1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Bitcode/BitcodeCommon.h" 24 #include "llvm/Bitcode/LLVMBitCodes.h" 25 #include "llvm/Bitstream/BitstreamReader.h" 26 #include "llvm/Config/llvm-config.h" 27 #include "llvm/IR/Argument.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/AutoUpgrade.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Comdat.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalIndirectSymbol.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/ModuleSummaryIndex.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/Verifier.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/ErrorOr.h" 70 #include "llvm/Support/ManagedStatic.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <deque> 79 #include <map> 80 #include <memory> 81 #include <set> 82 #include <string> 83 #include <system_error> 84 #include <tuple> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 90 static cl::opt<bool> PrintSummaryGUIDs( 91 "print-summary-global-ids", cl::init(false), cl::Hidden, 92 cl::desc( 93 "Print the global id for each value when reading the module summary")); 94 95 namespace { 96 97 enum { 98 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 99 }; 100 101 } // end anonymous namespace 102 103 static Error error(const Twine &Message) { 104 return make_error<StringError>( 105 Message, make_error_code(BitcodeError::CorruptedBitcode)); 106 } 107 108 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 109 if (!Stream.canSkipToPos(4)) 110 return createStringError(std::errc::illegal_byte_sequence, 111 "file too small to contain bitcode header"); 112 for (unsigned C : {'B', 'C'}) 113 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 114 if (Res.get() != C) 115 return createStringError(std::errc::illegal_byte_sequence, 116 "file doesn't start with bitcode header"); 117 } else 118 return Res.takeError(); 119 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 120 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 121 if (Res.get() != C) 122 return createStringError(std::errc::illegal_byte_sequence, 123 "file doesn't start with bitcode header"); 124 } else 125 return Res.takeError(); 126 return Error::success(); 127 } 128 129 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 130 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 131 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 132 133 if (Buffer.getBufferSize() & 3) 134 return error("Invalid bitcode signature"); 135 136 // If we have a wrapper header, parse it and ignore the non-bc file contents. 137 // The magic number is 0x0B17C0DE stored in little endian. 138 if (isBitcodeWrapper(BufPtr, BufEnd)) 139 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 140 return error("Invalid bitcode wrapper header"); 141 142 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 143 if (Error Err = hasInvalidBitcodeHeader(Stream)) 144 return std::move(Err); 145 146 return std::move(Stream); 147 } 148 149 /// Convert a string from a record into an std::string, return true on failure. 150 template <typename StrTy> 151 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 152 StrTy &Result) { 153 if (Idx > Record.size()) 154 return true; 155 156 Result.append(Record.begin() + Idx, Record.end()); 157 return false; 158 } 159 160 // Strip all the TBAA attachment for the module. 161 static void stripTBAA(Module *M) { 162 for (auto &F : *M) { 163 if (F.isMaterializable()) 164 continue; 165 for (auto &I : instructions(F)) 166 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 167 } 168 } 169 170 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 171 /// "epoch" encoded in the bitcode, and return the producer name if any. 172 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 173 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 174 return std::move(Err); 175 176 // Read all the records. 177 SmallVector<uint64_t, 64> Record; 178 179 std::string ProducerIdentification; 180 181 while (true) { 182 BitstreamEntry Entry; 183 if (Expected<BitstreamEntry> Res = Stream.advance()) 184 Entry = Res.get(); 185 else 186 return Res.takeError(); 187 188 switch (Entry.Kind) { 189 default: 190 case BitstreamEntry::Error: 191 return error("Malformed block"); 192 case BitstreamEntry::EndBlock: 193 return ProducerIdentification; 194 case BitstreamEntry::Record: 195 // The interesting case. 196 break; 197 } 198 199 // Read a record. 200 Record.clear(); 201 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 202 if (!MaybeBitCode) 203 return MaybeBitCode.takeError(); 204 switch (MaybeBitCode.get()) { 205 default: // Default behavior: reject 206 return error("Invalid value"); 207 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 208 convertToString(Record, 0, ProducerIdentification); 209 break; 210 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 211 unsigned epoch = (unsigned)Record[0]; 212 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 213 return error( 214 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 215 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 216 } 217 } 218 } 219 } 220 } 221 222 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 223 // We expect a number of well-defined blocks, though we don't necessarily 224 // need to understand them all. 225 while (true) { 226 if (Stream.AtEndOfStream()) 227 return ""; 228 229 BitstreamEntry Entry; 230 if (Expected<BitstreamEntry> Res = Stream.advance()) 231 Entry = std::move(Res.get()); 232 else 233 return Res.takeError(); 234 235 switch (Entry.Kind) { 236 case BitstreamEntry::EndBlock: 237 case BitstreamEntry::Error: 238 return error("Malformed block"); 239 240 case BitstreamEntry::SubBlock: 241 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 242 return readIdentificationBlock(Stream); 243 244 // Ignore other sub-blocks. 245 if (Error Err = Stream.SkipBlock()) 246 return std::move(Err); 247 continue; 248 case BitstreamEntry::Record: 249 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 250 continue; 251 else 252 return Skipped.takeError(); 253 } 254 } 255 } 256 257 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 258 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 259 return std::move(Err); 260 261 SmallVector<uint64_t, 64> Record; 262 // Read all the records for this module. 263 264 while (true) { 265 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 266 if (!MaybeEntry) 267 return MaybeEntry.takeError(); 268 BitstreamEntry Entry = MaybeEntry.get(); 269 270 switch (Entry.Kind) { 271 case BitstreamEntry::SubBlock: // Handled for us already. 272 case BitstreamEntry::Error: 273 return error("Malformed block"); 274 case BitstreamEntry::EndBlock: 275 return false; 276 case BitstreamEntry::Record: 277 // The interesting case. 278 break; 279 } 280 281 // Read a record. 282 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 283 if (!MaybeRecord) 284 return MaybeRecord.takeError(); 285 switch (MaybeRecord.get()) { 286 default: 287 break; // Default behavior, ignore unknown content. 288 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 289 std::string S; 290 if (convertToString(Record, 0, S)) 291 return error("Invalid record"); 292 // Check for the i386 and other (x86_64, ARM) conventions 293 if (S.find("__DATA,__objc_catlist") != std::string::npos || 294 S.find("__OBJC,__category") != std::string::npos) 295 return true; 296 break; 297 } 298 } 299 Record.clear(); 300 } 301 llvm_unreachable("Exit infinite loop"); 302 } 303 304 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 305 // We expect a number of well-defined blocks, though we don't necessarily 306 // need to understand them all. 307 while (true) { 308 BitstreamEntry Entry; 309 if (Expected<BitstreamEntry> Res = Stream.advance()) 310 Entry = std::move(Res.get()); 311 else 312 return Res.takeError(); 313 314 switch (Entry.Kind) { 315 case BitstreamEntry::Error: 316 return error("Malformed block"); 317 case BitstreamEntry::EndBlock: 318 return false; 319 320 case BitstreamEntry::SubBlock: 321 if (Entry.ID == bitc::MODULE_BLOCK_ID) 322 return hasObjCCategoryInModule(Stream); 323 324 // Ignore other sub-blocks. 325 if (Error Err = Stream.SkipBlock()) 326 return std::move(Err); 327 continue; 328 329 case BitstreamEntry::Record: 330 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 331 continue; 332 else 333 return Skipped.takeError(); 334 } 335 } 336 } 337 338 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 339 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 340 return std::move(Err); 341 342 SmallVector<uint64_t, 64> Record; 343 344 std::string Triple; 345 346 // Read all the records for this module. 347 while (true) { 348 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 349 if (!MaybeEntry) 350 return MaybeEntry.takeError(); 351 BitstreamEntry Entry = MaybeEntry.get(); 352 353 switch (Entry.Kind) { 354 case BitstreamEntry::SubBlock: // Handled for us already. 355 case BitstreamEntry::Error: 356 return error("Malformed block"); 357 case BitstreamEntry::EndBlock: 358 return Triple; 359 case BitstreamEntry::Record: 360 // The interesting case. 361 break; 362 } 363 364 // Read a record. 365 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 366 if (!MaybeRecord) 367 return MaybeRecord.takeError(); 368 switch (MaybeRecord.get()) { 369 default: break; // Default behavior, ignore unknown content. 370 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 371 std::string S; 372 if (convertToString(Record, 0, S)) 373 return error("Invalid record"); 374 Triple = S; 375 break; 376 } 377 } 378 Record.clear(); 379 } 380 llvm_unreachable("Exit infinite loop"); 381 } 382 383 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 384 // We expect a number of well-defined blocks, though we don't necessarily 385 // need to understand them all. 386 while (true) { 387 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 388 if (!MaybeEntry) 389 return MaybeEntry.takeError(); 390 BitstreamEntry Entry = MaybeEntry.get(); 391 392 switch (Entry.Kind) { 393 case BitstreamEntry::Error: 394 return error("Malformed block"); 395 case BitstreamEntry::EndBlock: 396 return ""; 397 398 case BitstreamEntry::SubBlock: 399 if (Entry.ID == bitc::MODULE_BLOCK_ID) 400 return readModuleTriple(Stream); 401 402 // Ignore other sub-blocks. 403 if (Error Err = Stream.SkipBlock()) 404 return std::move(Err); 405 continue; 406 407 case BitstreamEntry::Record: 408 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 409 continue; 410 else 411 return Skipped.takeError(); 412 } 413 } 414 } 415 416 namespace { 417 418 class BitcodeReaderBase { 419 protected: 420 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 421 : Stream(std::move(Stream)), Strtab(Strtab) { 422 this->Stream.setBlockInfo(&BlockInfo); 423 } 424 425 BitstreamBlockInfo BlockInfo; 426 BitstreamCursor Stream; 427 StringRef Strtab; 428 429 /// In version 2 of the bitcode we store names of global values and comdats in 430 /// a string table rather than in the VST. 431 bool UseStrtab = false; 432 433 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 434 435 /// If this module uses a string table, pop the reference to the string table 436 /// and return the referenced string and the rest of the record. Otherwise 437 /// just return the record itself. 438 std::pair<StringRef, ArrayRef<uint64_t>> 439 readNameFromStrtab(ArrayRef<uint64_t> Record); 440 441 bool readBlockInfo(); 442 443 // Contains an arbitrary and optional string identifying the bitcode producer 444 std::string ProducerIdentification; 445 446 Error error(const Twine &Message); 447 }; 448 449 } // end anonymous namespace 450 451 Error BitcodeReaderBase::error(const Twine &Message) { 452 std::string FullMsg = Message.str(); 453 if (!ProducerIdentification.empty()) 454 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 455 LLVM_VERSION_STRING "')"; 456 return ::error(FullMsg); 457 } 458 459 Expected<unsigned> 460 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 461 if (Record.empty()) 462 return error("Invalid record"); 463 unsigned ModuleVersion = Record[0]; 464 if (ModuleVersion > 2) 465 return error("Invalid value"); 466 UseStrtab = ModuleVersion >= 2; 467 return ModuleVersion; 468 } 469 470 std::pair<StringRef, ArrayRef<uint64_t>> 471 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 472 if (!UseStrtab) 473 return {"", Record}; 474 // Invalid reference. Let the caller complain about the record being empty. 475 if (Record[0] + Record[1] > Strtab.size()) 476 return {"", {}}; 477 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 478 } 479 480 namespace { 481 482 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 483 LLVMContext &Context; 484 Module *TheModule = nullptr; 485 // Next offset to start scanning for lazy parsing of function bodies. 486 uint64_t NextUnreadBit = 0; 487 // Last function offset found in the VST. 488 uint64_t LastFunctionBlockBit = 0; 489 bool SeenValueSymbolTable = false; 490 uint64_t VSTOffset = 0; 491 492 std::vector<std::string> SectionTable; 493 std::vector<std::string> GCTable; 494 495 std::vector<Type*> TypeList; 496 DenseMap<Function *, FunctionType *> FunctionTypes; 497 BitcodeReaderValueList ValueList; 498 Optional<MetadataLoader> MDLoader; 499 std::vector<Comdat *> ComdatList; 500 SmallVector<Instruction *, 64> InstructionList; 501 502 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 503 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits; 504 std::vector<std::pair<Function *, unsigned>> FunctionPrefixes; 505 std::vector<std::pair<Function *, unsigned>> FunctionPrologues; 506 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns; 507 508 /// The set of attributes by index. Index zero in the file is for null, and 509 /// is thus not represented here. As such all indices are off by one. 510 std::vector<AttributeList> MAttributes; 511 512 /// The set of attribute groups. 513 std::map<unsigned, AttributeList> MAttributeGroups; 514 515 /// While parsing a function body, this is a list of the basic blocks for the 516 /// function. 517 std::vector<BasicBlock*> FunctionBBs; 518 519 // When reading the module header, this list is populated with functions that 520 // have bodies later in the file. 521 std::vector<Function*> FunctionsWithBodies; 522 523 // When intrinsic functions are encountered which require upgrading they are 524 // stored here with their replacement function. 525 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 526 UpdatedIntrinsicMap UpgradedIntrinsics; 527 // Intrinsics which were remangled because of types rename 528 UpdatedIntrinsicMap RemangledIntrinsics; 529 530 // Several operations happen after the module header has been read, but 531 // before function bodies are processed. This keeps track of whether 532 // we've done this yet. 533 bool SeenFirstFunctionBody = false; 534 535 /// When function bodies are initially scanned, this map contains info about 536 /// where to find deferred function body in the stream. 537 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 538 539 /// When Metadata block is initially scanned when parsing the module, we may 540 /// choose to defer parsing of the metadata. This vector contains info about 541 /// which Metadata blocks are deferred. 542 std::vector<uint64_t> DeferredMetadataInfo; 543 544 /// These are basic blocks forward-referenced by block addresses. They are 545 /// inserted lazily into functions when they're loaded. The basic block ID is 546 /// its index into the vector. 547 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 548 std::deque<Function *> BasicBlockFwdRefQueue; 549 550 /// Indicates that we are using a new encoding for instruction operands where 551 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 552 /// instruction number, for a more compact encoding. Some instruction 553 /// operands are not relative to the instruction ID: basic block numbers, and 554 /// types. Once the old style function blocks have been phased out, we would 555 /// not need this flag. 556 bool UseRelativeIDs = false; 557 558 /// True if all functions will be materialized, negating the need to process 559 /// (e.g.) blockaddress forward references. 560 bool WillMaterializeAllForwardRefs = false; 561 562 bool StripDebugInfo = false; 563 TBAAVerifier TBAAVerifyHelper; 564 565 std::vector<std::string> BundleTags; 566 SmallVector<SyncScope::ID, 8> SSIDs; 567 568 public: 569 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 570 StringRef ProducerIdentification, LLVMContext &Context); 571 572 Error materializeForwardReferencedFunctions(); 573 574 Error materialize(GlobalValue *GV) override; 575 Error materializeModule() override; 576 std::vector<StructType *> getIdentifiedStructTypes() const override; 577 578 /// Main interface to parsing a bitcode buffer. 579 /// \returns true if an error occurred. 580 Error parseBitcodeInto( 581 Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false, 582 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 583 584 static uint64_t decodeSignRotatedValue(uint64_t V); 585 586 /// Materialize any deferred Metadata block. 587 Error materializeMetadata() override; 588 589 void setStripDebugInfo() override; 590 591 private: 592 std::vector<StructType *> IdentifiedStructTypes; 593 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 594 StructType *createIdentifiedStructType(LLVMContext &Context); 595 596 /// Map all pointer types within \param Ty to the opaque pointer 597 /// type in the same address space if opaque pointers are being 598 /// used, otherwise nop. This converts a bitcode-reader internal 599 /// type into one suitable for use in a Value. 600 Type *flattenPointerTypes(Type *Ty) { 601 return Ty; 602 } 603 604 /// Given a fully structured pointer type (i.e. not opaque), return 605 /// the flattened form of its element, suitable for use in a Value. 606 Type *getPointerElementFlatType(Type *Ty) { 607 return flattenPointerTypes(cast<PointerType>(Ty)->getElementType()); 608 } 609 610 /// Given a fully structured pointer type, get its element type in 611 /// both fully structured form, and flattened form suitable for use 612 /// in a Value. 613 std::pair<Type *, Type *> getPointerElementTypes(Type *FullTy) { 614 Type *ElTy = cast<PointerType>(FullTy)->getElementType(); 615 return std::make_pair(ElTy, flattenPointerTypes(ElTy)); 616 } 617 618 /// Return the flattened type (suitable for use in a Value) 619 /// specified by the given \param ID . 620 Type *getTypeByID(unsigned ID) { 621 return flattenPointerTypes(getFullyStructuredTypeByID(ID)); 622 } 623 624 /// Return the fully structured (bitcode-reader internal) type 625 /// corresponding to the given \param ID . 626 Type *getFullyStructuredTypeByID(unsigned ID); 627 628 Value *getFnValueByID(unsigned ID, Type *Ty, Type **FullTy = nullptr) { 629 if (Ty && Ty->isMetadataTy()) 630 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 631 return ValueList.getValueFwdRef(ID, Ty, FullTy); 632 } 633 634 Metadata *getFnMetadataByID(unsigned ID) { 635 return MDLoader->getMetadataFwdRefOrLoad(ID); 636 } 637 638 BasicBlock *getBasicBlock(unsigned ID) const { 639 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 640 return FunctionBBs[ID]; 641 } 642 643 AttributeList getAttributes(unsigned i) const { 644 if (i-1 < MAttributes.size()) 645 return MAttributes[i-1]; 646 return AttributeList(); 647 } 648 649 /// Read a value/type pair out of the specified record from slot 'Slot'. 650 /// Increment Slot past the number of slots used in the record. Return true on 651 /// failure. 652 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 653 unsigned InstNum, Value *&ResVal, 654 Type **FullTy = nullptr) { 655 if (Slot == Record.size()) return true; 656 unsigned ValNo = (unsigned)Record[Slot++]; 657 // Adjust the ValNo, if it was encoded relative to the InstNum. 658 if (UseRelativeIDs) 659 ValNo = InstNum - ValNo; 660 if (ValNo < InstNum) { 661 // If this is not a forward reference, just return the value we already 662 // have. 663 ResVal = getFnValueByID(ValNo, nullptr, FullTy); 664 return ResVal == nullptr; 665 } 666 if (Slot == Record.size()) 667 return true; 668 669 unsigned TypeNo = (unsigned)Record[Slot++]; 670 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 671 if (FullTy) 672 *FullTy = getFullyStructuredTypeByID(TypeNo); 673 return ResVal == nullptr; 674 } 675 676 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 677 /// past the number of slots used by the value in the record. Return true if 678 /// there is an error. 679 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 680 unsigned InstNum, Type *Ty, Value *&ResVal) { 681 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 682 return true; 683 // All values currently take a single record slot. 684 ++Slot; 685 return false; 686 } 687 688 /// Like popValue, but does not increment the Slot number. 689 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 690 unsigned InstNum, Type *Ty, Value *&ResVal) { 691 ResVal = getValue(Record, Slot, InstNum, Ty); 692 return ResVal == nullptr; 693 } 694 695 /// Version of getValue that returns ResVal directly, or 0 if there is an 696 /// error. 697 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 698 unsigned InstNum, Type *Ty) { 699 if (Slot == Record.size()) return nullptr; 700 unsigned ValNo = (unsigned)Record[Slot]; 701 // Adjust the ValNo, if it was encoded relative to the InstNum. 702 if (UseRelativeIDs) 703 ValNo = InstNum - ValNo; 704 return getFnValueByID(ValNo, Ty); 705 } 706 707 /// Like getValue, but decodes signed VBRs. 708 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 709 unsigned InstNum, Type *Ty) { 710 if (Slot == Record.size()) return nullptr; 711 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 712 // Adjust the ValNo, if it was encoded relative to the InstNum. 713 if (UseRelativeIDs) 714 ValNo = InstNum - ValNo; 715 return getFnValueByID(ValNo, Ty); 716 } 717 718 /// Upgrades old-style typeless byval or sret attributes by adding the 719 /// corresponding argument's pointee type. 720 void propagateByValSRetTypes(CallBase *CB, ArrayRef<Type *> ArgsFullTys); 721 722 /// Converts alignment exponent (i.e. power of two (or zero)) to the 723 /// corresponding alignment to use. If alignment is too large, returns 724 /// a corresponding error code. 725 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 726 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 727 Error parseModule( 728 uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 729 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 730 731 Error parseComdatRecord(ArrayRef<uint64_t> Record); 732 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 733 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 734 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 735 ArrayRef<uint64_t> Record); 736 737 Error parseAttributeBlock(); 738 Error parseAttributeGroupBlock(); 739 Error parseTypeTable(); 740 Error parseTypeTableBody(); 741 Error parseOperandBundleTags(); 742 Error parseSyncScopeNames(); 743 744 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 745 unsigned NameIndex, Triple &TT); 746 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 747 ArrayRef<uint64_t> Record); 748 Error parseValueSymbolTable(uint64_t Offset = 0); 749 Error parseGlobalValueSymbolTable(); 750 Error parseConstants(); 751 Error rememberAndSkipFunctionBodies(); 752 Error rememberAndSkipFunctionBody(); 753 /// Save the positions of the Metadata blocks and skip parsing the blocks. 754 Error rememberAndSkipMetadata(); 755 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 756 Error parseFunctionBody(Function *F); 757 Error globalCleanup(); 758 Error resolveGlobalAndIndirectSymbolInits(); 759 Error parseUseLists(); 760 Error findFunctionInStream( 761 Function *F, 762 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 763 764 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 765 }; 766 767 /// Class to manage reading and parsing function summary index bitcode 768 /// files/sections. 769 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 770 /// The module index built during parsing. 771 ModuleSummaryIndex &TheIndex; 772 773 /// Indicates whether we have encountered a global value summary section 774 /// yet during parsing. 775 bool SeenGlobalValSummary = false; 776 777 /// Indicates whether we have already parsed the VST, used for error checking. 778 bool SeenValueSymbolTable = false; 779 780 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 781 /// Used to enable on-demand parsing of the VST. 782 uint64_t VSTOffset = 0; 783 784 // Map to save ValueId to ValueInfo association that was recorded in the 785 // ValueSymbolTable. It is used after the VST is parsed to convert 786 // call graph edges read from the function summary from referencing 787 // callees by their ValueId to using the ValueInfo instead, which is how 788 // they are recorded in the summary index being built. 789 // We save a GUID which refers to the same global as the ValueInfo, but 790 // ignoring the linkage, i.e. for values other than local linkage they are 791 // identical. 792 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 793 ValueIdToValueInfoMap; 794 795 /// Map populated during module path string table parsing, from the 796 /// module ID to a string reference owned by the index's module 797 /// path string table, used to correlate with combined index 798 /// summary records. 799 DenseMap<uint64_t, StringRef> ModuleIdMap; 800 801 /// Original source file name recorded in a bitcode record. 802 std::string SourceFileName; 803 804 /// The string identifier given to this module by the client, normally the 805 /// path to the bitcode file. 806 StringRef ModulePath; 807 808 /// For per-module summary indexes, the unique numerical identifier given to 809 /// this module by the client. 810 unsigned ModuleId; 811 812 public: 813 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 814 ModuleSummaryIndex &TheIndex, 815 StringRef ModulePath, unsigned ModuleId); 816 817 Error parseModule(); 818 819 private: 820 void setValueGUID(uint64_t ValueID, StringRef ValueName, 821 GlobalValue::LinkageTypes Linkage, 822 StringRef SourceFileName); 823 Error parseValueSymbolTable( 824 uint64_t Offset, 825 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 826 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 827 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 828 bool IsOldProfileFormat, 829 bool HasProfile, 830 bool HasRelBF); 831 Error parseEntireSummary(unsigned ID); 832 Error parseModuleStringTable(); 833 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 834 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 835 TypeIdCompatibleVtableInfo &TypeId); 836 std::vector<FunctionSummary::ParamAccess> 837 parseParamAccesses(ArrayRef<uint64_t> Record); 838 839 std::pair<ValueInfo, GlobalValue::GUID> 840 getValueInfoFromValueId(unsigned ValueId); 841 842 void addThisModule(); 843 ModuleSummaryIndex::ModuleInfo *getThisModule(); 844 }; 845 846 } // end anonymous namespace 847 848 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 849 Error Err) { 850 if (Err) { 851 std::error_code EC; 852 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 853 EC = EIB.convertToErrorCode(); 854 Ctx.emitError(EIB.message()); 855 }); 856 return EC; 857 } 858 return std::error_code(); 859 } 860 861 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 862 StringRef ProducerIdentification, 863 LLVMContext &Context) 864 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 865 ValueList(Context, Stream.SizeInBytes()) { 866 this->ProducerIdentification = std::string(ProducerIdentification); 867 } 868 869 Error BitcodeReader::materializeForwardReferencedFunctions() { 870 if (WillMaterializeAllForwardRefs) 871 return Error::success(); 872 873 // Prevent recursion. 874 WillMaterializeAllForwardRefs = true; 875 876 while (!BasicBlockFwdRefQueue.empty()) { 877 Function *F = BasicBlockFwdRefQueue.front(); 878 BasicBlockFwdRefQueue.pop_front(); 879 assert(F && "Expected valid function"); 880 if (!BasicBlockFwdRefs.count(F)) 881 // Already materialized. 882 continue; 883 884 // Check for a function that isn't materializable to prevent an infinite 885 // loop. When parsing a blockaddress stored in a global variable, there 886 // isn't a trivial way to check if a function will have a body without a 887 // linear search through FunctionsWithBodies, so just check it here. 888 if (!F->isMaterializable()) 889 return error("Never resolved function from blockaddress"); 890 891 // Try to materialize F. 892 if (Error Err = materialize(F)) 893 return Err; 894 } 895 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 896 897 // Reset state. 898 WillMaterializeAllForwardRefs = false; 899 return Error::success(); 900 } 901 902 //===----------------------------------------------------------------------===// 903 // Helper functions to implement forward reference resolution, etc. 904 //===----------------------------------------------------------------------===// 905 906 static bool hasImplicitComdat(size_t Val) { 907 switch (Val) { 908 default: 909 return false; 910 case 1: // Old WeakAnyLinkage 911 case 4: // Old LinkOnceAnyLinkage 912 case 10: // Old WeakODRLinkage 913 case 11: // Old LinkOnceODRLinkage 914 return true; 915 } 916 } 917 918 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 919 switch (Val) { 920 default: // Map unknown/new linkages to external 921 case 0: 922 return GlobalValue::ExternalLinkage; 923 case 2: 924 return GlobalValue::AppendingLinkage; 925 case 3: 926 return GlobalValue::InternalLinkage; 927 case 5: 928 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 929 case 6: 930 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 931 case 7: 932 return GlobalValue::ExternalWeakLinkage; 933 case 8: 934 return GlobalValue::CommonLinkage; 935 case 9: 936 return GlobalValue::PrivateLinkage; 937 case 12: 938 return GlobalValue::AvailableExternallyLinkage; 939 case 13: 940 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 941 case 14: 942 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 943 case 15: 944 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 945 case 1: // Old value with implicit comdat. 946 case 16: 947 return GlobalValue::WeakAnyLinkage; 948 case 10: // Old value with implicit comdat. 949 case 17: 950 return GlobalValue::WeakODRLinkage; 951 case 4: // Old value with implicit comdat. 