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4410 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 4411 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4412 InstructionList.push_back(I); 4413 break; 4414 } 4415 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 4416 if (2 != Record.size()) 4417 return error("Invalid record"); 4418 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 4419 if (Ordering == AtomicOrdering::NotAtomic || 4420 Ordering == AtomicOrdering::Unordered || 4421 Ordering == AtomicOrdering::Monotonic) 4422 return error("Invalid record"); 4423 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 4424 I = new FenceInst(Context, Ordering, SSID); 4425 InstructionList.push_back(I); 4426 break; 4427 } 4428 case bitc::FUNC_CODE_INST_CALL: { 4429 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 4430 if (Record.size() < 3) 4431 return error("Invalid record"); 4432 4433 unsigned OpNum = 0; 4434 AttributeList PAL = getAttributes(Record[OpNum++]); 4435 unsigned CCInfo = Record[OpNum++]; 4436 4437 FastMathFlags FMF; 4438 if ((CCInfo >> bitc::CALL_FMF) & 1) { 4439 FMF = getDecodedFastMathFlags(Record[OpNum++]); 4440 if (!FMF.any()) 4441 return error("Fast math flags indicator set for call with no FMF"); 4442 } 4443 4444 FunctionType *FTy = nullptr; 4445 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 4446 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4447 return error("Explicit call type is not a function type"); 4448 4449 Value *Callee; 4450 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4451 return error("Invalid record"); 4452 4453 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4454 if (!OpTy) 4455 return error("Callee is not a pointer type"); 4456 if (!FTy) { 4457 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4458 if (!FTy) 4459 return error("Callee is not of pointer to function type"); 4460 } else if (OpTy->getElementType() != FTy) 4461 return error("Explicit call type does not match pointee type of " 4462 "callee operand"); 4463 if (Record.size() < FTy->getNumParams() + OpNum) 4464 return error("Insufficient operands to call"); 4465 4466 SmallVector<Value*, 16> Args; 4467 // Read the fixed params. 4468 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4469 if (FTy->getParamType(i)->isLabelTy()) 4470 Args.push_back(getBasicBlock(Record[OpNum])); 4471 else 4472 Args.push_back(getValue(Record, OpNum, NextValueNo, 4473 FTy->getParamType(i))); 4474 if (!Args.back()) 4475 return error("Invalid record"); 4476 } 4477 4478 // Read type/value pairs for varargs params. 4479 if (!FTy->isVarArg()) { 4480 if (OpNum != Record.size()) 4481 return error("Invalid record"); 4482 } else { 4483 while (OpNum != Record.size()) { 4484 Value *Op; 4485 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4486 return error("Invalid record"); 4487 Args.push_back(Op); 4488 } 4489 } 4490 4491 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 4492 OperandBundles.clear(); 4493 InstructionList.push_back(I); 4494 cast<CallInst>(I)->setCallingConv( 4495 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4496 CallInst::TailCallKind TCK = CallInst::TCK_None; 4497 if (CCInfo & 1 << bitc::CALL_TAIL) 4498 TCK = CallInst::TCK_Tail; 4499 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 4500 TCK = CallInst::TCK_MustTail; 4501 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 4502 TCK = CallInst::TCK_NoTail; 4503 cast<CallInst>(I)->setTailCallKind(TCK); 4504 cast<CallInst>(I)->setAttributes(PAL); 4505 if (FMF.any()) { 4506 if (!isa<FPMathOperator>(I)) 4507 return error("Fast-math-flags specified for call without " 4508 "floating-point scalar or vector return type"); 4509 I->setFastMathFlags(FMF); 4510 } 4511 break; 4512 } 4513 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4514 if (Record.size() < 3) 4515 return error("Invalid record"); 4516 Type *OpTy = getTypeByID(Record[0]); 4517 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4518 Type *ResTy = getTypeByID(Record[2]); 4519 if (!OpTy || !Op || !ResTy) 4520 return error("Invalid record"); 4521 I = new VAArgInst(Op, ResTy); 4522 InstructionList.push_back(I); 4523 break; 4524 } 4525 4526 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 4527 // A call or an invoke can be optionally prefixed with some variable 4528 // number of operand bundle blocks. These blocks are read into 4529 // OperandBundles and consumed at the next call or invoke instruction. 4530 4531 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 4532 return error("Invalid record"); 4533 4534 std::vector<Value *> Inputs; 4535 4536 unsigned OpNum = 1; 4537 while (OpNum != Record.size()) { 4538 Value *Op; 4539 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4540 return error("Invalid record"); 4541 Inputs.push_back(Op); 4542 } 4543 4544 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 4545 continue; 4546 } 4547 } 4548 4549 // Add instruction to end of current BB. If there is no current BB, reject 4550 // this file. 4551 if (!CurBB) { 4552 I->deleteValue(); 4553 return error("Invalid instruction with no BB"); 4554 } 4555 if (!OperandBundles.empty()) { 4556 I->deleteValue(); 4557 return error("Operand bundles found with no consumer"); 4558 } 4559 CurBB->getInstList().push_back(I); 4560 4561 // If this was a terminator instruction, move to the next block. 4562 if (isa<TerminatorInst>(I)) { 4563 ++CurBBNo; 4564 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 4565 } 4566 4567 // Non-void values get registered in the value table for future use. 4568 if (I && !I->getType()->isVoidTy()) 4569 ValueList.assignValue(I, NextValueNo++); 4570 } 4571 4572 OutOfRecordLoop: 4573 4574 if (!OperandBundles.empty()) 4575 return error("Operand bundles found with no consumer"); 4576 4577 // Check the function list for unresolved values. 4578 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 4579 if (!A->getParent()) { 4580 // We found at least one unresolved value. Nuke them all to avoid leaks. 4581 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 4582 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 4583 A->replaceAllUsesWith(UndefValue::get(A->getType())); 4584 delete A; 4585 } 4586 } 4587 return error("Never resolved value found in function"); 4588 } 4589 } 4590 4591 // Unexpected unresolved metadata about to be dropped. 