1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the parser class for .ll files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/AsmParser/LLParser.h" 14 #include "llvm/ADT/APSInt.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/AsmParser/LLToken.h" 20 #include "llvm/AsmParser/SlotMapping.h" 21 #include "llvm/BinaryFormat/Dwarf.h" 22 #include "llvm/IR/Argument.h" 23 #include "llvm/IR/AutoUpgrade.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallingConv.h" 26 #include "llvm/IR/Comdat.h" 27 #include "llvm/IR/ConstantRange.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DebugInfoMetadata.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/GlobalIFunc.h" 33 #include "llvm/IR/GlobalObject.h" 34 #include "llvm/IR/InlineAsm.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/LLVMContext.h" 38 #include "llvm/IR/Metadata.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/Value.h" 41 #include "llvm/IR/ValueSymbolTable.h" 42 #include "llvm/Support/Casting.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/MathExtras.h" 45 #include "llvm/Support/SaveAndRestore.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include <algorithm> 48 #include <cassert> 49 #include <cstring> 50 #include <iterator> 51 #include <vector> 52 53 using namespace llvm; 54 55 static std::string getTypeString(Type *T) { 56 std::string Result; 57 raw_string_ostream Tmp(Result); 58 Tmp << *T; 59 return Tmp.str(); 60 } 61 62 /// Run: module ::= toplevelentity* 63 bool LLParser::Run(bool UpgradeDebugInfo, 64 DataLayoutCallbackTy DataLayoutCallback) { 65 // Prime the lexer. 66 Lex.Lex(); 67 68 if (Context.shouldDiscardValueNames()) 69 return error( 70 Lex.getLoc(), 71 "Can't read textual IR with a Context that discards named Values"); 72 73 if (M) { 74 if (parseTargetDefinitions()) 75 return true; 76 77 if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple())) 78 M->setDataLayout(*LayoutOverride); 79 } 80 81 return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) || 82 validateEndOfIndex(); 83 } 84 85 bool LLParser::parseStandaloneConstantValue(Constant *&C, 86 const SlotMapping *Slots) { 87 restoreParsingState(Slots); 88 Lex.Lex(); 89 90 Type *Ty = nullptr; 91 if (parseType(Ty) || parseConstantValue(Ty, C)) 92 return true; 93 if (Lex.getKind() != lltok::Eof) 94 return error(Lex.getLoc(), "expected end of string"); 95 return false; 96 } 97 98 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 99 const SlotMapping *Slots) { 100 restoreParsingState(Slots); 101 Lex.Lex(); 102 103 Read = 0; 104 SMLoc Start = Lex.getLoc(); 105 Ty = nullptr; 106 if (parseType(Ty)) 107 return true; 108 SMLoc End = Lex.getLoc(); 109 Read = End.getPointer() - Start.getPointer(); 110 111 return false; 112 } 113 114 void LLParser::restoreParsingState(const SlotMapping *Slots) { 115 if (!Slots) 116 return; 117 NumberedVals = Slots->GlobalValues; 118 NumberedMetadata = Slots->MetadataNodes; 119 for (const auto &I : Slots->NamedTypes) 120 NamedTypes.insert( 121 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 122 for (const auto &I : Slots->Types) 123 NumberedTypes.insert( 124 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 125 } 126 127 /// validateEndOfModule - Do final validity and sanity checks at the end of the 128 /// module. 129 bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) { 130 if (!M) 131 return false; 132 // Handle any function attribute group forward references. 133 for (const auto &RAG : ForwardRefAttrGroups) { 134 Value *V = RAG.first; 135 const std::vector<unsigned> &Attrs = RAG.second; 136 AttrBuilder B; 137 138 for (const auto &Attr : Attrs) 139 B.merge(NumberedAttrBuilders[Attr]); 140 141 if (Function *Fn = dyn_cast<Function>(V)) { 142 AttributeList AS = Fn->getAttributes(); 143 AttrBuilder FnAttrs(AS.getFnAttrs()); 144 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 145 146 FnAttrs.merge(B); 147 148 // If the alignment was parsed as an attribute, move to the alignment 149 // field. 150 if (FnAttrs.hasAlignmentAttr()) { 151 Fn->setAlignment(FnAttrs.getAlignment()); 152 FnAttrs.removeAttribute(Attribute::Alignment); 153 } 154 155 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 156 AttributeSet::get(Context, FnAttrs)); 157 Fn->setAttributes(AS); 158 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 159 AttributeList AS = CI->getAttributes(); 160 AttrBuilder FnAttrs(AS.getFnAttrs()); 161 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 162 FnAttrs.merge(B); 163 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 164 AttributeSet::get(Context, FnAttrs)); 165 CI->setAttributes(AS); 166 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 167 AttributeList AS = II->getAttributes(); 168 AttrBuilder FnAttrs(AS.getFnAttrs()); 169 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 170 FnAttrs.merge(B); 171 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 172 AttributeSet::get(Context, FnAttrs)); 173 II->setAttributes(AS); 174 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) { 175 AttributeList AS = CBI->getAttributes(); 176 AttrBuilder FnAttrs(AS.getFnAttrs()); 177 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 178 FnAttrs.merge(B); 179 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 180 AttributeSet::get(Context, FnAttrs)); 181 CBI->setAttributes(AS); 182 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) { 183 AttrBuilder Attrs(GV->getAttributes()); 184 Attrs.merge(B); 185 GV->setAttributes(AttributeSet::get(Context,Attrs)); 186 } else { 187 llvm_unreachable("invalid object with forward attribute group reference"); 188 } 189 } 190 191 // If there are entries in ForwardRefBlockAddresses at this point, the 192 // function was never defined. 193 if (!ForwardRefBlockAddresses.empty()) 194 return error(ForwardRefBlockAddresses.begin()->first.Loc, 195 "expected function name in blockaddress"); 196 197 for (const auto &NT : NumberedTypes) 198 if (NT.second.second.isValid()) 199 return error(NT.second.second, 200 "use of undefined type '%" + Twine(NT.first) + "'"); 201 202 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 203 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 204 if (I->second.second.isValid()) 205 return error(I->second.second, 206 "use of undefined type named '" + I->getKey() + "'"); 207 208 if (!ForwardRefComdats.empty()) 209 return error(ForwardRefComdats.begin()->second, 210 "use of undefined comdat '$" + 211 ForwardRefComdats.begin()->first + "'"); 212 213 if (!ForwardRefVals.empty()) 214 return error(ForwardRefVals.begin()->second.second, 215 "use of undefined value '@" + ForwardRefVals.begin()->first + 216 "'"); 217 218 if (!ForwardRefValIDs.empty()) 219 return error(ForwardRefValIDs.begin()->second.second, 220 "use of undefined value '@" + 221 Twine(ForwardRefValIDs.begin()->first) + "'"); 222 223 if (!ForwardRefMDNodes.empty()) 224 return error(ForwardRefMDNodes.begin()->second.second, 225 "use of undefined metadata '!" + 226 Twine(ForwardRefMDNodes.begin()->first) + "'"); 227 228 // Resolve metadata cycles. 229 for (auto &N : NumberedMetadata) { 230 if (N.second && !N.second->isResolved()) 231 N.second->resolveCycles(); 232 } 233 234 for (auto *Inst : InstsWithTBAATag) { 235 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); 236 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); 237 auto *UpgradedMD = UpgradeTBAANode(*MD); 238 if (MD != UpgradedMD) 239 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); 240 } 241 242 // Look for intrinsic functions and CallInst that need to be upgraded 243 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 244 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove 245 246 // Some types could be renamed during loading if several modules are 247 // loaded in the same LLVMContext (LTO scenario). In this case we should 248 // remangle intrinsics names as well. 249 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) { 250 Function *F = &*FI++; 251 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) { 252 F->replaceAllUsesWith(Remangled.getValue()); 253 F->eraseFromParent(); 254 } 255 } 256 257 if (UpgradeDebugInfo) 258 llvm::UpgradeDebugInfo(*M); 259 260 UpgradeModuleFlags(*M); 261 UpgradeSectionAttributes(*M); 262 263 if (!Slots) 264 return false; 265 // Initialize the slot mapping. 266 // Because by this point we've parsed and validated everything, we can "steal" 267 // the mapping from LLParser as it doesn't need it anymore. 268 Slots->GlobalValues = std::move(NumberedVals); 269 Slots->MetadataNodes = std::move(NumberedMetadata); 270 for (const auto &I : NamedTypes) 271 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 272 for (const auto &I : NumberedTypes) 273 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 274 275 return false; 276 } 277 278 /// Do final validity and sanity checks at the end of the index. 279 bool LLParser::validateEndOfIndex() { 280 if (!Index) 281 return false; 282 283 if (!ForwardRefValueInfos.empty()) 284 return error(ForwardRefValueInfos.begin()->second.front().second, 285 "use of undefined summary '^" + 286 Twine(ForwardRefValueInfos.begin()->first) + "'"); 287 288 if (!ForwardRefAliasees.empty()) 289 return error(ForwardRefAliasees.begin()->second.front().second, 290 "use of undefined summary '^" + 291 Twine(ForwardRefAliasees.begin()->first) + "'"); 292 293 if (!ForwardRefTypeIds.empty()) 294 return error(ForwardRefTypeIds.begin()->second.front().second, 295 "use of undefined type id summary '^" + 296 Twine(ForwardRefTypeIds.begin()->first) + "'"); 297 298 return false; 299 } 300 301 //===----------------------------------------------------------------------===// 302 // Top-Level Entities 303 //===----------------------------------------------------------------------===// 304 305 bool LLParser::parseTargetDefinitions() { 306 while (true) { 307 switch (Lex.getKind()) { 308 case lltok::kw_target: 309 if (parseTargetDefinition()) 310 return true; 311 break; 312 case lltok::kw_source_filename: 313 if (parseSourceFileName()) 314 return true; 315 break; 316 default: 317 return false; 318 } 319 } 320 } 321 322 bool LLParser::parseTopLevelEntities() { 323 // If there is no Module, then parse just the summary index entries. 324 if (!M) { 325 while (true) { 326 switch (Lex.getKind()) { 327 case lltok::Eof: 328 return false; 329 case lltok::SummaryID: 330 if (parseSummaryEntry()) 331 return true; 332 break; 333 case lltok::kw_source_filename: 334 if (parseSourceFileName()) 335 return true; 336 break; 337 default: 338 // Skip everything else 339 Lex.Lex(); 340 } 341 } 342 } 343 while (true) { 344 switch (Lex.getKind()) { 345 default: 346 return tokError("expected top-level entity"); 347 case lltok::Eof: return false; 348 case lltok::kw_declare: 349 if (parseDeclare()) 350 return true; 351 break; 352 case lltok::kw_define: 353 if (parseDefine()) 354 return true; 355 break; 356 case lltok::kw_module: 357 if (parseModuleAsm()) 358 return true; 359 break; 360 case lltok::LocalVarID: 361 if (parseUnnamedType()) 362 return true; 363 break; 364 case lltok::LocalVar: 365 if (parseNamedType()) 366 return true; 367 break; 368 case lltok::GlobalID: 369 if (parseUnnamedGlobal()) 370 return true; 371 break; 372 case lltok::GlobalVar: 373 if (parseNamedGlobal()) 374 return true; 375 break; 376 case lltok::ComdatVar: if (parseComdat()) return true; break; 377 case lltok::exclaim: 378 if (parseStandaloneMetadata()) 379 return true; 380 break; 381 case lltok::SummaryID: 382 if (parseSummaryEntry()) 383 return true; 384 break; 385 case lltok::MetadataVar: 386 if (parseNamedMetadata()) 387 return true; 388 break; 389 case lltok::kw_attributes: 390 if (parseUnnamedAttrGrp()) 391 return true; 392 break; 393 case lltok::kw_uselistorder: 394 if (parseUseListOrder()) 395 return true; 396 break; 397 case lltok::kw_uselistorder_bb: 398 if (parseUseListOrderBB()) 399 return true; 400 break; 401 } 402 } 403 } 404 405 /// toplevelentity 406 /// ::= 'module' 'asm' STRINGCONSTANT 407 bool LLParser::parseModuleAsm() { 408 assert(Lex.getKind() == lltok::kw_module); 409 Lex.Lex(); 410 411 std::string AsmStr; 412 if (parseToken(lltok::kw_asm, "expected 'module asm'") || 413 parseStringConstant(AsmStr)) 414 return true; 415 416 M->appendModuleInlineAsm(AsmStr); 417 return false; 418 } 419 420 /// toplevelentity 421 /// ::= 'target' 'triple' '=' STRINGCONSTANT 422 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 423 bool LLParser::parseTargetDefinition() { 424 assert(Lex.getKind() == lltok::kw_target); 425 std::string Str; 426 switch (Lex.Lex()) { 427 default: 428 return tokError("unknown target property"); 429 case lltok::kw_triple: 430 Lex.Lex(); 431 if (parseToken(lltok::equal, "expected '=' after target triple") || 432 parseStringConstant(Str)) 433 return true; 434 M->setTargetTriple(Str); 435 return false; 436 case lltok::kw_datalayout: 437 Lex.Lex(); 438 if (parseToken(lltok::equal, "expected '=' after target datalayout") || 439 parseStringConstant(Str)) 440 return true; 441 M->setDataLayout(Str); 442 return false; 443 } 444 } 445 446 /// toplevelentity 447 /// ::= 'source_filename' '=' STRINGCONSTANT 448 bool LLParser::parseSourceFileName() { 449 assert(Lex.getKind() == lltok::kw_source_filename); 450 Lex.Lex(); 451 if (parseToken(lltok::equal, "expected '=' after source_filename") || 452 parseStringConstant(SourceFileName)) 453 return true; 454 if (M) 455 M->setSourceFileName(SourceFileName); 456 return false; 457 } 458 459 /// parseUnnamedType: 460 /// ::= LocalVarID '=' 'type' type 461 bool LLParser::parseUnnamedType() { 462 LocTy TypeLoc = Lex.getLoc(); 463 unsigned TypeID = Lex.getUIntVal(); 464 Lex.Lex(); // eat LocalVarID; 465 466 if (parseToken(lltok::equal, "expected '=' after name") || 467 parseToken(lltok::kw_type, "expected 'type' after '='")) 468 return true; 469 470 Type *Result = nullptr; 471 if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result)) 472 return true; 473 474 if (!isa<StructType>(Result)) { 475 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 476 if (Entry.first) 477 return error(TypeLoc, "non-struct types may not be recursive"); 478 Entry.first = Result; 479 Entry.second = SMLoc(); 480 } 481 482 return false; 483 } 484 485 /// toplevelentity 486 /// ::= LocalVar '=' 'type' type 487 bool LLParser::parseNamedType() { 488 std::string Name = Lex.getStrVal(); 489 LocTy NameLoc = Lex.getLoc(); 490 Lex.Lex(); // eat LocalVar. 491 492 if (parseToken(lltok::equal, "expected '=' after name") || 493 parseToken(lltok::kw_type, "expected 'type' after name")) 494 return true; 495 496 Type *Result = nullptr; 497 if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result)) 498 return true; 499 500 if (!isa<StructType>(Result)) { 501 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 502 if (Entry.first) 503 return error(NameLoc, "non-struct types may not be recursive"); 504 Entry.first = Result; 505 Entry.second = SMLoc(); 506 } 507 508 return false; 509 } 510 511 /// toplevelentity 512 /// ::= 'declare' FunctionHeader 513 bool LLParser::parseDeclare() { 514 assert(Lex.getKind() == lltok::kw_declare); 515 Lex.Lex(); 516 517 std::vector<std::pair<unsigned, MDNode *>> MDs; 518 while (Lex.getKind() == lltok::MetadataVar) { 519 unsigned MDK; 520 MDNode *N; 521 if (parseMetadataAttachment(MDK, N)) 522 return true; 523 MDs.push_back({MDK, N}); 524 } 525 526 Function *F; 527 if (parseFunctionHeader(F, false)) 528 return true; 529 for (auto &MD : MDs) 530 F->addMetadata(MD.first, *MD.second); 531 return false; 532 } 533 534 /// toplevelentity 535 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 536 bool LLParser::parseDefine() { 537 assert(Lex.getKind() == lltok::kw_define); 538 Lex.Lex(); 539 540 Function *F; 541 return parseFunctionHeader(F, true) || parseOptionalFunctionMetadata(*F) || 542 parseFunctionBody(*F); 543 } 544 545 /// parseGlobalType 546 /// ::= 'constant' 547 /// ::= 'global' 548 bool LLParser::parseGlobalType(bool &IsConstant) { 549 if (Lex.getKind() == lltok::kw_constant) 550 IsConstant = true; 551 else if (Lex.getKind() == lltok::kw_global) 552 IsConstant = false; 553 else { 554 IsConstant = false; 555 return tokError("expected 'global' or 'constant'"); 556 } 557 Lex.Lex(); 558 return false; 559 } 560 561 bool LLParser::parseOptionalUnnamedAddr( 562 GlobalVariable::UnnamedAddr &UnnamedAddr) { 563 if (EatIfPresent(lltok::kw_unnamed_addr)) 564 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 565 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 566 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 567 else 568 UnnamedAddr = GlobalValue::UnnamedAddr::None; 569 return false; 570 } 571 572 /// parseUnnamedGlobal: 573 /// OptionalVisibility (ALIAS | IFUNC) ... 574 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 575 /// OptionalDLLStorageClass 576 /// ... -> global variable 577 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 578 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier 579 /// OptionalVisibility 580 /// OptionalDLLStorageClass 581 /// ... -> global variable 582 bool LLParser::parseUnnamedGlobal() { 583 unsigned VarID = NumberedVals.size(); 584 std::string Name; 585 LocTy NameLoc = Lex.getLoc(); 586 587 // Handle the GlobalID form. 588 if (Lex.getKind() == lltok::GlobalID) { 589 if (Lex.getUIntVal() != VarID) 590 return error(Lex.getLoc(), 591 "variable expected to be numbered '%" + Twine(VarID) + "'"); 592 Lex.Lex(); // eat GlobalID; 593 594 if (parseToken(lltok::equal, "expected '=' after name")) 595 return true; 596 } 597 598 bool HasLinkage; 599 unsigned Linkage, Visibility, DLLStorageClass; 600 bool DSOLocal; 601 GlobalVariable::ThreadLocalMode TLM; 602 GlobalVariable::UnnamedAddr UnnamedAddr; 603 if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 604 DSOLocal) || 605 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr)) 606 return true; 607 608 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 609 return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 610 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 611 612 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 613 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 614 } 615 616 /// parseNamedGlobal: 617 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 618 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 619 /// OptionalVisibility OptionalDLLStorageClass 620 /// ... -> global variable 621 bool LLParser::parseNamedGlobal() { 622 assert(Lex.getKind() == lltok::GlobalVar); 623 LocTy NameLoc = Lex.getLoc(); 624 std::string Name = Lex.getStrVal(); 625 Lex.Lex(); 626 627 bool HasLinkage; 628 unsigned Linkage, Visibility, DLLStorageClass; 629 bool DSOLocal; 630 GlobalVariable::ThreadLocalMode TLM; 631 GlobalVariable::UnnamedAddr UnnamedAddr; 632 if (parseToken(lltok::equal, "expected '=' in global variable") || 633 parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 634 DSOLocal) || 635 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr)) 636 return true; 637 638 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 639 return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 640 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 641 642 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 643 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 644 } 645 646 bool LLParser::parseComdat() { 647 assert(Lex.getKind() == lltok::ComdatVar); 648 std::string Name = Lex.getStrVal(); 649 LocTy NameLoc = Lex.getLoc(); 650 Lex.Lex(); 651 652 if (parseToken(lltok::equal, "expected '=' here")) 653 return true; 654 655 if (parseToken(lltok::kw_comdat, "expected comdat keyword")) 656 return tokError("expected comdat type"); 657 658 Comdat::SelectionKind SK; 659 switch (Lex.getKind()) { 660 default: 661 return tokError("unknown selection kind"); 662 case lltok::kw_any: 663 SK = Comdat::Any; 664 break; 665 case lltok::kw_exactmatch: 666 SK = Comdat::ExactMatch; 667 break; 668 case lltok::kw_largest: 669 SK = Comdat::Largest; 670 break; 671 case lltok::kw_nodeduplicate: 672 SK = Comdat::NoDeduplicate; 673 break; 674 case lltok::kw_samesize: 675 SK = Comdat::SameSize; 676 break; 677 } 678 Lex.Lex(); 679 680 // See if the comdat was forward referenced, if so, use the comdat. 681 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 682 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 683 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 684 return error(NameLoc, "redefinition of comdat '$" + Name + "'"); 685 686 Comdat *C; 687 if (I != ComdatSymTab.end()) 688 C = &I->second; 689 else 690 C = M->getOrInsertComdat(Name); 691 C->setSelectionKind(SK); 692 693 return false; 694 } 695 696 // MDString: 697 // ::= '!' STRINGCONSTANT 698 bool LLParser::parseMDString(MDString *&Result) { 699 std::string Str; 700 if (parseStringConstant(Str)) 701 return true; 702 Result = MDString::get(Context, Str); 703 return false; 704 } 705 706 // MDNode: 707 // ::= '!' MDNodeNumber 708 bool LLParser::parseMDNodeID(MDNode *&Result) { 709 // !{ ..., !42, ... } 710 LocTy IDLoc = Lex.getLoc(); 711 unsigned MID = 0; 712 if (parseUInt32(MID)) 713 return true; 714 715 // If not a forward reference, just return it now. 716 if (NumberedMetadata.count(MID)) { 717 Result = NumberedMetadata[MID]; 718 return false; 719 } 720 721 // Otherwise, create MDNode forward reference. 722 auto &FwdRef = ForwardRefMDNodes[MID]; 723 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 724 725 Result = FwdRef.first.get(); 726 NumberedMetadata[MID].reset(Result); 727 return false; 728 } 729 730 /// parseNamedMetadata: 731 /// !foo = !{ !1, !2 } 732 bool LLParser::parseNamedMetadata() { 733 assert(Lex.getKind() == lltok::MetadataVar); 734 std::string Name = Lex.getStrVal(); 735 Lex.Lex(); 736 737 if (parseToken(lltok::equal, "expected '=' here") || 738 parseToken(lltok::exclaim, "Expected '!' here") || 739 parseToken(lltok::lbrace, "Expected '{' here")) 740 return true; 741 742 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 743 if (Lex.getKind() != lltok::rbrace) 744 do { 745 MDNode *N = nullptr; 746 // parse DIExpressions inline as a special case. They are still MDNodes, 747 // so they can still appear in named metadata. Remove this logic if they 748 // become plain Metadata. 749 if (Lex.getKind() == lltok::MetadataVar && 750 Lex.getStrVal() == "DIExpression") { 751 if (parseDIExpression(N, /*IsDistinct=*/false)) 752 return true; 753 // DIArgLists should only appear inline in a function, as they may 754 // contain LocalAsMetadata arguments which require a function context. 755 } else if (Lex.getKind() == lltok::MetadataVar && 756 Lex.getStrVal() == "DIArgList") { 757 return tokError("found DIArgList outside of function"); 758 } else if (parseToken(lltok::exclaim, "Expected '!' here") || 759 parseMDNodeID(N)) { 760 return true; 761 } 762 NMD->addOperand(N); 763 } while (EatIfPresent(lltok::comma)); 764 765 return parseToken(lltok::rbrace, "expected end of metadata node"); 766 } 767 768 /// parseStandaloneMetadata: 769 /// !42 = !{...} 770 bool LLParser::parseStandaloneMetadata() { 771 assert(Lex.getKind() == lltok::exclaim); 772 Lex.Lex(); 773 unsigned MetadataID = 0; 774 775 MDNode *Init; 776 if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here")) 777 return true; 778 779 // Detect common error, from old metadata syntax. 780 if (Lex.getKind() == lltok::Type) 781 return tokError("unexpected type in metadata definition"); 782 783 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 784 if (Lex.getKind() == lltok::MetadataVar) { 785 if (parseSpecializedMDNode(Init, IsDistinct)) 786 return true; 787 } else if (parseToken(lltok::exclaim, "Expected '!' here") || 788 parseMDTuple(Init, IsDistinct)) 789 return true; 790 791 // See if this was forward referenced, if so, handle it. 792 auto FI = ForwardRefMDNodes.find(MetadataID); 793 if (FI != ForwardRefMDNodes.end()) { 794 FI->second.first->replaceAllUsesWith(Init); 795 ForwardRefMDNodes.erase(FI); 796 797 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 798 } else { 799 if (NumberedMetadata.count(MetadataID)) 800 return tokError("Metadata id is already used"); 801 NumberedMetadata[MetadataID].reset(Init); 802 } 803 804 return false; 805 } 806 807 // Skips a single module summary entry. 808 bool LLParser::skipModuleSummaryEntry() { 809 // Each module summary entry consists of a tag for the entry 810 // type, followed by a colon, then the fields which may be surrounded by 811 // nested sets of parentheses. The "tag:" looks like a Label. Once parsing 812 // support is in place we will look for the tokens corresponding to the 813 // expected tags. 814 if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module && 815 Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags && 816 Lex.getKind() != lltok::kw_blockcount) 817 return tokError( 818 "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the " 819 "start of summary entry"); 820 if (Lex.getKind() == lltok::kw_flags) 821 return parseSummaryIndexFlags(); 822 if (Lex.getKind() == lltok::kw_blockcount) 823 return parseBlockCount(); 824 Lex.Lex(); 825 if (parseToken(lltok::colon, "expected ':' at start of summary entry") || 826 parseToken(lltok::lparen, "expected '(' at start of summary entry")) 827 return true; 828 // Now walk through the parenthesized entry, until the number of open 829 // parentheses goes back down to 0 (the first '(' was parsed above). 830 unsigned NumOpenParen = 1; 831 do { 832 switch (Lex.getKind()) { 833 case lltok::lparen: 834 NumOpenParen++; 835 break; 836 case lltok::rparen: 837 NumOpenParen--; 838 break; 839 case lltok::Eof: 840 return tokError("found end of file while parsing summary entry"); 841 default: 842 // Skip everything in between parentheses. 843 break; 844 } 845 Lex.Lex(); 846 } while (NumOpenParen > 0); 847 return false; 848 } 849 850 /// SummaryEntry 851 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry 852 bool LLParser::parseSummaryEntry() { 853 assert(Lex.getKind() == lltok::SummaryID); 854 unsigned SummaryID = Lex.getUIntVal(); 855 856 // For summary entries, colons should be treated as distinct tokens, 857 // not an indication of the end of a label token. 858 Lex.setIgnoreColonInIdentifiers(true); 859 860 Lex.Lex(); 861 if (parseToken(lltok::equal, "expected '=' here")) 862 return true; 863 864 // If we don't have an index object, skip the summary entry. 865 if (!Index) 866 return skipModuleSummaryEntry(); 867 868 bool result = false; 869 switch (Lex.getKind()) { 870 case lltok::kw_gv: 871 result = parseGVEntry(SummaryID); 872 break; 873 case lltok::kw_module: 874 result = parseModuleEntry(SummaryID); 875 break; 876 case lltok::kw_typeid: 877 result = parseTypeIdEntry(SummaryID); 878 break; 879 case lltok::kw_typeidCompatibleVTable: 880 result = parseTypeIdCompatibleVtableEntry(SummaryID); 881 break; 882 case lltok::kw_flags: 883 result = parseSummaryIndexFlags(); 884 break; 885 case lltok::kw_blockcount: 886 result = parseBlockCount(); 887 break; 888 default: 889 result = error(Lex.getLoc(), "unexpected summary kind"); 890 break; 891 } 892 Lex.setIgnoreColonInIdentifiers(false); 893 return result; 894 } 895 896 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 897 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 898 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 899 } 900 901 // If there was an explicit dso_local, update GV. In the absence of an explicit 902 // dso_local we keep the default value. 903 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) { 904 if (DSOLocal) 905 GV.setDSOLocal(true); 906 } 907 908 static std::string typeComparisonErrorMessage(StringRef Message, Type *Ty1, 909 Type *Ty2) { 910 std::string ErrString; 911 raw_string_ostream ErrOS(ErrString); 912 ErrOS << Message << " (" << *Ty1 << " vs " << *Ty2 << ")"; 913 return ErrOS.str(); 914 } 915 916 /// parseIndirectSymbol: 917 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 918 /// OptionalVisibility OptionalDLLStorageClass 919 /// OptionalThreadLocal OptionalUnnamedAddr 920 /// 'alias|ifunc' IndirectSymbol IndirectSymbolAttr* 921 /// 922 /// IndirectSymbol 923 /// ::= TypeAndValue 924 /// 925 /// IndirectSymbolAttr 926 /// ::= ',' 'partition' StringConstant 927 /// 928 /// Everything through OptionalUnnamedAddr has already been parsed. 929 /// 930 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc, 931 unsigned L, unsigned Visibility, 932 unsigned DLLStorageClass, bool DSOLocal, 933 GlobalVariable::ThreadLocalMode TLM, 934 GlobalVariable::UnnamedAddr UnnamedAddr) { 935 bool IsAlias; 936 if (Lex.getKind() == lltok::kw_alias) 937 IsAlias = true; 938 else if (Lex.getKind() == lltok::kw_ifunc) 939 IsAlias = false; 940 else 941 llvm_unreachable("Not an alias or ifunc!"); 942 Lex.Lex(); 943 944 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 945 946 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 947 return error(NameLoc, "invalid linkage type for alias"); 948 949 if (!isValidVisibilityForLinkage(Visibility, L)) 950 return error(NameLoc, 951 "symbol with local linkage must have default visibility"); 952 953 Type *Ty; 954 LocTy ExplicitTypeLoc = Lex.getLoc(); 955 if (parseType(Ty) || 956 parseToken(lltok::comma, "expected comma after alias or ifunc's type")) 957 return true; 958 959 Constant *Aliasee; 960 LocTy AliaseeLoc = Lex.getLoc(); 961 if (Lex.getKind() != lltok::kw_bitcast && 962 Lex.getKind() != lltok::kw_getelementptr && 963 Lex.getKind() != lltok::kw_addrspacecast && 964 Lex.getKind() != lltok::kw_inttoptr) { 965 if (parseGlobalTypeAndValue(Aliasee)) 966 return true; 967 } else { 968 // The bitcast dest type is not present, it is implied by the dest type. 969 ValID ID; 970 if (parseValID(ID, /*PFS=*/nullptr)) 971 return true; 972 if (ID.Kind != ValID::t_Constant) 973 return error(AliaseeLoc, "invalid aliasee"); 974 Aliasee = ID.ConstantVal; 975 } 976 977 Type *AliaseeType = Aliasee->getType(); 978 auto *PTy = dyn_cast<PointerType>(AliaseeType); 979 if (!PTy) 980 return error(AliaseeLoc, "An alias or ifunc must have pointer type"); 981 unsigned AddrSpace = PTy->getAddressSpace(); 982 983 if (IsAlias && !PTy->isOpaqueOrPointeeTypeMatches(Ty)) { 984 return error( 985 ExplicitTypeLoc, 986 typeComparisonErrorMessage( 987 "explicit pointee type doesn't match operand's pointee type", Ty, 988 PTy->getElementType())); 989 } 990 991 if (!IsAlias && !PTy->getElementType()->isFunctionTy()) { 992 return error(ExplicitTypeLoc, 993 "explicit pointee type should be a function type"); 994 } 995 996 GlobalValue *GVal = nullptr; 997 998 // See if the alias was forward referenced, if so, prepare to replace the 999 // forward reference. 1000 if (!Name.empty()) { 1001 auto I = ForwardRefVals.find(Name); 1002 if (I != ForwardRefVals.end()) { 1003 GVal = I->second.first; 1004 ForwardRefVals.erase(Name); 1005 } else if (M->getNamedValue(Name)) { 1006 return error(NameLoc, "redefinition of global '@" + Name + "'"); 1007 } 1008 } else { 1009 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1010 if (I != ForwardRefValIDs.end()) { 1011 GVal = I->second.first; 1012 ForwardRefValIDs.erase(I); 1013 } 1014 } 1015 1016 // Okay, create the alias but do not insert it into the module yet. 1017 std::unique_ptr<GlobalIndirectSymbol> GA; 1018 if (IsAlias) 1019 GA.reset(GlobalAlias::create(Ty, AddrSpace, 1020 (GlobalValue::LinkageTypes)Linkage, Name, 1021 Aliasee, /*Parent*/ nullptr)); 1022 else 1023 GA.reset(GlobalIFunc::create(Ty, AddrSpace, 1024 (GlobalValue::LinkageTypes)Linkage, Name, 1025 Aliasee, /*Parent*/ nullptr)); 1026 GA->setThreadLocalMode(TLM); 1027 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1028 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1029 GA->setUnnamedAddr(UnnamedAddr); 1030 maybeSetDSOLocal(DSOLocal, *GA); 1031 1032 // At this point we've parsed everything except for the IndirectSymbolAttrs. 1033 // Now parse them if there are any. 1034 while (Lex.getKind() == lltok::comma) { 1035 Lex.Lex(); 1036 1037 if (Lex.getKind() == lltok::kw_partition) { 1038 Lex.Lex(); 1039 GA->setPartition(Lex.getStrVal()); 1040 if (parseToken(lltok::StringConstant, "expected partition string")) 1041 return true; 1042 } else { 1043 return tokError("unknown alias or ifunc property!"); 1044 } 1045 } 1046 1047 if (Name.empty()) 1048 NumberedVals.push_back(GA.get()); 1049 1050 if (GVal) { 1051 // Verify that types agree. 1052 if (GVal->getType() != GA->getType()) 1053 return error( 1054 ExplicitTypeLoc, 1055 "forward reference and definition of alias have different types"); 1056 1057 // If they agree, just RAUW the old value with the alias and remove the 1058 // forward ref info. 1059 GVal->replaceAllUsesWith(GA.get()); 1060 GVal->eraseFromParent(); 1061 } 1062 1063 // Insert into the module, we know its name won't collide now. 1064 if (IsAlias) 1065 M->getAliasList().push_back(cast<GlobalAlias>(GA.get())); 1066 else 1067 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get())); 1068 assert(GA->getName() == Name && "Should not be a name conflict!"); 1069 1070 // The module owns this now 1071 GA.release(); 1072 1073 return false; 1074 } 1075 1076 /// parseGlobal 1077 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 1078 /// OptionalVisibility OptionalDLLStorageClass 1079 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 1080 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs 1081 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 1082 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr 1083 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type 1084 /// Const OptionalAttrs 1085 /// 1086 /// Everything up to and including OptionalUnnamedAddr has been parsed 1087 /// already. 1088 /// 1089 bool LLParser::parseGlobal(const std::string &Name, LocTy NameLoc, 1090 unsigned Linkage, bool HasLinkage, 1091 unsigned Visibility, unsigned DLLStorageClass, 1092 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM, 1093 GlobalVariable::UnnamedAddr UnnamedAddr) { 1094 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 1095 return error(NameLoc, 1096 "symbol with local linkage must have default visibility"); 1097 1098 unsigned AddrSpace; 1099 bool IsConstant, IsExternallyInitialized; 1100 LocTy IsExternallyInitializedLoc; 1101 LocTy TyLoc; 1102 1103 Type *Ty = nullptr; 1104 if (parseOptionalAddrSpace(AddrSpace) || 1105 parseOptionalToken(lltok::kw_externally_initialized, 1106 IsExternallyInitialized, 1107 &IsExternallyInitializedLoc) || 1108 parseGlobalType(IsConstant) || parseType(Ty, TyLoc)) 1109 return true; 1110 1111 // If the linkage is specified and is external, then no initializer is 1112 // present. 1113 Constant *Init = nullptr; 1114 if (!HasLinkage || 1115 !GlobalValue::isValidDeclarationLinkage( 1116 (GlobalValue::LinkageTypes)Linkage)) { 1117 if (parseGlobalValue(Ty, Init)) 1118 return true; 1119 } 1120 1121 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 1122 return error(TyLoc, "invalid type for global variable"); 1123 1124 GlobalValue *GVal = nullptr; 1125 1126 // See if the global was forward referenced, if so, use the global. 1127 if (!Name.empty()) { 1128 auto I = ForwardRefVals.find(Name); 1129 if (I != ForwardRefVals.end()) { 1130 GVal = I->second.first; 1131 ForwardRefVals.erase(I); 1132 } else if (M->getNamedValue(Name)) { 1133 return error(NameLoc, "redefinition of global '@" + Name + "'"); 1134 } 1135 } else { 1136 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1137 if (I != ForwardRefValIDs.end()) { 1138 GVal = I->second.first; 1139 ForwardRefValIDs.erase(I); 1140 } 1141 } 1142 1143 GlobalVariable *GV = new GlobalVariable( 1144 *M, Ty, false, GlobalValue::ExternalLinkage, nullptr, Name, nullptr, 1145 GlobalVariable::NotThreadLocal, AddrSpace); 1146 1147 if (Name.empty()) 1148 NumberedVals.push_back(GV); 1149 1150 // Set the parsed properties on the global. 1151 if (Init) 1152 GV->setInitializer(Init); 1153 GV->setConstant(IsConstant); 1154 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 1155 maybeSetDSOLocal(DSOLocal, *GV); 1156 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1157 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1158 GV->setExternallyInitialized(IsExternallyInitialized); 1159 GV->setThreadLocalMode(TLM); 1160 GV->setUnnamedAddr(UnnamedAddr); 1161 1162 if (GVal) { 1163 if (!GVal->getType()->isOpaque() && GVal->getValueType() != Ty) 1164 return error( 1165 TyLoc, 1166 "forward reference and definition of global have different types"); 1167 1168 GVal->replaceAllUsesWith(GV); 1169 GVal->eraseFromParent(); 1170 } 1171 1172 // parse attributes on the global. 