1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the parser class for .ll files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "LLParser.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/None.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/AsmParser/SlotMapping.h"
20 #include "llvm/BinaryFormat/Dwarf.h"
21 #include "llvm/IR/Argument.h"
22 #include "llvm/IR/AutoUpgrade.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/CallingConv.h"
25 #include "llvm/IR/Comdat.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugInfoMetadata.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalIFunc.h"
31 #include "llvm/IR/GlobalObject.h"
32 #include "llvm/IR/InlineAsm.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/IR/Type.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/IR/ValueSymbolTable.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/MathExtras.h"
46 #include "llvm/Support/SaveAndRestore.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <cstring>
51 #include <iterator>
52 #include <vector>
53 
54 using namespace llvm;
55 
56 static std::string getTypeString(Type *T) {
57   std::string Result;
58   raw_string_ostream Tmp(Result);
59   Tmp << *T;
60   return Tmp.str();
61 }
62 
63 /// Run: module ::= toplevelentity*
64 bool LLParser::Run() {
65   // Prime the lexer.
66   Lex.Lex();
67 
68   if (Context.shouldDiscardValueNames())
69     return Error(
70         Lex.getLoc(),
71         "Can't read textual IR with a Context that discards named Values");
72 
73   return ParseTopLevelEntities() || ValidateEndOfModule() ||
74          ValidateEndOfIndex();
75 }
76 
77 bool LLParser::parseStandaloneConstantValue(Constant *&C,
78                                             const SlotMapping *Slots) {
79   restoreParsingState(Slots);
80   Lex.Lex();
81 
82   Type *Ty = nullptr;
83   if (ParseType(Ty) || parseConstantValue(Ty, C))
84     return true;
85   if (Lex.getKind() != lltok::Eof)
86     return Error(Lex.getLoc(), "expected end of string");
87   return false;
88 }
89 
90 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
91                                     const SlotMapping *Slots) {
92   restoreParsingState(Slots);
93   Lex.Lex();
94 
95   Read = 0;
96   SMLoc Start = Lex.getLoc();
97   Ty = nullptr;
98   if (ParseType(Ty))
99     return true;
100   SMLoc End = Lex.getLoc();
101   Read = End.getPointer() - Start.getPointer();
102 
103   return false;
104 }
105 
106 void LLParser::restoreParsingState(const SlotMapping *Slots) {
107   if (!Slots)
108     return;
109   NumberedVals = Slots->GlobalValues;
110   NumberedMetadata = Slots->MetadataNodes;
111   for (const auto &I : Slots->NamedTypes)
112     NamedTypes.insert(
113         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
114   for (const auto &I : Slots->Types)
115     NumberedTypes.insert(
116         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
117 }
118 
119 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
120 /// module.
121 bool LLParser::ValidateEndOfModule() {
122   if (!M)
123     return false;
124   // Handle any function attribute group forward references.
125   for (const auto &RAG : ForwardRefAttrGroups) {
126     Value *V = RAG.first;
127     const std::vector<unsigned> &Attrs = RAG.second;
128     AttrBuilder B;
129 
130     for (const auto &Attr : Attrs)
131       B.merge(NumberedAttrBuilders[Attr]);
132 
133     if (Function *Fn = dyn_cast<Function>(V)) {
134       AttributeList AS = Fn->getAttributes();
135       AttrBuilder FnAttrs(AS.getFnAttributes());
136       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
137 
138       FnAttrs.merge(B);
139 
140       // If the alignment was parsed as an attribute, move to the alignment
141       // field.
142       if (FnAttrs.hasAlignmentAttr()) {
143         Fn->setAlignment(FnAttrs.getAlignment());
144         FnAttrs.removeAttribute(Attribute::Alignment);
145       }
146 
147       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
148                             AttributeSet::get(Context, FnAttrs));
149       Fn->setAttributes(AS);
150     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
151       AttributeList AS = CI->getAttributes();
152       AttrBuilder FnAttrs(AS.getFnAttributes());
153       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
154       FnAttrs.merge(B);
155       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
156                             AttributeSet::get(Context, FnAttrs));
157       CI->setAttributes(AS);
158     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
159       AttributeList AS = II->getAttributes();
160       AttrBuilder FnAttrs(AS.getFnAttributes());
161       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
162       FnAttrs.merge(B);
163       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
164                             AttributeSet::get(Context, FnAttrs));
165       II->setAttributes(AS);
166     } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
167       AttributeList AS = CBI->getAttributes();
168       AttrBuilder FnAttrs(AS.getFnAttributes());
169       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
170       FnAttrs.merge(B);
171       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
172                             AttributeSet::get(Context, FnAttrs));
173       CBI->setAttributes(AS);
174     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
175       AttrBuilder Attrs(GV->getAttributes());
176       Attrs.merge(B);
177       GV->setAttributes(AttributeSet::get(Context,Attrs));
178     } else {
179       llvm_unreachable("invalid object with forward attribute group reference");
180     }
181   }
182 
183   // If there are entries in ForwardRefBlockAddresses at this point, the
184   // function was never defined.
185   if (!ForwardRefBlockAddresses.empty())
186     return Error(ForwardRefBlockAddresses.begin()->first.Loc,
187                  "expected function name in blockaddress");
188 
189   for (const auto &NT : NumberedTypes)
190     if (NT.second.second.isValid())
191       return Error(NT.second.second,
192                    "use of undefined type '%" + Twine(NT.first) + "'");
193 
194   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
195        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
196     if (I->second.second.isValid())
197       return Error(I->second.second,
198                    "use of undefined type named '" + I->getKey() + "'");
199 
200   if (!ForwardRefComdats.empty())
201     return Error(ForwardRefComdats.begin()->second,
202                  "use of undefined comdat '$" +
203                      ForwardRefComdats.begin()->first + "'");
204 
205   if (!ForwardRefVals.empty())
206     return Error(ForwardRefVals.begin()->second.second,
207                  "use of undefined value '@" + ForwardRefVals.begin()->first +
208                  "'");
209 
210   if (!ForwardRefValIDs.empty())
211     return Error(ForwardRefValIDs.begin()->second.second,
212                  "use of undefined value '@" +
213                  Twine(ForwardRefValIDs.begin()->first) + "'");
214 
215   if (!ForwardRefMDNodes.empty())
216     return Error(ForwardRefMDNodes.begin()->second.second,
217                  "use of undefined metadata '!" +
218                  Twine(ForwardRefMDNodes.begin()->first) + "'");
219 
220   // Resolve metadata cycles.
221   for (auto &N : NumberedMetadata) {
222     if (N.second && !N.second->isResolved())
223       N.second->resolveCycles();
224   }
225 
226   for (auto *Inst : InstsWithTBAATag) {
227     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
228     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
229     auto *UpgradedMD = UpgradeTBAANode(*MD);
230     if (MD != UpgradedMD)
231       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
232   }
233 
234   // Look for intrinsic functions and CallInst that need to be upgraded
235   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
236     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
237 
238   // Some types could be renamed during loading if several modules are
239   // loaded in the same LLVMContext (LTO scenario). In this case we should
240   // remangle intrinsics names as well.
241   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
242     Function *F = &*FI++;
243     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
244       F->replaceAllUsesWith(Remangled.getValue());
245       F->eraseFromParent();
246     }
247   }
248 
249   if (UpgradeDebugInfo)
250     llvm::UpgradeDebugInfo(*M);
251 
252   UpgradeModuleFlags(*M);
253   UpgradeSectionAttributes(*M);
254 
255   if (!Slots)
256     return false;
257   // Initialize the slot mapping.
258   // Because by this point we've parsed and validated everything, we can "steal"
259   // the mapping from LLParser as it doesn't need it anymore.
260   Slots->GlobalValues = std::move(NumberedVals);
261   Slots->MetadataNodes = std::move(NumberedMetadata);
262   for (const auto &I : NamedTypes)
263     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
264   for (const auto &I : NumberedTypes)
265     Slots->Types.insert(std::make_pair(I.first, I.second.first));
266 
267   return false;
268 }
269 
270 /// Do final validity and sanity checks at the end of the index.
271 bool LLParser::ValidateEndOfIndex() {
272   if (!Index)
273     return false;
274 
275   if (!ForwardRefValueInfos.empty())
276     return Error(ForwardRefValueInfos.begin()->second.front().second,
277                  "use of undefined summary '^" +
278                      Twine(ForwardRefValueInfos.begin()->first) + "'");
279 
280   if (!ForwardRefAliasees.empty())
281     return Error(ForwardRefAliasees.begin()->second.front().second,
282                  "use of undefined summary '^" +
283                      Twine(ForwardRefAliasees.begin()->first) + "'");
284 
285   if (!ForwardRefTypeIds.empty())
286     return Error(ForwardRefTypeIds.begin()->second.front().second,
287                  "use of undefined type id summary '^" +
288                      Twine(ForwardRefTypeIds.begin()->first) + "'");
289 
290   return false;
291 }
292 
293 //===----------------------------------------------------------------------===//
294 // Top-Level Entities
295 //===----------------------------------------------------------------------===//
296 
297 bool LLParser::ParseTopLevelEntities() {
298   // If there is no Module, then parse just the summary index entries.
299   if (!M) {
300     while (true) {
301       switch (Lex.getKind()) {
302       case lltok::Eof:
303         return false;
304       case lltok::SummaryID:
305         if (ParseSummaryEntry())
306           return true;
307         break;
308       case lltok::kw_source_filename:
309         if (ParseSourceFileName())
310           return true;
311         break;
312       default:
313         // Skip everything else
314         Lex.Lex();
315       }
316     }
317   }
318   while (true) {
319     switch (Lex.getKind()) {
320     default:         return TokError("expected top-level entity");
321     case lltok::Eof: return false;
322     case lltok::kw_declare: if (ParseDeclare()) return true; break;
323     case lltok::kw_define:  if (ParseDefine()) return true; break;
324     case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
325     case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
326     case lltok::kw_source_filename:
327       if (ParseSourceFileName())
328         return true;
329       break;
330     case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
331     case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
332     case lltok::LocalVar:   if (ParseNamedType()) return true; break;
333     case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
334     case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
335     case lltok::ComdatVar:  if (parseComdat()) return true; break;
336     case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
337     case lltok::SummaryID:
338       if (ParseSummaryEntry())
339         return true;
340       break;
341     case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
342     case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
343     case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
344     case lltok::kw_uselistorder_bb:
345       if (ParseUseListOrderBB())
346         return true;
347       break;
348     }
349   }
350 }
351 
352 /// toplevelentity
353 ///   ::= 'module' 'asm' STRINGCONSTANT
354 bool LLParser::ParseModuleAsm() {
355   assert(Lex.getKind() == lltok::kw_module);
356   Lex.Lex();
357 
358   std::string AsmStr;
359   if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
360       ParseStringConstant(AsmStr)) return true;
361 
362   M->appendModuleInlineAsm(AsmStr);
363   return false;
364 }
365 
366 /// toplevelentity
367 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
368 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
369 bool LLParser::ParseTargetDefinition() {
370   assert(Lex.getKind() == lltok::kw_target);
371   std::string Str;
372   switch (Lex.Lex()) {
373   default: return TokError("unknown target property");
374   case lltok::kw_triple:
375     Lex.Lex();
376     if (ParseToken(lltok::equal, "expected '=' after target triple") ||
377         ParseStringConstant(Str))
378       return true;
379     M->setTargetTriple(Str);
380     return false;
381   case lltok::kw_datalayout:
382     Lex.Lex();
383     if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
384         ParseStringConstant(Str))
385       return true;
386     if (DataLayoutStr.empty())
387       M->setDataLayout(Str);
388     return false;
389   }
390 }
391 
392 /// toplevelentity
393 ///   ::= 'source_filename' '=' STRINGCONSTANT
394 bool LLParser::ParseSourceFileName() {
395   assert(Lex.getKind() == lltok::kw_source_filename);
396   Lex.Lex();
397   if (ParseToken(lltok::equal, "expected '=' after source_filename") ||
398       ParseStringConstant(SourceFileName))
399     return true;
400   if (M)
401     M->setSourceFileName(SourceFileName);
402   return false;
403 }
404 
405 /// toplevelentity
406 ///   ::= 'deplibs' '=' '[' ']'
407 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
408 /// FIXME: Remove in 4.0. Currently parse, but ignore.
409 bool LLParser::ParseDepLibs() {
410   assert(Lex.getKind() == lltok::kw_deplibs);
411   Lex.Lex();
412   if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
413       ParseToken(lltok::lsquare, "expected '=' after deplibs"))
414     return true;
415 
416   if (EatIfPresent(lltok::rsquare))
417     return false;
418 
419   do {
420     std::string Str;
421     if (ParseStringConstant(Str)) return true;
422   } while (EatIfPresent(lltok::comma));
423 
424   return ParseToken(lltok::rsquare, "expected ']' at end of list");
425 }
426 
427 /// ParseUnnamedType:
428 ///   ::= LocalVarID '=' 'type' type
429 bool LLParser::ParseUnnamedType() {
430   LocTy TypeLoc = Lex.getLoc();
431   unsigned TypeID = Lex.getUIntVal();
432   Lex.Lex(); // eat LocalVarID;
433 
434   if (ParseToken(lltok::equal, "expected '=' after name") ||
435       ParseToken(lltok::kw_type, "expected 'type' after '='"))
436     return true;
437 
438   Type *Result = nullptr;
439   if (ParseStructDefinition(TypeLoc, "",
440                             NumberedTypes[TypeID], Result)) return true;
441 
442   if (!isa<StructType>(Result)) {
443     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
444     if (Entry.first)
445       return Error(TypeLoc, "non-struct types may not be recursive");
446     Entry.first = Result;
447     Entry.second = SMLoc();
448   }
449 
450   return false;
451 }
452 
453 /// toplevelentity
454 ///   ::= LocalVar '=' 'type' type
455 bool LLParser::ParseNamedType() {
456   std::string Name = Lex.getStrVal();
457   LocTy NameLoc = Lex.getLoc();
458   Lex.Lex();  // eat LocalVar.
459 
460   if (ParseToken(lltok::equal, "expected '=' after name") ||
461       ParseToken(lltok::kw_type, "expected 'type' after name"))
462     return true;
463 
464   Type *Result = nullptr;
465   if (ParseStructDefinition(NameLoc, Name,
466                             NamedTypes[Name], Result)) return true;
467 
468   if (!isa<StructType>(Result)) {
469     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
470     if (Entry.first)
471       return Error(NameLoc, "non-struct types may not be recursive");
472     Entry.first = Result;
473     Entry.second = SMLoc();
474   }
475 
476   return false;
477 }
478 
479 /// toplevelentity
480 ///   ::= 'declare' FunctionHeader
481 bool LLParser::ParseDeclare() {
482   assert(Lex.getKind() == lltok::kw_declare);
483   Lex.Lex();
484 
485   std::vector<std::pair<unsigned, MDNode *>> MDs;
486   while (Lex.getKind() == lltok::MetadataVar) {
487     unsigned MDK;
488     MDNode *N;
489     if (ParseMetadataAttachment(MDK, N))
490       return true;
491     MDs.push_back({MDK, N});
492   }
493 
494   Function *F;
495   if (ParseFunctionHeader(F, false))
496     return true;
497   for (auto &MD : MDs)
498     F->addMetadata(MD.first, *MD.second);
499   return false;
500 }
501 
502 /// toplevelentity
503 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
504 bool LLParser::ParseDefine() {
505   assert(Lex.getKind() == lltok::kw_define);
506   Lex.Lex();
507 
508   Function *F;
509   return ParseFunctionHeader(F, true) ||
510          ParseOptionalFunctionMetadata(*F) ||
511          ParseFunctionBody(*F);
512 }
513 
514 /// ParseGlobalType
515 ///   ::= 'constant'
516 ///   ::= 'global'
517 bool LLParser::ParseGlobalType(bool &IsConstant) {
518   if (Lex.getKind() == lltok::kw_constant)
519     IsConstant = true;
520   else if (Lex.getKind() == lltok::kw_global)
521     IsConstant = false;
522   else {
523     IsConstant = false;
524     return TokError("expected 'global' or 'constant'");
525   }
526   Lex.Lex();
527   return false;
528 }
529 
530 bool LLParser::ParseOptionalUnnamedAddr(
531     GlobalVariable::UnnamedAddr &UnnamedAddr) {
532   if (EatIfPresent(lltok::kw_unnamed_addr))
533     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
534   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
535     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
536   else
537     UnnamedAddr = GlobalValue::UnnamedAddr::None;
538   return false;
539 }
540 
541 /// ParseUnnamedGlobal:
542 ///   OptionalVisibility (ALIAS | IFUNC) ...
543 ///   OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
544 ///   OptionalDLLStorageClass
545 ///                                                     ...   -> global variable
546 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
547 ///   GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
548 ///                OptionalDLLStorageClass
549 ///                                                     ...   -> global variable
550 bool LLParser::ParseUnnamedGlobal() {
551   unsigned VarID = NumberedVals.size();
552   std::string Name;
553   LocTy NameLoc = Lex.getLoc();
554 
555   // Handle the GlobalID form.
556   if (Lex.getKind() == lltok::GlobalID) {
557     if (Lex.getUIntVal() != VarID)
558       return Error(Lex.getLoc(), "variable expected to be numbered '%" +
559                    Twine(VarID) + "'");
560     Lex.Lex(); // eat GlobalID;
561 
562     if (ParseToken(lltok::equal, "expected '=' after name"))
563       return true;
564   }
565 
566   bool HasLinkage;
567   unsigned Linkage, Visibility, DLLStorageClass;
568   bool DSOLocal;
569   GlobalVariable::ThreadLocalMode TLM;
570   GlobalVariable::UnnamedAddr UnnamedAddr;
571   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
572                            DSOLocal) ||
573       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
574     return true;
575 
576   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
577     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
578                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
579 
580   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
581                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
582 }
583 
584 /// ParseNamedGlobal:
585 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
586 ///   GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
587 ///                 OptionalVisibility OptionalDLLStorageClass
588 ///                                                     ...   -> global variable
589 bool LLParser::ParseNamedGlobal() {
590   assert(Lex.getKind() == lltok::GlobalVar);
591   LocTy NameLoc = Lex.getLoc();
592   std::string Name = Lex.getStrVal();
593   Lex.Lex();
594 
595   bool HasLinkage;
596   unsigned Linkage, Visibility, DLLStorageClass;
597   bool DSOLocal;
598   GlobalVariable::ThreadLocalMode TLM;
599   GlobalVariable::UnnamedAddr UnnamedAddr;
600   if (ParseToken(lltok::equal, "expected '=' in global variable") ||
601       ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
602                            DSOLocal) ||
603       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
604     return true;
605 
606   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
607     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
608                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
609 
610   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
611                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
612 }
613 
614 bool LLParser::parseComdat() {
615   assert(Lex.getKind() == lltok::ComdatVar);
616   std::string Name = Lex.getStrVal();
617   LocTy NameLoc = Lex.getLoc();
618   Lex.Lex();
619 
620   if (ParseToken(lltok::equal, "expected '=' here"))
621     return true;
622 
623   if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
624     return TokError("expected comdat type");
625 
626   Comdat::SelectionKind SK;
627   switch (Lex.getKind()) {
628   default:
629     return TokError("unknown selection kind");
630   case lltok::kw_any:
631     SK = Comdat::Any;
632     break;
633   case lltok::kw_exactmatch:
634     SK = Comdat::ExactMatch;
635     break;
636   case lltok::kw_largest:
637     SK = Comdat::Largest;
638     break;
639   case lltok::kw_noduplicates:
640     SK = Comdat::NoDuplicates;
641     break;
642   case lltok::kw_samesize:
643     SK = Comdat::SameSize;
644     break;
645   }
646   Lex.Lex();
647 
648   // See if the comdat was forward referenced, if so, use the comdat.
649   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
650   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
651   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
652     return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
653 
654   Comdat *C;
655   if (I != ComdatSymTab.end())
656     C = &I->second;
657   else
658     C = M->getOrInsertComdat(Name);
659   C->setSelectionKind(SK);
660 
661   return false;
662 }
663 
664 // MDString:
665 //   ::= '!' STRINGCONSTANT
666 bool LLParser::ParseMDString(MDString *&Result) {
667   std::string Str;
668   if (ParseStringConstant(Str)) return true;
669   Result = MDString::get(Context, Str);
670   return false;
671 }
672 
673 // MDNode:
674 //   ::= '!' MDNodeNumber
675 bool LLParser::ParseMDNodeID(MDNode *&Result) {
676   // !{ ..., !42, ... }
677   LocTy IDLoc = Lex.getLoc();
678   unsigned MID = 0;
679   if (ParseUInt32(MID))
680     return true;
681 
682   // If not a forward reference, just return it now.
683   if (NumberedMetadata.count(MID)) {
684     Result = NumberedMetadata[MID];
685     return false;
686   }
687 
688   // Otherwise, create MDNode forward reference.
689   auto &FwdRef = ForwardRefMDNodes[MID];
690   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
691 
692   Result = FwdRef.first.get();
693   NumberedMetadata[MID].reset(Result);
694   return false;
695 }
696 
697 /// ParseNamedMetadata:
698 ///   !foo = !{ !1, !2 }
699 bool LLParser::ParseNamedMetadata() {
700   assert(Lex.getKind() == lltok::MetadataVar);
701   std::string Name = Lex.getStrVal();
702   Lex.Lex();
703 
704   if (ParseToken(lltok::equal, "expected '=' here") ||
705       ParseToken(lltok::exclaim, "Expected '!' here") ||
706       ParseToken(lltok::lbrace, "Expected '{' here"))
707     return true;
708 
709   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
710   if (Lex.getKind() != lltok::rbrace)
711     do {
712       MDNode *N = nullptr;
713       // Parse DIExpressions inline as a special case. They are still MDNodes,
714       // so they can still appear in named metadata. Remove this logic if they
715       // become plain Metadata.