952 case 18: 953 return GlobalValue::LinkOnceAnyLinkage; 954 case 11: // Old value with implicit comdat. 955 case 19: 956 return GlobalValue::LinkOnceODRLinkage; 957 } 958 } 959 960 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 961 FunctionSummary::FFlags Flags; 962 Flags.ReadNone = RawFlags & 0x1; 963 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 964 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 965 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 966 Flags.NoInline = (RawFlags >> 4) & 0x1; 967 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 968 return Flags; 969 } 970 971 /// Decode the flags for GlobalValue in the summary. 972 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 973 uint64_t Version) { 974 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 975 // like getDecodedLinkage() above. Any future change to the linkage enum and 976 // to getDecodedLinkage() will need to be taken into account here as above. 977 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 978 RawFlags = RawFlags >> 4; 979 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 980 // The Live flag wasn't introduced until version 3. For dead stripping 981 // to work correctly on earlier versions, we must conservatively treat all 982 // values as live. 983 bool Live = (RawFlags & 0x2) || Version < 3; 984 bool Local = (RawFlags & 0x4); 985 bool AutoHide = (RawFlags & 0x8); 986 987 return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local, AutoHide); 988 } 989 990 // Decode the flags for GlobalVariable in the summary 991 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 992 return GlobalVarSummary::GVarFlags( 993 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 994 (RawFlags & 0x4) ? true : false, 995 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 996 } 997 998 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 999 switch (Val) { 1000 default: // Map unknown visibilities to default. 1001 case 0: return GlobalValue::DefaultVisibility; 1002 case 1: return GlobalValue::HiddenVisibility; 1003 case 2: return GlobalValue::ProtectedVisibility; 1004 } 1005 } 1006 1007 static GlobalValue::DLLStorageClassTypes 1008 getDecodedDLLStorageClass(unsigned Val) { 1009 switch (Val) { 1010 default: // Map unknown values to default. 1011 case 0: return GlobalValue::DefaultStorageClass; 1012 case 1: return GlobalValue::DLLImportStorageClass; 1013 case 2: return GlobalValue::DLLExportStorageClass; 1014 } 1015 } 1016 1017 static bool getDecodedDSOLocal(unsigned Val) { 1018 switch(Val) { 1019 default: // Map unknown values to preemptable. 1020 case 0: return false; 1021 case 1: return true; 1022 } 1023 } 1024 1025 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1026 switch (Val) { 1027 case 0: return GlobalVariable::NotThreadLocal; 1028 default: // Map unknown non-zero value to general dynamic. 1029 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1030 case 2: return GlobalVariable::LocalDynamicTLSModel; 1031 case 3: return GlobalVariable::InitialExecTLSModel; 1032 case 4: return GlobalVariable::LocalExecTLSModel; 1033 } 1034 } 1035 1036 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1037 switch (Val) { 1038 default: // Map unknown to UnnamedAddr::None. 1039 case 0: return GlobalVariable::UnnamedAddr::None; 1040 case 1: return GlobalVariable::UnnamedAddr::Global; 1041 case 2: return GlobalVariable::UnnamedAddr::Local; 1042 } 1043 } 1044 1045 static int getDecodedCastOpcode(unsigned Val) { 1046 switch (Val) { 1047 default: return -1; 1048 case bitc::CAST_TRUNC : return Instruction::Trunc; 1049 case bitc::CAST_ZEXT : return Instruction::ZExt; 1050 case bitc::CAST_SEXT : return Instruction::SExt; 1051 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1052 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1053 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1054 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1055 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1056 case bitc::CAST_FPEXT : return Instruction::FPExt; 1057 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1058 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1059 case bitc::CAST_BITCAST : return Instruction::BitCast; 1060 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1061 } 1062 } 1063 1064 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1065 bool IsFP = Ty->isFPOrFPVectorTy(); 1066 // UnOps are only valid for int/fp or vector of int/fp types 1067 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1068 return -1; 1069 1070 switch (Val) { 1071 default: 1072 return -1; 1073 case bitc::UNOP_FNEG: 1074 return IsFP ? Instruction::FNeg : -1; 1075 } 1076 } 1077 1078 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1079 bool IsFP = Ty->isFPOrFPVectorTy(); 1080 // BinOps are only valid for int/fp or vector of int/fp types 1081 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1082 return -1; 1083 1084 switch (Val) { 1085 default: 1086 return -1; 1087 case bitc::BINOP_ADD: 1088 return IsFP ? Instruction::FAdd : Instruction::Add; 1089 case bitc::BINOP_SUB: 1090 return IsFP ? Instruction::FSub : Instruction::Sub; 1091 case bitc::BINOP_MUL: 1092 return IsFP ? Instruction::FMul : Instruction::Mul; 1093 case bitc::BINOP_UDIV: 1094 return IsFP ? -1 : Instruction::UDiv; 1095 case bitc::BINOP_SDIV: 1096 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1097 case bitc::BINOP_UREM: 1098 return IsFP ? -1 : Instruction::URem; 1099 case bitc::BINOP_SREM: 1100 return IsFP ? Instruction::FRem : Instruction::SRem; 1101 case bitc::BINOP_SHL: 1102 return IsFP ? -1 : Instruction::Shl; 1103 case bitc::BINOP_LSHR: 1104 return IsFP ? -1 : Instruction::LShr; 1105 case bitc::BINOP_ASHR: 1106 return IsFP ? -1 : Instruction::AShr; 1107 case bitc::BINOP_AND: 1108 return IsFP ? -1 : Instruction::And; 1109 case bitc::BINOP_OR: 1110 return IsFP ? -1 : Instruction::Or; 1111 case bitc::BINOP_XOR: 1112 return IsFP ? -1 : Instruction::Xor; 1113 } 1114 } 1115 1116 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1117 switch (Val) { 1118 default: return AtomicRMWInst::BAD_BINOP; 1119 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1120 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1121 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1122 case bitc::RMW_AND: return AtomicRMWInst::And; 1123 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1124 case bitc::RMW_OR: return AtomicRMWInst::Or; 1125 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1126 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1127 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1128 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1129 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1130 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1131 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1132 } 1133 } 1134 1135 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1136 switch (Val) { 1137 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1138 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1139 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1140 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1141 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1142 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1143 default: // Map unknown orderings to sequentially-consistent. 1144 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1145 } 1146 } 1147 1148 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1149 switch (Val) { 1150 default: // Map unknown selection kinds to any. 1151 case bitc::COMDAT_SELECTION_KIND_ANY: 1152 return Comdat::Any; 1153 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1154 return Comdat::ExactMatch; 1155 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1156 return Comdat::Largest; 1157 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1158 return Comdat::NoDuplicates; 1159 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1160 return Comdat::SameSize; 1161 } 1162 } 1163 1164 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1165 FastMathFlags FMF; 1166 if (0 != (Val & bitc::UnsafeAlgebra)) 1167 FMF.setFast(); 1168 if (0 != (Val & bitc::AllowReassoc)) 1169 FMF.setAllowReassoc(); 1170 if (0 != (Val & bitc::NoNaNs)) 1171 FMF.setNoNaNs(); 1172 if (0 != (Val & bitc::NoInfs)) 1173 FMF.setNoInfs(); 1174 if (0 != (Val & bitc::NoSignedZeros)) 1175 FMF.setNoSignedZeros(); 1176 if (0 != (Val & bitc::AllowReciprocal)) 1177 FMF.setAllowReciprocal(); 1178 if (0 != (Val & bitc::AllowContract)) 1179 FMF.setAllowContract(true); 1180 if (0 != (Val & bitc::ApproxFunc)) 1181 FMF.setApproxFunc(); 1182 return FMF; 1183 } 1184 1185 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1186 switch (Val) { 1187 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1188 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1189 } 1190 } 1191 1192 Type *BitcodeReader::getFullyStructuredTypeByID(unsigned ID) { 1193 // The type table size is always specified correctly. 1194 if (ID >= TypeList.size()) 1195 return nullptr; 1196 1197 if (Type *Ty = TypeList[ID]) 1198 return Ty; 1199 1200 // If we have a forward reference, the only possible case is when it is to a 1201 // named struct. Just create a placeholder for now. 1202 return TypeList[ID] = createIdentifiedStructType(Context); 1203 } 1204 1205 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1206 StringRef Name) { 1207 auto *Ret = StructType::create(Context, Name); 1208 IdentifiedStructTypes.push_back(Ret); 1209 return Ret; 1210 } 1211 1212 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1213 auto *Ret = StructType::create(Context); 1214 IdentifiedStructTypes.push_back(Ret); 1215 return Ret; 1216 } 1217 1218 //===----------------------------------------------------------------------===// 1219 // Functions for parsing blocks from the bitcode file 1220 //===----------------------------------------------------------------------===// 1221 1222 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1223 switch (Val) { 1224 case Attribute::EndAttrKinds: 1225 case Attribute::EmptyKey: 1226 case Attribute::TombstoneKey: 1227 llvm_unreachable("Synthetic enumerators which should never get here"); 1228 1229 case Attribute::None: return 0; 1230 case Attribute::ZExt: return 1 << 0; 1231 case Attribute::SExt: return 1 << 1; 1232 case Attribute::NoReturn: return 1 << 2; 1233 case Attribute::InReg: return 1 << 3; 1234 case Attribute::StructRet: return 1 << 4; 1235 case Attribute::NoUnwind: return 1 << 5; 1236 case Attribute::NoAlias: return 1 << 6; 1237 case Attribute::ByVal: return 1 << 7; 1238 case Attribute::Nest: return 1 << 8; 1239 case Attribute::ReadNone: return 1 << 9; 1240 case Attribute::ReadOnly: return 1 << 10; 1241 case Attribute::NoInline: return 1 << 11; 1242 case Attribute::AlwaysInline: return 1 << 12; 1243 case Attribute::OptimizeForSize: return 1 << 13; 1244 case Attribute::StackProtect: return 1 << 14; 1245 case Attribute::StackProtectReq: return 1 << 15; 1246 case Attribute::Alignment: return 31 << 16; 1247 case Attribute::NoCapture: return 1 << 21; 1248 case Attribute::NoRedZone: return 1 << 22; 1249 case Attribute::NoImplicitFloat: return 1 << 23; 1250 case Attribute::Naked: return 1 << 24; 1251 case Attribute::InlineHint: return 1 << 25; 1252 case Attribute::StackAlignment: return 7 << 26; 1253 case Attribute::ReturnsTwice: return 1 << 29; 1254 case Attribute::UWTable: return 1 << 30; 1255 case Attribute::NonLazyBind: return 1U << 31; 1256 case Attribute::SanitizeAddress: return 1ULL << 32; 1257 case Attribute::MinSize: return 1ULL << 33; 1258 case Attribute::NoDuplicate: return 1ULL << 34; 1259 case Attribute::StackProtectStrong: return 1ULL << 35; 1260 case Attribute::SanitizeThread: return 1ULL << 36; 1261 case Attribute::SanitizeMemory: return 1ULL << 37; 1262 case Attribute::NoBuiltin: return 1ULL << 38; 1263 case Attribute::Returned: return 1ULL << 39; 1264 case Attribute::Cold: return 1ULL << 40; 1265 case Attribute::Builtin: return 1ULL << 41; 1266 case Attribute::OptimizeNone: return 1ULL << 42; 1267 case Attribute::InAlloca: return 1ULL << 43; 1268 case Attribute::NonNull: return 1ULL << 44; 1269 case Attribute::JumpTable: return 1ULL << 45; 1270 case Attribute::Convergent: return 1ULL << 46; 1271 case Attribute::SafeStack: return 1ULL << 47; 1272 case Attribute::NoRecurse: return 1ULL << 48; 1273 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1274 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1275 case Attribute::SwiftSelf: return 1ULL << 51; 1276 case Attribute::SwiftError: return 1ULL << 52; 1277 case Attribute::WriteOnly: return 1ULL << 53; 1278 case Attribute::Speculatable: return 1ULL << 54; 1279 case Attribute::StrictFP: return 1ULL << 55; 1280 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1281 case Attribute::NoCfCheck: return 1ULL << 57; 1282 case Attribute::OptForFuzzing: return 1ULL << 58; 1283 case Attribute::ShadowCallStack: return 1ULL << 59; 1284 case Attribute::SpeculativeLoadHardening: 1285 return 1ULL << 60; 1286 case Attribute::ImmArg: 1287 return 1ULL << 61; 1288 case Attribute::WillReturn: 1289 return 1ULL << 62; 1290 case Attribute::NoFree: 1291 return 1ULL << 63; 1292 default: 1293 // Other attributes are not supported in the raw format, 1294 // as we ran out of space. 1295 return 0; 1296 } 1297 llvm_unreachable("Unsupported attribute type"); 1298 } 1299 1300 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1301 if (!Val) return; 1302 1303 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1304 I = Attribute::AttrKind(I + 1)) { 1305 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1306 if (I == Attribute::Alignment) 1307 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1308 else if (I == Attribute::StackAlignment) 1309 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1310 else 1311 B.addAttribute(I); 1312 } 1313 } 1314 } 1315 1316 /// This fills an AttrBuilder object with the LLVM attributes that have 1317 /// been decoded from the given integer. This function must stay in sync with 1318 /// 'encodeLLVMAttributesForBitcode'. 1319 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1320 uint64_t EncodedAttrs) { 1321 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1322 // the bits above 31 down by 11 bits. 1323 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1324 assert((!Alignment || isPowerOf2_32(Alignment)) && 1325 "Alignment must be a power of two."); 1326 1327 if (Alignment) 1328 B.addAlignmentAttr(Alignment); 1329 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1330 (EncodedAttrs & 0xffff)); 1331 } 1332 1333 Error BitcodeReader::parseAttributeBlock() { 1334 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1335 return Err; 1336 1337 if (!MAttributes.empty()) 1338 return error("Invalid multiple blocks"); 1339 1340 SmallVector<uint64_t, 64> Record; 1341 1342 SmallVector<AttributeList, 8> Attrs; 1343 1344 // Read all the records. 1345 while (true) { 1346 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1347 if (!MaybeEntry) 1348 return MaybeEntry.takeError(); 1349 BitstreamEntry Entry = MaybeEntry.get(); 1350 1351 switch (Entry.Kind) { 1352 case BitstreamEntry::SubBlock: // Handled for us already. 1353 case BitstreamEntry::Error: 1354 return error("Malformed block"); 1355 case BitstreamEntry::EndBlock: 1356 return Error::success(); 1357 case BitstreamEntry::Record: 1358 // The interesting case. 1359 break; 1360 } 1361 1362 // Read a record. 1363 Record.clear(); 1364 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1365 if (!MaybeRecord) 1366 return MaybeRecord.takeError(); 1367 switch (MaybeRecord.get()) { 1368 default: // Default behavior: ignore. 1369 break; 1370 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1371 // Deprecated, but still needed to read old bitcode files. 1372 if (Record.size() & 1) 1373 return error("Invalid record"); 1374 1375 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1376 AttrBuilder B; 1377 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1378 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1379 } 1380 1381 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1382 Attrs.clear(); 1383 break; 1384 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1385 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1386 Attrs.push_back(MAttributeGroups[Record[i]]); 1387 1388 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1389 Attrs.clear(); 1390 break; 1391 } 1392 } 1393 } 1394 1395 // Returns Attribute::None on unrecognized codes. 1396 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1397 switch (Code) { 1398 default: 1399 return Attribute::None; 1400 case bitc::ATTR_KIND_ALIGNMENT: 1401 return Attribute::Alignment; 1402 case bitc::ATTR_KIND_ALWAYS_INLINE: 1403 return Attribute::AlwaysInline; 1404 case bitc::ATTR_KIND_ARGMEMONLY: 1405 return Attribute::ArgMemOnly; 1406 case bitc::ATTR_KIND_BUILTIN: 1407 return Attribute::Builtin; 1408 case bitc::ATTR_KIND_BY_VAL: 1409 return Attribute::ByVal; 1410 case bitc::ATTR_KIND_IN_ALLOCA: 1411 return Attribute::InAlloca; 1412 case bitc::ATTR_KIND_COLD: 1413 return Attribute::Cold; 1414 case bitc::ATTR_KIND_CONVERGENT: 1415 return Attribute::Convergent; 1416 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1417 return Attribute::InaccessibleMemOnly; 1418 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1419 return Attribute::InaccessibleMemOrArgMemOnly; 1420 case bitc::ATTR_KIND_INLINE_HINT: 1421 return Attribute::InlineHint; 1422 case bitc::ATTR_KIND_IN_REG: 1423 return Attribute::InReg; 1424 case bitc::ATTR_KIND_JUMP_TABLE: 1425 return Attribute::JumpTable; 1426 case bitc::ATTR_KIND_MIN_SIZE: 1427 return Attribute::MinSize; 1428 case bitc::ATTR_KIND_NAKED: 1429 return Attribute::Naked; 1430 case bitc::ATTR_KIND_NEST: 1431 return Attribute::Nest; 1432 case bitc::ATTR_KIND_NO_ALIAS: 1433 return Attribute::NoAlias; 1434 case bitc::ATTR_KIND_NO_BUILTIN: 1435 return Attribute::NoBuiltin; 1436 case bitc::ATTR_KIND_NO_CAPTURE: 1437 return Attribute::NoCapture; 1438 case bitc::ATTR_KIND_NO_DUPLICATE: 1439 return Attribute::NoDuplicate; 1440 case bitc::ATTR_KIND_NOFREE: 1441 return Attribute::NoFree; 1442 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1443 return Attribute::NoImplicitFloat; 1444 case bitc::ATTR_KIND_NO_INLINE: 1445 return Attribute::NoInline; 1446 case bitc::ATTR_KIND_NO_RECURSE: 1447 return Attribute::NoRecurse; 1448 case bitc::ATTR_KIND_NO_MERGE: 1449 return Attribute::NoMerge; 1450 case bitc::ATTR_KIND_NON_LAZY_BIND: 1451 return Attribute::NonLazyBind; 1452 case bitc::ATTR_KIND_NON_NULL: 1453 return Attribute::NonNull; 1454 case bitc::ATTR_KIND_DEREFERENCEABLE: 1455 return Attribute::Dereferenceable; 1456 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1457 return Attribute::DereferenceableOrNull; 1458 case bitc::ATTR_KIND_ALLOC_SIZE: 1459 return Attribute::AllocSize; 1460 case bitc::ATTR_KIND_NO_RED_ZONE: 1461 return Attribute::NoRedZone; 1462 case bitc::ATTR_KIND_NO_RETURN: 1463 return Attribute::NoReturn; 1464 case bitc::ATTR_KIND_NOSYNC: 1465 return Attribute::NoSync; 1466 case bitc::ATTR_KIND_NOCF_CHECK: 1467 return Attribute::NoCfCheck; 1468 case bitc::ATTR_KIND_NO_UNWIND: 1469 return Attribute::NoUnwind; 1470 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 1471 return Attribute::NullPointerIsValid; 1472 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1473 return Attribute::OptForFuzzing; 1474 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1475 return Attribute::OptimizeForSize; 1476 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1477 return Attribute::OptimizeNone; 1478 case bitc::ATTR_KIND_READ_NONE: 1479 return Attribute::ReadNone; 1480 case bitc::ATTR_KIND_READ_ONLY: 1481 return Attribute::ReadOnly; 1482 case bitc::ATTR_KIND_RETURNED: 1483 return Attribute::Returned; 1484 case bitc::ATTR_KIND_RETURNS_TWICE: 1485 return Attribute::ReturnsTwice; 1486 case bitc::ATTR_KIND_S_EXT: 1487 return Attribute::SExt; 1488 case bitc::ATTR_KIND_SPECULATABLE: 1489 return Attribute::Speculatable; 1490 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1491 return Attribute::StackAlignment; 1492 case bitc::ATTR_KIND_STACK_PROTECT: 1493 return Attribute::StackProtect; 1494 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1495 return Attribute::StackProtectReq; 1496 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1497 return Attribute::StackProtectStrong; 1498 case bitc::ATTR_KIND_SAFESTACK: 1499 return Attribute::SafeStack; 1500 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1501 return Attribute::ShadowCallStack; 1502 case bitc::ATTR_KIND_STRICT_FP: 1503 return Attribute::StrictFP; 1504 case bitc::ATTR_KIND_STRUCT_RET: 1505 return Attribute::StructRet; 1506 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1507 return Attribute::SanitizeAddress; 1508 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1509 return Attribute::SanitizeHWAddress; 1510 case bitc::ATTR_KIND_SANITIZE_THREAD: 1511 return Attribute::SanitizeThread; 1512 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1513 return Attribute::SanitizeMemory; 1514 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1515 return Attribute::SpeculativeLoadHardening; 1516 case bitc::ATTR_KIND_SWIFT_ERROR: 1517 return Attribute::SwiftError; 1518 case bitc::ATTR_KIND_SWIFT_SELF: 1519 return Attribute::SwiftSelf; 1520 case bitc::ATTR_KIND_UW_TABLE: 1521 return Attribute::UWTable; 1522 case bitc::ATTR_KIND_WILLRETURN: 1523 return Attribute::WillReturn; 1524 case bitc::ATTR_KIND_WRITEONLY: 1525 return Attribute::WriteOnly; 1526 case bitc::ATTR_KIND_Z_EXT: 1527 return Attribute::ZExt; 1528 case bitc::ATTR_KIND_IMMARG: 1529 return Attribute::ImmArg; 1530 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 1531 return Attribute::SanitizeMemTag; 1532 case bitc::ATTR_KIND_PREALLOCATED: 1533 return Attribute::Preallocated; 1534 case bitc::ATTR_KIND_NOUNDEF: 1535 return Attribute::NoUndef; 1536 case bitc::ATTR_KIND_BYREF: 1537 return Attribute::ByRef; 1538 case bitc::ATTR_KIND_MUSTPROGRESS: 1539 return Attribute::MustProgress; 1540 case bitc::ATTR_KIND_NO_STACK_PROTECT: 1541 return Attribute::NoStackProtect; 1542 } 1543 } 1544 1545 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1546 MaybeAlign &Alignment) { 1547 // Note: Alignment in bitcode files is incremented by 1, so that zero 1548 // can be used for default alignment. 1549 if (Exponent > Value::MaxAlignmentExponent + 1) 1550 return error("Invalid alignment value"); 1551 Alignment = decodeMaybeAlign(Exponent); 1552 return Error::success(); 1553 } 1554 1555 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1556 *Kind = getAttrFromCode(Code); 1557 if (*Kind == Attribute::None) 1558 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1559 return Error::success(); 1560 } 1561 1562 Error BitcodeReader::parseAttributeGroupBlock() { 1563 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1564 return Err; 1565 1566 if (!MAttributeGroups.empty()) 1567 return error("Invalid multiple blocks"); 1568 1569 SmallVector<uint64_t, 64> Record; 1570 1571 // Read all the records. 1572 while (true) { 1573 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1574 if (!MaybeEntry) 1575 return MaybeEntry.takeError(); 1576 BitstreamEntry Entry = MaybeEntry.get(); 1577 1578 switch (Entry.Kind) { 1579 case BitstreamEntry::SubBlock: // Handled for us already. 1580 case BitstreamEntry::Error: 1581 return error("Malformed block"); 1582 case BitstreamEntry::EndBlock: 1583 return Error::success(); 1584 case BitstreamEntry::Record: 1585 // The interesting case. 1586 break; 1587 } 1588 1589 // Read a record. 1590 Record.clear(); 1591 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1592 if (!MaybeRecord) 1593 return MaybeRecord.takeError(); 1594 switch (MaybeRecord.get()) { 1595 default: // Default behavior: ignore. 1596 break; 1597 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1598 if (Record.size() < 3) 1599 return error("Invalid record"); 1600 1601 uint64_t GrpID = Record[0]; 1602 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1603 1604 AttrBuilder B; 1605 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1606 if (Record[i] == 0) { // Enum attribute 1607 Attribute::AttrKind Kind; 1608 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1609 return Err; 1610 1611 // Upgrade old-style byval attribute to one with a type, even if it's 1612 // nullptr. We will have to insert the real type when we associate 1613 // this AttributeList with a function. 1614 if (Kind == Attribute::ByVal) 1615 B.addByValAttr(nullptr); 1616 else if (Kind == Attribute::StructRet) 1617 B.addStructRetAttr(nullptr); 1618 1619 B.addAttribute(Kind); 1620 } else if (Record[i] == 1) { // Integer attribute 1621 Attribute::AttrKind Kind; 1622 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1623 return Err; 1624 if (Kind == Attribute::Alignment) 1625 B.addAlignmentAttr(Record[++i]); 1626 else if (Kind == Attribute::StackAlignment) 1627 B.addStackAlignmentAttr(Record[++i]); 1628 else if (Kind == Attribute::Dereferenceable) 1629 B.addDereferenceableAttr(Record[++i]); 1630 else if (Kind == Attribute::DereferenceableOrNull) 1631 B.addDereferenceableOrNullAttr(Record[++i]); 1632 else if (Kind == Attribute::AllocSize) 1633 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1634 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 1635 bool HasValue = (Record[i++] == 4); 1636 SmallString<64> KindStr; 1637 SmallString<64> ValStr; 1638 1639 while (Record[i] != 0 && i != e) 1640 KindStr += Record[i++]; 1641 assert(Record[i] == 0 && "Kind string not null terminated"); 1642 1643 if (HasValue) { 1644 // Has a value associated with it. 1645 ++i; // Skip the '0' that terminates the "kind" string. 1646 while (Record[i] != 0 && i != e) 1647 ValStr += Record[i++]; 1648 assert(Record[i] == 0 && "Value string not null terminated"); 1649 } 1650 1651 B.addAttribute(KindStr.str(), ValStr.str()); 1652 } else { 1653 assert((Record[i] == 5 || Record[i] == 6) && 1654 "Invalid attribute group entry"); 1655 bool HasType = Record[i] == 6; 1656 Attribute::AttrKind Kind; 1657 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1658 return Err; 1659 if (Kind == Attribute::ByVal) { 1660 B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr); 1661 } else if (Kind == Attribute::StructRet) { 1662 B.addStructRetAttr(HasType ? getTypeByID(Record[++i]) : nullptr); 1663 } else if (Kind == Attribute::ByRef) { 1664 B.addByRefAttr(getTypeByID(Record[++i])); 1665 } else if (Kind == Attribute::Preallocated) { 1666 B.addPreallocatedAttr(getTypeByID(Record[++i])); 1667 } 1668 } 1669 } 1670 1671 UpgradeAttributes(B); 1672 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1673 break; 1674 } 1675 } 1676 } 1677 } 1678 1679 Error BitcodeReader::parseTypeTable() { 1680 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1681 return Err; 1682 1683 return parseTypeTableBody(); 1684 } 1685 1686 Error BitcodeReader::parseTypeTableBody() { 1687 if (!TypeList.empty()) 1688 return error("Invalid multiple blocks"); 1689 1690 SmallVector<uint64_t, 64> Record; 1691 unsigned NumRecords = 0; 1692 1693 SmallString<64> TypeName; 1694 1695 // Read all the records for this type table. 1696 while (true) { 1697 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1698 if (!MaybeEntry) 1699 return MaybeEntry.takeError(); 1700 BitstreamEntry Entry = MaybeEntry.get(); 1701 1702 switch (Entry.Kind) { 1703 case BitstreamEntry::SubBlock: // Handled for us already. 1704 case BitstreamEntry::Error: 1705 return error("Malformed block"); 1706 case BitstreamEntry::EndBlock: 1707 if (NumRecords != TypeList.size()) 1708 return error("Malformed block"); 1709 return Error::success(); 1710 case BitstreamEntry::Record: 1711 // The interesting case. 1712 break; 1713 } 1714 1715 // Read a record. 1716 Record.clear(); 1717 Type *ResultTy = nullptr; 1718 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1719 if (!MaybeRecord) 1720 return MaybeRecord.takeError(); 1721 switch (MaybeRecord.get()) { 1722 default: 1723 return error("Invalid value"); 1724 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1725 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1726 // type list. This allows us to reserve space. 1727 if (Record.empty()) 1728 return error("Invalid record"); 1729 TypeList.resize(Record[0]); 1730 continue; 1731 case bitc::TYPE_CODE_VOID: // VOID 1732 ResultTy = Type::getVoidTy(Context); 1733 break; 1734 case bitc::TYPE_CODE_HALF: // HALF 1735 ResultTy = Type::getHalfTy(Context); 1736 break; 1737 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 1738 ResultTy = Type::getBFloatTy(Context); 1739 break; 1740 case bitc::TYPE_CODE_FLOAT: // FLOAT 1741 ResultTy = Type::getFloatTy(Context); 1742 break; 1743 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1744 ResultTy = Type::getDoubleTy(Context); 1745 break; 1746 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1747 ResultTy = Type::getX86_FP80Ty(Context); 1748 break; 1749 case bitc::TYPE_CODE_FP128: // FP128 1750 ResultTy = Type::getFP128Ty(Context); 1751 break; 1752 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1753 ResultTy = Type::getPPC_FP128Ty(Context); 1754 break; 1755 case bitc::TYPE_CODE_LABEL: // LABEL 1756 ResultTy = Type::getLabelTy(Context); 1757 break; 1758 case bitc::TYPE_CODE_METADATA: // METADATA 1759 ResultTy = Type::getMetadataTy(Context); 1760 break; 1761 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1762 ResultTy = Type::getX86_MMXTy(Context); 1763 break; 1764 case bitc::TYPE_CODE_TOKEN: // TOKEN 1765 ResultTy = Type::getTokenTy(Context); 1766 break; 1767 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1768 if (Record.empty()) 1769 return error("Invalid record"); 1770 1771 uint64_t NumBits = Record[0]; 1772 if (NumBits < IntegerType::MIN_INT_BITS || 1773 NumBits > IntegerType::MAX_INT_BITS) 1774 return error("Bitwidth for integer type out of range"); 1775 ResultTy = IntegerType::get(Context, NumBits); 1776 break; 1777 } 1778 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1779 // [pointee type, address space] 1780 if (Record.empty()) 1781 return error("Invalid record"); 1782 unsigned AddressSpace = 0; 1783 if (Record.size() == 2) 1784 AddressSpace = Record[1]; 1785 ResultTy = getTypeByID(Record[0]); 1786 if (!ResultTy || 1787 !PointerType::isValidElementType(ResultTy)) 1788 return error("Invalid type"); 1789 ResultTy = PointerType::get(ResultTy, AddressSpace); 1790 break; 1791 } 1792 case bitc::TYPE_CODE_FUNCTION_OLD: { 1793 // Deprecated, but still needed to read old bitcode files. 