1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "BitcodeReader.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/Bitcode/LLVMBitCodes.h" 15 #include "llvm/IR/AutoUpgrade.h" 16 #include "llvm/IR/Constants.h" 17 #include "llvm/IR/DerivedTypes.h" 18 #include "llvm/IR/InlineAsm.h" 19 #include "llvm/IR/IntrinsicInst.h" 20 #include "llvm/IR/LLVMContext.h" 21 #include "llvm/IR/Module.h" 22 #include "llvm/IR/OperandTraits.h" 23 #include "llvm/IR/Operator.h" 24 #include "llvm/Support/DataStream.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/MemoryBuffer.h" 27 #include "llvm/Support/raw_ostream.h" 28 using namespace llvm; 29 30 enum { 31 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 32 }; 33 34 void BitcodeReader::materializeForwardReferencedFunctions() { 35 while (!BlockAddrFwdRefs.empty()) { 36 Function *F = BlockAddrFwdRefs.begin()->first; 37 F->Materialize(); 38 } 39 } 40 41 void BitcodeReader::FreeState() { 42 if (BufferOwned) 43 delete Buffer; 44 Buffer = nullptr; 45 std::vector<Type*>().swap(TypeList); 46 ValueList.clear(); 47 MDValueList.clear(); 48 49 std::vector<AttributeSet>().swap(MAttributes); 50 std::vector<BasicBlock*>().swap(FunctionBBs); 51 std::vector<Function*>().swap(FunctionsWithBodies); 52 DeferredFunctionInfo.clear(); 53 MDKindMap.clear(); 54 55 assert(BlockAddrFwdRefs.empty() && "Unresolved blockaddress fwd references"); 56 } 57 58 //===----------------------------------------------------------------------===// 59 // Helper functions to implement forward reference resolution, etc. 60 //===----------------------------------------------------------------------===// 61 62 /// ConvertToString - Convert a string from a record into an std::string, return 63 /// true on failure. 64 template<typename StrTy> 65 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx, 66 StrTy &Result) { 67 if (Idx > Record.size()) 68 return true; 69 70 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 71 Result += (char)Record[i]; 72 return false; 73 } 74 75 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) { 76 switch (Val) { 77 default: // Map unknown/new linkages to external 78 case 0: return GlobalValue::ExternalLinkage; 79 case 1: return GlobalValue::WeakAnyLinkage; 80 case 2: return GlobalValue::AppendingLinkage; 81 case 3: return GlobalValue::InternalLinkage; 82 case 4: return GlobalValue::LinkOnceAnyLinkage; 83 case 5: return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 84 case 6: return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 85 case 7: return GlobalValue::ExternalWeakLinkage; 86 case 8: return GlobalValue::CommonLinkage; 87 case 9: return GlobalValue::PrivateLinkage; 88 case 10: return GlobalValue::WeakODRLinkage; 89 case 11: return GlobalValue::LinkOnceODRLinkage; 90 case 12: return GlobalValue::AvailableExternallyLinkage; 91 case 13: 92 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 93 case 14: 94 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 95 } 96 } 97 98 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 99 switch (Val) { 100 default: // Map unknown visibilities to default. 101 case 0: return GlobalValue::DefaultVisibility; 102 case 1: return GlobalValue::HiddenVisibility; 103 case 2: return GlobalValue::ProtectedVisibility; 104 } 105 } 106 107 static GlobalValue::DLLStorageClassTypes 108 GetDecodedDLLStorageClass(unsigned Val) { 109 switch (Val) { 110 default: // Map unknown values to default. 111 case 0: return GlobalValue::DefaultStorageClass; 112 case 1: return GlobalValue::DLLImportStorageClass; 113 case 2: return GlobalValue::DLLExportStorageClass; 114 } 115 } 116 117 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) { 118 switch (Val) { 119 case 0: return GlobalVariable::NotThreadLocal; 120 default: // Map unknown non-zero value to general dynamic. 121 case 1: return GlobalVariable::GeneralDynamicTLSModel; 122 case 2: return GlobalVariable::LocalDynamicTLSModel; 123 case 3: return GlobalVariable::InitialExecTLSModel; 124 case 4: return GlobalVariable::LocalExecTLSModel; 125 } 126 } 127 128 static int GetDecodedCastOpcode(unsigned Val) { 129 switch (Val) { 130 default: return -1; 131 case bitc::CAST_TRUNC : return Instruction::Trunc; 132 case bitc::CAST_ZEXT : return Instruction::ZExt; 133 case bitc::CAST_SEXT : return Instruction::SExt; 134 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 135 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 136 case bitc::CAST_UITOFP : return Instruction::UIToFP; 137 case bitc::CAST_SITOFP : return Instruction::SIToFP; 138 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 139 case bitc::CAST_FPEXT : return Instruction::FPExt; 140 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 141 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 142 case bitc::CAST_BITCAST : return Instruction::BitCast; 143 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 144 } 145 } 146 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) { 147 switch (Val) { 148 default: return -1; 149 case bitc::BINOP_ADD: 150 return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add; 151 case bitc::BINOP_SUB: 152 return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub; 153 case bitc::BINOP_MUL: 154 return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul; 155 case bitc::BINOP_UDIV: return Instruction::UDiv; 156 case bitc::BINOP_SDIV: 157 return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv; 158 case bitc::BINOP_UREM: return Instruction::URem; 159 case bitc::BINOP_SREM: 160 return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem; 161 case bitc::BINOP_SHL: return Instruction::Shl; 162 case bitc::BINOP_LSHR: return Instruction::LShr; 163 case bitc::BINOP_ASHR: return Instruction::AShr; 164 case bitc::BINOP_AND: return Instruction::And; 165 case bitc::BINOP_OR: return Instruction::Or; 166 case bitc::BINOP_XOR: return Instruction::Xor; 167 } 168 } 169 170 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) { 171 switch (Val) { 172 default: return AtomicRMWInst::BAD_BINOP; 173 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 174 case bitc::RMW_ADD: return AtomicRMWInst::Add; 175 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 176 case bitc::RMW_AND: return AtomicRMWInst::And; 177 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 178 case bitc::RMW_OR: return AtomicRMWInst::Or; 179 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 180 case bitc::RMW_MAX: return AtomicRMWInst::Max; 181 case bitc::RMW_MIN: return AtomicRMWInst::Min; 182 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 183 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 184 } 185 } 186 187 static AtomicOrdering GetDecodedOrdering(unsigned Val) { 188 switch (Val) { 189 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 190 case bitc::ORDERING_UNORDERED: return Unordered; 191 case bitc::ORDERING_MONOTONIC: return Monotonic; 192 case bitc::ORDERING_ACQUIRE: return Acquire; 193 case bitc::ORDERING_RELEASE: return Release; 194 case bitc::ORDERING_ACQREL: return AcquireRelease; 195 default: // Map unknown orderings to sequentially-consistent. 196 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 197 } 198 } 199 200 static SynchronizationScope GetDecodedSynchScope(unsigned Val) { 201 switch (Val) { 202 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 203 default: // Map unknown scopes to cross-thread. 204 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 205 } 206 } 207 208 static void UpgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 209 switch (Val) { 210 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 211 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 212 } 213 } 214 215 namespace llvm { 216 namespace { 217 /// @brief A class for maintaining the slot number definition 218 /// as a placeholder for the actual definition for forward constants defs. 219 class ConstantPlaceHolder : public ConstantExpr { 220 void operator=(const ConstantPlaceHolder &) LLVM_DELETED_FUNCTION; 221 public: 222 // allocate space for exactly one operand 223 void *operator new(size_t s) { 224 return User::operator new(s, 1); 225 } 226 explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context) 227 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 228 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 229 } 230 231 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 232 static bool classof(const Value *V) { 233 return isa<ConstantExpr>(V) && 234 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 235 } 236 237 238 /// Provide fast operand accessors 239 //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 240 }; 241 } 242 243 // FIXME: can we inherit this from ConstantExpr? 244 template <> 245 struct OperandTraits<ConstantPlaceHolder> : 246 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 247 }; 248 } 249 250 251 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 252 if (Idx == size()) { 253 push_back(V); 254 return; 255 } 256 257 if (Idx >= size()) 258 resize(Idx+1); 259 260 WeakVH &OldV = ValuePtrs[Idx]; 261 if (!OldV) { 262 OldV = V; 263 return; 264 } 265 266 // Handle constants and non-constants (e.g. instrs) differently for 267 // efficiency. 268 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 269 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 270 OldV = V; 271 } else { 272 // If there was a forward reference to this value, replace it. 273 Value *PrevVal = OldV; 274 OldV->replaceAllUsesWith(V); 275 delete PrevVal; 276 } 277 } 278 279 280 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 281 Type *Ty) { 282 if (Idx >= size()) 283 resize(Idx + 1); 284 285 if (Value *V = ValuePtrs[Idx]) { 286 assert(Ty == V->getType() && "Type mismatch in constant table!"); 287 return cast<Constant>(V); 288 } 289 290 // Create and return a placeholder, which will later be RAUW'd. 291 Constant *C = new ConstantPlaceHolder(Ty, Context); 292 ValuePtrs[Idx] = C; 293 return C; 294 } 295 296 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 297 if (Idx >= size()) 298 resize(Idx + 1); 299 300 if (Value *V = ValuePtrs[Idx]) { 301 assert((!Ty || Ty == V->getType()) && "Type mismatch in value table!"); 302 return V; 303 } 304 305 // No type specified, must be invalid reference. 306 if (!Ty) return nullptr; 307 308 // Create and return a placeholder, which will later be RAUW'd. 309 Value *V = new Argument(Ty); 310 ValuePtrs[Idx] = V; 311 return V; 312 } 313 314 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 315 /// resolves any forward references. The idea behind this is that we sometimes 316 /// get constants (such as large arrays) which reference *many* forward ref 317 /// constants. Replacing each of these causes a lot of thrashing when 318 /// building/reuniquing the constant. Instead of doing this, we look at all the 319 /// uses and rewrite all the place holders at once for any constant that uses 320 /// a placeholder. 321 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 322 // Sort the values by-pointer so that they are efficient to look up with a 323 // binary search. 324 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 325 326 SmallVector<Constant*, 64> NewOps; 327 328 while (!ResolveConstants.empty()) { 329 Value *RealVal = operator[](ResolveConstants.back().second); 330 Constant *Placeholder = ResolveConstants.back().first; 331 ResolveConstants.pop_back(); 332 333 // Loop over all users of the placeholder, updating them to reference the 334 // new value. If they reference more than one placeholder, update them all 335 // at once. 336 while (!Placeholder->use_empty()) { 337 auto UI = Placeholder->user_begin(); 338 User *U = *UI; 339 340 // If the using object isn't uniqued, just update the operands. This 341 // handles instructions and initializers for global variables. 342 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 343 UI.getUse().set(RealVal); 344 continue; 345 } 346 347 // Otherwise, we have a constant that uses the placeholder. Replace that 348 // constant with a new constant that has *all* placeholder uses updated. 349 Constant *UserC = cast<Constant>(U); 350 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 351 I != E; ++I) { 352 Value *NewOp; 353 if (!isa<ConstantPlaceHolder>(*I)) { 354 // Not a placeholder reference. 355 NewOp = *I; 356 } else if (*I == Placeholder) { 357 // Common case is that it just references this one placeholder. 358 NewOp = RealVal; 359 } else { 360 // Otherwise, look up the placeholder in ResolveConstants. 361 ResolveConstantsTy::iterator It = 362 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 363 std::pair<Constant*, unsigned>(cast<Constant>(*I), 364 0)); 365 assert(It != ResolveConstants.end() && It->first == *I); 366 NewOp = operator[](It->second); 367 } 368 369 NewOps.push_back(cast<Constant>(NewOp)); 370 } 371 372 // Make the new constant. 373 Constant *NewC; 374 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 375 NewC = ConstantArray::get(UserCA->getType(), NewOps); 376 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 377 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 378 } else if (isa<ConstantVector>(UserC)) { 379 NewC = ConstantVector::get(NewOps); 380 } else { 381 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 382 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 383 } 384 385 UserC->replaceAllUsesWith(NewC); 386 UserC->destroyConstant(); 387 NewOps.clear(); 388 } 389 390 // Update all ValueHandles, they should be the only users at this point. 391 Placeholder->replaceAllUsesWith(RealVal); 392 delete Placeholder; 393 } 394 } 395 396 void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) { 397 if (Idx == size()) { 398 push_back(V); 399 return; 400 } 401 402 if (Idx >= size()) 403 resize(Idx+1); 404 405 WeakVH &OldV = MDValuePtrs[Idx]; 406 if (!OldV) { 407 OldV = V; 408 return; 409 } 410 411 // If there was a forward reference to this value, replace it. 412 MDNode *PrevVal = cast<MDNode>(OldV); 413 OldV->replaceAllUsesWith(V); 414 MDNode::deleteTemporary(PrevVal); 415 // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new 416 // value for Idx. 417 MDValuePtrs[Idx] = V; 418 } 419 420 Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 421 if (Idx >= size()) 422 resize(Idx + 1); 423 424 if (Value *V = MDValuePtrs[Idx]) { 425 assert(V->getType()->isMetadataTy() && "Type mismatch in value table!"); 426 return V; 427 } 428 429 // Create and return a placeholder, which will later be RAUW'd. 430 Value *V = MDNode::getTemporary(Context, None); 431 MDValuePtrs[Idx] = V; 432 return V; 433 } 434 435 Type *BitcodeReader::getTypeByID(unsigned ID) { 436 // The type table size is always specified correctly. 