716       if (Lex.getKind() == lltok::MetadataVar &&
717           Lex.getStrVal() == "DIExpression") {
718         if (ParseDIExpression(N, /*IsDistinct=*/false))
719           return true;
720       } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
721                  ParseMDNodeID(N)) {
722         return true;
723       }
724       NMD->addOperand(N);
725     } while (EatIfPresent(lltok::comma));
726 
727   return ParseToken(lltok::rbrace, "expected end of metadata node");
728 }
729 
730 /// ParseStandaloneMetadata:
731 ///   !42 = !{...}
732 bool LLParser::ParseStandaloneMetadata() {
733   assert(Lex.getKind() == lltok::exclaim);
734   Lex.Lex();
735   unsigned MetadataID = 0;
736 
737   MDNode *Init;
738   if (ParseUInt32(MetadataID) ||
739       ParseToken(lltok::equal, "expected '=' here"))
740     return true;
741 
742   // Detect common error, from old metadata syntax.
743   if (Lex.getKind() == lltok::Type)
744     return TokError("unexpected type in metadata definition");
745 
746   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
747   if (Lex.getKind() == lltok::MetadataVar) {
748     if (ParseSpecializedMDNode(Init, IsDistinct))
749       return true;
750   } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
751              ParseMDTuple(Init, IsDistinct))
752     return true;
753 
754   // See if this was forward referenced, if so, handle it.
755   auto FI = ForwardRefMDNodes.find(MetadataID);
756   if (FI != ForwardRefMDNodes.end()) {
757     FI->second.first->replaceAllUsesWith(Init);
758     ForwardRefMDNodes.erase(FI);
759 
760     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
761   } else {
762     if (NumberedMetadata.count(MetadataID))
763       return TokError("Metadata id is already used");
764     NumberedMetadata[MetadataID].reset(Init);
765   }
766 
767   return false;
768 }
769 
770 // Skips a single module summary entry.
771 bool LLParser::SkipModuleSummaryEntry() {
772   // Each module summary entry consists of a tag for the entry
773   // type, followed by a colon, then the fields surrounded by nested sets of
774   // parentheses. The "tag:" looks like a Label. Once parsing support is
775   // in place we will look for the tokens corresponding to the expected tags.
776   if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
777       Lex.getKind() != lltok::kw_typeid)
778     return TokError(
779         "Expected 'gv', 'module', or 'typeid' at the start of summary entry");
780   Lex.Lex();
781   if (ParseToken(lltok::colon, "expected ':' at start of summary entry") ||
782       ParseToken(lltok::lparen, "expected '(' at start of summary entry"))
783     return true;
784   // Now walk through the parenthesized entry, until the number of open
785   // parentheses goes back down to 0 (the first '(' was parsed above).
786   unsigned NumOpenParen = 1;
787   do {
788     switch (Lex.getKind()) {
789     case lltok::lparen:
790       NumOpenParen++;
791       break;
792     case lltok::rparen:
793       NumOpenParen--;
794       break;
795     case lltok::Eof:
796       return TokError("found end of file while parsing summary entry");
797     default:
798       // Skip everything in between parentheses.
799       break;
800     }
801     Lex.Lex();
802   } while (NumOpenParen > 0);
803   return false;
804 }
805 
806 /// SummaryEntry
807 ///   ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
808 bool LLParser::ParseSummaryEntry() {
809   assert(Lex.getKind() == lltok::SummaryID);
810   unsigned SummaryID = Lex.getUIntVal();
811 
812   // For summary entries, colons should be treated as distinct tokens,
813   // not an indication of the end of a label token.
814   Lex.setIgnoreColonInIdentifiers(true);
815 
816   Lex.Lex();
817   if (ParseToken(lltok::equal, "expected '=' here"))
818     return true;
819 
820   // If we don't have an index object, skip the summary entry.
821   if (!Index)
822     return SkipModuleSummaryEntry();
823 
824   bool result = false;
825   switch (Lex.getKind()) {
826   case lltok::kw_gv:
827     result = ParseGVEntry(SummaryID);
828     break;
829   case lltok::kw_module:
830     result = ParseModuleEntry(SummaryID);
831     break;
832   case lltok::kw_typeid:
833     result = ParseTypeIdEntry(SummaryID);
834     break;
835   case lltok::kw_typeidCompatibleVTable:
836     result = ParseTypeIdCompatibleVtableEntry(SummaryID);
837     break;
838   case lltok::kw_flags:
839     result = ParseSummaryIndexFlags();
840     break;
841   default:
842     result = Error(Lex.getLoc(), "unexpected summary kind");
843     break;
844   }
845   Lex.setIgnoreColonInIdentifiers(false);
846   return result;
847 }
848 
849 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
850   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
851          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
852 }
853 
854 // If there was an explicit dso_local, update GV. In the absence of an explicit
855 // dso_local we keep the default value.
856 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
857   if (DSOLocal)
858     GV.setDSOLocal(true);
859 }
860 
861 /// parseIndirectSymbol:
862 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
863 ///                     OptionalVisibility OptionalDLLStorageClass
864 ///                     OptionalThreadLocal OptionalUnnamedAddr
865 ///                     'alias|ifunc' IndirectSymbol IndirectSymbolAttr*
866 ///
867 /// IndirectSymbol
868 ///   ::= TypeAndValue
869 ///
870 /// IndirectSymbolAttr
871 ///   ::= ',' 'partition' StringConstant
872 ///
873 /// Everything through OptionalUnnamedAddr has already been parsed.
874 ///
875 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
876                                    unsigned L, unsigned Visibility,
877                                    unsigned DLLStorageClass, bool DSOLocal,
878                                    GlobalVariable::ThreadLocalMode TLM,
879                                    GlobalVariable::UnnamedAddr UnnamedAddr) {
880   bool IsAlias;
881   if (Lex.getKind() == lltok::kw_alias)
882     IsAlias = true;
883   else if (Lex.getKind() == lltok::kw_ifunc)
884     IsAlias = false;
885   else
886     llvm_unreachable("Not an alias or ifunc!");
887   Lex.Lex();
888 
889   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
890 
891   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
892     return Error(NameLoc, "invalid linkage type for alias");
893 
894   if (!isValidVisibilityForLinkage(Visibility, L))
895     return Error(NameLoc,
896                  "symbol with local linkage must have default visibility");
897 
898   Type *Ty;
899   LocTy ExplicitTypeLoc = Lex.getLoc();
900   if (ParseType(Ty) ||
901       ParseToken(lltok::comma, "expected comma after alias or ifunc's type"))
902     return true;
903 
904   Constant *Aliasee;
905   LocTy AliaseeLoc = Lex.getLoc();
906   if (Lex.getKind() != lltok::kw_bitcast &&
907       Lex.getKind() != lltok::kw_getelementptr &&
908       Lex.getKind() != lltok::kw_addrspacecast &&
909       Lex.getKind() != lltok::kw_inttoptr) {
910     if (ParseGlobalTypeAndValue(Aliasee))
911       return true;
912   } else {
913     // The bitcast dest type is not present, it is implied by the dest type.
914     ValID ID;
915     if (ParseValID(ID))
916       return true;
917     if (ID.Kind != ValID::t_Constant)
918       return Error(AliaseeLoc, "invalid aliasee");
919     Aliasee = ID.ConstantVal;
920   }
921 
922   Type *AliaseeType = Aliasee->getType();
923   auto *PTy = dyn_cast<PointerType>(AliaseeType);
924   if (!PTy)
925     return Error(AliaseeLoc, "An alias or ifunc must have pointer type");
926   unsigned AddrSpace = PTy->getAddressSpace();
927 
928   if (IsAlias && Ty != PTy->getElementType())
929     return Error(
930         ExplicitTypeLoc,
931         "explicit pointee type doesn't match operand's pointee type");
932 
933   if (!IsAlias && !PTy->getElementType()->isFunctionTy())
934     return Error(
935         ExplicitTypeLoc,
936         "explicit pointee type should be a function type");
937 
938   GlobalValue *GVal = nullptr;
939 
940   // See if the alias was forward referenced, if so, prepare to replace the
941   // forward reference.
942   if (!Name.empty()) {
943     GVal = M->getNamedValue(Name);
944     if (GVal) {
945       if (!ForwardRefVals.erase(Name))
946         return Error(NameLoc, "redefinition of global '@" + Name + "'");
947     }
948   } else {
949     auto I = ForwardRefValIDs.find(NumberedVals.size());
950     if (I != ForwardRefValIDs.end()) {
951       GVal = I->second.first;
952       ForwardRefValIDs.erase(I);
953     }
954   }
955 
956   // Okay, create the alias but do not insert it into the module yet.
957   std::unique_ptr<GlobalIndirectSymbol> GA;
958   if (IsAlias)
959     GA.reset(GlobalAlias::create(Ty, AddrSpace,
960                                  (GlobalValue::LinkageTypes)Linkage, Name,
961                                  Aliasee, /*Parent*/ nullptr));
962   else
963     GA.reset(GlobalIFunc::create(Ty, AddrSpace,
964                                  (GlobalValue::LinkageTypes)Linkage, Name,
965                                  Aliasee, /*Parent*/ nullptr));
966   GA->setThreadLocalMode(TLM);
967   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
968   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
969   GA->setUnnamedAddr(UnnamedAddr);
970   maybeSetDSOLocal(DSOLocal, *GA);
971 
972   // At this point we've parsed everything except for the IndirectSymbolAttrs.
973   // Now parse them if there are any.
974   while (Lex.getKind() == lltok::comma) {
975     Lex.Lex();
976 
977     if (Lex.getKind() == lltok::kw_partition) {
978       Lex.Lex();
979       GA->setPartition(Lex.getStrVal());
980       if (ParseToken(lltok::StringConstant, "expected partition string"))
981         return true;
982     } else {
983       return TokError("unknown alias or ifunc property!");
984     }
985   }
986 
987   if (Name.empty())
988     NumberedVals.push_back(GA.get());
989 
990   if (GVal) {
991     // Verify that types agree.
992     if (GVal->getType() != GA->getType())
993       return Error(
994           ExplicitTypeLoc,
995           "forward reference and definition of alias have different types");
996 
997     // If they agree, just RAUW the old value with the alias and remove the
998     // forward ref info.
999     GVal->replaceAllUsesWith(GA.get());
1000     GVal->eraseFromParent();
1001   }
1002 
1003   // Insert into the module, we know its name won't collide now.
1004   if (IsAlias)
1005     M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
1006   else
1007     M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
1008   assert(GA->getName() == Name && "Should not be a name conflict!");
1009 
1010   // The module owns this now
1011   GA.release();
1012 
1013   return false;
1014 }
1015 
1016 /// ParseGlobal
1017 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1018 ///       OptionalVisibility OptionalDLLStorageClass
1019 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
1020 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
1021 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
1022 ///       OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
1023 ///       OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
1024 ///       Const OptionalAttrs
1025 ///
1026 /// Everything up to and including OptionalUnnamedAddr has been parsed
1027 /// already.
1028 ///
1029 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
1030                            unsigned Linkage, bool HasLinkage,
1031                            unsigned Visibility, unsigned DLLStorageClass,
1032                            bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1033                            GlobalVariable::UnnamedAddr UnnamedAddr) {
1034   if (!isValidVisibilityForLinkage(Visibility, Linkage))
1035     return Error(NameLoc,
1036                  "symbol with local linkage must have default visibility");
1037 
1038   unsigned AddrSpace;
1039   bool IsConstant, IsExternallyInitialized;
1040   LocTy IsExternallyInitializedLoc;
1041   LocTy TyLoc;
1042 
1043   Type *Ty = nullptr;
1044   if (ParseOptionalAddrSpace(AddrSpace) ||
1045       ParseOptionalToken(lltok::kw_externally_initialized,
1046                          IsExternallyInitialized,
1047                          &IsExternallyInitializedLoc) ||
1048       ParseGlobalType(IsConstant) ||
1049       ParseType(Ty, TyLoc))
1050     return true;
1051 
1052   // If the linkage is specified and is external, then no initializer is
1053   // present.
1054   Constant *Init = nullptr;
1055   if (!HasLinkage ||
1056       !GlobalValue::isValidDeclarationLinkage(
1057           (GlobalValue::LinkageTypes)Linkage)) {
1058     if (ParseGlobalValue(Ty, Init))
1059       return true;
1060   }
1061 
1062   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1063     return Error(TyLoc, "invalid type for global variable");
1064 
1065   GlobalValue *GVal = nullptr;
1066 
1067   // See if the global was forward referenced, if so, use the global.
1068   if (!Name.empty()) {
1069     GVal = M->getNamedValue(Name);
1070     if (GVal) {
1071       if (!ForwardRefVals.erase(Name))
1072         return Error(NameLoc, "redefinition of global '@" + Name + "'");
1073     }
1074   } else {
1075     auto I = ForwardRefValIDs.find(NumberedVals.size());
1076     if (I != ForwardRefValIDs.end()) {
1077       GVal = I->second.first;
1078       ForwardRefValIDs.erase(I);
1079     }
1080   }
1081 
1082   GlobalVariable *GV;
1083   if (!GVal) {
1084     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
1085                             Name, nullptr, GlobalVariable::NotThreadLocal,
1086                             AddrSpace);
1087   } else {
1088     if (GVal->getValueType() != Ty)
1089       return Error(TyLoc,
1090             "forward reference and definition of global have different types");
1091 
1092     GV = cast<GlobalVariable>(GVal);
1093 
1094     // Move the forward-reference to the correct spot in the module.
1095     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
1096   }
1097 
1098   if (Name.empty())
1099     NumberedVals.push_back(GV);
1100 
1101   // Set the parsed properties on the global.
1102   if (Init)
1103     GV->setInitializer(Init);
1104   GV->setConstant(IsConstant);
1105   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1106   maybeSetDSOLocal(DSOLocal, *GV);
1107   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1108   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1109   GV->setExternallyInitialized(IsExternallyInitialized);
1110   GV->setThreadLocalMode(TLM);
1111   GV->setUnnamedAddr(UnnamedAddr);
1112 
1113   // Parse attributes on the global.
1114   while (Lex.getKind() == lltok::comma) {
1115     Lex.Lex();
1116 
1117     if (Lex.getKind() == lltok::kw_section) {
1118       Lex.Lex();
1119       GV->setSection(Lex.getStrVal());
1120       if (ParseToken(lltok::StringConstant, "expected global section string"))
1121         return true;
1122     } else if (Lex.getKind() == lltok::kw_partition) {
1123       Lex.Lex();
1124       GV->setPartition(Lex.getStrVal());
1125       if (ParseToken(lltok::StringConstant, "expected partition string"))
1126         return true;
1127     } else if (Lex.getKind() == lltok::kw_align) {
1128       MaybeAlign Alignment;
1129       if (ParseOptionalAlignment(Alignment)) return true;
1130       GV->setAlignment(Alignment);
1131     } else if (Lex.getKind() == lltok::MetadataVar) {
1132       if (ParseGlobalObjectMetadataAttachment(*GV))
1133         return true;
1134     } else {
1135       Comdat *C;
1136       if (parseOptionalComdat(Name, C))
1137         return true;
1138       if (C)
1139         GV->setComdat(C);
1140       else
1141         return TokError("unknown global variable property!");
1142     }
1143   }
1144 
1145   AttrBuilder Attrs;
1146   LocTy BuiltinLoc;
1147   std::vector<unsigned> FwdRefAttrGrps;
1148   if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1149     return true;
1150   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1151     GV->setAttributes(AttributeSet::get(Context, Attrs));
1152     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1153   }
1154 
1155   return false;
1156 }
1157 
1158 /// ParseUnnamedAttrGrp
1159 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1160 bool LLParser::ParseUnnamedAttrGrp() {
1161   assert(Lex.getKind() == lltok::kw_attributes);
1162   LocTy AttrGrpLoc = Lex.getLoc();
1163   Lex.Lex();
1164 
1165   if (Lex.getKind() != lltok::AttrGrpID)
1166     return TokError("expected attribute group id");
1167 
1168   unsigned VarID = Lex.getUIntVal();
1169   std::vector<unsigned> unused;
1170   LocTy BuiltinLoc;
1171   Lex.Lex();
1172 
1173   if (ParseToken(lltok::equal, "expected '=' here") ||
1174       ParseToken(lltok::lbrace, "expected '{' here") ||
1175       ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
1176                                  BuiltinLoc) ||
1177       ParseToken(lltok::rbrace, "expected end of attribute group"))
1178     return true;
1179 
1180   if (!NumberedAttrBuilders[VarID].hasAttributes())
1181     return Error(AttrGrpLoc, "attribute group has no attributes");
1182 
1183   return false;
1184 }
1185 
1186 /// ParseFnAttributeValuePairs
1187 ///   ::= <attr> | <attr> '=' <value>
1188 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
1189                                           std::vector<unsigned> &FwdRefAttrGrps,
1190                                           bool inAttrGrp, LocTy &BuiltinLoc) {
1191   bool HaveError = false;
1192 
1193   B.clear();
1194 
1195   while (true) {
1196     lltok::Kind Token = Lex.getKind();
1197     if (Token == lltok::kw_builtin)
1198       BuiltinLoc = Lex.getLoc();
1199     switch (Token) {
1200     default:
1201       if (!inAttrGrp) return HaveError;
1202       return Error(Lex.getLoc(), "unterminated attribute group");
1203     case lltok::rbrace:
1204       // Finished.
1205       return false;
1206 
1207     case lltok::AttrGrpID: {
1208       // Allow a function to reference an attribute group:
1209       //
1210       //   define void @foo() #1 { ... }
1211       if (inAttrGrp)
1212         HaveError |=
1213           Error(Lex.getLoc(),
1214               "cannot have an attribute group reference in an attribute group");
1215 
1216       unsigned AttrGrpNum = Lex.getUIntVal();
1217       if (inAttrGrp) break;
1218 
1219       // Save the reference to the attribute group. We'll fill it in later.
1220       FwdRefAttrGrps.push_back(AttrGrpNum);
1221       break;
1222     }
1223     // Target-dependent attributes:
1224     case lltok::StringConstant: {
1225       if (ParseStringAttribute(B))
1226         return true;
1227       continue;
1228     }
1229 
1230     // Target-independent attributes:
1231     case lltok::kw_align: {
1232       // As a hack, we allow function alignment to be initially parsed as an
1233       // attribute on a function declaration/definition or added to an attribute
1234       // group and later moved to the alignment field.
1235       MaybeAlign Alignment;
1236       if (inAttrGrp) {
1237         Lex.Lex();
1238         uint32_t Value = 0;
1239         if (ParseToken(lltok::equal, "expected '=' here") || ParseUInt32(Value))
1240           return true;
1241         Alignment = Align(Value);
1242       } else {
1243         if (ParseOptionalAlignment(Alignment))
1244           return true;
1245       }
1246       B.addAlignmentAttr(Alignment);
1247       continue;
1248     }
1249     case lltok::kw_alignstack: {
1250       unsigned Alignment;
1251       if (inAttrGrp) {
1252         Lex.Lex();
1253         if (ParseToken(lltok::equal, "expected '=' here") ||
1254             ParseUInt32(Alignment))
1255           return true;
1256       } else {
1257         if (ParseOptionalStackAlignment(Alignment))
1258           return true;
1259       }
1260       B.addStackAlignmentAttr(Alignment);
1261       continue;
1262     }
1263     case lltok::kw_allocsize: {
1264       unsigned ElemSizeArg;
1265       Optional<unsigned> NumElemsArg;
1266       // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1267       if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1268         return true;
1269       B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1270       continue;
1271     }
1272     case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1273     case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1274     case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1275     case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1276     case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1277     case lltok::kw_inaccessiblememonly:
1278       B.addAttribute(Attribute::InaccessibleMemOnly); break;
1279     case lltok::kw_inaccessiblemem_or_argmemonly:
1280       B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1281     case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1282     case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1283     case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1284     case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1285     case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1286     case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1287     case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break;
1288     case lltok::kw_noimplicitfloat:
1289       B.addAttribute(Attribute::NoImplicitFloat); break;
1290     case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1291     case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1292     case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1293     case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1294     case lltok::kw_nosync: B.addAttribute(Attribute::NoSync); break;
1295     case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break;
1296     case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1297     case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1298     case lltok::kw_optforfuzzing:
1299       B.addAttribute(Attribute::OptForFuzzing); break;
1300     case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1301     case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1302     case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1303     case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1304     case lltok::kw_returns_twice:
1305       B.addAttribute(Attribute::ReturnsTwice); break;
1306     case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break;
1307     case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1308     case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1309     case lltok::kw_sspstrong:
1310       B.addAttribute(Attribute::StackProtectStrong); break;
1311     case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1312     case lltok::kw_shadowcallstack:
1313       B.addAttribute(Attribute::ShadowCallStack); break;
1314     case lltok::kw_sanitize_address:
1315       B.addAttribute(Attribute::SanitizeAddress); break;
1316     case lltok::kw_sanitize_hwaddress:
1317       B.addAttribute(Attribute::SanitizeHWAddress); break;
1318     case lltok::kw_sanitize_memtag:
1319       B.addAttribute(Attribute::SanitizeMemTag); break;
1320     case lltok::kw_sanitize_thread:
1321       B.addAttribute(Attribute::SanitizeThread); break;
1322     case lltok::kw_sanitize_memory:
1323       B.addAttribute(Attribute::SanitizeMemory); break;
1324     case lltok::kw_speculative_load_hardening:
1325       B.addAttribute(Attribute::SpeculativeLoadHardening);
1326       break;
1327     case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break;
1328     case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1329     case lltok::kw_willreturn: B.addAttribute(Attribute::WillReturn); break;
1330     case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1331 
1332     // Error handling.
