1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the parser class for .ll files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "LLParser.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/None.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/AsmParser/SlotMapping.h" 20 #include "llvm/BinaryFormat/Dwarf.h" 21 #include "llvm/IR/Argument.h" 22 #include "llvm/IR/AutoUpgrade.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/CallingConv.h" 25 #include "llvm/IR/Comdat.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DebugInfoMetadata.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/GlobalIFunc.h" 31 #include "llvm/IR/GlobalObject.h" 32 #include "llvm/IR/InlineAsm.h" 33 #include "llvm/IR/Instruction.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/IR/Type.h" 41 #include "llvm/IR/Value.h" 42 #include "llvm/IR/ValueSymbolTable.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/MathExtras.h" 46 #include "llvm/Support/SaveAndRestore.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include <algorithm> 49 #include <cassert> 50 #include <cstring> 51 #include <iterator> 52 #include <vector> 53 54 using namespace llvm; 55 56 static std::string getTypeString(Type *T) { 57 std::string Result; 58 raw_string_ostream Tmp(Result); 59 Tmp << *T; 60 return Tmp.str(); 61 } 62 63 /// Run: module ::= toplevelentity* 64 bool LLParser::Run() { 65 // Prime the lexer. 66 Lex.Lex(); 67 68 if (Context.shouldDiscardValueNames()) 69 return Error( 70 Lex.getLoc(), 71 "Can't read textual IR with a Context that discards named Values"); 72 73 return ParseTopLevelEntities() || ValidateEndOfModule() || 74 ValidateEndOfIndex(); 75 } 76 77 bool LLParser::parseStandaloneConstantValue(Constant *&C, 78 const SlotMapping *Slots) { 79 restoreParsingState(Slots); 80 Lex.Lex(); 81 82 Type *Ty = nullptr; 83 if (ParseType(Ty) || parseConstantValue(Ty, C)) 84 return true; 85 if (Lex.getKind() != lltok::Eof) 86 return Error(Lex.getLoc(), "expected end of string"); 87 return false; 88 } 89 90 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 91 const SlotMapping *Slots) { 92 restoreParsingState(Slots); 93 Lex.Lex(); 94 95 Read = 0; 96 SMLoc Start = Lex.getLoc(); 97 Ty = nullptr; 98 if (ParseType(Ty)) 99 return true; 100 SMLoc End = Lex.getLoc(); 101 Read = End.getPointer() - Start.getPointer(); 102 103 return false; 104 } 105 106 void LLParser::restoreParsingState(const SlotMapping *Slots) { 107 if (!Slots) 108 return; 109 NumberedVals = Slots->GlobalValues; 110 NumberedMetadata = Slots->MetadataNodes; 111 for (const auto &I : Slots->NamedTypes) 112 NamedTypes.insert( 113 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 114 for (const auto &I : Slots->Types) 115 NumberedTypes.insert( 116 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 117 } 118 119 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the 120 /// module. 121 bool LLParser::ValidateEndOfModule() { 122 if (!M) 123 return false; 124 // Handle any function attribute group forward references. 125 for (const auto &RAG : ForwardRefAttrGroups) { 126 Value *V = RAG.first; 127 const std::vector<unsigned> &Attrs = RAG.second; 128 AttrBuilder B; 129 130 for (const auto &Attr : Attrs) 131 B.merge(NumberedAttrBuilders[Attr]); 132 133 if (Function *Fn = dyn_cast<Function>(V)) { 134 AttributeList AS = Fn->getAttributes(); 135 AttrBuilder FnAttrs(AS.getFnAttributes()); 136 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 137 138 FnAttrs.merge(B); 139 140 // If the alignment was parsed as an attribute, move to the alignment 141 // field. 142 if (FnAttrs.hasAlignmentAttr()) { 143 Fn->setAlignment(FnAttrs.getAlignment()); 144 FnAttrs.removeAttribute(Attribute::Alignment); 145 } 146 147 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 148 AttributeSet::get(Context, FnAttrs)); 149 Fn->setAttributes(AS); 150 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 151 AttributeList AS = CI->getAttributes(); 152 AttrBuilder FnAttrs(AS.getFnAttributes()); 153 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 154 FnAttrs.merge(B); 155 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 156 AttributeSet::get(Context, FnAttrs)); 157 CI->setAttributes(AS); 158 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 159 AttributeList AS = II->getAttributes(); 160 AttrBuilder FnAttrs(AS.getFnAttributes()); 161 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 162 FnAttrs.merge(B); 163 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 164 AttributeSet::get(Context, FnAttrs)); 165 II->setAttributes(AS); 166 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) { 167 AttributeList AS = CBI->getAttributes(); 168 AttrBuilder FnAttrs(AS.getFnAttributes()); 169 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 170 FnAttrs.merge(B); 171 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 172 AttributeSet::get(Context, FnAttrs)); 173 CBI->setAttributes(AS); 174 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) { 175 AttrBuilder Attrs(GV->getAttributes()); 176 Attrs.merge(B); 177 GV->setAttributes(AttributeSet::get(Context,Attrs)); 178 } else { 179 llvm_unreachable("invalid object with forward attribute group reference"); 180 } 181 } 182 183 // If there are entries in ForwardRefBlockAddresses at this point, the 184 // function was never defined. 185 if (!ForwardRefBlockAddresses.empty()) 186 return Error(ForwardRefBlockAddresses.begin()->first.Loc, 187 "expected function name in blockaddress"); 188 189 for (const auto &NT : NumberedTypes) 190 if (NT.second.second.isValid()) 191 return Error(NT.second.second, 192 "use of undefined type '%" + Twine(NT.first) + "'"); 193 194 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 195 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 196 if (I->second.second.isValid()) 197 return Error(I->second.second, 198 "use of undefined type named '" + I->getKey() + "'"); 199 200 if (!ForwardRefComdats.empty()) 201 return Error(ForwardRefComdats.begin()->second, 202 "use of undefined comdat '$" + 203 ForwardRefComdats.begin()->first + "'"); 204 205 if (!ForwardRefVals.empty()) 206 return Error(ForwardRefVals.begin()->second.second, 207 "use of undefined value '@" + ForwardRefVals.begin()->first + 208 "'"); 209 210 if (!ForwardRefValIDs.empty()) 211 return Error(ForwardRefValIDs.begin()->second.second, 212 "use of undefined value '@" + 213 Twine(ForwardRefValIDs.begin()->first) + "'"); 214 215 if (!ForwardRefMDNodes.empty()) 216 return Error(ForwardRefMDNodes.begin()->second.second, 217 "use of undefined metadata '!" + 218 Twine(ForwardRefMDNodes.begin()->first) + "'"); 219 220 // Resolve metadata cycles. 221 for (auto &N : NumberedMetadata) { 222 if (N.second && !N.second->isResolved()) 223 N.second->resolveCycles(); 224 } 225 226 for (auto *Inst : InstsWithTBAATag) { 227 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); 228 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); 229 auto *UpgradedMD = UpgradeTBAANode(*MD); 230 if (MD != UpgradedMD) 231 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); 232 } 233 234 // Look for intrinsic functions and CallInst that need to be upgraded 235 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 236 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove 237 238 // Some types could be renamed during loading if several modules are 239 // loaded in the same LLVMContext (LTO scenario). In this case we should 240 // remangle intrinsics names as well. 241 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) { 242 Function *F = &*FI++; 243 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) { 244 F->replaceAllUsesWith(Remangled.getValue()); 245 F->eraseFromParent(); 246 } 247 } 248 249 if (UpgradeDebugInfo) 250 llvm::UpgradeDebugInfo(*M); 251 252 UpgradeModuleFlags(*M); 253 UpgradeSectionAttributes(*M); 254 255 if (!Slots) 256 return false; 257 // Initialize the slot mapping. 258 // Because by this point we've parsed and validated everything, we can "steal" 259 // the mapping from LLParser as it doesn't need it anymore. 260 Slots->GlobalValues = std::move(NumberedVals); 261 Slots->MetadataNodes = std::move(NumberedMetadata); 262 for (const auto &I : NamedTypes) 263 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 264 for (const auto &I : NumberedTypes) 265 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 266 267 return false; 268 } 269 270 /// Do final validity and sanity checks at the end of the index. 271 bool LLParser::ValidateEndOfIndex() { 272 if (!Index) 273 return false; 274 275 if (!ForwardRefValueInfos.empty()) 276 return Error(ForwardRefValueInfos.begin()->second.front().second, 277 "use of undefined summary '^" + 278 Twine(ForwardRefValueInfos.begin()->first) + "'"); 279 280 if (!ForwardRefAliasees.empty()) 281 return Error(ForwardRefAliasees.begin()->second.front().second, 282 "use of undefined summary '^" + 283 Twine(ForwardRefAliasees.begin()->first) + "'"); 284 285 if (!ForwardRefTypeIds.empty()) 286 return Error(ForwardRefTypeIds.begin()->second.front().second, 287 "use of undefined type id summary '^" + 288 Twine(ForwardRefTypeIds.begin()->first) + "'"); 289 290 return false; 291 } 292 293 //===----------------------------------------------------------------------===// 294 // Top-Level Entities 295 //===----------------------------------------------------------------------===// 296 297 bool LLParser::ParseTopLevelEntities() { 298 // If there is no Module, then parse just the summary index entries. 299 if (!M) { 300 while (true) { 301 switch (Lex.getKind()) { 302 case lltok::Eof: 303 return false; 304 case lltok::SummaryID: 305 if (ParseSummaryEntry()) 306 return true; 307 break; 308 case lltok::kw_source_filename: 309 if (ParseSourceFileName()) 310 return true; 311 break; 312 default: 313 // Skip everything else 314 Lex.Lex(); 315 } 316 } 317 } 318 while (true) { 319 switch (Lex.getKind()) { 320 default: return TokError("expected top-level entity"); 321 case lltok::Eof: return false; 322 case lltok::kw_declare: if (ParseDeclare()) return true; break; 323 case lltok::kw_define: if (ParseDefine()) return true; break; 324 case lltok::kw_module: if (ParseModuleAsm()) return true; break; 325 case lltok::kw_target: if (ParseTargetDefinition()) return true; break; 326 case lltok::kw_source_filename: 327 if (ParseSourceFileName()) 328 return true; 329 break; 330 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; 331 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; 332 case lltok::LocalVar: if (ParseNamedType()) return true; break; 333 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; 334 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; 335 case lltok::ComdatVar: if (parseComdat()) return true; break; 336 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break; 337 case lltok::SummaryID: 338 if (ParseSummaryEntry()) 339 return true; 340 break; 341 case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break; 342 case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break; 343 case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break; 344 case lltok::kw_uselistorder_bb: 345 if (ParseUseListOrderBB()) 346 return true; 347 break; 348 } 349 } 350 } 351 352 /// toplevelentity 353 /// ::= 'module' 'asm' STRINGCONSTANT 354 bool LLParser::ParseModuleAsm() { 355 assert(Lex.getKind() == lltok::kw_module); 356 Lex.Lex(); 357 358 std::string AsmStr; 359 if (ParseToken(lltok::kw_asm, "expected 'module asm'") || 360 ParseStringConstant(AsmStr)) return true; 361 362 M->appendModuleInlineAsm(AsmStr); 363 return false; 364 } 365 366 /// toplevelentity 367 /// ::= 'target' 'triple' '=' STRINGCONSTANT 368 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 369 bool LLParser::ParseTargetDefinition() { 370 assert(Lex.getKind() == lltok::kw_target); 371 std::string Str; 372 switch (Lex.Lex()) { 373 default: return TokError("unknown target property"); 374 case lltok::kw_triple: 375 Lex.Lex(); 376 if (ParseToken(lltok::equal, "expected '=' after target triple") || 377 ParseStringConstant(Str)) 378 return true; 379 M->setTargetTriple(Str); 380 return false; 381 case lltok::kw_datalayout: 382 Lex.Lex(); 383 if (ParseToken(lltok::equal, "expected '=' after target datalayout") || 384 ParseStringConstant(Str)) 385 return true; 386 if (DataLayoutStr.empty()) 387 M->setDataLayout(Str); 388 return false; 389 } 390 } 391 392 /// toplevelentity 393 /// ::= 'source_filename' '=' STRINGCONSTANT 394 bool LLParser::ParseSourceFileName() { 395 assert(Lex.getKind() == lltok::kw_source_filename); 396 Lex.Lex(); 397 if (ParseToken(lltok::equal, "expected '=' after source_filename") || 398 ParseStringConstant(SourceFileName)) 399 return true; 400 if (M) 401 M->setSourceFileName(SourceFileName); 402 return false; 403 } 404 405 /// toplevelentity 406 /// ::= 'deplibs' '=' '[' ']' 407 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 408 /// FIXME: Remove in 4.0. Currently parse, but ignore. 409 bool LLParser::ParseDepLibs() { 410 assert(Lex.getKind() == lltok::kw_deplibs); 411 Lex.Lex(); 412 if (ParseToken(lltok::equal, "expected '=' after deplibs") || 413 ParseToken(lltok::lsquare, "expected '=' after deplibs")) 414 return true; 415 416 if (EatIfPresent(lltok::rsquare)) 417 return false; 418 419 do { 420 std::string Str; 421 if (ParseStringConstant(Str)) return true; 422 } while (EatIfPresent(lltok::comma)); 423 424 return ParseToken(lltok::rsquare, "expected ']' at end of list"); 425 } 426 427 /// ParseUnnamedType: 428 /// ::= LocalVarID '=' 'type' type 429 bool LLParser::ParseUnnamedType() { 430 LocTy TypeLoc = Lex.getLoc(); 431 unsigned TypeID = Lex.getUIntVal(); 432 Lex.Lex(); // eat LocalVarID; 433 434 if (ParseToken(lltok::equal, "expected '=' after name") || 435 ParseToken(lltok::kw_type, "expected 'type' after '='")) 436 return true; 437 438 Type *Result = nullptr; 439 if (ParseStructDefinition(TypeLoc, "", 440 NumberedTypes[TypeID], Result)) return true; 441 442 if (!isa<StructType>(Result)) { 443 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 444 if (Entry.first) 445 return Error(TypeLoc, "non-struct types may not be recursive"); 446 Entry.first = Result; 447 Entry.second = SMLoc(); 448 } 449 450 return false; 451 } 452 453 /// toplevelentity 454 /// ::= LocalVar '=' 'type' type 455 bool LLParser::ParseNamedType() { 456 std::string Name = Lex.getStrVal(); 457 LocTy NameLoc = Lex.getLoc(); 458 Lex.Lex(); // eat LocalVar. 459 460 if (ParseToken(lltok::equal, "expected '=' after name") || 461 ParseToken(lltok::kw_type, "expected 'type' after name")) 462 return true; 463 464 Type *Result = nullptr; 465 if (ParseStructDefinition(NameLoc, Name, 466 NamedTypes[Name], Result)) return true; 467 468 if (!isa<StructType>(Result)) { 469 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 470 if (Entry.first) 471 return Error(NameLoc, "non-struct types may not be recursive"); 472 Entry.first = Result; 473 Entry.second = SMLoc(); 474 } 475 476 return false; 477 } 478 479 /// toplevelentity 480 /// ::= 'declare' FunctionHeader 481 bool LLParser::ParseDeclare() { 482 assert(Lex.getKind() == lltok::kw_declare); 483 Lex.Lex(); 484 485 std::vector<std::pair<unsigned, MDNode *>> MDs; 486 while (Lex.getKind() == lltok::MetadataVar) { 487 unsigned MDK; 488 MDNode *N; 489 if (ParseMetadataAttachment(MDK, N)) 490 return true; 491 MDs.push_back({MDK, N}); 492 } 493 494 Function *F; 495 if (ParseFunctionHeader(F, false)) 496 return true; 497 for (auto &MD : MDs) 498 F->addMetadata(MD.first, *MD.second); 499 return false; 500 } 501 502 /// toplevelentity 503 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 504 bool LLParser::ParseDefine() { 505 assert(Lex.getKind() == lltok::kw_define); 506 Lex.Lex(); 507 508 Function *F; 509 return ParseFunctionHeader(F, true) || 510 ParseOptionalFunctionMetadata(*F) || 511 ParseFunctionBody(*F); 512 } 513 514 /// ParseGlobalType 515 /// ::= 'constant' 516 /// ::= 'global' 517 bool LLParser::ParseGlobalType(bool &IsConstant) { 518 if (Lex.getKind() == lltok::kw_constant) 519 IsConstant = true; 520 else if (Lex.getKind() == lltok::kw_global) 521 IsConstant = false; 522 else { 523 IsConstant = false; 524 return TokError("expected 'global' or 'constant'"); 525 } 526 Lex.Lex(); 527 return false; 528 } 529 530 bool LLParser::ParseOptionalUnnamedAddr( 531 GlobalVariable::UnnamedAddr &UnnamedAddr) { 532 if (EatIfPresent(lltok::kw_unnamed_addr)) 533 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 534 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 535 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 536 else 537 UnnamedAddr = GlobalValue::UnnamedAddr::None; 538 return false; 539 } 540 541 /// ParseUnnamedGlobal: 542 /// OptionalVisibility (ALIAS | IFUNC) ... 543 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 544 /// OptionalDLLStorageClass 545 /// ... -> global variable 546 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 547 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 548 /// OptionalDLLStorageClass 549 /// ... -> global variable 550 bool LLParser::ParseUnnamedGlobal() { 551 unsigned VarID = NumberedVals.size(); 552 std::string Name; 553 LocTy NameLoc = Lex.getLoc(); 554 555 // Handle the GlobalID form. 556 if (Lex.getKind() == lltok::GlobalID) { 557 if (Lex.getUIntVal() != VarID) 558 return Error(Lex.getLoc(), "variable expected to be numbered '%" + 559 Twine(VarID) + "'"); 560 Lex.Lex(); // eat GlobalID; 561 562 if (ParseToken(lltok::equal, "expected '=' after name")) 563 return true; 564 } 565 566 bool HasLinkage; 567 unsigned Linkage, Visibility, DLLStorageClass; 568 bool DSOLocal; 569 GlobalVariable::ThreadLocalMode TLM; 570 GlobalVariable::UnnamedAddr UnnamedAddr; 571 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 572 DSOLocal) || 573 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 574 return true; 575 576 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 577 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 578 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 579 580 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 581 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 582 } 583 584 /// ParseNamedGlobal: 585 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 586 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 587 /// OptionalVisibility OptionalDLLStorageClass 588 /// ... -> global variable 589 bool LLParser::ParseNamedGlobal() { 590 assert(Lex.getKind() == lltok::GlobalVar); 591 LocTy NameLoc = Lex.getLoc(); 592 std::string Name = Lex.getStrVal(); 593 Lex.Lex(); 594 595 bool HasLinkage; 596 unsigned Linkage, Visibility, DLLStorageClass; 597 bool DSOLocal; 598 GlobalVariable::ThreadLocalMode TLM; 599 GlobalVariable::UnnamedAddr UnnamedAddr; 600 if (ParseToken(lltok::equal, "expected '=' in global variable") || 601 ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 602 DSOLocal) || 603 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 604 return true; 605 606 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 607 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 608 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 609 610 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 611 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 612 } 613 614 bool LLParser::parseComdat() { 615 assert(Lex.getKind() == lltok::ComdatVar); 616 std::string Name = Lex.getStrVal(); 617 LocTy NameLoc = Lex.getLoc(); 618 Lex.Lex(); 619 620 if (ParseToken(lltok::equal, "expected '=' here")) 621 return true; 622 623 if (ParseToken(lltok::kw_comdat, "expected comdat keyword")) 624 return TokError("expected comdat type"); 625 626 Comdat::SelectionKind SK; 627 switch (Lex.getKind()) { 628 default: 629 return TokError("unknown selection kind"); 630 case lltok::kw_any: 631 SK = Comdat::Any; 632 break; 633 case lltok::kw_exactmatch: 634 SK = Comdat::ExactMatch; 635 break; 636 case lltok::kw_largest: 637 SK = Comdat::Largest; 638 break; 639 case lltok::kw_noduplicates: 640 SK = Comdat::NoDuplicates; 641 break; 642 case lltok::kw_samesize: 643 SK = Comdat::SameSize; 644 break; 645 } 646 Lex.Lex(); 647 648 // See if the comdat was forward referenced, if so, use the comdat. 649 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 650 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 651 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 652 return Error(NameLoc, "redefinition of comdat '$" + Name + "'"); 653 654 Comdat *C; 655 if (I != ComdatSymTab.end()) 656 C = &I->second; 657 else 658 C = M->getOrInsertComdat(Name); 659 C->setSelectionKind(SK); 660 661 return false; 662 } 663 664 // MDString: 665 // ::= '!' STRINGCONSTANT 666 bool LLParser::ParseMDString(MDString *&Result) { 667 std::string Str; 668 if (ParseStringConstant(Str)) return true; 669 Result = MDString::get(Context, Str); 670 return false; 671 } 672 673 // MDNode: 674 // ::= '!' MDNodeNumber 675 bool LLParser::ParseMDNodeID(MDNode *&Result) { 676 // !{ ..., !42, ... } 677 LocTy IDLoc = Lex.getLoc(); 678 unsigned MID = 0; 679 if (ParseUInt32(MID)) 680 return true; 681 682 // If not a forward reference, just return it now. 683 if (NumberedMetadata.count(MID)) { 684 Result = NumberedMetadata[MID]; 685 return false; 686 } 687 688 // Otherwise, create MDNode forward reference. 689 auto &FwdRef = ForwardRefMDNodes[MID]; 690 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 691 692 Result = FwdRef.first.get(); 693 NumberedMetadata[MID].reset(Result); 694 return false; 695 } 696 697 /// ParseNamedMetadata: 698 /// !foo = !{ !1, !2 } 699 bool LLParser::ParseNamedMetadata() { 700 assert(Lex.getKind() == lltok::MetadataVar); 701 std::string Name = Lex.getStrVal(); 702 Lex.Lex(); 703 704 if (ParseToken(lltok::equal, "expected '=' here") || 705 ParseToken(lltok::exclaim, "Expected '!' here") || 706 ParseToken(lltok::lbrace, "Expected '{' here")) 707 return true; 708 709 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 710 if (Lex.getKind() != lltok::rbrace) 711 do { 712 MDNode *N = nullptr; 713 // Parse DIExpressions inline as a special case. They are still MDNodes, 714 // so they can still appear in named metadata. Remove this logic if they 715 // become plain Metadata. 716 if (Lex.getKind() == lltok::MetadataVar && 717 Lex.getStrVal() == "DIExpression") { 718 if (ParseDIExpression(N, /*IsDistinct=*/false)) 719 return true; 720 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 721 ParseMDNodeID(N)) { 722 return true; 723 } 724 NMD->addOperand(N); 725 } while (EatIfPresent(lltok::comma)); 726 727 return ParseToken(lltok::rbrace, "expected end of metadata node"); 728 } 729 730 /// ParseStandaloneMetadata: 731 /// !42 = !{...} 732 bool LLParser::ParseStandaloneMetadata() { 733 assert(Lex.getKind() == lltok::exclaim); 734 Lex.Lex(); 735 unsigned MetadataID = 0; 736 737 MDNode *Init; 738 if (ParseUInt32(MetadataID) || 739 ParseToken(lltok::equal, "expected '=' here")) 740 return true; 741 742 // Detect common error, from old metadata syntax. 743 if (Lex.getKind() == lltok::Type) 744 return TokError("unexpected type in metadata definition"); 745 746 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 747 if (Lex.getKind() == lltok::MetadataVar) { 748 if (ParseSpecializedMDNode(Init, IsDistinct)) 749 return true; 750 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 751 ParseMDTuple(Init, IsDistinct)) 752 return true; 753 754 // See if this was forward referenced, if so, handle it. 755 auto FI = ForwardRefMDNodes.find(MetadataID); 756 if (FI != ForwardRefMDNodes.end()) { 757 FI->second.first->replaceAllUsesWith(Init); 758 ForwardRefMDNodes.erase(FI); 759 760 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 761 } else { 762 if (NumberedMetadata.count(MetadataID)) 763 return TokError("Metadata id is already used"); 764 NumberedMetadata[MetadataID].reset(Init); 765 } 766 767 return false; 768 } 769 770 // Skips a single module summary entry. 771 bool LLParser::SkipModuleSummaryEntry() { 772 // Each module summary entry consists of a tag for the entry 773 // type, followed by a colon, then the fields surrounded by nested sets of 774 // parentheses. The "tag:" looks like a Label. Once parsing support is 775 // in place we will look for the tokens corresponding to the expected tags. 776 if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module && 777 Lex.getKind() != lltok::kw_typeid) 778 return TokError( 779 "Expected 'gv', 'module', or 'typeid' at the start of summary entry"); 780 Lex.Lex(); 781 if (ParseToken(lltok::colon, "expected ':' at start of summary entry") || 782 ParseToken(lltok::lparen, "expected '(' at start of summary entry")) 783 return true; 784 // Now walk through the parenthesized entry, until the number of open 785 // parentheses goes back down to 0 (the first '(' was parsed above). 786 unsigned NumOpenParen = 1; 787 do { 788 switch (Lex.getKind()) { 789 case lltok::lparen: 790 NumOpenParen++; 791 break; 792 case lltok::rparen: 793 NumOpenParen--; 794 break; 795 case lltok::Eof: 796 return TokError("found end of file while parsing summary entry"); 797 default: 798 // Skip everything in between parentheses. 799 break; 800 } 801 Lex.Lex(); 802 } while (NumOpenParen > 0); 803 return false; 804 } 805 806 /// SummaryEntry 807 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry 808 bool LLParser::ParseSummaryEntry() { 809 assert(Lex.getKind() == lltok::SummaryID); 810 unsigned SummaryID = Lex.getUIntVal(); 811 812 // For summary entries, colons should be treated as distinct tokens, 813 // not an indication of the end of a label token. 814 Lex.setIgnoreColonInIdentifiers(true); 815 816 Lex.Lex(); 817 if (ParseToken(lltok::equal, "expected '=' here")) 818 return true; 819 820 // If we don't have an index object, skip the summary entry. 821 if (!Index) 822 return SkipModuleSummaryEntry(); 823 824 bool result = false; 825 switch (Lex.getKind()) { 826 case lltok::kw_gv: 827 result = ParseGVEntry(SummaryID); 828 break; 829 case lltok::kw_module: 830 result = ParseModuleEntry(SummaryID); 831 break; 832 case lltok::kw_typeid: 833 result = ParseTypeIdEntry(SummaryID); 834 break; 835 case lltok::kw_typeidCompatibleVTable: 836 result = ParseTypeIdCompatibleVtableEntry(SummaryID); 837 break; 838 case lltok::kw_flags: 839 result = ParseSummaryIndexFlags(); 840 break; 841 default: 842 result = Error(Lex.getLoc(), "unexpected summary kind"); 843 break; 844 } 845 Lex.setIgnoreColonInIdentifiers(false); 846 return result; 847 } 848 849 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 850 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 851 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 852 } 853 854 // If there was an explicit dso_local, update GV. In the absence of an explicit 855 // dso_local we keep the default value. 856 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) { 857 if (DSOLocal) 858 GV.setDSOLocal(true); 859 } 860 861 /// parseIndirectSymbol: 862 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 863 /// OptionalVisibility OptionalDLLStorageClass 864 /// OptionalThreadLocal OptionalUnnamedAddr 865 /// 'alias|ifunc' IndirectSymbol IndirectSymbolAttr* 866 /// 867 /// IndirectSymbol 868 /// ::= TypeAndValue 869 /// 870 /// IndirectSymbolAttr 871 /// ::= ',' 'partition' StringConstant 872 /// 873 /// Everything through OptionalUnnamedAddr has already been parsed. 874 /// 875 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc, 876 unsigned L, unsigned Visibility, 877 unsigned DLLStorageClass, bool DSOLocal, 878 GlobalVariable::ThreadLocalMode TLM, 879 GlobalVariable::UnnamedAddr UnnamedAddr) { 880 bool IsAlias; 881 if (Lex.getKind() == lltok::kw_alias) 882 IsAlias = true; 883 else if (Lex.getKind() == lltok::kw_ifunc) 884 IsAlias = false; 885 else 886 llvm_unreachable("Not an alias or ifunc!"); 887 Lex.Lex(); 888 889 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 890 891 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 892 return Error(NameLoc, "invalid linkage type for alias"); 893 894 if (!isValidVisibilityForLinkage(Visibility, L)) 895 return Error(NameLoc, 896 "symbol with local linkage must have default visibility"); 897 898 Type *Ty; 899 LocTy ExplicitTypeLoc = Lex.getLoc(); 900 if (ParseType(Ty) || 901 ParseToken(lltok::comma, "expected comma after alias or ifunc's type")) 902 return true; 903 904 Constant *Aliasee; 905 LocTy AliaseeLoc = Lex.getLoc(); 906 if (Lex.getKind() != lltok::kw_bitcast && 907 Lex.getKind() != lltok::kw_getelementptr && 908 Lex.getKind() != lltok::kw_addrspacecast && 909 Lex.getKind() != lltok::kw_inttoptr) { 910 if (ParseGlobalTypeAndValue(Aliasee)) 911 return true; 912 } else { 913 // The bitcast dest type is not present, it is implied by the dest type. 914 ValID ID; 915 if (ParseValID(ID)) 916 return true; 917 if (ID.Kind != ValID::t_Constant) 918 return Error(AliaseeLoc, "invalid aliasee"); 919 Aliasee = ID.ConstantVal; 920 } 921 922 Type *AliaseeType = Aliasee->getType(); 923 auto *PTy = dyn_cast<PointerType>(AliaseeType); 924 if (!PTy) 925 return Error(AliaseeLoc, "An alias or ifunc must have pointer type"); 926 unsigned AddrSpace = PTy->getAddressSpace(); 927 928 if (IsAlias && Ty != PTy->getElementType()) 929 return Error( 930 ExplicitTypeLoc, 931 "explicit pointee type doesn't match operand's pointee type"); 932 933 if (!IsAlias && !PTy->getElementType()->isFunctionTy()) 934 return Error( 935 ExplicitTypeLoc, 936 "explicit pointee type should be a function type"); 937 938 GlobalValue *GVal = nullptr; 939 940 // See if the alias was forward referenced, if so, prepare to replace the 941 // forward reference. 942 if (!Name.empty()) { 943 GVal = M->getNamedValue(Name); 944 if (GVal) { 945 if (!ForwardRefVals.erase(Name)) 946 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 947 } 948 } else { 949 auto I = ForwardRefValIDs.find(NumberedVals.size()); 950 if (I != ForwardRefValIDs.end()) { 951 GVal = I->second.first; 952 ForwardRefValIDs.erase(I); 953 } 954 } 955 956 // Okay, create the alias but do not insert it into the module yet. 957 std::unique_ptr<GlobalIndirectSymbol> GA; 958 if (IsAlias) 959 GA.reset(GlobalAlias::create(Ty, AddrSpace, 960 (GlobalValue::LinkageTypes)Linkage, Name, 961 Aliasee, /*Parent*/ nullptr)); 962 else 963 GA.reset(GlobalIFunc::create(Ty, AddrSpace, 964 (GlobalValue::LinkageTypes)Linkage, Name, 965 Aliasee, /*Parent*/ nullptr)); 966 GA->setThreadLocalMode(TLM); 967 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 968 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 969 GA->setUnnamedAddr(UnnamedAddr); 970 maybeSetDSOLocal(DSOLocal, *GA); 971 972 // At this point we've parsed everything except for the IndirectSymbolAttrs. 973 // Now parse them if there are any. 974 while (Lex.getKind() == lltok::comma) { 975 Lex.Lex(); 976 977 if (Lex.getKind() == lltok::kw_partition) { 978 Lex.Lex(); 979 GA->setPartition(Lex.getStrVal()); 980 if (ParseToken(lltok::StringConstant, "expected partition string")) 981 return true; 982 } else { 983 return TokError("unknown alias or ifunc property!"); 984 } 985 } 986 987 if (Name.empty()) 988 NumberedVals.push_back(GA.get()); 989 990 if (GVal) { 991 // Verify that types agree. 992 if (GVal->getType() != GA->getType()) 993 return Error( 994 ExplicitTypeLoc, 995 "forward reference and definition of alias have different types"); 996 997 // If they agree, just RAUW the old value with the alias and remove the 998 // forward ref info. 999 GVal->replaceAllUsesWith(GA.get()); 1000 GVal->eraseFromParent(); 1001 } 1002 1003 // Insert into the module, we know its name won't collide now. 1004 if (IsAlias) 1005 M->getAliasList().push_back(cast<GlobalAlias>(GA.get())); 1006 else 1007 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get())); 1008 assert(GA->getName() == Name && "Should not be a name conflict!"); 1009 1010 // The module owns this now 1011 GA.release(); 1012 1013 return false; 1014 } 1015 1016 /// ParseGlobal 1017 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 1018 /// OptionalVisibility OptionalDLLStorageClass 1019 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 1020 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs 1021 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 1022 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr 1023 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type 1024 /// Const OptionalAttrs 1025 /// 1026 /// Everything up to and including OptionalUnnamedAddr has been parsed 1027 /// already. 1028 /// 1029 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, 1030 unsigned Linkage, bool HasLinkage, 1031 unsigned Visibility, unsigned DLLStorageClass, 1032 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM, 1033 GlobalVariable::UnnamedAddr UnnamedAddr) { 1034 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 1035 return Error(NameLoc, 1036 "symbol with local linkage must have default visibility"); 1037 1038 unsigned AddrSpace; 1039 bool IsConstant, IsExternallyInitialized; 1040 LocTy IsExternallyInitializedLoc; 1041 LocTy TyLoc; 1042 1043 Type *Ty = nullptr; 1044 if (ParseOptionalAddrSpace(AddrSpace) || 1045 ParseOptionalToken(lltok::kw_externally_initialized, 1046 IsExternallyInitialized, 1047 &IsExternallyInitializedLoc) || 1048 ParseGlobalType(IsConstant) || 1049 ParseType(Ty, TyLoc)) 1050 return true; 1051 1052 // If the linkage is specified and is external, then no initializer is 1053 // present. 1054 Constant *Init = nullptr; 1055 if (!HasLinkage || 1056 !GlobalValue::isValidDeclarationLinkage( 1057 (GlobalValue::LinkageTypes)Linkage)) { 1058 if (ParseGlobalValue(Ty, Init)) 1059 return true; 1060 } 1061 1062 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 1063 return Error(TyLoc, "invalid type for global variable"); 1064 1065 GlobalValue *GVal = nullptr; 1066 1067 // See if the global was forward referenced, if so, use the global. 1068 if (!Name.empty()) { 1069 GVal = M->getNamedValue(Name); 1070 if (GVal) { 1071 if (!ForwardRefVals.erase(Name)) 1072 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 1073 } 1074 } else { 1075 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1076 if (I != ForwardRefValIDs.end()) { 1077 GVal = I->second.first; 1078 ForwardRefValIDs.erase(I); 1079 } 1080 } 1081 1082 GlobalVariable *GV; 1083 if (!GVal) { 1084 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, 1085 Name, nullptr, GlobalVariable::NotThreadLocal, 1086 AddrSpace); 1087 } else { 1088 if (GVal->getValueType() != Ty) 1089 return Error(TyLoc, 1090 "forward reference and definition of global have different types"); 1091 1092 GV = cast<GlobalVariable>(GVal); 1093 1094 // Move the forward-reference to the correct spot in the module. 1095 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 1096 } 1097 1098 if (Name.empty()) 1099 NumberedVals.push_back(GV); 1100 1101 // Set the parsed properties on the global. 1102 if (Init) 1103 GV->setInitializer(Init); 1104 GV->setConstant(IsConstant); 1105 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 1106 maybeSetDSOLocal(DSOLocal, *GV); 1107 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1108 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1109 GV->setExternallyInitialized(IsExternallyInitialized); 1110 GV->setThreadLocalMode(TLM); 1111 GV->setUnnamedAddr(UnnamedAddr); 1112 1113 // Parse attributes on the global. 1114 while (Lex.getKind() == lltok::comma) { 1115 Lex.Lex(); 1116 1117 if (Lex.getKind() == lltok::kw_section) { 1118 Lex.Lex(); 1119 GV->setSection(Lex.getStrVal()); 1120 if (ParseToken(lltok::StringConstant, "expected global section string")) 1121 return true; 1122 } else if (Lex.getKind() == lltok::kw_partition) { 1123 Lex.Lex(); 1124 GV->setPartition(Lex.getStrVal()); 1125 if (ParseToken(lltok::StringConstant, "expected partition string")) 1126 return true; 1127 } else if (Lex.getKind() == lltok::kw_align) { 1128 MaybeAlign Alignment; 1129 if (ParseOptionalAlignment(Alignment)) return true; 1130 GV->setAlignment(Alignment); 1131 } else if (Lex.getKind() == lltok::MetadataVar) { 1132 if (ParseGlobalObjectMetadataAttachment(*GV)) 1133 return true; 1134 } else { 1135 Comdat *C; 1136 if (parseOptionalComdat(Name, C)) 1137 return true; 1138 if (C) 1139 GV->setComdat(C); 1140 else 1141 return TokError("unknown global variable property!"); 1142 } 1143 } 1144 1145 AttrBuilder Attrs; 1146 LocTy BuiltinLoc; 1147 std::vector<unsigned> FwdRefAttrGrps; 1148 if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc)) 1149 return true; 1150 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) { 1151 GV->setAttributes(AttributeSet::get(Context, Attrs)); 1152 ForwardRefAttrGroups[GV] = FwdRefAttrGrps; 1153 } 1154 1155 return false; 1156 } 1157 1158 /// ParseUnnamedAttrGrp 1159 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 1160 bool LLParser::ParseUnnamedAttrGrp() { 1161 assert(Lex.getKind() == lltok::kw_attributes); 1162 LocTy AttrGrpLoc = Lex.getLoc(); 1163 Lex.Lex(); 1164 1165 if (Lex.getKind() != lltok::AttrGrpID) 1166 return TokError("expected attribute group id"); 1167 1168 unsigned VarID = Lex.getUIntVal(); 1169 std::vector<unsigned> unused; 1170 LocTy BuiltinLoc; 1171 Lex.Lex(); 1172 1173 if (ParseToken(lltok::equal, "expected '=' here") || 1174 ParseToken(lltok::lbrace, "expected '{' here") || 1175 ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 1176 BuiltinLoc) || 1177 ParseToken(lltok::rbrace, "expected end of attribute group")) 1178 return true; 1179 1180 if (!NumberedAttrBuilders[VarID].hasAttributes()) 1181 return Error(AttrGrpLoc, "attribute group has no attributes"); 1182 1183 return false; 1184 } 1185 1186 /// ParseFnAttributeValuePairs 1187 /// ::= <attr> | <attr> '=' <value> 1188 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B, 1189 std::vector<unsigned> &FwdRefAttrGrps, 1190 bool inAttrGrp, LocTy &BuiltinLoc) { 1191 bool HaveError = false; 1192 1193 B.clear(); 1194 1195 while (true) { 1196 lltok::Kind Token = Lex.getKind(); 1197 if (Token == lltok::kw_builtin) 1198 BuiltinLoc = Lex.getLoc(); 1199 switch (Token) { 1200 default: 1201 if (!inAttrGrp) return HaveError; 1202 return Error(Lex.getLoc(), "unterminated attribute group"); 1203 case lltok::rbrace: 1204 // Finished. 