437 if (ID >= TypeList.size()) 438 return nullptr; 439 440 if (Type *Ty = TypeList[ID]) 441 return Ty; 442 443 // If we have a forward reference, the only possible case is when it is to a 444 // named struct. Just create a placeholder for now. 445 return TypeList[ID] = StructType::create(Context); 446 } 447 448 449 //===----------------------------------------------------------------------===// 450 // Functions for parsing blocks from the bitcode file 451 //===----------------------------------------------------------------------===// 452 453 454 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 455 /// been decoded from the given integer. This function must stay in sync with 456 /// 'encodeLLVMAttributesForBitcode'. 457 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 458 uint64_t EncodedAttrs) { 459 // FIXME: Remove in 4.0. 460 461 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 462 // the bits above 31 down by 11 bits. 463 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 464 assert((!Alignment || isPowerOf2_32(Alignment)) && 465 "Alignment must be a power of two."); 466 467 if (Alignment) 468 B.addAlignmentAttr(Alignment); 469 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 470 (EncodedAttrs & 0xffff)); 471 } 472 473 error_code BitcodeReader::ParseAttributeBlock() { 474 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 475 return Error(InvalidRecord); 476 477 if (!MAttributes.empty()) 478 return Error(InvalidMultipleBlocks); 479 480 SmallVector<uint64_t, 64> Record; 481 482 SmallVector<AttributeSet, 8> Attrs; 483 484 // Read all the records. 485 while (1) { 486 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 487 488 switch (Entry.Kind) { 489 case BitstreamEntry::SubBlock: // Handled for us already. 490 case BitstreamEntry::Error: 491 return Error(MalformedBlock); 492 case BitstreamEntry::EndBlock: 493 return error_code(); 494 case BitstreamEntry::Record: 495 // The interesting case. 496 break; 497 } 498 499 // Read a record. 500 Record.clear(); 501 switch (Stream.readRecord(Entry.ID, Record)) { 502 default: // Default behavior: ignore. 503 break; 504 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 505 // FIXME: Remove in 4.0. 506 if (Record.size() & 1) 507 return Error(InvalidRecord); 508 509 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 510 AttrBuilder B; 511 decodeLLVMAttributesForBitcode(B, Record[i+1]); 512 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 513 } 514 515 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 516 Attrs.clear(); 517 break; 518 } 519 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 520 for (unsigned i = 0, e = Record.size(); i != e; ++i) 521 Attrs.push_back(MAttributeGroups[Record[i]]); 522 523 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 524 Attrs.clear(); 525 break; 526 } 527 } 528 } 529 } 530 531 // Returns Attribute::None on unrecognized codes. 532 static Attribute::AttrKind GetAttrFromCode(uint64_t Code) { 533 switch (Code) { 534 default: 535 return Attribute::None; 536 case bitc::ATTR_KIND_ALIGNMENT: 537 return Attribute::Alignment; 538 case bitc::ATTR_KIND_ALWAYS_INLINE: 539 return Attribute::AlwaysInline; 540 case bitc::ATTR_KIND_BUILTIN: 541 return Attribute::Builtin; 542 case bitc::ATTR_KIND_BY_VAL: 543 return Attribute::ByVal; 544 case bitc::ATTR_KIND_IN_ALLOCA: 545 return Attribute::InAlloca; 546 case bitc::ATTR_KIND_COLD: 547 return Attribute::Cold; 548 case bitc::ATTR_KIND_INLINE_HINT: 549 return Attribute::InlineHint; 550 case bitc::ATTR_KIND_IN_REG: 551 return Attribute::InReg; 552 case bitc::ATTR_KIND_MIN_SIZE: 553 return Attribute::MinSize; 554 case bitc::ATTR_KIND_NAKED: 555 return Attribute::Naked; 556 case bitc::ATTR_KIND_NEST: 557 return Attribute::Nest; 558 case bitc::ATTR_KIND_NO_ALIAS: 559 return Attribute::NoAlias; 560 case bitc::ATTR_KIND_NO_BUILTIN: 561 return Attribute::NoBuiltin; 562 case bitc::ATTR_KIND_NO_CAPTURE: 563 return Attribute::NoCapture; 564 case bitc::ATTR_KIND_NO_DUPLICATE: 565 return Attribute::NoDuplicate; 566 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 567 return Attribute::NoImplicitFloat; 568 case bitc::ATTR_KIND_NO_INLINE: 569 return Attribute::NoInline; 570 case bitc::ATTR_KIND_NON_LAZY_BIND: 571 return Attribute::NonLazyBind; 572 case bitc::ATTR_KIND_NON_NULL: 573 return Attribute::NonNull; 574 case bitc::ATTR_KIND_NO_RED_ZONE: 575 return Attribute::NoRedZone; 576 case bitc::ATTR_KIND_NO_RETURN: 577 return Attribute::NoReturn; 578 case bitc::ATTR_KIND_NO_UNWIND: 579 return Attribute::NoUnwind; 580 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 581 return Attribute::OptimizeForSize; 582 case bitc::ATTR_KIND_OPTIMIZE_NONE: 583 return Attribute::OptimizeNone; 584 case bitc::ATTR_KIND_READ_NONE: 585 return Attribute::ReadNone; 586 case bitc::ATTR_KIND_READ_ONLY: 587 return Attribute::ReadOnly; 588 case bitc::ATTR_KIND_RETURNED: 589 return Attribute::Returned; 590 case bitc::ATTR_KIND_RETURNS_TWICE: 591 return Attribute::ReturnsTwice; 592 case bitc::ATTR_KIND_S_EXT: 593 return Attribute::SExt; 594 case bitc::ATTR_KIND_STACK_ALIGNMENT: 595 return Attribute::StackAlignment; 596 case bitc::ATTR_KIND_STACK_PROTECT: 597 return Attribute::StackProtect; 598 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 599 return Attribute::StackProtectReq; 600 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 601 return Attribute::StackProtectStrong; 602 case bitc::ATTR_KIND_STRUCT_RET: 603 return Attribute::StructRet; 604 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 605 return Attribute::SanitizeAddress; 606 case bitc::ATTR_KIND_SANITIZE_THREAD: 607 return Attribute::SanitizeThread; 608 case bitc::ATTR_KIND_SANITIZE_MEMORY: 609 return Attribute::SanitizeMemory; 610 case bitc::ATTR_KIND_UW_TABLE: 611 return Attribute::UWTable; 612 case bitc::ATTR_KIND_Z_EXT: 613 return Attribute::ZExt; 614 } 615 } 616 617 error_code BitcodeReader::ParseAttrKind(uint64_t Code, 618 Attribute::AttrKind *Kind) { 619 *Kind = GetAttrFromCode(Code); 620 if (*Kind == Attribute::None) 621 return Error(InvalidValue); 622 return error_code(); 623 } 624 625 error_code BitcodeReader::ParseAttributeGroupBlock() { 626 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 627 return Error(InvalidRecord); 628 629 if (!MAttributeGroups.empty()) 630 return Error(InvalidMultipleBlocks); 631 632 SmallVector<uint64_t, 64> Record; 633 634 // Read all the records. 635 while (1) { 636 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 637 638 switch (Entry.Kind) { 639 case BitstreamEntry::SubBlock: // Handled for us already. 640 case BitstreamEntry::Error: 641 return Error(MalformedBlock); 642 case BitstreamEntry::EndBlock: 643 return error_code(); 644 case BitstreamEntry::Record: 645 // The interesting case. 646 break; 647 } 648 649 // Read a record. 650 Record.clear(); 651 switch (Stream.readRecord(Entry.ID, Record)) { 652 default: // Default behavior: ignore. 653 break; 654 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 655 if (Record.size() < 3) 656 return Error(InvalidRecord); 657 658 uint64_t GrpID = Record[0]; 659 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 660 661 AttrBuilder B; 662 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 663 if (Record[i] == 0) { // Enum attribute 664 Attribute::AttrKind Kind; 665 if (error_code EC = ParseAttrKind(Record[++i], &Kind)) 666 return EC; 667 668 B.addAttribute(Kind); 669 } else if (Record[i] == 1) { // Align attribute 670 Attribute::AttrKind Kind; 671 if (error_code EC = ParseAttrKind(Record[++i], &Kind)) 672 return EC; 673 if (Kind == Attribute::Alignment) 674 B.addAlignmentAttr(Record[++i]); 675 else 676 B.addStackAlignmentAttr(Record[++i]); 677 } else { // String attribute 678 assert((Record[i] == 3 || Record[i] == 4) && 679 "Invalid attribute group entry"); 680 bool HasValue = (Record[i++] == 4); 681 SmallString<64> KindStr; 682 SmallString<64> ValStr; 683 684 while (Record[i] != 0 && i != e) 685 KindStr += Record[i++]; 686 assert(Record[i] == 0 && "Kind string not null terminated"); 687 688 if (HasValue) { 689 // Has a value associated with it. 690 ++i; // Skip the '0' that terminates the "kind" string. 691 while (Record[i] != 0 && i != e) 692 ValStr += Record[i++]; 693 assert(Record[i] == 0 && "Value string not null terminated"); 694 } 695 696 B.addAttribute(KindStr.str(), ValStr.str()); 697 } 698 } 699 700 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 701 break; 702 } 703 } 704 } 705 } 706 707 error_code BitcodeReader::ParseTypeTable() { 708 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 709 return Error(InvalidRecord); 710 711 return ParseTypeTableBody(); 712 } 713 714 error_code BitcodeReader::ParseTypeTableBody() { 715 if (!TypeList.empty()) 716 return Error(InvalidMultipleBlocks); 717 718 SmallVector<uint64_t, 64> Record; 719 unsigned NumRecords = 0; 720 721 SmallString<64> TypeName; 722 723 // Read all the records for this type table. 724 while (1) { 725 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 726 727 switch (Entry.Kind) { 728 case BitstreamEntry::SubBlock: // Handled for us already. 729 case BitstreamEntry::Error: 730 return Error(MalformedBlock); 731 case BitstreamEntry::EndBlock: 732 if (NumRecords != TypeList.size()) 733 return Error(MalformedBlock); 734 return error_code(); 735 case BitstreamEntry::Record: 736 // The interesting case. 737 break; 738 } 739 740 // Read a record. 741 Record.clear(); 742 Type *ResultTy = nullptr; 743 switch (Stream.readRecord(Entry.ID, Record)) { 744 default: 745 return Error(InvalidValue); 746 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 747 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 748 // type list. This allows us to reserve space. 749 if (Record.size() < 1) 750 return Error(InvalidRecord); 751 TypeList.resize(Record[0]); 752 continue; 753 case bitc::TYPE_CODE_VOID: // VOID 754 ResultTy = Type::getVoidTy(Context); 755 break; 756 case bitc::TYPE_CODE_HALF: // HALF 757 ResultTy = Type::getHalfTy(Context); 758 break; 759 case bitc::TYPE_CODE_FLOAT: // FLOAT 760 ResultTy = Type::getFloatTy(Context); 761 break; 762 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 763 ResultTy = Type::getDoubleTy(Context); 764 break; 765 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 766 ResultTy = Type::getX86_FP80Ty(Context); 767 break; 768 case bitc::TYPE_CODE_FP128: // FP128 769 ResultTy = Type::getFP128Ty(Context); 770 break; 771 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 772 ResultTy = Type::getPPC_FP128Ty(Context); 773 break; 774 case bitc::TYPE_CODE_LABEL: // LABEL 775 ResultTy = Type::getLabelTy(Context); 776 break; 777 case bitc::TYPE_CODE_METADATA: // METADATA 778 ResultTy = Type::getMetadataTy(Context); 779 break; 780 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 781 ResultTy = Type::getX86_MMXTy(Context); 782 break; 783 case bitc::TYPE_CODE_INTEGER: // INTEGER: [width] 784 if (Record.size() < 1) 785 return Error(InvalidRecord); 786 787 ResultTy = IntegerType::get(Context, Record[0]); 788 break; 789 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 790 // [pointee type, address space] 791 if (Record.size() < 1) 792 return Error(InvalidRecord); 793 unsigned AddressSpace = 0; 794 if (Record.size() == 2) 795 AddressSpace = Record[1]; 796 ResultTy = getTypeByID(Record[0]); 797 if (!ResultTy) 798 return Error(InvalidType); 799 ResultTy = PointerType::get(ResultTy, AddressSpace); 800 break; 801 } 802 case bitc::TYPE_CODE_FUNCTION_OLD: { 803 // FIXME: attrid is dead, remove it in LLVM 4.0 804 // FUNCTION: [vararg, attrid, retty, paramty x N] 805 if (Record.size() < 3) 806 return Error(InvalidRecord); 807 SmallVector<Type*, 8> ArgTys; 808 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 809 if (Type *T = getTypeByID(Record[i])) 810 ArgTys.push_back(T); 811 else 812 break; 813 } 814 815 ResultTy = getTypeByID(Record[2]); 816 if (!ResultTy || ArgTys.size() < Record.size()-3) 817 return Error(InvalidType); 818 819 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 820 break; 821 } 822 case bitc::TYPE_CODE_FUNCTION: { 823 // FUNCTION: [vararg, retty, paramty x N] 824 if (Record.size() < 2) 825 return Error(InvalidRecord); 826 SmallVector<Type*, 8> ArgTys; 827 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 828 if (Type *T = getTypeByID(Record[i])) 829 ArgTys.push_back(T); 830 else 831 break; 832 } 833 834 ResultTy = getTypeByID(Record[1]); 835 if (!ResultTy || ArgTys.size() < Record.size()-2) 836 return Error(InvalidType); 837 838 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 839 break; 840 } 841 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 842 if (Record.size() < 1) 843 return Error(InvalidRecord); 844 SmallVector<Type*, 8> EltTys; 845 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 846 if (Type *T = getTypeByID(Record[i])) 847 EltTys.push_back(T); 848 else 849 break; 850 } 851 if (EltTys.size() != Record.size()-1) 852 return Error(InvalidType); 853 ResultTy = StructType::get(Context, EltTys, Record[0]); 854 break; 855 } 856 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 857 if (ConvertToString(Record, 0, TypeName)) 858 return Error(InvalidRecord); 859 continue; 860 861 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 862 if (Record.size() < 1) 863 return Error(InvalidRecord); 864 865 if (NumRecords >= TypeList.size()) 866 return Error(InvalidTYPETable); 867 868 // Check to see if this was forward referenced, if so fill in the temp. 869 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 870 if (Res) { 871 Res->setName(TypeName); 872 TypeList[NumRecords] = nullptr; 873 } else // Otherwise, create a new struct. 