1333     case lltok::kw_inreg:
1334     case lltok::kw_signext:
1335     case lltok::kw_zeroext:
1336       HaveError |=
1337         Error(Lex.getLoc(),
1338               "invalid use of attribute on a function");
1339       break;
1340     case lltok::kw_byval:
1341     case lltok::kw_dereferenceable:
1342     case lltok::kw_dereferenceable_or_null:
1343     case lltok::kw_inalloca:
1344     case lltok::kw_nest:
1345     case lltok::kw_noalias:
1346     case lltok::kw_nocapture:
1347     case lltok::kw_nonnull:
1348     case lltok::kw_returned:
1349     case lltok::kw_sret:
1350     case lltok::kw_swifterror:
1351     case lltok::kw_swiftself:
1352     case lltok::kw_immarg:
1353       HaveError |=
1354         Error(Lex.getLoc(),
1355               "invalid use of parameter-only attribute on a function");
1356       break;
1357     }
1358 
1359     Lex.Lex();
1360   }
1361 }
1362 
1363 //===----------------------------------------------------------------------===//
1364 // GlobalValue Reference/Resolution Routines.
1365 //===----------------------------------------------------------------------===//
1366 
1367 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1368                                               const std::string &Name) {
1369   if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1370     return Function::Create(FT, GlobalValue::ExternalWeakLinkage,
1371                             PTy->getAddressSpace(), Name, M);
1372   else
1373     return new GlobalVariable(*M, PTy->getElementType(), false,
1374                               GlobalValue::ExternalWeakLinkage, nullptr, Name,
1375                               nullptr, GlobalVariable::NotThreadLocal,
1376                               PTy->getAddressSpace());
1377 }
1378 
1379 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1380                                         Value *Val, bool IsCall) {
1381   if (Val->getType() == Ty)
1382     return Val;
1383   // For calls we also accept variables in the program address space.
1384   Type *SuggestedTy = Ty;
1385   if (IsCall && isa<PointerType>(Ty)) {
1386     Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo(
1387         M->getDataLayout().getProgramAddressSpace());
1388     SuggestedTy = TyInProgAS;
1389     if (Val->getType() == TyInProgAS)
1390       return Val;
1391   }
1392   if (Ty->isLabelTy())
1393     Error(Loc, "'" + Name + "' is not a basic block");
1394   else
1395     Error(Loc, "'" + Name + "' defined with type '" +
1396                    getTypeString(Val->getType()) + "' but expected '" +
1397                    getTypeString(SuggestedTy) + "'");
1398   return nullptr;
1399 }
1400 
1401 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1402 /// forward reference record if needed.  This can return null if the value
1403 /// exists but does not have the right type.
1404 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
1405                                     LocTy Loc, bool IsCall) {
1406   PointerType *PTy = dyn_cast<PointerType>(Ty);
1407   if (!PTy) {
1408     Error(Loc, "global variable reference must have pointer type");
1409     return nullptr;
1410   }
1411 
1412   // Look this name up in the normal function symbol table.
1413   GlobalValue *Val =
1414     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1415 
1416   // If this is a forward reference for the value, see if we already created a
1417   // forward ref record.
1418   if (!Val) {
1419     auto I = ForwardRefVals.find(Name);
1420     if (I != ForwardRefVals.end())
1421       Val = I->second.first;
1422   }
1423 
1424   // If we have the value in the symbol table or fwd-ref table, return it.
1425   if (Val)
1426     return cast_or_null<GlobalValue>(
1427         checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall));
1428 
1429   // Otherwise, create a new forward reference for this value and remember it.
1430   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1431   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1432   return FwdVal;
1433 }
1434 
1435 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc,
1436                                     bool IsCall) {
1437   PointerType *PTy = dyn_cast<PointerType>(Ty);
1438   if (!PTy) {
1439     Error(Loc, "global variable reference must have pointer type");
1440     return nullptr;
1441   }
1442 
1443   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1444 
1445   // If this is a forward reference for the value, see if we already created a
1446   // forward ref record.
1447   if (!Val) {
1448     auto I = ForwardRefValIDs.find(ID);
1449     if (I != ForwardRefValIDs.end())
1450       Val = I->second.first;
1451   }
1452 
1453   // If we have the value in the symbol table or fwd-ref table, return it.
1454   if (Val)
1455     return cast_or_null<GlobalValue>(
1456         checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall));
1457 
1458   // Otherwise, create a new forward reference for this value and remember it.
1459   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1460   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1461   return FwdVal;
1462 }
1463 
1464 //===----------------------------------------------------------------------===//
1465 // Comdat Reference/Resolution Routines.
1466 //===----------------------------------------------------------------------===//
1467 
1468 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1469   // Look this name up in the comdat symbol table.
1470   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1471   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1472   if (I != ComdatSymTab.end())
1473     return &I->second;
1474 
1475   // Otherwise, create a new forward reference for this value and remember it.
1476   Comdat *C = M->getOrInsertComdat(Name);
1477   ForwardRefComdats[Name] = Loc;
1478   return C;
1479 }
1480 
1481 //===----------------------------------------------------------------------===//
1482 // Helper Routines.
1483 //===----------------------------------------------------------------------===//
1484 
1485 /// ParseToken - If the current token has the specified kind, eat it and return
1486 /// success.  Otherwise, emit the specified error and return failure.
1487 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1488   if (Lex.getKind() != T)
1489     return TokError(ErrMsg);
1490   Lex.Lex();
1491   return false;
1492 }
1493 
1494 /// ParseStringConstant
1495 ///   ::= StringConstant
1496 bool LLParser::ParseStringConstant(std::string &Result) {
1497   if (Lex.getKind() != lltok::StringConstant)
1498     return TokError("expected string constant");
1499   Result = Lex.getStrVal();
1500   Lex.Lex();
1501   return false;
1502 }
1503 
1504 /// ParseUInt32
1505 ///   ::= uint32
1506 bool LLParser::ParseUInt32(uint32_t &Val) {
1507   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1508     return TokError("expected integer");
1509   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1510   if (Val64 != unsigned(Val64))
1511     return TokError("expected 32-bit integer (too large)");
1512   Val = Val64;
1513   Lex.Lex();
1514   return false;
1515 }
1516 
1517 /// ParseUInt64
1518 ///   ::= uint64
1519 bool LLParser::ParseUInt64(uint64_t &Val) {
1520   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1521     return TokError("expected integer");
1522   Val = Lex.getAPSIntVal().getLimitedValue();
1523   Lex.Lex();
1524   return false;
1525 }
1526 
1527 /// ParseTLSModel
1528 ///   := 'localdynamic'
1529 ///   := 'initialexec'
1530 ///   := 'localexec'
1531 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1532   switch (Lex.getKind()) {
1533     default:
1534       return TokError("expected localdynamic, initialexec or localexec");
1535     case lltok::kw_localdynamic:
1536       TLM = GlobalVariable::LocalDynamicTLSModel;
1537       break;
1538     case lltok::kw_initialexec:
1539       TLM = GlobalVariable::InitialExecTLSModel;
1540       break;
1541     case lltok::kw_localexec:
1542       TLM = GlobalVariable::LocalExecTLSModel;
1543       break;
1544   }
1545 
1546   Lex.Lex();
1547   return false;
1548 }
1549 
1550 /// ParseOptionalThreadLocal
1551 ///   := /*empty*/
1552 ///   := 'thread_local'
1553 ///   := 'thread_local' '(' tlsmodel ')'
1554 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1555   TLM = GlobalVariable::NotThreadLocal;
1556   if (!EatIfPresent(lltok::kw_thread_local))
1557     return false;
1558 
1559   TLM = GlobalVariable::GeneralDynamicTLSModel;
1560   if (Lex.getKind() == lltok::lparen) {
1561     Lex.Lex();
1562     return ParseTLSModel(TLM) ||
1563       ParseToken(lltok::rparen, "expected ')' after thread local model");
1564   }
1565   return false;
1566 }
1567 
1568 /// ParseOptionalAddrSpace
1569 ///   := /*empty*/
1570 ///   := 'addrspace' '(' uint32 ')'
1571 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1572   AddrSpace = DefaultAS;
1573   if (!EatIfPresent(lltok::kw_addrspace))
1574     return false;
1575   return ParseToken(lltok::lparen, "expected '(' in address space") ||
1576          ParseUInt32(AddrSpace) ||
1577          ParseToken(lltok::rparen, "expected ')' in address space");
1578 }
1579 
1580 /// ParseStringAttribute
1581 ///   := StringConstant
1582 ///   := StringConstant '=' StringConstant
1583 bool LLParser::ParseStringAttribute(AttrBuilder &B) {
1584   std::string Attr = Lex.getStrVal();
1585   Lex.Lex();
1586   std::string Val;
1587   if (EatIfPresent(lltok::equal) && ParseStringConstant(Val))
1588     return true;
1589   B.addAttribute(Attr, Val);
1590   return false;
1591 }
1592 
1593 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1594 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1595   bool HaveError = false;
1596 
1597   B.clear();
1598 
1599   while (true) {
1600     lltok::Kind Token = Lex.getKind();
1601     switch (Token) {
1602     default:  // End of attributes.
1603       return HaveError;
1604     case lltok::StringConstant: {
1605       if (ParseStringAttribute(B))
1606         return true;
1607       continue;
1608     }
1609     case lltok::kw_align: {
1610       MaybeAlign Alignment;
1611       if (ParseOptionalAlignment(Alignment))
1612         return true;
1613       B.addAlignmentAttr(Alignment);
1614       continue;
1615     }
1616     case lltok::kw_byval: {
1617       Type *Ty;
1618       if (ParseByValWithOptionalType(Ty))
1619         return true;
1620       B.addByValAttr(Ty);
1621       continue;
1622     }
1623     case lltok::kw_dereferenceable: {
1624       uint64_t Bytes;
1625       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1626         return true;
1627       B.addDereferenceableAttr(Bytes);
1628       continue;
1629     }
1630     case lltok::kw_dereferenceable_or_null: {
1631       uint64_t Bytes;
1632       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1633         return true;
1634       B.addDereferenceableOrNullAttr(Bytes);
1635       continue;
1636     }
1637     case lltok::kw_inalloca:        B.addAttribute(Attribute::InAlloca); break;
1638     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1639     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1640     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1641     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1642     case lltok::kw_nofree:          B.addAttribute(Attribute::NoFree); break;
1643     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1644     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1645     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1646     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1647     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1648     case lltok::kw_sret:            B.addAttribute(Attribute::StructRet); break;
1649     case lltok::kw_swifterror:      B.addAttribute(Attribute::SwiftError); break;
1650     case lltok::kw_swiftself:       B.addAttribute(Attribute::SwiftSelf); break;
1651     case lltok::kw_writeonly:       B.addAttribute(Attribute::WriteOnly); break;
1652     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1653     case lltok::kw_immarg:          B.addAttribute(Attribute::ImmArg); break;
1654 
1655     case lltok::kw_alignstack:
1656     case lltok::kw_alwaysinline:
1657     case lltok::kw_argmemonly:
1658     case lltok::kw_builtin:
1659     case lltok::kw_inlinehint:
1660     case lltok::kw_jumptable:
1661     case lltok::kw_minsize:
1662     case lltok::kw_naked:
1663     case lltok::kw_nobuiltin:
1664     case lltok::kw_noduplicate:
1665     case lltok::kw_noimplicitfloat:
1666     case lltok::kw_noinline:
1667     case lltok::kw_nonlazybind:
1668     case lltok::kw_noredzone:
1669     case lltok::kw_noreturn:
1670     case lltok::kw_nocf_check:
1671     case lltok::kw_nounwind:
1672     case lltok::kw_optforfuzzing:
1673     case lltok::kw_optnone:
1674     case lltok::kw_optsize:
1675     case lltok::kw_returns_twice:
1676     case lltok::kw_sanitize_address:
1677     case lltok::kw_sanitize_hwaddress:
1678     case lltok::kw_sanitize_memtag:
1679     case lltok::kw_sanitize_memory:
1680     case lltok::kw_sanitize_thread:
1681     case lltok::kw_speculative_load_hardening:
1682     case lltok::kw_ssp:
1683     case lltok::kw_sspreq:
1684     case lltok::kw_sspstrong:
1685     case lltok::kw_safestack:
1686     case lltok::kw_shadowcallstack:
1687     case lltok::kw_strictfp:
1688     case lltok::kw_uwtable:
1689       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1690       break;
1691     }
1692 
1693     Lex.Lex();
1694   }
1695 }
1696 
1697 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1698 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1699   bool HaveError = false;
1700 
1701   B.clear();
1702 
1703   while (true) {
1704     lltok::Kind Token = Lex.getKind();
1705     switch (Token) {
1706     default:  // End of attributes.
1707       return HaveError;
1708     case lltok::StringConstant: {
1709       if (ParseStringAttribute(B))
1710         return true;
1711       continue;
1712     }
1713     case lltok::kw_dereferenceable: {
1714       uint64_t Bytes;
1715       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1716         return true;
1717       B.addDereferenceableAttr(Bytes);
1718       continue;
1719     }
1720     case lltok::kw_dereferenceable_or_null: {
1721       uint64_t Bytes;
1722       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1723         return true;
1724       B.addDereferenceableOrNullAttr(Bytes);
1725       continue;
1726     }
1727     case lltok::kw_align: {
1728       MaybeAlign Alignment;
1729       if (ParseOptionalAlignment(Alignment))
1730         return true;
1731       B.addAlignmentAttr(Alignment);
1732       continue;
1733     }
1734     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1735     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1736     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1737     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1738     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1739 
1740     // Error handling.
1741     case lltok::kw_byval:
1742     case lltok::kw_inalloca:
1743     case lltok::kw_nest:
1744     case lltok::kw_nocapture:
1745     case lltok::kw_returned:
1746     case lltok::kw_sret:
1747     case lltok::kw_swifterror:
1748     case lltok::kw_swiftself:
1749     case lltok::kw_immarg:
1750       HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1751       break;
1752 
1753     case lltok::kw_alignstack:
1754     case lltok::kw_alwaysinline:
1755     case lltok::kw_argmemonly:
1756     case lltok::kw_builtin:
1757     case lltok::kw_cold:
1758     case lltok::kw_inlinehint:
1759     case lltok::kw_jumptable:
1760     case lltok::kw_minsize:
1761     case lltok::kw_naked:
1762     case lltok::kw_nobuiltin:
1763     case lltok::kw_noduplicate:
1764     case lltok::kw_noimplicitfloat:
1765     case lltok::kw_noinline:
1766     case lltok::kw_nonlazybind:
1767     case lltok::kw_noredzone:
1768     case lltok::kw_noreturn:
1769     case lltok::kw_nocf_check:
1770     case lltok::kw_nounwind:
1771     case lltok::kw_optforfuzzing:
1772     case lltok::kw_optnone:
1773     case lltok::kw_optsize:
1774     case lltok::kw_returns_twice:
1775     case lltok::kw_sanitize_address:
1776     case lltok::kw_sanitize_hwaddress:
1777     case lltok::kw_sanitize_memtag:
1778     case lltok::kw_sanitize_memory:
1779     case lltok::kw_sanitize_thread:
1780     case lltok::kw_speculative_load_hardening:
1781     case lltok::kw_ssp:
1782     case lltok::kw_sspreq:
1783     case lltok::kw_sspstrong:
1784     case lltok::kw_safestack:
1785     case lltok::kw_shadowcallstack:
1786     case lltok::kw_strictfp:
1787     case lltok::kw_uwtable:
1788       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1789       break;
1790 
1791     case lltok::kw_readnone:
1792     case lltok::kw_readonly:
1793       HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1794     }
1795 
1796     Lex.Lex();
1797   }
1798 }
1799 
1800 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1801   HasLinkage = true;
1802   switch (Kind) {
1803   default:
1804     HasLinkage = false;
1805     return GlobalValue::ExternalLinkage;
1806   case lltok::kw_private:
1807     return GlobalValue::PrivateLinkage;
1808   case lltok::kw_internal:
1809     return GlobalValue::InternalLinkage;
1810   case lltok::kw_weak:
1811     return GlobalValue::WeakAnyLinkage;
1812   case lltok::kw_weak_odr:
1813     return GlobalValue::WeakODRLinkage;
1814   case lltok::kw_linkonce:
1815     return GlobalValue::LinkOnceAnyLinkage;
1816   case lltok::kw_linkonce_odr:
1817     return GlobalValue::LinkOnceODRLinkage;
1818   case lltok::kw_available_externally:
1819     return GlobalValue::AvailableExternallyLinkage;
1820   case lltok::kw_appending:
1821     return GlobalValue::AppendingLinkage;
1822   case lltok::kw_common:
1823     return GlobalValue::CommonLinkage;
1824   case lltok::kw_extern_weak:
1825     return GlobalValue::ExternalWeakLinkage;
1826   case lltok::kw_external:
1827     return GlobalValue::ExternalLinkage;
1828   }
1829 }
1830 
1831 /// ParseOptionalLinkage
1832 ///   ::= /*empty*/
1833 ///   ::= 'private'
1834 ///   ::= 'internal'
1835 ///   ::= 'weak'
1836 ///   ::= 'weak_odr'
1837 ///   ::= 'linkonce'
1838 ///   ::= 'linkonce_odr'
1839 ///   ::= 'available_externally'
1840 ///   ::= 'appending'
1841 ///   ::= 'common'
1842 ///   ::= 'extern_weak'
1843 ///   ::= 'external'
1844 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1845                                     unsigned &Visibility,
1846                                     unsigned &DLLStorageClass,
1847                                     bool &DSOLocal) {
1848   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1849   if (HasLinkage)
1850     Lex.Lex();
1851   ParseOptionalDSOLocal(DSOLocal);
1852   ParseOptionalVisibility(Visibility);
1853   ParseOptionalDLLStorageClass(DLLStorageClass);
1854 
1855   if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
1856     return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
1857   }
1858 
1859   return false;
1860 }
1861 
1862 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) {
1863   switch (Lex.getKind()) {
1864   default:
1865     DSOLocal = false;
1866     break;
1867   case lltok::kw_dso_local:
1868     DSOLocal = true;
1869     Lex.Lex();
1870     break;
1871   case lltok::kw_dso_preemptable:
1872     DSOLocal = false;
1873     Lex.Lex();
1874     break;
1875   }
1876 }
1877 
1878 /// ParseOptionalVisibility
1879 ///   ::= /*empty*/
1880 ///   ::= 'default'
1881 ///   ::= 'hidden'
1882 ///   ::= 'protected'
1883 ///
1884 void LLParser::ParseOptionalVisibility(unsigned &Res) {
1885   switch (Lex.getKind()) {
1886   default:
1887     Res = GlobalValue::DefaultVisibility;
1888     return;
1889   case lltok::kw_default:
1890     Res = GlobalValue::DefaultVisibility;
1891     break;
1892   case lltok::kw_hidden:
1893     Res = GlobalValue::HiddenVisibility;
1894     break;
1895   case lltok::kw_protected:
1896     Res = GlobalValue::ProtectedVisibility;
1897     break;
1898   }
1899   Lex.Lex();
1900 }
1901 
1902 /// ParseOptionalDLLStorageClass
1903 ///   ::= /*empty*/
1904 ///   ::= 'dllimport'
1905 ///   ::= 'dllexport'
1906 ///
1907 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
1908   switch (Lex.getKind()) {
1909   default:
1910     Res = GlobalValue::DefaultStorageClass;
1911     return;
1912   case lltok::kw_dllimport:
1913     Res = GlobalValue::DLLImportStorageClass;
1914     break;
1915   case lltok::kw_dllexport:
1916     Res = GlobalValue::DLLExportStorageClass;
1917     break;
1918   }
1919   Lex.Lex();
1920 }
1921 
1922 /// ParseOptionalCallingConv
1923 ///   ::= /*empty*/
1924 ///   ::= 'ccc'
1925 ///   ::= 'fastcc'
1926 ///   ::= 'intel_ocl_bicc'
1927 ///   ::= 'coldcc'
1928 ///   ::= 'cfguard_checkcc'
1929 ///   ::= 'x86_stdcallcc'
1930 ///   ::= 'x86_fastcallcc'
1931 ///   ::= 'x86_thiscallcc'
1932 ///   ::= 'x86_vectorcallcc'
1933 ///   ::= 'arm_apcscc'
1934 ///   ::= 'arm_aapcscc'
1935 ///   ::= 'arm_aapcs_vfpcc'
1936 ///   ::= 'aarch64_vector_pcs'
1937 ///   ::= 'aarch64_sve_vector_pcs'
1938 ///   ::= 'msp430_intrcc'
1939 ///   ::= 'avr_intrcc'
1940 ///   ::= 'avr_signalcc'
1941 ///   ::= 'ptx_kernel'
1942 ///   ::= 'ptx_device'
1943 ///   ::= 'spir_func'
1944 ///   ::= 'spir_kernel'
1945 ///   ::= 'x86_64_sysvcc'
1946 ///   ::= 'win64cc'
1947 ///   ::= 'webkit_jscc'
1948 ///   ::= 'anyregcc'
1949 ///   ::= 'preserve_mostcc'
1950 ///   ::= 'preserve_allcc'
1951 ///   ::= 'ghccc'
1952 ///   ::= 'swiftcc'
1953 ///   ::= 'x86_intrcc'
1954 ///   ::= 'hhvmcc'
1955 ///   ::= 'hhvm_ccc'
1956 ///   ::= 'cxx_fast_tlscc'
1957 ///   ::= 'amdgpu_vs'
1958 ///   ::= 'amdgpu_ls'
1959 ///   ::= 'amdgpu_hs'
1960 ///   ::= 'amdgpu_es'
1961 ///   ::= 'amdgpu_gs'
1962 ///   ::= 'amdgpu_ps'
1963 ///   ::= 'amdgpu_cs'
1964 ///   ::= 'amdgpu_kernel'
1965 ///   ::= 'tailcc'
1966 ///   ::= 'cc' UINT
1967 ///
1968 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
1969   switch (Lex.getKind()) {
1970   default:                       CC = CallingConv::C; return false;
1971   case lltok::kw_ccc:            CC = CallingConv::C; break;
1972   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1973   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1974   case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break;
1975   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1976   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1977   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
1978   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1979   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
1980   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1981   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1982   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1983   case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
1984   case lltok::kw_aarch64_sve_vector_pcs:
1985     CC = CallingConv::AArch64_SVE_VectorCall;
1986     break;
1987   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1988   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
1989   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
1990   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1991   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1992   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
1993   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
1994   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1995   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
1996   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
1997   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
1998   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
1999   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
2000   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
2001   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
2002   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
2003   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
2004   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
2005   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
2006   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
2007   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
2008   case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
2009   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
2010   case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
2011   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
2012   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
2013   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
2014   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
2015   case lltok::kw_tailcc:         CC = CallingConv::Tail; break;
2016   case lltok::kw_cc: {
2017       Lex.Lex();
2018       return ParseUInt32(CC);
2019     }
2020   }
2021 
2022   Lex.Lex();
2023   return false;
2024 }
2025 
2026 /// ParseMetadataAttachment
2027 ///   ::= !dbg !42
2028 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
2029   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
2030 
2031   std::string Name = Lex.getStrVal();
2032   Kind = M->getMDKindID(Name);
2033   Lex.Lex();
2034 
2035   return ParseMDNode(MD);
2036 }
2037 
2038 /// ParseInstructionMetadata
2039 ///   ::= !dbg !42 (',' !dbg !57)*
2040 bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
2041   do {
2042     if (Lex.getKind() != lltok::MetadataVar)
2043       return TokError("expected metadata after comma");
2044 
2045     unsigned MDK;
2046     MDNode *N;
2047     if (ParseMetadataAttachment(MDK, N))
2048       return true;
2049 
2050     Inst.setMetadata(MDK, N);
2051     if (MDK == LLVMContext::MD_tbaa)
2052       InstsWithTBAATag.push_back(&Inst);
2053 
2054     // If this is the end of the list, we're done.