1173 while (Lex.getKind() == lltok::comma) { 1174 Lex.Lex(); 1175 1176 if (Lex.getKind() == lltok::kw_section) { 1177 Lex.Lex(); 1178 GV->setSection(Lex.getStrVal()); 1179 if (parseToken(lltok::StringConstant, "expected global section string")) 1180 return true; 1181 } else if (Lex.getKind() == lltok::kw_partition) { 1182 Lex.Lex(); 1183 GV->setPartition(Lex.getStrVal()); 1184 if (parseToken(lltok::StringConstant, "expected partition string")) 1185 return true; 1186 } else if (Lex.getKind() == lltok::kw_align) { 1187 MaybeAlign Alignment; 1188 if (parseOptionalAlignment(Alignment)) 1189 return true; 1190 GV->setAlignment(Alignment); 1191 } else if (Lex.getKind() == lltok::MetadataVar) { 1192 if (parseGlobalObjectMetadataAttachment(*GV)) 1193 return true; 1194 } else { 1195 Comdat *C; 1196 if (parseOptionalComdat(Name, C)) 1197 return true; 1198 if (C) 1199 GV->setComdat(C); 1200 else 1201 return tokError("unknown global variable property!"); 1202 } 1203 } 1204 1205 AttrBuilder Attrs; 1206 LocTy BuiltinLoc; 1207 std::vector<unsigned> FwdRefAttrGrps; 1208 if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc)) 1209 return true; 1210 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) { 1211 GV->setAttributes(AttributeSet::get(Context, Attrs)); 1212 ForwardRefAttrGroups[GV] = FwdRefAttrGrps; 1213 } 1214 1215 return false; 1216 } 1217 1218 /// parseUnnamedAttrGrp 1219 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 1220 bool LLParser::parseUnnamedAttrGrp() { 1221 assert(Lex.getKind() == lltok::kw_attributes); 1222 LocTy AttrGrpLoc = Lex.getLoc(); 1223 Lex.Lex(); 1224 1225 if (Lex.getKind() != lltok::AttrGrpID) 1226 return tokError("expected attribute group id"); 1227 1228 unsigned VarID = Lex.getUIntVal(); 1229 std::vector<unsigned> unused; 1230 LocTy BuiltinLoc; 1231 Lex.Lex(); 1232 1233 if (parseToken(lltok::equal, "expected '=' here") || 1234 parseToken(lltok::lbrace, "expected '{' here") || 1235 parseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 1236 BuiltinLoc) || 1237 parseToken(lltok::rbrace, "expected end of attribute group")) 1238 return true; 1239 1240 if (!NumberedAttrBuilders[VarID].hasAttributes()) 1241 return error(AttrGrpLoc, "attribute group has no attributes"); 1242 1243 return false; 1244 } 1245 1246 static Attribute::AttrKind tokenToAttribute(lltok::Kind Kind) { 1247 switch (Kind) { 1248 #define GET_ATTR_NAMES 1249 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) \ 1250 case lltok::kw_##DISPLAY_NAME: \ 1251 return Attribute::ENUM_NAME; 1252 #include "llvm/IR/Attributes.inc" 1253 default: 1254 return Attribute::None; 1255 } 1256 } 1257 1258 bool LLParser::parseEnumAttribute(Attribute::AttrKind Attr, AttrBuilder &B, 1259 bool InAttrGroup) { 1260 if (Attribute::isTypeAttrKind(Attr)) 1261 return parseRequiredTypeAttr(B, Lex.getKind(), Attr); 1262 1263 switch (Attr) { 1264 case Attribute::Alignment: { 1265 MaybeAlign Alignment; 1266 if (InAttrGroup) { 1267 uint32_t Value = 0; 1268 Lex.Lex(); 1269 if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value)) 1270 return true; 1271 Alignment = Align(Value); 1272 } else { 1273 if (parseOptionalAlignment(Alignment, true)) 1274 return true; 1275 } 1276 B.addAlignmentAttr(Alignment); 1277 return false; 1278 } 1279 case Attribute::StackAlignment: { 1280 unsigned Alignment; 1281 if (InAttrGroup) { 1282 Lex.Lex(); 1283 if (parseToken(lltok::equal, "expected '=' here") || 1284 parseUInt32(Alignment)) 1285 return true; 1286 } else { 1287 if (parseOptionalStackAlignment(Alignment)) 1288 return true; 1289 } 1290 B.addStackAlignmentAttr(Alignment); 1291 return false; 1292 } 1293 case Attribute::AllocSize: { 1294 unsigned ElemSizeArg; 1295 Optional<unsigned> NumElemsArg; 1296 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1297 return true; 1298 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1299 return false; 1300 } 1301 case Attribute::VScaleRange: { 1302 unsigned MinValue, MaxValue; 1303 if (parseVScaleRangeArguments(MinValue, MaxValue)) 1304 return true; 1305 B.addVScaleRangeAttr(MinValue, MaxValue); 1306 return false; 1307 } 1308 case Attribute::Dereferenceable: { 1309 uint64_t Bytes; 1310 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1311 return true; 1312 B.addDereferenceableAttr(Bytes); 1313 return false; 1314 } 1315 case Attribute::DereferenceableOrNull: { 1316 uint64_t Bytes; 1317 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1318 return true; 1319 B.addDereferenceableOrNullAttr(Bytes); 1320 return false; 1321 } 1322 default: 1323 B.addAttribute(Attr); 1324 Lex.Lex(); 1325 return false; 1326 } 1327 } 1328 1329 /// parseFnAttributeValuePairs 1330 /// ::= <attr> | <attr> '=' <value> 1331 bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B, 1332 std::vector<unsigned> &FwdRefAttrGrps, 1333 bool InAttrGrp, LocTy &BuiltinLoc) { 1334 bool HaveError = false; 1335 1336 B.clear(); 1337 1338 while (true) { 1339 lltok::Kind Token = Lex.getKind(); 1340 if (Token == lltok::rbrace) 1341 return HaveError; // Finished. 1342 1343 if (Token == lltok::StringConstant) { 1344 if (parseStringAttribute(B)) 1345 return true; 1346 continue; 1347 } 1348 1349 if (Token == lltok::AttrGrpID) { 1350 // Allow a function to reference an attribute group: 1351 // 1352 // define void @foo() #1 { ... } 1353 if (InAttrGrp) { 1354 HaveError |= error( 1355 Lex.getLoc(), 1356 "cannot have an attribute group reference in an attribute group"); 1357 } else { 1358 // Save the reference to the attribute group. We'll fill it in later. 1359 FwdRefAttrGrps.push_back(Lex.getUIntVal()); 1360 } 1361 Lex.Lex(); 1362 continue; 1363 } 1364 1365 SMLoc Loc = Lex.getLoc(); 1366 if (Token == lltok::kw_builtin) 1367 BuiltinLoc = Loc; 1368 1369 Attribute::AttrKind Attr = tokenToAttribute(Token); 1370 if (Attr == Attribute::None) { 1371 if (!InAttrGrp) 1372 return HaveError; 1373 return error(Lex.getLoc(), "unterminated attribute group"); 1374 } 1375 1376 if (parseEnumAttribute(Attr, B, InAttrGrp)) 1377 return true; 1378 1379 // As a hack, we allow function alignment to be initially parsed as an 1380 // attribute on a function declaration/definition or added to an attribute 1381 // group and later moved to the alignment field. 1382 if (!Attribute::canUseAsFnAttr(Attr) && Attr != Attribute::Alignment) 1383 HaveError |= error(Loc, "this attribute does not apply to functions"); 1384 } 1385 } 1386 1387 //===----------------------------------------------------------------------===// 1388 // GlobalValue Reference/Resolution Routines. 1389 //===----------------------------------------------------------------------===// 1390 1391 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy) { 1392 // For opaque pointers, the used global type does not matter. We will later 1393 // RAUW it with a global/function of the correct type. 1394 if (PTy->isOpaque()) 1395 return new GlobalVariable(*M, Type::getInt8Ty(M->getContext()), false, 1396 GlobalValue::ExternalWeakLinkage, nullptr, "", 1397 nullptr, GlobalVariable::NotThreadLocal, 1398 PTy->getAddressSpace()); 1399 1400 if (auto *FT = dyn_cast<FunctionType>(PTy->getPointerElementType())) 1401 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, 1402 PTy->getAddressSpace(), "", M); 1403 else 1404 return new GlobalVariable(*M, PTy->getPointerElementType(), false, 1405 GlobalValue::ExternalWeakLinkage, nullptr, "", 1406 nullptr, GlobalVariable::NotThreadLocal, 1407 PTy->getAddressSpace()); 1408 } 1409 1410 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty, 1411 Value *Val, bool IsCall) { 1412 Type *ValTy = Val->getType(); 1413 if (ValTy == Ty) 1414 return Val; 1415 // For calls, we also allow opaque pointers. 1416 if (IsCall && ValTy == PointerType::get(Ty->getContext(), 1417 Ty->getPointerAddressSpace())) 1418 return Val; 1419 if (Ty->isLabelTy()) 1420 error(Loc, "'" + Name + "' is not a basic block"); 1421 else 1422 error(Loc, "'" + Name + "' defined with type '" + 1423 getTypeString(Val->getType()) + "' but expected '" + 1424 getTypeString(Ty) + "'"); 1425 return nullptr; 1426 } 1427 1428 /// getGlobalVal - Get a value with the specified name or ID, creating a 1429 /// forward reference record if needed. This can return null if the value 1430 /// exists but does not have the right type. 1431 GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty, 1432 LocTy Loc, bool IsCall) { 1433 PointerType *PTy = dyn_cast<PointerType>(Ty); 1434 if (!PTy) { 1435 error(Loc, "global variable reference must have pointer type"); 1436 return nullptr; 1437 } 1438 1439 // Look this name up in the normal function symbol table. 1440 GlobalValue *Val = 1441 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1442 1443 // If this is a forward reference for the value, see if we already created a 1444 // forward ref record. 1445 if (!Val) { 1446 auto I = ForwardRefVals.find(Name); 1447 if (I != ForwardRefVals.end()) 1448 Val = I->second.first; 1449 } 1450 1451 // If we have the value in the symbol table or fwd-ref table, return it. 1452 if (Val) 1453 return cast_or_null<GlobalValue>( 1454 checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall)); 1455 1456 // Otherwise, create a new forward reference for this value and remember it. 1457 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy); 1458 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1459 return FwdVal; 1460 } 1461 1462 GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc, 1463 bool IsCall) { 1464 PointerType *PTy = dyn_cast<PointerType>(Ty); 1465 if (!PTy) { 1466 error(Loc, "global variable reference must have pointer type"); 1467 return nullptr; 1468 } 1469 1470 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1471 1472 // If this is a forward reference for the value, see if we already created a 1473 // forward ref record. 1474 if (!Val) { 1475 auto I = ForwardRefValIDs.find(ID); 1476 if (I != ForwardRefValIDs.end()) 1477 Val = I->second.first; 1478 } 1479 1480 // If we have the value in the symbol table or fwd-ref table, return it. 1481 if (Val) 1482 return cast_or_null<GlobalValue>( 1483 checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall)); 1484 1485 // Otherwise, create a new forward reference for this value and remember it. 1486 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy); 1487 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1488 return FwdVal; 1489 } 1490 1491 //===----------------------------------------------------------------------===// 1492 // Comdat Reference/Resolution Routines. 1493 //===----------------------------------------------------------------------===// 1494 1495 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1496 // Look this name up in the comdat symbol table. 1497 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1498 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1499 if (I != ComdatSymTab.end()) 1500 return &I->second; 1501 1502 // Otherwise, create a new forward reference for this value and remember it. 1503 Comdat *C = M->getOrInsertComdat(Name); 1504 ForwardRefComdats[Name] = Loc; 1505 return C; 1506 } 1507 1508 //===----------------------------------------------------------------------===// 1509 // Helper Routines. 1510 //===----------------------------------------------------------------------===// 1511 1512 /// parseToken - If the current token has the specified kind, eat it and return 1513 /// success. Otherwise, emit the specified error and return failure. 1514 bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) { 1515 if (Lex.getKind() != T) 1516 return tokError(ErrMsg); 1517 Lex.Lex(); 1518 return false; 1519 } 1520 1521 /// parseStringConstant 1522 /// ::= StringConstant 1523 bool LLParser::parseStringConstant(std::string &Result) { 1524 if (Lex.getKind() != lltok::StringConstant) 1525 return tokError("expected string constant"); 1526 Result = Lex.getStrVal(); 1527 Lex.Lex(); 1528 return false; 1529 } 1530 1531 /// parseUInt32 1532 /// ::= uint32 1533 bool LLParser::parseUInt32(uint32_t &Val) { 1534 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1535 return tokError("expected integer"); 1536 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1537 if (Val64 != unsigned(Val64)) 1538 return tokError("expected 32-bit integer (too large)"); 1539 Val = Val64; 1540 Lex.Lex(); 1541 return false; 1542 } 1543 1544 /// parseUInt64 1545 /// ::= uint64 1546 bool LLParser::parseUInt64(uint64_t &Val) { 1547 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1548 return tokError("expected integer"); 1549 Val = Lex.getAPSIntVal().getLimitedValue(); 1550 Lex.Lex(); 1551 return false; 1552 } 1553 1554 /// parseTLSModel 1555 /// := 'localdynamic' 1556 /// := 'initialexec' 1557 /// := 'localexec' 1558 bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1559 switch (Lex.getKind()) { 1560 default: 1561 return tokError("expected localdynamic, initialexec or localexec"); 1562 case lltok::kw_localdynamic: 1563 TLM = GlobalVariable::LocalDynamicTLSModel; 1564 break; 1565 case lltok::kw_initialexec: 1566 TLM = GlobalVariable::InitialExecTLSModel; 1567 break; 1568 case lltok::kw_localexec: 1569 TLM = GlobalVariable::LocalExecTLSModel; 1570 break; 1571 } 1572 1573 Lex.Lex(); 1574 return false; 1575 } 1576 1577 /// parseOptionalThreadLocal 1578 /// := /*empty*/ 1579 /// := 'thread_local' 1580 /// := 'thread_local' '(' tlsmodel ')' 1581 bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1582 TLM = GlobalVariable::NotThreadLocal; 1583 if (!EatIfPresent(lltok::kw_thread_local)) 1584 return false; 1585 1586 TLM = GlobalVariable::GeneralDynamicTLSModel; 1587 if (Lex.getKind() == lltok::lparen) { 1588 Lex.Lex(); 1589 return parseTLSModel(TLM) || 1590 parseToken(lltok::rparen, "expected ')' after thread local model"); 1591 } 1592 return false; 1593 } 1594 1595 /// parseOptionalAddrSpace 1596 /// := /*empty*/ 1597 /// := 'addrspace' '(' uint32 ')' 1598 bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) { 1599 AddrSpace = DefaultAS; 1600 if (!EatIfPresent(lltok::kw_addrspace)) 1601 return false; 1602 return parseToken(lltok::lparen, "expected '(' in address space") || 1603 parseUInt32(AddrSpace) || 1604 parseToken(lltok::rparen, "expected ')' in address space"); 1605 } 1606 1607 /// parseStringAttribute 1608 /// := StringConstant 1609 /// := StringConstant '=' StringConstant 1610 bool LLParser::parseStringAttribute(AttrBuilder &B) { 1611 std::string Attr = Lex.getStrVal(); 1612 Lex.Lex(); 1613 std::string Val; 1614 if (EatIfPresent(lltok::equal) && parseStringConstant(Val)) 1615 return true; 1616 B.addAttribute(Attr, Val); 1617 return false; 1618 } 1619 1620 /// Parse a potentially empty list of parameter or return attributes. 1621 bool LLParser::parseOptionalParamOrReturnAttrs(AttrBuilder &B, bool IsParam) { 1622 bool HaveError = false; 1623 1624 B.clear(); 1625 1626 while (true) { 1627 lltok::Kind Token = Lex.getKind(); 1628 if (Token == lltok::StringConstant) { 1629 if (parseStringAttribute(B)) 1630 return true; 1631 continue; 1632 } 1633 1634 SMLoc Loc = Lex.getLoc(); 1635 Attribute::AttrKind Attr = tokenToAttribute(Token); 1636 if (Attr == Attribute::None) 1637 return HaveError; 1638 1639 if (parseEnumAttribute(Attr, B, /* InAttrGroup */ false)) 1640 return true; 1641 1642 if (IsParam && !Attribute::canUseAsParamAttr(Attr)) 1643 HaveError |= error(Loc, "this attribute does not apply to parameters"); 1644 if (!IsParam && !Attribute::canUseAsRetAttr(Attr)) 1645 HaveError |= error(Loc, "this attribute does not apply to return values"); 1646 } 1647 } 1648 1649 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1650 HasLinkage = true; 1651 switch (Kind) { 1652 default: 1653 HasLinkage = false; 1654 return GlobalValue::ExternalLinkage; 1655 case lltok::kw_private: 1656 return GlobalValue::PrivateLinkage; 1657 case lltok::kw_internal: 1658 return GlobalValue::InternalLinkage; 1659 case lltok::kw_weak: 1660 return GlobalValue::WeakAnyLinkage; 1661 case lltok::kw_weak_odr: 1662 return GlobalValue::WeakODRLinkage; 1663 case lltok::kw_linkonce: 1664 return GlobalValue::LinkOnceAnyLinkage; 1665 case lltok::kw_linkonce_odr: 1666 return GlobalValue::LinkOnceODRLinkage; 1667 case lltok::kw_available_externally: 1668 return GlobalValue::AvailableExternallyLinkage; 1669 case lltok::kw_appending: 1670 return GlobalValue::AppendingLinkage; 1671 case lltok::kw_common: 1672 return GlobalValue::CommonLinkage; 1673 case lltok::kw_extern_weak: 1674 return GlobalValue::ExternalWeakLinkage; 1675 case lltok::kw_external: 1676 return GlobalValue::ExternalLinkage; 1677 } 1678 } 1679 1680 /// parseOptionalLinkage 1681 /// ::= /*empty*/ 1682 /// ::= 'private' 1683 /// ::= 'internal' 1684 /// ::= 'weak' 1685 /// ::= 'weak_odr' 1686 /// ::= 'linkonce' 1687 /// ::= 'linkonce_odr' 1688 /// ::= 'available_externally' 1689 /// ::= 'appending' 1690 /// ::= 'common' 1691 /// ::= 'extern_weak' 1692 /// ::= 'external' 1693 bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage, 1694 unsigned &Visibility, 1695 unsigned &DLLStorageClass, bool &DSOLocal) { 1696 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 1697 if (HasLinkage) 1698 Lex.Lex(); 1699 parseOptionalDSOLocal(DSOLocal); 1700 parseOptionalVisibility(Visibility); 1701 parseOptionalDLLStorageClass(DLLStorageClass); 1702 1703 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) { 1704 return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch"); 1705 } 1706 1707 return false; 1708 } 1709 1710 void LLParser::parseOptionalDSOLocal(bool &DSOLocal) { 1711 switch (Lex.getKind()) { 1712 default: 1713 DSOLocal = false; 1714 break; 1715 case lltok::kw_dso_local: 1716 DSOLocal = true; 1717 Lex.Lex(); 1718 break; 1719 case lltok::kw_dso_preemptable: 1720 DSOLocal = false; 1721 Lex.Lex(); 1722 break; 1723 } 1724 } 1725 1726 /// parseOptionalVisibility 1727 /// ::= /*empty*/ 1728 /// ::= 'default' 1729 /// ::= 'hidden' 1730 /// ::= 'protected' 1731 /// 1732 void LLParser::parseOptionalVisibility(unsigned &Res) { 1733 switch (Lex.getKind()) { 1734 default: 1735 Res = GlobalValue::DefaultVisibility; 1736 return; 1737 case lltok::kw_default: 1738 Res = GlobalValue::DefaultVisibility; 1739 break; 1740 case lltok::kw_hidden: 1741 Res = GlobalValue::HiddenVisibility; 1742 break; 1743 case lltok::kw_protected: 1744 Res = GlobalValue::ProtectedVisibility; 1745 break; 1746 } 1747 Lex.Lex(); 1748 } 1749 1750 /// parseOptionalDLLStorageClass 1751 /// ::= /*empty*/ 1752 /// ::= 'dllimport' 1753 /// ::= 'dllexport' 1754 /// 1755 void LLParser::parseOptionalDLLStorageClass(unsigned &Res) { 1756 switch (Lex.getKind()) { 1757 default: 1758 Res = GlobalValue::DefaultStorageClass; 1759 return; 1760 case lltok::kw_dllimport: 1761 Res = GlobalValue::DLLImportStorageClass; 1762 break; 1763 case lltok::kw_dllexport: 1764 Res = GlobalValue::DLLExportStorageClass; 1765 break; 1766 } 1767 Lex.Lex(); 1768 } 1769 1770 /// parseOptionalCallingConv 1771 /// ::= /*empty*/ 1772 /// ::= 'ccc' 1773 /// ::= 'fastcc' 1774 /// ::= 'intel_ocl_bicc' 1775 /// ::= 'coldcc' 1776 /// ::= 'cfguard_checkcc' 1777 /// ::= 'x86_stdcallcc' 1778 /// ::= 'x86_fastcallcc' 1779 /// ::= 'x86_thiscallcc' 1780 /// ::= 'x86_vectorcallcc' 1781 /// ::= 'arm_apcscc' 1782 /// ::= 'arm_aapcscc' 1783 /// ::= 'arm_aapcs_vfpcc' 1784 /// ::= 'aarch64_vector_pcs' 1785 /// ::= 'aarch64_sve_vector_pcs' 1786 /// ::= 'msp430_intrcc' 1787 /// ::= 'avr_intrcc' 1788 /// ::= 'avr_signalcc' 1789 /// ::= 'ptx_kernel' 1790 /// ::= 'ptx_device' 1791 /// ::= 'spir_func' 1792 /// ::= 'spir_kernel' 1793 /// ::= 'x86_64_sysvcc' 1794 /// ::= 'win64cc' 1795 /// ::= 'webkit_jscc' 1796 /// ::= 'anyregcc' 1797 /// ::= 'preserve_mostcc' 1798 /// ::= 'preserve_allcc' 1799 /// ::= 'ghccc' 1800 /// ::= 'swiftcc' 1801 /// ::= 'swifttailcc' 1802 /// ::= 'x86_intrcc' 1803 /// ::= 'hhvmcc' 1804 /// ::= 'hhvm_ccc' 1805 /// ::= 'cxx_fast_tlscc' 1806 /// ::= 'amdgpu_vs' 1807 /// ::= 'amdgpu_ls' 1808 /// ::= 'amdgpu_hs' 1809 /// ::= 'amdgpu_es' 1810 /// ::= 'amdgpu_gs' 1811 /// ::= 'amdgpu_ps' 1812 /// ::= 'amdgpu_cs' 1813 /// ::= 'amdgpu_kernel' 1814 /// ::= 'tailcc' 1815 /// ::= 'cc' UINT 1816 /// 1817 bool LLParser::parseOptionalCallingConv(unsigned &CC) { 1818 switch (Lex.getKind()) { 1819 default: CC = CallingConv::C; return false; 1820 case lltok::kw_ccc: CC = CallingConv::C; break; 1821 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1822 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1823 case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break; 1824 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1825 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1826 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break; 1827 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1828 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 1829 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1830 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1831 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1832 case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break; 1833 case lltok::kw_aarch64_sve_vector_pcs: 1834 CC = CallingConv::AArch64_SVE_VectorCall; 1835 break; 1836 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1837 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 1838 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 1839 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1840 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1841 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 1842 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 1843 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 1844 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 1845 case lltok::kw_win64cc: CC = CallingConv::Win64; break; 1846 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 1847 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 1848 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 1849 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 1850 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 1851 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 1852 case lltok::kw_swifttailcc: CC = CallingConv::SwiftTail; break; 1853 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 1854 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 1855 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 1856 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 1857 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 1858 case lltok::kw_amdgpu_gfx: CC = CallingConv::AMDGPU_Gfx; break; 1859 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break; 1860 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break; 1861 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break; 1862 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 1863 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 1864 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 1865 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 1866 case lltok::kw_tailcc: CC = CallingConv::Tail; break; 1867 case lltok::kw_cc: { 1868 Lex.Lex(); 1869 return parseUInt32(CC); 1870 } 1871 } 1872 1873 Lex.Lex(); 1874 return false; 1875 } 1876 1877 /// parseMetadataAttachment 1878 /// ::= !dbg !42 1879 bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 1880 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 1881 1882 std::string Name = Lex.getStrVal(); 1883 Kind = M->getMDKindID(Name); 1884 Lex.Lex(); 1885 1886 return parseMDNode(MD); 1887 } 1888 1889 /// parseInstructionMetadata 1890 /// ::= !dbg !42 (',' !dbg !57)* 1891 bool LLParser::parseInstructionMetadata(Instruction &Inst) { 1892 do { 1893 if (Lex.getKind() != lltok::MetadataVar) 1894 return tokError("expected metadata after comma"); 1895 1896 unsigned MDK; 1897 MDNode *N; 1898 if (parseMetadataAttachment(MDK, N)) 1899 return true; 1900 1901 Inst.setMetadata(MDK, N); 1902 if (MDK == LLVMContext::MD_tbaa) 1903 InstsWithTBAATag.push_back(&Inst); 1904 1905 // If this is the end of the list, we're done. 1906 } while (EatIfPresent(lltok::comma)); 1907 return false; 1908 } 1909 1910 /// parseGlobalObjectMetadataAttachment 1911 /// ::= !dbg !57 1912 bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) { 1913 unsigned MDK; 1914 MDNode *N; 1915 if (parseMetadataAttachment(MDK, N)) 1916 return true; 1917 1918 GO.addMetadata(MDK, *N); 1919 return false; 1920 } 1921 1922 /// parseOptionalFunctionMetadata 1923 /// ::= (!dbg !57)* 1924 bool LLParser::parseOptionalFunctionMetadata(Function &F) { 1925 while (Lex.getKind() == lltok::MetadataVar) 1926 if (parseGlobalObjectMetadataAttachment(F)) 1927 return true; 1928 return false; 1929 } 1930 1931 /// parseOptionalAlignment 1932 /// ::= /* empty */ 1933 /// ::= 'align' 4 1934 bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) { 1935 Alignment = None; 1936 if (!EatIfPresent(lltok::kw_align)) 1937 return false; 1938 LocTy AlignLoc = Lex.getLoc(); 1939 uint32_t Value = 0; 1940 1941 LocTy ParenLoc = Lex.getLoc(); 1942 bool HaveParens = false; 1943 if (AllowParens) { 1944 if (EatIfPresent(lltok::lparen)) 1945 HaveParens = true; 1946 } 1947 1948 if (parseUInt32(Value)) 1949 return true; 1950 1951 if (HaveParens && !EatIfPresent(lltok::rparen)) 1952 return error(ParenLoc, "expected ')'"); 1953 1954 if (!isPowerOf2_32(Value)) 1955 return error(AlignLoc, "alignment is not a power of two"); 1956 if (Value > Value::MaximumAlignment) 1957 return error(AlignLoc, "huge alignments are not supported yet"); 1958 Alignment = Align(Value); 1959 return false; 1960 } 1961 1962 /// parseOptionalDerefAttrBytes 1963 /// ::= /* empty */ 1964 /// ::= AttrKind '(' 4 ')' 1965 /// 1966 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 1967 bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind, 1968 uint64_t &Bytes) { 1969 assert((AttrKind == lltok::kw_dereferenceable || 1970 AttrKind == lltok::kw_dereferenceable_or_null) && 1971 "contract!"); 1972 1973 Bytes = 0; 1974 if (!EatIfPresent(AttrKind)) 1975 return false; 1976 LocTy ParenLoc = Lex.getLoc(); 1977 if (!EatIfPresent(lltok::lparen)) 1978 return error(ParenLoc, "expected '('"); 1979 LocTy DerefLoc = Lex.getLoc(); 1980 if (parseUInt64(Bytes)) 1981 return true; 1982 ParenLoc = Lex.getLoc(); 1983 if (!EatIfPresent(lltok::rparen)) 1984 return error(ParenLoc, "expected ')'"); 1985 if (!Bytes) 1986 return error(DerefLoc, "dereferenceable bytes must be non-zero"); 1987 return false; 1988 } 1989 1990 /// parseOptionalCommaAlign 1991 /// ::= 1992 /// ::= ',' align 4 1993 /// 1994 /// This returns with AteExtraComma set to true if it ate an excess comma at the 1995 /// end. 1996 bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment, 1997 bool &AteExtraComma) { 1998 AteExtraComma = false; 1999 while (EatIfPresent(lltok::comma)) { 2000 // Metadata at the end is an early exit. 2001 if (Lex.getKind() == lltok::MetadataVar) { 2002 AteExtraComma = true; 2003 return false; 2004 } 2005 2006 if (Lex.getKind() != lltok::kw_align) 2007 return error(Lex.getLoc(), "expected metadata or 'align'"); 2008 2009 if (parseOptionalAlignment(Alignment)) 2010 return true; 2011 } 2012 2013 return false; 2014 } 2015 2016 /// parseOptionalCommaAddrSpace 2017 /// ::= 2018 /// ::= ',' addrspace(1) 2019 /// 2020 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2021 /// end. 2022 bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc, 2023 bool &AteExtraComma) { 2024 AteExtraComma = false; 2025 while (EatIfPresent(lltok::comma)) { 2026 // Metadata at the end is an early exit. 2027 if (Lex.getKind() == lltok::MetadataVar) { 2028 AteExtraComma = true; 2029 return false; 2030 } 2031 2032 Loc = Lex.getLoc(); 2033 if (Lex.getKind() != lltok::kw_addrspace) 2034 return error(Lex.getLoc(), "expected metadata or 'addrspace'"); 2035 2036 if (parseOptionalAddrSpace(AddrSpace)) 2037 return true; 2038 } 2039 2040 return false; 2041 } 2042 2043 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 2044 Optional<unsigned> &HowManyArg) { 2045 Lex.Lex(); 2046 2047 auto StartParen = Lex.getLoc(); 2048 if (!EatIfPresent(lltok::lparen)) 2049 return error(StartParen, "expected '('"); 2050 2051 if (parseUInt32(BaseSizeArg)) 2052 return true; 2053 2054 if (EatIfPresent(lltok::comma)) { 2055 auto HowManyAt = Lex.getLoc(); 2056 unsigned HowMany; 2057 if (parseUInt32(HowMany)) 2058 return true; 2059 if (HowMany == BaseSizeArg) 2060 return error(HowManyAt, 2061 "'allocsize' indices can't refer to the same parameter"); 2062 HowManyArg = HowMany; 2063 } else 2064 HowManyArg = None; 2065 2066 auto EndParen = Lex.getLoc(); 2067 if (!EatIfPresent(lltok::rparen)) 2068 return error(EndParen, "expected ')'"); 2069 return false; 2070 } 2071 2072 bool LLParser::parseVScaleRangeArguments(unsigned &MinValue, 2073 unsigned &MaxValue) { 2074 Lex.Lex(); 2075 2076 auto StartParen = Lex.getLoc(); 2077 if (!EatIfPresent(lltok::lparen)) 2078 return error(StartParen, "expected '('"); 2079 2080 if (parseUInt32(MinValue)) 2081 return true; 2082 2083 if (EatIfPresent(lltok::comma)) { 2084 if (parseUInt32(MaxValue)) 2085 return true; 2086 } else 2087 MaxValue = MinValue; 2088 2089 auto EndParen = Lex.getLoc(); 2090 if (!EatIfPresent(lltok::rparen)) 2091 return error(EndParen, "expected ')'"); 2092 return false; 2093 } 2094 2095 /// parseScopeAndOrdering 2096 /// if isAtomic: ::= SyncScope? AtomicOrdering 2097 /// else: ::= 2098 /// 2099 /// This sets Scope and Ordering to the parsed values. 2100 bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID, 2101 AtomicOrdering &Ordering) { 2102 if (!IsAtomic) 2103 return false; 2104 2105 return parseScope(SSID) || parseOrdering(Ordering); 2106 } 2107 2108 /// parseScope 2109 /// ::= syncscope("singlethread" | "<target scope>")? 2110 /// 2111 /// This sets synchronization scope ID to the ID of the parsed value. 2112 bool LLParser::parseScope(SyncScope::ID &SSID) { 2113 SSID = SyncScope::System; 2114 if (EatIfPresent(lltok::kw_syncscope)) { 2115 auto StartParenAt = Lex.getLoc(); 2116 if (!EatIfPresent(lltok::lparen)) 2117 return error(StartParenAt, "Expected '(' in syncscope"); 2118 2119 std::string SSN; 2120 auto SSNAt = Lex.getLoc(); 2121 if (parseStringConstant(SSN)) 2122 return error(SSNAt, "Expected synchronization scope name"); 2123 2124 auto EndParenAt = Lex.getLoc(); 2125 if (!EatIfPresent(lltok::rparen)) 2126 return error(EndParenAt, "Expected ')' in syncscope"); 2127 2128 SSID = Context.getOrInsertSyncScopeID(SSN); 2129 } 2130 2131 return false; 2132 } 2133 2134 /// parseOrdering 2135 /// ::= AtomicOrdering 2136 /// 2137 /// This sets Ordering to the parsed value. 2138 bool LLParser::parseOrdering(AtomicOrdering &Ordering) { 2139 switch (Lex.getKind()) { 2140 default: 2141 return tokError("Expected ordering on atomic instruction"); 2142 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 2143 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 2144 // Not specified yet: 2145 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 2146 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 2147 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 2148 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 2149 case lltok::kw_seq_cst: 2150 Ordering = AtomicOrdering::SequentiallyConsistent; 2151 break; 2152 } 2153 Lex.Lex(); 2154 return false; 2155 } 2156 2157 /// parseOptionalStackAlignment 2158 /// ::= /* empty */ 2159 /// ::= 'alignstack' '(' 4 ')' 2160 bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) { 2161 Alignment = 0; 2162 if (!EatIfPresent(lltok::kw_alignstack)) 2163 return false; 2164 LocTy ParenLoc = Lex.getLoc(); 2165 if (!EatIfPresent(lltok::lparen)) 2166 return error(ParenLoc, "expected '('"); 2167 LocTy AlignLoc = Lex.getLoc(); 2168 if (parseUInt32(Alignment)) 2169 return true; 2170 ParenLoc = Lex.getLoc(); 2171 if (!EatIfPresent(lltok::rparen)) 2172 return error(ParenLoc, "expected ')'"); 2173 if (!isPowerOf2_32(Alignment)) 2174 return error(AlignLoc, "stack alignment is not a power of two"); 2175 return false; 2176 } 2177 2178 /// parseIndexList - This parses the index list for an insert/extractvalue 2179 /// instruction. This sets AteExtraComma in the case where we eat an extra 2180 /// comma at the end of the line and find that it is followed by metadata. 2181 /// Clients that don't allow metadata can call the version of this function that 2182 /// only takes one argument. 2183 /// 2184 /// parseIndexList 2185 /// ::= (',' uint32)+ 2186 /// 2187 bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices, 2188 bool &AteExtraComma) { 2189 AteExtraComma = false; 2190 2191 if (Lex.getKind() != lltok::comma) 2192 return tokError("expected ',' as start of index list"); 2193 2194 while (EatIfPresent(lltok::comma)) { 2195 if (Lex.getKind() == lltok::MetadataVar) { 2196 if (Indices.empty()) 2197 return tokError("expected index"); 2198 AteExtraComma = true; 2199 return false; 2200 } 2201 unsigned Idx = 0; 2202 if (parseUInt32(Idx)) 2203 return true; 2204 Indices.push_back(Idx); 2205 } 2206 2207 return false; 2208 } 2209 2210 //===----------------------------------------------------------------------===// 2211 // Type Parsing. 2212 //===----------------------------------------------------------------------===// 2213 2214 /// parseType - parse a type. 2215 bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 2216 SMLoc TypeLoc = Lex.getLoc(); 2217 switch (Lex.getKind()) { 2218 default: 2219 return tokError(Msg); 2220 case lltok::Type: 2221 // Type ::= 'float' | 'void' (etc) 2222 Result = Lex.getTyVal(); 2223 Lex.Lex(); 2224 break; 2225 case lltok::lbrace: 2226 // Type ::= StructType 2227 if (parseAnonStructType(Result, false)) 2228 return true; 2229 break; 2230 case lltok::lsquare: 2231 // Type ::= '[' ... ']' 2232 Lex.Lex(); // eat the lsquare. 2233 if (parseArrayVectorType(Result, false)) 2234 return true; 2235 break; 2236 case lltok::less: // Either vector or packed struct. 2237 // Type ::= '<' ... '>' 2238 Lex.Lex(); 2239 if (Lex.getKind() == lltok::lbrace) { 2240 if (parseAnonStructType(Result, true) || 2241 parseToken(lltok::greater, "expected '>' at end of packed struct")) 2242 return true; 2243 } else if (parseArrayVectorType(Result, true)) 2244 return true; 2245 break; 2246 case lltok::LocalVar: { 2247 // Type ::= %foo 2248 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2249 2250 // If the type hasn't been defined yet, create a forward definition and 2251 // remember where that forward def'n was seen (in case it never is defined). 2252 if (!Entry.first) { 2253 Entry.first = StructType::create(Context, Lex.getStrVal()); 2254 Entry.second = Lex.getLoc(); 2255 } 2256 Result = Entry.first; 2257 Lex.Lex(); 2258 break; 2259 } 2260 2261 case lltok::LocalVarID: { 2262 // Type ::= %4 2263 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2264 2265 // If the type hasn't been defined yet, create a forward definition and 2266 // remember where that forward def'n was seen (in case it never is defined). 2267 if (!Entry.first) { 2268 Entry.first = StructType::create(Context); 2269 Entry.second = Lex.getLoc(); 2270 } 2271 Result = Entry.first; 2272 Lex.Lex(); 2273 break; 2274 } 2275 } 2276 2277 // Handle (explicit) opaque pointer types (not --force-opaque-pointers). 2278 // 2279 // Type ::= ptr ('addrspace' '(' uint32 ')')? 2280 if (Result->isOpaquePointerTy()) { 2281 unsigned AddrSpace; 2282 if (parseOptionalAddrSpace(AddrSpace)) 2283 return true; 2284 Result = PointerType::get(getContext(), AddrSpace); 2285 2286 // Give a nice error for 'ptr*'. 2287 if (Lex.getKind() == lltok::star) 2288 return tokError("ptr* is invalid - use ptr instead"); 2289 2290 // Fall through to parsing the type suffixes only if this 'ptr' is a 2291 // function return. Otherwise, return success, implicitly rejecting other 2292 // suffixes. 2293 if (Lex.getKind() != lltok::lparen) 2294 return false; 2295 } 2296 2297 // parse the type suffixes. 2298 while (true) { 2299 switch (Lex.getKind()) { 2300 // End of type. 2301 default: 2302 if (!AllowVoid && Result->isVoidTy()) 2303 return error(TypeLoc, "void type only allowed for function results"); 2304 return false; 2305 2306 // Type ::= Type '*' 2307 case lltok::star: 2308 if (Result->isLabelTy()) 2309 return tokError("basic block pointers are invalid"); 2310 if (Result->isVoidTy()) 2311 return tokError("pointers to void are invalid - use i8* instead"); 2312 if (!PointerType::isValidElementType(Result)) 2313 return tokError("pointer to this type is invalid"); 2314 Result = PointerType::getUnqual(Result); 2315 Lex.Lex(); 2316 break; 2317 2318 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2319 case lltok::kw_addrspace: { 2320 if (Result->isLabelTy()) 2321 return tokError("basic block pointers are invalid"); 2322 if (Result->isVoidTy()) 2323 return tokError("pointers to void are invalid; use i8* instead"); 2324 if (!PointerType::isValidElementType(Result)) 2325 return tokError("pointer to this type is invalid"); 2326 unsigned AddrSpace; 2327 if (parseOptionalAddrSpace(AddrSpace) || 2328 parseToken(lltok::star, "expected '*' in address space")) 2329 return true; 2330 2331 Result = PointerType::get(Result, AddrSpace); 2332 break; 2333 } 2334 2335 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2336 case lltok::lparen: 2337 if (parseFunctionType(Result)) 2338 return true; 2339 break; 2340 } 2341 } 2342 } 2343 2344 /// parseParameterList 2345 /// ::= '(' ')' 2346 /// ::= '(' Arg (',' Arg)* ')' 2347 /// Arg 2348 /// ::= Type OptionalAttributes Value OptionalAttributes 2349 bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2350 PerFunctionState &PFS, bool IsMustTailCall, 2351 bool InVarArgsFunc) { 2352 if (parseToken(lltok::lparen, "expected '(' in call")) 2353 return true; 2354 2355 while (Lex.getKind() != lltok::rparen) { 2356 // If this isn't the first argument, we need a comma. 2357 if (!ArgList.empty() && 2358 parseToken(lltok::comma, "expected ',' in argument list")) 2359 return true; 2360 2361 // parse an ellipsis if this is a musttail call in a variadic function. 2362 if (Lex.getKind() == lltok::dotdotdot) { 2363 const char *Msg = "unexpected ellipsis in argument list for "; 2364 if (!IsMustTailCall) 2365 return tokError(Twine(Msg) + "non-musttail call"); 2366 if (!InVarArgsFunc) 2367 return tokError(Twine(Msg) + "musttail call in non-varargs function"); 2368 Lex.Lex(); // Lex the '...', it is purely for readability. 2369 return parseToken(lltok::rparen, "expected ')' at end of argument list"); 2370 } 2371 2372 // parse the argument. 2373 LocTy ArgLoc; 2374 Type *ArgTy = nullptr; 2375 AttrBuilder ArgAttrs; 2376 Value *V; 2377 if (parseType(ArgTy, ArgLoc)) 2378 return true; 2379 2380 if (ArgTy->isMetadataTy()) { 2381 if (parseMetadataAsValue(V, PFS)) 2382 return true; 2383 } else { 2384 // Otherwise, handle normal operands. 2385 if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS)) 2386 return true; 2387 } 2388 ArgList.push_back(ParamInfo( 2389 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs))); 2390 } 2391 2392 if (IsMustTailCall && InVarArgsFunc) 2393 return tokError("expected '...' at end of argument list for musttail call " 2394 "in varargs function"); 2395 2396 Lex.Lex(); // Lex the ')'. 2397 return false; 2398 } 2399 2400 /// parseRequiredTypeAttr 2401 /// ::= attrname(<ty>) 2402 bool LLParser::parseRequiredTypeAttr(AttrBuilder &B, lltok::Kind AttrToken, 2403 Attribute::AttrKind AttrKind) { 2404 Type *Ty = nullptr; 2405 if (!EatIfPresent(AttrToken)) 2406 return true; 2407 if (!EatIfPresent(lltok::lparen)) 2408 return error(Lex.getLoc(), "expected '('"); 2409 if (parseType(Ty)) 2410 return true; 2411 if (!EatIfPresent(lltok::rparen)) 2412 return error(Lex.getLoc(), "expected ')'"); 2413 2414 B.addTypeAttr(AttrKind, Ty); 2415 return false; 2416 } 2417 2418 /// parseOptionalOperandBundles 2419 /// ::= /*empty*/ 2420 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2421 /// 2422 /// OperandBundle 2423 /// ::= bundle-tag '(' ')' 2424 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2425 /// 2426 /// bundle-tag ::= String Constant 2427 bool LLParser::parseOptionalOperandBundles( 2428 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2429 LocTy BeginLoc = Lex.getLoc(); 2430 if (!EatIfPresent(lltok::lsquare)) 2431 return false; 2432 2433 while (Lex.getKind() != lltok::rsquare) { 2434 // If this isn't the first operand bundle, we need a comma. 2435 if (!BundleList.empty() && 2436 parseToken(lltok::comma, "expected ',' in input list")) 2437 return true; 2438 2439 std::string Tag; 2440 if (parseStringConstant(Tag)) 2441 return true; 2442 2443 if (parseToken(lltok::lparen, "expected '(' in operand bundle")) 2444 return true; 2445 2446 std::vector<Value *> Inputs; 2447 while (Lex.getKind() != lltok::rparen) { 2448 // If this isn't the first input, we need a comma. 2449 if (!Inputs.empty() && 2450 parseToken(lltok::comma, "expected ',' in input list")) 2451 return true; 2452 2453 Type *Ty = nullptr; 2454 Value *Input = nullptr; 2455 if (parseType(Ty) || parseValue(Ty, Input, PFS)) 2456 return true; 2457 Inputs.push_back(Input); 2458 } 2459 2460 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2461 2462 Lex.Lex(); // Lex the ')'. 2463 } 2464 2465 if (BundleList.empty()) 2466 return error(BeginLoc, "operand bundle set must not be empty"); 2467 2468 Lex.Lex(); // Lex the ']'. 2469 return false; 2470 } 2471 2472 /// parseArgumentList - parse the argument list for a function type or function 2473 /// prototype. 