874 Res = StructType::create(Context, TypeName); 875 TypeName.clear(); 876 877 SmallVector<Type*, 8> EltTys; 878 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 879 if (Type *T = getTypeByID(Record[i])) 880 EltTys.push_back(T); 881 else 882 break; 883 } 884 if (EltTys.size() != Record.size()-1) 885 return Error(InvalidRecord); 886 Res->setBody(EltTys, Record[0]); 887 ResultTy = Res; 888 break; 889 } 890 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 891 if (Record.size() != 1) 892 return Error(InvalidRecord); 893 894 if (NumRecords >= TypeList.size()) 895 return Error(InvalidTYPETable); 896 897 // Check to see if this was forward referenced, if so fill in the temp. 898 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 899 if (Res) { 900 Res->setName(TypeName); 901 TypeList[NumRecords] = nullptr; 902 } else // Otherwise, create a new struct with no body. 903 Res = StructType::create(Context, TypeName); 904 TypeName.clear(); 905 ResultTy = Res; 906 break; 907 } 908 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 909 if (Record.size() < 2) 910 return Error(InvalidRecord); 911 if ((ResultTy = getTypeByID(Record[1]))) 912 ResultTy = ArrayType::get(ResultTy, Record[0]); 913 else 914 return Error(InvalidType); 915 break; 916 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 917 if (Record.size() < 2) 918 return Error(InvalidRecord); 919 if ((ResultTy = getTypeByID(Record[1]))) 920 ResultTy = VectorType::get(ResultTy, Record[0]); 921 else 922 return Error(InvalidType); 923 break; 924 } 925 926 if (NumRecords >= TypeList.size()) 927 return Error(InvalidTYPETable); 928 assert(ResultTy && "Didn't read a type?"); 929 assert(!TypeList[NumRecords] && "Already read type?"); 930 TypeList[NumRecords++] = ResultTy; 931 } 932 } 933 934 error_code BitcodeReader::ParseValueSymbolTable() { 935 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 936 return Error(InvalidRecord); 937 938 SmallVector<uint64_t, 64> Record; 939 940 // Read all the records for this value table. 941 SmallString<128> ValueName; 942 while (1) { 943 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 944 945 switch (Entry.Kind) { 946 case BitstreamEntry::SubBlock: // Handled for us already. 947 case BitstreamEntry::Error: 948 return Error(MalformedBlock); 949 case BitstreamEntry::EndBlock: 950 return error_code(); 951 case BitstreamEntry::Record: 952 // The interesting case. 953 break; 954 } 955 956 // Read a record. 957 Record.clear(); 958 switch (Stream.readRecord(Entry.ID, Record)) { 959 default: // Default behavior: unknown type. 960 break; 961 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 962 if (ConvertToString(Record, 1, ValueName)) 963 return Error(InvalidRecord); 964 unsigned ValueID = Record[0]; 965 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 966 return Error(InvalidRecord); 967 Value *V = ValueList[ValueID]; 968 969 V->setName(StringRef(ValueName.data(), ValueName.size())); 970 ValueName.clear(); 971 break; 972 } 973 case bitc::VST_CODE_BBENTRY: { 974 if (ConvertToString(Record, 1, ValueName)) 975 return Error(InvalidRecord); 976 BasicBlock *BB = getBasicBlock(Record[0]); 977 if (!BB) 978 return Error(InvalidRecord); 979 980 BB->setName(StringRef(ValueName.data(), ValueName.size())); 981 ValueName.clear(); 982 break; 983 } 984 } 985 } 986 } 987 988 error_code BitcodeReader::ParseMetadata() { 989 unsigned NextMDValueNo = MDValueList.size(); 990 991 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 992 return Error(InvalidRecord); 993 994 SmallVector<uint64_t, 64> Record; 995 996 // Read all the records. 997 while (1) { 998 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 999 1000 switch (Entry.Kind) { 1001 case BitstreamEntry::SubBlock: // Handled for us already. 1002 case BitstreamEntry::Error: 1003 return Error(MalformedBlock); 1004 case BitstreamEntry::EndBlock: 1005 return error_code(); 1006 case BitstreamEntry::Record: 1007 // The interesting case. 1008 break; 1009 } 1010 1011 bool IsFunctionLocal = false; 1012 // Read a record. 1013 Record.clear(); 1014 unsigned Code = Stream.readRecord(Entry.ID, Record); 1015 switch (Code) { 1016 default: // Default behavior: ignore. 1017 break; 1018 case bitc::METADATA_NAME: { 1019 // Read name of the named metadata. 1020 SmallString<8> Name(Record.begin(), Record.end()); 1021 Record.clear(); 1022 Code = Stream.ReadCode(); 1023 1024 // METADATA_NAME is always followed by METADATA_NAMED_NODE. 1025 unsigned NextBitCode = Stream.readRecord(Code, Record); 1026 assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode; 1027 1028 // Read named metadata elements. 1029 unsigned Size = Record.size(); 1030 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1031 for (unsigned i = 0; i != Size; ++i) { 1032 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1033 if (!MD) 1034 return Error(InvalidRecord); 1035 NMD->addOperand(MD); 1036 } 1037 break; 1038 } 1039 case bitc::METADATA_FN_NODE: 1040 IsFunctionLocal = true; 1041 // fall-through 1042 case bitc::METADATA_NODE: { 1043 if (Record.size() % 2 == 1) 1044 return Error(InvalidRecord); 1045 1046 unsigned Size = Record.size(); 1047 SmallVector<Value*, 8> Elts; 1048 for (unsigned i = 0; i != Size; i += 2) { 1049 Type *Ty = getTypeByID(Record[i]); 1050 if (!Ty) 1051 return Error(InvalidRecord); 1052 if (Ty->isMetadataTy()) 1053 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1054 else if (!Ty->isVoidTy()) 1055 Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty)); 1056 else 1057 Elts.push_back(nullptr); 1058 } 1059 Value *V = MDNode::getWhenValsUnresolved(Context, Elts, IsFunctionLocal); 1060 IsFunctionLocal = false; 1061 MDValueList.AssignValue(V, NextMDValueNo++); 1062 break; 1063 } 1064 case bitc::METADATA_STRING: { 1065 SmallString<8> String(Record.begin(), Record.end()); 1066 Value *V = MDString::get(Context, String); 1067 MDValueList.AssignValue(V, NextMDValueNo++); 1068 break; 1069 } 1070 case bitc::METADATA_KIND: { 1071 if (Record.size() < 2) 1072 return Error(InvalidRecord); 1073 1074 unsigned Kind = Record[0]; 1075 SmallString<8> Name(Record.begin()+1, Record.end()); 1076 1077 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1078 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1079 return Error(ConflictingMETADATA_KINDRecords); 1080 break; 1081 } 1082 } 1083 } 1084 } 1085 1086 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in 1087 /// the LSB for dense VBR encoding. 1088 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 1089 if ((V & 1) == 0) 1090 return V >> 1; 1091 if (V != 1) 1092 return -(V >> 1); 1093 // There is no such thing as -0 with integers. "-0" really means MININT. 1094 return 1ULL << 63; 1095 } 1096 1097 // FIXME: Delete this in LLVM 4.0 and just assert that the aliasee is a 1098 // GlobalObject. 1099 static GlobalObject & 1100 getGlobalObjectInExpr(const DenseMap<GlobalAlias *, Constant *> &Map, 1101 Constant &C) { 1102 auto *GO = dyn_cast<GlobalObject>(&C); 1103 if (GO) 1104 return *GO; 1105 1106 auto *GA = dyn_cast<GlobalAlias>(&C); 1107 if (GA) 1108 return getGlobalObjectInExpr(Map, *Map.find(GA)->second); 1109 1110 auto &CE = cast<ConstantExpr>(C); 1111 assert(CE.getOpcode() == Instruction::BitCast || 1112 CE.getOpcode() == Instruction::GetElementPtr || 1113 CE.getOpcode() == Instruction::AddrSpaceCast); 1114 if (CE.getOpcode() == Instruction::GetElementPtr) 1115 assert(cast<GEPOperator>(CE).hasAllZeroIndices()); 1116 return getGlobalObjectInExpr(Map, *CE.getOperand(0)); 1117 } 1118 1119 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 1120 /// values and aliases that we can. 1121 error_code BitcodeReader::ResolveGlobalAndAliasInits() { 1122 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 1123 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 1124 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 1125 1126 GlobalInitWorklist.swap(GlobalInits); 1127 AliasInitWorklist.swap(AliasInits); 1128 FunctionPrefixWorklist.swap(FunctionPrefixes); 1129 1130 while (!GlobalInitWorklist.empty()) { 1131 unsigned ValID = GlobalInitWorklist.back().second; 1132 if (ValID >= ValueList.size()) { 1133 // Not ready to resolve this yet, it requires something later in the file. 1134 GlobalInits.push_back(GlobalInitWorklist.back()); 1135 } else { 1136 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1137 GlobalInitWorklist.back().first->setInitializer(C); 1138 else 1139 return Error(ExpectedConstant); 1140 } 1141 GlobalInitWorklist.pop_back(); 1142 } 1143 1144 // FIXME: Delete this in LLVM 4.0 1145 // Older versions of llvm could write an alias pointing to another. We cannot 1146 // construct those aliases, so we first collect an alias to aliasee expression 1147 // and then compute the actual aliasee. 1148 DenseMap<GlobalAlias *, Constant *> AliasInit; 1149 1150 while (!AliasInitWorklist.empty()) { 1151 unsigned ValID = AliasInitWorklist.back().second; 1152 if (ValID >= ValueList.size()) { 1153 AliasInits.push_back(AliasInitWorklist.back()); 1154 } else { 1155 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1156 AliasInit.insert(std::make_pair(AliasInitWorklist.back().first, C)); 1157 else 1158 return Error(ExpectedConstant); 1159 } 1160 AliasInitWorklist.pop_back(); 1161 } 1162 1163 for (auto &Pair : AliasInit) { 1164 auto &GO = getGlobalObjectInExpr(AliasInit, *Pair.second); 1165 Pair.first->setAliasee(&GO); 1166 } 1167 1168 while (!FunctionPrefixWorklist.empty()) { 1169 unsigned ValID = FunctionPrefixWorklist.back().second; 1170 if (ValID >= ValueList.size()) { 1171 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 1172 } else { 1173 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1174 FunctionPrefixWorklist.back().first->setPrefixData(C); 1175 else 1176 return Error(ExpectedConstant); 1177 } 1178 FunctionPrefixWorklist.pop_back(); 1179 } 1180 1181 return error_code(); 1182 } 1183 1184 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 1185 SmallVector<uint64_t, 8> Words(Vals.size()); 1186 std::transform(Vals.begin(), Vals.end(), Words.begin(), 1187 BitcodeReader::decodeSignRotatedValue); 1188 1189 return APInt(TypeBits, Words); 1190 } 1191 1192 error_code BitcodeReader::ParseConstants() { 1193 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 1194 return Error(InvalidRecord); 1195 1196 SmallVector<uint64_t, 64> Record; 1197 1198 // Read all the records for this value table. 1199 Type *CurTy = Type::getInt32Ty(Context); 1200 unsigned NextCstNo = ValueList.size(); 1201 while (1) { 1202 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1203 1204 switch (Entry.Kind) { 1205 case BitstreamEntry::SubBlock: // Handled for us already. 1206 case BitstreamEntry::Error: 1207 return Error(MalformedBlock); 1208 case BitstreamEntry::EndBlock: 1209 if (NextCstNo != ValueList.size()) 1210 return Error(InvalidConstantReference); 1211 1212 // Once all the constants have been read, go through and resolve forward 1213 // references. 1214 ValueList.ResolveConstantForwardRefs(); 1215 return error_code(); 1216 case BitstreamEntry::Record: 1217 // The interesting case. 1218 break; 1219 } 1220 1221 // Read a record. 1222 Record.clear(); 1223 Value *V = nullptr; 1224 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 1225 switch (BitCode) { 1226 default: // Default behavior: unknown constant 1227 case bitc::CST_CODE_UNDEF: // UNDEF 1228 V = UndefValue::get(CurTy); 1229 break; 1230 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 1231 if (Record.empty()) 1232 return Error(InvalidRecord); 1233 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 1234 return Error(InvalidRecord); 1235 CurTy = TypeList[Record[0]]; 1236 continue; // Skip the ValueList manipulation. 1237 case bitc::CST_CODE_NULL: // NULL 1238 V = Constant::getNullValue(CurTy); 1239 break; 1240 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 1241 if (!CurTy->isIntegerTy() || Record.empty()) 1242 return Error(InvalidRecord); 1243 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 1244 break; 1245 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 1246 if (!CurTy->isIntegerTy() || Record.empty()) 1247 return Error(InvalidRecord); 1248 1249 APInt VInt = ReadWideAPInt(Record, 1250 cast<IntegerType>(CurTy)->getBitWidth()); 1251 V = ConstantInt::get(Context, VInt); 1252 1253 break; 1254 } 1255 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 1256 if (Record.empty()) 1257 return Error(InvalidRecord); 1258 if (CurTy->isHalfTy()) 1259 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 1260 APInt(16, (uint16_t)Record[0]))); 1261 else if (CurTy->isFloatTy()) 1262 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 1263 APInt(32, (uint32_t)Record[0]))); 1264 else if (CurTy->isDoubleTy()) 1265 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 1266 APInt(64, Record[0]))); 1267 else if (CurTy->isX86_FP80Ty()) { 1268 // Bits are not stored the same way as a normal i80 APInt, compensate. 1269 uint64_t Rearrange[2]; 1270 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 1271 Rearrange[1] = Record[0] >> 48; 1272 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 1273 APInt(80, Rearrange))); 1274 } else if (CurTy->isFP128Ty()) 1275 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 1276 APInt(128, Record))); 1277 else if (CurTy->isPPC_FP128Ty()) 1278 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 1279 APInt(128, Record))); 1280 else 1281 V = UndefValue::get(CurTy); 1282 break; 1283 } 1284 1285 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 1286 if (Record.empty()) 1287 return Error(InvalidRecord); 1288 1289 unsigned Size = Record.size(); 1290 SmallVector<Constant*, 16> Elts; 1291 1292 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 1293 for (unsigned i = 0; i != Size; ++i) 1294 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 1295 STy->getElementType(i))); 1296 V = ConstantStruct::get(STy, Elts); 1297 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 1298 Type *EltTy = ATy->getElementType(); 1299 for (unsigned i = 0; i != Size; ++i) 1300 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1301 V = ConstantArray::get(ATy, Elts); 1302 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 1303 Type *EltTy = VTy->getElementType(); 1304 for (unsigned i = 0; i != Size; ++i) 1305 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1306 V = ConstantVector::get(Elts); 1307 } else { 1308 V = UndefValue::get(CurTy); 1309 } 1310 break; 1311 } 1312 case bitc::CST_CODE_STRING: // STRING: [values] 1313 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 1314 if (Record.empty()) 1315 return Error(InvalidRecord); 1316 1317 SmallString<16> Elts(Record.begin(), Record.end()); 1318 V = ConstantDataArray::getString(Context, Elts, 1319 BitCode == bitc::CST_CODE_CSTRING); 1320 break; 1321 } 1322 case bitc::CST_CODE_DATA: {// DATA: [n x value] 1323 if (Record.empty()) 1324 return Error(InvalidRecord); 1325 1326 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 1327 unsigned Size = Record.size(); 1328 1329 if (EltTy->isIntegerTy(8)) { 1330 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 1331 if (isa<VectorType>(CurTy)) 1332 V = ConstantDataVector::get(Context, Elts); 1333 else 1334 V = ConstantDataArray::get(Context, Elts); 1335 } else if (EltTy->isIntegerTy(16)) { 1336 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 1337 if (isa<VectorType>(CurTy)) 1338 V = ConstantDataVector::get(Context, Elts); 1339 else 1340 V = ConstantDataArray::get(Context, Elts); 1341 } else if (EltTy->isIntegerTy(32)) { 1342 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 1343 if (isa<VectorType>(CurTy)) 1344 V = ConstantDataVector::get(Context, Elts); 1345 else 1346 V = ConstantDataArray::get(Context, Elts); 1347 } else if (EltTy->isIntegerTy(64)) { 1348 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 1349 if (isa<VectorType>(CurTy)) 1350 V = ConstantDataVector::get(Context, Elts); 1351 else 1352 V = ConstantDataArray::get(Context, Elts); 1353 } else if (EltTy->isFloatTy()) { 1354 SmallVector<float, 16> Elts(Size); 1355 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 1356 if (isa<VectorType>(CurTy)) 1357 V = ConstantDataVector::get(Context, Elts); 1358 else 1359 V = ConstantDataArray::get(Context, Elts); 1360 } else if (EltTy->isDoubleTy()) { 1361 SmallVector<double, 16> Elts(Size); 1362 std::transform(Record.begin(), Record.end(), Elts.begin(), 1363 BitsToDouble); 1364 if (isa<VectorType>(CurTy)) 1365 V = ConstantDataVector::get(Context, Elts); 1366 else 1367 V = ConstantDataArray::get(Context, Elts); 1368 } else { 1369 return Error(InvalidTypeForValue); 1370 } 1371 break; 1372 } 1373 1374 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 1375 if (Record.size() < 3) 1376 return Error(InvalidRecord); 1377 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 1378 if (Opc < 0) { 1379 V = UndefValue::get(CurTy); // Unknown binop. 