1794 // FUNCTION: [vararg, attrid, retty, paramty x N] 1795 if (Record.size() < 3) 1796 return error("Invalid record"); 1797 SmallVector<Type*, 8> ArgTys; 1798 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1799 if (Type *T = getTypeByID(Record[i])) 1800 ArgTys.push_back(T); 1801 else 1802 break; 1803 } 1804 1805 ResultTy = getTypeByID(Record[2]); 1806 if (!ResultTy || ArgTys.size() < Record.size()-3) 1807 return error("Invalid type"); 1808 1809 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1810 break; 1811 } 1812 case bitc::TYPE_CODE_FUNCTION: { 1813 // FUNCTION: [vararg, retty, paramty x N] 1814 if (Record.size() < 2) 1815 return error("Invalid record"); 1816 SmallVector<Type*, 8> ArgTys; 1817 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1818 if (Type *T = getTypeByID(Record[i])) { 1819 if (!FunctionType::isValidArgumentType(T)) 1820 return error("Invalid function argument type"); 1821 ArgTys.push_back(T); 1822 } 1823 else 1824 break; 1825 } 1826 1827 ResultTy = getTypeByID(Record[1]); 1828 if (!ResultTy || ArgTys.size() < Record.size()-2) 1829 return error("Invalid type"); 1830 1831 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1832 break; 1833 } 1834 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1835 if (Record.empty()) 1836 return error("Invalid record"); 1837 SmallVector<Type*, 8> EltTys; 1838 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1839 if (Type *T = getTypeByID(Record[i])) 1840 EltTys.push_back(T); 1841 else 1842 break; 1843 } 1844 if (EltTys.size() != Record.size()-1) 1845 return error("Invalid type"); 1846 ResultTy = StructType::get(Context, EltTys, Record[0]); 1847 break; 1848 } 1849 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1850 if (convertToString(Record, 0, TypeName)) 1851 return error("Invalid record"); 1852 continue; 1853 1854 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1855 if (Record.empty()) 1856 return error("Invalid record"); 1857 1858 if (NumRecords >= TypeList.size()) 1859 return error("Invalid TYPE table"); 1860 1861 // Check to see if this was forward referenced, if so fill in the temp. 1862 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1863 if (Res) { 1864 Res->setName(TypeName); 1865 TypeList[NumRecords] = nullptr; 1866 } else // Otherwise, create a new struct. 1867 Res = createIdentifiedStructType(Context, TypeName); 1868 TypeName.clear(); 1869 1870 SmallVector<Type*, 8> EltTys; 1871 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1872 if (Type *T = getTypeByID(Record[i])) 1873 EltTys.push_back(T); 1874 else 1875 break; 1876 } 1877 if (EltTys.size() != Record.size()-1) 1878 return error("Invalid record"); 1879 Res->setBody(EltTys, Record[0]); 1880 ResultTy = Res; 1881 break; 1882 } 1883 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1884 if (Record.size() != 1) 1885 return error("Invalid record"); 1886 1887 if (NumRecords >= TypeList.size()) 1888 return error("Invalid TYPE table"); 1889 1890 // Check to see if this was forward referenced, if so fill in the temp. 1891 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1892 if (Res) { 1893 Res->setName(TypeName); 1894 TypeList[NumRecords] = nullptr; 1895 } else // Otherwise, create a new struct with no body. 1896 Res = createIdentifiedStructType(Context, TypeName); 1897 TypeName.clear(); 1898 ResultTy = Res; 1899 break; 1900 } 1901 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1902 if (Record.size() < 2) 1903 return error("Invalid record"); 1904 ResultTy = getTypeByID(Record[1]); 1905 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1906 return error("Invalid type"); 1907 ResultTy = ArrayType::get(ResultTy, Record[0]); 1908 break; 1909 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 1910 // [numelts, eltty, scalable] 1911 if (Record.size() < 2) 1912 return error("Invalid record"); 1913 if (Record[0] == 0) 1914 return error("Invalid vector length"); 1915 ResultTy = getTypeByID(Record[1]); 1916 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1917 return error("Invalid type"); 1918 bool Scalable = Record.size() > 2 ? Record[2] : false; 1919 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 1920 break; 1921 } 1922 1923 if (NumRecords >= TypeList.size()) 1924 return error("Invalid TYPE table"); 1925 if (TypeList[NumRecords]) 1926 return error( 1927 "Invalid TYPE table: Only named structs can be forward referenced"); 1928 assert(ResultTy && "Didn't read a type?"); 1929 TypeList[NumRecords++] = ResultTy; 1930 } 1931 } 1932 1933 Error BitcodeReader::parseOperandBundleTags() { 1934 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1935 return Err; 1936 1937 if (!BundleTags.empty()) 1938 return error("Invalid multiple blocks"); 1939 1940 SmallVector<uint64_t, 64> Record; 1941 1942 while (true) { 1943 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1944 if (!MaybeEntry) 1945 return MaybeEntry.takeError(); 1946 BitstreamEntry Entry = MaybeEntry.get(); 1947 1948 switch (Entry.Kind) { 1949 case BitstreamEntry::SubBlock: // Handled for us already. 1950 case BitstreamEntry::Error: 1951 return error("Malformed block"); 1952 case BitstreamEntry::EndBlock: 1953 return Error::success(); 1954 case BitstreamEntry::Record: 1955 // The interesting case. 1956 break; 1957 } 1958 1959 // Tags are implicitly mapped to integers by their order. 1960 1961 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1962 if (!MaybeRecord) 1963 return MaybeRecord.takeError(); 1964 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 1965 return error("Invalid record"); 1966 1967 // OPERAND_BUNDLE_TAG: [strchr x N] 1968 BundleTags.emplace_back(); 1969 if (convertToString(Record, 0, BundleTags.back())) 1970 return error("Invalid record"); 1971 Record.clear(); 1972 } 1973 } 1974 1975 Error BitcodeReader::parseSyncScopeNames() { 1976 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1977 return Err; 1978 1979 if (!SSIDs.empty()) 1980 return error("Invalid multiple synchronization scope names blocks"); 1981 1982 SmallVector<uint64_t, 64> Record; 1983 while (true) { 1984 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1985 if (!MaybeEntry) 1986 return MaybeEntry.takeError(); 1987 BitstreamEntry Entry = MaybeEntry.get(); 1988 1989 switch (Entry.Kind) { 1990 case BitstreamEntry::SubBlock: // Handled for us already. 1991 case BitstreamEntry::Error: 1992 return error("Malformed block"); 1993 case BitstreamEntry::EndBlock: 1994 if (SSIDs.empty()) 1995 return error("Invalid empty synchronization scope names block"); 1996 return Error::success(); 1997 case BitstreamEntry::Record: 1998 // The interesting case. 1999 break; 2000 } 2001 2002 // Synchronization scope names are implicitly mapped to synchronization 2003 // scope IDs by their order. 2004 2005 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2006 if (!MaybeRecord) 2007 return MaybeRecord.takeError(); 2008 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2009 return error("Invalid record"); 2010 2011 SmallString<16> SSN; 2012 if (convertToString(Record, 0, SSN)) 2013 return error("Invalid record"); 2014 2015 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2016 Record.clear(); 2017 } 2018 } 2019 2020 /// Associate a value with its name from the given index in the provided record. 2021 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2022 unsigned NameIndex, Triple &TT) { 2023 SmallString<128> ValueName; 2024 if (convertToString(Record, NameIndex, ValueName)) 2025 return error("Invalid record"); 2026 unsigned ValueID = Record[0]; 2027 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2028 return error("Invalid record"); 2029 Value *V = ValueList[ValueID]; 2030 2031 StringRef NameStr(ValueName.data(), ValueName.size()); 2032 if (NameStr.find_first_of(0) != StringRef::npos) 2033 return error("Invalid value name"); 2034 V->setName(NameStr); 2035 auto *GO = dyn_cast<GlobalObject>(V); 2036 if (GO) { 2037 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 2038 if (TT.supportsCOMDAT()) 2039 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2040 else 2041 GO->setComdat(nullptr); 2042 } 2043 } 2044 return V; 2045 } 2046 2047 /// Helper to note and return the current location, and jump to the given 2048 /// offset. 2049 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2050 BitstreamCursor &Stream) { 2051 // Save the current parsing location so we can jump back at the end 2052 // of the VST read. 2053 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2054 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2055 return std::move(JumpFailed); 2056 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2057 if (!MaybeEntry) 2058 return MaybeEntry.takeError(); 2059 assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock); 2060 assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID); 2061 return CurrentBit; 2062 } 2063 2064 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2065 Function *F, 2066 ArrayRef<uint64_t> Record) { 2067 // Note that we subtract 1 here because the offset is relative to one word 2068 // before the start of the identification or module block, which was 2069 // historically always the start of the regular bitcode header. 2070 uint64_t FuncWordOffset = Record[1] - 1; 2071 uint64_t FuncBitOffset = FuncWordOffset * 32; 2072 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2073 // Set the LastFunctionBlockBit to point to the last function block. 2074 // Later when parsing is resumed after function materialization, 2075 // we can simply skip that last function block. 2076 if (FuncBitOffset > LastFunctionBlockBit) 2077 LastFunctionBlockBit = FuncBitOffset; 2078 } 2079 2080 /// Read a new-style GlobalValue symbol table. 2081 Error BitcodeReader::parseGlobalValueSymbolTable() { 2082 unsigned FuncBitcodeOffsetDelta = 2083 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2084 2085 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2086 return Err; 2087 2088 SmallVector<uint64_t, 64> Record; 2089 while (true) { 2090 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2091 if (!MaybeEntry) 2092 return MaybeEntry.takeError(); 2093 BitstreamEntry Entry = MaybeEntry.get(); 2094 2095 switch (Entry.Kind) { 2096 case BitstreamEntry::SubBlock: 2097 case BitstreamEntry::Error: 2098 return error("Malformed block"); 2099 case BitstreamEntry::EndBlock: 2100 return Error::success(); 2101 case BitstreamEntry::Record: 2102 break; 2103 } 2104 2105 Record.clear(); 2106 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2107 if (!MaybeRecord) 2108 return MaybeRecord.takeError(); 2109 switch (MaybeRecord.get()) { 2110 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 2111 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2112 cast<Function>(ValueList[Record[0]]), Record); 2113 break; 2114 } 2115 } 2116 } 2117 2118 /// Parse the value symbol table at either the current parsing location or 2119 /// at the given bit offset if provided. 2120 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2121 uint64_t CurrentBit; 2122 // Pass in the Offset to distinguish between calling for the module-level 2123 // VST (where we want to jump to the VST offset) and the function-level 2124 // VST (where we don't). 2125 if (Offset > 0) { 2126 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2127 if (!MaybeCurrentBit) 2128 return MaybeCurrentBit.takeError(); 2129 CurrentBit = MaybeCurrentBit.get(); 2130 // If this module uses a string table, read this as a module-level VST. 2131 if (UseStrtab) { 2132 if (Error Err = parseGlobalValueSymbolTable()) 2133 return Err; 2134 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2135 return JumpFailed; 2136 return Error::success(); 2137 } 2138 // Otherwise, the VST will be in a similar format to a function-level VST, 2139 // and will contain symbol names. 2140 } 2141 2142 // Compute the delta between the bitcode indices in the VST (the word offset 2143 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2144 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2145 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2146 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2147 // just before entering the VST subblock because: 1) the EnterSubBlock 2148 // changes the AbbrevID width; 2) the VST block is nested within the same 2149 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2150 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2151 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2152 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2153 unsigned FuncBitcodeOffsetDelta = 2154 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2155 2156 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2157 return Err; 2158 2159 SmallVector<uint64_t, 64> Record; 2160 2161 Triple TT(TheModule->getTargetTriple()); 2162 2163 // Read all the records for this value table. 2164 SmallString<128> ValueName; 2165 2166 while (true) { 2167 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2168 if (!MaybeEntry) 2169 return MaybeEntry.takeError(); 2170 BitstreamEntry Entry = MaybeEntry.get(); 2171 2172 switch (Entry.Kind) { 2173 case BitstreamEntry::SubBlock: // Handled for us already. 2174 case BitstreamEntry::Error: 2175 return error("Malformed block"); 2176 case BitstreamEntry::EndBlock: 2177 if (Offset > 0) 2178 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2179 return JumpFailed; 2180 return Error::success(); 2181 case BitstreamEntry::Record: 2182 // The interesting case. 2183 break; 2184 } 2185 2186 // Read a record. 2187 Record.clear(); 2188 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2189 if (!MaybeRecord) 2190 return MaybeRecord.takeError(); 2191 switch (MaybeRecord.get()) { 2192 default: // Default behavior: unknown type. 2193 break; 2194 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2195 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2196 if (Error Err = ValOrErr.takeError()) 2197 return Err; 2198 ValOrErr.get(); 2199 break; 2200 } 2201 case bitc::VST_CODE_FNENTRY: { 2202 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2203 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2204 if (Error Err = ValOrErr.takeError()) 2205 return Err; 2206 Value *V = ValOrErr.get(); 2207 2208 // Ignore function offsets emitted for aliases of functions in older 2209 // versions of LLVM. 2210 if (auto *F = dyn_cast<Function>(V)) 2211 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2212 break; 2213 } 2214 case bitc::VST_CODE_BBENTRY: { 2215 if (convertToString(Record, 1, ValueName)) 2216 return error("Invalid record"); 2217 BasicBlock *BB = getBasicBlock(Record[0]); 2218 if (!BB) 2219 return error("Invalid record"); 2220 2221 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2222 ValueName.clear(); 2223 break; 2224 } 2225 } 2226 } 2227 } 2228 2229 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2230 /// encoding. 2231 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2232 if ((V & 1) == 0) 2233 return V >> 1; 2234 if (V != 1) 2235 return -(V >> 1); 2236 // There is no such thing as -0 with integers. "-0" really means MININT. 2237 return 1ULL << 63; 2238 } 2239 2240 /// Resolve all of the initializers for global values and aliases that we can. 2241 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2242 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2243 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> 2244 IndirectSymbolInitWorklist; 2245 std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist; 2246 std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist; 2247 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist; 2248 2249 GlobalInitWorklist.swap(GlobalInits); 2250 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2251 FunctionPrefixWorklist.swap(FunctionPrefixes); 2252 FunctionPrologueWorklist.swap(FunctionPrologues); 2253 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2254 2255 while (!GlobalInitWorklist.empty()) { 2256 unsigned ValID = GlobalInitWorklist.back().second; 2257 if (ValID >= ValueList.size()) { 2258 // Not ready to resolve this yet, it requires something later in the file. 2259 GlobalInits.push_back(GlobalInitWorklist.back()); 2260 } else { 2261 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2262 GlobalInitWorklist.back().first->setInitializer(C); 2263 else 2264 return error("Expected a constant"); 2265 } 2266 GlobalInitWorklist.pop_back(); 2267 } 2268 2269 while (!IndirectSymbolInitWorklist.empty()) { 2270 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2271 if (ValID >= ValueList.size()) { 2272 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2273 } else { 2274 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2275 if (!C) 2276 return error("Expected a constant"); 2277 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2278 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2279 return error("Alias and aliasee types don't match"); 2280 GIS->setIndirectSymbol(C); 2281 } 2282 IndirectSymbolInitWorklist.pop_back(); 2283 } 2284 2285 while (!FunctionPrefixWorklist.empty()) { 2286 unsigned ValID = FunctionPrefixWorklist.back().second; 2287 if (ValID >= ValueList.size()) { 2288 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2289 } else { 2290 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2291 FunctionPrefixWorklist.back().first->setPrefixData(C); 2292 else 2293 return error("Expected a constant"); 2294 } 2295 FunctionPrefixWorklist.pop_back(); 2296 } 2297 2298 while (!FunctionPrologueWorklist.empty()) { 2299 unsigned ValID = FunctionPrologueWorklist.back().second; 2300 if (ValID >= ValueList.size()) { 2301 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2302 } else { 2303 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2304 FunctionPrologueWorklist.back().first->setPrologueData(C); 2305 else 2306 return error("Expected a constant"); 2307 } 2308 FunctionPrologueWorklist.pop_back(); 2309 } 2310 2311 while (!FunctionPersonalityFnWorklist.empty()) { 2312 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2313 if (ValID >= ValueList.size()) { 2314 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2315 } else { 2316 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2317 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2318 else 2319 return error("Expected a constant"); 2320 } 2321 FunctionPersonalityFnWorklist.pop_back(); 2322 } 2323 2324 return Error::success(); 2325 } 2326 2327 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2328 SmallVector<uint64_t, 8> Words(Vals.size()); 2329 transform(Vals, Words.begin(), 2330 BitcodeReader::decodeSignRotatedValue); 2331 2332 return APInt(TypeBits, Words); 2333 } 2334 2335 Error BitcodeReader::parseConstants() { 2336 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2337 return Err; 2338 2339 SmallVector<uint64_t, 64> Record; 2340 2341 // Read all the records for this value table. 2342 Type *CurTy = Type::getInt32Ty(Context); 2343 Type *CurFullTy = Type::getInt32Ty(Context); 2344 unsigned NextCstNo = ValueList.size(); 2345 2346 struct DelayedShufTy { 2347 VectorType *OpTy; 2348 VectorType *RTy; 2349 Type *CurFullTy; 2350 uint64_t Op0Idx; 2351 uint64_t Op1Idx; 2352 uint64_t Op2Idx; 2353 unsigned CstNo; 2354 }; 2355 std::vector<DelayedShufTy> DelayedShuffles; 2356 while (true) { 2357 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2358 if (!MaybeEntry) 2359 return MaybeEntry.takeError(); 2360 BitstreamEntry Entry = MaybeEntry.get(); 2361 2362 switch (Entry.Kind) { 2363 case BitstreamEntry::SubBlock: // Handled for us already. 2364 case BitstreamEntry::Error: 2365 return error("Malformed block"); 2366 case BitstreamEntry::EndBlock: 2367 // Once all the constants have been read, go through and resolve forward 2368 // references. 2369 // 2370 // We have to treat shuffles specially because they don't have three 2371 // operands anymore. We need to convert the shuffle mask into an array, 2372 // and we can't convert a forward reference. 2373 for (auto &DelayedShuffle : DelayedShuffles) { 2374 VectorType *OpTy = DelayedShuffle.OpTy; 2375 VectorType *RTy = DelayedShuffle.RTy; 2376 uint64_t Op0Idx = DelayedShuffle.Op0Idx; 2377 uint64_t Op1Idx = DelayedShuffle.Op1Idx; 2378 uint64_t Op2Idx = DelayedShuffle.Op2Idx; 2379 uint64_t CstNo = DelayedShuffle.CstNo; 2380 Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy); 2381 Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy); 2382 Type *ShufTy = 2383 VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount()); 2384 Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy); 2385 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 2386 return error("Invalid shufflevector operands"); 2387 SmallVector<int, 16> Mask; 2388 ShuffleVectorInst::getShuffleMask(Op2, Mask); 2389 Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask); 2390 ValueList.assignValue(V, CstNo, DelayedShuffle.CurFullTy); 2391 } 2392 2393 if (NextCstNo != ValueList.size()) 2394 return error("Invalid constant reference"); 2395 2396 ValueList.resolveConstantForwardRefs(); 2397 return Error::success(); 2398 case BitstreamEntry::Record: 2399 // The interesting case. 2400 break; 2401 } 2402 2403 // Read a record. 2404 Record.clear(); 2405 Type *VoidType = Type::getVoidTy(Context); 2406 Value *V = nullptr; 2407 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 2408 if (!MaybeBitCode) 2409 return MaybeBitCode.takeError(); 2410 switch (unsigned BitCode = MaybeBitCode.get()) { 2411 default: // Default behavior: unknown constant 2412 case bitc::CST_CODE_UNDEF: // UNDEF 2413 V = UndefValue::get(CurTy); 2414 break; 2415 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2416 if (Record.empty()) 2417 return error("Invalid record"); 2418 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2419 return error("Invalid record"); 2420 if (TypeList[Record[0]] == VoidType) 2421 return error("Invalid constant type"); 2422 CurFullTy = TypeList[Record[0]]; 2423 CurTy = flattenPointerTypes(CurFullTy); 2424 continue; // Skip the ValueList manipulation. 2425 case bitc::CST_CODE_NULL: // NULL 2426 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 2427 return error("Invalid type for a constant null value"); 2428 V = Constant::getNullValue(CurTy); 2429 break; 2430 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2431 if (!CurTy->isIntegerTy() || Record.empty()) 2432 return error("Invalid record"); 2433 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2434 break; 2435 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2436 if (!CurTy->isIntegerTy() || Record.empty()) 2437 return error("Invalid record"); 2438 2439 APInt VInt = 2440 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2441 V = ConstantInt::get(Context, VInt); 2442 2443 break; 2444 } 2445 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2446 if (Record.empty()) 2447 return error("Invalid record"); 2448 if (CurTy->isHalfTy()) 2449 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2450 APInt(16, (uint16_t)Record[0]))); 2451 else if (CurTy->isBFloatTy()) 2452 V = ConstantFP::get(Context, APFloat(APFloat::BFloat(), 2453 APInt(16, (uint32_t)Record[0]))); 2454 else if (CurTy->isFloatTy()) 2455 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2456 APInt(32, (uint32_t)Record[0]))); 2457 else if (CurTy->isDoubleTy()) 2458 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2459 APInt(64, Record[0]))); 2460 else if (CurTy->isX86_FP80Ty()) { 2461 // Bits are not stored the same way as a normal i80 APInt, compensate. 2462 uint64_t Rearrange[2]; 2463 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2464 Rearrange[1] = Record[0] >> 48; 2465 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2466 APInt(80, Rearrange))); 2467 } else if (CurTy->isFP128Ty()) 2468 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2469 APInt(128, Record))); 2470 else if (CurTy->isPPC_FP128Ty()) 2471 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2472 APInt(128, Record))); 2473 else 2474 V = UndefValue::get(CurTy); 2475 break; 2476 } 2477 2478 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2479 if (Record.empty()) 2480 return error("Invalid record"); 2481 2482 unsigned Size = Record.size(); 2483 SmallVector<Constant*, 16> Elts; 2484 2485 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2486 for (unsigned i = 0; i != Size; ++i) 2487 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2488 STy->getElementType(i))); 2489 V = ConstantStruct::get(STy, Elts); 2490 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2491 Type *EltTy = ATy->getElementType(); 2492 for (unsigned i = 0; i != Size; ++i) 2493 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2494 V = ConstantArray::get(ATy, Elts); 2495 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2496 Type *EltTy = VTy->getElementType(); 2497 for (unsigned i = 0; i != Size; ++i) 2498 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2499 V = ConstantVector::get(Elts); 2500 } else { 2501 V = UndefValue::get(CurTy); 2502 } 2503 break; 2504 } 2505 case bitc::CST_CODE_STRING: // STRING: [values] 2506 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2507 if (Record.empty()) 2508 return error("Invalid record"); 2509 2510 SmallString<16> Elts(Record.begin(), Record.end()); 2511 V = ConstantDataArray::getString(Context, Elts, 2512 BitCode == bitc::CST_CODE_CSTRING); 2513 break; 2514 } 2515 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2516 if (Record.empty()) 2517 return error("Invalid record"); 2518 2519 Type *EltTy; 2520 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 2521 EltTy = Array->getElementType(); 2522 else 2523 EltTy = cast<VectorType>(CurTy)->getElementType(); 2524 if (EltTy->isIntegerTy(8)) { 2525 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2526 if (isa<VectorType>(CurTy)) 2527 V = ConstantDataVector::get(Context, Elts); 2528 else 2529 V = ConstantDataArray::get(Context, Elts); 2530 } else if (EltTy->isIntegerTy(16)) { 2531 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2532 if (isa<VectorType>(CurTy)) 2533 V = ConstantDataVector::get(Context, Elts); 2534 else 2535 V = ConstantDataArray::get(Context, Elts); 2536 } else if (EltTy->isIntegerTy(32)) { 2537 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2538 if (isa<VectorType>(CurTy)) 2539 V = ConstantDataVector::get(Context, Elts); 2540 else 2541 V = ConstantDataArray::get(Context, Elts); 2542 } else if (EltTy->isIntegerTy(64)) { 2543 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2544 if (isa<VectorType>(CurTy)) 2545 V = ConstantDataVector::get(Context, Elts); 2546 else 2547 V = ConstantDataArray::get(Context, Elts); 2548 } else if (EltTy->isHalfTy()) { 2549 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2550 if (isa<VectorType>(CurTy)) 2551 V = ConstantDataVector::getFP(EltTy, Elts); 2552 else 2553 V = ConstantDataArray::getFP(EltTy, Elts); 2554 } else if (EltTy->isBFloatTy()) { 2555 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2556 if (isa<VectorType>(CurTy)) 2557 V = ConstantDataVector::getFP(EltTy, Elts); 2558 else 2559 V = ConstantDataArray::getFP(EltTy, Elts); 2560 } else if (EltTy->isFloatTy()) { 2561 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2562 if (isa<VectorType>(CurTy)) 2563 V = ConstantDataVector::getFP(EltTy, Elts); 2564 else 2565 V = ConstantDataArray::getFP(EltTy, Elts); 2566 } else if (EltTy->isDoubleTy()) { 2567 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2568 if (isa<VectorType>(CurTy)) 2569 V = ConstantDataVector::getFP(EltTy, Elts); 2570 else 2571 V = ConstantDataArray::getFP(EltTy, Elts); 2572 } else { 2573 return error("Invalid type for value"); 2574 } 2575 break; 2576 } 2577 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 2578 if (Record.size() < 2) 2579 return error("Invalid record"); 2580 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 2581 if (Opc < 0) { 2582 V = UndefValue::get(CurTy); // Unknown unop. 2583 } else { 2584 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2585 unsigned Flags = 0; 2586 V = ConstantExpr::get(Opc, LHS, Flags); 2587 } 2588 break; 2589 } 2590 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2591 if (Record.size() < 3) 2592 return error("Invalid record"); 2593 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2594 if (Opc < 0) { 2595 V = UndefValue::get(CurTy); // Unknown binop. 