2055   } while (EatIfPresent(lltok::comma));
2056   return false;
2057 }
2058 
2059 /// ParseGlobalObjectMetadataAttachment
2060 ///   ::= !dbg !57
2061 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) {
2062   unsigned MDK;
2063   MDNode *N;
2064   if (ParseMetadataAttachment(MDK, N))
2065     return true;
2066 
2067   GO.addMetadata(MDK, *N);
2068   return false;
2069 }
2070 
2071 /// ParseOptionalFunctionMetadata
2072 ///   ::= (!dbg !57)*
2073 bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
2074   while (Lex.getKind() == lltok::MetadataVar)
2075     if (ParseGlobalObjectMetadataAttachment(F))
2076       return true;
2077   return false;
2078 }
2079 
2080 /// ParseOptionalAlignment
2081 ///   ::= /* empty */
2082 ///   ::= 'align' 4
2083 bool LLParser::ParseOptionalAlignment(MaybeAlign &Alignment) {
2084   Alignment = None;
2085   if (!EatIfPresent(lltok::kw_align))
2086     return false;
2087   LocTy AlignLoc = Lex.getLoc();
2088   uint32_t Value = 0;
2089   if (ParseUInt32(Value))
2090     return true;
2091   if (!isPowerOf2_32(Value))
2092     return Error(AlignLoc, "alignment is not a power of two");
2093   if (Value > Value::MaximumAlignment)
2094     return Error(AlignLoc, "huge alignments are not supported yet");
2095   Alignment = Align(Value);
2096   return false;
2097 }
2098 
2099 /// ParseOptionalDerefAttrBytes
2100 ///   ::= /* empty */
2101 ///   ::= AttrKind '(' 4 ')'
2102 ///
2103 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
2104 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2105                                            uint64_t &Bytes) {
2106   assert((AttrKind == lltok::kw_dereferenceable ||
2107           AttrKind == lltok::kw_dereferenceable_or_null) &&
2108          "contract!");
2109 
2110   Bytes = 0;
2111   if (!EatIfPresent(AttrKind))
2112     return false;
2113   LocTy ParenLoc = Lex.getLoc();
2114   if (!EatIfPresent(lltok::lparen))
2115     return Error(ParenLoc, "expected '('");
2116   LocTy DerefLoc = Lex.getLoc();
2117   if (ParseUInt64(Bytes)) return true;
2118   ParenLoc = Lex.getLoc();
2119   if (!EatIfPresent(lltok::rparen))
2120     return Error(ParenLoc, "expected ')'");
2121   if (!Bytes)
2122     return Error(DerefLoc, "dereferenceable bytes must be non-zero");
2123   return false;
2124 }
2125 
2126 /// ParseOptionalCommaAlign
2127 ///   ::=
2128 ///   ::= ',' align 4
2129 ///
2130 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2131 /// end.
2132 bool LLParser::ParseOptionalCommaAlign(MaybeAlign &Alignment,
2133                                        bool &AteExtraComma) {
2134   AteExtraComma = false;
2135   while (EatIfPresent(lltok::comma)) {
2136     // Metadata at the end is an early exit.
2137     if (Lex.getKind() == lltok::MetadataVar) {
2138       AteExtraComma = true;
2139       return false;
2140     }
2141 
2142     if (Lex.getKind() != lltok::kw_align)
2143       return Error(Lex.getLoc(), "expected metadata or 'align'");
2144 
2145     if (ParseOptionalAlignment(Alignment)) return true;
2146   }
2147 
2148   return false;
2149 }
2150 
2151 /// ParseOptionalCommaAddrSpace
2152 ///   ::=
2153 ///   ::= ',' addrspace(1)
2154 ///
2155 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2156 /// end.
2157 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace,
2158                                            LocTy &Loc,
2159                                            bool &AteExtraComma) {
2160   AteExtraComma = false;
2161   while (EatIfPresent(lltok::comma)) {
2162     // Metadata at the end is an early exit.
2163     if (Lex.getKind() == lltok::MetadataVar) {
2164       AteExtraComma = true;
2165       return false;
2166     }
2167 
2168     Loc = Lex.getLoc();
2169     if (Lex.getKind() != lltok::kw_addrspace)
2170       return Error(Lex.getLoc(), "expected metadata or 'addrspace'");
2171 
2172     if (ParseOptionalAddrSpace(AddrSpace))
2173       return true;
2174   }
2175 
2176   return false;
2177 }
2178 
2179 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2180                                        Optional<unsigned> &HowManyArg) {
2181   Lex.Lex();
2182 
2183   auto StartParen = Lex.getLoc();
2184   if (!EatIfPresent(lltok::lparen))
2185     return Error(StartParen, "expected '('");
2186 
2187   if (ParseUInt32(BaseSizeArg))
2188     return true;
2189 
2190   if (EatIfPresent(lltok::comma)) {
2191     auto HowManyAt = Lex.getLoc();
2192     unsigned HowMany;
2193     if (ParseUInt32(HowMany))
2194       return true;
2195     if (HowMany == BaseSizeArg)
2196       return Error(HowManyAt,
2197                    "'allocsize' indices can't refer to the same parameter");
2198     HowManyArg = HowMany;
2199   } else
2200     HowManyArg = None;
2201 
2202   auto EndParen = Lex.getLoc();
2203   if (!EatIfPresent(lltok::rparen))
2204     return Error(EndParen, "expected ')'");
2205   return false;
2206 }
2207 
2208 /// ParseScopeAndOrdering
2209 ///   if isAtomic: ::= SyncScope? AtomicOrdering
2210 ///   else: ::=
2211 ///
2212 /// This sets Scope and Ordering to the parsed values.
2213 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID,
2214                                      AtomicOrdering &Ordering) {
2215   if (!isAtomic)
2216     return false;
2217 
2218   return ParseScope(SSID) || ParseOrdering(Ordering);
2219 }
2220 
2221 /// ParseScope
2222 ///   ::= syncscope("singlethread" | "<target scope>")?
2223 ///
2224 /// This sets synchronization scope ID to the ID of the parsed value.
2225 bool LLParser::ParseScope(SyncScope::ID &SSID) {
2226   SSID = SyncScope::System;
2227   if (EatIfPresent(lltok::kw_syncscope)) {
2228     auto StartParenAt = Lex.getLoc();
2229     if (!EatIfPresent(lltok::lparen))
2230       return Error(StartParenAt, "Expected '(' in syncscope");
2231 
2232     std::string SSN;
2233     auto SSNAt = Lex.getLoc();
2234     if (ParseStringConstant(SSN))
2235       return Error(SSNAt, "Expected synchronization scope name");
2236 
2237     auto EndParenAt = Lex.getLoc();
2238     if (!EatIfPresent(lltok::rparen))
2239       return Error(EndParenAt, "Expected ')' in syncscope");
2240 
2241     SSID = Context.getOrInsertSyncScopeID(SSN);
2242   }
2243 
2244   return false;
2245 }
2246 
2247 /// ParseOrdering
2248 ///   ::= AtomicOrdering
2249 ///
2250 /// This sets Ordering to the parsed value.
2251 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
2252   switch (Lex.getKind()) {
2253   default: return TokError("Expected ordering on atomic instruction");
2254   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2255   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2256   // Not specified yet:
2257   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2258   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2259   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2260   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2261   case lltok::kw_seq_cst:
2262     Ordering = AtomicOrdering::SequentiallyConsistent;
2263     break;
2264   }
2265   Lex.Lex();
2266   return false;
2267 }
2268 
2269 /// ParseOptionalStackAlignment
2270 ///   ::= /* empty */
2271 ///   ::= 'alignstack' '(' 4 ')'
2272 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
2273   Alignment = 0;
2274   if (!EatIfPresent(lltok::kw_alignstack))
2275     return false;
2276   LocTy ParenLoc = Lex.getLoc();
2277   if (!EatIfPresent(lltok::lparen))
2278     return Error(ParenLoc, "expected '('");
2279   LocTy AlignLoc = Lex.getLoc();
2280   if (ParseUInt32(Alignment)) return true;
2281   ParenLoc = Lex.getLoc();
2282   if (!EatIfPresent(lltok::rparen))
2283     return Error(ParenLoc, "expected ')'");
2284   if (!isPowerOf2_32(Alignment))
2285     return Error(AlignLoc, "stack alignment is not a power of two");
2286   return false;
2287 }
2288 
2289 /// ParseIndexList - This parses the index list for an insert/extractvalue
2290 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2291 /// comma at the end of the line and find that it is followed by metadata.
2292 /// Clients that don't allow metadata can call the version of this function that
2293 /// only takes one argument.
2294 ///
2295 /// ParseIndexList
2296 ///    ::=  (',' uint32)+
2297 ///
2298 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
2299                               bool &AteExtraComma) {
2300   AteExtraComma = false;
2301 
2302   if (Lex.getKind() != lltok::comma)
2303     return TokError("expected ',' as start of index list");
2304 
2305   while (EatIfPresent(lltok::comma)) {
2306     if (Lex.getKind() == lltok::MetadataVar) {
2307       if (Indices.empty()) return TokError("expected index");
2308       AteExtraComma = true;
2309       return false;
2310     }
2311     unsigned Idx = 0;
2312     if (ParseUInt32(Idx)) return true;
2313     Indices.push_back(Idx);
2314   }
2315 
2316   return false;
2317 }
2318 
2319 //===----------------------------------------------------------------------===//
2320 // Type Parsing.
2321 //===----------------------------------------------------------------------===//
2322 
2323 /// ParseType - Parse a type.
2324 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2325   SMLoc TypeLoc = Lex.getLoc();
2326   switch (Lex.getKind()) {
2327   default:
2328     return TokError(Msg);
2329   case lltok::Type:
2330     // Type ::= 'float' | 'void' (etc)
2331     Result = Lex.getTyVal();
2332     Lex.Lex();
2333     break;
2334   case lltok::lbrace:
2335     // Type ::= StructType
2336     if (ParseAnonStructType(Result, false))
2337       return true;
2338     break;
2339   case lltok::lsquare:
2340     // Type ::= '[' ... ']'
2341     Lex.Lex(); // eat the lsquare.
2342     if (ParseArrayVectorType(Result, false))
2343       return true;
2344     break;
2345   case lltok::less: // Either vector or packed struct.
2346     // Type ::= '<' ... '>'
2347     Lex.Lex();
2348     if (Lex.getKind() == lltok::lbrace) {
2349       if (ParseAnonStructType(Result, true) ||
2350           ParseToken(lltok::greater, "expected '>' at end of packed struct"))
2351         return true;
2352     } else if (ParseArrayVectorType(Result, true))
2353       return true;
2354     break;
2355   case lltok::LocalVar: {
2356     // Type ::= %foo
2357     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2358 
2359     // If the type hasn't been defined yet, create a forward definition and
2360     // remember where that forward def'n was seen (in case it never is defined).
2361     if (!Entry.first) {
2362       Entry.first = StructType::create(Context, Lex.getStrVal());
2363       Entry.second = Lex.getLoc();
2364     }
2365     Result = Entry.first;
2366     Lex.Lex();
2367     break;
2368   }
2369 
2370   case lltok::LocalVarID: {
2371     // Type ::= %4
2372     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2373 
2374     // If the type hasn't been defined yet, create a forward definition and
2375     // remember where that forward def'n was seen (in case it never is defined).
2376     if (!Entry.first) {
2377       Entry.first = StructType::create(Context);
2378       Entry.second = Lex.getLoc();
2379     }
2380     Result = Entry.first;
2381     Lex.Lex();
2382     break;
2383   }
2384   }
2385 
2386   // Parse the type suffixes.
2387   while (true) {
2388     switch (Lex.getKind()) {
2389     // End of type.
2390     default:
2391       if (!AllowVoid && Result->isVoidTy())
2392         return Error(TypeLoc, "void type only allowed for function results");
2393       return false;
2394 
2395     // Type ::= Type '*'
2396     case lltok::star:
2397       if (Result->isLabelTy())
2398         return TokError("basic block pointers are invalid");
2399       if (Result->isVoidTy())
2400         return TokError("pointers to void are invalid - use i8* instead");
2401       if (!PointerType::isValidElementType(Result))
2402         return TokError("pointer to this type is invalid");
2403       Result = PointerType::getUnqual(Result);
2404       Lex.Lex();
2405       break;
2406 
2407     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2408     case lltok::kw_addrspace: {
2409       if (Result->isLabelTy())
2410         return TokError("basic block pointers are invalid");
2411       if (Result->isVoidTy())
2412         return TokError("pointers to void are invalid; use i8* instead");
2413       if (!PointerType::isValidElementType(Result))
2414         return TokError("pointer to this type is invalid");
2415       unsigned AddrSpace;
2416       if (ParseOptionalAddrSpace(AddrSpace) ||
2417           ParseToken(lltok::star, "expected '*' in address space"))
2418         return true;
2419 
2420       Result = PointerType::get(Result, AddrSpace);
2421       break;
2422     }
2423 
2424     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2425     case lltok::lparen:
2426       if (ParseFunctionType(Result))
2427         return true;
2428       break;
2429     }
2430   }
2431 }
2432 
2433 /// ParseParameterList
2434 ///    ::= '(' ')'
2435 ///    ::= '(' Arg (',' Arg)* ')'
2436 ///  Arg
2437 ///    ::= Type OptionalAttributes Value OptionalAttributes
2438 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2439                                   PerFunctionState &PFS, bool IsMustTailCall,
2440                                   bool InVarArgsFunc) {
2441   if (ParseToken(lltok::lparen, "expected '(' in call"))
2442     return true;
2443 
2444   while (Lex.getKind() != lltok::rparen) {
2445     // If this isn't the first argument, we need a comma.
2446     if (!ArgList.empty() &&
2447         ParseToken(lltok::comma, "expected ',' in argument list"))
2448       return true;
2449 
2450     // Parse an ellipsis if this is a musttail call in a variadic function.
2451     if (Lex.getKind() == lltok::dotdotdot) {
2452       const char *Msg = "unexpected ellipsis in argument list for ";
2453       if (!IsMustTailCall)
2454         return TokError(Twine(Msg) + "non-musttail call");
2455       if (!InVarArgsFunc)
2456         return TokError(Twine(Msg) + "musttail call in non-varargs function");
2457       Lex.Lex();  // Lex the '...', it is purely for readability.
2458       return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2459     }
2460 
2461     // Parse the argument.
2462     LocTy ArgLoc;
2463     Type *ArgTy = nullptr;
2464     AttrBuilder ArgAttrs;
2465     Value *V;
2466     if (ParseType(ArgTy, ArgLoc))
2467       return true;
2468 
2469     if (ArgTy->isMetadataTy()) {
2470       if (ParseMetadataAsValue(V, PFS))
2471         return true;
2472     } else {
2473       // Otherwise, handle normal operands.
2474       if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
2475         return true;
2476     }
2477     ArgList.push_back(ParamInfo(
2478         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2479   }
2480 
2481   if (IsMustTailCall && InVarArgsFunc)
2482     return TokError("expected '...' at end of argument list for musttail call "
2483                     "in varargs function");
2484 
2485   Lex.Lex();  // Lex the ')'.
2486   return false;
2487 }
2488 
2489 /// ParseByValWithOptionalType
2490 ///   ::= byval
2491 ///   ::= byval(<ty>)
2492 bool LLParser::ParseByValWithOptionalType(Type *&Result) {
2493   Result = nullptr;
2494   if (!EatIfPresent(lltok::kw_byval))
2495     return true;
2496   if (!EatIfPresent(lltok::lparen))
2497     return false;
2498   if (ParseType(Result))
2499     return true;
2500   if (!EatIfPresent(lltok::rparen))
2501     return Error(Lex.getLoc(), "expected ')'");
2502   return false;
2503 }
2504 
2505 /// ParseOptionalOperandBundles
2506 ///    ::= /*empty*/
2507 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2508 ///
2509 /// OperandBundle
2510 ///    ::= bundle-tag '(' ')'
2511 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2512 ///
2513 /// bundle-tag ::= String Constant
2514 bool LLParser::ParseOptionalOperandBundles(
2515     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2516   LocTy BeginLoc = Lex.getLoc();
2517   if (!EatIfPresent(lltok::lsquare))
2518     return false;
2519 
2520   while (Lex.getKind() != lltok::rsquare) {
2521     // If this isn't the first operand bundle, we need a comma.
2522     if (!BundleList.empty() &&
2523         ParseToken(lltok::comma, "expected ',' in input list"))
2524       return true;
2525 
2526     std::string Tag;
2527     if (ParseStringConstant(Tag))
2528       return true;
2529 
2530     if (ParseToken(lltok::lparen, "expected '(' in operand bundle"))
2531       return true;
2532 
2533     std::vector<Value *> Inputs;
2534     while (Lex.getKind() != lltok::rparen) {
2535       // If this isn't the first input, we need a comma.
2536       if (!Inputs.empty() &&
2537           ParseToken(lltok::comma, "expected ',' in input list"))
2538         return true;
2539 
2540       Type *Ty = nullptr;
2541       Value *Input = nullptr;
2542       if (ParseType(Ty) || ParseValue(Ty, Input, PFS))
2543         return true;
2544       Inputs.push_back(Input);
2545     }
2546 
2547     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2548 
2549     Lex.Lex(); // Lex the ')'.
2550   }
2551 
2552   if (BundleList.empty())
2553     return Error(BeginLoc, "operand bundle set must not be empty");
2554 
2555   Lex.Lex(); // Lex the ']'.
2556   return false;
2557 }
2558 
2559 /// ParseArgumentList - Parse the argument list for a function type or function
2560 /// prototype.
2561 ///   ::= '(' ArgTypeListI ')'
2562 /// ArgTypeListI
2563 ///   ::= /*empty*/
2564 ///   ::= '...'
2565 ///   ::= ArgTypeList ',' '...'
2566 ///   ::= ArgType (',' ArgType)*
2567 ///
2568 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2569                                  bool &isVarArg){
2570   unsigned CurValID = 0;
2571   isVarArg = false;
2572   assert(Lex.getKind() == lltok::lparen);
2573   Lex.Lex(); // eat the (.
2574 
2575   if (Lex.getKind() == lltok::rparen) {
2576     // empty
2577   } else if (Lex.getKind() == lltok::dotdotdot) {
2578     isVarArg = true;
2579     Lex.Lex();
2580   } else {
2581     LocTy TypeLoc = Lex.getLoc();
2582     Type *ArgTy = nullptr;
2583     AttrBuilder Attrs;
2584     std::string Name;
2585 
2586     if (ParseType(ArgTy) ||
2587         ParseOptionalParamAttrs(Attrs)) return true;
2588 
2589     if (ArgTy->isVoidTy())
2590       return Error(TypeLoc, "argument can not have void type");
2591 
2592     if (Lex.getKind() == lltok::LocalVar) {
2593       Name = Lex.getStrVal();
2594       Lex.Lex();
2595     } else if (Lex.getKind() == lltok::LocalVarID) {
2596       if (Lex.getUIntVal() != CurValID)
2597         return Error(TypeLoc, "argument expected to be numbered '%" +
2598                                   Twine(CurValID) + "'");
2599       ++CurValID;
2600       Lex.Lex();
2601     }
2602 
2603     if (!FunctionType::isValidArgumentType(ArgTy))
2604       return Error(TypeLoc, "invalid type for function argument");
2605 
2606     ArgList.emplace_back(TypeLoc, ArgTy,
2607                          AttributeSet::get(ArgTy->getContext(), Attrs),
2608                          std::move(Name));
2609 
2610     while (EatIfPresent(lltok::comma)) {
2611       // Handle ... at end of arg list.