1380 } else { 1381 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 1382 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 1383 unsigned Flags = 0; 1384 if (Record.size() >= 4) { 1385 if (Opc == Instruction::Add || 1386 Opc == Instruction::Sub || 1387 Opc == Instruction::Mul || 1388 Opc == Instruction::Shl) { 1389 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1390 Flags |= OverflowingBinaryOperator::NoSignedWrap; 1391 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1392 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 1393 } else if (Opc == Instruction::SDiv || 1394 Opc == Instruction::UDiv || 1395 Opc == Instruction::LShr || 1396 Opc == Instruction::AShr) { 1397 if (Record[3] & (1 << bitc::PEO_EXACT)) 1398 Flags |= SDivOperator::IsExact; 1399 } 1400 } 1401 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 1402 } 1403 break; 1404 } 1405 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 1406 if (Record.size() < 3) 1407 return Error(InvalidRecord); 1408 int Opc = GetDecodedCastOpcode(Record[0]); 1409 if (Opc < 0) { 1410 V = UndefValue::get(CurTy); // Unknown cast. 1411 } else { 1412 Type *OpTy = getTypeByID(Record[1]); 1413 if (!OpTy) 1414 return Error(InvalidRecord); 1415 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 1416 V = UpgradeBitCastExpr(Opc, Op, CurTy); 1417 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 1418 } 1419 break; 1420 } 1421 case bitc::CST_CODE_CE_INBOUNDS_GEP: 1422 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 1423 if (Record.size() & 1) 1424 return Error(InvalidRecord); 1425 SmallVector<Constant*, 16> Elts; 1426 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1427 Type *ElTy = getTypeByID(Record[i]); 1428 if (!ElTy) 1429 return Error(InvalidRecord); 1430 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 1431 } 1432 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 1433 V = ConstantExpr::getGetElementPtr(Elts[0], Indices, 1434 BitCode == 1435 bitc::CST_CODE_CE_INBOUNDS_GEP); 1436 break; 1437 } 1438 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 1439 if (Record.size() < 3) 1440 return Error(InvalidRecord); 1441 1442 Type *SelectorTy = Type::getInt1Ty(Context); 1443 1444 // If CurTy is a vector of length n, then Record[0] must be a <n x i1> 1445 // vector. Otherwise, it must be a single bit. 1446 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 1447 SelectorTy = VectorType::get(Type::getInt1Ty(Context), 1448 VTy->getNumElements()); 1449 1450 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 1451 SelectorTy), 1452 ValueList.getConstantFwdRef(Record[1],CurTy), 1453 ValueList.getConstantFwdRef(Record[2],CurTy)); 1454 break; 1455 } 1456 case bitc::CST_CODE_CE_EXTRACTELT 1457 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 1458 if (Record.size() < 3) 1459 return Error(InvalidRecord); 1460 VectorType *OpTy = 1461 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1462 if (!OpTy) 1463 return Error(InvalidRecord); 1464 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1465 Constant *Op1 = nullptr; 1466 if (Record.size() == 4) { 1467 Type *IdxTy = getTypeByID(Record[2]); 1468 if (!IdxTy) 1469 return Error(InvalidRecord); 1470 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1471 } else // TODO: Remove with llvm 4.0 1472 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1473 if (!Op1) 1474 return Error(InvalidRecord); 1475 V = ConstantExpr::getExtractElement(Op0, Op1); 1476 break; 1477 } 1478 case bitc::CST_CODE_CE_INSERTELT 1479 : { // CE_INSERTELT: [opval, opval, opty, opval] 1480 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1481 if (Record.size() < 3 || !OpTy) 1482 return Error(InvalidRecord); 1483 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1484 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 1485 OpTy->getElementType()); 1486 Constant *Op2 = nullptr; 1487 if (Record.size() == 4) { 1488 Type *IdxTy = getTypeByID(Record[2]); 1489 if (!IdxTy) 1490 return Error(InvalidRecord); 1491 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1492 } else // TODO: Remove with llvm 4.0 1493 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1494 if (!Op2) 1495 return Error(InvalidRecord); 1496 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 1497 break; 1498 } 1499 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 1500 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1501 if (Record.size() < 3 || !OpTy) 1502 return Error(InvalidRecord); 1503 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1504 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 1505 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1506 OpTy->getNumElements()); 1507 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 1508 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1509 break; 1510 } 1511 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 1512 VectorType *RTy = dyn_cast<VectorType>(CurTy); 1513 VectorType *OpTy = 1514 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1515 if (Record.size() < 4 || !RTy || !OpTy) 1516 return Error(InvalidRecord); 1517 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1518 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1519 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1520 RTy->getNumElements()); 1521 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 1522 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1523 break; 1524 } 1525 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 1526 if (Record.size() < 4) 1527 return Error(InvalidRecord); 1528 Type *OpTy = getTypeByID(Record[0]); 1529 if (!OpTy) 1530 return Error(InvalidRecord); 1531 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1532 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1533 1534 if (OpTy->isFPOrFPVectorTy()) 1535 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 1536 else 1537 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 1538 break; 1539 } 1540 // This maintains backward compatibility, pre-asm dialect keywords. 1541 // FIXME: Remove with the 4.0 release. 1542 case bitc::CST_CODE_INLINEASM_OLD: { 1543 if (Record.size() < 2) 1544 return Error(InvalidRecord); 1545 std::string AsmStr, ConstrStr; 1546 bool HasSideEffects = Record[0] & 1; 1547 bool IsAlignStack = Record[0] >> 1; 1548 unsigned AsmStrSize = Record[1]; 1549 if (2+AsmStrSize >= Record.size()) 1550 return Error(InvalidRecord); 1551 unsigned ConstStrSize = Record[2+AsmStrSize]; 1552 if (3+AsmStrSize+ConstStrSize > Record.size()) 1553 return Error(InvalidRecord); 1554 1555 for (unsigned i = 0; i != AsmStrSize; ++i) 1556 AsmStr += (char)Record[2+i]; 1557 for (unsigned i = 0; i != ConstStrSize; ++i) 1558 ConstrStr += (char)Record[3+AsmStrSize+i]; 1559 PointerType *PTy = cast<PointerType>(CurTy); 1560 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1561 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 1562 break; 1563 } 1564 // This version adds support for the asm dialect keywords (e.g., 1565 // inteldialect). 1566 case bitc::CST_CODE_INLINEASM: { 1567 if (Record.size() < 2) 1568 return Error(InvalidRecord); 1569 std::string AsmStr, ConstrStr; 1570 bool HasSideEffects = Record[0] & 1; 1571 bool IsAlignStack = (Record[0] >> 1) & 1; 1572 unsigned AsmDialect = Record[0] >> 2; 1573 unsigned AsmStrSize = Record[1]; 1574 if (2+AsmStrSize >= Record.size()) 1575 return Error(InvalidRecord); 1576 unsigned ConstStrSize = Record[2+AsmStrSize]; 1577 if (3+AsmStrSize+ConstStrSize > Record.size()) 1578 return Error(InvalidRecord); 1579 1580 for (unsigned i = 0; i != AsmStrSize; ++i) 1581 AsmStr += (char)Record[2+i]; 1582 for (unsigned i = 0; i != ConstStrSize; ++i) 1583 ConstrStr += (char)Record[3+AsmStrSize+i]; 1584 PointerType *PTy = cast<PointerType>(CurTy); 1585 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1586 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 1587 InlineAsm::AsmDialect(AsmDialect)); 1588 break; 1589 } 1590 case bitc::CST_CODE_BLOCKADDRESS:{ 1591 if (Record.size() < 3) 1592 return Error(InvalidRecord); 1593 Type *FnTy = getTypeByID(Record[0]); 1594 if (!FnTy) 1595 return Error(InvalidRecord); 1596 Function *Fn = 1597 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 1598 if (!Fn) 1599 return Error(InvalidRecord); 1600 1601 // If the function is already parsed we can insert the block address right 1602 // away. 1603 if (!Fn->empty()) { 1604 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 1605 for (size_t I = 0, E = Record[2]; I != E; ++I) { 1606 if (BBI == BBE) 1607 return Error(InvalidID); 1608 ++BBI; 1609 } 1610 V = BlockAddress::get(Fn, BBI); 1611 } else { 1612 // Otherwise insert a placeholder and remember it so it can be inserted 1613 // when the function is parsed. 1614 GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(), 1615 Type::getInt8Ty(Context), 1616 false, GlobalValue::InternalLinkage, 1617 nullptr, ""); 1618 BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef)); 1619 V = FwdRef; 1620 } 1621 break; 1622 } 1623 } 1624 1625 ValueList.AssignValue(V, NextCstNo); 1626 ++NextCstNo; 1627 } 1628 } 1629 1630 error_code BitcodeReader::ParseUseLists() { 1631 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 1632 return Error(InvalidRecord); 1633 1634 SmallVector<uint64_t, 64> Record; 1635 1636 // Read all the records. 1637 while (1) { 1638 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1639 1640 switch (Entry.Kind) { 1641 case BitstreamEntry::SubBlock: // Handled for us already. 1642 case BitstreamEntry::Error: 1643 return Error(MalformedBlock); 1644 case BitstreamEntry::EndBlock: 1645 return error_code(); 1646 case BitstreamEntry::Record: 1647 // The interesting case. 1648 break; 1649 } 1650 1651 // Read a use list record. 1652 Record.clear(); 1653 switch (Stream.readRecord(Entry.ID, Record)) { 1654 default: // Default behavior: unknown type. 1655 break; 1656 case bitc::USELIST_CODE_ENTRY: { // USELIST_CODE_ENTRY: TBD. 1657 unsigned RecordLength = Record.size(); 1658 if (RecordLength < 1) 1659 return Error(InvalidRecord); 1660 UseListRecords.push_back(Record); 1661 break; 1662 } 1663 } 1664 } 1665 } 1666 1667 /// RememberAndSkipFunctionBody - When we see the block for a function body, 1668 /// remember where it is and then skip it. This lets us lazily deserialize the 1669 /// functions. 1670 error_code BitcodeReader::RememberAndSkipFunctionBody() { 1671 // Get the function we are talking about. 1672 if (FunctionsWithBodies.empty()) 1673 return Error(InsufficientFunctionProtos); 1674 1675 Function *Fn = FunctionsWithBodies.back(); 1676 FunctionsWithBodies.pop_back(); 1677 1678 // Save the current stream state. 1679 uint64_t CurBit = Stream.GetCurrentBitNo(); 1680 DeferredFunctionInfo[Fn] = CurBit; 1681 1682 // Skip over the function block for now. 1683 if (Stream.SkipBlock()) 1684 return Error(InvalidRecord); 1685 return error_code(); 1686 } 1687 1688 error_code BitcodeReader::GlobalCleanup() { 1689 // Patch the initializers for globals and aliases up. 1690 ResolveGlobalAndAliasInits(); 1691 if (!GlobalInits.empty() || !AliasInits.empty()) 1692 return Error(MalformedGlobalInitializerSet); 1693 1694 // Look for intrinsic functions which need to be upgraded at some point 1695 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 1696 FI != FE; ++FI) { 1697 Function *NewFn; 1698 if (UpgradeIntrinsicFunction(FI, NewFn)) 1699 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 1700 } 1701 1702 // Look for global variables which need to be renamed. 1703 for (Module::global_iterator 1704 GI = TheModule->global_begin(), GE = TheModule->global_end(); 1705 GI != GE;) { 1706 GlobalVariable *GV = GI++; 1707 UpgradeGlobalVariable(GV); 1708 } 1709 1710 // Force deallocation of memory for these vectors to favor the client that 1711 // want lazy deserialization. 1712 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 1713 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 1714 return error_code(); 1715 } 1716 1717 error_code BitcodeReader::ParseModule(bool Resume) { 1718 if (Resume) 1719 Stream.JumpToBit(NextUnreadBit); 1720 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 1721 return Error(InvalidRecord); 1722 1723 SmallVector<uint64_t, 64> Record; 1724 std::vector<std::string> SectionTable; 1725 std::vector<std::string> GCTable; 1726 1727 // Read all the records for this module. 1728 while (1) { 1729 BitstreamEntry Entry = Stream.advance(); 1730 1731 switch (Entry.Kind) { 1732 case BitstreamEntry::Error: 1733 return Error(MalformedBlock); 1734 case BitstreamEntry::EndBlock: 1735 return GlobalCleanup(); 1736 1737 case BitstreamEntry::SubBlock: 1738 switch (Entry.ID) { 1739 default: // Skip unknown content. 