2596 } else { 2597 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2598 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2599 unsigned Flags = 0; 2600 if (Record.size() >= 4) { 2601 if (Opc == Instruction::Add || 2602 Opc == Instruction::Sub || 2603 Opc == Instruction::Mul || 2604 Opc == Instruction::Shl) { 2605 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2606 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2607 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2608 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2609 } else if (Opc == Instruction::SDiv || 2610 Opc == Instruction::UDiv || 2611 Opc == Instruction::LShr || 2612 Opc == Instruction::AShr) { 2613 if (Record[3] & (1 << bitc::PEO_EXACT)) 2614 Flags |= SDivOperator::IsExact; 2615 } 2616 } 2617 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2618 } 2619 break; 2620 } 2621 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2622 if (Record.size() < 3) 2623 return error("Invalid record"); 2624 int Opc = getDecodedCastOpcode(Record[0]); 2625 if (Opc < 0) { 2626 V = UndefValue::get(CurTy); // Unknown cast. 2627 } else { 2628 Type *OpTy = getTypeByID(Record[1]); 2629 if (!OpTy) 2630 return error("Invalid record"); 2631 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2632 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2633 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2634 } 2635 break; 2636 } 2637 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2638 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2639 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2640 // operands] 2641 unsigned OpNum = 0; 2642 Type *PointeeType = nullptr; 2643 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2644 Record.size() % 2) 2645 PointeeType = getTypeByID(Record[OpNum++]); 2646 2647 bool InBounds = false; 2648 Optional<unsigned> InRangeIndex; 2649 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2650 uint64_t Op = Record[OpNum++]; 2651 InBounds = Op & 1; 2652 InRangeIndex = Op >> 1; 2653 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2654 InBounds = true; 2655 2656 SmallVector<Constant*, 16> Elts; 2657 Type *Elt0FullTy = nullptr; 2658 while (OpNum != Record.size()) { 2659 if (!Elt0FullTy) 2660 Elt0FullTy = getFullyStructuredTypeByID(Record[OpNum]); 2661 Type *ElTy = getTypeByID(Record[OpNum++]); 2662 if (!ElTy) 2663 return error("Invalid record"); 2664 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2665 } 2666 2667 if (Elts.size() < 1) 2668 return error("Invalid gep with no operands"); 2669 2670 Type *ImplicitPointeeType = 2671 getPointerElementFlatType(Elt0FullTy->getScalarType()); 2672 if (!PointeeType) 2673 PointeeType = ImplicitPointeeType; 2674 else if (PointeeType != ImplicitPointeeType) 2675 return error("Explicit gep operator type does not match pointee type " 2676 "of pointer operand"); 2677 2678 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2679 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2680 InBounds, InRangeIndex); 2681 break; 2682 } 2683 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2684 if (Record.size() < 3) 2685 return error("Invalid record"); 2686 2687 Type *SelectorTy = Type::getInt1Ty(Context); 2688 2689 // The selector might be an i1, an <n x i1>, or a <vscale x n x i1> 2690 // Get the type from the ValueList before getting a forward ref. 2691 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2692 if (Value *V = ValueList[Record[0]]) 2693 if (SelectorTy != V->getType()) 2694 SelectorTy = VectorType::get(SelectorTy, 2695 VTy->getElementCount()); 2696 2697 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2698 SelectorTy), 2699 ValueList.getConstantFwdRef(Record[1],CurTy), 2700 ValueList.getConstantFwdRef(Record[2],CurTy)); 2701 break; 2702 } 2703 case bitc::CST_CODE_CE_EXTRACTELT 2704 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2705 if (Record.size() < 3) 2706 return error("Invalid record"); 2707 VectorType *OpTy = 2708 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2709 if (!OpTy) 2710 return error("Invalid record"); 2711 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2712 Constant *Op1 = nullptr; 2713 if (Record.size() == 4) { 2714 Type *IdxTy = getTypeByID(Record[2]); 2715 if (!IdxTy) 2716 return error("Invalid record"); 2717 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2718 } else { 2719 // Deprecated, but still needed to read old bitcode files. 2720 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2721 } 2722 if (!Op1) 2723 return error("Invalid record"); 2724 V = ConstantExpr::getExtractElement(Op0, Op1); 2725 break; 2726 } 2727 case bitc::CST_CODE_CE_INSERTELT 2728 : { // CE_INSERTELT: [opval, opval, opty, opval] 2729 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2730 if (Record.size() < 3 || !OpTy) 2731 return error("Invalid record"); 2732 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2733 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2734 OpTy->getElementType()); 2735 Constant *Op2 = nullptr; 2736 if (Record.size() == 4) { 2737 Type *IdxTy = getTypeByID(Record[2]); 2738 if (!IdxTy) 2739 return error("Invalid record"); 2740 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2741 } else { 2742 // Deprecated, but still needed to read old bitcode files. 2743 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2744 } 2745 if (!Op2) 2746 return error("Invalid record"); 2747 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2748 break; 2749 } 2750 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2751 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2752 if (Record.size() < 3 || !OpTy) 2753 return error("Invalid record"); 2754 DelayedShuffles.push_back( 2755 {OpTy, OpTy, CurFullTy, Record[0], Record[1], Record[2], NextCstNo}); 2756 ++NextCstNo; 2757 continue; 2758 } 2759 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2760 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2761 VectorType *OpTy = 2762 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2763 if (Record.size() < 4 || !RTy || !OpTy) 2764 return error("Invalid record"); 2765 DelayedShuffles.push_back( 2766 {OpTy, RTy, CurFullTy, Record[1], Record[2], Record[3], NextCstNo}); 2767 ++NextCstNo; 2768 continue; 2769 } 2770 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2771 if (Record.size() < 4) 2772 return error("Invalid record"); 2773 Type *OpTy = getTypeByID(Record[0]); 2774 if (!OpTy) 2775 return error("Invalid record"); 2776 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2777 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2778 2779 if (OpTy->isFPOrFPVectorTy()) 2780 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2781 else 2782 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2783 break; 2784 } 2785 // This maintains backward compatibility, pre-asm dialect keywords. 2786 // Deprecated, but still needed to read old bitcode files. 2787 case bitc::CST_CODE_INLINEASM_OLD: { 2788 if (Record.size() < 2) 2789 return error("Invalid record"); 2790 std::string AsmStr, ConstrStr; 2791 bool HasSideEffects = Record[0] & 1; 2792 bool IsAlignStack = Record[0] >> 1; 2793 unsigned AsmStrSize = Record[1]; 2794 if (2+AsmStrSize >= Record.size()) 2795 return error("Invalid record"); 2796 unsigned ConstStrSize = Record[2+AsmStrSize]; 2797 if (3+AsmStrSize+ConstStrSize > Record.size()) 2798 return error("Invalid record"); 2799 2800 for (unsigned i = 0; i != AsmStrSize; ++i) 2801 AsmStr += (char)Record[2+i]; 2802 for (unsigned i = 0; i != ConstStrSize; ++i) 2803 ConstrStr += (char)Record[3+AsmStrSize+i]; 2804 UpgradeInlineAsmString(&AsmStr); 2805 V = InlineAsm::get( 2806 cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr, 2807 ConstrStr, HasSideEffects, IsAlignStack); 2808 break; 2809 } 2810 // This version adds support for the asm dialect keywords (e.g., 2811 // inteldialect). 2812 case bitc::CST_CODE_INLINEASM: { 2813 if (Record.size() < 2) 2814 return error("Invalid record"); 2815 std::string AsmStr, ConstrStr; 2816 bool HasSideEffects = Record[0] & 1; 2817 bool IsAlignStack = (Record[0] >> 1) & 1; 2818 unsigned AsmDialect = Record[0] >> 2; 2819 unsigned AsmStrSize = Record[1]; 2820 if (2+AsmStrSize >= Record.size()) 2821 return error("Invalid record"); 2822 unsigned ConstStrSize = Record[2+AsmStrSize]; 2823 if (3+AsmStrSize+ConstStrSize > Record.size()) 2824 return error("Invalid record"); 2825 2826 for (unsigned i = 0; i != AsmStrSize; ++i) 2827 AsmStr += (char)Record[2+i]; 2828 for (unsigned i = 0; i != ConstStrSize; ++i) 2829 ConstrStr += (char)Record[3+AsmStrSize+i]; 2830 UpgradeInlineAsmString(&AsmStr); 2831 V = InlineAsm::get( 2832 cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr, 2833 ConstrStr, HasSideEffects, IsAlignStack, 2834 InlineAsm::AsmDialect(AsmDialect)); 2835 break; 2836 } 2837 case bitc::CST_CODE_BLOCKADDRESS:{ 2838 if (Record.size() < 3) 2839 return error("Invalid record"); 2840 Type *FnTy = getTypeByID(Record[0]); 2841 if (!FnTy) 2842 return error("Invalid record"); 2843 Function *Fn = 2844 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2845 if (!Fn) 2846 return error("Invalid record"); 2847 2848 // If the function is already parsed we can insert the block address right 2849 // away. 2850 BasicBlock *BB; 2851 unsigned BBID = Record[2]; 2852 if (!BBID) 2853 // Invalid reference to entry block. 2854 return error("Invalid ID"); 2855 if (!Fn->empty()) { 2856 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2857 for (size_t I = 0, E = BBID; I != E; ++I) { 2858 if (BBI == BBE) 2859 return error("Invalid ID"); 2860 ++BBI; 2861 } 2862 BB = &*BBI; 2863 } else { 2864 // Otherwise insert a placeholder and remember it so it can be inserted 2865 // when the function is parsed. 2866 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2867 if (FwdBBs.empty()) 2868 BasicBlockFwdRefQueue.push_back(Fn); 2869 if (FwdBBs.size() < BBID + 1) 2870 FwdBBs.resize(BBID + 1); 2871 if (!FwdBBs[BBID]) 2872 FwdBBs[BBID] = BasicBlock::Create(Context); 2873 BB = FwdBBs[BBID]; 2874 } 2875 V = BlockAddress::get(Fn, BB); 2876 break; 2877 } 2878 } 2879 2880 assert(V->getType() == flattenPointerTypes(CurFullTy) && 2881 "Incorrect fully structured type provided for Constant"); 2882 ValueList.assignValue(V, NextCstNo, CurFullTy); 2883 ++NextCstNo; 2884 } 2885 } 2886 2887 Error BitcodeReader::parseUseLists() { 2888 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2889 return Err; 2890 2891 // Read all the records. 2892 SmallVector<uint64_t, 64> Record; 2893 2894 while (true) { 2895 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2896 if (!MaybeEntry) 2897 return MaybeEntry.takeError(); 2898 BitstreamEntry Entry = MaybeEntry.get(); 2899 2900 switch (Entry.Kind) { 2901 case BitstreamEntry::SubBlock: // Handled for us already. 2902 case BitstreamEntry::Error: 2903 return error("Malformed block"); 2904 case BitstreamEntry::EndBlock: 2905 return Error::success(); 2906 case BitstreamEntry::Record: 2907 // The interesting case. 2908 break; 2909 } 2910 2911 // Read a use list record. 2912 Record.clear(); 2913 bool IsBB = false; 2914 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2915 if (!MaybeRecord) 2916 return MaybeRecord.takeError(); 2917 switch (MaybeRecord.get()) { 2918 default: // Default behavior: unknown type. 2919 break; 2920 case bitc::USELIST_CODE_BB: 2921 IsBB = true; 2922 LLVM_FALLTHROUGH; 2923 case bitc::USELIST_CODE_DEFAULT: { 2924 unsigned RecordLength = Record.size(); 2925 if (RecordLength < 3) 2926 // Records should have at least an ID and two indexes. 2927 return error("Invalid record"); 2928 unsigned ID = Record.back(); 2929 Record.pop_back(); 2930 2931 Value *V; 2932 if (IsBB) { 2933 assert(ID < FunctionBBs.size() && "Basic block not found"); 2934 V = FunctionBBs[ID]; 2935 } else 2936 V = ValueList[ID]; 2937 unsigned NumUses = 0; 2938 SmallDenseMap<const Use *, unsigned, 16> Order; 2939 for (const Use &U : V->materialized_uses()) { 2940 if (++NumUses > Record.size()) 2941 break; 2942 Order[&U] = Record[NumUses - 1]; 2943 } 2944 if (Order.size() != Record.size() || NumUses > Record.size()) 2945 // Mismatches can happen if the functions are being materialized lazily 2946 // (out-of-order), or a value has been upgraded. 2947 break; 2948 2949 V->sortUseList([&](const Use &L, const Use &R) { 2950 return Order.lookup(&L) < Order.lookup(&R); 2951 }); 2952 break; 2953 } 2954 } 2955 } 2956 } 2957 2958 /// When we see the block for metadata, remember where it is and then skip it. 2959 /// This lets us lazily deserialize the metadata. 2960 Error BitcodeReader::rememberAndSkipMetadata() { 2961 // Save the current stream state. 2962 uint64_t CurBit = Stream.GetCurrentBitNo(); 2963 DeferredMetadataInfo.push_back(CurBit); 2964 2965 // Skip over the block for now. 2966 if (Error Err = Stream.SkipBlock()) 2967 return Err; 2968 return Error::success(); 2969 } 2970 2971 Error BitcodeReader::materializeMetadata() { 2972 for (uint64_t BitPos : DeferredMetadataInfo) { 2973 // Move the bit stream to the saved position. 2974 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 2975 return JumpFailed; 2976 if (Error Err = MDLoader->parseModuleMetadata()) 2977 return Err; 2978 } 2979 2980 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 2981 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 2982 // multiple times. 2983 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 2984 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 2985 NamedMDNode *LinkerOpts = 2986 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 2987 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 2988 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 2989 } 2990 } 2991 2992 DeferredMetadataInfo.clear(); 2993 return Error::success(); 2994 } 2995 2996 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2997 2998 /// When we see the block for a function body, remember where it is and then 2999 /// skip it. This lets us lazily deserialize the functions. 3000 Error BitcodeReader::rememberAndSkipFunctionBody() { 3001 // Get the function we are talking about. 3002 if (FunctionsWithBodies.empty()) 3003 return error("Insufficient function protos"); 3004 3005 Function *Fn = FunctionsWithBodies.back(); 3006 FunctionsWithBodies.pop_back(); 3007 3008 // Save the current stream state. 3009 uint64_t CurBit = Stream.GetCurrentBitNo(); 3010 assert( 3011 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3012 "Mismatch between VST and scanned function offsets"); 3013 DeferredFunctionInfo[Fn] = CurBit; 3014 3015 // Skip over the function block for now. 3016 if (Error Err = Stream.SkipBlock()) 3017 return Err; 3018 return Error::success(); 3019 } 3020 3021 Error BitcodeReader::globalCleanup() { 3022 // Patch the initializers for globals and aliases up. 3023 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3024 return Err; 3025 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3026 return error("Malformed global initializer set"); 3027 3028 // Look for intrinsic functions which need to be upgraded at some point 3029 // and functions that need to have their function attributes upgraded. 3030 for (Function &F : *TheModule) { 3031 MDLoader->upgradeDebugIntrinsics(F); 3032 Function *NewFn; 3033 if (UpgradeIntrinsicFunction(&F, NewFn)) 3034 UpgradedIntrinsics[&F] = NewFn; 3035 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 3036 // Some types could be renamed during loading if several modules are 3037 // loaded in the same LLVMContext (LTO scenario). In this case we should 3038 // remangle intrinsics names as well. 3039 RemangledIntrinsics[&F] = Remangled.getValue(); 3040 // Look for functions that rely on old function attribute behavior. 3041 UpgradeFunctionAttributes(F); 3042 } 3043 3044 // Look for global variables which need to be renamed. 3045 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3046 for (GlobalVariable &GV : TheModule->globals()) 3047 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3048 UpgradedVariables.emplace_back(&GV, Upgraded); 3049 for (auto &Pair : UpgradedVariables) { 3050 Pair.first->eraseFromParent(); 3051 TheModule->getGlobalList().push_back(Pair.second); 3052 } 3053 3054 // Force deallocation of memory for these vectors to favor the client that 3055 // want lazy deserialization. 3056 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3057 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap( 3058 IndirectSymbolInits); 3059 return Error::success(); 3060 } 3061 3062 /// Support for lazy parsing of function bodies. This is required if we 3063 /// either have an old bitcode file without a VST forward declaration record, 3064 /// or if we have an anonymous function being materialized, since anonymous 3065 /// functions do not have a name and are therefore not in the VST. 3066 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3067 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3068 return JumpFailed; 3069 3070 if (Stream.AtEndOfStream()) 3071 return error("Could not find function in stream"); 3072 3073 if (!SeenFirstFunctionBody) 3074 return error("Trying to materialize functions before seeing function blocks"); 3075 3076 // An old bitcode file with the symbol table at the end would have 3077 // finished the parse greedily. 3078 assert(SeenValueSymbolTable); 3079 3080 SmallVector<uint64_t, 64> Record; 3081 3082 while (true) { 3083 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3084 if (!MaybeEntry) 3085 return MaybeEntry.takeError(); 3086 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3087 3088 switch (Entry.Kind) { 3089 default: 3090 return error("Expect SubBlock"); 3091 case BitstreamEntry::SubBlock: 3092 switch (Entry.ID) { 3093 default: 3094 return error("Expect function block"); 3095 case bitc::FUNCTION_BLOCK_ID: 3096 if (Error Err = rememberAndSkipFunctionBody()) 3097 return Err; 3098 NextUnreadBit = Stream.GetCurrentBitNo(); 3099 return Error::success(); 3100 } 3101 } 3102 } 3103 } 3104 3105 bool BitcodeReaderBase::readBlockInfo() { 3106 Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3107 Stream.ReadBlockInfoBlock(); 3108 if (!MaybeNewBlockInfo) 3109 return true; // FIXME Handle the error. 3110 Optional<BitstreamBlockInfo> NewBlockInfo = 3111 std::move(MaybeNewBlockInfo.get()); 3112 if (!NewBlockInfo) 3113 return true; 3114 BlockInfo = std::move(*NewBlockInfo); 3115 return false; 3116 } 3117 3118 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3119 // v1: [selection_kind, name] 3120 // v2: [strtab_offset, strtab_size, selection_kind] 3121 StringRef Name; 3122 std::tie(Name, Record) = readNameFromStrtab(Record); 3123 3124 if (Record.empty()) 3125 return error("Invalid record"); 3126 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3127 std::string OldFormatName; 3128 if (!UseStrtab) { 3129 if (Record.size() < 2) 3130 return error("Invalid record"); 3131 unsigned ComdatNameSize = Record[1]; 3132 OldFormatName.reserve(ComdatNameSize); 3133 for (unsigned i = 0; i != ComdatNameSize; ++i) 3134 OldFormatName += (char)Record[2 + i]; 3135 Name = OldFormatName; 3136 } 3137 Comdat *C = TheModule->getOrInsertComdat(Name); 3138 C->setSelectionKind(SK); 3139 ComdatList.push_back(C); 3140 return Error::success(); 3141 } 3142 3143 static void inferDSOLocal(GlobalValue *GV) { 3144 // infer dso_local from linkage and visibility if it is not encoded. 3145 if (GV->hasLocalLinkage() || 3146 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3147 GV->setDSOLocal(true); 3148 } 3149 3150 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3151 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3152 // visibility, threadlocal, unnamed_addr, externally_initialized, 3153 // dllstorageclass, comdat, attributes, preemption specifier, 3154 // partition strtab offset, partition strtab size] (name in VST) 3155 // v2: [strtab_offset, strtab_size, v1] 3156 StringRef Name; 3157 std::tie(Name, Record) = readNameFromStrtab(Record); 3158 3159 if (Record.size() < 6) 3160 return error("Invalid record"); 3161 Type *FullTy = getFullyStructuredTypeByID(Record[0]); 3162 Type *Ty = flattenPointerTypes(FullTy); 3163 if (!Ty) 3164 return error("Invalid record"); 3165 bool isConstant = Record[1] & 1; 3166 bool explicitType = Record[1] & 2; 3167 unsigned AddressSpace; 3168 if (explicitType) { 3169 AddressSpace = Record[1] >> 2; 3170 } else { 3171 if (!Ty->isPointerTy()) 3172 return error("Invalid type for value"); 3173 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3174 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 3175 } 3176 3177 uint64_t RawLinkage = Record[3]; 3178 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3179 MaybeAlign Alignment; 3180 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3181 return Err; 3182 std::string Section; 3183 if (Record[5]) { 3184 if (Record[5] - 1 >= SectionTable.size()) 3185 return error("Invalid ID"); 3186 Section = SectionTable[Record[5] - 1]; 3187 } 3188 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3189 // Local linkage must have default visibility. 3190 // auto-upgrade `hidden` and `protected` for old bitcode. 3191 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3192 Visibility = getDecodedVisibility(Record[6]); 3193 3194 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3195 if (Record.size() > 7) 3196 TLM = getDecodedThreadLocalMode(Record[7]); 3197 3198 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3199 if (Record.size() > 8) 3200 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3201 3202 bool ExternallyInitialized = false; 3203 if (Record.size() > 9) 3204 ExternallyInitialized = Record[9]; 3205 3206 GlobalVariable *NewGV = 3207 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3208 nullptr, TLM, AddressSpace, ExternallyInitialized); 3209 NewGV->setAlignment(Alignment); 3210 if (!Section.empty()) 3211 NewGV->setSection(Section); 3212 NewGV->setVisibility(Visibility); 3213 NewGV->setUnnamedAddr(UnnamedAddr); 3214 3215 if (Record.size() > 10) 3216 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3217 else 3218 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3219 3220 FullTy = PointerType::get(FullTy, AddressSpace); 3221 assert(NewGV->getType() == flattenPointerTypes(FullTy) && 3222 "Incorrect fully specified type for GlobalVariable"); 3223 ValueList.push_back(NewGV, FullTy); 3224 3225 // Remember which value to use for the global initializer. 3226 if (unsigned InitID = Record[2]) 3227 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3228 3229 if (Record.size() > 11) { 3230 if (unsigned ComdatID = Record[11]) { 3231 if (ComdatID > ComdatList.size()) 3232 return error("Invalid global variable comdat ID"); 3233 NewGV->setComdat(ComdatList[ComdatID - 1]); 3234 } 3235 } else if (hasImplicitComdat(RawLinkage)) { 3236 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3237 } 3238 3239 if (Record.size() > 12) { 3240 auto AS = getAttributes(Record[12]).getFnAttributes(); 3241 NewGV->setAttributes(AS); 3242 } 3243 3244 if (Record.size() > 13) { 3245 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3246 } 3247 inferDSOLocal(NewGV); 3248 3249 // Check whether we have enough values to read a partition name. 3250 if (Record.size() > 15) 3251 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3252 3253 return Error::success(); 3254 } 3255 3256 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3257 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3258 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3259 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3260 // v2: [strtab_offset, strtab_size, v1] 3261 StringRef Name; 3262 std::tie(Name, Record) = readNameFromStrtab(Record); 3263 3264 if (Record.size() < 8) 3265 return error("Invalid record"); 3266 Type *FullFTy = getFullyStructuredTypeByID(Record[0]); 3267 Type *FTy = flattenPointerTypes(FullFTy); 3268 if (!FTy) 3269 return error("Invalid record"); 3270 if (isa<PointerType>(FTy)) 3271 std::tie(FullFTy, FTy) = getPointerElementTypes(FullFTy); 3272 3273 if (!isa<FunctionType>(FTy)) 3274 return error("Invalid type for value"); 3275 auto CC = static_cast<CallingConv::ID>(Record[1]); 3276 if (CC & ~CallingConv::MaxID) 3277 return error("Invalid calling convention ID"); 3278 3279 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3280 if (Record.size() > 16) 3281 AddrSpace = Record[16]; 3282 3283 Function *Func = 3284 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 3285 AddrSpace, Name, TheModule); 3286 3287 assert(Func->getFunctionType() == flattenPointerTypes(FullFTy) && 3288 "Incorrect fully specified type provided for function"); 3289 FunctionTypes[Func] = cast<FunctionType>(FullFTy); 3290 3291 Func->setCallingConv(CC); 3292 bool isProto = Record[2]; 3293 uint64_t RawLinkage = Record[3]; 3294 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3295 Func->setAttributes(getAttributes(Record[4])); 3296 3297 // Upgrade any old-style byval or sret without a type by propagating the 3298 // argument's pointee type. There should be no opaque pointers where the byval 3299 // type is implicit. 3300 for (unsigned i = 0; i != Func->arg_size(); ++i) { 3301 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet}) { 3302 if (!Func->hasParamAttribute(i, Kind)) 3303 continue; 3304 3305 Func->removeParamAttr(i, Kind); 3306 3307 Type *PTy = cast<FunctionType>(FullFTy)->getParamType(i); 3308 Type *PtrEltTy = getPointerElementFlatType(PTy); 3309 Attribute NewAttr = 3310 Kind == Attribute::ByVal 3311 ? Attribute::getWithByValType(Context, PtrEltTy) 3312 : Attribute::getWithStructRetType(Context, PtrEltTy); 3313 Func->addParamAttr(i, NewAttr); 3314 } 3315 } 3316 3317 MaybeAlign Alignment; 3318 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 3319 return Err; 3320 Func->setAlignment(Alignment); 3321 if (Record[6]) { 3322 if (Record[6] - 1 >= SectionTable.size()) 3323 return error("Invalid ID"); 3324 Func->setSection(SectionTable[Record[6] - 1]); 3325 } 3326 // Local linkage must have default visibility. 3327 // auto-upgrade `hidden` and `protected` for old bitcode. 3328 if (!Func->hasLocalLinkage()) 3329 Func->setVisibility(getDecodedVisibility(Record[7])); 3330 if (Record.size() > 8 && Record[8]) { 3331 if (Record[8] - 1 >= GCTable.size()) 3332 return error("Invalid ID"); 3333 Func->setGC(GCTable[Record[8] - 1]); 3334 } 3335 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3336 if (Record.size() > 9) 3337 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3338 Func->setUnnamedAddr(UnnamedAddr); 3339 if (Record.size() > 10 && Record[10] != 0) 3340 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 3341 3342 if (Record.size() > 11) 3343 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3344 else 3345 upgradeDLLImportExportLinkage(Func, RawLinkage); 3346 3347 if (Record.size() > 12) { 3348 if (unsigned ComdatID = Record[12]) { 3349 if (ComdatID > ComdatList.size()) 3350 return error("Invalid function comdat ID"); 3351 Func->setComdat(ComdatList[ComdatID - 1]); 3352 } 3353 } else if (hasImplicitComdat(RawLinkage)) { 3354 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3355 } 3356 3357 if (Record.size() > 13 && Record[13] != 0) 3358 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 3359 3360 if (Record.size() > 14 && Record[14] != 0) 3361 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3362 3363 if (Record.size() > 15) { 3364 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3365 } 3366 inferDSOLocal(Func); 3367 3368 // Record[16] is the address space number. 3369 3370 // Check whether we have enough values to read a partition name. 3371 if (Record.size() > 18) 3372 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 3373 3374 Type *FullTy = PointerType::get(FullFTy, AddrSpace); 3375 assert(Func->getType() == flattenPointerTypes(FullTy) && 3376 "Incorrect fully specified type provided for Function"); 3377 ValueList.push_back(Func, FullTy); 3378 3379 // If this is a function with a body, remember the prototype we are 3380 // creating now, so that we can match up the body with them later. 3381 if (!isProto) { 3382 Func->setIsMaterializable(true); 3383 FunctionsWithBodies.push_back(Func); 3384 DeferredFunctionInfo[Func] = 0; 3385 } 3386 return Error::success(); 3387 } 3388 3389 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3390 unsigned BitCode, ArrayRef<uint64_t> Record) { 3391 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3392 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3393 // dllstorageclass, threadlocal, unnamed_addr, 3394 // preemption specifier] (name in VST) 3395 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3396 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3397 // preemption specifier] (name in VST) 3398 // v2: [strtab_offset, strtab_size, v1] 3399 StringRef Name; 3400 std::tie(Name, Record) = readNameFromStrtab(Record); 3401 3402 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3403 if (Record.size() < (3 + (unsigned)NewRecord)) 3404 return error("Invalid record"); 3405 unsigned OpNum = 0; 3406 Type *FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 3407 Type *Ty = flattenPointerTypes(FullTy); 3408 if (!Ty) 3409 return error("Invalid record"); 3410 3411 unsigned AddrSpace; 3412 if (!NewRecord) { 3413 auto *PTy = dyn_cast<PointerType>(Ty); 3414 if (!PTy) 3415 return error("Invalid type for value"); 3416 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 3417 AddrSpace = PTy->getAddressSpace(); 3418 } else { 3419 AddrSpace = Record[OpNum++]; 3420 } 3421 3422 auto Val = Record[OpNum++]; 3423 auto Linkage = Record[OpNum++]; 3424 GlobalIndirectSymbol *NewGA; 3425 if (BitCode == bitc::MODULE_CODE_ALIAS || 3426 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3427 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3428 TheModule); 3429 else 3430 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3431 nullptr, TheModule); 3432 3433 assert(NewGA->getValueType() == flattenPointerTypes(FullTy) && 3434 "Incorrect fully structured type provided for GlobalIndirectSymbol"); 3435 // Local linkage must have default visibility. 3436 // auto-upgrade `hidden` and `protected` for old bitcode. 3437 if (OpNum != Record.size()) { 3438 auto VisInd = OpNum++; 3439 if (!NewGA->hasLocalLinkage()) 3440 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3441 } 3442 if (BitCode == bitc::MODULE_CODE_ALIAS || 3443 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3444 if (OpNum != Record.size()) 3445 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3446 else 3447 upgradeDLLImportExportLinkage(NewGA, Linkage); 3448 if (OpNum != Record.size()) 3449 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3450 if (OpNum != Record.size()) 3451 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3452 } 3453 if (OpNum != Record.size()) 3454 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3455 inferDSOLocal(NewGA); 3456 3457 // Check whether we have enough values to read a partition name. 3458 if (OpNum + 1 < Record.size()) { 3459 NewGA->setPartition( 3460 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 3461 OpNum += 2; 3462 } 3463 3464 FullTy = PointerType::get(FullTy, AddrSpace); 3465 assert(NewGA->getType() == flattenPointerTypes(FullTy) && 3466 "Incorrect fully structured type provided for GlobalIndirectSymbol"); 3467 ValueList.push_back(NewGA, FullTy); 3468 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3469 return Error::success(); 3470 } 3471 3472 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3473 bool ShouldLazyLoadMetadata, 3474 DataLayoutCallbackTy DataLayoutCallback) { 3475 if (ResumeBit) { 3476 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 3477 return JumpFailed; 3478 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3479 return Err; 3480 3481 SmallVector<uint64_t, 64> Record; 3482 3483 // Parts of bitcode parsing depend on the datalayout. Make sure we 3484 // finalize the datalayout before we run any of that code. 3485 bool ResolvedDataLayout = false; 3486 auto ResolveDataLayout = [&] { 3487 if (ResolvedDataLayout) 3488 return; 3489 3490 // datalayout and triple can't be parsed after this point. 3491 ResolvedDataLayout = true; 3492 3493 // Upgrade data layout string. 3494 std::string DL = llvm::UpgradeDataLayoutString( 3495 TheModule->getDataLayoutStr(), TheModule->getTargetTriple()); 3496 TheModule->setDataLayout(DL); 3497 3498 if (auto LayoutOverride = 3499 DataLayoutCallback(TheModule->getTargetTriple())) 3500 TheModule->setDataLayout(*LayoutOverride); 3501 }; 3502 3503 // Read all the records for this module. 