2474 /// ::= '(' ArgTypeListI ')' 2475 /// ArgTypeListI 2476 /// ::= /*empty*/ 2477 /// ::= '...' 2478 /// ::= ArgTypeList ',' '...' 2479 /// ::= ArgType (',' ArgType)* 2480 /// 2481 bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2482 bool &IsVarArg) { 2483 unsigned CurValID = 0; 2484 IsVarArg = false; 2485 assert(Lex.getKind() == lltok::lparen); 2486 Lex.Lex(); // eat the (. 2487 2488 if (Lex.getKind() == lltok::rparen) { 2489 // empty 2490 } else if (Lex.getKind() == lltok::dotdotdot) { 2491 IsVarArg = true; 2492 Lex.Lex(); 2493 } else { 2494 LocTy TypeLoc = Lex.getLoc(); 2495 Type *ArgTy = nullptr; 2496 AttrBuilder Attrs; 2497 std::string Name; 2498 2499 if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs)) 2500 return true; 2501 2502 if (ArgTy->isVoidTy()) 2503 return error(TypeLoc, "argument can not have void type"); 2504 2505 if (Lex.getKind() == lltok::LocalVar) { 2506 Name = Lex.getStrVal(); 2507 Lex.Lex(); 2508 } else if (Lex.getKind() == lltok::LocalVarID) { 2509 if (Lex.getUIntVal() != CurValID) 2510 return error(TypeLoc, "argument expected to be numbered '%" + 2511 Twine(CurValID) + "'"); 2512 ++CurValID; 2513 Lex.Lex(); 2514 } 2515 2516 if (!FunctionType::isValidArgumentType(ArgTy)) 2517 return error(TypeLoc, "invalid type for function argument"); 2518 2519 ArgList.emplace_back(TypeLoc, ArgTy, 2520 AttributeSet::get(ArgTy->getContext(), Attrs), 2521 std::move(Name)); 2522 2523 while (EatIfPresent(lltok::comma)) { 2524 // Handle ... at end of arg list. 2525 if (EatIfPresent(lltok::dotdotdot)) { 2526 IsVarArg = true; 2527 break; 2528 } 2529 2530 // Otherwise must be an argument type. 2531 TypeLoc = Lex.getLoc(); 2532 if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs)) 2533 return true; 2534 2535 if (ArgTy->isVoidTy()) 2536 return error(TypeLoc, "argument can not have void type"); 2537 2538 if (Lex.getKind() == lltok::LocalVar) { 2539 Name = Lex.getStrVal(); 2540 Lex.Lex(); 2541 } else { 2542 if (Lex.getKind() == lltok::LocalVarID) { 2543 if (Lex.getUIntVal() != CurValID) 2544 return error(TypeLoc, "argument expected to be numbered '%" + 2545 Twine(CurValID) + "'"); 2546 Lex.Lex(); 2547 } 2548 ++CurValID; 2549 Name = ""; 2550 } 2551 2552 if (!ArgTy->isFirstClassType()) 2553 return error(TypeLoc, "invalid type for function argument"); 2554 2555 ArgList.emplace_back(TypeLoc, ArgTy, 2556 AttributeSet::get(ArgTy->getContext(), Attrs), 2557 std::move(Name)); 2558 } 2559 } 2560 2561 return parseToken(lltok::rparen, "expected ')' at end of argument list"); 2562 } 2563 2564 /// parseFunctionType 2565 /// ::= Type ArgumentList OptionalAttrs 2566 bool LLParser::parseFunctionType(Type *&Result) { 2567 assert(Lex.getKind() == lltok::lparen); 2568 2569 if (!FunctionType::isValidReturnType(Result)) 2570 return tokError("invalid function return type"); 2571 2572 SmallVector<ArgInfo, 8> ArgList; 2573 bool IsVarArg; 2574 if (parseArgumentList(ArgList, IsVarArg)) 2575 return true; 2576 2577 // Reject names on the arguments lists. 2578 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2579 if (!ArgList[i].Name.empty()) 2580 return error(ArgList[i].Loc, "argument name invalid in function type"); 2581 if (ArgList[i].Attrs.hasAttributes()) 2582 return error(ArgList[i].Loc, 2583 "argument attributes invalid in function type"); 2584 } 2585 2586 SmallVector<Type*, 16> ArgListTy; 2587 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2588 ArgListTy.push_back(ArgList[i].Ty); 2589 2590 Result = FunctionType::get(Result, ArgListTy, IsVarArg); 2591 return false; 2592 } 2593 2594 /// parseAnonStructType - parse an anonymous struct type, which is inlined into 2595 /// other structs. 2596 bool LLParser::parseAnonStructType(Type *&Result, bool Packed) { 2597 SmallVector<Type*, 8> Elts; 2598 if (parseStructBody(Elts)) 2599 return true; 2600 2601 Result = StructType::get(Context, Elts, Packed); 2602 return false; 2603 } 2604 2605 /// parseStructDefinition - parse a struct in a 'type' definition. 2606 bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name, 2607 std::pair<Type *, LocTy> &Entry, 2608 Type *&ResultTy) { 2609 // If the type was already defined, diagnose the redefinition. 2610 if (Entry.first && !Entry.second.isValid()) 2611 return error(TypeLoc, "redefinition of type"); 2612 2613 // If we have opaque, just return without filling in the definition for the 2614 // struct. This counts as a definition as far as the .ll file goes. 2615 if (EatIfPresent(lltok::kw_opaque)) { 2616 // This type is being defined, so clear the location to indicate this. 2617 Entry.second = SMLoc(); 2618 2619 // If this type number has never been uttered, create it. 2620 if (!Entry.first) 2621 Entry.first = StructType::create(Context, Name); 2622 ResultTy = Entry.first; 2623 return false; 2624 } 2625 2626 // If the type starts with '<', then it is either a packed struct or a vector. 2627 bool isPacked = EatIfPresent(lltok::less); 2628 2629 // If we don't have a struct, then we have a random type alias, which we 2630 // accept for compatibility with old files. These types are not allowed to be 2631 // forward referenced and not allowed to be recursive. 2632 if (Lex.getKind() != lltok::lbrace) { 2633 if (Entry.first) 2634 return error(TypeLoc, "forward references to non-struct type"); 2635 2636 ResultTy = nullptr; 2637 if (isPacked) 2638 return parseArrayVectorType(ResultTy, true); 2639 return parseType(ResultTy); 2640 } 2641 2642 // This type is being defined, so clear the location to indicate this. 2643 Entry.second = SMLoc(); 2644 2645 // If this type number has never been uttered, create it. 2646 if (!Entry.first) 2647 Entry.first = StructType::create(Context, Name); 2648 2649 StructType *STy = cast<StructType>(Entry.first); 2650 2651 SmallVector<Type*, 8> Body; 2652 if (parseStructBody(Body) || 2653 (isPacked && parseToken(lltok::greater, "expected '>' in packed struct"))) 2654 return true; 2655 2656 STy->setBody(Body, isPacked); 2657 ResultTy = STy; 2658 return false; 2659 } 2660 2661 /// parseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2662 /// StructType 2663 /// ::= '{' '}' 2664 /// ::= '{' Type (',' Type)* '}' 2665 /// ::= '<' '{' '}' '>' 2666 /// ::= '<' '{' Type (',' Type)* '}' '>' 2667 bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) { 2668 assert(Lex.getKind() == lltok::lbrace); 2669 Lex.Lex(); // Consume the '{' 2670 2671 // Handle the empty struct. 2672 if (EatIfPresent(lltok::rbrace)) 2673 return false; 2674 2675 LocTy EltTyLoc = Lex.getLoc(); 2676 Type *Ty = nullptr; 2677 if (parseType(Ty)) 2678 return true; 2679 Body.push_back(Ty); 2680 2681 if (!StructType::isValidElementType(Ty)) 2682 return error(EltTyLoc, "invalid element type for struct"); 2683 2684 while (EatIfPresent(lltok::comma)) { 2685 EltTyLoc = Lex.getLoc(); 2686 if (parseType(Ty)) 2687 return true; 2688 2689 if (!StructType::isValidElementType(Ty)) 2690 return error(EltTyLoc, "invalid element type for struct"); 2691 2692 Body.push_back(Ty); 2693 } 2694 2695 return parseToken(lltok::rbrace, "expected '}' at end of struct"); 2696 } 2697 2698 /// parseArrayVectorType - parse an array or vector type, assuming the first 2699 /// token has already been consumed. 2700 /// Type 2701 /// ::= '[' APSINTVAL 'x' Types ']' 2702 /// ::= '<' APSINTVAL 'x' Types '>' 2703 /// ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>' 2704 bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) { 2705 bool Scalable = false; 2706 2707 if (IsVector && Lex.getKind() == lltok::kw_vscale) { 2708 Lex.Lex(); // consume the 'vscale' 2709 if (parseToken(lltok::kw_x, "expected 'x' after vscale")) 2710 return true; 2711 2712 Scalable = true; 2713 } 2714 2715 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2716 Lex.getAPSIntVal().getBitWidth() > 64) 2717 return tokError("expected number in address space"); 2718 2719 LocTy SizeLoc = Lex.getLoc(); 2720 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2721 Lex.Lex(); 2722 2723 if (parseToken(lltok::kw_x, "expected 'x' after element count")) 2724 return true; 2725 2726 LocTy TypeLoc = Lex.getLoc(); 2727 Type *EltTy = nullptr; 2728 if (parseType(EltTy)) 2729 return true; 2730 2731 if (parseToken(IsVector ? lltok::greater : lltok::rsquare, 2732 "expected end of sequential type")) 2733 return true; 2734 2735 if (IsVector) { 2736 if (Size == 0) 2737 return error(SizeLoc, "zero element vector is illegal"); 2738 if ((unsigned)Size != Size) 2739 return error(SizeLoc, "size too large for vector"); 2740 if (!VectorType::isValidElementType(EltTy)) 2741 return error(TypeLoc, "invalid vector element type"); 2742 Result = VectorType::get(EltTy, unsigned(Size), Scalable); 2743 } else { 2744 if (!ArrayType::isValidElementType(EltTy)) 2745 return error(TypeLoc, "invalid array element type"); 2746 Result = ArrayType::get(EltTy, Size); 2747 } 2748 return false; 2749 } 2750 2751 //===----------------------------------------------------------------------===// 2752 // Function Semantic Analysis. 2753 //===----------------------------------------------------------------------===// 2754 2755 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 2756 int functionNumber) 2757 : P(p), F(f), FunctionNumber(functionNumber) { 2758 2759 // Insert unnamed arguments into the NumberedVals list. 2760 for (Argument &A : F.args()) 2761 if (!A.hasName()) 2762 NumberedVals.push_back(&A); 2763 } 2764 2765 LLParser::PerFunctionState::~PerFunctionState() { 2766 // If there were any forward referenced non-basicblock values, delete them. 2767 2768 for (const auto &P : ForwardRefVals) { 2769 if (isa<BasicBlock>(P.second.first)) 2770 continue; 2771 P.second.first->replaceAllUsesWith( 2772 UndefValue::get(P.second.first->getType())); 2773 P.second.first->deleteValue(); 2774 } 2775 2776 for (const auto &P : ForwardRefValIDs) { 2777 if (isa<BasicBlock>(P.second.first)) 2778 continue; 2779 P.second.first->replaceAllUsesWith( 2780 UndefValue::get(P.second.first->getType())); 2781 P.second.first->deleteValue(); 2782 } 2783 } 2784 2785 bool LLParser::PerFunctionState::finishFunction() { 2786 if (!ForwardRefVals.empty()) 2787 return P.error(ForwardRefVals.begin()->second.second, 2788 "use of undefined value '%" + ForwardRefVals.begin()->first + 2789 "'"); 2790 if (!ForwardRefValIDs.empty()) 2791 return P.error(ForwardRefValIDs.begin()->second.second, 2792 "use of undefined value '%" + 2793 Twine(ForwardRefValIDs.begin()->first) + "'"); 2794 return false; 2795 } 2796 2797 /// getVal - Get a value with the specified name or ID, creating a 2798 /// forward reference record if needed. This can return null if the value 2799 /// exists but does not have the right type. 2800 Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty, 2801 LocTy Loc, bool IsCall) { 2802 // Look this name up in the normal function symbol table. 2803 Value *Val = F.getValueSymbolTable()->lookup(Name); 2804 2805 // If this is a forward reference for the value, see if we already created a 2806 // forward ref record. 2807 if (!Val) { 2808 auto I = ForwardRefVals.find(Name); 2809 if (I != ForwardRefVals.end()) 2810 Val = I->second.first; 2811 } 2812 2813 // If we have the value in the symbol table or fwd-ref table, return it. 2814 if (Val) 2815 return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall); 2816 2817 // Don't make placeholders with invalid type. 2818 if (!Ty->isFirstClassType()) { 2819 P.error(Loc, "invalid use of a non-first-class type"); 2820 return nullptr; 2821 } 2822 2823 // Otherwise, create a new forward reference for this value and remember it. 2824 Value *FwdVal; 2825 if (Ty->isLabelTy()) { 2826 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 2827 } else { 2828 FwdVal = new Argument(Ty, Name); 2829 } 2830 2831 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 2832 return FwdVal; 2833 } 2834 2835 Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc, 2836 bool IsCall) { 2837 // Look this name up in the normal function symbol table. 2838 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 2839 2840 // If this is a forward reference for the value, see if we already created a 2841 // forward ref record. 2842 if (!Val) { 2843 auto I = ForwardRefValIDs.find(ID); 2844 if (I != ForwardRefValIDs.end()) 2845 Val = I->second.first; 2846 } 2847 2848 // If we have the value in the symbol table or fwd-ref table, return it. 2849 if (Val) 2850 return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall); 2851 2852 if (!Ty->isFirstClassType()) { 2853 P.error(Loc, "invalid use of a non-first-class type"); 2854 return nullptr; 2855 } 2856 2857 // Otherwise, create a new forward reference for this value and remember it. 2858 Value *FwdVal; 2859 if (Ty->isLabelTy()) { 2860 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 2861 } else { 2862 FwdVal = new Argument(Ty); 2863 } 2864 2865 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 2866 return FwdVal; 2867 } 2868 2869 /// setInstName - After an instruction is parsed and inserted into its 2870 /// basic block, this installs its name. 2871 bool LLParser::PerFunctionState::setInstName(int NameID, 2872 const std::string &NameStr, 2873 LocTy NameLoc, Instruction *Inst) { 2874 // If this instruction has void type, it cannot have a name or ID specified. 2875 if (Inst->getType()->isVoidTy()) { 2876 if (NameID != -1 || !NameStr.empty()) 2877 return P.error(NameLoc, "instructions returning void cannot have a name"); 2878 return false; 2879 } 2880 2881 // If this was a numbered instruction, verify that the instruction is the 2882 // expected value and resolve any forward references. 2883 if (NameStr.empty()) { 2884 // If neither a name nor an ID was specified, just use the next ID. 2885 if (NameID == -1) 2886 NameID = NumberedVals.size(); 2887 2888 if (unsigned(NameID) != NumberedVals.size()) 2889 return P.error(NameLoc, "instruction expected to be numbered '%" + 2890 Twine(NumberedVals.size()) + "'"); 2891 2892 auto FI = ForwardRefValIDs.find(NameID); 2893 if (FI != ForwardRefValIDs.end()) { 2894 Value *Sentinel = FI->second.first; 2895 if (Sentinel->getType() != Inst->getType()) 2896 return P.error(NameLoc, "instruction forward referenced with type '" + 2897 getTypeString(FI->second.first->getType()) + 2898 "'"); 2899 2900 Sentinel->replaceAllUsesWith(Inst); 2901 Sentinel->deleteValue(); 2902 ForwardRefValIDs.erase(FI); 2903 } 2904 2905 NumberedVals.push_back(Inst); 2906 return false; 2907 } 2908 2909 // Otherwise, the instruction had a name. Resolve forward refs and set it. 2910 auto FI = ForwardRefVals.find(NameStr); 2911 if (FI != ForwardRefVals.end()) { 2912 Value *Sentinel = FI->second.first; 2913 if (Sentinel->getType() != Inst->getType()) 2914 return P.error(NameLoc, "instruction forward referenced with type '" + 2915 getTypeString(FI->second.first->getType()) + 2916 "'"); 2917 2918 Sentinel->replaceAllUsesWith(Inst); 2919 Sentinel->deleteValue(); 2920 ForwardRefVals.erase(FI); 2921 } 2922 2923 // Set the name on the instruction. 2924 Inst->setName(NameStr); 2925 2926 if (Inst->getName() != NameStr) 2927 return P.error(NameLoc, "multiple definition of local value named '" + 2928 NameStr + "'"); 2929 return false; 2930 } 2931 2932 /// getBB - Get a basic block with the specified name or ID, creating a 2933 /// forward reference record if needed. 2934 BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name, 2935 LocTy Loc) { 2936 return dyn_cast_or_null<BasicBlock>( 2937 getVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 2938 } 2939 2940 BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) { 2941 return dyn_cast_or_null<BasicBlock>( 2942 getVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 2943 } 2944 2945 /// defineBB - Define the specified basic block, which is either named or 2946 /// unnamed. If there is an error, this returns null otherwise it returns 2947 /// the block being defined. 2948 BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name, 2949 int NameID, LocTy Loc) { 2950 BasicBlock *BB; 2951 if (Name.empty()) { 2952 if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) { 2953 P.error(Loc, "label expected to be numbered '" + 2954 Twine(NumberedVals.size()) + "'"); 2955 return nullptr; 2956 } 2957 BB = getBB(NumberedVals.size(), Loc); 2958 if (!BB) { 2959 P.error(Loc, "unable to create block numbered '" + 2960 Twine(NumberedVals.size()) + "'"); 2961 return nullptr; 2962 } 2963 } else { 2964 BB = getBB(Name, Loc); 2965 if (!BB) { 2966 P.error(Loc, "unable to create block named '" + Name + "'"); 2967 return nullptr; 2968 } 2969 } 2970 2971 // Move the block to the end of the function. Forward ref'd blocks are 2972 // inserted wherever they happen to be referenced. 2973 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 2974 2975 // Remove the block from forward ref sets. 2976 if (Name.empty()) { 2977 ForwardRefValIDs.erase(NumberedVals.size()); 2978 NumberedVals.push_back(BB); 2979 } else { 2980 // BB forward references are already in the function symbol table. 2981 ForwardRefVals.erase(Name); 2982 } 2983 2984 return BB; 2985 } 2986 2987 //===----------------------------------------------------------------------===// 2988 // Constants. 2989 //===----------------------------------------------------------------------===// 2990 2991 /// parseValID - parse an abstract value that doesn't necessarily have a 2992 /// type implied. For example, if we parse "4" we don't know what integer type 2993 /// it has. The value will later be combined with its type and checked for 2994 /// sanity. PFS is used to convert function-local operands of metadata (since 2995 /// metadata operands are not just parsed here but also converted to values). 2996 /// PFS can be null when we are not parsing metadata values inside a function. 2997 bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS, Type *ExpectedTy) { 2998 ID.Loc = Lex.getLoc(); 2999 switch (Lex.getKind()) { 3000 default: 3001 return tokError("expected value token"); 3002 case lltok::GlobalID: // @42 3003 ID.UIntVal = Lex.getUIntVal(); 3004 ID.Kind = ValID::t_GlobalID; 3005 break; 3006 case lltok::GlobalVar: // @foo 3007 ID.StrVal = Lex.getStrVal(); 3008 ID.Kind = ValID::t_GlobalName; 3009 break; 3010 case lltok::LocalVarID: // %42 3011 ID.UIntVal = Lex.getUIntVal(); 3012 ID.Kind = ValID::t_LocalID; 3013 break; 3014 case lltok::LocalVar: // %foo 3015 ID.StrVal = Lex.getStrVal(); 3016 ID.Kind = ValID::t_LocalName; 3017 break; 3018 case lltok::APSInt: 3019 ID.APSIntVal = Lex.getAPSIntVal(); 3020 ID.Kind = ValID::t_APSInt; 3021 break; 3022 case lltok::APFloat: 3023 ID.APFloatVal = Lex.getAPFloatVal(); 3024 ID.Kind = ValID::t_APFloat; 3025 break; 3026 case lltok::kw_true: 3027 ID.ConstantVal = ConstantInt::getTrue(Context); 3028 ID.Kind = ValID::t_Constant; 3029 break; 3030 case lltok::kw_false: 3031 ID.ConstantVal = ConstantInt::getFalse(Context); 3032 ID.Kind = ValID::t_Constant; 3033 break; 3034 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 3035 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 3036 case lltok::kw_poison: ID.Kind = ValID::t_Poison; break; 3037 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 3038 case lltok::kw_none: ID.Kind = ValID::t_None; break; 3039 3040 case lltok::lbrace: { 3041 // ValID ::= '{' ConstVector '}' 3042 Lex.Lex(); 3043 SmallVector<Constant*, 16> Elts; 3044 if (parseGlobalValueVector(Elts) || 3045 parseToken(lltok::rbrace, "expected end of struct constant")) 3046 return true; 3047 3048 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3049 ID.UIntVal = Elts.size(); 3050 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3051 Elts.size() * sizeof(Elts[0])); 3052 ID.Kind = ValID::t_ConstantStruct; 3053 return false; 3054 } 3055 case lltok::less: { 3056 // ValID ::= '<' ConstVector '>' --> Vector. 3057 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 3058 Lex.Lex(); 3059 bool isPackedStruct = EatIfPresent(lltok::lbrace); 3060 3061 SmallVector<Constant*, 16> Elts; 3062 LocTy FirstEltLoc = Lex.getLoc(); 3063 if (parseGlobalValueVector(Elts) || 3064 (isPackedStruct && 3065 parseToken(lltok::rbrace, "expected end of packed struct")) || 3066 parseToken(lltok::greater, "expected end of constant")) 3067 return true; 3068 3069 if (isPackedStruct) { 3070 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3071 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3072 Elts.size() * sizeof(Elts[0])); 3073 ID.UIntVal = Elts.size(); 3074 ID.Kind = ValID::t_PackedConstantStruct; 3075 return false; 3076 } 3077 3078 if (Elts.empty()) 3079 return error(ID.Loc, "constant vector must not be empty"); 3080 3081 if (!Elts[0]->getType()->isIntegerTy() && 3082 !Elts[0]->getType()->isFloatingPointTy() && 3083 !Elts[0]->getType()->isPointerTy()) 3084 return error( 3085 FirstEltLoc, 3086 "vector elements must have integer, pointer or floating point type"); 3087 3088 // Verify that all the vector elements have the same type. 3089 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 3090 if (Elts[i]->getType() != Elts[0]->getType()) 3091 return error(FirstEltLoc, "vector element #" + Twine(i) + 3092 " is not of type '" + 3093 getTypeString(Elts[0]->getType())); 3094 3095 ID.ConstantVal = ConstantVector::get(Elts); 3096 ID.Kind = ValID::t_Constant; 3097 return false; 3098 } 3099 case lltok::lsquare: { // Array Constant 3100 Lex.Lex(); 3101 SmallVector<Constant*, 16> Elts; 3102 LocTy FirstEltLoc = Lex.getLoc(); 3103 if (parseGlobalValueVector(Elts) || 3104 parseToken(lltok::rsquare, "expected end of array constant")) 3105 return true; 3106 3107 // Handle empty element. 3108 if (Elts.empty()) { 3109 // Use undef instead of an array because it's inconvenient to determine 3110 // the element type at this point, there being no elements to examine. 3111 ID.Kind = ValID::t_EmptyArray; 3112 return false; 3113 } 3114 3115 if (!Elts[0]->getType()->isFirstClassType()) 3116 return error(FirstEltLoc, "invalid array element type: " + 3117 getTypeString(Elts[0]->getType())); 3118 3119 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 3120 3121 // Verify all elements are correct type! 3122 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 3123 if (Elts[i]->getType() != Elts[0]->getType()) 3124 return error(FirstEltLoc, "array element #" + Twine(i) + 3125 " is not of type '" + 3126 getTypeString(Elts[0]->getType())); 3127 } 3128 3129 ID.ConstantVal = ConstantArray::get(ATy, Elts); 3130 ID.Kind = ValID::t_Constant; 3131 return false; 3132 } 3133 case lltok::kw_c: // c "foo" 3134 Lex.Lex(); 3135 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 3136 false); 3137 if (parseToken(lltok::StringConstant, "expected string")) 3138 return true; 3139 ID.Kind = ValID::t_Constant; 3140 return false; 3141 3142 case lltok::kw_asm: { 3143 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 3144 // STRINGCONSTANT 3145 bool HasSideEffect, AlignStack, AsmDialect, CanThrow; 3146 Lex.Lex(); 3147 if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 3148 parseOptionalToken(lltok::kw_alignstack, AlignStack) || 3149 parseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 3150 parseOptionalToken(lltok::kw_unwind, CanThrow) || 3151 parseStringConstant(ID.StrVal) || 3152 parseToken(lltok::comma, "expected comma in inline asm expression") || 3153 parseToken(lltok::StringConstant, "expected constraint string")) 3154 return true; 3155 ID.StrVal2 = Lex.getStrVal(); 3156 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack) << 1) | 3157 (unsigned(AsmDialect) << 2) | (unsigned(CanThrow) << 3); 3158 ID.Kind = ValID::t_InlineAsm; 3159 return false; 3160 } 3161 3162 case lltok::kw_blockaddress: { 3163 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 3164 Lex.Lex(); 3165 3166 ValID Fn, Label; 3167 3168 if (parseToken(lltok::lparen, "expected '(' in block address expression") || 3169 parseValID(Fn, PFS) || 3170 parseToken(lltok::comma, 3171 "expected comma in block address expression") || 3172 parseValID(Label, PFS) || 3173 parseToken(lltok::rparen, "expected ')' in block address expression")) 3174 return true; 3175 3176 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3177 return error(Fn.Loc, "expected function name in blockaddress"); 3178 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 3179 return error(Label.Loc, "expected basic block name in blockaddress"); 3180 3181 // Try to find the function (but skip it if it's forward-referenced). 3182 GlobalValue *GV = nullptr; 3183 if (Fn.Kind == ValID::t_GlobalID) { 3184 if (Fn.UIntVal < NumberedVals.size()) 3185 GV = NumberedVals[Fn.UIntVal]; 3186 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3187 GV = M->getNamedValue(Fn.StrVal); 3188 } 3189 Function *F = nullptr; 3190 if (GV) { 3191 // Confirm that it's actually a function with a definition. 3192 if (!isa<Function>(GV)) 3193 return error(Fn.Loc, "expected function name in blockaddress"); 3194 F = cast<Function>(GV); 3195 if (F->isDeclaration()) 3196 return error(Fn.Loc, "cannot take blockaddress inside a declaration"); 3197 } 3198 3199 if (!F) { 3200 // Make a global variable as a placeholder for this reference. 3201 GlobalValue *&FwdRef = 3202 ForwardRefBlockAddresses.insert(std::make_pair( 3203 std::move(Fn), 3204 std::map<ValID, GlobalValue *>())) 3205 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 3206 .first->second; 3207 if (!FwdRef) { 3208 unsigned FwdDeclAS; 3209 if (ExpectedTy) { 3210 // If we know the type that the blockaddress is being assigned to, 3211 // we can use the address space of that type. 3212 if (!ExpectedTy->isPointerTy()) 3213 return error(ID.Loc, 3214 "type of blockaddress must be a pointer and not '" + 3215 getTypeString(ExpectedTy) + "'"); 3216 FwdDeclAS = ExpectedTy->getPointerAddressSpace(); 3217 } else if (PFS) { 3218 // Otherwise, we default the address space of the current function. 3219 FwdDeclAS = PFS->getFunction().getAddressSpace(); 3220 } else { 3221 llvm_unreachable("Unknown address space for blockaddress"); 3222 } 3223 FwdRef = new GlobalVariable( 3224 *M, Type::getInt8Ty(Context), false, GlobalValue::InternalLinkage, 3225 nullptr, "", nullptr, GlobalValue::NotThreadLocal, FwdDeclAS); 3226 } 3227 3228 ID.ConstantVal = FwdRef; 3229 ID.Kind = ValID::t_Constant; 3230 return false; 3231 } 3232 3233 // We found the function; now find the basic block. Don't use PFS, since we 3234 // might be inside a constant expression. 3235 BasicBlock *BB; 3236 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 3237 if (Label.Kind == ValID::t_LocalID) 3238 BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc); 3239 else 3240 BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc); 3241 if (!BB) 3242 return error(Label.Loc, "referenced value is not a basic block"); 3243 } else { 3244 if (Label.Kind == ValID::t_LocalID) 3245 return error(Label.Loc, "cannot take address of numeric label after " 3246 "the function is defined"); 3247 BB = dyn_cast_or_null<BasicBlock>( 3248 F->getValueSymbolTable()->lookup(Label.StrVal)); 3249 if (!BB) 3250 return error(Label.Loc, "referenced value is not a basic block"); 3251 } 3252 3253 ID.ConstantVal = BlockAddress::get(F, BB); 3254 ID.Kind = ValID::t_Constant; 3255 return false; 3256 } 3257 3258 case lltok::kw_dso_local_equivalent: { 3259 // ValID ::= 'dso_local_equivalent' @foo 3260 Lex.Lex(); 3261 3262 ValID Fn; 3263 3264 if (parseValID(Fn, PFS)) 3265 return true; 3266 3267 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3268 return error(Fn.Loc, 3269 "expected global value name in dso_local_equivalent"); 3270 3271 // Try to find the function (but skip it if it's forward-referenced). 3272 GlobalValue *GV = nullptr; 3273 if (Fn.Kind == ValID::t_GlobalID) { 3274 if (Fn.UIntVal < NumberedVals.size()) 3275 GV = NumberedVals[Fn.UIntVal]; 3276 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3277 GV = M->getNamedValue(Fn.StrVal); 3278 } 3279 3280 assert(GV && "Could not find a corresponding global variable"); 3281 3282 if (!GV->getValueType()->isFunctionTy()) 3283 return error(Fn.Loc, "expected a function, alias to function, or ifunc " 3284 "in dso_local_equivalent"); 3285 3286 ID.ConstantVal = DSOLocalEquivalent::get(GV); 3287 ID.Kind = ValID::t_Constant; 3288 return false; 3289 } 3290 3291 case lltok::kw_trunc: 3292 case lltok::kw_zext: 3293 case lltok::kw_sext: 3294 case lltok::kw_fptrunc: 3295 case lltok::kw_fpext: 3296 case lltok::kw_bitcast: 3297 case lltok::kw_addrspacecast: 3298 case lltok::kw_uitofp: 3299 case lltok::kw_sitofp: 3300 case lltok::kw_fptoui: 3301 case lltok::kw_fptosi: 3302 case lltok::kw_inttoptr: 3303 case lltok::kw_ptrtoint: { 3304 unsigned Opc = Lex.getUIntVal(); 3305 Type *DestTy = nullptr; 3306 Constant *SrcVal; 3307 Lex.Lex(); 3308 if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") || 3309 parseGlobalTypeAndValue(SrcVal) || 3310 parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 3311 parseType(DestTy) || 3312 parseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 3313 return true; 3314 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 3315 return error(ID.Loc, "invalid cast opcode for cast from '" + 3316 getTypeString(SrcVal->getType()) + "' to '" + 3317 getTypeString(DestTy) + "'"); 3318 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 3319 SrcVal, DestTy); 3320 ID.Kind = ValID::t_Constant; 3321 return false; 3322 } 3323 case lltok::kw_extractvalue: { 3324 Lex.Lex(); 3325 Constant *Val; 3326 SmallVector<unsigned, 4> Indices; 3327 if (parseToken(lltok::lparen, 3328 "expected '(' in extractvalue constantexpr") || 3329 parseGlobalTypeAndValue(Val) || parseIndexList(Indices) || 3330 parseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 3331 return true; 3332 3333 if (!Val->getType()->isAggregateType()) 3334 return error(ID.Loc, "extractvalue operand must be aggregate type"); 3335 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 3336 return error(ID.Loc, "invalid indices for extractvalue"); 3337 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 3338 ID.Kind = ValID::t_Constant; 3339 return false; 3340 } 3341 case lltok::kw_insertvalue: { 3342 Lex.Lex(); 3343 Constant *Val0, *Val1; 3344 SmallVector<unsigned, 4> Indices; 3345 if (parseToken(lltok::lparen, "expected '(' in insertvalue constantexpr") || 3346 parseGlobalTypeAndValue(Val0) || 3347 parseToken(lltok::comma, 3348 "expected comma in insertvalue constantexpr") || 3349 parseGlobalTypeAndValue(Val1) || parseIndexList(Indices) || 3350 parseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 3351 return true; 3352 if (!Val0->getType()->isAggregateType()) 3353 return error(ID.Loc, "insertvalue operand must be aggregate type"); 3354 Type *IndexedType = 3355 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 3356 if (!IndexedType) 3357 return error(ID.Loc, "invalid indices for insertvalue"); 3358 if (IndexedType != Val1->getType()) 3359 return error(ID.Loc, "insertvalue operand and field disagree in type: '" + 3360 getTypeString(Val1->getType()) + 3361 "' instead of '" + getTypeString(IndexedType) + 3362 "'"); 3363 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 3364 ID.Kind = ValID::t_Constant; 3365 return false; 3366 } 3367 case lltok::kw_icmp: 3368 case lltok::kw_fcmp: { 3369 unsigned PredVal, Opc = Lex.getUIntVal(); 3370 Constant *Val0, *Val1; 3371 Lex.Lex(); 3372 if (parseCmpPredicate(PredVal, Opc) || 3373 parseToken(lltok::lparen, "expected '(' in compare constantexpr") || 3374 parseGlobalTypeAndValue(Val0) || 3375 parseToken(lltok::comma, "expected comma in compare constantexpr") || 3376 parseGlobalTypeAndValue(Val1) || 3377 parseToken(lltok::rparen, "expected ')' in compare constantexpr")) 3378 return true; 3379 3380 if (Val0->getType() != Val1->getType()) 3381 return error(ID.Loc, "compare operands must have the same type"); 3382 3383 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 3384 3385 if (Opc == Instruction::FCmp) { 3386 if (!Val0->getType()->isFPOrFPVectorTy()) 3387 return error(ID.Loc, "fcmp requires floating point operands"); 3388 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3389 } else { 3390 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3391 if (!Val0->getType()->isIntOrIntVectorTy() && 3392 !Val0->getType()->isPtrOrPtrVectorTy()) 3393 return error(ID.Loc, "icmp requires pointer or integer operands"); 3394 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3395 } 3396 ID.Kind = ValID::t_Constant; 3397 return false; 3398 } 3399 3400 // Unary Operators. 3401 case lltok::kw_fneg: { 3402 unsigned Opc = Lex.getUIntVal(); 3403 Constant *Val; 3404 Lex.Lex(); 3405 if (parseToken(lltok::lparen, "expected '(' in unary constantexpr") || 3406 parseGlobalTypeAndValue(Val) || 3407 parseToken(lltok::rparen, "expected ')' in unary constantexpr")) 3408 return true; 3409 3410 // Check that the type is valid for the operator. 3411 switch (Opc) { 3412 case Instruction::FNeg: 3413 if (!Val->getType()->isFPOrFPVectorTy()) 3414 return error(ID.Loc, "constexpr requires fp operands"); 3415 break; 3416 default: llvm_unreachable("Unknown unary operator!"); 3417 } 3418 unsigned Flags = 0; 3419 Constant *C = ConstantExpr::get(Opc, Val, Flags); 3420 ID.ConstantVal = C; 3421 ID.Kind = ValID::t_Constant; 3422 return false; 3423 } 3424 // Binary Operators. 3425 case lltok::kw_add: 3426 case lltok::kw_fadd: 3427 case lltok::kw_sub: 3428 case lltok::kw_fsub: 3429 case lltok::kw_mul: 3430 case lltok::kw_fmul: 3431 case lltok::kw_udiv: 3432 case lltok::kw_sdiv: 3433 case lltok::kw_fdiv: 3434 case lltok::kw_urem: 3435 case lltok::kw_srem: 3436 case lltok::kw_frem: 3437 case lltok::kw_shl: 3438 case lltok::kw_lshr: 3439 case lltok::kw_ashr: { 3440 bool NUW = false; 3441 bool NSW = false; 3442 bool Exact = false; 3443 unsigned Opc = Lex.getUIntVal(); 3444 Constant *Val0, *Val1; 3445 Lex.Lex(); 3446 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3447 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3448 if (EatIfPresent(lltok::kw_nuw)) 3449 NUW = true; 3450 if (EatIfPresent(lltok::kw_nsw)) { 3451 NSW = true; 3452 if (EatIfPresent(lltok::kw_nuw)) 3453 NUW = true; 3454 } 3455 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3456 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3457 if (EatIfPresent(lltok::kw_exact)) 3458 Exact = true; 3459 } 3460 if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3461 parseGlobalTypeAndValue(Val0) || 3462 parseToken(lltok::comma, "expected comma in binary constantexpr") || 3463 parseGlobalTypeAndValue(Val1) || 3464 parseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3465 return true; 3466 if (Val0->getType() != Val1->getType()) 3467 return error(ID.Loc, "operands of constexpr must have same type"); 3468 // Check that the type is valid for the operator. 3469 switch (Opc) { 3470 case Instruction::Add: 3471 case Instruction::Sub: 3472 case Instruction::Mul: 3473 case Instruction::UDiv: 3474 case Instruction::SDiv: 3475 case Instruction::URem: 3476 case Instruction::SRem: 3477 case Instruction::Shl: 3478 case Instruction::AShr: 3479 case Instruction::LShr: 3480 if (!Val0->getType()->isIntOrIntVectorTy()) 3481 return error(ID.Loc, "constexpr requires integer operands"); 3482 break; 3483 case Instruction::FAdd: 3484 case Instruction::FSub: 3485 case Instruction::FMul: 3486 case Instruction::FDiv: 3487 case Instruction::FRem: 3488 if (!Val0->getType()->isFPOrFPVectorTy()) 3489 return error(ID.Loc, "constexpr requires fp operands"); 3490 break; 3491 default: llvm_unreachable("Unknown binary operator!"); 3492 } 3493 unsigned Flags = 0; 3494 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3495 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3496 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3497 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3498 ID.ConstantVal = C; 3499 ID.Kind = ValID::t_Constant; 3500 return false; 3501 } 3502 3503 // Logical Operations 3504 case lltok::kw_and: 3505 case lltok::kw_or: 3506 case lltok::kw_xor: { 3507 unsigned Opc = Lex.getUIntVal(); 3508 Constant *Val0, *Val1; 3509 Lex.Lex(); 3510 if (parseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3511 parseGlobalTypeAndValue(Val0) || 3512 parseToken(lltok::comma, "expected comma in logical constantexpr") || 3513 parseGlobalTypeAndValue(Val1) || 3514 parseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3515 return true; 3516 if (Val0->getType() != Val1->getType()) 3517 return error(ID.Loc, "operands of constexpr must have same type"); 3518 if (!Val0->getType()->isIntOrIntVectorTy()) 3519 return error(ID.Loc, 3520 "constexpr requires integer or integer vector operands"); 3521 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3522 ID.Kind = ValID::t_Constant; 3523 return false; 3524 } 3525 3526 case lltok::kw_getelementptr: 3527 case lltok::kw_shufflevector: 3528 case lltok::kw_insertelement: 3529 case lltok::kw_extractelement: 3530 case lltok::kw_select: { 3531 unsigned Opc = Lex.getUIntVal(); 3532 SmallVector<Constant*, 16> Elts; 3533 bool InBounds = false; 3534 Type *Ty; 3535 Lex.Lex(); 3536 3537 if (Opc == Instruction::GetElementPtr) 3538 InBounds = EatIfPresent(lltok::kw_inbounds); 3539 3540 if (parseToken(lltok::lparen, "expected '(' in constantexpr")) 3541 return true; 3542 3543 LocTy ExplicitTypeLoc = Lex.getLoc(); 3544 if (Opc == Instruction::GetElementPtr) { 3545 if (parseType(Ty) || 3546 parseToken(lltok::comma, "expected comma after getelementptr's type")) 3547 return true; 3548 } 3549 3550 Optional<unsigned> InRangeOp; 3551 if (parseGlobalValueVector( 3552 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) || 3553 parseToken(lltok::rparen, "expected ')' in constantexpr")) 3554 return true; 3555 3556 if (Opc == Instruction::GetElementPtr) { 3557 if (Elts.size() == 0 || 3558 !Elts[0]->getType()->isPtrOrPtrVectorTy()) 3559 return error(ID.Loc, "base of getelementptr must be a pointer"); 3560 3561 Type *BaseType = Elts[0]->getType(); 3562 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3563 if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) { 3564 return error( 3565 ExplicitTypeLoc, 3566 typeComparisonErrorMessage( 3567 "explicit pointee type doesn't match operand's pointee type", 3568 Ty, BasePointerType->getElementType())); 3569 } 3570 3571 unsigned GEPWidth = 3572 BaseType->isVectorTy() 3573 ? cast<FixedVectorType>(BaseType)->getNumElements() 3574 : 0; 3575 3576 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3577 for (Constant *Val : Indices) { 3578 Type *ValTy = Val->getType(); 3579 if (!ValTy->isIntOrIntVectorTy()) 3580 return error(ID.Loc, "getelementptr index must be an integer"); 3581 if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) { 3582 unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements(); 3583 if (GEPWidth && (ValNumEl != GEPWidth)) 3584 return error( 3585 ID.Loc, 3586 "getelementptr vector index has a wrong number of elements"); 3587 // GEPWidth may have been unknown because the base is a scalar, 3588 // but it is known now. 3589 GEPWidth = ValNumEl; 3590 } 3591 } 3592 3593 SmallPtrSet<Type*, 4> Visited; 3594 if (!Indices.empty() && !Ty->isSized(&Visited)) 3595 return error(ID.Loc, "base element of getelementptr must be sized"); 3596 3597 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3598 return error(ID.Loc, "invalid getelementptr indices"); 3599 3600 if (InRangeOp) { 3601 if (*InRangeOp == 0) 3602 return error(ID.Loc, 3603 "inrange keyword may not appear on pointer operand"); 3604 --*InRangeOp; 3605 } 3606 3607 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, 3608 InBounds, InRangeOp); 3609 } else if (Opc == Instruction::Select) { 3610 if (Elts.size() != 3) 3611 return error(ID.Loc, "expected three operands to select"); 3612 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3613 Elts[2])) 3614 return error(ID.Loc, Reason); 3615 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3616 } else if (Opc == Instruction::ShuffleVector) { 3617 if (Elts.size() != 3) 3618 return error(ID.Loc, "expected three operands to shufflevector"); 3619 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3620 return error(ID.Loc, "invalid operands to shufflevector"); 3621 SmallVector<int, 16> Mask; 3622 ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask); 3623 ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask); 3624 } else if (Opc == Instruction::ExtractElement) { 3625 if (Elts.size() != 2) 3626 return error(ID.Loc, "expected two operands to extractelement"); 3627 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3628 return error(ID.Loc, "invalid extractelement operands"); 3629 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3630 } else { 3631 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3632 if (Elts.size() != 3) 3633 return error(ID.Loc, "expected three operands to insertelement"); 3634 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3635 return error(ID.Loc, "invalid insertelement operands"); 3636 ID.ConstantVal = 3637 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3638 } 3639 3640 ID.Kind = ValID::t_Constant; 3641 return false; 3642 } 3643 } 3644 3645 Lex.Lex(); 3646 return false; 3647 } 3648 3649 /// parseGlobalValue - parse a global value with the specified type. 3650 bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) { 3651 C = nullptr; 3652 ValID ID; 3653 Value *V = nullptr; 3654 bool Parsed = parseValID(ID, /*PFS=*/nullptr, Ty) || 3655 convertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false); 3656 if (V && !