1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/ADT/STLExtras.h" 11 #include "llvm/ADT/SmallString.h" 12 #include "llvm/ADT/SmallVector.h" 13 #include "llvm/ADT/Triple.h" 14 #include "llvm/Bitcode/BitstreamReader.h" 15 #include "llvm/Bitcode/LLVMBitCodes.h" 16 #include "llvm/Bitcode/ReaderWriter.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/ModuleSummaryIndex.h" 29 #include "llvm/IR/OperandTraits.h" 30 #include "llvm/IR/Operator.h" 31 #include "llvm/IR/ValueHandle.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/DataStream.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/ManagedStatic.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/MemoryBuffer.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include <deque> 40 41 using namespace llvm; 42 43 static cl::opt<bool> PrintSummaryGUIDs( 44 "print-summary-global-ids", cl::init(false), cl::Hidden, 45 cl::desc( 46 "Print the global id for each value when reading the module summary")); 47 48 namespace { 49 enum { 50 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 51 }; 52 53 class BitcodeReaderValueList { 54 std::vector<WeakVH> ValuePtrs; 55 56 /// As we resolve forward-referenced constants, we add information about them 57 /// to this vector. This allows us to resolve them in bulk instead of 58 /// resolving each reference at a time. See the code in 59 /// ResolveConstantForwardRefs for more information about this. 60 /// 61 /// The key of this vector is the placeholder constant, the value is the slot 62 /// number that holds the resolved value. 63 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 64 ResolveConstantsTy ResolveConstants; 65 LLVMContext &Context; 66 public: 67 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 68 ~BitcodeReaderValueList() { 69 assert(ResolveConstants.empty() && "Constants not resolved?"); 70 } 71 72 // vector compatibility methods 73 unsigned size() const { return ValuePtrs.size(); } 74 void resize(unsigned N) { ValuePtrs.resize(N); } 75 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 76 77 void clear() { 78 assert(ResolveConstants.empty() && "Constants not resolved?"); 79 ValuePtrs.clear(); 80 } 81 82 Value *operator[](unsigned i) const { 83 assert(i < ValuePtrs.size()); 84 return ValuePtrs[i]; 85 } 86 87 Value *back() const { return ValuePtrs.back(); } 88 void pop_back() { ValuePtrs.pop_back(); } 89 bool empty() const { return ValuePtrs.empty(); } 90 void shrinkTo(unsigned N) { 91 assert(N <= size() && "Invalid shrinkTo request!"); 92 ValuePtrs.resize(N); 93 } 94 95 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 96 Value *getValueFwdRef(unsigned Idx, Type *Ty); 97 98 void assignValue(Value *V, unsigned Idx); 99 100 /// Once all constants are read, this method bulk resolves any forward 101 /// references. 102 void resolveConstantForwardRefs(); 103 }; 104 105 class BitcodeReaderMetadataList { 106 unsigned NumFwdRefs; 107 bool AnyFwdRefs; 108 unsigned MinFwdRef; 109 unsigned MaxFwdRef; 110 111 /// Array of metadata references. 112 /// 113 /// Don't use std::vector here. Some versions of libc++ copy (instead of 114 /// move) on resize, and TrackingMDRef is very expensive to copy. 115 SmallVector<TrackingMDRef, 1> MetadataPtrs; 116 117 /// Structures for resolving old type refs. 118 struct { 119 SmallDenseMap<MDString *, TempMDTuple, 1> Unknown; 120 SmallDenseMap<MDString *, DICompositeType *, 1> Final; 121 SmallDenseMap<MDString *, DICompositeType *, 1> FwdDecls; 122 SmallVector<std::pair<TrackingMDRef, TempMDTuple>, 1> Arrays; 123 } OldTypeRefs; 124 125 LLVMContext &Context; 126 public: 127 BitcodeReaderMetadataList(LLVMContext &C) 128 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 129 130 // vector compatibility methods 131 unsigned size() const { return MetadataPtrs.size(); } 132 void resize(unsigned N) { MetadataPtrs.resize(N); } 133 void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); } 134 void clear() { MetadataPtrs.clear(); } 135 Metadata *back() const { return MetadataPtrs.back(); } 136 void pop_back() { MetadataPtrs.pop_back(); } 137 bool empty() const { return MetadataPtrs.empty(); } 138 139 Metadata *operator[](unsigned i) const { 140 assert(i < MetadataPtrs.size()); 141 return MetadataPtrs[i]; 142 } 143 144 Metadata *lookup(unsigned I) const { 145 if (I < MetadataPtrs.size()) 146 return MetadataPtrs[I]; 147 return nullptr; 148 } 149 150 void shrinkTo(unsigned N) { 151 assert(N <= size() && "Invalid shrinkTo request!"); 152 assert(!AnyFwdRefs && "Unexpected forward refs"); 153 MetadataPtrs.resize(N); 154 } 155 156 /// Return the given metadata, creating a replaceable forward reference if 157 /// necessary. 158 Metadata *getMetadataFwdRef(unsigned Idx); 159 160 /// Return the the given metadata only if it is fully resolved. 161 /// 162 /// Gives the same result as \a lookup(), unless \a MDNode::isResolved() 163 /// would give \c false. 164 Metadata *getMetadataIfResolved(unsigned Idx); 165 166 MDNode *getMDNodeFwdRefOrNull(unsigned Idx); 167 void assignValue(Metadata *MD, unsigned Idx); 168 void tryToResolveCycles(); 169 bool hasFwdRefs() const { return AnyFwdRefs; } 170 171 /// Upgrade a type that had an MDString reference. 172 void addTypeRef(MDString &UUID, DICompositeType &CT); 173 174 /// Upgrade a type that had an MDString reference. 175 Metadata *upgradeTypeRef(Metadata *MaybeUUID); 176 177 /// Upgrade a type ref array that may have MDString references. 178 Metadata *upgradeTypeRefArray(Metadata *MaybeTuple); 179 180 private: 181 Metadata *resolveTypeRefArray(Metadata *MaybeTuple); 182 }; 183 184 class BitcodeReader : public GVMaterializer { 185 LLVMContext &Context; 186 Module *TheModule = nullptr; 187 std::unique_ptr<MemoryBuffer> Buffer; 188 std::unique_ptr<BitstreamReader> StreamFile; 189 BitstreamCursor Stream; 190 // Next offset to start scanning for lazy parsing of function bodies. 191 uint64_t NextUnreadBit = 0; 192 // Last function offset found in the VST. 193 uint64_t LastFunctionBlockBit = 0; 194 bool SeenValueSymbolTable = false; 195 uint64_t VSTOffset = 0; 196 // Contains an arbitrary and optional string identifying the bitcode producer 197 std::string ProducerIdentification; 198 199 std::vector<Type*> TypeList; 200 BitcodeReaderValueList ValueList; 201 BitcodeReaderMetadataList MetadataList; 202 std::vector<Comdat *> ComdatList; 203 SmallVector<Instruction *, 64> InstructionList; 204 205 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 206 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits; 207 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 208 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 209 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 210 211 SmallVector<Instruction*, 64> InstsWithTBAATag; 212 213 bool HasSeenOldLoopTags = false; 214 215 /// The set of attributes by index. Index zero in the file is for null, and 216 /// is thus not represented here. As such all indices are off by one. 217 std::vector<AttributeSet> MAttributes; 218 219 /// The set of attribute groups. 220 std::map<unsigned, AttributeSet> MAttributeGroups; 221 222 /// While parsing a function body, this is a list of the basic blocks for the 223 /// function. 224 std::vector<BasicBlock*> FunctionBBs; 225 226 // When reading the module header, this list is populated with functions that 227 // have bodies later in the file. 228 std::vector<Function*> FunctionsWithBodies; 229 230 // When intrinsic functions are encountered which require upgrading they are 231 // stored here with their replacement function. 232 typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap; 233 UpgradedIntrinsicMap UpgradedIntrinsics; 234 235 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 236 DenseMap<unsigned, unsigned> MDKindMap; 237 238 // Several operations happen after the module header has been read, but 239 // before function bodies are processed. This keeps track of whether 240 // we've done this yet. 241 bool SeenFirstFunctionBody = false; 242 243 /// When function bodies are initially scanned, this map contains info about 244 /// where to find deferred function body in the stream. 245 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 246 247 /// When Metadata block is initially scanned when parsing the module, we may 248 /// choose to defer parsing of the metadata. This vector contains info about 249 /// which Metadata blocks are deferred. 250 std::vector<uint64_t> DeferredMetadataInfo; 251 252 /// These are basic blocks forward-referenced by block addresses. They are 253 /// inserted lazily into functions when they're loaded. The basic block ID is 254 /// its index into the vector. 255 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 256 std::deque<Function *> BasicBlockFwdRefQueue; 257 258 /// Indicates that we are using a new encoding for instruction operands where 259 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 260 /// instruction number, for a more compact encoding. Some instruction 261 /// operands are not relative to the instruction ID: basic block numbers, and 262 /// types. Once the old style function blocks have been phased out, we would 263 /// not need this flag. 264 bool UseRelativeIDs = false; 265 266 /// True if all functions will be materialized, negating the need to process 267 /// (e.g.) blockaddress forward references. 268 bool WillMaterializeAllForwardRefs = false; 269 270 /// True if any Metadata block has been materialized. 271 bool IsMetadataMaterialized = false; 272 273 bool StripDebugInfo = false; 274 275 /// Functions that need to be matched with subprograms when upgrading old 276 /// metadata. 277 SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs; 278 279 std::vector<std::string> BundleTags; 280 281 public: 282 std::error_code error(BitcodeError E, const Twine &Message); 283 std::error_code error(BitcodeError E); 284 std::error_code error(const Twine &Message); 285 286 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context); 287 BitcodeReader(LLVMContext &Context); 288 ~BitcodeReader() override { freeState(); } 289 290 std::error_code materializeForwardReferencedFunctions(); 291 292 void freeState(); 293 294 void releaseBuffer(); 295 296 std::error_code materialize(GlobalValue *GV) override; 297 std::error_code materializeModule() override; 298 std::vector<StructType *> getIdentifiedStructTypes() const override; 299 300 /// \brief Main interface to parsing a bitcode buffer. 301 /// \returns true if an error occurred. 302 std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 303 Module *M, 304 bool ShouldLazyLoadMetadata = false); 305 306 /// \brief Cheap mechanism to just extract module triple 307 /// \returns true if an error occurred. 308 ErrorOr<std::string> parseTriple(); 309 310 /// Cheap mechanism to just extract the identification block out of bitcode. 311 ErrorOr<std::string> parseIdentificationBlock(); 312 313 static uint64_t decodeSignRotatedValue(uint64_t V); 314 315 /// Materialize any deferred Metadata block. 316 std::error_code materializeMetadata() override; 317 318 void setStripDebugInfo() override; 319 320 private: 321 /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the 322 // ProducerIdentification data member, and do some basic enforcement on the 323 // "epoch" encoded in the bitcode. 324 std::error_code parseBitcodeVersion(); 325 326 std::vector<StructType *> IdentifiedStructTypes; 327 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 328 StructType *createIdentifiedStructType(LLVMContext &Context); 329 330 Type *getTypeByID(unsigned ID); 331 Value *getFnValueByID(unsigned ID, Type *Ty) { 332 if (Ty && Ty->isMetadataTy()) 333 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 334 return ValueList.getValueFwdRef(ID, Ty); 335 } 336 Metadata *getFnMetadataByID(unsigned ID) { 337 return MetadataList.getMetadataFwdRef(ID); 338 } 339 BasicBlock *getBasicBlock(unsigned ID) const { 340 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 341 return FunctionBBs[ID]; 342 } 343 AttributeSet getAttributes(unsigned i) const { 344 if (i-1 < MAttributes.size()) 345 return MAttributes[i-1]; 346 return AttributeSet(); 347 } 348 349 /// Read a value/type pair out of the specified record from slot 'Slot'. 350 /// Increment Slot past the number of slots used in the record. Return true on 351 /// failure. 352 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 353 unsigned InstNum, Value *&ResVal) { 354 if (Slot == Record.size()) return true; 355 unsigned ValNo = (unsigned)Record[Slot++]; 356 // Adjust the ValNo, if it was encoded relative to the InstNum. 357 if (UseRelativeIDs) 358 ValNo = InstNum - ValNo; 359 if (ValNo < InstNum) { 360 // If this is not a forward reference, just return the value we already 361 // have. 362 ResVal = getFnValueByID(ValNo, nullptr); 363 return ResVal == nullptr; 364 } 365 if (Slot == Record.size()) 366 return true; 367 368 unsigned TypeNo = (unsigned)Record[Slot++]; 369 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 370 return ResVal == nullptr; 371 } 372 373 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 374 /// past the number of slots used by the value in the record. Return true if 375 /// there is an error. 376 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 377 unsigned InstNum, Type *Ty, Value *&ResVal) { 378 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 379 return true; 380 // All values currently take a single record slot. 381 ++Slot; 382 return false; 383 } 384 385 /// Like popValue, but does not increment the Slot number. 386 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 387 unsigned InstNum, Type *Ty, Value *&ResVal) { 388 ResVal = getValue(Record, Slot, InstNum, Ty); 389 return ResVal == nullptr; 390 } 391 392 /// Version of getValue that returns ResVal directly, or 0 if there is an 393 /// error. 394 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 395 unsigned InstNum, Type *Ty) { 396 if (Slot == Record.size()) return nullptr; 397 unsigned ValNo = (unsigned)Record[Slot]; 398 // Adjust the ValNo, if it was encoded relative to the InstNum. 399 if (UseRelativeIDs) 400 ValNo = InstNum - ValNo; 401 return getFnValueByID(ValNo, Ty); 402 } 403 404 /// Like getValue, but decodes signed VBRs. 405 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 406 unsigned InstNum, Type *Ty) { 407 if (Slot == Record.size()) return nullptr; 408 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 409 // Adjust the ValNo, if it was encoded relative to the InstNum. 410 if (UseRelativeIDs) 411 ValNo = InstNum - ValNo; 412 return getFnValueByID(ValNo, Ty); 413 } 414 415 /// Converts alignment exponent (i.e. power of two (or zero)) to the 416 /// corresponding alignment to use. If alignment is too large, returns 417 /// a corresponding error code. 418 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 419 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 420 std::error_code parseModule(uint64_t ResumeBit, 421 bool ShouldLazyLoadMetadata = false); 422 std::error_code parseAttributeBlock(); 423 std::error_code parseAttributeGroupBlock(); 424 std::error_code parseTypeTable(); 425 std::error_code parseTypeTableBody(); 426 std::error_code parseOperandBundleTags(); 427 428 ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 429 unsigned NameIndex, Triple &TT); 430 std::error_code parseValueSymbolTable(uint64_t Offset = 0); 431 std::error_code parseConstants(); 432 std::error_code rememberAndSkipFunctionBodies(); 433 std::error_code rememberAndSkipFunctionBody(); 434 /// Save the positions of the Metadata blocks and skip parsing the blocks. 435 std::error_code rememberAndSkipMetadata(); 436 std::error_code parseFunctionBody(Function *F); 437 std::error_code globalCleanup(); 438 std::error_code resolveGlobalAndIndirectSymbolInits(); 439 std::error_code parseMetadata(bool ModuleLevel = false); 440 std::error_code parseMetadataStrings(ArrayRef<uint64_t> Record, 441 StringRef Blob, 442 unsigned &NextMetadataNo); 443 std::error_code parseMetadataKinds(); 444 std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record); 445 std::error_code parseMetadataAttachment(Function &F); 446 ErrorOr<std::string> parseModuleTriple(); 447 std::error_code parseUseLists(); 448 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 449 std::error_code initStreamFromBuffer(); 450 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 451 std::error_code findFunctionInStream( 452 Function *F, 453 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 454 }; 455 456 /// Class to manage reading and parsing function summary index bitcode 457 /// files/sections. 458 class ModuleSummaryIndexBitcodeReader { 459 DiagnosticHandlerFunction DiagnosticHandler; 460 461 /// Eventually points to the module index built during parsing. 462 ModuleSummaryIndex *TheIndex = nullptr; 463 464 std::unique_ptr<MemoryBuffer> Buffer; 465 std::unique_ptr<BitstreamReader> StreamFile; 466 BitstreamCursor Stream; 467 468 /// Used to indicate whether caller only wants to check for the presence 469 /// of the global value summary bitcode section. All blocks are skipped, 470 /// but the SeenGlobalValSummary boolean is set. 471 bool CheckGlobalValSummaryPresenceOnly = false; 472 473 /// Indicates whether we have encountered a global value summary section 474 /// yet during parsing, used when checking if file contains global value 475 /// summary section. 476 bool SeenGlobalValSummary = false; 477 478 /// Indicates whether we have already parsed the VST, used for error checking. 479 bool SeenValueSymbolTable = false; 480 481 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 482 /// Used to enable on-demand parsing of the VST. 483 uint64_t VSTOffset = 0; 484 485 // Map to save ValueId to GUID association that was recorded in the 486 // ValueSymbolTable. It is used after the VST is parsed to convert 487 // call graph edges read from the function summary from referencing 488 // callees by their ValueId to using the GUID instead, which is how 489 // they are recorded in the summary index being built. 490 // We save a second GUID which is the same as the first one, but ignoring the 491 // linkage, i.e. for value other than local linkage they are identical. 492 DenseMap<unsigned, std::pair<GlobalValue::GUID, GlobalValue::GUID>> 493 ValueIdToCallGraphGUIDMap; 494 495 /// Map to save the association between summary offset in the VST to the 496 /// GUID created when parsing it. Used to add newly parsed summaries to 497 /// the index. 498 DenseMap<uint64_t, GlobalValue::GUID> SummaryOffsetToGUIDMap; 499 500 /// Map populated during module path string table parsing, from the 501 /// module ID to a string reference owned by the index's module 502 /// path string table, used to correlate with combined index 503 /// summary records. 504 DenseMap<uint64_t, StringRef> ModuleIdMap; 505 506 /// Original source file name recorded in a bitcode record. 507 std::string SourceFileName; 508 509 public: 510 std::error_code error(BitcodeError E, const Twine &Message); 511 std::error_code error(BitcodeError E); 512 std::error_code error(const Twine &Message); 513 514 ModuleSummaryIndexBitcodeReader( 515 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 516 bool CheckGlobalValSummaryPresenceOnly = false); 517 ModuleSummaryIndexBitcodeReader( 518 DiagnosticHandlerFunction DiagnosticHandler, 519 bool CheckGlobalValSummaryPresenceOnly = false); 520 ~ModuleSummaryIndexBitcodeReader() { freeState(); } 521 522 void freeState(); 523 524 void releaseBuffer(); 525 526 /// Check if the parser has encountered a summary section. 527 bool foundGlobalValSummary() { return SeenGlobalValSummary; } 528 529 /// \brief Main interface to parsing a bitcode buffer. 530 /// \returns true if an error occurred. 531 std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer, 532 ModuleSummaryIndex *I); 533 534 /// \brief Interface for parsing a summary lazily. 535 std::error_code 536 parseGlobalValueSummary(std::unique_ptr<DataStreamer> Streamer, 537 ModuleSummaryIndex *I, size_t SummaryOffset); 538 539 private: 540 std::error_code parseModule(); 541 std::error_code parseValueSymbolTable( 542 uint64_t Offset, 543 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 544 std::error_code parseEntireSummary(); 545 std::error_code parseModuleStringTable(); 546 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 547 std::error_code initStreamFromBuffer(); 548 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 549 std::pair<GlobalValue::GUID, GlobalValue::GUID> 550 getGUIDFromValueId(unsigned ValueId); 551 GlobalValue::GUID getGUIDFromOffset(uint64_t Offset); 552 }; 553 } // end anonymous namespace 554 555 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 556 DiagnosticSeverity Severity, 557 const Twine &Msg) 558 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 559 560 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 561 562 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 563 std::error_code EC, const Twine &Message) { 564 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 565 DiagnosticHandler(DI); 566 return EC; 567 } 568 569 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 570 std::error_code EC) { 571 return error(DiagnosticHandler, EC, EC.message()); 572 } 573 574 static std::error_code error(LLVMContext &Context, std::error_code EC, 575 const Twine &Message) { 576 return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC, 577 Message); 578 } 579 580 static std::error_code error(LLVMContext &Context, std::error_code EC) { 581 return error(Context, EC, EC.message()); 582 } 583 584 static std::error_code error(LLVMContext &Context, const Twine &Message) { 585 return error(Context, make_error_code(BitcodeError::CorruptedBitcode), 586 Message); 587 } 588 589 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) { 590 if (!ProducerIdentification.empty()) { 591 return ::error(Context, make_error_code(E), 592 Message + " (Producer: '" + ProducerIdentification + 593 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 594 } 595 return ::error(Context, make_error_code(E), Message); 596 } 597 598 std::error_code BitcodeReader::error(const Twine &Message) { 599 if (!ProducerIdentification.empty()) { 600 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 601 Message + " (Producer: '" + ProducerIdentification + 602 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 603 } 604 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 605 Message); 606 } 607 608 std::error_code BitcodeReader::error(BitcodeError E) { 609 return ::error(Context, make_error_code(E)); 610 } 611 612 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context) 613 : Context(Context), Buffer(Buffer), ValueList(Context), 614 MetadataList(Context) {} 615 616 BitcodeReader::BitcodeReader(LLVMContext &Context) 617 : Context(Context), Buffer(nullptr), ValueList(Context), 618 MetadataList(Context) {} 619 620 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 621 if (WillMaterializeAllForwardRefs) 622 return std::error_code(); 623 624 // Prevent recursion. 625 WillMaterializeAllForwardRefs = true; 626 627 while (!BasicBlockFwdRefQueue.empty()) { 628 Function *F = BasicBlockFwdRefQueue.front(); 629 BasicBlockFwdRefQueue.pop_front(); 630 assert(F && "Expected valid function"); 631 if (!BasicBlockFwdRefs.count(F)) 632 // Already materialized. 633 continue; 634 635 // Check for a function that isn't materializable to prevent an infinite 636 // loop. When parsing a blockaddress stored in a global variable, there 637 // isn't a trivial way to check if a function will have a body without a 638 // linear search through FunctionsWithBodies, so just check it here. 639 if (!F->isMaterializable()) 640 return error("Never resolved function from blockaddress"); 641 642 // Try to materialize F. 643 if (std::error_code EC = materialize(F)) 644 return EC; 645 } 646 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 647 648 // Reset state. 649 WillMaterializeAllForwardRefs = false; 650 return std::error_code(); 651 } 652 653 void BitcodeReader::freeState() { 654 Buffer = nullptr; 655 std::vector<Type*>().swap(TypeList); 656 ValueList.clear(); 657 MetadataList.clear(); 658 std::vector<Comdat *>().swap(ComdatList); 659 660 std::vector<AttributeSet>().swap(MAttributes); 661 std::vector<BasicBlock*>().swap(FunctionBBs); 662 std::vector<Function*>().swap(FunctionsWithBodies); 663 DeferredFunctionInfo.clear(); 664 DeferredMetadataInfo.clear(); 665 MDKindMap.clear(); 666 667 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 668 BasicBlockFwdRefQueue.clear(); 669 } 670 671 //===----------------------------------------------------------------------===// 672 // Helper functions to implement forward reference resolution, etc. 673 //===----------------------------------------------------------------------===// 674 675 /// Convert a string from a record into an std::string, return true on failure. 676 template <typename StrTy> 677 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 678 StrTy &Result) { 679 if (Idx > Record.size()) 680 return true; 681 682 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 683 Result += (char)Record[i]; 684 return false; 685 } 686 687 static bool hasImplicitComdat(size_t Val) { 688 switch (Val) { 689 default: 690 return false; 691 case 1: // Old WeakAnyLinkage 692 case 4: // Old LinkOnceAnyLinkage 693 case 10: // Old WeakODRLinkage 694 case 11: // Old LinkOnceODRLinkage 695 return true; 696 } 697 } 698 699 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 700 switch (Val) { 701 default: // Map unknown/new linkages to external 702 case 0: 703 return GlobalValue::ExternalLinkage; 704 case 2: 705 return GlobalValue::AppendingLinkage; 706 case 3: 707 return GlobalValue::InternalLinkage; 708 case 5: 709 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 710 case 6: 711 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 712 case 7: 713 return GlobalValue::ExternalWeakLinkage; 714 case 8: 715 return GlobalValue::CommonLinkage; 716 case 9: 717 return GlobalValue::PrivateLinkage; 718 case 12: 719 return GlobalValue::AvailableExternallyLinkage; 720 case 13: 721 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 722 case 14: 723 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 724 case 15: 725 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 726 case 1: // Old value with implicit comdat. 727 case 16: 728 return GlobalValue::WeakAnyLinkage; 729 case 10: // Old value with implicit comdat. 730 case 17: 731 return GlobalValue::WeakODRLinkage; 732 case 4: // Old value with implicit comdat. 733 case 18: 734 return GlobalValue::LinkOnceAnyLinkage; 735 case 11: // Old value with implicit comdat. 736 case 19: 737 return GlobalValue::LinkOnceODRLinkage; 738 } 739 } 740 741 // Decode the flags for GlobalValue in the summary 742 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 743 uint64_t Version) { 744 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 745 // like getDecodedLinkage() above. Any future change to the linkage enum and 746 // to getDecodedLinkage() will need to be taken into account here as above. 747 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 748 RawFlags = RawFlags >> 4; 749 auto HasSection = RawFlags & 0x1; // bool 750 return GlobalValueSummary::GVFlags(Linkage, HasSection); 751 } 752 753 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 754 switch (Val) { 755 default: // Map unknown visibilities to default. 756 case 0: return GlobalValue::DefaultVisibility; 757 case 1: return GlobalValue::HiddenVisibility; 758 case 2: return GlobalValue::ProtectedVisibility; 759 } 760 } 761 762 static GlobalValue::DLLStorageClassTypes 763 getDecodedDLLStorageClass(unsigned Val) { 764 switch (Val) { 765 default: // Map unknown values to default. 766 case 0: return GlobalValue::DefaultStorageClass; 767 case 1: return GlobalValue::DLLImportStorageClass; 768 case 2: return GlobalValue::DLLExportStorageClass; 769 } 770 } 771 772 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 773 switch (Val) { 774 case 0: return GlobalVariable::NotThreadLocal; 775 default: // Map unknown non-zero value to general dynamic. 