1740 if (Stream.SkipBlock()) 1741 return Error(InvalidRecord); 1742 break; 1743 case bitc::BLOCKINFO_BLOCK_ID: 1744 if (Stream.ReadBlockInfoBlock()) 1745 return Error(MalformedBlock); 1746 break; 1747 case bitc::PARAMATTR_BLOCK_ID: 1748 if (error_code EC = ParseAttributeBlock()) 1749 return EC; 1750 break; 1751 case bitc::PARAMATTR_GROUP_BLOCK_ID: 1752 if (error_code EC = ParseAttributeGroupBlock()) 1753 return EC; 1754 break; 1755 case bitc::TYPE_BLOCK_ID_NEW: 1756 if (error_code EC = ParseTypeTable()) 1757 return EC; 1758 break; 1759 case bitc::VALUE_SYMTAB_BLOCK_ID: 1760 if (error_code EC = ParseValueSymbolTable()) 1761 return EC; 1762 SeenValueSymbolTable = true; 1763 break; 1764 case bitc::CONSTANTS_BLOCK_ID: 1765 if (error_code EC = ParseConstants()) 1766 return EC; 1767 if (error_code EC = ResolveGlobalAndAliasInits()) 1768 return EC; 1769 break; 1770 case bitc::METADATA_BLOCK_ID: 1771 if (error_code EC = ParseMetadata()) 1772 return EC; 1773 break; 1774 case bitc::FUNCTION_BLOCK_ID: 1775 // If this is the first function body we've seen, reverse the 1776 // FunctionsWithBodies list. 1777 if (!SeenFirstFunctionBody) { 1778 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 1779 if (error_code EC = GlobalCleanup()) 1780 return EC; 1781 SeenFirstFunctionBody = true; 1782 } 1783 1784 if (error_code EC = RememberAndSkipFunctionBody()) 1785 return EC; 1786 // For streaming bitcode, suspend parsing when we reach the function 1787 // bodies. Subsequent materialization calls will resume it when 1788 // necessary. For streaming, the function bodies must be at the end of 1789 // the bitcode. If the bitcode file is old, the symbol table will be 1790 // at the end instead and will not have been seen yet. In this case, 1791 // just finish the parse now. 1792 if (LazyStreamer && SeenValueSymbolTable) { 1793 NextUnreadBit = Stream.GetCurrentBitNo(); 1794 return error_code(); 1795 } 1796 break; 1797 case bitc::USELIST_BLOCK_ID: 1798 if (error_code EC = ParseUseLists()) 1799 return EC; 1800 break; 1801 } 1802 continue; 1803 1804 case BitstreamEntry::Record: 1805 // The interesting case. 1806 break; 1807 } 1808 1809 1810 // Read a record. 1811 switch (Stream.readRecord(Entry.ID, Record)) { 1812 default: break; // Default behavior, ignore unknown content. 1813 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 1814 if (Record.size() < 1) 1815 return Error(InvalidRecord); 1816 // Only version #0 and #1 are supported so far. 1817 unsigned module_version = Record[0]; 1818 switch (module_version) { 1819 default: 1820 return Error(InvalidValue); 1821 case 0: 1822 UseRelativeIDs = false; 1823 break; 1824 case 1: 1825 UseRelativeIDs = true; 1826 break; 1827 } 1828 break; 1829 } 1830 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 1831 std::string S; 1832 if (ConvertToString(Record, 0, S)) 1833 return Error(InvalidRecord); 1834 TheModule->setTargetTriple(S); 1835 break; 1836 } 1837 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 1838 std::string S; 1839 if (ConvertToString(Record, 0, S)) 1840 return Error(InvalidRecord); 1841 TheModule->setDataLayout(S); 1842 break; 1843 } 1844 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 1845 std::string S; 1846 if (ConvertToString(Record, 0, S)) 1847 return Error(InvalidRecord); 1848 TheModule->setModuleInlineAsm(S); 1849 break; 1850 } 1851 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 1852 // FIXME: Remove in 4.0. 1853 std::string S; 1854 if (ConvertToString(Record, 0, S)) 1855 return Error(InvalidRecord); 1856 // Ignore value. 1857 break; 1858 } 1859 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 1860 std::string S; 1861 if (ConvertToString(Record, 0, S)) 1862 return Error(InvalidRecord); 1863 SectionTable.push_back(S); 1864 break; 1865 } 1866 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 1867 std::string S; 1868 if (ConvertToString(Record, 0, S)) 1869 return Error(InvalidRecord); 1870 GCTable.push_back(S); 1871 break; 1872 } 1873 // GLOBALVAR: [pointer type, isconst, initid, 1874 // linkage, alignment, section, visibility, threadlocal, 1875 // unnamed_addr, dllstorageclass] 1876 case bitc::MODULE_CODE_GLOBALVAR: { 1877 if (Record.size() < 6) 1878 return Error(InvalidRecord); 1879 Type *Ty = getTypeByID(Record[0]); 1880 if (!Ty) 1881 return Error(InvalidRecord); 1882 if (!Ty->isPointerTy()) 1883 return Error(InvalidTypeForValue); 1884 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 1885 Ty = cast<PointerType>(Ty)->getElementType(); 1886 1887 bool isConstant = Record[1]; 1888 GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]); 1889 unsigned Alignment = (1 << Record[4]) >> 1; 1890 std::string Section; 1891 if (Record[5]) { 1892 if (Record[5]-1 >= SectionTable.size()) 1893 return Error(InvalidID); 1894 Section = SectionTable[Record[5]-1]; 1895 } 1896 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 1897 // Local linkage must have default visibility. 1898 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 1899 // FIXME: Change to an error if non-default in 4.0. 1900 Visibility = GetDecodedVisibility(Record[6]); 1901 1902 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 1903 if (Record.size() > 7) 1904 TLM = GetDecodedThreadLocalMode(Record[7]); 1905 1906 bool UnnamedAddr = false; 1907 if (Record.size() > 8) 1908 UnnamedAddr = Record[8]; 1909 1910 bool ExternallyInitialized = false; 1911 if (Record.size() > 9) 1912 ExternallyInitialized = Record[9]; 1913 1914 GlobalVariable *NewGV = 1915 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 1916 TLM, AddressSpace, ExternallyInitialized); 1917 NewGV->setAlignment(Alignment); 1918 if (!Section.empty()) 1919 NewGV->setSection(Section); 1920 NewGV->setVisibility(Visibility); 1921 NewGV->setUnnamedAddr(UnnamedAddr); 1922 1923 if (Record.size() > 10) 1924 NewGV->setDLLStorageClass(GetDecodedDLLStorageClass(Record[10])); 1925 else 1926 UpgradeDLLImportExportLinkage(NewGV, Record[3]); 1927 1928 ValueList.push_back(NewGV); 1929 1930 // Remember which value to use for the global initializer. 1931 if (unsigned InitID = Record[2]) 1932 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 1933 break; 1934 } 1935 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 1936 // alignment, section, visibility, gc, unnamed_addr, 1937 // dllstorageclass] 1938 case bitc::MODULE_CODE_FUNCTION: { 1939 if (Record.size() < 8) 1940 return Error(InvalidRecord); 1941 Type *Ty = getTypeByID(Record[0]); 1942 if (!Ty) 1943 return Error(InvalidRecord); 1944 if (!Ty->isPointerTy()) 1945 return Error(InvalidTypeForValue); 1946 FunctionType *FTy = 1947 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 1948 if (!FTy) 1949 return Error(InvalidTypeForValue); 1950 1951 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 1952 "", TheModule); 1953 1954 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 1955 bool isProto = Record[2]; 1956 Func->setLinkage(GetDecodedLinkage(Record[3])); 1957 Func->setAttributes(getAttributes(Record[4])); 1958 1959 Func->setAlignment((1 << Record[5]) >> 1); 1960 if (Record[6]) { 1961 if (Record[6]-1 >= SectionTable.size()) 1962 return Error(InvalidID); 1963 Func->setSection(SectionTable[Record[6]-1]); 1964 } 1965 // Local linkage must have default visibility. 1966 if (!Func->hasLocalLinkage()) 1967 // FIXME: Change to an error if non-default in 4.0. 1968 Func->setVisibility(GetDecodedVisibility(Record[7])); 1969 if (Record.size() > 8 && Record[8]) { 1970 if (Record[8]-1 > GCTable.size()) 1971 return Error(InvalidID); 1972 Func->setGC(GCTable[Record[8]-1].c_str()); 1973 } 1974 bool UnnamedAddr = false; 1975 if (Record.size() > 9) 1976 UnnamedAddr = Record[9]; 1977 Func->setUnnamedAddr(UnnamedAddr); 1978 if (Record.size() > 10 && Record[10] != 0) 1979 FunctionPrefixes.push_back(std::make_pair(Func, Record[10]-1)); 1980 1981 if (Record.size() > 11) 1982 Func->setDLLStorageClass(GetDecodedDLLStorageClass(Record[11])); 1983 else 1984 UpgradeDLLImportExportLinkage(Func, Record[3]); 1985 1986 ValueList.push_back(Func); 1987 1988 // If this is a function with a body, remember the prototype we are 1989 // creating now, so that we can match up the body with them later. 1990 if (!isProto) { 1991 FunctionsWithBodies.push_back(Func); 1992 if (LazyStreamer) DeferredFunctionInfo[Func] = 0; 1993 } 1994 break; 1995 } 1996 // ALIAS: [alias type, aliasee val#, linkage] 1997 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass] 1998 case bitc::MODULE_CODE_ALIAS: { 1999 if (Record.size() < 3) 2000 return Error(InvalidRecord); 2001 Type *Ty = getTypeByID(Record[0]); 2002 if (!Ty) 2003 return Error(InvalidRecord); 2004 auto *PTy = dyn_cast<PointerType>(Ty); 2005 if (!PTy) 2006 return Error(InvalidTypeForValue); 2007 2008 auto *NewGA = 2009 GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(), 2010 GetDecodedLinkage(Record[2]), "", TheModule); 2011 // Old bitcode files didn't have visibility field. 2012 // Local linkage must have default visibility. 2013 if (Record.size() > 3 && !NewGA->hasLocalLinkage()) 2014 // FIXME: Change to an error if non-default in 4.0. 2015 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 2016 if (Record.size() > 4) 2017 NewGA->setDLLStorageClass(GetDecodedDLLStorageClass(Record[4])); 2018 else 2019 UpgradeDLLImportExportLinkage(NewGA, Record[2]); 2020 if (Record.size() > 5) 2021 NewGA->setThreadLocalMode(GetDecodedThreadLocalMode(Record[5])); 2022 ValueList.push_back(NewGA); 2023 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 2024 break; 2025 } 2026 /// MODULE_CODE_PURGEVALS: [numvals] 2027 case bitc::MODULE_CODE_PURGEVALS: 2028 // Trim down the value list to the specified size. 2029 if (Record.size() < 1 || Record[0] > ValueList.size()) 2030 return Error(InvalidRecord); 2031 ValueList.shrinkTo(Record[0]); 2032 break; 2033 } 2034 Record.clear(); 2035 } 2036 } 2037 2038 error_code BitcodeReader::ParseBitcodeInto(Module *M) { 2039 TheModule = nullptr; 2040 2041 if (error_code EC = InitStream()) 2042 return EC; 2043 2044 // Sniff for the signature. 2045 if (Stream.Read(8) != 'B' || 2046 Stream.Read(8) != 'C' || 2047 Stream.Read(4) != 0x0 || 2048 Stream.Read(4) != 0xC || 2049 Stream.Read(4) != 0xE || 2050 Stream.Read(4) != 0xD) 2051 return Error(InvalidBitcodeSignature); 2052 2053 // We expect a number of well-defined blocks, though we don't necessarily 2054 // need to understand them all. 2055 while (1) { 2056 if (Stream.AtEndOfStream()) 2057 return error_code(); 2058 2059 BitstreamEntry Entry = 2060 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 2061 2062 switch (Entry.Kind) { 2063 case BitstreamEntry::Error: 2064 return Error(MalformedBlock); 2065 case BitstreamEntry::EndBlock: 2066 return error_code(); 2067 2068 case BitstreamEntry::SubBlock: 2069 switch (Entry.ID) { 2070 case bitc::BLOCKINFO_BLOCK_ID: 2071 if (Stream.ReadBlockInfoBlock()) 2072 return Error(MalformedBlock); 2073 break; 2074 case bitc::MODULE_BLOCK_ID: 2075 // Reject multiple MODULE_BLOCK's in a single bitstream. 2076 if (TheModule) 2077 return Error(InvalidMultipleBlocks); 2078 TheModule = M; 2079 if (error_code EC = ParseModule(false)) 2080 return EC; 2081 if (LazyStreamer) 2082 return error_code(); 2083 break; 2084 default: 2085 if (Stream.SkipBlock()) 2086 return Error(InvalidRecord); 2087 break; 2088 } 2089 continue; 2090 case BitstreamEntry::Record: 2091 // There should be no records in the top-level of blocks. 2092 2093 // The ranlib in Xcode 4 will align archive members by appending newlines 2094 // to the end of them. If this file size is a multiple of 4 but not 8, we 2095 // have to read and ignore these final 4 bytes :-( 2096 if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 && 2097 Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a && 2098 Stream.AtEndOfStream()) 2099 return error_code(); 2100 2101 return Error(InvalidRecord); 2102 } 2103 } 2104 } 2105 2106 error_code BitcodeReader::ParseModuleTriple(std::string &Triple) { 2107 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2108 return Error(InvalidRecord); 2109 2110 SmallVector<uint64_t, 64> Record; 2111 2112 // Read all the records for this module. 2113 while (1) { 2114 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2115 2116 switch (Entry.Kind) { 2117 case BitstreamEntry::SubBlock: // Handled for us already. 2118 case BitstreamEntry::Error: 2119 return Error(MalformedBlock); 2120 case BitstreamEntry::EndBlock: 2121 return error_code(); 2122 case BitstreamEntry::Record: 2123 // The interesting case. 2124 break; 2125 } 2126 2127 // Read a record. 2128 switch (Stream.readRecord(Entry.ID, Record)) { 2129 default: break; // Default behavior, ignore unknown content. 2130 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2131 std::string S; 2132 if (ConvertToString(Record, 0, S)) 2133 return Error(InvalidRecord); 2134 Triple = S; 2135 break; 2136 } 2137 } 2138 Record.clear(); 2139 } 2140 } 2141 2142 error_code BitcodeReader::ParseTriple(std::string &Triple) { 2143 if (error_code EC = InitStream()) 2144 return EC; 2145 2146 // Sniff for the signature. 2147 if (Stream.Read(8) != 'B' || 2148 Stream.Read(8) != 'C' || 2149 Stream.Read(4) != 0x0 || 2150 Stream.Read(4) != 0xC || 2151 Stream.Read(4) != 0xE || 2152 Stream.Read(4) != 0xD) 2153 return Error(InvalidBitcodeSignature); 2154 2155 // We expect a number of well-defined blocks, though we don't necessarily 2156 // need to understand them all. 2157 while (1) { 2158 BitstreamEntry Entry = Stream.advance(); 2159 2160 switch (Entry.Kind) { 2161 case BitstreamEntry::Error: 2162 return Error(MalformedBlock); 2163 case BitstreamEntry::EndBlock: 2164 return error_code(); 2165 2166 case BitstreamEntry::SubBlock: 2167 if (Entry.ID == bitc::MODULE_BLOCK_ID) 2168 return ParseModuleTriple(Triple); 2169 2170 // Ignore other sub-blocks. 2171 if (Stream.SkipBlock()) 2172 return Error(MalformedBlock); 2173 continue; 2174 2175 case BitstreamEntry::Record: 2176 Stream.skipRecord(Entry.ID); 2177 continue; 2178 } 2179 } 2180 } 2181 2182 /// ParseMetadataAttachment - Parse metadata attachments. 2183 error_code BitcodeReader::ParseMetadataAttachment() { 2184 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 2185 return Error(InvalidRecord); 2186 2187 SmallVector<uint64_t, 64> Record; 2188 while (1) { 2189 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2190 2191 switch (Entry.Kind) { 2192 case BitstreamEntry::SubBlock: // Handled for us already. 2193 case BitstreamEntry::Error: 2194 return Error(MalformedBlock); 2195 case BitstreamEntry::EndBlock: 2196 return error_code(); 2197 case BitstreamEntry::Record: 2198 // The interesting case. 2199 break; 2200 } 2201 2202 // Read a metadata attachment record. 