(C = dyn_cast<Constant>(V))) 3657 return error(ID.Loc, "global values must be constants"); 3658 return Parsed; 3659 } 3660 3661 bool LLParser::parseGlobalTypeAndValue(Constant *&V) { 3662 Type *Ty = nullptr; 3663 return parseType(Ty) || parseGlobalValue(Ty, V); 3664 } 3665 3666 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3667 C = nullptr; 3668 3669 LocTy KwLoc = Lex.getLoc(); 3670 if (!EatIfPresent(lltok::kw_comdat)) 3671 return false; 3672 3673 if (EatIfPresent(lltok::lparen)) { 3674 if (Lex.getKind() != lltok::ComdatVar) 3675 return tokError("expected comdat variable"); 3676 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3677 Lex.Lex(); 3678 if (parseToken(lltok::rparen, "expected ')' after comdat var")) 3679 return true; 3680 } else { 3681 if (GlobalName.empty()) 3682 return tokError("comdat cannot be unnamed"); 3683 C = getComdat(std::string(GlobalName), KwLoc); 3684 } 3685 3686 return false; 3687 } 3688 3689 /// parseGlobalValueVector 3690 /// ::= /*empty*/ 3691 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)* 3692 bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts, 3693 Optional<unsigned> *InRangeOp) { 3694 // Empty list. 3695 if (Lex.getKind() == lltok::rbrace || 3696 Lex.getKind() == lltok::rsquare || 3697 Lex.getKind() == lltok::greater || 3698 Lex.getKind() == lltok::rparen) 3699 return false; 3700 3701 do { 3702 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange)) 3703 *InRangeOp = Elts.size(); 3704 3705 Constant *C; 3706 if (parseGlobalTypeAndValue(C)) 3707 return true; 3708 Elts.push_back(C); 3709 } while (EatIfPresent(lltok::comma)); 3710 3711 return false; 3712 } 3713 3714 bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) { 3715 SmallVector<Metadata *, 16> Elts; 3716 if (parseMDNodeVector(Elts)) 3717 return true; 3718 3719 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3720 return false; 3721 } 3722 3723 /// MDNode: 3724 /// ::= !{ ... } 3725 /// ::= !7 3726 /// ::= !DILocation(...) 3727 bool LLParser::parseMDNode(MDNode *&N) { 3728 if (Lex.getKind() == lltok::MetadataVar) 3729 return parseSpecializedMDNode(N); 3730 3731 return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N); 3732 } 3733 3734 bool LLParser::parseMDNodeTail(MDNode *&N) { 3735 // !{ ... } 3736 if (Lex.getKind() == lltok::lbrace) 3737 return parseMDTuple(N); 3738 3739 // !42 3740 return parseMDNodeID(N); 3741 } 3742 3743 namespace { 3744 3745 /// Structure to represent an optional metadata field. 3746 template <class FieldTy> struct MDFieldImpl { 3747 typedef MDFieldImpl ImplTy; 3748 FieldTy Val; 3749 bool Seen; 3750 3751 void assign(FieldTy Val) { 3752 Seen = true; 3753 this->Val = std::move(Val); 3754 } 3755 3756 explicit MDFieldImpl(FieldTy Default) 3757 : Val(std::move(Default)), Seen(false) {} 3758 }; 3759 3760 /// Structure to represent an optional metadata field that 3761 /// can be of either type (A or B) and encapsulates the 3762 /// MD<typeofA>Field and MD<typeofB>Field structs, so not 3763 /// to reimplement the specifics for representing each Field. 3764 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl { 3765 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy; 3766 FieldTypeA A; 3767 FieldTypeB B; 3768 bool Seen; 3769 3770 enum { 3771 IsInvalid = 0, 3772 IsTypeA = 1, 3773 IsTypeB = 2 3774 } WhatIs; 3775 3776 void assign(FieldTypeA A) { 3777 Seen = true; 3778 this->A = std::move(A); 3779 WhatIs = IsTypeA; 3780 } 3781 3782 void assign(FieldTypeB B) { 3783 Seen = true; 3784 this->B = std::move(B); 3785 WhatIs = IsTypeB; 3786 } 3787 3788 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB) 3789 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false), 3790 WhatIs(IsInvalid) {} 3791 }; 3792 3793 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 3794 uint64_t Max; 3795 3796 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 3797 : ImplTy(Default), Max(Max) {} 3798 }; 3799 3800 struct LineField : public MDUnsignedField { 3801 LineField() : MDUnsignedField(0, UINT32_MAX) {} 3802 }; 3803 3804 struct ColumnField : public MDUnsignedField { 3805 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 3806 }; 3807 3808 struct DwarfTagField : public MDUnsignedField { 3809 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 3810 DwarfTagField(dwarf::Tag DefaultTag) 3811 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 3812 }; 3813 3814 struct DwarfMacinfoTypeField : public MDUnsignedField { 3815 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 3816 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 3817 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 3818 }; 3819 3820 struct DwarfAttEncodingField : public MDUnsignedField { 3821 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 3822 }; 3823 3824 struct DwarfVirtualityField : public MDUnsignedField { 3825 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 3826 }; 3827 3828 struct DwarfLangField : public MDUnsignedField { 3829 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 3830 }; 3831 3832 struct DwarfCCField : public MDUnsignedField { 3833 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 3834 }; 3835 3836 struct EmissionKindField : public MDUnsignedField { 3837 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 3838 }; 3839 3840 struct NameTableKindField : public MDUnsignedField { 3841 NameTableKindField() 3842 : MDUnsignedField( 3843 0, (unsigned) 3844 DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {} 3845 }; 3846 3847 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 3848 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 3849 }; 3850 3851 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> { 3852 DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {} 3853 }; 3854 3855 struct MDAPSIntField : public MDFieldImpl<APSInt> { 3856 MDAPSIntField() : ImplTy(APSInt()) {} 3857 }; 3858 3859 struct MDSignedField : public MDFieldImpl<int64_t> { 3860 int64_t Min; 3861 int64_t Max; 3862 3863 MDSignedField(int64_t Default = 0) 3864 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 3865 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 3866 : ImplTy(Default), Min(Min), Max(Max) {} 3867 }; 3868 3869 struct MDBoolField : public MDFieldImpl<bool> { 3870 MDBoolField(bool Default = false) : ImplTy(Default) {} 3871 }; 3872 3873 struct MDField : public MDFieldImpl<Metadata *> { 3874 bool AllowNull; 3875 3876 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 3877 }; 3878 3879 struct MDStringField : public MDFieldImpl<MDString *> { 3880 bool AllowEmpty; 3881 MDStringField(bool AllowEmpty = true) 3882 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 3883 }; 3884 3885 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 3886 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 3887 }; 3888 3889 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> { 3890 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {} 3891 }; 3892 3893 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> { 3894 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true) 3895 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {} 3896 3897 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max, 3898 bool AllowNull = true) 3899 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {} 3900 3901 bool isMDSignedField() const { return WhatIs == IsTypeA; } 3902 bool isMDField() const { return WhatIs == IsTypeB; } 3903 int64_t getMDSignedValue() const { 3904 assert(isMDSignedField() && "Wrong field type"); 3905 return A.Val; 3906 } 3907 Metadata *getMDFieldValue() const { 3908 assert(isMDField() && "Wrong field type"); 3909 return B.Val; 3910 } 3911 }; 3912 3913 } // end anonymous namespace 3914 3915 namespace llvm { 3916 3917 template <> 3918 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) { 3919 if (Lex.getKind() != lltok::APSInt) 3920 return tokError("expected integer"); 3921 3922 Result.assign(Lex.getAPSIntVal()); 3923 Lex.Lex(); 3924 return false; 3925 } 3926 3927 template <> 3928 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 3929 MDUnsignedField &Result) { 3930 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 3931 return tokError("expected unsigned integer"); 3932 3933 auto &U = Lex.getAPSIntVal(); 3934 if (U.ugt(Result.Max)) 3935 return tokError("value for '" + Name + "' too large, limit is " + 3936 Twine(Result.Max)); 3937 Result.assign(U.getZExtValue()); 3938 assert(Result.Val <= Result.Max && "Expected value in range"); 3939 Lex.Lex(); 3940 return false; 3941 } 3942 3943 template <> 3944 bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) { 3945 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3946 } 3947 template <> 3948 bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 3949 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3950 } 3951 3952 template <> 3953 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 3954 if (Lex.getKind() == lltok::APSInt) 3955 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3956 3957 if (Lex.getKind() != lltok::DwarfTag) 3958 return tokError("expected DWARF tag"); 3959 3960 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 3961 if (Tag == dwarf::DW_TAG_invalid) 3962 return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 3963 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 3964 3965 Result.assign(Tag); 3966 Lex.Lex(); 3967 return false; 3968 } 3969 3970 template <> 3971 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 3972 DwarfMacinfoTypeField &Result) { 3973 if (Lex.getKind() == lltok::APSInt) 3974 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3975 3976 if (Lex.getKind() != lltok::DwarfMacinfo) 3977 return tokError("expected DWARF macinfo type"); 3978 3979 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 3980 if (Macinfo == dwarf::DW_MACINFO_invalid) 3981 return tokError("invalid DWARF macinfo type" + Twine(" '") + 3982 Lex.getStrVal() + "'"); 3983 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 3984 3985 Result.assign(Macinfo); 3986 Lex.Lex(); 3987 return false; 3988 } 3989 3990 template <> 3991 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 3992 DwarfVirtualityField &Result) { 3993 if (Lex.getKind() == lltok::APSInt) 3994 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3995 3996 if (Lex.getKind() != lltok::DwarfVirtuality) 3997 return tokError("expected DWARF virtuality code"); 3998 3999 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 4000 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 4001 return tokError("invalid DWARF virtuality code" + Twine(" '") + 4002 Lex.getStrVal() + "'"); 4003 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 4004 Result.assign(Virtuality); 4005 Lex.Lex(); 4006 return false; 4007 } 4008 4009 template <> 4010 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 4011 if (Lex.getKind() == lltok::APSInt) 4012 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4013 4014 if (Lex.getKind() != lltok::DwarfLang) 4015 return tokError("expected DWARF language"); 4016 4017 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 4018 if (!Lang) 4019 return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 4020 "'"); 4021 assert(Lang <= Result.Max && "Expected valid DWARF language"); 4022 Result.assign(Lang); 4023 Lex.Lex(); 4024 return false; 4025 } 4026 4027 template <> 4028 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 4029 if (Lex.getKind() == lltok::APSInt) 4030 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4031 4032 if (Lex.getKind() != lltok::DwarfCC) 4033 return tokError("expected DWARF calling convention"); 4034 4035 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 4036 if (!CC) 4037 return tokError("invalid DWARF calling convention" + Twine(" '") + 4038 Lex.getStrVal() + "'"); 4039 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 4040 Result.assign(CC); 4041 Lex.Lex(); 4042 return false; 4043 } 4044 4045 template <> 4046 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4047 EmissionKindField &Result) { 4048 if (Lex.getKind() == lltok::APSInt) 4049 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4050 4051 if (Lex.getKind() != lltok::EmissionKind) 4052 return tokError("expected emission kind"); 4053 4054 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 4055 if (!Kind) 4056 return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 4057 "'"); 4058 assert(*Kind <= Result.Max && "Expected valid emission kind"); 4059 Result.assign(*Kind); 4060 Lex.Lex(); 4061 return false; 4062 } 4063 4064 template <> 4065 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4066 NameTableKindField &Result) { 4067 if (Lex.getKind() == lltok::APSInt) 4068 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4069 4070 if (Lex.getKind() != lltok::NameTableKind) 4071 return tokError("expected nameTable kind"); 4072 4073 auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal()); 4074 if (!Kind) 4075 return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() + 4076 "'"); 4077 assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind"); 4078 Result.assign((unsigned)*Kind); 4079 Lex.Lex(); 4080 return false; 4081 } 4082 4083 template <> 4084 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4085 DwarfAttEncodingField &Result) { 4086 if (Lex.getKind() == lltok::APSInt) 4087 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4088 4089 if (Lex.getKind() != lltok::DwarfAttEncoding) 4090 return tokError("expected DWARF type attribute encoding"); 4091 4092 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 4093 if (!Encoding) 4094 return tokError("invalid DWARF type attribute encoding" + Twine(" '") + 4095 Lex.getStrVal() + "'"); 4096 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 4097 Result.assign(Encoding); 4098 Lex.Lex(); 4099 return false; 4100 } 4101 4102 /// DIFlagField 4103 /// ::= uint32 4104 /// ::= DIFlagVector 4105 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 4106 template <> 4107 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 4108 4109 // parser for a single flag. 4110 auto parseFlag = [&](DINode::DIFlags &Val) { 4111 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4112 uint32_t TempVal = static_cast<uint32_t>(Val); 4113 bool Res = parseUInt32(TempVal); 4114 Val = static_cast<DINode::DIFlags>(TempVal); 4115 return Res; 4116 } 4117 4118 if (Lex.getKind() != lltok::DIFlag) 4119 return tokError("expected debug info flag"); 4120 4121 Val = DINode::getFlag(Lex.getStrVal()); 4122 if (!Val) 4123 return tokError(Twine("invalid debug info flag flag '") + 4124 Lex.getStrVal() + "'"); 4125 Lex.Lex(); 4126 return false; 4127 }; 4128 4129 // parse the flags and combine them together. 4130 DINode::DIFlags Combined = DINode::FlagZero; 4131 do { 4132 DINode::DIFlags Val; 4133 if (parseFlag(Val)) 4134 return true; 4135 Combined |= Val; 4136 } while (EatIfPresent(lltok::bar)); 4137 4138 Result.assign(Combined); 4139 return false; 4140 } 4141 4142 /// DISPFlagField 4143 /// ::= uint32 4144 /// ::= DISPFlagVector 4145 /// ::= DISPFlagVector '|' DISPFlag* '|' uint32 4146 template <> 4147 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) { 4148 4149 // parser for a single flag. 4150 auto parseFlag = [&](DISubprogram::DISPFlags &Val) { 4151 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4152 uint32_t TempVal = static_cast<uint32_t>(Val); 4153 bool Res = parseUInt32(TempVal); 4154 Val = static_cast<DISubprogram::DISPFlags>(TempVal); 4155 return Res; 4156 } 4157 4158 if (Lex.getKind() != lltok::DISPFlag) 4159 return tokError("expected debug info flag"); 4160 4161 Val = DISubprogram::getFlag(Lex.getStrVal()); 4162 if (!Val) 4163 return tokError(Twine("invalid subprogram debug info flag '") + 4164 Lex.getStrVal() + "'"); 4165 Lex.Lex(); 4166 return false; 4167 }; 4168 4169 // parse the flags and combine them together. 4170 DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero; 4171 do { 4172 DISubprogram::DISPFlags Val; 4173 if (parseFlag(Val)) 4174 return true; 4175 Combined |= Val; 4176 } while (EatIfPresent(lltok::bar)); 4177 4178 Result.assign(Combined); 4179 return false; 4180 } 4181 4182 template <> 4183 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) { 4184 if (Lex.getKind() != lltok::APSInt) 4185 return tokError("expected signed integer"); 4186 4187 auto &S = Lex.getAPSIntVal(); 4188 if (S < Result.Min) 4189 return tokError("value for '" + Name + "' too small, limit is " + 4190 Twine(Result.Min)); 4191 if (S > Result.Max) 4192 return tokError("value for '" + Name + "' too large, limit is " + 4193 Twine(Result.Max)); 4194 Result.assign(S.getExtValue()); 4195 assert(Result.Val >= Result.Min && "Expected value in range"); 4196 assert(Result.Val <= Result.Max && "Expected value in range"); 4197 Lex.Lex(); 4198 return false; 4199 } 4200 4201 template <> 4202 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 4203 switch (Lex.getKind()) { 4204 default: 4205 return tokError("expected 'true' or 'false'"); 4206 case lltok::kw_true: 4207 Result.assign(true); 4208 break; 4209 case lltok::kw_false: 4210 Result.assign(false); 4211 break; 4212 } 4213 Lex.Lex(); 4214 return false; 4215 } 4216 4217 template <> 4218 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) { 4219 if (Lex.getKind() == lltok::kw_null) { 4220 if (!Result.AllowNull) 4221 return tokError("'" + Name + "' cannot be null"); 4222 Lex.Lex(); 4223 Result.assign(nullptr); 4224 return false; 4225 } 4226 4227 Metadata *MD; 4228 if (parseMetadata(MD, nullptr)) 4229 return true; 4230 4231 Result.assign(MD); 4232 return false; 4233 } 4234 4235 template <> 4236 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4237 MDSignedOrMDField &Result) { 4238 // Try to parse a signed int. 4239 if (Lex.getKind() == lltok::APSInt) { 4240 MDSignedField Res = Result.A; 4241 if (!parseMDField(Loc, Name, Res)) { 4242 Result.assign(Res); 4243 return false; 4244 } 4245 return true; 4246 } 4247 4248 // Otherwise, try to parse as an MDField. 4249 MDField Res = Result.B; 4250 if (!parseMDField(Loc, Name, Res)) { 4251 Result.assign(Res); 4252 return false; 4253 } 4254 4255 return true; 4256 } 4257 4258 template <> 4259 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 4260 LocTy ValueLoc = Lex.getLoc(); 4261 std::string S; 4262 if (parseStringConstant(S)) 4263 return true; 4264 4265 if (!Result.AllowEmpty && S.empty()) 4266 return error(ValueLoc, "'" + Name + "' cannot be empty"); 4267 4268 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 4269 return false; 4270 } 4271 4272 template <> 4273 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 4274 SmallVector<Metadata *, 4> MDs; 4275 if (parseMDNodeVector(MDs)) 4276 return true; 4277 4278 Result.assign(std::move(MDs)); 4279 return false; 4280 } 4281 4282 template <> 4283 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4284 ChecksumKindField &Result) { 4285 Optional<DIFile::ChecksumKind> CSKind = 4286 DIFile::getChecksumKind(Lex.getStrVal()); 4287 4288 if (Lex.getKind() != lltok::ChecksumKind || !CSKind) 4289 return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() + 4290 "'"); 4291 4292 Result.assign(*CSKind); 4293 Lex.Lex(); 4294 return false; 4295 } 4296 4297 } // end namespace llvm 4298 4299 template <class ParserTy> 4300 bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) { 4301 do { 4302 if (Lex.getKind() != lltok::LabelStr) 4303 return tokError("expected field label here"); 4304 4305 if (ParseField()) 4306 return true; 4307 } while (EatIfPresent(lltok::comma)); 4308 4309 return false; 4310 } 4311 4312 template <class ParserTy> 4313 bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) { 4314 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4315 Lex.Lex(); 4316 4317 if (parseToken(lltok::lparen, "expected '(' here")) 4318 return true; 4319 if (Lex.getKind() != lltok::rparen) 4320 if (parseMDFieldsImplBody(ParseField)) 4321 return true; 4322 4323 ClosingLoc = Lex.getLoc(); 4324 return parseToken(lltok::rparen, "expected ')' here"); 4325 } 4326 4327 template <class FieldTy> 4328 bool LLParser::parseMDField(StringRef Name, FieldTy &Result) { 4329 if (Result.Seen) 4330 return tokError("field '" + Name + "' cannot be specified more than once"); 4331 4332 LocTy Loc = Lex.getLoc(); 4333 Lex.Lex(); 4334 return parseMDField(Loc, Name, Result); 4335 } 4336 4337 bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 4338 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4339 4340 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 4341 if (Lex.getStrVal() == #CLASS) \ 4342 return parse##CLASS(N, IsDistinct); 4343 #include "llvm/IR/Metadata.def" 4344 4345 return tokError("expected metadata type"); 4346 } 4347 4348 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 4349 #define NOP_FIELD(NAME, TYPE, INIT) 4350 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 4351 if (!NAME.Seen) \ 4352 return error(ClosingLoc, "missing required field '" #NAME "'"); 4353 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 4354 if (Lex.getStrVal() == #NAME) \ 4355 return parseMDField(#NAME, NAME); 4356 #define PARSE_MD_FIELDS() \ 4357 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 4358 do { \ 4359 LocTy ClosingLoc; \ 4360 if (parseMDFieldsImpl( \ 4361 [&]() -> bool { \ 4362 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 4363 return tokError(Twine("invalid field '") + Lex.getStrVal() + \ 4364 "'"); \ 4365 }, \ 4366 ClosingLoc)) \ 4367 return true; \ 4368 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 4369 } while (false) 4370 #define GET_OR_DISTINCT(CLASS, ARGS) \ 4371 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 4372 4373 /// parseDILocationFields: 4374 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6, 4375 /// isImplicitCode: true) 4376 bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) { 4377 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4378 OPTIONAL(line, LineField, ); \ 4379 OPTIONAL(column, ColumnField, ); \ 4380 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4381 OPTIONAL(inlinedAt, MDField, ); \ 4382 OPTIONAL(isImplicitCode, MDBoolField, (false)); 4383 PARSE_MD_FIELDS(); 4384 #undef VISIT_MD_FIELDS 4385 4386 Result = 4387 GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val, 4388 inlinedAt.Val, isImplicitCode.Val)); 4389 return false; 4390 } 4391 4392 /// parseGenericDINode: 4393 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 4394 bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) { 4395 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4396 REQUIRED(tag, DwarfTagField, ); \ 4397 OPTIONAL(header, MDStringField, ); \ 4398 OPTIONAL(operands, MDFieldList, ); 4399 PARSE_MD_FIELDS(); 4400 #undef VISIT_MD_FIELDS 4401 4402 Result = GET_OR_DISTINCT(GenericDINode, 4403 (Context, tag.Val, header.Val, operands.Val)); 4404 return false; 4405 } 4406 4407 /// parseDISubrange: 4408 /// ::= !DISubrange(count: 30, lowerBound: 2) 4409 /// ::= !DISubrange(count: !node, lowerBound: 2) 4410 /// ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3) 4411 bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) { 4412 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4413 OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \ 4414 OPTIONAL(lowerBound, MDSignedOrMDField, ); \ 4415 OPTIONAL(upperBound, MDSignedOrMDField, ); \ 4416 OPTIONAL(stride, MDSignedOrMDField, ); 4417 PARSE_MD_FIELDS(); 4418 #undef VISIT_MD_FIELDS 4419 4420 Metadata *Count = nullptr; 4421 Metadata *LowerBound = nullptr; 4422 Metadata *UpperBound = nullptr; 4423 Metadata *Stride = nullptr; 4424 4425 auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * { 4426 if (Bound.isMDSignedField()) 4427 return ConstantAsMetadata::get(ConstantInt::getSigned( 4428 Type::getInt64Ty(Context), Bound.getMDSignedValue())); 4429 if (Bound.isMDField()) 4430 return Bound.getMDFieldValue(); 4431 return nullptr; 4432 }; 4433 4434 Count = convToMetadata(count); 4435 LowerBound = convToMetadata(lowerBound); 4436 UpperBound = convToMetadata(upperBound); 4437 Stride = convToMetadata(stride); 4438 4439 Result = GET_OR_DISTINCT(DISubrange, 4440 (Context, Count, LowerBound, UpperBound, Stride)); 4441 4442 return false; 4443 } 4444 4445 /// parseDIGenericSubrange: 4446 /// ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride: 4447 /// !node3) 4448 bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) { 4449 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4450 OPTIONAL(count, MDSignedOrMDField, ); \ 4451 OPTIONAL(lowerBound, MDSignedOrMDField, ); \ 4452 OPTIONAL(upperBound, MDSignedOrMDField, ); \ 4453 OPTIONAL(stride, MDSignedOrMDField, ); 4454 PARSE_MD_FIELDS(); 4455 #undef VISIT_MD_FIELDS 4456 4457 auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * { 4458 if (Bound.isMDSignedField()) 4459 return DIExpression::get( 4460 Context, {dwarf::DW_OP_consts, 4461 static_cast<uint64_t>(Bound.getMDSignedValue())}); 4462 if (Bound.isMDField()) 4463 return Bound.getMDFieldValue(); 4464 return nullptr; 4465 }; 4466 4467 Metadata *Count = ConvToMetadata(count); 4468 Metadata *LowerBound = ConvToMetadata(lowerBound); 4469 Metadata *UpperBound = ConvToMetadata(upperBound); 4470 Metadata *Stride = ConvToMetadata(stride); 4471 4472 Result = GET_OR_DISTINCT(DIGenericSubrange, 4473 (Context, Count, LowerBound, UpperBound, Stride)); 4474 4475 return false; 4476 } 4477 4478 /// parseDIEnumerator: 4479 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind") 4480 bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) { 4481 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4482 REQUIRED(name, MDStringField, ); \ 4483 REQUIRED(value, MDAPSIntField, ); \ 4484 OPTIONAL(isUnsigned, MDBoolField, (false)); 4485 PARSE_MD_FIELDS(); 4486 #undef VISIT_MD_FIELDS 4487 4488 if (isUnsigned.Val && value.Val.isNegative()) 4489 return tokError("unsigned enumerator with negative value"); 4490 4491 APSInt Value(value.Val); 4492 // Add a leading zero so that unsigned values with the msb set are not 4493 // mistaken for negative values when used for signed enumerators. 4494 if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet()) 4495 Value = Value.zext(Value.getBitWidth() + 1); 4496 4497 Result = 4498 GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val)); 4499 4500 return false; 4501 } 4502 4503 /// parseDIBasicType: 4504 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32, 4505 /// encoding: DW_ATE_encoding, flags: 0) 4506 bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) { 4507 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4508 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 4509 OPTIONAL(name, MDStringField, ); \ 4510 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4511 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4512 OPTIONAL(encoding, DwarfAttEncodingField, ); \ 4513 OPTIONAL(flags, DIFlagField, ); 4514 PARSE_MD_FIELDS(); 4515 #undef VISIT_MD_FIELDS 4516 4517 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 4518 align.Val, encoding.Val, flags.Val)); 4519 return false; 4520 } 4521 4522 /// parseDIStringType: 4523 /// ::= !DIStringType(name: "character(4)", size: 32, align: 32) 4524 bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) { 4525 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4526 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type)); \ 4527 OPTIONAL(name, MDStringField, ); \ 4528 OPTIONAL(stringLength, MDField, ); \ 4529 OPTIONAL(stringLengthExpression, MDField, ); \ 4530 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4531 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4532 OPTIONAL(encoding, DwarfAttEncodingField, ); 4533 PARSE_MD_FIELDS(); 4534 #undef VISIT_MD_FIELDS 4535 4536 Result = GET_OR_DISTINCT(DIStringType, 4537 (Context, tag.Val, name.Val, stringLength.Val, 4538 stringLengthExpression.Val, size.Val, align.Val, 4539 encoding.Val)); 4540 return false; 4541 } 4542 4543 /// parseDIDerivedType: 4544 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 4545 /// line: 7, scope: !1, baseType: !2, size: 32, 4546 /// align: 32, offset: 0, flags: 0, extraData: !3, 4547 /// dwarfAddressSpace: 3) 4548 bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) { 4549 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4550 REQUIRED(tag, DwarfTagField, ); \ 4551 OPTIONAL(name, MDStringField, ); \ 4552 OPTIONAL(file, MDField, ); \ 4553 OPTIONAL(line, LineField, ); \ 4554 OPTIONAL(scope, MDField, ); \ 4555 REQUIRED(baseType, MDField, ); \ 4556 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4557 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4558 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4559 OPTIONAL(flags, DIFlagField, ); \ 4560 OPTIONAL(extraData, MDField, ); \ 4561 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); 4562 PARSE_MD_FIELDS(); 4563 #undef VISIT_MD_FIELDS 4564 4565 Optional<unsigned> DWARFAddressSpace; 4566 if (dwarfAddressSpace.Val != UINT32_MAX) 4567 DWARFAddressSpace = dwarfAddressSpace.Val; 4568 4569 Result = GET_OR_DISTINCT(DIDerivedType, 4570 (Context, tag.Val, name.Val, file.Val, line.Val, 4571 scope.Val, baseType.Val, size.Val, align.Val, 4572 offset.Val, DWARFAddressSpace, flags.Val, 4573 extraData.Val)); 4574 return false; 4575 } 4576 4577 bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) { 4578 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4579 REQUIRED(tag, DwarfTagField, ); \ 4580 OPTIONAL(name, MDStringField, ); \ 4581 OPTIONAL(file, MDField, ); \ 4582 OPTIONAL(line, LineField, ); \ 4583 OPTIONAL(scope, MDField, ); \ 4584 OPTIONAL(baseType, MDField, ); \ 4585 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4586 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4587 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4588 OPTIONAL(flags, DIFlagField, ); \ 4589 OPTIONAL(elements, MDField, ); \ 4590 OPTIONAL(runtimeLang, DwarfLangField, ); \ 4591 OPTIONAL(vtableHolder, MDField, ); \ 4592 OPTIONAL(templateParams, MDField, ); \ 4593 OPTIONAL(identifier, MDStringField, ); \ 4594 OPTIONAL(discriminator, MDField, ); \ 4595 OPTIONAL(dataLocation, MDField, ); \ 4596 OPTIONAL(associated, MDField, ); \ 4597 OPTIONAL(allocated, MDField, ); \ 4598 OPTIONAL(rank, MDSignedOrMDField, ); 4599 PARSE_MD_FIELDS(); 4600 #undef VISIT_MD_FIELDS 4601 4602 Metadata *Rank = nullptr; 4603 if (rank.isMDSignedField()) 4604 Rank = ConstantAsMetadata::get(ConstantInt::getSigned( 4605 Type::getInt64Ty(Context), rank.getMDSignedValue())); 4606 else if (rank.isMDField()) 4607 Rank = rank.getMDFieldValue(); 4608 4609 // If this has an identifier try to build an ODR type. 4610 if (identifier.Val) 4611 if (auto *CT = DICompositeType::buildODRType( 4612 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 4613 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 4614 elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val, 4615 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, 4616 Rank)) { 4617 Result = CT; 4618 return false; 4619 } 4620 4621 // Create a new node, and save it in the context if it belongs in the type 4622 // map. 4623 Result = GET_OR_DISTINCT( 4624 DICompositeType, 4625 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 4626 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 4627 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val, 4628 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, 4629 Rank)); 4630 return false; 4631 } 4632 4633 bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) { 4634 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4635 OPTIONAL(flags, DIFlagField, ); \ 4636 OPTIONAL(cc, DwarfCCField, ); \ 4637 REQUIRED(types, MDField, ); 4638 PARSE_MD_FIELDS(); 4639 #undef VISIT_MD_FIELDS 4640 4641 Result = GET_OR_DISTINCT(DISubroutineType, 4642 (Context, flags.Val, cc.Val, types.Val)); 4643 return false; 4644 } 4645 4646 /// parseDIFileType: 4647 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir", 4648 /// checksumkind: CSK_MD5, 4649 /// checksum: "000102030405060708090a0b0c0d0e0f", 4650 /// source: "source file contents") 4651 bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) { 4652 // The default constructed value for checksumkind is required, but will never 4653 // be used, as the parser checks if the field was actually Seen before using 4654 // the Val. 4655 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4656 REQUIRED(filename, MDStringField, ); \ 4657 REQUIRED(directory, MDStringField, ); \ 4658 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \ 4659 OPTIONAL(checksum, MDStringField, ); \ 4660 OPTIONAL(source, MDStringField, ); 4661 PARSE_MD_FIELDS(); 4662 #undef VISIT_MD_FIELDS 4663 4664 Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum; 4665 if (checksumkind.Seen && checksum.Seen) 4666 OptChecksum.emplace(checksumkind.Val, checksum.Val); 4667 else if (checksumkind.Seen || checksum.Seen) 4668 return Lex.Error("'checksumkind' and 'checksum' must be provided together"); 4669 4670 Optional<MDString *> OptSource; 4671 if (source.Seen) 4672 OptSource = source.Val; 4673 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val, 4674 OptChecksum, OptSource)); 4675 return false; 4676 } 4677 4678 /// parseDICompileUnit: 4679 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 4680 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 4681 /// splitDebugFilename: "abc.debug", 4682 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 4683 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd, 4684 /// sysroot: "/", sdk: "MacOSX.sdk") 4685 bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) { 4686 if (!IsDistinct) 4687 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 4688 4689 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4690 REQUIRED(language, DwarfLangField, ); \ 4691 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 4692 OPTIONAL(producer, MDStringField, ); \ 4693 OPTIONAL(isOptimized, MDBoolField, ); \ 4694 OPTIONAL(flags, MDStringField, ); \ 4695 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 4696 OPTIONAL(splitDebugFilename, MDStringField, ); \ 4697 OPTIONAL(emissionKind, EmissionKindField, ); \ 4698 OPTIONAL(enums, MDField, ); \ 4699 OPTIONAL(retainedTypes, MDField, ); \ 4700 OPTIONAL(globals, MDField, ); \ 4701 OPTIONAL(imports, MDField, ); \ 4702 OPTIONAL(macros, MDField, ); \ 4703 OPTIONAL(dwoId, MDUnsignedField, ); \ 4704 OPTIONAL(splitDebugInlining, MDBoolField, = true); \ 4705 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \ 4706 OPTIONAL(nameTableKind, NameTableKindField, ); \ 4707 OPTIONAL(rangesBaseAddress, MDBoolField, = false); \ 4708 OPTIONAL(sysroot, MDStringField, ); \ 4709 OPTIONAL(sdk, MDStringField, ); 4710 PARSE_MD_FIELDS(); 4711 #undef VISIT_MD_FIELDS 4712 4713 Result = DICompileUnit::getDistinct( 4714 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 4715 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 4716 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 4717 splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val, 4718 rangesBaseAddress.Val, sysroot.Val, sdk.Val); 4719 return false; 4720 } 4721 4722 /// parseDISubprogram: 4723 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 4724 /// file: !1, line: 7, type: !2, isLocal: false, 4725 /// isDefinition: true, scopeLine: 8, containingType: !3, 4726 /// virtuality: DW_VIRTUALTIY_pure_virtual, 4727 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 4728 /// spFlags: 10, isOptimized: false, templateParams: !4, 4729 /// declaration: !5, retainedNodes: !6, thrownTypes: !7) 4730 bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) { 4731 auto Loc = Lex.getLoc(); 4732 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4733 OPTIONAL(scope, MDField, ); \ 4734 OPTIONAL(name, MDStringField, ); \ 4735 OPTIONAL(linkageName, MDStringField, ); \ 4736 OPTIONAL(file, MDField, ); \ 4737 OPTIONAL(line, LineField, ); \ 4738 OPTIONAL(type, MDField, ); \ 4739 OPTIONAL(isLocal, MDBoolField, ); \ 4740 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4741 OPTIONAL(scopeLine, LineField, ); \ 4742 OPTIONAL(containingType, MDField, ); \ 4743 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 4744 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 4745 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 4746 OPTIONAL(flags, DIFlagField, ); \ 4747 OPTIONAL(spFlags, DISPFlagField, ); \ 4748 OPTIONAL(isOptimized, MDBoolField, ); \ 4749 OPTIONAL(unit, MDField, ); \ 4750 OPTIONAL(templateParams, MDField, ); \ 4751 OPTIONAL(declaration, MDField, ); \ 4752 OPTIONAL(retainedNodes, MDField, ); \ 4753 OPTIONAL(thrownTypes, MDField, ); 4754 PARSE_MD_FIELDS(); 4755 #undef VISIT_MD_FIELDS 4756 4757 // An explicit spFlags field takes precedence over individual fields in 4758 // older IR versions. 