776 case 1: return GlobalVariable::GeneralDynamicTLSModel; 777 case 2: return GlobalVariable::LocalDynamicTLSModel; 778 case 3: return GlobalVariable::InitialExecTLSModel; 779 case 4: return GlobalVariable::LocalExecTLSModel; 780 } 781 } 782 783 static int getDecodedCastOpcode(unsigned Val) { 784 switch (Val) { 785 default: return -1; 786 case bitc::CAST_TRUNC : return Instruction::Trunc; 787 case bitc::CAST_ZEXT : return Instruction::ZExt; 788 case bitc::CAST_SEXT : return Instruction::SExt; 789 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 790 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 791 case bitc::CAST_UITOFP : return Instruction::UIToFP; 792 case bitc::CAST_SITOFP : return Instruction::SIToFP; 793 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 794 case bitc::CAST_FPEXT : return Instruction::FPExt; 795 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 796 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 797 case bitc::CAST_BITCAST : return Instruction::BitCast; 798 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 799 } 800 } 801 802 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 803 bool IsFP = Ty->isFPOrFPVectorTy(); 804 // BinOps are only valid for int/fp or vector of int/fp types 805 if (!IsFP && !Ty->isIntOrIntVectorTy()) 806 return -1; 807 808 switch (Val) { 809 default: 810 return -1; 811 case bitc::BINOP_ADD: 812 return IsFP ? Instruction::FAdd : Instruction::Add; 813 case bitc::BINOP_SUB: 814 return IsFP ? Instruction::FSub : Instruction::Sub; 815 case bitc::BINOP_MUL: 816 return IsFP ? Instruction::FMul : Instruction::Mul; 817 case bitc::BINOP_UDIV: 818 return IsFP ? -1 : Instruction::UDiv; 819 case bitc::BINOP_SDIV: 820 return IsFP ? Instruction::FDiv : Instruction::SDiv; 821 case bitc::BINOP_UREM: 822 return IsFP ? -1 : Instruction::URem; 823 case bitc::BINOP_SREM: 824 return IsFP ? Instruction::FRem : Instruction::SRem; 825 case bitc::BINOP_SHL: 826 return IsFP ? -1 : Instruction::Shl; 827 case bitc::BINOP_LSHR: 828 return IsFP ? -1 : Instruction::LShr; 829 case bitc::BINOP_ASHR: 830 return IsFP ? -1 : Instruction::AShr; 831 case bitc::BINOP_AND: 832 return IsFP ? -1 : Instruction::And; 833 case bitc::BINOP_OR: 834 return IsFP ? -1 : Instruction::Or; 835 case bitc::BINOP_XOR: 836 return IsFP ? -1 : Instruction::Xor; 837 } 838 } 839 840 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 841 switch (Val) { 842 default: return AtomicRMWInst::BAD_BINOP; 843 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 844 case bitc::RMW_ADD: return AtomicRMWInst::Add; 845 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 846 case bitc::RMW_AND: return AtomicRMWInst::And; 847 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 848 case bitc::RMW_OR: return AtomicRMWInst::Or; 849 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 850 case bitc::RMW_MAX: return AtomicRMWInst::Max; 851 case bitc::RMW_MIN: return AtomicRMWInst::Min; 852 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 853 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 854 } 855 } 856 857 static AtomicOrdering getDecodedOrdering(unsigned Val) { 858 switch (Val) { 859 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 860 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 861 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 862 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 863 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 864 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 865 default: // Map unknown orderings to sequentially-consistent. 866 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 867 } 868 } 869 870 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 871 switch (Val) { 872 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 873 default: // Map unknown scopes to cross-thread. 874 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 875 } 876 } 877 878 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 879 switch (Val) { 880 default: // Map unknown selection kinds to any. 881 case bitc::COMDAT_SELECTION_KIND_ANY: 882 return Comdat::Any; 883 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 884 return Comdat::ExactMatch; 885 case bitc::COMDAT_SELECTION_KIND_LARGEST: 886 return Comdat::Largest; 887 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 888 return Comdat::NoDuplicates; 889 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 890 return Comdat::SameSize; 891 } 892 } 893 894 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 895 FastMathFlags FMF; 896 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 897 FMF.setUnsafeAlgebra(); 898 if (0 != (Val & FastMathFlags::NoNaNs)) 899 FMF.setNoNaNs(); 900 if (0 != (Val & FastMathFlags::NoInfs)) 901 FMF.setNoInfs(); 902 if (0 != (Val & FastMathFlags::NoSignedZeros)) 903 FMF.setNoSignedZeros(); 904 if (0 != (Val & FastMathFlags::AllowReciprocal)) 905 FMF.setAllowReciprocal(); 906 return FMF; 907 } 908 909 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 910 switch (Val) { 911 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 912 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 913 } 914 } 915 916 namespace llvm { 917 namespace { 918 /// \brief A class for maintaining the slot number definition 919 /// as a placeholder for the actual definition for forward constants defs. 920 class ConstantPlaceHolder : public ConstantExpr { 921 void operator=(const ConstantPlaceHolder &) = delete; 922 923 public: 924 // allocate space for exactly one operand 925 void *operator new(size_t s) { return User::operator new(s, 1); } 926 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 927 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 928 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 929 } 930 931 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 932 static bool classof(const Value *V) { 933 return isa<ConstantExpr>(V) && 934 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 935 } 936 937 /// Provide fast operand accessors 938 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 939 }; 940 } // end anonymous namespace 941 942 // FIXME: can we inherit this from ConstantExpr? 943 template <> 944 struct OperandTraits<ConstantPlaceHolder> : 945 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 946 }; 947 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 948 } // end namespace llvm 949 950 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 951 if (Idx == size()) { 952 push_back(V); 953 return; 954 } 955 956 if (Idx >= size()) 957 resize(Idx+1); 958 959 WeakVH &OldV = ValuePtrs[Idx]; 960 if (!OldV) { 961 OldV = V; 962 return; 963 } 964 965 // Handle constants and non-constants (e.g. instrs) differently for 966 // efficiency. 967 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 968 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 969 OldV = V; 970 } else { 971 // If there was a forward reference to this value, replace it. 972 Value *PrevVal = OldV; 973 OldV->replaceAllUsesWith(V); 974 delete PrevVal; 975 } 976 } 977 978 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 979 Type *Ty) { 980 if (Idx >= size()) 981 resize(Idx + 1); 982 983 if (Value *V = ValuePtrs[Idx]) { 984 if (Ty != V->getType()) 985 report_fatal_error("Type mismatch in constant table!"); 986 return cast<Constant>(V); 987 } 988 989 // Create and return a placeholder, which will later be RAUW'd. 990 Constant *C = new ConstantPlaceHolder(Ty, Context); 991 ValuePtrs[Idx] = C; 992 return C; 993 } 994 995 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 996 // Bail out for a clearly invalid value. This would make us call resize(0) 997 if (Idx == UINT_MAX) 998 return nullptr; 999 1000 if (Idx >= size()) 1001 resize(Idx + 1); 1002 1003 if (Value *V = ValuePtrs[Idx]) { 1004 // If the types don't match, it's invalid. 1005 if (Ty && Ty != V->getType()) 1006 return nullptr; 1007 return V; 1008 } 1009 1010 // No type specified, must be invalid reference. 1011 if (!Ty) return nullptr; 1012 1013 // Create and return a placeholder, which will later be RAUW'd. 1014 Value *V = new Argument(Ty); 1015 ValuePtrs[Idx] = V; 1016 return V; 1017 } 1018 1019 /// Once all constants are read, this method bulk resolves any forward 1020 /// references. The idea behind this is that we sometimes get constants (such 1021 /// as large arrays) which reference *many* forward ref constants. Replacing 1022 /// each of these causes a lot of thrashing when building/reuniquing the 1023 /// constant. Instead of doing this, we look at all the uses and rewrite all 1024 /// the place holders at once for any constant that uses a placeholder. 1025 void BitcodeReaderValueList::resolveConstantForwardRefs() { 1026 // Sort the values by-pointer so that they are efficient to look up with a 1027 // binary search. 1028 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 1029 1030 SmallVector<Constant*, 64> NewOps; 1031 1032 while (!ResolveConstants.empty()) { 1033 Value *RealVal = operator[](ResolveConstants.back().second); 1034 Constant *Placeholder = ResolveConstants.back().first; 1035 ResolveConstants.pop_back(); 1036 1037 // Loop over all users of the placeholder, updating them to reference the 1038 // new value. If they reference more than one placeholder, update them all 1039 // at once. 1040 while (!Placeholder->use_empty()) { 1041 auto UI = Placeholder->user_begin(); 1042 User *U = *UI; 1043 1044 // If the using object isn't uniqued, just update the operands. This 1045 // handles instructions and initializers for global variables. 1046 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 1047 UI.getUse().set(RealVal); 1048 continue; 1049 } 1050 1051 // Otherwise, we have a constant that uses the placeholder. Replace that 1052 // constant with a new constant that has *all* placeholder uses updated. 1053 Constant *UserC = cast<Constant>(U); 1054 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 1055 I != E; ++I) { 1056 Value *NewOp; 1057 if (!isa<ConstantPlaceHolder>(*I)) { 1058 // Not a placeholder reference. 1059 NewOp = *I; 1060 } else if (*I == Placeholder) { 1061 // Common case is that it just references this one placeholder. 1062 NewOp = RealVal; 1063 } else { 1064 // Otherwise, look up the placeholder in ResolveConstants. 1065 ResolveConstantsTy::iterator It = 1066 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 1067 std::pair<Constant*, unsigned>(cast<Constant>(*I), 1068 0)); 1069 assert(It != ResolveConstants.end() && It->first == *I); 1070 NewOp = operator[](It->second); 1071 } 1072 1073 NewOps.push_back(cast<Constant>(NewOp)); 1074 } 1075 1076 // Make the new constant. 1077 Constant *NewC; 1078 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 1079 NewC = ConstantArray::get(UserCA->getType(), NewOps); 1080 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 1081 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 1082 } else if (isa<ConstantVector>(UserC)) { 1083 NewC = ConstantVector::get(NewOps); 1084 } else { 1085 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 1086 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 1087 } 1088 1089 UserC->replaceAllUsesWith(NewC); 1090 UserC->destroyConstant(); 1091 NewOps.clear(); 1092 } 1093 1094 // Update all ValueHandles, they should be the only users at this point. 1095 Placeholder->replaceAllUsesWith(RealVal); 1096 delete Placeholder; 1097 } 1098 } 1099 1100 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) { 1101 if (Idx == size()) { 1102 push_back(MD); 1103 return; 1104 } 1105 1106 if (Idx >= size()) 1107 resize(Idx+1); 1108 1109 TrackingMDRef &OldMD = MetadataPtrs[Idx]; 1110 if (!OldMD) { 1111 OldMD.reset(MD); 1112 return; 1113 } 1114 1115 // If there was a forward reference to this value, replace it. 1116 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 1117 PrevMD->replaceAllUsesWith(MD); 1118 --NumFwdRefs; 1119 } 1120 1121 Metadata *BitcodeReaderMetadataList::getMetadataFwdRef(unsigned Idx) { 1122 if (Idx >= size()) 1123 resize(Idx + 1); 1124 1125 if (Metadata *MD = MetadataPtrs[Idx]) 1126 return MD; 1127 1128 // Track forward refs to be resolved later. 1129 if (AnyFwdRefs) { 1130 MinFwdRef = std::min(MinFwdRef, Idx); 1131 MaxFwdRef = std::max(MaxFwdRef, Idx); 1132 } else { 1133 AnyFwdRefs = true; 1134 MinFwdRef = MaxFwdRef = Idx; 1135 } 1136 ++NumFwdRefs; 1137 1138 // Create and return a placeholder, which will later be RAUW'd. 1139 Metadata *MD = MDNode::getTemporary(Context, None).release(); 1140 MetadataPtrs[Idx].reset(MD); 1141 return MD; 1142 } 1143 1144 Metadata *BitcodeReaderMetadataList::getMetadataIfResolved(unsigned Idx) { 1145 Metadata *MD = lookup(Idx); 1146 if (auto *N = dyn_cast_or_null<MDNode>(MD)) 1147 if (!N->isResolved()) 1148 return nullptr; 1149 return MD; 1150 } 1151 1152 MDNode *BitcodeReaderMetadataList::getMDNodeFwdRefOrNull(unsigned Idx) { 1153 return dyn_cast_or_null<MDNode>(getMetadataFwdRef(Idx)); 1154 } 1155 1156 void BitcodeReaderMetadataList::tryToResolveCycles() { 1157 if (NumFwdRefs) 1158 // Still forward references... can't resolve cycles. 1159 return; 1160 1161 bool DidReplaceTypeRefs = false; 1162 1163 // Give up on finding a full definition for any forward decls that remain. 1164 for (const auto &Ref : OldTypeRefs.FwdDecls) 1165 OldTypeRefs.Final.insert(Ref); 1166 OldTypeRefs.FwdDecls.clear(); 1167 1168 // Upgrade from old type ref arrays. In strange cases, this could add to 1169 // OldTypeRefs.Unknown. 1170 for (const auto &Array : OldTypeRefs.Arrays) { 1171 DidReplaceTypeRefs = true; 1172 Array.second->replaceAllUsesWith(resolveTypeRefArray(Array.first.get())); 1173 } 1174 OldTypeRefs.Arrays.clear(); 1175 1176 // Replace old string-based type refs with the resolved node, if possible. 1177 // If we haven't seen the node, leave it to the verifier to complain about 1178 // the invalid string reference. 1179 for (const auto &Ref : OldTypeRefs.Unknown) { 1180 DidReplaceTypeRefs = true; 1181 if (DICompositeType *CT = OldTypeRefs.Final.lookup(Ref.first)) 1182 Ref.second->replaceAllUsesWith(CT); 1183 else 1184 Ref.second->replaceAllUsesWith(Ref.first); 1185 } 1186 OldTypeRefs.Unknown.clear(); 1187 1188 // Make sure all the upgraded types are resolved. 1189 if (DidReplaceTypeRefs) { 1190 AnyFwdRefs = true; 1191 MinFwdRef = 0; 1192 MaxFwdRef = MetadataPtrs.size() - 1; 1193 } 1194 1195 if (!AnyFwdRefs) 1196 // Nothing to do. 1197 return; 1198 1199 // Resolve any cycles. 1200 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 1201 auto &MD = MetadataPtrs[I]; 1202 auto *N = dyn_cast_or_null<MDNode>(MD); 1203 if (!N) 1204 continue; 1205 1206 assert(!N->isTemporary() && "Unexpected forward reference"); 1207 N->resolveCycles(); 1208 } 1209 1210 // Make sure we return early again until there's another forward ref. 1211 AnyFwdRefs = false; 1212 } 1213 1214 void BitcodeReaderMetadataList::addTypeRef(MDString &UUID, 1215 DICompositeType &CT) { 1216 assert(CT.getRawIdentifier() == &UUID && "Mismatched UUID"); 1217 if (CT.isForwardDecl()) 1218 OldTypeRefs.FwdDecls.insert(std::make_pair(&UUID, &CT)); 1219 else 1220 OldTypeRefs.Final.insert(std::make_pair(&UUID, &CT)); 1221 } 1222 1223 Metadata *BitcodeReaderMetadataList::upgradeTypeRef(Metadata *MaybeUUID) { 1224 auto *UUID = dyn_cast_or_null<MDString>(MaybeUUID); 1225 if (LLVM_LIKELY(!UUID)) 1226 return MaybeUUID; 1227 1228 if (auto *CT = OldTypeRefs.Final.lookup(UUID)) 1229 return CT; 1230 1231 auto &Ref = OldTypeRefs.Unknown[UUID]; 1232 if (!Ref) 1233 Ref = MDNode::getTemporary(Context, None); 1234 return Ref.get(); 1235 } 1236 1237 Metadata *BitcodeReaderMetadataList::upgradeTypeRefArray(Metadata *MaybeTuple) { 1238 auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple); 1239 if (!Tuple || Tuple->isDistinct()) 1240 return MaybeTuple; 1241 1242 // Look through the array immediately if possible. 1243 if (!Tuple->isTemporary()) 1244 return resolveTypeRefArray(Tuple); 1245 1246 // Create and return a placeholder to use for now. Eventually 1247 // resolveTypeRefArrays() will be resolve this forward reference. 1248 OldTypeRefs.Arrays.emplace_back(); 1249 OldTypeRefs.Arrays.back().first.reset(Tuple); 1250 OldTypeRefs.Arrays.back().second = MDTuple::getTemporary(Context, None); 1251 return OldTypeRefs.Arrays.back().second.get(); 1252 } 1253 1254 Metadata *BitcodeReaderMetadataList::resolveTypeRefArray(Metadata *MaybeTuple) { 1255 auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple); 1256 if (!Tuple || Tuple->isDistinct()) 1257 return MaybeTuple; 1258 1259 // Look through the DITypeRefArray, upgrading each DITypeRef. 1260 SmallVector<Metadata *, 32> Ops; 1261 Ops.reserve(Tuple->getNumOperands()); 1262 for (Metadata *MD : Tuple->operands()) 1263 Ops.push_back(upgradeTypeRef(MD)); 1264 1265 return MDTuple::get(Context, Ops); 1266 } 1267 1268 Type *BitcodeReader::getTypeByID(unsigned ID) { 1269 // The type table size is always specified correctly. 1270 if (ID >= TypeList.size()) 1271 return nullptr; 1272 1273 if (Type *Ty = TypeList[ID]) 1274 return Ty; 1275 1276 // If we have a forward reference, the only possible case is when it is to a 1277 // named struct. Just create a placeholder for now. 1278 return TypeList[ID] = createIdentifiedStructType(Context); 1279 } 1280 1281 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1282 StringRef Name) { 1283 auto *Ret = StructType::create(Context, Name); 1284 IdentifiedStructTypes.push_back(Ret); 1285 return Ret; 1286 } 1287 1288 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1289 auto *Ret = StructType::create(Context); 1290 IdentifiedStructTypes.push_back(Ret); 1291 return Ret; 1292 } 1293 1294 //===----------------------------------------------------------------------===// 1295 // Functions for parsing blocks from the bitcode file 1296 //===----------------------------------------------------------------------===// 1297 1298 1299 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1300 /// been decoded from the given integer. This function must stay in sync with 1301 /// 'encodeLLVMAttributesForBitcode'. 1302 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1303 uint64_t EncodedAttrs) { 1304 // FIXME: Remove in 4.0. 1305 1306 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1307 // the bits above 31 down by 11 bits. 1308 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1309 assert((!Alignment || isPowerOf2_32(Alignment)) && 1310 "Alignment must be a power of two."); 1311 1312 if (Alignment) 1313 B.addAlignmentAttr(Alignment); 1314 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1315 (EncodedAttrs & 0xffff)); 1316 } 1317 1318 std::error_code BitcodeReader::parseAttributeBlock() { 1319 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1320 return error("Invalid record"); 1321 1322 if (!MAttributes.empty()) 1323 return error("Invalid multiple blocks"); 1324 1325 SmallVector<uint64_t, 64> Record; 1326 1327 SmallVector<AttributeSet, 8> Attrs; 1328 1329 // Read all the records. 1330 while (1) { 1331 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1332 1333 switch (Entry.Kind) { 1334 case BitstreamEntry::SubBlock: // Handled for us already. 1335 case BitstreamEntry::Error: 1336 return error("Malformed block"); 1337 case BitstreamEntry::EndBlock: 1338 return std::error_code(); 1339 case BitstreamEntry::Record: 1340 // The interesting case. 1341 break; 1342 } 1343 1344 // Read a record. 1345 Record.clear(); 1346 switch (Stream.readRecord(Entry.ID, Record)) { 1347 default: // Default behavior: ignore. 1348 break; 1349 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1350 // FIXME: Remove in 4.0. 1351 if (Record.size() & 1) 1352 return error("Invalid record"); 1353 1354 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1355 AttrBuilder B; 1356 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1357 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1358 } 1359 1360 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1361 Attrs.clear(); 1362 break; 1363 } 1364 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1365 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1366 Attrs.push_back(MAttributeGroups[Record[i]]); 1367 1368 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1369 Attrs.clear(); 1370 break; 1371 } 1372 } 1373 } 1374 } 1375 1376 // Returns Attribute::None on unrecognized codes. 1377 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1378 switch (Code) { 1379 default: 1380 return Attribute::None; 1381 case bitc::ATTR_KIND_ALIGNMENT: 1382 return Attribute::Alignment; 1383 case bitc::ATTR_KIND_ALWAYS_INLINE: 1384 return Attribute::AlwaysInline; 1385 case bitc::ATTR_KIND_ARGMEMONLY: 1386 return Attribute::ArgMemOnly; 1387 case bitc::ATTR_KIND_BUILTIN: 1388 return Attribute::Builtin; 1389 case bitc::ATTR_KIND_BY_VAL: 1390 return Attribute::ByVal; 1391 case bitc::ATTR_KIND_IN_ALLOCA: 1392 return Attribute::InAlloca; 1393 case bitc::ATTR_KIND_COLD: 1394 return Attribute::Cold; 1395 case bitc::ATTR_KIND_CONVERGENT: 1396 return Attribute::Convergent; 1397 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1398 return Attribute::InaccessibleMemOnly; 1399 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1400 return Attribute::InaccessibleMemOrArgMemOnly; 1401 case bitc::ATTR_KIND_INLINE_HINT: 1402 return Attribute::InlineHint; 1403 case bitc::ATTR_KIND_IN_REG: 1404 return Attribute::InReg; 1405 case bitc::ATTR_KIND_JUMP_TABLE: 1406 return Attribute::JumpTable; 1407 case bitc::ATTR_KIND_MIN_SIZE: 1408 return Attribute::MinSize; 1409 case bitc::ATTR_KIND_NAKED: 1410 return Attribute::Naked; 1411 case bitc::ATTR_KIND_NEST: 1412 return Attribute::Nest; 1413 case bitc::ATTR_KIND_NO_ALIAS: 1414 return Attribute::NoAlias; 1415 case bitc::ATTR_KIND_NO_BUILTIN: 1416 return Attribute::NoBuiltin; 1417 case bitc::ATTR_KIND_NO_CAPTURE: 1418 return Attribute::NoCapture; 1419 case bitc::ATTR_KIND_NO_DUPLICATE: 1420 return Attribute::NoDuplicate; 1421 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1422 return Attribute::NoImplicitFloat; 1423 case bitc::ATTR_KIND_NO_INLINE: 1424 return Attribute::NoInline; 1425 case bitc::ATTR_KIND_NO_RECURSE: 1426 return Attribute::NoRecurse; 1427 case bitc::ATTR_KIND_NON_LAZY_BIND: 1428 return Attribute::NonLazyBind; 1429 case bitc::ATTR_KIND_NON_NULL: 1430 return Attribute::NonNull; 1431 case bitc::ATTR_KIND_DEREFERENCEABLE: 1432 return Attribute::Dereferenceable; 1433 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1434 return Attribute::DereferenceableOrNull; 1435 case bitc::ATTR_KIND_ALLOC_SIZE: 1436 return Attribute::AllocSize; 1437 case bitc::ATTR_KIND_NO_RED_ZONE: 1438 return Attribute::NoRedZone; 1439 case bitc::ATTR_KIND_NO_RETURN: 1440 return Attribute::NoReturn; 1441 case bitc::ATTR_KIND_NO_UNWIND: 1442 return Attribute::NoUnwind; 1443 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1444 return Attribute::OptimizeForSize; 1445 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1446 return Attribute::OptimizeNone; 1447 case bitc::ATTR_KIND_READ_NONE: 1448 return Attribute::ReadNone; 1449 case bitc::ATTR_KIND_READ_ONLY: 1450 return Attribute::ReadOnly; 1451 case bitc::ATTR_KIND_RETURNED: 1452 return Attribute::Returned; 1453 case bitc::ATTR_KIND_RETURNS_TWICE: 1454 return Attribute::ReturnsTwice; 1455 case bitc::ATTR_KIND_S_EXT: 1456 return Attribute::SExt; 1457 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1458 return Attribute::StackAlignment; 1459 case bitc::ATTR_KIND_STACK_PROTECT: 1460 return Attribute::StackProtect; 1461 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1462 return Attribute::StackProtectReq; 1463 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1464 return Attribute::StackProtectStrong; 1465 case bitc::ATTR_KIND_SAFESTACK: 1466 return Attribute::SafeStack; 1467 case bitc::ATTR_KIND_STRUCT_RET: 1468 return Attribute::StructRet; 1469 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1470 return Attribute::SanitizeAddress; 1471 case bitc::ATTR_KIND_SANITIZE_THREAD: 1472 return Attribute::SanitizeThread; 1473 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1474 return Attribute::SanitizeMemory; 1475 case bitc::ATTR_KIND_SWIFT_ERROR: 1476 return Attribute::SwiftError; 1477 case bitc::ATTR_KIND_SWIFT_SELF: 1478 return Attribute::SwiftSelf; 1479 case bitc::ATTR_KIND_UW_TABLE: 1480 return Attribute::UWTable; 1481 case bitc::ATTR_KIND_Z_EXT: 1482 return Attribute::ZExt; 1483 } 1484 } 1485 1486 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1487 unsigned &Alignment) { 1488 // Note: Alignment in bitcode files is incremented by 1, so that zero 1489 // can be used for default alignment. 1490 if (Exponent > Value::MaxAlignmentExponent + 1) 1491 return error("Invalid alignment value"); 1492 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1493 return std::error_code(); 1494 } 1495 1496 std::error_code BitcodeReader::parseAttrKind(uint64_t Code, 1497 Attribute::AttrKind *Kind) { 1498 *Kind = getAttrFromCode(Code); 1499 if (*Kind == Attribute::None) 1500 return error(BitcodeError::CorruptedBitcode, 1501 "Unknown attribute kind (" + Twine(Code) + ")"); 1502 return std::error_code(); 1503 } 1504 1505 std::error_code BitcodeReader::parseAttributeGroupBlock() { 1506 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1507 return error("Invalid record"); 1508 1509 if (!MAttributeGroups.empty()) 1510 return error("Invalid multiple blocks"); 1511 1512 SmallVector<uint64_t, 64> Record; 1513 1514 // Read all the records. 1515 while (1) { 1516 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1517 1518 switch (Entry.Kind) { 1519 case BitstreamEntry::SubBlock: // Handled for us already. 1520 case BitstreamEntry::Error: 1521 return error("Malformed block"); 1522 case BitstreamEntry::EndBlock: 1523 return std::error_code(); 1524 case BitstreamEntry::Record: 1525 // The interesting case. 1526 break; 1527 } 1528 1529 // Read a record. 1530 Record.clear(); 1531 switch (Stream.readRecord(Entry.ID, Record)) { 1532 default: // Default behavior: ignore. 1533 break; 1534 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1535 if (Record.size() < 3) 1536 return error("Invalid record"); 1537 1538 uint64_t GrpID = Record[0]; 1539 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1540 1541 AttrBuilder B; 1542 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1543 if (Record[i] == 0) { // Enum attribute 1544 Attribute::AttrKind Kind; 1545 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1546 return EC; 1547 1548 B.addAttribute(Kind); 1549 } else if (Record[i] == 1) { // Integer attribute 1550 Attribute::AttrKind Kind; 1551 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1552 return EC; 1553 if (Kind == Attribute::Alignment) 1554 B.addAlignmentAttr(Record[++i]); 1555 else if (Kind == Attribute::StackAlignment) 1556 B.addStackAlignmentAttr(Record[++i]); 1557 else if (Kind == Attribute::Dereferenceable) 1558 B.addDereferenceableAttr(Record[++i]); 1559 else if (Kind == Attribute::DereferenceableOrNull) 1560 B.addDereferenceableOrNullAttr(Record[++i]); 1561 else if (Kind == Attribute::AllocSize) 1562 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1563 } else { // String attribute 1564 assert((Record[i] == 3 || Record[i] == 4) && 1565 "Invalid attribute group entry"); 1566 bool HasValue = (Record[i++] == 4); 1567 SmallString<64> KindStr; 1568 SmallString<64> ValStr; 1569 1570 while (Record[i] != 0 && i != e) 1571 KindStr += Record[i++]; 1572 assert(Record[i] == 0 && "Kind string not null terminated"); 1573 1574 if (HasValue) { 1575 // Has a value associated with it. 1576 ++i; // Skip the '0' that terminates the "kind" string. 1577 while (Record[i] != 0 && i != e) 1578 ValStr += Record[i++]; 1579 assert(Record[i] == 0 && "Value string not null terminated"); 1580 } 1581 1582 B.addAttribute(KindStr.str(), ValStr.str()); 1583 } 1584 } 1585 1586 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1587 break; 1588 } 1589 } 1590 } 1591 } 1592 1593 std::error_code BitcodeReader::parseTypeTable() { 1594 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1595 return error("Invalid record"); 1596 1597 return parseTypeTableBody(); 1598 } 1599 1600 std::error_code BitcodeReader::parseTypeTableBody() { 1601 if (!TypeList.empty()) 1602 return error("Invalid multiple blocks"); 1603 1604 SmallVector<uint64_t, 64> Record; 1605 unsigned NumRecords = 0; 1606 1607 SmallString<64> TypeName; 1608 1609 // Read all the records for this type table. 1610 while (1) { 1611 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1612 1613 switch (Entry.Kind) { 1614 case BitstreamEntry::SubBlock: // Handled for us already. 1615 case BitstreamEntry::Error: 1616 return error("Malformed block"); 1617 case BitstreamEntry::EndBlock: 1618 if (NumRecords != TypeList.size()) 1619 return error("Malformed block"); 1620 return std::error_code(); 1621 case BitstreamEntry::Record: 1622 // The interesting case. 1623 break; 1624 } 1625 1626 // Read a record. 1627 Record.clear(); 1628 Type *ResultTy = nullptr; 1629 switch (Stream.readRecord(Entry.ID, Record)) { 1630 default: 1631 return error("Invalid value"); 1632 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1633 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1634 // type list. This allows us to reserve space. 