2203 Record.clear(); 2204 switch (Stream.readRecord(Entry.ID, Record)) { 2205 default: // Default behavior: ignore. 2206 break; 2207 case bitc::METADATA_ATTACHMENT: { 2208 unsigned RecordLength = Record.size(); 2209 if (Record.empty() || (RecordLength - 1) % 2 == 1) 2210 return Error(InvalidRecord); 2211 Instruction *Inst = InstructionList[Record[0]]; 2212 for (unsigned i = 1; i != RecordLength; i = i+2) { 2213 unsigned Kind = Record[i]; 2214 DenseMap<unsigned, unsigned>::iterator I = 2215 MDKindMap.find(Kind); 2216 if (I == MDKindMap.end()) 2217 return Error(InvalidID); 2218 Value *Node = MDValueList.getValueFwdRef(Record[i+1]); 2219 Inst->setMetadata(I->second, cast<MDNode>(Node)); 2220 if (I->second == LLVMContext::MD_tbaa) 2221 InstsWithTBAATag.push_back(Inst); 2222 } 2223 break; 2224 } 2225 } 2226 } 2227 } 2228 2229 /// ParseFunctionBody - Lazily parse the specified function body block. 2230 error_code BitcodeReader::ParseFunctionBody(Function *F) { 2231 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 2232 return Error(InvalidRecord); 2233 2234 InstructionList.clear(); 2235 unsigned ModuleValueListSize = ValueList.size(); 2236 unsigned ModuleMDValueListSize = MDValueList.size(); 2237 2238 // Add all the function arguments to the value table. 2239 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 2240 ValueList.push_back(I); 2241 2242 unsigned NextValueNo = ValueList.size(); 2243 BasicBlock *CurBB = nullptr; 2244 unsigned CurBBNo = 0; 2245 2246 DebugLoc LastLoc; 2247 2248 // Read all the records. 2249 SmallVector<uint64_t, 64> Record; 2250 while (1) { 2251 BitstreamEntry Entry = Stream.advance(); 2252 2253 switch (Entry.Kind) { 2254 case BitstreamEntry::Error: 2255 return Error(MalformedBlock); 2256 case BitstreamEntry::EndBlock: 2257 goto OutOfRecordLoop; 2258 2259 case BitstreamEntry::SubBlock: 2260 switch (Entry.ID) { 2261 default: // Skip unknown content. 2262 if (Stream.SkipBlock()) 2263 return Error(InvalidRecord); 2264 break; 2265 case bitc::CONSTANTS_BLOCK_ID: 2266 if (error_code EC = ParseConstants()) 2267 return EC; 2268 NextValueNo = ValueList.size(); 2269 break; 2270 case bitc::VALUE_SYMTAB_BLOCK_ID: 2271 if (error_code EC = ParseValueSymbolTable()) 2272 return EC; 2273 break; 2274 case bitc::METADATA_ATTACHMENT_ID: 2275 if (error_code EC = ParseMetadataAttachment()) 2276 return EC; 2277 break; 2278 case bitc::METADATA_BLOCK_ID: 2279 if (error_code EC = ParseMetadata()) 2280 return EC; 2281 break; 2282 } 2283 continue; 2284 2285 case BitstreamEntry::Record: 2286 // The interesting case. 2287 break; 2288 } 2289 2290 // Read a record. 2291 Record.clear(); 2292 Instruction *I = nullptr; 2293 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2294 switch (BitCode) { 2295 default: // Default behavior: reject 2296 return Error(InvalidValue); 2297 case bitc::FUNC_CODE_DECLAREBLOCKS: // DECLAREBLOCKS: [nblocks] 2298 if (Record.size() < 1 || Record[0] == 0) 2299 return Error(InvalidRecord); 2300 // Create all the basic blocks for the function. 2301 FunctionBBs.resize(Record[0]); 2302 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 2303 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 2304 CurBB = FunctionBBs[0]; 2305 continue; 2306 2307 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 2308 // This record indicates that the last instruction is at the same 2309 // location as the previous instruction with a location. 2310 I = nullptr; 2311 2312 // Get the last instruction emitted. 2313 if (CurBB && !CurBB->empty()) 2314 I = &CurBB->back(); 2315 else if (CurBBNo && FunctionBBs[CurBBNo-1] && 2316 !FunctionBBs[CurBBNo-1]->empty()) 2317 I = &FunctionBBs[CurBBNo-1]->back(); 2318 2319 if (!I) 2320 return Error(InvalidRecord); 2321 I->setDebugLoc(LastLoc); 2322 I = nullptr; 2323 continue; 2324 2325 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 2326 I = nullptr; // Get the last instruction emitted. 2327 if (CurBB && !CurBB->empty()) 2328 I = &CurBB->back(); 2329 else if (CurBBNo && FunctionBBs[CurBBNo-1] && 2330 !FunctionBBs[CurBBNo-1]->empty()) 2331 I = &FunctionBBs[CurBBNo-1]->back(); 2332 if (!I || Record.size() < 4) 2333 return Error(InvalidRecord); 2334 2335 unsigned Line = Record[0], Col = Record[1]; 2336 unsigned ScopeID = Record[2], IAID = Record[3]; 2337 2338 MDNode *Scope = nullptr, *IA = nullptr; 2339 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 2340 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 2341 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 2342 I->setDebugLoc(LastLoc); 2343 I = nullptr; 2344 continue; 2345 } 2346 2347 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 2348 unsigned OpNum = 0; 2349 Value *LHS, *RHS; 2350 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2351 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 2352 OpNum+1 > Record.size()) 2353 return Error(InvalidRecord); 2354 2355 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 2356 if (Opc == -1) 2357 return Error(InvalidRecord); 2358 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 2359 InstructionList.push_back(I); 2360 if (OpNum < Record.size()) { 2361 if (Opc == Instruction::Add || 2362 Opc == Instruction::Sub || 2363 Opc == Instruction::Mul || 2364 Opc == Instruction::Shl) { 2365 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2366 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 2367 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2368 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 2369 } else if (Opc == Instruction::SDiv || 2370 Opc == Instruction::UDiv || 2371 Opc == Instruction::LShr || 2372 Opc == Instruction::AShr) { 2373 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 2374 cast<BinaryOperator>(I)->setIsExact(true); 2375 } else if (isa<FPMathOperator>(I)) { 2376 FastMathFlags FMF; 2377 if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra)) 2378 FMF.setUnsafeAlgebra(); 2379 if (0 != (Record[OpNum] & FastMathFlags::NoNaNs)) 2380 FMF.setNoNaNs(); 2381 if (0 != (Record[OpNum] & FastMathFlags::NoInfs)) 2382 FMF.setNoInfs(); 2383 if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros)) 2384 FMF.setNoSignedZeros(); 2385 if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal)) 2386 FMF.setAllowReciprocal(); 2387 if (FMF.any()) 2388 I->setFastMathFlags(FMF); 2389 } 2390 2391 } 2392 break; 2393 } 2394 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 2395 unsigned OpNum = 0; 2396 Value *Op; 2397 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2398 OpNum+2 != Record.size()) 2399 return Error(InvalidRecord); 2400 2401 Type *ResTy = getTypeByID(Record[OpNum]); 2402 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 2403 if (Opc == -1 || !ResTy) 2404 return Error(InvalidRecord); 2405 Instruction *Temp = nullptr; 2406 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 2407 if (Temp) { 2408 InstructionList.push_back(Temp); 2409 CurBB->getInstList().push_back(Temp); 2410 } 2411 } else { 2412 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 2413 } 2414 InstructionList.push_back(I); 2415 break; 2416 } 2417 case bitc::FUNC_CODE_INST_INBOUNDS_GEP: 2418 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] 2419 unsigned OpNum = 0; 2420 Value *BasePtr; 2421 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 2422 return Error(InvalidRecord); 2423 2424 SmallVector<Value*, 16> GEPIdx; 2425 while (OpNum != Record.size()) { 2426 Value *Op; 2427 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2428 return Error(InvalidRecord); 2429 GEPIdx.push_back(Op); 2430 } 2431 2432 I = GetElementPtrInst::Create(BasePtr, GEPIdx); 2433 InstructionList.push_back(I); 2434 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP) 2435 cast<GetElementPtrInst>(I)->setIsInBounds(true); 2436 break; 2437 } 2438 2439 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 2440 // EXTRACTVAL: [opty, opval, n x indices] 2441 unsigned OpNum = 0; 2442 Value *Agg; 2443 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 2444 return Error(InvalidRecord); 2445 2446 SmallVector<unsigned, 4> EXTRACTVALIdx; 2447 for (unsigned RecSize = Record.size(); 2448 OpNum != RecSize; ++OpNum) { 2449 uint64_t Index = Record[OpNum]; 2450 if ((unsigned)Index != Index) 2451 return Error(InvalidValue); 2452 EXTRACTVALIdx.push_back((unsigned)Index); 2453 } 2454 2455 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 2456 InstructionList.push_back(I); 2457 break; 2458 } 2459 2460 case bitc::FUNC_CODE_INST_INSERTVAL: { 2461 // INSERTVAL: [opty, opval, opty, opval, n x indices] 2462 unsigned OpNum = 0; 2463 Value *Agg; 2464 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 2465 return Error(InvalidRecord); 2466 Value *Val; 2467 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 2468 return Error(InvalidRecord); 2469 2470 SmallVector<unsigned, 4> INSERTVALIdx; 2471 for (unsigned RecSize = Record.size(); 2472 OpNum != RecSize; ++OpNum) { 2473 uint64_t Index = Record[OpNum]; 2474 if ((unsigned)Index != Index) 2475 return Error(InvalidValue); 2476 INSERTVALIdx.push_back((unsigned)Index); 2477 } 2478 2479 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 2480 InstructionList.push_back(I); 2481 break; 2482 } 2483 2484 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 2485 // obsolete form of select 2486 // handles select i1 ... in old bitcode 2487 unsigned OpNum = 0; 2488 Value *TrueVal, *FalseVal, *Cond; 2489 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2490 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 2491 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 2492 return Error(InvalidRecord); 2493 2494 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2495 InstructionList.push_back(I); 2496 break; 2497 } 2498 2499 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 2500 // new form of select 2501 // handles select i1 or select [N x i1] 2502 unsigned OpNum = 0; 2503 Value *TrueVal, *FalseVal, *Cond; 2504 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2505 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 2506 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 2507 return Error(InvalidRecord); 2508 2509 // select condition can be either i1 or [N x i1] 2510 if (VectorType* vector_type = 2511 dyn_cast<VectorType>(Cond->getType())) { 2512 // expect <n x i1> 2513 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 2514 return Error(InvalidTypeForValue); 2515 } else { 2516 // expect i1 2517 if (Cond->getType() != Type::getInt1Ty(Context)) 2518 return Error(InvalidTypeForValue); 2519 } 2520 2521 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2522 InstructionList.push_back(I); 2523 break; 2524 } 2525 2526 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 2527 unsigned OpNum = 0; 2528 Value *Vec, *Idx; 2529 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 2530 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 2531 return Error(InvalidRecord); 2532 I = ExtractElementInst::Create(Vec, Idx); 2533 InstructionList.push_back(I); 2534 break; 2535 } 2536 2537 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 2538 unsigned OpNum = 0; 2539 Value *Vec, *Elt, *Idx; 2540 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 2541 popValue(Record, OpNum, NextValueNo, 2542 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 2543 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 2544 return Error(InvalidRecord); 2545 I = InsertElementInst::Create(Vec, Elt, Idx); 2546 InstructionList.push_back(I); 2547 break; 2548 } 2549 2550 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 2551 unsigned OpNum = 0; 2552 Value *Vec1, *Vec2, *Mask; 2553 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 2554 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 2555 return Error(InvalidRecord); 2556 2557 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 2558 return Error(InvalidRecord); 2559 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 2560 InstructionList.push_back(I); 2561 break; 2562 } 2563 2564 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 2565 // Old form of ICmp/FCmp returning bool 2566 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 2567 // both legal on vectors but had different behaviour. 2568 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 2569 // FCmp/ICmp returning bool or vector of bool 2570 2571 unsigned OpNum = 0; 2572 Value *LHS, *RHS; 2573 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2574 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 2575 OpNum+1 != Record.size()) 2576 return Error(InvalidRecord); 2577 2578 if (LHS->getType()->isFPOrFPVectorTy()) 2579 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 2580 else 2581 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 2582 InstructionList.push_back(I); 2583 break; 2584 } 2585 2586 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 2587 { 2588 unsigned Size = Record.size(); 2589 if (Size == 0) { 2590 I = ReturnInst::Create(Context); 2591 InstructionList.push_back(I); 2592 break; 2593 } 2594 2595 unsigned OpNum = 0; 2596 Value *Op = nullptr; 2597 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2598 return Error(InvalidRecord); 2599 if (OpNum != Record.size()) 2600 return Error(InvalidRecord); 2601 2602 I = ReturnInst::Create(Context, Op); 2603 InstructionList.push_back(I); 2604 break; 2605 } 2606 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 2607 if (Record.size() != 1 && Record.size() != 3) 2608 return Error(InvalidRecord); 2609 BasicBlock *TrueDest = getBasicBlock(Record[0]); 2610 if (!TrueDest) 2611 return Error(InvalidRecord); 2612 2613 if (Record.size() == 1) { 2614 I = BranchInst::Create(TrueDest); 2615 InstructionList.push_back(I); 2616 } 2617 else { 2618 BasicBlock *FalseDest = getBasicBlock(Record[1]); 2619 Value *Cond = getValue(Record, 2, NextValueNo, 2620 Type::getInt1Ty(Context)); 2621 if (!FalseDest || !Cond) 2622 return Error(InvalidRecord); 2623 I = BranchInst::Create(TrueDest, FalseDest, Cond); 2624 InstructionList.push_back(I); 2625 } 2626 break; 2627 } 2628 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 2629 // Check magic 2630 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 2631 // "New" SwitchInst format with case ranges. The changes to write this 2632 // format were reverted but we still recognize bitcode that uses it. 2633 // Hopefully someday we will have support for case ranges and can use 2634 // this format again. 