2612       if (EatIfPresent(lltok::dotdotdot)) {
2613         isVarArg = true;
2614         break;
2615       }
2616 
2617       // Otherwise must be an argument type.
2618       TypeLoc = Lex.getLoc();
2619       if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
2620 
2621       if (ArgTy->isVoidTy())
2622         return Error(TypeLoc, "argument can not have void type");
2623 
2624       if (Lex.getKind() == lltok::LocalVar) {
2625         Name = Lex.getStrVal();
2626         Lex.Lex();
2627       } else {
2628         if (Lex.getKind() == lltok::LocalVarID) {
2629           if (Lex.getUIntVal() != CurValID)
2630             return Error(TypeLoc, "argument expected to be numbered '%" +
2631                                       Twine(CurValID) + "'");
2632           Lex.Lex();
2633         }
2634         ++CurValID;
2635         Name = "";
2636       }
2637 
2638       if (!ArgTy->isFirstClassType())
2639         return Error(TypeLoc, "invalid type for function argument");
2640 
2641       ArgList.emplace_back(TypeLoc, ArgTy,
2642                            AttributeSet::get(ArgTy->getContext(), Attrs),
2643                            std::move(Name));
2644     }
2645   }
2646 
2647   return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2648 }
2649 
2650 /// ParseFunctionType
2651 ///  ::= Type ArgumentList OptionalAttrs
2652 bool LLParser::ParseFunctionType(Type *&Result) {
2653   assert(Lex.getKind() == lltok::lparen);
2654 
2655   if (!FunctionType::isValidReturnType(Result))
2656     return TokError("invalid function return type");
2657 
2658   SmallVector<ArgInfo, 8> ArgList;
2659   bool isVarArg;
2660   if (ParseArgumentList(ArgList, isVarArg))
2661     return true;
2662 
2663   // Reject names on the arguments lists.
2664   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2665     if (!ArgList[i].Name.empty())
2666       return Error(ArgList[i].Loc, "argument name invalid in function type");
2667     if (ArgList[i].Attrs.hasAttributes())
2668       return Error(ArgList[i].Loc,
2669                    "argument attributes invalid in function type");
2670   }
2671 
2672   SmallVector<Type*, 16> ArgListTy;
2673   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2674     ArgListTy.push_back(ArgList[i].Ty);
2675 
2676   Result = FunctionType::get(Result, ArgListTy, isVarArg);
2677   return false;
2678 }
2679 
2680 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
2681 /// other structs.
2682 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
2683   SmallVector<Type*, 8> Elts;
2684   if (ParseStructBody(Elts)) return true;
2685 
2686   Result = StructType::get(Context, Elts, Packed);
2687   return false;
2688 }
2689 
2690 /// ParseStructDefinition - Parse a struct in a 'type' definition.
2691 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
2692                                      std::pair<Type*, LocTy> &Entry,
2693                                      Type *&ResultTy) {
2694   // If the type was already defined, diagnose the redefinition.
2695   if (Entry.first && !Entry.second.isValid())
2696     return Error(TypeLoc, "redefinition of type");
2697 
2698   // If we have opaque, just return without filling in the definition for the
2699   // struct.  This counts as a definition as far as the .ll file goes.
2700   if (EatIfPresent(lltok::kw_opaque)) {
2701     // This type is being defined, so clear the location to indicate this.
2702     Entry.second = SMLoc();
2703 
2704     // If this type number has never been uttered, create it.
2705     if (!Entry.first)
2706       Entry.first = StructType::create(Context, Name);
2707     ResultTy = Entry.first;
2708     return false;
2709   }
2710 
2711   // If the type starts with '<', then it is either a packed struct or a vector.
2712   bool isPacked = EatIfPresent(lltok::less);
2713 
2714   // If we don't have a struct, then we have a random type alias, which we
2715   // accept for compatibility with old files.  These types are not allowed to be
2716   // forward referenced and not allowed to be recursive.
2717   if (Lex.getKind() != lltok::lbrace) {
2718     if (Entry.first)
2719       return Error(TypeLoc, "forward references to non-struct type");
2720 
2721     ResultTy = nullptr;
2722     if (isPacked)
2723       return ParseArrayVectorType(ResultTy, true);
2724     return ParseType(ResultTy);
2725   }
2726 
2727   // This type is being defined, so clear the location to indicate this.
2728   Entry.second = SMLoc();
2729 
2730   // If this type number has never been uttered, create it.
2731   if (!Entry.first)
2732     Entry.first = StructType::create(Context, Name);
2733 
2734   StructType *STy = cast<StructType>(Entry.first);
2735 
2736   SmallVector<Type*, 8> Body;
2737   if (ParseStructBody(Body) ||
2738       (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
2739     return true;
2740 
2741   STy->setBody(Body, isPacked);
2742   ResultTy = STy;
2743   return false;
2744 }
2745 
2746 /// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2747 ///   StructType
2748 ///     ::= '{' '}'
2749 ///     ::= '{' Type (',' Type)* '}'
2750 ///     ::= '<' '{' '}' '>'
2751 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2752 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
2753   assert(Lex.getKind() == lltok::lbrace);
2754   Lex.Lex(); // Consume the '{'
2755 
2756   // Handle the empty struct.
2757   if (EatIfPresent(lltok::rbrace))
2758     return false;
2759 
2760   LocTy EltTyLoc = Lex.getLoc();
2761   Type *Ty = nullptr;
2762   if (ParseType(Ty)) return true;
2763   Body.push_back(Ty);
2764 
2765   if (!StructType::isValidElementType(Ty))
2766     return Error(EltTyLoc, "invalid element type for struct");
2767 
2768   while (EatIfPresent(lltok::comma)) {
2769     EltTyLoc = Lex.getLoc();
2770     if (ParseType(Ty)) return true;
2771 
2772     if (!StructType::isValidElementType(Ty))
2773       return Error(EltTyLoc, "invalid element type for struct");
2774 
2775     Body.push_back(Ty);
2776   }
2777 
2778   return ParseToken(lltok::rbrace, "expected '}' at end of struct");
2779 }
2780 
2781 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2782 /// token has already been consumed.
2783 ///   Type
2784 ///     ::= '[' APSINTVAL 'x' Types ']'
2785 ///     ::= '<' APSINTVAL 'x' Types '>'
2786 ///     ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>'
2787 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
2788   bool Scalable = false;
2789 
2790   if (isVector && Lex.getKind() == lltok::kw_vscale) {
2791     Lex.Lex(); // consume the 'vscale'
2792     if (ParseToken(lltok::kw_x, "expected 'x' after vscale"))
2793       return true;
2794 
2795     Scalable = true;
2796   }
2797 
2798   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2799       Lex.getAPSIntVal().getBitWidth() > 64)
2800     return TokError("expected number in address space");
2801 
2802   LocTy SizeLoc = Lex.getLoc();
2803   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2804   Lex.Lex();
2805 
2806   if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
2807       return true;
2808 
2809   LocTy TypeLoc = Lex.getLoc();
2810   Type *EltTy = nullptr;
2811   if (ParseType(EltTy)) return true;
2812 
2813   if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
2814                  "expected end of sequential type"))
2815     return true;
2816 
2817   if (isVector) {
2818     if (Size == 0)
2819       return Error(SizeLoc, "zero element vector is illegal");
2820     if ((unsigned)Size != Size)
2821       return Error(SizeLoc, "size too large for vector");
2822     if (!VectorType::isValidElementType(EltTy))
2823       return Error(TypeLoc, "invalid vector element type");
2824     Result = VectorType::get(EltTy, unsigned(Size), Scalable);
2825   } else {
2826     if (!ArrayType::isValidElementType(EltTy))
2827       return Error(TypeLoc, "invalid array element type");
2828     Result = ArrayType::get(EltTy, Size);
2829   }
2830   return false;
2831 }
2832 
2833 //===----------------------------------------------------------------------===//
2834 // Function Semantic Analysis.
2835 //===----------------------------------------------------------------------===//
2836 
2837 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2838                                              int functionNumber)
2839   : P(p), F(f), FunctionNumber(functionNumber) {
2840 
2841   // Insert unnamed arguments into the NumberedVals list.
2842   for (Argument &A : F.args())
2843     if (!A.hasName())
2844       NumberedVals.push_back(&A);
2845 }
2846 
2847 LLParser::PerFunctionState::~PerFunctionState() {
2848   // If there were any forward referenced non-basicblock values, delete them.
2849 
2850   for (const auto &P : ForwardRefVals) {
2851     if (isa<BasicBlock>(P.second.first))
2852       continue;
2853     P.second.first->replaceAllUsesWith(
2854         UndefValue::get(P.second.first->getType()));
2855     P.second.first->deleteValue();
2856   }
2857 
2858   for (const auto &P : ForwardRefValIDs) {
2859     if (isa<BasicBlock>(P.second.first))
2860       continue;
2861     P.second.first->replaceAllUsesWith(
2862         UndefValue::get(P.second.first->getType()));
2863     P.second.first->deleteValue();
2864   }
2865 }
2866 
2867 bool LLParser::PerFunctionState::FinishFunction() {
2868   if (!ForwardRefVals.empty())
2869     return P.Error(ForwardRefVals.begin()->second.second,
2870                    "use of undefined value '%" + ForwardRefVals.begin()->first +
2871                    "'");
2872   if (!ForwardRefValIDs.empty())
2873     return P.Error(ForwardRefValIDs.begin()->second.second,
2874                    "use of undefined value '%" +
2875                    Twine(ForwardRefValIDs.begin()->first) + "'");
2876   return false;
2877 }
2878 
2879 /// GetVal - Get a value with the specified name or ID, creating a
2880 /// forward reference record if needed.  This can return null if the value
2881 /// exists but does not have the right type.
2882 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty,
2883                                           LocTy Loc, bool IsCall) {
2884   // Look this name up in the normal function symbol table.
2885   Value *Val = F.getValueSymbolTable()->lookup(Name);
2886 
2887   // If this is a forward reference for the value, see if we already created a
2888   // forward ref record.
2889   if (!Val) {
2890     auto I = ForwardRefVals.find(Name);
2891     if (I != ForwardRefVals.end())
2892       Val = I->second.first;
2893   }
2894 
2895   // If we have the value in the symbol table or fwd-ref table, return it.
2896   if (Val)
2897     return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall);
2898 
2899   // Don't make placeholders with invalid type.
2900   if (!Ty->isFirstClassType()) {
2901     P.Error(Loc, "invalid use of a non-first-class type");
2902     return nullptr;
2903   }
2904 
2905   // Otherwise, create a new forward reference for this value and remember it.
2906   Value *FwdVal;
2907   if (Ty->isLabelTy()) {
2908     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2909   } else {
2910     FwdVal = new Argument(Ty, Name);
2911   }
2912 
2913   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2914   return FwdVal;
2915 }
2916 
2917 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc,
2918                                           bool IsCall) {
2919   // Look this name up in the normal function symbol table.
2920   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2921 
2922   // If this is a forward reference for the value, see if we already created a
2923   // forward ref record.
2924   if (!Val) {
2925     auto I = ForwardRefValIDs.find(ID);
2926     if (I != ForwardRefValIDs.end())
2927       Val = I->second.first;
2928   }
2929 
2930   // If we have the value in the symbol table or fwd-ref table, return it.
2931   if (Val)
2932     return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall);
2933 
2934   if (!Ty->isFirstClassType()) {
2935     P.Error(Loc, "invalid use of a non-first-class type");
2936     return nullptr;
2937   }
2938 
2939   // Otherwise, create a new forward reference for this value and remember it.
2940   Value *FwdVal;
2941   if (Ty->isLabelTy()) {
2942     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2943   } else {
2944     FwdVal = new Argument(Ty);
2945   }
2946 
2947   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2948   return FwdVal;
2949 }
2950 
2951 /// SetInstName - After an instruction is parsed and inserted into its
2952 /// basic block, this installs its name.
2953 bool LLParser::PerFunctionState::SetInstName(int NameID,
2954                                              const std::string &NameStr,
2955                                              LocTy NameLoc, Instruction *Inst) {
2956   // If this instruction has void type, it cannot have a name or ID specified.
2957   if (Inst->getType()->isVoidTy()) {
2958     if (NameID != -1 || !NameStr.empty())
2959       return P.Error(NameLoc, "instructions returning void cannot have a name");
2960     return false;
2961   }
2962 
2963   // If this was a numbered instruction, verify that the instruction is the
2964   // expected value and resolve any forward references.
2965   if (NameStr.empty()) {
2966     // If neither a name nor an ID was specified, just use the next ID.
2967     if (NameID == -1)
2968       NameID = NumberedVals.size();
2969 
2970     if (unsigned(NameID) != NumberedVals.size())
2971       return P.Error(NameLoc, "instruction expected to be numbered '%" +
2972                      Twine(NumberedVals.size()) + "'");
2973 
2974     auto FI = ForwardRefValIDs.find(NameID);
2975     if (FI != ForwardRefValIDs.end()) {
2976       Value *Sentinel = FI->second.first;
2977       if (Sentinel->getType() != Inst->getType())
2978         return P.Error(NameLoc, "instruction forward referenced with type '" +
2979                        getTypeString(FI->second.first->getType()) + "'");
2980 
2981       Sentinel->replaceAllUsesWith(Inst);
2982       Sentinel->deleteValue();
2983       ForwardRefValIDs.erase(FI);
2984     }
2985 
2986     NumberedVals.push_back(Inst);
2987     return false;
2988   }
2989 
2990   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
2991   auto FI = ForwardRefVals.find(NameStr);
2992   if (FI != ForwardRefVals.end()) {
2993     Value *Sentinel = FI->second.first;
2994     if (Sentinel->getType() != Inst->getType())
2995       return P.Error(NameLoc, "instruction forward referenced with type '" +
2996                      getTypeString(FI->second.first->getType()) + "'");
2997 
2998     Sentinel->replaceAllUsesWith(Inst);
2999     Sentinel->deleteValue();
3000     ForwardRefVals.erase(FI);
3001   }
3002 
3003   // Set the name on the instruction.
3004   Inst->setName(NameStr);
3005 
3006   if (Inst->getName() != NameStr)
3007     return P.Error(NameLoc, "multiple definition of local value named '" +
3008                    NameStr + "'");
3009   return false;
3010 }
3011 
3012 /// GetBB - Get a basic block with the specified name or ID, creating a
3013 /// forward reference record if needed.
3014 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
3015                                               LocTy Loc) {
3016   return dyn_cast_or_null<BasicBlock>(
3017       GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
3018 }
3019 
3020 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
3021   return dyn_cast_or_null<BasicBlock>(
3022       GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
3023 }
3024 
3025 /// DefineBB - Define the specified basic block, which is either named or
3026 /// unnamed.  If there is an error, this returns null otherwise it returns
3027 /// the block being defined.
3028 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
3029                                                  int NameID, LocTy Loc) {
3030   BasicBlock *BB;
3031   if (Name.empty()) {
3032     if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) {
3033       P.Error(Loc, "label expected to be numbered '" +
3034                        Twine(NumberedVals.size()) + "'");
3035       return nullptr;
3036     }
3037     BB = GetBB(NumberedVals.size(), Loc);
3038     if (!BB) {
3039       P.Error(Loc, "unable to create block numbered '" +
3040                        Twine(NumberedVals.size()) + "'");
3041       return nullptr;
3042     }
3043   } else {
3044     BB = GetBB(Name, Loc);
3045     if (!BB) {
3046       P.Error(Loc, "unable to create block named '" + Name + "'");
3047       return nullptr;
3048     }
3049   }
3050 
3051   // Move the block to the end of the function.  Forward ref'd blocks are
3052   // inserted wherever they happen to be referenced.
3053   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
3054 
3055   // Remove the block from forward ref sets.
3056   if (Name.empty()) {
3057     ForwardRefValIDs.erase(NumberedVals.size());
3058     NumberedVals.push_back(BB);
3059   } else {
3060     // BB forward references are already in the function symbol table.
3061     ForwardRefVals.erase(Name);
3062   }
3063 
3064   return BB;
3065 }
3066 
3067 //===----------------------------------------------------------------------===//
3068 // Constants.
3069 //===----------------------------------------------------------------------===//
3070 
3071 /// ParseValID - Parse an abstract value that doesn't necessarily have a
3072 /// type implied.  For example, if we parse "4" we don't know what integer type
3073 /// it has.  The value will later be combined with its type and checked for
3074 /// sanity.  PFS is used to convert function-local operands of metadata (since
3075 /// metadata operands are not just parsed here but also converted to values).
3076 /// PFS can be null when we are not parsing metadata values inside a function.
3077 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
3078   ID.Loc = Lex.getLoc();
3079   switch (Lex.getKind()) {
3080   default: return TokError("expected value token");
3081   case lltok::GlobalID:  // @42
3082     ID.UIntVal = Lex.getUIntVal();
3083     ID.Kind = ValID::t_GlobalID;
3084     break;
3085   case lltok::GlobalVar:  // @foo
3086     ID.StrVal = Lex.getStrVal();
3087     ID.Kind = ValID::t_GlobalName;
3088     break;
3089   case lltok::LocalVarID:  // %42
3090     ID.UIntVal = Lex.getUIntVal();
3091     ID.Kind = ValID::t_LocalID;
3092     break;
3093   case lltok::LocalVar:  // %foo
3094     ID.StrVal = Lex.getStrVal();
3095     ID.Kind = ValID::t_LocalName;
3096     break;
3097   case lltok::APSInt:
3098     ID.APSIntVal = Lex.getAPSIntVal();
3099     ID.Kind = ValID::t_APSInt;
3100     break;
3101   case lltok::APFloat:
3102     ID.APFloatVal = Lex.getAPFloatVal();
3103     ID.Kind = ValID::t_APFloat;
3104     break;
3105   case lltok::kw_true:
3106     ID.ConstantVal = ConstantInt::getTrue(Context);
3107     ID.Kind = ValID::t_Constant;
3108     break;
3109   case lltok::kw_false:
3110     ID.ConstantVal = ConstantInt::getFalse(Context);
3111     ID.Kind = ValID::t_Constant;
3112     break;
3113   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3114   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3115   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3116   case lltok::kw_none: ID.Kind = ValID::t_None; break;
3117 
3118   case lltok::lbrace: {
3119     // ValID ::= '{' ConstVector '}'
3120     Lex.Lex();
3121     SmallVector<Constant*, 16> Elts;
3122     if (ParseGlobalValueVector(Elts) ||
3123         ParseToken(lltok::rbrace, "expected end of struct constant"))
3124       return true;
3125 
3126     ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3127     ID.UIntVal = Elts.size();
3128     memcpy(ID.ConstantStructElts.get(), Elts.data(),
3129            Elts.size() * sizeof(Elts[0]));
3130     ID.Kind = ValID::t_ConstantStruct;
3131     return false;
3132   }
3133   case lltok::less: {
3134     // ValID ::= '<' ConstVector '>'         --> Vector.
3135     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3136     Lex.Lex();
3137     bool isPackedStruct = EatIfPresent(lltok::lbrace);
3138 
3139     SmallVector<Constant*, 16> Elts;
3140     LocTy FirstEltLoc = Lex.getLoc();
3141     if (ParseGlobalValueVector(Elts) ||
3142         (isPackedStruct &&
3143          ParseToken(lltok::rbrace, "expected end of packed struct")) ||
3144         ParseToken(lltok::greater, "expected end of constant"))
3145       return true;
3146 
3147     if (isPackedStruct) {
3148       ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3149       memcpy(ID.ConstantStructElts.get(), Elts.data(),
3150              Elts.size() * sizeof(Elts[0]));
3151       ID.UIntVal = Elts.size();
3152       ID.Kind = ValID::t_PackedConstantStruct;
3153       return false;
3154     }
3155 
3156     if (Elts.empty())
3157       return Error(ID.Loc, "constant vector must not be empty");
3158 
3159     if (!Elts[0]->getType()->isIntegerTy() &&
3160         !Elts[0]->getType()->isFloatingPointTy() &&
3161         !Elts[0]->getType()->isPointerTy())
3162       return Error(FirstEltLoc,
3163             "vector elements must have integer, pointer or floating point type");
3164 
3165     // Verify that all the vector elements have the same type.
3166     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3167       if (Elts[i]->getType() != Elts[0]->getType())
3168         return Error(FirstEltLoc,
3169                      "vector element #" + Twine(i) +
3170                     " is not of type '" + getTypeString(Elts[0]->getType()));
3171 
3172     ID.ConstantVal = ConstantVector::get(Elts);
3173     ID.Kind = ValID::t_Constant;
3174     return false;
3175   }
3176   case lltok::lsquare: {   // Array Constant
3177     Lex.Lex();
3178     SmallVector<Constant*, 16> Elts;
3179     LocTy FirstEltLoc = Lex.getLoc();
3180     if (ParseGlobalValueVector(Elts) ||
3181         ParseToken(lltok::rsquare, "expected end of array constant"))
3182       return true;
3183 
3184     // Handle empty element.
3185     if (Elts.empty()) {
3186       // Use undef instead of an array because it's inconvenient to determine
3187       // the element type at this point, there being no elements to examine.
3188       ID.Kind = ValID::t_EmptyArray;
3189       return false;
3190     }
3191 
3192     if (!Elts[0]->getType()->isFirstClassType())
3193       return Error(FirstEltLoc, "invalid array element type: " +
3194                    getTypeString(Elts[0]->getType()));
3195 
3196     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3197 
3198     // Verify all elements are correct type!