1205 return false; 1206 1207 case lltok::AttrGrpID: { 1208 // Allow a function to reference an attribute group: 1209 // 1210 // define void @foo() #1 { ... } 1211 if (inAttrGrp) 1212 HaveError |= 1213 Error(Lex.getLoc(), 1214 "cannot have an attribute group reference in an attribute group"); 1215 1216 unsigned AttrGrpNum = Lex.getUIntVal(); 1217 if (inAttrGrp) break; 1218 1219 // Save the reference to the attribute group. We'll fill it in later. 1220 FwdRefAttrGrps.push_back(AttrGrpNum); 1221 break; 1222 } 1223 // Target-dependent attributes: 1224 case lltok::StringConstant: { 1225 if (ParseStringAttribute(B)) 1226 return true; 1227 continue; 1228 } 1229 1230 // Target-independent attributes: 1231 case lltok::kw_align: { 1232 // As a hack, we allow function alignment to be initially parsed as an 1233 // attribute on a function declaration/definition or added to an attribute 1234 // group and later moved to the alignment field. 1235 MaybeAlign Alignment; 1236 if (inAttrGrp) { 1237 Lex.Lex(); 1238 uint32_t Value = 0; 1239 if (ParseToken(lltok::equal, "expected '=' here") || ParseUInt32(Value)) 1240 return true; 1241 Alignment = Align(Value); 1242 } else { 1243 if (ParseOptionalAlignment(Alignment)) 1244 return true; 1245 } 1246 B.addAlignmentAttr(Alignment); 1247 continue; 1248 } 1249 case lltok::kw_alignstack: { 1250 unsigned Alignment; 1251 if (inAttrGrp) { 1252 Lex.Lex(); 1253 if (ParseToken(lltok::equal, "expected '=' here") || 1254 ParseUInt32(Alignment)) 1255 return true; 1256 } else { 1257 if (ParseOptionalStackAlignment(Alignment)) 1258 return true; 1259 } 1260 B.addStackAlignmentAttr(Alignment); 1261 continue; 1262 } 1263 case lltok::kw_allocsize: { 1264 unsigned ElemSizeArg; 1265 Optional<unsigned> NumElemsArg; 1266 // inAttrGrp doesn't matter; we only support allocsize(a[, b]) 1267 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1268 return true; 1269 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1270 continue; 1271 } 1272 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break; 1273 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break; 1274 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break; 1275 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break; 1276 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break; 1277 case lltok::kw_inaccessiblememonly: 1278 B.addAttribute(Attribute::InaccessibleMemOnly); break; 1279 case lltok::kw_inaccessiblemem_or_argmemonly: 1280 B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break; 1281 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break; 1282 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break; 1283 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break; 1284 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break; 1285 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break; 1286 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break; 1287 case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break; 1288 case lltok::kw_noimplicitfloat: 1289 B.addAttribute(Attribute::NoImplicitFloat); break; 1290 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break; 1291 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break; 1292 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break; 1293 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break; 1294 case lltok::kw_nosync: B.addAttribute(Attribute::NoSync); break; 1295 case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break; 1296 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break; 1297 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break; 1298 case lltok::kw_optforfuzzing: 1299 B.addAttribute(Attribute::OptForFuzzing); break; 1300 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break; 1301 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break; 1302 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1303 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1304 case lltok::kw_returns_twice: 1305 B.addAttribute(Attribute::ReturnsTwice); break; 1306 case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break; 1307 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break; 1308 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break; 1309 case lltok::kw_sspstrong: 1310 B.addAttribute(Attribute::StackProtectStrong); break; 1311 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break; 1312 case lltok::kw_shadowcallstack: 1313 B.addAttribute(Attribute::ShadowCallStack); break; 1314 case lltok::kw_sanitize_address: 1315 B.addAttribute(Attribute::SanitizeAddress); break; 1316 case lltok::kw_sanitize_hwaddress: 1317 B.addAttribute(Attribute::SanitizeHWAddress); break; 1318 case lltok::kw_sanitize_memtag: 1319 B.addAttribute(Attribute::SanitizeMemTag); break; 1320 case lltok::kw_sanitize_thread: 1321 B.addAttribute(Attribute::SanitizeThread); break; 1322 case lltok::kw_sanitize_memory: 1323 B.addAttribute(Attribute::SanitizeMemory); break; 1324 case lltok::kw_speculative_load_hardening: 1325 B.addAttribute(Attribute::SpeculativeLoadHardening); 1326 break; 1327 case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break; 1328 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break; 1329 case lltok::kw_willreturn: B.addAttribute(Attribute::WillReturn); break; 1330 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1331 1332 // Error handling. 1333 case lltok::kw_inreg: 1334 case lltok::kw_signext: 1335 case lltok::kw_zeroext: 1336 HaveError |= 1337 Error(Lex.getLoc(), 1338 "invalid use of attribute on a function"); 1339 break; 1340 case lltok::kw_byval: 1341 case lltok::kw_dereferenceable: 1342 case lltok::kw_dereferenceable_or_null: 1343 case lltok::kw_inalloca: 1344 case lltok::kw_nest: 1345 case lltok::kw_noalias: 1346 case lltok::kw_nocapture: 1347 case lltok::kw_nonnull: 1348 case lltok::kw_returned: 1349 case lltok::kw_sret: 1350 case lltok::kw_swifterror: 1351 case lltok::kw_swiftself: 1352 case lltok::kw_immarg: 1353 HaveError |= 1354 Error(Lex.getLoc(), 1355 "invalid use of parameter-only attribute on a function"); 1356 break; 1357 } 1358 1359 Lex.Lex(); 1360 } 1361 } 1362 1363 //===----------------------------------------------------------------------===// 1364 // GlobalValue Reference/Resolution Routines. 1365 //===----------------------------------------------------------------------===// 1366 1367 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy, 1368 const std::string &Name) { 1369 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType())) 1370 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, 1371 PTy->getAddressSpace(), Name, M); 1372 else 1373 return new GlobalVariable(*M, PTy->getElementType(), false, 1374 GlobalValue::ExternalWeakLinkage, nullptr, Name, 1375 nullptr, GlobalVariable::NotThreadLocal, 1376 PTy->getAddressSpace()); 1377 } 1378 1379 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty, 1380 Value *Val, bool IsCall) { 1381 if (Val->getType() == Ty) 1382 return Val; 1383 // For calls we also accept variables in the program address space. 1384 Type *SuggestedTy = Ty; 1385 if (IsCall && isa<PointerType>(Ty)) { 1386 Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo( 1387 M->getDataLayout().getProgramAddressSpace()); 1388 SuggestedTy = TyInProgAS; 1389 if (Val->getType() == TyInProgAS) 1390 return Val; 1391 } 1392 if (Ty->isLabelTy()) 1393 Error(Loc, "'" + Name + "' is not a basic block"); 1394 else 1395 Error(Loc, "'" + Name + "' defined with type '" + 1396 getTypeString(Val->getType()) + "' but expected '" + 1397 getTypeString(SuggestedTy) + "'"); 1398 return nullptr; 1399 } 1400 1401 /// GetGlobalVal - Get a value with the specified name or ID, creating a 1402 /// forward reference record if needed. This can return null if the value 1403 /// exists but does not have the right type. 1404 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty, 1405 LocTy Loc, bool IsCall) { 1406 PointerType *PTy = dyn_cast<PointerType>(Ty); 1407 if (!PTy) { 1408 Error(Loc, "global variable reference must have pointer type"); 1409 return nullptr; 1410 } 1411 1412 // Look this name up in the normal function symbol table. 1413 GlobalValue *Val = 1414 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1415 1416 // If this is a forward reference for the value, see if we already created a 1417 // forward ref record. 1418 if (!Val) { 1419 auto I = ForwardRefVals.find(Name); 1420 if (I != ForwardRefVals.end()) 1421 Val = I->second.first; 1422 } 1423 1424 // If we have the value in the symbol table or fwd-ref table, return it. 1425 if (Val) 1426 return cast_or_null<GlobalValue>( 1427 checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall)); 1428 1429 // Otherwise, create a new forward reference for this value and remember it. 1430 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name); 1431 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1432 return FwdVal; 1433 } 1434 1435 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc, 1436 bool IsCall) { 1437 PointerType *PTy = dyn_cast<PointerType>(Ty); 1438 if (!PTy) { 1439 Error(Loc, "global variable reference must have pointer type"); 1440 return nullptr; 1441 } 1442 1443 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1444 1445 // If this is a forward reference for the value, see if we already created a 1446 // forward ref record. 1447 if (!Val) { 1448 auto I = ForwardRefValIDs.find(ID); 1449 if (I != ForwardRefValIDs.end()) 1450 Val = I->second.first; 1451 } 1452 1453 // If we have the value in the symbol table or fwd-ref table, return it. 1454 if (Val) 1455 return cast_or_null<GlobalValue>( 1456 checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall)); 1457 1458 // Otherwise, create a new forward reference for this value and remember it. 1459 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, ""); 1460 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1461 return FwdVal; 1462 } 1463 1464 //===----------------------------------------------------------------------===// 1465 // Comdat Reference/Resolution Routines. 1466 //===----------------------------------------------------------------------===// 1467 1468 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1469 // Look this name up in the comdat symbol table. 1470 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1471 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1472 if (I != ComdatSymTab.end()) 1473 return &I->second; 1474 1475 // Otherwise, create a new forward reference for this value and remember it. 1476 Comdat *C = M->getOrInsertComdat(Name); 1477 ForwardRefComdats[Name] = Loc; 1478 return C; 1479 } 1480 1481 //===----------------------------------------------------------------------===// 1482 // Helper Routines. 1483 //===----------------------------------------------------------------------===// 1484 1485 /// ParseToken - If the current token has the specified kind, eat it and return 1486 /// success. Otherwise, emit the specified error and return failure. 1487 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { 1488 if (Lex.getKind() != T) 1489 return TokError(ErrMsg); 1490 Lex.Lex(); 1491 return false; 1492 } 1493 1494 /// ParseStringConstant 1495 /// ::= StringConstant 1496 bool LLParser::ParseStringConstant(std::string &Result) { 1497 if (Lex.getKind() != lltok::StringConstant) 1498 return TokError("expected string constant"); 1499 Result = Lex.getStrVal(); 1500 Lex.Lex(); 1501 return false; 1502 } 1503 1504 /// ParseUInt32 1505 /// ::= uint32 1506 bool LLParser::ParseUInt32(uint32_t &Val) { 1507 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1508 return TokError("expected integer"); 1509 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1510 if (Val64 != unsigned(Val64)) 1511 return TokError("expected 32-bit integer (too large)"); 1512 Val = Val64; 1513 Lex.Lex(); 1514 return false; 1515 } 1516 1517 /// ParseUInt64 1518 /// ::= uint64 1519 bool LLParser::ParseUInt64(uint64_t &Val) { 1520 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1521 return TokError("expected integer"); 1522 Val = Lex.getAPSIntVal().getLimitedValue(); 1523 Lex.Lex(); 1524 return false; 1525 } 1526 1527 /// ParseTLSModel 1528 /// := 'localdynamic' 1529 /// := 'initialexec' 1530 /// := 'localexec' 1531 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1532 switch (Lex.getKind()) { 1533 default: 1534 return TokError("expected localdynamic, initialexec or localexec"); 1535 case lltok::kw_localdynamic: 1536 TLM = GlobalVariable::LocalDynamicTLSModel; 1537 break; 1538 case lltok::kw_initialexec: 1539 TLM = GlobalVariable::InitialExecTLSModel; 1540 break; 1541 case lltok::kw_localexec: 1542 TLM = GlobalVariable::LocalExecTLSModel; 1543 break; 1544 } 1545 1546 Lex.Lex(); 1547 return false; 1548 } 1549 1550 /// ParseOptionalThreadLocal 1551 /// := /*empty*/ 1552 /// := 'thread_local' 1553 /// := 'thread_local' '(' tlsmodel ')' 1554 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1555 TLM = GlobalVariable::NotThreadLocal; 1556 if (!EatIfPresent(lltok::kw_thread_local)) 1557 return false; 1558 1559 TLM = GlobalVariable::GeneralDynamicTLSModel; 1560 if (Lex.getKind() == lltok::lparen) { 1561 Lex.Lex(); 1562 return ParseTLSModel(TLM) || 1563 ParseToken(lltok::rparen, "expected ')' after thread local model"); 1564 } 1565 return false; 1566 } 1567 1568 /// ParseOptionalAddrSpace 1569 /// := /*empty*/ 1570 /// := 'addrspace' '(' uint32 ')' 1571 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) { 1572 AddrSpace = DefaultAS; 1573 if (!EatIfPresent(lltok::kw_addrspace)) 1574 return false; 1575 return ParseToken(lltok::lparen, "expected '(' in address space") || 1576 ParseUInt32(AddrSpace) || 1577 ParseToken(lltok::rparen, "expected ')' in address space"); 1578 } 1579 1580 /// ParseStringAttribute 1581 /// := StringConstant 1582 /// := StringConstant '=' StringConstant 1583 bool LLParser::ParseStringAttribute(AttrBuilder &B) { 1584 std::string Attr = Lex.getStrVal(); 1585 Lex.Lex(); 1586 std::string Val; 1587 if (EatIfPresent(lltok::equal) && ParseStringConstant(Val)) 1588 return true; 1589 B.addAttribute(Attr, Val); 1590 return false; 1591 } 1592 1593 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes. 1594 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) { 1595 bool HaveError = false; 1596 1597 B.clear(); 1598 1599 while (true) { 1600 lltok::Kind Token = Lex.getKind(); 1601 switch (Token) { 1602 default: // End of attributes. 1603 return HaveError; 1604 case lltok::StringConstant: { 1605 if (ParseStringAttribute(B)) 1606 return true; 1607 continue; 1608 } 1609 case lltok::kw_align: { 1610 MaybeAlign Alignment; 1611 if (ParseOptionalAlignment(Alignment)) 1612 return true; 1613 B.addAlignmentAttr(Alignment); 1614 continue; 1615 } 1616 case lltok::kw_byval: { 1617 Type *Ty; 1618 if (ParseByValWithOptionalType(Ty)) 1619 return true; 1620 B.addByValAttr(Ty); 1621 continue; 1622 } 1623 case lltok::kw_dereferenceable: { 1624 uint64_t Bytes; 1625 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1626 return true; 1627 B.addDereferenceableAttr(Bytes); 1628 continue; 1629 } 1630 case lltok::kw_dereferenceable_or_null: { 1631 uint64_t Bytes; 1632 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1633 return true; 1634 B.addDereferenceableOrNullAttr(Bytes); 1635 continue; 1636 } 1637 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break; 1638 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1639 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break; 1640 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1641 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break; 1642 case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break; 1643 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1644 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1645 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1646 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break; 1647 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1648 case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break; 1649 case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break; 1650 case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break; 1651 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1652 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1653 case lltok::kw_immarg: B.addAttribute(Attribute::ImmArg); break; 1654 1655 case lltok::kw_alignstack: 1656 case lltok::kw_alwaysinline: 1657 case lltok::kw_argmemonly: 1658 case lltok::kw_builtin: 1659 case lltok::kw_inlinehint: 1660 case lltok::kw_jumptable: 1661 case lltok::kw_minsize: 1662 case lltok::kw_naked: 1663 case lltok::kw_nobuiltin: 1664 case lltok::kw_noduplicate: 1665 case lltok::kw_noimplicitfloat: 1666 case lltok::kw_noinline: 1667 case lltok::kw_nonlazybind: 1668 case lltok::kw_noredzone: 1669 case lltok::kw_noreturn: 1670 case lltok::kw_nocf_check: 1671 case lltok::kw_nounwind: 1672 case lltok::kw_optforfuzzing: 1673 case lltok::kw_optnone: 1674 case lltok::kw_optsize: 1675 case lltok::kw_returns_twice: 1676 case lltok::kw_sanitize_address: 1677 case lltok::kw_sanitize_hwaddress: 1678 case lltok::kw_sanitize_memtag: 1679 case lltok::kw_sanitize_memory: 1680 case lltok::kw_sanitize_thread: 1681 case lltok::kw_speculative_load_hardening: 1682 case lltok::kw_ssp: 1683 case lltok::kw_sspreq: 1684 case lltok::kw_sspstrong: 1685 case lltok::kw_safestack: 1686 case lltok::kw_shadowcallstack: 1687 case lltok::kw_strictfp: 1688 case lltok::kw_uwtable: 1689 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1690 break; 1691 } 1692 1693 Lex.Lex(); 1694 } 1695 } 1696 1697 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes. 1698 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) { 1699 bool HaveError = false; 1700 1701 B.clear(); 1702 1703 while (true) { 1704 lltok::Kind Token = Lex.getKind(); 1705 switch (Token) { 1706 default: // End of attributes. 1707 return HaveError; 1708 case lltok::StringConstant: { 1709 if (ParseStringAttribute(B)) 1710 return true; 1711 continue; 1712 } 1713 case lltok::kw_dereferenceable: { 1714 uint64_t Bytes; 1715 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1716 return true; 1717 B.addDereferenceableAttr(Bytes); 1718 continue; 1719 } 1720 case lltok::kw_dereferenceable_or_null: { 1721 uint64_t Bytes; 1722 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1723 return true; 1724 B.addDereferenceableOrNullAttr(Bytes); 1725 continue; 1726 } 1727 case lltok::kw_align: { 1728 MaybeAlign Alignment; 1729 if (ParseOptionalAlignment(Alignment)) 1730 return true; 1731 B.addAlignmentAttr(Alignment); 1732 continue; 1733 } 1734 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1735 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1736 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1737 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1738 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1739 1740 // Error handling. 1741 case lltok::kw_byval: 1742 case lltok::kw_inalloca: 1743 case lltok::kw_nest: 1744 case lltok::kw_nocapture: 1745 case lltok::kw_returned: 1746 case lltok::kw_sret: 1747 case lltok::kw_swifterror: 1748 case lltok::kw_swiftself: 1749 case lltok::kw_immarg: 1750 HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute"); 1751 break; 1752 1753 case lltok::kw_alignstack: 1754 case lltok::kw_alwaysinline: 1755 case lltok::kw_argmemonly: 1756 case lltok::kw_builtin: 1757 case lltok::kw_cold: 1758 case lltok::kw_inlinehint: 1759 case lltok::kw_jumptable: 1760 case lltok::kw_minsize: 1761 case lltok::kw_naked: 1762 case lltok::kw_nobuiltin: 1763 case lltok::kw_noduplicate: 1764 case lltok::kw_noimplicitfloat: 1765 case lltok::kw_noinline: 1766 case lltok::kw_nonlazybind: 1767 case lltok::kw_noredzone: 1768 case lltok::kw_noreturn: 1769 case lltok::kw_nocf_check: 1770 case lltok::kw_nounwind: 1771 case lltok::kw_optforfuzzing: 1772 case lltok::kw_optnone: 1773 case lltok::kw_optsize: 1774 case lltok::kw_returns_twice: 1775 case lltok::kw_sanitize_address: 1776 case lltok::kw_sanitize_hwaddress: 1777 case lltok::kw_sanitize_memtag: 1778 case lltok::kw_sanitize_memory: 1779 case lltok::kw_sanitize_thread: 1780 case lltok::kw_speculative_load_hardening: 1781 case lltok::kw_ssp: 1782 case lltok::kw_sspreq: 1783 case lltok::kw_sspstrong: 1784 case lltok::kw_safestack: 1785 case lltok::kw_shadowcallstack: 1786 case lltok::kw_strictfp: 1787 case lltok::kw_uwtable: 1788 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1789 break; 1790 1791 case lltok::kw_readnone: 1792 case lltok::kw_readonly: 1793 HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type"); 1794 } 1795 1796 Lex.Lex(); 1797 } 1798 } 1799 1800 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1801 HasLinkage = true; 1802 switch (Kind) { 1803 default: 1804 HasLinkage = false; 1805 return GlobalValue::ExternalLinkage; 1806 case lltok::kw_private: 1807 return GlobalValue::PrivateLinkage; 1808 case lltok::kw_internal: 1809 return GlobalValue::InternalLinkage; 1810 case lltok::kw_weak: 1811 return GlobalValue::WeakAnyLinkage; 1812 case lltok::kw_weak_odr: 1813 return GlobalValue::WeakODRLinkage; 1814 case lltok::kw_linkonce: 1815 return GlobalValue::LinkOnceAnyLinkage; 1816 case lltok::kw_linkonce_odr: 1817 return GlobalValue::LinkOnceODRLinkage; 1818 case lltok::kw_available_externally: 1819 return GlobalValue::AvailableExternallyLinkage; 1820 case lltok::kw_appending: 1821 return GlobalValue::AppendingLinkage; 1822 case lltok::kw_common: 1823 return GlobalValue::CommonLinkage; 1824 case lltok::kw_extern_weak: 1825 return GlobalValue::ExternalWeakLinkage; 1826 case lltok::kw_external: 1827 return GlobalValue::ExternalLinkage; 1828 } 1829 } 1830 1831 /// ParseOptionalLinkage 1832 /// ::= /*empty*/ 1833 /// ::= 'private' 1834 /// ::= 'internal' 1835 /// ::= 'weak' 1836 /// ::= 'weak_odr' 1837 /// ::= 'linkonce' 1838 /// ::= 'linkonce_odr' 1839 /// ::= 'available_externally' 1840 /// ::= 'appending' 1841 /// ::= 'common' 1842 /// ::= 'extern_weak' 1843 /// ::= 'external' 1844 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage, 1845 unsigned &Visibility, 1846 unsigned &DLLStorageClass, 1847 bool &DSOLocal) { 1848 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 1849 if (HasLinkage) 1850 Lex.Lex(); 1851 ParseOptionalDSOLocal(DSOLocal); 1852 ParseOptionalVisibility(Visibility); 1853 ParseOptionalDLLStorageClass(DLLStorageClass); 1854 1855 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) { 1856 return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch"); 1857 } 1858 1859 return false; 1860 } 1861 1862 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) { 1863 switch (Lex.getKind()) { 1864 default: 1865 DSOLocal = false; 1866 break; 1867 case lltok::kw_dso_local: 1868 DSOLocal = true; 1869 Lex.Lex(); 1870 break; 1871 case lltok::kw_dso_preemptable: 1872 DSOLocal = false; 1873 Lex.Lex(); 1874 break; 1875 } 1876 } 1877 1878 /// ParseOptionalVisibility 1879 /// ::= /*empty*/ 1880 /// ::= 'default' 1881 /// ::= 'hidden' 1882 /// ::= 'protected' 1883 /// 1884 void LLParser::ParseOptionalVisibility(unsigned &Res) { 1885 switch (Lex.getKind()) { 1886 default: 1887 Res = GlobalValue::DefaultVisibility; 1888 return; 1889 case lltok::kw_default: 1890 Res = GlobalValue::DefaultVisibility; 1891 break; 1892 case lltok::kw_hidden: 1893 Res = GlobalValue::HiddenVisibility; 1894 break; 1895 case lltok::kw_protected: 1896 Res = GlobalValue::ProtectedVisibility; 1897 break; 1898 } 1899 Lex.Lex(); 1900 } 1901 1902 /// ParseOptionalDLLStorageClass 1903 /// ::= /*empty*/ 1904 /// ::= 'dllimport' 1905 /// ::= 'dllexport' 1906 /// 1907 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) { 1908 switch (Lex.getKind()) { 1909 default: 1910 Res = GlobalValue::DefaultStorageClass; 1911 return; 1912 case lltok::kw_dllimport: 1913 Res = GlobalValue::DLLImportStorageClass; 1914 break; 1915 case lltok::kw_dllexport: 1916 Res = GlobalValue::DLLExportStorageClass; 1917 break; 1918 } 1919 Lex.Lex(); 1920 } 1921 1922 /// ParseOptionalCallingConv 1923 /// ::= /*empty*/ 1924 /// ::= 'ccc' 1925 /// ::= 'fastcc' 1926 /// ::= 'intel_ocl_bicc' 1927 /// ::= 'coldcc' 1928 /// ::= 'cfguard_checkcc' 1929 /// ::= 'x86_stdcallcc' 1930 /// ::= 'x86_fastcallcc' 1931 /// ::= 'x86_thiscallcc' 1932 /// ::= 'x86_vectorcallcc' 1933 /// ::= 'arm_apcscc' 1934 /// ::= 'arm_aapcscc' 1935 /// ::= 'arm_aapcs_vfpcc' 1936 /// ::= 'aarch64_vector_pcs' 1937 /// ::= 'aarch64_sve_vector_pcs' 1938 /// ::= 'msp430_intrcc' 1939 /// ::= 'avr_intrcc' 1940 /// ::= 'avr_signalcc' 1941 /// ::= 'ptx_kernel' 1942 /// ::= 'ptx_device' 1943 /// ::= 'spir_func' 1944 /// ::= 'spir_kernel' 1945 /// ::= 'x86_64_sysvcc' 1946 /// ::= 'win64cc' 1947 /// ::= 'webkit_jscc' 1948 /// ::= 'anyregcc' 1949 /// ::= 'preserve_mostcc' 1950 /// ::= 'preserve_allcc' 1951 /// ::= 'ghccc' 1952 /// ::= 'swiftcc' 1953 /// ::= 'x86_intrcc' 1954 /// ::= 'hhvmcc' 1955 /// ::= 'hhvm_ccc' 1956 /// ::= 'cxx_fast_tlscc' 1957 /// ::= 'amdgpu_vs' 1958 /// ::= 'amdgpu_ls' 1959 /// ::= 'amdgpu_hs' 1960 /// ::= 'amdgpu_es' 1961 /// ::= 'amdgpu_gs' 1962 /// ::= 'amdgpu_ps' 1963 /// ::= 'amdgpu_cs' 1964 /// ::= 'amdgpu_kernel' 1965 /// ::= 'tailcc' 1966 /// ::= 'cc' UINT 1967 /// 1968 bool LLParser::ParseOptionalCallingConv(unsigned &CC) { 1969 switch (Lex.getKind()) { 1970 default: CC = CallingConv::C; return false; 1971 case lltok::kw_ccc: CC = CallingConv::C; break; 1972 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1973 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1974 case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break; 1975 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1976 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1977 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break; 1978 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1979 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 1980 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1981 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1982 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1983 case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break; 1984 case lltok::kw_aarch64_sve_vector_pcs: 1985 CC = CallingConv::AArch64_SVE_VectorCall; 1986 break; 1987 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1988 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 1989 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 1990 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1991 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1992 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 1993 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 1994 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 1995 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 1996 case lltok::kw_win64cc: CC = CallingConv::Win64; break; 1997 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 1998 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 1999 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 2000 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 2001 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 2002 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 2003 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 2004 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 2005 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 2006 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 2007 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 2008 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break; 2009 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break; 2010 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break; 2011 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 2012 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 2013 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 2014 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 2015 case lltok::kw_tailcc: CC = CallingConv::Tail; break; 2016 case lltok::kw_cc: { 2017 Lex.Lex(); 2018 return ParseUInt32(CC); 2019 } 2020 } 2021 2022 Lex.Lex(); 2023 return false; 2024 } 2025 2026 /// ParseMetadataAttachment 2027 /// ::= !dbg !42 2028 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 2029 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 2030 2031 std::string Name = Lex.getStrVal(); 2032 Kind = M->getMDKindID(Name); 2033 Lex.Lex(); 2034 2035 return ParseMDNode(MD); 2036 } 2037 2038 /// ParseInstructionMetadata 2039 /// ::= !dbg !42 (',' !dbg !57)* 2040 bool LLParser::ParseInstructionMetadata(Instruction &Inst) { 2041 do { 2042 if (Lex.getKind() != lltok::MetadataVar) 2043 return TokError("expected metadata after comma"); 2044 2045 unsigned MDK; 2046 MDNode *N; 2047 if (ParseMetadataAttachment(MDK, N)) 2048 return true; 2049 2050 Inst.setMetadata(MDK, N); 2051 if (MDK == LLVMContext::MD_tbaa) 2052 InstsWithTBAATag.push_back(&Inst); 2053 2054 // If this is the end of the list, we're done. 2055 } while (EatIfPresent(lltok::comma)); 2056 return false; 2057 } 2058 2059 /// ParseGlobalObjectMetadataAttachment 2060 /// ::= !dbg !57 2061 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) { 2062 unsigned MDK; 2063 MDNode *N; 2064 if (ParseMetadataAttachment(MDK, N)) 2065 return true; 2066 2067 GO.addMetadata(MDK, *N); 2068 return false; 2069 } 2070 2071 /// ParseOptionalFunctionMetadata 2072 /// ::= (!dbg !57)* 2073 bool LLParser::ParseOptionalFunctionMetadata(Function &F) { 2074 while (Lex.getKind() == lltok::MetadataVar) 2075 if (ParseGlobalObjectMetadataAttachment(F)) 2076 return true; 2077 return false; 2078 } 2079 2080 /// ParseOptionalAlignment 2081 /// ::= /* empty */ 2082 /// ::= 'align' 4 2083 bool LLParser::ParseOptionalAlignment(MaybeAlign &Alignment) { 2084 Alignment = None; 2085 if (!EatIfPresent(lltok::kw_align)) 2086 return false; 2087 LocTy AlignLoc = Lex.getLoc(); 2088 uint32_t Value = 0; 2089 if (ParseUInt32(Value)) 2090 return true; 2091 if (!isPowerOf2_32(Value)) 2092 return Error(AlignLoc, "alignment is not a power of two"); 2093 if (Value > Value::MaximumAlignment) 2094 return Error(AlignLoc, "huge alignments are not supported yet"); 2095 Alignment = Align(Value); 2096 return false; 2097 } 2098 2099 /// ParseOptionalDerefAttrBytes 2100 /// ::= /* empty */ 2101 /// ::= AttrKind '(' 4 ')' 2102 /// 2103 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 2104 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind, 2105 uint64_t &Bytes) { 2106 assert((AttrKind == lltok::kw_dereferenceable || 2107 AttrKind == lltok::kw_dereferenceable_or_null) && 2108 "contract!"); 2109 2110 Bytes = 0; 2111 if (!EatIfPresent(AttrKind)) 2112 return false; 2113 LocTy ParenLoc = Lex.getLoc(); 2114 if (!EatIfPresent(lltok::lparen)) 2115 return Error(ParenLoc, "expected '('"); 2116 LocTy DerefLoc = Lex.getLoc(); 2117 if (ParseUInt64(Bytes)) return true; 2118 ParenLoc = Lex.getLoc(); 2119 if (!EatIfPresent(lltok::rparen)) 2120 return Error(ParenLoc, "expected ')'"); 2121 if (!Bytes) 2122 return Error(DerefLoc, "dereferenceable bytes must be non-zero"); 2123 return false; 2124 } 2125 2126 /// ParseOptionalCommaAlign 2127 /// ::= 2128 /// ::= ',' align 4 2129 /// 2130 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2131 /// end. 2132 bool LLParser::ParseOptionalCommaAlign(MaybeAlign &Alignment, 2133 bool &AteExtraComma) { 2134 AteExtraComma = false; 2135 while (EatIfPresent(lltok::comma)) { 2136 // Metadata at the end is an early exit. 2137 if (Lex.getKind() == lltok::MetadataVar) { 2138 AteExtraComma = true; 2139 return false; 2140 } 2141 2142 if (Lex.getKind() != lltok::kw_align) 2143 return Error(Lex.getLoc(), "expected metadata or 'align'"); 2144 2145 if (ParseOptionalAlignment(Alignment)) return true; 2146 } 2147 2148 return false; 2149 } 2150 2151 /// ParseOptionalCommaAddrSpace 2152 /// ::= 2153 /// ::= ',' addrspace(1) 2154 /// 2155 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2156 /// end. 2157 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace, 2158 LocTy &Loc, 2159 bool &AteExtraComma) { 2160 AteExtraComma = false; 2161 while (EatIfPresent(lltok::comma)) { 2162 // Metadata at the end is an early exit. 2163 if (Lex.getKind() == lltok::MetadataVar) { 2164 AteExtraComma = true; 2165 return false; 2166 } 2167 2168 Loc = Lex.getLoc(); 2169 if (Lex.getKind() != lltok::kw_addrspace) 2170 return Error(Lex.getLoc(), "expected metadata or 'addrspace'"); 2171 2172 if (ParseOptionalAddrSpace(AddrSpace)) 2173 return true; 2174 } 2175 2176 return false; 2177 } 2178 2179 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 2180 Optional<unsigned> &HowManyArg) { 2181 Lex.Lex(); 2182 2183 auto StartParen = Lex.getLoc(); 2184 if (!EatIfPresent(lltok::lparen)) 2185 return Error(StartParen, "expected '('"); 2186 2187 if (ParseUInt32(BaseSizeArg)) 2188 return true; 2189 2190 if (EatIfPresent(lltok::comma)) { 2191 auto HowManyAt = Lex.getLoc(); 2192 unsigned HowMany; 2193 if (ParseUInt32(HowMany)) 2194 return true; 2195 if (HowMany == BaseSizeArg) 2196 return Error(HowManyAt, 2197 "'allocsize' indices can't refer to the same parameter"); 2198 HowManyArg = HowMany; 2199 } else 2200 HowManyArg = None; 2201 2202 auto EndParen = Lex.getLoc(); 2203 if (!EatIfPresent(lltok::rparen)) 2204 return Error(EndParen, "expected ')'"); 2205 return false; 2206 } 2207 2208 /// ParseScopeAndOrdering 2209 /// if isAtomic: ::= SyncScope? AtomicOrdering 2210 /// else: ::= 2211 /// 2212 /// This sets Scope and Ordering to the parsed values. 2213 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID, 2214 AtomicOrdering &Ordering) { 2215 if (!isAtomic) 2216 return false; 2217 2218 return ParseScope(SSID) || ParseOrdering(Ordering); 2219 } 2220 2221 /// ParseScope 2222 /// ::= syncscope("singlethread" | "<target scope>")? 2223 /// 2224 /// This sets synchronization scope ID to the ID of the parsed value. 2225 bool LLParser::ParseScope(SyncScope::ID &SSID) { 2226 SSID = SyncScope::System; 2227 if (EatIfPresent(lltok::kw_syncscope)) { 2228 auto StartParenAt = Lex.getLoc(); 2229 if (!EatIfPresent(lltok::lparen)) 2230 return Error(StartParenAt, "Expected '(' in syncscope"); 2231 2232 std::string SSN; 2233 auto SSNAt = Lex.getLoc(); 2234 if (ParseStringConstant(SSN)) 2235 return Error(SSNAt, "Expected synchronization scope name"); 2236 2237 auto EndParenAt = Lex.getLoc(); 2238 if (!EatIfPresent(lltok::rparen)) 2239 return Error(EndParenAt, "Expected ')' in syncscope"); 2240 2241 SSID = Context.getOrInsertSyncScopeID(SSN); 2242 } 2243 2244 return false; 2245 } 2246 2247 /// ParseOrdering 2248 /// ::= AtomicOrdering 2249 /// 2250 /// This sets Ordering to the parsed value. 2251 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) { 2252 switch (Lex.getKind()) { 2253 default: return TokError("Expected ordering on atomic instruction"); 2254 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 2255 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 2256 // Not specified yet: 2257 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 2258 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 2259 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 2260 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 2261 case lltok::kw_seq_cst: 2262 Ordering = AtomicOrdering::SequentiallyConsistent; 2263 break; 2264 } 2265 Lex.Lex(); 2266 return false; 2267 } 2268 2269 /// ParseOptionalStackAlignment 2270 /// ::= /* empty */ 2271 /// ::= 'alignstack' '(' 4 ')' 2272 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { 2273 Alignment = 0; 2274 if (!EatIfPresent(lltok::kw_alignstack)) 2275 return false; 2276 LocTy ParenLoc = Lex.getLoc(); 2277 if (!EatIfPresent(lltok::lparen)) 2278 return Error(ParenLoc, "expected '('"); 2279 LocTy AlignLoc = Lex.getLoc(); 2280 if (ParseUInt32(Alignment)) return true; 2281 ParenLoc = Lex.getLoc(); 2282 if (!EatIfPresent(lltok::rparen)) 2283 return Error(ParenLoc, "expected ')'"); 2284 if (!isPowerOf2_32(Alignment)) 2285 return Error(AlignLoc, "stack alignment is not a power of two"); 2286 return false; 2287 } 2288 2289 /// ParseIndexList - This parses the index list for an insert/extractvalue 2290 /// instruction. This sets AteExtraComma in the case where we eat an extra 2291 /// comma at the end of the line and find that it is followed by metadata. 2292 /// Clients that don't allow metadata can call the version of this function that 2293 /// only takes one argument. 2294 /// 2295 /// ParseIndexList 2296 /// ::= (',' uint32)+ 2297 /// 2298 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, 2299 bool &AteExtraComma) { 2300 AteExtraComma = false; 2301 2302 if (Lex.getKind() != lltok::comma) 2303 return TokError("expected ',' as start of index list"); 2304 2305 while (EatIfPresent(lltok::comma)) { 2306 if (Lex.getKind() == lltok::MetadataVar) { 2307 if (Indices.empty()) return TokError("expected index"); 2308 AteExtraComma = true; 2309 return false; 2310 } 2311 unsigned Idx = 0; 2312 if (ParseUInt32(Idx)) return true; 2313 Indices.push_back(Idx); 2314 } 2315 2316 return false; 2317 } 2318 2319 //===----------------------------------------------------------------------===// 2320 // Type Parsing. 