3504 while (true) { 3505 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3506 if (!MaybeEntry) 3507 return MaybeEntry.takeError(); 3508 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3509 3510 switch (Entry.Kind) { 3511 case BitstreamEntry::Error: 3512 return error("Malformed block"); 3513 case BitstreamEntry::EndBlock: 3514 ResolveDataLayout(); 3515 return globalCleanup(); 3516 3517 case BitstreamEntry::SubBlock: 3518 switch (Entry.ID) { 3519 default: // Skip unknown content. 3520 if (Error Err = Stream.SkipBlock()) 3521 return Err; 3522 break; 3523 case bitc::BLOCKINFO_BLOCK_ID: 3524 if (readBlockInfo()) 3525 return error("Malformed block"); 3526 break; 3527 case bitc::PARAMATTR_BLOCK_ID: 3528 if (Error Err = parseAttributeBlock()) 3529 return Err; 3530 break; 3531 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3532 if (Error Err = parseAttributeGroupBlock()) 3533 return Err; 3534 break; 3535 case bitc::TYPE_BLOCK_ID_NEW: 3536 if (Error Err = parseTypeTable()) 3537 return Err; 3538 break; 3539 case bitc::VALUE_SYMTAB_BLOCK_ID: 3540 if (!SeenValueSymbolTable) { 3541 // Either this is an old form VST without function index and an 3542 // associated VST forward declaration record (which would have caused 3543 // the VST to be jumped to and parsed before it was encountered 3544 // normally in the stream), or there were no function blocks to 3545 // trigger an earlier parsing of the VST. 3546 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3547 if (Error Err = parseValueSymbolTable()) 3548 return Err; 3549 SeenValueSymbolTable = true; 3550 } else { 3551 // We must have had a VST forward declaration record, which caused 3552 // the parser to jump to and parse the VST earlier. 3553 assert(VSTOffset > 0); 3554 if (Error Err = Stream.SkipBlock()) 3555 return Err; 3556 } 3557 break; 3558 case bitc::CONSTANTS_BLOCK_ID: 3559 if (Error Err = parseConstants()) 3560 return Err; 3561 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3562 return Err; 3563 break; 3564 case bitc::METADATA_BLOCK_ID: 3565 if (ShouldLazyLoadMetadata) { 3566 if (Error Err = rememberAndSkipMetadata()) 3567 return Err; 3568 break; 3569 } 3570 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3571 if (Error Err = MDLoader->parseModuleMetadata()) 3572 return Err; 3573 break; 3574 case bitc::METADATA_KIND_BLOCK_ID: 3575 if (Error Err = MDLoader->parseMetadataKinds()) 3576 return Err; 3577 break; 3578 case bitc::FUNCTION_BLOCK_ID: 3579 ResolveDataLayout(); 3580 3581 // If this is the first function body we've seen, reverse the 3582 // FunctionsWithBodies list. 3583 if (!SeenFirstFunctionBody) { 3584 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3585 if (Error Err = globalCleanup()) 3586 return Err; 3587 SeenFirstFunctionBody = true; 3588 } 3589 3590 if (VSTOffset > 0) { 3591 // If we have a VST forward declaration record, make sure we 3592 // parse the VST now if we haven't already. It is needed to 3593 // set up the DeferredFunctionInfo vector for lazy reading. 3594 if (!SeenValueSymbolTable) { 3595 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3596 return Err; 3597 SeenValueSymbolTable = true; 3598 // Fall through so that we record the NextUnreadBit below. 3599 // This is necessary in case we have an anonymous function that 3600 // is later materialized. Since it will not have a VST entry we 3601 // need to fall back to the lazy parse to find its offset. 3602 } else { 3603 // If we have a VST forward declaration record, but have already 3604 // parsed the VST (just above, when the first function body was 3605 // encountered here), then we are resuming the parse after 3606 // materializing functions. The ResumeBit points to the 3607 // start of the last function block recorded in the 3608 // DeferredFunctionInfo map. Skip it. 3609 if (Error Err = Stream.SkipBlock()) 3610 return Err; 3611 continue; 3612 } 3613 } 3614 3615 // Support older bitcode files that did not have the function 3616 // index in the VST, nor a VST forward declaration record, as 3617 // well as anonymous functions that do not have VST entries. 3618 // Build the DeferredFunctionInfo vector on the fly. 3619 if (Error Err = rememberAndSkipFunctionBody()) 3620 return Err; 3621 3622 // Suspend parsing when we reach the function bodies. Subsequent 3623 // materialization calls will resume it when necessary. If the bitcode 3624 // file is old, the symbol table will be at the end instead and will not 3625 // have been seen yet. In this case, just finish the parse now. 3626 if (SeenValueSymbolTable) { 3627 NextUnreadBit = Stream.GetCurrentBitNo(); 3628 // After the VST has been parsed, we need to make sure intrinsic name 3629 // are auto-upgraded. 3630 return globalCleanup(); 3631 } 3632 break; 3633 case bitc::USELIST_BLOCK_ID: 3634 if (Error Err = parseUseLists()) 3635 return Err; 3636 break; 3637 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3638 if (Error Err = parseOperandBundleTags()) 3639 return Err; 3640 break; 3641 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3642 if (Error Err = parseSyncScopeNames()) 3643 return Err; 3644 break; 3645 } 3646 continue; 3647 3648 case BitstreamEntry::Record: 3649 // The interesting case. 3650 break; 3651 } 3652 3653 // Read a record. 3654 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3655 if (!MaybeBitCode) 3656 return MaybeBitCode.takeError(); 3657 switch (unsigned BitCode = MaybeBitCode.get()) { 3658 default: break; // Default behavior, ignore unknown content. 3659 case bitc::MODULE_CODE_VERSION: { 3660 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3661 if (!VersionOrErr) 3662 return VersionOrErr.takeError(); 3663 UseRelativeIDs = *VersionOrErr >= 1; 3664 break; 3665 } 3666 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3667 if (ResolvedDataLayout) 3668 return error("target triple too late in module"); 3669 std::string S; 3670 if (convertToString(Record, 0, S)) 3671 return error("Invalid record"); 3672 TheModule->setTargetTriple(S); 3673 break; 3674 } 3675 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3676 if (ResolvedDataLayout) 3677 return error("datalayout too late in module"); 3678 std::string S; 3679 if (convertToString(Record, 0, S)) 3680 return error("Invalid record"); 3681 TheModule->setDataLayout(S); 3682 break; 3683 } 3684 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3685 std::string S; 3686 if (convertToString(Record, 0, S)) 3687 return error("Invalid record"); 3688 TheModule->setModuleInlineAsm(S); 3689 break; 3690 } 3691 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3692 // Deprecated, but still needed to read old bitcode files. 3693 std::string S; 3694 if (convertToString(Record, 0, S)) 3695 return error("Invalid record"); 3696 // Ignore value. 3697 break; 3698 } 3699 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3700 std::string S; 3701 if (convertToString(Record, 0, S)) 3702 return error("Invalid record"); 3703 SectionTable.push_back(S); 3704 break; 3705 } 3706 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3707 std::string S; 3708 if (convertToString(Record, 0, S)) 3709 return error("Invalid record"); 3710 GCTable.push_back(S); 3711 break; 3712 } 3713 case bitc::MODULE_CODE_COMDAT: 3714 if (Error Err = parseComdatRecord(Record)) 3715 return Err; 3716 break; 3717 case bitc::MODULE_CODE_GLOBALVAR: 3718 if (Error Err = parseGlobalVarRecord(Record)) 3719 return Err; 3720 break; 3721 case bitc::MODULE_CODE_FUNCTION: 3722 ResolveDataLayout(); 3723 if (Error Err = parseFunctionRecord(Record)) 3724 return Err; 3725 break; 3726 case bitc::MODULE_CODE_IFUNC: 3727 case bitc::MODULE_CODE_ALIAS: 3728 case bitc::MODULE_CODE_ALIAS_OLD: 3729 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3730 return Err; 3731 break; 3732 /// MODULE_CODE_VSTOFFSET: [offset] 3733 case bitc::MODULE_CODE_VSTOFFSET: 3734 if (Record.empty()) 3735 return error("Invalid record"); 3736 // Note that we subtract 1 here because the offset is relative to one word 3737 // before the start of the identification or module block, which was 3738 // historically always the start of the regular bitcode header. 3739 VSTOffset = Record[0] - 1; 3740 break; 3741 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3742 case bitc::MODULE_CODE_SOURCE_FILENAME: 3743 SmallString<128> ValueName; 3744 if (convertToString(Record, 0, ValueName)) 3745 return error("Invalid record"); 3746 TheModule->setSourceFileName(ValueName); 3747 break; 3748 } 3749 Record.clear(); 3750 } 3751 } 3752 3753 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3754 bool IsImporting, 3755 DataLayoutCallbackTy DataLayoutCallback) { 3756 TheModule = M; 3757 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3758 [&](unsigned ID) { return getTypeByID(ID); }); 3759 return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback); 3760 } 3761 3762 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3763 if (!isa<PointerType>(PtrType)) 3764 return error("Load/Store operand is not a pointer type"); 3765 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3766 3767 if (ValType && ValType != ElemType) 3768 return error("Explicit load/store type does not match pointee " 3769 "type of pointer operand"); 3770 if (!PointerType::isLoadableOrStorableType(ElemType)) 3771 return error("Cannot load/store from pointer"); 3772 return Error::success(); 3773 } 3774 3775 void BitcodeReader::propagateByValSRetTypes(CallBase *CB, 3776 ArrayRef<Type *> ArgsFullTys) { 3777 for (unsigned i = 0; i != CB->arg_size(); ++i) { 3778 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet}) { 3779 if (!CB->paramHasAttr(i, Kind)) 3780 continue; 3781 3782 CB->removeParamAttr(i, Kind); 3783 3784 Type *PtrEltTy = getPointerElementFlatType(ArgsFullTys[i]); 3785 Attribute NewAttr = 3786 Kind == Attribute::ByVal 3787 ? Attribute::getWithByValType(Context, PtrEltTy) 3788 : Attribute::getWithStructRetType(Context, PtrEltTy); 3789 CB->addParamAttr(i, NewAttr); 3790 } 3791 } 3792 } 3793 3794 /// Lazily parse the specified function body block. 3795 Error BitcodeReader::parseFunctionBody(Function *F) { 3796 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3797 return Err; 3798 3799 // Unexpected unresolved metadata when parsing function. 3800 if (MDLoader->hasFwdRefs()) 3801 return error("Invalid function metadata: incoming forward references"); 3802 3803 InstructionList.clear(); 3804 unsigned ModuleValueListSize = ValueList.size(); 3805 unsigned ModuleMDLoaderSize = MDLoader->size(); 3806 3807 // Add all the function arguments to the value table. 3808 unsigned ArgNo = 0; 3809 FunctionType *FullFTy = FunctionTypes[F]; 3810 for (Argument &I : F->args()) { 3811 assert(I.getType() == flattenPointerTypes(FullFTy->getParamType(ArgNo)) && 3812 "Incorrect fully specified type for Function Argument"); 3813 ValueList.push_back(&I, FullFTy->getParamType(ArgNo++)); 3814 } 3815 unsigned NextValueNo = ValueList.size(); 3816 BasicBlock *CurBB = nullptr; 3817 unsigned CurBBNo = 0; 3818 3819 DebugLoc LastLoc; 3820 auto getLastInstruction = [&]() -> Instruction * { 3821 if (CurBB && !CurBB->empty()) 3822 return &CurBB->back(); 3823 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3824 !FunctionBBs[CurBBNo - 1]->empty()) 3825 return &FunctionBBs[CurBBNo - 1]->back(); 3826 return nullptr; 3827 }; 3828 3829 std::vector<OperandBundleDef> OperandBundles; 3830 3831 // Read all the records. 3832 SmallVector<uint64_t, 64> Record; 3833 3834 while (true) { 3835 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3836 if (!MaybeEntry) 3837 return MaybeEntry.takeError(); 3838 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3839 3840 switch (Entry.Kind) { 3841 case BitstreamEntry::Error: 3842 return error("Malformed block"); 3843 case BitstreamEntry::EndBlock: 3844 goto OutOfRecordLoop; 3845 3846 case BitstreamEntry::SubBlock: 3847 switch (Entry.ID) { 3848 default: // Skip unknown content. 3849 if (Error Err = Stream.SkipBlock()) 3850 return Err; 3851 break; 3852 case bitc::CONSTANTS_BLOCK_ID: 3853 if (Error Err = parseConstants()) 3854 return Err; 3855 NextValueNo = ValueList.size(); 3856 break; 3857 case bitc::VALUE_SYMTAB_BLOCK_ID: 3858 if (Error Err = parseValueSymbolTable()) 3859 return Err; 3860 break; 3861 case bitc::METADATA_ATTACHMENT_ID: 3862 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3863 return Err; 3864 break; 3865 case bitc::METADATA_BLOCK_ID: 3866 assert(DeferredMetadataInfo.empty() && 3867 "Must read all module-level metadata before function-level"); 3868 if (Error Err = MDLoader->parseFunctionMetadata()) 3869 return Err; 3870 break; 3871 case bitc::USELIST_BLOCK_ID: 3872 if (Error Err = parseUseLists()) 3873 return Err; 3874 break; 3875 } 3876 continue; 3877 3878 case BitstreamEntry::Record: 3879 // The interesting case. 3880 break; 3881 } 3882 3883 // Read a record. 3884 Record.clear(); 3885 Instruction *I = nullptr; 3886 Type *FullTy = nullptr; 3887 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3888 if (!MaybeBitCode) 3889 return MaybeBitCode.takeError(); 3890 switch (unsigned BitCode = MaybeBitCode.get()) { 3891 default: // Default behavior: reject 3892 return error("Invalid value"); 3893 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3894 if (Record.empty() || Record[0] == 0) 3895 return error("Invalid record"); 3896 // Create all the basic blocks for the function. 3897 FunctionBBs.resize(Record[0]); 3898 3899 // See if anything took the address of blocks in this function. 3900 auto BBFRI = BasicBlockFwdRefs.find(F); 3901 if (BBFRI == BasicBlockFwdRefs.end()) { 3902 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3903 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3904 } else { 3905 auto &BBRefs = BBFRI->second; 3906 // Check for invalid basic block references. 3907 if (BBRefs.size() > FunctionBBs.size()) 3908 return error("Invalid ID"); 3909 assert(!BBRefs.empty() && "Unexpected empty array"); 3910 assert(!BBRefs.front() && "Invalid reference to entry block"); 3911 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3912 ++I) 3913 if (I < RE && BBRefs[I]) { 3914 BBRefs[I]->insertInto(F); 3915 FunctionBBs[I] = BBRefs[I]; 3916 } else { 3917 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3918 } 3919 3920 // Erase from the table. 3921 BasicBlockFwdRefs.erase(BBFRI); 3922 } 3923 3924 CurBB = FunctionBBs[0]; 3925 continue; 3926 } 3927 3928 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3929 // This record indicates that the last instruction is at the same 3930 // location as the previous instruction with a location. 3931 I = getLastInstruction(); 3932 3933 if (!I) 3934 return error("Invalid record"); 3935 I->setDebugLoc(LastLoc); 3936 I = nullptr; 3937 continue; 3938 3939 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3940 I = getLastInstruction(); 3941 if (!I || Record.size() < 4) 3942 return error("Invalid record"); 3943 3944 unsigned Line = Record[0], Col = Record[1]; 3945 unsigned ScopeID = Record[2], IAID = Record[3]; 3946 bool isImplicitCode = Record.size() == 5 && Record[4]; 3947 3948 MDNode *Scope = nullptr, *IA = nullptr; 3949 if (ScopeID) { 3950 Scope = dyn_cast_or_null<MDNode>( 3951 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 3952 if (!Scope) 3953 return error("Invalid record"); 3954 } 3955 if (IAID) { 3956 IA = dyn_cast_or_null<MDNode>( 3957 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 3958 if (!IA) 3959 return error("Invalid record"); 3960 } 3961 LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode); 3962 I->setDebugLoc(LastLoc); 3963 I = nullptr; 3964 continue; 3965 } 3966 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 3967 unsigned OpNum = 0; 3968 Value *LHS; 3969 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3970 OpNum+1 > Record.size()) 3971 return error("Invalid record"); 3972 3973 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 3974 if (Opc == -1) 3975 return error("Invalid record"); 3976 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 3977 InstructionList.push_back(I); 3978 if (OpNum < Record.size()) { 3979 if (isa<FPMathOperator>(I)) { 3980 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3981 if (FMF.any()) 3982 I->setFastMathFlags(FMF); 3983 } 3984 } 3985 break; 3986 } 3987 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3988 unsigned OpNum = 0; 3989 Value *LHS, *RHS; 3990 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3991 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3992 OpNum+1 > Record.size()) 3993 return error("Invalid record"); 3994 3995 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3996 if (Opc == -1) 3997 return error("Invalid record"); 3998 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3999 InstructionList.push_back(I); 4000 if (OpNum < Record.size()) { 4001 if (Opc == Instruction::Add || 4002 Opc == Instruction::Sub || 4003 Opc == Instruction::Mul || 4004 Opc == Instruction::Shl) { 4005 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4006 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4007 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4008 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4009 } else if (Opc == Instruction::SDiv || 4010 Opc == Instruction::UDiv || 4011 Opc == Instruction::LShr || 4012 Opc == Instruction::AShr) { 4013 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4014 cast<BinaryOperator>(I)->setIsExact(true); 4015 } else if (isa<FPMathOperator>(I)) { 4016 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4017 if (FMF.any()) 4018 I->setFastMathFlags(FMF); 4019 } 4020 4021 } 4022 break; 4023 } 4024 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4025 unsigned OpNum = 0; 4026 Value *Op; 4027 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4028 OpNum+2 != Record.size()) 4029 return error("Invalid record"); 4030 4031 FullTy = getFullyStructuredTypeByID(Record[OpNum]); 4032 Type *ResTy = flattenPointerTypes(FullTy); 4033 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4034 if (Opc == -1 || !ResTy) 4035 return error("Invalid record"); 4036 Instruction *Temp = nullptr; 4037 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4038 if (Temp) { 4039 InstructionList.push_back(Temp); 4040 assert(CurBB && "No current BB?"); 4041 CurBB->getInstList().push_back(Temp); 4042 } 4043 } else { 4044 auto CastOp = (Instruction::CastOps)Opc; 4045 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4046 return error("Invalid cast"); 4047 I = CastInst::Create(CastOp, Op, ResTy); 4048 } 4049 InstructionList.push_back(I); 4050 break; 4051 } 4052 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4053 case bitc::FUNC_CODE_INST_GEP_OLD: 4054 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4055 unsigned OpNum = 0; 4056 4057 Type *Ty; 4058 bool InBounds; 4059 4060 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4061 InBounds = Record[OpNum++]; 4062 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4063 Ty = flattenPointerTypes(FullTy); 4064 } else { 4065 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4066 Ty = nullptr; 4067 } 4068 4069 Value *BasePtr; 4070 Type *FullBaseTy = nullptr; 4071 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, &FullBaseTy)) 4072 return error("Invalid record"); 4073 4074 if (!Ty) { 4075 std::tie(FullTy, Ty) = 4076 getPointerElementTypes(FullBaseTy->getScalarType()); 4077 } else if (Ty != getPointerElementFlatType(FullBaseTy->getScalarType())) 4078 return error( 4079 "Explicit gep type does not match pointee type of pointer operand"); 4080 4081 SmallVector<Value*, 16> GEPIdx; 4082 while (OpNum != Record.size()) { 4083 Value *Op; 4084 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4085 return error("Invalid record"); 4086 GEPIdx.push_back(Op); 4087 } 4088 4089 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4090 FullTy = GetElementPtrInst::getGEPReturnType(FullTy, I, GEPIdx); 4091 4092 InstructionList.push_back(I); 4093 if (InBounds) 4094 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4095 break; 4096 } 4097 4098 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4099 // EXTRACTVAL: [opty, opval, n x indices] 4100 unsigned OpNum = 0; 4101 Value *Agg; 4102 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy)) 4103 return error("Invalid record"); 4104 4105 unsigned RecSize = Record.size(); 4106 if (OpNum == RecSize) 4107 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4108 4109 SmallVector<unsigned, 4> EXTRACTVALIdx; 4110 for (; OpNum != RecSize; ++OpNum) { 4111 bool IsArray = FullTy->isArrayTy(); 4112 bool IsStruct = FullTy->isStructTy(); 4113 uint64_t Index = Record[OpNum]; 4114 4115 if (!IsStruct && !IsArray) 4116 return error("EXTRACTVAL: Invalid type"); 4117 if ((unsigned)Index != Index) 4118 return error("Invalid value"); 4119 if (IsStruct && Index >= FullTy->getStructNumElements()) 4120 return error("EXTRACTVAL: Invalid struct index"); 4121 if (IsArray && Index >= FullTy->getArrayNumElements()) 4122 return error("EXTRACTVAL: Invalid array index"); 4123 EXTRACTVALIdx.push_back((unsigned)Index); 4124 4125 if (IsStruct) 4126 FullTy = FullTy->getStructElementType(Index); 4127 else 4128 FullTy = FullTy->getArrayElementType(); 4129 } 4130 4131 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4132 InstructionList.push_back(I); 4133 break; 4134 } 4135 4136 case bitc::FUNC_CODE_INST_INSERTVAL: { 4137 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4138 unsigned OpNum = 0; 4139 Value *Agg; 4140 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy)) 4141 return error("Invalid record"); 4142 Value *Val; 4143 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4144 return error("Invalid record"); 4145 4146 unsigned RecSize = Record.size(); 4147 if (OpNum == RecSize) 4148 return error("INSERTVAL: Invalid instruction with 0 indices"); 4149 4150 SmallVector<unsigned, 4> INSERTVALIdx; 4151 Type *CurTy = Agg->getType(); 4152 for (; OpNum != RecSize; ++OpNum) { 4153 bool IsArray = CurTy->isArrayTy(); 4154 bool IsStruct = CurTy->isStructTy(); 4155 uint64_t Index = Record[OpNum]; 4156 4157 if (!IsStruct && !IsArray) 4158 return error("INSERTVAL: Invalid type"); 4159 if ((unsigned)Index != Index) 4160 return error("Invalid value"); 4161 if (IsStruct && Index >= CurTy->getStructNumElements()) 4162 return error("INSERTVAL: Invalid struct index"); 4163 if (IsArray && Index >= CurTy->getArrayNumElements()) 4164 return error("INSERTVAL: Invalid array index"); 4165 4166 INSERTVALIdx.push_back((unsigned)Index); 4167 if (IsStruct) 4168 CurTy = CurTy->getStructElementType(Index); 4169 else 4170 CurTy = CurTy->getArrayElementType(); 4171 } 4172 4173 if (CurTy != Val->getType()) 4174 return error("Inserted value type doesn't match aggregate type"); 4175 4176 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4177 InstructionList.push_back(I); 4178 break; 4179 } 4180 4181 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4182 // obsolete form of select 4183 // handles select i1 ... in old bitcode 4184 unsigned OpNum = 0; 4185 Value *TrueVal, *FalseVal, *Cond; 4186 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) || 4187 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4188 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4189 return error("Invalid record"); 4190 4191 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4192 InstructionList.push_back(I); 4193 break; 4194 } 4195 4196 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4197 // new form of select 4198 // handles select i1 or select [N x i1] 4199 unsigned OpNum = 0; 4200 Value *TrueVal, *FalseVal, *Cond; 4201 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) || 4202 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4203 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4204 return error("Invalid record"); 4205 4206 // select condition can be either i1 or [N x i1] 4207 if (VectorType* vector_type = 4208 dyn_cast<VectorType>(Cond->getType())) { 4209 // expect <n x i1> 4210 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4211 return error("Invalid type for value"); 4212 } else { 4213 // expect i1 4214 if (Cond->getType() != Type::getInt1Ty(Context)) 4215 return error("Invalid type for value"); 4216 } 4217 4218 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4219 InstructionList.push_back(I); 4220 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 4221 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4222 if (FMF.any()) 4223 I->setFastMathFlags(FMF); 4224 } 4225 break; 4226 } 4227 4228 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4229 unsigned OpNum = 0; 4230 Value *Vec, *Idx; 4231 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy) || 4232 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4233 return error("Invalid record"); 4234 if (!Vec->getType()->isVectorTy()) 4235 return error("Invalid type for value"); 4236 I = ExtractElementInst::Create(Vec, Idx); 4237 FullTy = cast<VectorType>(FullTy)->getElementType(); 4238 InstructionList.push_back(I); 4239 break; 4240 } 4241 4242 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4243 unsigned OpNum = 0; 4244 Value *Vec, *Elt, *Idx; 4245 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy)) 4246 return error("Invalid record"); 4247 if (!Vec->getType()->isVectorTy()) 4248 return error("Invalid type for value"); 4249 if (popValue(Record, OpNum, NextValueNo, 4250 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4251 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4252 return error("Invalid record"); 4253 I = InsertElementInst::Create(Vec, Elt, Idx); 4254 InstructionList.push_back(I); 4255 break; 4256 } 4257 4258 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4259 unsigned OpNum = 0; 4260 Value *Vec1, *Vec2, *Mask; 4261 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, &FullTy) || 4262 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4263 return error("Invalid record"); 4264 4265 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4266 return error("Invalid record"); 4267 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4268 return error("Invalid type for value"); 4269 4270 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4271 FullTy = 4272 VectorType::get(cast<VectorType>(FullTy)->getElementType(), 4273 cast<VectorType>(Mask->getType())->getElementCount()); 4274 InstructionList.push_back(I); 4275 break; 4276 } 4277 4278 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4279 // Old form of ICmp/FCmp returning bool 4280 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4281 // both legal on vectors but had different behaviour. 4282 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4283 // FCmp/ICmp returning bool or vector of bool 4284 4285 unsigned OpNum = 0; 4286 Value *LHS, *RHS; 4287 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4288 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4289 return error("Invalid record"); 4290 4291 if (OpNum >= Record.size()) 4292 return error( 4293 "Invalid record: operand number exceeded available operands"); 4294 4295 unsigned PredVal = Record[OpNum]; 4296 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4297 FastMathFlags FMF; 4298 if (IsFP && Record.size() > OpNum+1) 4299 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4300 4301 if (OpNum+1 != Record.size()) 4302 return error("Invalid record"); 4303 4304 if (LHS->getType()->isFPOrFPVectorTy()) 4305 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4306 else 4307 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4308 4309 if (FMF.any()) 4310 I->setFastMathFlags(FMF); 4311 InstructionList.push_back(I); 4312 break; 4313 } 4314 4315 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4316 { 4317 unsigned Size = Record.size(); 4318 if (Size == 0) { 4319 I = ReturnInst::Create(Context); 4320 InstructionList.push_back(I); 4321 break; 4322 } 4323 4324 unsigned OpNum = 0; 4325 Value *Op = nullptr; 4326 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4327 return error("Invalid record"); 4328 if (OpNum != Record.size()) 4329 return error("Invalid record"); 4330 4331 I = ReturnInst::Create(Context, Op); 4332 InstructionList.push_back(I); 4333 break; 4334 } 4335 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4336 if (Record.size() != 1 && Record.size() != 3) 4337 return error("Invalid record"); 4338 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4339 if (!TrueDest) 4340 return error("Invalid record"); 4341 4342 if (Record.size() == 1) { 4343 I = BranchInst::Create(TrueDest); 4344 InstructionList.push_back(I); 4345 } 4346 else { 4347 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4348 Value *Cond = getValue(Record, 2, NextValueNo, 4349 Type::getInt1Ty(Context)); 4350 if (!FalseDest || !Cond) 4351 return error("Invalid record"); 4352 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4353 InstructionList.push_back(I); 4354 } 4355 break; 4356 } 4357 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4358 if (Record.size() != 1 && Record.size() != 2) 4359 return error("Invalid record"); 4360 unsigned Idx = 0; 4361 Value *CleanupPad = 4362 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4363 if (!CleanupPad) 4364 return error("Invalid record"); 4365 BasicBlock *UnwindDest = nullptr; 4366 if (Record.size() == 2) { 4367 UnwindDest = getBasicBlock(Record[Idx++]); 4368 if (!UnwindDest) 4369 return error("Invalid record"); 4370 } 4371 4372 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4373 InstructionList.push_back(I); 4374 break; 4375 } 4376 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4377 if (Record.size() != 2) 4378 return error("Invalid record"); 4379 unsigned Idx = 0; 4380 Value *CatchPad = 4381 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4382 if (!CatchPad) 4383 return error("Invalid record"); 4384 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4385 if (!BB) 4386 return error("Invalid record"); 4387 4388 I = CatchReturnInst::Create(CatchPad, BB); 4389 InstructionList.push_back(I); 4390 break; 4391 } 4392 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4393 // We must have, at minimum, the outer scope and the number of arguments. 