3199     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3200       if (Elts[i]->getType() != Elts[0]->getType())
3201         return Error(FirstEltLoc,
3202                      "array element #" + Twine(i) +
3203                      " is not of type '" + getTypeString(Elts[0]->getType()));
3204     }
3205 
3206     ID.ConstantVal = ConstantArray::get(ATy, Elts);
3207     ID.Kind = ValID::t_Constant;
3208     return false;
3209   }
3210   case lltok::kw_c:  // c "foo"
3211     Lex.Lex();
3212     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3213                                                   false);
3214     if (ParseToken(lltok::StringConstant, "expected string")) return true;
3215     ID.Kind = ValID::t_Constant;
3216     return false;
3217 
3218   case lltok::kw_asm: {
3219     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3220     //             STRINGCONSTANT
3221     bool HasSideEffect, AlignStack, AsmDialect;
3222     Lex.Lex();
3223     if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3224         ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3225         ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3226         ParseStringConstant(ID.StrVal) ||
3227         ParseToken(lltok::comma, "expected comma in inline asm expression") ||
3228         ParseToken(lltok::StringConstant, "expected constraint string"))
3229       return true;
3230     ID.StrVal2 = Lex.getStrVal();
3231     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
3232       (unsigned(AsmDialect)<<2);
3233     ID.Kind = ValID::t_InlineAsm;
3234     return false;
3235   }
3236 
3237   case lltok::kw_blockaddress: {
3238     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3239     Lex.Lex();
3240 
3241     ValID Fn, Label;
3242 
3243     if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
3244         ParseValID(Fn) ||
3245         ParseToken(lltok::comma, "expected comma in block address expression")||
3246         ParseValID(Label) ||
3247         ParseToken(lltok::rparen, "expected ')' in block address expression"))
3248       return true;
3249 
3250     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3251       return Error(Fn.Loc, "expected function name in blockaddress");
3252     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3253       return Error(Label.Loc, "expected basic block name in blockaddress");
3254 
3255     // Try to find the function (but skip it if it's forward-referenced).
3256     GlobalValue *GV = nullptr;
3257     if (Fn.Kind == ValID::t_GlobalID) {
3258       if (Fn.UIntVal < NumberedVals.size())
3259         GV = NumberedVals[Fn.UIntVal];
3260     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3261       GV = M->getNamedValue(Fn.StrVal);
3262     }
3263     Function *F = nullptr;
3264     if (GV) {
3265       // Confirm that it's actually a function with a definition.
3266       if (!isa<Function>(GV))
3267         return Error(Fn.Loc, "expected function name in blockaddress");
3268       F = cast<Function>(GV);
3269       if (F->isDeclaration())
3270         return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
3271     }
3272 
3273     if (!F) {
3274       // Make a global variable as a placeholder for this reference.
3275       GlobalValue *&FwdRef =
3276           ForwardRefBlockAddresses.insert(std::make_pair(
3277                                               std::move(Fn),
3278                                               std::map<ValID, GlobalValue *>()))
3279               .first->second.insert(std::make_pair(std::move(Label), nullptr))
3280               .first->second;
3281       if (!FwdRef)
3282         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
3283                                     GlobalValue::InternalLinkage, nullptr, "");
3284       ID.ConstantVal = FwdRef;
3285       ID.Kind = ValID::t_Constant;
3286       return false;
3287     }
3288 
3289     // We found the function; now find the basic block.  Don't use PFS, since we
3290     // might be inside a constant expression.
3291     BasicBlock *BB;
3292     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3293       if (Label.Kind == ValID::t_LocalID)
3294         BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
3295       else
3296         BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
3297       if (!BB)
3298         return Error(Label.Loc, "referenced value is not a basic block");
3299     } else {
3300       if (Label.Kind == ValID::t_LocalID)
3301         return Error(Label.Loc, "cannot take address of numeric label after "
3302                                 "the function is defined");
3303       BB = dyn_cast_or_null<BasicBlock>(
3304           F->getValueSymbolTable()->lookup(Label.StrVal));
3305       if (!BB)
3306         return Error(Label.Loc, "referenced value is not a basic block");
3307     }
3308 
3309     ID.ConstantVal = BlockAddress::get(F, BB);
3310     ID.Kind = ValID::t_Constant;
3311     return false;
3312   }
3313 
3314   case lltok::kw_trunc:
3315   case lltok::kw_zext:
3316   case lltok::kw_sext:
3317   case lltok::kw_fptrunc:
3318   case lltok::kw_fpext:
3319   case lltok::kw_bitcast:
3320   case lltok::kw_addrspacecast:
3321   case lltok::kw_uitofp:
3322   case lltok::kw_sitofp:
3323   case lltok::kw_fptoui:
3324   case lltok::kw_fptosi:
3325   case lltok::kw_inttoptr:
3326   case lltok::kw_ptrtoint: {
3327     unsigned Opc = Lex.getUIntVal();
3328     Type *DestTy = nullptr;
3329     Constant *SrcVal;
3330     Lex.Lex();
3331     if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3332         ParseGlobalTypeAndValue(SrcVal) ||
3333         ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3334         ParseType(DestTy) ||
3335         ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3336       return true;
3337     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3338       return Error(ID.Loc, "invalid cast opcode for cast from '" +
3339                    getTypeString(SrcVal->getType()) + "' to '" +
3340                    getTypeString(DestTy) + "'");
3341     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3342                                                  SrcVal, DestTy);
3343     ID.Kind = ValID::t_Constant;
3344     return false;
3345   }
3346   case lltok::kw_extractvalue: {
3347     Lex.Lex();
3348     Constant *Val;
3349     SmallVector<unsigned, 4> Indices;
3350     if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
3351         ParseGlobalTypeAndValue(Val) ||
3352         ParseIndexList(Indices) ||
3353         ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3354       return true;
3355 
3356     if (!Val->getType()->isAggregateType())
3357       return Error(ID.Loc, "extractvalue operand must be aggregate type");
3358     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3359       return Error(ID.Loc, "invalid indices for extractvalue");
3360     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3361     ID.Kind = ValID::t_Constant;
3362     return false;
3363   }
3364   case lltok::kw_insertvalue: {
3365     Lex.Lex();
3366     Constant *Val0, *Val1;
3367     SmallVector<unsigned, 4> Indices;
3368     if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
3369         ParseGlobalTypeAndValue(Val0) ||
3370         ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
3371         ParseGlobalTypeAndValue(Val1) ||
3372         ParseIndexList(Indices) ||
3373         ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3374       return true;
3375     if (!Val0->getType()->isAggregateType())
3376       return Error(ID.Loc, "insertvalue operand must be aggregate type");
3377     Type *IndexedType =
3378         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3379     if (!IndexedType)
3380       return Error(ID.Loc, "invalid indices for insertvalue");
3381     if (IndexedType != Val1->getType())
3382       return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3383                                getTypeString(Val1->getType()) +
3384                                "' instead of '" + getTypeString(IndexedType) +
3385                                "'");
3386     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3387     ID.Kind = ValID::t_Constant;
3388     return false;
3389   }
3390   case lltok::kw_icmp:
3391   case lltok::kw_fcmp: {
3392     unsigned PredVal, Opc = Lex.getUIntVal();
3393     Constant *Val0, *Val1;
3394     Lex.Lex();
3395     if (ParseCmpPredicate(PredVal, Opc) ||
3396         ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3397         ParseGlobalTypeAndValue(Val0) ||
3398         ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
3399         ParseGlobalTypeAndValue(Val1) ||
3400         ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3401       return true;
3402 
3403     if (Val0->getType() != Val1->getType())
3404       return Error(ID.Loc, "compare operands must have the same type");
3405 
3406     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3407 
3408     if (Opc == Instruction::FCmp) {
3409       if (!Val0->getType()->isFPOrFPVectorTy())
3410         return Error(ID.Loc, "fcmp requires floating point operands");
3411       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3412     } else {
3413       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3414       if (!Val0->getType()->isIntOrIntVectorTy() &&
3415           !Val0->getType()->isPtrOrPtrVectorTy())
3416         return Error(ID.Loc, "icmp requires pointer or integer operands");
3417       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3418     }
3419     ID.Kind = ValID::t_Constant;
3420     return false;
3421   }
3422 
3423   // Unary Operators.
3424   case lltok::kw_fneg: {
3425     unsigned Opc = Lex.getUIntVal();
3426     Constant *Val;
3427     Lex.Lex();
3428     if (ParseToken(lltok::lparen, "expected '(' in unary constantexpr") ||
3429         ParseGlobalTypeAndValue(Val) ||
3430         ParseToken(lltok::rparen, "expected ')' in unary constantexpr"))
3431       return true;
3432 
3433     // Check that the type is valid for the operator.
3434     switch (Opc) {
3435     case Instruction::FNeg:
3436       if (!Val->getType()->isFPOrFPVectorTy())
3437         return Error(ID.Loc, "constexpr requires fp operands");
3438       break;
3439     default: llvm_unreachable("Unknown unary operator!");
3440     }
3441     unsigned Flags = 0;
3442     Constant *C = ConstantExpr::get(Opc, Val, Flags);
3443     ID.ConstantVal = C;
3444     ID.Kind = ValID::t_Constant;
3445     return false;
3446   }
3447   // Binary Operators.
3448   case lltok::kw_add:
3449   case lltok::kw_fadd:
3450   case lltok::kw_sub:
3451   case lltok::kw_fsub:
3452   case lltok::kw_mul:
3453   case lltok::kw_fmul:
3454   case lltok::kw_udiv:
3455   case lltok::kw_sdiv:
3456   case lltok::kw_fdiv:
3457   case lltok::kw_urem:
3458   case lltok::kw_srem:
3459   case lltok::kw_frem:
3460   case lltok::kw_shl:
3461   case lltok::kw_lshr:
3462   case lltok::kw_ashr: {
3463     bool NUW = false;
3464     bool NSW = false;
3465     bool Exact = false;
3466     unsigned Opc = Lex.getUIntVal();
3467     Constant *Val0, *Val1;
3468     Lex.Lex();
3469     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3470         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3471       if (EatIfPresent(lltok::kw_nuw))
3472         NUW = true;
3473       if (EatIfPresent(lltok::kw_nsw)) {
3474         NSW = true;
3475         if (EatIfPresent(lltok::kw_nuw))
3476           NUW = true;
3477       }
3478     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3479                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3480       if (EatIfPresent(lltok::kw_exact))
3481         Exact = true;
3482     }
3483     if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3484         ParseGlobalTypeAndValue(Val0) ||
3485         ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
3486         ParseGlobalTypeAndValue(Val1) ||
3487         ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3488       return true;
3489     if (Val0->getType() != Val1->getType())
3490       return Error(ID.Loc, "operands of constexpr must have same type");
3491     // Check that the type is valid for the operator.
3492     switch (Opc) {
3493     case Instruction::Add:
3494     case Instruction::Sub:
3495     case Instruction::Mul:
3496     case Instruction::UDiv:
3497     case Instruction::SDiv:
3498     case Instruction::URem:
3499     case Instruction::SRem:
3500     case Instruction::Shl:
3501     case Instruction::AShr:
3502     case Instruction::LShr:
3503       if (!Val0->getType()->isIntOrIntVectorTy())
3504         return Error(ID.Loc, "constexpr requires integer operands");
3505       break;
3506     case Instruction::FAdd:
3507     case Instruction::FSub:
3508     case Instruction::FMul:
3509     case Instruction::FDiv:
3510     case Instruction::FRem:
3511       if (!Val0->getType()->isFPOrFPVectorTy())
3512         return Error(ID.Loc, "constexpr requires fp operands");
3513       break;
3514     default: llvm_unreachable("Unknown binary operator!");
3515     }
3516     unsigned Flags = 0;
3517     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3518     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3519     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3520     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3521     ID.ConstantVal = C;
3522     ID.Kind = ValID::t_Constant;
3523     return false;
3524   }
3525 
3526   // Logical Operations
3527   case lltok::kw_and:
3528   case lltok::kw_or:
3529   case lltok::kw_xor: {
3530     unsigned Opc = Lex.getUIntVal();
3531     Constant *Val0, *Val1;
3532     Lex.Lex();
3533     if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3534         ParseGlobalTypeAndValue(Val0) ||
3535         ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
3536         ParseGlobalTypeAndValue(Val1) ||
3537         ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3538       return true;
3539     if (Val0->getType() != Val1->getType())
3540       return Error(ID.Loc, "operands of constexpr must have same type");
3541     if (!Val0->getType()->isIntOrIntVectorTy())
3542       return Error(ID.Loc,
3543                    "constexpr requires integer or integer vector operands");
3544     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3545     ID.Kind = ValID::t_Constant;
3546     return false;
3547   }
3548 
3549   case lltok::kw_getelementptr:
3550   case lltok::kw_shufflevector:
3551   case lltok::kw_insertelement:
3552   case lltok::kw_extractelement:
3553   case lltok::kw_select: {
3554     unsigned Opc = Lex.getUIntVal();
3555     SmallVector<Constant*, 16> Elts;
3556     bool InBounds = false;
3557     Type *Ty;
3558     Lex.Lex();
3559 
3560     if (Opc == Instruction::GetElementPtr)
3561       InBounds = EatIfPresent(lltok::kw_inbounds);
3562 
3563     if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
3564       return true;
3565 
3566     LocTy ExplicitTypeLoc = Lex.getLoc();
3567     if (Opc == Instruction::GetElementPtr) {
3568       if (ParseType(Ty) ||
3569           ParseToken(lltok::comma, "expected comma after getelementptr's type"))
3570         return true;
3571     }
3572 
3573     Optional<unsigned> InRangeOp;
3574     if (ParseGlobalValueVector(
3575             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3576         ParseToken(lltok::rparen, "expected ')' in constantexpr"))
3577       return true;
3578 
3579     if (Opc == Instruction::GetElementPtr) {
3580       if (Elts.size() == 0 ||
3581           !Elts[0]->getType()->isPtrOrPtrVectorTy())
3582         return Error(ID.Loc, "base of getelementptr must be a pointer");
3583 
3584       Type *BaseType = Elts[0]->getType();
3585       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3586       if (Ty != BasePointerType->getElementType())
3587         return Error(
3588             ExplicitTypeLoc,
3589             "explicit pointee type doesn't match operand's pointee type");
3590 
3591       unsigned GEPWidth = BaseType->isVectorTy()
3592                               ? cast<VectorType>(BaseType)->getNumElements()
3593                               : 0;
3594 
3595       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3596       for (Constant *Val : Indices) {
3597         Type *ValTy = Val->getType();
3598         if (!ValTy->isIntOrIntVectorTy())
3599           return Error(ID.Loc, "getelementptr index must be an integer");
3600         if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) {
3601           unsigned ValNumEl = ValVTy->getNumElements();
3602           if (GEPWidth && (ValNumEl != GEPWidth))
3603             return Error(
3604                 ID.Loc,
3605                 "getelementptr vector index has a wrong number of elements");
3606           // GEPWidth may have been unknown because the base is a scalar,
3607           // but it is known now.
3608           GEPWidth = ValNumEl;
3609         }
3610       }
3611 
3612       SmallPtrSet<Type*, 4> Visited;
3613       if (!Indices.empty() && !Ty->isSized(&Visited))
3614         return Error(ID.Loc, "base element of getelementptr must be sized");
3615 
3616       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3617         return Error(ID.Loc, "invalid getelementptr indices");
3618 
3619       if (InRangeOp) {
3620         if (*InRangeOp == 0)
3621           return Error(ID.Loc,
3622                        "inrange keyword may not appear on pointer operand");
3623         --*InRangeOp;
3624       }
3625 
3626       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3627                                                       InBounds, InRangeOp);
3628     } else if (Opc == Instruction::Select) {
3629       if (Elts.size() != 3)
3630         return Error(ID.Loc, "expected three operands to select");
3631       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3632                                                               Elts[2]))
3633         return Error(ID.Loc, Reason);
3634       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3635     } else if (Opc == Instruction::ShuffleVector) {
3636       if (Elts.size() != 3)
3637         return Error(ID.Loc, "expected three operands to shufflevector");
3638       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3639         return Error(ID.Loc, "invalid operands to shufflevector");
3640       SmallVector<int, 16> Mask;
3641       ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask);
3642       ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask);
3643     } else if (Opc == Instruction::ExtractElement) {
3644       if (Elts.size() != 2)
3645         return Error(ID.Loc, "expected two operands to extractelement");
3646       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3647         return Error(ID.Loc, "invalid extractelement operands");
3648       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3649     } else {
3650       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3651       if (Elts.size() != 3)
3652       return Error(ID.Loc, "expected three operands to insertelement");
3653       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3654         return Error(ID.Loc, "invalid insertelement operands");
3655       ID.ConstantVal =
3656                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3657     }
3658 
3659     ID.Kind = ValID::t_Constant;
3660     return false;
3661   }
3662   }
3663 
3664   Lex.Lex();
3665   return false;
3666 }
3667 
3668 /// ParseGlobalValue - Parse a global value with the specified type.
3669 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
3670   C = nullptr;
3671   ValID ID;
3672   Value *V = nullptr;
3673   bool Parsed = ParseValID(ID) ||
3674                 ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false);
3675   if (V && !(C = dyn_cast<Constant>(V)))
3676     return Error(ID.Loc, "global values must be constants");
3677   return Parsed;
3678 }
3679 
3680 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
3681   Type *Ty = nullptr;
3682   return ParseType(Ty) ||
3683          ParseGlobalValue(Ty, V);
3684 }
3685 
3686 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3687   C = nullptr;
3688 
3689   LocTy KwLoc = Lex.getLoc();
3690   if (!EatIfPresent(lltok::kw_comdat))
3691     return false;
3692 
3693   if (EatIfPresent(lltok::lparen)) {
3694     if (Lex.getKind() != lltok::ComdatVar)
3695       return TokError("expected comdat variable");
3696     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3697     Lex.Lex();
3698     if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
3699       return true;
3700   } else {
3701     if (GlobalName.empty())
3702       return TokError("comdat cannot be unnamed");
3703     C = getComdat(std::string(GlobalName), KwLoc);
3704   }
3705 
3706   return false;
3707 }
3708 
3709 /// ParseGlobalValueVector
3710 ///   ::= /*empty*/
3711 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3712 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3713                                       Optional<unsigned> *InRangeOp) {
3714   // Empty list.
3715   if (Lex.getKind() == lltok::rbrace ||
3716       Lex.getKind() == lltok::rsquare ||
3717       Lex.getKind() == lltok::greater ||
3718       Lex.getKind() == lltok::rparen)
3719     return false;
3720 
3721   do {
3722     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3723       *InRangeOp = Elts.size();
3724 
3725     Constant *C;
3726     if (ParseGlobalTypeAndValue(C)) return true;
3727     Elts.push_back(C);
3728   } while (EatIfPresent(lltok::comma));
3729 
3730   return false;
3731 }
3732 
3733 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
3734   SmallVector<Metadata *, 16> Elts;
3735   if (ParseMDNodeVector(Elts))
3736     return true;
3737 
3738   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3739   return false;
3740 }
3741 
3742 /// MDNode:
3743 ///  ::= !{ ... }
3744 ///  ::= !7
3745 ///  ::= !DILocation(...)
3746 bool LLParser::ParseMDNode(MDNode *&N) {
3747   if (Lex.getKind() == lltok::MetadataVar)
3748     return ParseSpecializedMDNode(N);
3749 
3750   return ParseToken(lltok::exclaim, "expected '!' here") ||
3751          ParseMDNodeTail(N);
3752 }
3753 
3754 bool LLParser::ParseMDNodeTail(MDNode *&N) {
3755   // !{ ... }
3756   if (Lex.getKind() == lltok::lbrace)
3757     return ParseMDTuple(N);
3758 
3759   // !42
3760   return ParseMDNodeID(N);
3761 }
3762 
3763 namespace {
3764 
3765 /// Structure to represent an optional metadata field.
3766 template <class FieldTy> struct MDFieldImpl {
3767   typedef MDFieldImpl ImplTy;
3768   FieldTy Val;
3769   bool Seen;
3770 
3771   void assign(FieldTy Val) {
3772     Seen = true;
3773     this->Val = std::move(Val);
3774   }
3775 
3776   explicit MDFieldImpl(FieldTy Default)
3777       : Val(std::move(Default)), Seen(false) {}
3778 };
3779 
3780 /// Structure to represent an optional metadata field that
3781 /// can be of either type (A or B) and encapsulates the
3782 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
3783 /// to reimplement the specifics for representing each Field.