2321 //===----------------------------------------------------------------------===// 2322 2323 /// ParseType - Parse a type. 2324 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 2325 SMLoc TypeLoc = Lex.getLoc(); 2326 switch (Lex.getKind()) { 2327 default: 2328 return TokError(Msg); 2329 case lltok::Type: 2330 // Type ::= 'float' | 'void' (etc) 2331 Result = Lex.getTyVal(); 2332 Lex.Lex(); 2333 break; 2334 case lltok::lbrace: 2335 // Type ::= StructType 2336 if (ParseAnonStructType(Result, false)) 2337 return true; 2338 break; 2339 case lltok::lsquare: 2340 // Type ::= '[' ... ']' 2341 Lex.Lex(); // eat the lsquare. 2342 if (ParseArrayVectorType(Result, false)) 2343 return true; 2344 break; 2345 case lltok::less: // Either vector or packed struct. 2346 // Type ::= '<' ... '>' 2347 Lex.Lex(); 2348 if (Lex.getKind() == lltok::lbrace) { 2349 if (ParseAnonStructType(Result, true) || 2350 ParseToken(lltok::greater, "expected '>' at end of packed struct")) 2351 return true; 2352 } else if (ParseArrayVectorType(Result, true)) 2353 return true; 2354 break; 2355 case lltok::LocalVar: { 2356 // Type ::= %foo 2357 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2358 2359 // If the type hasn't been defined yet, create a forward definition and 2360 // remember where that forward def'n was seen (in case it never is defined). 2361 if (!Entry.first) { 2362 Entry.first = StructType::create(Context, Lex.getStrVal()); 2363 Entry.second = Lex.getLoc(); 2364 } 2365 Result = Entry.first; 2366 Lex.Lex(); 2367 break; 2368 } 2369 2370 case lltok::LocalVarID: { 2371 // Type ::= %4 2372 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2373 2374 // If the type hasn't been defined yet, create a forward definition and 2375 // remember where that forward def'n was seen (in case it never is defined). 2376 if (!Entry.first) { 2377 Entry.first = StructType::create(Context); 2378 Entry.second = Lex.getLoc(); 2379 } 2380 Result = Entry.first; 2381 Lex.Lex(); 2382 break; 2383 } 2384 } 2385 2386 // Parse the type suffixes. 2387 while (true) { 2388 switch (Lex.getKind()) { 2389 // End of type. 2390 default: 2391 if (!AllowVoid && Result->isVoidTy()) 2392 return Error(TypeLoc, "void type only allowed for function results"); 2393 return false; 2394 2395 // Type ::= Type '*' 2396 case lltok::star: 2397 if (Result->isLabelTy()) 2398 return TokError("basic block pointers are invalid"); 2399 if (Result->isVoidTy()) 2400 return TokError("pointers to void are invalid - use i8* instead"); 2401 if (!PointerType::isValidElementType(Result)) 2402 return TokError("pointer to this type is invalid"); 2403 Result = PointerType::getUnqual(Result); 2404 Lex.Lex(); 2405 break; 2406 2407 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2408 case lltok::kw_addrspace: { 2409 if (Result->isLabelTy()) 2410 return TokError("basic block pointers are invalid"); 2411 if (Result->isVoidTy()) 2412 return TokError("pointers to void are invalid; use i8* instead"); 2413 if (!PointerType::isValidElementType(Result)) 2414 return TokError("pointer to this type is invalid"); 2415 unsigned AddrSpace; 2416 if (ParseOptionalAddrSpace(AddrSpace) || 2417 ParseToken(lltok::star, "expected '*' in address space")) 2418 return true; 2419 2420 Result = PointerType::get(Result, AddrSpace); 2421 break; 2422 } 2423 2424 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2425 case lltok::lparen: 2426 if (ParseFunctionType(Result)) 2427 return true; 2428 break; 2429 } 2430 } 2431 } 2432 2433 /// ParseParameterList 2434 /// ::= '(' ')' 2435 /// ::= '(' Arg (',' Arg)* ')' 2436 /// Arg 2437 /// ::= Type OptionalAttributes Value OptionalAttributes 2438 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2439 PerFunctionState &PFS, bool IsMustTailCall, 2440 bool InVarArgsFunc) { 2441 if (ParseToken(lltok::lparen, "expected '(' in call")) 2442 return true; 2443 2444 while (Lex.getKind() != lltok::rparen) { 2445 // If this isn't the first argument, we need a comma. 2446 if (!ArgList.empty() && 2447 ParseToken(lltok::comma, "expected ',' in argument list")) 2448 return true; 2449 2450 // Parse an ellipsis if this is a musttail call in a variadic function. 2451 if (Lex.getKind() == lltok::dotdotdot) { 2452 const char *Msg = "unexpected ellipsis in argument list for "; 2453 if (!IsMustTailCall) 2454 return TokError(Twine(Msg) + "non-musttail call"); 2455 if (!InVarArgsFunc) 2456 return TokError(Twine(Msg) + "musttail call in non-varargs function"); 2457 Lex.Lex(); // Lex the '...', it is purely for readability. 2458 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2459 } 2460 2461 // Parse the argument. 2462 LocTy ArgLoc; 2463 Type *ArgTy = nullptr; 2464 AttrBuilder ArgAttrs; 2465 Value *V; 2466 if (ParseType(ArgTy, ArgLoc)) 2467 return true; 2468 2469 if (ArgTy->isMetadataTy()) { 2470 if (ParseMetadataAsValue(V, PFS)) 2471 return true; 2472 } else { 2473 // Otherwise, handle normal operands. 2474 if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS)) 2475 return true; 2476 } 2477 ArgList.push_back(ParamInfo( 2478 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs))); 2479 } 2480 2481 if (IsMustTailCall && InVarArgsFunc) 2482 return TokError("expected '...' at end of argument list for musttail call " 2483 "in varargs function"); 2484 2485 Lex.Lex(); // Lex the ')'. 2486 return false; 2487 } 2488 2489 /// ParseByValWithOptionalType 2490 /// ::= byval 2491 /// ::= byval(<ty>) 2492 bool LLParser::ParseByValWithOptionalType(Type *&Result) { 2493 Result = nullptr; 2494 if (!EatIfPresent(lltok::kw_byval)) 2495 return true; 2496 if (!EatIfPresent(lltok::lparen)) 2497 return false; 2498 if (ParseType(Result)) 2499 return true; 2500 if (!EatIfPresent(lltok::rparen)) 2501 return Error(Lex.getLoc(), "expected ')'"); 2502 return false; 2503 } 2504 2505 /// ParseOptionalOperandBundles 2506 /// ::= /*empty*/ 2507 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2508 /// 2509 /// OperandBundle 2510 /// ::= bundle-tag '(' ')' 2511 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2512 /// 2513 /// bundle-tag ::= String Constant 2514 bool LLParser::ParseOptionalOperandBundles( 2515 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2516 LocTy BeginLoc = Lex.getLoc(); 2517 if (!EatIfPresent(lltok::lsquare)) 2518 return false; 2519 2520 while (Lex.getKind() != lltok::rsquare) { 2521 // If this isn't the first operand bundle, we need a comma. 2522 if (!BundleList.empty() && 2523 ParseToken(lltok::comma, "expected ',' in input list")) 2524 return true; 2525 2526 std::string Tag; 2527 if (ParseStringConstant(Tag)) 2528 return true; 2529 2530 if (ParseToken(lltok::lparen, "expected '(' in operand bundle")) 2531 return true; 2532 2533 std::vector<Value *> Inputs; 2534 while (Lex.getKind() != lltok::rparen) { 2535 // If this isn't the first input, we need a comma. 2536 if (!Inputs.empty() && 2537 ParseToken(lltok::comma, "expected ',' in input list")) 2538 return true; 2539 2540 Type *Ty = nullptr; 2541 Value *Input = nullptr; 2542 if (ParseType(Ty) || ParseValue(Ty, Input, PFS)) 2543 return true; 2544 Inputs.push_back(Input); 2545 } 2546 2547 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2548 2549 Lex.Lex(); // Lex the ')'. 2550 } 2551 2552 if (BundleList.empty()) 2553 return Error(BeginLoc, "operand bundle set must not be empty"); 2554 2555 Lex.Lex(); // Lex the ']'. 2556 return false; 2557 } 2558 2559 /// ParseArgumentList - Parse the argument list for a function type or function 2560 /// prototype. 2561 /// ::= '(' ArgTypeListI ')' 2562 /// ArgTypeListI 2563 /// ::= /*empty*/ 2564 /// ::= '...' 2565 /// ::= ArgTypeList ',' '...' 2566 /// ::= ArgType (',' ArgType)* 2567 /// 2568 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2569 bool &isVarArg){ 2570 unsigned CurValID = 0; 2571 isVarArg = false; 2572 assert(Lex.getKind() == lltok::lparen); 2573 Lex.Lex(); // eat the (. 2574 2575 if (Lex.getKind() == lltok::rparen) { 2576 // empty 2577 } else if (Lex.getKind() == lltok::dotdotdot) { 2578 isVarArg = true; 2579 Lex.Lex(); 2580 } else { 2581 LocTy TypeLoc = Lex.getLoc(); 2582 Type *ArgTy = nullptr; 2583 AttrBuilder Attrs; 2584 std::string Name; 2585 2586 if (ParseType(ArgTy) || 2587 ParseOptionalParamAttrs(Attrs)) return true; 2588 2589 if (ArgTy->isVoidTy()) 2590 return Error(TypeLoc, "argument can not have void type"); 2591 2592 if (Lex.getKind() == lltok::LocalVar) { 2593 Name = Lex.getStrVal(); 2594 Lex.Lex(); 2595 } else if (Lex.getKind() == lltok::LocalVarID) { 2596 if (Lex.getUIntVal() != CurValID) 2597 return Error(TypeLoc, "argument expected to be numbered '%" + 2598 Twine(CurValID) + "'"); 2599 ++CurValID; 2600 Lex.Lex(); 2601 } 2602 2603 if (!FunctionType::isValidArgumentType(ArgTy)) 2604 return Error(TypeLoc, "invalid type for function argument"); 2605 2606 ArgList.emplace_back(TypeLoc, ArgTy, 2607 AttributeSet::get(ArgTy->getContext(), Attrs), 2608 std::move(Name)); 2609 2610 while (EatIfPresent(lltok::comma)) { 2611 // Handle ... at end of arg list. 2612 if (EatIfPresent(lltok::dotdotdot)) { 2613 isVarArg = true; 2614 break; 2615 } 2616 2617 // Otherwise must be an argument type. 2618 TypeLoc = Lex.getLoc(); 2619 if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true; 2620 2621 if (ArgTy->isVoidTy()) 2622 return Error(TypeLoc, "argument can not have void type"); 2623 2624 if (Lex.getKind() == lltok::LocalVar) { 2625 Name = Lex.getStrVal(); 2626 Lex.Lex(); 2627 } else { 2628 if (Lex.getKind() == lltok::LocalVarID) { 2629 if (Lex.getUIntVal() != CurValID) 2630 return Error(TypeLoc, "argument expected to be numbered '%" + 2631 Twine(CurValID) + "'"); 2632 Lex.Lex(); 2633 } 2634 ++CurValID; 2635 Name = ""; 2636 } 2637 2638 if (!ArgTy->isFirstClassType()) 2639 return Error(TypeLoc, "invalid type for function argument"); 2640 2641 ArgList.emplace_back(TypeLoc, ArgTy, 2642 AttributeSet::get(ArgTy->getContext(), Attrs), 2643 std::move(Name)); 2644 } 2645 } 2646 2647 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2648 } 2649 2650 /// ParseFunctionType 2651 /// ::= Type ArgumentList OptionalAttrs 2652 bool LLParser::ParseFunctionType(Type *&Result) { 2653 assert(Lex.getKind() == lltok::lparen); 2654 2655 if (!FunctionType::isValidReturnType(Result)) 2656 return TokError("invalid function return type"); 2657 2658 SmallVector<ArgInfo, 8> ArgList; 2659 bool isVarArg; 2660 if (ParseArgumentList(ArgList, isVarArg)) 2661 return true; 2662 2663 // Reject names on the arguments lists. 2664 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2665 if (!ArgList[i].Name.empty()) 2666 return Error(ArgList[i].Loc, "argument name invalid in function type"); 2667 if (ArgList[i].Attrs.hasAttributes()) 2668 return Error(ArgList[i].Loc, 2669 "argument attributes invalid in function type"); 2670 } 2671 2672 SmallVector<Type*, 16> ArgListTy; 2673 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2674 ArgListTy.push_back(ArgList[i].Ty); 2675 2676 Result = FunctionType::get(Result, ArgListTy, isVarArg); 2677 return false; 2678 } 2679 2680 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into 2681 /// other structs. 2682 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) { 2683 SmallVector<Type*, 8> Elts; 2684 if (ParseStructBody(Elts)) return true; 2685 2686 Result = StructType::get(Context, Elts, Packed); 2687 return false; 2688 } 2689 2690 /// ParseStructDefinition - Parse a struct in a 'type' definition. 2691 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name, 2692 std::pair<Type*, LocTy> &Entry, 2693 Type *&ResultTy) { 2694 // If the type was already defined, diagnose the redefinition. 2695 if (Entry.first && !Entry.second.isValid()) 2696 return Error(TypeLoc, "redefinition of type"); 2697 2698 // If we have opaque, just return without filling in the definition for the 2699 // struct. This counts as a definition as far as the .ll file goes. 2700 if (EatIfPresent(lltok::kw_opaque)) { 2701 // This type is being defined, so clear the location to indicate this. 2702 Entry.second = SMLoc(); 2703 2704 // If this type number has never been uttered, create it. 2705 if (!Entry.first) 2706 Entry.first = StructType::create(Context, Name); 2707 ResultTy = Entry.first; 2708 return false; 2709 } 2710 2711 // If the type starts with '<', then it is either a packed struct or a vector. 2712 bool isPacked = EatIfPresent(lltok::less); 2713 2714 // If we don't have a struct, then we have a random type alias, which we 2715 // accept for compatibility with old files. These types are not allowed to be 2716 // forward referenced and not allowed to be recursive. 2717 if (Lex.getKind() != lltok::lbrace) { 2718 if (Entry.first) 2719 return Error(TypeLoc, "forward references to non-struct type"); 2720 2721 ResultTy = nullptr; 2722 if (isPacked) 2723 return ParseArrayVectorType(ResultTy, true); 2724 return ParseType(ResultTy); 2725 } 2726 2727 // This type is being defined, so clear the location to indicate this. 2728 Entry.second = SMLoc(); 2729 2730 // If this type number has never been uttered, create it. 2731 if (!Entry.first) 2732 Entry.first = StructType::create(Context, Name); 2733 2734 StructType *STy = cast<StructType>(Entry.first); 2735 2736 SmallVector<Type*, 8> Body; 2737 if (ParseStructBody(Body) || 2738 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct"))) 2739 return true; 2740 2741 STy->setBody(Body, isPacked); 2742 ResultTy = STy; 2743 return false; 2744 } 2745 2746 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2747 /// StructType 2748 /// ::= '{' '}' 2749 /// ::= '{' Type (',' Type)* '}' 2750 /// ::= '<' '{' '}' '>' 2751 /// ::= '<' '{' Type (',' Type)* '}' '>' 2752 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) { 2753 assert(Lex.getKind() == lltok::lbrace); 2754 Lex.Lex(); // Consume the '{' 2755 2756 // Handle the empty struct. 2757 if (EatIfPresent(lltok::rbrace)) 2758 return false; 2759 2760 LocTy EltTyLoc = Lex.getLoc(); 2761 Type *Ty = nullptr; 2762 if (ParseType(Ty)) return true; 2763 Body.push_back(Ty); 2764 2765 if (!StructType::isValidElementType(Ty)) 2766 return Error(EltTyLoc, "invalid element type for struct"); 2767 2768 while (EatIfPresent(lltok::comma)) { 2769 EltTyLoc = Lex.getLoc(); 2770 if (ParseType(Ty)) return true; 2771 2772 if (!StructType::isValidElementType(Ty)) 2773 return Error(EltTyLoc, "invalid element type for struct"); 2774 2775 Body.push_back(Ty); 2776 } 2777 2778 return ParseToken(lltok::rbrace, "expected '}' at end of struct"); 2779 } 2780 2781 /// ParseArrayVectorType - Parse an array or vector type, assuming the first 2782 /// token has already been consumed. 2783 /// Type 2784 /// ::= '[' APSINTVAL 'x' Types ']' 2785 /// ::= '<' APSINTVAL 'x' Types '>' 2786 /// ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>' 2787 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) { 2788 bool Scalable = false; 2789 2790 if (isVector && Lex.getKind() == lltok::kw_vscale) { 2791 Lex.Lex(); // consume the 'vscale' 2792 if (ParseToken(lltok::kw_x, "expected 'x' after vscale")) 2793 return true; 2794 2795 Scalable = true; 2796 } 2797 2798 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2799 Lex.getAPSIntVal().getBitWidth() > 64) 2800 return TokError("expected number in address space"); 2801 2802 LocTy SizeLoc = Lex.getLoc(); 2803 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2804 Lex.Lex(); 2805 2806 if (ParseToken(lltok::kw_x, "expected 'x' after element count")) 2807 return true; 2808 2809 LocTy TypeLoc = Lex.getLoc(); 2810 Type *EltTy = nullptr; 2811 if (ParseType(EltTy)) return true; 2812 2813 if (ParseToken(isVector ? lltok::greater : lltok::rsquare, 2814 "expected end of sequential type")) 2815 return true; 2816 2817 if (isVector) { 2818 if (Size == 0) 2819 return Error(SizeLoc, "zero element vector is illegal"); 2820 if ((unsigned)Size != Size) 2821 return Error(SizeLoc, "size too large for vector"); 2822 if (!VectorType::isValidElementType(EltTy)) 2823 return Error(TypeLoc, "invalid vector element type"); 2824 Result = VectorType::get(EltTy, unsigned(Size), Scalable); 2825 } else { 2826 if (!ArrayType::isValidElementType(EltTy)) 2827 return Error(TypeLoc, "invalid array element type"); 2828 Result = ArrayType::get(EltTy, Size); 2829 } 2830 return false; 2831 } 2832 2833 //===----------------------------------------------------------------------===// 2834 // Function Semantic Analysis. 2835 //===----------------------------------------------------------------------===// 2836 2837 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 2838 int functionNumber) 2839 : P(p), F(f), FunctionNumber(functionNumber) { 2840 2841 // Insert unnamed arguments into the NumberedVals list. 2842 for (Argument &A : F.args()) 2843 if (!A.hasName()) 2844 NumberedVals.push_back(&A); 2845 } 2846 2847 LLParser::PerFunctionState::~PerFunctionState() { 2848 // If there were any forward referenced non-basicblock values, delete them. 2849 2850 for (const auto &P : ForwardRefVals) { 2851 if (isa<BasicBlock>(P.second.first)) 2852 continue; 2853 P.second.first->replaceAllUsesWith( 2854 UndefValue::get(P.second.first->getType())); 2855 P.second.first->deleteValue(); 2856 } 2857 2858 for (const auto &P : ForwardRefValIDs) { 2859 if (isa<BasicBlock>(P.second.first)) 2860 continue; 2861 P.second.first->replaceAllUsesWith( 2862 UndefValue::get(P.second.first->getType())); 2863 P.second.first->deleteValue(); 2864 } 2865 } 2866 2867 bool LLParser::PerFunctionState::FinishFunction() { 2868 if (!ForwardRefVals.empty()) 2869 return P.Error(ForwardRefVals.begin()->second.second, 2870 "use of undefined value '%" + ForwardRefVals.begin()->first + 2871 "'"); 2872 if (!ForwardRefValIDs.empty()) 2873 return P.Error(ForwardRefValIDs.begin()->second.second, 2874 "use of undefined value '%" + 2875 Twine(ForwardRefValIDs.begin()->first) + "'"); 2876 return false; 2877 } 2878 2879 /// GetVal - Get a value with the specified name or ID, creating a 2880 /// forward reference record if needed. This can return null if the value 2881 /// exists but does not have the right type. 2882 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty, 2883 LocTy Loc, bool IsCall) { 2884 // Look this name up in the normal function symbol table. 2885 Value *Val = F.getValueSymbolTable()->lookup(Name); 2886 2887 // If this is a forward reference for the value, see if we already created a 2888 // forward ref record. 2889 if (!Val) { 2890 auto I = ForwardRefVals.find(Name); 2891 if (I != ForwardRefVals.end()) 2892 Val = I->second.first; 2893 } 2894 2895 // If we have the value in the symbol table or fwd-ref table, return it. 2896 if (Val) 2897 return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall); 2898 2899 // Don't make placeholders with invalid type. 2900 if (!Ty->isFirstClassType()) { 2901 P.Error(Loc, "invalid use of a non-first-class type"); 2902 return nullptr; 2903 } 2904 2905 // Otherwise, create a new forward reference for this value and remember it. 2906 Value *FwdVal; 2907 if (Ty->isLabelTy()) { 2908 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 2909 } else { 2910 FwdVal = new Argument(Ty, Name); 2911 } 2912 2913 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 2914 return FwdVal; 2915 } 2916 2917 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc, 2918 bool IsCall) { 2919 // Look this name up in the normal function symbol table. 2920 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 2921 2922 // If this is a forward reference for the value, see if we already created a 2923 // forward ref record. 2924 if (!Val) { 2925 auto I = ForwardRefValIDs.find(ID); 2926 if (I != ForwardRefValIDs.end()) 2927 Val = I->second.first; 2928 } 2929 2930 // If we have the value in the symbol table or fwd-ref table, return it. 2931 if (Val) 2932 return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall); 2933 2934 if (!Ty->isFirstClassType()) { 2935 P.Error(Loc, "invalid use of a non-first-class type"); 2936 return nullptr; 2937 } 2938 2939 // Otherwise, create a new forward reference for this value and remember it. 2940 Value *FwdVal; 2941 if (Ty->isLabelTy()) { 2942 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 2943 } else { 2944 FwdVal = new Argument(Ty); 2945 } 2946 2947 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 2948 return FwdVal; 2949 } 2950 2951 /// SetInstName - After an instruction is parsed and inserted into its 2952 /// basic block, this installs its name. 2953 bool LLParser::PerFunctionState::SetInstName(int NameID, 2954 const std::string &NameStr, 2955 LocTy NameLoc, Instruction *Inst) { 2956 // If this instruction has void type, it cannot have a name or ID specified. 2957 if (Inst->getType()->isVoidTy()) { 2958 if (NameID != -1 || !NameStr.empty()) 2959 return P.Error(NameLoc, "instructions returning void cannot have a name"); 2960 return false; 2961 } 2962 2963 // If this was a numbered instruction, verify that the instruction is the 2964 // expected value and resolve any forward references. 2965 if (NameStr.empty()) { 2966 // If neither a name nor an ID was specified, just use the next ID. 2967 if (NameID == -1) 2968 NameID = NumberedVals.size(); 2969 2970 if (unsigned(NameID) != NumberedVals.size()) 2971 return P.Error(NameLoc, "instruction expected to be numbered '%" + 2972 Twine(NumberedVals.size()) + "'"); 2973 2974 auto FI = ForwardRefValIDs.find(NameID); 2975 if (FI != ForwardRefValIDs.end()) { 2976 Value *Sentinel = FI->second.first; 2977 if (Sentinel->getType() != Inst->getType()) 2978 return P.Error(NameLoc, "instruction forward referenced with type '" + 2979 getTypeString(FI->second.first->getType()) + "'"); 2980 2981 Sentinel->replaceAllUsesWith(Inst); 2982 Sentinel->deleteValue(); 2983 ForwardRefValIDs.erase(FI); 2984 } 2985 2986 NumberedVals.push_back(Inst); 2987 return false; 2988 } 2989 2990 // Otherwise, the instruction had a name. Resolve forward refs and set it. 2991 auto FI = ForwardRefVals.find(NameStr); 2992 if (FI != ForwardRefVals.end()) { 2993 Value *Sentinel = FI->second.first; 2994 if (Sentinel->getType() != Inst->getType()) 2995 return P.Error(NameLoc, "instruction forward referenced with type '" + 2996 getTypeString(FI->second.first->getType()) + "'"); 2997 2998 Sentinel->replaceAllUsesWith(Inst); 2999 Sentinel->deleteValue(); 3000 ForwardRefVals.erase(FI); 3001 } 3002 3003 // Set the name on the instruction. 3004 Inst->setName(NameStr); 3005 3006 if (Inst->getName() != NameStr) 3007 return P.Error(NameLoc, "multiple definition of local value named '" + 3008 NameStr + "'"); 3009 return false; 3010 } 3011 3012 /// GetBB - Get a basic block with the specified name or ID, creating a 3013 /// forward reference record if needed. 3014 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, 3015 LocTy Loc) { 3016 return dyn_cast_or_null<BasicBlock>( 3017 GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 3018 } 3019 3020 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { 3021 return dyn_cast_or_null<BasicBlock>( 3022 GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 3023 } 3024 3025 /// DefineBB - Define the specified basic block, which is either named or 3026 /// unnamed. If there is an error, this returns null otherwise it returns 3027 /// the block being defined. 3028 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, 3029 int NameID, LocTy Loc) { 3030 BasicBlock *BB; 3031 if (Name.empty()) { 3032 if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) { 3033 P.Error(Loc, "label expected to be numbered '" + 3034 Twine(NumberedVals.size()) + "'"); 3035 return nullptr; 3036 } 3037 BB = GetBB(NumberedVals.size(), Loc); 3038 if (!BB) { 3039 P.Error(Loc, "unable to create block numbered '" + 3040 Twine(NumberedVals.size()) + "'"); 3041 return nullptr; 3042 } 3043 } else { 3044 BB = GetBB(Name, Loc); 3045 if (!BB) { 3046 P.Error(Loc, "unable to create block named '" + Name + "'"); 3047 return nullptr; 3048 } 3049 } 3050 3051 // Move the block to the end of the function. Forward ref'd blocks are 3052 // inserted wherever they happen to be referenced. 3053 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 3054 3055 // Remove the block from forward ref sets. 3056 if (Name.empty()) { 3057 ForwardRefValIDs.erase(NumberedVals.size()); 3058 NumberedVals.push_back(BB); 3059 } else { 3060 // BB forward references are already in the function symbol table. 3061 ForwardRefVals.erase(Name); 3062 } 3063 3064 return BB; 3065 } 3066 3067 //===----------------------------------------------------------------------===// 3068 // Constants. 3069 //===----------------------------------------------------------------------===// 3070 3071 /// ParseValID - Parse an abstract value that doesn't necessarily have a 3072 /// type implied. For example, if we parse "4" we don't know what integer type 3073 /// it has. The value will later be combined with its type and checked for 3074 /// sanity. PFS is used to convert function-local operands of metadata (since 3075 /// metadata operands are not just parsed here but also converted to values). 3076 /// PFS can be null when we are not parsing metadata values inside a function. 3077 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { 3078 ID.Loc = Lex.getLoc(); 3079 switch (Lex.getKind()) { 3080 default: return TokError("expected value token"); 3081 case lltok::GlobalID: // @42 3082 ID.UIntVal = Lex.getUIntVal(); 3083 ID.Kind = ValID::t_GlobalID; 3084 break; 3085 case lltok::GlobalVar: // @foo 3086 ID.StrVal = Lex.getStrVal(); 3087 ID.Kind = ValID::t_GlobalName; 3088 break; 3089 case lltok::LocalVarID: // %42 3090 ID.UIntVal = Lex.getUIntVal(); 3091 ID.Kind = ValID::t_LocalID; 3092 break; 3093 case lltok::LocalVar: // %foo 3094 ID.StrVal = Lex.getStrVal(); 3095 ID.Kind = ValID::t_LocalName; 3096 break; 3097 case lltok::APSInt: 3098 ID.APSIntVal = Lex.getAPSIntVal(); 3099 ID.Kind = ValID::t_APSInt; 3100 break; 3101 case lltok::APFloat: 3102 ID.APFloatVal = Lex.getAPFloatVal(); 3103 ID.Kind = ValID::t_APFloat; 3104 break; 3105 case lltok::kw_true: 3106 ID.ConstantVal = ConstantInt::getTrue(Context); 3107 ID.Kind = ValID::t_Constant; 3108 break; 3109 case lltok::kw_false: 3110 ID.ConstantVal = ConstantInt::getFalse(Context); 3111 ID.Kind = ValID::t_Constant; 3112 break; 3113 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 3114 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 3115 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 3116 case lltok::kw_none: ID.Kind = ValID::t_None; break; 3117 3118 case lltok::lbrace: { 3119 // ValID ::= '{' ConstVector '}' 3120 Lex.Lex(); 3121 SmallVector<Constant*, 16> Elts; 3122 if (ParseGlobalValueVector(Elts) || 3123 ParseToken(lltok::rbrace, "expected end of struct constant")) 3124 return true; 3125 3126 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3127 ID.UIntVal = Elts.size(); 3128 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3129 Elts.size() * sizeof(Elts[0])); 3130 ID.Kind = ValID::t_ConstantStruct; 3131 return false; 3132 } 3133 case lltok::less: { 3134 // ValID ::= '<' ConstVector '>' --> Vector. 3135 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 3136 Lex.Lex(); 3137 bool isPackedStruct = EatIfPresent(lltok::lbrace); 3138 3139 SmallVector<Constant*, 16> Elts; 3140 LocTy FirstEltLoc = Lex.getLoc(); 3141 if (ParseGlobalValueVector(Elts) || 3142 (isPackedStruct && 3143 ParseToken(lltok::rbrace, "expected end of packed struct")) || 3144 ParseToken(lltok::greater, "expected end of constant")) 3145 return true; 3146 3147 if (isPackedStruct) { 3148 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3149 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3150 Elts.size() * sizeof(Elts[0])); 3151 ID.UIntVal = Elts.size(); 3152 ID.Kind = ValID::t_PackedConstantStruct; 3153 return false; 3154 } 3155 3156 if (Elts.empty()) 3157 return Error(ID.Loc, "constant vector must not be empty"); 3158 3159 if (!Elts[0]->getType()->isIntegerTy() && 3160 !Elts[0]->getType()->isFloatingPointTy() && 3161 !Elts[0]->getType()->isPointerTy()) 3162 return Error(FirstEltLoc, 3163 "vector elements must have integer, pointer or floating point type"); 3164 3165 // Verify that all the vector elements have the same type. 3166 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 3167 if (Elts[i]->getType() != Elts[0]->getType()) 3168 return Error(FirstEltLoc, 3169 "vector element #" + Twine(i) + 3170 " is not of type '" + getTypeString(Elts[0]->getType())); 3171 3172 ID.ConstantVal = ConstantVector::get(Elts); 3173 ID.Kind = ValID::t_Constant; 3174 return false; 3175 } 3176 case lltok::lsquare: { // Array Constant 3177 Lex.Lex(); 3178 SmallVector<Constant*, 16> Elts; 3179 LocTy FirstEltLoc = Lex.getLoc(); 3180 if (ParseGlobalValueVector(Elts) || 3181 ParseToken(lltok::rsquare, "expected end of array constant")) 3182 return true; 3183 3184 // Handle empty element. 3185 if (Elts.empty()) { 3186 // Use undef instead of an array because it's inconvenient to determine 3187 // the element type at this point, there being no elements to examine. 3188 ID.Kind = ValID::t_EmptyArray; 3189 return false; 3190 } 3191 3192 if (!Elts[0]->getType()->isFirstClassType()) 3193 return Error(FirstEltLoc, "invalid array element type: " + 3194 getTypeString(Elts[0]->getType())); 3195 3196 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 3197 3198 // Verify all elements are correct type! 3199 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 3200 if (Elts[i]->getType() != Elts[0]->getType()) 3201 return Error(FirstEltLoc, 3202 "array element #" + Twine(i) + 3203 " is not of type '" + getTypeString(Elts[0]->getType())); 3204 } 3205 3206 ID.ConstantVal = ConstantArray::get(ATy, Elts); 3207 ID.Kind = ValID::t_Constant; 3208 return false; 3209 } 3210 case lltok::kw_c: // c "foo" 3211 Lex.Lex(); 3212 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 3213 false); 3214 if (ParseToken(lltok::StringConstant, "expected string")) return true; 3215 ID.Kind = ValID::t_Constant; 3216 return false; 3217 3218 case lltok::kw_asm: { 3219 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 3220 // STRINGCONSTANT 3221 bool HasSideEffect, AlignStack, AsmDialect; 3222 Lex.Lex(); 3223 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 3224 ParseOptionalToken(lltok::kw_alignstack, AlignStack) || 3225 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 3226 ParseStringConstant(ID.StrVal) || 3227 ParseToken(lltok::comma, "expected comma in inline asm expression") || 3228 ParseToken(lltok::StringConstant, "expected constraint string")) 3229 return true; 3230 ID.StrVal2 = Lex.getStrVal(); 3231 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) | 3232 (unsigned(AsmDialect)<<2); 3233 ID.Kind = ValID::t_InlineAsm; 3234 return false; 3235 } 3236 3237 case lltok::kw_blockaddress: { 3238 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 3239 Lex.Lex(); 3240 3241 ValID Fn, Label; 3242 3243 if (ParseToken(lltok::lparen, "expected '(' in block address expression") || 3244 ParseValID(Fn) || 3245 ParseToken(lltok::comma, "expected comma in block address expression")|| 3246 ParseValID(Label) || 3247 ParseToken(lltok::rparen, "expected ')' in block address expression")) 3248 return true; 3249 3250 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3251 return Error(Fn.Loc, "expected function name in blockaddress"); 3252 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 3253 return Error(Label.Loc, "expected basic block name in blockaddress"); 3254 3255 // Try to find the function (but skip it if it's forward-referenced). 3256 GlobalValue *GV = nullptr; 3257 if (Fn.Kind == ValID::t_GlobalID) { 3258 if (Fn.UIntVal < NumberedVals.size()) 3259 GV = NumberedVals[Fn.UIntVal]; 3260 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3261 GV = M->getNamedValue(Fn.StrVal); 3262 } 3263 Function *F = nullptr; 3264 if (GV) { 3265 // Confirm that it's actually a function with a definition. 3266 if (!isa<Function>(GV)) 3267 return Error(Fn.Loc, "expected function name in blockaddress"); 3268 F = cast<Function>(GV); 3269 if (F->isDeclaration()) 3270 return Error(Fn.Loc, "cannot take blockaddress inside a declaration"); 3271 } 3272 3273 if (!F) { 3274 // Make a global variable as a placeholder for this reference. 3275 GlobalValue *&FwdRef = 3276 ForwardRefBlockAddresses.insert(std::make_pair( 3277 std::move(Fn), 3278 std::map<ValID, GlobalValue *>())) 3279 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 3280 .first->second; 3281 if (!FwdRef) 3282 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 3283 GlobalValue::InternalLinkage, nullptr, ""); 3284 ID.ConstantVal = FwdRef; 3285 ID.Kind = ValID::t_Constant; 3286 return false; 3287 } 3288 3289 // We found the function; now find the basic block. Don't use PFS, since we 3290 // might be inside a constant expression. 3291 BasicBlock *BB; 3292 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 3293 if (Label.Kind == ValID::t_LocalID) 3294 BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc); 3295 else 3296 BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc); 3297 if (!BB) 3298 return Error(Label.Loc, "referenced value is not a basic block"); 3299 } else { 3300 if (Label.Kind == ValID::t_LocalID) 3301 return Error(Label.Loc, "cannot take address of numeric label after " 3302 "the function is defined"); 3303 BB = dyn_cast_or_null<BasicBlock>( 3304 F->getValueSymbolTable()->lookup(Label.StrVal)); 3305 if (!BB) 3306 return Error(Label.Loc, "referenced value is not a basic block"); 3307 } 3308 3309 ID.ConstantVal = BlockAddress::get(F, BB); 3310 ID.Kind = ValID::t_Constant; 3311 return false; 3312 } 3313 3314 case lltok::kw_trunc: 3315 case lltok::kw_zext: 3316 case lltok::kw_sext: 3317 case lltok::kw_fptrunc: 3318 case lltok::kw_fpext: 3319 case lltok::kw_bitcast: 3320 case lltok::kw_addrspacecast: 3321 case lltok::kw_uitofp: 3322 case lltok::kw_sitofp: 3323 case lltok::kw_fptoui: 3324 case lltok::kw_fptosi: 3325 case lltok::kw_inttoptr: 3326 case lltok::kw_ptrtoint: { 3327 unsigned Opc = Lex.getUIntVal(); 3328 Type *DestTy = nullptr; 3329 Constant *SrcVal; 3330 Lex.Lex(); 3331 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || 3332 ParseGlobalTypeAndValue(SrcVal) || 3333 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 3334 ParseType(DestTy) || 3335 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 3336 return true; 3337 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 3338 return Error(ID.Loc, "invalid cast opcode for cast from '" + 3339 getTypeString(SrcVal->getType()) + "' to '" + 3340 getTypeString(DestTy) + "'"); 3341 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 3342 SrcVal, DestTy); 3343 ID.Kind = ValID::t_Constant; 3344 return false; 3345 } 3346 case lltok::kw_extractvalue: { 3347 Lex.Lex(); 3348 Constant *Val; 3349 SmallVector<unsigned, 4> Indices; 3350 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| 3351 ParseGlobalTypeAndValue(Val) || 3352 ParseIndexList(Indices) || 3353 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 3354 return true; 3355 3356 if (!Val->getType()->isAggregateType()) 3357 return Error(ID.Loc, "extractvalue operand must be aggregate type"); 3358 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 3359 return Error(ID.Loc, "invalid indices for extractvalue"); 3360 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 3361 ID.Kind = ValID::t_Constant; 3362 return false; 3363 } 3364 case lltok::kw_insertvalue: { 3365 Lex.Lex(); 3366 Constant *Val0, *Val1; 3367 SmallVector<unsigned, 4> Indices; 3368 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| 3369 ParseGlobalTypeAndValue(Val0) || 3370 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| 3371 ParseGlobalTypeAndValue(Val1) || 3372 ParseIndexList(Indices) || 3373 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 3374 return true; 3375 if (!Val0->getType()->isAggregateType()) 3376 return Error(ID.Loc, "insertvalue operand must be aggregate type"); 3377 Type *IndexedType = 3378 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 3379 if (!IndexedType) 3380 return Error(ID.Loc, "invalid indices for insertvalue"); 3381 if (IndexedType != Val1->getType()) 3382 return Error(ID.Loc, "insertvalue operand and field disagree in type: '" + 3383 getTypeString(Val1->getType()) + 3384 "' instead of '" + getTypeString(IndexedType) + 3385 "'"); 3386 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 3387 ID.Kind = ValID::t_Constant; 3388 return false; 3389 } 3390 case lltok::kw_icmp: 3391 case lltok::kw_fcmp: { 3392 unsigned PredVal, Opc = Lex.getUIntVal(); 3393 Constant *Val0, *Val1; 3394 Lex.Lex(); 3395 if (ParseCmpPredicate(PredVal, Opc) || 3396 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || 3397 ParseGlobalTypeAndValue(Val0) || 3398 ParseToken(lltok::comma, "expected comma in compare constantexpr") || 3399 ParseGlobalTypeAndValue(Val1) || 3400 ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) 3401 return true; 3402 3403 if (Val0->getType() != Val1->getType()) 3404 return Error(ID.Loc, "compare operands must have the same type"); 3405 3406 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 3407 3408 if (Opc == Instruction::FCmp) { 3409 if (!Val0->getType()->isFPOrFPVectorTy()) 3410 return Error(ID.Loc, "fcmp requires floating point operands"); 3411 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3412 } else { 3413 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3414 if (!Val0->getType()->isIntOrIntVectorTy() && 3415 !Val0->getType()->isPtrOrPtrVectorTy()) 3416 return Error(ID.Loc, "icmp requires pointer or integer operands"); 3417 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3418 } 3419 ID.Kind = ValID::t_Constant; 3420 return false; 3421 } 3422 3423 // Unary Operators. 3424 case lltok::kw_fneg: { 3425 unsigned Opc = Lex.getUIntVal(); 3426 Constant *Val; 3427 Lex.Lex(); 3428 if (ParseToken(lltok::lparen, "expected '(' in unary constantexpr") || 3429 ParseGlobalTypeAndValue(Val) || 3430 ParseToken(lltok::rparen, "expected ')' in unary constantexpr")) 3431 return true; 3432 3433 // Check that the type is valid for the operator. 