4394 if (Record.size() < 2) 4395 return error("Invalid record"); 4396 4397 unsigned Idx = 0; 4398 4399 Value *ParentPad = 4400 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4401 4402 unsigned NumHandlers = Record[Idx++]; 4403 4404 SmallVector<BasicBlock *, 2> Handlers; 4405 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4406 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4407 if (!BB) 4408 return error("Invalid record"); 4409 Handlers.push_back(BB); 4410 } 4411 4412 BasicBlock *UnwindDest = nullptr; 4413 if (Idx + 1 == Record.size()) { 4414 UnwindDest = getBasicBlock(Record[Idx++]); 4415 if (!UnwindDest) 4416 return error("Invalid record"); 4417 } 4418 4419 if (Record.size() != Idx) 4420 return error("Invalid record"); 4421 4422 auto *CatchSwitch = 4423 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4424 for (BasicBlock *Handler : Handlers) 4425 CatchSwitch->addHandler(Handler); 4426 I = CatchSwitch; 4427 InstructionList.push_back(I); 4428 break; 4429 } 4430 case bitc::FUNC_CODE_INST_CATCHPAD: 4431 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4432 // We must have, at minimum, the outer scope and the number of arguments. 4433 if (Record.size() < 2) 4434 return error("Invalid record"); 4435 4436 unsigned Idx = 0; 4437 4438 Value *ParentPad = 4439 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4440 4441 unsigned NumArgOperands = Record[Idx++]; 4442 4443 SmallVector<Value *, 2> Args; 4444 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4445 Value *Val; 4446 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4447 return error("Invalid record"); 4448 Args.push_back(Val); 4449 } 4450 4451 if (Record.size() != Idx) 4452 return error("Invalid record"); 4453 4454 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4455 I = CleanupPadInst::Create(ParentPad, Args); 4456 else 4457 I = CatchPadInst::Create(ParentPad, Args); 4458 InstructionList.push_back(I); 4459 break; 4460 } 4461 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4462 // Check magic 4463 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4464 // "New" SwitchInst format with case ranges. The changes to write this 4465 // format were reverted but we still recognize bitcode that uses it. 4466 // Hopefully someday we will have support for case ranges and can use 4467 // this format again. 4468 4469 Type *OpTy = getTypeByID(Record[1]); 4470 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4471 4472 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4473 BasicBlock *Default = getBasicBlock(Record[3]); 4474 if (!OpTy || !Cond || !Default) 4475 return error("Invalid record"); 4476 4477 unsigned NumCases = Record[4]; 4478 4479 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4480 InstructionList.push_back(SI); 4481 4482 unsigned CurIdx = 5; 4483 for (unsigned i = 0; i != NumCases; ++i) { 4484 SmallVector<ConstantInt*, 1> CaseVals; 4485 unsigned NumItems = Record[CurIdx++]; 4486 for (unsigned ci = 0; ci != NumItems; ++ci) { 4487 bool isSingleNumber = Record[CurIdx++]; 4488 4489 APInt Low; 4490 unsigned ActiveWords = 1; 4491 if (ValueBitWidth > 64) 4492 ActiveWords = Record[CurIdx++]; 4493 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4494 ValueBitWidth); 4495 CurIdx += ActiveWords; 4496 4497 if (!isSingleNumber) { 4498 ActiveWords = 1; 4499 if (ValueBitWidth > 64) 4500 ActiveWords = Record[CurIdx++]; 4501 APInt High = readWideAPInt( 4502 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4503 CurIdx += ActiveWords; 4504 4505 // FIXME: It is not clear whether values in the range should be 4506 // compared as signed or unsigned values. The partially 4507 // implemented changes that used this format in the past used 4508 // unsigned comparisons. 4509 for ( ; Low.ule(High); ++Low) 4510 CaseVals.push_back(ConstantInt::get(Context, Low)); 4511 } else 4512 CaseVals.push_back(ConstantInt::get(Context, Low)); 4513 } 4514 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4515 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4516 cve = CaseVals.end(); cvi != cve; ++cvi) 4517 SI->addCase(*cvi, DestBB); 4518 } 4519 I = SI; 4520 break; 4521 } 4522 4523 // Old SwitchInst format without case ranges. 4524 4525 if (Record.size() < 3 || (Record.size() & 1) == 0) 4526 return error("Invalid record"); 4527 Type *OpTy = getTypeByID(Record[0]); 4528 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4529 BasicBlock *Default = getBasicBlock(Record[2]); 4530 if (!OpTy || !Cond || !Default) 4531 return error("Invalid record"); 4532 unsigned NumCases = (Record.size()-3)/2; 4533 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4534 InstructionList.push_back(SI); 4535 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4536 ConstantInt *CaseVal = 4537 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4538 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4539 if (!CaseVal || !DestBB) { 4540 delete SI; 4541 return error("Invalid record"); 4542 } 4543 SI->addCase(CaseVal, DestBB); 4544 } 4545 I = SI; 4546 break; 4547 } 4548 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4549 if (Record.size() < 2) 4550 return error("Invalid record"); 4551 Type *OpTy = getTypeByID(Record[0]); 4552 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4553 if (!OpTy || !Address) 4554 return error("Invalid record"); 4555 unsigned NumDests = Record.size()-2; 4556 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4557 InstructionList.push_back(IBI); 4558 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4559 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4560 IBI->addDestination(DestBB); 4561 } else { 4562 delete IBI; 4563 return error("Invalid record"); 4564 } 4565 } 4566 I = IBI; 4567 break; 4568 } 4569 4570 case bitc::FUNC_CODE_INST_INVOKE: { 4571 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4572 if (Record.size() < 4) 4573 return error("Invalid record"); 4574 unsigned OpNum = 0; 4575 AttributeList PAL = getAttributes(Record[OpNum++]); 4576 unsigned CCInfo = Record[OpNum++]; 4577 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4578 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4579 4580 FunctionType *FTy = nullptr; 4581 FunctionType *FullFTy = nullptr; 4582 if ((CCInfo >> 13) & 1) { 4583 FullFTy = 4584 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 4585 if (!FullFTy) 4586 return error("Explicit invoke type is not a function type"); 4587 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4588 } 4589 4590 Value *Callee; 4591 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 4592 return error("Invalid record"); 4593 4594 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4595 if (!CalleeTy) 4596 return error("Callee is not a pointer"); 4597 if (!FTy) { 4598 FullFTy = 4599 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 4600 if (!FullFTy) 4601 return error("Callee is not of pointer to function type"); 4602 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4603 } else if (getPointerElementFlatType(FullTy) != FTy) 4604 return error("Explicit invoke type does not match pointee type of " 4605 "callee operand"); 4606 if (Record.size() < FTy->getNumParams() + OpNum) 4607 return error("Insufficient operands to call"); 4608 4609 SmallVector<Value*, 16> Ops; 4610 SmallVector<Type *, 16> ArgsFullTys; 4611 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4612 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4613 FTy->getParamType(i))); 4614 ArgsFullTys.push_back(FullFTy->getParamType(i)); 4615 if (!Ops.back()) 4616 return error("Invalid record"); 4617 } 4618 4619 if (!FTy->isVarArg()) { 4620 if (Record.size() != OpNum) 4621 return error("Invalid record"); 4622 } else { 4623 // Read type/value pairs for varargs params. 4624 while (OpNum != Record.size()) { 4625 Value *Op; 4626 Type *FullTy; 4627 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 4628 return error("Invalid record"); 4629 Ops.push_back(Op); 4630 ArgsFullTys.push_back(FullTy); 4631 } 4632 } 4633 4634 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 4635 OperandBundles); 4636 FullTy = FullFTy->getReturnType(); 4637 OperandBundles.clear(); 4638 InstructionList.push_back(I); 4639 cast<InvokeInst>(I)->setCallingConv( 4640 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4641 cast<InvokeInst>(I)->setAttributes(PAL); 4642 propagateByValSRetTypes(cast<CallBase>(I), ArgsFullTys); 4643 4644 break; 4645 } 4646 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4647 unsigned Idx = 0; 4648 Value *Val = nullptr; 4649 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4650 return error("Invalid record"); 4651 I = ResumeInst::Create(Val); 4652 InstructionList.push_back(I); 4653 break; 4654 } 4655 case bitc::FUNC_CODE_INST_CALLBR: { 4656 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 4657 unsigned OpNum = 0; 4658 AttributeList PAL = getAttributes(Record[OpNum++]); 4659 unsigned CCInfo = Record[OpNum++]; 4660 4661 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 4662 unsigned NumIndirectDests = Record[OpNum++]; 4663 SmallVector<BasicBlock *, 16> IndirectDests; 4664 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 4665 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 4666 4667 FunctionType *FTy = nullptr; 4668 FunctionType *FullFTy = nullptr; 4669 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 4670 FullFTy = 4671 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 4672 if (!FullFTy) 4673 return error("Explicit call type is not a function type"); 4674 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4675 } 4676 4677 Value *Callee; 4678 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 4679 return error("Invalid record"); 4680 4681 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4682 if (!OpTy) 4683 return error("Callee is not a pointer type"); 4684 if (!FTy) { 4685 FullFTy = 4686 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 4687 if (!FullFTy) 4688 return error("Callee is not of pointer to function type"); 4689 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4690 } else if (getPointerElementFlatType(FullTy) != FTy) 4691 return error("Explicit call type does not match pointee type of " 4692 "callee operand"); 4693 if (Record.size() < FTy->getNumParams() + OpNum) 4694 return error("Insufficient operands to call"); 4695 4696 SmallVector<Value*, 16> Args; 4697 // Read the fixed params. 4698 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4699 if (FTy->getParamType(i)->isLabelTy()) 4700 Args.push_back(getBasicBlock(Record[OpNum])); 4701 else 4702 Args.push_back(getValue(Record, OpNum, NextValueNo, 4703 FTy->getParamType(i))); 4704 if (!Args.back()) 4705 return error("Invalid record"); 4706 } 4707 4708 // Read type/value pairs for varargs params. 4709 if (!FTy->isVarArg()) { 4710 if (OpNum != Record.size()) 4711 return error("Invalid record"); 4712 } else { 4713 while (OpNum != Record.size()) { 4714 Value *Op; 4715 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4716 return error("Invalid record"); 4717 Args.push_back(Op); 4718 } 4719 } 4720 4721 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 4722 OperandBundles); 4723 FullTy = FullFTy->getReturnType(); 4724 OperandBundles.clear(); 4725 InstructionList.push_back(I); 4726 cast<CallBrInst>(I)->setCallingConv( 4727 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4728 cast<CallBrInst>(I)->setAttributes(PAL); 4729 break; 4730 } 4731 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4732 I = new UnreachableInst(Context); 4733 InstructionList.push_back(I); 4734 break; 4735 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4736 if (Record.empty()) 4737 return error("Invalid record"); 4738 // The first record specifies the type. 4739 FullTy = getFullyStructuredTypeByID(Record[0]); 4740 Type *Ty = flattenPointerTypes(FullTy); 4741 if (!Ty) 4742 return error("Invalid record"); 4743 4744 // Phi arguments are pairs of records of [value, basic block]. 4745 // There is an optional final record for fast-math-flags if this phi has a 4746 // floating-point type. 4747 size_t NumArgs = (Record.size() - 1) / 2; 4748 PHINode *PN = PHINode::Create(Ty, NumArgs); 4749 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) 4750 return error("Invalid record"); 4751 InstructionList.push_back(PN); 4752 4753 for (unsigned i = 0; i != NumArgs; i++) { 4754 Value *V; 4755 // With the new function encoding, it is possible that operands have 4756 // negative IDs (for forward references). Use a signed VBR 4757 // representation to keep the encoding small. 4758 if (UseRelativeIDs) 4759 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty); 4760 else 4761 V = getValue(Record, i * 2 + 1, NextValueNo, Ty); 4762 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 4763 if (!V || !BB) 4764 return error("Invalid record"); 4765 PN->addIncoming(V, BB); 4766 } 4767 I = PN; 4768 4769 // If there are an even number of records, the final record must be FMF. 4770 if (Record.size() % 2 == 0) { 4771 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 4772 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 4773 if (FMF.any()) 4774 I->setFastMathFlags(FMF); 4775 } 4776 4777 break; 4778 } 4779 4780 case bitc::FUNC_CODE_INST_LANDINGPAD: 4781 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4782 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4783 unsigned Idx = 0; 4784 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4785 if (Record.size() < 3) 4786 return error("Invalid record"); 4787 } else { 4788 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4789 if (Record.size() < 4) 4790 return error("Invalid record"); 4791 } 4792 FullTy = getFullyStructuredTypeByID(Record[Idx++]); 4793 Type *Ty = flattenPointerTypes(FullTy); 4794 if (!Ty) 4795 return error("Invalid record"); 4796 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4797 Value *PersFn = nullptr; 4798 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4799 return error("Invalid record"); 4800 4801 if (!F->hasPersonalityFn()) 4802 F->setPersonalityFn(cast<Constant>(PersFn)); 4803 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4804 return error("Personality function mismatch"); 4805 } 4806 4807 bool IsCleanup = !!Record[Idx++]; 4808 unsigned NumClauses = Record[Idx++]; 4809 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4810 LP->setCleanup(IsCleanup); 4811 for (unsigned J = 0; J != NumClauses; ++J) { 4812 LandingPadInst::ClauseType CT = 4813 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4814 Value *Val; 4815 4816 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4817 delete LP; 4818 return error("Invalid record"); 4819 } 4820 4821 assert((CT != LandingPadInst::Catch || 4822 !isa<ArrayType>(Val->getType())) && 4823 "Catch clause has a invalid type!"); 4824 assert((CT != LandingPadInst::Filter || 4825 isa<ArrayType>(Val->getType())) && 4826 "Filter clause has invalid type!"); 4827 LP->addClause(cast<Constant>(Val)); 4828 } 4829 4830 I = LP; 4831 InstructionList.push_back(I); 4832 break; 4833 } 4834 4835 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4836 if (Record.size() != 4) 4837 return error("Invalid record"); 4838 using APV = AllocaPackedValues; 4839 const uint64_t Rec = Record[3]; 4840 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 4841 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 4842 FullTy = getFullyStructuredTypeByID(Record[0]); 4843 Type *Ty = flattenPointerTypes(FullTy); 4844 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 4845 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4846 if (!PTy) 4847 return error("Old-style alloca with a non-pointer type"); 4848 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4849 } 4850 Type *OpTy = getTypeByID(Record[1]); 4851 Value *Size = getFnValueByID(Record[2], OpTy); 4852 MaybeAlign Align; 4853 if (Error Err = 4854 parseAlignmentValue(Bitfield::get<APV::Align>(Rec), Align)) { 4855 return Err; 4856 } 4857 if (!Ty || !Size) 4858 return error("Invalid record"); 4859 4860 // FIXME: Make this an optional field. 4861 const DataLayout &DL = TheModule->getDataLayout(); 4862 unsigned AS = DL.getAllocaAddrSpace(); 4863 4864 SmallPtrSet<Type *, 4> Visited; 4865 if (!Align && !Ty->isSized(&Visited)) 4866 return error("alloca of unsized type"); 4867 if (!Align) 4868 Align = DL.getPrefTypeAlign(Ty); 4869 4870 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 4871 AI->setUsedWithInAlloca(InAlloca); 4872 AI->setSwiftError(SwiftError); 4873 I = AI; 4874 FullTy = PointerType::get(FullTy, AS); 4875 InstructionList.push_back(I); 4876 break; 4877 } 4878 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4879 unsigned OpNum = 0; 4880 Value *Op; 4881 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) || 4882 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4883 return error("Invalid record"); 4884 4885 if (!isa<PointerType>(Op->getType())) 4886 return error("Load operand is not a pointer type"); 4887 4888 Type *Ty = nullptr; 4889 if (OpNum + 3 == Record.size()) { 4890 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4891 Ty = flattenPointerTypes(FullTy); 4892 } else 4893 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4894 4895 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4896 return Err; 4897 4898 MaybeAlign Align; 4899 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4900 return Err; 4901 SmallPtrSet<Type *, 4> Visited; 4902 if (!Align && !Ty->isSized(&Visited)) 4903 return error("load of unsized type"); 4904 if (!Align) 4905 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 4906 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 4907 InstructionList.push_back(I); 4908 break; 4909 } 4910 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4911 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 4912 unsigned OpNum = 0; 4913 Value *Op; 4914 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) || 4915 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4916 return error("Invalid record"); 4917 4918 if (!isa<PointerType>(Op->getType())) 4919 return error("Load operand is not a pointer type"); 4920 4921 Type *Ty = nullptr; 4922 if (OpNum + 5 == Record.size()) { 4923 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4924 Ty = flattenPointerTypes(FullTy); 4925 } else 4926 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4927 4928 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4929 return Err; 4930 4931 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4932 if (Ordering == AtomicOrdering::NotAtomic || 4933 Ordering == AtomicOrdering::Release || 4934 Ordering == AtomicOrdering::AcquireRelease) 4935 return error("Invalid record"); 4936 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4937 return error("Invalid record"); 4938 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4939 4940 MaybeAlign Align; 4941 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4942 return Err; 4943 if (!Align) 4944 return error("Alignment missing from atomic load"); 4945 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 4946 InstructionList.push_back(I); 4947 break; 4948 } 4949 case bitc::FUNC_CODE_INST_STORE: 4950 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4951 unsigned OpNum = 0; 4952 Value *Val, *Ptr; 4953 Type *FullTy; 4954 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 4955 (BitCode == bitc::FUNC_CODE_INST_STORE 4956 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4957 : popValue(Record, OpNum, NextValueNo, 4958 getPointerElementFlatType(FullTy), Val)) || 4959 OpNum + 2 != Record.size()) 4960 return error("Invalid record"); 4961 4962 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4963 return Err; 4964 MaybeAlign Align; 4965 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4966 return Err; 4967 SmallPtrSet<Type *, 4> Visited; 4968 if (!Align && !Val->getType()->isSized(&Visited)) 4969 return error("store of unsized type"); 4970 if (!Align) 4971 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 4972 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 4973 InstructionList.push_back(I); 4974 break; 4975 } 4976 case bitc::FUNC_CODE_INST_STOREATOMIC: 4977 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4978 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 4979 unsigned OpNum = 0; 4980 Value *Val, *Ptr; 4981 Type *FullTy; 4982 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 4983 !isa<PointerType>(Ptr->getType()) || 4984 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4985 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4986 : popValue(Record, OpNum, NextValueNo, 4987 getPointerElementFlatType(FullTy), Val)) || 4988 OpNum + 4 != Record.size()) 4989 return error("Invalid record"); 4990 4991 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4992 return Err; 4993 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4994 if (Ordering == AtomicOrdering::NotAtomic || 4995 Ordering == AtomicOrdering::Acquire || 4996 Ordering == AtomicOrdering::AcquireRelease) 4997 return error("Invalid record"); 4998 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4999 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5000 return error("Invalid record"); 5001 5002 MaybeAlign Align; 5003 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5004 return Err; 5005 if (!Align) 5006 return error("Alignment missing from atomic store"); 5007 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 5008 InstructionList.push_back(I); 5009 break; 5010 } 5011 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 5012 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 5013 // failure_ordering?, weak?] 5014 const size_t NumRecords = Record.size(); 5015 unsigned OpNum = 0; 5016 Value *Ptr = nullptr; 5017 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy)) 5018 return error("Invalid record"); 5019 5020 if (!isa<PointerType>(Ptr->getType())) 5021 return error("Cmpxchg operand is not a pointer type"); 5022 5023 Value *Cmp = nullptr; 5024 if (popValue(Record, OpNum, NextValueNo, 5025 getPointerElementFlatType(FullTy), Cmp)) 5026 return error("Invalid record"); 5027 5028 FullTy = cast<PointerType>(FullTy)->getElementType(); 5029 5030 Value *New = nullptr; 5031 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5032 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 5033 return error("Invalid record"); 5034 5035 const AtomicOrdering SuccessOrdering = 5036 getDecodedOrdering(Record[OpNum + 1]); 5037 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5038 SuccessOrdering == AtomicOrdering::Unordered) 5039 return error("Invalid record"); 5040 5041 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5042 5043 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5044 return Err; 5045 5046 const AtomicOrdering FailureOrdering = 5047 NumRecords < 7 5048 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 5049 : getDecodedOrdering(Record[OpNum + 3]); 5050 5051 const Align Alignment( 5052 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5053 5054 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 5055 FailureOrdering, SSID); 5056 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5057 FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)}); 5058 5059 if (NumRecords < 8) { 5060 // Before weak cmpxchgs existed, the instruction simply returned the 5061 // value loaded from memory, so bitcode files from that era will be 5062 // expecting the first component of a modern cmpxchg. 5063 CurBB->getInstList().push_back(I); 5064 I = ExtractValueInst::Create(I, 0); 5065 FullTy = cast<StructType>(FullTy)->getElementType(0); 5066 } else { 5067 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 5068 } 5069 5070 InstructionList.push_back(I); 5071 break; 5072 } 5073 case bitc::FUNC_CODE_INST_CMPXCHG: { 5074 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 5075 // failure_ordering, weak] 5076 const size_t NumRecords = Record.size(); 5077 unsigned OpNum = 0; 5078 Value *Ptr = nullptr; 5079 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy)) 5080 return error("Invalid record"); 5081 5082 if (!isa<PointerType>(Ptr->getType())) 5083 return error("Cmpxchg operand is not a pointer type"); 5084 5085 Value *Cmp = nullptr; 5086 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, &FullTy)) 5087 return error("Invalid record"); 5088 5089 Value *Val = nullptr; 5090 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), Val) || 5091 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 5092 return error("Invalid record"); 5093 5094 const AtomicOrdering SuccessOrdering = 5095 getDecodedOrdering(Record[OpNum + 1]); 5096 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5097 SuccessOrdering == AtomicOrdering::Unordered) 5098 return error("Invalid record"); 5099 5100 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5101 5102 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5103 return Err; 5104 5105 const AtomicOrdering FailureOrdering = 5106 getDecodedOrdering(Record[OpNum + 3]); 5107 5108 const Align Alignment( 5109 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5110 5111 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, Alignment, SuccessOrdering, 5112 FailureOrdering, SSID); 5113 FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)}); 5114 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5115 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 5116 5117 InstructionList.push_back(I); 5118 break; 5119 } 5120 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5121 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid] 5122 unsigned OpNum = 0; 5123 Value *Ptr, *Val; 5124 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 5125 !isa<PointerType>(Ptr->getType()) || 5126 popValue(Record, OpNum, NextValueNo, 5127 getPointerElementFlatType(FullTy), Val) || 5128 OpNum + 4 != Record.size()) 5129 return error("Invalid record"); 5130 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 5131 if (Operation < AtomicRMWInst::FIRST_BINOP || 5132 Operation > AtomicRMWInst::LAST_BINOP) 5133 return error("Invalid record"); 5134 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5135 if (Ordering == AtomicOrdering::NotAtomic || 5136 Ordering == AtomicOrdering::Unordered) 5137 return error("Invalid record"); 5138 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5139 Align Alignment( 5140 TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 5141 I = new AtomicRMWInst(Operation, Ptr, Val, Alignment, Ordering, SSID); 5142 FullTy = getPointerElementFlatType(FullTy); 5143 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5144 InstructionList.push_back(I); 5145 break; 5146 } 5147 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 5148 if (2 != Record.size()) 5149 return error("Invalid record"); 5150 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5151 if (Ordering == AtomicOrdering::NotAtomic || 5152 Ordering == AtomicOrdering::Unordered || 5153 Ordering == AtomicOrdering::Monotonic) 5154 return error("Invalid record"); 5155 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 5156 I = new FenceInst(Context, Ordering, SSID); 5157 InstructionList.push_back(I); 5158 break; 5159 } 5160 case bitc::FUNC_CODE_INST_CALL: { 5161 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5162 if (Record.size() < 3) 5163 return error("Invalid record"); 5164 5165 unsigned OpNum = 0; 5166 AttributeList PAL = getAttributes(Record[OpNum++]); 5167 unsigned CCInfo = Record[OpNum++]; 5168 5169 FastMathFlags FMF; 5170 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5171 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5172 if (!FMF.any()) 5173 return error("Fast math flags indicator set for call with no FMF"); 5174 } 5175 5176 FunctionType *FTy = nullptr; 5177 FunctionType *FullFTy = nullptr; 5178 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5179 FullFTy = 5180 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 5181 if (!FullFTy) 5182 return error("Explicit call type is not a function type"); 5183 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 5184 } 5185 5186 Value *Callee; 5187 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 5188 return error("Invalid record"); 5189 5190 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5191 if (!OpTy) 5192 return error("Callee is not a pointer type"); 5193 if (!FTy) { 5194 FullFTy = 5195 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 5196 if (!FullFTy) 5197 return error("Callee is not of pointer to function type"); 5198 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 5199 } else if (getPointerElementFlatType(FullTy) != FTy) 5200 return error("Explicit call type does not match pointee type of " 5201 "callee operand"); 5202 if (Record.size() < FTy->getNumParams() + OpNum) 5203 return error("Insufficient operands to call"); 5204 5205 SmallVector<Value*, 16> Args; 5206 SmallVector<Type*, 16> ArgsFullTys; 5207 // Read the fixed params. 5208 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5209 if (FTy->getParamType(i)->isLabelTy()) 5210 Args.push_back(getBasicBlock(Record[OpNum])); 5211 else 5212 Args.push_back(getValue(Record, OpNum, NextValueNo, 5213 FTy->getParamType(i))); 5214 ArgsFullTys.push_back(FullFTy->getParamType(i)); 5215 if (!Args.back()) 5216 return error("Invalid record"); 5217 } 5218 5219 // Read type/value pairs for varargs params. 5220 if (!FTy->isVarArg()) { 5221 if (OpNum != Record.size()) 5222 return error("Invalid record"); 5223 } else { 5224 while (OpNum != Record.size()) { 5225 Value *Op; 5226 Type *FullTy; 5227 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 5228 return error("Invalid record"); 5229 Args.push_back(Op); 5230 ArgsFullTys.push_back(FullTy); 5231 } 5232 } 5233 5234 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5235 FullTy = FullFTy->getReturnType(); 5236 OperandBundles.clear(); 5237 InstructionList.push_back(I); 5238 cast<CallInst>(I)->setCallingConv( 5239 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5240 CallInst::TailCallKind TCK = CallInst::TCK_None; 5241 if (CCInfo & 1 << bitc::CALL_TAIL) 5242 TCK = CallInst::TCK_Tail; 5243 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5244 TCK = CallInst::TCK_MustTail; 5245 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5246 TCK = CallInst::TCK_NoTail; 5247 cast<CallInst>(I)->setTailCallKind(TCK); 5248 cast<CallInst>(I)->setAttributes(PAL); 5249 propagateByValSRetTypes(cast<CallBase>(I), ArgsFullTys); 5250 if (FMF.any()) { 5251 if (!isa<FPMathOperator>(I)) 5252 return error("Fast-math-flags specified for call without " 5253 "floating-point scalar or vector return type"); 5254 I->setFastMathFlags(FMF); 5255 } 5256 break; 5257 } 5258 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5259 if (Record.size() < 3) 5260 return error("Invalid record"); 5261 Type *OpTy = getTypeByID(Record[0]); 5262 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5263 FullTy = getFullyStructuredTypeByID(Record[2]); 5264 Type *ResTy = flattenPointerTypes(FullTy); 5265 if (!OpTy || !Op || !ResTy) 5266 return error("Invalid record"); 5267 I = new VAArgInst(Op, ResTy); 5268 InstructionList.push_back(I); 5269 break; 5270 } 5271 5272 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5273 // A call or an invoke can be optionally prefixed with some variable 5274 // number of operand bundle blocks. These blocks are read into 5275 // OperandBundles and consumed at the next call or invoke instruction. 