4759 DISubprogram::DISPFlags SPFlags = 4760 spFlags.Seen ? spFlags.Val 4761 : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val, 4762 isOptimized.Val, virtuality.Val); 4763 if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct) 4764 return Lex.Error( 4765 Loc, 4766 "missing 'distinct', required for !DISubprogram that is a Definition"); 4767 Result = GET_OR_DISTINCT( 4768 DISubprogram, 4769 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 4770 type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val, 4771 thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val, 4772 declaration.Val, retainedNodes.Val, thrownTypes.Val)); 4773 return false; 4774 } 4775 4776 /// parseDILexicalBlock: 4777 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 4778 bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 4779 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4780 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4781 OPTIONAL(file, MDField, ); \ 4782 OPTIONAL(line, LineField, ); \ 4783 OPTIONAL(column, ColumnField, ); 4784 PARSE_MD_FIELDS(); 4785 #undef VISIT_MD_FIELDS 4786 4787 Result = GET_OR_DISTINCT( 4788 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 4789 return false; 4790 } 4791 4792 /// parseDILexicalBlockFile: 4793 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 4794 bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 4795 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4796 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4797 OPTIONAL(file, MDField, ); \ 4798 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 4799 PARSE_MD_FIELDS(); 4800 #undef VISIT_MD_FIELDS 4801 4802 Result = GET_OR_DISTINCT(DILexicalBlockFile, 4803 (Context, scope.Val, file.Val, discriminator.Val)); 4804 return false; 4805 } 4806 4807 /// parseDICommonBlock: 4808 /// ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9) 4809 bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) { 4810 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4811 REQUIRED(scope, MDField, ); \ 4812 OPTIONAL(declaration, MDField, ); \ 4813 OPTIONAL(name, MDStringField, ); \ 4814 OPTIONAL(file, MDField, ); \ 4815 OPTIONAL(line, LineField, ); 4816 PARSE_MD_FIELDS(); 4817 #undef VISIT_MD_FIELDS 4818 4819 Result = GET_OR_DISTINCT(DICommonBlock, 4820 (Context, scope.Val, declaration.Val, name.Val, 4821 file.Val, line.Val)); 4822 return false; 4823 } 4824 4825 /// parseDINamespace: 4826 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 4827 bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) { 4828 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4829 REQUIRED(scope, MDField, ); \ 4830 OPTIONAL(name, MDStringField, ); \ 4831 OPTIONAL(exportSymbols, MDBoolField, ); 4832 PARSE_MD_FIELDS(); 4833 #undef VISIT_MD_FIELDS 4834 4835 Result = GET_OR_DISTINCT(DINamespace, 4836 (Context, scope.Val, name.Val, exportSymbols.Val)); 4837 return false; 4838 } 4839 4840 /// parseDIMacro: 4841 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: 4842 /// "SomeValue") 4843 bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) { 4844 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4845 REQUIRED(type, DwarfMacinfoTypeField, ); \ 4846 OPTIONAL(line, LineField, ); \ 4847 REQUIRED(name, MDStringField, ); \ 4848 OPTIONAL(value, MDStringField, ); 4849 PARSE_MD_FIELDS(); 4850 #undef VISIT_MD_FIELDS 4851 4852 Result = GET_OR_DISTINCT(DIMacro, 4853 (Context, type.Val, line.Val, name.Val, value.Val)); 4854 return false; 4855 } 4856 4857 /// parseDIMacroFile: 4858 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 4859 bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) { 4860 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4861 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 4862 OPTIONAL(line, LineField, ); \ 4863 REQUIRED(file, MDField, ); \ 4864 OPTIONAL(nodes, MDField, ); 4865 PARSE_MD_FIELDS(); 4866 #undef VISIT_MD_FIELDS 4867 4868 Result = GET_OR_DISTINCT(DIMacroFile, 4869 (Context, type.Val, line.Val, file.Val, nodes.Val)); 4870 return false; 4871 } 4872 4873 /// parseDIModule: 4874 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: 4875 /// "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes", 4876 /// file: !1, line: 4, isDecl: false) 4877 bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) { 4878 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4879 REQUIRED(scope, MDField, ); \ 4880 REQUIRED(name, MDStringField, ); \ 4881 OPTIONAL(configMacros, MDStringField, ); \ 4882 OPTIONAL(includePath, MDStringField, ); \ 4883 OPTIONAL(apinotes, MDStringField, ); \ 4884 OPTIONAL(file, MDField, ); \ 4885 OPTIONAL(line, LineField, ); \ 4886 OPTIONAL(isDecl, MDBoolField, ); 4887 PARSE_MD_FIELDS(); 4888 #undef VISIT_MD_FIELDS 4889 4890 Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val, 4891 configMacros.Val, includePath.Val, 4892 apinotes.Val, line.Val, isDecl.Val)); 4893 return false; 4894 } 4895 4896 /// parseDITemplateTypeParameter: 4897 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false) 4898 bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 4899 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4900 OPTIONAL(name, MDStringField, ); \ 4901 REQUIRED(type, MDField, ); \ 4902 OPTIONAL(defaulted, MDBoolField, ); 4903 PARSE_MD_FIELDS(); 4904 #undef VISIT_MD_FIELDS 4905 4906 Result = GET_OR_DISTINCT(DITemplateTypeParameter, 4907 (Context, name.Val, type.Val, defaulted.Val)); 4908 return false; 4909 } 4910 4911 /// parseDITemplateValueParameter: 4912 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 4913 /// name: "V", type: !1, defaulted: false, 4914 /// value: i32 7) 4915 bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 4916 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4917 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 4918 OPTIONAL(name, MDStringField, ); \ 4919 OPTIONAL(type, MDField, ); \ 4920 OPTIONAL(defaulted, MDBoolField, ); \ 4921 REQUIRED(value, MDField, ); 4922 4923 PARSE_MD_FIELDS(); 4924 #undef VISIT_MD_FIELDS 4925 4926 Result = GET_OR_DISTINCT( 4927 DITemplateValueParameter, 4928 (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val)); 4929 return false; 4930 } 4931 4932 /// parseDIGlobalVariable: 4933 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 4934 /// file: !1, line: 7, type: !2, isLocal: false, 4935 /// isDefinition: true, templateParams: !3, 4936 /// declaration: !4, align: 8) 4937 bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 4938 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4939 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 4940 OPTIONAL(scope, MDField, ); \ 4941 OPTIONAL(linkageName, MDStringField, ); \ 4942 OPTIONAL(file, MDField, ); \ 4943 OPTIONAL(line, LineField, ); \ 4944 OPTIONAL(type, MDField, ); \ 4945 OPTIONAL(isLocal, MDBoolField, ); \ 4946 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4947 OPTIONAL(templateParams, MDField, ); \ 4948 OPTIONAL(declaration, MDField, ); \ 4949 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4950 PARSE_MD_FIELDS(); 4951 #undef VISIT_MD_FIELDS 4952 4953 Result = 4954 GET_OR_DISTINCT(DIGlobalVariable, 4955 (Context, scope.Val, name.Val, linkageName.Val, file.Val, 4956 line.Val, type.Val, isLocal.Val, isDefinition.Val, 4957 declaration.Val, templateParams.Val, align.Val)); 4958 return false; 4959 } 4960 4961 /// parseDILocalVariable: 4962 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 4963 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4964 /// align: 8) 4965 /// ::= !DILocalVariable(scope: !0, name: "foo", 4966 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4967 /// align: 8) 4968 bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) { 4969 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4970 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4971 OPTIONAL(name, MDStringField, ); \ 4972 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 4973 OPTIONAL(file, MDField, ); \ 4974 OPTIONAL(line, LineField, ); \ 4975 OPTIONAL(type, MDField, ); \ 4976 OPTIONAL(flags, DIFlagField, ); \ 4977 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4978 PARSE_MD_FIELDS(); 4979 #undef VISIT_MD_FIELDS 4980 4981 Result = GET_OR_DISTINCT(DILocalVariable, 4982 (Context, scope.Val, name.Val, file.Val, line.Val, 4983 type.Val, arg.Val, flags.Val, align.Val)); 4984 return false; 4985 } 4986 4987 /// parseDILabel: 4988 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7) 4989 bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) { 4990 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4991 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4992 REQUIRED(name, MDStringField, ); \ 4993 REQUIRED(file, MDField, ); \ 4994 REQUIRED(line, LineField, ); 4995 PARSE_MD_FIELDS(); 4996 #undef VISIT_MD_FIELDS 4997 4998 Result = GET_OR_DISTINCT(DILabel, 4999 (Context, scope.Val, name.Val, file.Val, line.Val)); 5000 return false; 5001 } 5002 5003 /// parseDIExpression: 5004 /// ::= !DIExpression(0, 7, -1) 5005 bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) { 5006 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 5007 Lex.Lex(); 5008 5009 if (parseToken(lltok::lparen, "expected '(' here")) 5010 return true; 5011 5012 SmallVector<uint64_t, 8> Elements; 5013 if (Lex.getKind() != lltok::rparen) 5014 do { 5015 if (Lex.getKind() == lltok::DwarfOp) { 5016 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 5017 Lex.Lex(); 5018 Elements.push_back(Op); 5019 continue; 5020 } 5021 return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 5022 } 5023 5024 if (Lex.getKind() == lltok::DwarfAttEncoding) { 5025 if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) { 5026 Lex.Lex(); 5027 Elements.push_back(Op); 5028 continue; 5029 } 5030 return tokError(Twine("invalid DWARF attribute encoding '") + 5031 Lex.getStrVal() + "'"); 5032 } 5033 5034 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 5035 return tokError("expected unsigned integer"); 5036 5037 auto &U = Lex.getAPSIntVal(); 5038 if (U.ugt(UINT64_MAX)) 5039 return tokError("element too large, limit is " + Twine(UINT64_MAX)); 5040 Elements.push_back(U.getZExtValue()); 5041 Lex.Lex(); 5042 } while (EatIfPresent(lltok::comma)); 5043 5044 if (parseToken(lltok::rparen, "expected ')' here")) 5045 return true; 5046 5047 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 5048 return false; 5049 } 5050 5051 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct) { 5052 return parseDIArgList(Result, IsDistinct, nullptr); 5053 } 5054 /// ParseDIArgList: 5055 /// ::= !DIArgList(i32 7, i64 %0) 5056 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct, 5057 PerFunctionState *PFS) { 5058 assert(PFS && "Expected valid function state"); 5059 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 5060 Lex.Lex(); 5061 5062 if (parseToken(lltok::lparen, "expected '(' here")) 5063 return true; 5064 5065 SmallVector<ValueAsMetadata *, 4> Args; 5066 if (Lex.getKind() != lltok::rparen) 5067 do { 5068 Metadata *MD; 5069 if (parseValueAsMetadata(MD, "expected value-as-metadata operand", PFS)) 5070 return true; 5071 Args.push_back(dyn_cast<ValueAsMetadata>(MD)); 5072 } while (EatIfPresent(lltok::comma)); 5073 5074 if (parseToken(lltok::rparen, "expected ')' here")) 5075 return true; 5076 5077 Result = GET_OR_DISTINCT(DIArgList, (Context, Args)); 5078 return false; 5079 } 5080 5081 /// parseDIGlobalVariableExpression: 5082 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1) 5083 bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result, 5084 bool IsDistinct) { 5085 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5086 REQUIRED(var, MDField, ); \ 5087 REQUIRED(expr, MDField, ); 5088 PARSE_MD_FIELDS(); 5089 #undef VISIT_MD_FIELDS 5090 5091 Result = 5092 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val)); 5093 return false; 5094 } 5095 5096 /// parseDIObjCProperty: 5097 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 5098 /// getter: "getFoo", attributes: 7, type: !2) 5099 bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 5100 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5101 OPTIONAL(name, MDStringField, ); \ 5102 OPTIONAL(file, MDField, ); \ 5103 OPTIONAL(line, LineField, ); \ 5104 OPTIONAL(setter, MDStringField, ); \ 5105 OPTIONAL(getter, MDStringField, ); \ 5106 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 5107 OPTIONAL(type, MDField, ); 5108 PARSE_MD_FIELDS(); 5109 #undef VISIT_MD_FIELDS 5110 5111 Result = GET_OR_DISTINCT(DIObjCProperty, 5112 (Context, name.Val, file.Val, line.Val, setter.Val, 5113 getter.Val, attributes.Val, type.Val)); 5114 return false; 5115 } 5116 5117 /// parseDIImportedEntity: 5118 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 5119 /// line: 7, name: "foo") 5120 bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 5121 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5122 REQUIRED(tag, DwarfTagField, ); \ 5123 REQUIRED(scope, MDField, ); \ 5124 OPTIONAL(entity, MDField, ); \ 5125 OPTIONAL(file, MDField, ); \ 5126 OPTIONAL(line, LineField, ); \ 5127 OPTIONAL(name, MDStringField, ); 5128 PARSE_MD_FIELDS(); 5129 #undef VISIT_MD_FIELDS 5130 5131 Result = GET_OR_DISTINCT( 5132 DIImportedEntity, 5133 (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val)); 5134 return false; 5135 } 5136 5137 #undef PARSE_MD_FIELD 5138 #undef NOP_FIELD 5139 #undef REQUIRE_FIELD 5140 #undef DECLARE_FIELD 5141 5142 /// parseMetadataAsValue 5143 /// ::= metadata i32 %local 5144 /// ::= metadata i32 @global 5145 /// ::= metadata i32 7 5146 /// ::= metadata !0 5147 /// ::= metadata !{...} 5148 /// ::= metadata !"string" 5149 bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 5150 // Note: the type 'metadata' has already been parsed. 5151 Metadata *MD; 5152 if (parseMetadata(MD, &PFS)) 5153 return true; 5154 5155 V = MetadataAsValue::get(Context, MD); 5156 return false; 5157 } 5158 5159 /// parseValueAsMetadata 5160 /// ::= i32 %local 5161 /// ::= i32 @global 5162 /// ::= i32 7 5163 bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 5164 PerFunctionState *PFS) { 5165 Type *Ty; 5166 LocTy Loc; 5167 if (parseType(Ty, TypeMsg, Loc)) 5168 return true; 5169 if (Ty->isMetadataTy()) 5170 return error(Loc, "invalid metadata-value-metadata roundtrip"); 5171 5172 Value *V; 5173 if (parseValue(Ty, V, PFS)) 5174 return true; 5175 5176 MD = ValueAsMetadata::get(V); 5177 return false; 5178 } 5179 5180 /// parseMetadata 5181 /// ::= i32 %local 5182 /// ::= i32 @global 5183 /// ::= i32 7 5184 /// ::= !42 5185 /// ::= !{...} 5186 /// ::= !"string" 5187 /// ::= !DILocation(...) 5188 bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) { 5189 if (Lex.getKind() == lltok::MetadataVar) { 5190 MDNode *N; 5191 // DIArgLists are a special case, as they are a list of ValueAsMetadata and 5192 // so parsing this requires a Function State. 5193 if (Lex.getStrVal() == "DIArgList") { 5194 if (parseDIArgList(N, false, PFS)) 5195 return true; 5196 } else if (parseSpecializedMDNode(N)) { 5197 return true; 5198 } 5199 MD = N; 5200 return false; 5201 } 5202 5203 // ValueAsMetadata: 5204 // <type> <value> 5205 if (Lex.getKind() != lltok::exclaim) 5206 return parseValueAsMetadata(MD, "expected metadata operand", PFS); 5207 5208 // '!'. 5209 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 5210 Lex.Lex(); 5211 5212 // MDString: 5213 // ::= '!' STRINGCONSTANT 5214 if (Lex.getKind() == lltok::StringConstant) { 5215 MDString *S; 5216 if (parseMDString(S)) 5217 return true; 5218 MD = S; 5219 return false; 5220 } 5221 5222 // MDNode: 5223 // !{ ... } 5224 // !7 5225 MDNode *N; 5226 if (parseMDNodeTail(N)) 5227 return true; 5228 MD = N; 5229 return false; 5230 } 5231 5232 //===----------------------------------------------------------------------===// 5233 // Function Parsing. 5234 //===----------------------------------------------------------------------===// 5235 5236 bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V, 5237 PerFunctionState *PFS, bool IsCall) { 5238 if (Ty->isFunctionTy()) 5239 return error(ID.Loc, "functions are not values, refer to them as pointers"); 5240 5241 switch (ID.Kind) { 5242 case ValID::t_LocalID: 5243 if (!PFS) 5244 return error(ID.Loc, "invalid use of function-local name"); 5245 V = PFS->getVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5246 return V == nullptr; 5247 case ValID::t_LocalName: 5248 if (!PFS) 5249 return error(ID.Loc, "invalid use of function-local name"); 5250 V = PFS->getVal(ID.StrVal, Ty, ID.Loc, IsCall); 5251 return V == nullptr; 5252 case ValID::t_InlineAsm: { 5253 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 5254 return error(ID.Loc, "invalid type for inline asm constraint string"); 5255 V = InlineAsm::get( 5256 ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, (ID.UIntVal >> 1) & 1, 5257 InlineAsm::AsmDialect((ID.UIntVal >> 2) & 1), (ID.UIntVal >> 3) & 1); 5258 return false; 5259 } 5260 case ValID::t_GlobalName: 5261 V = getGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall); 5262 return V == nullptr; 5263 case ValID::t_GlobalID: 5264 V = getGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5265 return V == nullptr; 5266 case ValID::t_APSInt: 5267 if (!Ty->isIntegerTy()) 5268 return error(ID.Loc, "integer constant must have integer type"); 5269 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 5270 V = ConstantInt::get(Context, ID.APSIntVal); 5271 return false; 5272 case ValID::t_APFloat: 5273 if (!Ty->isFloatingPointTy() || 5274 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 5275 return error(ID.Loc, "floating point constant invalid for type"); 5276 5277 // The lexer has no type info, so builds all half, bfloat, float, and double 5278 // FP constants as double. Fix this here. Long double does not need this. 5279 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) { 5280 // Check for signaling before potentially converting and losing that info. 5281 bool IsSNAN = ID.APFloatVal.isSignaling(); 5282 bool Ignored; 5283 if (Ty->isHalfTy()) 5284 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, 5285 &Ignored); 5286 else if (Ty->isBFloatTy()) 5287 ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven, 5288 &Ignored); 5289 else if (Ty->isFloatTy()) 5290 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 5291 &Ignored); 5292 if (IsSNAN) { 5293 // The convert call above may quiet an SNaN, so manufacture another 5294 // SNaN. The bitcast works because the payload (significand) parameter 5295 // is truncated to fit. 5296 APInt Payload = ID.APFloatVal.bitcastToAPInt(); 5297 ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(), 5298 ID.APFloatVal.isNegative(), &Payload); 5299 } 5300 } 5301 V = ConstantFP::get(Context, ID.APFloatVal); 5302 5303 if (V->getType() != Ty) 5304 return error(ID.Loc, "floating point constant does not have type '" + 5305 getTypeString(Ty) + "'"); 5306 5307 return false; 5308 case ValID::t_Null: 5309 if (!Ty->isPointerTy()) 5310 return error(ID.Loc, "null must be a pointer type"); 5311 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 5312 return false; 5313 case ValID::t_Undef: 5314 // FIXME: LabelTy should not be a first-class type. 5315 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5316 return error(ID.Loc, "invalid type for undef constant"); 5317 V = UndefValue::get(Ty); 5318 return false; 5319 case ValID::t_EmptyArray: 5320 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 5321 return error(ID.Loc, "invalid empty array initializer"); 5322 V = UndefValue::get(Ty); 5323 return false; 5324 case ValID::t_Zero: 5325 // FIXME: LabelTy should not be a first-class type. 5326 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5327 return error(ID.Loc, "invalid type for null constant"); 5328 V = Constant::getNullValue(Ty); 5329 return false; 5330 case ValID::t_None: 5331 if (!Ty->isTokenTy()) 5332 return error(ID.Loc, "invalid type for none constant"); 5333 V = Constant::getNullValue(Ty); 5334 return false; 5335 case ValID::t_Poison: 5336 // FIXME: LabelTy should not be a first-class type. 5337 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5338 return error(ID.Loc, "invalid type for poison constant"); 5339 V = PoisonValue::get(Ty); 5340 return false; 5341 case ValID::t_Constant: 5342 if (ID.ConstantVal->getType() != Ty) 5343 return error(ID.Loc, "constant expression type mismatch: got type '" + 5344 getTypeString(ID.ConstantVal->getType()) + 5345 "' but expected '" + getTypeString(Ty) + "'"); 5346 V = ID.ConstantVal; 5347 return false; 5348 case ValID::t_ConstantStruct: 5349 case ValID::t_PackedConstantStruct: 5350 if (StructType *ST = dyn_cast<StructType>(Ty)) { 5351 if (ST->getNumElements() != ID.UIntVal) 5352 return error(ID.Loc, 5353 "initializer with struct type has wrong # elements"); 5354 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 5355 return error(ID.Loc, "packed'ness of initializer and type don't match"); 5356 5357 // Verify that the elements are compatible with the structtype. 5358 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 5359 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 5360 return error( 5361 ID.Loc, 5362 "element " + Twine(i) + 5363 " of struct initializer doesn't match struct element type"); 5364 5365 V = ConstantStruct::get( 5366 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 5367 } else 5368 return error(ID.Loc, "constant expression type mismatch"); 5369 return false; 5370 } 5371 llvm_unreachable("Invalid ValID"); 5372 } 5373 5374 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 5375 C = nullptr; 5376 ValID ID; 5377 auto Loc = Lex.getLoc(); 5378 if (parseValID(ID, /*PFS=*/nullptr)) 5379 return true; 5380 switch (ID.Kind) { 5381 case ValID::t_APSInt: 5382 case ValID::t_APFloat: 5383 case ValID::t_Undef: 5384 case ValID::t_Constant: 5385 case ValID::t_ConstantStruct: 5386 case ValID::t_PackedConstantStruct: { 5387 Value *V; 5388 if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false)) 5389 return true; 5390 assert(isa<Constant>(V) && "Expected a constant value"); 5391 C = cast<Constant>(V); 5392 return false; 5393 } 5394 case ValID::t_Null: 5395 C = Constant::getNullValue(Ty); 5396 return false; 5397 default: 5398 return error(Loc, "expected a constant value"); 5399 } 5400 } 5401 5402 bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 5403 V = nullptr; 5404 ValID ID; 5405 return parseValID(ID, PFS, Ty) || 5406 convertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false); 5407 } 5408 5409 bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) { 5410 Type *Ty = nullptr; 5411 return parseType(Ty) || parseValue(Ty, V, PFS); 5412 } 5413 5414 bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 5415 PerFunctionState &PFS) { 5416 Value *V; 5417 Loc = Lex.getLoc(); 5418 if (parseTypeAndValue(V, PFS)) 5419 return true; 5420 if (!isa<BasicBlock>(V)) 5421 return error(Loc, "expected a basic block"); 5422 BB = cast<BasicBlock>(V); 5423 return false; 5424 } 5425 5426 /// FunctionHeader 5427 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 5428 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName 5429 /// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign 5430 /// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 5431 bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine) { 5432 // parse the linkage. 5433 LocTy LinkageLoc = Lex.getLoc(); 5434 unsigned Linkage; 5435 unsigned Visibility; 5436 unsigned DLLStorageClass; 5437 bool DSOLocal; 5438 AttrBuilder RetAttrs; 5439 unsigned CC; 5440 bool HasLinkage; 5441 Type *RetType = nullptr; 5442 LocTy RetTypeLoc = Lex.getLoc(); 5443 if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 5444 DSOLocal) || 5445 parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 5446 parseType(RetType, RetTypeLoc, true /*void allowed*/)) 5447 return true; 5448 5449 // Verify that the linkage is ok. 5450 switch ((GlobalValue::LinkageTypes)Linkage) { 5451 case GlobalValue::ExternalLinkage: 5452 break; // always ok. 5453 case GlobalValue::ExternalWeakLinkage: 5454 if (IsDefine) 5455 return error(LinkageLoc, "invalid linkage for function definition"); 5456 break; 5457 case GlobalValue::PrivateLinkage: 5458 case GlobalValue::InternalLinkage: 5459 case GlobalValue::AvailableExternallyLinkage: 5460 case GlobalValue::LinkOnceAnyLinkage: 5461 case GlobalValue::LinkOnceODRLinkage: 5462 case GlobalValue::WeakAnyLinkage: 5463 case GlobalValue::WeakODRLinkage: 5464 if (!IsDefine) 5465 return error(LinkageLoc, "invalid linkage for function declaration"); 5466 break; 5467 case GlobalValue::AppendingLinkage: 5468 case GlobalValue::CommonLinkage: 5469 return error(LinkageLoc, "invalid function linkage type"); 5470 } 5471 5472 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 5473 return error(LinkageLoc, 5474 "symbol with local linkage must have default visibility"); 5475 5476 if (!FunctionType::isValidReturnType(RetType)) 5477 return error(RetTypeLoc, "invalid function return type"); 5478 5479 LocTy NameLoc = Lex.getLoc(); 5480 5481 std::string FunctionName; 5482 if (Lex.getKind() == lltok::GlobalVar) { 5483 FunctionName = Lex.getStrVal(); 5484 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 5485 unsigned NameID = Lex.getUIntVal(); 5486 5487 if (NameID != NumberedVals.size()) 5488 return tokError("function expected to be numbered '%" + 5489 Twine(NumberedVals.size()) + "'"); 5490 } else { 5491 return tokError("expected function name"); 5492 } 5493 5494 Lex.Lex(); 5495 5496 if (Lex.getKind() != lltok::lparen) 5497 return tokError("expected '(' in function argument list"); 5498 5499 SmallVector<ArgInfo, 8> ArgList; 5500 bool IsVarArg; 5501 AttrBuilder FuncAttrs; 5502 std::vector<unsigned> FwdRefAttrGrps; 5503 LocTy BuiltinLoc; 5504 std::string Section; 5505 std::string Partition; 5506 MaybeAlign Alignment; 5507 std::string GC; 5508 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 5509 unsigned AddrSpace = 0; 5510 Constant *Prefix = nullptr; 5511 Constant *Prologue = nullptr; 5512 Constant *PersonalityFn = nullptr; 5513 Comdat *C; 5514 5515 if (parseArgumentList(ArgList, IsVarArg) || 5516 parseOptionalUnnamedAddr(UnnamedAddr) || 5517 parseOptionalProgramAddrSpace(AddrSpace) || 5518 parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 5519 BuiltinLoc) || 5520 (EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) || 5521 (EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) || 5522 parseOptionalComdat(FunctionName, C) || 5523 parseOptionalAlignment(Alignment) || 5524 (EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) || 5525 (EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) || 5526 (EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) || 5527 (EatIfPresent(lltok::kw_personality) && 5528 parseGlobalTypeAndValue(PersonalityFn))) 5529 return true; 5530 5531 if (FuncAttrs.contains(Attribute::Builtin)) 5532 return error(BuiltinLoc, "'builtin' attribute not valid on function"); 5533 5534 // If the alignment was parsed as an attribute, move to the alignment field. 5535 if (FuncAttrs.hasAlignmentAttr()) { 5536 Alignment = FuncAttrs.getAlignment(); 5537 FuncAttrs.removeAttribute(Attribute::Alignment); 5538 } 5539 5540 // Okay, if we got here, the function is syntactically valid. Convert types 5541 // and do semantic checks. 5542 std::vector<Type*> ParamTypeList; 5543 SmallVector<AttributeSet, 8> Attrs; 5544 5545 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5546 ParamTypeList.push_back(ArgList[i].Ty); 5547 Attrs.push_back(ArgList[i].Attrs); 5548 } 5549 5550 AttributeList PAL = 5551 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs), 5552 AttributeSet::get(Context, RetAttrs), Attrs); 5553 5554 if (PAL.hasParamAttr(0, Attribute::StructRet) && !RetType->isVoidTy()) 5555 return error(RetTypeLoc, "functions with 'sret' argument must return void"); 5556 5557 FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg); 5558 PointerType *PFT = PointerType::get(FT, AddrSpace); 5559 5560 Fn = nullptr; 5561 GlobalValue *FwdFn = nullptr; 5562 if (!FunctionName.empty()) { 5563 // If this was a definition of a forward reference, remove the definition 5564 // from the forward reference table and fill in the forward ref. 5565 auto FRVI = ForwardRefVals.find(FunctionName); 5566 if (FRVI != ForwardRefVals.end()) { 5567 FwdFn = FRVI->second.first; 5568 if (!FwdFn->getType()->isOpaque()) { 5569 if (!FwdFn->getType()->getPointerElementType()->isFunctionTy()) 5570 return error(FRVI->second.second, "invalid forward reference to " 5571 "function as global value!"); 5572 if (FwdFn->getType() != PFT) 5573 return error(FRVI->second.second, 5574 "invalid forward reference to " 5575 "function '" + 5576 FunctionName + 5577 "' with wrong type: " 5578 "expected '" + 5579 getTypeString(PFT) + "' but was '" + 5580 getTypeString(FwdFn->getType()) + "'"); 5581 } 5582 ForwardRefVals.erase(FRVI); 5583 } else if ((Fn = M->getFunction(FunctionName))) { 5584 // Reject redefinitions. 5585 return error(NameLoc, 5586 "invalid redefinition of function '" + FunctionName + "'"); 5587 } else if (M->getNamedValue(FunctionName)) { 5588 return error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 5589 } 5590 5591 } else { 5592 // If this is a definition of a forward referenced function, make sure the 5593 // types agree. 5594 auto I = ForwardRefValIDs.find(NumberedVals.size()); 5595 if (I != ForwardRefValIDs.end()) { 5596 FwdFn = cast<Function>(I->second.first); 5597 if (!FwdFn->getType()->isOpaque() && FwdFn->getType() != PFT) 5598 return error(NameLoc, "type of definition and forward reference of '@" + 5599 Twine(NumberedVals.size()) + 5600 "' disagree: " 5601 "expected '" + 5602 getTypeString(PFT) + "' but was '" + 5603 getTypeString(FwdFn->getType()) + "'"); 5604 ForwardRefValIDs.erase(I); 5605 } 5606 } 5607 5608 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace, 5609 FunctionName, M); 5610 5611 assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS"); 5612 5613 if (FunctionName.empty()) 5614 NumberedVals.push_back(Fn); 5615 5616 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 5617 maybeSetDSOLocal(DSOLocal, *Fn); 5618 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 5619 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 5620 Fn->setCallingConv(CC); 5621 Fn->setAttributes(PAL); 5622 Fn->setUnnamedAddr(UnnamedAddr); 5623 Fn->setAlignment(MaybeAlign(Alignment)); 5624 Fn->setSection(Section); 5625 Fn->setPartition(Partition); 5626 Fn->setComdat(C); 5627 Fn->setPersonalityFn(PersonalityFn); 5628 if (!GC.empty()) Fn->setGC(GC); 5629 Fn->setPrefixData(Prefix); 5630 Fn->setPrologueData(Prologue); 5631 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 5632 5633 // Add all of the arguments we parsed to the function. 5634 Function::arg_iterator ArgIt = Fn->arg_begin(); 5635 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 5636 // If the argument has a name, insert it into the argument symbol table. 5637 if (ArgList[i].Name.empty()) continue; 5638 5639 // Set the name, if it conflicted, it will be auto-renamed. 5640 ArgIt->setName(ArgList[i].Name); 5641 5642 if (ArgIt->getName() != ArgList[i].Name) 5643 return error(ArgList[i].Loc, 5644 "redefinition of argument '%" + ArgList[i].Name + "'"); 5645 } 5646 5647 if (FwdFn) { 5648 FwdFn->replaceAllUsesWith(Fn); 5649 FwdFn->eraseFromParent(); 5650 } 5651 5652 if (IsDefine) 5653 return false; 5654 5655 // Check the declaration has no block address forward references. 5656 ValID ID; 5657 if (FunctionName.empty()) { 5658 ID.Kind = ValID::t_GlobalID; 5659 ID.UIntVal = NumberedVals.size() - 1; 5660 } else { 5661 ID.Kind = ValID::t_GlobalName; 5662 ID.StrVal = FunctionName; 5663 } 5664 auto Blocks = ForwardRefBlockAddresses.find(ID); 5665 if (Blocks != ForwardRefBlockAddresses.end()) 5666 return error(Blocks->first.Loc, 5667 "cannot take blockaddress inside a declaration"); 5668 return false; 5669 } 5670 5671 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 5672 ValID ID; 5673 if (FunctionNumber == -1) { 5674 ID.Kind = ValID::t_GlobalName; 5675 ID.StrVal = std::string(F.getName()); 5676 } else { 5677 ID.Kind = ValID::t_GlobalID; 5678 ID.UIntVal = FunctionNumber; 5679 } 5680 5681 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 5682 if (Blocks == P.ForwardRefBlockAddresses.end()) 5683 return false; 5684 5685 for (const auto &I : Blocks->second) { 5686 const ValID &BBID = I.first; 5687 GlobalValue *GV = I.second; 5688 5689 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 5690 "Expected local id or name"); 5691 BasicBlock *BB; 5692 if (BBID.Kind == ValID::t_LocalName) 5693 BB = getBB(BBID.StrVal, BBID.Loc); 5694 else 5695 BB = getBB(BBID.UIntVal, BBID.Loc); 5696 if (!BB) 5697 return P.error(BBID.Loc, "referenced value is not a basic block"); 5698 5699 Value *ResolvedVal = BlockAddress::get(&F, BB); 5700 ResolvedVal = P.checkValidVariableType(BBID.Loc, BBID.StrVal, GV->getType(), 5701 ResolvedVal, false); 5702 if (!ResolvedVal) 5703 return true; 5704 GV->replaceAllUsesWith(ResolvedVal); 5705 GV->eraseFromParent(); 5706 } 5707 5708 P.ForwardRefBlockAddresses.erase(Blocks); 5709 return false; 5710 } 5711 5712 /// parseFunctionBody 5713 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 5714 bool LLParser::parseFunctionBody(Function &Fn) { 5715 if (Lex.getKind() != lltok::lbrace) 5716 return tokError("expected '{' in function body"); 5717 Lex.Lex(); // eat the {. 5718 5719 int FunctionNumber = -1; 5720 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 5721 5722 PerFunctionState PFS(*this, Fn, FunctionNumber); 5723 5724 // Resolve block addresses and allow basic blocks to be forward-declared 5725 // within this function. 5726 if (PFS.resolveForwardRefBlockAddresses()) 5727 return true; 5728 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 5729 5730 // We need at least one basic block. 5731 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 5732 return tokError("function body requires at least one basic block"); 5733 5734 while (Lex.getKind() != lltok::rbrace && 5735 Lex.getKind() != lltok::kw_uselistorder) 5736 if (parseBasicBlock(PFS)) 5737 return true; 5738 5739 while (Lex.getKind() != lltok::rbrace) 5740 if (parseUseListOrder(&PFS)) 5741 return true; 5742 5743 // Eat the }. 5744 Lex.Lex(); 5745 5746 // Verify function is ok. 5747 return PFS.finishFunction(); 5748 } 5749 5750 /// parseBasicBlock 5751 /// ::= (LabelStr|LabelID)? Instruction* 5752 bool LLParser::parseBasicBlock(PerFunctionState &PFS) { 5753 // If this basic block starts out with a name, remember it. 5754 std::string Name; 5755 int NameID = -1; 5756 LocTy NameLoc = Lex.getLoc(); 5757 if (Lex.getKind() == lltok::LabelStr) { 5758 Name = Lex.getStrVal(); 5759 Lex.Lex(); 5760 } else if (Lex.getKind() == lltok::LabelID) { 5761 NameID = Lex.getUIntVal(); 5762 Lex.Lex(); 5763 } 5764 5765 BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc); 5766 if (!BB) 5767 return true; 5768 5769 std::string NameStr; 5770 5771 // parse the instructions in this block until we get a terminator. 5772 Instruction *Inst; 5773 do { 5774 // This instruction may have three possibilities for a name: a) none 5775 // specified, b) name specified "%foo =", c) number specified: "%4 =". 5776 LocTy NameLoc = Lex.getLoc(); 5777 int NameID = -1; 5778 NameStr = ""; 5779 5780 if (Lex.getKind() == lltok::LocalVarID) { 5781 NameID = Lex.getUIntVal(); 5782 Lex.Lex(); 5783 if (parseToken(lltok::equal, "expected '=' after instruction id")) 5784 return true; 5785 } else if (Lex.getKind() == lltok::LocalVar) { 5786 NameStr = Lex.getStrVal(); 5787 Lex.Lex(); 5788 if (parseToken(lltok::equal, "expected '=' after instruction name")) 5789 return true; 5790 } 5791 5792 switch (parseInstruction(Inst, BB, PFS)) { 5793 default: 5794 llvm_unreachable("Unknown parseInstruction result!"); 5795 case InstError: return true; 5796 case InstNormal: 5797 BB->getInstList().push_back(Inst); 5798 5799 // With a normal result, we check to see if the instruction is followed by 5800 // a comma and metadata. 5801 if (EatIfPresent(lltok::comma)) 5802 if (parseInstructionMetadata(*Inst)) 5803 return true; 5804 break; 5805 case InstExtraComma: 5806 BB->getInstList().push_back(Inst); 5807 5808 // If the instruction parser ate an extra comma at the end of it, it 5809 // *must* be followed by metadata. 5810 if (parseInstructionMetadata(*Inst)) 5811 return true; 5812 break; 5813 } 5814 5815 // Set the name on the instruction. 5816 if (PFS.setInstName(NameID, NameStr, NameLoc, Inst)) 5817 return true; 5818 } while (!Inst->isTerminator()); 5819 5820 return false; 5821 } 5822 5823 //===----------------------------------------------------------------------===// 5824 // Instruction Parsing. 5825 //===----------------------------------------------------------------------===// 5826 5827 /// parseInstruction - parse one of the many different instructions. 5828 /// 5829 int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB, 5830 PerFunctionState &PFS) { 5831 lltok::Kind Token = Lex.getKind(); 5832 if (Token == lltok::Eof) 5833 return tokError("found end of file when expecting more instructions"); 5834 LocTy Loc = Lex.getLoc(); 5835 unsigned KeywordVal = Lex.getUIntVal(); 5836 Lex.Lex(); // Eat the keyword. 5837 5838 switch (Token) { 5839 default: 5840 return error(Loc, "expected instruction opcode"); 5841 // Terminator Instructions. 5842 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 5843 case lltok::kw_ret: 5844 return parseRet(Inst, BB, PFS); 5845 case lltok::kw_br: 5846 return parseBr(Inst, PFS); 5847 case lltok::kw_switch: 5848 return parseSwitch(Inst, PFS); 5849 case lltok::kw_indirectbr: 5850 return parseIndirectBr(Inst, PFS); 5851 case lltok::kw_invoke: 5852 return parseInvoke(Inst, PFS); 5853 case lltok::kw_resume: 5854 return parseResume(Inst, PFS); 5855 case lltok::kw_cleanupret: 5856 return parseCleanupRet(Inst, PFS); 5857 case lltok::kw_catchret: 5858 return parseCatchRet(Inst, PFS); 5859 case lltok::kw_catchswitch: 5860 return parseCatchSwitch(Inst, PFS); 5861 case lltok::kw_catchpad: 5862 return parseCatchPad(Inst, PFS); 5863 case lltok::kw_cleanuppad: 5864 return parseCleanupPad(Inst, PFS); 5865 case lltok::kw_callbr: 5866 return parseCallBr(Inst, PFS); 5867 // Unary Operators. 5868 case lltok::kw_fneg: { 5869 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5870 int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true); 5871 if (Res != 0) 5872 return Res; 5873 if (FMF.any()) 5874 Inst->setFastMathFlags(FMF); 5875 return false; 5876 } 5877 // Binary Operators. 