3434 switch (Opc) { 3435 case Instruction::FNeg: 3436 if (!Val->getType()->isFPOrFPVectorTy()) 3437 return Error(ID.Loc, "constexpr requires fp operands"); 3438 break; 3439 default: llvm_unreachable("Unknown unary operator!"); 3440 } 3441 unsigned Flags = 0; 3442 Constant *C = ConstantExpr::get(Opc, Val, Flags); 3443 ID.ConstantVal = C; 3444 ID.Kind = ValID::t_Constant; 3445 return false; 3446 } 3447 // Binary Operators. 3448 case lltok::kw_add: 3449 case lltok::kw_fadd: 3450 case lltok::kw_sub: 3451 case lltok::kw_fsub: 3452 case lltok::kw_mul: 3453 case lltok::kw_fmul: 3454 case lltok::kw_udiv: 3455 case lltok::kw_sdiv: 3456 case lltok::kw_fdiv: 3457 case lltok::kw_urem: 3458 case lltok::kw_srem: 3459 case lltok::kw_frem: 3460 case lltok::kw_shl: 3461 case lltok::kw_lshr: 3462 case lltok::kw_ashr: { 3463 bool NUW = false; 3464 bool NSW = false; 3465 bool Exact = false; 3466 unsigned Opc = Lex.getUIntVal(); 3467 Constant *Val0, *Val1; 3468 Lex.Lex(); 3469 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3470 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3471 if (EatIfPresent(lltok::kw_nuw)) 3472 NUW = true; 3473 if (EatIfPresent(lltok::kw_nsw)) { 3474 NSW = true; 3475 if (EatIfPresent(lltok::kw_nuw)) 3476 NUW = true; 3477 } 3478 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3479 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3480 if (EatIfPresent(lltok::kw_exact)) 3481 Exact = true; 3482 } 3483 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3484 ParseGlobalTypeAndValue(Val0) || 3485 ParseToken(lltok::comma, "expected comma in binary constantexpr") || 3486 ParseGlobalTypeAndValue(Val1) || 3487 ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3488 return true; 3489 if (Val0->getType() != Val1->getType()) 3490 return Error(ID.Loc, "operands of constexpr must have same type"); 3491 // Check that the type is valid for the operator. 3492 switch (Opc) { 3493 case Instruction::Add: 3494 case Instruction::Sub: 3495 case Instruction::Mul: 3496 case Instruction::UDiv: 3497 case Instruction::SDiv: 3498 case Instruction::URem: 3499 case Instruction::SRem: 3500 case Instruction::Shl: 3501 case Instruction::AShr: 3502 case Instruction::LShr: 3503 if (!Val0->getType()->isIntOrIntVectorTy()) 3504 return Error(ID.Loc, "constexpr requires integer operands"); 3505 break; 3506 case Instruction::FAdd: 3507 case Instruction::FSub: 3508 case Instruction::FMul: 3509 case Instruction::FDiv: 3510 case Instruction::FRem: 3511 if (!Val0->getType()->isFPOrFPVectorTy()) 3512 return Error(ID.Loc, "constexpr requires fp operands"); 3513 break; 3514 default: llvm_unreachable("Unknown binary operator!"); 3515 } 3516 unsigned Flags = 0; 3517 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3518 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3519 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3520 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3521 ID.ConstantVal = C; 3522 ID.Kind = ValID::t_Constant; 3523 return false; 3524 } 3525 3526 // Logical Operations 3527 case lltok::kw_and: 3528 case lltok::kw_or: 3529 case lltok::kw_xor: { 3530 unsigned Opc = Lex.getUIntVal(); 3531 Constant *Val0, *Val1; 3532 Lex.Lex(); 3533 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3534 ParseGlobalTypeAndValue(Val0) || 3535 ParseToken(lltok::comma, "expected comma in logical constantexpr") || 3536 ParseGlobalTypeAndValue(Val1) || 3537 ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3538 return true; 3539 if (Val0->getType() != Val1->getType()) 3540 return Error(ID.Loc, "operands of constexpr must have same type"); 3541 if (!Val0->getType()->isIntOrIntVectorTy()) 3542 return Error(ID.Loc, 3543 "constexpr requires integer or integer vector operands"); 3544 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3545 ID.Kind = ValID::t_Constant; 3546 return false; 3547 } 3548 3549 case lltok::kw_getelementptr: 3550 case lltok::kw_shufflevector: 3551 case lltok::kw_insertelement: 3552 case lltok::kw_extractelement: 3553 case lltok::kw_select: { 3554 unsigned Opc = Lex.getUIntVal(); 3555 SmallVector<Constant*, 16> Elts; 3556 bool InBounds = false; 3557 Type *Ty; 3558 Lex.Lex(); 3559 3560 if (Opc == Instruction::GetElementPtr) 3561 InBounds = EatIfPresent(lltok::kw_inbounds); 3562 3563 if (ParseToken(lltok::lparen, "expected '(' in constantexpr")) 3564 return true; 3565 3566 LocTy ExplicitTypeLoc = Lex.getLoc(); 3567 if (Opc == Instruction::GetElementPtr) { 3568 if (ParseType(Ty) || 3569 ParseToken(lltok::comma, "expected comma after getelementptr's type")) 3570 return true; 3571 } 3572 3573 Optional<unsigned> InRangeOp; 3574 if (ParseGlobalValueVector( 3575 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) || 3576 ParseToken(lltok::rparen, "expected ')' in constantexpr")) 3577 return true; 3578 3579 if (Opc == Instruction::GetElementPtr) { 3580 if (Elts.size() == 0 || 3581 !Elts[0]->getType()->isPtrOrPtrVectorTy()) 3582 return Error(ID.Loc, "base of getelementptr must be a pointer"); 3583 3584 Type *BaseType = Elts[0]->getType(); 3585 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3586 if (Ty != BasePointerType->getElementType()) 3587 return Error( 3588 ExplicitTypeLoc, 3589 "explicit pointee type doesn't match operand's pointee type"); 3590 3591 unsigned GEPWidth = 3592 BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0; 3593 3594 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3595 for (Constant *Val : Indices) { 3596 Type *ValTy = Val->getType(); 3597 if (!ValTy->isIntOrIntVectorTy()) 3598 return Error(ID.Loc, "getelementptr index must be an integer"); 3599 if (ValTy->isVectorTy()) { 3600 unsigned ValNumEl = ValTy->getVectorNumElements(); 3601 if (GEPWidth && (ValNumEl != GEPWidth)) 3602 return Error( 3603 ID.Loc, 3604 "getelementptr vector index has a wrong number of elements"); 3605 // GEPWidth may have been unknown because the base is a scalar, 3606 // but it is known now. 3607 GEPWidth = ValNumEl; 3608 } 3609 } 3610 3611 SmallPtrSet<Type*, 4> Visited; 3612 if (!Indices.empty() && !Ty->isSized(&Visited)) 3613 return Error(ID.Loc, "base element of getelementptr must be sized"); 3614 3615 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3616 return Error(ID.Loc, "invalid getelementptr indices"); 3617 3618 if (InRangeOp) { 3619 if (*InRangeOp == 0) 3620 return Error(ID.Loc, 3621 "inrange keyword may not appear on pointer operand"); 3622 --*InRangeOp; 3623 } 3624 3625 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, 3626 InBounds, InRangeOp); 3627 } else if (Opc == Instruction::Select) { 3628 if (Elts.size() != 3) 3629 return Error(ID.Loc, "expected three operands to select"); 3630 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3631 Elts[2])) 3632 return Error(ID.Loc, Reason); 3633 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3634 } else if (Opc == Instruction::ShuffleVector) { 3635 if (Elts.size() != 3) 3636 return Error(ID.Loc, "expected three operands to shufflevector"); 3637 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3638 return Error(ID.Loc, "invalid operands to shufflevector"); 3639 ID.ConstantVal = 3640 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); 3641 } else if (Opc == Instruction::ExtractElement) { 3642 if (Elts.size() != 2) 3643 return Error(ID.Loc, "expected two operands to extractelement"); 3644 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3645 return Error(ID.Loc, "invalid extractelement operands"); 3646 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3647 } else { 3648 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3649 if (Elts.size() != 3) 3650 return Error(ID.Loc, "expected three operands to insertelement"); 3651 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3652 return Error(ID.Loc, "invalid insertelement operands"); 3653 ID.ConstantVal = 3654 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3655 } 3656 3657 ID.Kind = ValID::t_Constant; 3658 return false; 3659 } 3660 } 3661 3662 Lex.Lex(); 3663 return false; 3664 } 3665 3666 /// ParseGlobalValue - Parse a global value with the specified type. 3667 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) { 3668 C = nullptr; 3669 ValID ID; 3670 Value *V = nullptr; 3671 bool Parsed = ParseValID(ID) || 3672 ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false); 3673 if (V && !(C = dyn_cast<Constant>(V))) 3674 return Error(ID.Loc, "global values must be constants"); 3675 return Parsed; 3676 } 3677 3678 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { 3679 Type *Ty = nullptr; 3680 return ParseType(Ty) || 3681 ParseGlobalValue(Ty, V); 3682 } 3683 3684 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3685 C = nullptr; 3686 3687 LocTy KwLoc = Lex.getLoc(); 3688 if (!EatIfPresent(lltok::kw_comdat)) 3689 return false; 3690 3691 if (EatIfPresent(lltok::lparen)) { 3692 if (Lex.getKind() != lltok::ComdatVar) 3693 return TokError("expected comdat variable"); 3694 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3695 Lex.Lex(); 3696 if (ParseToken(lltok::rparen, "expected ')' after comdat var")) 3697 return true; 3698 } else { 3699 if (GlobalName.empty()) 3700 return TokError("comdat cannot be unnamed"); 3701 C = getComdat(std::string(GlobalName), KwLoc); 3702 } 3703 3704 return false; 3705 } 3706 3707 /// ParseGlobalValueVector 3708 /// ::= /*empty*/ 3709 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)* 3710 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts, 3711 Optional<unsigned> *InRangeOp) { 3712 // Empty list. 3713 if (Lex.getKind() == lltok::rbrace || 3714 Lex.getKind() == lltok::rsquare || 3715 Lex.getKind() == lltok::greater || 3716 Lex.getKind() == lltok::rparen) 3717 return false; 3718 3719 do { 3720 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange)) 3721 *InRangeOp = Elts.size(); 3722 3723 Constant *C; 3724 if (ParseGlobalTypeAndValue(C)) return true; 3725 Elts.push_back(C); 3726 } while (EatIfPresent(lltok::comma)); 3727 3728 return false; 3729 } 3730 3731 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) { 3732 SmallVector<Metadata *, 16> Elts; 3733 if (ParseMDNodeVector(Elts)) 3734 return true; 3735 3736 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3737 return false; 3738 } 3739 3740 /// MDNode: 3741 /// ::= !{ ... } 3742 /// ::= !7 3743 /// ::= !DILocation(...) 3744 bool LLParser::ParseMDNode(MDNode *&N) { 3745 if (Lex.getKind() == lltok::MetadataVar) 3746 return ParseSpecializedMDNode(N); 3747 3748 return ParseToken(lltok::exclaim, "expected '!' here") || 3749 ParseMDNodeTail(N); 3750 } 3751 3752 bool LLParser::ParseMDNodeTail(MDNode *&N) { 3753 // !{ ... } 3754 if (Lex.getKind() == lltok::lbrace) 3755 return ParseMDTuple(N); 3756 3757 // !42 3758 return ParseMDNodeID(N); 3759 } 3760 3761 namespace { 3762 3763 /// Structure to represent an optional metadata field. 3764 template <class FieldTy> struct MDFieldImpl { 3765 typedef MDFieldImpl ImplTy; 3766 FieldTy Val; 3767 bool Seen; 3768 3769 void assign(FieldTy Val) { 3770 Seen = true; 3771 this->Val = std::move(Val); 3772 } 3773 3774 explicit MDFieldImpl(FieldTy Default) 3775 : Val(std::move(Default)), Seen(false) {} 3776 }; 3777 3778 /// Structure to represent an optional metadata field that 3779 /// can be of either type (A or B) and encapsulates the 3780 /// MD<typeofA>Field and MD<typeofB>Field structs, so not 3781 /// to reimplement the specifics for representing each Field. 3782 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl { 3783 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy; 3784 FieldTypeA A; 3785 FieldTypeB B; 3786 bool Seen; 3787 3788 enum { 3789 IsInvalid = 0, 3790 IsTypeA = 1, 3791 IsTypeB = 2 3792 } WhatIs; 3793 3794 void assign(FieldTypeA A) { 3795 Seen = true; 3796 this->A = std::move(A); 3797 WhatIs = IsTypeA; 3798 } 3799 3800 void assign(FieldTypeB B) { 3801 Seen = true; 3802 this->B = std::move(B); 3803 WhatIs = IsTypeB; 3804 } 3805 3806 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB) 3807 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false), 3808 WhatIs(IsInvalid) {} 3809 }; 3810 3811 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 3812 uint64_t Max; 3813 3814 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 3815 : ImplTy(Default), Max(Max) {} 3816 }; 3817 3818 struct LineField : public MDUnsignedField { 3819 LineField() : MDUnsignedField(0, UINT32_MAX) {} 3820 }; 3821 3822 struct ColumnField : public MDUnsignedField { 3823 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 3824 }; 3825 3826 struct DwarfTagField : public MDUnsignedField { 3827 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 3828 DwarfTagField(dwarf::Tag DefaultTag) 3829 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 3830 }; 3831 3832 struct DwarfMacinfoTypeField : public MDUnsignedField { 3833 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 3834 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 3835 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 3836 }; 3837 3838 struct DwarfAttEncodingField : public MDUnsignedField { 3839 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 3840 }; 3841 3842 struct DwarfVirtualityField : public MDUnsignedField { 3843 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 3844 }; 3845 3846 struct DwarfLangField : public MDUnsignedField { 3847 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 3848 }; 3849 3850 struct DwarfCCField : public MDUnsignedField { 3851 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 3852 }; 3853 3854 struct EmissionKindField : public MDUnsignedField { 3855 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 3856 }; 3857 3858 struct NameTableKindField : public MDUnsignedField { 3859 NameTableKindField() 3860 : MDUnsignedField( 3861 0, (unsigned) 3862 DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {} 3863 }; 3864 3865 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 3866 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 3867 }; 3868 3869 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> { 3870 DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {} 3871 }; 3872 3873 struct MDSignedField : public MDFieldImpl<int64_t> { 3874 int64_t Min; 3875 int64_t Max; 3876 3877 MDSignedField(int64_t Default = 0) 3878 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 3879 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 3880 : ImplTy(Default), Min(Min), Max(Max) {} 3881 }; 3882 3883 struct MDBoolField : public MDFieldImpl<bool> { 3884 MDBoolField(bool Default = false) : ImplTy(Default) {} 3885 }; 3886 3887 struct MDField : public MDFieldImpl<Metadata *> { 3888 bool AllowNull; 3889 3890 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 3891 }; 3892 3893 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> { 3894 MDConstant() : ImplTy(nullptr) {} 3895 }; 3896 3897 struct MDStringField : public MDFieldImpl<MDString *> { 3898 bool AllowEmpty; 3899 MDStringField(bool AllowEmpty = true) 3900 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 3901 }; 3902 3903 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 3904 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 3905 }; 3906 3907 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> { 3908 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {} 3909 }; 3910 3911 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> { 3912 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true) 3913 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {} 3914 3915 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max, 3916 bool AllowNull = true) 3917 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {} 3918 3919 bool isMDSignedField() const { return WhatIs == IsTypeA; } 3920 bool isMDField() const { return WhatIs == IsTypeB; } 3921 int64_t getMDSignedValue() const { 3922 assert(isMDSignedField() && "Wrong field type"); 3923 return A.Val; 3924 } 3925 Metadata *getMDFieldValue() const { 3926 assert(isMDField() && "Wrong field type"); 3927 return B.Val; 3928 } 3929 }; 3930 3931 struct MDSignedOrUnsignedField 3932 : MDEitherFieldImpl<MDSignedField, MDUnsignedField> { 3933 MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {} 3934 3935 bool isMDSignedField() const { return WhatIs == IsTypeA; } 3936 bool isMDUnsignedField() const { return WhatIs == IsTypeB; } 3937 int64_t getMDSignedValue() const { 3938 assert(isMDSignedField() && "Wrong field type"); 3939 return A.Val; 3940 } 3941 uint64_t getMDUnsignedValue() const { 3942 assert(isMDUnsignedField() && "Wrong field type"); 3943 return B.Val; 3944 } 3945 }; 3946 3947 } // end anonymous namespace 3948 3949 namespace llvm { 3950 3951 template <> 3952 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3953 MDUnsignedField &Result) { 3954 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 3955 return TokError("expected unsigned integer"); 3956 3957 auto &U = Lex.getAPSIntVal(); 3958 if (U.ugt(Result.Max)) 3959 return TokError("value for '" + Name + "' too large, limit is " + 3960 Twine(Result.Max)); 3961 Result.assign(U.getZExtValue()); 3962 assert(Result.Val <= Result.Max && "Expected value in range"); 3963 Lex.Lex(); 3964 return false; 3965 } 3966 3967 template <> 3968 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) { 3969 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3970 } 3971 template <> 3972 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 3973 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3974 } 3975 3976 template <> 3977 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 3978 if (Lex.getKind() == lltok::APSInt) 3979 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3980 3981 if (Lex.getKind() != lltok::DwarfTag) 3982 return TokError("expected DWARF tag"); 3983 3984 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 3985 if (Tag == dwarf::DW_TAG_invalid) 3986 return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 3987 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 3988 3989 Result.assign(Tag); 3990 Lex.Lex(); 3991 return false; 3992 } 3993 3994 template <> 3995 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3996 DwarfMacinfoTypeField &Result) { 3997 if (Lex.getKind() == lltok::APSInt) 3998 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3999 4000 if (Lex.getKind() != lltok::DwarfMacinfo) 4001 return TokError("expected DWARF macinfo type"); 4002 4003 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 4004 if (Macinfo == dwarf::DW_MACINFO_invalid) 4005 return TokError( 4006 "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'"); 4007 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 4008 4009 Result.assign(Macinfo); 4010 Lex.Lex(); 4011 return false; 4012 } 4013 4014 template <> 4015 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4016 DwarfVirtualityField &Result) { 4017 if (Lex.getKind() == lltok::APSInt) 4018 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4019 4020 if (Lex.getKind() != lltok::DwarfVirtuality) 4021 return TokError("expected DWARF virtuality code"); 4022 4023 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 4024 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 4025 return TokError("invalid DWARF virtuality code" + Twine(" '") + 4026 Lex.getStrVal() + "'"); 4027 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 4028 Result.assign(Virtuality); 4029 Lex.Lex(); 4030 return false; 4031 } 4032 4033 template <> 4034 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 4035 if (Lex.getKind() == lltok::APSInt) 4036 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4037 4038 if (Lex.getKind() != lltok::DwarfLang) 4039 return TokError("expected DWARF language"); 4040 4041 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 4042 if (!Lang) 4043 return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 4044 "'"); 4045 assert(Lang <= Result.Max && "Expected valid DWARF language"); 4046 Result.assign(Lang); 4047 Lex.Lex(); 4048 return false; 4049 } 4050 4051 template <> 4052 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 4053 if (Lex.getKind() == lltok::APSInt) 4054 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4055 4056 if (Lex.getKind() != lltok::DwarfCC) 4057 return TokError("expected DWARF calling convention"); 4058 4059 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 4060 if (!CC) 4061 return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() + 4062 "'"); 4063 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 4064 Result.assign(CC); 4065 Lex.Lex(); 4066 return false; 4067 } 4068 4069 template <> 4070 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) { 4071 if (Lex.getKind() == lltok::APSInt) 4072 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4073 4074 if (Lex.getKind() != lltok::EmissionKind) 4075 return TokError("expected emission kind"); 4076 4077 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 4078 if (!Kind) 4079 return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 4080 "'"); 4081 assert(*Kind <= Result.Max && "Expected valid emission kind"); 4082 Result.assign(*Kind); 4083 Lex.Lex(); 4084 return false; 4085 } 4086 4087 template <> 4088 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4089 NameTableKindField &Result) { 4090 if (Lex.getKind() == lltok::APSInt) 4091 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4092 4093 if (Lex.getKind() != lltok::NameTableKind) 4094 return TokError("expected nameTable kind"); 4095 4096 auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal()); 4097 if (!Kind) 4098 return TokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() + 4099 "'"); 4100 assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind"); 4101 Result.assign((unsigned)*Kind); 4102 Lex.Lex(); 4103 return false; 4104 } 4105 4106 template <> 4107 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4108 DwarfAttEncodingField &Result) { 4109 if (Lex.getKind() == lltok::APSInt) 4110 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4111 4112 if (Lex.getKind() != lltok::DwarfAttEncoding) 4113 return TokError("expected DWARF type attribute encoding"); 4114 4115 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 4116 if (!Encoding) 4117 return TokError("invalid DWARF type attribute encoding" + Twine(" '") + 4118 Lex.getStrVal() + "'"); 4119 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 4120 Result.assign(Encoding); 4121 Lex.Lex(); 4122 return false; 4123 } 4124 4125 /// DIFlagField 4126 /// ::= uint32 4127 /// ::= DIFlagVector 4128 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 4129 template <> 4130 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 4131 4132 // Parser for a single flag. 4133 auto parseFlag = [&](DINode::DIFlags &Val) { 4134 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4135 uint32_t TempVal = static_cast<uint32_t>(Val); 4136 bool Res = ParseUInt32(TempVal); 4137 Val = static_cast<DINode::DIFlags>(TempVal); 4138 return Res; 4139 } 4140 4141 if (Lex.getKind() != lltok::DIFlag) 4142 return TokError("expected debug info flag"); 4143 4144 Val = DINode::getFlag(Lex.getStrVal()); 4145 if (!Val) 4146 return TokError(Twine("invalid debug info flag flag '") + 4147 Lex.getStrVal() + "'"); 4148 Lex.Lex(); 4149 return false; 4150 }; 4151 4152 // Parse the flags and combine them together. 4153 DINode::DIFlags Combined = DINode::FlagZero; 4154 do { 4155 DINode::DIFlags Val; 4156 if (parseFlag(Val)) 4157 return true; 4158 Combined |= Val; 4159 } while (EatIfPresent(lltok::bar)); 4160 4161 Result.assign(Combined); 4162 return false; 4163 } 4164 4165 /// DISPFlagField 4166 /// ::= uint32 4167 /// ::= DISPFlagVector 4168 /// ::= DISPFlagVector '|' DISPFlag* '|' uint32 4169 template <> 4170 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) { 4171 4172 // Parser for a single flag. 4173 auto parseFlag = [&](DISubprogram::DISPFlags &Val) { 4174 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4175 uint32_t TempVal = static_cast<uint32_t>(Val); 4176 bool Res = ParseUInt32(TempVal); 4177 Val = static_cast<DISubprogram::DISPFlags>(TempVal); 4178 return Res; 4179 } 4180 4181 if (Lex.getKind() != lltok::DISPFlag) 4182 return TokError("expected debug info flag"); 4183 4184 Val = DISubprogram::getFlag(Lex.getStrVal()); 4185 if (!Val) 4186 return TokError(Twine("invalid subprogram debug info flag '") + 4187 Lex.getStrVal() + "'"); 4188 Lex.Lex(); 4189 return false; 4190 }; 4191 4192 // Parse the flags and combine them together. 4193 DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero; 4194 do { 4195 DISubprogram::DISPFlags Val; 4196 if (parseFlag(Val)) 4197 return true; 4198 Combined |= Val; 4199 } while (EatIfPresent(lltok::bar)); 4200 4201 Result.assign(Combined); 4202 return false; 4203 } 4204 4205 template <> 4206 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4207 MDSignedField &Result) { 4208 if (Lex.getKind() != lltok::APSInt) 4209 return TokError("expected signed integer"); 4210 4211 auto &S = Lex.getAPSIntVal(); 4212 if (S < Result.Min) 4213 return TokError("value for '" + Name + "' too small, limit is " + 4214 Twine(Result.Min)); 4215 if (S > Result.Max) 4216 return TokError("value for '" + Name + "' too large, limit is " + 4217 Twine(Result.Max)); 4218 Result.assign(S.getExtValue()); 4219 assert(Result.Val >= Result.Min && "Expected value in range"); 4220 assert(Result.Val <= Result.Max && "Expected value in range"); 4221 Lex.Lex(); 4222 return false; 4223 } 4224 4225 template <> 4226 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 4227 switch (Lex.getKind()) { 4228 default: 4229 return TokError("expected 'true' or 'false'"); 4230 case lltok::kw_true: 4231 Result.assign(true); 4232 break; 4233 case lltok::kw_false: 4234 Result.assign(false); 4235 break; 4236 } 4237 Lex.Lex(); 4238 return false; 4239 } 4240 4241 template <> 4242 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) { 4243 if (Lex.getKind() == lltok::kw_null) { 4244 if (!Result.AllowNull) 4245 return TokError("'" + Name + "' cannot be null"); 4246 Lex.Lex(); 4247 Result.assign(nullptr); 4248 return false; 4249 } 4250 4251 Metadata *MD; 4252 if (ParseMetadata(MD, nullptr)) 4253 return true; 4254 4255 Result.assign(MD); 4256 return false; 4257 } 4258 4259 template <> 4260 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4261 MDSignedOrMDField &Result) { 4262 // Try to parse a signed int. 4263 if (Lex.getKind() == lltok::APSInt) { 4264 MDSignedField Res = Result.A; 4265 if (!ParseMDField(Loc, Name, Res)) { 4266 Result.assign(Res); 4267 return false; 4268 } 4269 return true; 4270 } 4271 4272 // Otherwise, try to parse as an MDField. 4273 MDField Res = Result.B; 4274 if (!ParseMDField(Loc, Name, Res)) { 4275 Result.assign(Res); 4276 return false; 4277 } 4278 4279 return true; 4280 } 4281 4282 template <> 4283 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4284 MDSignedOrUnsignedField &Result) { 4285 if (Lex.getKind() != lltok::APSInt) 4286 return false; 4287 4288 if (Lex.getAPSIntVal().isSigned()) { 4289 MDSignedField Res = Result.A; 4290 if (ParseMDField(Loc, Name, Res)) 4291 return true; 4292 Result.assign(Res); 4293 return false; 4294 } 4295 4296 MDUnsignedField Res = Result.B; 4297 if (ParseMDField(Loc, Name, Res)) 4298 return true; 4299 Result.assign(Res); 4300 return false; 4301 } 4302 4303 template <> 4304 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 4305 LocTy ValueLoc = Lex.getLoc(); 4306 std::string S; 4307 if (ParseStringConstant(S)) 4308 return true; 4309 4310 if (!Result.AllowEmpty && S.empty()) 4311 return Error(ValueLoc, "'" + Name + "' cannot be empty"); 4312 4313 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 4314 return false; 4315 } 4316 4317 template <> 4318 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 4319 SmallVector<Metadata *, 4> MDs; 4320 if (ParseMDNodeVector(MDs)) 4321 return true; 4322 4323 Result.assign(std::move(MDs)); 4324 return false; 4325 } 4326 4327 template <> 4328 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4329 ChecksumKindField &Result) { 4330 Optional<DIFile::ChecksumKind> CSKind = 4331 DIFile::getChecksumKind(Lex.getStrVal()); 4332 4333 if (Lex.getKind() != lltok::ChecksumKind || !CSKind) 4334 return TokError( 4335 "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'"); 4336 4337 Result.assign(*CSKind); 4338 Lex.Lex(); 4339 return false; 4340 } 4341 4342 } // end namespace llvm 4343 4344 template <class ParserTy> 4345 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) { 4346 do { 4347 if (Lex.getKind() != lltok::LabelStr) 4348 return TokError("expected field label here"); 4349 4350 if (parseField()) 4351 return true; 4352 } while (EatIfPresent(lltok::comma)); 4353 4354 return false; 4355 } 4356 4357 template <class ParserTy> 4358 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) { 4359 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4360 Lex.Lex(); 4361 4362 if (ParseToken(lltok::lparen, "expected '(' here")) 4363 return true; 4364 if (Lex.getKind() != lltok::rparen) 4365 if (ParseMDFieldsImplBody(parseField)) 4366 return true; 4367 4368 ClosingLoc = Lex.getLoc(); 4369 return ParseToken(lltok::rparen, "expected ')' here"); 4370 } 4371 4372 template <class FieldTy> 4373 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) { 4374 if (Result.Seen) 4375 return TokError("field '" + Name + "' cannot be specified more than once"); 4376 4377 LocTy Loc = Lex.getLoc(); 4378 Lex.Lex(); 4379 return ParseMDField(Loc, Name, Result); 4380 } 4381 4382 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 4383 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4384 4385 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 4386 if (Lex.getStrVal() == #CLASS) \ 4387 return Parse##CLASS(N, IsDistinct); 4388 #include "llvm/IR/Metadata.def" 4389 4390 return TokError("expected metadata type"); 4391 } 4392 4393 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 4394 #define NOP_FIELD(NAME, TYPE, INIT) 4395 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 4396 if (!NAME.Seen) \ 4397 return Error(ClosingLoc, "missing required field '" #NAME "'"); 4398 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 4399 if (Lex.getStrVal() == #NAME) \ 4400 return ParseMDField(#NAME, NAME); 4401 #define PARSE_MD_FIELDS() \ 4402 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 4403 do { \ 4404 LocTy ClosingLoc; \ 4405 if (ParseMDFieldsImpl([&]() -> bool { \ 4406 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 4407 return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \ 4408 }, ClosingLoc)) \ 4409 return true; \ 4410 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 4411 } while (false) 4412 #define GET_OR_DISTINCT(CLASS, ARGS) \ 4413 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 4414 4415 /// ParseDILocationFields: 4416 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6, 4417 /// isImplicitCode: true) 4418 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) { 4419 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4420 OPTIONAL(line, LineField, ); \ 4421 OPTIONAL(column, ColumnField, ); \ 4422 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4423 OPTIONAL(inlinedAt, MDField, ); \ 4424 OPTIONAL(isImplicitCode, MDBoolField, (false)); 4425 PARSE_MD_FIELDS(); 4426 #undef VISIT_MD_FIELDS 4427 4428 Result = 4429 GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val, 4430 inlinedAt.Val, isImplicitCode.Val)); 4431 return false; 4432 } 4433 4434 /// ParseGenericDINode: 4435 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 4436 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) { 4437 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4438 REQUIRED(tag, DwarfTagField, ); \ 4439 OPTIONAL(header, MDStringField, ); \ 4440 OPTIONAL(operands, MDFieldList, ); 4441 PARSE_MD_FIELDS(); 4442 #undef VISIT_MD_FIELDS 4443 4444 Result = GET_OR_DISTINCT(GenericDINode, 4445 (Context, tag.Val, header.Val, operands.Val)); 4446 return false; 4447 } 4448 4449 /// ParseDISubrange: 4450 /// ::= !DISubrange(count: 30, lowerBound: 2) 4451 /// ::= !DISubrange(count: !node, lowerBound: 2) 4452 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) { 4453 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4454 REQUIRED(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \ 4455 OPTIONAL(lowerBound, MDSignedField, ); 4456 PARSE_MD_FIELDS(); 4457 #undef VISIT_MD_FIELDS 4458 4459 if (count.isMDSignedField()) 4460 Result = GET_OR_DISTINCT( 4461 DISubrange, (Context, count.getMDSignedValue(), lowerBound.Val)); 4462 else if (count.isMDField()) 4463 Result = GET_OR_DISTINCT( 4464 DISubrange, (Context, count.getMDFieldValue(), lowerBound.Val)); 4465 else 4466 return true; 4467 4468 return false; 4469 } 4470 4471 /// ParseDIEnumerator: 4472 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind") 4473 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) { 4474 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4475 REQUIRED(name, MDStringField, ); \ 4476 REQUIRED(value, MDSignedOrUnsignedField, ); \ 4477 OPTIONAL(isUnsigned, MDBoolField, (false)); 4478 PARSE_MD_FIELDS(); 4479 #undef VISIT_MD_FIELDS 4480 4481 if (isUnsigned.Val && value.isMDSignedField()) 4482 return TokError("unsigned enumerator with negative value"); 4483 4484 int64_t Value = value.isMDSignedField() 4485 ? value.getMDSignedValue() 4486 : static_cast<int64_t>(value.getMDUnsignedValue()); 4487 Result = 4488 GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val)); 4489 4490 return false; 4491 } 4492 4493 /// ParseDIBasicType: 4494 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32, 4495 /// encoding: DW_ATE_encoding, flags: 0) 4496 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) { 4497 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4498 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 4499 OPTIONAL(name, MDStringField, ); \ 4500 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4501 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4502 OPTIONAL(encoding, DwarfAttEncodingField, ); \ 4503 OPTIONAL(flags, DIFlagField, ); 4504 PARSE_MD_FIELDS(); 4505 #undef VISIT_MD_FIELDS 4506 4507 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 4508 align.Val, encoding.Val, flags.Val)); 4509 return false; 4510 } 4511 4512 /// ParseDIDerivedType: 4513 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 4514 /// line: 7, scope: !1, baseType: !2, size: 32, 4515 /// align: 32, offset: 0, flags: 0, extraData: !3, 4516 /// dwarfAddressSpace: 3) 4517 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) { 4518 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4519 REQUIRED(tag, DwarfTagField, ); \ 4520 OPTIONAL(name, MDStringField, ); \ 4521 OPTIONAL(file, MDField, ); \ 4522 OPTIONAL(line, LineField, ); \ 4523 OPTIONAL(scope, MDField, ); \ 4524 REQUIRED(baseType, MDField, ); \ 4525 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4526 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4527 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4528 OPTIONAL(flags, DIFlagField, ); \ 4529 OPTIONAL(extraData, MDField, ); \ 4530 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); 4531 PARSE_MD_FIELDS(); 4532 #undef VISIT_MD_FIELDS 4533 4534 Optional<unsigned> DWARFAddressSpace; 4535 if (dwarfAddressSpace.Val != UINT32_MAX) 4536 DWARFAddressSpace = dwarfAddressSpace.Val; 4537 4538 Result = GET_OR_DISTINCT(DIDerivedType, 4539 (Context, tag.Val, name.Val, file.Val, line.Val, 4540 scope.Val, baseType.Val, size.Val, align.Val, 4541 offset.Val, DWARFAddressSpace, flags.Val, 4542 extraData.Val)); 4543 return false; 4544 } 4545 4546 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) { 4547 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4548 REQUIRED(tag, DwarfTagField, ); \ 4549 OPTIONAL(name, MDStringField, ); \ 4550 OPTIONAL(file, MDField, ); \ 4551 OPTIONAL(line, LineField, ); \ 4552 OPTIONAL(scope, MDField, ); \ 4553 OPTIONAL(baseType, MDField, ); \ 4554 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4555 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4556 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4557 OPTIONAL(flags, DIFlagField, ); \ 4558 OPTIONAL(elements, MDField, ); \ 4559 OPTIONAL(runtimeLang, DwarfLangField, ); \ 4560 OPTIONAL(vtableHolder, MDField, ); \ 4561 OPTIONAL(templateParams, MDField, ); \ 4562 OPTIONAL(identifier, MDStringField, ); \ 4563 OPTIONAL(discriminator, MDField, ); 4564 PARSE_MD_FIELDS(); 4565 #undef VISIT_MD_FIELDS 4566 4567 // If this has an identifier try to build an ODR type. 4568 if (identifier.Val) 4569 if (auto *CT = DICompositeType::buildODRType( 4570 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 4571 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 4572 elements.Val, runtimeLang.Val, vtableHolder.Val, 4573 templateParams.Val, discriminator.Val)) { 4574 Result = CT; 4575 return false; 4576 } 4577 4578 // Create a new node, and save it in the context if it belongs in the type 4579 // map. 4580 Result = GET_OR_DISTINCT( 4581 DICompositeType, 4582 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 4583 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 4584 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val, 4585 discriminator.Val)); 4586 return false; 4587 } 4588 4589 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) { 4590 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4591 OPTIONAL(flags, DIFlagField, ); \ 4592 OPTIONAL(cc, DwarfCCField, ); \ 4593 REQUIRED(types, MDField, ); 4594 PARSE_MD_FIELDS(); 4595 #undef VISIT_MD_FIELDS 4596 4597 Result = GET_OR_DISTINCT(DISubroutineType, 4598 (Context, flags.Val, cc.Val, types.Val)); 4599 return false; 4600 } 4601 4602 /// ParseDIFileType: 4603 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir", 4604 /// checksumkind: CSK_MD5, 4605 /// checksum: "000102030405060708090a0b0c0d0e0f", 4606 /// source: "source file contents") 4607 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) { 4608 // The default constructed value for checksumkind is required, but will never 4609 // be used, as the parser checks if the field was actually Seen before using 4610 // the Val. 4611 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4612 REQUIRED(filename, MDStringField, ); \ 4613 REQUIRED(directory, MDStringField, ); \ 4614 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \ 4615 OPTIONAL(checksum, MDStringField, ); \ 4616 OPTIONAL(source, MDStringField, ); 4617 PARSE_MD_FIELDS(); 4618 #undef VISIT_MD_FIELDS 4619 4620 Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum; 4621 if (checksumkind.Seen && checksum.Seen) 4622 OptChecksum.emplace(checksumkind.Val, checksum.Val); 4623 else if (checksumkind.Seen || checksum.Seen) 4624 return Lex.Error("'checksumkind' and 'checksum' must be provided together"); 4625 4626 Optional<MDString *> OptSource; 4627 if (source.Seen) 4628 OptSource = source.Val; 4629 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val, 4630 OptChecksum, OptSource)); 4631 return false; 4632 } 4633 4634 /// ParseDICompileUnit: 4635 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 4636 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 4637 /// splitDebugFilename: "abc.debug", 4638 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 4639 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd, 4640 /// sysroot: "/") 4641 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) { 4642 if (!IsDistinct) 4643 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 4644 4645 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4646 REQUIRED(language, DwarfLangField, ); \ 4647 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 4648 OPTIONAL(producer, MDStringField, ); \ 4649 OPTIONAL(isOptimized, MDBoolField, ); \ 4650 OPTIONAL(flags, MDStringField, ); \ 4651 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 4652 OPTIONAL(splitDebugFilename, MDStringField, ); \ 4653 OPTIONAL(emissionKind, EmissionKindField, ); \ 4654 OPTIONAL(enums, MDField, ); \ 4655 OPTIONAL(retainedTypes, MDField, ); \ 4656 OPTIONAL(globals, MDField, ); \ 4657 OPTIONAL(imports, MDField, ); \ 4658 OPTIONAL(macros, MDField, ); \ 4659 OPTIONAL(dwoId, MDUnsignedField, ); \ 4660 OPTIONAL(splitDebugInlining, MDBoolField, = true); \ 4661 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \ 4662 OPTIONAL(nameTableKind, NameTableKindField, ); \ 4663 OPTIONAL(debugBaseAddress, MDBoolField, = false); \ 4664 OPTIONAL(sysroot, MDStringField, ); 4665 PARSE_MD_FIELDS(); 4666 #undef VISIT_MD_FIELDS 4667 4668 Result = DICompileUnit::getDistinct( 4669 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 4670 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 4671 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 4672 splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val, 4673 debugBaseAddress.Val, sysroot.Val); 4674 return false; 4675 } 4676 4677 /// ParseDISubprogram: 4678 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 4679 /// file: !1, line: 7, type: !2, isLocal: false, 4680 /// isDefinition: true, scopeLine: 8, containingType: !3, 4681 /// virtuality: DW_VIRTUALTIY_pure_virtual, 4682 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 4683 /// spFlags: 10, isOptimized: false, templateParams: !4, 4684 /// declaration: !5, retainedNodes: !6, thrownTypes: !7) 4685 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) { 4686 auto Loc = Lex.getLoc(); 4687 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4688 OPTIONAL(scope, MDField, ); \ 4689 OPTIONAL(name, MDStringField, ); \ 4690 OPTIONAL(linkageName, MDStringField, ); \ 4691 OPTIONAL(file, MDField, ); \ 4692 OPTIONAL(line, LineField, ); \ 4693 OPTIONAL(type, MDField, ); \ 4694 OPTIONAL(isLocal, MDBoolField, ); \ 4695 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4696 OPTIONAL(scopeLine, LineField, ); \ 4697 OPTIONAL(containingType, MDField, ); \ 4698 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 4699 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 4700 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 4701 OPTIONAL(flags, DIFlagField, ); \ 4702 OPTIONAL(spFlags, DISPFlagField, ); \ 4703 OPTIONAL(isOptimized, MDBoolField, ); \ 4704 OPTIONAL(unit, MDField, ); \ 4705 OPTIONAL(templateParams, MDField, ); \ 4706 OPTIONAL(declaration, MDField, ); \ 4707 OPTIONAL(retainedNodes, MDField, ); \ 4708 OPTIONAL(thrownTypes, MDField, ); 4709 PARSE_MD_FIELDS(); 4710 #undef VISIT_MD_FIELDS 4711 4712 // An explicit spFlags field takes precedence over individual fields in 4713 // older IR versions. 