5276 5277 if (Record.empty() || Record[0] >= BundleTags.size()) 5278 return error("Invalid record"); 5279 5280 std::vector<Value *> Inputs; 5281 5282 unsigned OpNum = 1; 5283 while (OpNum != Record.size()) { 5284 Value *Op; 5285 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5286 return error("Invalid record"); 5287 Inputs.push_back(Op); 5288 } 5289 5290 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5291 continue; 5292 } 5293 5294 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 5295 unsigned OpNum = 0; 5296 Value *Op = nullptr; 5297 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 5298 return error("Invalid record"); 5299 if (OpNum != Record.size()) 5300 return error("Invalid record"); 5301 5302 I = new FreezeInst(Op); 5303 InstructionList.push_back(I); 5304 break; 5305 } 5306 } 5307 5308 // Add instruction to end of current BB. If there is no current BB, reject 5309 // this file. 5310 if (!CurBB) { 5311 I->deleteValue(); 5312 return error("Invalid instruction with no BB"); 5313 } 5314 if (!OperandBundles.empty()) { 5315 I->deleteValue(); 5316 return error("Operand bundles found with no consumer"); 5317 } 5318 CurBB->getInstList().push_back(I); 5319 5320 // If this was a terminator instruction, move to the next block. 5321 if (I->isTerminator()) { 5322 ++CurBBNo; 5323 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5324 } 5325 5326 // Non-void values get registered in the value table for future use. 5327 if (!I->getType()->isVoidTy()) { 5328 if (!FullTy) { 5329 FullTy = I->getType(); 5330 assert( 5331 !FullTy->isPointerTy() && !isa<StructType>(FullTy) && 5332 !isa<ArrayType>(FullTy) && 5333 (!isa<VectorType>(FullTy) || 5334 cast<VectorType>(FullTy)->getElementType()->isFloatingPointTy() || 5335 cast<VectorType>(FullTy)->getElementType()->isIntegerTy()) && 5336 "Structured types must be assigned with corresponding non-opaque " 5337 "pointer type"); 5338 } 5339 5340 assert(I->getType() == flattenPointerTypes(FullTy) && 5341 "Incorrect fully structured type provided for Instruction"); 5342 ValueList.assignValue(I, NextValueNo++, FullTy); 5343 } 5344 } 5345 5346 OutOfRecordLoop: 5347 5348 if (!OperandBundles.empty()) 5349 return error("Operand bundles found with no consumer"); 5350 5351 // Check the function list for unresolved values. 5352 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5353 if (!A->getParent()) { 5354 // We found at least one unresolved value. Nuke them all to avoid leaks. 5355 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5356 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5357 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5358 delete A; 5359 } 5360 } 5361 return error("Never resolved value found in function"); 5362 } 5363 } 5364 5365 // Unexpected unresolved metadata about to be dropped. 5366 if (MDLoader->hasFwdRefs()) 5367 return error("Invalid function metadata: outgoing forward refs"); 5368 5369 // Trim the value list down to the size it was before we parsed this function. 5370 ValueList.shrinkTo(ModuleValueListSize); 5371 MDLoader->shrinkTo(ModuleMDLoaderSize); 5372 std::vector<BasicBlock*>().swap(FunctionBBs); 5373 return Error::success(); 5374 } 5375 5376 /// Find the function body in the bitcode stream 5377 Error BitcodeReader::findFunctionInStream( 5378 Function *F, 5379 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5380 while (DeferredFunctionInfoIterator->second == 0) { 5381 // This is the fallback handling for the old format bitcode that 5382 // didn't contain the function index in the VST, or when we have 5383 // an anonymous function which would not have a VST entry. 5384 // Assert that we have one of those two cases. 5385 assert(VSTOffset == 0 || !F->hasName()); 5386 // Parse the next body in the stream and set its position in the 5387 // DeferredFunctionInfo map. 5388 if (Error Err = rememberAndSkipFunctionBodies()) 5389 return Err; 5390 } 5391 return Error::success(); 5392 } 5393 5394 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 5395 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 5396 return SyncScope::ID(Val); 5397 if (Val >= SSIDs.size()) 5398 return SyncScope::System; // Map unknown synchronization scopes to system. 5399 return SSIDs[Val]; 5400 } 5401 5402 //===----------------------------------------------------------------------===// 5403 // GVMaterializer implementation 5404 //===----------------------------------------------------------------------===// 5405 5406 Error BitcodeReader::materialize(GlobalValue *GV) { 5407 Function *F = dyn_cast<Function>(GV); 5408 // If it's not a function or is already material, ignore the request. 5409 if (!F || !F->isMaterializable()) 5410 return Error::success(); 5411 5412 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5413 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5414 // If its position is recorded as 0, its body is somewhere in the stream 5415 // but we haven't seen it yet. 5416 if (DFII->second == 0) 5417 if (Error Err = findFunctionInStream(F, DFII)) 5418 return Err; 5419 5420 // Materialize metadata before parsing any function bodies. 5421 if (Error Err = materializeMetadata()) 5422 return Err; 5423 5424 // Move the bit stream to the saved position of the deferred function body. 5425 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 5426 return JumpFailed; 5427 if (Error Err = parseFunctionBody(F)) 5428 return Err; 5429 F->setIsMaterializable(false); 5430 5431 if (StripDebugInfo) 5432 stripDebugInfo(*F); 5433 5434 // Upgrade any old intrinsic calls in the function. 5435 for (auto &I : UpgradedIntrinsics) { 5436 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5437 UI != UE;) { 5438 User *U = *UI; 5439 ++UI; 5440 if (CallInst *CI = dyn_cast<CallInst>(U)) 5441 UpgradeIntrinsicCall(CI, I.second); 5442 } 5443 } 5444 5445 // Update calls to the remangled intrinsics 5446 for (auto &I : RemangledIntrinsics) 5447 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5448 UI != UE;) 5449 // Don't expect any other users than call sites 5450 cast<CallBase>(*UI++)->setCalledFunction(I.second); 5451 5452 // Finish fn->subprogram upgrade for materialized functions. 5453 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 5454 F->setSubprogram(SP); 5455 5456 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 5457 if (!MDLoader->isStrippingTBAA()) { 5458 for (auto &I : instructions(F)) { 5459 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 5460 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 5461 continue; 5462 MDLoader->setStripTBAA(true); 5463 stripTBAA(F->getParent()); 5464 } 5465 } 5466 5467 // "Upgrade" older incorrect branch weights by dropping them. 5468 for (auto &I : instructions(F)) { 5469 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 5470 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 5471 MDString *MDS = cast<MDString>(MD->getOperand(0)); 5472 StringRef ProfName = MDS->getString(); 5473 // Check consistency of !prof branch_weights metadata. 5474 if (!ProfName.equals("branch_weights")) 5475 continue; 5476 unsigned ExpectedNumOperands = 0; 5477 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 5478 ExpectedNumOperands = BI->getNumSuccessors(); 5479 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 5480 ExpectedNumOperands = SI->getNumSuccessors(); 5481 else if (isa<CallInst>(&I)) 5482 ExpectedNumOperands = 1; 5483 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 5484 ExpectedNumOperands = IBI->getNumDestinations(); 5485 else if (isa<SelectInst>(&I)) 5486 ExpectedNumOperands = 2; 5487 else 5488 continue; // ignore and continue. 5489 5490 // If branch weight doesn't match, just strip branch weight. 5491 if (MD->getNumOperands() != 1 + ExpectedNumOperands) 5492 I.setMetadata(LLVMContext::MD_prof, nullptr); 5493 } 5494 } 5495 } 5496 5497 // Look for functions that rely on old function attribute behavior. 5498 UpgradeFunctionAttributes(*F); 5499 5500 // Bring in any functions that this function forward-referenced via 5501 // blockaddresses. 5502 return materializeForwardReferencedFunctions(); 5503 } 5504 5505 Error BitcodeReader::materializeModule() { 5506 if (Error Err = materializeMetadata()) 5507 return Err; 5508 5509 // Promise to materialize all forward references. 5510 WillMaterializeAllForwardRefs = true; 5511 5512 // Iterate over the module, deserializing any functions that are still on 5513 // disk. 5514 for (Function &F : *TheModule) { 5515 if (Error Err = materialize(&F)) 5516 return Err; 5517 } 5518 // At this point, if there are any function bodies, parse the rest of 5519 // the bits in the module past the last function block we have recorded 5520 // through either lazy scanning or the VST. 5521 if (LastFunctionBlockBit || NextUnreadBit) 5522 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 5523 ? LastFunctionBlockBit 5524 : NextUnreadBit)) 5525 return Err; 5526 5527 // Check that all block address forward references got resolved (as we 5528 // promised above). 5529 if (!BasicBlockFwdRefs.empty()) 5530 return error("Never resolved function from blockaddress"); 5531 5532 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5533 // delete the old functions to clean up. We can't do this unless the entire 5534 // module is materialized because there could always be another function body 5535 // with calls to the old function. 5536 for (auto &I : UpgradedIntrinsics) { 5537 for (auto *U : I.first->users()) { 5538 if (CallInst *CI = dyn_cast<CallInst>(U)) 5539 UpgradeIntrinsicCall(CI, I.second); 5540 } 5541 if (!I.first->use_empty()) 5542 I.first->replaceAllUsesWith(I.second); 5543 I.first->eraseFromParent(); 5544 } 5545 UpgradedIntrinsics.clear(); 5546 // Do the same for remangled intrinsics 5547 for (auto &I : RemangledIntrinsics) { 5548 I.first->replaceAllUsesWith(I.second); 5549 I.first->eraseFromParent(); 5550 } 5551 RemangledIntrinsics.clear(); 5552 5553 UpgradeDebugInfo(*TheModule); 5554 5555 UpgradeModuleFlags(*TheModule); 5556 5557 UpgradeARCRuntime(*TheModule); 5558 5559 return Error::success(); 5560 } 5561 5562 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5563 return IdentifiedStructTypes; 5564 } 5565 5566 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5567 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 5568 StringRef ModulePath, unsigned ModuleId) 5569 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 5570 ModulePath(ModulePath), ModuleId(ModuleId) {} 5571 5572 void ModuleSummaryIndexBitcodeReader::addThisModule() { 5573 TheIndex.addModule(ModulePath, ModuleId); 5574 } 5575 5576 ModuleSummaryIndex::ModuleInfo * 5577 ModuleSummaryIndexBitcodeReader::getThisModule() { 5578 return TheIndex.getModule(ModulePath); 5579 } 5580 5581 std::pair<ValueInfo, GlobalValue::GUID> 5582 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 5583 auto VGI = ValueIdToValueInfoMap[ValueId]; 5584 assert(VGI.first); 5585 return VGI; 5586 } 5587 5588 void ModuleSummaryIndexBitcodeReader::setValueGUID( 5589 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 5590 StringRef SourceFileName) { 5591 std::string GlobalId = 5592 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5593 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5594 auto OriginalNameID = ValueGUID; 5595 if (GlobalValue::isLocalLinkage(Linkage)) 5596 OriginalNameID = GlobalValue::getGUID(ValueName); 5597 if (PrintSummaryGUIDs) 5598 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5599 << ValueName << "\n"; 5600 5601 // UseStrtab is false for legacy summary formats and value names are 5602 // created on stack. In that case we save the name in a string saver in 5603 // the index so that the value name can be recorded. 5604 ValueIdToValueInfoMap[ValueID] = std::make_pair( 5605 TheIndex.getOrInsertValueInfo( 5606 ValueGUID, 5607 UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 5608 OriginalNameID); 5609 } 5610 5611 // Specialized value symbol table parser used when reading module index 5612 // blocks where we don't actually create global values. The parsed information 5613 // is saved in the bitcode reader for use when later parsing summaries. 5614 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5615 uint64_t Offset, 5616 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5617 // With a strtab the VST is not required to parse the summary. 5618 if (UseStrtab) 5619 return Error::success(); 5620 5621 assert(Offset > 0 && "Expected non-zero VST offset"); 5622 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 5623 if (!MaybeCurrentBit) 5624 return MaybeCurrentBit.takeError(); 5625 uint64_t CurrentBit = MaybeCurrentBit.get(); 5626 5627 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5628 return Err; 5629 5630 SmallVector<uint64_t, 64> Record; 5631 5632 // Read all the records for this value table. 5633 SmallString<128> ValueName; 5634 5635 while (true) { 5636 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5637 if (!MaybeEntry) 5638 return MaybeEntry.takeError(); 5639 BitstreamEntry Entry = MaybeEntry.get(); 5640 5641 switch (Entry.Kind) { 5642 case BitstreamEntry::SubBlock: // Handled for us already. 5643 case BitstreamEntry::Error: 5644 return error("Malformed block"); 5645 case BitstreamEntry::EndBlock: 5646 // Done parsing VST, jump back to wherever we came from. 5647 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 5648 return JumpFailed; 5649 return Error::success(); 5650 case BitstreamEntry::Record: 5651 // The interesting case. 5652 break; 5653 } 5654 5655 // Read a record. 5656 Record.clear(); 5657 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5658 if (!MaybeRecord) 5659 return MaybeRecord.takeError(); 5660 switch (MaybeRecord.get()) { 5661 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5662 break; 5663 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5664 if (convertToString(Record, 1, ValueName)) 5665 return error("Invalid record"); 5666 unsigned ValueID = Record[0]; 5667 assert(!SourceFileName.empty()); 5668 auto VLI = ValueIdToLinkageMap.find(ValueID); 5669 assert(VLI != ValueIdToLinkageMap.end() && 5670 "No linkage found for VST entry?"); 5671 auto Linkage = VLI->second; 5672 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5673 ValueName.clear(); 5674 break; 5675 } 5676 case bitc::VST_CODE_FNENTRY: { 5677 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5678 if (convertToString(Record, 2, ValueName)) 5679 return error("Invalid record"); 5680 unsigned ValueID = Record[0]; 5681 assert(!SourceFileName.empty()); 5682 auto VLI = ValueIdToLinkageMap.find(ValueID); 5683 assert(VLI != ValueIdToLinkageMap.end() && 5684 "No linkage found for VST entry?"); 5685 auto Linkage = VLI->second; 5686 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5687 ValueName.clear(); 5688 break; 5689 } 5690 case bitc::VST_CODE_COMBINED_ENTRY: { 5691 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5692 unsigned ValueID = Record[0]; 5693 GlobalValue::GUID RefGUID = Record[1]; 5694 // The "original name", which is the second value of the pair will be 5695 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5696 ValueIdToValueInfoMap[ValueID] = 5697 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5698 break; 5699 } 5700 } 5701 } 5702 } 5703 5704 // Parse just the blocks needed for building the index out of the module. 5705 // At the end of this routine the module Index is populated with a map 5706 // from global value id to GlobalValueSummary objects. 5707 Error ModuleSummaryIndexBitcodeReader::parseModule() { 5708 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5709 return Err; 5710 5711 SmallVector<uint64_t, 64> Record; 5712 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5713 unsigned ValueId = 0; 5714 5715 // Read the index for this module. 5716 while (true) { 5717 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 5718 if (!MaybeEntry) 5719 return MaybeEntry.takeError(); 5720 llvm::BitstreamEntry Entry = MaybeEntry.get(); 5721 5722 switch (Entry.Kind) { 5723 case BitstreamEntry::Error: 5724 return error("Malformed block"); 5725 case BitstreamEntry::EndBlock: 5726 return Error::success(); 5727 5728 case BitstreamEntry::SubBlock: 5729 switch (Entry.ID) { 5730 default: // Skip unknown content. 5731 if (Error Err = Stream.SkipBlock()) 5732 return Err; 5733 break; 5734 case bitc::BLOCKINFO_BLOCK_ID: 5735 // Need to parse these to get abbrev ids (e.g. for VST) 5736 if (readBlockInfo()) 5737 return error("Malformed block"); 5738 break; 5739 case bitc::VALUE_SYMTAB_BLOCK_ID: 5740 // Should have been parsed earlier via VSTOffset, unless there 5741 // is no summary section. 5742 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5743 !SeenGlobalValSummary) && 5744 "Expected early VST parse via VSTOffset record"); 5745 if (Error Err = Stream.SkipBlock()) 5746 return Err; 5747 break; 5748 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5749 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 5750 // Add the module if it is a per-module index (has a source file name). 5751 if (!SourceFileName.empty()) 5752 addThisModule(); 5753 assert(!SeenValueSymbolTable && 5754 "Already read VST when parsing summary block?"); 5755 // We might not have a VST if there were no values in the 5756 // summary. An empty summary block generated when we are 5757 // performing ThinLTO compiles so we don't later invoke 5758 // the regular LTO process on them. 5759 if (VSTOffset > 0) { 5760 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5761 return Err; 5762 SeenValueSymbolTable = true; 5763 } 5764 SeenGlobalValSummary = true; 5765 if (Error Err = parseEntireSummary(Entry.ID)) 5766 return Err; 5767 break; 5768 case bitc::MODULE_STRTAB_BLOCK_ID: 5769 if (Error Err = parseModuleStringTable()) 5770 return Err; 5771 break; 5772 } 5773 continue; 5774 5775 case BitstreamEntry::Record: { 5776 Record.clear(); 5777 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5778 if (!MaybeBitCode) 5779 return MaybeBitCode.takeError(); 5780 switch (MaybeBitCode.get()) { 5781 default: 5782 break; // Default behavior, ignore unknown content. 5783 case bitc::MODULE_CODE_VERSION: { 5784 if (Error Err = parseVersionRecord(Record).takeError()) 5785 return Err; 5786 break; 5787 } 5788 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5789 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5790 SmallString<128> ValueName; 5791 if (convertToString(Record, 0, ValueName)) 5792 return error("Invalid record"); 5793 SourceFileName = ValueName.c_str(); 5794 break; 5795 } 5796 /// MODULE_CODE_HASH: [5*i32] 5797 case bitc::MODULE_CODE_HASH: { 5798 if (Record.size() != 5) 5799 return error("Invalid hash length " + Twine(Record.size()).str()); 5800 auto &Hash = getThisModule()->second.second; 5801 int Pos = 0; 5802 for (auto &Val : Record) { 5803 assert(!(Val >> 32) && "Unexpected high bits set"); 5804 Hash[Pos++] = Val; 5805 } 5806 break; 5807 } 5808 /// MODULE_CODE_VSTOFFSET: [offset] 5809 case bitc::MODULE_CODE_VSTOFFSET: 5810 if (Record.empty()) 5811 return error("Invalid record"); 5812 // Note that we subtract 1 here because the offset is relative to one 5813 // word before the start of the identification or module block, which 5814 // was historically always the start of the regular bitcode header. 5815 VSTOffset = Record[0] - 1; 5816 break; 5817 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5818 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5819 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5820 // v2: [strtab offset, strtab size, v1] 5821 case bitc::MODULE_CODE_GLOBALVAR: 5822 case bitc::MODULE_CODE_FUNCTION: 5823 case bitc::MODULE_CODE_ALIAS: { 5824 StringRef Name; 5825 ArrayRef<uint64_t> GVRecord; 5826 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5827 if (GVRecord.size() <= 3) 5828 return error("Invalid record"); 5829 uint64_t RawLinkage = GVRecord[3]; 5830 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5831 if (!UseStrtab) { 5832 ValueIdToLinkageMap[ValueId++] = Linkage; 5833 break; 5834 } 5835 5836 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5837 break; 5838 } 5839 } 5840 } 5841 continue; 5842 } 5843 } 5844 } 5845 5846 std::vector<ValueInfo> 5847 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5848 std::vector<ValueInfo> Ret; 5849 Ret.reserve(Record.size()); 5850 for (uint64_t RefValueId : Record) 5851 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5852 return Ret; 5853 } 5854 5855 std::vector<FunctionSummary::EdgeTy> 5856 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 5857 bool IsOldProfileFormat, 5858 bool HasProfile, bool HasRelBF) { 5859 std::vector<FunctionSummary::EdgeTy> Ret; 5860 Ret.reserve(Record.size()); 5861 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5862 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5863 uint64_t RelBF = 0; 5864 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5865 if (IsOldProfileFormat) { 5866 I += 1; // Skip old callsitecount field 5867 if (HasProfile) 5868 I += 1; // Skip old profilecount field 5869 } else if (HasProfile) 5870 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5871 else if (HasRelBF) 5872 RelBF = Record[++I]; 5873 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 5874 } 5875 return Ret; 5876 } 5877 5878 static void 5879 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 5880 WholeProgramDevirtResolution &Wpd) { 5881 uint64_t ArgNum = Record[Slot++]; 5882 WholeProgramDevirtResolution::ByArg &B = 5883 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 5884 Slot += ArgNum; 5885 5886 B.TheKind = 5887 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 5888 B.Info = Record[Slot++]; 5889 B.Byte = Record[Slot++]; 5890 B.Bit = Record[Slot++]; 5891 } 5892 5893 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 5894 StringRef Strtab, size_t &Slot, 5895 TypeIdSummary &TypeId) { 5896 uint64_t Id = Record[Slot++]; 5897 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 5898 5899 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 5900 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 5901 static_cast<size_t>(Record[Slot + 1])}; 5902 Slot += 2; 5903 5904 uint64_t ResByArgNum = Record[Slot++]; 5905 for (uint64_t I = 0; I != ResByArgNum; ++I) 5906 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 5907 } 5908 5909 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 5910 StringRef Strtab, 5911 ModuleSummaryIndex &TheIndex) { 5912 size_t Slot = 0; 5913 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 5914 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 5915 Slot += 2; 5916 5917 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 5918 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 5919 TypeId.TTRes.AlignLog2 = Record[Slot++]; 5920 TypeId.TTRes.SizeM1 = Record[Slot++]; 5921 TypeId.TTRes.BitMask = Record[Slot++]; 5922 TypeId.TTRes.InlineBits = Record[Slot++]; 5923 5924 while (Slot < Record.size()) 5925 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 5926 } 5927 5928 std::vector<FunctionSummary::ParamAccess> 5929 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 5930 auto ReadRange = [&]() { 5931 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 5932 BitcodeReader::decodeSignRotatedValue(Record.front())); 5933 Record = Record.drop_front(); 5934 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 5935 BitcodeReader::decodeSignRotatedValue(Record.front())); 5936 Record = Record.drop_front(); 5937 ConstantRange Range{Lower, Upper}; 5938 assert(!Range.isFullSet()); 5939 assert(!Range.isUpperSignWrapped()); 5940 return Range; 5941 }; 5942 5943 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 5944 while (!Record.empty()) { 5945 PendingParamAccesses.emplace_back(); 5946 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 5947 ParamAccess.ParamNo = Record.front(); 5948 Record = Record.drop_front(); 5949 ParamAccess.Use = ReadRange(); 5950 ParamAccess.Calls.resize(Record.front()); 5951 Record = Record.drop_front(); 5952 for (auto &Call : ParamAccess.Calls) { 5953 Call.ParamNo = Record.front(); 5954 Record = Record.drop_front(); 5955 Call.Callee = getValueInfoFromValueId(Record.front()).first; 5956 Record = Record.drop_front(); 5957 Call.Offsets = ReadRange(); 5958 } 5959 } 5960 return PendingParamAccesses; 5961 } 5962 5963 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 5964 ArrayRef<uint64_t> Record, size_t &Slot, 5965 TypeIdCompatibleVtableInfo &TypeId) { 5966 uint64_t Offset = Record[Slot++]; 5967 ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first; 5968 TypeId.push_back({Offset, Callee}); 5969 } 5970 5971 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 5972 ArrayRef<uint64_t> Record) { 5973 size_t Slot = 0; 5974 TypeIdCompatibleVtableInfo &TypeId = 5975 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 5976 {Strtab.data() + Record[Slot], 5977 static_cast<size_t>(Record[Slot + 1])}); 5978 Slot += 2; 5979 5980 while (Slot < Record.size()) 5981 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 5982 } 5983 5984 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 5985 unsigned WOCnt) { 5986 // Readonly and writeonly refs are in the end of the refs list. 5987 assert(ROCnt + WOCnt <= Refs.size()); 5988 unsigned FirstWORef = Refs.size() - WOCnt; 5989 unsigned RefNo = FirstWORef - ROCnt; 5990 for (; RefNo < FirstWORef; ++RefNo) 5991 Refs[RefNo].setReadOnly(); 5992 for (; RefNo < Refs.size(); ++RefNo) 5993 Refs[RefNo].setWriteOnly(); 5994 } 5995 5996 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5997 // objects in the index. 5998 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 5999 if (Error Err = Stream.EnterSubBlock(ID)) 6000 return Err; 6001 SmallVector<uint64_t, 64> Record; 6002 6003 // Parse version 6004 { 6005 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6006 if (!MaybeEntry) 6007 return MaybeEntry.takeError(); 6008 BitstreamEntry Entry = MaybeEntry.get(); 6009 6010 if (Entry.Kind != BitstreamEntry::Record) 6011 return error("Invalid Summary Block: record for version expected"); 6012 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6013 if (!MaybeRecord) 6014 return MaybeRecord.takeError(); 6015 if (MaybeRecord.get() != bitc::FS_VERSION) 6016 return error("Invalid Summary Block: version expected"); 6017 } 6018 const uint64_t Version = Record[0]; 6019 const bool IsOldProfileFormat = Version == 1; 6020 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 6021 return error("Invalid summary version " + Twine(Version) + 6022 ". Version should be in the range [1-" + 6023 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 6024 "]."); 6025 Record.clear(); 6026 6027 // Keep around the last seen summary to be used when we see an optional 6028 // "OriginalName" attachement. 6029 GlobalValueSummary *LastSeenSummary = nullptr; 6030 GlobalValue::GUID LastSeenGUID = 0; 6031 6032 // We can expect to see any number of type ID information records before 6033 // each function summary records; these variables store the information 6034 // collected so far so that it can be used to create the summary object. 6035 std::vector<GlobalValue::GUID> PendingTypeTests; 6036 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 6037 PendingTypeCheckedLoadVCalls; 6038 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 6039 PendingTypeCheckedLoadConstVCalls; 6040 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 6041 6042 while (true) { 6043 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6044 if (!MaybeEntry) 6045 return MaybeEntry.takeError(); 6046 BitstreamEntry Entry = MaybeEntry.get(); 6047 6048 switch (Entry.Kind) { 6049 case BitstreamEntry::SubBlock: // Handled for us already. 6050 case BitstreamEntry::Error: 6051 return error("Malformed block"); 6052 case BitstreamEntry::EndBlock: 6053 return Error::success(); 6054 case BitstreamEntry::Record: 6055 // The interesting case. 6056 break; 6057 } 6058 6059 // Read a record. The record format depends on whether this 6060 // is a per-module index or a combined index file. In the per-module 6061 // case the records contain the associated value's ID for correlation 6062 // with VST entries. In the combined index the correlation is done 6063 // via the bitcode offset of the summary records (which were saved 6064 // in the combined index VST entries). The records also contain 6065 // information used for ThinLTO renaming and importing. 6066 Record.clear(); 6067 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6068 if (!MaybeBitCode) 6069 return MaybeBitCode.takeError(); 6070 switch (unsigned BitCode = MaybeBitCode.get()) { 6071 default: // Default behavior: ignore. 6072 break; 6073 case bitc::FS_FLAGS: { // [flags] 6074 TheIndex.setFlags(Record[0]); 6075 break; 6076 } 6077 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 6078 uint64_t ValueID = Record[0]; 6079 GlobalValue::GUID RefGUID = Record[1]; 6080 ValueIdToValueInfoMap[ValueID] = 6081 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 6082 break; 6083 } 6084 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 6085 // numrefs x valueid, n x (valueid)] 6086 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 6087 // numrefs x valueid, 6088 // n x (valueid, hotness)] 6089 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 6090 // numrefs x valueid, 6091 // n x (valueid, relblockfreq)] 6092 case bitc::FS_PERMODULE: 6093 case bitc::FS_PERMODULE_RELBF: 6094 case bitc::FS_PERMODULE_PROFILE: { 6095 unsigned ValueID = Record[0]; 6096 uint64_t RawFlags = Record[1]; 6097 unsigned InstCount = Record[2]; 6098 uint64_t RawFunFlags = 0; 6099 unsigned NumRefs = Record[3]; 6100 unsigned NumRORefs = 0, NumWORefs = 0; 6101 int RefListStartIndex = 4; 6102 if (Version >= 4) { 6103 RawFunFlags = Record[3]; 6104 NumRefs = Record[4]; 6105 RefListStartIndex = 5; 6106 if (Version >= 5) { 6107 NumRORefs = Record[5]; 6108 RefListStartIndex = 6; 6109 if (Version >= 7) { 6110 NumWORefs = Record[6]; 6111 RefListStartIndex = 7; 6112 } 6113 } 6114 } 6115 6116 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6117 // The module path string ref set in the summary must be owned by the 6118 // index's module string table. Since we don't have a module path 6119 // string table section in the per-module index, we create a single 6120 // module path string table entry with an empty (0) ID to take 6121 // ownership. 