5878 case lltok::kw_add: 5879 case lltok::kw_sub: 5880 case lltok::kw_mul: 5881 case lltok::kw_shl: { 5882 bool NUW = EatIfPresent(lltok::kw_nuw); 5883 bool NSW = EatIfPresent(lltok::kw_nsw); 5884 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 5885 5886 if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false)) 5887 return true; 5888 5889 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 5890 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 5891 return false; 5892 } 5893 case lltok::kw_fadd: 5894 case lltok::kw_fsub: 5895 case lltok::kw_fmul: 5896 case lltok::kw_fdiv: 5897 case lltok::kw_frem: { 5898 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5899 int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true); 5900 if (Res != 0) 5901 return Res; 5902 if (FMF.any()) 5903 Inst->setFastMathFlags(FMF); 5904 return 0; 5905 } 5906 5907 case lltok::kw_sdiv: 5908 case lltok::kw_udiv: 5909 case lltok::kw_lshr: 5910 case lltok::kw_ashr: { 5911 bool Exact = EatIfPresent(lltok::kw_exact); 5912 5913 if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false)) 5914 return true; 5915 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 5916 return false; 5917 } 5918 5919 case lltok::kw_urem: 5920 case lltok::kw_srem: 5921 return parseArithmetic(Inst, PFS, KeywordVal, 5922 /*IsFP*/ false); 5923 case lltok::kw_and: 5924 case lltok::kw_or: 5925 case lltok::kw_xor: 5926 return parseLogical(Inst, PFS, KeywordVal); 5927 case lltok::kw_icmp: 5928 return parseCompare(Inst, PFS, KeywordVal); 5929 case lltok::kw_fcmp: { 5930 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5931 int Res = parseCompare(Inst, PFS, KeywordVal); 5932 if (Res != 0) 5933 return Res; 5934 if (FMF.any()) 5935 Inst->setFastMathFlags(FMF); 5936 return 0; 5937 } 5938 5939 // Casts. 5940 case lltok::kw_trunc: 5941 case lltok::kw_zext: 5942 case lltok::kw_sext: 5943 case lltok::kw_fptrunc: 5944 case lltok::kw_fpext: 5945 case lltok::kw_bitcast: 5946 case lltok::kw_addrspacecast: 5947 case lltok::kw_uitofp: 5948 case lltok::kw_sitofp: 5949 case lltok::kw_fptoui: 5950 case lltok::kw_fptosi: 5951 case lltok::kw_inttoptr: 5952 case lltok::kw_ptrtoint: 5953 return parseCast(Inst, PFS, KeywordVal); 5954 // Other. 5955 case lltok::kw_select: { 5956 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5957 int Res = parseSelect(Inst, PFS); 5958 if (Res != 0) 5959 return Res; 5960 if (FMF.any()) { 5961 if (!isa<FPMathOperator>(Inst)) 5962 return error(Loc, "fast-math-flags specified for select without " 5963 "floating-point scalar or vector return type"); 5964 Inst->setFastMathFlags(FMF); 5965 } 5966 return 0; 5967 } 5968 case lltok::kw_va_arg: 5969 return parseVAArg(Inst, PFS); 5970 case lltok::kw_extractelement: 5971 return parseExtractElement(Inst, PFS); 5972 case lltok::kw_insertelement: 5973 return parseInsertElement(Inst, PFS); 5974 case lltok::kw_shufflevector: 5975 return parseShuffleVector(Inst, PFS); 5976 case lltok::kw_phi: { 5977 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5978 int Res = parsePHI(Inst, PFS); 5979 if (Res != 0) 5980 return Res; 5981 if (FMF.any()) { 5982 if (!isa<FPMathOperator>(Inst)) 5983 return error(Loc, "fast-math-flags specified for phi without " 5984 "floating-point scalar or vector return type"); 5985 Inst->setFastMathFlags(FMF); 5986 } 5987 return 0; 5988 } 5989 case lltok::kw_landingpad: 5990 return parseLandingPad(Inst, PFS); 5991 case lltok::kw_freeze: 5992 return parseFreeze(Inst, PFS); 5993 // Call. 5994 case lltok::kw_call: 5995 return parseCall(Inst, PFS, CallInst::TCK_None); 5996 case lltok::kw_tail: 5997 return parseCall(Inst, PFS, CallInst::TCK_Tail); 5998 case lltok::kw_musttail: 5999 return parseCall(Inst, PFS, CallInst::TCK_MustTail); 6000 case lltok::kw_notail: 6001 return parseCall(Inst, PFS, CallInst::TCK_NoTail); 6002 // Memory. 6003 case lltok::kw_alloca: 6004 return parseAlloc(Inst, PFS); 6005 case lltok::kw_load: 6006 return parseLoad(Inst, PFS); 6007 case lltok::kw_store: 6008 return parseStore(Inst, PFS); 6009 case lltok::kw_cmpxchg: 6010 return parseCmpXchg(Inst, PFS); 6011 case lltok::kw_atomicrmw: 6012 return parseAtomicRMW(Inst, PFS); 6013 case lltok::kw_fence: 6014 return parseFence(Inst, PFS); 6015 case lltok::kw_getelementptr: 6016 return parseGetElementPtr(Inst, PFS); 6017 case lltok::kw_extractvalue: 6018 return parseExtractValue(Inst, PFS); 6019 case lltok::kw_insertvalue: 6020 return parseInsertValue(Inst, PFS); 6021 } 6022 } 6023 6024 /// parseCmpPredicate - parse an integer or fp predicate, based on Kind. 6025 bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) { 6026 if (Opc == Instruction::FCmp) { 6027 switch (Lex.getKind()) { 6028 default: 6029 return tokError("expected fcmp predicate (e.g. 'oeq')"); 6030 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 6031 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 6032 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 6033 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 6034 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 6035 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 6036 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 6037 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 6038 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 6039 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 6040 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 6041 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 6042 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 6043 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 6044 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 6045 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 6046 } 6047 } else { 6048 switch (Lex.getKind()) { 6049 default: 6050 return tokError("expected icmp predicate (e.g. 'eq')"); 6051 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 6052 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 6053 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 6054 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 6055 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 6056 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 6057 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 6058 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 6059 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 6060 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 6061 } 6062 } 6063 Lex.Lex(); 6064 return false; 6065 } 6066 6067 //===----------------------------------------------------------------------===// 6068 // Terminator Instructions. 6069 //===----------------------------------------------------------------------===// 6070 6071 /// parseRet - parse a return instruction. 6072 /// ::= 'ret' void (',' !dbg, !1)* 6073 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 6074 bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB, 6075 PerFunctionState &PFS) { 6076 SMLoc TypeLoc = Lex.getLoc(); 6077 Type *Ty = nullptr; 6078 if (parseType(Ty, true /*void allowed*/)) 6079 return true; 6080 6081 Type *ResType = PFS.getFunction().getReturnType(); 6082 6083 if (Ty->isVoidTy()) { 6084 if (!ResType->isVoidTy()) 6085 return error(TypeLoc, "value doesn't match function result type '" + 6086 getTypeString(ResType) + "'"); 6087 6088 Inst = ReturnInst::Create(Context); 6089 return false; 6090 } 6091 6092 Value *RV; 6093 if (parseValue(Ty, RV, PFS)) 6094 return true; 6095 6096 if (ResType != RV->getType()) 6097 return error(TypeLoc, "value doesn't match function result type '" + 6098 getTypeString(ResType) + "'"); 6099 6100 Inst = ReturnInst::Create(Context, RV); 6101 return false; 6102 } 6103 6104 /// parseBr 6105 /// ::= 'br' TypeAndValue 6106 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6107 bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) { 6108 LocTy Loc, Loc2; 6109 Value *Op0; 6110 BasicBlock *Op1, *Op2; 6111 if (parseTypeAndValue(Op0, Loc, PFS)) 6112 return true; 6113 6114 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 6115 Inst = BranchInst::Create(BB); 6116 return false; 6117 } 6118 6119 if (Op0->getType() != Type::getInt1Ty(Context)) 6120 return error(Loc, "branch condition must have 'i1' type"); 6121 6122 if (parseToken(lltok::comma, "expected ',' after branch condition") || 6123 parseTypeAndBasicBlock(Op1, Loc, PFS) || 6124 parseToken(lltok::comma, "expected ',' after true destination") || 6125 parseTypeAndBasicBlock(Op2, Loc2, PFS)) 6126 return true; 6127 6128 Inst = BranchInst::Create(Op1, Op2, Op0); 6129 return false; 6130 } 6131 6132 /// parseSwitch 6133 /// Instruction 6134 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 6135 /// JumpTable 6136 /// ::= (TypeAndValue ',' TypeAndValue)* 6137 bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6138 LocTy CondLoc, BBLoc; 6139 Value *Cond; 6140 BasicBlock *DefaultBB; 6141 if (parseTypeAndValue(Cond, CondLoc, PFS) || 6142 parseToken(lltok::comma, "expected ',' after switch condition") || 6143 parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 6144 parseToken(lltok::lsquare, "expected '[' with switch table")) 6145 return true; 6146 6147 if (!Cond->getType()->isIntegerTy()) 6148 return error(CondLoc, "switch condition must have integer type"); 6149 6150 // parse the jump table pairs. 6151 SmallPtrSet<Value*, 32> SeenCases; 6152 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 6153 while (Lex.getKind() != lltok::rsquare) { 6154 Value *Constant; 6155 BasicBlock *DestBB; 6156 6157 if (parseTypeAndValue(Constant, CondLoc, PFS) || 6158 parseToken(lltok::comma, "expected ',' after case value") || 6159 parseTypeAndBasicBlock(DestBB, PFS)) 6160 return true; 6161 6162 if (!SeenCases.insert(Constant).second) 6163 return error(CondLoc, "duplicate case value in switch"); 6164 if (!isa<ConstantInt>(Constant)) 6165 return error(CondLoc, "case value is not a constant integer"); 6166 6167 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 6168 } 6169 6170 Lex.Lex(); // Eat the ']'. 6171 6172 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 6173 for (unsigned i = 0, e = Table.size(); i != e; ++i) 6174 SI->addCase(Table[i].first, Table[i].second); 6175 Inst = SI; 6176 return false; 6177 } 6178 6179 /// parseIndirectBr 6180 /// Instruction 6181 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 6182 bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 6183 LocTy AddrLoc; 6184 Value *Address; 6185 if (parseTypeAndValue(Address, AddrLoc, PFS) || 6186 parseToken(lltok::comma, "expected ',' after indirectbr address") || 6187 parseToken(lltok::lsquare, "expected '[' with indirectbr")) 6188 return true; 6189 6190 if (!Address->getType()->isPointerTy()) 6191 return error(AddrLoc, "indirectbr address must have pointer type"); 6192 6193 // parse the destination list. 6194 SmallVector<BasicBlock*, 16> DestList; 6195 6196 if (Lex.getKind() != lltok::rsquare) { 6197 BasicBlock *DestBB; 6198 if (parseTypeAndBasicBlock(DestBB, PFS)) 6199 return true; 6200 DestList.push_back(DestBB); 6201 6202 while (EatIfPresent(lltok::comma)) { 6203 if (parseTypeAndBasicBlock(DestBB, PFS)) 6204 return true; 6205 DestList.push_back(DestBB); 6206 } 6207 } 6208 6209 if (parseToken(lltok::rsquare, "expected ']' at end of block list")) 6210 return true; 6211 6212 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 6213 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 6214 IBI->addDestination(DestList[i]); 6215 Inst = IBI; 6216 return false; 6217 } 6218 6219 /// parseInvoke 6220 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 6221 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 6222 bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 6223 LocTy CallLoc = Lex.getLoc(); 6224 AttrBuilder RetAttrs, FnAttrs; 6225 std::vector<unsigned> FwdRefAttrGrps; 6226 LocTy NoBuiltinLoc; 6227 unsigned CC; 6228 unsigned InvokeAddrSpace; 6229 Type *RetType = nullptr; 6230 LocTy RetTypeLoc; 6231 ValID CalleeID; 6232 SmallVector<ParamInfo, 16> ArgList; 6233 SmallVector<OperandBundleDef, 2> BundleList; 6234 6235 BasicBlock *NormalBB, *UnwindBB; 6236 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 6237 parseOptionalProgramAddrSpace(InvokeAddrSpace) || 6238 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 6239 parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) || 6240 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6241 NoBuiltinLoc) || 6242 parseOptionalOperandBundles(BundleList, PFS) || 6243 parseToken(lltok::kw_to, "expected 'to' in invoke") || 6244 parseTypeAndBasicBlock(NormalBB, PFS) || 6245 parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 6246 parseTypeAndBasicBlock(UnwindBB, PFS)) 6247 return true; 6248 6249 // If RetType is a non-function pointer type, then this is the short syntax 6250 // for the call, which means that RetType is just the return type. Infer the 6251 // rest of the function argument types from the arguments that are present. 6252 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6253 if (!Ty) { 6254 // Pull out the types of all of the arguments... 6255 std::vector<Type*> ParamTypes; 6256 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6257 ParamTypes.push_back(ArgList[i].V->getType()); 6258 6259 if (!FunctionType::isValidReturnType(RetType)) 6260 return error(RetTypeLoc, "Invalid result type for LLVM function"); 6261 6262 Ty = FunctionType::get(RetType, ParamTypes, false); 6263 } 6264 6265 CalleeID.FTy = Ty; 6266 6267 // Look up the callee. 6268 Value *Callee; 6269 if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID, 6270 Callee, &PFS, /*IsCall=*/true)) 6271 return true; 6272 6273 // Set up the Attribute for the function. 6274 SmallVector<Value *, 8> Args; 6275 SmallVector<AttributeSet, 8> ArgAttrs; 6276 6277 // Loop through FunctionType's arguments and ensure they are specified 6278 // correctly. Also, gather any parameter attributes. 6279 FunctionType::param_iterator I = Ty->param_begin(); 6280 FunctionType::param_iterator E = Ty->param_end(); 6281 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6282 Type *ExpectedTy = nullptr; 6283 if (I != E) { 6284 ExpectedTy = *I++; 6285 } else if (!Ty->isVarArg()) { 6286 return error(ArgList[i].Loc, "too many arguments specified"); 6287 } 6288 6289 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6290 return error(ArgList[i].Loc, "argument is not of expected type '" + 6291 getTypeString(ExpectedTy) + "'"); 6292 Args.push_back(ArgList[i].V); 6293 ArgAttrs.push_back(ArgList[i].Attrs); 6294 } 6295 6296 if (I != E) 6297 return error(CallLoc, "not enough parameters specified for call"); 6298 6299 if (FnAttrs.hasAlignmentAttr()) 6300 return error(CallLoc, "invoke instructions may not have an alignment"); 6301 6302 // Finish off the Attribute and check them 6303 AttributeList PAL = 6304 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6305 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6306 6307 InvokeInst *II = 6308 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 6309 II->setCallingConv(CC); 6310 II->setAttributes(PAL); 6311 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 6312 Inst = II; 6313 return false; 6314 } 6315 6316 /// parseResume 6317 /// ::= 'resume' TypeAndValue 6318 bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) { 6319 Value *Exn; LocTy ExnLoc; 6320 if (parseTypeAndValue(Exn, ExnLoc, PFS)) 6321 return true; 6322 6323 ResumeInst *RI = ResumeInst::Create(Exn); 6324 Inst = RI; 6325 return false; 6326 } 6327 6328 bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args, 6329 PerFunctionState &PFS) { 6330 if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 6331 return true; 6332 6333 while (Lex.getKind() != lltok::rsquare) { 6334 // If this isn't the first argument, we need a comma. 6335 if (!Args.empty() && 6336 parseToken(lltok::comma, "expected ',' in argument list")) 6337 return true; 6338 6339 // parse the argument. 6340 LocTy ArgLoc; 6341 Type *ArgTy = nullptr; 6342 if (parseType(ArgTy, ArgLoc)) 6343 return true; 6344 6345 Value *V; 6346 if (ArgTy->isMetadataTy()) { 6347 if (parseMetadataAsValue(V, PFS)) 6348 return true; 6349 } else { 6350 if (parseValue(ArgTy, V, PFS)) 6351 return true; 6352 } 6353 Args.push_back(V); 6354 } 6355 6356 Lex.Lex(); // Lex the ']'. 6357 return false; 6358 } 6359 6360 /// parseCleanupRet 6361 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 6362 bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 6363 Value *CleanupPad = nullptr; 6364 6365 if (parseToken(lltok::kw_from, "expected 'from' after cleanupret")) 6366 return true; 6367 6368 if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 6369 return true; 6370 6371 if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 6372 return true; 6373 6374 BasicBlock *UnwindBB = nullptr; 6375 if (Lex.getKind() == lltok::kw_to) { 6376 Lex.Lex(); 6377 if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 6378 return true; 6379 } else { 6380 if (parseTypeAndBasicBlock(UnwindBB, PFS)) { 6381 return true; 6382 } 6383 } 6384 6385 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 6386 return false; 6387 } 6388 6389 /// parseCatchRet 6390 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 6391 bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 6392 Value *CatchPad = nullptr; 6393 6394 if (parseToken(lltok::kw_from, "expected 'from' after catchret")) 6395 return true; 6396 6397 if (parseValue(Type::getTokenTy(Context), CatchPad, PFS)) 6398 return true; 6399 6400 BasicBlock *BB; 6401 if (parseToken(lltok::kw_to, "expected 'to' in catchret") || 6402 parseTypeAndBasicBlock(BB, PFS)) 6403 return true; 6404 6405 Inst = CatchReturnInst::Create(CatchPad, BB); 6406 return false; 6407 } 6408 6409 /// parseCatchSwitch 6410 /// ::= 'catchswitch' within Parent 6411 bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6412 Value *ParentPad; 6413 6414 if (parseToken(lltok::kw_within, "expected 'within' after catchswitch")) 6415 return true; 6416 6417 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6418 Lex.getKind() != lltok::LocalVarID) 6419 return tokError("expected scope value for catchswitch"); 6420 6421 if (parseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6422 return true; 6423 6424 if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 6425 return true; 6426 6427 SmallVector<BasicBlock *, 32> Table; 6428 do { 6429 BasicBlock *DestBB; 6430 if (parseTypeAndBasicBlock(DestBB, PFS)) 6431 return true; 6432 Table.push_back(DestBB); 6433 } while (EatIfPresent(lltok::comma)); 6434 6435 if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 6436 return true; 6437 6438 if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope")) 6439 return true; 6440 6441 BasicBlock *UnwindBB = nullptr; 6442 if (EatIfPresent(lltok::kw_to)) { 6443 if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 6444 return true; 6445 } else { 6446 if (parseTypeAndBasicBlock(UnwindBB, PFS)) 6447 return true; 6448 } 6449 6450 auto *CatchSwitch = 6451 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 6452 for (BasicBlock *DestBB : Table) 6453 CatchSwitch->addHandler(DestBB); 6454 Inst = CatchSwitch; 6455 return false; 6456 } 6457 6458 /// parseCatchPad 6459 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 6460 bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 6461 Value *CatchSwitch = nullptr; 6462 6463 if (parseToken(lltok::kw_within, "expected 'within' after catchpad")) 6464 return true; 6465 6466 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 6467 return tokError("expected scope value for catchpad"); 6468 6469 if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 6470 return true; 6471 6472 SmallVector<Value *, 8> Args; 6473 if (parseExceptionArgs(Args, PFS)) 6474 return true; 6475 6476 Inst = CatchPadInst::Create(CatchSwitch, Args); 6477 return false; 6478 } 6479 6480 /// parseCleanupPad 6481 /// ::= 'cleanuppad' within Parent ParamList 6482 bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 6483 Value *ParentPad = nullptr; 6484 6485 if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 6486 return true; 6487 6488 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6489 Lex.getKind() != lltok::LocalVarID) 6490 return tokError("expected scope value for cleanuppad"); 6491 6492 if (parseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6493 return true; 6494 6495 SmallVector<Value *, 8> Args; 6496 if (parseExceptionArgs(Args, PFS)) 6497 return true; 6498 6499 Inst = CleanupPadInst::Create(ParentPad, Args); 6500 return false; 6501 } 6502 6503 //===----------------------------------------------------------------------===// 6504 // Unary Operators. 6505 //===----------------------------------------------------------------------===// 6506 6507 /// parseUnaryOp 6508 /// ::= UnaryOp TypeAndValue ',' Value 6509 /// 6510 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6511 /// operand is allowed. 6512 bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS, 6513 unsigned Opc, bool IsFP) { 6514 LocTy Loc; Value *LHS; 6515 if (parseTypeAndValue(LHS, Loc, PFS)) 6516 return true; 6517 6518 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6519 : LHS->getType()->isIntOrIntVectorTy(); 6520 6521 if (!Valid) 6522 return error(Loc, "invalid operand type for instruction"); 6523 6524 Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 6525 return false; 6526 } 6527 6528 /// parseCallBr 6529 /// ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList 6530 /// OptionalAttrs OptionalOperandBundles 'to' TypeAndValue 6531 /// '[' LabelList ']' 6532 bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) { 6533 LocTy CallLoc = Lex.getLoc(); 6534 AttrBuilder RetAttrs, FnAttrs; 6535 std::vector<unsigned> FwdRefAttrGrps; 6536 LocTy NoBuiltinLoc; 6537 unsigned CC; 6538 Type *RetType = nullptr; 6539 LocTy RetTypeLoc; 6540 ValID CalleeID; 6541 SmallVector<ParamInfo, 16> ArgList; 6542 SmallVector<OperandBundleDef, 2> BundleList; 6543 6544 BasicBlock *DefaultDest; 6545 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 6546 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 6547 parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) || 6548 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6549 NoBuiltinLoc) || 6550 parseOptionalOperandBundles(BundleList, PFS) || 6551 parseToken(lltok::kw_to, "expected 'to' in callbr") || 6552 parseTypeAndBasicBlock(DefaultDest, PFS) || 6553 parseToken(lltok::lsquare, "expected '[' in callbr")) 6554 return true; 6555 6556 // parse the destination list. 6557 SmallVector<BasicBlock *, 16> IndirectDests; 6558 6559 if (Lex.getKind() != lltok::rsquare) { 6560 BasicBlock *DestBB; 6561 if (parseTypeAndBasicBlock(DestBB, PFS)) 6562 return true; 6563 IndirectDests.push_back(DestBB); 6564 6565 while (EatIfPresent(lltok::comma)) { 6566 if (parseTypeAndBasicBlock(DestBB, PFS)) 6567 return true; 6568 IndirectDests.push_back(DestBB); 6569 } 6570 } 6571 6572 if (parseToken(lltok::rsquare, "expected ']' at end of block list")) 6573 return true; 6574 6575 // If RetType is a non-function pointer type, then this is the short syntax 6576 // for the call, which means that RetType is just the return type. Infer the 6577 // rest of the function argument types from the arguments that are present. 6578 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6579 if (!Ty) { 6580 // Pull out the types of all of the arguments... 6581 std::vector<Type *> ParamTypes; 6582 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6583 ParamTypes.push_back(ArgList[i].V->getType()); 6584 6585 if (!FunctionType::isValidReturnType(RetType)) 6586 return error(RetTypeLoc, "Invalid result type for LLVM function"); 6587 6588 Ty = FunctionType::get(RetType, ParamTypes, false); 6589 } 6590 6591 CalleeID.FTy = Ty; 6592 6593 // Look up the callee. 6594 Value *Callee; 6595 if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS, 6596 /*IsCall=*/true)) 6597 return true; 6598 6599 // Set up the Attribute for the function. 6600 SmallVector<Value *, 8> Args; 6601 SmallVector<AttributeSet, 8> ArgAttrs; 6602 6603 // Loop through FunctionType's arguments and ensure they are specified 6604 // correctly. Also, gather any parameter attributes. 6605 FunctionType::param_iterator I = Ty->param_begin(); 6606 FunctionType::param_iterator E = Ty->param_end(); 6607 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6608 Type *ExpectedTy = nullptr; 6609 if (I != E) { 6610 ExpectedTy = *I++; 6611 } else if (!Ty->isVarArg()) { 6612 return error(ArgList[i].Loc, "too many arguments specified"); 6613 } 6614 6615 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6616 return error(ArgList[i].Loc, "argument is not of expected type '" + 6617 getTypeString(ExpectedTy) + "'"); 6618 Args.push_back(ArgList[i].V); 6619 ArgAttrs.push_back(ArgList[i].Attrs); 6620 } 6621 6622 if (I != E) 6623 return error(CallLoc, "not enough parameters specified for call"); 6624 6625 if (FnAttrs.hasAlignmentAttr()) 6626 return error(CallLoc, "callbr instructions may not have an alignment"); 6627 6628 // Finish off the Attribute and check them 6629 AttributeList PAL = 6630 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6631 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6632 6633 CallBrInst *CBI = 6634 CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args, 6635 BundleList); 6636 CBI->setCallingConv(CC); 6637 CBI->setAttributes(PAL); 6638 ForwardRefAttrGroups[CBI] = FwdRefAttrGrps; 6639 Inst = CBI; 6640 return false; 6641 } 6642 6643 //===----------------------------------------------------------------------===// 6644 // Binary Operators. 6645 //===----------------------------------------------------------------------===// 6646 6647 /// parseArithmetic 6648 /// ::= ArithmeticOps TypeAndValue ',' Value 6649 /// 6650 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6651 /// operand is allowed. 6652 bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 6653 unsigned Opc, bool IsFP) { 6654 LocTy Loc; Value *LHS, *RHS; 6655 if (parseTypeAndValue(LHS, Loc, PFS) || 6656 parseToken(lltok::comma, "expected ',' in arithmetic operation") || 6657 parseValue(LHS->getType(), RHS, PFS)) 6658 return true; 6659 6660 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6661 : LHS->getType()->isIntOrIntVectorTy(); 6662 6663 if (!Valid) 6664 return error(Loc, "invalid operand type for instruction"); 6665 6666 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6667 return false; 6668 } 6669 6670 /// parseLogical 6671 /// ::= ArithmeticOps TypeAndValue ',' Value { 6672 bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS, 6673 unsigned Opc) { 6674 LocTy Loc; Value *LHS, *RHS; 6675 if (parseTypeAndValue(LHS, Loc, PFS) || 6676 parseToken(lltok::comma, "expected ',' in logical operation") || 6677 parseValue(LHS->getType(), RHS, PFS)) 6678 return true; 6679 6680 if (!LHS->getType()->isIntOrIntVectorTy()) 6681 return error(Loc, 6682 "instruction requires integer or integer vector operands"); 6683 6684 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6685 return false; 6686 } 6687 6688 /// parseCompare 6689 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 6690 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 6691 bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS, 6692 unsigned Opc) { 6693 // parse the integer/fp comparison predicate. 6694 LocTy Loc; 6695 unsigned Pred; 6696 Value *LHS, *RHS; 6697 if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) || 6698 parseToken(lltok::comma, "expected ',' after compare value") || 6699 parseValue(LHS->getType(), RHS, PFS)) 6700 return true; 6701 6702 if (Opc == Instruction::FCmp) { 6703 if (!LHS->getType()->isFPOrFPVectorTy()) 6704 return error(Loc, "fcmp requires floating point operands"); 6705 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6706 } else { 6707 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 6708 if (!LHS->getType()->isIntOrIntVectorTy() && 6709 !LHS->getType()->isPtrOrPtrVectorTy()) 6710 return error(Loc, "icmp requires integer operands"); 6711 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6712 } 6713 return false; 6714 } 6715 6716 //===----------------------------------------------------------------------===// 6717 // Other Instructions. 6718 //===----------------------------------------------------------------------===// 6719 6720 /// parseCast 6721 /// ::= CastOpc TypeAndValue 'to' Type 6722 bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS, 6723 unsigned Opc) { 6724 LocTy Loc; 6725 Value *Op; 6726 Type *DestTy = nullptr; 6727 if (parseTypeAndValue(Op, Loc, PFS) || 6728 parseToken(lltok::kw_to, "expected 'to' after cast value") || 6729 parseType(DestTy)) 6730 return true; 6731 6732 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 6733 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 6734 return error(Loc, "invalid cast opcode for cast from '" + 6735 getTypeString(Op->getType()) + "' to '" + 6736 getTypeString(DestTy) + "'"); 6737 } 6738 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 6739 return false; 6740 } 6741 6742 /// parseSelect 6743 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6744 bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) { 6745 LocTy Loc; 6746 Value *Op0, *Op1, *Op2; 6747 if (parseTypeAndValue(Op0, Loc, PFS) || 6748 parseToken(lltok::comma, "expected ',' after select condition") || 6749 parseTypeAndValue(Op1, PFS) || 6750 parseToken(lltok::comma, "expected ',' after select value") || 6751 parseTypeAndValue(Op2, PFS)) 6752 return true; 6753 6754 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 6755 return error(Loc, Reason); 6756 6757 Inst = SelectInst::Create(Op0, Op1, Op2); 6758 return false; 6759 } 6760 6761 /// parseVAArg 6762 /// ::= 'va_arg' TypeAndValue ',' Type 6763 bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) { 6764 Value *Op; 6765 Type *EltTy = nullptr; 6766 LocTy TypeLoc; 6767 if (parseTypeAndValue(Op, PFS) || 6768 parseToken(lltok::comma, "expected ',' after vaarg operand") || 6769 parseType(EltTy, TypeLoc)) 6770 return true; 6771 6772 if (!EltTy->isFirstClassType()) 6773 return error(TypeLoc, "va_arg requires operand with first class type"); 6774 6775 Inst = new VAArgInst(Op, EltTy); 6776 return false; 6777 } 6778 6779 /// parseExtractElement 6780 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 6781 bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 6782 LocTy Loc; 6783 Value *Op0, *Op1; 6784 if (parseTypeAndValue(Op0, Loc, PFS) || 6785 parseToken(lltok::comma, "expected ',' after extract value") || 6786 parseTypeAndValue(Op1, PFS)) 6787 return true; 6788 6789 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 6790 return error(Loc, "invalid extractelement operands"); 6791 6792 Inst = ExtractElementInst::Create(Op0, Op1); 6793 return false; 6794 } 6795 6796 /// parseInsertElement 6797 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6798 bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 6799 LocTy Loc; 6800 Value *Op0, *Op1, *Op2; 6801 if (parseTypeAndValue(Op0, Loc, PFS) || 6802 parseToken(lltok::comma, "expected ',' after insertelement value") || 6803 parseTypeAndValue(Op1, PFS) || 6804 parseToken(lltok::comma, "expected ',' after insertelement value") || 6805 parseTypeAndValue(Op2, PFS)) 6806 return true; 6807 6808 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 6809 return error(Loc, "invalid insertelement operands"); 6810 6811 Inst = InsertElementInst::Create(Op0, Op1, Op2); 6812 return false; 6813 } 6814 6815 /// parseShuffleVector 6816 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6817 bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 6818 LocTy Loc; 6819 Value *Op0, *Op1, *Op2; 6820 if (parseTypeAndValue(Op0, Loc, PFS) || 6821 parseToken(lltok::comma, "expected ',' after shuffle mask") || 6822 parseTypeAndValue(Op1, PFS) || 6823 parseToken(lltok::comma, "expected ',' after shuffle value") || 6824 parseTypeAndValue(Op2, PFS)) 6825 return true; 6826 6827 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 6828 return error(Loc, "invalid shufflevector operands"); 6829 6830 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 6831 return false; 6832 } 6833 6834 /// parsePHI 6835 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 6836 int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) { 6837 Type *Ty = nullptr; LocTy TypeLoc; 6838 Value *Op0, *Op1; 6839 6840 if (parseType(Ty, TypeLoc) || 6841 parseToken(lltok::lsquare, "expected '[' in phi value list") || 6842 parseValue(Ty, Op0, PFS) || 6843 parseToken(lltok::comma, "expected ',' after insertelement value") || 6844 parseValue(Type::getLabelTy(Context), Op1, PFS) || 6845 parseToken(lltok::rsquare, "expected ']' in phi value list")) 6846 return true; 6847 6848 bool AteExtraComma = false; 6849 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 6850 6851 while (true) { 6852 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 6853 6854 if (!EatIfPresent(lltok::comma)) 6855 break; 6856 6857 if (Lex.getKind() == lltok::MetadataVar) { 6858 AteExtraComma = true; 6859 break; 6860 } 6861 6862 if (parseToken(lltok::lsquare, "expected '[' in phi value list") || 6863 parseValue(Ty, Op0, PFS) || 6864 parseToken(lltok::comma, "expected ',' after insertelement value") || 6865 parseValue(Type::getLabelTy(Context), Op1, PFS) || 6866 parseToken(lltok::rsquare, "expected ']' in phi value list")) 6867 return true; 6868 } 6869 6870 if (!Ty->isFirstClassType()) 6871 return error(TypeLoc, "phi node must have first class type"); 6872 6873 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 6874 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 6875 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 6876 Inst = PN; 6877 return AteExtraComma ? InstExtraComma : InstNormal; 6878 } 6879 6880 /// parseLandingPad 6881 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 6882 /// Clause 6883 /// ::= 'catch' TypeAndValue 6884 /// ::= 'filter' 6885 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 6886 bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 6887 Type *Ty = nullptr; LocTy TyLoc; 6888 6889 if (parseType(Ty, TyLoc)) 6890 return true; 6891 6892 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 6893 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 6894 6895 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 6896 LandingPadInst::ClauseType CT; 6897 if (EatIfPresent(lltok::kw_catch)) 6898 CT = LandingPadInst::Catch; 6899 else if (EatIfPresent(lltok::kw_filter)) 6900 CT = LandingPadInst::Filter; 6901 else 6902 return tokError("expected 'catch' or 'filter' clause type"); 6903 6904 Value *V; 6905 LocTy VLoc; 6906 if (parseTypeAndValue(V, VLoc, PFS)) 6907 return true; 6908 6909 // A 'catch' type expects a non-array constant. A filter clause expects an 6910 // array constant. 6911 if (CT == LandingPadInst::Catch) { 6912 if (isa<ArrayType>(V->getType())) 6913 error(VLoc, "'catch' clause has an invalid type"); 6914 } else { 6915 if (!isa<ArrayType>(V->getType())) 6916 error(VLoc, "'filter' clause has an invalid type"); 6917 } 6918 6919 Constant *CV = dyn_cast<Constant>(V); 6920 if (!CV) 6921 return error(VLoc, "clause argument must be a constant"); 6922 LP->addClause(CV); 6923 } 6924 6925 Inst = LP.release(); 6926 return false; 6927 } 6928 6929 /// parseFreeze 6930 /// ::= 'freeze' Type Value 6931 bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) { 6932 LocTy Loc; 6933 Value *Op; 6934 if (parseTypeAndValue(Op, Loc, PFS)) 6935 return true; 6936 6937 Inst = new FreezeInst(Op); 6938 return false; 6939 } 6940 6941 /// parseCall 6942 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 6943 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6944 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 6945 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6946 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 6947 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6948 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 6949 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6950 bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS, 6951 CallInst::TailCallKind TCK) { 6952 AttrBuilder RetAttrs, FnAttrs; 6953 std::vector<unsigned> FwdRefAttrGrps; 6954 LocTy BuiltinLoc; 6955 unsigned CallAddrSpace; 6956 unsigned CC; 6957 Type *RetType = nullptr; 6958 LocTy RetTypeLoc; 6959 ValID CalleeID; 6960 SmallVector<ParamInfo, 16> ArgList; 6961 SmallVector<OperandBundleDef, 2> BundleList; 6962 LocTy CallLoc = Lex.getLoc(); 6963 6964 if (TCK != CallInst::TCK_None && 6965 parseToken(lltok::kw_call, 6966 "expected 'tail call', 'musttail call', or 'notail call'")) 6967 return true; 6968 6969 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6970 6971 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 6972 parseOptionalProgramAddrSpace(CallAddrSpace) || 6973 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 6974 parseValID(CalleeID, &PFS) || 6975 parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 6976 PFS.getFunction().isVarArg()) || 6977 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 6978 parseOptionalOperandBundles(BundleList, PFS)) 6979 return true; 6980 6981 // If RetType is a non-function pointer type, then this is the short syntax 6982 // for the call, which means that RetType is just the return type. Infer the 6983 // rest of the function argument types from the arguments that are present. 6984 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6985 if (!Ty) { 6986 // Pull out the types of all of the arguments... 6987 std::vector<Type*> ParamTypes; 6988 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6989 ParamTypes.push_back(ArgList[i].V->getType()); 6990 6991 if (!FunctionType::isValidReturnType(RetType)) 6992 return error(RetTypeLoc, "Invalid result type for LLVM function"); 6993 6994 Ty = FunctionType::get(RetType, ParamTypes, false); 6995 } 6996 6997 CalleeID.FTy = Ty; 6998 6999 // Look up the callee. 7000 Value *Callee; 7001 if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee, 7002 &PFS, /*IsCall=*/true)) 7003 return true; 7004 7005 // Set up the Attribute for the function. 7006 SmallVector<AttributeSet, 8> Attrs; 7007 7008 SmallVector<Value*, 8> Args; 7009 7010 // Loop through FunctionType's arguments and ensure they are specified 7011 // correctly. Also, gather any parameter attributes. 7012 FunctionType::param_iterator I = Ty->param_begin(); 7013 FunctionType::param_iterator E = Ty->param_end(); 7014 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 7015 Type *ExpectedTy = nullptr; 7016 if (I != E) { 7017 ExpectedTy = *I++; 7018 } else if (!Ty->isVarArg()) { 7019 return error(ArgList[i].Loc, "too many arguments specified"); 7020 } 7021 7022 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 7023 return error(ArgList[i].Loc, "argument is not of expected type '" + 7024 getTypeString(ExpectedTy) + "'"); 7025 Args.push_back(ArgList[i].V); 7026 Attrs.push_back(ArgList[i].Attrs); 7027 } 7028 7029 if (I != E) 7030 return error(CallLoc, "not enough parameters specified for call"); 7031 7032 if (FnAttrs.hasAlignmentAttr()) 7033 return error(CallLoc, "call instructions may not have an alignment"); 7034 7035 // Finish off the Attribute and check them 7036 AttributeList PAL = 7037 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 7038 AttributeSet::get(Context, RetAttrs), Attrs); 7039 7040 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 7041 CI->setTailCallKind(TCK); 7042 CI->setCallingConv(CC); 7043 if (FMF.any()) { 7044 if (!isa<FPMathOperator>(CI)) { 7045 CI->deleteValue(); 7046 return error(CallLoc, "fast-math-flags specified for call without " 7047 "floating-point scalar or vector return type"); 7048 } 7049 CI->setFastMathFlags(FMF); 7050 } 7051 CI->setAttributes(PAL); 7052 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 7053 Inst = CI; 7054 return false; 7055 } 7056 7057 //===----------------------------------------------------------------------===// 7058 // Memory Instructions. 