2635 2636 Type *OpTy = getTypeByID(Record[1]); 2637 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 2638 2639 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 2640 BasicBlock *Default = getBasicBlock(Record[3]); 2641 if (!OpTy || !Cond || !Default) 2642 return Error(InvalidRecord); 2643 2644 unsigned NumCases = Record[4]; 2645 2646 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 2647 InstructionList.push_back(SI); 2648 2649 unsigned CurIdx = 5; 2650 for (unsigned i = 0; i != NumCases; ++i) { 2651 SmallVector<ConstantInt*, 1> CaseVals; 2652 unsigned NumItems = Record[CurIdx++]; 2653 for (unsigned ci = 0; ci != NumItems; ++ci) { 2654 bool isSingleNumber = Record[CurIdx++]; 2655 2656 APInt Low; 2657 unsigned ActiveWords = 1; 2658 if (ValueBitWidth > 64) 2659 ActiveWords = Record[CurIdx++]; 2660 Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 2661 ValueBitWidth); 2662 CurIdx += ActiveWords; 2663 2664 if (!isSingleNumber) { 2665 ActiveWords = 1; 2666 if (ValueBitWidth > 64) 2667 ActiveWords = Record[CurIdx++]; 2668 APInt High = 2669 ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 2670 ValueBitWidth); 2671 CurIdx += ActiveWords; 2672 2673 // FIXME: It is not clear whether values in the range should be 2674 // compared as signed or unsigned values. The partially 2675 // implemented changes that used this format in the past used 2676 // unsigned comparisons. 2677 for ( ; Low.ule(High); ++Low) 2678 CaseVals.push_back(ConstantInt::get(Context, Low)); 2679 } else 2680 CaseVals.push_back(ConstantInt::get(Context, Low)); 2681 } 2682 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 2683 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 2684 cve = CaseVals.end(); cvi != cve; ++cvi) 2685 SI->addCase(*cvi, DestBB); 2686 } 2687 I = SI; 2688 break; 2689 } 2690 2691 // Old SwitchInst format without case ranges. 2692 2693 if (Record.size() < 3 || (Record.size() & 1) == 0) 2694 return Error(InvalidRecord); 2695 Type *OpTy = getTypeByID(Record[0]); 2696 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 2697 BasicBlock *Default = getBasicBlock(Record[2]); 2698 if (!OpTy || !Cond || !Default) 2699 return Error(InvalidRecord); 2700 unsigned NumCases = (Record.size()-3)/2; 2701 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 2702 InstructionList.push_back(SI); 2703 for (unsigned i = 0, e = NumCases; i != e; ++i) { 2704 ConstantInt *CaseVal = 2705 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 2706 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 2707 if (!CaseVal || !DestBB) { 2708 delete SI; 2709 return Error(InvalidRecord); 2710 } 2711 SI->addCase(CaseVal, DestBB); 2712 } 2713 I = SI; 2714 break; 2715 } 2716 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 2717 if (Record.size() < 2) 2718 return Error(InvalidRecord); 2719 Type *OpTy = getTypeByID(Record[0]); 2720 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 2721 if (!OpTy || !Address) 2722 return Error(InvalidRecord); 2723 unsigned NumDests = Record.size()-2; 2724 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 2725 InstructionList.push_back(IBI); 2726 for (unsigned i = 0, e = NumDests; i != e; ++i) { 2727 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 2728 IBI->addDestination(DestBB); 2729 } else { 2730 delete IBI; 2731 return Error(InvalidRecord); 2732 } 2733 } 2734 I = IBI; 2735 break; 2736 } 2737 2738 case bitc::FUNC_CODE_INST_INVOKE: { 2739 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 2740 if (Record.size() < 4) 2741 return Error(InvalidRecord); 2742 AttributeSet PAL = getAttributes(Record[0]); 2743 unsigned CCInfo = Record[1]; 2744 BasicBlock *NormalBB = getBasicBlock(Record[2]); 2745 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 2746 2747 unsigned OpNum = 4; 2748 Value *Callee; 2749 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 2750 return Error(InvalidRecord); 2751 2752 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 2753 FunctionType *FTy = !CalleeTy ? nullptr : 2754 dyn_cast<FunctionType>(CalleeTy->getElementType()); 2755 2756 // Check that the right number of fixed parameters are here. 2757 if (!FTy || !NormalBB || !UnwindBB || 2758 Record.size() < OpNum+FTy->getNumParams()) 2759 return Error(InvalidRecord); 2760 2761 SmallVector<Value*, 16> Ops; 2762 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 2763 Ops.push_back(getValue(Record, OpNum, NextValueNo, 2764 FTy->getParamType(i))); 2765 if (!Ops.back()) 2766 return Error(InvalidRecord); 2767 } 2768 2769 if (!FTy->isVarArg()) { 2770 if (Record.size() != OpNum) 2771 return Error(InvalidRecord); 2772 } else { 2773 // Read type/value pairs for varargs params. 2774 while (OpNum != Record.size()) { 2775 Value *Op; 2776 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2777 return Error(InvalidRecord); 2778 Ops.push_back(Op); 2779 } 2780 } 2781 2782 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); 2783 InstructionList.push_back(I); 2784 cast<InvokeInst>(I)->setCallingConv( 2785 static_cast<CallingConv::ID>(CCInfo)); 2786 cast<InvokeInst>(I)->setAttributes(PAL); 2787 break; 2788 } 2789 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 2790 unsigned Idx = 0; 2791 Value *Val = nullptr; 2792 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 2793 return Error(InvalidRecord); 2794 I = ResumeInst::Create(Val); 2795 InstructionList.push_back(I); 2796 break; 2797 } 2798 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 2799 I = new UnreachableInst(Context); 2800 InstructionList.push_back(I); 2801 break; 2802 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 2803 if (Record.size() < 1 || ((Record.size()-1)&1)) 2804 return Error(InvalidRecord); 2805 Type *Ty = getTypeByID(Record[0]); 2806 if (!Ty) 2807 return Error(InvalidRecord); 2808 2809 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 2810 InstructionList.push_back(PN); 2811 2812 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 2813 Value *V; 2814 // With the new function encoding, it is possible that operands have 2815 // negative IDs (for forward references). Use a signed VBR 2816 // representation to keep the encoding small. 2817 if (UseRelativeIDs) 2818 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 2819 else 2820 V = getValue(Record, 1+i, NextValueNo, Ty); 2821 BasicBlock *BB = getBasicBlock(Record[2+i]); 2822 if (!V || !BB) 2823 return Error(InvalidRecord); 2824 PN->addIncoming(V, BB); 2825 } 2826 I = PN; 2827 break; 2828 } 2829 2830 case bitc::FUNC_CODE_INST_LANDINGPAD: { 2831 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 2832 unsigned Idx = 0; 2833 if (Record.size() < 4) 2834 return Error(InvalidRecord); 2835 Type *Ty = getTypeByID(Record[Idx++]); 2836 if (!Ty) 2837 return Error(InvalidRecord); 2838 Value *PersFn = nullptr; 2839 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 2840 return Error(InvalidRecord); 2841 2842 bool IsCleanup = !!Record[Idx++]; 2843 unsigned NumClauses = Record[Idx++]; 2844 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses); 2845 LP->setCleanup(IsCleanup); 2846 for (unsigned J = 0; J != NumClauses; ++J) { 2847 LandingPadInst::ClauseType CT = 2848 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 2849 Value *Val; 2850 2851 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 2852 delete LP; 2853 return Error(InvalidRecord); 2854 } 2855 2856 assert((CT != LandingPadInst::Catch || 2857 !isa<ArrayType>(Val->getType())) && 2858 "Catch clause has a invalid type!"); 2859 assert((CT != LandingPadInst::Filter || 2860 isa<ArrayType>(Val->getType())) && 2861 "Filter clause has invalid type!"); 2862 LP->addClause(Val); 2863 } 2864 2865 I = LP; 2866 InstructionList.push_back(I); 2867 break; 2868 } 2869 2870 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 2871 if (Record.size() != 4) 2872 return Error(InvalidRecord); 2873 PointerType *Ty = 2874 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 2875 Type *OpTy = getTypeByID(Record[1]); 2876 Value *Size = getFnValueByID(Record[2], OpTy); 2877 unsigned Align = Record[3]; 2878 if (!Ty || !Size) 2879 return Error(InvalidRecord); 2880 I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); 2881 InstructionList.push_back(I); 2882 break; 2883 } 2884 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 2885 unsigned OpNum = 0; 2886 Value *Op; 2887 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2888 OpNum+2 != Record.size()) 2889 return Error(InvalidRecord); 2890 2891 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); 2892 InstructionList.push_back(I); 2893 break; 2894 } 2895 case bitc::FUNC_CODE_INST_LOADATOMIC: { 2896 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 2897 unsigned OpNum = 0; 2898 Value *Op; 2899 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2900 OpNum+4 != Record.size()) 2901 return Error(InvalidRecord); 2902 2903 2904 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 2905 if (Ordering == NotAtomic || Ordering == Release || 2906 Ordering == AcquireRelease) 2907 return Error(InvalidRecord); 2908 if (Ordering != NotAtomic && Record[OpNum] == 0) 2909 return Error(InvalidRecord); 2910 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 2911 2912 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1, 2913 Ordering, SynchScope); 2914 InstructionList.push_back(I); 2915 break; 2916 } 2917 case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol] 2918 unsigned OpNum = 0; 2919 Value *Val, *Ptr; 2920 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 2921 popValue(Record, OpNum, NextValueNo, 2922 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 2923 OpNum+2 != Record.size()) 2924 return Error(InvalidRecord); 2925 2926 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 2927 InstructionList.push_back(I); 2928 break; 2929 } 2930 case bitc::FUNC_CODE_INST_STOREATOMIC: { 2931 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 2932 unsigned OpNum = 0; 2933 Value *Val, *Ptr; 2934 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 2935 popValue(Record, OpNum, NextValueNo, 2936 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 2937 OpNum+4 != Record.size()) 2938 return Error(InvalidRecord); 2939 2940 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 2941 if (Ordering == NotAtomic || Ordering == Acquire || 2942 Ordering == AcquireRelease) 2943 return Error(InvalidRecord); 2944 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 2945 if (Ordering != NotAtomic && Record[OpNum] == 0) 2946 return Error(InvalidRecord); 2947 2948 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1, 2949 Ordering, SynchScope); 2950 InstructionList.push_back(I); 2951 break; 2952 } 2953 case bitc::FUNC_CODE_INST_CMPXCHG: { 2954 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 2955 // failureordering] 2956 unsigned OpNum = 0; 2957 Value *Ptr, *Cmp, *New; 2958 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 2959 popValue(Record, OpNum, NextValueNo, 2960 cast<PointerType>(Ptr->getType())->getElementType(), Cmp) || 2961 popValue(Record, OpNum, NextValueNo, 2962 cast<PointerType>(Ptr->getType())->getElementType(), New) || 2963 (OpNum + 3 != Record.size() && OpNum + 4 != Record.size())) 2964 return Error(InvalidRecord); 2965 AtomicOrdering SuccessOrdering = GetDecodedOrdering(Record[OpNum+1]); 2966 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 2967 return Error(InvalidRecord); 2968 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]); 2969 2970 AtomicOrdering FailureOrdering; 2971 if (Record.size() < 7) 2972 FailureOrdering = 2973 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 2974 else 2975 FailureOrdering = GetDecodedOrdering(Record[OpNum+3]); 2976 2977 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 2978 SynchScope); 2979 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 2980 InstructionList.push_back(I); 2981 break; 2982 } 2983 case bitc::FUNC_CODE_INST_ATOMICRMW: { 2984 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 2985 unsigned OpNum = 0; 2986 Value *Ptr, *Val; 2987 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 2988 popValue(Record, OpNum, NextValueNo, 2989 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 2990 OpNum+4 != Record.size()) 2991 return Error(InvalidRecord); 2992 AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]); 2993 if (Operation < AtomicRMWInst::FIRST_BINOP || 2994 Operation > AtomicRMWInst::LAST_BINOP) 2995 return Error(InvalidRecord); 2996 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 2997 if (Ordering == NotAtomic || Ordering == Unordered) 2998 return Error(InvalidRecord); 2999 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3000 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 3001 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 3002 InstructionList.push_back(I); 3003 break; 3004 } 3005 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 3006 if (2 != Record.size()) 3007 return Error(InvalidRecord); 3008 AtomicOrdering Ordering = GetDecodedOrdering(Record[0]); 3009 if (Ordering == NotAtomic || Ordering == Unordered || 3010 Ordering == Monotonic) 3011 return Error(InvalidRecord); 3012 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]); 3013 I = new FenceInst(Context, Ordering, SynchScope); 3014 InstructionList.push_back(I); 3015 break; 3016 } 3017 case bitc::FUNC_CODE_INST_CALL: { 3018 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 3019 if (Record.size() < 3) 3020 return Error(InvalidRecord); 3021 3022 AttributeSet PAL = getAttributes(Record[0]); 3023 unsigned CCInfo = Record[1]; 3024 3025 unsigned OpNum = 2; 3026 Value *Callee; 3027 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3028 return Error(InvalidRecord); 3029 3030 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 3031 FunctionType *FTy = nullptr; 3032 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 3033 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 3034 return Error(InvalidRecord); 3035 3036 SmallVector<Value*, 16> Args; 3037 // Read the fixed params. 3038 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3039 if (FTy->getParamType(i)->isLabelTy()) 3040 Args.push_back(getBasicBlock(Record[OpNum])); 3041 else 3042 Args.push_back(getValue(Record, OpNum, NextValueNo, 3043 FTy->getParamType(i))); 3044 if (!Args.back()) 3045 return Error(InvalidRecord); 3046 } 3047 3048 // Read type/value pairs for varargs params. 