4714 DISubprogram::DISPFlags SPFlags = 4715 spFlags.Seen ? spFlags.Val 4716 : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val, 4717 isOptimized.Val, virtuality.Val); 4718 if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct) 4719 return Lex.Error( 4720 Loc, 4721 "missing 'distinct', required for !DISubprogram that is a Definition"); 4722 Result = GET_OR_DISTINCT( 4723 DISubprogram, 4724 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 4725 type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val, 4726 thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val, 4727 declaration.Val, retainedNodes.Val, thrownTypes.Val)); 4728 return false; 4729 } 4730 4731 /// ParseDILexicalBlock: 4732 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 4733 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 4734 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4735 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4736 OPTIONAL(file, MDField, ); \ 4737 OPTIONAL(line, LineField, ); \ 4738 OPTIONAL(column, ColumnField, ); 4739 PARSE_MD_FIELDS(); 4740 #undef VISIT_MD_FIELDS 4741 4742 Result = GET_OR_DISTINCT( 4743 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 4744 return false; 4745 } 4746 4747 /// ParseDILexicalBlockFile: 4748 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 4749 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 4750 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4751 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4752 OPTIONAL(file, MDField, ); \ 4753 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 4754 PARSE_MD_FIELDS(); 4755 #undef VISIT_MD_FIELDS 4756 4757 Result = GET_OR_DISTINCT(DILexicalBlockFile, 4758 (Context, scope.Val, file.Val, discriminator.Val)); 4759 return false; 4760 } 4761 4762 /// ParseDICommonBlock: 4763 /// ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9) 4764 bool LLParser::ParseDICommonBlock(MDNode *&Result, bool IsDistinct) { 4765 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4766 REQUIRED(scope, MDField, ); \ 4767 OPTIONAL(declaration, MDField, ); \ 4768 OPTIONAL(name, MDStringField, ); \ 4769 OPTIONAL(file, MDField, ); \ 4770 OPTIONAL(line, LineField, ); 4771 PARSE_MD_FIELDS(); 4772 #undef VISIT_MD_FIELDS 4773 4774 Result = GET_OR_DISTINCT(DICommonBlock, 4775 (Context, scope.Val, declaration.Val, name.Val, 4776 file.Val, line.Val)); 4777 return false; 4778 } 4779 4780 /// ParseDINamespace: 4781 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 4782 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) { 4783 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4784 REQUIRED(scope, MDField, ); \ 4785 OPTIONAL(name, MDStringField, ); \ 4786 OPTIONAL(exportSymbols, MDBoolField, ); 4787 PARSE_MD_FIELDS(); 4788 #undef VISIT_MD_FIELDS 4789 4790 Result = GET_OR_DISTINCT(DINamespace, 4791 (Context, scope.Val, name.Val, exportSymbols.Val)); 4792 return false; 4793 } 4794 4795 /// ParseDIMacro: 4796 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue") 4797 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) { 4798 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4799 REQUIRED(type, DwarfMacinfoTypeField, ); \ 4800 OPTIONAL(line, LineField, ); \ 4801 REQUIRED(name, MDStringField, ); \ 4802 OPTIONAL(value, MDStringField, ); 4803 PARSE_MD_FIELDS(); 4804 #undef VISIT_MD_FIELDS 4805 4806 Result = GET_OR_DISTINCT(DIMacro, 4807 (Context, type.Val, line.Val, name.Val, value.Val)); 4808 return false; 4809 } 4810 4811 /// ParseDIMacroFile: 4812 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 4813 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) { 4814 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4815 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 4816 OPTIONAL(line, LineField, ); \ 4817 REQUIRED(file, MDField, ); \ 4818 OPTIONAL(nodes, MDField, ); 4819 PARSE_MD_FIELDS(); 4820 #undef VISIT_MD_FIELDS 4821 4822 Result = GET_OR_DISTINCT(DIMacroFile, 4823 (Context, type.Val, line.Val, file.Val, nodes.Val)); 4824 return false; 4825 } 4826 4827 /// ParseDIModule: 4828 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG", 4829 /// includePath: "/usr/include") 4830 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) { 4831 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4832 REQUIRED(scope, MDField, ); \ 4833 REQUIRED(name, MDStringField, ); \ 4834 OPTIONAL(configMacros, MDStringField, ); \ 4835 OPTIONAL(includePath, MDStringField, ); 4836 PARSE_MD_FIELDS(); 4837 #undef VISIT_MD_FIELDS 4838 4839 Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val, 4840 configMacros.Val, includePath.Val)); 4841 return false; 4842 } 4843 4844 /// ParseDITemplateTypeParameter: 4845 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1) 4846 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 4847 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4848 OPTIONAL(name, MDStringField, ); \ 4849 REQUIRED(type, MDField, ); 4850 PARSE_MD_FIELDS(); 4851 #undef VISIT_MD_FIELDS 4852 4853 Result = 4854 GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val)); 4855 return false; 4856 } 4857 4858 /// ParseDITemplateValueParameter: 4859 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 4860 /// name: "V", type: !1, value: i32 7) 4861 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 4862 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4863 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 4864 OPTIONAL(name, MDStringField, ); \ 4865 OPTIONAL(type, MDField, ); \ 4866 REQUIRED(value, MDField, ); 4867 PARSE_MD_FIELDS(); 4868 #undef VISIT_MD_FIELDS 4869 4870 Result = GET_OR_DISTINCT(DITemplateValueParameter, 4871 (Context, tag.Val, name.Val, type.Val, value.Val)); 4872 return false; 4873 } 4874 4875 /// ParseDIGlobalVariable: 4876 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 4877 /// file: !1, line: 7, type: !2, isLocal: false, 4878 /// isDefinition: true, templateParams: !3, 4879 /// declaration: !4, align: 8) 4880 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 4881 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4882 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 4883 OPTIONAL(scope, MDField, ); \ 4884 OPTIONAL(linkageName, MDStringField, ); \ 4885 OPTIONAL(file, MDField, ); \ 4886 OPTIONAL(line, LineField, ); \ 4887 OPTIONAL(type, MDField, ); \ 4888 OPTIONAL(isLocal, MDBoolField, ); \ 4889 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4890 OPTIONAL(templateParams, MDField, ); \ 4891 OPTIONAL(declaration, MDField, ); \ 4892 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4893 PARSE_MD_FIELDS(); 4894 #undef VISIT_MD_FIELDS 4895 4896 Result = 4897 GET_OR_DISTINCT(DIGlobalVariable, 4898 (Context, scope.Val, name.Val, linkageName.Val, file.Val, 4899 line.Val, type.Val, isLocal.Val, isDefinition.Val, 4900 declaration.Val, templateParams.Val, align.Val)); 4901 return false; 4902 } 4903 4904 /// ParseDILocalVariable: 4905 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 4906 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4907 /// align: 8) 4908 /// ::= !DILocalVariable(scope: !0, name: "foo", 4909 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4910 /// align: 8) 4911 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) { 4912 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4913 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4914 OPTIONAL(name, MDStringField, ); \ 4915 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 4916 OPTIONAL(file, MDField, ); \ 4917 OPTIONAL(line, LineField, ); \ 4918 OPTIONAL(type, MDField, ); \ 4919 OPTIONAL(flags, DIFlagField, ); \ 4920 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4921 PARSE_MD_FIELDS(); 4922 #undef VISIT_MD_FIELDS 4923 4924 Result = GET_OR_DISTINCT(DILocalVariable, 4925 (Context, scope.Val, name.Val, file.Val, line.Val, 4926 type.Val, arg.Val, flags.Val, align.Val)); 4927 return false; 4928 } 4929 4930 /// ParseDILabel: 4931 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7) 4932 bool LLParser::ParseDILabel(MDNode *&Result, bool IsDistinct) { 4933 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4934 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4935 REQUIRED(name, MDStringField, ); \ 4936 REQUIRED(file, MDField, ); \ 4937 REQUIRED(line, LineField, ); 4938 PARSE_MD_FIELDS(); 4939 #undef VISIT_MD_FIELDS 4940 4941 Result = GET_OR_DISTINCT(DILabel, 4942 (Context, scope.Val, name.Val, file.Val, line.Val)); 4943 return false; 4944 } 4945 4946 /// ParseDIExpression: 4947 /// ::= !DIExpression(0, 7, -1) 4948 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) { 4949 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4950 Lex.Lex(); 4951 4952 if (ParseToken(lltok::lparen, "expected '(' here")) 4953 return true; 4954 4955 SmallVector<uint64_t, 8> Elements; 4956 if (Lex.getKind() != lltok::rparen) 4957 do { 4958 if (Lex.getKind() == lltok::DwarfOp) { 4959 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 4960 Lex.Lex(); 4961 Elements.push_back(Op); 4962 continue; 4963 } 4964 return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 4965 } 4966 4967 if (Lex.getKind() == lltok::DwarfAttEncoding) { 4968 if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) { 4969 Lex.Lex(); 4970 Elements.push_back(Op); 4971 continue; 4972 } 4973 return TokError(Twine("invalid DWARF attribute encoding '") + Lex.getStrVal() + "'"); 4974 } 4975 4976 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4977 return TokError("expected unsigned integer"); 4978 4979 auto &U = Lex.getAPSIntVal(); 4980 if (U.ugt(UINT64_MAX)) 4981 return TokError("element too large, limit is " + Twine(UINT64_MAX)); 4982 Elements.push_back(U.getZExtValue()); 4983 Lex.Lex(); 4984 } while (EatIfPresent(lltok::comma)); 4985 4986 if (ParseToken(lltok::rparen, "expected ')' here")) 4987 return true; 4988 4989 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 4990 return false; 4991 } 4992 4993 /// ParseDIGlobalVariableExpression: 4994 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1) 4995 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result, 4996 bool IsDistinct) { 4997 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4998 REQUIRED(var, MDField, ); \ 4999 REQUIRED(expr, MDField, ); 5000 PARSE_MD_FIELDS(); 5001 #undef VISIT_MD_FIELDS 5002 5003 Result = 5004 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val)); 5005 return false; 5006 } 5007 5008 /// ParseDIObjCProperty: 5009 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 5010 /// getter: "getFoo", attributes: 7, type: !2) 5011 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 5012 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5013 OPTIONAL(name, MDStringField, ); \ 5014 OPTIONAL(file, MDField, ); \ 5015 OPTIONAL(line, LineField, ); \ 5016 OPTIONAL(setter, MDStringField, ); \ 5017 OPTIONAL(getter, MDStringField, ); \ 5018 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 5019 OPTIONAL(type, MDField, ); 5020 PARSE_MD_FIELDS(); 5021 #undef VISIT_MD_FIELDS 5022 5023 Result = GET_OR_DISTINCT(DIObjCProperty, 5024 (Context, name.Val, file.Val, line.Val, setter.Val, 5025 getter.Val, attributes.Val, type.Val)); 5026 return false; 5027 } 5028 5029 /// ParseDIImportedEntity: 5030 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 5031 /// line: 7, name: "foo") 5032 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 5033 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5034 REQUIRED(tag, DwarfTagField, ); \ 5035 REQUIRED(scope, MDField, ); \ 5036 OPTIONAL(entity, MDField, ); \ 5037 OPTIONAL(file, MDField, ); \ 5038 OPTIONAL(line, LineField, ); \ 5039 OPTIONAL(name, MDStringField, ); 5040 PARSE_MD_FIELDS(); 5041 #undef VISIT_MD_FIELDS 5042 5043 Result = GET_OR_DISTINCT( 5044 DIImportedEntity, 5045 (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val)); 5046 return false; 5047 } 5048 5049 #undef PARSE_MD_FIELD 5050 #undef NOP_FIELD 5051 #undef REQUIRE_FIELD 5052 #undef DECLARE_FIELD 5053 5054 /// ParseMetadataAsValue 5055 /// ::= metadata i32 %local 5056 /// ::= metadata i32 @global 5057 /// ::= metadata i32 7 5058 /// ::= metadata !0 5059 /// ::= metadata !{...} 5060 /// ::= metadata !"string" 5061 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 5062 // Note: the type 'metadata' has already been parsed. 5063 Metadata *MD; 5064 if (ParseMetadata(MD, &PFS)) 5065 return true; 5066 5067 V = MetadataAsValue::get(Context, MD); 5068 return false; 5069 } 5070 5071 /// ParseValueAsMetadata 5072 /// ::= i32 %local 5073 /// ::= i32 @global 5074 /// ::= i32 7 5075 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 5076 PerFunctionState *PFS) { 5077 Type *Ty; 5078 LocTy Loc; 5079 if (ParseType(Ty, TypeMsg, Loc)) 5080 return true; 5081 if (Ty->isMetadataTy()) 5082 return Error(Loc, "invalid metadata-value-metadata roundtrip"); 5083 5084 Value *V; 5085 if (ParseValue(Ty, V, PFS)) 5086 return true; 5087 5088 MD = ValueAsMetadata::get(V); 5089 return false; 5090 } 5091 5092 /// ParseMetadata 5093 /// ::= i32 %local 5094 /// ::= i32 @global 5095 /// ::= i32 7 5096 /// ::= !42 5097 /// ::= !{...} 5098 /// ::= !"string" 5099 /// ::= !DILocation(...) 5100 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) { 5101 if (Lex.getKind() == lltok::MetadataVar) { 5102 MDNode *N; 5103 if (ParseSpecializedMDNode(N)) 5104 return true; 5105 MD = N; 5106 return false; 5107 } 5108 5109 // ValueAsMetadata: 5110 // <type> <value> 5111 if (Lex.getKind() != lltok::exclaim) 5112 return ParseValueAsMetadata(MD, "expected metadata operand", PFS); 5113 5114 // '!'. 5115 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 5116 Lex.Lex(); 5117 5118 // MDString: 5119 // ::= '!' STRINGCONSTANT 5120 if (Lex.getKind() == lltok::StringConstant) { 5121 MDString *S; 5122 if (ParseMDString(S)) 5123 return true; 5124 MD = S; 5125 return false; 5126 } 5127 5128 // MDNode: 5129 // !{ ... } 5130 // !7 5131 MDNode *N; 5132 if (ParseMDNodeTail(N)) 5133 return true; 5134 MD = N; 5135 return false; 5136 } 5137 5138 //===----------------------------------------------------------------------===// 5139 // Function Parsing. 5140 //===----------------------------------------------------------------------===// 5141 5142 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, 5143 PerFunctionState *PFS, bool IsCall) { 5144 if (Ty->isFunctionTy()) 5145 return Error(ID.Loc, "functions are not values, refer to them as pointers"); 5146 5147 switch (ID.Kind) { 5148 case ValID::t_LocalID: 5149 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 5150 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5151 return V == nullptr; 5152 case ValID::t_LocalName: 5153 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 5154 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall); 5155 return V == nullptr; 5156 case ValID::t_InlineAsm: { 5157 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 5158 return Error(ID.Loc, "invalid type for inline asm constraint string"); 5159 V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, 5160 (ID.UIntVal >> 1) & 1, 5161 (InlineAsm::AsmDialect(ID.UIntVal >> 2))); 5162 return false; 5163 } 5164 case ValID::t_GlobalName: 5165 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall); 5166 return V == nullptr; 5167 case ValID::t_GlobalID: 5168 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5169 return V == nullptr; 5170 case ValID::t_APSInt: 5171 if (!Ty->isIntegerTy()) 5172 return Error(ID.Loc, "integer constant must have integer type"); 5173 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 5174 V = ConstantInt::get(Context, ID.APSIntVal); 5175 return false; 5176 case ValID::t_APFloat: 5177 if (!Ty->isFloatingPointTy() || 5178 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 5179 return Error(ID.Loc, "floating point constant invalid for type"); 5180 5181 // The lexer has no type info, so builds all half, float, and double FP 5182 // constants as double. Fix this here. Long double does not need this. 5183 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) { 5184 bool Ignored; 5185 if (Ty->isHalfTy()) 5186 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, 5187 &Ignored); 5188 else if (Ty->isFloatTy()) 5189 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 5190 &Ignored); 5191 } 5192 V = ConstantFP::get(Context, ID.APFloatVal); 5193 5194 if (V->getType() != Ty) 5195 return Error(ID.Loc, "floating point constant does not have type '" + 5196 getTypeString(Ty) + "'"); 5197 5198 return false; 5199 case ValID::t_Null: 5200 if (!Ty->isPointerTy()) 5201 return Error(ID.Loc, "null must be a pointer type"); 5202 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 5203 return false; 5204 case ValID::t_Undef: 5205 // FIXME: LabelTy should not be a first-class type. 5206 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5207 return Error(ID.Loc, "invalid type for undef constant"); 5208 V = UndefValue::get(Ty); 5209 return false; 5210 case ValID::t_EmptyArray: 5211 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 5212 return Error(ID.Loc, "invalid empty array initializer"); 5213 V = UndefValue::get(Ty); 5214 return false; 5215 case ValID::t_Zero: 5216 // FIXME: LabelTy should not be a first-class type. 5217 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5218 return Error(ID.Loc, "invalid type for null constant"); 5219 V = Constant::getNullValue(Ty); 5220 return false; 5221 case ValID::t_None: 5222 if (!Ty->isTokenTy()) 5223 return Error(ID.Loc, "invalid type for none constant"); 5224 V = Constant::getNullValue(Ty); 5225 return false; 5226 case ValID::t_Constant: 5227 if (ID.ConstantVal->getType() != Ty) 5228 return Error(ID.Loc, "constant expression type mismatch"); 5229 5230 V = ID.ConstantVal; 5231 return false; 5232 case ValID::t_ConstantStruct: 5233 case ValID::t_PackedConstantStruct: 5234 if (StructType *ST = dyn_cast<StructType>(Ty)) { 5235 if (ST->getNumElements() != ID.UIntVal) 5236 return Error(ID.Loc, 5237 "initializer with struct type has wrong # elements"); 5238 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 5239 return Error(ID.Loc, "packed'ness of initializer and type don't match"); 5240 5241 // Verify that the elements are compatible with the structtype. 5242 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 5243 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 5244 return Error(ID.Loc, "element " + Twine(i) + 5245 " of struct initializer doesn't match struct element type"); 5246 5247 V = ConstantStruct::get( 5248 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 5249 } else 5250 return Error(ID.Loc, "constant expression type mismatch"); 5251 return false; 5252 } 5253 llvm_unreachable("Invalid ValID"); 5254 } 5255 5256 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 5257 C = nullptr; 5258 ValID ID; 5259 auto Loc = Lex.getLoc(); 5260 if (ParseValID(ID, /*PFS=*/nullptr)) 5261 return true; 5262 switch (ID.Kind) { 5263 case ValID::t_APSInt: 5264 case ValID::t_APFloat: 5265 case ValID::t_Undef: 5266 case ValID::t_Constant: 5267 case ValID::t_ConstantStruct: 5268 case ValID::t_PackedConstantStruct: { 5269 Value *V; 5270 if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false)) 5271 return true; 5272 assert(isa<Constant>(V) && "Expected a constant value"); 5273 C = cast<Constant>(V); 5274 return false; 5275 } 5276 case ValID::t_Null: 5277 C = Constant::getNullValue(Ty); 5278 return false; 5279 default: 5280 return Error(Loc, "expected a constant value"); 5281 } 5282 } 5283 5284 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 5285 V = nullptr; 5286 ValID ID; 5287 return ParseValID(ID, PFS) || 5288 ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false); 5289 } 5290 5291 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) { 5292 Type *Ty = nullptr; 5293 return ParseType(Ty) || 5294 ParseValue(Ty, V, PFS); 5295 } 5296 5297 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 5298 PerFunctionState &PFS) { 5299 Value *V; 5300 Loc = Lex.getLoc(); 5301 if (ParseTypeAndValue(V, PFS)) return true; 5302 if (!isa<BasicBlock>(V)) 5303 return Error(Loc, "expected a basic block"); 5304 BB = cast<BasicBlock>(V); 5305 return false; 5306 } 5307 5308 /// FunctionHeader 5309 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 5310 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName 5311 /// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign 5312 /// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 5313 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { 5314 // Parse the linkage. 5315 LocTy LinkageLoc = Lex.getLoc(); 5316 unsigned Linkage; 5317 unsigned Visibility; 5318 unsigned DLLStorageClass; 5319 bool DSOLocal; 5320 AttrBuilder RetAttrs; 5321 unsigned CC; 5322 bool HasLinkage; 5323 Type *RetType = nullptr; 5324 LocTy RetTypeLoc = Lex.getLoc(); 5325 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 5326 DSOLocal) || 5327 ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5328 ParseType(RetType, RetTypeLoc, true /*void allowed*/)) 5329 return true; 5330 5331 // Verify that the linkage is ok. 5332 switch ((GlobalValue::LinkageTypes)Linkage) { 5333 case GlobalValue::ExternalLinkage: 5334 break; // always ok. 5335 case GlobalValue::ExternalWeakLinkage: 5336 if (isDefine) 5337 return Error(LinkageLoc, "invalid linkage for function definition"); 5338 break; 5339 case GlobalValue::PrivateLinkage: 5340 case GlobalValue::InternalLinkage: 5341 case GlobalValue::AvailableExternallyLinkage: 5342 case GlobalValue::LinkOnceAnyLinkage: 5343 case GlobalValue::LinkOnceODRLinkage: 5344 case GlobalValue::WeakAnyLinkage: 5345 case GlobalValue::WeakODRLinkage: 5346 if (!isDefine) 5347 return Error(LinkageLoc, "invalid linkage for function declaration"); 5348 break; 5349 case GlobalValue::AppendingLinkage: 5350 case GlobalValue::CommonLinkage: 5351 return Error(LinkageLoc, "invalid function linkage type"); 5352 } 5353 5354 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 5355 return Error(LinkageLoc, 5356 "symbol with local linkage must have default visibility"); 5357 5358 if (!FunctionType::isValidReturnType(RetType)) 5359 return Error(RetTypeLoc, "invalid function return type"); 5360 5361 LocTy NameLoc = Lex.getLoc(); 5362 5363 std::string FunctionName; 5364 if (Lex.getKind() == lltok::GlobalVar) { 5365 FunctionName = Lex.getStrVal(); 5366 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 5367 unsigned NameID = Lex.getUIntVal(); 5368 5369 if (NameID != NumberedVals.size()) 5370 return TokError("function expected to be numbered '%" + 5371 Twine(NumberedVals.size()) + "'"); 5372 } else { 5373 return TokError("expected function name"); 5374 } 5375 5376 Lex.Lex(); 5377 5378 if (Lex.getKind() != lltok::lparen) 5379 return TokError("expected '(' in function argument list"); 5380 5381 SmallVector<ArgInfo, 8> ArgList; 5382 bool isVarArg; 5383 AttrBuilder FuncAttrs; 5384 std::vector<unsigned> FwdRefAttrGrps; 5385 LocTy BuiltinLoc; 5386 std::string Section; 5387 std::string Partition; 5388 MaybeAlign Alignment; 5389 std::string GC; 5390 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 5391 unsigned AddrSpace = 0; 5392 Constant *Prefix = nullptr; 5393 Constant *Prologue = nullptr; 5394 Constant *PersonalityFn = nullptr; 5395 Comdat *C; 5396 5397 if (ParseArgumentList(ArgList, isVarArg) || 5398 ParseOptionalUnnamedAddr(UnnamedAddr) || 5399 ParseOptionalProgramAddrSpace(AddrSpace) || 5400 ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 5401 BuiltinLoc) || 5402 (EatIfPresent(lltok::kw_section) && 5403 ParseStringConstant(Section)) || 5404 (EatIfPresent(lltok::kw_partition) && 5405 ParseStringConstant(Partition)) || 5406 parseOptionalComdat(FunctionName, C) || 5407 ParseOptionalAlignment(Alignment) || 5408 (EatIfPresent(lltok::kw_gc) && 5409 ParseStringConstant(GC)) || 5410 (EatIfPresent(lltok::kw_prefix) && 5411 ParseGlobalTypeAndValue(Prefix)) || 5412 (EatIfPresent(lltok::kw_prologue) && 5413 ParseGlobalTypeAndValue(Prologue)) || 5414 (EatIfPresent(lltok::kw_personality) && 5415 ParseGlobalTypeAndValue(PersonalityFn))) 5416 return true; 5417 5418 if (FuncAttrs.contains(Attribute::Builtin)) 5419 return Error(BuiltinLoc, "'builtin' attribute not valid on function"); 5420 5421 // If the alignment was parsed as an attribute, move to the alignment field. 5422 if (FuncAttrs.hasAlignmentAttr()) { 5423 Alignment = FuncAttrs.getAlignment(); 5424 FuncAttrs.removeAttribute(Attribute::Alignment); 5425 } 5426 5427 // Okay, if we got here, the function is syntactically valid. Convert types 5428 // and do semantic checks. 5429 std::vector<Type*> ParamTypeList; 5430 SmallVector<AttributeSet, 8> Attrs; 5431 5432 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5433 ParamTypeList.push_back(ArgList[i].Ty); 5434 Attrs.push_back(ArgList[i].Attrs); 5435 } 5436 5437 AttributeList PAL = 5438 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs), 5439 AttributeSet::get(Context, RetAttrs), Attrs); 5440 5441 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy()) 5442 return Error(RetTypeLoc, "functions with 'sret' argument must return void"); 5443 5444 FunctionType *FT = 5445 FunctionType::get(RetType, ParamTypeList, isVarArg); 5446 PointerType *PFT = PointerType::get(FT, AddrSpace); 5447 5448 Fn = nullptr; 5449 if (!FunctionName.empty()) { 5450 // If this was a definition of a forward reference, remove the definition 5451 // from the forward reference table and fill in the forward ref. 5452 auto FRVI = ForwardRefVals.find(FunctionName); 5453 if (FRVI != ForwardRefVals.end()) { 5454 Fn = M->getFunction(FunctionName); 5455 if (!Fn) 5456 return Error(FRVI->second.second, "invalid forward reference to " 5457 "function as global value!"); 5458 if (Fn->getType() != PFT) 5459 return Error(FRVI->second.second, "invalid forward reference to " 5460 "function '" + FunctionName + "' with wrong type: " 5461 "expected '" + getTypeString(PFT) + "' but was '" + 5462 getTypeString(Fn->getType()) + "'"); 5463 ForwardRefVals.erase(FRVI); 5464 } else if ((Fn = M->getFunction(FunctionName))) { 5465 // Reject redefinitions. 5466 return Error(NameLoc, "invalid redefinition of function '" + 5467 FunctionName + "'"); 5468 } else if (M->getNamedValue(FunctionName)) { 5469 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 5470 } 5471 5472 } else { 5473 // If this is a definition of a forward referenced function, make sure the 5474 // types agree. 5475 auto I = ForwardRefValIDs.find(NumberedVals.size()); 5476 if (I != ForwardRefValIDs.end()) { 5477 Fn = cast<Function>(I->second.first); 5478 if (Fn->getType() != PFT) 5479 return Error(NameLoc, "type of definition and forward reference of '@" + 5480 Twine(NumberedVals.size()) + "' disagree: " 5481 "expected '" + getTypeString(PFT) + "' but was '" + 5482 getTypeString(Fn->getType()) + "'"); 5483 ForwardRefValIDs.erase(I); 5484 } 5485 } 5486 5487 if (!Fn) 5488 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace, 5489 FunctionName, M); 5490 else // Move the forward-reference to the correct spot in the module. 5491 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 5492 5493 assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS"); 5494 5495 if (FunctionName.empty()) 5496 NumberedVals.push_back(Fn); 5497 5498 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 5499 maybeSetDSOLocal(DSOLocal, *Fn); 5500 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 5501 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 5502 Fn->setCallingConv(CC); 5503 Fn->setAttributes(PAL); 5504 Fn->setUnnamedAddr(UnnamedAddr); 5505 Fn->setAlignment(MaybeAlign(Alignment)); 5506 Fn->setSection(Section); 5507 Fn->setPartition(Partition); 5508 Fn->setComdat(C); 5509 Fn->setPersonalityFn(PersonalityFn); 5510 if (!GC.empty()) Fn->setGC(GC); 5511 Fn->setPrefixData(Prefix); 5512 Fn->setPrologueData(Prologue); 5513 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 5514 5515 // Add all of the arguments we parsed to the function. 5516 Function::arg_iterator ArgIt = Fn->arg_begin(); 5517 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 5518 // If the argument has a name, insert it into the argument symbol table. 5519 if (ArgList[i].Name.empty()) continue; 5520 5521 // Set the name, if it conflicted, it will be auto-renamed. 5522 ArgIt->setName(ArgList[i].Name); 5523 5524 if (ArgIt->getName() != ArgList[i].Name) 5525 return Error(ArgList[i].Loc, "redefinition of argument '%" + 5526 ArgList[i].Name + "'"); 5527 } 5528 5529 if (isDefine) 5530 return false; 5531 5532 // Check the declaration has no block address forward references. 5533 ValID ID; 5534 if (FunctionName.empty()) { 5535 ID.Kind = ValID::t_GlobalID; 5536 ID.UIntVal = NumberedVals.size() - 1; 5537 } else { 5538 ID.Kind = ValID::t_GlobalName; 5539 ID.StrVal = FunctionName; 5540 } 5541 auto Blocks = ForwardRefBlockAddresses.find(ID); 5542 if (Blocks != ForwardRefBlockAddresses.end()) 5543 return Error(Blocks->first.Loc, 5544 "cannot take blockaddress inside a declaration"); 5545 return false; 5546 } 5547 5548 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 5549 ValID ID; 5550 if (FunctionNumber == -1) { 5551 ID.Kind = ValID::t_GlobalName; 5552 ID.StrVal = std::string(F.getName()); 5553 } else { 5554 ID.Kind = ValID::t_GlobalID; 5555 ID.UIntVal = FunctionNumber; 5556 } 5557 5558 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 5559 if (Blocks == P.ForwardRefBlockAddresses.end()) 5560 return false; 5561 5562 for (const auto &I : Blocks->second) { 5563 const ValID &BBID = I.first; 5564 GlobalValue *GV = I.second; 5565 5566 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 5567 "Expected local id or name"); 5568 BasicBlock *BB; 5569 if (BBID.Kind == ValID::t_LocalName) 5570 BB = GetBB(BBID.StrVal, BBID.Loc); 5571 else 5572 BB = GetBB(BBID.UIntVal, BBID.Loc); 5573 if (!BB) 5574 return P.Error(BBID.Loc, "referenced value is not a basic block"); 5575 5576 GV->replaceAllUsesWith(BlockAddress::get(&F, BB)); 5577 GV->eraseFromParent(); 5578 } 5579 5580 P.ForwardRefBlockAddresses.erase(Blocks); 5581 return false; 5582 } 5583 5584 /// ParseFunctionBody 5585 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 5586 bool LLParser::ParseFunctionBody(Function &Fn) { 5587 if (Lex.getKind() != lltok::lbrace) 5588 return TokError("expected '{' in function body"); 5589 Lex.Lex(); // eat the {. 5590 5591 int FunctionNumber = -1; 5592 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 5593 5594 PerFunctionState PFS(*this, Fn, FunctionNumber); 5595 5596 // Resolve block addresses and allow basic blocks to be forward-declared 5597 // within this function. 5598 if (PFS.resolveForwardRefBlockAddresses()) 5599 return true; 5600 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 5601 5602 // We need at least one basic block. 5603 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 5604 return TokError("function body requires at least one basic block"); 5605 5606 while (Lex.getKind() != lltok::rbrace && 5607 Lex.getKind() != lltok::kw_uselistorder) 5608 if (ParseBasicBlock(PFS)) return true; 5609 5610 while (Lex.getKind() != lltok::rbrace) 5611 if (ParseUseListOrder(&PFS)) 5612 return true; 5613 5614 // Eat the }. 5615 Lex.Lex(); 5616 5617 // Verify function is ok. 5618 return PFS.FinishFunction(); 5619 } 5620 5621 /// ParseBasicBlock 5622 /// ::= (LabelStr|LabelID)? Instruction* 5623 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { 5624 // If this basic block starts out with a name, remember it. 5625 std::string Name; 5626 int NameID = -1; 5627 LocTy NameLoc = Lex.getLoc(); 5628 if (Lex.getKind() == lltok::LabelStr) { 5629 Name = Lex.getStrVal(); 5630 Lex.Lex(); 5631 } else if (Lex.getKind() == lltok::LabelID) { 5632 NameID = Lex.getUIntVal(); 5633 Lex.Lex(); 5634 } 5635 5636 BasicBlock *BB = PFS.DefineBB(Name, NameID, NameLoc); 5637 if (!BB) 5638 return true; 5639 5640 std::string NameStr; 5641 5642 // Parse the instructions in this block until we get a terminator. 5643 Instruction *Inst; 5644 do { 5645 // This instruction may have three possibilities for a name: a) none 5646 // specified, b) name specified "%foo =", c) number specified: "%4 =". 5647 LocTy NameLoc = Lex.getLoc(); 5648 int NameID = -1; 5649 NameStr = ""; 5650 5651 if (Lex.getKind() == lltok::LocalVarID) { 5652 NameID = Lex.getUIntVal(); 5653 Lex.Lex(); 5654 if (ParseToken(lltok::equal, "expected '=' after instruction id")) 5655 return true; 5656 } else if (Lex.getKind() == lltok::LocalVar) { 5657 NameStr = Lex.getStrVal(); 5658 Lex.Lex(); 5659 if (ParseToken(lltok::equal, "expected '=' after instruction name")) 5660 return true; 5661 } 5662 5663 switch (ParseInstruction(Inst, BB, PFS)) { 5664 default: llvm_unreachable("Unknown ParseInstruction result!"); 5665 case InstError: return true; 5666 case InstNormal: 5667 BB->getInstList().push_back(Inst); 5668 5669 // With a normal result, we check to see if the instruction is followed by 5670 // a comma and metadata. 5671 if (EatIfPresent(lltok::comma)) 5672 if (ParseInstructionMetadata(*Inst)) 5673 return true; 5674 break; 5675 case InstExtraComma: 5676 BB->getInstList().push_back(Inst); 5677 5678 // If the instruction parser ate an extra comma at the end of it, it 5679 // *must* be followed by metadata. 