1635 if (Record.size() < 1) 1636 return error("Invalid record"); 1637 TypeList.resize(Record[0]); 1638 continue; 1639 case bitc::TYPE_CODE_VOID: // VOID 1640 ResultTy = Type::getVoidTy(Context); 1641 break; 1642 case bitc::TYPE_CODE_HALF: // HALF 1643 ResultTy = Type::getHalfTy(Context); 1644 break; 1645 case bitc::TYPE_CODE_FLOAT: // FLOAT 1646 ResultTy = Type::getFloatTy(Context); 1647 break; 1648 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1649 ResultTy = Type::getDoubleTy(Context); 1650 break; 1651 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1652 ResultTy = Type::getX86_FP80Ty(Context); 1653 break; 1654 case bitc::TYPE_CODE_FP128: // FP128 1655 ResultTy = Type::getFP128Ty(Context); 1656 break; 1657 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1658 ResultTy = Type::getPPC_FP128Ty(Context); 1659 break; 1660 case bitc::TYPE_CODE_LABEL: // LABEL 1661 ResultTy = Type::getLabelTy(Context); 1662 break; 1663 case bitc::TYPE_CODE_METADATA: // METADATA 1664 ResultTy = Type::getMetadataTy(Context); 1665 break; 1666 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1667 ResultTy = Type::getX86_MMXTy(Context); 1668 break; 1669 case bitc::TYPE_CODE_TOKEN: // TOKEN 1670 ResultTy = Type::getTokenTy(Context); 1671 break; 1672 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1673 if (Record.size() < 1) 1674 return error("Invalid record"); 1675 1676 uint64_t NumBits = Record[0]; 1677 if (NumBits < IntegerType::MIN_INT_BITS || 1678 NumBits > IntegerType::MAX_INT_BITS) 1679 return error("Bitwidth for integer type out of range"); 1680 ResultTy = IntegerType::get(Context, NumBits); 1681 break; 1682 } 1683 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1684 // [pointee type, address space] 1685 if (Record.size() < 1) 1686 return error("Invalid record"); 1687 unsigned AddressSpace = 0; 1688 if (Record.size() == 2) 1689 AddressSpace = Record[1]; 1690 ResultTy = getTypeByID(Record[0]); 1691 if (!ResultTy || 1692 !PointerType::isValidElementType(ResultTy)) 1693 return error("Invalid type"); 1694 ResultTy = PointerType::get(ResultTy, AddressSpace); 1695 break; 1696 } 1697 case bitc::TYPE_CODE_FUNCTION_OLD: { 1698 // FIXME: attrid is dead, remove it in LLVM 4.0 1699 // FUNCTION: [vararg, attrid, retty, paramty x N] 1700 if (Record.size() < 3) 1701 return error("Invalid record"); 1702 SmallVector<Type*, 8> ArgTys; 1703 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1704 if (Type *T = getTypeByID(Record[i])) 1705 ArgTys.push_back(T); 1706 else 1707 break; 1708 } 1709 1710 ResultTy = getTypeByID(Record[2]); 1711 if (!ResultTy || ArgTys.size() < Record.size()-3) 1712 return error("Invalid type"); 1713 1714 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1715 break; 1716 } 1717 case bitc::TYPE_CODE_FUNCTION: { 1718 // FUNCTION: [vararg, retty, paramty x N] 1719 if (Record.size() < 2) 1720 return error("Invalid record"); 1721 SmallVector<Type*, 8> ArgTys; 1722 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1723 if (Type *T = getTypeByID(Record[i])) { 1724 if (!FunctionType::isValidArgumentType(T)) 1725 return error("Invalid function argument type"); 1726 ArgTys.push_back(T); 1727 } 1728 else 1729 break; 1730 } 1731 1732 ResultTy = getTypeByID(Record[1]); 1733 if (!ResultTy || ArgTys.size() < Record.size()-2) 1734 return error("Invalid type"); 1735 1736 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1737 break; 1738 } 1739 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1740 if (Record.size() < 1) 1741 return error("Invalid record"); 1742 SmallVector<Type*, 8> EltTys; 1743 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1744 if (Type *T = getTypeByID(Record[i])) 1745 EltTys.push_back(T); 1746 else 1747 break; 1748 } 1749 if (EltTys.size() != Record.size()-1) 1750 return error("Invalid type"); 1751 ResultTy = StructType::get(Context, EltTys, Record[0]); 1752 break; 1753 } 1754 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1755 if (convertToString(Record, 0, TypeName)) 1756 return error("Invalid record"); 1757 continue; 1758 1759 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1760 if (Record.size() < 1) 1761 return error("Invalid record"); 1762 1763 if (NumRecords >= TypeList.size()) 1764 return error("Invalid TYPE table"); 1765 1766 // Check to see if this was forward referenced, if so fill in the temp. 1767 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1768 if (Res) { 1769 Res->setName(TypeName); 1770 TypeList[NumRecords] = nullptr; 1771 } else // Otherwise, create a new struct. 1772 Res = createIdentifiedStructType(Context, TypeName); 1773 TypeName.clear(); 1774 1775 SmallVector<Type*, 8> EltTys; 1776 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1777 if (Type *T = getTypeByID(Record[i])) 1778 EltTys.push_back(T); 1779 else 1780 break; 1781 } 1782 if (EltTys.size() != Record.size()-1) 1783 return error("Invalid record"); 1784 Res->setBody(EltTys, Record[0]); 1785 ResultTy = Res; 1786 break; 1787 } 1788 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1789 if (Record.size() != 1) 1790 return error("Invalid record"); 1791 1792 if (NumRecords >= TypeList.size()) 1793 return error("Invalid TYPE table"); 1794 1795 // Check to see if this was forward referenced, if so fill in the temp. 1796 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1797 if (Res) { 1798 Res->setName(TypeName); 1799 TypeList[NumRecords] = nullptr; 1800 } else // Otherwise, create a new struct with no body. 1801 Res = createIdentifiedStructType(Context, TypeName); 1802 TypeName.clear(); 1803 ResultTy = Res; 1804 break; 1805 } 1806 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1807 if (Record.size() < 2) 1808 return error("Invalid record"); 1809 ResultTy = getTypeByID(Record[1]); 1810 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1811 return error("Invalid type"); 1812 ResultTy = ArrayType::get(ResultTy, Record[0]); 1813 break; 1814 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1815 if (Record.size() < 2) 1816 return error("Invalid record"); 1817 if (Record[0] == 0) 1818 return error("Invalid vector length"); 1819 ResultTy = getTypeByID(Record[1]); 1820 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1821 return error("Invalid type"); 1822 ResultTy = VectorType::get(ResultTy, Record[0]); 1823 break; 1824 } 1825 1826 if (NumRecords >= TypeList.size()) 1827 return error("Invalid TYPE table"); 1828 if (TypeList[NumRecords]) 1829 return error( 1830 "Invalid TYPE table: Only named structs can be forward referenced"); 1831 assert(ResultTy && "Didn't read a type?"); 1832 TypeList[NumRecords++] = ResultTy; 1833 } 1834 } 1835 1836 std::error_code BitcodeReader::parseOperandBundleTags() { 1837 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1838 return error("Invalid record"); 1839 1840 if (!BundleTags.empty()) 1841 return error("Invalid multiple blocks"); 1842 1843 SmallVector<uint64_t, 64> Record; 1844 1845 while (1) { 1846 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1847 1848 switch (Entry.Kind) { 1849 case BitstreamEntry::SubBlock: // Handled for us already. 1850 case BitstreamEntry::Error: 1851 return error("Malformed block"); 1852 case BitstreamEntry::EndBlock: 1853 return std::error_code(); 1854 case BitstreamEntry::Record: 1855 // The interesting case. 1856 break; 1857 } 1858 1859 // Tags are implicitly mapped to integers by their order. 1860 1861 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1862 return error("Invalid record"); 1863 1864 // OPERAND_BUNDLE_TAG: [strchr x N] 1865 BundleTags.emplace_back(); 1866 if (convertToString(Record, 0, BundleTags.back())) 1867 return error("Invalid record"); 1868 Record.clear(); 1869 } 1870 } 1871 1872 /// Associate a value with its name from the given index in the provided record. 1873 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1874 unsigned NameIndex, Triple &TT) { 1875 SmallString<128> ValueName; 1876 if (convertToString(Record, NameIndex, ValueName)) 1877 return error("Invalid record"); 1878 unsigned ValueID = Record[0]; 1879 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1880 return error("Invalid record"); 1881 Value *V = ValueList[ValueID]; 1882 1883 StringRef NameStr(ValueName.data(), ValueName.size()); 1884 if (NameStr.find_first_of(0) != StringRef::npos) 1885 return error("Invalid value name"); 1886 V->setName(NameStr); 1887 auto *GO = dyn_cast<GlobalObject>(V); 1888 if (GO) { 1889 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1890 if (TT.isOSBinFormatMachO()) 1891 GO->setComdat(nullptr); 1892 else 1893 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1894 } 1895 } 1896 return V; 1897 } 1898 1899 /// Helper to note and return the current location, and jump to the given 1900 /// offset. 1901 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1902 BitstreamCursor &Stream) { 1903 // Save the current parsing location so we can jump back at the end 1904 // of the VST read. 1905 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1906 Stream.JumpToBit(Offset * 32); 1907 #ifndef NDEBUG 1908 // Do some checking if we are in debug mode. 1909 BitstreamEntry Entry = Stream.advance(); 1910 assert(Entry.Kind == BitstreamEntry::SubBlock); 1911 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1912 #else 1913 // In NDEBUG mode ignore the output so we don't get an unused variable 1914 // warning. 1915 Stream.advance(); 1916 #endif 1917 return CurrentBit; 1918 } 1919 1920 /// Parse the value symbol table at either the current parsing location or 1921 /// at the given bit offset if provided. 1922 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1923 uint64_t CurrentBit; 1924 // Pass in the Offset to distinguish between calling for the module-level 1925 // VST (where we want to jump to the VST offset) and the function-level 1926 // VST (where we don't). 1927 if (Offset > 0) 1928 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1929 1930 // Compute the delta between the bitcode indices in the VST (the word offset 1931 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1932 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1933 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1934 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1935 // just before entering the VST subblock because: 1) the EnterSubBlock 1936 // changes the AbbrevID width; 2) the VST block is nested within the same 1937 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1938 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1939 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1940 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1941 unsigned FuncBitcodeOffsetDelta = 1942 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1943 1944 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1945 return error("Invalid record"); 1946 1947 SmallVector<uint64_t, 64> Record; 1948 1949 Triple TT(TheModule->getTargetTriple()); 1950 1951 // Read all the records for this value table. 1952 SmallString<128> ValueName; 1953 while (1) { 1954 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1955 1956 switch (Entry.Kind) { 1957 case BitstreamEntry::SubBlock: // Handled for us already. 1958 case BitstreamEntry::Error: 1959 return error("Malformed block"); 1960 case BitstreamEntry::EndBlock: 1961 if (Offset > 0) 1962 Stream.JumpToBit(CurrentBit); 1963 return std::error_code(); 1964 case BitstreamEntry::Record: 1965 // The interesting case. 1966 break; 1967 } 1968 1969 // Read a record. 1970 Record.clear(); 1971 switch (Stream.readRecord(Entry.ID, Record)) { 1972 default: // Default behavior: unknown type. 1973 break; 1974 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 1975 ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT); 1976 if (std::error_code EC = ValOrErr.getError()) 1977 return EC; 1978 ValOrErr.get(); 1979 break; 1980 } 1981 case bitc::VST_CODE_FNENTRY: { 1982 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 1983 ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT); 1984 if (std::error_code EC = ValOrErr.getError()) 1985 return EC; 1986 Value *V = ValOrErr.get(); 1987 1988 auto *GO = dyn_cast<GlobalObject>(V); 1989 if (!GO) { 1990 // If this is an alias, need to get the actual Function object 1991 // it aliases, in order to set up the DeferredFunctionInfo entry below. 1992 auto *GA = dyn_cast<GlobalAlias>(V); 1993 if (GA) 1994 GO = GA->getBaseObject(); 1995 assert(GO); 1996 } 1997 1998 uint64_t FuncWordOffset = Record[1]; 1999 Function *F = dyn_cast<Function>(GO); 2000 assert(F); 2001 uint64_t FuncBitOffset = FuncWordOffset * 32; 2002 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2003 // Set the LastFunctionBlockBit to point to the last function block. 2004 // Later when parsing is resumed after function materialization, 2005 // we can simply skip that last function block. 2006 if (FuncBitOffset > LastFunctionBlockBit) 2007 LastFunctionBlockBit = FuncBitOffset; 2008 break; 2009 } 2010 case bitc::VST_CODE_BBENTRY: { 2011 if (convertToString(Record, 1, ValueName)) 2012 return error("Invalid record"); 2013 BasicBlock *BB = getBasicBlock(Record[0]); 2014 if (!BB) 2015 return error("Invalid record"); 2016 2017 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2018 ValueName.clear(); 2019 break; 2020 } 2021 } 2022 } 2023 } 2024 2025 /// Parse a single METADATA_KIND record, inserting result in MDKindMap. 2026 std::error_code 2027 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) { 2028 if (Record.size() < 2) 2029 return error("Invalid record"); 2030 2031 unsigned Kind = Record[0]; 2032 SmallString<8> Name(Record.begin() + 1, Record.end()); 2033 2034 unsigned NewKind = TheModule->getMDKindID(Name.str()); 2035 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 2036 return error("Conflicting METADATA_KIND records"); 2037 return std::error_code(); 2038 } 2039 2040 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 2041 2042 std::error_code BitcodeReader::parseMetadataStrings(ArrayRef<uint64_t> Record, 2043 StringRef Blob, 2044 unsigned &NextMetadataNo) { 2045 // All the MDStrings in the block are emitted together in a single 2046 // record. The strings are concatenated and stored in a blob along with 2047 // their sizes. 2048 if (Record.size() != 2) 2049 return error("Invalid record: metadata strings layout"); 2050 2051 unsigned NumStrings = Record[0]; 2052 unsigned StringsOffset = Record[1]; 2053 if (!NumStrings) 2054 return error("Invalid record: metadata strings with no strings"); 2055 if (StringsOffset > Blob.size()) 2056 return error("Invalid record: metadata strings corrupt offset"); 2057 2058 StringRef Lengths = Blob.slice(0, StringsOffset); 2059 SimpleBitstreamCursor R(*StreamFile); 2060 R.jumpToPointer(Lengths.begin()); 2061 2062 // Ensure that Blob doesn't get invalidated, even if this is reading from 2063 // a StreamingMemoryObject with corrupt data. 2064 R.setArtificialByteLimit(R.getCurrentByteNo() + StringsOffset); 2065 2066 StringRef Strings = Blob.drop_front(StringsOffset); 2067 do { 2068 if (R.AtEndOfStream()) 2069 return error("Invalid record: metadata strings bad length"); 2070 2071 unsigned Size = R.ReadVBR(6); 2072 if (Strings.size() < Size) 2073 return error("Invalid record: metadata strings truncated chars"); 2074 2075 MetadataList.assignValue(MDString::get(Context, Strings.slice(0, Size)), 2076 NextMetadataNo++); 2077 Strings = Strings.drop_front(Size); 2078 } while (--NumStrings); 2079 2080 return std::error_code(); 2081 } 2082 2083 namespace { 2084 class PlaceholderQueue { 2085 // Placeholders would thrash around when moved, so store in a std::deque 2086 // instead of some sort of vector. 2087 std::deque<DistinctMDOperandPlaceholder> PHs; 2088 2089 public: 2090 DistinctMDOperandPlaceholder &getPlaceholderOp(unsigned ID); 2091 void flush(BitcodeReaderMetadataList &MetadataList); 2092 }; 2093 } // end namespace 2094 2095 DistinctMDOperandPlaceholder &PlaceholderQueue::getPlaceholderOp(unsigned ID) { 2096 PHs.emplace_back(ID); 2097 return PHs.back(); 2098 } 2099 2100 void PlaceholderQueue::flush(BitcodeReaderMetadataList &MetadataList) { 2101 while (!PHs.empty()) { 2102 PHs.front().replaceUseWith( 2103 MetadataList.getMetadataFwdRef(PHs.front().getID())); 2104 PHs.pop_front(); 2105 } 2106 } 2107 2108 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing 2109 /// module level metadata. 2110 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) { 2111 assert((ModuleLevel || DeferredMetadataInfo.empty()) && 2112 "Must read all module-level metadata before function-level"); 2113 2114 IsMetadataMaterialized = true; 2115 unsigned NextMetadataNo = MetadataList.size(); 2116 2117 if (!ModuleLevel && MetadataList.hasFwdRefs()) 2118 return error("Invalid metadata: fwd refs into function blocks"); 2119 2120 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 2121 return error("Invalid record"); 2122 2123 std::vector<std::pair<DICompileUnit *, Metadata *>> CUSubprograms; 2124 SmallVector<uint64_t, 64> Record; 2125 2126 PlaceholderQueue Placeholders; 2127 bool IsDistinct; 2128 auto getMD = [&](unsigned ID) -> Metadata * { 2129 if (!IsDistinct) 2130 return MetadataList.getMetadataFwdRef(ID); 2131 if (auto *MD = MetadataList.getMetadataIfResolved(ID)) 2132 return MD; 2133 return &Placeholders.getPlaceholderOp(ID); 2134 }; 2135 auto getMDOrNull = [&](unsigned ID) -> Metadata * { 2136 if (ID) 2137 return getMD(ID - 1); 2138 return nullptr; 2139 }; 2140 auto getMDOrNullWithoutPlaceholders = [&](unsigned ID) -> Metadata * { 2141 if (ID) 2142 return MetadataList.getMetadataFwdRef(ID - 1); 2143 return nullptr; 2144 }; 2145 auto getMDString = [&](unsigned ID) -> MDString *{ 2146 // This requires that the ID is not really a forward reference. In 2147 // particular, the MDString must already have been resolved. 2148 return cast_or_null<MDString>(getMDOrNull(ID)); 2149 }; 2150 2151 // Support for old type refs. 2152 auto getDITypeRefOrNull = [&](unsigned ID) { 2153 return MetadataList.upgradeTypeRef(getMDOrNull(ID)); 2154 }; 2155 2156 #define GET_OR_DISTINCT(CLASS, ARGS) \ 2157 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 2158 2159 // Read all the records. 2160 while (1) { 2161 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2162 2163 switch (Entry.Kind) { 2164 case BitstreamEntry::SubBlock: // Handled for us already. 2165 case BitstreamEntry::Error: 2166 return error("Malformed block"); 2167 case BitstreamEntry::EndBlock: 2168 // Upgrade old-style CU <-> SP pointers to point from SP to CU. 2169 for (auto CU_SP : CUSubprograms) 2170 if (auto *SPs = dyn_cast_or_null<MDTuple>(CU_SP.second)) 2171 for (auto &Op : SPs->operands()) 2172 if (auto *SP = dyn_cast_or_null<MDNode>(Op)) 2173 SP->replaceOperandWith(7, CU_SP.first); 2174 2175 MetadataList.tryToResolveCycles(); 2176 Placeholders.flush(MetadataList); 2177 return std::error_code(); 2178 case BitstreamEntry::Record: 2179 // The interesting case. 2180 break; 2181 } 2182 2183 // Read a record. 2184 Record.clear(); 2185 StringRef Blob; 2186 unsigned Code = Stream.readRecord(Entry.ID, Record, &Blob); 2187 IsDistinct = false; 2188 switch (Code) { 2189 default: // Default behavior: ignore. 2190 break; 2191 case bitc::METADATA_NAME: { 2192 // Read name of the named metadata. 2193 SmallString<8> Name(Record.begin(), Record.end()); 2194 Record.clear(); 2195 Code = Stream.ReadCode(); 2196 2197 unsigned NextBitCode = Stream.readRecord(Code, Record); 2198 if (NextBitCode != bitc::METADATA_NAMED_NODE) 2199 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 2200 2201 // Read named metadata elements. 2202 unsigned Size = Record.size(); 2203 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 2204 for (unsigned i = 0; i != Size; ++i) { 2205 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]); 2206 if (!MD) 2207 return error("Invalid record"); 2208 NMD->addOperand(MD); 2209 } 2210 break; 2211 } 2212 case bitc::METADATA_OLD_FN_NODE: { 2213 // FIXME: Remove in 4.0. 2214 // This is a LocalAsMetadata record, the only type of function-local 2215 // metadata. 2216 if (Record.size() % 2 == 1) 2217 return error("Invalid record"); 2218 2219 // If this isn't a LocalAsMetadata record, we're dropping it. This used 2220 // to be legal, but there's no upgrade path. 2221 auto dropRecord = [&] { 2222 MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++); 2223 }; 2224 if (Record.size() != 2) { 2225 dropRecord(); 2226 break; 2227 } 2228 2229 Type *Ty = getTypeByID(Record[0]); 2230 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 2231 dropRecord(); 2232 break; 2233 } 2234 2235 MetadataList.assignValue( 2236 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2237 NextMetadataNo++); 2238 break; 2239 } 2240 case bitc::METADATA_OLD_NODE: { 2241 // FIXME: Remove in 4.0. 2242 if (Record.size() % 2 == 1) 2243 return error("Invalid record"); 2244 2245 unsigned Size = Record.size(); 2246 SmallVector<Metadata *, 8> Elts; 2247 for (unsigned i = 0; i != Size; i += 2) { 2248 Type *Ty = getTypeByID(Record[i]); 2249 if (!Ty) 2250 return error("Invalid record"); 2251 if (Ty->isMetadataTy()) 2252 Elts.push_back(getMD(Record[i + 1])); 2253 else if (!Ty->isVoidTy()) { 2254 auto *MD = 2255 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 2256 assert(isa<ConstantAsMetadata>(MD) && 2257 "Expected non-function-local metadata"); 2258 Elts.push_back(MD); 2259 } else 2260 Elts.push_back(nullptr); 2261 } 2262 MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++); 2263 break; 2264 } 2265 case bitc::METADATA_VALUE: { 2266 if (Record.size() != 2) 2267 return error("Invalid record"); 2268 2269 Type *Ty = getTypeByID(Record[0]); 2270 if (Ty->isMetadataTy() || Ty->isVoidTy()) 2271 return error("Invalid record"); 2272 2273 MetadataList.assignValue( 2274 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2275 NextMetadataNo++); 2276 break; 2277 } 2278 case bitc::METADATA_DISTINCT_NODE: 2279 IsDistinct = true; 2280 // fallthrough... 2281 case bitc::METADATA_NODE: { 2282 SmallVector<Metadata *, 8> Elts; 2283 Elts.reserve(Record.size()); 2284 for (unsigned ID : Record) 2285 Elts.push_back(getMDOrNull(ID)); 2286 MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 2287 : MDNode::get(Context, Elts), 2288 NextMetadataNo++); 2289 break; 2290 } 2291 case bitc::METADATA_LOCATION: { 2292 if (Record.size() != 5) 2293 return error("Invalid record"); 2294 2295 IsDistinct = Record[0]; 2296 unsigned Line = Record[1]; 2297 unsigned Column = Record[2]; 2298 Metadata *Scope = getMD(Record[3]); 2299 Metadata *InlinedAt = getMDOrNull(Record[4]); 2300 MetadataList.assignValue( 2301 GET_OR_DISTINCT(DILocation, 2302 (Context, Line, Column, Scope, InlinedAt)), 2303 NextMetadataNo++); 2304 break; 2305 } 2306 case bitc::METADATA_GENERIC_DEBUG: { 2307 if (Record.size() < 4) 2308 return error("Invalid record"); 2309 2310 IsDistinct = Record[0]; 2311 unsigned Tag = Record[1]; 2312 unsigned Version = Record[2]; 2313 2314 if (Tag >= 1u << 16 || Version != 0) 2315 return error("Invalid record"); 2316 2317 auto *Header = getMDString(Record[3]); 2318 SmallVector<Metadata *, 8> DwarfOps; 2319 for (unsigned I = 4, E = Record.size(); I != E; ++I) 2320 DwarfOps.push_back(getMDOrNull(Record[I])); 2321 MetadataList.assignValue( 2322 GET_OR_DISTINCT(GenericDINode, (Context, Tag, Header, DwarfOps)), 2323 NextMetadataNo++); 2324 break; 2325 } 2326 case bitc::METADATA_SUBRANGE: { 2327 if (Record.size() != 3) 2328 return error("Invalid record"); 2329 2330 IsDistinct = Record[0]; 2331 MetadataList.assignValue( 2332 GET_OR_DISTINCT(DISubrange, 2333 (Context, Record[1], unrotateSign(Record[2]))), 2334 NextMetadataNo++); 2335 break; 2336 } 2337 case bitc::METADATA_ENUMERATOR: { 2338 if (Record.size() != 3) 2339 return error("Invalid record"); 2340 2341 IsDistinct = Record[0]; 2342 MetadataList.assignValue( 2343 GET_OR_DISTINCT(DIEnumerator, (Context, unrotateSign(Record[1]), 2344 getMDString(Record[2]))), 2345 NextMetadataNo++); 2346 break; 2347 } 2348 case bitc::METADATA_BASIC_TYPE: { 2349 if (Record.size() != 6) 2350 return error("Invalid record"); 2351 2352 IsDistinct = Record[0]; 2353 MetadataList.assignValue( 2354 GET_OR_DISTINCT(DIBasicType, 2355 (Context, Record[1], getMDString(Record[2]), 2356 Record[3], Record[4], Record[5])), 2357 NextMetadataNo++); 2358 break; 2359 } 2360 case bitc::METADATA_DERIVED_TYPE: { 2361 if (Record.size() != 12) 2362 return error("Invalid record"); 2363 2364 IsDistinct = Record[0]; 2365 MetadataList.assignValue( 2366 GET_OR_DISTINCT( 2367 DIDerivedType, 2368 (Context, Record[1], getMDString(Record[2]), 2369 getMDOrNull(Record[3]), Record[4], getDITypeRefOrNull(Record[5]), 2370 getDITypeRefOrNull(Record[6]), Record[7], Record[8], Record[9], 2371 Record[10], getDITypeRefOrNull(Record[11]))), 2372 NextMetadataNo++); 2373 break; 2374 } 2375 case bitc::METADATA_COMPOSITE_TYPE: { 2376 if (Record.size() != 16) 2377 return error("Invalid record"); 2378 2379 // If we have a UUID and this is not a forward declaration, lookup the 2380 // mapping. 2381 IsDistinct = Record[0] & 0x1; 2382 bool IsNotUsedInTypeRef = Record[0] >= 2; 2383 unsigned Tag = Record[1]; 2384 MDString *Name = getMDString(Record[2]); 2385 Metadata *File = getMDOrNull(Record[3]); 2386 unsigned Line = Record[4]; 2387 Metadata *Scope = getDITypeRefOrNull(Record[5]); 2388 Metadata *BaseType = getDITypeRefOrNull(Record[6]); 2389 uint64_t SizeInBits = Record[7]; 2390 uint64_t AlignInBits = Record[8]; 2391 uint64_t OffsetInBits = Record[9]; 2392 unsigned Flags = Record[10]; 2393 Metadata *Elements = getMDOrNull(Record[11]); 2394 unsigned RuntimeLang = Record[12]; 2395 Metadata *VTableHolder = getDITypeRefOrNull(Record[13]); 2396 Metadata *TemplateParams = getMDOrNull(Record[14]); 2397 auto *Identifier = getMDString(Record[15]); 2398 DICompositeType *CT = nullptr; 2399 if (Identifier) 2400 CT = DICompositeType::buildODRType( 2401 Context, *Identifier, Tag, Name, File, Line, Scope, BaseType, 2402 SizeInBits, AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang, 2403 VTableHolder, TemplateParams); 2404 2405 // Create a node if we didn't get a lazy ODR type. 2406 if (!CT) 2407 CT = GET_OR_DISTINCT(DICompositeType, 2408 (Context, Tag, Name, File, Line, Scope, BaseType, 2409 SizeInBits, AlignInBits, OffsetInBits, Flags, 2410 Elements, RuntimeLang, VTableHolder, 2411 TemplateParams, Identifier)); 2412 if (!IsNotUsedInTypeRef && Identifier) 2413 MetadataList.addTypeRef(*Identifier, *cast<DICompositeType>(CT)); 2414 2415 MetadataList.assignValue(CT, NextMetadataNo++); 2416 break; 2417 } 2418 case bitc::METADATA_SUBROUTINE_TYPE: { 2419 if (Record.size() != 3) 2420 return error("Invalid record"); 2421 2422 IsDistinct = Record[0] & 0x1; 2423 bool IsOldTypeRefArray = Record[0] < 2; 2424 Metadata *Types = getMDOrNull(Record[2]); 2425 if (LLVM_UNLIKELY(IsOldTypeRefArray)) 2426 Types = MetadataList.upgradeTypeRefArray(Types); 2427 2428 MetadataList.assignValue( 2429 GET_OR_DISTINCT(DISubroutineType, (Context, Record[1], Types)), 2430 NextMetadataNo++); 2431 break; 2432 } 2433 2434 case bitc::METADATA_MODULE: { 2435 if (Record.size() != 6) 2436 return error("Invalid record"); 2437 2438 IsDistinct = Record[0]; 2439 MetadataList.assignValue( 2440 GET_OR_DISTINCT(DIModule, 2441 (Context, getMDOrNull(Record[1]), 2442 getMDString(Record[2]), getMDString(Record[3]), 2443 getMDString(Record[4]), getMDString(Record[5]))), 2444 NextMetadataNo++); 2445 break; 2446 } 2447 2448 case bitc::METADATA_FILE: { 2449 if (Record.size() != 3) 2450 return error("Invalid record"); 2451 2452 IsDistinct = Record[0]; 2453 MetadataList.assignValue( 2454 GET_OR_DISTINCT(DIFile, (Context, getMDString(Record[1]), 2455 getMDString(Record[2]))), 2456 NextMetadataNo++); 2457 break; 2458 } 2459 case bitc::METADATA_COMPILE_UNIT: { 2460 if (Record.size() < 14 || Record.size() > 16) 2461 return error("Invalid record"); 2462 2463 // Ignore Record[0], which indicates whether this compile unit is 2464 // distinct. It's always distinct. 2465 IsDistinct = true; 2466 auto *CU = DICompileUnit::getDistinct( 2467 Context, Record[1], getMDOrNull(Record[2]), getMDString(Record[3]), 2468 Record[4], getMDString(Record[5]), Record[6], getMDString(Record[7]), 2469 Record[8], getMDOrNull(Record[9]), getMDOrNull(Record[10]), 2470 getMDOrNull(Record[12]), getMDOrNull(Record[13]), 2471 Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]), 2472 Record.size() <= 14 ? 0 : Record[14]); 2473 2474 MetadataList.assignValue(CU, NextMetadataNo++); 2475 2476 // Move the Upgrade the list of subprograms. 2477 if (Metadata *SPs = getMDOrNullWithoutPlaceholders(Record[11])) 2478 CUSubprograms.push_back({CU, SPs}); 2479 break; 2480 } 2481 case bitc::METADATA_SUBPROGRAM: { 2482 if (Record.size() != 18 && Record.size() != 19) 2483 return error("Invalid record"); 2484 2485 IsDistinct = 2486 Record[0] || Record[8]; // All definitions should be distinct. 2487 // Version 1 has a Function as Record[15]. 2488 // Version 2 has removed Record[15]. 2489 // Version 3 has the Unit as Record[15]. 2490 Metadata *CUorFn = getMDOrNull(Record[15]); 2491 unsigned Offset = Record.size() == 19 ? 