3784 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
3785   typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
3786   FieldTypeA A;
3787   FieldTypeB B;
3788   bool Seen;
3789 
3790   enum {
3791     IsInvalid = 0,
3792     IsTypeA = 1,
3793     IsTypeB = 2
3794   } WhatIs;
3795 
3796   void assign(FieldTypeA A) {
3797     Seen = true;
3798     this->A = std::move(A);
3799     WhatIs = IsTypeA;
3800   }
3801 
3802   void assign(FieldTypeB B) {
3803     Seen = true;
3804     this->B = std::move(B);
3805     WhatIs = IsTypeB;
3806   }
3807 
3808   explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
3809       : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
3810         WhatIs(IsInvalid) {}
3811 };
3812 
3813 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3814   uint64_t Max;
3815 
3816   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3817       : ImplTy(Default), Max(Max) {}
3818 };
3819 
3820 struct LineField : public MDUnsignedField {
3821   LineField() : MDUnsignedField(0, UINT32_MAX) {}
3822 };
3823 
3824 struct ColumnField : public MDUnsignedField {
3825   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3826 };
3827 
3828 struct DwarfTagField : public MDUnsignedField {
3829   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3830   DwarfTagField(dwarf::Tag DefaultTag)
3831       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3832 };
3833 
3834 struct DwarfMacinfoTypeField : public MDUnsignedField {
3835   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3836   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3837     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3838 };
3839 
3840 struct DwarfAttEncodingField : public MDUnsignedField {
3841   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3842 };
3843 
3844 struct DwarfVirtualityField : public MDUnsignedField {
3845   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3846 };
3847 
3848 struct DwarfLangField : public MDUnsignedField {
3849   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3850 };
3851 
3852 struct DwarfCCField : public MDUnsignedField {
3853   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3854 };
3855 
3856 struct EmissionKindField : public MDUnsignedField {
3857   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3858 };
3859 
3860 struct NameTableKindField : public MDUnsignedField {
3861   NameTableKindField()
3862       : MDUnsignedField(
3863             0, (unsigned)
3864                    DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
3865 };
3866 
3867 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
3868   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3869 };
3870 
3871 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
3872   DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
3873 };
3874 
3875 struct MDSignedField : public MDFieldImpl<int64_t> {
3876   int64_t Min;
3877   int64_t Max;
3878 
3879   MDSignedField(int64_t Default = 0)
3880       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3881   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3882       : ImplTy(Default), Min(Min), Max(Max) {}
3883 };
3884 
3885 struct MDBoolField : public MDFieldImpl<bool> {
3886   MDBoolField(bool Default = false) : ImplTy(Default) {}
3887 };
3888 
3889 struct MDField : public MDFieldImpl<Metadata *> {
3890   bool AllowNull;
3891 
3892   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3893 };
3894 
3895 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
3896   MDConstant() : ImplTy(nullptr) {}
3897 };
3898 
3899 struct MDStringField : public MDFieldImpl<MDString *> {
3900   bool AllowEmpty;
3901   MDStringField(bool AllowEmpty = true)
3902       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3903 };
3904 
3905 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3906   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3907 };
3908 
3909 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
3910   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
3911 };
3912 
3913 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
3914   MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
3915       : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
3916 
3917   MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
3918                     bool AllowNull = true)
3919       : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
3920 
3921   bool isMDSignedField() const { return WhatIs == IsTypeA; }
3922   bool isMDField() const { return WhatIs == IsTypeB; }
3923   int64_t getMDSignedValue() const {
3924     assert(isMDSignedField() && "Wrong field type");
3925     return A.Val;
3926   }
3927   Metadata *getMDFieldValue() const {
3928     assert(isMDField() && "Wrong field type");
3929     return B.Val;
3930   }
3931 };
3932 
3933 struct MDSignedOrUnsignedField
3934     : MDEitherFieldImpl<MDSignedField, MDUnsignedField> {
3935   MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {}
3936 
3937   bool isMDSignedField() const { return WhatIs == IsTypeA; }
3938   bool isMDUnsignedField() const { return WhatIs == IsTypeB; }
3939   int64_t getMDSignedValue() const {
3940     assert(isMDSignedField() && "Wrong field type");
3941     return A.Val;
3942   }
3943   uint64_t getMDUnsignedValue() const {
3944     assert(isMDUnsignedField() && "Wrong field type");
3945     return B.Val;
3946   }
3947 };
3948 
3949 } // end anonymous namespace
3950 
3951 namespace llvm {
3952 
3953 template <>
3954 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3955                             MDUnsignedField &Result) {
3956   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3957     return TokError("expected unsigned integer");
3958 
3959   auto &U = Lex.getAPSIntVal();
3960   if (U.ugt(Result.Max))
3961     return TokError("value for '" + Name + "' too large, limit is " +
3962                     Twine(Result.Max));
3963   Result.assign(U.getZExtValue());
3964   assert(Result.Val <= Result.Max && "Expected value in range");
3965   Lex.Lex();
3966   return false;
3967 }
3968 
3969 template <>
3970 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
3971   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3972 }
3973 template <>
3974 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
3975   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3976 }
3977 
3978 template <>
3979 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
3980   if (Lex.getKind() == lltok::APSInt)
3981     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3982 
3983   if (Lex.getKind() != lltok::DwarfTag)
3984     return TokError("expected DWARF tag");
3985 
3986   unsigned Tag = dwarf::getTag(Lex.getStrVal());
3987   if (Tag == dwarf::DW_TAG_invalid)
3988     return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
3989   assert(Tag <= Result.Max && "Expected valid DWARF tag");
3990 
3991   Result.assign(Tag);
3992   Lex.Lex();
3993   return false;
3994 }
3995 
3996 template <>
3997 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3998                             DwarfMacinfoTypeField &Result) {
3999   if (Lex.getKind() == lltok::APSInt)
4000     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4001 
4002   if (Lex.getKind() != lltok::DwarfMacinfo)
4003     return TokError("expected DWARF macinfo type");
4004 
4005   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
4006   if (Macinfo == dwarf::DW_MACINFO_invalid)
4007     return TokError(
4008         "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'");
4009   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
4010 
4011   Result.assign(Macinfo);
4012   Lex.Lex();
4013   return false;
4014 }
4015 
4016 template <>
4017 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4018                             DwarfVirtualityField &Result) {
4019   if (Lex.getKind() == lltok::APSInt)
4020     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4021 
4022   if (Lex.getKind() != lltok::DwarfVirtuality)
4023     return TokError("expected DWARF virtuality code");
4024 
4025   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
4026   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
4027     return TokError("invalid DWARF virtuality code" + Twine(" '") +
4028                     Lex.getStrVal() + "'");
4029   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
4030   Result.assign(Virtuality);
4031   Lex.Lex();
4032   return false;
4033 }
4034 
4035 template <>
4036 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
4037   if (Lex.getKind() == lltok::APSInt)
4038     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4039 
4040   if (Lex.getKind() != lltok::DwarfLang)
4041     return TokError("expected DWARF language");
4042 
4043   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
4044   if (!Lang)
4045     return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
4046                     "'");
4047   assert(Lang <= Result.Max && "Expected valid DWARF language");
4048   Result.assign(Lang);
4049   Lex.Lex();
4050   return false;
4051 }
4052 
4053 template <>
4054 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
4055   if (Lex.getKind() == lltok::APSInt)
4056     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4057 
4058   if (Lex.getKind() != lltok::DwarfCC)
4059     return TokError("expected DWARF calling convention");
4060 
4061   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
4062   if (!CC)
4063     return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() +
4064                     "'");
4065   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
4066   Result.assign(CC);
4067   Lex.Lex();
4068   return false;
4069 }
4070 
4071 template <>
4072 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) {
4073   if (Lex.getKind() == lltok::APSInt)
4074     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4075 
4076   if (Lex.getKind() != lltok::EmissionKind)
4077     return TokError("expected emission kind");
4078 
4079   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
4080   if (!Kind)
4081     return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
4082                     "'");
4083   assert(*Kind <= Result.Max && "Expected valid emission kind");
4084   Result.assign(*Kind);
4085   Lex.Lex();
4086   return false;
4087 }
4088 
4089 template <>
4090 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4091                             NameTableKindField &Result) {
4092   if (Lex.getKind() == lltok::APSInt)
4093     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4094 
4095   if (Lex.getKind() != lltok::NameTableKind)
4096     return TokError("expected nameTable kind");
4097 
4098   auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
4099   if (!Kind)
4100     return TokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
4101                     "'");
4102   assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
4103   Result.assign((unsigned)*Kind);
4104   Lex.Lex();
4105   return false;
4106 }
4107 
4108 template <>
4109 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4110                             DwarfAttEncodingField &Result) {
4111   if (Lex.getKind() == lltok::APSInt)
4112     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4113 
4114   if (Lex.getKind() != lltok::DwarfAttEncoding)
4115     return TokError("expected DWARF type attribute encoding");
4116 
4117   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4118   if (!Encoding)
4119     return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
4120                     Lex.getStrVal() + "'");
4121   assert(Encoding <= Result.Max && "Expected valid DWARF language");
4122   Result.assign(Encoding);
4123   Lex.Lex();
4124   return false;
4125 }
4126 
4127 /// DIFlagField
4128 ///  ::= uint32
4129 ///  ::= DIFlagVector
4130 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4131 template <>
4132 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4133 
4134   // Parser for a single flag.
4135   auto parseFlag = [&](DINode::DIFlags &Val) {
4136     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4137       uint32_t TempVal = static_cast<uint32_t>(Val);
4138       bool Res = ParseUInt32(TempVal);
4139       Val = static_cast<DINode::DIFlags>(TempVal);
4140       return Res;
4141     }
4142 
4143     if (Lex.getKind() != lltok::DIFlag)
4144       return TokError("expected debug info flag");
4145 
4146     Val = DINode::getFlag(Lex.getStrVal());
4147     if (!Val)
4148       return TokError(Twine("invalid debug info flag flag '") +
4149                       Lex.getStrVal() + "'");
4150     Lex.Lex();
4151     return false;
4152   };
4153 
4154   // Parse the flags and combine them together.
4155   DINode::DIFlags Combined = DINode::FlagZero;
4156   do {
4157     DINode::DIFlags Val;
4158     if (parseFlag(Val))
4159       return true;
4160     Combined |= Val;
4161   } while (EatIfPresent(lltok::bar));
4162 
4163   Result.assign(Combined);
4164   return false;
4165 }
4166 
4167 /// DISPFlagField
4168 ///  ::= uint32
4169 ///  ::= DISPFlagVector
4170 ///  ::= DISPFlagVector '|' DISPFlag* '|' uint32
4171 template <>
4172 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4173 
4174   // Parser for a single flag.
4175   auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4176     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4177       uint32_t TempVal = static_cast<uint32_t>(Val);
4178       bool Res = ParseUInt32(TempVal);
4179       Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4180       return Res;
4181     }
4182 
4183     if (Lex.getKind() != lltok::DISPFlag)
4184       return TokError("expected debug info flag");
4185 
4186     Val = DISubprogram::getFlag(Lex.getStrVal());
4187     if (!Val)
4188       return TokError(Twine("invalid subprogram debug info flag '") +
4189                       Lex.getStrVal() + "'");
4190     Lex.Lex();
4191     return false;
4192   };
4193 
4194   // Parse the flags and combine them together.
4195   DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4196   do {
4197     DISubprogram::DISPFlags Val;
4198     if (parseFlag(Val))
4199       return true;
4200     Combined |= Val;
4201   } while (EatIfPresent(lltok::bar));
4202 
4203   Result.assign(Combined);
4204   return false;
4205 }
4206 
4207 template <>
4208 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4209                             MDSignedField &Result) {
4210   if (Lex.getKind() != lltok::APSInt)
4211     return TokError("expected signed integer");
4212 
4213   auto &S = Lex.getAPSIntVal();
4214   if (S < Result.Min)
4215     return TokError("value for '" + Name + "' too small, limit is " +
4216                     Twine(Result.Min));
4217   if (S > Result.Max)
4218     return TokError("value for '" + Name + "' too large, limit is " +
4219                     Twine(Result.Max));
4220   Result.assign(S.getExtValue());
4221   assert(Result.Val >= Result.Min && "Expected value in range");
4222   assert(Result.Val <= Result.Max && "Expected value in range");
4223   Lex.Lex();
4224   return false;
4225 }
4226 
4227 template <>
4228 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4229   switch (Lex.getKind()) {
4230   default:
4231     return TokError("expected 'true' or 'false'");
4232   case lltok::kw_true:
4233     Result.assign(true);
4234     break;
4235   case lltok::kw_false:
4236     Result.assign(false);
4237     break;
4238   }
4239   Lex.Lex();
4240   return false;
4241 }
4242 
4243 template <>
4244 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4245   if (Lex.getKind() == lltok::kw_null) {
4246     if (!Result.AllowNull)
4247       return TokError("'" + Name + "' cannot be null");
4248     Lex.Lex();
4249     Result.assign(nullptr);
4250     return false;
4251   }
4252 
4253   Metadata *MD;
4254   if (ParseMetadata(MD, nullptr))
4255     return true;
4256 
4257   Result.assign(MD);
4258   return false;
4259 }
4260 
4261 template <>
4262 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4263                             MDSignedOrMDField &Result) {
4264   // Try to parse a signed int.
4265   if (Lex.getKind() == lltok::APSInt) {
4266     MDSignedField Res = Result.A;
4267     if (!ParseMDField(Loc, Name, Res)) {
4268       Result.assign(Res);
4269       return false;
4270     }
4271     return true;
4272   }
4273 
4274   // Otherwise, try to parse as an MDField.
4275   MDField Res = Result.B;
4276   if (!ParseMDField(Loc, Name, Res)) {
4277     Result.assign(Res);
4278     return false;
4279   }
4280 
4281   return true;
4282 }
4283 
4284 template <>
4285 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4286                             MDSignedOrUnsignedField &Result) {
4287   if (Lex.getKind() != lltok::APSInt)
4288     return false;
4289 
4290   if (Lex.getAPSIntVal().isSigned()) {
4291     MDSignedField Res = Result.A;
4292     if (ParseMDField(Loc, Name, Res))
4293       return true;
4294     Result.assign(Res);
4295     return false;
4296   }
4297 
4298   MDUnsignedField Res = Result.B;
4299   if (ParseMDField(Loc, Name, Res))
4300     return true;
4301   Result.assign(Res);
4302   return false;
4303 }
4304 
4305 template <>
4306 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4307   LocTy ValueLoc = Lex.getLoc();
4308   std::string S;
4309   if (ParseStringConstant(S))
4310     return true;
4311 
4312   if (!Result.AllowEmpty && S.empty())
4313     return Error(ValueLoc, "'" + Name + "' cannot be empty");
4314 
4315   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4316   return false;
4317 }
4318 
4319 template <>
4320 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4321   SmallVector<Metadata *, 4> MDs;
4322   if (ParseMDNodeVector(MDs))
4323     return true;
4324 
4325   Result.assign(std::move(MDs));
4326   return false;
4327 }
4328 
4329 template <>
4330 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4331                             ChecksumKindField &Result) {
4332   Optional<DIFile::ChecksumKind> CSKind =
4333       DIFile::getChecksumKind(Lex.getStrVal());
4334 
4335   if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4336     return TokError(
4337         "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'");
4338 
4339   Result.assign(*CSKind);
4340   Lex.Lex();
4341   return false;
4342 }
4343 
4344 } // end namespace llvm
4345 
4346 template <class ParserTy>
4347 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
4348   do {
4349     if (Lex.getKind() != lltok::LabelStr)
4350       return TokError("expected field label here");
4351 
4352     if (parseField())
4353       return true;
4354   } while (EatIfPresent(lltok::comma));
4355 
4356   return false;
4357 }
4358 
4359 template <class ParserTy>
4360 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
4361   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4362   Lex.Lex();
4363 
4364   if (ParseToken(lltok::lparen, "expected '(' here"))
4365     return true;
4366   if (Lex.getKind() != lltok::rparen)
4367     if (ParseMDFieldsImplBody(parseField))
4368       return true;
4369 
4370   ClosingLoc = Lex.getLoc();
4371   return ParseToken(lltok::rparen, "expected ')' here");
4372 }
4373 
4374 template <class FieldTy>
4375 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
4376   if (Result.Seen)
4377     return TokError("field '" + Name + "' cannot be specified more than once");
4378 
4379   LocTy Loc = Lex.getLoc();
4380   Lex.Lex();
4381   return ParseMDField(Loc, Name, Result);
4382 }
4383 
4384 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4385   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4386 
4387 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
4388   if (Lex.getStrVal() == #CLASS)                                               \
4389     return Parse##CLASS(N, IsDistinct);
4390 #include "llvm/IR/Metadata.def"
4391 
4392   return TokError("expected metadata type");
4393 }
4394 
4395 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4396 #define NOP_FIELD(NAME, TYPE, INIT)
4397 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
4398   if (!NAME.Seen)                                                              \
4399     return Error(ClosingLoc, "missing required field '" #NAME "'");
4400 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
4401   if (Lex.getStrVal() == #NAME)                                                \
4402     return ParseMDField(#NAME, NAME);
4403 #define PARSE_MD_FIELDS()                                                      \
4404   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
4405   do {                                                                         \
4406     LocTy ClosingLoc;                                                          \
4407     if (ParseMDFieldsImpl([&]() -> bool {                                      \
4408       VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                          \
4409       return TokError(Twine("invalid field '") + Lex.getStrVal() + "'");       \
4410     }, ClosingLoc))                                                            \
4411       return true;                                                             \
4412     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
4413   } while (false)
4414 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
4415   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4416 
4417 /// ParseDILocationFields:
4418 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4419 ///   isImplicitCode: true)
4420 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
4421 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4422   OPTIONAL(line, LineField, );                                                 \
4423   OPTIONAL(column, ColumnField, );                                             \
4424   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4425   OPTIONAL(inlinedAt, MDField, );                                              \
4426   OPTIONAL(isImplicitCode, MDBoolField, (false));
4427   PARSE_MD_FIELDS();
4428 #undef VISIT_MD_FIELDS
4429 
4430   Result =
4431       GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4432                                    inlinedAt.Val, isImplicitCode.Val));
4433   return false;
4434 }
4435 
4436 /// ParseGenericDINode:
4437 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4438 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
4439 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4440   REQUIRED(tag, DwarfTagField, );                                              \
4441   OPTIONAL(header, MDStringField, );                                           \
4442   OPTIONAL(operands, MDFieldList, );
4443   PARSE_MD_FIELDS();
4444 #undef VISIT_MD_FIELDS
4445 
4446   Result = GET_OR_DISTINCT(GenericDINode,
4447                            (Context, tag.Val, header.Val, operands.Val));
4448   return false;
4449 }
4450 
4451 /// ParseDISubrange:
4452 ///   ::= !DISubrange(count: 30, lowerBound: 2)
4453 ///   ::= !DISubrange(count: !node, lowerBound: 2)
4454 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
4455 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4456   REQUIRED(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false));              \
4457   OPTIONAL(lowerBound, MDSignedField, );
4458   PARSE_MD_FIELDS();
4459 #undef VISIT_MD_FIELDS
4460 
4461   if (count.isMDSignedField())
4462     Result = GET_OR_DISTINCT(
4463         DISubrange, (Context, count.getMDSignedValue(), lowerBound.Val));
4464   else if (count.isMDField())
4465     Result = GET_OR_DISTINCT(
4466         DISubrange, (Context, count.getMDFieldValue(), lowerBound.Val));
4467   else
4468     return true;
4469 
4470   return false;
4471 }
4472 
4473 /// ParseDIEnumerator:
4474 ///   ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4475 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4476 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4477   REQUIRED(name, MDStringField, );                                             \
4478   REQUIRED(value, MDSignedOrUnsignedField, );                                  \
4479   OPTIONAL(isUnsigned, MDBoolField, (false));
4480   PARSE_MD_FIELDS();
4481 #undef VISIT_MD_FIELDS
4482 
4483   if (isUnsigned.Val && value.isMDSignedField())
4484     return TokError("unsigned enumerator with negative value");
4485 
4486   int64_t Value = value.isMDSignedField()
4487                       ? value.getMDSignedValue()
4488                       : static_cast<int64_t>(value.getMDUnsignedValue());
4489   Result =
4490       GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4491 
4492   return false;
4493 }
4494 
4495 /// ParseDIBasicType:
4496 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4497 ///                    encoding: DW_ATE_encoding, flags: 0)
4498 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
4499 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4500   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
4501   OPTIONAL(name, MDStringField, );                                             \
4502   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4503   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4504   OPTIONAL(encoding, DwarfAttEncodingField, );                                 \
4505   OPTIONAL(flags, DIFlagField, );
4506   PARSE_MD_FIELDS();
4507 #undef VISIT_MD_FIELDS
4508 
4509   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4510                                          align.Val, encoding.Val, flags.Val));
4511   return false;
4512 }
4513 
4514 /// ParseDIDerivedType:
4515 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4516 ///                      line: 7, scope: !1, baseType: !2, size: 32,
4517 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
4518 ///                      dwarfAddressSpace: 3)
4519 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4520 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4521   REQUIRED(tag, DwarfTagField, );                                              \
4522   OPTIONAL(name, MDStringField, );                                             \
4523   OPTIONAL(file, MDField, );                                                   \
4524   OPTIONAL(line, LineField, );                                                 \
4525   OPTIONAL(scope, MDField, );                                                  \
4526   REQUIRED(baseType, MDField, );                                               \
4527   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4528   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4529   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4530   OPTIONAL(flags, DIFlagField, );                                              \
4531   OPTIONAL(extraData, MDField, );                                              \
4532   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
4533   PARSE_MD_FIELDS();
4534 #undef VISIT_MD_FIELDS
4535 
4536   Optional<unsigned> DWARFAddressSpace;
4537   if (dwarfAddressSpace.Val != UINT32_MAX)
4538     DWARFAddressSpace = dwarfAddressSpace.Val;
4539 
4540   Result = GET_OR_DISTINCT(DIDerivedType,
4541                            (Context, tag.Val, name.Val, file.Val, line.Val,
4542                             scope.Val, baseType.Val, size.Val, align.Val,
4543                             offset.Val, DWARFAddressSpace, flags.Val,
4544                             extraData.Val));
4545   return false;
4546 }
4547 
4548 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
4549 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4550   REQUIRED(tag, DwarfTagField, );                                              \
4551   OPTIONAL(name, MDStringField, );                                             \
4552   OPTIONAL(file, MDField, );                                                   \
4553   OPTIONAL(line, LineField, );                                                 \
4554   OPTIONAL(scope, MDField, );                                                  \
4555   OPTIONAL(baseType, MDField, );                                               \
4556   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4557   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4558   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4559   OPTIONAL(flags, DIFlagField, );                                              \
4560   OPTIONAL(elements, MDField, );                                               \
4561   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
4562   OPTIONAL(vtableHolder, MDField, );                                           \
4563   OPTIONAL(templateParams, MDField, );                                         \
4564   OPTIONAL(identifier, MDStringField, );                                       \
4565   OPTIONAL(discriminator, MDField, );
4566   PARSE_MD_FIELDS();
4567 #undef VISIT_MD_FIELDS
4568 
4569   // If this has an identifier try to build an ODR type.