7059 //===----------------------------------------------------------------------===// 7060 7061 /// parseAlloc 7062 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 7063 /// (',' 'align' i32)? (',', 'addrspace(n))? 7064 int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 7065 Value *Size = nullptr; 7066 LocTy SizeLoc, TyLoc, ASLoc; 7067 MaybeAlign Alignment; 7068 unsigned AddrSpace = 0; 7069 Type *Ty = nullptr; 7070 7071 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 7072 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 7073 7074 if (parseType(Ty, TyLoc)) 7075 return true; 7076 7077 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 7078 return error(TyLoc, "invalid type for alloca"); 7079 7080 bool AteExtraComma = false; 7081 if (EatIfPresent(lltok::comma)) { 7082 if (Lex.getKind() == lltok::kw_align) { 7083 if (parseOptionalAlignment(Alignment)) 7084 return true; 7085 if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 7086 return true; 7087 } else if (Lex.getKind() == lltok::kw_addrspace) { 7088 ASLoc = Lex.getLoc(); 7089 if (parseOptionalAddrSpace(AddrSpace)) 7090 return true; 7091 } else if (Lex.getKind() == lltok::MetadataVar) { 7092 AteExtraComma = true; 7093 } else { 7094 if (parseTypeAndValue(Size, SizeLoc, PFS)) 7095 return true; 7096 if (EatIfPresent(lltok::comma)) { 7097 if (Lex.getKind() == lltok::kw_align) { 7098 if (parseOptionalAlignment(Alignment)) 7099 return true; 7100 if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 7101 return true; 7102 } else if (Lex.getKind() == lltok::kw_addrspace) { 7103 ASLoc = Lex.getLoc(); 7104 if (parseOptionalAddrSpace(AddrSpace)) 7105 return true; 7106 } else if (Lex.getKind() == lltok::MetadataVar) { 7107 AteExtraComma = true; 7108 } 7109 } 7110 } 7111 } 7112 7113 if (Size && !Size->getType()->isIntegerTy()) 7114 return error(SizeLoc, "element count must have integer type"); 7115 7116 SmallPtrSet<Type *, 4> Visited; 7117 if (!Alignment && !Ty->isSized(&Visited)) 7118 return error(TyLoc, "Cannot allocate unsized type"); 7119 if (!Alignment) 7120 Alignment = M->getDataLayout().getPrefTypeAlign(Ty); 7121 AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment); 7122 AI->setUsedWithInAlloca(IsInAlloca); 7123 AI->setSwiftError(IsSwiftError); 7124 Inst = AI; 7125 return AteExtraComma ? InstExtraComma : InstNormal; 7126 } 7127 7128 /// parseLoad 7129 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 7130 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 7131 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 7132 int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) { 7133 Value *Val; LocTy Loc; 7134 MaybeAlign Alignment; 7135 bool AteExtraComma = false; 7136 bool isAtomic = false; 7137 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7138 SyncScope::ID SSID = SyncScope::System; 7139 7140 if (Lex.getKind() == lltok::kw_atomic) { 7141 isAtomic = true; 7142 Lex.Lex(); 7143 } 7144 7145 bool isVolatile = false; 7146 if (Lex.getKind() == lltok::kw_volatile) { 7147 isVolatile = true; 7148 Lex.Lex(); 7149 } 7150 7151 Type *Ty; 7152 LocTy ExplicitTypeLoc = Lex.getLoc(); 7153 if (parseType(Ty) || 7154 parseToken(lltok::comma, "expected comma after load's type") || 7155 parseTypeAndValue(Val, Loc, PFS) || 7156 parseScopeAndOrdering(isAtomic, SSID, Ordering) || 7157 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7158 return true; 7159 7160 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 7161 return error(Loc, "load operand must be a pointer to a first class type"); 7162 if (isAtomic && !Alignment) 7163 return error(Loc, "atomic load must have explicit non-zero alignment"); 7164 if (Ordering == AtomicOrdering::Release || 7165 Ordering == AtomicOrdering::AcquireRelease) 7166 return error(Loc, "atomic load cannot use Release ordering"); 7167 7168 if (!cast<PointerType>(Val->getType())->isOpaqueOrPointeeTypeMatches(Ty)) { 7169 return error( 7170 ExplicitTypeLoc, 7171 typeComparisonErrorMessage( 7172 "explicit pointee type doesn't match operand's pointee type", Ty, 7173 cast<PointerType>(Val->getType())->getElementType())); 7174 } 7175 SmallPtrSet<Type *, 4> Visited; 7176 if (!Alignment && !Ty->isSized(&Visited)) 7177 return error(ExplicitTypeLoc, "loading unsized types is not allowed"); 7178 if (!Alignment) 7179 Alignment = M->getDataLayout().getABITypeAlign(Ty); 7180 Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID); 7181 return AteExtraComma ? InstExtraComma : InstNormal; 7182 } 7183 7184 /// parseStore 7185 7186 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 7187 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 7188 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 7189 int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) { 7190 Value *Val, *Ptr; LocTy Loc, PtrLoc; 7191 MaybeAlign Alignment; 7192 bool AteExtraComma = false; 7193 bool isAtomic = false; 7194 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7195 SyncScope::ID SSID = SyncScope::System; 7196 7197 if (Lex.getKind() == lltok::kw_atomic) { 7198 isAtomic = true; 7199 Lex.Lex(); 7200 } 7201 7202 bool isVolatile = false; 7203 if (Lex.getKind() == lltok::kw_volatile) { 7204 isVolatile = true; 7205 Lex.Lex(); 7206 } 7207 7208 if (parseTypeAndValue(Val, Loc, PFS) || 7209 parseToken(lltok::comma, "expected ',' after store operand") || 7210 parseTypeAndValue(Ptr, PtrLoc, PFS) || 7211 parseScopeAndOrdering(isAtomic, SSID, Ordering) || 7212 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7213 return true; 7214 7215 if (!Ptr->getType()->isPointerTy()) 7216 return error(PtrLoc, "store operand must be a pointer"); 7217 if (!Val->getType()->isFirstClassType()) 7218 return error(Loc, "store operand must be a first class value"); 7219 if (!cast<PointerType>(Ptr->getType()) 7220 ->isOpaqueOrPointeeTypeMatches(Val->getType())) 7221 return error(Loc, "stored value and pointer type do not match"); 7222 if (isAtomic && !Alignment) 7223 return error(Loc, "atomic store must have explicit non-zero alignment"); 7224 if (Ordering == AtomicOrdering::Acquire || 7225 Ordering == AtomicOrdering::AcquireRelease) 7226 return error(Loc, "atomic store cannot use Acquire ordering"); 7227 SmallPtrSet<Type *, 4> Visited; 7228 if (!Alignment && !Val->getType()->isSized(&Visited)) 7229 return error(Loc, "storing unsized types is not allowed"); 7230 if (!Alignment) 7231 Alignment = M->getDataLayout().getABITypeAlign(Val->getType()); 7232 7233 Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID); 7234 return AteExtraComma ? InstExtraComma : InstNormal; 7235 } 7236 7237 /// parseCmpXchg 7238 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 7239 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering ',' 7240 /// 'Align'? 7241 int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 7242 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 7243 bool AteExtraComma = false; 7244 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 7245 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 7246 SyncScope::ID SSID = SyncScope::System; 7247 bool isVolatile = false; 7248 bool isWeak = false; 7249 MaybeAlign Alignment; 7250 7251 if (EatIfPresent(lltok::kw_weak)) 7252 isWeak = true; 7253 7254 if (EatIfPresent(lltok::kw_volatile)) 7255 isVolatile = true; 7256 7257 if (parseTypeAndValue(Ptr, PtrLoc, PFS) || 7258 parseToken(lltok::comma, "expected ',' after cmpxchg address") || 7259 parseTypeAndValue(Cmp, CmpLoc, PFS) || 7260 parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 7261 parseTypeAndValue(New, NewLoc, PFS) || 7262 parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) || 7263 parseOrdering(FailureOrdering) || 7264 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7265 return true; 7266 7267 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 7268 return tokError("invalid cmpxchg success ordering"); 7269 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 7270 return tokError("invalid cmpxchg failure ordering"); 7271 if (!Ptr->getType()->isPointerTy()) 7272 return error(PtrLoc, "cmpxchg operand must be a pointer"); 7273 if (!cast<PointerType>(Ptr->getType()) 7274 ->isOpaqueOrPointeeTypeMatches(Cmp->getType())) 7275 return error(CmpLoc, "compare value and pointer type do not match"); 7276 if (!cast<PointerType>(Ptr->getType()) 7277 ->isOpaqueOrPointeeTypeMatches(New->getType())) 7278 return error(NewLoc, "new value and pointer type do not match"); 7279 if (Cmp->getType() != New->getType()) 7280 return error(NewLoc, "compare value and new value type do not match"); 7281 if (!New->getType()->isFirstClassType()) 7282 return error(NewLoc, "cmpxchg operand must be a first class value"); 7283 7284 const Align DefaultAlignment( 7285 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize( 7286 Cmp->getType())); 7287 7288 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 7289 Ptr, Cmp, New, Alignment.getValueOr(DefaultAlignment), SuccessOrdering, 7290 FailureOrdering, SSID); 7291 CXI->setVolatile(isVolatile); 7292 CXI->setWeak(isWeak); 7293 7294 Inst = CXI; 7295 return AteExtraComma ? InstExtraComma : InstNormal; 7296 } 7297 7298 /// parseAtomicRMW 7299 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 7300 /// 'singlethread'? AtomicOrdering 7301 int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 7302 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 7303 bool AteExtraComma = false; 7304 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7305 SyncScope::ID SSID = SyncScope::System; 7306 bool isVolatile = false; 7307 bool IsFP = false; 7308 AtomicRMWInst::BinOp Operation; 7309 MaybeAlign Alignment; 7310 7311 if (EatIfPresent(lltok::kw_volatile)) 7312 isVolatile = true; 7313 7314 switch (Lex.getKind()) { 7315 default: 7316 return tokError("expected binary operation in atomicrmw"); 7317 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 7318 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 7319 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 7320 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 7321 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 7322 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 7323 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 7324 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 7325 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 7326 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 7327 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 7328 case lltok::kw_fadd: 7329 Operation = AtomicRMWInst::FAdd; 7330 IsFP = true; 7331 break; 7332 case lltok::kw_fsub: 7333 Operation = AtomicRMWInst::FSub; 7334 IsFP = true; 7335 break; 7336 } 7337 Lex.Lex(); // Eat the operation. 7338 7339 if (parseTypeAndValue(Ptr, PtrLoc, PFS) || 7340 parseToken(lltok::comma, "expected ',' after atomicrmw address") || 7341 parseTypeAndValue(Val, ValLoc, PFS) || 7342 parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering) || 7343 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7344 return true; 7345 7346 if (Ordering == AtomicOrdering::Unordered) 7347 return tokError("atomicrmw cannot be unordered"); 7348 if (!Ptr->getType()->isPointerTy()) 7349 return error(PtrLoc, "atomicrmw operand must be a pointer"); 7350 if (!cast<PointerType>(Ptr->getType()) 7351 ->isOpaqueOrPointeeTypeMatches(Val->getType())) 7352 return error(ValLoc, "atomicrmw value and pointer type do not match"); 7353 7354 if (Operation == AtomicRMWInst::Xchg) { 7355 if (!Val->getType()->isIntegerTy() && 7356 !Val->getType()->isFloatingPointTy()) { 7357 return error(ValLoc, 7358 "atomicrmw " + AtomicRMWInst::getOperationName(Operation) + 7359 " operand must be an integer or floating point type"); 7360 } 7361 } else if (IsFP) { 7362 if (!Val->getType()->isFloatingPointTy()) { 7363 return error(ValLoc, "atomicrmw " + 7364 AtomicRMWInst::getOperationName(Operation) + 7365 " operand must be a floating point type"); 7366 } 7367 } else { 7368 if (!Val->getType()->isIntegerTy()) { 7369 return error(ValLoc, "atomicrmw " + 7370 AtomicRMWInst::getOperationName(Operation) + 7371 " operand must be an integer"); 7372 } 7373 } 7374 7375 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 7376 if (Size < 8 || (Size & (Size - 1))) 7377 return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 7378 " integer"); 7379 const Align DefaultAlignment( 7380 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize( 7381 Val->getType())); 7382 AtomicRMWInst *RMWI = 7383 new AtomicRMWInst(Operation, Ptr, Val, 7384 Alignment.getValueOr(DefaultAlignment), Ordering, SSID); 7385 RMWI->setVolatile(isVolatile); 7386 Inst = RMWI; 7387 return AteExtraComma ? InstExtraComma : InstNormal; 7388 } 7389 7390 /// parseFence 7391 /// ::= 'fence' 'singlethread'? AtomicOrdering 7392 int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) { 7393 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7394 SyncScope::ID SSID = SyncScope::System; 7395 if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 7396 return true; 7397 7398 if (Ordering == AtomicOrdering::Unordered) 7399 return tokError("fence cannot be unordered"); 7400 if (Ordering == AtomicOrdering::Monotonic) 7401 return tokError("fence cannot be monotonic"); 7402 7403 Inst = new FenceInst(Context, Ordering, SSID); 7404 return InstNormal; 7405 } 7406 7407 /// parseGetElementPtr 7408 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 7409 int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 7410 Value *Ptr = nullptr; 7411 Value *Val = nullptr; 7412 LocTy Loc, EltLoc; 7413 7414 bool InBounds = EatIfPresent(lltok::kw_inbounds); 7415 7416 Type *Ty = nullptr; 7417 LocTy ExplicitTypeLoc = Lex.getLoc(); 7418 if (parseType(Ty) || 7419 parseToken(lltok::comma, "expected comma after getelementptr's type") || 7420 parseTypeAndValue(Ptr, Loc, PFS)) 7421 return true; 7422 7423 Type *BaseType = Ptr->getType(); 7424 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 7425 if (!BasePointerType) 7426 return error(Loc, "base of getelementptr must be a pointer"); 7427 7428 if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) { 7429 return error( 7430 ExplicitTypeLoc, 7431 typeComparisonErrorMessage( 7432 "explicit pointee type doesn't match operand's pointee type", Ty, 7433 BasePointerType->getElementType())); 7434 } 7435 7436 SmallVector<Value*, 16> Indices; 7437 bool AteExtraComma = false; 7438 // GEP returns a vector of pointers if at least one of parameters is a vector. 7439 // All vector parameters should have the same vector width. 7440 ElementCount GEPWidth = BaseType->isVectorTy() 7441 ? cast<VectorType>(BaseType)->getElementCount() 7442 : ElementCount::getFixed(0); 7443 7444 while (EatIfPresent(lltok::comma)) { 7445 if (Lex.getKind() == lltok::MetadataVar) { 7446 AteExtraComma = true; 7447 break; 7448 } 7449 if (parseTypeAndValue(Val, EltLoc, PFS)) 7450 return true; 7451 if (!Val->getType()->isIntOrIntVectorTy()) 7452 return error(EltLoc, "getelementptr index must be an integer"); 7453 7454 if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) { 7455 ElementCount ValNumEl = ValVTy->getElementCount(); 7456 if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl) 7457 return error( 7458 EltLoc, 7459 "getelementptr vector index has a wrong number of elements"); 7460 GEPWidth = ValNumEl; 7461 } 7462 Indices.push_back(Val); 7463 } 7464 7465 SmallPtrSet<Type*, 4> Visited; 7466 if (!Indices.empty() && !Ty->isSized(&Visited)) 7467 return error(Loc, "base element of getelementptr must be sized"); 7468 7469 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 7470 return error(Loc, "invalid getelementptr indices"); 7471 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 7472 if (InBounds) 7473 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 7474 return AteExtraComma ? InstExtraComma : InstNormal; 7475 } 7476 7477 /// parseExtractValue 7478 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 7479 int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 7480 Value *Val; LocTy Loc; 7481 SmallVector<unsigned, 4> Indices; 7482 bool AteExtraComma; 7483 if (parseTypeAndValue(Val, Loc, PFS) || 7484 parseIndexList(Indices, AteExtraComma)) 7485 return true; 7486 7487 if (!Val->getType()->isAggregateType()) 7488 return error(Loc, "extractvalue operand must be aggregate type"); 7489 7490 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 7491 return error(Loc, "invalid indices for extractvalue"); 7492 Inst = ExtractValueInst::Create(Val, Indices); 7493 return AteExtraComma ? InstExtraComma : InstNormal; 7494 } 7495 7496 /// parseInsertValue 7497 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 7498 int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 7499 Value *Val0, *Val1; LocTy Loc0, Loc1; 7500 SmallVector<unsigned, 4> Indices; 7501 bool AteExtraComma; 7502 if (parseTypeAndValue(Val0, Loc0, PFS) || 7503 parseToken(lltok::comma, "expected comma after insertvalue operand") || 7504 parseTypeAndValue(Val1, Loc1, PFS) || 7505 parseIndexList(Indices, AteExtraComma)) 7506 return true; 7507 7508 if (!Val0->getType()->isAggregateType()) 7509 return error(Loc0, "insertvalue operand must be aggregate type"); 7510 7511 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 7512 if (!IndexedType) 7513 return error(Loc0, "invalid indices for insertvalue"); 7514 if (IndexedType != Val1->getType()) 7515 return error(Loc1, "insertvalue operand and field disagree in type: '" + 7516 getTypeString(Val1->getType()) + "' instead of '" + 7517 getTypeString(IndexedType) + "'"); 7518 Inst = InsertValueInst::Create(Val0, Val1, Indices); 7519 return AteExtraComma ? InstExtraComma : InstNormal; 7520 } 7521 7522 //===----------------------------------------------------------------------===// 7523 // Embedded metadata. 7524 //===----------------------------------------------------------------------===// 7525 7526 /// parseMDNodeVector 7527 /// ::= { Element (',' Element)* } 7528 /// Element 7529 /// ::= 'null' | TypeAndValue 7530 bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 7531 if (parseToken(lltok::lbrace, "expected '{' here")) 7532 return true; 7533 7534 // Check for an empty list. 7535 if (EatIfPresent(lltok::rbrace)) 7536 return false; 7537 7538 do { 7539 // Null is a special case since it is typeless. 7540 if (EatIfPresent(lltok::kw_null)) { 7541 Elts.push_back(nullptr); 7542 continue; 7543 } 7544 7545 Metadata *MD; 7546 if (parseMetadata(MD, nullptr)) 7547 return true; 7548 Elts.push_back(MD); 7549 } while (EatIfPresent(lltok::comma)); 7550 7551 return parseToken(lltok::rbrace, "expected end of metadata node"); 7552 } 7553 7554 //===----------------------------------------------------------------------===// 7555 // Use-list order directives. 7556 //===----------------------------------------------------------------------===// 7557 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 7558 SMLoc Loc) { 7559 if (V->use_empty()) 7560 return error(Loc, "value has no uses"); 7561 7562 unsigned NumUses = 0; 7563 SmallDenseMap<const Use *, unsigned, 16> Order; 7564 for (const Use &U : V->uses()) { 7565 if (++NumUses > Indexes.size()) 7566 break; 7567 Order[&U] = Indexes[NumUses - 1]; 7568 } 7569 if (NumUses < 2) 7570 return error(Loc, "value only has one use"); 7571 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 7572 return error(Loc, 7573 "wrong number of indexes, expected " + Twine(V->getNumUses())); 7574 7575 V->sortUseList([&](const Use &L, const Use &R) { 7576 return Order.lookup(&L) < Order.lookup(&R); 7577 }); 7578 return false; 7579 } 7580 7581 /// parseUseListOrderIndexes 7582 /// ::= '{' uint32 (',' uint32)+ '}' 7583 bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 7584 SMLoc Loc = Lex.getLoc(); 7585 if (parseToken(lltok::lbrace, "expected '{' here")) 7586 return true; 7587 if (Lex.getKind() == lltok::rbrace) 7588 return Lex.Error("expected non-empty list of uselistorder indexes"); 7589 7590 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 7591 // indexes should be distinct numbers in the range [0, size-1], and should 7592 // not be in order. 7593 unsigned Offset = 0; 7594 unsigned Max = 0; 7595 bool IsOrdered = true; 7596 assert(Indexes.empty() && "Expected empty order vector"); 7597 do { 7598 unsigned Index; 7599 if (parseUInt32(Index)) 7600 return true; 7601 7602 // Update consistency checks. 7603 Offset += Index - Indexes.size(); 7604 Max = std::max(Max, Index); 7605 IsOrdered &= Index == Indexes.size(); 7606 7607 Indexes.push_back(Index); 7608 } while (EatIfPresent(lltok::comma)); 7609 7610 if (parseToken(lltok::rbrace, "expected '}' here")) 7611 return true; 7612 7613 if (Indexes.size() < 2) 7614 return error(Loc, "expected >= 2 uselistorder indexes"); 7615 if (Offset != 0 || Max >= Indexes.size()) 7616 return error(Loc, 7617 "expected distinct uselistorder indexes in range [0, size)"); 7618 if (IsOrdered) 7619 return error(Loc, "expected uselistorder indexes to change the order"); 7620 7621 return false; 7622 } 7623 7624 /// parseUseListOrder 7625 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 7626 bool LLParser::parseUseListOrder(PerFunctionState *PFS) { 7627 SMLoc Loc = Lex.getLoc(); 7628 if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 7629 return true; 7630 7631 Value *V; 7632 SmallVector<unsigned, 16> Indexes; 7633 if (parseTypeAndValue(V, PFS) || 7634 parseToken(lltok::comma, "expected comma in uselistorder directive") || 7635 parseUseListOrderIndexes(Indexes)) 7636 return true; 7637 7638 return sortUseListOrder(V, Indexes, Loc); 7639 } 7640 7641 /// parseUseListOrderBB 7642 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 7643 bool LLParser::parseUseListOrderBB() { 7644 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 7645 SMLoc Loc = Lex.getLoc(); 7646 Lex.Lex(); 7647 7648 ValID Fn, Label; 7649 SmallVector<unsigned, 16> Indexes; 7650 if (parseValID(Fn, /*PFS=*/nullptr) || 7651 parseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7652 parseValID(Label, /*PFS=*/nullptr) || 7653 parseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7654 parseUseListOrderIndexes(Indexes)) 7655 return true; 7656 7657 // Check the function. 7658 GlobalValue *GV; 7659 if (Fn.Kind == ValID::t_GlobalName) 7660 GV = M->getNamedValue(Fn.StrVal); 7661 else if (Fn.Kind == ValID::t_GlobalID) 7662 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 7663 else 7664 return error(Fn.Loc, "expected function name in uselistorder_bb"); 7665 if (!GV) 7666 return error(Fn.Loc, 7667 "invalid function forward reference in uselistorder_bb"); 7668 auto *F = dyn_cast<Function>(GV); 7669 if (!F) 7670 return error(Fn.Loc, "expected function name in uselistorder_bb"); 7671 if (F->isDeclaration()) 7672 return error(Fn.Loc, "invalid declaration in uselistorder_bb"); 7673 7674 // Check the basic block. 7675 if (Label.Kind == ValID::t_LocalID) 7676 return error(Label.Loc, "invalid numeric label in uselistorder_bb"); 7677 if (Label.Kind != ValID::t_LocalName) 7678 return error(Label.Loc, "expected basic block name in uselistorder_bb"); 7679 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); 7680 if (!V) 7681 return error(Label.Loc, "invalid basic block in uselistorder_bb"); 7682 if (!isa<BasicBlock>(V)) 7683 return error(Label.Loc, "expected basic block in uselistorder_bb"); 7684 7685 return sortUseListOrder(V, Indexes, Loc); 7686 } 7687 7688 /// ModuleEntry 7689 /// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')' 7690 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')' 7691 bool LLParser::parseModuleEntry(unsigned ID) { 7692 assert(Lex.getKind() == lltok::kw_module); 7693 Lex.Lex(); 7694 7695 std::string Path; 7696 if (parseToken(lltok::colon, "expected ':' here") || 7697 parseToken(lltok::lparen, "expected '(' here") || 7698 parseToken(lltok::kw_path, "expected 'path' here") || 7699 parseToken(lltok::colon, "expected ':' here") || 7700 parseStringConstant(Path) || 7701 parseToken(lltok::comma, "expected ',' here") || 7702 parseToken(lltok::kw_hash, "expected 'hash' here") || 7703 parseToken(lltok::colon, "expected ':' here") || 7704 parseToken(lltok::lparen, "expected '(' here")) 7705 return true; 7706 7707 ModuleHash Hash; 7708 if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") || 7709 parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") || 7710 parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") || 7711 parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") || 7712 parseUInt32(Hash[4])) 7713 return true; 7714 7715 if (parseToken(lltok::rparen, "expected ')' here") || 7716 parseToken(lltok::rparen, "expected ')' here")) 7717 return true; 7718 7719 auto ModuleEntry = Index->addModule(Path, ID, Hash); 7720 ModuleIdMap[ID] = ModuleEntry->first(); 7721 7722 return false; 7723 } 7724 7725 /// TypeIdEntry 7726 /// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')' 7727 bool LLParser::parseTypeIdEntry(unsigned ID) { 7728 assert(Lex.getKind() == lltok::kw_typeid); 7729 Lex.Lex(); 7730 7731 std::string Name; 7732 if (parseToken(lltok::colon, "expected ':' here") || 7733 parseToken(lltok::lparen, "expected '(' here") || 7734 parseToken(lltok::kw_name, "expected 'name' here") || 7735 parseToken(lltok::colon, "expected ':' here") || 7736 parseStringConstant(Name)) 7737 return true; 7738 7739 TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name); 7740 if (parseToken(lltok::comma, "expected ',' here") || 7741 parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here")) 7742 return true; 7743 7744 // Check if this ID was forward referenced, and if so, update the 7745 // corresponding GUIDs. 7746 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 7747 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 7748 for (auto TIDRef : FwdRefTIDs->second) { 7749 assert(!*TIDRef.first && 7750 "Forward referenced type id GUID expected to be 0"); 7751 *TIDRef.first = GlobalValue::getGUID(Name); 7752 } 7753 ForwardRefTypeIds.erase(FwdRefTIDs); 7754 } 7755 7756 return false; 7757 } 7758 7759 /// TypeIdSummary 7760 /// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')' 7761 bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) { 7762 if (parseToken(lltok::kw_summary, "expected 'summary' here") || 7763 parseToken(lltok::colon, "expected ':' here") || 7764 parseToken(lltok::lparen, "expected '(' here") || 7765 parseTypeTestResolution(TIS.TTRes)) 7766 return true; 7767 7768 if (EatIfPresent(lltok::comma)) { 7769 // Expect optional wpdResolutions field 7770 if (parseOptionalWpdResolutions(TIS.WPDRes)) 7771 return true; 7772 } 7773 7774 if (parseToken(lltok::rparen, "expected ')' here")) 7775 return true; 7776 7777 return false; 7778 } 7779 7780 static ValueInfo EmptyVI = 7781 ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8); 7782 7783 /// TypeIdCompatibleVtableEntry 7784 /// ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ',' 7785 /// TypeIdCompatibleVtableInfo 7786 /// ')' 7787 bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) { 7788 assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable); 7789 Lex.Lex(); 7790 7791 std::string Name; 7792 if (parseToken(lltok::colon, "expected ':' here") || 7793 parseToken(lltok::lparen, "expected '(' here") || 7794 parseToken(lltok::kw_name, "expected 'name' here") || 7795 parseToken(lltok::colon, "expected ':' here") || 7796 parseStringConstant(Name)) 7797 return true; 7798 7799 TypeIdCompatibleVtableInfo &TI = 7800 Index->getOrInsertTypeIdCompatibleVtableSummary(Name); 7801 if (parseToken(lltok::comma, "expected ',' here") || 7802 parseToken(lltok::kw_summary, "expected 'summary' here") || 7803 parseToken(lltok::colon, "expected ':' here") || 7804 parseToken(lltok::lparen, "expected '(' here")) 7805 return true; 7806 7807 IdToIndexMapType IdToIndexMap; 7808 // parse each call edge 7809 do { 7810 uint64_t Offset; 7811 if (parseToken(lltok::lparen, "expected '(' here") || 7812 parseToken(lltok::kw_offset, "expected 'offset' here") || 7813 parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) || 7814 parseToken(lltok::comma, "expected ',' here")) 7815 return true; 7816 7817 LocTy Loc = Lex.getLoc(); 7818 unsigned GVId; 7819 ValueInfo VI; 7820 if (parseGVReference(VI, GVId)) 7821 return true; 7822 7823 // Keep track of the TypeIdCompatibleVtableInfo array index needing a 7824 // forward reference. We will save the location of the ValueInfo needing an 7825 // update, but can only do so once the std::vector is finalized. 7826 if (VI == EmptyVI) 7827 IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc)); 7828 TI.push_back({Offset, VI}); 7829 7830 if (parseToken(lltok::rparen, "expected ')' in call")) 7831 return true; 7832 } while (EatIfPresent(lltok::comma)); 7833 7834 // Now that the TI vector is finalized, it is safe to save the locations 7835 // of any forward GV references that need updating later. 7836 for (auto I : IdToIndexMap) { 7837 auto &Infos = ForwardRefValueInfos[I.first]; 7838 for (auto P : I.second) { 7839 assert(TI[P.first].VTableVI == EmptyVI && 7840 "Forward referenced ValueInfo expected to be empty"); 7841 Infos.emplace_back(&TI[P.first].VTableVI, P.second); 7842 } 7843 } 7844 7845 if (parseToken(lltok::rparen, "expected ')' here") || 7846 parseToken(lltok::rparen, "expected ')' here")) 7847 return true; 7848 7849 // Check if this ID was forward referenced, and if so, update the 7850 // corresponding GUIDs. 7851 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 7852 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 7853 for (auto TIDRef : FwdRefTIDs->second) { 7854 assert(!*TIDRef.first && 7855 "Forward referenced type id GUID expected to be 0"); 7856 *TIDRef.first = GlobalValue::getGUID(Name); 7857 } 7858 ForwardRefTypeIds.erase(FwdRefTIDs); 7859 } 7860 7861 return false; 7862 } 7863 7864 /// TypeTestResolution 7865 /// ::= 'typeTestRes' ':' '(' 'kind' ':' 7866 /// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ',' 7867 /// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]? 7868 /// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]? 7869 /// [',' 'inlinesBits' ':' UInt64]? ')' 7870 bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) { 7871 if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") || 7872 parseToken(lltok::colon, "expected ':' here") || 7873 parseToken(lltok::lparen, "expected '(' here") || 7874 parseToken(lltok::kw_kind, "expected 'kind' here") || 7875 parseToken(lltok::colon, "expected ':' here")) 7876 return true; 7877 7878 switch (Lex.getKind()) { 7879 case lltok::kw_unknown: 7880 TTRes.TheKind = TypeTestResolution::Unknown; 7881 break; 7882 case lltok::kw_unsat: 7883 TTRes.TheKind = TypeTestResolution::Unsat; 7884 break; 7885 case lltok::kw_byteArray: 7886 TTRes.TheKind = TypeTestResolution::ByteArray; 7887 break; 7888 case lltok::kw_inline: 7889 TTRes.TheKind = TypeTestResolution::Inline; 7890 break; 7891 case lltok::kw_single: 7892 TTRes.TheKind = TypeTestResolution::Single; 7893 break; 7894 case lltok::kw_allOnes: 7895 TTRes.TheKind = TypeTestResolution::AllOnes; 7896 break; 7897 default: 7898 return error(Lex.getLoc(), "unexpected TypeTestResolution kind"); 7899 } 7900 Lex.Lex(); 7901 7902 if (parseToken(lltok::comma, "expected ',' here") || 7903 parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") || 7904 parseToken(lltok::colon, "expected ':' here") || 7905 parseUInt32(TTRes.SizeM1BitWidth)) 7906 return true; 7907 7908 // parse optional fields 7909 while (EatIfPresent(lltok::comma)) { 7910 switch (Lex.getKind()) { 7911 case lltok::kw_alignLog2: 7912 Lex.Lex(); 7913 if (parseToken(lltok::colon, "expected ':'") || 7914 parseUInt64(TTRes.AlignLog2)) 7915 return true; 7916 break; 7917 case lltok::kw_sizeM1: 7918 Lex.Lex(); 7919 if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1)) 7920 return true; 7921 break; 7922 case lltok::kw_bitMask: { 7923 unsigned Val; 7924 Lex.Lex(); 7925 if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val)) 7926 return true; 7927 assert(Val <= 0xff); 7928 TTRes.BitMask = (uint8_t)Val; 7929 break; 7930 } 7931 case lltok::kw_inlineBits: 7932 Lex.Lex(); 7933 if (parseToken(lltok::colon, "expected ':'") || 7934 parseUInt64(TTRes.InlineBits)) 7935 return true; 7936 break; 7937 default: 7938 return error(Lex.getLoc(), "expected optional TypeTestResolution field"); 7939 } 7940 } 7941 7942 if (parseToken(lltok::rparen, "expected ')' here")) 7943 return true; 7944 7945 return false; 7946 } 7947 7948 /// OptionalWpdResolutions 7949 /// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')' 7950 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')' 7951 bool LLParser::parseOptionalWpdResolutions( 7952 std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) { 7953 if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") || 7954 parseToken(lltok::colon, "expected ':' here") || 7955 parseToken(lltok::lparen, "expected '(' here")) 7956 return true; 7957 7958 do { 7959 uint64_t Offset; 7960 WholeProgramDevirtResolution WPDRes; 7961 if (parseToken(lltok::lparen, "expected '(' here") || 7962 parseToken(lltok::kw_offset, "expected 'offset' here") || 7963 parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) || 7964 parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) || 7965 parseToken(lltok::rparen, "expected ')' here")) 7966 return true; 7967 WPDResMap[Offset] = WPDRes; 7968 } while (EatIfPresent(lltok::comma)); 7969 7970 if (parseToken(lltok::rparen, "expected ')' here")) 7971 return true; 7972 7973 return false; 7974 } 7975 7976 /// WpdRes 7977 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir' 7978 /// [',' OptionalResByArg]? ')' 7979 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl' 7980 /// ',' 'singleImplName' ':' STRINGCONSTANT ',' 7981 /// [',' OptionalResByArg]? ')' 7982 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel' 7983 /// [',' OptionalResByArg]? ')' 7984 bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) { 7985 if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") || 7986 parseToken(lltok::colon, "expected ':' here") || 7987 parseToken(lltok::lparen, "expected '(' here") || 7988 parseToken(lltok::kw_kind, "expected 'kind' here") || 7989 parseToken(lltok::colon, "expected ':' here")) 7990 return true; 7991 7992 switch (Lex.getKind()) { 7993 case lltok::kw_indir: 7994 WPDRes.TheKind = WholeProgramDevirtResolution::Indir; 7995 break; 7996 case lltok::kw_singleImpl: 7997 WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl; 7998 break; 7999 case lltok::kw_branchFunnel: 8000 WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel; 8001 break; 8002 default: 8003 return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind"); 8004 } 8005 Lex.Lex(); 8006 8007 // parse optional fields 8008 while (EatIfPresent(lltok::comma)) { 8009 switch (Lex.getKind()) { 8010 case lltok::kw_singleImplName: 8011 Lex.Lex(); 8012 if (parseToken(lltok::colon, "expected ':' here") || 8013 parseStringConstant(WPDRes.SingleImplName)) 8014 return true; 8015 break; 8016 case lltok::kw_resByArg: 8017 if (parseOptionalResByArg(WPDRes.ResByArg)) 8018 return true; 8019 break; 8020 default: 8021 return error(Lex.getLoc(), 8022 "expected optional WholeProgramDevirtResolution field"); 8023 } 8024 } 8025 8026 if (parseToken(lltok::rparen, "expected ')' here")) 8027 return true; 8028 8029 return false; 8030 } 8031 8032 /// OptionalResByArg 8033 /// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')' 8034 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':' 8035 /// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' | 8036 /// 'virtualConstProp' ) 8037 /// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]? 8038 /// [',' 'bit' ':' UInt32]? ')' 8039 bool LLParser::parseOptionalResByArg( 8040 std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg> 8041 &ResByArg) { 8042 if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") || 8043 parseToken(lltok::colon, "expected ':' here") || 8044 parseToken(lltok::lparen, "expected '(' here")) 8045 return true; 8046 8047 do { 8048 std::vector<uint64_t> Args; 8049 if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") || 8050 parseToken(lltok::kw_byArg, "expected 'byArg here") || 8051 parseToken(lltok::colon, "expected ':' here") || 8052 parseToken(lltok::lparen, "expected '(' here") || 8053 parseToken(lltok::kw_kind, "expected 'kind' here") || 8054 parseToken(lltok::colon, "expected ':' here")) 8055 return true; 8056 8057 WholeProgramDevirtResolution::ByArg ByArg; 8058 switch (Lex.getKind()) { 8059 case lltok::kw_indir: 8060 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir; 8061 break; 8062 case lltok::kw_uniformRetVal: 8063 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 8064 break; 8065 case lltok::kw_uniqueRetVal: 8066 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 8067 break; 8068 case lltok::kw_virtualConstProp: 8069 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 8070 break; 8071 default: 8072 return error(Lex.getLoc(), 8073 "unexpected WholeProgramDevirtResolution::ByArg kind"); 8074 } 8075 Lex.Lex(); 8076 8077 // parse optional fields 8078 while (EatIfPresent(lltok::comma)) { 8079 switch (Lex.getKind()) { 8080 case lltok::kw_info: 8081 Lex.Lex(); 8082 if (parseToken(lltok::colon, "expected ':' here") || 8083 parseUInt64(ByArg.Info)) 8084 return true; 8085 break; 8086 case lltok::kw_byte: 8087 Lex.Lex(); 8088 if (parseToken(lltok::colon, "expected ':' here") || 8089 parseUInt32(ByArg.Byte)) 8090 return true; 8091 break; 8092 case lltok::kw_bit: 8093 Lex.Lex(); 8094 if (parseToken(lltok::colon, "expected ':' here") || 8095 parseUInt32(ByArg.Bit)) 8096 return true; 8097 break; 8098 default: 8099 return error(Lex.getLoc(), 8100 "expected optional whole program devirt field"); 8101 } 8102 } 8103 8104 if (parseToken(lltok::rparen, "expected ')' here")) 8105 return true; 8106 8107 ResByArg[Args] = ByArg; 8108 } while (EatIfPresent(lltok::comma)); 8109 8110 if (parseToken(lltok::rparen, "expected ')' here")) 8111 return true; 8112 8113 return false; 8114 } 8115 8116 /// OptionalResByArg 8117 /// ::= 'args' ':' '(' UInt64[, UInt64]* ')' 8118 bool LLParser::parseArgs(std::vector<uint64_t> &Args) { 8119 if (parseToken(lltok::kw_args, "expected 'args' here") || 8120 parseToken(lltok::colon, "expected ':' here") || 8121 parseToken(lltok::lparen, "expected '(' here")) 8122 return true; 8123 8124 do { 8125 uint64_t Val; 8126 if (parseUInt64(Val)) 8127 return true; 8128 Args.push_back(Val); 8129 } while (EatIfPresent(lltok::comma)); 8130 8131 if (parseToken(lltok::rparen, "expected ')' here")) 8132 return true; 8133 8134 return false; 8135 } 8136 8137 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8; 8138 8139 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) { 8140 bool ReadOnly = Fwd->isReadOnly(); 8141 bool WriteOnly = Fwd->isWriteOnly(); 8142 assert(!