1 : 0; 2492 bool HasFn = Offset && dyn_cast_or_null<ConstantAsMetadata>(CUorFn); 2493 bool HasCU = Offset && !HasFn; 2494 DISubprogram *SP = GET_OR_DISTINCT( 2495 DISubprogram, 2496 (Context, getDITypeRefOrNull(Record[1]), getMDString(Record[2]), 2497 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 2498 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 2499 getDITypeRefOrNull(Record[10]), Record[11], Record[12], Record[13], 2500 Record[14], HasCU ? CUorFn : nullptr, 2501 getMDOrNull(Record[15 + Offset]), getMDOrNull(Record[16 + Offset]), 2502 getMDOrNull(Record[17 + Offset]))); 2503 MetadataList.assignValue(SP, NextMetadataNo++); 2504 2505 // Upgrade sp->function mapping to function->sp mapping. 2506 if (HasFn) { 2507 if (auto *CMD = dyn_cast<ConstantAsMetadata>(CUorFn)) 2508 if (auto *F = dyn_cast<Function>(CMD->getValue())) { 2509 if (F->isMaterializable()) 2510 // Defer until materialized; unmaterialized functions may not have 2511 // metadata. 2512 FunctionsWithSPs[F] = SP; 2513 else if (!F->empty()) 2514 F->setSubprogram(SP); 2515 } 2516 } 2517 break; 2518 } 2519 case bitc::METADATA_LEXICAL_BLOCK: { 2520 if (Record.size() != 5) 2521 return error("Invalid record"); 2522 2523 IsDistinct = Record[0]; 2524 MetadataList.assignValue( 2525 GET_OR_DISTINCT(DILexicalBlock, 2526 (Context, getMDOrNull(Record[1]), 2527 getMDOrNull(Record[2]), Record[3], Record[4])), 2528 NextMetadataNo++); 2529 break; 2530 } 2531 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 2532 if (Record.size() != 4) 2533 return error("Invalid record"); 2534 2535 IsDistinct = Record[0]; 2536 MetadataList.assignValue( 2537 GET_OR_DISTINCT(DILexicalBlockFile, 2538 (Context, getMDOrNull(Record[1]), 2539 getMDOrNull(Record[2]), Record[3])), 2540 NextMetadataNo++); 2541 break; 2542 } 2543 case bitc::METADATA_NAMESPACE: { 2544 if (Record.size() != 5) 2545 return error("Invalid record"); 2546 2547 IsDistinct = Record[0]; 2548 MetadataList.assignValue( 2549 GET_OR_DISTINCT(DINamespace, (Context, getMDOrNull(Record[1]), 2550 getMDOrNull(Record[2]), 2551 getMDString(Record[3]), Record[4])), 2552 NextMetadataNo++); 2553 break; 2554 } 2555 case bitc::METADATA_MACRO: { 2556 if (Record.size() != 5) 2557 return error("Invalid record"); 2558 2559 IsDistinct = Record[0]; 2560 MetadataList.assignValue( 2561 GET_OR_DISTINCT(DIMacro, 2562 (Context, Record[1], Record[2], 2563 getMDString(Record[3]), getMDString(Record[4]))), 2564 NextMetadataNo++); 2565 break; 2566 } 2567 case bitc::METADATA_MACRO_FILE: { 2568 if (Record.size() != 5) 2569 return error("Invalid record"); 2570 2571 IsDistinct = Record[0]; 2572 MetadataList.assignValue( 2573 GET_OR_DISTINCT(DIMacroFile, 2574 (Context, Record[1], Record[2], 2575 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2576 NextMetadataNo++); 2577 break; 2578 } 2579 case bitc::METADATA_TEMPLATE_TYPE: { 2580 if (Record.size() != 3) 2581 return error("Invalid record"); 2582 2583 IsDistinct = Record[0]; 2584 MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 2585 (Context, getMDString(Record[1]), 2586 getDITypeRefOrNull(Record[2]))), 2587 NextMetadataNo++); 2588 break; 2589 } 2590 case bitc::METADATA_TEMPLATE_VALUE: { 2591 if (Record.size() != 5) 2592 return error("Invalid record"); 2593 2594 IsDistinct = Record[0]; 2595 MetadataList.assignValue( 2596 GET_OR_DISTINCT(DITemplateValueParameter, 2597 (Context, Record[1], getMDString(Record[2]), 2598 getDITypeRefOrNull(Record[3]), 2599 getMDOrNull(Record[4]))), 2600 NextMetadataNo++); 2601 break; 2602 } 2603 case bitc::METADATA_GLOBAL_VAR: { 2604 if (Record.size() != 11) 2605 return error("Invalid record"); 2606 2607 IsDistinct = Record[0]; 2608 MetadataList.assignValue( 2609 GET_OR_DISTINCT(DIGlobalVariable, 2610 (Context, getMDOrNull(Record[1]), 2611 getMDString(Record[2]), getMDString(Record[3]), 2612 getMDOrNull(Record[4]), Record[5], 2613 getDITypeRefOrNull(Record[6]), Record[7], Record[8], 2614 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 2615 NextMetadataNo++); 2616 break; 2617 } 2618 case bitc::METADATA_LOCAL_VAR: { 2619 // 10th field is for the obseleted 'inlinedAt:' field. 2620 if (Record.size() < 8 || Record.size() > 10) 2621 return error("Invalid record"); 2622 2623 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or 2624 // DW_TAG_arg_variable. 2625 IsDistinct = Record[0]; 2626 bool HasTag = Record.size() > 8; 2627 MetadataList.assignValue( 2628 GET_OR_DISTINCT(DILocalVariable, 2629 (Context, getMDOrNull(Record[1 + HasTag]), 2630 getMDString(Record[2 + HasTag]), 2631 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag], 2632 getDITypeRefOrNull(Record[5 + HasTag]), 2633 Record[6 + HasTag], Record[7 + HasTag])), 2634 NextMetadataNo++); 2635 break; 2636 } 2637 case bitc::METADATA_EXPRESSION: { 2638 if (Record.size() < 1) 2639 return error("Invalid record"); 2640 2641 IsDistinct = Record[0]; 2642 MetadataList.assignValue( 2643 GET_OR_DISTINCT(DIExpression, 2644 (Context, makeArrayRef(Record).slice(1))), 2645 NextMetadataNo++); 2646 break; 2647 } 2648 case bitc::METADATA_OBJC_PROPERTY: { 2649 if (Record.size() != 8) 2650 return error("Invalid record"); 2651 2652 IsDistinct = Record[0]; 2653 MetadataList.assignValue( 2654 GET_OR_DISTINCT(DIObjCProperty, 2655 (Context, getMDString(Record[1]), 2656 getMDOrNull(Record[2]), Record[3], 2657 getMDString(Record[4]), getMDString(Record[5]), 2658 Record[6], getDITypeRefOrNull(Record[7]))), 2659 NextMetadataNo++); 2660 break; 2661 } 2662 case bitc::METADATA_IMPORTED_ENTITY: { 2663 if (Record.size() != 6) 2664 return error("Invalid record"); 2665 2666 IsDistinct = Record[0]; 2667 MetadataList.assignValue( 2668 GET_OR_DISTINCT(DIImportedEntity, 2669 (Context, Record[1], getMDOrNull(Record[2]), 2670 getDITypeRefOrNull(Record[3]), Record[4], 2671 getMDString(Record[5]))), 2672 NextMetadataNo++); 2673 break; 2674 } 2675 case bitc::METADATA_STRING_OLD: { 2676 std::string String(Record.begin(), Record.end()); 2677 2678 // Test for upgrading !llvm.loop. 2679 HasSeenOldLoopTags |= mayBeOldLoopAttachmentTag(String); 2680 2681 Metadata *MD = MDString::get(Context, String); 2682 MetadataList.assignValue(MD, NextMetadataNo++); 2683 break; 2684 } 2685 case bitc::METADATA_STRINGS: 2686 if (std::error_code EC = 2687 parseMetadataStrings(Record, Blob, NextMetadataNo)) 2688 return EC; 2689 break; 2690 case bitc::METADATA_KIND: { 2691 // Support older bitcode files that had METADATA_KIND records in a 2692 // block with METADATA_BLOCK_ID. 2693 if (std::error_code EC = parseMetadataKindRecord(Record)) 2694 return EC; 2695 break; 2696 } 2697 } 2698 } 2699 #undef GET_OR_DISTINCT 2700 } 2701 2702 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK. 2703 std::error_code BitcodeReader::parseMetadataKinds() { 2704 if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID)) 2705 return error("Invalid record"); 2706 2707 SmallVector<uint64_t, 64> Record; 2708 2709 // Read all the records. 2710 while (1) { 2711 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2712 2713 switch (Entry.Kind) { 2714 case BitstreamEntry::SubBlock: // Handled for us already. 2715 case BitstreamEntry::Error: 2716 return error("Malformed block"); 2717 case BitstreamEntry::EndBlock: 2718 return std::error_code(); 2719 case BitstreamEntry::Record: 2720 // The interesting case. 2721 break; 2722 } 2723 2724 // Read a record. 2725 Record.clear(); 2726 unsigned Code = Stream.readRecord(Entry.ID, Record); 2727 switch (Code) { 2728 default: // Default behavior: ignore. 2729 break; 2730 case bitc::METADATA_KIND: { 2731 if (std::error_code EC = parseMetadataKindRecord(Record)) 2732 return EC; 2733 break; 2734 } 2735 } 2736 } 2737 } 2738 2739 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2740 /// encoding. 2741 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2742 if ((V & 1) == 0) 2743 return V >> 1; 2744 if (V != 1) 2745 return -(V >> 1); 2746 // There is no such thing as -0 with integers. "-0" really means MININT. 2747 return 1ULL << 63; 2748 } 2749 2750 /// Resolve all of the initializers for global values and aliases that we can. 2751 std::error_code BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2752 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2753 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > 2754 IndirectSymbolInitWorklist; 2755 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2756 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2757 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 2758 2759 GlobalInitWorklist.swap(GlobalInits); 2760 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2761 FunctionPrefixWorklist.swap(FunctionPrefixes); 2762 FunctionPrologueWorklist.swap(FunctionPrologues); 2763 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2764 2765 while (!GlobalInitWorklist.empty()) { 2766 unsigned ValID = GlobalInitWorklist.back().second; 2767 if (ValID >= ValueList.size()) { 2768 // Not ready to resolve this yet, it requires something later in the file. 2769 GlobalInits.push_back(GlobalInitWorklist.back()); 2770 } else { 2771 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2772 GlobalInitWorklist.back().first->setInitializer(C); 2773 else 2774 return error("Expected a constant"); 2775 } 2776 GlobalInitWorklist.pop_back(); 2777 } 2778 2779 while (!IndirectSymbolInitWorklist.empty()) { 2780 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2781 if (ValID >= ValueList.size()) { 2782 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2783 } else { 2784 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2785 if (!C) 2786 return error("Expected a constant"); 2787 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2788 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2789 return error("Alias and aliasee types don't match"); 2790 GIS->setIndirectSymbol(C); 2791 } 2792 IndirectSymbolInitWorklist.pop_back(); 2793 } 2794 2795 while (!FunctionPrefixWorklist.empty()) { 2796 unsigned ValID = FunctionPrefixWorklist.back().second; 2797 if (ValID >= ValueList.size()) { 2798 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2799 } else { 2800 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2801 FunctionPrefixWorklist.back().first->setPrefixData(C); 2802 else 2803 return error("Expected a constant"); 2804 } 2805 FunctionPrefixWorklist.pop_back(); 2806 } 2807 2808 while (!FunctionPrologueWorklist.empty()) { 2809 unsigned ValID = FunctionPrologueWorklist.back().second; 2810 if (ValID >= ValueList.size()) { 2811 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2812 } else { 2813 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2814 FunctionPrologueWorklist.back().first->setPrologueData(C); 2815 else 2816 return error("Expected a constant"); 2817 } 2818 FunctionPrologueWorklist.pop_back(); 2819 } 2820 2821 while (!FunctionPersonalityFnWorklist.empty()) { 2822 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2823 if (ValID >= ValueList.size()) { 2824 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2825 } else { 2826 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2827 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2828 else 2829 return error("Expected a constant"); 2830 } 2831 FunctionPersonalityFnWorklist.pop_back(); 2832 } 2833 2834 return std::error_code(); 2835 } 2836 2837 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2838 SmallVector<uint64_t, 8> Words(Vals.size()); 2839 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2840 BitcodeReader::decodeSignRotatedValue); 2841 2842 return APInt(TypeBits, Words); 2843 } 2844 2845 std::error_code BitcodeReader::parseConstants() { 2846 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2847 return error("Invalid record"); 2848 2849 SmallVector<uint64_t, 64> Record; 2850 2851 // Read all the records for this value table. 2852 Type *CurTy = Type::getInt32Ty(Context); 2853 unsigned NextCstNo = ValueList.size(); 2854 while (1) { 2855 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2856 2857 switch (Entry.Kind) { 2858 case BitstreamEntry::SubBlock: // Handled for us already. 2859 case BitstreamEntry::Error: 2860 return error("Malformed block"); 2861 case BitstreamEntry::EndBlock: 2862 if (NextCstNo != ValueList.size()) 2863 return error("Invalid constant reference"); 2864 2865 // Once all the constants have been read, go through and resolve forward 2866 // references. 2867 ValueList.resolveConstantForwardRefs(); 2868 return std::error_code(); 2869 case BitstreamEntry::Record: 2870 // The interesting case. 2871 break; 2872 } 2873 2874 // Read a record. 2875 Record.clear(); 2876 Value *V = nullptr; 2877 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2878 switch (BitCode) { 2879 default: // Default behavior: unknown constant 2880 case bitc::CST_CODE_UNDEF: // UNDEF 2881 V = UndefValue::get(CurTy); 2882 break; 2883 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2884 if (Record.empty()) 2885 return error("Invalid record"); 2886 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2887 return error("Invalid record"); 2888 CurTy = TypeList[Record[0]]; 2889 continue; // Skip the ValueList manipulation. 2890 case bitc::CST_CODE_NULL: // NULL 2891 V = Constant::getNullValue(CurTy); 2892 break; 2893 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2894 if (!CurTy->isIntegerTy() || Record.empty()) 2895 return error("Invalid record"); 2896 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2897 break; 2898 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2899 if (!CurTy->isIntegerTy() || Record.empty()) 2900 return error("Invalid record"); 2901 2902 APInt VInt = 2903 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2904 V = ConstantInt::get(Context, VInt); 2905 2906 break; 2907 } 2908 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2909 if (Record.empty()) 2910 return error("Invalid record"); 2911 if (CurTy->isHalfTy()) 2912 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2913 APInt(16, (uint16_t)Record[0]))); 2914 else if (CurTy->isFloatTy()) 2915 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2916 APInt(32, (uint32_t)Record[0]))); 2917 else if (CurTy->isDoubleTy()) 2918 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2919 APInt(64, Record[0]))); 2920 else if (CurTy->isX86_FP80Ty()) { 2921 // Bits are not stored the same way as a normal i80 APInt, compensate. 2922 uint64_t Rearrange[2]; 2923 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2924 Rearrange[1] = Record[0] >> 48; 2925 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2926 APInt(80, Rearrange))); 2927 } else if (CurTy->isFP128Ty()) 2928 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2929 APInt(128, Record))); 2930 else if (CurTy->isPPC_FP128Ty()) 2931 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2932 APInt(128, Record))); 2933 else 2934 V = UndefValue::get(CurTy); 2935 break; 2936 } 2937 2938 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2939 if (Record.empty()) 2940 return error("Invalid record"); 2941 2942 unsigned Size = Record.size(); 2943 SmallVector<Constant*, 16> Elts; 2944 2945 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2946 for (unsigned i = 0; i != Size; ++i) 2947 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2948 STy->getElementType(i))); 2949 V = ConstantStruct::get(STy, Elts); 2950 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2951 Type *EltTy = ATy->getElementType(); 2952 for (unsigned i = 0; i != Size; ++i) 2953 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2954 V = ConstantArray::get(ATy, Elts); 2955 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2956 Type *EltTy = VTy->getElementType(); 2957 for (unsigned i = 0; i != Size; ++i) 2958 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2959 V = ConstantVector::get(Elts); 2960 } else { 2961 V = UndefValue::get(CurTy); 2962 } 2963 break; 2964 } 2965 case bitc::CST_CODE_STRING: // STRING: [values] 2966 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2967 if (Record.empty()) 2968 return error("Invalid record"); 2969 2970 SmallString<16> Elts(Record.begin(), Record.end()); 2971 V = ConstantDataArray::getString(Context, Elts, 2972 BitCode == bitc::CST_CODE_CSTRING); 2973 break; 2974 } 2975 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2976 if (Record.empty()) 2977 return error("Invalid record"); 2978 2979 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2980 if (EltTy->isIntegerTy(8)) { 2981 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2982 if (isa<VectorType>(CurTy)) 2983 V = ConstantDataVector::get(Context, Elts); 2984 else 2985 V = ConstantDataArray::get(Context, Elts); 2986 } else if (EltTy->isIntegerTy(16)) { 2987 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2988 if (isa<VectorType>(CurTy)) 2989 V = ConstantDataVector::get(Context, Elts); 2990 else 2991 V = ConstantDataArray::get(Context, Elts); 2992 } else if (EltTy->isIntegerTy(32)) { 2993 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2994 if (isa<VectorType>(CurTy)) 2995 V = ConstantDataVector::get(Context, Elts); 2996 else 2997 V = ConstantDataArray::get(Context, Elts); 2998 } else if (EltTy->isIntegerTy(64)) { 2999 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3000 if (isa<VectorType>(CurTy)) 3001 V = ConstantDataVector::get(Context, Elts); 3002 else 3003 V = ConstantDataArray::get(Context, Elts); 3004 } else if (EltTy->isHalfTy()) { 3005 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3006 if (isa<VectorType>(CurTy)) 3007 V = ConstantDataVector::getFP(Context, Elts); 3008 else 3009 V = ConstantDataArray::getFP(Context, Elts); 3010 } else if (EltTy->isFloatTy()) { 3011 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3012 if (isa<VectorType>(CurTy)) 3013 V = ConstantDataVector::getFP(Context, Elts); 3014 else 3015 V = ConstantDataArray::getFP(Context, Elts); 3016 } else if (EltTy->isDoubleTy()) { 3017 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3018 if (isa<VectorType>(CurTy)) 3019 V = ConstantDataVector::getFP(Context, Elts); 3020 else 3021 V = ConstantDataArray::getFP(Context, Elts); 3022 } else { 3023 return error("Invalid type for value"); 3024 } 3025 break; 3026 } 3027 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 3028 if (Record.size() < 3) 3029 return error("Invalid record"); 3030 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 3031 if (Opc < 0) { 3032 V = UndefValue::get(CurTy); // Unknown binop. 3033 } else { 3034 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 3035 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 3036 unsigned Flags = 0; 3037 if (Record.size() >= 4) { 3038 if (Opc == Instruction::Add || 3039 Opc == Instruction::Sub || 3040 Opc == Instruction::Mul || 3041 Opc == Instruction::Shl) { 3042 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3043 Flags |= OverflowingBinaryOperator::NoSignedWrap; 3044 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3045 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3046 } else if (Opc == Instruction::SDiv || 3047 Opc == Instruction::UDiv || 3048 Opc == Instruction::LShr || 3049 Opc == Instruction::AShr) { 3050 if (Record[3] & (1 << bitc::PEO_EXACT)) 3051 Flags |= SDivOperator::IsExact; 3052 } 3053 } 3054 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 3055 } 3056 break; 3057 } 3058 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 3059 if (Record.size() < 3) 3060 return error("Invalid record"); 3061 int Opc = getDecodedCastOpcode(Record[0]); 3062 if (Opc < 0) { 3063 V = UndefValue::get(CurTy); // Unknown cast. 3064 } else { 3065 Type *OpTy = getTypeByID(Record[1]); 3066 if (!OpTy) 3067 return error("Invalid record"); 3068 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 3069 V = UpgradeBitCastExpr(Opc, Op, CurTy); 3070 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 3071 } 3072 break; 3073 } 3074 case bitc::CST_CODE_CE_INBOUNDS_GEP: 3075 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 3076 unsigned OpNum = 0; 3077 Type *PointeeType = nullptr; 3078 if (Record.size() % 2) 3079 PointeeType = getTypeByID(Record[OpNum++]); 3080 SmallVector<Constant*, 16> Elts; 3081 while (OpNum != Record.size()) { 3082 Type *ElTy = getTypeByID(Record[OpNum++]); 3083 if (!ElTy) 3084 return error("Invalid record"); 3085 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 3086 } 3087 3088 if (PointeeType && 3089 PointeeType != 3090 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 3091 ->getElementType()) 3092 return error("Explicit gep operator type does not match pointee type " 3093 "of pointer operand"); 3094 3095 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3096 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 3097 BitCode == 3098 bitc::CST_CODE_CE_INBOUNDS_GEP); 3099 break; 3100 } 3101 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 3102 if (Record.size() < 3) 3103 return error("Invalid record"); 3104 3105 Type *SelectorTy = Type::getInt1Ty(Context); 3106 3107 // The selector might be an i1 or an <n x i1> 3108 // Get the type from the ValueList before getting a forward ref. 3109 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 3110 if (Value *V = ValueList[Record[0]]) 3111 if (SelectorTy != V->getType()) 3112 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 3113 3114 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 3115 SelectorTy), 3116 ValueList.getConstantFwdRef(Record[1],CurTy), 3117 ValueList.getConstantFwdRef(Record[2],CurTy)); 3118 break; 3119 } 3120 case bitc::CST_CODE_CE_EXTRACTELT 3121 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 3122 if (Record.size() < 3) 3123 return error("Invalid record"); 3124 VectorType *OpTy = 3125 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3126 if (!OpTy) 3127 return error("Invalid record"); 3128 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3129 Constant *Op1 = nullptr; 3130 if (Record.size() == 4) { 3131 Type *IdxTy = getTypeByID(Record[2]); 3132 if (!IdxTy) 3133 return error("Invalid record"); 3134 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 3135 } else // TODO: Remove with llvm 4.0 3136 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 3137 if (!Op1) 3138 return error("Invalid record"); 3139 V = ConstantExpr::getExtractElement(Op0, Op1); 3140 break; 3141 } 3142 case bitc::CST_CODE_CE_INSERTELT 3143 : { // CE_INSERTELT: [opval, opval, opty, opval] 3144 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3145 if (Record.size() < 3 || !OpTy) 3146 return error("Invalid record"); 3147 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 3148 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 3149 OpTy->getElementType()); 3150 Constant *Op2 = nullptr; 3151 if (Record.size() == 4) { 3152 Type *IdxTy = getTypeByID(Record[2]); 3153 if (!IdxTy) 3154 return error("Invalid record"); 3155 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 3156 } else // TODO: Remove with llvm 4.0 3157 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 3158 if (!Op2) 3159 return error("Invalid record"); 3160 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 3161 break; 3162 } 3163 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 3164 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3165 if (Record.size() < 3 || !OpTy) 3166 return error("Invalid record"); 3167 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 3168 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 3169 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 3170 OpTy->getNumElements()); 3171 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 3172 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 3173 break; 3174 } 3175 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 3176 VectorType *RTy = dyn_cast<VectorType>(CurTy); 3177 VectorType *OpTy = 3178 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3179 if (Record.size() < 4 || !RTy || !OpTy) 3180 return error("Invalid record"); 3181 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3182 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 3183 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 3184 RTy->getNumElements()); 3185 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 3186 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 3187 break; 3188 } 3189 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 3190 if (Record.size() < 4) 3191 return error("Invalid record"); 3192 Type *OpTy = getTypeByID(Record[0]); 3193 if (!OpTy) 3194 return error("Invalid record"); 3195 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3196 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 3197 3198 if (OpTy->isFPOrFPVectorTy()) 3199 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 3200 else 3201 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 3202 break; 3203 } 3204 // This maintains backward compatibility, pre-asm dialect keywords. 3205 // FIXME: Remove with the 4.0 release. 3206 case bitc::CST_CODE_INLINEASM_OLD: { 3207 if (Record.size() < 2) 3208 return error("Invalid record"); 3209 std::string AsmStr, ConstrStr; 3210 bool HasSideEffects = Record[0] & 1; 3211 bool IsAlignStack = Record[0] >> 1; 3212 unsigned AsmStrSize = Record[1]; 3213 if (2+AsmStrSize >= Record.size()) 3214 return error("Invalid record"); 3215 unsigned ConstStrSize = Record[2+AsmStrSize]; 3216 if (3+AsmStrSize+ConstStrSize > Record.size()) 3217 return error("Invalid record"); 3218 3219 for (unsigned i = 0; i != AsmStrSize; ++i) 3220 AsmStr += (char)Record[2+i]; 3221 for (unsigned i = 0; i != ConstStrSize; ++i) 3222 ConstrStr += (char)Record[3+AsmStrSize+i]; 3223 PointerType *PTy = cast<PointerType>(CurTy); 3224 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 3225 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 3226 break; 3227 } 3228 // This version adds support for the asm dialect keywords (e.g., 3229 // inteldialect). 3230 case bitc::CST_CODE_INLINEASM: { 3231 if (Record.size() < 2) 3232 return error("Invalid record"); 3233 std::string AsmStr, ConstrStr; 3234 bool HasSideEffects = Record[0] & 1; 3235 bool IsAlignStack = (Record[0] >> 1) & 1; 3236 unsigned AsmDialect = Record[0] >> 2; 3237 unsigned AsmStrSize = Record[1]; 3238 if (2+AsmStrSize >= Record.size()) 3239 return error("Invalid record"); 3240 unsigned ConstStrSize = Record[2+AsmStrSize]; 3241 if (3+AsmStrSize+ConstStrSize > Record.size()) 3242 return error("Invalid record"); 3243 3244 for (unsigned i = 0; i != AsmStrSize; ++i) 3245 AsmStr += (char)Record[2+i]; 3246 for (unsigned i = 0; i != ConstStrSize; ++i) 3247 ConstrStr += (char)Record[3+AsmStrSize+i]; 3248 PointerType *PTy = cast<PointerType>(CurTy); 3249 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 3250 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3251 InlineAsm::AsmDialect(AsmDialect)); 3252 break; 3253 } 3254 case bitc::CST_CODE_BLOCKADDRESS:{ 3255 if (Record.size() < 3) 3256 return error("Invalid record"); 3257 Type *FnTy = getTypeByID(Record[0]); 3258 if (!FnTy) 3259 return error("Invalid record"); 3260 Function *Fn = 3261 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 3262 if (!Fn) 3263 return error("Invalid record"); 3264 3265 // If the function is already parsed we can insert the block address right 3266 // away. 3267 BasicBlock *BB; 3268 unsigned BBID = Record[2]; 3269 if (!BBID) 3270 // Invalid reference to entry block. 3271 return error("Invalid ID"); 3272 if (!Fn->empty()) { 3273 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 3274 for (size_t I = 0, E = BBID; I != E; ++I) { 3275 if (BBI == BBE) 3276 return error("Invalid ID"); 3277 ++BBI; 3278 } 3279 BB = &*BBI; 3280 } else { 3281 // Otherwise insert a placeholder and remember it so it can be inserted 3282 // when the function is parsed. 3283 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 3284 if (FwdBBs.empty()) 3285 BasicBlockFwdRefQueue.push_back(Fn); 3286 if (FwdBBs.size() < BBID + 1) 3287 FwdBBs.resize(BBID + 1); 3288 if (!FwdBBs[BBID]) 3289 FwdBBs[BBID] = BasicBlock::Create(Context); 3290 BB = FwdBBs[BBID]; 3291 } 3292 V = BlockAddress::get(Fn, BB); 3293 break; 3294 } 3295 } 3296 3297 ValueList.assignValue(V, NextCstNo); 3298 ++NextCstNo; 3299 } 3300 } 3301 3302 std::error_code BitcodeReader::parseUseLists() { 3303 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3304 return error("Invalid record"); 3305 3306 // Read all the records. 3307 SmallVector<uint64_t, 64> Record; 3308 while (1) { 3309 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3310 3311 switch (Entry.Kind) { 3312 case BitstreamEntry::SubBlock: // Handled for us already. 3313 case BitstreamEntry::Error: 3314 return error("Malformed block"); 3315 case BitstreamEntry::EndBlock: 3316 return std::error_code(); 3317 case BitstreamEntry::Record: 3318 // The interesting case. 3319 break; 3320 } 3321 3322 // Read a use list record. 3323 Record.clear(); 3324 bool IsBB = false; 3325 switch (Stream.readRecord(Entry.ID, Record)) { 3326 default: // Default behavior: unknown type. 3327 break; 3328 case bitc::USELIST_CODE_BB: 3329 IsBB = true; 3330 // fallthrough 3331 case bitc::USELIST_CODE_DEFAULT: { 3332 unsigned RecordLength = Record.size(); 3333 if (RecordLength < 3) 3334 // Records should have at least an ID and two indexes. 