6122 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6123 assert(Record.size() >= RefListStartIndex + NumRefs && 6124 "Record size inconsistent with number of references"); 6125 std::vector<ValueInfo> Refs = makeRefList( 6126 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6127 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 6128 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 6129 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 6130 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6131 IsOldProfileFormat, HasProfile, HasRelBF); 6132 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6133 auto FS = std::make_unique<FunctionSummary>( 6134 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 6135 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 6136 std::move(PendingTypeTestAssumeVCalls), 6137 std::move(PendingTypeCheckedLoadVCalls), 6138 std::move(PendingTypeTestAssumeConstVCalls), 6139 std::move(PendingTypeCheckedLoadConstVCalls), 6140 std::move(PendingParamAccesses)); 6141 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 6142 FS->setModulePath(getThisModule()->first()); 6143 FS->setOriginalName(VIAndOriginalGUID.second); 6144 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 6145 break; 6146 } 6147 // FS_ALIAS: [valueid, flags, valueid] 6148 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 6149 // they expect all aliasee summaries to be available. 6150 case bitc::FS_ALIAS: { 6151 unsigned ValueID = Record[0]; 6152 uint64_t RawFlags = Record[1]; 6153 unsigned AliaseeID = Record[2]; 6154 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6155 auto AS = std::make_unique<AliasSummary>(Flags); 6156 // The module path string ref set in the summary must be owned by the 6157 // index's module string table. Since we don't have a module path 6158 // string table section in the per-module index, we create a single 6159 // module path string table entry with an empty (0) ID to take 6160 // ownership. 6161 AS->setModulePath(getThisModule()->first()); 6162 6163 auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first; 6164 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 6165 if (!AliaseeInModule) 6166 return error("Alias expects aliasee summary to be parsed"); 6167 AS->setAliasee(AliaseeVI, AliaseeInModule); 6168 6169 auto GUID = getValueInfoFromValueId(ValueID); 6170 AS->setOriginalName(GUID.second); 6171 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 6172 break; 6173 } 6174 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 6175 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 6176 unsigned ValueID = Record[0]; 6177 uint64_t RawFlags = Record[1]; 6178 unsigned RefArrayStart = 2; 6179 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6180 /* WriteOnly */ false, 6181 /* Constant */ false, 6182 GlobalObject::VCallVisibilityPublic); 6183 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6184 if (Version >= 5) { 6185 GVF = getDecodedGVarFlags(Record[2]); 6186 RefArrayStart = 3; 6187 } 6188 std::vector<ValueInfo> Refs = 6189 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6190 auto FS = 6191 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6192 FS->setModulePath(getThisModule()->first()); 6193 auto GUID = getValueInfoFromValueId(ValueID); 6194 FS->setOriginalName(GUID.second); 6195 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 6196 break; 6197 } 6198 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 6199 // numrefs, numrefs x valueid, 6200 // n x (valueid, offset)] 6201 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 6202 unsigned ValueID = Record[0]; 6203 uint64_t RawFlags = Record[1]; 6204 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 6205 unsigned NumRefs = Record[3]; 6206 unsigned RefListStartIndex = 4; 6207 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 6208 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6209 std::vector<ValueInfo> Refs = makeRefList( 6210 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6211 VTableFuncList VTableFuncs; 6212 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 6213 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 6214 uint64_t Offset = Record[++I]; 6215 VTableFuncs.push_back({Callee, Offset}); 6216 } 6217 auto VS = 6218 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6219 VS->setModulePath(getThisModule()->first()); 6220 VS->setVTableFuncs(VTableFuncs); 6221 auto GUID = getValueInfoFromValueId(ValueID); 6222 VS->setOriginalName(GUID.second); 6223 TheIndex.addGlobalValueSummary(GUID.first, std::move(VS)); 6224 break; 6225 } 6226 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 6227 // numrefs x valueid, n x (valueid)] 6228 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 6229 // numrefs x valueid, n x (valueid, hotness)] 6230 case bitc::FS_COMBINED: 6231 case bitc::FS_COMBINED_PROFILE: { 6232 unsigned ValueID = Record[0]; 6233 uint64_t ModuleId = Record[1]; 6234 uint64_t RawFlags = Record[2]; 6235 unsigned InstCount = Record[3]; 6236 uint64_t RawFunFlags = 0; 6237 uint64_t EntryCount = 0; 6238 unsigned NumRefs = Record[4]; 6239 unsigned NumRORefs = 0, NumWORefs = 0; 6240 int RefListStartIndex = 5; 6241 6242 if (Version >= 4) { 6243 RawFunFlags = Record[4]; 6244 RefListStartIndex = 6; 6245 size_t NumRefsIndex = 5; 6246 if (Version >= 5) { 6247 unsigned NumRORefsOffset = 1; 6248 RefListStartIndex = 7; 6249 if (Version >= 6) { 6250 NumRefsIndex = 6; 6251 EntryCount = Record[5]; 6252 RefListStartIndex = 8; 6253 if (Version >= 7) { 6254 RefListStartIndex = 9; 6255 NumWORefs = Record[8]; 6256 NumRORefsOffset = 2; 6257 } 6258 } 6259 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 6260 } 6261 NumRefs = Record[NumRefsIndex]; 6262 } 6263 6264 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6265 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6266 assert(Record.size() >= RefListStartIndex + NumRefs && 6267 "Record size inconsistent with number of references"); 6268 std::vector<ValueInfo> Refs = makeRefList( 6269 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6270 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6271 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 6272 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6273 IsOldProfileFormat, HasProfile, false); 6274 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6275 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6276 auto FS = std::make_unique<FunctionSummary>( 6277 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 6278 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 6279 std::move(PendingTypeTestAssumeVCalls), 6280 std::move(PendingTypeCheckedLoadVCalls), 6281 std::move(PendingTypeTestAssumeConstVCalls), 6282 std::move(PendingTypeCheckedLoadConstVCalls), 6283 std::move(PendingParamAccesses)); 6284 LastSeenSummary = FS.get(); 6285 LastSeenGUID = VI.getGUID(); 6286 FS->setModulePath(ModuleIdMap[ModuleId]); 6287 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6288 break; 6289 } 6290 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6291 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6292 // they expect all aliasee summaries to be available. 6293 case bitc::FS_COMBINED_ALIAS: { 6294 unsigned ValueID = Record[0]; 6295 uint64_t ModuleId = Record[1]; 6296 uint64_t RawFlags = Record[2]; 6297 unsigned AliaseeValueId = Record[3]; 6298 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6299 auto AS = std::make_unique<AliasSummary>(Flags); 6300 LastSeenSummary = AS.get(); 6301 AS->setModulePath(ModuleIdMap[ModuleId]); 6302 6303 auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first; 6304 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 6305 AS->setAliasee(AliaseeVI, AliaseeInModule); 6306 6307 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6308 LastSeenGUID = VI.getGUID(); 6309 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 6310 break; 6311 } 6312 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6313 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6314 unsigned ValueID = Record[0]; 6315 uint64_t ModuleId = Record[1]; 6316 uint64_t RawFlags = Record[2]; 6317 unsigned RefArrayStart = 3; 6318 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6319 /* WriteOnly */ false, 6320 /* Constant */ false, 6321 GlobalObject::VCallVisibilityPublic); 6322 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6323 if (Version >= 5) { 6324 GVF = getDecodedGVarFlags(Record[3]); 6325 RefArrayStart = 4; 6326 } 6327 std::vector<ValueInfo> Refs = 6328 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6329 auto FS = 6330 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6331 LastSeenSummary = FS.get(); 6332 FS->setModulePath(ModuleIdMap[ModuleId]); 6333 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6334 LastSeenGUID = VI.getGUID(); 6335 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6336 break; 6337 } 6338 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6339 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6340 uint64_t OriginalName = Record[0]; 6341 if (!LastSeenSummary) 6342 return error("Name attachment that does not follow a combined record"); 6343 LastSeenSummary->setOriginalName(OriginalName); 6344 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 6345 // Reset the LastSeenSummary 6346 LastSeenSummary = nullptr; 6347 LastSeenGUID = 0; 6348 break; 6349 } 6350 case bitc::FS_TYPE_TESTS: 6351 assert(PendingTypeTests.empty()); 6352 PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(), 6353 Record.end()); 6354 break; 6355 6356 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 6357 assert(PendingTypeTestAssumeVCalls.empty()); 6358 for (unsigned I = 0; I != Record.size(); I += 2) 6359 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 6360 break; 6361 6362 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 6363 assert(PendingTypeCheckedLoadVCalls.empty()); 6364 for (unsigned I = 0; I != Record.size(); I += 2) 6365 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 6366 break; 6367 6368 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 6369 PendingTypeTestAssumeConstVCalls.push_back( 6370 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6371 break; 6372 6373 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 6374 PendingTypeCheckedLoadConstVCalls.push_back( 6375 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6376 break; 6377 6378 case bitc::FS_CFI_FUNCTION_DEFS: { 6379 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 6380 for (unsigned I = 0; I != Record.size(); I += 2) 6381 CfiFunctionDefs.insert( 6382 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6383 break; 6384 } 6385 6386 case bitc::FS_CFI_FUNCTION_DECLS: { 6387 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 6388 for (unsigned I = 0; I != Record.size(); I += 2) 6389 CfiFunctionDecls.insert( 6390 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6391 break; 6392 } 6393 6394 case bitc::FS_TYPE_ID: 6395 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 6396 break; 6397 6398 case bitc::FS_TYPE_ID_METADATA: 6399 parseTypeIdCompatibleVtableSummaryRecord(Record); 6400 break; 6401 6402 case bitc::FS_BLOCK_COUNT: 6403 TheIndex.addBlockCount(Record[0]); 6404 break; 6405 6406 case bitc::FS_PARAM_ACCESS: { 6407 PendingParamAccesses = parseParamAccesses(Record); 6408 break; 6409 } 6410 } 6411 } 6412 llvm_unreachable("Exit infinite loop"); 6413 } 6414 6415 // Parse the module string table block into the Index. 6416 // This populates the ModulePathStringTable map in the index. 6417 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6418 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6419 return Err; 6420 6421 SmallVector<uint64_t, 64> Record; 6422 6423 SmallString<128> ModulePath; 6424 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 6425 6426 while (true) { 6427 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6428 if (!MaybeEntry) 6429 return MaybeEntry.takeError(); 6430 BitstreamEntry Entry = MaybeEntry.get(); 6431 6432 switch (Entry.Kind) { 6433 case BitstreamEntry::SubBlock: // Handled for us already. 6434 case BitstreamEntry::Error: 6435 return error("Malformed block"); 6436 case BitstreamEntry::EndBlock: 6437 return Error::success(); 6438 case BitstreamEntry::Record: 6439 // The interesting case. 6440 break; 6441 } 6442 6443 Record.clear(); 6444 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6445 if (!MaybeRecord) 6446 return MaybeRecord.takeError(); 6447 switch (MaybeRecord.get()) { 6448 default: // Default behavior: ignore. 6449 break; 6450 case bitc::MST_CODE_ENTRY: { 6451 // MST_ENTRY: [modid, namechar x N] 6452 uint64_t ModuleId = Record[0]; 6453 6454 if (convertToString(Record, 1, ModulePath)) 6455 return error("Invalid record"); 6456 6457 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 6458 ModuleIdMap[ModuleId] = LastSeenModule->first(); 6459 6460 ModulePath.clear(); 6461 break; 6462 } 6463 /// MST_CODE_HASH: [5*i32] 6464 case bitc::MST_CODE_HASH: { 6465 if (Record.size() != 5) 6466 return error("Invalid hash length " + Twine(Record.size()).str()); 6467 if (!LastSeenModule) 6468 return error("Invalid hash that does not follow a module path"); 6469 int Pos = 0; 6470 for (auto &Val : Record) { 6471 assert(!(Val >> 32) && "Unexpected high bits set"); 6472 LastSeenModule->second.second[Pos++] = Val; 6473 } 6474 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 6475 LastSeenModule = nullptr; 6476 break; 6477 } 6478 } 6479 } 6480 llvm_unreachable("Exit infinite loop"); 6481 } 6482 6483 namespace { 6484 6485 // FIXME: This class is only here to support the transition to llvm::Error. It 6486 // will be removed once this transition is complete. Clients should prefer to 6487 // deal with the Error value directly, rather than converting to error_code. 6488 class BitcodeErrorCategoryType : public std::error_category { 6489 const char *name() const noexcept override { 6490 return "llvm.bitcode"; 6491 } 6492 6493 std::string message(int IE) const override { 6494 BitcodeError E = static_cast<BitcodeError>(IE); 6495 switch (E) { 6496 case BitcodeError::CorruptedBitcode: 6497 return "Corrupted bitcode"; 6498 } 6499 llvm_unreachable("Unknown error type!"); 6500 } 6501 }; 6502 6503 } // end anonymous namespace 6504 6505 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6506 6507 const std::error_category &llvm::BitcodeErrorCategory() { 6508 return *ErrorCategory; 6509 } 6510 6511 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 6512 unsigned Block, unsigned RecordID) { 6513 if (Error Err = Stream.EnterSubBlock(Block)) 6514 return std::move(Err); 6515 6516 StringRef Strtab; 6517 while (true) { 6518 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6519 if (!MaybeEntry) 6520 return MaybeEntry.takeError(); 6521 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6522 6523 switch (Entry.Kind) { 6524 case BitstreamEntry::EndBlock: 6525 return Strtab; 6526 6527 case BitstreamEntry::Error: 6528 return error("Malformed block"); 6529 6530 case BitstreamEntry::SubBlock: 6531 if (Error Err = Stream.SkipBlock()) 6532 return std::move(Err); 6533 break; 6534 6535 case BitstreamEntry::Record: 6536 StringRef Blob; 6537 SmallVector<uint64_t, 1> Record; 6538 Expected<unsigned> MaybeRecord = 6539 Stream.readRecord(Entry.ID, Record, &Blob); 6540 if (!MaybeRecord) 6541 return MaybeRecord.takeError(); 6542 if (MaybeRecord.get() == RecordID) 6543 Strtab = Blob; 6544 break; 6545 } 6546 } 6547 } 6548 6549 //===----------------------------------------------------------------------===// 6550 // External interface 6551 //===----------------------------------------------------------------------===// 6552 6553 Expected<std::vector<BitcodeModule>> 6554 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 6555 auto FOrErr = getBitcodeFileContents(Buffer); 6556 if (!FOrErr) 6557 return FOrErr.takeError(); 6558 return std::move(FOrErr->Mods); 6559 } 6560 6561 Expected<BitcodeFileContents> 6562 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 6563 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6564 if (!StreamOrErr) 6565 return StreamOrErr.takeError(); 6566 BitstreamCursor &Stream = *StreamOrErr; 6567 6568 BitcodeFileContents F; 6569 while (true) { 6570 uint64_t BCBegin = Stream.getCurrentByteNo(); 6571 6572 // We may be consuming bitcode from a client that leaves garbage at the end 6573 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 6574 // the end that there cannot possibly be another module, stop looking. 6575 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 6576 return F; 6577 6578 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6579 if (!MaybeEntry) 6580 return MaybeEntry.takeError(); 6581 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6582 6583 switch (Entry.Kind) { 6584 case BitstreamEntry::EndBlock: 6585 case BitstreamEntry::Error: 6586 return error("Malformed block"); 6587 6588 case BitstreamEntry::SubBlock: { 6589 uint64_t IdentificationBit = -1ull; 6590 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 6591 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6592 if (Error Err = Stream.SkipBlock()) 6593 return std::move(Err); 6594 6595 { 6596 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6597 if (!MaybeEntry) 6598 return MaybeEntry.takeError(); 6599 Entry = MaybeEntry.get(); 6600 } 6601 6602 if (Entry.Kind != BitstreamEntry::SubBlock || 6603 Entry.ID != bitc::MODULE_BLOCK_ID) 6604 return error("Malformed block"); 6605 } 6606 6607 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 6608 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6609 if (Error Err = Stream.SkipBlock()) 6610 return std::move(Err); 6611 6612 F.Mods.push_back({Stream.getBitcodeBytes().slice( 6613 BCBegin, Stream.getCurrentByteNo() - BCBegin), 6614 Buffer.getBufferIdentifier(), IdentificationBit, 6615 ModuleBit}); 6616 continue; 6617 } 6618 6619 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 6620 Expected<StringRef> Strtab = 6621 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 6622 if (!Strtab) 6623 return Strtab.takeError(); 6624 // This string table is used by every preceding bitcode module that does 6625 // not have its own string table. A bitcode file may have multiple 6626 // string tables if it was created by binary concatenation, for example 6627 // with "llvm-cat -b". 6628 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 6629 if (!I->Strtab.empty()) 6630 break; 6631 I->Strtab = *Strtab; 6632 } 6633 // Similarly, the string table is used by every preceding symbol table; 6634 // normally there will be just one unless the bitcode file was created 6635 // by binary concatenation. 6636 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 6637 F.StrtabForSymtab = *Strtab; 6638 continue; 6639 } 6640 6641 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 6642 Expected<StringRef> SymtabOrErr = 6643 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 6644 if (!SymtabOrErr) 6645 return SymtabOrErr.takeError(); 6646 6647 // We can expect the bitcode file to have multiple symbol tables if it 6648 // was created by binary concatenation. In that case we silently 6649 // ignore any subsequent symbol tables, which is fine because this is a 6650 // low level function. The client is expected to notice that the number 6651 // of modules in the symbol table does not match the number of modules 6652 // in the input file and regenerate the symbol table. 6653 if (F.Symtab.empty()) 6654 F.Symtab = *SymtabOrErr; 6655 continue; 6656 } 6657 6658 if (Error Err = Stream.SkipBlock()) 6659 return std::move(Err); 6660 continue; 6661 } 6662 case BitstreamEntry::Record: 6663 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6664 continue; 6665 else 6666 return StreamFailed.takeError(); 6667 } 6668 } 6669 } 6670 6671 /// Get a lazy one-at-time loading module from bitcode. 6672 /// 6673 /// This isn't always used in a lazy context. In particular, it's also used by 6674 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 6675 /// in forward-referenced functions from block address references. 6676 /// 6677 /// \param[in] MaterializeAll Set to \c true if we should materialize 6678 /// everything. 6679 Expected<std::unique_ptr<Module>> 6680 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 6681 bool ShouldLazyLoadMetadata, bool IsImporting, 6682 DataLayoutCallbackTy DataLayoutCallback) { 6683 BitstreamCursor Stream(Buffer); 6684 6685 std::string ProducerIdentification; 6686 if (IdentificationBit != -1ull) { 6687 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 6688 return std::move(JumpFailed); 6689 Expected<std::string> ProducerIdentificationOrErr = 6690 readIdentificationBlock(Stream); 6691 if (!ProducerIdentificationOrErr) 6692 return ProducerIdentificationOrErr.takeError(); 6693 6694 ProducerIdentification = *ProducerIdentificationOrErr; 6695 } 6696 6697 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6698 return std::move(JumpFailed); 6699 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 6700 Context); 6701 6702 std::unique_ptr<Module> M = 6703 std::make_unique<Module>(ModuleIdentifier, Context); 6704 M->setMaterializer(R); 6705 6706 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6707 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 6708 IsImporting, DataLayoutCallback)) 6709 return std::move(Err); 6710 6711 if (MaterializeAll) { 6712 // Read in the entire module, and destroy the BitcodeReader. 6713 if (Error Err = M->materializeAll()) 6714 return std::move(Err); 6715 } else { 6716 // Resolve forward references from blockaddresses. 6717 if (Error Err = R->materializeForwardReferencedFunctions()) 6718 return std::move(Err); 6719 } 6720 return std::move(M); 6721 } 6722 6723 Expected<std::unique_ptr<Module>> 6724 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 6725 bool IsImporting) { 6726 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 6727 [](StringRef) { return None; }); 6728 } 6729 6730 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 6731 // We don't use ModuleIdentifier here because the client may need to control the 6732 // module path used in the combined summary (e.g. when reading summaries for 6733 // regular LTO modules). 6734 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 6735 StringRef ModulePath, uint64_t ModuleId) { 6736 BitstreamCursor Stream(Buffer); 6737 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6738 return JumpFailed; 6739 6740 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 6741 ModulePath, ModuleId); 6742 return R.parseModule(); 6743 } 6744 6745 // Parse the specified bitcode buffer, returning the function info index. 6746 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 6747 BitstreamCursor Stream(Buffer); 6748 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6749 return std::move(JumpFailed); 6750 6751 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 6752 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 6753 ModuleIdentifier, 0); 6754 6755 if (Error Err = R.parseModule()) 6756 return std::move(Err); 6757 6758 return std::move(Index); 6759 } 6760 6761 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 6762 unsigned ID) { 6763 if (Error Err = Stream.EnterSubBlock(ID)) 6764 return std::move(Err); 6765 SmallVector<uint64_t, 64> Record; 6766 6767 while (true) { 6768 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6769 if (!MaybeEntry) 6770 return MaybeEntry.takeError(); 6771 BitstreamEntry Entry = MaybeEntry.get(); 6772 6773 switch (Entry.Kind) { 6774 case BitstreamEntry::SubBlock: // Handled for us already. 6775 case BitstreamEntry::Error: 6776 return error("Malformed block"); 6777 case BitstreamEntry::EndBlock: 6778 // If no flags record found, conservatively return true to mimic 6779 // behavior before this flag was added. 6780 return true; 6781 case BitstreamEntry::Record: 6782 // The interesting case. 6783 break; 6784 } 6785 6786 // Look for the FS_FLAGS record. 6787 Record.clear(); 6788 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6789 if (!MaybeBitCode) 6790 return MaybeBitCode.takeError(); 6791 switch (MaybeBitCode.get()) { 6792 default: // Default behavior: ignore. 6793 break; 6794 case bitc::FS_FLAGS: { // [flags] 6795 uint64_t Flags = Record[0]; 6796 // Scan flags. 6797 assert(Flags <= 0x3f && "Unexpected bits in flag"); 6798 6799 return Flags & 0x8; 6800 } 6801 } 6802 } 6803 llvm_unreachable("Exit infinite loop"); 6804 } 6805 6806 // Check if the given bitcode buffer contains a global value summary block. 6807 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 6808 BitstreamCursor Stream(Buffer); 6809 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6810 return std::move(JumpFailed); 6811 6812 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6813 return std::move(Err); 6814 6815 while (true) { 6816 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6817 if (!MaybeEntry) 6818 return MaybeEntry.takeError(); 6819 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6820 6821 switch (Entry.Kind) { 6822 case BitstreamEntry::Error: 6823 return error("Malformed block"); 6824 case BitstreamEntry::EndBlock: 6825 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 6826 /*EnableSplitLTOUnit=*/false}; 6827 6828 case BitstreamEntry::SubBlock: 6829 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 6830 Expected<bool> EnableSplitLTOUnit = 6831 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6832 if (!EnableSplitLTOUnit) 6833 return EnableSplitLTOUnit.takeError(); 6834 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 6835 *EnableSplitLTOUnit}; 6836 } 6837 6838 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 6839 Expected<bool> EnableSplitLTOUnit = 6840 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6841 if (!EnableSplitLTOUnit) 6842 return EnableSplitLTOUnit.takeError(); 6843 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 6844 *EnableSplitLTOUnit}; 6845 } 6846 6847 // Ignore other sub-blocks. 6848 if (Error Err = Stream.SkipBlock()) 6849 return std::move(Err); 6850 continue; 6851 6852 case BitstreamEntry::Record: 6853 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6854 continue; 6855 else 6856 return StreamFailed.takeError(); 6857 } 6858 } 6859 } 6860 6861 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 6862 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 6863 if (!MsOrErr) 6864 return MsOrErr.takeError(); 6865 6866 if (MsOrErr->size() != 1) 6867 return error("Expected a single module"); 6868 6869 return (*MsOrErr)[0]; 6870 } 6871 6872 Expected<std::unique_ptr<Module>> 6873 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 6874 bool ShouldLazyLoadMetadata, bool IsImporting) { 6875 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6876 if (!BM) 6877 return BM.takeError(); 6878 6879 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 6880 } 6881 6882 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 6883 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 6884 bool ShouldLazyLoadMetadata, bool IsImporting) { 6885 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 6886 IsImporting); 6887 if (MOrErr) 6888 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 6889 return MOrErr; 6890 } 6891 6892 Expected<std::unique_ptr<Module>> 6893 BitcodeModule::parseModule(LLVMContext &Context, 6894 DataLayoutCallbackTy DataLayoutCallback) { 6895 return getModuleImpl(Context, true, false, false, DataLayoutCallback); 6896 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6897 // written. We must defer until the Module has been fully materialized. 6898 } 6899 6900 Expected<std::unique_ptr<Module>> 6901 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 6902 DataLayoutCallbackTy DataLayoutCallback) { 6903 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6904 if (!BM) 6905 return BM.takeError(); 6906 6907 return BM->parseModule(Context, DataLayoutCallback); 6908 } 6909 6910 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 6911 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6912 if (!StreamOrErr) 6913 return StreamOrErr.takeError(); 6914 6915 return readTriple(*StreamOrErr); 6916 } 6917 6918 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 6919 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6920 if (!StreamOrErr) 6921 return StreamOrErr.takeError(); 6922 6923 return hasObjCCategory(*StreamOrErr); 6924 } 6925 6926 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 6927 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6928 if (!StreamOrErr) 6929 return StreamOrErr.takeError(); 6930 6931 return readIdentificationCode(*StreamOrErr); 6932 } 6933 6934 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 6935 ModuleSummaryIndex &CombinedIndex, 6936 uint64_t ModuleId) { 6937 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6938 if (!BM) 6939 return BM.takeError(); 6940 6941 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 6942 } 6943 6944 Expected<std::unique_ptr<ModuleSummaryIndex>> 6945 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 6946 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6947 if (!BM) 6948 return BM.takeError(); 6949 6950 return BM->getSummary(); 6951 } 6952 6953 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 6954 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6955 if (!BM) 6956 return BM.takeError(); 6957 6958 return BM->getLTOInfo(); 6959 } 6960 6961 Expected<std::unique_ptr<ModuleSummaryIndex>> 6962 llvm::getModuleSummaryIndexForFile(StringRef Path, 6963 bool IgnoreEmptyThinLTOIndexFile) { 6964 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 6965 MemoryBuffer::getFileOrSTDIN(Path); 6966 if (!FileOrErr) 6967 return errorCodeToError(FileOrErr.getError()); 6968 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 6969 return nullptr; 6970 return getModuleSummaryIndex(**FileOrErr); 6971 } 6972