(ReadOnly && WriteOnly)); 8143 *Fwd = Resolved; 8144 if (ReadOnly) 8145 Fwd->setReadOnly(); 8146 if (WriteOnly) 8147 Fwd->setWriteOnly(); 8148 } 8149 8150 /// Stores the given Name/GUID and associated summary into the Index. 8151 /// Also updates any forward references to the associated entry ID. 8152 void LLParser::addGlobalValueToIndex( 8153 std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage, 8154 unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) { 8155 // First create the ValueInfo utilizing the Name or GUID. 8156 ValueInfo VI; 8157 if (GUID != 0) { 8158 assert(Name.empty()); 8159 VI = Index->getOrInsertValueInfo(GUID); 8160 } else { 8161 assert(!Name.empty()); 8162 if (M) { 8163 auto *GV = M->getNamedValue(Name); 8164 assert(GV); 8165 VI = Index->getOrInsertValueInfo(GV); 8166 } else { 8167 assert( 8168 (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) && 8169 "Need a source_filename to compute GUID for local"); 8170 GUID = GlobalValue::getGUID( 8171 GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName)); 8172 VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name)); 8173 } 8174 } 8175 8176 // Resolve forward references from calls/refs 8177 auto FwdRefVIs = ForwardRefValueInfos.find(ID); 8178 if (FwdRefVIs != ForwardRefValueInfos.end()) { 8179 for (auto VIRef : FwdRefVIs->second) { 8180 assert(VIRef.first->getRef() == FwdVIRef && 8181 "Forward referenced ValueInfo expected to be empty"); 8182 resolveFwdRef(VIRef.first, VI); 8183 } 8184 ForwardRefValueInfos.erase(FwdRefVIs); 8185 } 8186 8187 // Resolve forward references from aliases 8188 auto FwdRefAliasees = ForwardRefAliasees.find(ID); 8189 if (FwdRefAliasees != ForwardRefAliasees.end()) { 8190 for (auto AliaseeRef : FwdRefAliasees->second) { 8191 assert(!AliaseeRef.first->hasAliasee() && 8192 "Forward referencing alias already has aliasee"); 8193 assert(Summary && "Aliasee must be a definition"); 8194 AliaseeRef.first->setAliasee(VI, Summary.get()); 8195 } 8196 ForwardRefAliasees.erase(FwdRefAliasees); 8197 } 8198 8199 // Add the summary if one was provided. 8200 if (Summary) 8201 Index->addGlobalValueSummary(VI, std::move(Summary)); 8202 8203 // Save the associated ValueInfo for use in later references by ID. 8204 if (ID == NumberedValueInfos.size()) 8205 NumberedValueInfos.push_back(VI); 8206 else { 8207 // Handle non-continuous numbers (to make test simplification easier). 8208 if (ID > NumberedValueInfos.size()) 8209 NumberedValueInfos.resize(ID + 1); 8210 NumberedValueInfos[ID] = VI; 8211 } 8212 } 8213 8214 /// parseSummaryIndexFlags 8215 /// ::= 'flags' ':' UInt64 8216 bool LLParser::parseSummaryIndexFlags() { 8217 assert(Lex.getKind() == lltok::kw_flags); 8218 Lex.Lex(); 8219 8220 if (parseToken(lltok::colon, "expected ':' here")) 8221 return true; 8222 uint64_t Flags; 8223 if (parseUInt64(Flags)) 8224 return true; 8225 if (Index) 8226 Index->setFlags(Flags); 8227 return false; 8228 } 8229 8230 /// parseBlockCount 8231 /// ::= 'blockcount' ':' UInt64 8232 bool LLParser::parseBlockCount() { 8233 assert(Lex.getKind() == lltok::kw_blockcount); 8234 Lex.Lex(); 8235 8236 if (parseToken(lltok::colon, "expected ':' here")) 8237 return true; 8238 uint64_t BlockCount; 8239 if (parseUInt64(BlockCount)) 8240 return true; 8241 if (Index) 8242 Index->setBlockCount(BlockCount); 8243 return false; 8244 } 8245 8246 /// parseGVEntry 8247 /// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64) 8248 /// [',' 'summaries' ':' Summary[',' Summary]* ]? ')' 8249 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')' 8250 bool LLParser::parseGVEntry(unsigned ID) { 8251 assert(Lex.getKind() == lltok::kw_gv); 8252 Lex.Lex(); 8253 8254 if (parseToken(lltok::colon, "expected ':' here") || 8255 parseToken(lltok::lparen, "expected '(' here")) 8256 return true; 8257 8258 std::string Name; 8259 GlobalValue::GUID GUID = 0; 8260 switch (Lex.getKind()) { 8261 case lltok::kw_name: 8262 Lex.Lex(); 8263 if (parseToken(lltok::colon, "expected ':' here") || 8264 parseStringConstant(Name)) 8265 return true; 8266 // Can't create GUID/ValueInfo until we have the linkage. 8267 break; 8268 case lltok::kw_guid: 8269 Lex.Lex(); 8270 if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID)) 8271 return true; 8272 break; 8273 default: 8274 return error(Lex.getLoc(), "expected name or guid tag"); 8275 } 8276 8277 if (!EatIfPresent(lltok::comma)) { 8278 // No summaries. Wrap up. 8279 if (parseToken(lltok::rparen, "expected ')' here")) 8280 return true; 8281 // This was created for a call to an external or indirect target. 8282 // A GUID with no summary came from a VALUE_GUID record, dummy GUID 8283 // created for indirect calls with VP. A Name with no GUID came from 8284 // an external definition. We pass ExternalLinkage since that is only 8285 // used when the GUID must be computed from Name, and in that case 8286 // the symbol must have external linkage. 8287 addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID, 8288 nullptr); 8289 return false; 8290 } 8291 8292 // Have a list of summaries 8293 if (parseToken(lltok::kw_summaries, "expected 'summaries' here") || 8294 parseToken(lltok::colon, "expected ':' here") || 8295 parseToken(lltok::lparen, "expected '(' here")) 8296 return true; 8297 do { 8298 switch (Lex.getKind()) { 8299 case lltok::kw_function: 8300 if (parseFunctionSummary(Name, GUID, ID)) 8301 return true; 8302 break; 8303 case lltok::kw_variable: 8304 if (parseVariableSummary(Name, GUID, ID)) 8305 return true; 8306 break; 8307 case lltok::kw_alias: 8308 if (parseAliasSummary(Name, GUID, ID)) 8309 return true; 8310 break; 8311 default: 8312 return error(Lex.getLoc(), "expected summary type"); 8313 } 8314 } while (EatIfPresent(lltok::comma)); 8315 8316 if (parseToken(lltok::rparen, "expected ')' here") || 8317 parseToken(lltok::rparen, "expected ')' here")) 8318 return true; 8319 8320 return false; 8321 } 8322 8323 /// FunctionSummary 8324 /// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8325 /// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]? 8326 /// [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]? 8327 /// [',' OptionalRefs]? ')' 8328 bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID, 8329 unsigned ID) { 8330 assert(Lex.getKind() == lltok::kw_function); 8331 Lex.Lex(); 8332 8333 StringRef ModulePath; 8334 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8335 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8336 /*NotEligibleToImport=*/false, 8337 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8338 unsigned InstCount; 8339 std::vector<FunctionSummary::EdgeTy> Calls; 8340 FunctionSummary::TypeIdInfo TypeIdInfo; 8341 std::vector<FunctionSummary::ParamAccess> ParamAccesses; 8342 std::vector<ValueInfo> Refs; 8343 // Default is all-zeros (conservative values). 8344 FunctionSummary::FFlags FFlags = {}; 8345 if (parseToken(lltok::colon, "expected ':' here") || 8346 parseToken(lltok::lparen, "expected '(' here") || 8347 parseModuleReference(ModulePath) || 8348 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8349 parseToken(lltok::comma, "expected ',' here") || 8350 parseToken(lltok::kw_insts, "expected 'insts' here") || 8351 parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount)) 8352 return true; 8353 8354 // parse optional fields 8355 while (EatIfPresent(lltok::comma)) { 8356 switch (Lex.getKind()) { 8357 case lltok::kw_funcFlags: 8358 if (parseOptionalFFlags(FFlags)) 8359 return true; 8360 break; 8361 case lltok::kw_calls: 8362 if (parseOptionalCalls(Calls)) 8363 return true; 8364 break; 8365 case lltok::kw_typeIdInfo: 8366 if (parseOptionalTypeIdInfo(TypeIdInfo)) 8367 return true; 8368 break; 8369 case lltok::kw_refs: 8370 if (parseOptionalRefs(Refs)) 8371 return true; 8372 break; 8373 case lltok::kw_params: 8374 if (parseOptionalParamAccesses(ParamAccesses)) 8375 return true; 8376 break; 8377 default: 8378 return error(Lex.getLoc(), "expected optional function summary field"); 8379 } 8380 } 8381 8382 if (parseToken(lltok::rparen, "expected ')' here")) 8383 return true; 8384 8385 auto FS = std::make_unique<FunctionSummary>( 8386 GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs), 8387 std::move(Calls), std::move(TypeIdInfo.TypeTests), 8388 std::move(TypeIdInfo.TypeTestAssumeVCalls), 8389 std::move(TypeIdInfo.TypeCheckedLoadVCalls), 8390 std::move(TypeIdInfo.TypeTestAssumeConstVCalls), 8391 std::move(TypeIdInfo.TypeCheckedLoadConstVCalls), 8392 std::move(ParamAccesses)); 8393 8394 FS->setModulePath(ModulePath); 8395 8396 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8397 ID, std::move(FS)); 8398 8399 return false; 8400 } 8401 8402 /// VariableSummary 8403 /// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8404 /// [',' OptionalRefs]? ')' 8405 bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID, 8406 unsigned ID) { 8407 assert(Lex.getKind() == lltok::kw_variable); 8408 Lex.Lex(); 8409 8410 StringRef ModulePath; 8411 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8412 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8413 /*NotEligibleToImport=*/false, 8414 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8415 GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false, 8416 /* WriteOnly */ false, 8417 /* Constant */ false, 8418 GlobalObject::VCallVisibilityPublic); 8419 std::vector<ValueInfo> Refs; 8420 VTableFuncList VTableFuncs; 8421 if (parseToken(lltok::colon, "expected ':' here") || 8422 parseToken(lltok::lparen, "expected '(' here") || 8423 parseModuleReference(ModulePath) || 8424 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8425 parseToken(lltok::comma, "expected ',' here") || 8426 parseGVarFlags(GVarFlags)) 8427 return true; 8428 8429 // parse optional fields 8430 while (EatIfPresent(lltok::comma)) { 8431 switch (Lex.getKind()) { 8432 case lltok::kw_vTableFuncs: 8433 if (parseOptionalVTableFuncs(VTableFuncs)) 8434 return true; 8435 break; 8436 case lltok::kw_refs: 8437 if (parseOptionalRefs(Refs)) 8438 return true; 8439 break; 8440 default: 8441 return error(Lex.getLoc(), "expected optional variable summary field"); 8442 } 8443 } 8444 8445 if (parseToken(lltok::rparen, "expected ')' here")) 8446 return true; 8447 8448 auto GS = 8449 std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs)); 8450 8451 GS->setModulePath(ModulePath); 8452 GS->setVTableFuncs(std::move(VTableFuncs)); 8453 8454 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8455 ID, std::move(GS)); 8456 8457 return false; 8458 } 8459 8460 /// AliasSummary 8461 /// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ',' 8462 /// 'aliasee' ':' GVReference ')' 8463 bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID, 8464 unsigned ID) { 8465 assert(Lex.getKind() == lltok::kw_alias); 8466 LocTy Loc = Lex.getLoc(); 8467 Lex.Lex(); 8468 8469 StringRef ModulePath; 8470 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8471 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8472 /*NotEligibleToImport=*/false, 8473 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8474 if (parseToken(lltok::colon, "expected ':' here") || 8475 parseToken(lltok::lparen, "expected '(' here") || 8476 parseModuleReference(ModulePath) || 8477 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8478 parseToken(lltok::comma, "expected ',' here") || 8479 parseToken(lltok::kw_aliasee, "expected 'aliasee' here") || 8480 parseToken(lltok::colon, "expected ':' here")) 8481 return true; 8482 8483 ValueInfo AliaseeVI; 8484 unsigned GVId; 8485 if (parseGVReference(AliaseeVI, GVId)) 8486 return true; 8487 8488 if (parseToken(lltok::rparen, "expected ')' here")) 8489 return true; 8490 8491 auto AS = std::make_unique<AliasSummary>(GVFlags); 8492 8493 AS->setModulePath(ModulePath); 8494 8495 // Record forward reference if the aliasee is not parsed yet. 8496 if (AliaseeVI.getRef() == FwdVIRef) { 8497 ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc); 8498 } else { 8499 auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath); 8500 assert(Summary && "Aliasee must be a definition"); 8501 AS->setAliasee(AliaseeVI, Summary); 8502 } 8503 8504 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8505 ID, std::move(AS)); 8506 8507 return false; 8508 } 8509 8510 /// Flag 8511 /// ::= [0|1] 8512 bool LLParser::parseFlag(unsigned &Val) { 8513 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 8514 return tokError("expected integer"); 8515 Val = (unsigned)Lex.getAPSIntVal().getBoolValue(); 8516 Lex.Lex(); 8517 return false; 8518 } 8519 8520 /// OptionalFFlags 8521 /// := 'funcFlags' ':' '(' ['readNone' ':' Flag]? 8522 /// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]? 8523 /// [',' 'returnDoesNotAlias' ':' Flag]? ')' 8524 /// [',' 'noInline' ':' Flag]? ')' 8525 /// [',' 'alwaysInline' ':' Flag]? ')' 8526 8527 bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) { 8528 assert(Lex.getKind() == lltok::kw_funcFlags); 8529 Lex.Lex(); 8530 8531 if (parseToken(lltok::colon, "expected ':' in funcFlags") | 8532 parseToken(lltok::lparen, "expected '(' in funcFlags")) 8533 return true; 8534 8535 do { 8536 unsigned Val = 0; 8537 switch (Lex.getKind()) { 8538 case lltok::kw_readNone: 8539 Lex.Lex(); 8540 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8541 return true; 8542 FFlags.ReadNone = Val; 8543 break; 8544 case lltok::kw_readOnly: 8545 Lex.Lex(); 8546 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8547 return true; 8548 FFlags.ReadOnly = Val; 8549 break; 8550 case lltok::kw_noRecurse: 8551 Lex.Lex(); 8552 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8553 return true; 8554 FFlags.NoRecurse = Val; 8555 break; 8556 case lltok::kw_returnDoesNotAlias: 8557 Lex.Lex(); 8558 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8559 return true; 8560 FFlags.ReturnDoesNotAlias = Val; 8561 break; 8562 case lltok::kw_noInline: 8563 Lex.Lex(); 8564 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8565 return true; 8566 FFlags.NoInline = Val; 8567 break; 8568 case lltok::kw_alwaysInline: 8569 Lex.Lex(); 8570 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8571 return true; 8572 FFlags.AlwaysInline = Val; 8573 break; 8574 default: 8575 return error(Lex.getLoc(), "expected function flag type"); 8576 } 8577 } while (EatIfPresent(lltok::comma)); 8578 8579 if (parseToken(lltok::rparen, "expected ')' in funcFlags")) 8580 return true; 8581 8582 return false; 8583 } 8584 8585 /// OptionalCalls 8586 /// := 'calls' ':' '(' Call [',' Call]* ')' 8587 /// Call ::= '(' 'callee' ':' GVReference 8588 /// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')' 8589 bool LLParser::parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) { 8590 assert(Lex.getKind() == lltok::kw_calls); 8591 Lex.Lex(); 8592 8593 if (parseToken(lltok::colon, "expected ':' in calls") | 8594 parseToken(lltok::lparen, "expected '(' in calls")) 8595 return true; 8596 8597 IdToIndexMapType IdToIndexMap; 8598 // parse each call edge 8599 do { 8600 ValueInfo VI; 8601 if (parseToken(lltok::lparen, "expected '(' in call") || 8602 parseToken(lltok::kw_callee, "expected 'callee' in call") || 8603 parseToken(lltok::colon, "expected ':'")) 8604 return true; 8605 8606 LocTy Loc = Lex.getLoc(); 8607 unsigned GVId; 8608 if (parseGVReference(VI, GVId)) 8609 return true; 8610 8611 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 8612 unsigned RelBF = 0; 8613 if (EatIfPresent(lltok::comma)) { 8614 // Expect either hotness or relbf 8615 if (EatIfPresent(lltok::kw_hotness)) { 8616 if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness)) 8617 return true; 8618 } else { 8619 if (parseToken(lltok::kw_relbf, "expected relbf") || 8620 parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF)) 8621 return true; 8622 } 8623 } 8624 // Keep track of the Call array index needing a forward reference. 8625 // We will save the location of the ValueInfo needing an update, but 8626 // can only do so once the std::vector is finalized. 8627 if (VI.getRef() == FwdVIRef) 8628 IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc)); 8629 Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)}); 8630 8631 if (parseToken(lltok::rparen, "expected ')' in call")) 8632 return true; 8633 } while (EatIfPresent(lltok::comma)); 8634 8635 // Now that the Calls vector is finalized, it is safe to save the locations 8636 // of any forward GV references that need updating later. 8637 for (auto I : IdToIndexMap) { 8638 auto &Infos = ForwardRefValueInfos[I.first]; 8639 for (auto P : I.second) { 8640 assert(Calls[P.first].first.getRef() == FwdVIRef && 8641 "Forward referenced ValueInfo expected to be empty"); 8642 Infos.emplace_back(&Calls[P.first].first, P.second); 8643 } 8644 } 8645 8646 if (parseToken(lltok::rparen, "expected ')' in calls")) 8647 return true; 8648 8649 return false; 8650 } 8651 8652 /// Hotness 8653 /// := ('unknown'|'cold'|'none'|'hot'|'critical') 8654 bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) { 8655 switch (Lex.getKind()) { 8656 case lltok::kw_unknown: 8657 Hotness = CalleeInfo::HotnessType::Unknown; 8658 break; 8659 case lltok::kw_cold: 8660 Hotness = CalleeInfo::HotnessType::Cold; 8661 break; 8662 case lltok::kw_none: 8663 Hotness = CalleeInfo::HotnessType::None; 8664 break; 8665 case lltok::kw_hot: 8666 Hotness = CalleeInfo::HotnessType::Hot; 8667 break; 8668 case lltok::kw_critical: 8669 Hotness = CalleeInfo::HotnessType::Critical; 8670 break; 8671 default: 8672 return error(Lex.getLoc(), "invalid call edge hotness"); 8673 } 8674 Lex.Lex(); 8675 return false; 8676 } 8677 8678 /// OptionalVTableFuncs 8679 /// := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')' 8680 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')' 8681 bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) { 8682 assert(Lex.getKind() == lltok::kw_vTableFuncs); 8683 Lex.Lex(); 8684 8685 if (parseToken(lltok::colon, "expected ':' in vTableFuncs") | 8686 parseToken(lltok::lparen, "expected '(' in vTableFuncs")) 8687 return true; 8688 8689 IdToIndexMapType IdToIndexMap; 8690 // parse each virtual function pair 8691 do { 8692 ValueInfo VI; 8693 if (parseToken(lltok::lparen, "expected '(' in vTableFunc") || 8694 parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") || 8695 parseToken(lltok::colon, "expected ':'")) 8696 return true; 8697 8698 LocTy Loc = Lex.getLoc(); 8699 unsigned GVId; 8700 if (parseGVReference(VI, GVId)) 8701 return true; 8702 8703 uint64_t Offset; 8704 if (parseToken(lltok::comma, "expected comma") || 8705 parseToken(lltok::kw_offset, "expected offset") || 8706 parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset)) 8707 return true; 8708 8709 // Keep track of the VTableFuncs array index needing a forward reference. 8710 // We will save the location of the ValueInfo needing an update, but 8711 // can only do so once the std::vector is finalized. 8712 if (VI == EmptyVI) 8713 IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc)); 8714 VTableFuncs.push_back({VI, Offset}); 8715 8716 if (parseToken(lltok::rparen, "expected ')' in vTableFunc")) 8717 return true; 8718 } while (EatIfPresent(lltok::comma)); 8719 8720 // Now that the VTableFuncs vector is finalized, it is safe to save the 8721 // locations of any forward GV references that need updating later. 8722 for (auto I : IdToIndexMap) { 8723 auto &Infos = ForwardRefValueInfos[I.first]; 8724 for (auto P : I.second) { 8725 assert(VTableFuncs[P.first].FuncVI == EmptyVI && 8726 "Forward referenced ValueInfo expected to be empty"); 8727 Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second); 8728 } 8729 } 8730 8731 if (parseToken(lltok::rparen, "expected ')' in vTableFuncs")) 8732 return true; 8733 8734 return false; 8735 } 8736 8737 /// ParamNo := 'param' ':' UInt64 8738 bool LLParser::parseParamNo(uint64_t &ParamNo) { 8739 if (parseToken(lltok::kw_param, "expected 'param' here") || 8740 parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo)) 8741 return true; 8742 return false; 8743 } 8744 8745 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']' 8746 bool LLParser::parseParamAccessOffset(ConstantRange &Range) { 8747 APSInt Lower; 8748 APSInt Upper; 8749 auto ParseAPSInt = [&](APSInt &Val) { 8750 if (Lex.getKind() != lltok::APSInt) 8751 return tokError("expected integer"); 8752 Val = Lex.getAPSIntVal(); 8753 Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 8754 Val.setIsSigned(true); 8755 Lex.Lex(); 8756 return false; 8757 }; 8758 if (parseToken(lltok::kw_offset, "expected 'offset' here") || 8759 parseToken(lltok::colon, "expected ':' here") || 8760 parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) || 8761 parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) || 8762 parseToken(lltok::rsquare, "expected ']' here")) 8763 return true; 8764 8765 ++Upper; 8766 Range = 8767 (Lower == Upper && !Lower.isMaxValue()) 8768 ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth) 8769 : ConstantRange(Lower, Upper); 8770 8771 return false; 8772 } 8773 8774 /// ParamAccessCall 8775 /// := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')' 8776 bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call, 8777 IdLocListType &IdLocList) { 8778 if (parseToken(lltok::lparen, "expected '(' here") || 8779 parseToken(lltok::kw_callee, "expected 'callee' here") || 8780 parseToken(lltok::colon, "expected ':' here")) 8781 return true; 8782 8783 unsigned GVId; 8784 ValueInfo VI; 8785 LocTy Loc = Lex.getLoc(); 8786 if (parseGVReference(VI, GVId)) 8787 return true; 8788 8789 Call.Callee = VI; 8790 IdLocList.emplace_back(GVId, Loc); 8791 8792 if (parseToken(lltok::comma, "expected ',' here") || 8793 parseParamNo(Call.ParamNo) || 8794 parseToken(lltok::comma, "expected ',' here") || 8795 parseParamAccessOffset(Call.Offsets)) 8796 return true; 8797 8798 if (parseToken(lltok::rparen, "expected ')' here")) 8799 return true; 8800 8801 return false; 8802 } 8803 8804 /// ParamAccess 8805 /// := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')' 8806 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')' 8807 bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param, 8808 IdLocListType &IdLocList) { 8809 if (parseToken(lltok::lparen, "expected '(' here") || 8810 parseParamNo(Param.ParamNo) || 8811 parseToken(lltok::comma, "expected ',' here") || 8812 parseParamAccessOffset(Param.Use)) 8813 return true; 8814 8815 if (EatIfPresent(lltok::comma)) { 8816 if (parseToken(lltok::kw_calls, "expected 'calls' here") || 8817 parseToken(lltok::colon, "expected ':' here") || 8818 parseToken(lltok::lparen, "expected '(' here")) 8819 return true; 8820 do { 8821 FunctionSummary::ParamAccess::Call Call; 8822 if (parseParamAccessCall(Call, IdLocList)) 8823 return true; 8824 Param.Calls.push_back(Call); 8825 } while (EatIfPresent(lltok::comma)); 8826 8827 if (parseToken(lltok::rparen, "expected ')' here")) 8828 return true; 8829 } 8830 8831 if (parseToken(lltok::rparen, "expected ')' here")) 8832 return true; 8833 8834 return false; 8835 } 8836 8837 /// OptionalParamAccesses 8838 /// := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')' 8839 bool LLParser::parseOptionalParamAccesses( 8840 std::vector<FunctionSummary::ParamAccess> &Params) { 8841 assert(Lex.getKind() == lltok::kw_params); 8842 Lex.Lex(); 8843 8844 if (parseToken(lltok::colon, "expected ':' here") || 8845 parseToken(lltok::lparen, "expected '(' here")) 8846 return true; 8847 8848 IdLocListType VContexts; 8849 size_t CallsNum = 0; 8850 do { 8851 FunctionSummary::ParamAccess ParamAccess; 8852 if (parseParamAccess(ParamAccess, VContexts)) 8853 return true; 8854 CallsNum += ParamAccess.Calls.size(); 8855 assert(VContexts.size() == CallsNum); 8856 (void)CallsNum; 8857 Params.emplace_back(std::move(ParamAccess)); 8858 } while (EatIfPresent(lltok::comma)); 8859 8860 if (parseToken(lltok::rparen, "expected ')' here")) 8861 return true; 8862 8863 // Now that the Params is finalized, it is safe to save the locations 8864 // of any forward GV references that need updating later. 8865 IdLocListType::const_iterator ItContext = VContexts.begin(); 8866 for (auto &PA : Params) { 8867 for (auto &C : PA.Calls) { 8868 if (C.Callee.getRef() == FwdVIRef) 8869 ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee, 8870 ItContext->second); 8871 ++ItContext; 8872 } 8873 } 8874 assert(ItContext == VContexts.end()); 8875 8876 return false; 8877 } 8878 8879 /// OptionalRefs 8880 /// := 'refs' ':' '(' GVReference [',' GVReference]* ')' 8881 bool LLParser::parseOptionalRefs(std::vector<ValueInfo> &Refs) { 8882 assert(Lex.getKind() == lltok::kw_refs); 8883 Lex.Lex(); 8884 8885 if (parseToken(lltok::colon, "expected ':' in refs") || 8886 parseToken(lltok::lparen, "expected '(' in refs")) 8887 return true; 8888 8889 struct ValueContext { 8890 ValueInfo VI; 8891 unsigned GVId; 8892 LocTy Loc; 8893 }; 8894 std::vector<ValueContext> VContexts; 8895 // parse each ref edge 8896 do { 8897 ValueContext VC; 8898 VC.Loc = Lex.getLoc(); 8899 if (parseGVReference(VC.VI, VC.GVId)) 8900 return true; 8901 VContexts.push_back(VC); 8902 } while (EatIfPresent(lltok::comma)); 8903 8904 // Sort value contexts so that ones with writeonly 8905 // and readonly ValueInfo are at the end of VContexts vector. 8906 // See FunctionSummary::specialRefCounts() 8907 llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) { 8908 return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier(); 8909 }); 8910 8911 IdToIndexMapType IdToIndexMap; 8912 for (auto &VC : VContexts) { 8913 // Keep track of the Refs array index needing a forward reference. 8914 // We will save the location of the ValueInfo needing an update, but 8915 // can only do so once the std::vector is finalized. 8916 if (VC.VI.getRef() == FwdVIRef) 8917 IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc)); 8918 Refs.push_back(VC.VI); 8919 } 8920 8921 // Now that the Refs vector is finalized, it is safe to save the locations 8922 // of any forward GV references that need updating later. 8923 for (auto I : IdToIndexMap) { 8924 auto &Infos = ForwardRefValueInfos[I.first]; 8925 for (auto P : I.second) { 8926 assert(Refs[P.first].getRef() == FwdVIRef && 8927 "Forward referenced ValueInfo expected to be empty"); 8928 Infos.emplace_back(&Refs[P.first], P.second); 8929 } 8930 } 8931 8932 if (parseToken(lltok::rparen, "expected ')' in refs")) 8933 return true; 8934 8935 return false; 8936 } 8937 8938 /// OptionalTypeIdInfo 8939 /// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]? 8940 /// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]? 8941 /// [',' TypeCheckedLoadConstVCalls]? ')' 8942 bool LLParser::parseOptionalTypeIdInfo( 8943 FunctionSummary::TypeIdInfo &TypeIdInfo) { 8944 assert(Lex.getKind() == lltok::kw_typeIdInfo); 8945 Lex.Lex(); 8946 8947 if (parseToken(lltok::colon, "expected ':' here") || 8948 parseToken(lltok::lparen, "expected '(' in typeIdInfo")) 8949 return true; 8950 8951 do { 8952 switch (Lex.getKind()) { 8953 case lltok::kw_typeTests: 8954 if (parseTypeTests(TypeIdInfo.TypeTests)) 8955 return true; 8956 break; 8957 case lltok::kw_typeTestAssumeVCalls: 8958 if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls, 8959 TypeIdInfo.TypeTestAssumeVCalls)) 8960 return true; 8961 break; 8962 case lltok::kw_typeCheckedLoadVCalls: 8963 if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls, 8964 TypeIdInfo.TypeCheckedLoadVCalls)) 8965 return true; 8966 break; 8967 case lltok::kw_typeTestAssumeConstVCalls: 8968 if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls, 8969 TypeIdInfo.TypeTestAssumeConstVCalls)) 8970 return true; 8971 break; 8972 case lltok::kw_typeCheckedLoadConstVCalls: 8973 if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls, 8974 TypeIdInfo.TypeCheckedLoadConstVCalls)) 8975 return true; 8976 break; 8977 default: 8978 return error(Lex.getLoc(), "invalid typeIdInfo list type"); 8979 } 8980 } while (EatIfPresent(lltok::comma)); 8981 8982 if (parseToken(lltok::rparen, "expected ')' in typeIdInfo")) 8983 return true; 8984 8985 return false; 8986 } 8987 8988 /// TypeTests 8989 /// ::= 'typeTests' ':' '(' (SummaryID | UInt64) 8990 /// [',' (SummaryID | UInt64)]* ')' 8991 bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) { 8992 assert(Lex.getKind() == lltok::kw_typeTests); 8993 Lex.Lex(); 8994 8995 if (parseToken(lltok::colon, "expected ':' here") || 8996 parseToken(lltok::lparen, "expected '(' in typeIdInfo")) 8997 return true; 8998 8999 IdToIndexMapType IdToIndexMap; 9000 do { 9001 GlobalValue::GUID GUID = 0; 9002 if (Lex.getKind() == lltok::SummaryID) { 9003 unsigned ID = Lex.getUIntVal(); 9004 LocTy Loc = Lex.getLoc(); 9005 // Keep track of the TypeTests array index needing a forward reference. 9006 // We will save the location of the GUID needing an update, but 9007 // can only do so once the std::vector is finalized. 9008 IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc)); 9009 Lex.Lex(); 9010 } else if (parseUInt64(GUID)) 9011 return true; 9012 TypeTests.push_back(GUID); 9013 } while (EatIfPresent(lltok::comma)); 9014 9015 // Now that the TypeTests vector is finalized, it is safe to save the 9016 // locations of any forward GV references that need updating later. 9017 for (auto I : IdToIndexMap) { 9018 auto &Ids = ForwardRefTypeIds[I.first]; 9019 for (auto P : I.second) { 9020 assert(TypeTests[P.first] == 0 && 9021 "Forward referenced type id GUID expected to be 0"); 9022 Ids.emplace_back(&TypeTests[P.first], P.second); 9023 } 9024 } 9025 9026 if (parseToken(lltok::rparen, "expected ')' in typeIdInfo")) 9027 return true; 9028 9029 return false; 9030 } 9031 9032 /// VFuncIdList 9033 /// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')' 9034 bool LLParser::parseVFuncIdList( 9035 lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) { 9036 assert(Lex.getKind() == Kind); 9037 Lex.Lex(); 9038 9039 if (parseToken(lltok::colon, "expected ':' here") || 9040 parseToken(lltok::lparen, "expected '(' here")) 9041 return true; 9042 9043 IdToIndexMapType IdToIndexMap; 9044 do { 9045 FunctionSummary::VFuncId VFuncId; 9046 if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size())) 9047 return true; 9048 VFuncIdList.push_back(VFuncId); 9049 } while (EatIfPresent(lltok::comma)); 9050 9051 if (parseToken(lltok::rparen, "expected ')' here")) 9052 return true; 9053 9054 // Now that the VFuncIdList vector is finalized, it is safe to save the 9055 // locations of any forward GV references that need updating later. 9056 for (auto I : IdToIndexMap) { 9057 auto &Ids = ForwardRefTypeIds[I.first]; 9058 for (auto P : I.second) { 9059 assert(VFuncIdList[P.first].GUID == 0 && 9060 "Forward referenced type id GUID expected to be 0"); 9061 Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second); 9062 } 9063 } 9064 9065 return false; 9066 } 9067 9068 /// ConstVCallList 9069 /// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')' 9070 bool LLParser::parseConstVCallList( 9071 lltok::Kind Kind, 9072 std::vector<FunctionSummary::ConstVCall> &ConstVCallList) { 9073 assert(Lex.getKind() == Kind); 9074 Lex.Lex(); 9075 9076 if (parseToken(lltok::colon, "expected ':' here") || 9077 parseToken(lltok::lparen, "expected '(' here")) 9078 return true; 9079 9080 IdToIndexMapType IdToIndexMap; 9081 do { 9082 FunctionSummary::ConstVCall ConstVCall; 9083 if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size())) 9084 return true; 9085 ConstVCallList.push_back(ConstVCall); 9086 } while (EatIfPresent(lltok::comma)); 9087 9088 if (parseToken(lltok::rparen, "expected ')' here")) 9089 return true; 9090 9091 // Now that the ConstVCallList vector is finalized, it is safe to save the 9092 // locations of any forward GV references that need updating later. 9093 for (auto I : IdToIndexMap) { 9094 auto &Ids = ForwardRefTypeIds[I.first]; 9095 for (auto P : I.second) { 9096 assert(ConstVCallList[P.first].VFunc.GUID == 0 && 9097 "Forward referenced type id GUID expected to be 0"); 9098 Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second); 9099 } 9100 } 9101 9102 return false; 9103 } 9104 9105 /// ConstVCall 9106 /// ::= '(' VFuncId ',' Args ')' 9107 bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall, 9108 IdToIndexMapType &IdToIndexMap, unsigned Index) { 9109 if (parseToken(lltok::lparen, "expected '(' here") || 9110 parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index)) 9111 return true; 9112 9113 if (EatIfPresent(lltok::comma)) 9114 if (parseArgs(ConstVCall.Args)) 9115 return true; 9116 9117 if (parseToken(lltok::rparen, "expected ')' here")) 9118 return true; 9119 9120 return false; 9121 } 9122 9123 /// VFuncId 9124 /// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ',' 9125 /// 'offset' ':' UInt64 ')' 9126 bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId, 9127 IdToIndexMapType &IdToIndexMap, unsigned Index) { 9128 assert(Lex.getKind() == lltok::kw_vFuncId); 9129 Lex.Lex(); 9130 9131 if (parseToken(lltok::colon, "expected ':' here") || 9132 parseToken(lltok::lparen, "expected '(' here")) 9133 return true; 9134 9135 if (Lex.getKind() == lltok::SummaryID) { 9136 VFuncId.GUID = 0; 9137 unsigned ID = Lex.getUIntVal(); 9138 LocTy Loc = Lex.getLoc(); 9139 // Keep track of the array index needing a forward reference. 9140 // We will save the location of the GUID needing an update, but 9141 // can only do so once the caller's std::vector is finalized. 9142 IdToIndexMap[ID].push_back(std::make_pair(Index, Loc)); 9143 Lex.Lex(); 9144 } else if (parseToken(lltok::kw_guid, "expected 'guid' here") || 9145 parseToken(lltok::colon, "expected ':' here") || 9146 parseUInt64(VFuncId.GUID)) 9147 return true; 9148 9149 if (parseToken(lltok::comma, "expected ',' here") || 9150 parseToken(lltok::kw_offset, "expected 'offset' here") || 9151 parseToken(lltok::colon, "expected ':' here") || 9152 parseUInt64(VFuncId.Offset) || 9153 parseToken(lltok::rparen, "expected ')' here")) 9154 return true; 9155 9156 return false; 9157 } 9158 9159 /// GVFlags 9160 /// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ',' 9161 /// 'visibility' ':' Flag 'notEligibleToImport' ':' Flag ',' 9162 /// 'live' ':' Flag ',' 'dsoLocal' ':' Flag ',' 9163 /// 'canAutoHide' ':' Flag ',' ')' 9164 bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) { 9165 assert(Lex.getKind() == lltok::kw_flags); 9166 Lex.Lex(); 9167 9168 if (parseToken(lltok::colon, "expected ':' here") || 9169 parseToken(lltok::lparen, "expected '(' here")) 9170 return true; 9171 9172 do { 9173 unsigned Flag = 0; 9174 switch (Lex.getKind()) { 9175 case lltok::kw_linkage: 9176 Lex.Lex(); 9177 if (parseToken(lltok::colon, "expected ':'")) 9178 return true; 9179 bool HasLinkage; 9180 GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 9181 assert(HasLinkage && "Linkage not optional in summary entry"); 9182 Lex.Lex(); 9183 break; 9184 case lltok::kw_visibility: 9185 Lex.Lex(); 9186 if (parseToken(lltok::colon, "expected ':'")) 9187 return true; 9188 parseOptionalVisibility(Flag); 9189 GVFlags.Visibility = Flag; 9190 break; 9191 case lltok::kw_notEligibleToImport: 9192 Lex.Lex(); 9193 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9194 return true; 9195 GVFlags.NotEligibleToImport = Flag; 9196 break; 9197 case lltok::kw_live: 9198 Lex.Lex(); 9199 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9200 return true; 9201 GVFlags.Live = Flag; 9202 break; 9203 case lltok::kw_dsoLocal: 9204 Lex.Lex(); 9205 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9206 return true; 9207 GVFlags.DSOLocal = Flag; 9208 break; 9209 case lltok::kw_canAutoHide: 9210 Lex.Lex(); 9211 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9212 return true; 9213 GVFlags.CanAutoHide = Flag; 9214 break; 9215 default: 9216 return error(Lex.getLoc(), "expected gv flag type"); 9217 } 9218 } while (EatIfPresent(lltok::comma)); 9219 9220 if (parseToken(lltok::rparen, "expected ')' here")) 9221 return true; 9222 9223 return false; 9224 } 9225 9226 /// GVarFlags 9227 /// ::= 'varFlags' ':' '(' 'readonly' ':' Flag 9228 /// ',' 'writeonly' ':' Flag 9229 /// ',' 'constant' ':' Flag ')' 9230 bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) { 9231 assert(Lex.getKind() == lltok::kw_varFlags); 9232 Lex.Lex(); 9233 9234 if (parseToken(lltok::colon, "expected ':' here") || 9235 parseToken(lltok::lparen, "expected '(' here")) 9236 return true; 9237 9238 auto ParseRest = [this](unsigned int &Val) { 9239 Lex.Lex(); 9240 if (parseToken(lltok::colon, "expected ':'")) 9241 return true; 9242 return parseFlag(Val); 9243 }; 9244 9245 do { 9246 unsigned Flag = 0; 9247 switch (Lex.getKind()) { 9248 case lltok::kw_readonly: 9249 if (ParseRest(Flag)) 9250 return true; 9251 GVarFlags.MaybeReadOnly = Flag; 9252 break; 9253 case lltok::kw_writeonly: 9254 if (ParseRest(Flag)) 9255 return true; 9256 GVarFlags.MaybeWriteOnly = Flag; 9257 break; 9258 case lltok::kw_constant: 9259 if (ParseRest(Flag)) 9260 return true; 9261 GVarFlags.Constant = Flag; 9262 break; 9263 case lltok::kw_vcall_visibility: 9264 if (ParseRest(Flag)) 9265 return true; 9266 GVarFlags.VCallVisibility = Flag; 9267 break; 9268 default: 9269 return error(Lex.getLoc(), "expected gvar flag type"); 9270 } 9271 } while (EatIfPresent(lltok::comma)); 9272 return parseToken(lltok::rparen, "expected ')' here"); 9273 } 9274 9275 /// ModuleReference 9276 /// ::= 'module' ':' UInt 9277 bool LLParser::parseModuleReference(StringRef &ModulePath) { 9278 // parse module id. 9279 if (parseToken(lltok::kw_module, "expected 'module' here") || 9280 parseToken(lltok::colon, "expected ':' here") || 9281 parseToken(lltok::SummaryID, "expected module ID")) 9282 return true; 9283 9284 unsigned ModuleID = Lex.getUIntVal(); 9285 auto I = ModuleIdMap.find(ModuleID); 9286 // We should have already parsed all module IDs 9287 assert(I != ModuleIdMap.end()); 9288 ModulePath = I->second; 9289 return false; 9290 } 9291 9292 /// GVReference 9293 /// ::= SummaryID 9294 bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) { 9295 bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly); 9296 if (!ReadOnly) 9297 WriteOnly = EatIfPresent(lltok::kw_writeonly); 9298 if (parseToken(lltok::SummaryID, "expected GV ID")) 9299 return true; 9300 9301 GVId = Lex.getUIntVal(); 9302 // Check if we already have a VI for this GV 9303 if (GVId < NumberedValueInfos.size()) { 9304 assert(NumberedValueInfos[GVId].getRef() != FwdVIRef); 9305 VI = NumberedValueInfos[GVId]; 9306 } else 9307 // We will create a forward reference to the stored location. 9308 VI = ValueInfo(false, FwdVIRef); 9309 9310 if (ReadOnly) 9311 VI.setReadOnly(); 9312 if (WriteOnly) 9313 VI.setWriteOnly(); 9314 return false; 9315 } 9316