4592 if (MDLoader->hasFwdRefs()) 4593 return error("Invalid function metadata: outgoing forward refs"); 4594 4595 // Trim the value list down to the size it was before we parsed this function. 4596 ValueList.shrinkTo(ModuleValueListSize); 4597 MDLoader->shrinkTo(ModuleMDLoaderSize); 4598 std::vector<BasicBlock*>().swap(FunctionBBs); 4599 return Error::success(); 4600 } 4601 4602 /// Find the function body in the bitcode stream 4603 Error BitcodeReader::findFunctionInStream( 4604 Function *F, 4605 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 4606 while (DeferredFunctionInfoIterator->second == 0) { 4607 // This is the fallback handling for the old format bitcode that 4608 // didn't contain the function index in the VST, or when we have 4609 // an anonymous function which would not have a VST entry. 4610 // Assert that we have one of those two cases. 4611 assert(VSTOffset == 0 || !F->hasName()); 4612 // Parse the next body in the stream and set its position in the 4613 // DeferredFunctionInfo map. 4614 if (Error Err = rememberAndSkipFunctionBodies()) 4615 return Err; 4616 } 4617 return Error::success(); 4618 } 4619 4620 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 4621 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 4622 return SyncScope::ID(Val); 4623 if (Val >= SSIDs.size()) 4624 return SyncScope::System; // Map unknown synchronization scopes to system. 4625 return SSIDs[Val]; 4626 } 4627 4628 //===----------------------------------------------------------------------===// 4629 // GVMaterializer implementation 4630 //===----------------------------------------------------------------------===// 4631 4632 Error BitcodeReader::materialize(GlobalValue *GV) { 4633 Function *F = dyn_cast<Function>(GV); 4634 // If it's not a function or is already material, ignore the request. 4635 if (!F || !F->isMaterializable()) 4636 return Error::success(); 4637 4638 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 4639 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 4640 // If its position is recorded as 0, its body is somewhere in the stream 4641 // but we haven't seen it yet. 4642 if (DFII->second == 0) 4643 if (Error Err = findFunctionInStream(F, DFII)) 4644 return Err; 4645 4646 // Materialize metadata before parsing any function bodies. 4647 if (Error Err = materializeMetadata()) 4648 return Err; 4649 4650 // Move the bit stream to the saved position of the deferred function body. 4651 Stream.JumpToBit(DFII->second); 4652 4653 if (Error Err = parseFunctionBody(F)) 4654 return Err; 4655 F->setIsMaterializable(false); 4656 4657 if (StripDebugInfo) 4658 stripDebugInfo(*F); 4659 4660 // Upgrade any old intrinsic calls in the function. 4661 for (auto &I : UpgradedIntrinsics) { 4662 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4663 UI != UE;) { 4664 User *U = *UI; 4665 ++UI; 4666 if (CallInst *CI = dyn_cast<CallInst>(U)) 4667 UpgradeIntrinsicCall(CI, I.second); 4668 } 4669 } 4670 4671 // Update calls to the remangled intrinsics 4672 for (auto &I : RemangledIntrinsics) 4673 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4674 UI != UE;) 4675 // Don't expect any other users than call sites 4676 CallSite(*UI++).setCalledFunction(I.second); 4677 4678 // Finish fn->subprogram upgrade for materialized functions. 4679 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 4680 F->setSubprogram(SP); 4681 4682 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 4683 if (!MDLoader->isStrippingTBAA()) { 4684 for (auto &I : instructions(F)) { 4685 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 4686 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 4687 continue; 4688 MDLoader->setStripTBAA(true); 4689 stripTBAA(F->getParent()); 4690 } 4691 } 4692 4693 // Bring in any functions that this function forward-referenced via 4694 // blockaddresses. 4695 return materializeForwardReferencedFunctions(); 4696 } 4697 4698 Error BitcodeReader::materializeModule() { 4699 if (Error Err = materializeMetadata()) 4700 return Err; 4701 4702 // Promise to materialize all forward references. 4703 WillMaterializeAllForwardRefs = true; 4704 4705 // Iterate over the module, deserializing any functions that are still on 4706 // disk. 4707 for (Function &F : *TheModule) { 4708 if (Error Err = materialize(&F)) 4709 return Err; 4710 } 4711 // At this point, if there are any function bodies, parse the rest of 4712 // the bits in the module past the last function block we have recorded 4713 // through either lazy scanning or the VST. 4714 if (LastFunctionBlockBit || NextUnreadBit) 4715 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 4716 ? LastFunctionBlockBit 4717 : NextUnreadBit)) 4718 return Err; 4719 4720 // Check that all block address forward references got resolved (as we 4721 // promised above). 4722 if (!BasicBlockFwdRefs.empty()) 4723 return error("Never resolved function from blockaddress"); 4724 4725 // Upgrade any intrinsic calls that slipped through (should not happen!) and 4726 // delete the old functions to clean up. We can't do this unless the entire 4727 // module is materialized because there could always be another function body 4728 // with calls to the old function. 4729 for (auto &I : UpgradedIntrinsics) { 4730 for (auto *U : I.first->users()) { 4731 if (CallInst *CI = dyn_cast<CallInst>(U)) 4732 UpgradeIntrinsicCall(CI, I.second); 4733 } 4734 if (!I.first->use_empty()) 4735 I.first->replaceAllUsesWith(I.second); 4736 I.first->eraseFromParent(); 4737 } 4738 UpgradedIntrinsics.clear(); 4739 // Do the same for remangled intrinsics 4740 for (auto &I : RemangledIntrinsics) { 4741 I.first->replaceAllUsesWith(I.second); 4742 I.first->eraseFromParent(); 4743 } 4744 RemangledIntrinsics.clear(); 4745 4746 UpgradeDebugInfo(*TheModule); 4747 4748 UpgradeModuleFlags(*TheModule); 4749 return Error::success(); 4750 } 4751 4752 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 4753 return IdentifiedStructTypes; 4754 } 4755 4756 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 4757 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 4758 StringRef ModulePath, unsigned ModuleId) 4759 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 4760 ModulePath(ModulePath), ModuleId(ModuleId) {} 4761 4762 ModuleSummaryIndex::ModuleInfo * 4763 ModuleSummaryIndexBitcodeReader::addThisModule() { 4764 return TheIndex.addModule(ModulePath, ModuleId); 4765 } 4766 4767 std::pair<ValueInfo, GlobalValue::GUID> 4768 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 4769 auto VGI = ValueIdToValueInfoMap[ValueId]; 4770 assert(VGI.first); 4771 return VGI; 4772 } 4773 4774 void ModuleSummaryIndexBitcodeReader::setValueGUID( 4775 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 4776 StringRef SourceFileName) { 4777 std::string GlobalId = 4778 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 4779 auto ValueGUID = GlobalValue::getGUID(GlobalId); 4780 auto OriginalNameID = ValueGUID; 4781 if (GlobalValue::isLocalLinkage(Linkage)) 4782 OriginalNameID = GlobalValue::getGUID(ValueName); 4783 if (PrintSummaryGUIDs) 4784 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 4785 << ValueName << "\n"; 4786 ValueIdToValueInfoMap[ValueID] = 4787 std::make_pair(TheIndex.getOrInsertValueInfo(ValueGUID), OriginalNameID); 4788 } 4789 4790 // Specialized value symbol table parser used when reading module index 4791 // blocks where we don't actually create global values. The parsed information 4792 // is saved in the bitcode reader for use when later parsing summaries. 4793 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 4794 uint64_t Offset, 4795 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 4796 // With a strtab the VST is not required to parse the summary. 4797 if (UseStrtab) 4798 return Error::success(); 4799 4800 assert(Offset > 0 && "Expected non-zero VST offset"); 4801 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 4802 4803 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 4804 return error("Invalid record"); 4805 4806 SmallVector<uint64_t, 64> Record; 4807 4808 // Read all the records for this value table. 4809 SmallString<128> ValueName; 4810 4811 while (true) { 4812 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4813 4814 switch (Entry.Kind) { 4815 case BitstreamEntry::SubBlock: // Handled for us already. 4816 case BitstreamEntry::Error: 4817 return error("Malformed block"); 4818 case BitstreamEntry::EndBlock: 4819 // Done parsing VST, jump back to wherever we came from. 4820 Stream.JumpToBit(CurrentBit); 4821 return Error::success(); 4822 case BitstreamEntry::Record: 4823 // The interesting case. 4824 break; 4825 } 4826 4827 // Read a record. 4828 Record.clear(); 4829 switch (Stream.readRecord(Entry.ID, Record)) { 4830 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 4831 break; 4832 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 4833 if (convertToString(Record, 1, ValueName)) 4834 return error("Invalid record"); 4835 unsigned ValueID = Record[0]; 4836 assert(!SourceFileName.empty()); 4837 auto VLI = ValueIdToLinkageMap.find(ValueID); 4838 assert(VLI != ValueIdToLinkageMap.end() && 4839 "No linkage found for VST entry?"); 4840 auto Linkage = VLI->second; 4841 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 4842 ValueName.clear(); 4843 break; 4844 } 4845 case bitc::VST_CODE_FNENTRY: { 4846 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 4847 if (convertToString(Record, 2, ValueName)) 4848 return error("Invalid record"); 4849 unsigned ValueID = Record[0]; 4850 assert(!SourceFileName.empty()); 4851 auto VLI = ValueIdToLinkageMap.find(ValueID); 4852 assert(VLI != ValueIdToLinkageMap.end() && 4853 "No linkage found for VST entry?"); 4854 auto Linkage = VLI->second; 4855 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 4856 ValueName.clear(); 4857 break; 4858 } 4859 case bitc::VST_CODE_COMBINED_ENTRY: { 4860 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 4861 unsigned ValueID = Record[0]; 4862 GlobalValue::GUID RefGUID = Record[1]; 4863 // The "original name", which is the second value of the pair will be 4864 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 4865 ValueIdToValueInfoMap[ValueID] = 4866 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 4867 break; 4868 } 4869 } 4870 } 4871 } 4872 4873 // Parse just the blocks needed for building the index out of the module. 4874 // At the end of this routine the module Index is populated with a map 4875 // from global value id to GlobalValueSummary objects. 4876 Error ModuleSummaryIndexBitcodeReader::parseModule() { 4877 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4878 return error("Invalid record"); 4879 4880 SmallVector<uint64_t, 64> Record; 4881 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 4882 unsigned ValueId = 0; 4883 4884 // Read the index for this module. 4885 while (true) { 4886 BitstreamEntry Entry = Stream.advance(); 4887 4888 switch (Entry.Kind) { 4889 case BitstreamEntry::Error: 4890 return error("Malformed block"); 4891 case BitstreamEntry::EndBlock: 4892 return Error::success(); 4893 4894 case BitstreamEntry::SubBlock: 4895 switch (Entry.ID) { 4896 default: // Skip unknown content. 4897 if (Stream.SkipBlock()) 4898 return error("Invalid record"); 4899 break; 4900 case bitc::BLOCKINFO_BLOCK_ID: 4901 // Need to parse these to get abbrev ids (e.g. for VST) 4902 if (readBlockInfo()) 4903 return error("Malformed block"); 4904 break; 4905 case bitc::VALUE_SYMTAB_BLOCK_ID: 4906 // Should have been parsed earlier via VSTOffset, unless there 4907 // is no summary section. 4908 assert(((SeenValueSymbolTable && VSTOffset > 0) || 4909 !SeenGlobalValSummary) && 4910 "Expected early VST parse via VSTOffset record"); 4911 if (Stream.SkipBlock()) 4912 return error("Invalid record"); 4913 break; 4914 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 4915 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 4916 assert(!SeenValueSymbolTable && 4917 "Already read VST when parsing summary block?"); 4918 // We might not have a VST if there were no values in the 4919 // summary. An empty summary block generated when we are 4920 // performing ThinLTO compiles so we don't later invoke 4921 // the regular LTO process on them. 4922 if (VSTOffset > 0) { 4923 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 4924 return Err; 4925 SeenValueSymbolTable = true; 4926 } 4927 SeenGlobalValSummary = true; 4928 if (Error Err = parseEntireSummary(Entry.ID)) 4929 return Err; 4930 break; 4931 case bitc::MODULE_STRTAB_BLOCK_ID: 4932 if (Error Err = parseModuleStringTable()) 4933 return Err; 4934 break; 4935 } 4936 continue; 4937 4938 case BitstreamEntry::Record: { 4939 Record.clear(); 4940 auto BitCode = Stream.readRecord(Entry.ID, Record); 4941 switch (BitCode) { 4942 default: 4943 break; // Default behavior, ignore unknown content. 