3335 return error("Invalid record"); 3336 unsigned ID = Record.back(); 3337 Record.pop_back(); 3338 3339 Value *V; 3340 if (IsBB) { 3341 assert(ID < FunctionBBs.size() && "Basic block not found"); 3342 V = FunctionBBs[ID]; 3343 } else 3344 V = ValueList[ID]; 3345 unsigned NumUses = 0; 3346 SmallDenseMap<const Use *, unsigned, 16> Order; 3347 for (const Use &U : V->materialized_uses()) { 3348 if (++NumUses > Record.size()) 3349 break; 3350 Order[&U] = Record[NumUses - 1]; 3351 } 3352 if (Order.size() != Record.size() || NumUses > Record.size()) 3353 // Mismatches can happen if the functions are being materialized lazily 3354 // (out-of-order), or a value has been upgraded. 3355 break; 3356 3357 V->sortUseList([&](const Use &L, const Use &R) { 3358 return Order.lookup(&L) < Order.lookup(&R); 3359 }); 3360 break; 3361 } 3362 } 3363 } 3364 } 3365 3366 /// When we see the block for metadata, remember where it is and then skip it. 3367 /// This lets us lazily deserialize the metadata. 3368 std::error_code BitcodeReader::rememberAndSkipMetadata() { 3369 // Save the current stream state. 3370 uint64_t CurBit = Stream.GetCurrentBitNo(); 3371 DeferredMetadataInfo.push_back(CurBit); 3372 3373 // Skip over the block for now. 3374 if (Stream.SkipBlock()) 3375 return error("Invalid record"); 3376 return std::error_code(); 3377 } 3378 3379 std::error_code BitcodeReader::materializeMetadata() { 3380 for (uint64_t BitPos : DeferredMetadataInfo) { 3381 // Move the bit stream to the saved position. 3382 Stream.JumpToBit(BitPos); 3383 if (std::error_code EC = parseMetadata(true)) 3384 return EC; 3385 } 3386 DeferredMetadataInfo.clear(); 3387 return std::error_code(); 3388 } 3389 3390 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3391 3392 /// When we see the block for a function body, remember where it is and then 3393 /// skip it. This lets us lazily deserialize the functions. 3394 std::error_code BitcodeReader::rememberAndSkipFunctionBody() { 3395 // Get the function we are talking about. 3396 if (FunctionsWithBodies.empty()) 3397 return error("Insufficient function protos"); 3398 3399 Function *Fn = FunctionsWithBodies.back(); 3400 FunctionsWithBodies.pop_back(); 3401 3402 // Save the current stream state. 3403 uint64_t CurBit = Stream.GetCurrentBitNo(); 3404 assert( 3405 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3406 "Mismatch between VST and scanned function offsets"); 3407 DeferredFunctionInfo[Fn] = CurBit; 3408 3409 // Skip over the function block for now. 3410 if (Stream.SkipBlock()) 3411 return error("Invalid record"); 3412 return std::error_code(); 3413 } 3414 3415 std::error_code BitcodeReader::globalCleanup() { 3416 // Patch the initializers for globals and aliases up. 3417 resolveGlobalAndIndirectSymbolInits(); 3418 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3419 return error("Malformed global initializer set"); 3420 3421 // Look for intrinsic functions which need to be upgraded at some point 3422 for (Function &F : *TheModule) { 3423 Function *NewFn; 3424 if (UpgradeIntrinsicFunction(&F, NewFn)) 3425 UpgradedIntrinsics[&F] = NewFn; 3426 } 3427 3428 // Look for global variables which need to be renamed. 3429 for (GlobalVariable &GV : TheModule->globals()) 3430 UpgradeGlobalVariable(&GV); 3431 3432 // Force deallocation of memory for these vectors to favor the client that 3433 // want lazy deserialization. 3434 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 3435 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap( 3436 IndirectSymbolInits); 3437 return std::error_code(); 3438 } 3439 3440 /// Support for lazy parsing of function bodies. This is required if we 3441 /// either have an old bitcode file without a VST forward declaration record, 3442 /// or if we have an anonymous function being materialized, since anonymous 3443 /// functions do not have a name and are therefore not in the VST. 3444 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() { 3445 Stream.JumpToBit(NextUnreadBit); 3446 3447 if (Stream.AtEndOfStream()) 3448 return error("Could not find function in stream"); 3449 3450 if (!SeenFirstFunctionBody) 3451 return error("Trying to materialize functions before seeing function blocks"); 3452 3453 // An old bitcode file with the symbol table at the end would have 3454 // finished the parse greedily. 3455 assert(SeenValueSymbolTable); 3456 3457 SmallVector<uint64_t, 64> Record; 3458 3459 while (1) { 3460 BitstreamEntry Entry = Stream.advance(); 3461 switch (Entry.Kind) { 3462 default: 3463 return error("Expect SubBlock"); 3464 case BitstreamEntry::SubBlock: 3465 switch (Entry.ID) { 3466 default: 3467 return error("Expect function block"); 3468 case bitc::FUNCTION_BLOCK_ID: 3469 if (std::error_code EC = rememberAndSkipFunctionBody()) 3470 return EC; 3471 NextUnreadBit = Stream.GetCurrentBitNo(); 3472 return std::error_code(); 3473 } 3474 } 3475 } 3476 } 3477 3478 std::error_code BitcodeReader::parseBitcodeVersion() { 3479 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 3480 return error("Invalid record"); 3481 3482 // Read all the records. 3483 SmallVector<uint64_t, 64> Record; 3484 while (1) { 3485 BitstreamEntry Entry = Stream.advance(); 3486 3487 switch (Entry.Kind) { 3488 default: 3489 case BitstreamEntry::Error: 3490 return error("Malformed block"); 3491 case BitstreamEntry::EndBlock: 3492 return std::error_code(); 3493 case BitstreamEntry::Record: 3494 // The interesting case. 3495 break; 3496 } 3497 3498 // Read a record. 3499 Record.clear(); 3500 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3501 switch (BitCode) { 3502 default: // Default behavior: reject 3503 return error("Invalid value"); 3504 case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION: [strchr x 3505 // N] 3506 convertToString(Record, 0, ProducerIdentification); 3507 break; 3508 } 3509 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 3510 unsigned epoch = (unsigned)Record[0]; 3511 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 3512 return error( 3513 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 3514 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 3515 } 3516 } 3517 } 3518 } 3519 } 3520 3521 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit, 3522 bool ShouldLazyLoadMetadata) { 3523 if (ResumeBit) 3524 Stream.JumpToBit(ResumeBit); 3525 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3526 return error("Invalid record"); 3527 3528 SmallVector<uint64_t, 64> Record; 3529 std::vector<std::string> SectionTable; 3530 std::vector<std::string> GCTable; 3531 3532 // Read all the records for this module. 3533 while (1) { 3534 BitstreamEntry Entry = Stream.advance(); 3535 3536 switch (Entry.Kind) { 3537 case BitstreamEntry::Error: 3538 return error("Malformed block"); 3539 case BitstreamEntry::EndBlock: 3540 return globalCleanup(); 3541 3542 case BitstreamEntry::SubBlock: 3543 switch (Entry.ID) { 3544 default: // Skip unknown content. 3545 if (Stream.SkipBlock()) 3546 return error("Invalid record"); 3547 break; 3548 case bitc::BLOCKINFO_BLOCK_ID: 3549 if (Stream.ReadBlockInfoBlock()) 3550 return error("Malformed block"); 3551 break; 3552 case bitc::PARAMATTR_BLOCK_ID: 3553 if (std::error_code EC = parseAttributeBlock()) 3554 return EC; 3555 break; 3556 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3557 if (std::error_code EC = parseAttributeGroupBlock()) 3558 return EC; 3559 break; 3560 case bitc::TYPE_BLOCK_ID_NEW: 3561 if (std::error_code EC = parseTypeTable()) 3562 return EC; 3563 break; 3564 case bitc::VALUE_SYMTAB_BLOCK_ID: 3565 if (!SeenValueSymbolTable) { 3566 // Either this is an old form VST without function index and an 3567 // associated VST forward declaration record (which would have caused 3568 // the VST to be jumped to and parsed before it was encountered 3569 // normally in the stream), or there were no function blocks to 3570 // trigger an earlier parsing of the VST. 3571 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3572 if (std::error_code EC = parseValueSymbolTable()) 3573 return EC; 3574 SeenValueSymbolTable = true; 3575 } else { 3576 // We must have had a VST forward declaration record, which caused 3577 // the parser to jump to and parse the VST earlier. 3578 assert(VSTOffset > 0); 3579 if (Stream.SkipBlock()) 3580 return error("Invalid record"); 3581 } 3582 break; 3583 case bitc::CONSTANTS_BLOCK_ID: 3584 if (std::error_code EC = parseConstants()) 3585 return EC; 3586 if (std::error_code EC = resolveGlobalAndIndirectSymbolInits()) 3587 return EC; 3588 break; 3589 case bitc::METADATA_BLOCK_ID: 3590 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 3591 if (std::error_code EC = rememberAndSkipMetadata()) 3592 return EC; 3593 break; 3594 } 3595 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3596 if (std::error_code EC = parseMetadata(true)) 3597 return EC; 3598 break; 3599 case bitc::METADATA_KIND_BLOCK_ID: 3600 if (std::error_code EC = parseMetadataKinds()) 3601 return EC; 3602 break; 3603 case bitc::FUNCTION_BLOCK_ID: 3604 // If this is the first function body we've seen, reverse the 3605 // FunctionsWithBodies list. 3606 if (!SeenFirstFunctionBody) { 3607 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3608 if (std::error_code EC = globalCleanup()) 3609 return EC; 3610 SeenFirstFunctionBody = true; 3611 } 3612 3613 if (VSTOffset > 0) { 3614 // If we have a VST forward declaration record, make sure we 3615 // parse the VST now if we haven't already. It is needed to 3616 // set up the DeferredFunctionInfo vector for lazy reading. 3617 if (!SeenValueSymbolTable) { 3618 if (std::error_code EC = 3619 BitcodeReader::parseValueSymbolTable(VSTOffset)) 3620 return EC; 3621 SeenValueSymbolTable = true; 3622 // Fall through so that we record the NextUnreadBit below. 3623 // This is necessary in case we have an anonymous function that 3624 // is later materialized. Since it will not have a VST entry we 3625 // need to fall back to the lazy parse to find its offset. 3626 } else { 3627 // If we have a VST forward declaration record, but have already 3628 // parsed the VST (just above, when the first function body was 3629 // encountered here), then we are resuming the parse after 3630 // materializing functions. The ResumeBit points to the 3631 // start of the last function block recorded in the 3632 // DeferredFunctionInfo map. Skip it. 3633 if (Stream.SkipBlock()) 3634 return error("Invalid record"); 3635 continue; 3636 } 3637 } 3638 3639 // Support older bitcode files that did not have the function 3640 // index in the VST, nor a VST forward declaration record, as 3641 // well as anonymous functions that do not have VST entries. 3642 // Build the DeferredFunctionInfo vector on the fly. 3643 if (std::error_code EC = rememberAndSkipFunctionBody()) 3644 return EC; 3645 3646 // Suspend parsing when we reach the function bodies. Subsequent 3647 // materialization calls will resume it when necessary. If the bitcode 3648 // file is old, the symbol table will be at the end instead and will not 3649 // have been seen yet. In this case, just finish the parse now. 3650 if (SeenValueSymbolTable) { 3651 NextUnreadBit = Stream.GetCurrentBitNo(); 3652 return std::error_code(); 3653 } 3654 break; 3655 case bitc::USELIST_BLOCK_ID: 3656 if (std::error_code EC = parseUseLists()) 3657 return EC; 3658 break; 3659 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3660 if (std::error_code EC = parseOperandBundleTags()) 3661 return EC; 3662 break; 3663 } 3664 continue; 3665 3666 case BitstreamEntry::Record: 3667 // The interesting case. 3668 break; 3669 } 3670 3671 // Read a record. 3672 auto BitCode = Stream.readRecord(Entry.ID, Record); 3673 switch (BitCode) { 3674 default: break; // Default behavior, ignore unknown content. 3675 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 3676 if (Record.size() < 1) 3677 return error("Invalid record"); 3678 // Only version #0 and #1 are supported so far. 3679 unsigned module_version = Record[0]; 3680 switch (module_version) { 3681 default: 3682 return error("Invalid value"); 3683 case 0: 3684 UseRelativeIDs = false; 3685 break; 3686 case 1: 3687 UseRelativeIDs = true; 3688 break; 3689 } 3690 break; 3691 } 3692 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3693 std::string S; 3694 if (convertToString(Record, 0, S)) 3695 return error("Invalid record"); 3696 TheModule->setTargetTriple(S); 3697 break; 3698 } 3699 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3700 std::string S; 3701 if (convertToString(Record, 0, S)) 3702 return error("Invalid record"); 3703 TheModule->setDataLayout(S); 3704 break; 3705 } 3706 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3707 std::string S; 3708 if (convertToString(Record, 0, S)) 3709 return error("Invalid record"); 3710 TheModule->setModuleInlineAsm(S); 3711 break; 3712 } 3713 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3714 // FIXME: Remove in 4.0. 3715 std::string S; 3716 if (convertToString(Record, 0, S)) 3717 return error("Invalid record"); 3718 // Ignore value. 3719 break; 3720 } 3721 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3722 std::string S; 3723 if (convertToString(Record, 0, S)) 3724 return error("Invalid record"); 3725 SectionTable.push_back(S); 3726 break; 3727 } 3728 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3729 std::string S; 3730 if (convertToString(Record, 0, S)) 3731 return error("Invalid record"); 3732 GCTable.push_back(S); 3733 break; 3734 } 3735 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 3736 if (Record.size() < 2) 3737 return error("Invalid record"); 3738 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3739 unsigned ComdatNameSize = Record[1]; 3740 std::string ComdatName; 3741 ComdatName.reserve(ComdatNameSize); 3742 for (unsigned i = 0; i != ComdatNameSize; ++i) 3743 ComdatName += (char)Record[2 + i]; 3744 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 3745 C->setSelectionKind(SK); 3746 ComdatList.push_back(C); 3747 break; 3748 } 3749 // GLOBALVAR: [pointer type, isconst, initid, 3750 // linkage, alignment, section, visibility, threadlocal, 3751 // unnamed_addr, externally_initialized, dllstorageclass, 3752 // comdat] 3753 case bitc::MODULE_CODE_GLOBALVAR: { 3754 if (Record.size() < 6) 3755 return error("Invalid record"); 3756 Type *Ty = getTypeByID(Record[0]); 3757 if (!Ty) 3758 return error("Invalid record"); 3759 bool isConstant = Record[1] & 1; 3760 bool explicitType = Record[1] & 2; 3761 unsigned AddressSpace; 3762 if (explicitType) { 3763 AddressSpace = Record[1] >> 2; 3764 } else { 3765 if (!Ty->isPointerTy()) 3766 return error("Invalid type for value"); 3767 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3768 Ty = cast<PointerType>(Ty)->getElementType(); 3769 } 3770 3771 uint64_t RawLinkage = Record[3]; 3772 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3773 unsigned Alignment; 3774 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 3775 return EC; 3776 std::string Section; 3777 if (Record[5]) { 3778 if (Record[5]-1 >= SectionTable.size()) 3779 return error("Invalid ID"); 3780 Section = SectionTable[Record[5]-1]; 3781 } 3782 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3783 // Local linkage must have default visibility. 3784 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3785 // FIXME: Change to an error if non-default in 4.0. 3786 Visibility = getDecodedVisibility(Record[6]); 3787 3788 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3789 if (Record.size() > 7) 3790 TLM = getDecodedThreadLocalMode(Record[7]); 3791 3792 bool UnnamedAddr = false; 3793 if (Record.size() > 8) 3794 UnnamedAddr = Record[8]; 3795 3796 bool ExternallyInitialized = false; 3797 if (Record.size() > 9) 3798 ExternallyInitialized = Record[9]; 3799 3800 GlobalVariable *NewGV = 3801 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 3802 TLM, AddressSpace, ExternallyInitialized); 3803 NewGV->setAlignment(Alignment); 3804 if (!Section.empty()) 3805 NewGV->setSection(Section); 3806 NewGV->setVisibility(Visibility); 3807 NewGV->setUnnamedAddr(UnnamedAddr); 3808 3809 if (Record.size() > 10) 3810 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3811 else 3812 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3813 3814 ValueList.push_back(NewGV); 3815 3816 // Remember which value to use for the global initializer. 3817 if (unsigned InitID = Record[2]) 3818 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 3819 3820 if (Record.size() > 11) { 3821 if (unsigned ComdatID = Record[11]) { 3822 if (ComdatID > ComdatList.size()) 3823 return error("Invalid global variable comdat ID"); 3824 NewGV->setComdat(ComdatList[ComdatID - 1]); 3825 } 3826 } else if (hasImplicitComdat(RawLinkage)) { 3827 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3828 } 3829 break; 3830 } 3831 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 3832 // alignment, section, visibility, gc, unnamed_addr, 3833 // prologuedata, dllstorageclass, comdat, prefixdata] 3834 case bitc::MODULE_CODE_FUNCTION: { 3835 if (Record.size() < 8) 3836 return error("Invalid record"); 3837 Type *Ty = getTypeByID(Record[0]); 3838 if (!Ty) 3839 return error("Invalid record"); 3840 if (auto *PTy = dyn_cast<PointerType>(Ty)) 3841 Ty = PTy->getElementType(); 3842 auto *FTy = dyn_cast<FunctionType>(Ty); 3843 if (!FTy) 3844 return error("Invalid type for value"); 3845 auto CC = static_cast<CallingConv::ID>(Record[1]); 3846 if (CC & ~CallingConv::MaxID) 3847 return error("Invalid calling convention ID"); 3848 3849 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3850 "", TheModule); 3851 3852 Func->setCallingConv(CC); 3853 bool isProto = Record[2]; 3854 uint64_t RawLinkage = Record[3]; 3855 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3856 Func->setAttributes(getAttributes(Record[4])); 3857 3858 unsigned Alignment; 3859 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 3860 return EC; 3861 Func->setAlignment(Alignment); 3862 if (Record[6]) { 3863 if (Record[6]-1 >= SectionTable.size()) 3864 return error("Invalid ID"); 3865 Func->setSection(SectionTable[Record[6]-1]); 3866 } 3867 // Local linkage must have default visibility. 3868 if (!Func->hasLocalLinkage()) 3869 // FIXME: Change to an error if non-default in 4.0. 3870 Func->setVisibility(getDecodedVisibility(Record[7])); 3871 if (Record.size() > 8 && Record[8]) { 3872 if (Record[8]-1 >= GCTable.size()) 3873 return error("Invalid ID"); 3874 Func->setGC(GCTable[Record[8]-1].c_str()); 3875 } 3876 bool UnnamedAddr = false; 3877 if (Record.size() > 9) 3878 UnnamedAddr = Record[9]; 3879 Func->setUnnamedAddr(UnnamedAddr); 3880 if (Record.size() > 10 && Record[10] != 0) 3881 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3882 3883 if (Record.size() > 11) 3884 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3885 else 3886 upgradeDLLImportExportLinkage(Func, RawLinkage); 3887 3888 if (Record.size() > 12) { 3889 if (unsigned ComdatID = Record[12]) { 3890 if (ComdatID > ComdatList.size()) 3891 return error("Invalid function comdat ID"); 3892 Func->setComdat(ComdatList[ComdatID - 1]); 3893 } 3894 } else if (hasImplicitComdat(RawLinkage)) { 3895 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3896 } 3897 3898 if (Record.size() > 13 && Record[13] != 0) 3899 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3900 3901 if (Record.size() > 14 && Record[14] != 0) 3902 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3903 3904 ValueList.push_back(Func); 3905 3906 // If this is a function with a body, remember the prototype we are 3907 // creating now, so that we can match up the body with them later. 3908 if (!isProto) { 3909 Func->setIsMaterializable(true); 3910 FunctionsWithBodies.push_back(Func); 3911 DeferredFunctionInfo[Func] = 0; 3912 } 3913 break; 3914 } 3915 // ALIAS: [alias type, addrspace, aliasee val#, linkage] 3916 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3917 // IFUNC: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3918 case bitc::MODULE_CODE_IFUNC: 3919 case bitc::MODULE_CODE_ALIAS: 3920 case bitc::MODULE_CODE_ALIAS_OLD: { 3921 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3922 if (Record.size() < (3 + (unsigned)NewRecord)) 3923 return error("Invalid record"); 3924 unsigned OpNum = 0; 3925 Type *Ty = getTypeByID(Record[OpNum++]); 3926 if (!Ty) 3927 return error("Invalid record"); 3928 3929 unsigned AddrSpace; 3930 if (!NewRecord) { 3931 auto *PTy = dyn_cast<PointerType>(Ty); 3932 if (!PTy) 3933 return error("Invalid type for value"); 3934 Ty = PTy->getElementType(); 3935 AddrSpace = PTy->getAddressSpace(); 3936 } else { 3937 AddrSpace = Record[OpNum++]; 3938 } 3939 3940 auto Val = Record[OpNum++]; 3941 auto Linkage = Record[OpNum++]; 3942 GlobalIndirectSymbol *NewGA; 3943 if (BitCode == bitc::MODULE_CODE_ALIAS || 3944 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3945 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 3946 "", TheModule); 3947 else 3948 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 3949 "", nullptr, TheModule); 3950 // Old bitcode files didn't have visibility field. 3951 // Local linkage must have default visibility. 3952 if (OpNum != Record.size()) { 3953 auto VisInd = OpNum++; 3954 if (!NewGA->hasLocalLinkage()) 3955 // FIXME: Change to an error if non-default in 4.0. 3956 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3957 } 3958 if (OpNum != Record.size()) 3959 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3960 else 3961 upgradeDLLImportExportLinkage(NewGA, Linkage); 3962 if (OpNum != Record.size()) 3963 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3964 if (OpNum != Record.size()) 3965 NewGA->setUnnamedAddr(Record[OpNum++]); 3966 ValueList.push_back(NewGA); 3967 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3968 break; 3969 } 3970 /// MODULE_CODE_PURGEVALS: [numvals] 3971 case bitc::MODULE_CODE_PURGEVALS: 3972 // Trim down the value list to the specified size. 3973 if (Record.size() < 1 || Record[0] > ValueList.size()) 3974 return error("Invalid record"); 3975 ValueList.shrinkTo(Record[0]); 3976 break; 3977 /// MODULE_CODE_VSTOFFSET: [offset] 3978 case bitc::MODULE_CODE_VSTOFFSET: 3979 if (Record.size() < 1) 3980 return error("Invalid record"); 3981 VSTOffset = Record[0]; 3982 break; 3983 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3984 case bitc::MODULE_CODE_SOURCE_FILENAME: 3985 SmallString<128> ValueName; 3986 if (convertToString(Record, 0, ValueName)) 3987 return error("Invalid record"); 3988 TheModule->setSourceFileName(ValueName); 3989 break; 3990 } 3991 Record.clear(); 3992 } 3993 } 3994 3995 /// Helper to read the header common to all bitcode files. 3996 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 3997 // Sniff for the signature. 3998 if (Stream.Read(8) != 'B' || 3999 Stream.Read(8) != 'C' || 4000 Stream.Read(4) != 0x0 || 4001 Stream.Read(4) != 0xC || 4002 Stream.Read(4) != 0xE || 4003 Stream.Read(4) != 0xD) 4004 return false; 4005 return true; 4006 } 4007 4008 std::error_code 4009 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 4010 Module *M, bool ShouldLazyLoadMetadata) { 4011 TheModule = M; 4012 4013 if (std::error_code EC = initStream(std::move(Streamer))) 4014 return EC; 4015 4016 // Sniff for the signature. 4017 if (!hasValidBitcodeHeader(Stream)) 4018 return error("Invalid bitcode signature"); 4019 4020 // We expect a number of well-defined blocks, though we don't necessarily 4021 // need to understand them all. 4022 while (1) { 4023 if (Stream.AtEndOfStream()) { 4024 // We didn't really read a proper Module. 4025 return error("Malformed IR file"); 4026 } 4027 4028 BitstreamEntry Entry = 4029 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 4030 4031 if (Entry.Kind != BitstreamEntry::SubBlock) 4032 return error("Malformed block"); 4033 4034 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 4035 parseBitcodeVersion(); 4036 continue; 4037 } 4038 4039 if (Entry.ID == bitc::MODULE_BLOCK_ID) 4040 return parseModule(0, ShouldLazyLoadMetadata); 4041 4042 if (Stream.SkipBlock()) 4043 return error("Invalid record"); 4044 } 4045 } 4046 4047 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 4048 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4049 return error("Invalid record"); 4050 4051 SmallVector<uint64_t, 64> Record; 4052 4053 std::string Triple; 4054 // Read all the records for this module. 4055 while (1) { 4056 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4057 4058 switch (Entry.Kind) { 4059 case BitstreamEntry::SubBlock: // Handled for us already. 4060 case BitstreamEntry::Error: 4061 return error("Malformed block"); 4062 case BitstreamEntry::EndBlock: 4063 return Triple; 4064 case BitstreamEntry::Record: 4065 // The interesting case. 4066 break; 4067 } 4068 4069 // Read a record. 4070 switch (Stream.readRecord(Entry.ID, Record)) { 4071 default: break; // Default behavior, ignore unknown content. 4072 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 4073 std::string S; 4074 if (convertToString(Record, 0, S)) 4075 return error("Invalid record"); 4076 Triple = S; 4077 break; 4078 } 4079 } 4080 Record.clear(); 4081 } 4082 llvm_unreachable("Exit infinite loop"); 4083 } 4084 4085 ErrorOr<std::string> BitcodeReader::parseTriple() { 4086 if (std::error_code EC = initStream(nullptr)) 4087 return EC; 4088 4089 // Sniff for the signature. 4090 if (!hasValidBitcodeHeader(Stream)) 4091 return error("Invalid bitcode signature"); 4092 4093 // We expect a number of well-defined blocks, though we don't necessarily 4094 // need to understand them all. 4095 while (1) { 4096 BitstreamEntry Entry = Stream.advance(); 4097 4098 switch (Entry.Kind) { 4099 case BitstreamEntry::Error: 4100 return error("Malformed block"); 4101 case BitstreamEntry::EndBlock: 4102 return std::error_code(); 4103 4104 case BitstreamEntry::SubBlock: 4105 if (Entry.ID == bitc::MODULE_BLOCK_ID) 4106 return parseModuleTriple(); 4107 4108 // Ignore other sub-blocks. 4109 if (Stream.SkipBlock()) 4110 return error("Malformed block"); 4111 continue; 4112 4113 case BitstreamEntry::Record: 4114 Stream.skipRecord(Entry.ID); 4115 continue; 4116 } 4117 } 4118 } 4119 4120 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() { 4121 if (std::error_code EC = initStream(nullptr)) 4122 return EC; 4123 4124 // Sniff for the signature. 4125 if (!hasValidBitcodeHeader(Stream)) 4126 return error("Invalid bitcode signature"); 4127 4128 // We expect a number of well-defined blocks, though we don't necessarily 4129 // need to understand them all. 4130 while (1) { 4131 BitstreamEntry Entry = Stream.advance(); 4132 switch (Entry.Kind) { 4133 case BitstreamEntry::Error: 4134 return error("Malformed block"); 4135 case BitstreamEntry::EndBlock: 4136 return std::error_code(); 4137 4138 case BitstreamEntry::SubBlock: 4139 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 4140 if (std::error_code EC = parseBitcodeVersion()) 4141 return EC; 4142 return ProducerIdentification; 4143 } 4144 // Ignore other sub-blocks. 4145 if (Stream.SkipBlock()) 4146 return error("Malformed block"); 4147 continue; 4148 case BitstreamEntry::Record: 4149 Stream.skipRecord(Entry.ID); 4150 continue; 4151 } 4152 } 4153 } 4154 4155 /// Parse metadata attachments. 4156 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) { 4157 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 4158 return error("Invalid record"); 4159 4160 SmallVector<uint64_t, 64> Record; 4161 while (1) { 4162 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4163 4164 switch (Entry.Kind) { 4165 case BitstreamEntry::SubBlock: // Handled for us already. 4166 case BitstreamEntry::Error: 4167 return error("Malformed block"); 4168 case BitstreamEntry::EndBlock: 4169 return std::error_code(); 4170 case BitstreamEntry::Record: 4171 // The interesting case. 4172 break; 4173 } 4174 4175 // Read a metadata attachment record. 4176 Record.clear(); 4177 switch (Stream.readRecord(Entry.ID, Record)) { 4178 default: // Default behavior: ignore. 4179 break; 4180 case bitc::METADATA_ATTACHMENT: { 4181 unsigned RecordLength = Record.size(); 4182 if (Record.empty()) 4183 return error("Invalid record"); 4184 if (RecordLength % 2 == 0) { 4185 // A function attachment. 4186 for (unsigned I = 0; I != RecordLength; I += 2) { 4187 auto K = MDKindMap.find(Record[I]); 4188 if (K == MDKindMap.end()) 4189 return error("Invalid ID"); 4190 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[I + 1]); 4191 if (!MD) 4192 return error("Invalid metadata attachment"); 4193 F.setMetadata(K->second, MD); 4194 } 4195 continue; 4196 } 4197 4198 // An instruction attachment. 