5680 if (ParseInstructionMetadata(*Inst)) 5681 return true; 5682 break; 5683 } 5684 5685 // Set the name on the instruction. 5686 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; 5687 } while (!Inst->isTerminator()); 5688 5689 return false; 5690 } 5691 5692 //===----------------------------------------------------------------------===// 5693 // Instruction Parsing. 5694 //===----------------------------------------------------------------------===// 5695 5696 /// ParseInstruction - Parse one of the many different instructions. 5697 /// 5698 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, 5699 PerFunctionState &PFS) { 5700 lltok::Kind Token = Lex.getKind(); 5701 if (Token == lltok::Eof) 5702 return TokError("found end of file when expecting more instructions"); 5703 LocTy Loc = Lex.getLoc(); 5704 unsigned KeywordVal = Lex.getUIntVal(); 5705 Lex.Lex(); // Eat the keyword. 5706 5707 switch (Token) { 5708 default: return Error(Loc, "expected instruction opcode"); 5709 // Terminator Instructions. 5710 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 5711 case lltok::kw_ret: return ParseRet(Inst, BB, PFS); 5712 case lltok::kw_br: return ParseBr(Inst, PFS); 5713 case lltok::kw_switch: return ParseSwitch(Inst, PFS); 5714 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS); 5715 case lltok::kw_invoke: return ParseInvoke(Inst, PFS); 5716 case lltok::kw_resume: return ParseResume(Inst, PFS); 5717 case lltok::kw_cleanupret: return ParseCleanupRet(Inst, PFS); 5718 case lltok::kw_catchret: return ParseCatchRet(Inst, PFS); 5719 case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS); 5720 case lltok::kw_catchpad: return ParseCatchPad(Inst, PFS); 5721 case lltok::kw_cleanuppad: return ParseCleanupPad(Inst, PFS); 5722 case lltok::kw_callbr: return ParseCallBr(Inst, PFS); 5723 // Unary Operators. 5724 case lltok::kw_fneg: { 5725 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5726 int Res = ParseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/true); 5727 if (Res != 0) 5728 return Res; 5729 if (FMF.any()) 5730 Inst->setFastMathFlags(FMF); 5731 return false; 5732 } 5733 // Binary Operators. 5734 case lltok::kw_add: 5735 case lltok::kw_sub: 5736 case lltok::kw_mul: 5737 case lltok::kw_shl: { 5738 bool NUW = EatIfPresent(lltok::kw_nuw); 5739 bool NSW = EatIfPresent(lltok::kw_nsw); 5740 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 5741 5742 if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true; 5743 5744 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 5745 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 5746 return false; 5747 } 5748 case lltok::kw_fadd: 5749 case lltok::kw_fsub: 5750 case lltok::kw_fmul: 5751 case lltok::kw_fdiv: 5752 case lltok::kw_frem: { 5753 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5754 int Res = ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/true); 5755 if (Res != 0) 5756 return Res; 5757 if (FMF.any()) 5758 Inst->setFastMathFlags(FMF); 5759 return 0; 5760 } 5761 5762 case lltok::kw_sdiv: 5763 case lltok::kw_udiv: 5764 case lltok::kw_lshr: 5765 case lltok::kw_ashr: { 5766 bool Exact = EatIfPresent(lltok::kw_exact); 5767 5768 if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true; 5769 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 5770 return false; 5771 } 5772 5773 case lltok::kw_urem: 5774 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 5775 /*IsFP*/false); 5776 case lltok::kw_and: 5777 case lltok::kw_or: 5778 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); 5779 case lltok::kw_icmp: return ParseCompare(Inst, PFS, KeywordVal); 5780 case lltok::kw_fcmp: { 5781 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5782 int Res = ParseCompare(Inst, PFS, KeywordVal); 5783 if (Res != 0) 5784 return Res; 5785 if (FMF.any()) 5786 Inst->setFastMathFlags(FMF); 5787 return 0; 5788 } 5789 5790 // Casts. 5791 case lltok::kw_trunc: 5792 case lltok::kw_zext: 5793 case lltok::kw_sext: 5794 case lltok::kw_fptrunc: 5795 case lltok::kw_fpext: 5796 case lltok::kw_bitcast: 5797 case lltok::kw_addrspacecast: 5798 case lltok::kw_uitofp: 5799 case lltok::kw_sitofp: 5800 case lltok::kw_fptoui: 5801 case lltok::kw_fptosi: 5802 case lltok::kw_inttoptr: 5803 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); 5804 // Other. 5805 case lltok::kw_select: { 5806 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5807 int Res = ParseSelect(Inst, PFS); 5808 if (Res != 0) 5809 return Res; 5810 if (FMF.any()) { 5811 if (!isa<FPMathOperator>(Inst)) 5812 return Error(Loc, "fast-math-flags specified for select without " 5813 "floating-point scalar or vector return type"); 5814 Inst->setFastMathFlags(FMF); 5815 } 5816 return 0; 5817 } 5818 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); 5819 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); 5820 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); 5821 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); 5822 case lltok::kw_phi: { 5823 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5824 int Res = ParsePHI(Inst, PFS); 5825 if (Res != 0) 5826 return Res; 5827 if (FMF.any()) { 5828 if (!isa<FPMathOperator>(Inst)) 5829 return Error(Loc, "fast-math-flags specified for phi without " 5830 "floating-point scalar or vector return type"); 5831 Inst->setFastMathFlags(FMF); 5832 } 5833 return 0; 5834 } 5835 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS); 5836 case lltok::kw_freeze: return ParseFreeze(Inst, PFS); 5837 // Call. 5838 case lltok::kw_call: return ParseCall(Inst, PFS, CallInst::TCK_None); 5839 case lltok::kw_tail: return ParseCall(Inst, PFS, CallInst::TCK_Tail); 5840 case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail); 5841 case lltok::kw_notail: return ParseCall(Inst, PFS, CallInst::TCK_NoTail); 5842 // Memory. 5843 case lltok::kw_alloca: return ParseAlloc(Inst, PFS); 5844 case lltok::kw_load: return ParseLoad(Inst, PFS); 5845 case lltok::kw_store: return ParseStore(Inst, PFS); 5846 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS); 5847 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS); 5848 case lltok::kw_fence: return ParseFence(Inst, PFS); 5849 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); 5850 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); 5851 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); 5852 } 5853 } 5854 5855 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. 5856 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { 5857 if (Opc == Instruction::FCmp) { 5858 switch (Lex.getKind()) { 5859 default: return TokError("expected fcmp predicate (e.g. 'oeq')"); 5860 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 5861 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 5862 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 5863 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 5864 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 5865 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 5866 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 5867 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 5868 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 5869 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 5870 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 5871 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 5872 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 5873 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 5874 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 5875 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 5876 } 5877 } else { 5878 switch (Lex.getKind()) { 5879 default: return TokError("expected icmp predicate (e.g. 'eq')"); 5880 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 5881 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 5882 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 5883 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 5884 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 5885 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 5886 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 5887 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 5888 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 5889 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 5890 } 5891 } 5892 Lex.Lex(); 5893 return false; 5894 } 5895 5896 //===----------------------------------------------------------------------===// 5897 // Terminator Instructions. 5898 //===----------------------------------------------------------------------===// 5899 5900 /// ParseRet - Parse a return instruction. 5901 /// ::= 'ret' void (',' !dbg, !1)* 5902 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 5903 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, 5904 PerFunctionState &PFS) { 5905 SMLoc TypeLoc = Lex.getLoc(); 5906 Type *Ty = nullptr; 5907 if (ParseType(Ty, true /*void allowed*/)) return true; 5908 5909 Type *ResType = PFS.getFunction().getReturnType(); 5910 5911 if (Ty->isVoidTy()) { 5912 if (!ResType->isVoidTy()) 5913 return Error(TypeLoc, "value doesn't match function result type '" + 5914 getTypeString(ResType) + "'"); 5915 5916 Inst = ReturnInst::Create(Context); 5917 return false; 5918 } 5919 5920 Value *RV; 5921 if (ParseValue(Ty, RV, PFS)) return true; 5922 5923 if (ResType != RV->getType()) 5924 return Error(TypeLoc, "value doesn't match function result type '" + 5925 getTypeString(ResType) + "'"); 5926 5927 Inst = ReturnInst::Create(Context, RV); 5928 return false; 5929 } 5930 5931 /// ParseBr 5932 /// ::= 'br' TypeAndValue 5933 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5934 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { 5935 LocTy Loc, Loc2; 5936 Value *Op0; 5937 BasicBlock *Op1, *Op2; 5938 if (ParseTypeAndValue(Op0, Loc, PFS)) return true; 5939 5940 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 5941 Inst = BranchInst::Create(BB); 5942 return false; 5943 } 5944 5945 if (Op0->getType() != Type::getInt1Ty(Context)) 5946 return Error(Loc, "branch condition must have 'i1' type"); 5947 5948 if (ParseToken(lltok::comma, "expected ',' after branch condition") || 5949 ParseTypeAndBasicBlock(Op1, Loc, PFS) || 5950 ParseToken(lltok::comma, "expected ',' after true destination") || 5951 ParseTypeAndBasicBlock(Op2, Loc2, PFS)) 5952 return true; 5953 5954 Inst = BranchInst::Create(Op1, Op2, Op0); 5955 return false; 5956 } 5957 5958 /// ParseSwitch 5959 /// Instruction 5960 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 5961 /// JumpTable 5962 /// ::= (TypeAndValue ',' TypeAndValue)* 5963 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 5964 LocTy CondLoc, BBLoc; 5965 Value *Cond; 5966 BasicBlock *DefaultBB; 5967 if (ParseTypeAndValue(Cond, CondLoc, PFS) || 5968 ParseToken(lltok::comma, "expected ',' after switch condition") || 5969 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 5970 ParseToken(lltok::lsquare, "expected '[' with switch table")) 5971 return true; 5972 5973 if (!Cond->getType()->isIntegerTy()) 5974 return Error(CondLoc, "switch condition must have integer type"); 5975 5976 // Parse the jump table pairs. 5977 SmallPtrSet<Value*, 32> SeenCases; 5978 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 5979 while (Lex.getKind() != lltok::rsquare) { 5980 Value *Constant; 5981 BasicBlock *DestBB; 5982 5983 if (ParseTypeAndValue(Constant, CondLoc, PFS) || 5984 ParseToken(lltok::comma, "expected ',' after case value") || 5985 ParseTypeAndBasicBlock(DestBB, PFS)) 5986 return true; 5987 5988 if (!SeenCases.insert(Constant).second) 5989 return Error(CondLoc, "duplicate case value in switch"); 5990 if (!isa<ConstantInt>(Constant)) 5991 return Error(CondLoc, "case value is not a constant integer"); 5992 5993 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 5994 } 5995 5996 Lex.Lex(); // Eat the ']'. 5997 5998 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 5999 for (unsigned i = 0, e = Table.size(); i != e; ++i) 6000 SI->addCase(Table[i].first, Table[i].second); 6001 Inst = SI; 6002 return false; 6003 } 6004 6005 /// ParseIndirectBr 6006 /// Instruction 6007 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 6008 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 6009 LocTy AddrLoc; 6010 Value *Address; 6011 if (ParseTypeAndValue(Address, AddrLoc, PFS) || 6012 ParseToken(lltok::comma, "expected ',' after indirectbr address") || 6013 ParseToken(lltok::lsquare, "expected '[' with indirectbr")) 6014 return true; 6015 6016 if (!Address->getType()->isPointerTy()) 6017 return Error(AddrLoc, "indirectbr address must have pointer type"); 6018 6019 // Parse the destination list. 6020 SmallVector<BasicBlock*, 16> DestList; 6021 6022 if (Lex.getKind() != lltok::rsquare) { 6023 BasicBlock *DestBB; 6024 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6025 return true; 6026 DestList.push_back(DestBB); 6027 6028 while (EatIfPresent(lltok::comma)) { 6029 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6030 return true; 6031 DestList.push_back(DestBB); 6032 } 6033 } 6034 6035 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 6036 return true; 6037 6038 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 6039 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 6040 IBI->addDestination(DestList[i]); 6041 Inst = IBI; 6042 return false; 6043 } 6044 6045 /// ParseInvoke 6046 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 6047 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 6048 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 6049 LocTy CallLoc = Lex.getLoc(); 6050 AttrBuilder RetAttrs, FnAttrs; 6051 std::vector<unsigned> FwdRefAttrGrps; 6052 LocTy NoBuiltinLoc; 6053 unsigned CC; 6054 unsigned InvokeAddrSpace; 6055 Type *RetType = nullptr; 6056 LocTy RetTypeLoc; 6057 ValID CalleeID; 6058 SmallVector<ParamInfo, 16> ArgList; 6059 SmallVector<OperandBundleDef, 2> BundleList; 6060 6061 BasicBlock *NormalBB, *UnwindBB; 6062 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 6063 ParseOptionalProgramAddrSpace(InvokeAddrSpace) || 6064 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 6065 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || 6066 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6067 NoBuiltinLoc) || 6068 ParseOptionalOperandBundles(BundleList, PFS) || 6069 ParseToken(lltok::kw_to, "expected 'to' in invoke") || 6070 ParseTypeAndBasicBlock(NormalBB, PFS) || 6071 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 6072 ParseTypeAndBasicBlock(UnwindBB, PFS)) 6073 return true; 6074 6075 // If RetType is a non-function pointer type, then this is the short syntax 6076 // for the call, which means that RetType is just the return type. Infer the 6077 // rest of the function argument types from the arguments that are present. 6078 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6079 if (!Ty) { 6080 // Pull out the types of all of the arguments... 6081 std::vector<Type*> ParamTypes; 6082 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6083 ParamTypes.push_back(ArgList[i].V->getType()); 6084 6085 if (!FunctionType::isValidReturnType(RetType)) 6086 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 6087 6088 Ty = FunctionType::get(RetType, ParamTypes, false); 6089 } 6090 6091 CalleeID.FTy = Ty; 6092 6093 // Look up the callee. 6094 Value *Callee; 6095 if (ConvertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID, 6096 Callee, &PFS, /*IsCall=*/true)) 6097 return true; 6098 6099 // Set up the Attribute for the function. 6100 SmallVector<Value *, 8> Args; 6101 SmallVector<AttributeSet, 8> ArgAttrs; 6102 6103 // Loop through FunctionType's arguments and ensure they are specified 6104 // correctly. Also, gather any parameter attributes. 6105 FunctionType::param_iterator I = Ty->param_begin(); 6106 FunctionType::param_iterator E = Ty->param_end(); 6107 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6108 Type *ExpectedTy = nullptr; 6109 if (I != E) { 6110 ExpectedTy = *I++; 6111 } else if (!Ty->isVarArg()) { 6112 return Error(ArgList[i].Loc, "too many arguments specified"); 6113 } 6114 6115 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6116 return Error(ArgList[i].Loc, "argument is not of expected type '" + 6117 getTypeString(ExpectedTy) + "'"); 6118 Args.push_back(ArgList[i].V); 6119 ArgAttrs.push_back(ArgList[i].Attrs); 6120 } 6121 6122 if (I != E) 6123 return Error(CallLoc, "not enough parameters specified for call"); 6124 6125 if (FnAttrs.hasAlignmentAttr()) 6126 return Error(CallLoc, "invoke instructions may not have an alignment"); 6127 6128 // Finish off the Attribute and check them 6129 AttributeList PAL = 6130 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6131 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6132 6133 InvokeInst *II = 6134 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 6135 II->setCallingConv(CC); 6136 II->setAttributes(PAL); 6137 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 6138 Inst = II; 6139 return false; 6140 } 6141 6142 /// ParseResume 6143 /// ::= 'resume' TypeAndValue 6144 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) { 6145 Value *Exn; LocTy ExnLoc; 6146 if (ParseTypeAndValue(Exn, ExnLoc, PFS)) 6147 return true; 6148 6149 ResumeInst *RI = ResumeInst::Create(Exn); 6150 Inst = RI; 6151 return false; 6152 } 6153 6154 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args, 6155 PerFunctionState &PFS) { 6156 if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 6157 return true; 6158 6159 while (Lex.getKind() != lltok::rsquare) { 6160 // If this isn't the first argument, we need a comma. 6161 if (!Args.empty() && 6162 ParseToken(lltok::comma, "expected ',' in argument list")) 6163 return true; 6164 6165 // Parse the argument. 6166 LocTy ArgLoc; 6167 Type *ArgTy = nullptr; 6168 if (ParseType(ArgTy, ArgLoc)) 6169 return true; 6170 6171 Value *V; 6172 if (ArgTy->isMetadataTy()) { 6173 if (ParseMetadataAsValue(V, PFS)) 6174 return true; 6175 } else { 6176 if (ParseValue(ArgTy, V, PFS)) 6177 return true; 6178 } 6179 Args.push_back(V); 6180 } 6181 6182 Lex.Lex(); // Lex the ']'. 6183 return false; 6184 } 6185 6186 /// ParseCleanupRet 6187 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 6188 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 6189 Value *CleanupPad = nullptr; 6190 6191 if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret")) 6192 return true; 6193 6194 if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 6195 return true; 6196 6197 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 6198 return true; 6199 6200 BasicBlock *UnwindBB = nullptr; 6201 if (Lex.getKind() == lltok::kw_to) { 6202 Lex.Lex(); 6203 if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 6204 return true; 6205 } else { 6206 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 6207 return true; 6208 } 6209 } 6210 6211 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 6212 return false; 6213 } 6214 6215 /// ParseCatchRet 6216 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 6217 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 6218 Value *CatchPad = nullptr; 6219 6220 if (ParseToken(lltok::kw_from, "expected 'from' after catchret")) 6221 return true; 6222 6223 if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS)) 6224 return true; 6225 6226 BasicBlock *BB; 6227 if (ParseToken(lltok::kw_to, "expected 'to' in catchret") || 6228 ParseTypeAndBasicBlock(BB, PFS)) 6229 return true; 6230 6231 Inst = CatchReturnInst::Create(CatchPad, BB); 6232 return false; 6233 } 6234 6235 /// ParseCatchSwitch 6236 /// ::= 'catchswitch' within Parent 6237 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6238 Value *ParentPad; 6239 6240 if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch")) 6241 return true; 6242 6243 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6244 Lex.getKind() != lltok::LocalVarID) 6245 return TokError("expected scope value for catchswitch"); 6246 6247 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6248 return true; 6249 6250 if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 6251 return true; 6252 6253 SmallVector<BasicBlock *, 32> Table; 6254 do { 6255 BasicBlock *DestBB; 6256 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6257 return true; 6258 Table.push_back(DestBB); 6259 } while (EatIfPresent(lltok::comma)); 6260 6261 if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 6262 return true; 6263 6264 if (ParseToken(lltok::kw_unwind, 6265 "expected 'unwind' after catchswitch scope")) 6266 return true; 6267 6268 BasicBlock *UnwindBB = nullptr; 6269 if (EatIfPresent(lltok::kw_to)) { 6270 if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 6271 return true; 6272 } else { 6273 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) 6274 return true; 6275 } 6276 6277 auto *CatchSwitch = 6278 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 6279 for (BasicBlock *DestBB : Table) 6280 CatchSwitch->addHandler(DestBB); 6281 Inst = CatchSwitch; 6282 return false; 6283 } 6284 6285 /// ParseCatchPad 6286 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 6287 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 6288 Value *CatchSwitch = nullptr; 6289 6290 if (ParseToken(lltok::kw_within, "expected 'within' after catchpad")) 6291 return true; 6292 6293 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 6294 return TokError("expected scope value for catchpad"); 6295 6296 if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 6297 return true; 6298 6299 SmallVector<Value *, 8> Args; 6300 if (ParseExceptionArgs(Args, PFS)) 6301 return true; 6302 6303 Inst = CatchPadInst::Create(CatchSwitch, Args); 6304 return false; 6305 } 6306 6307 /// ParseCleanupPad 6308 /// ::= 'cleanuppad' within Parent ParamList 6309 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 6310 Value *ParentPad = nullptr; 6311 6312 if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 6313 return true; 6314 6315 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6316 Lex.getKind() != lltok::LocalVarID) 6317 return TokError("expected scope value for cleanuppad"); 6318 6319 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6320 return true; 6321 6322 SmallVector<Value *, 8> Args; 6323 if (ParseExceptionArgs(Args, PFS)) 6324 return true; 6325 6326 Inst = CleanupPadInst::Create(ParentPad, Args); 6327 return false; 6328 } 6329 6330 //===----------------------------------------------------------------------===// 6331 // Unary Operators. 6332 //===----------------------------------------------------------------------===// 6333 6334 /// ParseUnaryOp 6335 /// ::= UnaryOp TypeAndValue ',' Value 6336 /// 6337 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6338 /// operand is allowed. 6339 bool LLParser::ParseUnaryOp(Instruction *&Inst, PerFunctionState &PFS, 6340 unsigned Opc, bool IsFP) { 6341 LocTy Loc; Value *LHS; 6342 if (ParseTypeAndValue(LHS, Loc, PFS)) 6343 return true; 6344 6345 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6346 : LHS->getType()->isIntOrIntVectorTy(); 6347 6348 if (!Valid) 6349 return Error(Loc, "invalid operand type for instruction"); 6350 6351 Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 6352 return false; 6353 } 6354 6355 /// ParseCallBr 6356 /// ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList 6357 /// OptionalAttrs OptionalOperandBundles 'to' TypeAndValue 6358 /// '[' LabelList ']' 6359 bool LLParser::ParseCallBr(Instruction *&Inst, PerFunctionState &PFS) { 6360 LocTy CallLoc = Lex.getLoc(); 6361 AttrBuilder RetAttrs, FnAttrs; 6362 std::vector<unsigned> FwdRefAttrGrps; 6363 LocTy NoBuiltinLoc; 6364 unsigned CC; 6365 Type *RetType = nullptr; 6366 LocTy RetTypeLoc; 6367 ValID CalleeID; 6368 SmallVector<ParamInfo, 16> ArgList; 6369 SmallVector<OperandBundleDef, 2> BundleList; 6370 6371 BasicBlock *DefaultDest; 6372 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 6373 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 6374 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || 6375 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6376 NoBuiltinLoc) || 6377 ParseOptionalOperandBundles(BundleList, PFS) || 6378 ParseToken(lltok::kw_to, "expected 'to' in callbr") || 6379 ParseTypeAndBasicBlock(DefaultDest, PFS) || 6380 ParseToken(lltok::lsquare, "expected '[' in callbr")) 6381 return true; 6382 6383 // Parse the destination list. 6384 SmallVector<BasicBlock *, 16> IndirectDests; 6385 6386 if (Lex.getKind() != lltok::rsquare) { 6387 BasicBlock *DestBB; 6388 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6389 return true; 6390 IndirectDests.push_back(DestBB); 6391 6392 while (EatIfPresent(lltok::comma)) { 6393 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6394 return true; 6395 IndirectDests.push_back(DestBB); 6396 } 6397 } 6398 6399 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 6400 return true; 6401 6402 // If RetType is a non-function pointer type, then this is the short syntax 6403 // for the call, which means that RetType is just the return type. Infer the 6404 // rest of the function argument types from the arguments that are present. 6405 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6406 if (!Ty) { 6407 // Pull out the types of all of the arguments... 6408 std::vector<Type *> ParamTypes; 6409 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6410 ParamTypes.push_back(ArgList[i].V->getType()); 6411 6412 if (!FunctionType::isValidReturnType(RetType)) 6413 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 6414 6415 Ty = FunctionType::get(RetType, ParamTypes, false); 6416 } 6417 6418 CalleeID.FTy = Ty; 6419 6420 // Look up the callee. 6421 Value *Callee; 6422 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS, 6423 /*IsCall=*/true)) 6424 return true; 6425 6426 if (isa<InlineAsm>(Callee) && !Ty->getReturnType()->isVoidTy()) 6427 return Error(RetTypeLoc, "asm-goto outputs not supported"); 6428 6429 // Set up the Attribute for the function. 6430 SmallVector<Value *, 8> Args; 6431 SmallVector<AttributeSet, 8> ArgAttrs; 6432 6433 // Loop through FunctionType's arguments and ensure they are specified 6434 // correctly. Also, gather any parameter attributes. 6435 FunctionType::param_iterator I = Ty->param_begin(); 6436 FunctionType::param_iterator E = Ty->param_end(); 6437 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6438 Type *ExpectedTy = nullptr; 6439 if (I != E) { 6440 ExpectedTy = *I++; 6441 } else if (!Ty->isVarArg()) { 6442 return Error(ArgList[i].Loc, "too many arguments specified"); 6443 } 6444 6445 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6446 return Error(ArgList[i].Loc, "argument is not of expected type '" + 6447 getTypeString(ExpectedTy) + "'"); 6448 Args.push_back(ArgList[i].V); 6449 ArgAttrs.push_back(ArgList[i].Attrs); 6450 } 6451 6452 if (I != E) 6453 return Error(CallLoc, "not enough parameters specified for call"); 6454 6455 if (FnAttrs.hasAlignmentAttr()) 6456 return Error(CallLoc, "callbr instructions may not have an alignment"); 6457 6458 // Finish off the Attribute and check them 6459 AttributeList PAL = 6460 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6461 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6462 6463 CallBrInst *CBI = 6464 CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args, 6465 BundleList); 6466 CBI->setCallingConv(CC); 6467 CBI->setAttributes(PAL); 6468 ForwardRefAttrGroups[CBI] = FwdRefAttrGrps; 6469 Inst = CBI; 6470 return false; 6471 } 6472 6473 //===----------------------------------------------------------------------===// 6474 // Binary Operators. 6475 //===----------------------------------------------------------------------===// 6476 6477 /// ParseArithmetic 6478 /// ::= ArithmeticOps TypeAndValue ',' Value 6479 /// 6480 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6481 /// operand is allowed. 6482 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 6483 unsigned Opc, bool IsFP) { 6484 LocTy Loc; Value *LHS, *RHS; 6485 if (ParseTypeAndValue(LHS, Loc, PFS) || 6486 ParseToken(lltok::comma, "expected ',' in arithmetic operation") || 6487 ParseValue(LHS->getType(), RHS, PFS)) 6488 return true; 6489 6490 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6491 : LHS->getType()->isIntOrIntVectorTy(); 6492 6493 if (!Valid) 6494 return Error(Loc, "invalid operand type for instruction"); 6495 6496 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6497 return false; 6498 } 6499 6500 /// ParseLogical 6501 /// ::= ArithmeticOps TypeAndValue ',' Value { 6502 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, 6503 unsigned Opc) { 6504 LocTy Loc; Value *LHS, *RHS; 6505 if (ParseTypeAndValue(LHS, Loc, PFS) || 6506 ParseToken(lltok::comma, "expected ',' in logical operation") || 6507 ParseValue(LHS->getType(), RHS, PFS)) 6508 return true; 6509 6510 if (!LHS->getType()->isIntOrIntVectorTy()) 6511 return Error(Loc,"instruction requires integer or integer vector operands"); 6512 6513 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6514 return false; 6515 } 6516 6517 /// ParseCompare 6518 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 6519 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 6520 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, 6521 unsigned Opc) { 6522 // Parse the integer/fp comparison predicate. 6523 LocTy Loc; 6524 unsigned Pred; 6525 Value *LHS, *RHS; 6526 if (ParseCmpPredicate(Pred, Opc) || 6527 ParseTypeAndValue(LHS, Loc, PFS) || 6528 ParseToken(lltok::comma, "expected ',' after compare value") || 6529 ParseValue(LHS->getType(), RHS, PFS)) 6530 return true; 6531 6532 if (Opc == Instruction::FCmp) { 6533 if (!LHS->getType()->isFPOrFPVectorTy()) 6534 return Error(Loc, "fcmp requires floating point operands"); 6535 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6536 } else { 6537 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 6538 if (!LHS->getType()->isIntOrIntVectorTy() && 6539 !LHS->getType()->isPtrOrPtrVectorTy()) 6540 return Error(Loc, "icmp requires integer operands"); 6541 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6542 } 6543 return false; 6544 } 6545 6546 //===----------------------------------------------------------------------===// 6547 // Other Instructions. 6548 //===----------------------------------------------------------------------===// 6549 6550 6551 /// ParseCast 6552 /// ::= CastOpc TypeAndValue 'to' Type 6553 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, 6554 unsigned Opc) { 6555 LocTy Loc; 6556 Value *Op; 6557 Type *DestTy = nullptr; 6558 if (ParseTypeAndValue(Op, Loc, PFS) || 6559 ParseToken(lltok::kw_to, "expected 'to' after cast value") || 6560 ParseType(DestTy)) 6561 return true; 6562 6563 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 6564 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 6565 return Error(Loc, "invalid cast opcode for cast from '" + 6566 getTypeString(Op->getType()) + "' to '" + 6567 getTypeString(DestTy) + "'"); 6568 } 6569 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 6570 return false; 6571 } 6572 6573 /// ParseSelect 6574 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6575 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { 6576 LocTy Loc; 6577 Value *Op0, *Op1, *Op2; 6578 if (ParseTypeAndValue(Op0, Loc, PFS) || 6579 ParseToken(lltok::comma, "expected ',' after select condition") || 6580 ParseTypeAndValue(Op1, PFS) || 6581 ParseToken(lltok::comma, "expected ',' after select value") || 6582 ParseTypeAndValue(Op2, PFS)) 6583 return true; 6584 6585 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 6586 return Error(Loc, Reason); 6587 6588 Inst = SelectInst::Create(Op0, Op1, Op2); 6589 return false; 6590 } 6591 6592 /// ParseVA_Arg 6593 /// ::= 'va_arg' TypeAndValue ',' Type 6594 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { 6595 Value *Op; 6596 Type *EltTy = nullptr; 6597 LocTy TypeLoc; 6598 if (ParseTypeAndValue(Op, PFS) || 6599 ParseToken(lltok::comma, "expected ',' after vaarg operand") || 6600 ParseType(EltTy, TypeLoc)) 6601 return true; 6602 6603 if (!EltTy->isFirstClassType()) 6604 return Error(TypeLoc, "va_arg requires operand with first class type"); 6605 6606 Inst = new VAArgInst(Op, EltTy); 6607 return false; 6608 } 6609 6610 /// ParseExtractElement 6611 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 6612 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 6613 LocTy Loc; 6614 Value *Op0, *Op1; 6615 if (ParseTypeAndValue(Op0, Loc, PFS) || 6616 ParseToken(lltok::comma, "expected ',' after extract value") || 6617 ParseTypeAndValue(Op1, PFS)) 6618 return true; 6619 6620 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 6621 return Error(Loc, "invalid extractelement operands"); 6622 6623 Inst = ExtractElementInst::Create(Op0, Op1); 6624 return false; 6625 } 6626 6627 /// ParseInsertElement 6628 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6629 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 6630 LocTy Loc; 6631 Value *Op0, *Op1, *Op2; 6632 if (ParseTypeAndValue(Op0, Loc, PFS) || 6633 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6634 ParseTypeAndValue(Op1, PFS) || 6635 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6636 ParseTypeAndValue(Op2, PFS)) 6637 return true; 6638 6639 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 6640 return Error(Loc, "invalid insertelement operands"); 6641 6642 Inst = InsertElementInst::Create(Op0, Op1, Op2); 6643 return false; 6644 } 6645 6646 /// ParseShuffleVector 6647 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6648 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 6649 LocTy Loc; 6650 Value *Op0, *Op1, *Op2; 6651 if (ParseTypeAndValue(Op0, Loc, PFS) || 6652 ParseToken(lltok::comma, "expected ',' after shuffle mask") || 6653 ParseTypeAndValue(Op1, PFS) || 6654 ParseToken(lltok::comma, "expected ',' after shuffle value") || 6655 ParseTypeAndValue(Op2, PFS)) 6656 return true; 6657 6658 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 6659 return Error(Loc, "invalid shufflevector operands"); 6660 6661 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 6662 return false; 6663 } 6664 6665 /// ParsePHI 6666 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 6667 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { 6668 Type *Ty = nullptr; LocTy TypeLoc; 6669 Value *Op0, *Op1; 6670 6671 if (ParseType(Ty, TypeLoc) || 6672 ParseToken(lltok::lsquare, "expected '[' in phi value list") || 6673 ParseValue(Ty, Op0, PFS) || 6674 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6675 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 6676 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 6677 return true; 6678 6679 bool AteExtraComma = false; 6680 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 6681 6682 while (true) { 6683 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 6684 6685 if (!EatIfPresent(lltok::comma)) 6686 break; 6687 6688 if (Lex.getKind() == lltok::MetadataVar) { 6689 AteExtraComma = true; 6690 break; 6691 } 6692 6693 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || 6694 ParseValue(Ty, Op0, PFS) || 6695 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6696 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 6697 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 6698 return true; 6699 } 6700 6701 if (!Ty->isFirstClassType()) 6702 return Error(TypeLoc, "phi node must have first class type"); 6703 6704 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 6705 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 6706 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 6707 Inst = PN; 6708 return AteExtraComma ? InstExtraComma : InstNormal; 6709 } 6710 6711 /// ParseLandingPad 6712 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 6713 /// Clause 6714 /// ::= 'catch' TypeAndValue 6715 /// ::= 'filter' 6716 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 6717 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 6718 Type *Ty = nullptr; LocTy TyLoc; 6719 6720 if (ParseType(Ty, TyLoc)) 6721 return true; 6722 6723 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 6724 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 6725 6726 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 6727 LandingPadInst::ClauseType CT; 6728 if (EatIfPresent(lltok::kw_catch)) 6729 CT = LandingPadInst::Catch; 6730 else if (EatIfPresent(lltok::kw_filter)) 6731 CT = LandingPadInst::Filter; 6732 else 6733 return TokError("expected 'catch' or 'filter' clause type"); 6734 6735 Value *V; 6736 LocTy VLoc; 6737 if (ParseTypeAndValue(V, VLoc, PFS)) 6738 return true; 6739 6740 // A 'catch' type expects a non-array constant. A filter clause expects an 6741 // array constant. 