3049 if (!FTy->isVarArg()) { 3050 if (OpNum != Record.size()) 3051 return Error(InvalidRecord); 3052 } else { 3053 while (OpNum != Record.size()) { 3054 Value *Op; 3055 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3056 return Error(InvalidRecord); 3057 Args.push_back(Op); 3058 } 3059 } 3060 3061 I = CallInst::Create(Callee, Args); 3062 InstructionList.push_back(I); 3063 cast<CallInst>(I)->setCallingConv( 3064 static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1)); 3065 CallInst::TailCallKind TCK = CallInst::TCK_None; 3066 if (CCInfo & 1) 3067 TCK = CallInst::TCK_Tail; 3068 if (CCInfo & (1 << 14)) 3069 TCK = CallInst::TCK_MustTail; 3070 cast<CallInst>(I)->setTailCallKind(TCK); 3071 cast<CallInst>(I)->setAttributes(PAL); 3072 break; 3073 } 3074 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 3075 if (Record.size() < 3) 3076 return Error(InvalidRecord); 3077 Type *OpTy = getTypeByID(Record[0]); 3078 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 3079 Type *ResTy = getTypeByID(Record[2]); 3080 if (!OpTy || !Op || !ResTy) 3081 return Error(InvalidRecord); 3082 I = new VAArgInst(Op, ResTy); 3083 InstructionList.push_back(I); 3084 break; 3085 } 3086 } 3087 3088 // Add instruction to end of current BB. If there is no current BB, reject 3089 // this file. 3090 if (!CurBB) { 3091 delete I; 3092 return Error(InvalidInstructionWithNoBB); 3093 } 3094 CurBB->getInstList().push_back(I); 3095 3096 // If this was a terminator instruction, move to the next block. 3097 if (isa<TerminatorInst>(I)) { 3098 ++CurBBNo; 3099 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 3100 } 3101 3102 // Non-void values get registered in the value table for future use. 3103 if (I && !I->getType()->isVoidTy()) 3104 ValueList.AssignValue(I, NextValueNo++); 3105 } 3106 3107 OutOfRecordLoop: 3108 3109 // Check the function list for unresolved values. 3110 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 3111 if (!A->getParent()) { 3112 // We found at least one unresolved value. Nuke them all to avoid leaks. 3113 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 3114 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 3115 A->replaceAllUsesWith(UndefValue::get(A->getType())); 3116 delete A; 3117 } 3118 } 3119 return Error(NeverResolvedValueFoundInFunction); 3120 } 3121 } 3122 3123 // FIXME: Check for unresolved forward-declared metadata references 3124 // and clean up leaks. 3125 3126 // See if anything took the address of blocks in this function. If so, 3127 // resolve them now. 3128 DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI = 3129 BlockAddrFwdRefs.find(F); 3130 if (BAFRI != BlockAddrFwdRefs.end()) { 3131 std::vector<BlockAddrRefTy> &RefList = BAFRI->second; 3132 for (unsigned i = 0, e = RefList.size(); i != e; ++i) { 3133 unsigned BlockIdx = RefList[i].first; 3134 if (BlockIdx >= FunctionBBs.size()) 3135 return Error(InvalidID); 3136 3137 GlobalVariable *FwdRef = RefList[i].second; 3138 FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx])); 3139 FwdRef->eraseFromParent(); 3140 } 3141 3142 BlockAddrFwdRefs.erase(BAFRI); 3143 } 3144 3145 // Trim the value list down to the size it was before we parsed this function. 3146 ValueList.shrinkTo(ModuleValueListSize); 3147 MDValueList.shrinkTo(ModuleMDValueListSize); 3148 std::vector<BasicBlock*>().swap(FunctionBBs); 3149 return error_code(); 3150 } 3151 3152 /// Find the function body in the bitcode stream 3153 error_code BitcodeReader::FindFunctionInStream(Function *F, 3154 DenseMap<Function*, uint64_t>::iterator DeferredFunctionInfoIterator) { 3155 while (DeferredFunctionInfoIterator->second == 0) { 3156 if (Stream.AtEndOfStream()) 3157 return Error(CouldNotFindFunctionInStream); 3158 // ParseModule will parse the next body in the stream and set its 3159 // position in the DeferredFunctionInfo map. 3160 if (error_code EC = ParseModule(true)) 3161 return EC; 3162 } 3163 return error_code(); 3164 } 3165 3166 //===----------------------------------------------------------------------===// 3167 // GVMaterializer implementation 3168 //===----------------------------------------------------------------------===// 3169 3170 3171 bool BitcodeReader::isMaterializable(const GlobalValue *GV) const { 3172 if (const Function *F = dyn_cast<Function>(GV)) { 3173 return F->isDeclaration() && 3174 DeferredFunctionInfo.count(const_cast<Function*>(F)); 3175 } 3176 return false; 3177 } 3178 3179 error_code BitcodeReader::Materialize(GlobalValue *GV) { 3180 Function *F = dyn_cast<Function>(GV); 3181 // If it's not a function or is already material, ignore the request. 3182 if (!F || !F->isMaterializable()) 3183 return error_code(); 3184 3185 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 3186 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 3187 // If its position is recorded as 0, its body is somewhere in the stream 3188 // but we haven't seen it yet. 3189 if (DFII->second == 0 && LazyStreamer) 3190 if (error_code EC = FindFunctionInStream(F, DFII)) 3191 return EC; 3192 3193 // Move the bit stream to the saved position of the deferred function body. 3194 Stream.JumpToBit(DFII->second); 3195 3196 if (error_code EC = ParseFunctionBody(F)) 3197 return EC; 3198 3199 // Upgrade any old intrinsic calls in the function. 3200 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 3201 E = UpgradedIntrinsics.end(); I != E; ++I) { 3202 if (I->first != I->second) { 3203 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3204 UI != UE;) { 3205 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3206 UpgradeIntrinsicCall(CI, I->second); 3207 } 3208 } 3209 } 3210 3211 return error_code(); 3212 } 3213 3214 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 3215 const Function *F = dyn_cast<Function>(GV); 3216 if (!F || F->isDeclaration()) 3217 return false; 3218 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 3219 } 3220 3221 void BitcodeReader::Dematerialize(GlobalValue *GV) { 3222 Function *F = dyn_cast<Function>(GV); 3223 // If this function isn't dematerializable, this is a noop. 3224 if (!F || !isDematerializable(F)) 3225 return; 3226 3227 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 3228 3229 // Just forget the function body, we can remat it later. 3230 F->deleteBody(); 3231 } 3232 3233 3234 error_code BitcodeReader::MaterializeModule(Module *M) { 3235 assert(M == TheModule && 3236 "Can only Materialize the Module this BitcodeReader is attached to."); 3237 // Iterate over the module, deserializing any functions that are still on 3238 // disk. 3239 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 3240 F != E; ++F) { 3241 if (F->isMaterializable()) { 3242 if (error_code EC = Materialize(F)) 3243 return EC; 3244 } 3245 } 3246 // At this point, if there are any function bodies, the current bit is 3247 // pointing to the END_BLOCK record after them. Now make sure the rest 3248 // of the bits in the module have been read. 3249 if (NextUnreadBit) 3250 ParseModule(true); 3251 3252 // Upgrade any intrinsic calls that slipped through (should not happen!) and 3253 // delete the old functions to clean up. We can't do this unless the entire 3254 // module is materialized because there could always be another function body 3255 // with calls to the old function. 3256 for (std::vector<std::pair<Function*, Function*> >::iterator I = 3257 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 3258 if (I->first != I->second) { 3259 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3260 UI != UE;) { 3261 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3262 UpgradeIntrinsicCall(CI, I->second); 3263 } 3264 if (!I->first->use_empty()) 3265 I->first->replaceAllUsesWith(I->second); 3266 I->first->eraseFromParent(); 3267 } 3268 } 3269 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 3270 3271 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 3272 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 3273 3274 UpgradeDebugInfo(*M); 3275 return error_code(); 3276 } 3277 3278 error_code BitcodeReader::InitStream() { 3279 if (LazyStreamer) 3280 return InitLazyStream(); 3281 return InitStreamFromBuffer(); 3282 } 3283 3284 error_code BitcodeReader::InitStreamFromBuffer() { 3285 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 3286 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 3287 3288 if (Buffer->getBufferSize() & 3) { 3289 if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd)) 3290 return Error(InvalidBitcodeSignature); 3291 else 3292 return Error(BitcodeStreamInvalidSize); 3293 } 3294 3295 // If we have a wrapper header, parse it and ignore the non-bc file contents. 3296 // The magic number is 0x0B17C0DE stored in little endian. 3297 if (isBitcodeWrapper(BufPtr, BufEnd)) 3298 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 3299 return Error(InvalidBitcodeWrapperHeader); 3300 3301 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 3302 Stream.init(*StreamFile); 3303 3304 return error_code(); 3305 } 3306 3307 error_code BitcodeReader::InitLazyStream() { 3308 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 3309 // see it. 3310 StreamingMemoryObject *Bytes = new StreamingMemoryObject(LazyStreamer); 3311 StreamFile.reset(new BitstreamReader(Bytes)); 3312 Stream.init(*StreamFile); 3313 3314 unsigned char buf[16]; 3315 if (Bytes->readBytes(0, 16, buf) == -1) 3316 return Error(BitcodeStreamInvalidSize); 3317 3318 if (!isBitcode(buf, buf + 16)) 3319 return Error(InvalidBitcodeSignature); 3320 3321 if (isBitcodeWrapper(buf, buf + 4)) { 3322 const unsigned char *bitcodeStart = buf; 3323 const unsigned char *bitcodeEnd = buf + 16; 3324 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 3325 Bytes->dropLeadingBytes(bitcodeStart - buf); 3326 Bytes->setKnownObjectSize(bitcodeEnd - bitcodeStart); 3327 } 3328 return error_code(); 3329 } 3330 3331 namespace { 3332 class BitcodeErrorCategoryType : public error_category { 3333 const char *name() const override { 3334 return "llvm.bitcode"; 3335 } 3336 std::string message(int IE) const override { 3337 BitcodeReader::ErrorType E = static_cast<BitcodeReader::ErrorType>(IE); 3338 switch (E) { 3339 case BitcodeReader::BitcodeStreamInvalidSize: 3340 return "Bitcode stream length should be >= 16 bytes and a multiple of 4"; 3341 case BitcodeReader::ConflictingMETADATA_KINDRecords: 3342 return "Conflicting METADATA_KIND records"; 3343 case BitcodeReader::CouldNotFindFunctionInStream: 3344 return "Could not find function in stream"; 3345 case BitcodeReader::ExpectedConstant: 3346 return "Expected a constant"; 3347 case BitcodeReader::InsufficientFunctionProtos: 3348 return "Insufficient function protos"; 3349 case BitcodeReader::InvalidBitcodeSignature: 3350 return "Invalid bitcode signature"; 3351 case BitcodeReader::InvalidBitcodeWrapperHeader: 3352 return "Invalid bitcode wrapper header"; 3353 case BitcodeReader::InvalidConstantReference: 3354 return "Invalid ronstant reference"; 3355 case BitcodeReader::InvalidID: 3356 return "Invalid ID"; 3357 case BitcodeReader::InvalidInstructionWithNoBB: 3358 return "Invalid instruction with no BB"; 3359 case BitcodeReader::InvalidRecord: 3360 return "Invalid record"; 3361 case BitcodeReader::InvalidTypeForValue: 3362 return "Invalid type for value"; 3363 case BitcodeReader::InvalidTYPETable: 3364 return "Invalid TYPE table"; 3365 case BitcodeReader::InvalidType: 3366 return "Invalid type"; 3367 case BitcodeReader::MalformedBlock: 3368 return "Malformed block"; 3369 case BitcodeReader::MalformedGlobalInitializerSet: 3370 return "Malformed global initializer set"; 3371 case BitcodeReader::InvalidMultipleBlocks: 3372 return "Invalid multiple blocks"; 3373 case BitcodeReader::NeverResolvedValueFoundInFunction: 3374 return "Never resolved value found in function"; 3375 case BitcodeReader::InvalidValue: 3376 return "Invalid value"; 3377 } 3378 llvm_unreachable("Unknown error type!"); 3379 } 3380 }; 3381 } 3382 3383 const error_category &BitcodeReader::BitcodeErrorCategory() { 3384 static BitcodeErrorCategoryType O; 3385 return O; 3386 } 3387 3388 //===----------------------------------------------------------------------===// 3389 // External interface 3390 //===----------------------------------------------------------------------===// 3391 3392 /// getLazyBitcodeModule - lazy function-at-a-time loading from a file. 3393 /// 3394 ErrorOr<Module *> llvm::getLazyBitcodeModule(MemoryBuffer *Buffer, 3395 LLVMContext &Context) { 3396 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 3397 BitcodeReader *R = new BitcodeReader(Buffer, Context); 3398 M->setMaterializer(R); 3399 if (error_code EC = R->ParseBitcodeInto(M)) { 3400 delete M; // Also deletes R. 3401 return EC; 3402 } 3403 // Have the BitcodeReader dtor delete 'Buffer'. 3404 R->setBufferOwned(true); 3405 3406 R->materializeForwardReferencedFunctions(); 3407 3408 return M; 3409 } 3410 3411 3412 Module *llvm::getStreamedBitcodeModule(const std::string &name, 3413 DataStreamer *streamer, 3414 LLVMContext &Context, 3415 std::string *ErrMsg) { 3416 Module *M = new Module(name, Context); 3417 BitcodeReader *R = new BitcodeReader(streamer, Context); 3418 M->setMaterializer(R); 3419 if (error_code EC = R->ParseBitcodeInto(M)) { 3420 if (ErrMsg) 3421 *ErrMsg = EC.message(); 3422 delete M; // Also deletes R. 3423 return nullptr; 3424 } 3425 R->setBufferOwned(false); // no buffer to delete 3426 return M; 3427 } 3428 3429 ErrorOr<Module *> llvm::parseBitcodeFile(MemoryBuffer *Buffer, 3430 LLVMContext &Context) { 3431 ErrorOr<Module *> ModuleOrErr = getLazyBitcodeModule(Buffer, Context); 3432 if (!ModuleOrErr) 3433 return ModuleOrErr; 3434 Module *M = ModuleOrErr.get(); 3435 3436 // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether 3437 // there was an error. 3438 static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false); 3439 3440 // Read in the entire module, and destroy the BitcodeReader. 3441 if (error_code EC = M->materializeAllPermanently()) { 3442 delete M; 3443 return EC; 3444 } 3445 3446 // TODO: Restore the use-lists to the in-memory state when the bitcode was 3447 // written. We must defer until the Module has been fully materialized. 3448 3449 return M; 3450 } 3451 3452 std::string llvm::getBitcodeTargetTriple(MemoryBuffer *Buffer, 3453 LLVMContext& Context, 3454 std::string *ErrMsg) { 3455 BitcodeReader *R = new BitcodeReader(Buffer, Context); 3456 // Don't let the BitcodeReader dtor delete 'Buffer'. 3457 R->setBufferOwned(false); 3458 3459 std::string Triple(""); 3460 if (error_code EC = R->ParseTriple(Triple)) 3461 if (ErrMsg) 3462 *ErrMsg = EC.message(); 3463 3464 delete R; 3465 return Triple; 3466 } 3467