4199 Instruction *Inst = InstructionList[Record[0]]; 4200 for (unsigned i = 1; i != RecordLength; i = i+2) { 4201 unsigned Kind = Record[i]; 4202 DenseMap<unsigned, unsigned>::iterator I = 4203 MDKindMap.find(Kind); 4204 if (I == MDKindMap.end()) 4205 return error("Invalid ID"); 4206 Metadata *Node = MetadataList.getMetadataFwdRef(Record[i + 1]); 4207 if (isa<LocalAsMetadata>(Node)) 4208 // Drop the attachment. This used to be legal, but there's no 4209 // upgrade path. 4210 break; 4211 MDNode *MD = dyn_cast_or_null<MDNode>(Node); 4212 if (!MD) 4213 return error("Invalid metadata attachment"); 4214 4215 if (HasSeenOldLoopTags && I->second == LLVMContext::MD_loop) 4216 MD = upgradeInstructionLoopAttachment(*MD); 4217 4218 Inst->setMetadata(I->second, MD); 4219 if (I->second == LLVMContext::MD_tbaa) { 4220 InstsWithTBAATag.push_back(Inst); 4221 continue; 4222 } 4223 } 4224 break; 4225 } 4226 } 4227 } 4228 } 4229 4230 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4231 LLVMContext &Context = PtrType->getContext(); 4232 if (!isa<PointerType>(PtrType)) 4233 return error(Context, "Load/Store operand is not a pointer type"); 4234 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 4235 4236 if (ValType && ValType != ElemType) 4237 return error(Context, "Explicit load/store type does not match pointee " 4238 "type of pointer operand"); 4239 if (!PointerType::isLoadableOrStorableType(ElemType)) 4240 return error(Context, "Cannot load/store from pointer"); 4241 return std::error_code(); 4242 } 4243 4244 /// Lazily parse the specified function body block. 4245 std::error_code BitcodeReader::parseFunctionBody(Function *F) { 4246 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4247 return error("Invalid record"); 4248 4249 // Unexpected unresolved metadata when parsing function. 4250 if (MetadataList.hasFwdRefs()) 4251 return error("Invalid function metadata: incoming forward references"); 4252 4253 InstructionList.clear(); 4254 unsigned ModuleValueListSize = ValueList.size(); 4255 unsigned ModuleMetadataListSize = MetadataList.size(); 4256 4257 // Add all the function arguments to the value table. 4258 for (Argument &I : F->args()) 4259 ValueList.push_back(&I); 4260 4261 unsigned NextValueNo = ValueList.size(); 4262 BasicBlock *CurBB = nullptr; 4263 unsigned CurBBNo = 0; 4264 4265 DebugLoc LastLoc; 4266 auto getLastInstruction = [&]() -> Instruction * { 4267 if (CurBB && !CurBB->empty()) 4268 return &CurBB->back(); 4269 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4270 !FunctionBBs[CurBBNo - 1]->empty()) 4271 return &FunctionBBs[CurBBNo - 1]->back(); 4272 return nullptr; 4273 }; 4274 4275 std::vector<OperandBundleDef> OperandBundles; 4276 4277 // Read all the records. 4278 SmallVector<uint64_t, 64> Record; 4279 while (1) { 4280 BitstreamEntry Entry = Stream.advance(); 4281 4282 switch (Entry.Kind) { 4283 case BitstreamEntry::Error: 4284 return error("Malformed block"); 4285 case BitstreamEntry::EndBlock: 4286 goto OutOfRecordLoop; 4287 4288 case BitstreamEntry::SubBlock: 4289 switch (Entry.ID) { 4290 default: // Skip unknown content. 4291 if (Stream.SkipBlock()) 4292 return error("Invalid record"); 4293 break; 4294 case bitc::CONSTANTS_BLOCK_ID: 4295 if (std::error_code EC = parseConstants()) 4296 return EC; 4297 NextValueNo = ValueList.size(); 4298 break; 4299 case bitc::VALUE_SYMTAB_BLOCK_ID: 4300 if (std::error_code EC = parseValueSymbolTable()) 4301 return EC; 4302 break; 4303 case bitc::METADATA_ATTACHMENT_ID: 4304 if (std::error_code EC = parseMetadataAttachment(*F)) 4305 return EC; 4306 break; 4307 case bitc::METADATA_BLOCK_ID: 4308 if (std::error_code EC = parseMetadata()) 4309 return EC; 4310 break; 4311 case bitc::USELIST_BLOCK_ID: 4312 if (std::error_code EC = parseUseLists()) 4313 return EC; 4314 break; 4315 } 4316 continue; 4317 4318 case BitstreamEntry::Record: 4319 // The interesting case. 4320 break; 4321 } 4322 4323 // Read a record. 4324 Record.clear(); 4325 Instruction *I = nullptr; 4326 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 4327 switch (BitCode) { 4328 default: // Default behavior: reject 4329 return error("Invalid value"); 4330 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4331 if (Record.size() < 1 || Record[0] == 0) 4332 return error("Invalid record"); 4333 // Create all the basic blocks for the function. 4334 FunctionBBs.resize(Record[0]); 4335 4336 // See if anything took the address of blocks in this function. 4337 auto BBFRI = BasicBlockFwdRefs.find(F); 4338 if (BBFRI == BasicBlockFwdRefs.end()) { 4339 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 4340 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 4341 } else { 4342 auto &BBRefs = BBFRI->second; 4343 // Check for invalid basic block references. 4344 if (BBRefs.size() > FunctionBBs.size()) 4345 return error("Invalid ID"); 4346 assert(!BBRefs.empty() && "Unexpected empty array"); 4347 assert(!BBRefs.front() && "Invalid reference to entry block"); 4348 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4349 ++I) 4350 if (I < RE && BBRefs[I]) { 4351 BBRefs[I]->insertInto(F); 4352 FunctionBBs[I] = BBRefs[I]; 4353 } else { 4354 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4355 } 4356 4357 // Erase from the table. 4358 BasicBlockFwdRefs.erase(BBFRI); 4359 } 4360 4361 CurBB = FunctionBBs[0]; 4362 continue; 4363 } 4364 4365 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4366 // This record indicates that the last instruction is at the same 4367 // location as the previous instruction with a location. 4368 I = getLastInstruction(); 4369 4370 if (!I) 4371 return error("Invalid record"); 4372 I->setDebugLoc(LastLoc); 4373 I = nullptr; 4374 continue; 4375 4376 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4377 I = getLastInstruction(); 4378 if (!I || Record.size() < 4) 4379 return error("Invalid record"); 4380 4381 unsigned Line = Record[0], Col = Record[1]; 4382 unsigned ScopeID = Record[2], IAID = Record[3]; 4383 4384 MDNode *Scope = nullptr, *IA = nullptr; 4385 if (ScopeID) { 4386 Scope = MetadataList.getMDNodeFwdRefOrNull(ScopeID - 1); 4387 if (!Scope) 4388 return error("Invalid record"); 4389 } 4390 if (IAID) { 4391 IA = MetadataList.getMDNodeFwdRefOrNull(IAID - 1); 4392 if (!IA) 4393 return error("Invalid record"); 4394 } 4395 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 4396 I->setDebugLoc(LastLoc); 4397 I = nullptr; 4398 continue; 4399 } 4400 4401 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4402 unsigned OpNum = 0; 4403 Value *LHS, *RHS; 4404 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4405 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4406 OpNum+1 > Record.size()) 4407 return error("Invalid record"); 4408 4409 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4410 if (Opc == -1) 4411 return error("Invalid record"); 4412 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4413 InstructionList.push_back(I); 4414 if (OpNum < Record.size()) { 4415 if (Opc == Instruction::Add || 4416 Opc == Instruction::Sub || 4417 Opc == Instruction::Mul || 4418 Opc == Instruction::Shl) { 4419 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4420 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4421 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4422 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4423 } else if (Opc == Instruction::SDiv || 4424 Opc == Instruction::UDiv || 4425 Opc == Instruction::LShr || 4426 Opc == Instruction::AShr) { 4427 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4428 cast<BinaryOperator>(I)->setIsExact(true); 4429 } else if (isa<FPMathOperator>(I)) { 4430 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4431 if (FMF.any()) 4432 I->setFastMathFlags(FMF); 4433 } 4434 4435 } 4436 break; 4437 } 4438 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4439 unsigned OpNum = 0; 4440 Value *Op; 4441 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4442 OpNum+2 != Record.size()) 4443 return error("Invalid record"); 4444 4445 Type *ResTy = getTypeByID(Record[OpNum]); 4446 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4447 if (Opc == -1 || !ResTy) 4448 return error("Invalid record"); 4449 Instruction *Temp = nullptr; 4450 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4451 if (Temp) { 4452 InstructionList.push_back(Temp); 4453 CurBB->getInstList().push_back(Temp); 4454 } 4455 } else { 4456 auto CastOp = (Instruction::CastOps)Opc; 4457 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4458 return error("Invalid cast"); 4459 I = CastInst::Create(CastOp, Op, ResTy); 4460 } 4461 InstructionList.push_back(I); 4462 break; 4463 } 4464 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4465 case bitc::FUNC_CODE_INST_GEP_OLD: 4466 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4467 unsigned OpNum = 0; 4468 4469 Type *Ty; 4470 bool InBounds; 4471 4472 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4473 InBounds = Record[OpNum++]; 4474 Ty = getTypeByID(Record[OpNum++]); 4475 } else { 4476 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4477 Ty = nullptr; 4478 } 4479 4480 Value *BasePtr; 4481 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4482 return error("Invalid record"); 4483 4484 if (!Ty) 4485 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 4486 ->getElementType(); 4487 else if (Ty != 4488 cast<SequentialType>(BasePtr->getType()->getScalarType()) 4489 ->getElementType()) 4490 return error( 4491 "Explicit gep type does not match pointee type of pointer operand"); 4492 4493 SmallVector<Value*, 16> GEPIdx; 4494 while (OpNum != Record.size()) { 4495 Value *Op; 4496 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4497 return error("Invalid record"); 4498 GEPIdx.push_back(Op); 4499 } 4500 4501 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4502 4503 InstructionList.push_back(I); 4504 if (InBounds) 4505 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4506 break; 4507 } 4508 4509 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4510 // EXTRACTVAL: [opty, opval, n x indices] 4511 unsigned OpNum = 0; 4512 Value *Agg; 4513 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4514 return error("Invalid record"); 4515 4516 unsigned RecSize = Record.size(); 4517 if (OpNum == RecSize) 4518 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4519 4520 SmallVector<unsigned, 4> EXTRACTVALIdx; 4521 Type *CurTy = Agg->getType(); 4522 for (; OpNum != RecSize; ++OpNum) { 4523 bool IsArray = CurTy->isArrayTy(); 4524 bool IsStruct = CurTy->isStructTy(); 4525 uint64_t Index = Record[OpNum]; 4526 4527 if (!IsStruct && !IsArray) 4528 return error("EXTRACTVAL: Invalid type"); 4529 if ((unsigned)Index != Index) 4530 return error("Invalid value"); 4531 if (IsStruct && Index >= CurTy->subtypes().size()) 4532 return error("EXTRACTVAL: Invalid struct index"); 4533 if (IsArray && Index >= CurTy->getArrayNumElements()) 4534 return error("EXTRACTVAL: Invalid array index"); 4535 EXTRACTVALIdx.push_back((unsigned)Index); 4536 4537 if (IsStruct) 4538 CurTy = CurTy->subtypes()[Index]; 4539 else 4540 CurTy = CurTy->subtypes()[0]; 4541 } 4542 4543 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4544 InstructionList.push_back(I); 4545 break; 4546 } 4547 4548 case bitc::FUNC_CODE_INST_INSERTVAL: { 4549 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4550 unsigned OpNum = 0; 4551 Value *Agg; 4552 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4553 return error("Invalid record"); 4554 Value *Val; 4555 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4556 return error("Invalid record"); 4557 4558 unsigned RecSize = Record.size(); 4559 if (OpNum == RecSize) 4560 return error("INSERTVAL: Invalid instruction with 0 indices"); 4561 4562 SmallVector<unsigned, 4> INSERTVALIdx; 4563 Type *CurTy = Agg->getType(); 4564 for (; OpNum != RecSize; ++OpNum) { 4565 bool IsArray = CurTy->isArrayTy(); 4566 bool IsStruct = CurTy->isStructTy(); 4567 uint64_t Index = Record[OpNum]; 4568 4569 if (!IsStruct && !IsArray) 4570 return error("INSERTVAL: Invalid type"); 4571 if ((unsigned)Index != Index) 4572 return error("Invalid value"); 4573 if (IsStruct && Index >= CurTy->subtypes().size()) 4574 return error("INSERTVAL: Invalid struct index"); 4575 if (IsArray && Index >= CurTy->getArrayNumElements()) 4576 return error("INSERTVAL: Invalid array index"); 4577 4578 INSERTVALIdx.push_back((unsigned)Index); 4579 if (IsStruct) 4580 CurTy = CurTy->subtypes()[Index]; 4581 else 4582 CurTy = CurTy->subtypes()[0]; 4583 } 4584 4585 if (CurTy != Val->getType()) 4586 return error("Inserted value type doesn't match aggregate type"); 4587 4588 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4589 InstructionList.push_back(I); 4590 break; 4591 } 4592 4593 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4594 // obsolete form of select 4595 // handles select i1 ... in old bitcode 4596 unsigned OpNum = 0; 4597 Value *TrueVal, *FalseVal, *Cond; 4598 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4599 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4600 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4601 return error("Invalid record"); 4602 4603 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4604 InstructionList.push_back(I); 4605 break; 4606 } 4607 4608 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4609 // new form of select 4610 // handles select i1 or select [N x i1] 4611 unsigned OpNum = 0; 4612 Value *TrueVal, *FalseVal, *Cond; 4613 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4614 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4615 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4616 return error("Invalid record"); 4617 4618 // select condition can be either i1 or [N x i1] 4619 if (VectorType* vector_type = 4620 dyn_cast<VectorType>(Cond->getType())) { 4621 // expect <n x i1> 4622 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4623 return error("Invalid type for value"); 4624 } else { 4625 // expect i1 4626 if (Cond->getType() != Type::getInt1Ty(Context)) 4627 return error("Invalid type for value"); 4628 } 4629 4630 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4631 InstructionList.push_back(I); 4632 break; 4633 } 4634 4635 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4636 unsigned OpNum = 0; 4637 Value *Vec, *Idx; 4638 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4639 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4640 return error("Invalid record"); 4641 if (!Vec->getType()->isVectorTy()) 4642 return error("Invalid type for value"); 4643 I = ExtractElementInst::Create(Vec, Idx); 4644 InstructionList.push_back(I); 4645 break; 4646 } 4647 4648 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4649 unsigned OpNum = 0; 4650 Value *Vec, *Elt, *Idx; 4651 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4652 return error("Invalid record"); 4653 if (!Vec->getType()->isVectorTy()) 4654 return error("Invalid type for value"); 4655 if (popValue(Record, OpNum, NextValueNo, 4656 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4657 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4658 return error("Invalid record"); 4659 I = InsertElementInst::Create(Vec, Elt, Idx); 4660 InstructionList.push_back(I); 4661 break; 4662 } 4663 4664 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4665 unsigned OpNum = 0; 4666 Value *Vec1, *Vec2, *Mask; 4667 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4668 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4669 return error("Invalid record"); 4670 4671 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4672 return error("Invalid record"); 4673 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4674 return error("Invalid type for value"); 4675 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4676 InstructionList.push_back(I); 4677 break; 4678 } 4679 4680 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4681 // Old form of ICmp/FCmp returning bool 4682 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4683 // both legal on vectors but had different behaviour. 4684 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4685 // FCmp/ICmp returning bool or vector of bool 4686 4687 unsigned OpNum = 0; 4688 Value *LHS, *RHS; 4689 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4690 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4691 return error("Invalid record"); 4692 4693 unsigned PredVal = Record[OpNum]; 4694 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4695 FastMathFlags FMF; 4696 if (IsFP && Record.size() > OpNum+1) 4697 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4698 4699 if (OpNum+1 != Record.size()) 4700 return error("Invalid record"); 4701 4702 if (LHS->getType()->isFPOrFPVectorTy()) 4703 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4704 else 4705 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4706 4707 if (FMF.any()) 4708 I->setFastMathFlags(FMF); 4709 InstructionList.push_back(I); 4710 break; 4711 } 4712 4713 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4714 { 4715 unsigned Size = Record.size(); 4716 if (Size == 0) { 4717 I = ReturnInst::Create(Context); 4718 InstructionList.push_back(I); 4719 break; 4720 } 4721 4722 unsigned OpNum = 0; 4723 Value *Op = nullptr; 4724 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4725 return error("Invalid record"); 4726 if (OpNum != Record.size()) 4727 return error("Invalid record"); 4728 4729 I = ReturnInst::Create(Context, Op); 4730 InstructionList.push_back(I); 4731 break; 4732 } 4733 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4734 if (Record.size() != 1 && Record.size() != 3) 4735 return error("Invalid record"); 4736 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4737 if (!TrueDest) 4738 return error("Invalid record"); 4739 4740 if (Record.size() == 1) { 4741 I = BranchInst::Create(TrueDest); 4742 InstructionList.push_back(I); 4743 } 4744 else { 4745 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4746 Value *Cond = getValue(Record, 2, NextValueNo, 4747 Type::getInt1Ty(Context)); 4748 if (!FalseDest || !Cond) 4749 return error("Invalid record"); 4750 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4751 InstructionList.push_back(I); 4752 } 4753 break; 4754 } 4755 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4756 if (Record.size() != 1 && Record.size() != 2) 4757 return error("Invalid record"); 4758 unsigned Idx = 0; 4759 Value *CleanupPad = 4760 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4761 if (!CleanupPad) 4762 return error("Invalid record"); 4763 BasicBlock *UnwindDest = nullptr; 4764 if (Record.size() == 2) { 4765 UnwindDest = getBasicBlock(Record[Idx++]); 4766 if (!UnwindDest) 4767 return error("Invalid record"); 4768 } 4769 4770 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4771 InstructionList.push_back(I); 4772 break; 4773 } 4774 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4775 if (Record.size() != 2) 4776 return error("Invalid record"); 4777 unsigned Idx = 0; 4778 Value *CatchPad = 4779 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4780 if (!CatchPad) 4781 return error("Invalid record"); 4782 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4783 if (!BB) 4784 return error("Invalid record"); 4785 4786 I = CatchReturnInst::Create(CatchPad, BB); 4787 InstructionList.push_back(I); 4788 break; 4789 } 4790 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4791 // We must have, at minimum, the outer scope and the number of arguments. 4792 if (Record.size() < 2) 4793 return error("Invalid record"); 4794 4795 unsigned Idx = 0; 4796 4797 Value *ParentPad = 4798 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4799 4800 unsigned NumHandlers = Record[Idx++]; 4801 4802 SmallVector<BasicBlock *, 2> Handlers; 4803 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4804 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4805 if (!BB) 4806 return error("Invalid record"); 4807 Handlers.push_back(BB); 4808 } 4809 4810 BasicBlock *UnwindDest = nullptr; 4811 if (Idx + 1 == Record.size()) { 4812 UnwindDest = getBasicBlock(Record[Idx++]); 4813 if (!UnwindDest) 4814 return error("Invalid record"); 4815 } 4816 4817 if (Record.size() != Idx) 4818 return error("Invalid record"); 4819 4820 auto *CatchSwitch = 4821 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4822 for (BasicBlock *Handler : Handlers) 4823 CatchSwitch->addHandler(Handler); 4824 I = CatchSwitch; 4825 InstructionList.push_back(I); 4826 break; 4827 } 4828 case bitc::FUNC_CODE_INST_CATCHPAD: 4829 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4830 // We must have, at minimum, the outer scope and the number of arguments. 4831 if (Record.size() < 2) 4832 return error("Invalid record"); 4833 4834 unsigned Idx = 0; 4835 4836 Value *ParentPad = 4837 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4838 4839 unsigned NumArgOperands = Record[Idx++]; 4840 4841 SmallVector<Value *, 2> Args; 4842 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4843 Value *Val; 4844 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4845 return error("Invalid record"); 4846 Args.push_back(Val); 4847 } 4848 4849 if (Record.size() != Idx) 4850 return error("Invalid record"); 4851 4852 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4853 I = CleanupPadInst::Create(ParentPad, Args); 4854 else 4855 I = CatchPadInst::Create(ParentPad, Args); 4856 InstructionList.push_back(I); 4857 break; 4858 } 4859 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4860 // Check magic 4861 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4862 // "New" SwitchInst format with case ranges. The changes to write this 4863 // format were reverted but we still recognize bitcode that uses it. 4864 // Hopefully someday we will have support for case ranges and can use 4865 // this format again. 4866 4867 Type *OpTy = getTypeByID(Record[1]); 4868 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4869 4870 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4871 BasicBlock *Default = getBasicBlock(Record[3]); 4872 if (!OpTy || !Cond || !Default) 4873 return error("Invalid record"); 4874 4875 unsigned NumCases = Record[4]; 4876 4877 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4878 InstructionList.push_back(SI); 4879 4880 unsigned CurIdx = 5; 4881 for (unsigned i = 0; i != NumCases; ++i) { 4882 SmallVector<ConstantInt*, 1> CaseVals; 4883 unsigned NumItems = Record[CurIdx++]; 4884 for (unsigned ci = 0; ci != NumItems; ++ci) { 4885 bool isSingleNumber = Record[CurIdx++]; 4886 4887 APInt Low; 4888 unsigned ActiveWords = 1; 4889 if (ValueBitWidth > 64) 4890 ActiveWords = Record[CurIdx++]; 4891 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4892 ValueBitWidth); 4893 CurIdx += ActiveWords; 4894 4895 if (!isSingleNumber) { 4896 ActiveWords = 1; 4897 if (ValueBitWidth > 64) 4898 ActiveWords = Record[CurIdx++]; 4899 APInt High = readWideAPInt( 4900 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4901 CurIdx += ActiveWords; 4902 4903 // FIXME: It is not clear whether values in the range should be 4904 // compared as signed or unsigned values. The partially 4905 // implemented changes that used this format in the past used 4906 // unsigned comparisons. 4907 for ( ; Low.ule(High); ++Low) 4908 CaseVals.push_back(ConstantInt::get(Context, Low)); 4909 } else 4910 CaseVals.push_back(ConstantInt::get(Context, Low)); 4911 } 4912 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4913 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4914 cve = CaseVals.end(); cvi != cve; ++cvi) 4915 SI->addCase(*cvi, DestBB); 4916 } 4917 I = SI; 4918 break; 4919 } 4920 4921 // Old SwitchInst format without case ranges. 4922 4923 if (Record.size() < 3 || (Record.size() & 1) == 0) 4924 return error("Invalid record"); 4925 Type *OpTy = getTypeByID(Record[0]); 4926 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4927 BasicBlock *Default = getBasicBlock(Record[2]); 4928 if (!OpTy || !Cond || !Default) 4929 return error("Invalid record"); 4930 unsigned NumCases = (Record.size()-3)/2; 4931 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4932 InstructionList.push_back(SI); 4933 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4934 ConstantInt *CaseVal = 4935 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4936 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4937 if (!CaseVal || !DestBB) { 4938 delete SI; 4939 return error("Invalid record"); 4940 } 4941 SI->addCase(CaseVal, DestBB); 4942 } 4943 I = SI; 4944 break; 4945 } 4946 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4947 if (Record.size() < 2) 4948 return error("Invalid record"); 4949 Type *OpTy = getTypeByID(Record[0]); 4950 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4951 if (!OpTy || !Address) 4952 return error("Invalid record"); 4953 unsigned NumDests = Record.size()-2; 4954 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4955 InstructionList.push_back(IBI); 4956 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4957 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4958 IBI->addDestination(DestBB); 4959 } else { 4960 delete IBI; 4961 return error("Invalid record"); 4962 } 4963 } 4964 I = IBI; 4965 break; 4966 } 4967 4968 case bitc::FUNC_CODE_INST_INVOKE: { 4969 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4970 if (Record.size() < 4) 4971 return error("Invalid record"); 4972 unsigned OpNum = 0; 4973 AttributeSet PAL = getAttributes(Record[OpNum++]); 4974 unsigned CCInfo = Record[OpNum++]; 4975 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4976 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4977 4978 FunctionType *FTy = nullptr; 4979 if (CCInfo >> 13 & 1 && 4980 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4981 return error("Explicit invoke type is not a function type"); 4982 4983 Value *Callee; 4984 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4985 return error("Invalid record"); 4986 4987 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4988 if (!CalleeTy) 4989 return error("Callee is not a pointer"); 4990 if (!FTy) { 4991 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4992 if (!FTy) 4993 return error("Callee is not of pointer to function type"); 4994 } else if (CalleeTy->getElementType() != FTy) 4995 return error("Explicit invoke type does not match pointee type of " 4996 "callee operand"); 4997 if (Record.size() < FTy->getNumParams() + OpNum) 4998 return error("Insufficient operands to call"); 4999 5000 SmallVector<Value*, 16> Ops; 5001 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5002 Ops.push_back(getValue(Record, OpNum, NextValueNo, 5003 FTy->getParamType(i))); 5004 if (!Ops.back()) 5005 return error("Invalid record"); 5006 } 5007 5008 if (!FTy->isVarArg()) { 5009 if (Record.size() != OpNum) 5010 return error("Invalid record"); 5011 } else { 5012 // Read type/value pairs for varargs params. 5013 while (OpNum != Record.size()) { 5014 Value *Op; 5015 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5016 return error("Invalid record"); 5017 Ops.push_back(Op); 5018 } 5019 } 5020 5021 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 5022 OperandBundles.clear(); 5023 InstructionList.push_back(I); 5024 cast<InvokeInst>(I)->setCallingConv( 5025 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 5026 cast<InvokeInst>(I)->setAttributes(PAL); 5027 break; 5028 } 5029 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 5030 unsigned Idx = 0; 5031 Value *Val = nullptr; 5032 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 5033 return error("Invalid record"); 5034 I = ResumeInst::Create(Val); 5035 InstructionList.push_back(I); 5036 break; 5037 } 5038 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 5039 I = new UnreachableInst(Context); 5040 InstructionList.push_back(I); 5041 break; 5042 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 5043 if (Record.size() < 1 || ((Record.size()-1)&1)) 5044 return error("Invalid record"); 5045 Type *Ty = getTypeByID(Record[0]); 5046 if (!Ty) 5047 return error("Invalid record"); 5048 5049 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 5050 InstructionList.push_back(PN); 5051 5052 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 5053 Value *V; 5054 // With the new function encoding, it is possible that operands have 5055 // negative IDs (for forward references). Use a signed VBR 5056 // representation to keep the encoding small. 