6742 if (CT == LandingPadInst::Catch) { 6743 if (isa<ArrayType>(V->getType())) 6744 Error(VLoc, "'catch' clause has an invalid type"); 6745 } else { 6746 if (!isa<ArrayType>(V->getType())) 6747 Error(VLoc, "'filter' clause has an invalid type"); 6748 } 6749 6750 Constant *CV = dyn_cast<Constant>(V); 6751 if (!CV) 6752 return Error(VLoc, "clause argument must be a constant"); 6753 LP->addClause(CV); 6754 } 6755 6756 Inst = LP.release(); 6757 return false; 6758 } 6759 6760 /// ParseFreeze 6761 /// ::= 'freeze' Type Value 6762 bool LLParser::ParseFreeze(Instruction *&Inst, PerFunctionState &PFS) { 6763 LocTy Loc; 6764 Value *Op; 6765 if (ParseTypeAndValue(Op, Loc, PFS)) 6766 return true; 6767 6768 Inst = new FreezeInst(Op); 6769 return false; 6770 } 6771 6772 /// ParseCall 6773 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 6774 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6775 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 6776 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6777 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 6778 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6779 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 6780 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6781 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, 6782 CallInst::TailCallKind TCK) { 6783 AttrBuilder RetAttrs, FnAttrs; 6784 std::vector<unsigned> FwdRefAttrGrps; 6785 LocTy BuiltinLoc; 6786 unsigned CallAddrSpace; 6787 unsigned CC; 6788 Type *RetType = nullptr; 6789 LocTy RetTypeLoc; 6790 ValID CalleeID; 6791 SmallVector<ParamInfo, 16> ArgList; 6792 SmallVector<OperandBundleDef, 2> BundleList; 6793 LocTy CallLoc = Lex.getLoc(); 6794 6795 if (TCK != CallInst::TCK_None && 6796 ParseToken(lltok::kw_call, 6797 "expected 'tail call', 'musttail call', or 'notail call'")) 6798 return true; 6799 6800 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6801 6802 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 6803 ParseOptionalProgramAddrSpace(CallAddrSpace) || 6804 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 6805 ParseValID(CalleeID) || 6806 ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 6807 PFS.getFunction().isVarArg()) || 6808 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 6809 ParseOptionalOperandBundles(BundleList, PFS)) 6810 return true; 6811 6812 // If RetType is a non-function pointer type, then this is the short syntax 6813 // for the call, which means that RetType is just the return type. Infer the 6814 // rest of the function argument types from the arguments that are present. 6815 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6816 if (!Ty) { 6817 // Pull out the types of all of the arguments... 6818 std::vector<Type*> ParamTypes; 6819 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6820 ParamTypes.push_back(ArgList[i].V->getType()); 6821 6822 if (!FunctionType::isValidReturnType(RetType)) 6823 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 6824 6825 Ty = FunctionType::get(RetType, ParamTypes, false); 6826 } 6827 6828 CalleeID.FTy = Ty; 6829 6830 // Look up the callee. 6831 Value *Callee; 6832 if (ConvertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee, 6833 &PFS, /*IsCall=*/true)) 6834 return true; 6835 6836 // Set up the Attribute for the function. 6837 SmallVector<AttributeSet, 8> Attrs; 6838 6839 SmallVector<Value*, 8> Args; 6840 6841 // Loop through FunctionType's arguments and ensure they are specified 6842 // correctly. Also, gather any parameter attributes. 6843 FunctionType::param_iterator I = Ty->param_begin(); 6844 FunctionType::param_iterator E = Ty->param_end(); 6845 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6846 Type *ExpectedTy = nullptr; 6847 if (I != E) { 6848 ExpectedTy = *I++; 6849 } else if (!Ty->isVarArg()) { 6850 return Error(ArgList[i].Loc, "too many arguments specified"); 6851 } 6852 6853 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6854 return Error(ArgList[i].Loc, "argument is not of expected type '" + 6855 getTypeString(ExpectedTy) + "'"); 6856 Args.push_back(ArgList[i].V); 6857 Attrs.push_back(ArgList[i].Attrs); 6858 } 6859 6860 if (I != E) 6861 return Error(CallLoc, "not enough parameters specified for call"); 6862 6863 if (FnAttrs.hasAlignmentAttr()) 6864 return Error(CallLoc, "call instructions may not have an alignment"); 6865 6866 // Finish off the Attribute and check them 6867 AttributeList PAL = 6868 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6869 AttributeSet::get(Context, RetAttrs), Attrs); 6870 6871 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 6872 CI->setTailCallKind(TCK); 6873 CI->setCallingConv(CC); 6874 if (FMF.any()) { 6875 if (!isa<FPMathOperator>(CI)) 6876 return Error(CallLoc, "fast-math-flags specified for call without " 6877 "floating-point scalar or vector return type"); 6878 CI->setFastMathFlags(FMF); 6879 } 6880 CI->setAttributes(PAL); 6881 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 6882 Inst = CI; 6883 return false; 6884 } 6885 6886 //===----------------------------------------------------------------------===// 6887 // Memory Instructions. 6888 //===----------------------------------------------------------------------===// 6889 6890 /// ParseAlloc 6891 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 6892 /// (',' 'align' i32)? (',', 'addrspace(n))? 6893 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 6894 Value *Size = nullptr; 6895 LocTy SizeLoc, TyLoc, ASLoc; 6896 MaybeAlign Alignment; 6897 unsigned AddrSpace = 0; 6898 Type *Ty = nullptr; 6899 6900 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 6901 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 6902 6903 if (ParseType(Ty, TyLoc)) return true; 6904 6905 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 6906 return Error(TyLoc, "invalid type for alloca"); 6907 6908 bool AteExtraComma = false; 6909 if (EatIfPresent(lltok::comma)) { 6910 if (Lex.getKind() == lltok::kw_align) { 6911 if (ParseOptionalAlignment(Alignment)) 6912 return true; 6913 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 6914 return true; 6915 } else if (Lex.getKind() == lltok::kw_addrspace) { 6916 ASLoc = Lex.getLoc(); 6917 if (ParseOptionalAddrSpace(AddrSpace)) 6918 return true; 6919 } else if (Lex.getKind() == lltok::MetadataVar) { 6920 AteExtraComma = true; 6921 } else { 6922 if (ParseTypeAndValue(Size, SizeLoc, PFS)) 6923 return true; 6924 if (EatIfPresent(lltok::comma)) { 6925 if (Lex.getKind() == lltok::kw_align) { 6926 if (ParseOptionalAlignment(Alignment)) 6927 return true; 6928 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 6929 return true; 6930 } else if (Lex.getKind() == lltok::kw_addrspace) { 6931 ASLoc = Lex.getLoc(); 6932 if (ParseOptionalAddrSpace(AddrSpace)) 6933 return true; 6934 } else if (Lex.getKind() == lltok::MetadataVar) { 6935 AteExtraComma = true; 6936 } 6937 } 6938 } 6939 } 6940 6941 if (Size && !Size->getType()->isIntegerTy()) 6942 return Error(SizeLoc, "element count must have integer type"); 6943 6944 AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, Alignment); 6945 AI->setUsedWithInAlloca(IsInAlloca); 6946 AI->setSwiftError(IsSwiftError); 6947 Inst = AI; 6948 return AteExtraComma ? InstExtraComma : InstNormal; 6949 } 6950 6951 /// ParseLoad 6952 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 6953 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 6954 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6955 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) { 6956 Value *Val; LocTy Loc; 6957 MaybeAlign Alignment; 6958 bool AteExtraComma = false; 6959 bool isAtomic = false; 6960 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6961 SyncScope::ID SSID = SyncScope::System; 6962 6963 if (Lex.getKind() == lltok::kw_atomic) { 6964 isAtomic = true; 6965 Lex.Lex(); 6966 } 6967 6968 bool isVolatile = false; 6969 if (Lex.getKind() == lltok::kw_volatile) { 6970 isVolatile = true; 6971 Lex.Lex(); 6972 } 6973 6974 Type *Ty; 6975 LocTy ExplicitTypeLoc = Lex.getLoc(); 6976 if (ParseType(Ty) || 6977 ParseToken(lltok::comma, "expected comma after load's type") || 6978 ParseTypeAndValue(Val, Loc, PFS) || 6979 ParseScopeAndOrdering(isAtomic, SSID, Ordering) || 6980 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6981 return true; 6982 6983 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 6984 return Error(Loc, "load operand must be a pointer to a first class type"); 6985 if (isAtomic && !Alignment) 6986 return Error(Loc, "atomic load must have explicit non-zero alignment"); 6987 if (Ordering == AtomicOrdering::Release || 6988 Ordering == AtomicOrdering::AcquireRelease) 6989 return Error(Loc, "atomic load cannot use Release ordering"); 6990 6991 if (Ty != cast<PointerType>(Val->getType())->getElementType()) 6992 return Error(ExplicitTypeLoc, 6993 "explicit pointee type doesn't match operand's pointee type"); 6994 6995 Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, SSID); 6996 return AteExtraComma ? InstExtraComma : InstNormal; 6997 } 6998 6999 /// ParseStore 7000 7001 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 7002 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 7003 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 7004 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) { 7005 Value *Val, *Ptr; LocTy Loc, PtrLoc; 7006 MaybeAlign Alignment; 7007 bool AteExtraComma = false; 7008 bool isAtomic = false; 7009 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7010 SyncScope::ID SSID = SyncScope::System; 7011 7012 if (Lex.getKind() == lltok::kw_atomic) { 7013 isAtomic = true; 7014 Lex.Lex(); 7015 } 7016 7017 bool isVolatile = false; 7018 if (Lex.getKind() == lltok::kw_volatile) { 7019 isVolatile = true; 7020 Lex.Lex(); 7021 } 7022 7023 if (ParseTypeAndValue(Val, Loc, PFS) || 7024 ParseToken(lltok::comma, "expected ',' after store operand") || 7025 ParseTypeAndValue(Ptr, PtrLoc, PFS) || 7026 ParseScopeAndOrdering(isAtomic, SSID, Ordering) || 7027 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 7028 return true; 7029 7030 if (!Ptr->getType()->isPointerTy()) 7031 return Error(PtrLoc, "store operand must be a pointer"); 7032 if (!Val->getType()->isFirstClassType()) 7033 return Error(Loc, "store operand must be a first class value"); 7034 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 7035 return Error(Loc, "stored value and pointer type do not match"); 7036 if (isAtomic && !Alignment) 7037 return Error(Loc, "atomic store must have explicit non-zero alignment"); 7038 if (Ordering == AtomicOrdering::Acquire || 7039 Ordering == AtomicOrdering::AcquireRelease) 7040 return Error(Loc, "atomic store cannot use Acquire ordering"); 7041 7042 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, SSID); 7043 return AteExtraComma ? InstExtraComma : InstNormal; 7044 } 7045 7046 /// ParseCmpXchg 7047 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 7048 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering 7049 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 7050 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 7051 bool AteExtraComma = false; 7052 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 7053 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 7054 SyncScope::ID SSID = SyncScope::System; 7055 bool isVolatile = false; 7056 bool isWeak = false; 7057 7058 if (EatIfPresent(lltok::kw_weak)) 7059 isWeak = true; 7060 7061 if (EatIfPresent(lltok::kw_volatile)) 7062 isVolatile = true; 7063 7064 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 7065 ParseToken(lltok::comma, "expected ',' after cmpxchg address") || 7066 ParseTypeAndValue(Cmp, CmpLoc, PFS) || 7067 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 7068 ParseTypeAndValue(New, NewLoc, PFS) || 7069 ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) || 7070 ParseOrdering(FailureOrdering)) 7071 return true; 7072 7073 if (SuccessOrdering == AtomicOrdering::Unordered || 7074 FailureOrdering == AtomicOrdering::Unordered) 7075 return TokError("cmpxchg cannot be unordered"); 7076 if (isStrongerThan(FailureOrdering, SuccessOrdering)) 7077 return TokError("cmpxchg failure argument shall be no stronger than the " 7078 "success argument"); 7079 if (FailureOrdering == AtomicOrdering::Release || 7080 FailureOrdering == AtomicOrdering::AcquireRelease) 7081 return TokError( 7082 "cmpxchg failure ordering cannot include release semantics"); 7083 if (!Ptr->getType()->isPointerTy()) 7084 return Error(PtrLoc, "cmpxchg operand must be a pointer"); 7085 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 7086 return Error(CmpLoc, "compare value and pointer type do not match"); 7087 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 7088 return Error(NewLoc, "new value and pointer type do not match"); 7089 if (!New->getType()->isFirstClassType()) 7090 return Error(NewLoc, "cmpxchg operand must be a first class value"); 7091 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 7092 Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID); 7093 CXI->setVolatile(isVolatile); 7094 CXI->setWeak(isWeak); 7095 Inst = CXI; 7096 return AteExtraComma ? InstExtraComma : InstNormal; 7097 } 7098 7099 /// ParseAtomicRMW 7100 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 7101 /// 'singlethread'? AtomicOrdering 7102 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 7103 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 7104 bool AteExtraComma = false; 7105 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7106 SyncScope::ID SSID = SyncScope::System; 7107 bool isVolatile = false; 7108 bool IsFP = false; 7109 AtomicRMWInst::BinOp Operation; 7110 7111 if (EatIfPresent(lltok::kw_volatile)) 7112 isVolatile = true; 7113 7114 switch (Lex.getKind()) { 7115 default: return TokError("expected binary operation in atomicrmw"); 7116 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 7117 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 7118 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 7119 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 7120 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 7121 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 7122 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 7123 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 7124 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 7125 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 7126 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 7127 case lltok::kw_fadd: 7128 Operation = AtomicRMWInst::FAdd; 7129 IsFP = true; 7130 break; 7131 case lltok::kw_fsub: 7132 Operation = AtomicRMWInst::FSub; 7133 IsFP = true; 7134 break; 7135 } 7136 Lex.Lex(); // Eat the operation. 7137 7138 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 7139 ParseToken(lltok::comma, "expected ',' after atomicrmw address") || 7140 ParseTypeAndValue(Val, ValLoc, PFS) || 7141 ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 7142 return true; 7143 7144 if (Ordering == AtomicOrdering::Unordered) 7145 return TokError("atomicrmw cannot be unordered"); 7146 if (!Ptr->getType()->isPointerTy()) 7147 return Error(PtrLoc, "atomicrmw operand must be a pointer"); 7148 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 7149 return Error(ValLoc, "atomicrmw value and pointer type do not match"); 7150 7151 if (Operation == AtomicRMWInst::Xchg) { 7152 if (!Val->getType()->isIntegerTy() && 7153 !Val->getType()->isFloatingPointTy()) { 7154 return Error(ValLoc, "atomicrmw " + 7155 AtomicRMWInst::getOperationName(Operation) + 7156 " operand must be an integer or floating point type"); 7157 } 7158 } else if (IsFP) { 7159 if (!Val->getType()->isFloatingPointTy()) { 7160 return Error(ValLoc, "atomicrmw " + 7161 AtomicRMWInst::getOperationName(Operation) + 7162 " operand must be a floating point type"); 7163 } 7164 } else { 7165 if (!Val->getType()->isIntegerTy()) { 7166 return Error(ValLoc, "atomicrmw " + 7167 AtomicRMWInst::getOperationName(Operation) + 7168 " operand must be an integer"); 7169 } 7170 } 7171 7172 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 7173 if (Size < 8 || (Size & (Size - 1))) 7174 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 7175 " integer"); 7176 7177 AtomicRMWInst *RMWI = 7178 new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 7179 RMWI->setVolatile(isVolatile); 7180 Inst = RMWI; 7181 return AteExtraComma ? InstExtraComma : InstNormal; 7182 } 7183 7184 /// ParseFence 7185 /// ::= 'fence' 'singlethread'? AtomicOrdering 7186 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) { 7187 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7188 SyncScope::ID SSID = SyncScope::System; 7189 if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 7190 return true; 7191 7192 if (Ordering == AtomicOrdering::Unordered) 7193 return TokError("fence cannot be unordered"); 7194 if (Ordering == AtomicOrdering::Monotonic) 7195 return TokError("fence cannot be monotonic"); 7196 7197 Inst = new FenceInst(Context, Ordering, SSID); 7198 return InstNormal; 7199 } 7200 7201 /// ParseGetElementPtr 7202 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 7203 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 7204 Value *Ptr = nullptr; 7205 Value *Val = nullptr; 7206 LocTy Loc, EltLoc; 7207 7208 bool InBounds = EatIfPresent(lltok::kw_inbounds); 7209 7210 Type *Ty = nullptr; 7211 LocTy ExplicitTypeLoc = Lex.getLoc(); 7212 if (ParseType(Ty) || 7213 ParseToken(lltok::comma, "expected comma after getelementptr's type") || 7214 ParseTypeAndValue(Ptr, Loc, PFS)) 7215 return true; 7216 7217 Type *BaseType = Ptr->getType(); 7218 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 7219 if (!BasePointerType) 7220 return Error(Loc, "base of getelementptr must be a pointer"); 7221 7222 if (Ty != BasePointerType->getElementType()) 7223 return Error(ExplicitTypeLoc, 7224 "explicit pointee type doesn't match operand's pointee type"); 7225 7226 SmallVector<Value*, 16> Indices; 7227 bool AteExtraComma = false; 7228 // GEP returns a vector of pointers if at least one of parameters is a vector. 7229 // All vector parameters should have the same vector width. 7230 ElementCount GEPWidth = BaseType->isVectorTy() ? 7231 BaseType->getVectorElementCount() : ElementCount(0, false); 7232 7233 while (EatIfPresent(lltok::comma)) { 7234 if (Lex.getKind() == lltok::MetadataVar) { 7235 AteExtraComma = true; 7236 break; 7237 } 7238 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; 7239 if (!Val->getType()->isIntOrIntVectorTy()) 7240 return Error(EltLoc, "getelementptr index must be an integer"); 7241 7242 if (Val->getType()->isVectorTy()) { 7243 ElementCount ValNumEl = Val->getType()->getVectorElementCount(); 7244 if (GEPWidth != ElementCount(0, false) && GEPWidth != ValNumEl) 7245 return Error(EltLoc, 7246 "getelementptr vector index has a wrong number of elements"); 7247 GEPWidth = ValNumEl; 7248 } 7249 Indices.push_back(Val); 7250 } 7251 7252 SmallPtrSet<Type*, 4> Visited; 7253 if (!Indices.empty() && !Ty->isSized(&Visited)) 7254 return Error(Loc, "base element of getelementptr must be sized"); 7255 7256 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 7257 return Error(Loc, "invalid getelementptr indices"); 7258 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 7259 if (InBounds) 7260 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 7261 return AteExtraComma ? InstExtraComma : InstNormal; 7262 } 7263 7264 /// ParseExtractValue 7265 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 7266 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 7267 Value *Val; LocTy Loc; 7268 SmallVector<unsigned, 4> Indices; 7269 bool AteExtraComma; 7270 if (ParseTypeAndValue(Val, Loc, PFS) || 7271 ParseIndexList(Indices, AteExtraComma)) 7272 return true; 7273 7274 if (!Val->getType()->isAggregateType()) 7275 return Error(Loc, "extractvalue operand must be aggregate type"); 7276 7277 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 7278 return Error(Loc, "invalid indices for extractvalue"); 7279 Inst = ExtractValueInst::Create(Val, Indices); 7280 return AteExtraComma ? InstExtraComma : InstNormal; 7281 } 7282 7283 /// ParseInsertValue 7284 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 7285 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 7286 Value *Val0, *Val1; LocTy Loc0, Loc1; 7287 SmallVector<unsigned, 4> Indices; 7288 bool AteExtraComma; 7289 if (ParseTypeAndValue(Val0, Loc0, PFS) || 7290 ParseToken(lltok::comma, "expected comma after insertvalue operand") || 7291 ParseTypeAndValue(Val1, Loc1, PFS) || 7292 ParseIndexList(Indices, AteExtraComma)) 7293 return true; 7294 7295 if (!Val0->getType()->isAggregateType()) 7296 return Error(Loc0, "insertvalue operand must be aggregate type"); 7297 7298 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 7299 if (!IndexedType) 7300 return Error(Loc0, "invalid indices for insertvalue"); 7301 if (IndexedType != Val1->getType()) 7302 return Error(Loc1, "insertvalue operand and field disagree in type: '" + 7303 getTypeString(Val1->getType()) + "' instead of '" + 7304 getTypeString(IndexedType) + "'"); 7305 Inst = InsertValueInst::Create(Val0, Val1, Indices); 7306 return AteExtraComma ? InstExtraComma : InstNormal; 7307 } 7308 7309 //===----------------------------------------------------------------------===// 7310 // Embedded metadata. 7311 //===----------------------------------------------------------------------===// 7312 7313 /// ParseMDNodeVector 7314 /// ::= { Element (',' Element)* } 7315 /// Element 7316 /// ::= 'null' | TypeAndValue 7317 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 7318 if (ParseToken(lltok::lbrace, "expected '{' here")) 7319 return true; 7320 7321 // Check for an empty list. 7322 if (EatIfPresent(lltok::rbrace)) 7323 return false; 7324 7325 do { 7326 // Null is a special case since it is typeless. 7327 if (EatIfPresent(lltok::kw_null)) { 7328 Elts.push_back(nullptr); 7329 continue; 7330 } 7331 7332 Metadata *MD; 7333 if (ParseMetadata(MD, nullptr)) 7334 return true; 7335 Elts.push_back(MD); 7336 } while (EatIfPresent(lltok::comma)); 7337 7338 return ParseToken(lltok::rbrace, "expected end of metadata node"); 7339 } 7340 7341 //===----------------------------------------------------------------------===// 7342 // Use-list order directives. 7343 //===----------------------------------------------------------------------===// 7344 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 7345 SMLoc Loc) { 7346 if (V->use_empty()) 7347 return Error(Loc, "value has no uses"); 7348 7349 unsigned NumUses = 0; 7350 SmallDenseMap<const Use *, unsigned, 16> Order; 7351 for (const Use &U : V->uses()) { 7352 if (++NumUses > Indexes.size()) 7353 break; 7354 Order[&U] = Indexes[NumUses - 1]; 7355 } 7356 if (NumUses < 2) 7357 return Error(Loc, "value only has one use"); 7358 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 7359 return Error(Loc, 7360 "wrong number of indexes, expected " + Twine(V->getNumUses())); 7361 7362 V->sortUseList([&](const Use &L, const Use &R) { 7363 return Order.lookup(&L) < Order.lookup(&R); 7364 }); 7365 return false; 7366 } 7367 7368 /// ParseUseListOrderIndexes 7369 /// ::= '{' uint32 (',' uint32)+ '}' 7370 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 7371 SMLoc Loc = Lex.getLoc(); 7372 if (ParseToken(lltok::lbrace, "expected '{' here")) 7373 return true; 7374 if (Lex.getKind() == lltok::rbrace) 7375 return Lex.Error("expected non-empty list of uselistorder indexes"); 7376 7377 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 7378 // indexes should be distinct numbers in the range [0, size-1], and should 7379 // not be in order. 7380 unsigned Offset = 0; 7381 unsigned Max = 0; 7382 bool IsOrdered = true; 7383 assert(Indexes.empty() && "Expected empty order vector"); 7384 do { 7385 unsigned Index; 7386 if (ParseUInt32(Index)) 7387 return true; 7388 7389 // Update consistency checks. 7390 Offset += Index - Indexes.size(); 7391 Max = std::max(Max, Index); 7392 IsOrdered &= Index == Indexes.size(); 7393 7394 Indexes.push_back(Index); 7395 } while (EatIfPresent(lltok::comma)); 7396 7397 if (ParseToken(lltok::rbrace, "expected '}' here")) 7398 return true; 7399 7400 if (Indexes.size() < 2) 7401 return Error(Loc, "expected >= 2 uselistorder indexes"); 7402 if (Offset != 0 || Max >= Indexes.size()) 7403 return Error(Loc, "expected distinct uselistorder indexes in range [0, size)"); 7404 if (IsOrdered) 7405 return Error(Loc, "expected uselistorder indexes to change the order"); 7406 7407 return false; 7408 } 7409 7410 /// ParseUseListOrder 7411 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 7412 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) { 7413 SMLoc Loc = Lex.getLoc(); 7414 if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 7415 return true; 7416 7417 Value *V; 7418 SmallVector<unsigned, 16> Indexes; 7419 if (ParseTypeAndValue(V, PFS) || 7420 ParseToken(lltok::comma, "expected comma in uselistorder directive") || 7421 ParseUseListOrderIndexes(Indexes)) 7422 return true; 7423 7424 return sortUseListOrder(V, Indexes, Loc); 7425 } 7426 7427 /// ParseUseListOrderBB 7428 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 7429 bool LLParser::ParseUseListOrderBB() { 7430 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 7431 SMLoc Loc = Lex.getLoc(); 7432 Lex.Lex(); 7433 7434 ValID Fn, Label; 7435 SmallVector<unsigned, 16> Indexes; 7436 if (ParseValID(Fn) || 7437 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7438 ParseValID(Label) || 7439 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7440 ParseUseListOrderIndexes(Indexes)) 7441 return true; 7442 7443 // Check the function. 7444 GlobalValue *GV; 7445 if (Fn.Kind == ValID::t_GlobalName) 7446 GV = M->getNamedValue(Fn.StrVal); 7447 else if (Fn.Kind == ValID::t_GlobalID) 7448 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 7449 else 7450 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 7451 if (!GV) 7452 return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb"); 7453 auto *F = dyn_cast<Function>(GV); 7454 if (!F) 7455 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 7456 if (F->isDeclaration()) 7457 return Error(Fn.Loc, "invalid declaration in uselistorder_bb"); 7458 7459 // Check the basic block. 7460 if (Label.Kind == ValID::t_LocalID) 7461 return Error(Label.Loc, "invalid numeric label in uselistorder_bb"); 7462 if (Label.Kind != ValID::t_LocalName) 7463 return Error(Label.Loc, "expected basic block name in uselistorder_bb"); 7464 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); 7465 if (!V) 7466 return Error(Label.Loc, "invalid basic block in uselistorder_bb"); 7467 if (!isa<BasicBlock>(V)) 7468 return Error(Label.Loc, "expected basic block in uselistorder_bb"); 7469 7470 return sortUseListOrder(V, Indexes, Loc); 7471 } 7472 7473 /// ModuleEntry 7474 /// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')' 7475 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')' 7476 bool LLParser::ParseModuleEntry(unsigned ID) { 7477 assert(Lex.getKind() == lltok::kw_module); 7478 Lex.Lex(); 7479 7480 std::string Path; 7481 if (ParseToken(lltok::colon, "expected ':' here") || 7482 ParseToken(lltok::lparen, "expected '(' here") || 7483 ParseToken(lltok::kw_path, "expected 'path' here") || 7484 ParseToken(lltok::colon, "expected ':' here") || 7485 ParseStringConstant(Path) || 7486 ParseToken(lltok::comma, "expected ',' here") || 7487 ParseToken(lltok::kw_hash, "expected 'hash' here") || 7488 ParseToken(lltok::colon, "expected ':' here") || 7489 ParseToken(lltok::lparen, "expected '(' here")) 7490 return true; 7491 7492 ModuleHash Hash; 7493 if (ParseUInt32(Hash[0]) || ParseToken(lltok::comma, "expected ',' here") || 7494 ParseUInt32(Hash[1]) || ParseToken(lltok::comma, "expected ',' here") || 7495 ParseUInt32(Hash[2]) || ParseToken(lltok::comma, "expected ',' here") || 7496 ParseUInt32(Hash[3]) || ParseToken(lltok::comma, "expected ',' here") || 7497 ParseUInt32(Hash[4])) 7498 return true; 7499 7500 if (ParseToken(lltok::rparen, "expected ')' here") || 7501 ParseToken(lltok::rparen, "expected ')' here")) 7502 return true; 7503 7504 auto ModuleEntry = Index->addModule(Path, ID, Hash); 7505 ModuleIdMap[ID] = ModuleEntry->first(); 7506 7507 return false; 7508 } 7509 7510 /// TypeIdEntry 7511 /// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')' 7512 bool LLParser::ParseTypeIdEntry(unsigned ID) { 7513 assert(Lex.getKind() == lltok::kw_typeid); 7514 Lex.Lex(); 7515 7516 std::string Name; 7517 if (ParseToken(lltok::colon, "expected ':' here") || 7518 ParseToken(lltok::lparen, "expected '(' here") || 7519 ParseToken(lltok::kw_name, "expected 'name' here") || 7520 ParseToken(lltok::colon, "expected ':' here") || 7521 ParseStringConstant(Name)) 7522 return true; 7523 7524 TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name); 7525 if (ParseToken(lltok::comma, "expected ',' here") || 7526 ParseTypeIdSummary(TIS) || ParseToken(lltok::rparen, "expected ')' here")) 7527 return true; 7528 7529 // Check if this ID was forward referenced, and if so, update the 7530 // corresponding GUIDs. 7531 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 7532 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 7533 for (auto TIDRef : FwdRefTIDs->second) { 7534 assert(!*TIDRef.first && 7535 "Forward referenced type id GUID expected to be 0"); 7536 *TIDRef.first = GlobalValue::getGUID(Name); 7537 } 7538 ForwardRefTypeIds.erase(FwdRefTIDs); 7539 } 7540 7541 return false; 7542 } 7543 7544 /// TypeIdSummary 7545 /// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')' 7546 bool LLParser::ParseTypeIdSummary(TypeIdSummary &TIS) { 7547 if (ParseToken(lltok::kw_summary, "expected 'summary' here") || 7548 ParseToken(lltok::colon, "expected ':' here") || 7549 ParseToken(lltok::lparen, "expected '(' here") || 7550 ParseTypeTestResolution(TIS.TTRes)) 7551 return true; 7552 7553 if (EatIfPresent(lltok::comma)) { 7554 // Expect optional wpdResolutions field 7555 if (ParseOptionalWpdResolutions(TIS.WPDRes)) 7556 return true; 7557 } 7558 7559 if (ParseToken(lltok::rparen, "expected ')' here")) 7560 return true; 7561 7562 return false; 7563 } 7564 7565 static ValueInfo EmptyVI = 7566 ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8); 7567 7568 /// TypeIdCompatibleVtableEntry 7569 /// ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ',' 7570 /// TypeIdCompatibleVtableInfo 7571 /// ')' 7572 bool LLParser::ParseTypeIdCompatibleVtableEntry(unsigned ID) { 7573 assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable); 7574 Lex.Lex(); 7575 7576 std::string Name; 7577 if (ParseToken(lltok::colon, "expected ':' here") || 7578 ParseToken(lltok::lparen, "expected '(' here") || 7579 ParseToken(lltok::kw_name, "expected 'name' here") || 7580 ParseToken(lltok::colon, "expected ':' here") || 7581 ParseStringConstant(Name)) 7582 return true; 7583 7584 TypeIdCompatibleVtableInfo &TI = 7585 Index->getOrInsertTypeIdCompatibleVtableSummary(Name); 7586 if (ParseToken(lltok::comma, "expected ',' here") || 7587 ParseToken(lltok::kw_summary, "expected 'summary' here") || 7588 ParseToken(lltok::colon, "expected ':' here") || 7589 ParseToken(lltok::lparen, "expected '(' here")) 7590 return true; 7591 7592 IdToIndexMapType IdToIndexMap; 7593 // Parse each call edge 7594 do { 7595 uint64_t Offset; 7596 if (ParseToken(lltok::lparen, "expected '(' here") || 7597 ParseToken(lltok::kw_offset, "expected 'offset' here") || 7598 ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) || 7599 ParseToken(lltok::comma, "expected ',' here")) 7600 return true; 7601 7602 LocTy Loc = Lex.getLoc(); 7603 unsigned GVId; 7604 ValueInfo VI; 7605 if (ParseGVReference(VI, GVId)) 7606 return true; 7607 7608 // Keep track of the TypeIdCompatibleVtableInfo array index needing a 7609 // forward reference. We will save the location of the ValueInfo needing an 7610 // update, but can only do so once the std::vector is finalized. 7611 if (VI == EmptyVI) 7612 IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc)); 7613 TI.push_back({Offset, VI}); 7614 7615 if (ParseToken(lltok::rparen, "expected ')' in call")) 7616 return true; 7617 } while (EatIfPresent(lltok::comma)); 7618 7619 // Now that the TI vector is finalized, it is safe to save the locations 7620 // of any forward GV references that need updating later. 7621 for (auto I : IdToIndexMap) { 7622 for (auto P : I.second) { 7623 assert(TI[P.first].VTableVI == EmptyVI && 7624 "Forward referenced ValueInfo expected to be empty"); 7625 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 7626 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 7627 FwdRef.first->second.push_back( 7628 std::make_pair(&TI[P.first].VTableVI, P.second)); 7629 } 7630 } 7631 7632 if (ParseToken(lltok::rparen, "expected ')' here") || 7633 ParseToken(lltok::rparen, "expected ')' here")) 7634 return true; 7635 7636 // Check if this ID was forward referenced, and if so, update the 7637 // corresponding GUIDs. 7638 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 7639 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 7640 for (auto TIDRef : FwdRefTIDs->second) { 7641 assert(!*TIDRef.first && 7642 "Forward referenced type id GUID expected to be 0"); 7643 *TIDRef.first = GlobalValue::getGUID(Name); 7644 } 7645 ForwardRefTypeIds.erase(FwdRefTIDs); 7646 } 7647 7648 return false; 7649 } 7650 7651 /// TypeTestResolution 7652 /// ::= 'typeTestRes' ':' '(' 'kind' ':' 7653 /// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ',' 7654 /// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]? 7655 /// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]? 7656 /// [',' 'inlinesBits' ':' UInt64]? ')' 7657 bool LLParser::ParseTypeTestResolution(TypeTestResolution &TTRes) { 7658 if (ParseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") || 7659 ParseToken(lltok::colon, "expected ':' here") || 7660 ParseToken(lltok::lparen, "expected '(' here") || 7661 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7662 ParseToken(lltok::colon, "expected ':' here")) 7663 return true; 7664 7665 switch (Lex.getKind()) { 7666 case lltok::kw_unknown: 7667 TTRes.TheKind = TypeTestResolution::Unknown; 7668 break; 7669 case lltok::kw_unsat: 7670 TTRes.TheKind = TypeTestResolution::Unsat; 7671 break; 7672 case lltok::kw_byteArray: 7673 TTRes.TheKind = TypeTestResolution::ByteArray; 7674 break; 7675 case lltok::kw_inline: 7676 TTRes.TheKind = TypeTestResolution::Inline; 7677 break; 7678 case lltok::kw_single: 7679 TTRes.TheKind = TypeTestResolution::Single; 7680 break; 7681 case lltok::kw_allOnes: 7682 TTRes.TheKind = TypeTestResolution::AllOnes; 7683 break; 7684 default: 7685 return Error(Lex.getLoc(), "unexpected TypeTestResolution kind"); 7686 } 7687 Lex.Lex(); 7688 7689 if (ParseToken(lltok::comma, "expected ',' here") || 7690 ParseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") || 7691 ParseToken(lltok::colon, "expected ':' here") || 7692 ParseUInt32(TTRes.SizeM1BitWidth)) 7693 return true; 7694 7695 // Parse optional fields 7696 while (EatIfPresent(lltok::comma)) { 7697 switch (Lex.getKind()) { 7698 case lltok::kw_alignLog2: 7699 Lex.Lex(); 7700 if (ParseToken(lltok::colon, "expected ':'") || 7701 ParseUInt64(TTRes.AlignLog2)) 7702 return true; 7703 break; 7704 case lltok::kw_sizeM1: 7705 Lex.Lex(); 7706 if (ParseToken(lltok::colon, "expected ':'") || ParseUInt64(TTRes.SizeM1)) 7707 return true; 7708 break; 7709 case lltok::kw_bitMask: { 7710 unsigned Val; 7711 Lex.Lex(); 7712 if (ParseToken(lltok::colon, "expected ':'") || ParseUInt32(Val)) 7713 return true; 7714 assert(Val <= 0xff); 7715 TTRes.BitMask = (uint8_t)Val; 7716 break; 7717 } 7718 case lltok::kw_inlineBits: 7719 Lex.Lex(); 7720 if (ParseToken(lltok::colon, "expected ':'") || 7721 ParseUInt64(TTRes.InlineBits)) 7722 return true; 7723 break; 7724 default: 7725 return Error(Lex.getLoc(), "expected optional TypeTestResolution field"); 7726 } 7727 } 7728 7729 if (ParseToken(lltok::rparen, "expected ')' here")) 7730 return true; 7731 7732 return false; 7733 } 7734 7735 /// OptionalWpdResolutions 7736 /// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')' 7737 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')' 7738 bool LLParser::ParseOptionalWpdResolutions( 7739 std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) { 7740 if (ParseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") || 7741 ParseToken(lltok::colon, "expected ':' here") || 7742 ParseToken(lltok::lparen, "expected '(' here")) 7743 return true; 7744 7745 do { 7746 uint64_t Offset; 7747 WholeProgramDevirtResolution WPDRes; 7748 if (ParseToken(lltok::lparen, "expected '(' here") || 7749 ParseToken(lltok::kw_offset, "expected 'offset' here") || 7750 ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) || 7751 ParseToken(lltok::comma, "expected ',' here") || ParseWpdRes(WPDRes) || 7752 ParseToken(lltok::rparen, "expected ')' here")) 7753 return true; 7754 WPDResMap[Offset] = WPDRes; 7755 } while (EatIfPresent(lltok::comma)); 7756 7757 if (ParseToken(lltok::rparen, "expected ')' here")) 7758 return true; 7759 7760 return false; 7761 } 7762 7763 /// WpdRes 7764 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir' 7765 /// [',' OptionalResByArg]? ')' 7766 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl' 7767 /// ',' 'singleImplName' ':' STRINGCONSTANT ',' 7768 /// [',' OptionalResByArg]? ')' 7769 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel' 7770 /// [',' OptionalResByArg]? ')' 7771 bool LLParser::ParseWpdRes(WholeProgramDevirtResolution &WPDRes) { 7772 if (ParseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") || 7773 ParseToken(lltok::colon, "expected ':' here") || 7774 ParseToken(lltok::lparen, "expected '(' here") || 7775 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7776 ParseToken(lltok::colon, "expected ':' here")) 7777 return true; 7778 7779 switch (Lex.getKind()) { 7780 case lltok::kw_indir: 7781 WPDRes.TheKind = WholeProgramDevirtResolution::Indir; 7782 break; 7783 case lltok::kw_singleImpl: 7784 WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl; 7785 break; 7786 case lltok::kw_branchFunnel: 7787 WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel; 7788 break; 7789 default: 7790 return Error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind"); 7791 } 7792 Lex.Lex(); 7793 7794 // Parse optional fields 7795 while (EatIfPresent(lltok::comma)) { 7796 switch (Lex.getKind()) { 7797 case lltok::kw_singleImplName: 7798 Lex.Lex(); 7799 if (ParseToken(lltok::colon, "expected ':' here") || 7800 ParseStringConstant(WPDRes.SingleImplName)) 7801 return true; 7802 break; 7803 case lltok::kw_resByArg: 7804 if (ParseOptionalResByArg(WPDRes.ResByArg)) 7805 return true; 7806 break; 7807 default: 7808 return Error(Lex.getLoc(), 7809 "expected optional WholeProgramDevirtResolution field"); 7810 } 7811 } 7812 7813 if (ParseToken(lltok::rparen, "expected ')' here")) 7814 return true; 7815 7816 return false; 7817 } 7818 7819 /// OptionalResByArg 7820 /// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')' 7821 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':' 7822 /// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' | 7823 /// 'virtualConstProp' ) 7824 /// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]? 