4944 case bitc::MODULE_CODE_VERSION: { 4945 if (Error Err = parseVersionRecord(Record).takeError()) 4946 return Err; 4947 break; 4948 } 4949 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4950 case bitc::MODULE_CODE_SOURCE_FILENAME: { 4951 SmallString<128> ValueName; 4952 if (convertToString(Record, 0, ValueName)) 4953 return error("Invalid record"); 4954 SourceFileName = ValueName.c_str(); 4955 break; 4956 } 4957 /// MODULE_CODE_HASH: [5*i32] 4958 case bitc::MODULE_CODE_HASH: { 4959 if (Record.size() != 5) 4960 return error("Invalid hash length " + Twine(Record.size()).str()); 4961 auto &Hash = addThisModule()->second.second; 4962 int Pos = 0; 4963 for (auto &Val : Record) { 4964 assert(!(Val >> 32) && "Unexpected high bits set"); 4965 Hash[Pos++] = Val; 4966 } 4967 break; 4968 } 4969 /// MODULE_CODE_VSTOFFSET: [offset] 4970 case bitc::MODULE_CODE_VSTOFFSET: 4971 if (Record.size() < 1) 4972 return error("Invalid record"); 4973 // Note that we subtract 1 here because the offset is relative to one 4974 // word before the start of the identification or module block, which 4975 // was historically always the start of the regular bitcode header. 4976 VSTOffset = Record[0] - 1; 4977 break; 4978 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 4979 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 4980 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 4981 // v2: [strtab offset, strtab size, v1] 4982 case bitc::MODULE_CODE_GLOBALVAR: 4983 case bitc::MODULE_CODE_FUNCTION: 4984 case bitc::MODULE_CODE_ALIAS: { 4985 StringRef Name; 4986 ArrayRef<uint64_t> GVRecord; 4987 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 4988 if (GVRecord.size() <= 3) 4989 return error("Invalid record"); 4990 uint64_t RawLinkage = GVRecord[3]; 4991 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 4992 if (!UseStrtab) { 4993 ValueIdToLinkageMap[ValueId++] = Linkage; 4994 break; 4995 } 4996 4997 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 4998 break; 4999 } 5000 } 5001 } 5002 continue; 5003 } 5004 } 5005 } 5006 5007 std::vector<ValueInfo> 5008 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5009 std::vector<ValueInfo> Ret; 5010 Ret.reserve(Record.size()); 5011 for (uint64_t RefValueId : Record) 5012 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5013 return Ret; 5014 } 5015 5016 std::vector<FunctionSummary::EdgeTy> ModuleSummaryIndexBitcodeReader::makeCallList( 5017 ArrayRef<uint64_t> Record, bool IsOldProfileFormat, bool HasProfile) { 5018 std::vector<FunctionSummary::EdgeTy> Ret; 5019 Ret.reserve(Record.size()); 5020 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5021 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5022 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5023 if (IsOldProfileFormat) { 5024 I += 1; // Skip old callsitecount field 5025 if (HasProfile) 5026 I += 1; // Skip old profilecount field 5027 } else if (HasProfile) 5028 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5029 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo{Hotness}}); 5030 } 5031 return Ret; 5032 } 5033 5034 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5035 // objects in the index. 5036 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 5037 if (Stream.EnterSubBlock(ID)) 5038 return error("Invalid record"); 5039 SmallVector<uint64_t, 64> Record; 5040 5041 // Parse version 5042 { 5043 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5044 if (Entry.Kind != BitstreamEntry::Record) 5045 return error("Invalid Summary Block: record for version expected"); 5046 if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION) 5047 return error("Invalid Summary Block: version expected"); 5048 } 5049 const uint64_t Version = Record[0]; 5050 const bool IsOldProfileFormat = Version == 1; 5051 if (Version < 1 || Version > 4) 5052 return error("Invalid summary version " + Twine(Version) + 5053 ", 1, 2, 3 or 4 expected"); 5054 Record.clear(); 5055 5056 // Keep around the last seen summary to be used when we see an optional 5057 // "OriginalName" attachement. 5058 GlobalValueSummary *LastSeenSummary = nullptr; 5059 GlobalValue::GUID LastSeenGUID = 0; 5060 5061 // We can expect to see any number of type ID information records before 5062 // each function summary records; these variables store the information 5063 // collected so far so that it can be used to create the summary object. 5064 std::vector<GlobalValue::GUID> PendingTypeTests; 5065 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 5066 PendingTypeCheckedLoadVCalls; 5067 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 5068 PendingTypeCheckedLoadConstVCalls; 5069 5070 while (true) { 5071 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5072 5073 switch (Entry.Kind) { 5074 case BitstreamEntry::SubBlock: // Handled for us already. 5075 case BitstreamEntry::Error: 5076 return error("Malformed block"); 5077 case BitstreamEntry::EndBlock: 5078 return Error::success(); 5079 case BitstreamEntry::Record: 5080 // The interesting case. 5081 break; 5082 } 5083 5084 // Read a record. The record format depends on whether this 5085 // is a per-module index or a combined index file. In the per-module 5086 // case the records contain the associated value's ID for correlation 5087 // with VST entries. In the combined index the correlation is done 5088 // via the bitcode offset of the summary records (which were saved 5089 // in the combined index VST entries). The records also contain 5090 // information used for ThinLTO renaming and importing. 5091 Record.clear(); 5092 auto BitCode = Stream.readRecord(Entry.ID, Record); 5093 switch (BitCode) { 5094 default: // Default behavior: ignore. 