5057 if (UseRelativeIDs) 5058 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 5059 else 5060 V = getValue(Record, 1+i, NextValueNo, Ty); 5061 BasicBlock *BB = getBasicBlock(Record[2+i]); 5062 if (!V || !BB) 5063 return error("Invalid record"); 5064 PN->addIncoming(V, BB); 5065 } 5066 I = PN; 5067 break; 5068 } 5069 5070 case bitc::FUNC_CODE_INST_LANDINGPAD: 5071 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 5072 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 5073 unsigned Idx = 0; 5074 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 5075 if (Record.size() < 3) 5076 return error("Invalid record"); 5077 } else { 5078 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 5079 if (Record.size() < 4) 5080 return error("Invalid record"); 5081 } 5082 Type *Ty = getTypeByID(Record[Idx++]); 5083 if (!Ty) 5084 return error("Invalid record"); 5085 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 5086 Value *PersFn = nullptr; 5087 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 5088 return error("Invalid record"); 5089 5090 if (!F->hasPersonalityFn()) 5091 F->setPersonalityFn(cast<Constant>(PersFn)); 5092 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 5093 return error("Personality function mismatch"); 5094 } 5095 5096 bool IsCleanup = !!Record[Idx++]; 5097 unsigned NumClauses = Record[Idx++]; 5098 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 5099 LP->setCleanup(IsCleanup); 5100 for (unsigned J = 0; J != NumClauses; ++J) { 5101 LandingPadInst::ClauseType CT = 5102 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 5103 Value *Val; 5104 5105 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 5106 delete LP; 5107 return error("Invalid record"); 5108 } 5109 5110 assert((CT != LandingPadInst::Catch || 5111 !isa<ArrayType>(Val->getType())) && 5112 "Catch clause has a invalid type!"); 5113 assert((CT != LandingPadInst::Filter || 5114 isa<ArrayType>(Val->getType())) && 5115 "Filter clause has invalid type!"); 5116 LP->addClause(cast<Constant>(Val)); 5117 } 5118 5119 I = LP; 5120 InstructionList.push_back(I); 5121 break; 5122 } 5123 5124 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 5125 if (Record.size() != 4) 5126 return error("Invalid record"); 5127 uint64_t AlignRecord = Record[3]; 5128 const uint64_t InAllocaMask = uint64_t(1) << 5; 5129 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 5130 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 5131 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 5132 SwiftErrorMask; 5133 bool InAlloca = AlignRecord & InAllocaMask; 5134 bool SwiftError = AlignRecord & SwiftErrorMask; 5135 Type *Ty = getTypeByID(Record[0]); 5136 if ((AlignRecord & ExplicitTypeMask) == 0) { 5137 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 5138 if (!PTy) 5139 return error("Old-style alloca with a non-pointer type"); 5140 Ty = PTy->getElementType(); 5141 } 5142 Type *OpTy = getTypeByID(Record[1]); 5143 Value *Size = getFnValueByID(Record[2], OpTy); 5144 unsigned Align; 5145 if (std::error_code EC = 5146 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 5147 return EC; 5148 } 5149 if (!Ty || !Size) 5150 return error("Invalid record"); 5151 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 5152 AI->setUsedWithInAlloca(InAlloca); 5153 AI->setSwiftError(SwiftError); 5154 I = AI; 5155 InstructionList.push_back(I); 5156 break; 5157 } 5158 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 5159 unsigned OpNum = 0; 5160 Value *Op; 5161 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 5162 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 5163 return error("Invalid record"); 5164 5165 Type *Ty = nullptr; 5166 if (OpNum + 3 == Record.size()) 5167 Ty = getTypeByID(Record[OpNum++]); 5168 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 5169 return EC; 5170 if (!Ty) 5171 Ty = cast<PointerType>(Op->getType())->getElementType(); 5172 5173 unsigned Align; 5174 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5175 return EC; 5176 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 5177 5178 InstructionList.push_back(I); 5179 break; 5180 } 5181 case bitc::FUNC_CODE_INST_LOADATOMIC: { 5182 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 5183 unsigned OpNum = 0; 5184 Value *Op; 5185 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 5186 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 5187 return error("Invalid record"); 5188 5189 Type *Ty = nullptr; 5190 if (OpNum + 5 == Record.size()) 5191 Ty = getTypeByID(Record[OpNum++]); 5192 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 5193 return EC; 5194 if (!Ty) 5195 Ty = cast<PointerType>(Op->getType())->getElementType(); 5196 5197 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5198 if (Ordering == AtomicOrdering::NotAtomic || 5199 Ordering == AtomicOrdering::Release || 5200 Ordering == AtomicOrdering::AcquireRelease) 5201 return error("Invalid record"); 5202 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5203 return error("Invalid record"); 5204 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5205 5206 unsigned Align; 5207 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5208 return EC; 5209 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 5210 5211 InstructionList.push_back(I); 5212 break; 5213 } 5214 case bitc::FUNC_CODE_INST_STORE: 5215 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 5216 unsigned OpNum = 0; 5217 Value *Val, *Ptr; 5218 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5219 (BitCode == bitc::FUNC_CODE_INST_STORE 5220 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5221 : popValue(Record, OpNum, NextValueNo, 5222 cast<PointerType>(Ptr->getType())->getElementType(), 5223 Val)) || 5224 OpNum + 2 != Record.size()) 5225 return error("Invalid record"); 5226 5227 if (std::error_code EC = 5228 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5229 return EC; 5230 unsigned Align; 5231 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5232 return EC; 5233 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 5234 InstructionList.push_back(I); 5235 break; 5236 } 5237 case bitc::FUNC_CODE_INST_STOREATOMIC: 5238 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 5239 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 5240 unsigned OpNum = 0; 5241 Value *Val, *Ptr; 5242 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5243 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 5244 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5245 : popValue(Record, OpNum, NextValueNo, 5246 cast<PointerType>(Ptr->getType())->getElementType(), 5247 Val)) || 5248 OpNum + 4 != Record.size()) 5249 return error("Invalid record"); 5250 5251 if (std::error_code EC = 5252 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5253 return EC; 5254 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5255 if (Ordering == AtomicOrdering::NotAtomic || 5256 Ordering == AtomicOrdering::Acquire || 5257 Ordering == AtomicOrdering::AcquireRelease) 5258 return error("Invalid record"); 5259 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5260 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5261 return error("Invalid record"); 5262 5263 unsigned Align; 5264 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5265 return EC; 5266 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 5267 InstructionList.push_back(I); 5268 break; 5269 } 5270 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 5271 case bitc::FUNC_CODE_INST_CMPXCHG: { 5272 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 5273 // failureordering?, isweak?] 5274 unsigned OpNum = 0; 5275 Value *Ptr, *Cmp, *New; 5276 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5277 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 5278 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 5279 : popValue(Record, OpNum, NextValueNo, 5280 cast<PointerType>(Ptr->getType())->getElementType(), 5281 Cmp)) || 5282 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5283 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 5284 return error("Invalid record"); 5285 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 5286 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5287 SuccessOrdering == AtomicOrdering::Unordered) 5288 return error("Invalid record"); 5289 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 5290 5291 if (std::error_code EC = 5292 typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5293 return EC; 5294 AtomicOrdering FailureOrdering; 5295 if (Record.size() < 7) 5296 FailureOrdering = 5297 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 5298 else 5299 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 5300 5301 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 5302 SynchScope); 5303 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5304 5305 if (Record.size() < 8) { 5306 // Before weak cmpxchgs existed, the instruction simply returned the 5307 // value loaded from memory, so bitcode files from that era will be 5308 // expecting the first component of a modern cmpxchg. 5309 CurBB->getInstList().push_back(I); 5310 I = ExtractValueInst::Create(I, 0); 5311 } else { 5312 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 5313 } 5314 5315 InstructionList.push_back(I); 5316 break; 5317 } 5318 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5319 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 5320 unsigned OpNum = 0; 5321 Value *Ptr, *Val; 5322 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5323 popValue(Record, OpNum, NextValueNo, 5324 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 5325 OpNum+4 != Record.size()) 5326 return error("Invalid record"); 5327 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 5328 if (Operation < AtomicRMWInst::FIRST_BINOP || 5329 Operation > AtomicRMWInst::LAST_BINOP) 5330 return error("Invalid record"); 5331 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5332 if (Ordering == AtomicOrdering::NotAtomic || 5333 Ordering == AtomicOrdering::Unordered) 5334 return error("Invalid record"); 5335 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5336 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 5337 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5338 InstructionList.push_back(I); 5339 break; 5340 } 5341 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 5342 if (2 != Record.size()) 5343 return error("Invalid record"); 5344 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5345 if (Ordering == AtomicOrdering::NotAtomic || 5346 Ordering == AtomicOrdering::Unordered || 5347 Ordering == AtomicOrdering::Monotonic) 5348 return error("Invalid record"); 5349 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 5350 I = new FenceInst(Context, Ordering, SynchScope); 5351 InstructionList.push_back(I); 5352 break; 5353 } 5354 case bitc::FUNC_CODE_INST_CALL: { 5355 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5356 if (Record.size() < 3) 5357 return error("Invalid record"); 5358 5359 unsigned OpNum = 0; 5360 AttributeSet PAL = getAttributes(Record[OpNum++]); 5361 unsigned CCInfo = Record[OpNum++]; 5362 5363 FastMathFlags FMF; 5364 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5365 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5366 if (!FMF.any()) 5367 return error("Fast math flags indicator set for call with no FMF"); 5368 } 5369 5370 FunctionType *FTy = nullptr; 5371 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 5372 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5373 return error("Explicit call type is not a function type"); 5374 5375 Value *Callee; 5376 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5377 return error("Invalid record"); 5378 5379 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5380 if (!OpTy) 5381 return error("Callee is not a pointer type"); 5382 if (!FTy) { 5383 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 5384 if (!FTy) 5385 return error("Callee is not of pointer to function type"); 5386 } else if (OpTy->getElementType() != FTy) 5387 return error("Explicit call type does not match pointee type of " 5388 "callee operand"); 5389 if (Record.size() < FTy->getNumParams() + OpNum) 5390 return error("Insufficient operands to call"); 5391 5392 SmallVector<Value*, 16> Args; 5393 // Read the fixed params. 5394 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5395 if (FTy->getParamType(i)->isLabelTy()) 5396 Args.push_back(getBasicBlock(Record[OpNum])); 5397 else 5398 Args.push_back(getValue(Record, OpNum, NextValueNo, 5399 FTy->getParamType(i))); 5400 if (!Args.back()) 5401 return error("Invalid record"); 5402 } 5403 5404 // Read type/value pairs for varargs params. 5405 if (!FTy->isVarArg()) { 5406 if (OpNum != Record.size()) 5407 return error("Invalid record"); 5408 } else { 5409 while (OpNum != Record.size()) { 5410 Value *Op; 5411 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5412 return error("Invalid record"); 5413 Args.push_back(Op); 5414 } 5415 } 5416 5417 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5418 OperandBundles.clear(); 5419 InstructionList.push_back(I); 5420 cast<CallInst>(I)->setCallingConv( 5421 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5422 CallInst::TailCallKind TCK = CallInst::TCK_None; 5423 if (CCInfo & 1 << bitc::CALL_TAIL) 5424 TCK = CallInst::TCK_Tail; 5425 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5426 TCK = CallInst::TCK_MustTail; 5427 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5428 TCK = CallInst::TCK_NoTail; 5429 cast<CallInst>(I)->setTailCallKind(TCK); 5430 cast<CallInst>(I)->setAttributes(PAL); 5431 if (FMF.any()) { 5432 if (!isa<FPMathOperator>(I)) 5433 return error("Fast-math-flags specified for call without " 5434 "floating-point scalar or vector return type"); 5435 I->setFastMathFlags(FMF); 5436 } 5437 break; 5438 } 5439 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5440 if (Record.size() < 3) 5441 return error("Invalid record"); 5442 Type *OpTy = getTypeByID(Record[0]); 5443 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5444 Type *ResTy = getTypeByID(Record[2]); 5445 if (!OpTy || !Op || !ResTy) 5446 return error("Invalid record"); 5447 I = new VAArgInst(Op, ResTy); 5448 InstructionList.push_back(I); 5449 break; 5450 } 5451 5452 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5453 // A call or an invoke can be optionally prefixed with some variable 5454 // number of operand bundle blocks. These blocks are read into 5455 // OperandBundles and consumed at the next call or invoke instruction. 5456 5457 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5458 return error("Invalid record"); 5459 5460 std::vector<Value *> Inputs; 5461 5462 unsigned OpNum = 1; 5463 while (OpNum != Record.size()) { 5464 Value *Op; 5465 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5466 return error("Invalid record"); 5467 Inputs.push_back(Op); 5468 } 5469 5470 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5471 continue; 5472 } 5473 } 5474 5475 // Add instruction to end of current BB. If there is no current BB, reject 5476 // this file. 5477 if (!CurBB) { 5478 delete I; 5479 return error("Invalid instruction with no BB"); 5480 } 5481 if (!OperandBundles.empty()) { 5482 delete I; 5483 return error("Operand bundles found with no consumer"); 5484 } 5485 CurBB->getInstList().push_back(I); 5486 5487 // If this was a terminator instruction, move to the next block. 5488 if (isa<TerminatorInst>(I)) { 5489 ++CurBBNo; 5490 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5491 } 5492 5493 // Non-void values get registered in the value table for future use. 5494 if (I && !I->getType()->isVoidTy()) 5495 ValueList.assignValue(I, NextValueNo++); 5496 } 5497 5498 OutOfRecordLoop: 5499 5500 if (!OperandBundles.empty()) 5501 return error("Operand bundles found with no consumer"); 5502 5503 // Check the function list for unresolved values. 5504 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5505 if (!A->getParent()) { 5506 // We found at least one unresolved value. Nuke them all to avoid leaks. 5507 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5508 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5509 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5510 delete A; 5511 } 5512 } 5513 return error("Never resolved value found in function"); 5514 } 5515 } 5516 5517 // Unexpected unresolved metadata about to be dropped. 5518 if (MetadataList.hasFwdRefs()) 5519 return error("Invalid function metadata: outgoing forward refs"); 5520 5521 // Trim the value list down to the size it was before we parsed this function. 5522 ValueList.shrinkTo(ModuleValueListSize); 5523 MetadataList.shrinkTo(ModuleMetadataListSize); 5524 std::vector<BasicBlock*>().swap(FunctionBBs); 5525 return std::error_code(); 5526 } 5527 5528 /// Find the function body in the bitcode stream 5529 std::error_code BitcodeReader::findFunctionInStream( 5530 Function *F, 5531 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5532 while (DeferredFunctionInfoIterator->second == 0) { 5533 // This is the fallback handling for the old format bitcode that 5534 // didn't contain the function index in the VST, or when we have 5535 // an anonymous function which would not have a VST entry. 5536 // Assert that we have one of those two cases. 5537 assert(VSTOffset == 0 || !F->hasName()); 5538 // Parse the next body in the stream and set its position in the 5539 // DeferredFunctionInfo map. 5540 if (std::error_code EC = rememberAndSkipFunctionBodies()) 5541 return EC; 5542 } 5543 return std::error_code(); 5544 } 5545 5546 //===----------------------------------------------------------------------===// 5547 // GVMaterializer implementation 5548 //===----------------------------------------------------------------------===// 5549 5550 void BitcodeReader::releaseBuffer() { Buffer.release(); } 5551 5552 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 5553 Function *F = dyn_cast<Function>(GV); 5554 // If it's not a function or is already material, ignore the request. 5555 if (!F || !F->isMaterializable()) 5556 return std::error_code(); 5557 5558 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5559 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5560 // If its position is recorded as 0, its body is somewhere in the stream 5561 // but we haven't seen it yet. 5562 if (DFII->second == 0) 5563 if (std::error_code EC = findFunctionInStream(F, DFII)) 5564 return EC; 5565 5566 // Materialize metadata before parsing any function bodies. 5567 if (std::error_code EC = materializeMetadata()) 5568 return EC; 5569 5570 // Move the bit stream to the saved position of the deferred function body. 5571 Stream.JumpToBit(DFII->second); 5572 5573 if (std::error_code EC = parseFunctionBody(F)) 5574 return EC; 5575 F->setIsMaterializable(false); 5576 5577 if (StripDebugInfo) 5578 stripDebugInfo(*F); 5579 5580 // Upgrade any old intrinsic calls in the function. 5581 for (auto &I : UpgradedIntrinsics) { 5582 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5583 UI != UE;) { 5584 User *U = *UI; 5585 ++UI; 5586 if (CallInst *CI = dyn_cast<CallInst>(U)) 5587 UpgradeIntrinsicCall(CI, I.second); 5588 } 5589 } 5590 5591 // Finish fn->subprogram upgrade for materialized functions. 5592 if (DISubprogram *SP = FunctionsWithSPs.lookup(F)) 5593 F->setSubprogram(SP); 5594 5595 // Bring in any functions that this function forward-referenced via 5596 // blockaddresses. 5597 return materializeForwardReferencedFunctions(); 5598 } 5599 5600 std::error_code BitcodeReader::materializeModule() { 5601 if (std::error_code EC = materializeMetadata()) 5602 return EC; 5603 5604 // Promise to materialize all forward references. 5605 WillMaterializeAllForwardRefs = true; 5606 5607 // Iterate over the module, deserializing any functions that are still on 5608 // disk. 5609 for (Function &F : *TheModule) { 5610 if (std::error_code EC = materialize(&F)) 5611 return EC; 5612 } 5613 // At this point, if there are any function bodies, parse the rest of 5614 // the bits in the module past the last function block we have recorded 5615 // through either lazy scanning or the VST. 5616 if (LastFunctionBlockBit || NextUnreadBit) 5617 parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit 5618 : NextUnreadBit); 5619 5620 // Check that all block address forward references got resolved (as we 5621 // promised above). 5622 if (!BasicBlockFwdRefs.empty()) 5623 return error("Never resolved function from blockaddress"); 5624 5625 // Upgrading intrinsic calls before TBAA can cause TBAA metadata to be lost, 5626 // to prevent this instructions with TBAA tags should be upgraded first. 5627 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 5628 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 5629 5630 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5631 // delete the old functions to clean up. We can't do this unless the entire 5632 // module is materialized because there could always be another function body 5633 // with calls to the old function. 5634 for (auto &I : UpgradedIntrinsics) { 5635 for (auto *U : I.first->users()) { 5636 if (CallInst *CI = dyn_cast<CallInst>(U)) 5637 UpgradeIntrinsicCall(CI, I.second); 5638 } 5639 if (!I.first->use_empty()) 5640 I.first->replaceAllUsesWith(I.second); 5641 I.first->eraseFromParent(); 5642 } 5643 UpgradedIntrinsics.clear(); 5644 5645 UpgradeDebugInfo(*TheModule); 5646 return std::error_code(); 5647 } 5648 5649 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5650 return IdentifiedStructTypes; 5651 } 5652 5653 std::error_code 5654 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5655 if (Streamer) 5656 return initLazyStream(std::move(Streamer)); 5657 return initStreamFromBuffer(); 5658 } 5659 5660 std::error_code BitcodeReader::initStreamFromBuffer() { 5661 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 5662 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 5663 5664 if (Buffer->getBufferSize() & 3) 5665 return error("Invalid bitcode signature"); 5666 5667 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5668 // The magic number is 0x0B17C0DE stored in little endian. 5669 if (isBitcodeWrapper(BufPtr, BufEnd)) 5670 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5671 return error("Invalid bitcode wrapper header"); 5672 5673 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5674 Stream.init(&*StreamFile); 5675 5676 return std::error_code(); 5677 } 5678 5679 std::error_code 5680 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) { 5681 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5682 // see it. 5683 auto OwnedBytes = 5684 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5685 StreamingMemoryObject &Bytes = *OwnedBytes; 5686 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5687 Stream.init(&*StreamFile); 5688 5689 unsigned char buf[16]; 5690 if (Bytes.readBytes(buf, 16, 0) != 16) 5691 return error("Invalid bitcode signature"); 5692 5693 if (!isBitcode(buf, buf + 16)) 5694 return error("Invalid bitcode signature"); 5695 5696 if (isBitcodeWrapper(buf, buf + 4)) { 5697 const unsigned char *bitcodeStart = buf; 5698 const unsigned char *bitcodeEnd = buf + 16; 5699 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5700 Bytes.dropLeadingBytes(bitcodeStart - buf); 5701 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5702 } 5703 return std::error_code(); 5704 } 5705 5706 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E, 5707 const Twine &Message) { 5708 return ::error(DiagnosticHandler, make_error_code(E), Message); 5709 } 5710 5711 std::error_code ModuleSummaryIndexBitcodeReader::error(const Twine &Message) { 5712 return ::error(DiagnosticHandler, 5713 make_error_code(BitcodeError::CorruptedBitcode), Message); 5714 } 5715 5716 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E) { 5717 return ::error(DiagnosticHandler, make_error_code(E)); 5718 } 5719 5720 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5721 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 5722 bool CheckGlobalValSummaryPresenceOnly) 5723 : DiagnosticHandler(DiagnosticHandler), Buffer(Buffer), 5724 CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {} 5725 5726 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5727 DiagnosticHandlerFunction DiagnosticHandler, 5728 bool CheckGlobalValSummaryPresenceOnly) 5729 : DiagnosticHandler(DiagnosticHandler), Buffer(nullptr), 5730 CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {} 5731 5732 void ModuleSummaryIndexBitcodeReader::freeState() { Buffer = nullptr; } 5733 5734 void ModuleSummaryIndexBitcodeReader::releaseBuffer() { Buffer.release(); } 5735 5736 std::pair<GlobalValue::GUID, GlobalValue::GUID> 5737 ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) { 5738 auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId); 5739 assert(VGI != ValueIdToCallGraphGUIDMap.end()); 5740 return VGI->second; 5741 } 5742 5743 GlobalValue::GUID 5744 ModuleSummaryIndexBitcodeReader::getGUIDFromOffset(uint64_t Offset) { 5745 auto I = SummaryOffsetToGUIDMap.find(Offset); 5746 assert(I != SummaryOffsetToGUIDMap.end()); 5747 return I->second; 5748 } 5749 5750 // Specialized value symbol table parser used when reading module index 5751 // blocks where we don't actually create global values. The parsed information 5752 // is saved in the bitcode reader for use when later parsing summaries. 5753 std::error_code ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5754 uint64_t Offset, 5755 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5756 assert(Offset > 0 && "Expected non-zero VST offset"); 5757 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 5758 5759 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5760 return error("Invalid record"); 5761 5762 SmallVector<uint64_t, 64> Record; 5763 5764 // Read all the records for this value table. 5765 SmallString<128> ValueName; 5766 while (1) { 5767 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5768 5769 switch (Entry.Kind) { 5770 case BitstreamEntry::SubBlock: // Handled for us already. 5771 case BitstreamEntry::Error: 5772 return error("Malformed block"); 5773 case BitstreamEntry::EndBlock: 5774 // Done parsing VST, jump back to wherever we came from. 5775 Stream.JumpToBit(CurrentBit); 5776 return std::error_code(); 5777 case BitstreamEntry::Record: 5778 // The interesting case. 5779 break; 5780 } 5781 5782 // Read a record. 5783 Record.clear(); 5784 switch (Stream.readRecord(Entry.ID, Record)) { 5785 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5786 break; 5787 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5788 if (convertToString(Record, 1, ValueName)) 5789 return error("Invalid record"); 5790 unsigned ValueID = Record[0]; 5791 assert(!SourceFileName.empty()); 5792 auto VLI = ValueIdToLinkageMap.find(ValueID); 5793 assert(VLI != ValueIdToLinkageMap.end() && 5794 "No linkage found for VST entry?"); 5795 auto Linkage = VLI->second; 5796 std::string GlobalId = 5797 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5798 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5799 auto OriginalNameID = ValueGUID; 5800 if (GlobalValue::isLocalLinkage(Linkage)) 5801 OriginalNameID = GlobalValue::getGUID(ValueName); 5802 if (PrintSummaryGUIDs) 5803 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5804 << ValueName << "\n"; 5805 ValueIdToCallGraphGUIDMap[ValueID] = 5806 std::make_pair(ValueGUID, OriginalNameID); 5807 ValueName.clear(); 5808 break; 5809 } 5810 case bitc::VST_CODE_FNENTRY: { 5811 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5812 if (convertToString(Record, 2, ValueName)) 5813 return error("Invalid record"); 5814 unsigned ValueID = Record[0]; 5815 assert(!SourceFileName.empty()); 5816 auto VLI = ValueIdToLinkageMap.find(ValueID); 5817 assert(VLI != ValueIdToLinkageMap.end() && 5818 "No linkage found for VST entry?"); 5819 auto Linkage = VLI->second; 5820 std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier( 5821 ValueName, VLI->second, SourceFileName); 5822 auto FunctionGUID = GlobalValue::getGUID(FunctionGlobalId); 5823 auto OriginalNameID = FunctionGUID; 5824 if (GlobalValue::isLocalLinkage(Linkage)) 5825 OriginalNameID = GlobalValue::getGUID(ValueName); 5826 if (PrintSummaryGUIDs) 5827 dbgs() << "GUID " << FunctionGUID << "(" << OriginalNameID << ") is " 5828 << ValueName << "\n"; 5829 ValueIdToCallGraphGUIDMap[ValueID] = 5830 std::make_pair(FunctionGUID, OriginalNameID); 5831 5832 ValueName.clear(); 5833 break; 5834 } 5835 case bitc::VST_CODE_COMBINED_GVDEFENTRY: { 5836 // VST_CODE_COMBINED_GVDEFENTRY: [valueid, offset, guid] 5837 unsigned ValueID = Record[0]; 5838 uint64_t GlobalValSummaryOffset = Record[1]; 5839 GlobalValue::GUID GlobalValGUID = Record[2]; 5840 SummaryOffsetToGUIDMap[GlobalValSummaryOffset] = GlobalValGUID; 5841 // The "original name", which is the second value of the pair will be 5842 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5843 ValueIdToCallGraphGUIDMap[ValueID] = 5844 std::make_pair(GlobalValGUID, GlobalValGUID); 5845 break; 5846 } 5847 case bitc::VST_CODE_COMBINED_ENTRY: { 5848 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5849 unsigned ValueID = Record[0]; 5850 GlobalValue::GUID RefGUID = Record[1]; 5851 // The "original name", which is the second value of the pair will be 5852 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5853 ValueIdToCallGraphGUIDMap[ValueID] = std::make_pair(RefGUID, RefGUID); 5854 break; 5855 } 5856 } 5857 } 5858 } 5859 5860 // Parse just the blocks needed for building the index out of the module. 5861 // At the end of this routine the module Index is populated with a map 5862 // from global value id to GlobalValueSummary objects. 