7825 /// [',' 'bit' ':' UInt32]? ')' 7826 bool LLParser::ParseOptionalResByArg( 7827 std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg> 7828 &ResByArg) { 7829 if (ParseToken(lltok::kw_resByArg, "expected 'resByArg' here") || 7830 ParseToken(lltok::colon, "expected ':' here") || 7831 ParseToken(lltok::lparen, "expected '(' here")) 7832 return true; 7833 7834 do { 7835 std::vector<uint64_t> Args; 7836 if (ParseArgs(Args) || ParseToken(lltok::comma, "expected ',' here") || 7837 ParseToken(lltok::kw_byArg, "expected 'byArg here") || 7838 ParseToken(lltok::colon, "expected ':' here") || 7839 ParseToken(lltok::lparen, "expected '(' here") || 7840 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7841 ParseToken(lltok::colon, "expected ':' here")) 7842 return true; 7843 7844 WholeProgramDevirtResolution::ByArg ByArg; 7845 switch (Lex.getKind()) { 7846 case lltok::kw_indir: 7847 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir; 7848 break; 7849 case lltok::kw_uniformRetVal: 7850 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 7851 break; 7852 case lltok::kw_uniqueRetVal: 7853 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 7854 break; 7855 case lltok::kw_virtualConstProp: 7856 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 7857 break; 7858 default: 7859 return Error(Lex.getLoc(), 7860 "unexpected WholeProgramDevirtResolution::ByArg kind"); 7861 } 7862 Lex.Lex(); 7863 7864 // Parse optional fields 7865 while (EatIfPresent(lltok::comma)) { 7866 switch (Lex.getKind()) { 7867 case lltok::kw_info: 7868 Lex.Lex(); 7869 if (ParseToken(lltok::colon, "expected ':' here") || 7870 ParseUInt64(ByArg.Info)) 7871 return true; 7872 break; 7873 case lltok::kw_byte: 7874 Lex.Lex(); 7875 if (ParseToken(lltok::colon, "expected ':' here") || 7876 ParseUInt32(ByArg.Byte)) 7877 return true; 7878 break; 7879 case lltok::kw_bit: 7880 Lex.Lex(); 7881 if (ParseToken(lltok::colon, "expected ':' here") || 7882 ParseUInt32(ByArg.Bit)) 7883 return true; 7884 break; 7885 default: 7886 return Error(Lex.getLoc(), 7887 "expected optional whole program devirt field"); 7888 } 7889 } 7890 7891 if (ParseToken(lltok::rparen, "expected ')' here")) 7892 return true; 7893 7894 ResByArg[Args] = ByArg; 7895 } while (EatIfPresent(lltok::comma)); 7896 7897 if (ParseToken(lltok::rparen, "expected ')' here")) 7898 return true; 7899 7900 return false; 7901 } 7902 7903 /// OptionalResByArg 7904 /// ::= 'args' ':' '(' UInt64[, UInt64]* ')' 7905 bool LLParser::ParseArgs(std::vector<uint64_t> &Args) { 7906 if (ParseToken(lltok::kw_args, "expected 'args' here") || 7907 ParseToken(lltok::colon, "expected ':' here") || 7908 ParseToken(lltok::lparen, "expected '(' here")) 7909 return true; 7910 7911 do { 7912 uint64_t Val; 7913 if (ParseUInt64(Val)) 7914 return true; 7915 Args.push_back(Val); 7916 } while (EatIfPresent(lltok::comma)); 7917 7918 if (ParseToken(lltok::rparen, "expected ')' here")) 7919 return true; 7920 7921 return false; 7922 } 7923 7924 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8; 7925 7926 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) { 7927 bool ReadOnly = Fwd->isReadOnly(); 7928 bool WriteOnly = Fwd->isWriteOnly(); 7929 assert(!(ReadOnly && WriteOnly)); 7930 *Fwd = Resolved; 7931 if (ReadOnly) 7932 Fwd->setReadOnly(); 7933 if (WriteOnly) 7934 Fwd->setWriteOnly(); 7935 } 7936 7937 /// Stores the given Name/GUID and associated summary into the Index. 7938 /// Also updates any forward references to the associated entry ID. 7939 void LLParser::AddGlobalValueToIndex( 7940 std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage, 7941 unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) { 7942 // First create the ValueInfo utilizing the Name or GUID. 7943 ValueInfo VI; 7944 if (GUID != 0) { 7945 assert(Name.empty()); 7946 VI = Index->getOrInsertValueInfo(GUID); 7947 } else { 7948 assert(!Name.empty()); 7949 if (M) { 7950 auto *GV = M->getNamedValue(Name); 7951 assert(GV); 7952 VI = Index->getOrInsertValueInfo(GV); 7953 } else { 7954 assert( 7955 (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) && 7956 "Need a source_filename to compute GUID for local"); 7957 GUID = GlobalValue::getGUID( 7958 GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName)); 7959 VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name)); 7960 } 7961 } 7962 7963 // Resolve forward references from calls/refs 7964 auto FwdRefVIs = ForwardRefValueInfos.find(ID); 7965 if (FwdRefVIs != ForwardRefValueInfos.end()) { 7966 for (auto VIRef : FwdRefVIs->second) { 7967 assert(VIRef.first->getRef() == FwdVIRef && 7968 "Forward referenced ValueInfo expected to be empty"); 7969 resolveFwdRef(VIRef.first, VI); 7970 } 7971 ForwardRefValueInfos.erase(FwdRefVIs); 7972 } 7973 7974 // Resolve forward references from aliases 7975 auto FwdRefAliasees = ForwardRefAliasees.find(ID); 7976 if (FwdRefAliasees != ForwardRefAliasees.end()) { 7977 for (auto AliaseeRef : FwdRefAliasees->second) { 7978 assert(!AliaseeRef.first->hasAliasee() && 7979 "Forward referencing alias already has aliasee"); 7980 assert(Summary && "Aliasee must be a definition"); 7981 AliaseeRef.first->setAliasee(VI, Summary.get()); 7982 } 7983 ForwardRefAliasees.erase(FwdRefAliasees); 7984 } 7985 7986 // Add the summary if one was provided. 7987 if (Summary) 7988 Index->addGlobalValueSummary(VI, std::move(Summary)); 7989 7990 // Save the associated ValueInfo for use in later references by ID. 7991 if (ID == NumberedValueInfos.size()) 7992 NumberedValueInfos.push_back(VI); 7993 else { 7994 // Handle non-continuous numbers (to make test simplification easier). 7995 if (ID > NumberedValueInfos.size()) 7996 NumberedValueInfos.resize(ID + 1); 7997 NumberedValueInfos[ID] = VI; 7998 } 7999 } 8000 8001 /// ParseSummaryIndexFlags 8002 /// ::= 'flags' ':' UInt64 8003 bool LLParser::ParseSummaryIndexFlags() { 8004 assert(Lex.getKind() == lltok::kw_flags); 8005 Lex.Lex(); 8006 8007 if (ParseToken(lltok::colon, "expected ':' here")) 8008 return true; 8009 uint64_t Flags; 8010 if (ParseUInt64(Flags)) 8011 return true; 8012 Index->setFlags(Flags); 8013 return false; 8014 } 8015 8016 /// ParseGVEntry 8017 /// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64) 8018 /// [',' 'summaries' ':' Summary[',' Summary]* ]? ')' 8019 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')' 8020 bool LLParser::ParseGVEntry(unsigned ID) { 8021 assert(Lex.getKind() == lltok::kw_gv); 8022 Lex.Lex(); 8023 8024 if (ParseToken(lltok::colon, "expected ':' here") || 8025 ParseToken(lltok::lparen, "expected '(' here")) 8026 return true; 8027 8028 std::string Name; 8029 GlobalValue::GUID GUID = 0; 8030 switch (Lex.getKind()) { 8031 case lltok::kw_name: 8032 Lex.Lex(); 8033 if (ParseToken(lltok::colon, "expected ':' here") || 8034 ParseStringConstant(Name)) 8035 return true; 8036 // Can't create GUID/ValueInfo until we have the linkage. 8037 break; 8038 case lltok::kw_guid: 8039 Lex.Lex(); 8040 if (ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(GUID)) 8041 return true; 8042 break; 8043 default: 8044 return Error(Lex.getLoc(), "expected name or guid tag"); 8045 } 8046 8047 if (!EatIfPresent(lltok::comma)) { 8048 // No summaries. Wrap up. 8049 if (ParseToken(lltok::rparen, "expected ')' here")) 8050 return true; 8051 // This was created for a call to an external or indirect target. 8052 // A GUID with no summary came from a VALUE_GUID record, dummy GUID 8053 // created for indirect calls with VP. A Name with no GUID came from 8054 // an external definition. We pass ExternalLinkage since that is only 8055 // used when the GUID must be computed from Name, and in that case 8056 // the symbol must have external linkage. 8057 AddGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID, 8058 nullptr); 8059 return false; 8060 } 8061 8062 // Have a list of summaries 8063 if (ParseToken(lltok::kw_summaries, "expected 'summaries' here") || 8064 ParseToken(lltok::colon, "expected ':' here") || 8065 ParseToken(lltok::lparen, "expected '(' here")) 8066 return true; 8067 do { 8068 switch (Lex.getKind()) { 8069 case lltok::kw_function: 8070 if (ParseFunctionSummary(Name, GUID, ID)) 8071 return true; 8072 break; 8073 case lltok::kw_variable: 8074 if (ParseVariableSummary(Name, GUID, ID)) 8075 return true; 8076 break; 8077 case lltok::kw_alias: 8078 if (ParseAliasSummary(Name, GUID, ID)) 8079 return true; 8080 break; 8081 default: 8082 return Error(Lex.getLoc(), "expected summary type"); 8083 } 8084 } while (EatIfPresent(lltok::comma)); 8085 8086 if (ParseToken(lltok::rparen, "expected ')' here") || 8087 ParseToken(lltok::rparen, "expected ')' here")) 8088 return true; 8089 8090 return false; 8091 } 8092 8093 /// FunctionSummary 8094 /// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8095 /// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]? 8096 /// [',' OptionalTypeIdInfo]? [',' OptionalRefs]? ')' 8097 bool LLParser::ParseFunctionSummary(std::string Name, GlobalValue::GUID GUID, 8098 unsigned ID) { 8099 assert(Lex.getKind() == lltok::kw_function); 8100 Lex.Lex(); 8101 8102 StringRef ModulePath; 8103 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8104 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 8105 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8106 unsigned InstCount; 8107 std::vector<FunctionSummary::EdgeTy> Calls; 8108 FunctionSummary::TypeIdInfo TypeIdInfo; 8109 std::vector<ValueInfo> Refs; 8110 // Default is all-zeros (conservative values). 8111 FunctionSummary::FFlags FFlags = {}; 8112 if (ParseToken(lltok::colon, "expected ':' here") || 8113 ParseToken(lltok::lparen, "expected '(' here") || 8114 ParseModuleReference(ModulePath) || 8115 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 8116 ParseToken(lltok::comma, "expected ',' here") || 8117 ParseToken(lltok::kw_insts, "expected 'insts' here") || 8118 ParseToken(lltok::colon, "expected ':' here") || ParseUInt32(InstCount)) 8119 return true; 8120 8121 // Parse optional fields 8122 while (EatIfPresent(lltok::comma)) { 8123 switch (Lex.getKind()) { 8124 case lltok::kw_funcFlags: 8125 if (ParseOptionalFFlags(FFlags)) 8126 return true; 8127 break; 8128 case lltok::kw_calls: 8129 if (ParseOptionalCalls(Calls)) 8130 return true; 8131 break; 8132 case lltok::kw_typeIdInfo: 8133 if (ParseOptionalTypeIdInfo(TypeIdInfo)) 8134 return true; 8135 break; 8136 case lltok::kw_refs: 8137 if (ParseOptionalRefs(Refs)) 8138 return true; 8139 break; 8140 default: 8141 return Error(Lex.getLoc(), "expected optional function summary field"); 8142 } 8143 } 8144 8145 if (ParseToken(lltok::rparen, "expected ')' here")) 8146 return true; 8147 8148 auto FS = std::make_unique<FunctionSummary>( 8149 GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs), 8150 std::move(Calls), std::move(TypeIdInfo.TypeTests), 8151 std::move(TypeIdInfo.TypeTestAssumeVCalls), 8152 std::move(TypeIdInfo.TypeCheckedLoadVCalls), 8153 std::move(TypeIdInfo.TypeTestAssumeConstVCalls), 8154 std::move(TypeIdInfo.TypeCheckedLoadConstVCalls)); 8155 8156 FS->setModulePath(ModulePath); 8157 8158 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8159 ID, std::move(FS)); 8160 8161 return false; 8162 } 8163 8164 /// VariableSummary 8165 /// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8166 /// [',' OptionalRefs]? ')' 8167 bool LLParser::ParseVariableSummary(std::string Name, GlobalValue::GUID GUID, 8168 unsigned ID) { 8169 assert(Lex.getKind() == lltok::kw_variable); 8170 Lex.Lex(); 8171 8172 StringRef ModulePath; 8173 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8174 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 8175 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8176 GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false, 8177 /* WriteOnly */ false, 8178 /* Constant */ false, 8179 GlobalObject::VCallVisibilityPublic); 8180 std::vector<ValueInfo> Refs; 8181 VTableFuncList VTableFuncs; 8182 if (ParseToken(lltok::colon, "expected ':' here") || 8183 ParseToken(lltok::lparen, "expected '(' here") || 8184 ParseModuleReference(ModulePath) || 8185 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 8186 ParseToken(lltok::comma, "expected ',' here") || 8187 ParseGVarFlags(GVarFlags)) 8188 return true; 8189 8190 // Parse optional fields 8191 while (EatIfPresent(lltok::comma)) { 8192 switch (Lex.getKind()) { 8193 case lltok::kw_vTableFuncs: 8194 if (ParseOptionalVTableFuncs(VTableFuncs)) 8195 return true; 8196 break; 8197 case lltok::kw_refs: 8198 if (ParseOptionalRefs(Refs)) 8199 return true; 8200 break; 8201 default: 8202 return Error(Lex.getLoc(), "expected optional variable summary field"); 8203 } 8204 } 8205 8206 if (ParseToken(lltok::rparen, "expected ')' here")) 8207 return true; 8208 8209 auto GS = 8210 std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs)); 8211 8212 GS->setModulePath(ModulePath); 8213 GS->setVTableFuncs(std::move(VTableFuncs)); 8214 8215 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8216 ID, std::move(GS)); 8217 8218 return false; 8219 } 8220 8221 /// AliasSummary 8222 /// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ',' 8223 /// 'aliasee' ':' GVReference ')' 8224 bool LLParser::ParseAliasSummary(std::string Name, GlobalValue::GUID GUID, 8225 unsigned ID) { 8226 assert(Lex.getKind() == lltok::kw_alias); 8227 LocTy Loc = Lex.getLoc(); 8228 Lex.Lex(); 8229 8230 StringRef ModulePath; 8231 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8232 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 8233 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8234 if (ParseToken(lltok::colon, "expected ':' here") || 8235 ParseToken(lltok::lparen, "expected '(' here") || 8236 ParseModuleReference(ModulePath) || 8237 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 8238 ParseToken(lltok::comma, "expected ',' here") || 8239 ParseToken(lltok::kw_aliasee, "expected 'aliasee' here") || 8240 ParseToken(lltok::colon, "expected ':' here")) 8241 return true; 8242 8243 ValueInfo AliaseeVI; 8244 unsigned GVId; 8245 if (ParseGVReference(AliaseeVI, GVId)) 8246 return true; 8247 8248 if (ParseToken(lltok::rparen, "expected ')' here")) 8249 return true; 8250 8251 auto AS = std::make_unique<AliasSummary>(GVFlags); 8252 8253 AS->setModulePath(ModulePath); 8254 8255 // Record forward reference if the aliasee is not parsed yet. 8256 if (AliaseeVI.getRef() == FwdVIRef) { 8257 auto FwdRef = ForwardRefAliasees.insert( 8258 std::make_pair(GVId, std::vector<std::pair<AliasSummary *, LocTy>>())); 8259 FwdRef.first->second.push_back(std::make_pair(AS.get(), Loc)); 8260 } else { 8261 auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath); 8262 assert(Summary && "Aliasee must be a definition"); 8263 AS->setAliasee(AliaseeVI, Summary); 8264 } 8265 8266 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8267 ID, std::move(AS)); 8268 8269 return false; 8270 } 8271 8272 /// Flag 8273 /// ::= [0|1] 8274 bool LLParser::ParseFlag(unsigned &Val) { 8275 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 8276 return TokError("expected integer"); 8277 Val = (unsigned)Lex.getAPSIntVal().getBoolValue(); 8278 Lex.Lex(); 8279 return false; 8280 } 8281 8282 /// OptionalFFlags 8283 /// := 'funcFlags' ':' '(' ['readNone' ':' Flag]? 8284 /// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]? 8285 /// [',' 'returnDoesNotAlias' ':' Flag]? ')' 8286 /// [',' 'noInline' ':' Flag]? ')' 8287 /// [',' 'alwaysInline' ':' Flag]? ')' 8288 8289 bool LLParser::ParseOptionalFFlags(FunctionSummary::FFlags &FFlags) { 8290 assert(Lex.getKind() == lltok::kw_funcFlags); 8291 Lex.Lex(); 8292 8293 if (ParseToken(lltok::colon, "expected ':' in funcFlags") | 8294 ParseToken(lltok::lparen, "expected '(' in funcFlags")) 8295 return true; 8296 8297 do { 8298 unsigned Val = 0; 8299 switch (Lex.getKind()) { 8300 case lltok::kw_readNone: 8301 Lex.Lex(); 8302 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8303 return true; 8304 FFlags.ReadNone = Val; 8305 break; 8306 case lltok::kw_readOnly: 8307 Lex.Lex(); 8308 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8309 return true; 8310 FFlags.ReadOnly = Val; 8311 break; 8312 case lltok::kw_noRecurse: 8313 Lex.Lex(); 8314 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8315 return true; 8316 FFlags.NoRecurse = Val; 8317 break; 8318 case lltok::kw_returnDoesNotAlias: 8319 Lex.Lex(); 8320 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8321 return true; 8322 FFlags.ReturnDoesNotAlias = Val; 8323 break; 8324 case lltok::kw_noInline: 8325 Lex.Lex(); 8326 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8327 return true; 8328 FFlags.NoInline = Val; 8329 break; 8330 case lltok::kw_alwaysInline: 8331 Lex.Lex(); 8332 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8333 return true; 8334 FFlags.AlwaysInline = Val; 8335 break; 8336 default: 8337 return Error(Lex.getLoc(), "expected function flag type"); 8338 } 8339 } while (EatIfPresent(lltok::comma)); 8340 8341 if (ParseToken(lltok::rparen, "expected ')' in funcFlags")) 8342 return true; 8343 8344 return false; 8345 } 8346 8347 /// OptionalCalls 8348 /// := 'calls' ':' '(' Call [',' Call]* ')' 8349 /// Call ::= '(' 'callee' ':' GVReference 8350 /// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')' 8351 bool LLParser::ParseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) { 8352 assert(Lex.getKind() == lltok::kw_calls); 8353 Lex.Lex(); 8354 8355 if (ParseToken(lltok::colon, "expected ':' in calls") | 8356 ParseToken(lltok::lparen, "expected '(' in calls")) 8357 return true; 8358 8359 IdToIndexMapType IdToIndexMap; 8360 // Parse each call edge 8361 do { 8362 ValueInfo VI; 8363 if (ParseToken(lltok::lparen, "expected '(' in call") || 8364 ParseToken(lltok::kw_callee, "expected 'callee' in call") || 8365 ParseToken(lltok::colon, "expected ':'")) 8366 return true; 8367 8368 LocTy Loc = Lex.getLoc(); 8369 unsigned GVId; 8370 if (ParseGVReference(VI, GVId)) 8371 return true; 8372 8373 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 8374 unsigned RelBF = 0; 8375 if (EatIfPresent(lltok::comma)) { 8376 // Expect either hotness or relbf 8377 if (EatIfPresent(lltok::kw_hotness)) { 8378 if (ParseToken(lltok::colon, "expected ':'") || ParseHotness(Hotness)) 8379 return true; 8380 } else { 8381 if (ParseToken(lltok::kw_relbf, "expected relbf") || 8382 ParseToken(lltok::colon, "expected ':'") || ParseUInt32(RelBF)) 8383 return true; 8384 } 8385 } 8386 // Keep track of the Call array index needing a forward reference. 8387 // We will save the location of the ValueInfo needing an update, but 8388 // can only do so once the std::vector is finalized. 8389 if (VI.getRef() == FwdVIRef) 8390 IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc)); 8391 Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)}); 8392 8393 if (ParseToken(lltok::rparen, "expected ')' in call")) 8394 return true; 8395 } while (EatIfPresent(lltok::comma)); 8396 8397 // Now that the Calls vector is finalized, it is safe to save the locations 8398 // of any forward GV references that need updating later. 8399 for (auto I : IdToIndexMap) { 8400 for (auto P : I.second) { 8401 assert(Calls[P.first].first.getRef() == FwdVIRef && 8402 "Forward referenced ValueInfo expected to be empty"); 8403 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 8404 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 8405 FwdRef.first->second.push_back( 8406 std::make_pair(&Calls[P.first].first, P.second)); 8407 } 8408 } 8409 8410 if (ParseToken(lltok::rparen, "expected ')' in calls")) 8411 return true; 8412 8413 return false; 8414 } 8415 8416 /// Hotness 8417 /// := ('unknown'|'cold'|'none'|'hot'|'critical') 8418 bool LLParser::ParseHotness(CalleeInfo::HotnessType &Hotness) { 8419 switch (Lex.getKind()) { 8420 case lltok::kw_unknown: 8421 Hotness = CalleeInfo::HotnessType::Unknown; 8422 break; 8423 case lltok::kw_cold: 8424 Hotness = CalleeInfo::HotnessType::Cold; 8425 break; 8426 case lltok::kw_none: 8427 Hotness = CalleeInfo::HotnessType::None; 8428 break; 8429 case lltok::kw_hot: 8430 Hotness = CalleeInfo::HotnessType::Hot; 8431 break; 8432 case lltok::kw_critical: 8433 Hotness = CalleeInfo::HotnessType::Critical; 8434 break; 8435 default: 8436 return Error(Lex.getLoc(), "invalid call edge hotness"); 8437 } 8438 Lex.Lex(); 8439 return false; 8440 } 8441 8442 /// OptionalVTableFuncs 8443 /// := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')' 8444 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')' 8445 bool LLParser::ParseOptionalVTableFuncs(VTableFuncList &VTableFuncs) { 8446 assert(Lex.getKind() == lltok::kw_vTableFuncs); 8447 Lex.Lex(); 8448 8449 if (ParseToken(lltok::colon, "expected ':' in vTableFuncs") | 8450 ParseToken(lltok::lparen, "expected '(' in vTableFuncs")) 8451 return true; 8452 8453 IdToIndexMapType IdToIndexMap; 8454 // Parse each virtual function pair 8455 do { 8456 ValueInfo VI; 8457 if (ParseToken(lltok::lparen, "expected '(' in vTableFunc") || 8458 ParseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") || 8459 ParseToken(lltok::colon, "expected ':'")) 8460 return true; 8461 8462 LocTy Loc = Lex.getLoc(); 8463 unsigned GVId; 8464 if (ParseGVReference(VI, GVId)) 8465 return true; 8466 8467 uint64_t Offset; 8468 if (ParseToken(lltok::comma, "expected comma") || 8469 ParseToken(lltok::kw_offset, "expected offset") || 8470 ParseToken(lltok::colon, "expected ':'") || ParseUInt64(Offset)) 8471 return true; 8472 8473 // Keep track of the VTableFuncs array index needing a forward reference. 8474 // We will save the location of the ValueInfo needing an update, but 8475 // can only do so once the std::vector is finalized. 8476 if (VI == EmptyVI) 8477 IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc)); 8478 VTableFuncs.push_back({VI, Offset}); 8479 8480 if (ParseToken(lltok::rparen, "expected ')' in vTableFunc")) 8481 return true; 8482 } while (EatIfPresent(lltok::comma)); 8483 8484 // Now that the VTableFuncs vector is finalized, it is safe to save the 8485 // locations of any forward GV references that need updating later. 8486 for (auto I : IdToIndexMap) { 8487 for (auto P : I.second) { 8488 assert(VTableFuncs[P.first].FuncVI == EmptyVI && 8489 "Forward referenced ValueInfo expected to be empty"); 8490 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 8491 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 8492 FwdRef.first->second.push_back( 8493 std::make_pair(&VTableFuncs[P.first].FuncVI, P.second)); 8494 } 8495 } 8496 8497 if (ParseToken(lltok::rparen, "expected ')' in vTableFuncs")) 8498 return true; 8499 8500 return false; 8501 } 8502 8503 /// OptionalRefs 8504 /// := 'refs' ':' '(' GVReference [',' GVReference]* ')' 8505 bool LLParser::ParseOptionalRefs(std::vector<ValueInfo> &Refs) { 8506 assert(Lex.getKind() == lltok::kw_refs); 8507 Lex.Lex(); 8508 8509 if (ParseToken(lltok::colon, "expected ':' in refs") | 8510 ParseToken(lltok::lparen, "expected '(' in refs")) 8511 return true; 8512 8513 struct ValueContext { 8514 ValueInfo VI; 8515 unsigned GVId; 8516 LocTy Loc; 8517 }; 8518 std::vector<ValueContext> VContexts; 8519 // Parse each ref edge 8520 do { 8521 ValueContext VC; 8522 VC.Loc = Lex.getLoc(); 8523 if (ParseGVReference(VC.VI, VC.GVId)) 8524 return true; 8525 VContexts.push_back(VC); 8526 } while (EatIfPresent(lltok::comma)); 8527 8528 // Sort value contexts so that ones with writeonly 8529 // and readonly ValueInfo are at the end of VContexts vector. 8530 // See FunctionSummary::specialRefCounts() 8531 llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) { 8532 return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier(); 8533 }); 8534 8535 IdToIndexMapType IdToIndexMap; 8536 for (auto &VC : VContexts) { 8537 // Keep track of the Refs array index needing a forward reference. 8538 // We will save the location of the ValueInfo needing an update, but 8539 // can only do so once the std::vector is finalized. 8540 if (VC.VI.getRef() == FwdVIRef) 8541 IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc)); 8542 Refs.push_back(VC.VI); 8543 } 8544 8545 // Now that the Refs vector is finalized, it is safe to save the locations 8546 // of any forward GV references that need updating later. 8547 for (auto I : IdToIndexMap) { 8548 for (auto P : I.second) { 8549 assert(Refs[P.first].getRef() == FwdVIRef && 8550 "Forward referenced ValueInfo expected to be empty"); 8551 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 8552 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 8553 FwdRef.first->second.push_back(std::make_pair(&Refs[P.first], P.second)); 8554 } 8555 } 8556 8557 if (ParseToken(lltok::rparen, "expected ')' in refs")) 8558 return true; 8559 8560 return false; 8561 } 8562 8563 /// OptionalTypeIdInfo 8564 /// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]? 8565 /// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]? 8566 /// [',' TypeCheckedLoadConstVCalls]? ')' 8567 bool LLParser::ParseOptionalTypeIdInfo( 8568 FunctionSummary::TypeIdInfo &TypeIdInfo) { 8569 assert(Lex.getKind() == lltok::kw_typeIdInfo); 8570 Lex.Lex(); 8571 8572 if (ParseToken(lltok::colon, "expected ':' here") || 8573 ParseToken(lltok::lparen, "expected '(' in typeIdInfo")) 8574 return true; 8575 8576 do { 8577 switch (Lex.getKind()) { 8578 case lltok::kw_typeTests: 8579 if (ParseTypeTests(TypeIdInfo.TypeTests)) 8580 return true; 8581 break; 8582 case lltok::kw_typeTestAssumeVCalls: 8583 if (ParseVFuncIdList(lltok::kw_typeTestAssumeVCalls, 8584 TypeIdInfo.TypeTestAssumeVCalls)) 8585 return true; 8586 break; 8587 case lltok::kw_typeCheckedLoadVCalls: 8588 if (ParseVFuncIdList(lltok::kw_typeCheckedLoadVCalls, 8589 TypeIdInfo.TypeCheckedLoadVCalls)) 8590 return true; 8591 break; 8592 case lltok::kw_typeTestAssumeConstVCalls: 8593 if (ParseConstVCallList(lltok::kw_typeTestAssumeConstVCalls, 8594 TypeIdInfo.TypeTestAssumeConstVCalls)) 8595 return true; 8596 break; 8597 case lltok::kw_typeCheckedLoadConstVCalls: 8598 if (ParseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls, 8599 TypeIdInfo.TypeCheckedLoadConstVCalls)) 8600 return true; 8601 break; 8602 default: 8603 return Error(Lex.getLoc(), "invalid typeIdInfo list type"); 8604 } 8605 } while (EatIfPresent(lltok::comma)); 8606 8607 if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo")) 8608 return true; 8609 8610 return false; 8611 } 8612 8613 /// TypeTests 8614 /// ::= 'typeTests' ':' '(' (SummaryID | UInt64) 8615 /// [',' (SummaryID | UInt64)]* ')' 8616 bool LLParser::ParseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) { 8617 assert(Lex.getKind() == lltok::kw_typeTests); 8618 Lex.Lex(); 8619 8620 if (ParseToken(lltok::colon, "expected ':' here") || 8621 ParseToken(lltok::lparen, "expected '(' in typeIdInfo")) 8622 return true; 8623 8624 IdToIndexMapType IdToIndexMap; 8625 do { 8626 GlobalValue::GUID GUID = 0; 8627 if (Lex.getKind() == lltok::SummaryID) { 8628 unsigned ID = Lex.getUIntVal(); 8629 LocTy Loc = Lex.getLoc(); 8630 // Keep track of the TypeTests array index needing a forward reference. 8631 // We will save the location of the GUID needing an update, but 8632 // can only do so once the std::vector is finalized. 8633 IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc)); 8634 Lex.Lex(); 8635 } else if (ParseUInt64(GUID)) 8636 return true; 8637 TypeTests.push_back(GUID); 8638 } while (EatIfPresent(lltok::comma)); 8639 8640 // Now that the TypeTests vector is finalized, it is safe to save the 8641 // locations of any forward GV references that need updating later. 8642 for (auto I : IdToIndexMap) { 8643 for (auto P : I.second) { 8644 assert(TypeTests[P.first] == 0 && 8645 "Forward referenced type id GUID expected to be 0"); 8646 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 8647 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 8648 FwdRef.first->second.push_back( 8649 std::make_pair(&TypeTests[P.first], P.second)); 8650 } 8651 } 8652 8653 if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo")) 8654 return true; 8655 8656 return false; 8657 } 8658 8659 /// VFuncIdList 8660 /// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')' 8661 bool LLParser::ParseVFuncIdList( 8662 lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) { 8663 assert(Lex.getKind() == Kind); 8664 Lex.Lex(); 8665 8666 if (ParseToken(lltok::colon, "expected ':' here") || 8667 ParseToken(lltok::lparen, "expected '(' here")) 8668 return true; 8669 8670 IdToIndexMapType IdToIndexMap; 8671 do { 8672 FunctionSummary::VFuncId VFuncId; 8673 if (ParseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size())) 8674 return true; 8675 VFuncIdList.push_back(VFuncId); 8676 } while (EatIfPresent(lltok::comma)); 8677 8678 if (ParseToken(lltok::rparen, "expected ')' here")) 8679 return true; 8680 8681 // Now that the VFuncIdList vector is finalized, it is safe to save the 8682 // locations of any forward GV references that need updating later. 8683 for (auto I : IdToIndexMap) { 8684 for (auto P : I.second) { 8685 assert(VFuncIdList[P.first].GUID == 0 && 8686 "Forward referenced type id GUID expected to be 0"); 8687 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 8688 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 8689 FwdRef.first->second.push_back( 8690 std::make_pair(&VFuncIdList[P.first].GUID, P.second)); 8691 } 8692 } 8693 8694 return false; 8695 } 8696 8697 /// ConstVCallList 8698 /// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')' 8699 bool LLParser::ParseConstVCallList( 8700 lltok::Kind Kind, 8701 std::vector<FunctionSummary::ConstVCall> &ConstVCallList) { 8702 assert(Lex.getKind() == Kind); 8703 Lex.Lex(); 8704 8705 if (ParseToken(lltok::colon, "expected ':' here") || 8706 ParseToken(lltok::lparen, "expected '(' here")) 8707 return true; 8708 8709 IdToIndexMapType IdToIndexMap; 8710 do { 8711 FunctionSummary::ConstVCall ConstVCall; 8712 if (ParseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size())) 8713 return true; 8714 ConstVCallList.push_back(ConstVCall); 8715 } while (EatIfPresent(lltok::comma)); 8716 8717 if (ParseToken(lltok::rparen, "expected ')' here")) 8718 return true; 8719 8720 // Now that the ConstVCallList vector is finalized, it is safe to save the 8721 // locations of any forward GV references that need updating later. 8722 for (auto I : IdToIndexMap) { 8723 for (auto P : I.second) { 8724 assert(ConstVCallList[P.first].VFunc.GUID == 0 && 8725 "Forward referenced type id GUID expected to be 0"); 8726 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 8727 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 8728 FwdRef.first->second.push_back( 8729 std::make_pair(&ConstVCallList[P.first].VFunc.GUID, P.second)); 8730 } 8731 } 8732 8733 return false; 8734 } 8735 8736 /// ConstVCall 8737 /// ::= '(' VFuncId ',' Args ')' 8738 bool LLParser::ParseConstVCall(FunctionSummary::ConstVCall &ConstVCall, 8739 IdToIndexMapType &IdToIndexMap, unsigned Index) { 8740 if (ParseToken(lltok::lparen, "expected '(' here") || 8741 ParseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index)) 8742 return true; 8743 8744 if (EatIfPresent(lltok::comma)) 8745 if (ParseArgs(ConstVCall.Args)) 8746 return true; 8747 8748 if (ParseToken(lltok::rparen, "expected ')' here")) 8749 return true; 8750 8751 return false; 8752 } 8753 8754 /// VFuncId 8755 /// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ',' 8756 /// 'offset' ':' UInt64 ')' 8757 bool LLParser::ParseVFuncId(FunctionSummary::VFuncId &VFuncId, 8758 IdToIndexMapType &IdToIndexMap, unsigned Index) { 8759 assert(Lex.getKind() == lltok::kw_vFuncId); 8760 Lex.Lex(); 8761 8762 if (ParseToken(lltok::colon, "expected ':' here") || 8763 ParseToken(lltok::lparen, "expected '(' here")) 8764 return true; 8765 8766 if (Lex.getKind() == lltok::SummaryID) { 8767 VFuncId.GUID = 0; 8768 unsigned ID = Lex.getUIntVal(); 8769 LocTy Loc = Lex.getLoc(); 8770 // Keep track of the array index needing a forward reference. 8771 // We will save the location of the GUID needing an update, but 8772 // can only do so once the caller's std::vector is finalized. 8773 IdToIndexMap[ID].push_back(std::make_pair(Index, Loc)); 8774 Lex.Lex(); 8775 } else if (ParseToken(lltok::kw_guid, "expected 'guid' here") || 8776 ParseToken(lltok::colon, "expected ':' here") || 8777 ParseUInt64(VFuncId.GUID)) 8778 return true; 8779 8780 if (ParseToken(lltok::comma, "expected ',' here") || 8781 ParseToken(lltok::kw_offset, "expected 'offset' here") || 8782 ParseToken(lltok::colon, "expected ':' here") || 8783 ParseUInt64(VFuncId.Offset) || 8784 ParseToken(lltok::rparen, "expected ')' here")) 8785 return true; 8786 8787 return false; 8788 } 8789 8790 /// GVFlags 8791 /// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ',' 8792 /// 'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ',' 8793 /// 'dsoLocal' ':' Flag ',' 'canAutoHide' ':' Flag ')' 8794 bool LLParser::ParseGVFlags(GlobalValueSummary::GVFlags &GVFlags) { 8795 assert(Lex.getKind() == lltok::kw_flags); 8796 Lex.Lex(); 8797 8798 if (ParseToken(lltok::colon, "expected ':' here") || 8799 ParseToken(lltok::lparen, "expected '(' here")) 8800 return true; 8801 8802 do { 8803 unsigned Flag = 0; 8804 switch (Lex.getKind()) { 8805 case lltok::kw_linkage: 8806 Lex.Lex(); 8807 if (ParseToken(lltok::colon, "expected ':'")) 8808 return true; 8809 bool HasLinkage; 8810 GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 8811 assert(HasLinkage && "Linkage not optional in summary entry"); 8812 Lex.Lex(); 8813 break; 8814 case lltok::kw_notEligibleToImport: 8815 Lex.Lex(); 8816 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag)) 8817 return true; 8818 GVFlags.NotEligibleToImport = Flag; 8819 break; 8820 case lltok::kw_live: 8821 Lex.Lex(); 8822 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag)) 8823 return true; 8824 GVFlags.Live = Flag; 8825 break; 8826 case lltok::kw_dsoLocal: 8827 Lex.Lex(); 8828 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag)) 8829 return true; 8830 GVFlags.DSOLocal = Flag; 8831 break; 8832 case lltok::kw_canAutoHide: 8833 Lex.Lex(); 8834 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag)) 8835 return true; 8836 GVFlags.CanAutoHide = Flag; 8837 break; 8838 default: 8839 return Error(Lex.getLoc(), "expected gv flag type"); 8840 } 8841 } while (EatIfPresent(lltok::comma)); 8842 8843 if (ParseToken(lltok::rparen, "expected ')' here")) 8844 return true; 8845 8846 return false; 8847 } 8848 8849 /// GVarFlags 8850 /// ::= 'varFlags' ':' '(' 'readonly' ':' Flag 8851 /// ',' 'writeonly' ':' Flag 8852 /// ',' 'constant' ':' Flag ')' 8853 bool LLParser::ParseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) { 8854 assert(Lex.getKind() == lltok::kw_varFlags); 8855 Lex.Lex(); 8856 8857 if (ParseToken(lltok::colon, "expected ':' here") || 8858 ParseToken(lltok::lparen, "expected '(' here")) 8859 return true; 8860 8861 auto ParseRest = [this](unsigned int &Val) { 8862 Lex.Lex(); 8863 if (ParseToken(lltok::colon, "expected ':'")) 8864 return true; 8865 return ParseFlag(Val); 8866 }; 8867 8868 do { 8869 unsigned Flag = 0; 8870 switch (Lex.getKind()) { 8871 case lltok::kw_readonly: 8872 if (ParseRest(Flag)) 8873 return true; 8874 GVarFlags.MaybeReadOnly = Flag; 8875 break; 8876 case lltok::kw_writeonly: 8877 if (ParseRest(Flag)) 8878 return true; 8879 GVarFlags.MaybeWriteOnly = Flag; 8880 break; 8881 case lltok::kw_constant: 8882 if (ParseRest(Flag)) 8883 return true; 8884 GVarFlags.Constant = Flag; 8885 break; 8886 case lltok::kw_vcall_visibility: 8887 if (ParseRest(Flag)) 8888 return true; 8889 GVarFlags.VCallVisibility = Flag; 8890 break; 8891 default: 8892 return Error(Lex.getLoc(), "expected gvar flag type"); 8893 } 8894 } while (EatIfPresent(lltok::comma)); 8895 return ParseToken(lltok::rparen, "expected ')' here"); 8896 } 8897 8898 /// ModuleReference 8899 /// ::= 'module' ':' UInt 8900 bool LLParser::ParseModuleReference(StringRef &ModulePath) { 8901 // Parse module id. 8902 if (ParseToken(lltok::kw_module, "expected 'module' here") || 8903 ParseToken(lltok::colon, "expected ':' here") || 8904 ParseToken(lltok::SummaryID, "expected module ID")) 8905 return true; 8906 8907 unsigned ModuleID = Lex.getUIntVal(); 8908 auto I = ModuleIdMap.find(ModuleID); 8909 // We should have already parsed all module IDs 8910 assert(I != ModuleIdMap.end()); 8911 ModulePath = I->second; 8912 return false; 8913 } 8914 8915 /// GVReference 8916 /// ::= SummaryID 8917 bool LLParser::ParseGVReference(ValueInfo &VI, unsigned &GVId) { 8918 bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly); 8919 if (!ReadOnly) 8920 WriteOnly = EatIfPresent(lltok::kw_writeonly); 8921 if (ParseToken(lltok::SummaryID, "expected GV ID")) 8922 return true; 8923 8924 GVId = Lex.getUIntVal(); 8925 // Check if we already have a VI for this GV 8926 if (GVId < NumberedValueInfos.size()) { 8927 assert(NumberedValueInfos[GVId].getRef() != FwdVIRef); 8928 VI = NumberedValueInfos[GVId]; 8929 } else 8930 // We will create a forward reference to the stored location. 8931 VI = ValueInfo(false, FwdVIRef); 8932 8933 if (ReadOnly) 8934 VI.setReadOnly(); 8935 if (WriteOnly) 8936 VI.setWriteOnly(); 8937 return false; 8938 } 8939