5095 break; 5096 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 5097 uint64_t ValueID = Record[0]; 5098 GlobalValue::GUID RefGUID = Record[1]; 5099 ValueIdToValueInfoMap[ValueID] = 5100 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5101 break; 5102 } 5103 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 5104 // numrefs x valueid, n x (valueid)] 5105 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 5106 // numrefs x valueid, 5107 // n x (valueid, hotness)] 5108 case bitc::FS_PERMODULE: 5109 case bitc::FS_PERMODULE_PROFILE: { 5110 unsigned ValueID = Record[0]; 5111 uint64_t RawFlags = Record[1]; 5112 unsigned InstCount = Record[2]; 5113 uint64_t RawFunFlags = 0; 5114 unsigned NumRefs = Record[3]; 5115 int RefListStartIndex = 4; 5116 if (Version >= 4) { 5117 RawFunFlags = Record[3]; 5118 NumRefs = Record[4]; 5119 RefListStartIndex = 5; 5120 } 5121 5122 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5123 // The module path string ref set in the summary must be owned by the 5124 // index's module string table. Since we don't have a module path 5125 // string table section in the per-module index, we create a single 5126 // module path string table entry with an empty (0) ID to take 5127 // ownership. 5128 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5129 assert(Record.size() >= RefListStartIndex + NumRefs && 5130 "Record size inconsistent with number of references"); 5131 std::vector<ValueInfo> Refs = makeRefList( 5132 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5133 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5134 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 5135 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5136 IsOldProfileFormat, HasProfile); 5137 auto FS = llvm::make_unique<FunctionSummary>( 5138 Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs), 5139 std::move(Calls), std::move(PendingTypeTests), 5140 std::move(PendingTypeTestAssumeVCalls), 5141 std::move(PendingTypeCheckedLoadVCalls), 5142 std::move(PendingTypeTestAssumeConstVCalls), 5143 std::move(PendingTypeCheckedLoadConstVCalls)); 5144 PendingTypeTests.clear(); 5145 PendingTypeTestAssumeVCalls.clear(); 5146 PendingTypeCheckedLoadVCalls.clear(); 5147 PendingTypeTestAssumeConstVCalls.clear(); 5148 PendingTypeCheckedLoadConstVCalls.clear(); 5149 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 5150 FS->setModulePath(addThisModule()->first()); 5151 FS->setOriginalName(VIAndOriginalGUID.second); 5152 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 5153 break; 5154 } 5155 // FS_ALIAS: [valueid, flags, valueid] 5156 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 5157 // they expect all aliasee summaries to be available. 5158 case bitc::FS_ALIAS: { 5159 unsigned ValueID = Record[0]; 5160 uint64_t RawFlags = Record[1]; 5161 unsigned AliaseeID = Record[2]; 5162 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5163 auto AS = 5164 llvm::make_unique<AliasSummary>(Flags, std::vector<ValueInfo>{}); 5165 // The module path string ref set in the summary must be owned by the 5166 // index's module string table. Since we don't have a module path 5167 // string table section in the per-module index, we create a single 5168 // module path string table entry with an empty (0) ID to take 5169 // ownership. 5170 AS->setModulePath(addThisModule()->first()); 5171 5172 GlobalValue::GUID AliaseeGUID = 5173 getValueInfoFromValueId(AliaseeID).first.getGUID(); 5174 auto AliaseeInModule = 5175 TheIndex.findSummaryInModule(AliaseeGUID, ModulePath); 5176 if (!AliaseeInModule) 5177 return error("Alias expects aliasee summary to be parsed"); 5178 AS->setAliasee(AliaseeInModule); 5179 5180 auto GUID = getValueInfoFromValueId(ValueID); 5181 AS->setOriginalName(GUID.second); 5182 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 5183 break; 5184 } 5185 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid] 5186 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 5187 unsigned ValueID = Record[0]; 5188 uint64_t RawFlags = Record[1]; 5189 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5190 std::vector<ValueInfo> Refs = 5191 makeRefList(ArrayRef<uint64_t>(Record).slice(2)); 5192 auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs)); 5193 FS->setModulePath(addThisModule()->first()); 5194 auto GUID = getValueInfoFromValueId(ValueID); 5195 FS->setOriginalName(GUID.second); 5196 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 5197 break; 5198 } 5199 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 5200 // numrefs x valueid, n x (valueid)] 5201 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 5202 // numrefs x valueid, n x (valueid, hotness)] 5203 case bitc::FS_COMBINED: 5204 case bitc::FS_COMBINED_PROFILE: { 5205 unsigned ValueID = Record[0]; 5206 uint64_t ModuleId = Record[1]; 5207 uint64_t RawFlags = Record[2]; 5208 unsigned InstCount = Record[3]; 5209 uint64_t RawFunFlags = 0; 5210 unsigned NumRefs = Record[4]; 5211 int RefListStartIndex = 5; 5212 5213 if (Version >= 4) { 5214 RawFunFlags = Record[4]; 5215 NumRefs = Record[5]; 5216 RefListStartIndex = 6; 5217 } 5218 5219 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5220 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5221 assert(Record.size() >= RefListStartIndex + NumRefs && 5222 "Record size inconsistent with number of references"); 5223 std::vector<ValueInfo> Refs = makeRefList( 5224 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5225 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 5226 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 5227 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5228 IsOldProfileFormat, HasProfile); 5229 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5230 auto FS = llvm::make_unique<FunctionSummary>( 5231 Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs), 5232 std::move(Edges), std::move(PendingTypeTests), 5233 std::move(PendingTypeTestAssumeVCalls), 5234 std::move(PendingTypeCheckedLoadVCalls), 5235 std::move(PendingTypeTestAssumeConstVCalls), 5236 std::move(PendingTypeCheckedLoadConstVCalls)); 5237 PendingTypeTests.clear(); 5238 PendingTypeTestAssumeVCalls.clear(); 5239 PendingTypeCheckedLoadVCalls.clear(); 5240 PendingTypeTestAssumeConstVCalls.clear(); 5241 PendingTypeCheckedLoadConstVCalls.clear(); 5242 LastSeenSummary = FS.get(); 5243 LastSeenGUID = VI.getGUID(); 5244 FS->setModulePath(ModuleIdMap[ModuleId]); 5245 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 5246 break; 5247 } 5248 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 5249 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 5250 // they expect all aliasee summaries to be available. 