5863 std::error_code ModuleSummaryIndexBitcodeReader::parseModule() { 5864 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5865 return error("Invalid record"); 5866 5867 SmallVector<uint64_t, 64> Record; 5868 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5869 unsigned ValueId = 0; 5870 5871 // Read the index for this module. 5872 while (1) { 5873 BitstreamEntry Entry = Stream.advance(); 5874 5875 switch (Entry.Kind) { 5876 case BitstreamEntry::Error: 5877 return error("Malformed block"); 5878 case BitstreamEntry::EndBlock: 5879 return std::error_code(); 5880 5881 case BitstreamEntry::SubBlock: 5882 if (CheckGlobalValSummaryPresenceOnly) { 5883 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 5884 SeenGlobalValSummary = true; 5885 // No need to parse the rest since we found the summary. 5886 return std::error_code(); 5887 } 5888 if (Stream.SkipBlock()) 5889 return error("Invalid record"); 5890 continue; 5891 } 5892 switch (Entry.ID) { 5893 default: // Skip unknown content. 5894 if (Stream.SkipBlock()) 5895 return error("Invalid record"); 5896 break; 5897 case bitc::BLOCKINFO_BLOCK_ID: 5898 // Need to parse these to get abbrev ids (e.g. for VST) 5899 if (Stream.ReadBlockInfoBlock()) 5900 return error("Malformed block"); 5901 break; 5902 case bitc::VALUE_SYMTAB_BLOCK_ID: 5903 // Should have been parsed earlier via VSTOffset, unless there 5904 // is no summary section. 5905 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5906 !SeenGlobalValSummary) && 5907 "Expected early VST parse via VSTOffset record"); 5908 if (Stream.SkipBlock()) 5909 return error("Invalid record"); 5910 break; 5911 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5912 assert(VSTOffset > 0 && "Expected non-zero VST offset"); 5913 assert(!SeenValueSymbolTable && 5914 "Already read VST when parsing summary block?"); 5915 if (std::error_code EC = 5916 parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5917 return EC; 5918 SeenValueSymbolTable = true; 5919 SeenGlobalValSummary = true; 5920 if (std::error_code EC = parseEntireSummary()) 5921 return EC; 5922 break; 5923 case bitc::MODULE_STRTAB_BLOCK_ID: 5924 if (std::error_code EC = parseModuleStringTable()) 5925 return EC; 5926 break; 5927 } 5928 continue; 5929 5930 case BitstreamEntry::Record: { 5931 Record.clear(); 5932 auto BitCode = Stream.readRecord(Entry.ID, Record); 5933 switch (BitCode) { 5934 default: 5935 break; // Default behavior, ignore unknown content. 5936 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5937 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5938 SmallString<128> ValueName; 5939 if (convertToString(Record, 0, ValueName)) 5940 return error("Invalid record"); 5941 SourceFileName = ValueName.c_str(); 5942 break; 5943 } 5944 /// MODULE_CODE_HASH: [5*i32] 5945 case bitc::MODULE_CODE_HASH: { 5946 if (Record.size() != 5) 5947 return error("Invalid hash length " + Twine(Record.size()).str()); 5948 if (!TheIndex) 5949 break; 5950 if (TheIndex->modulePaths().empty()) 5951 // Does not have any summary emitted. 5952 break; 5953 if (TheIndex->modulePaths().size() != 1) 5954 return error("Don't expect multiple modules defined?"); 5955 auto &Hash = TheIndex->modulePaths().begin()->second.second; 5956 int Pos = 0; 5957 for (auto &Val : Record) { 5958 assert(!(Val >> 32) && "Unexpected high bits set"); 5959 Hash[Pos++] = Val; 5960 } 5961 break; 5962 } 5963 /// MODULE_CODE_VSTOFFSET: [offset] 5964 case bitc::MODULE_CODE_VSTOFFSET: 5965 if (Record.size() < 1) 5966 return error("Invalid record"); 5967 VSTOffset = Record[0]; 5968 break; 5969 // GLOBALVAR: [pointer type, isconst, initid, 5970 // linkage, alignment, section, visibility, threadlocal, 5971 // unnamed_addr, externally_initialized, dllstorageclass, 5972 // comdat] 5973 case bitc::MODULE_CODE_GLOBALVAR: { 5974 if (Record.size() < 6) 5975 return error("Invalid record"); 5976 uint64_t RawLinkage = Record[3]; 5977 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5978 ValueIdToLinkageMap[ValueId++] = Linkage; 5979 break; 5980 } 5981 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 5982 // alignment, section, visibility, gc, unnamed_addr, 5983 // prologuedata, dllstorageclass, comdat, prefixdata] 5984 case bitc::MODULE_CODE_FUNCTION: { 5985 if (Record.size() < 8) 5986 return error("Invalid record"); 5987 uint64_t RawLinkage = Record[3]; 5988 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5989 ValueIdToLinkageMap[ValueId++] = Linkage; 5990 break; 5991 } 5992 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 5993 // dllstorageclass] 5994 case bitc::MODULE_CODE_ALIAS: { 5995 if (Record.size() < 6) 5996 return error("Invalid record"); 5997 uint64_t RawLinkage = Record[3]; 5998 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5999 ValueIdToLinkageMap[ValueId++] = Linkage; 6000 break; 6001 } 6002 } 6003 } 6004 continue; 6005 } 6006 } 6007 } 6008 6009 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 6010 // objects in the index. 6011 std::error_code ModuleSummaryIndexBitcodeReader::parseEntireSummary() { 6012 if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID)) 6013 return error("Invalid record"); 6014 SmallVector<uint64_t, 64> Record; 6015 6016 // Parse version 6017 { 6018 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6019 if (Entry.Kind != BitstreamEntry::Record) 6020 return error("Invalid Summary Block: record for version expected"); 6021 if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION) 6022 return error("Invalid Summary Block: version expected"); 6023 } 6024 const uint64_t Version = Record[0]; 6025 if (Version != 1) 6026 return error("Invalid summary version " + Twine(Version) + ", 1 expected"); 6027 Record.clear(); 6028 6029 // Keep around the last seen summary to be used when we see an optional 6030 // "OriginalName" attachement. 6031 GlobalValueSummary *LastSeenSummary = nullptr; 6032 bool Combined = false; 6033 // For aliases in the combined summary, we need to know which summary 6034 // corresponds to the aliasee offset saved in the alias summary. It isn't 6035 // sufficient to just map to the aliasee GUID, since in the combined summary 6036 // there may be multiple values with the same GUID. 6037 DenseMap<uint64_t, GlobalValueSummary *> OffsetToSummaryMap; 6038 while (1) { 6039 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6040 6041 switch (Entry.Kind) { 6042 case BitstreamEntry::SubBlock: // Handled for us already. 6043 case BitstreamEntry::Error: 6044 return error("Malformed block"); 6045 case BitstreamEntry::EndBlock: 6046 // For a per-module index, remove any entries that still have empty 6047 // summaries. The VST parsing creates entries eagerly for all symbols, 6048 // but not all have associated summaries (e.g. it doesn't know how to 6049 // distinguish between VST_CODE_ENTRY for function declarations vs global 6050 // variables with initializers that end up with a summary). Remove those 6051 // entries now so that we don't need to rely on the combined index merger 6052 // to clean them up (especially since that may not run for the first 6053 // module's index if we merge into that). 6054 if (!Combined) 6055 TheIndex->removeEmptySummaryEntries(); 6056 return std::error_code(); 6057 case BitstreamEntry::Record: 6058 // The interesting case. 6059 break; 6060 } 6061 6062 // Read a record. The record format depends on whether this 6063 // is a per-module index or a combined index file. In the per-module 6064 // case the records contain the associated value's ID for correlation 6065 // with VST entries. In the combined index the correlation is done 6066 // via the bitcode offset of the summary records (which were saved 6067 // in the combined index VST entries). The records also contain 6068 // information used for ThinLTO renaming and importing. 6069 Record.clear(); 6070 uint64_t CurRecordBit = Stream.GetCurrentBitNo(); 6071 auto BitCode = Stream.readRecord(Entry.ID, Record); 6072 switch (BitCode) { 6073 default: // Default behavior: ignore. 6074 break; 6075 // FS_PERMODULE: [valueid, flags, instcount, numrefs, numrefs x valueid, 6076 // n x (valueid, callsitecount)] 6077 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, numrefs, 6078 // numrefs x valueid, 6079 // n x (valueid, callsitecount, profilecount)] 6080 case bitc::FS_PERMODULE: 6081 case bitc::FS_PERMODULE_PROFILE: { 6082 unsigned ValueID = Record[0]; 6083 uint64_t RawFlags = Record[1]; 6084 unsigned InstCount = Record[2]; 6085 unsigned NumRefs = Record[3]; 6086 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6087 std::unique_ptr<FunctionSummary> FS = 6088 llvm::make_unique<FunctionSummary>(Flags, InstCount); 6089 // The module path string ref set in the summary must be owned by the 6090 // index's module string table. Since we don't have a module path 6091 // string table section in the per-module index, we create a single 6092 // module path string table entry with an empty (0) ID to take 6093 // ownership. 6094 FS->setModulePath( 6095 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 6096 static int RefListStartIndex = 4; 6097 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6098 assert(Record.size() >= RefListStartIndex + NumRefs && 6099 "Record size inconsistent with number of references"); 6100 for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) { 6101 unsigned RefValueId = Record[I]; 6102 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6103 FS->addRefEdge(RefGUID); 6104 } 6105 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 6106 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 6107 ++I) { 6108 unsigned CalleeValueId = Record[I]; 6109 unsigned CallsiteCount = Record[++I]; 6110 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 6111 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId).first; 6112 FS->addCallGraphEdge(CalleeGUID, 6113 CalleeInfo(CallsiteCount, ProfileCount)); 6114 } 6115 auto GUID = getGUIDFromValueId(ValueID); 6116 FS->setOriginalName(GUID.second); 6117 TheIndex->addGlobalValueSummary(GUID.first, std::move(FS)); 6118 break; 6119 } 6120 // FS_ALIAS: [valueid, flags, valueid] 6121 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 6122 // they expect all aliasee summaries to be available. 6123 case bitc::FS_ALIAS: { 6124 unsigned ValueID = Record[0]; 6125 uint64_t RawFlags = Record[1]; 6126 unsigned AliaseeID = Record[2]; 6127 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6128 std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags); 6129 // The module path string ref set in the summary must be owned by the 6130 // index's module string table. Since we don't have a module path 6131 // string table section in the per-module index, we create a single 6132 // module path string table entry with an empty (0) ID to take 6133 // ownership. 6134 AS->setModulePath( 6135 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 6136 6137 GlobalValue::GUID AliaseeGUID = getGUIDFromValueId(AliaseeID).first; 6138 auto *AliaseeSummary = TheIndex->getGlobalValueSummary(AliaseeGUID); 6139 if (!AliaseeSummary) 6140 return error("Alias expects aliasee summary to be parsed"); 6141 AS->setAliasee(AliaseeSummary); 6142 6143 auto GUID = getGUIDFromValueId(ValueID); 6144 AS->setOriginalName(GUID.second); 6145 TheIndex->addGlobalValueSummary(GUID.first, std::move(AS)); 6146 break; 6147 } 6148 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid] 6149 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 6150 unsigned ValueID = Record[0]; 6151 uint64_t RawFlags = Record[1]; 6152 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6153 std::unique_ptr<GlobalVarSummary> FS = 6154 llvm::make_unique<GlobalVarSummary>(Flags); 6155 FS->setModulePath( 6156 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 6157 for (unsigned I = 2, E = Record.size(); I != E; ++I) { 6158 unsigned RefValueId = Record[I]; 6159 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6160 FS->addRefEdge(RefGUID); 6161 } 6162 auto GUID = getGUIDFromValueId(ValueID); 6163 FS->setOriginalName(GUID.second); 6164 TheIndex->addGlobalValueSummary(GUID.first, std::move(FS)); 6165 break; 6166 } 6167 // FS_COMBINED: [modid, flags, instcount, numrefs, numrefs x valueid, 6168 // n x (valueid, callsitecount)] 6169 // FS_COMBINED_PROFILE: [modid, flags, instcount, numrefs, 6170 // numrefs x valueid, 6171 // n x (valueid, callsitecount, profilecount)] 6172 case bitc::FS_COMBINED: 6173 case bitc::FS_COMBINED_PROFILE: { 6174 uint64_t ModuleId = Record[0]; 6175 uint64_t RawFlags = Record[1]; 6176 unsigned InstCount = Record[2]; 6177 unsigned NumRefs = Record[3]; 6178 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6179 std::unique_ptr<FunctionSummary> FS = 6180 llvm::make_unique<FunctionSummary>(Flags, InstCount); 6181 LastSeenSummary = FS.get(); 6182 FS->setModulePath(ModuleIdMap[ModuleId]); 6183 static int RefListStartIndex = 4; 6184 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6185 assert(Record.size() >= RefListStartIndex + NumRefs && 6186 "Record size inconsistent with number of references"); 6187 for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) { 6188 unsigned RefValueId = Record[I]; 6189 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6190 FS->addRefEdge(RefGUID); 6191 } 6192 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6193 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 6194 ++I) { 6195 unsigned CalleeValueId = Record[I]; 6196 unsigned CallsiteCount = Record[++I]; 6197 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 6198 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId).first; 6199 FS->addCallGraphEdge(CalleeGUID, 6200 CalleeInfo(CallsiteCount, ProfileCount)); 6201 } 6202 GlobalValue::GUID GUID = getGUIDFromOffset(CurRecordBit); 6203 OffsetToSummaryMap[CurRecordBit] = FS.get(); 6204 TheIndex->addGlobalValueSummary(GUID, std::move(FS)); 6205 Combined = true; 6206 break; 6207 } 6208 // FS_COMBINED_ALIAS: [modid, flags, offset] 6209 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6210 // they expect all aliasee summaries to be available. 6211 case bitc::FS_COMBINED_ALIAS: { 6212 uint64_t ModuleId = Record[0]; 6213 uint64_t RawFlags = Record[1]; 6214 uint64_t AliaseeSummaryOffset = Record[2]; 6215 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6216 std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags); 6217 LastSeenSummary = AS.get(); 6218 AS->setModulePath(ModuleIdMap[ModuleId]); 6219 6220 auto *AliaseeSummary = OffsetToSummaryMap[AliaseeSummaryOffset]; 6221 if (!AliaseeSummary) 6222 return error("Alias expects aliasee summary to be parsed"); 6223 AS->setAliasee(AliaseeSummary); 6224 6225 GlobalValue::GUID GUID = getGUIDFromOffset(CurRecordBit); 6226 TheIndex->addGlobalValueSummary(GUID, std::move(AS)); 6227 Combined = true; 6228 break; 6229 } 6230 // FS_COMBINED_GLOBALVAR_INIT_REFS: [modid, flags, n x valueid] 6231 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6232 uint64_t ModuleId = Record[0]; 6233 uint64_t RawFlags = Record[1]; 6234 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6235 std::unique_ptr<GlobalVarSummary> FS = 6236 llvm::make_unique<GlobalVarSummary>(Flags); 6237 LastSeenSummary = FS.get(); 6238 FS->setModulePath(ModuleIdMap[ModuleId]); 6239 for (unsigned I = 2, E = Record.size(); I != E; ++I) { 6240 unsigned RefValueId = Record[I]; 6241 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6242 FS->addRefEdge(RefGUID); 6243 } 6244 GlobalValue::GUID GUID = getGUIDFromOffset(CurRecordBit); 6245 OffsetToSummaryMap[CurRecordBit] = FS.get(); 6246 TheIndex->addGlobalValueSummary(GUID, std::move(FS)); 6247 Combined = true; 6248 break; 6249 } 6250 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6251 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6252 uint64_t OriginalName = Record[0]; 6253 if (!LastSeenSummary) 6254 return error("Name attachment that does not follow a combined record"); 6255 LastSeenSummary->setOriginalName(OriginalName); 6256 // Reset the LastSeenSummary 6257 LastSeenSummary = nullptr; 6258 } 6259 } 6260 } 6261 llvm_unreachable("Exit infinite loop"); 6262 } 6263 6264 // Parse the module string table block into the Index. 6265 // This populates the ModulePathStringTable map in the index. 6266 std::error_code ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6267 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6268 return error("Invalid record"); 6269 6270 SmallVector<uint64_t, 64> Record; 6271 6272 SmallString<128> ModulePath; 6273 ModulePathStringTableTy::iterator LastSeenModulePath; 6274 while (1) { 6275 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6276 6277 switch (Entry.Kind) { 6278 case BitstreamEntry::SubBlock: // Handled for us already. 6279 case BitstreamEntry::Error: 6280 return error("Malformed block"); 6281 case BitstreamEntry::EndBlock: 6282 return std::error_code(); 6283 case BitstreamEntry::Record: 6284 // The interesting case. 6285 break; 6286 } 6287 6288 Record.clear(); 6289 switch (Stream.readRecord(Entry.ID, Record)) { 6290 default: // Default behavior: ignore. 6291 break; 6292 case bitc::MST_CODE_ENTRY: { 6293 // MST_ENTRY: [modid, namechar x N] 6294 uint64_t ModuleId = Record[0]; 6295 6296 if (convertToString(Record, 1, ModulePath)) 6297 return error("Invalid record"); 6298 6299 LastSeenModulePath = TheIndex->addModulePath(ModulePath, ModuleId); 6300 ModuleIdMap[ModuleId] = LastSeenModulePath->first(); 6301 6302 ModulePath.clear(); 6303 break; 6304 } 6305 /// MST_CODE_HASH: [5*i32] 6306 case bitc::MST_CODE_HASH: { 6307 if (Record.size() != 5) 6308 return error("Invalid hash length " + Twine(Record.size()).str()); 6309 if (LastSeenModulePath == TheIndex->modulePaths().end()) 6310 return error("Invalid hash that does not follow a module path"); 6311 int Pos = 0; 6312 for (auto &Val : Record) { 6313 assert(!(Val >> 32) && "Unexpected high bits set"); 6314 LastSeenModulePath->second.second[Pos++] = Val; 6315 } 6316 // Reset LastSeenModulePath to avoid overriding the hash unexpectedly. 6317 LastSeenModulePath = TheIndex->modulePaths().end(); 6318 break; 6319 } 6320 } 6321 } 6322 llvm_unreachable("Exit infinite loop"); 6323 } 6324 6325 // Parse the function info index from the bitcode streamer into the given index. 6326 std::error_code ModuleSummaryIndexBitcodeReader::parseSummaryIndexInto( 6327 std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I) { 6328 TheIndex = I; 6329 6330 if (std::error_code EC = initStream(std::move(Streamer))) 6331 return EC; 6332 6333 // Sniff for the signature. 6334 if (!hasValidBitcodeHeader(Stream)) 6335 return error("Invalid bitcode signature"); 6336 6337 // We expect a number of well-defined blocks, though we don't necessarily 6338 // need to understand them all. 6339 while (1) { 6340 if (Stream.AtEndOfStream()) { 6341 // We didn't really read a proper Module block. 6342 return error("Malformed block"); 6343 } 6344 6345 BitstreamEntry Entry = 6346 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 6347 6348 if (Entry.Kind != BitstreamEntry::SubBlock) 6349 return error("Malformed block"); 6350 6351 // If we see a MODULE_BLOCK, parse it to find the blocks needed for 6352 // building the function summary index. 6353 if (Entry.ID == bitc::MODULE_BLOCK_ID) 6354 return parseModule(); 6355 6356 if (Stream.SkipBlock()) 6357 return error("Invalid record"); 6358 } 6359 } 6360 6361 // Parse the summary information at the given offset in the buffer into 6362 // the index. Used to support lazy parsing of summaries from the 6363 // combined index during importing. 6364 // TODO: This function is not yet complete as it won't have a consumer 6365 // until ThinLTO function importing is added. 6366 std::error_code ModuleSummaryIndexBitcodeReader::parseGlobalValueSummary( 6367 std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I, 6368 size_t SummaryOffset) { 6369 TheIndex = I; 6370 6371 if (std::error_code EC = initStream(std::move(Streamer))) 6372 return EC; 6373 6374 // Sniff for the signature. 6375 if (!hasValidBitcodeHeader(Stream)) 6376 return error("Invalid bitcode signature"); 6377 6378 Stream.JumpToBit(SummaryOffset); 6379 6380 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6381 6382 switch (Entry.Kind) { 6383 default: 6384 return error("Malformed block"); 6385 case BitstreamEntry::Record: 6386 // The expected case. 6387 break; 6388 } 6389 6390 // TODO: Read a record. This interface will be completed when ThinLTO 6391 // importing is added so that it can be tested. 6392 SmallVector<uint64_t, 64> Record; 6393 switch (Stream.readRecord(Entry.ID, Record)) { 6394 case bitc::FS_COMBINED: 6395 case bitc::FS_COMBINED_PROFILE: 6396 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: 6397 default: 6398 return error("Invalid record"); 6399 } 6400 6401 return std::error_code(); 6402 } 6403 6404 std::error_code ModuleSummaryIndexBitcodeReader::initStream( 6405 std::unique_ptr<DataStreamer> Streamer) { 6406 if (Streamer) 6407 return initLazyStream(std::move(Streamer)); 6408 return initStreamFromBuffer(); 6409 } 6410 6411 std::error_code ModuleSummaryIndexBitcodeReader::initStreamFromBuffer() { 6412 const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart(); 6413 const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize(); 6414 6415 if (Buffer->getBufferSize() & 3) 6416 return error("Invalid bitcode signature"); 6417 6418 // If we have a wrapper header, parse it and ignore the non-bc file contents. 6419 // The magic number is 0x0B17C0DE stored in little endian. 6420 if (isBitcodeWrapper(BufPtr, BufEnd)) 6421 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 6422 return error("Invalid bitcode wrapper header"); 6423 6424 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 6425 Stream.init(&*StreamFile); 6426 6427 return std::error_code(); 6428 } 6429 6430 std::error_code ModuleSummaryIndexBitcodeReader::initLazyStream( 6431 std::unique_ptr<DataStreamer> Streamer) { 6432 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 6433 // see it. 6434 auto OwnedBytes = 6435 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 6436 StreamingMemoryObject &Bytes = *OwnedBytes; 6437 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 6438 Stream.init(&*StreamFile); 6439 6440 unsigned char buf[16]; 6441 if (Bytes.readBytes(buf, 16, 0) != 16) 6442 return error("Invalid bitcode signature"); 6443 6444 if (!isBitcode(buf, buf + 16)) 6445 return error("Invalid bitcode signature"); 6446 6447 if (isBitcodeWrapper(buf, buf + 4)) { 6448 const unsigned char *bitcodeStart = buf; 6449 const unsigned char *bitcodeEnd = buf + 16; 6450 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 6451 Bytes.dropLeadingBytes(bitcodeStart - buf); 6452 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 6453 } 6454 return std::error_code(); 6455 } 6456 6457 namespace { 6458 class BitcodeErrorCategoryType : public std::error_category { 6459 const char *name() const LLVM_NOEXCEPT override { 6460 return "llvm.bitcode"; 6461 } 6462 std::string message(int IE) const override { 6463 BitcodeError E = static_cast<BitcodeError>(IE); 6464 switch (E) { 6465 case BitcodeError::InvalidBitcodeSignature: 6466 return "Invalid bitcode signature"; 6467 case BitcodeError::CorruptedBitcode: 6468 return "Corrupted bitcode"; 6469 } 6470 llvm_unreachable("Unknown error type!"); 6471 } 6472 }; 6473 } // end anonymous namespace 6474 6475 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6476 6477 const std::error_category &llvm::BitcodeErrorCategory() { 6478 return *ErrorCategory; 6479 } 6480 6481 //===----------------------------------------------------------------------===// 6482 // External interface 6483 //===----------------------------------------------------------------------===// 6484 6485 static ErrorOr<std::unique_ptr<Module>> 6486 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name, 6487 BitcodeReader *R, LLVMContext &Context, 6488 bool MaterializeAll, bool ShouldLazyLoadMetadata) { 6489 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 6490 M->setMaterializer(R); 6491 6492 auto cleanupOnError = [&](std::error_code EC) { 6493 R->releaseBuffer(); // Never take ownership on error. 6494 return EC; 6495 }; 6496 6497 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6498 if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(), 6499 ShouldLazyLoadMetadata)) 6500 return cleanupOnError(EC); 6501 6502 if (MaterializeAll) { 6503 // Read in the entire module, and destroy the BitcodeReader. 6504 if (std::error_code EC = M->materializeAll()) 6505 return cleanupOnError(EC); 6506 } else { 6507 // Resolve forward references from blockaddresses. 6508 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 6509 return cleanupOnError(EC); 6510 } 6511 return std::move(M); 6512 } 6513 6514 /// \brief Get a lazy one-at-time loading module from bitcode. 6515 /// 6516 /// This isn't always used in a lazy context. In particular, it's also used by 6517 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 6518 /// in forward-referenced functions from block address references. 6519 /// 6520 /// \param[in] MaterializeAll Set to \c true if we should materialize 6521 /// everything. 6522 static ErrorOr<std::unique_ptr<Module>> 6523 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 6524 LLVMContext &Context, bool MaterializeAll, 6525 bool ShouldLazyLoadMetadata = false) { 6526 BitcodeReader *R = new BitcodeReader(Buffer.get(), Context); 6527 6528 ErrorOr<std::unique_ptr<Module>> Ret = 6529 getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context, 6530 MaterializeAll, ShouldLazyLoadMetadata); 6531 if (!Ret) 6532 return Ret; 6533 6534 Buffer.release(); // The BitcodeReader owns it now. 6535 return Ret; 6536 } 6537 6538 ErrorOr<std::unique_ptr<Module>> 6539 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 6540 LLVMContext &Context, bool ShouldLazyLoadMetadata) { 6541 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 6542 ShouldLazyLoadMetadata); 6543 } 6544 6545 ErrorOr<std::unique_ptr<Module>> 6546 llvm::getStreamedBitcodeModule(StringRef Name, 6547 std::unique_ptr<DataStreamer> Streamer, 6548 LLVMContext &Context) { 6549 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 6550 BitcodeReader *R = new BitcodeReader(Context); 6551 6552 return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false, 6553 false); 6554 } 6555 6556 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 6557 LLVMContext &Context) { 6558 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6559 return getLazyBitcodeModuleImpl(std::move(Buf), Context, true); 6560 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6561 // written. We must defer until the Module has been fully materialized. 6562 } 6563 6564 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, 6565 LLVMContext &Context) { 6566 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6567 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context); 6568 ErrorOr<std::string> Triple = R->parseTriple(); 6569 if (Triple.getError()) 6570 return ""; 6571 return Triple.get(); 6572 } 6573 6574 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer, 6575 LLVMContext &Context) { 6576 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6577 BitcodeReader R(Buf.release(), Context); 6578 ErrorOr<std::string> ProducerString = R.parseIdentificationBlock(); 6579 if (ProducerString.getError()) 6580 return ""; 6581 return ProducerString.get(); 6582 } 6583 6584 // Parse the specified bitcode buffer, returning the function info index. 6585 ErrorOr<std::unique_ptr<ModuleSummaryIndex>> 6586 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer, 6587 DiagnosticHandlerFunction DiagnosticHandler) { 6588 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6589 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler); 6590 6591 auto Index = llvm::make_unique<ModuleSummaryIndex>(); 6592 6593 auto cleanupOnError = [&](std::error_code EC) { 6594 R.releaseBuffer(); // Never take ownership on error. 6595 return EC; 6596 }; 6597 6598 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get())) 6599 return cleanupOnError(EC); 6600 6601 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6602 return std::move(Index); 6603 } 6604 6605 // Check if the given bitcode buffer contains a global value summary block. 6606 bool llvm::hasGlobalValueSummary(MemoryBufferRef Buffer, 6607 DiagnosticHandlerFunction DiagnosticHandler) { 6608 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6609 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, true); 6610 6611 auto cleanupOnError = [&](std::error_code EC) { 6612 R.releaseBuffer(); // Never take ownership on error. 6613 return false; 6614 }; 6615 6616 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr)) 6617 return cleanupOnError(EC); 6618 6619 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6620 return R.foundGlobalValSummary(); 6621 } 6622