5251 case bitc::FS_COMBINED_ALIAS: { 5252 unsigned ValueID = Record[0]; 5253 uint64_t ModuleId = Record[1]; 5254 uint64_t RawFlags = Record[2]; 5255 unsigned AliaseeValueId = Record[3]; 5256 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5257 auto AS = llvm::make_unique<AliasSummary>(Flags, std::vector<ValueInfo>{}); 5258 LastSeenSummary = AS.get(); 5259 AS->setModulePath(ModuleIdMap[ModuleId]); 5260 5261 auto AliaseeGUID = 5262 getValueInfoFromValueId(AliaseeValueId).first.getGUID(); 5263 auto AliaseeInModule = 5264 TheIndex.findSummaryInModule(AliaseeGUID, AS->modulePath()); 5265 if (!AliaseeInModule) 5266 return error("Alias expects aliasee summary to be parsed"); 5267 AS->setAliasee(AliaseeInModule); 5268 5269 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5270 LastSeenGUID = VI.getGUID(); 5271 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 5272 break; 5273 } 5274 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 5275 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 5276 unsigned ValueID = Record[0]; 5277 uint64_t ModuleId = Record[1]; 5278 uint64_t RawFlags = Record[2]; 5279 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5280 std::vector<ValueInfo> Refs = 5281 makeRefList(ArrayRef<uint64_t>(Record).slice(3)); 5282 auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs)); 5283 LastSeenSummary = FS.get(); 5284 FS->setModulePath(ModuleIdMap[ModuleId]); 5285 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5286 LastSeenGUID = VI.getGUID(); 5287 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 5288 break; 5289 } 5290 // FS_COMBINED_ORIGINAL_NAME: [original_name] 5291 case bitc::FS_COMBINED_ORIGINAL_NAME: { 5292 uint64_t OriginalName = Record[0]; 5293 if (!LastSeenSummary) 5294 return error("Name attachment that does not follow a combined record"); 5295 LastSeenSummary->setOriginalName(OriginalName); 5296 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 5297 // Reset the LastSeenSummary 5298 LastSeenSummary = nullptr; 5299 LastSeenGUID = 0; 5300 break; 5301 } 5302 case bitc::FS_TYPE_TESTS: { 5303 assert(PendingTypeTests.empty()); 5304 PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(), 5305 Record.end()); 5306 break; 5307 } 5308 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: { 5309 assert(PendingTypeTestAssumeVCalls.empty()); 5310 for (unsigned I = 0; I != Record.size(); I += 2) 5311 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 5312 break; 5313 } 5314 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: { 5315 assert(PendingTypeCheckedLoadVCalls.empty()); 5316 for (unsigned I = 0; I != Record.size(); I += 2) 5317 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 5318 break; 5319 } 5320 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: { 5321 PendingTypeTestAssumeConstVCalls.push_back( 5322 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5323 break; 5324 } 5325 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: { 5326 PendingTypeCheckedLoadConstVCalls.push_back( 5327 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5328 break; 5329 } 5330 case bitc::FS_CFI_FUNCTION_DEFS: { 5331 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 5332 for (unsigned I = 0; I != Record.size(); I += 2) 5333 CfiFunctionDefs.insert( 5334 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 5335 break; 5336 } 5337 case bitc::FS_CFI_FUNCTION_DECLS: { 5338 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 5339 for (unsigned I = 0; I != Record.size(); I += 2) 5340 CfiFunctionDecls.insert( 5341 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 5342 break; 5343 } 5344 } 5345 } 5346 llvm_unreachable("Exit infinite loop"); 5347 } 5348 5349 // Parse the module string table block into the Index. 5350 // This populates the ModulePathStringTable map in the index. 5351 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 5352 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5353 return error("Invalid record"); 5354 5355 SmallVector<uint64_t, 64> Record; 5356 5357 SmallString<128> ModulePath; 5358 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 5359 5360 while (true) { 5361 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5362 5363 switch (Entry.Kind) { 5364 case BitstreamEntry::SubBlock: // Handled for us already. 5365 case BitstreamEntry::Error: 5366 return error("Malformed block"); 5367 case BitstreamEntry::EndBlock: 5368 return Error::success(); 5369 case BitstreamEntry::Record: 5370 // The interesting case. 5371 break; 5372 } 5373 5374 Record.clear(); 5375 switch (Stream.readRecord(Entry.ID, Record)) { 5376 default: // Default behavior: ignore. 5377 break; 5378 case bitc::MST_CODE_ENTRY: { 5379 // MST_ENTRY: [modid, namechar x N] 5380 uint64_t ModuleId = Record[0]; 5381 5382 if (convertToString(Record, 1, ModulePath)) 5383 return error("Invalid record"); 5384 5385 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 5386 ModuleIdMap[ModuleId] = LastSeenModule->first(); 5387 5388 ModulePath.clear(); 5389 break; 5390 } 5391 /// MST_CODE_HASH: [5*i32] 5392 case bitc::MST_CODE_HASH: { 5393 if (Record.size() != 5) 5394 return error("Invalid hash length " + Twine(Record.size()).str()); 5395 if (!LastSeenModule) 5396 return error("Invalid hash that does not follow a module path"); 5397 int Pos = 0; 5398 for (auto &Val : Record) { 5399 assert(!(Val >> 32) && "Unexpected high bits set"); 5400 LastSeenModule->second.second[Pos++] = Val; 5401 } 5402 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 5403 LastSeenModule = nullptr; 5404 break; 5405 } 5406 } 5407 } 5408 llvm_unreachable("Exit infinite loop"); 5409 } 5410 5411 namespace { 5412 5413 // FIXME: This class is only here to support the transition to llvm::Error. It 5414 // will be removed once this transition is complete. Clients should prefer to 5415 // deal with the Error value directly, rather than converting to error_code. 5416 class BitcodeErrorCategoryType : public std::error_category { 5417 const char *name() const noexcept override { 5418 return "llvm.bitcode"; 5419 } 5420 std::string message(int IE) const override { 5421 BitcodeError E = static_cast<BitcodeError>(IE); 5422 switch (E) { 5423 case BitcodeError::CorruptedBitcode: 5424 return "Corrupted bitcode"; 5425 } 5426 llvm_unreachable("Unknown error type!"); 5427 } 5428 }; 5429 5430 } // end anonymous namespace 5431 5432 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 5433 5434 const std::error_category &llvm::BitcodeErrorCategory() { 5435 return *ErrorCategory; 5436 } 5437 5438 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 5439 unsigned Block, unsigned RecordID) { 5440 if (Stream.EnterSubBlock(Block)) 5441 return error("Invalid record"); 5442 5443 StringRef Strtab; 5444 while (1) { 5445 BitstreamEntry Entry = Stream.advance(); 5446 switch (Entry.Kind) { 5447 case BitstreamEntry::EndBlock: 5448 return Strtab; 5449 5450 case BitstreamEntry::Error: 5451 return error("Malformed block"); 5452 5453 case BitstreamEntry::SubBlock: 5454 if (Stream.SkipBlock()) 5455 return error("Malformed block"); 5456 break; 5457 5458 case BitstreamEntry::Record: 5459 StringRef Blob; 5460 SmallVector<uint64_t, 1> Record; 5461 if (Stream.readRecord(Entry.ID, Record, &Blob) == RecordID) 5462 Strtab = Blob; 5463 break; 5464 } 5465 } 5466 } 5467 5468 //===----------------------------------------------------------------------===// 5469 // External interface 5470 //===----------------------------------------------------------------------===// 5471 5472 Expected<std::vector<BitcodeModule>> 5473 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 5474 auto FOrErr = getBitcodeFileContents(Buffer); 5475 if (!FOrErr) 5476 return FOrErr.takeError(); 5477 return std::move(FOrErr->Mods); 5478 } 5479 5480 Expected<BitcodeFileContents> 5481 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 5482 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5483 if (!StreamOrErr) 5484 return StreamOrErr.takeError(); 5485 BitstreamCursor &Stream = *StreamOrErr; 5486 5487 BitcodeFileContents F; 5488 while (true) { 5489 uint64_t BCBegin = Stream.getCurrentByteNo(); 5490 5491 // We may be consuming bitcode from a client that leaves garbage at the end 5492 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 5493 // the end that there cannot possibly be another module, stop looking. 5494 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 5495 return F; 5496 5497 BitstreamEntry Entry = Stream.advance(); 5498 switch (Entry.Kind) { 5499 case BitstreamEntry::EndBlock: 5500 case BitstreamEntry::Error: 5501 return error("Malformed block"); 5502 5503 case BitstreamEntry::SubBlock: { 5504 uint64_t IdentificationBit = -1ull; 5505 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 5506 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5507 if (Stream.SkipBlock()) 5508 return error("Malformed block"); 5509 5510 Entry = Stream.advance(); 5511 if (Entry.Kind != BitstreamEntry::SubBlock || 5512 Entry.ID != bitc::MODULE_BLOCK_ID) 5513 return error("Malformed block"); 5514 } 5515 5516 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 5517 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5518 if (Stream.SkipBlock()) 5519 return error("Malformed block"); 5520 5521 F.Mods.push_back({Stream.getBitcodeBytes().slice( 5522 BCBegin, Stream.getCurrentByteNo() - BCBegin), 5523 Buffer.getBufferIdentifier(), IdentificationBit, 5524 ModuleBit}); 5525 continue; 5526 } 5527 5528 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 5529 Expected<StringRef> Strtab = 5530 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 5531 if (!Strtab) 5532 return Strtab.takeError(); 5533 // This string table is used by every preceding bitcode module that does 5534 // not have its own string table. A bitcode file may have multiple 5535 // string tables if it was created by binary concatenation, for example 5536 // with "llvm-cat -b". 5537 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 5538 if (!I->Strtab.empty()) 5539 break; 5540 I->Strtab = *Strtab; 5541 } 5542 // Similarly, the string table is used by every preceding symbol table; 5543 // normally there will be just one unless the bitcode file was created 5544 // by binary concatenation. 5545 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 5546 F.StrtabForSymtab = *Strtab; 5547 continue; 5548 } 5549 5550 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 5551 Expected<StringRef> SymtabOrErr = 5552 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 5553 if (!SymtabOrErr) 5554 return SymtabOrErr.takeError(); 5555 5556 // We can expect the bitcode file to have multiple symbol tables if it 5557 // was created by binary concatenation. In that case we silently 5558 // ignore any subsequent symbol tables, which is fine because this is a 5559 // low level function. The client is expected to notice that the number 5560 // of modules in the symbol table does not match the number of modules 5561 // in the input file and regenerate the symbol table. 5562 if (F.Symtab.empty()) 5563 F.Symtab = *SymtabOrErr; 5564 continue; 5565 } 5566 5567 if (Stream.SkipBlock()) 5568 return error("Malformed block"); 5569 continue; 5570 } 5571 case BitstreamEntry::Record: 5572 Stream.skipRecord(Entry.ID); 5573 continue; 5574 } 5575 } 5576 } 5577 5578 /// \brief Get a lazy one-at-time loading module from bitcode. 5579 /// 5580 /// This isn't always used in a lazy context. In particular, it's also used by 5581 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 5582 /// in forward-referenced functions from block address references. 5583 /// 5584 /// \param[in] MaterializeAll Set to \c true if we should materialize 5585 /// everything. 5586 Expected<std::unique_ptr<Module>> 5587 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 5588 bool ShouldLazyLoadMetadata, bool IsImporting) { 5589 BitstreamCursor Stream(Buffer); 5590 5591 std::string ProducerIdentification; 5592 if (IdentificationBit != -1ull) { 5593 Stream.JumpToBit(IdentificationBit); 5594 Expected<std::string> ProducerIdentificationOrErr = 5595 readIdentificationBlock(Stream); 5596 if (!ProducerIdentificationOrErr) 5597 return ProducerIdentificationOrErr.takeError(); 5598 5599 ProducerIdentification = *ProducerIdentificationOrErr; 5600 } 5601 5602 Stream.JumpToBit(ModuleBit); 5603 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 5604 Context); 5605 5606 std::unique_ptr<Module> M = 5607 llvm::make_unique<Module>(ModuleIdentifier, Context); 5608 M->setMaterializer(R); 5609 5610 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 5611 if (Error Err = 5612 R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting)) 5613 return std::move(Err); 5614 5615 if (MaterializeAll) { 5616 // Read in the entire module, and destroy the BitcodeReader. 5617 if (Error Err = M->materializeAll()) 5618 return std::move(Err); 5619 } else { 5620 // Resolve forward references from blockaddresses. 5621 if (Error Err = R->materializeForwardReferencedFunctions()) 5622 return std::move(Err); 5623 } 5624 return std::move(M); 5625 } 5626 5627 Expected<std::unique_ptr<Module>> 5628 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 5629 bool IsImporting) { 5630 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting); 5631 } 5632 5633 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 5634 // We don't use ModuleIdentifier here because the client may need to control the 5635 // module path used in the combined summary (e.g. when reading summaries for 5636 // regular LTO modules). 5637 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 5638 StringRef ModulePath, uint64_t ModuleId) { 5639 BitstreamCursor Stream(Buffer); 5640 Stream.JumpToBit(ModuleBit); 5641 5642 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 5643 ModulePath, ModuleId); 5644 return R.parseModule(); 5645 } 5646 5647 // Parse the specified bitcode buffer, returning the function info index. 5648 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 5649 BitstreamCursor Stream(Buffer); 5650 Stream.JumpToBit(ModuleBit); 5651 5652 auto Index = llvm::make_unique<ModuleSummaryIndex>(); 5653 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 5654 ModuleIdentifier, 0); 5655 5656 if (Error Err = R.parseModule()) 5657 return std::move(Err); 5658 5659 return std::move(Index); 5660 } 5661 5662 // Check if the given bitcode buffer contains a global value summary block. 5663 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 5664 BitstreamCursor Stream(Buffer); 5665 Stream.JumpToBit(ModuleBit); 5666 5667 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5668 return error("Invalid record"); 5669 5670 while (true) { 5671 BitstreamEntry Entry = Stream.advance(); 5672 5673 switch (Entry.Kind) { 5674 case BitstreamEntry::Error: 5675 return error("Malformed block"); 5676 case BitstreamEntry::EndBlock: 5677 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false}; 5678 5679 case BitstreamEntry::SubBlock: 5680 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) 5681 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true}; 5682 5683 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) 5684 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true}; 5685 5686 // Ignore other sub-blocks. 5687 if (Stream.SkipBlock()) 5688 return error("Malformed block"); 5689 continue; 5690 5691 case BitstreamEntry::Record: 5692 Stream.skipRecord(Entry.ID); 5693 continue; 5694 } 5695 } 5696 } 5697 5698 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 5699 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 5700 if (!MsOrErr) 5701 return MsOrErr.takeError(); 5702 5703 if (MsOrErr->size() != 1) 5704 return error("Expected a single module"); 5705 5706 return (*MsOrErr)[0]; 5707 } 5708 5709 Expected<std::unique_ptr<Module>> 5710 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 5711 bool ShouldLazyLoadMetadata, bool IsImporting) { 5712 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5713 if (!BM) 5714 return BM.takeError(); 5715 5716 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 5717 } 5718 5719 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 5720 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 5721 bool ShouldLazyLoadMetadata, bool IsImporting) { 5722 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 5723 IsImporting); 5724 if (MOrErr) 5725 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 5726 return MOrErr; 5727 } 5728 5729 Expected<std::unique_ptr<Module>> 5730 BitcodeModule::parseModule(LLVMContext &Context) { 5731 return getModuleImpl(Context, true, false, false); 5732 // TODO: Restore the use-lists to the in-memory state when the bitcode was 5733 // written. We must defer until the Module has been fully materialized. 5734 } 5735 5736 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 5737 LLVMContext &Context) { 5738 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5739 if (!BM) 5740 return BM.takeError(); 5741 5742 return BM->parseModule(Context); 5743 } 5744 5745 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 5746 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5747 if (!StreamOrErr) 5748 return StreamOrErr.takeError(); 5749 5750 return readTriple(*StreamOrErr); 5751 } 5752 5753 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 5754 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5755 if (!StreamOrErr) 5756 return StreamOrErr.takeError(); 5757 5758 return hasObjCCategory(*StreamOrErr); 5759 } 5760 5761 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 5762 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5763 if (!StreamOrErr) 5764 return StreamOrErr.takeError(); 5765 5766 return readIdentificationCode(*StreamOrErr); 5767 } 5768 5769 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 5770 ModuleSummaryIndex &CombinedIndex, 5771 uint64_t ModuleId) { 5772 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5773 if (!BM) 5774 return BM.takeError(); 5775 5776 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 5777 } 5778 5779 Expected<std::unique_ptr<ModuleSummaryIndex>> 5780 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 5781 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5782 if (!BM) 5783 return BM.takeError(); 5784 5785 return BM->getSummary(); 5786 } 5787 5788 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 5789 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5790 if (!BM) 5791 return BM.takeError(); 5792 5793 return BM->getLTOInfo(); 5794 } 5795 5796 Expected<std::unique_ptr<ModuleSummaryIndex>> 5797 llvm::getModuleSummaryIndexForFile(StringRef Path, 5798 bool IgnoreEmptyThinLTOIndexFile) { 5799 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 5800 MemoryBuffer::getFileOrSTDIN(Path); 5801 if (!FileOrErr) 5802 return errorCodeToError(FileOrErr.getError()); 5803 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 5804 return nullptr; 5805 return getModuleSummaryIndex(**FileOrErr); 5806 } 5807