4570   if (identifier.Val)
4571     if (auto *CT = DICompositeType::buildODRType(
4572             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4573             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4574             elements.Val, runtimeLang.Val, vtableHolder.Val,
4575             templateParams.Val, discriminator.Val)) {
4576       Result = CT;
4577       return false;
4578     }
4579 
4580   // Create a new node, and save it in the context if it belongs in the type
4581   // map.
4582   Result = GET_OR_DISTINCT(
4583       DICompositeType,
4584       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4585        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4586        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4587        discriminator.Val));
4588   return false;
4589 }
4590 
4591 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4592 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4593   OPTIONAL(flags, DIFlagField, );                                              \
4594   OPTIONAL(cc, DwarfCCField, );                                                \
4595   REQUIRED(types, MDField, );
4596   PARSE_MD_FIELDS();
4597 #undef VISIT_MD_FIELDS
4598 
4599   Result = GET_OR_DISTINCT(DISubroutineType,
4600                            (Context, flags.Val, cc.Val, types.Val));
4601   return false;
4602 }
4603 
4604 /// ParseDIFileType:
4605 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4606 ///                   checksumkind: CSK_MD5,
4607 ///                   checksum: "000102030405060708090a0b0c0d0e0f",
4608 ///                   source: "source file contents")
4609 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
4610   // The default constructed value for checksumkind is required, but will never
4611   // be used, as the parser checks if the field was actually Seen before using
4612   // the Val.
4613 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4614   REQUIRED(filename, MDStringField, );                                         \
4615   REQUIRED(directory, MDStringField, );                                        \
4616   OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5));                \
4617   OPTIONAL(checksum, MDStringField, );                                         \
4618   OPTIONAL(source, MDStringField, );
4619   PARSE_MD_FIELDS();
4620 #undef VISIT_MD_FIELDS
4621 
4622   Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
4623   if (checksumkind.Seen && checksum.Seen)
4624     OptChecksum.emplace(checksumkind.Val, checksum.Val);
4625   else if (checksumkind.Seen || checksum.Seen)
4626     return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4627 
4628   Optional<MDString *> OptSource;
4629   if (source.Seen)
4630     OptSource = source.Val;
4631   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4632                                     OptChecksum, OptSource));
4633   return false;
4634 }
4635 
4636 /// ParseDICompileUnit:
4637 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4638 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
4639 ///                      splitDebugFilename: "abc.debug",
4640 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4641 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd,
4642 ///                      sysroot: "/", sdk: "MacOSX.sdk")
4643 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4644   if (!IsDistinct)
4645     return Lex.Error("missing 'distinct', required for !DICompileUnit");
4646 
4647 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4648   REQUIRED(language, DwarfLangField, );                                        \
4649   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
4650   OPTIONAL(producer, MDStringField, );                                         \
4651   OPTIONAL(isOptimized, MDBoolField, );                                        \
4652   OPTIONAL(flags, MDStringField, );                                            \
4653   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
4654   OPTIONAL(splitDebugFilename, MDStringField, );                               \
4655   OPTIONAL(emissionKind, EmissionKindField, );                                 \
4656   OPTIONAL(enums, MDField, );                                                  \
4657   OPTIONAL(retainedTypes, MDField, );                                          \
4658   OPTIONAL(globals, MDField, );                                                \
4659   OPTIONAL(imports, MDField, );                                                \
4660   OPTIONAL(macros, MDField, );                                                 \
4661   OPTIONAL(dwoId, MDUnsignedField, );                                          \
4662   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
4663   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
4664   OPTIONAL(nameTableKind, NameTableKindField, );                               \
4665   OPTIONAL(debugBaseAddress, MDBoolField, = false);                            \
4666   OPTIONAL(sysroot, MDStringField, );                                          \
4667   OPTIONAL(sdk, MDStringField, );
4668   PARSE_MD_FIELDS();
4669 #undef VISIT_MD_FIELDS
4670 
4671   Result = DICompileUnit::getDistinct(
4672       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4673       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4674       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4675       splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
4676       debugBaseAddress.Val, sysroot.Val, sdk.Val);
4677   return false;
4678 }
4679 
4680 /// ParseDISubprogram:
4681 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4682 ///                     file: !1, line: 7, type: !2, isLocal: false,
4683 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
4684 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
4685 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
4686 ///                     spFlags: 10, isOptimized: false, templateParams: !4,
4687 ///                     declaration: !5, retainedNodes: !6, thrownTypes: !7)
4688 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
4689   auto Loc = Lex.getLoc();
4690 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4691   OPTIONAL(scope, MDField, );                                                  \
4692   OPTIONAL(name, MDStringField, );                                             \
4693   OPTIONAL(linkageName, MDStringField, );                                      \
4694   OPTIONAL(file, MDField, );                                                   \
4695   OPTIONAL(line, LineField, );                                                 \
4696   OPTIONAL(type, MDField, );                                                   \
4697   OPTIONAL(isLocal, MDBoolField, );                                            \
4698   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4699   OPTIONAL(scopeLine, LineField, );                                            \
4700   OPTIONAL(containingType, MDField, );                                         \
4701   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
4702   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
4703   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
4704   OPTIONAL(flags, DIFlagField, );                                              \
4705   OPTIONAL(spFlags, DISPFlagField, );                                          \
4706   OPTIONAL(isOptimized, MDBoolField, );                                        \
4707   OPTIONAL(unit, MDField, );                                                   \
4708   OPTIONAL(templateParams, MDField, );                                         \
4709   OPTIONAL(declaration, MDField, );                                            \
4710   OPTIONAL(retainedNodes, MDField, );                                          \
4711   OPTIONAL(thrownTypes, MDField, );
4712   PARSE_MD_FIELDS();
4713 #undef VISIT_MD_FIELDS
4714 
4715   // An explicit spFlags field takes precedence over individual fields in
4716   // older IR versions.
4717   DISubprogram::DISPFlags SPFlags =
4718       spFlags.Seen ? spFlags.Val
4719                    : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
4720                                              isOptimized.Val, virtuality.Val);
4721   if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
4722     return Lex.Error(
4723         Loc,
4724         "missing 'distinct', required for !DISubprogram that is a Definition");
4725   Result = GET_OR_DISTINCT(
4726       DISubprogram,
4727       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
4728        type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
4729        thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
4730        declaration.Val, retainedNodes.Val, thrownTypes.Val));
4731   return false;
4732 }
4733 
4734 /// ParseDILexicalBlock:
4735 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4736 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4737 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4738   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4739   OPTIONAL(file, MDField, );                                                   \
4740   OPTIONAL(line, LineField, );                                                 \
4741   OPTIONAL(column, ColumnField, );
4742   PARSE_MD_FIELDS();
4743 #undef VISIT_MD_FIELDS
4744 
4745   Result = GET_OR_DISTINCT(
4746       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4747   return false;
4748 }
4749 
4750 /// ParseDILexicalBlockFile:
4751 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4752 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4753 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4754   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4755   OPTIONAL(file, MDField, );                                                   \
4756   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4757   PARSE_MD_FIELDS();
4758 #undef VISIT_MD_FIELDS
4759 
4760   Result = GET_OR_DISTINCT(DILexicalBlockFile,
4761                            (Context, scope.Val, file.Val, discriminator.Val));
4762   return false;
4763 }
4764 
4765 /// ParseDICommonBlock:
4766 ///   ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9)
4767 bool LLParser::ParseDICommonBlock(MDNode *&Result, bool IsDistinct) {
4768 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4769   REQUIRED(scope, MDField, );                                                  \
4770   OPTIONAL(declaration, MDField, );                                            \
4771   OPTIONAL(name, MDStringField, );                                             \
4772   OPTIONAL(file, MDField, );                                                   \
4773   OPTIONAL(line, LineField, );
4774   PARSE_MD_FIELDS();
4775 #undef VISIT_MD_FIELDS
4776 
4777   Result = GET_OR_DISTINCT(DICommonBlock,
4778                            (Context, scope.Val, declaration.Val, name.Val,
4779                             file.Val, line.Val));
4780   return false;
4781 }
4782 
4783 /// ParseDINamespace:
4784 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4785 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
4786 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4787   REQUIRED(scope, MDField, );                                                  \
4788   OPTIONAL(name, MDStringField, );                                             \
4789   OPTIONAL(exportSymbols, MDBoolField, );
4790   PARSE_MD_FIELDS();
4791 #undef VISIT_MD_FIELDS
4792 
4793   Result = GET_OR_DISTINCT(DINamespace,
4794                            (Context, scope.Val, name.Val, exportSymbols.Val));
4795   return false;
4796 }
4797 
4798 /// ParseDIMacro:
4799 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
4800 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) {
4801 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4802   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
4803   OPTIONAL(line, LineField, );                                                 \
4804   REQUIRED(name, MDStringField, );                                             \
4805   OPTIONAL(value, MDStringField, );
4806   PARSE_MD_FIELDS();
4807 #undef VISIT_MD_FIELDS
4808 
4809   Result = GET_OR_DISTINCT(DIMacro,
4810                            (Context, type.Val, line.Val, name.Val, value.Val));
4811   return false;
4812 }
4813 
4814 /// ParseDIMacroFile:
4815 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4816 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4817 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4818   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
4819   OPTIONAL(line, LineField, );                                                 \
4820   REQUIRED(file, MDField, );                                                   \
4821   OPTIONAL(nodes, MDField, );
4822   PARSE_MD_FIELDS();
4823 #undef VISIT_MD_FIELDS
4824 
4825   Result = GET_OR_DISTINCT(DIMacroFile,
4826                            (Context, type.Val, line.Val, file.Val, nodes.Val));
4827   return false;
4828 }
4829 
4830 /// ParseDIModule:
4831 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG",
4832 ///                 includePath: "/usr/include", apinotes: "module.apinotes")
4833 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
4834 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4835   REQUIRED(scope, MDField, );                                                  \
4836   REQUIRED(name, MDStringField, );                                             \
4837   OPTIONAL(configMacros, MDStringField, );                                     \
4838   OPTIONAL(includePath, MDStringField, );                                      \
4839   OPTIONAL(apinotes, MDStringField, );
4840   PARSE_MD_FIELDS();
4841 #undef VISIT_MD_FIELDS
4842 
4843   Result =
4844       GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val, configMacros.Val,
4845                                  includePath.Val, apinotes.Val));
4846   return false;
4847 }
4848 
4849 /// ParseDITemplateTypeParameter:
4850 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false)
4851 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4852 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4853   OPTIONAL(name, MDStringField, );                                             \
4854   REQUIRED(type, MDField, );                                                   \
4855   OPTIONAL(defaulted, MDBoolField, );
4856   PARSE_MD_FIELDS();
4857 #undef VISIT_MD_FIELDS
4858 
4859   Result = GET_OR_DISTINCT(DITemplateTypeParameter,
4860                            (Context, name.Val, type.Val, defaulted.Val));
4861   return false;
4862 }
4863 
4864 /// ParseDITemplateValueParameter:
4865 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4866 ///                                 name: "V", type: !1, defaulted: false,
4867 ///                                 value: i32 7)
4868 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4869 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4870   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
4871   OPTIONAL(name, MDStringField, );                                             \
4872   OPTIONAL(type, MDField, );                                                   \
4873   OPTIONAL(defaulted, MDBoolField, );                                          \
4874   REQUIRED(value, MDField, );
4875 
4876   PARSE_MD_FIELDS();
4877 #undef VISIT_MD_FIELDS
4878 
4879   Result = GET_OR_DISTINCT(
4880       DITemplateValueParameter,
4881       (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val));
4882   return false;
4883 }
4884 
4885 /// ParseDIGlobalVariable:
4886 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
4887 ///                         file: !1, line: 7, type: !2, isLocal: false,
4888 ///                         isDefinition: true, templateParams: !3,
4889 ///                         declaration: !4, align: 8)
4890 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
4891 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4892   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
4893   OPTIONAL(scope, MDField, );                                                  \
4894   OPTIONAL(linkageName, MDStringField, );                                      \
4895   OPTIONAL(file, MDField, );                                                   \
4896   OPTIONAL(line, LineField, );                                                 \
4897   OPTIONAL(type, MDField, );                                                   \
4898   OPTIONAL(isLocal, MDBoolField, );                                            \
4899   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4900   OPTIONAL(templateParams, MDField, );                                         \
4901   OPTIONAL(declaration, MDField, );                                            \
4902   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4903   PARSE_MD_FIELDS();
4904 #undef VISIT_MD_FIELDS
4905 
4906   Result =
4907       GET_OR_DISTINCT(DIGlobalVariable,
4908                       (Context, scope.Val, name.Val, linkageName.Val, file.Val,
4909                        line.Val, type.Val, isLocal.Val, isDefinition.Val,
4910                        declaration.Val, templateParams.Val, align.Val));
4911   return false;
4912 }
4913 
4914 /// ParseDILocalVariable:
4915 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
4916 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4917 ///                        align: 8)
4918 ///   ::= !DILocalVariable(scope: !0, name: "foo",
4919 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4920 ///                        align: 8)
4921 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
4922 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4923   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4924   OPTIONAL(name, MDStringField, );                                             \
4925   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
4926   OPTIONAL(file, MDField, );                                                   \
4927   OPTIONAL(line, LineField, );                                                 \
4928   OPTIONAL(type, MDField, );                                                   \
4929   OPTIONAL(flags, DIFlagField, );                                              \
4930   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4931   PARSE_MD_FIELDS();
4932 #undef VISIT_MD_FIELDS
4933 
4934   Result = GET_OR_DISTINCT(DILocalVariable,
4935                            (Context, scope.Val, name.Val, file.Val, line.Val,
4936                             type.Val, arg.Val, flags.Val, align.Val));
4937   return false;
4938 }
4939 
4940 /// ParseDILabel:
4941 ///   ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
4942 bool LLParser::ParseDILabel(MDNode *&Result, bool IsDistinct) {
4943 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4944   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4945   REQUIRED(name, MDStringField, );                                             \
4946   REQUIRED(file, MDField, );                                                   \
4947   REQUIRED(line, LineField, );
4948   PARSE_MD_FIELDS();
4949 #undef VISIT_MD_FIELDS
4950 
4951   Result = GET_OR_DISTINCT(DILabel,
4952                            (Context, scope.Val, name.Val, file.Val, line.Val));
4953   return false;
4954 }
4955 
4956 /// ParseDIExpression:
4957 ///   ::= !DIExpression(0, 7, -1)
4958 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
4959   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4960   Lex.Lex();
4961 
4962   if (ParseToken(lltok::lparen, "expected '(' here"))
4963     return true;
4964 
4965   SmallVector<uint64_t, 8> Elements;
4966   if (Lex.getKind() != lltok::rparen)
4967     do {
4968       if (Lex.getKind() == lltok::DwarfOp) {
4969         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
4970           Lex.Lex();
4971           Elements.push_back(Op);
4972           continue;
4973         }
4974         return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
4975       }
4976 
4977       if (Lex.getKind() == lltok::DwarfAttEncoding) {
4978         if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) {
4979           Lex.Lex();
4980           Elements.push_back(Op);
4981           continue;
4982         }
4983         return TokError(Twine("invalid DWARF attribute encoding '") + Lex.getStrVal() + "'");
4984       }
4985 
4986       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4987         return TokError("expected unsigned integer");
4988 
4989       auto &U = Lex.getAPSIntVal();
4990       if (U.ugt(UINT64_MAX))
4991         return TokError("element too large, limit is " + Twine(UINT64_MAX));
4992       Elements.push_back(U.getZExtValue());
4993       Lex.Lex();
4994     } while (EatIfPresent(lltok::comma));
4995 
4996   if (ParseToken(lltok::rparen, "expected ')' here"))
4997     return true;
4998 
4999   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
5000   return false;
5001 }
5002 
5003 /// ParseDIGlobalVariableExpression:
5004 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
5005 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result,
5006                                                bool IsDistinct) {
5007 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5008   REQUIRED(var, MDField, );                                                    \
5009   REQUIRED(expr, MDField, );
5010   PARSE_MD_FIELDS();
5011 #undef VISIT_MD_FIELDS
5012 
5013   Result =
5014       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
5015   return false;
5016 }
5017 
5018 /// ParseDIObjCProperty:
5019 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
5020 ///                       getter: "getFoo", attributes: 7, type: !2)
5021 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
5022 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5023   OPTIONAL(name, MDStringField, );                                             \
5024   OPTIONAL(file, MDField, );                                                   \
5025   OPTIONAL(line, LineField, );                                                 \
5026   OPTIONAL(setter, MDStringField, );                                           \
5027   OPTIONAL(getter, MDStringField, );                                           \
5028   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
5029   OPTIONAL(type, MDField, );
5030   PARSE_MD_FIELDS();
5031 #undef VISIT_MD_FIELDS
5032 
5033   Result = GET_OR_DISTINCT(DIObjCProperty,
5034                            (Context, name.Val, file.Val, line.Val, setter.Val,
5035                             getter.Val, attributes.Val, type.Val));
5036   return false;
5037 }
5038 
5039 /// ParseDIImportedEntity:
5040 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
5041 ///                         line: 7, name: "foo")
5042 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
5043 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5044   REQUIRED(tag, DwarfTagField, );                                              \
5045   REQUIRED(scope, MDField, );                                                  \
5046   OPTIONAL(entity, MDField, );                                                 \
5047   OPTIONAL(file, MDField, );                                                   \
5048   OPTIONAL(line, LineField, );                                                 \
5049   OPTIONAL(name, MDStringField, );
5050   PARSE_MD_FIELDS();
5051 #undef VISIT_MD_FIELDS
5052 
5053   Result = GET_OR_DISTINCT(
5054       DIImportedEntity,
5055       (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
5056   return false;
5057 }
5058 
5059 #undef PARSE_MD_FIELD
5060 #undef NOP_FIELD
5061 #undef REQUIRE_FIELD
5062 #undef DECLARE_FIELD
5063 
5064 /// ParseMetadataAsValue
5065 ///  ::= metadata i32 %local
5066 ///  ::= metadata i32 @global
5067 ///  ::= metadata i32 7
5068 ///  ::= metadata !0
5069 ///  ::= metadata !{...}
5070 ///  ::= metadata !"string"
5071 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
5072   // Note: the type 'metadata' has already been parsed.
5073   Metadata *MD;
5074   if (ParseMetadata(MD, &PFS))
5075     return true;
5076 
5077   V = MetadataAsValue::get(Context, MD);
5078   return false;
5079 }
5080 
5081 /// ParseValueAsMetadata
5082 ///  ::= i32 %local
5083 ///  ::= i32 @global
5084 ///  ::= i32 7
5085 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
5086                                     PerFunctionState *PFS) {
5087   Type *Ty;
5088   LocTy Loc;
5089   if (ParseType(Ty, TypeMsg, Loc))
5090     return true;
5091   if (Ty->isMetadataTy())
5092     return Error(Loc, "invalid metadata-value-metadata roundtrip");
5093 
5094   Value *V;
5095   if (ParseValue(Ty, V, PFS))
5096     return true;
5097 
5098   MD = ValueAsMetadata::get(V);
5099   return false;
5100 }
5101 
5102 /// ParseMetadata
5103 ///  ::= i32 %local
5104 ///  ::= i32 @global
5105 ///  ::= i32 7
5106 ///  ::= !42
5107 ///  ::= !{...}
5108 ///  ::= !"string"
5109 ///  ::= !DILocation(...)
5110 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
5111   if (Lex.getKind() == lltok::MetadataVar) {
5112     MDNode *N;
5113     if (ParseSpecializedMDNode(N))
5114       return true;
5115     MD = N;
5116     return false;
5117   }
5118 
5119   // ValueAsMetadata:
5120   // <type> <value>
5121   if (Lex.getKind() != lltok::exclaim)
5122     return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
5123 
5124   // '!'.
5125   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
5126   Lex.Lex();
5127 
5128   // MDString:
5129   //   ::= '!' STRINGCONSTANT
5130   if (Lex.getKind() == lltok::StringConstant) {
5131     MDString *S;
5132     if (ParseMDString(S))
5133       return true;
5134     MD = S;
5135     return false;
5136   }
5137 
5138   // MDNode:
5139   // !{ ... }
5140   // !7
5141   MDNode *N;
5142   if (ParseMDNodeTail(N))
5143     return true;
5144   MD = N;
5145   return false;
5146 }
5147 
5148 //===----------------------------------------------------------------------===//
5149 // Function Parsing.
5150 //===----------------------------------------------------------------------===//
5151 
5152 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
5153                                    PerFunctionState *PFS, bool IsCall) {
5154   if (Ty->isFunctionTy())
5155     return Error(ID.Loc, "functions are not values, refer to them as pointers");
5156 
5157   switch (ID.Kind) {
5158   case ValID::t_LocalID:
5159     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5160     V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5161     return V == nullptr;
5162   case ValID::t_LocalName:
5163     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5164     V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall);
5165     return V == nullptr;
5166   case ValID::t_InlineAsm: {
5167     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
5168       return Error(ID.Loc, "invalid type for inline asm constraint string");
5169     V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
5170                        (ID.UIntVal >> 1) & 1,
5171                        (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
5172     return false;
5173   }
5174   case ValID::t_GlobalName:
5175     V = GetGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall);
5176     return V == nullptr;
5177   case ValID::t_GlobalID:
5178     V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5179     return V == nullptr;
5180   case ValID::t_APSInt:
5181     if (!Ty->isIntegerTy())
5182       return Error(ID.Loc, "integer constant must have integer type");
5183     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
5184     V = ConstantInt::get(Context, ID.APSIntVal);
5185     return false;
5186   case ValID::t_APFloat:
5187     if (!Ty->isFloatingPointTy() ||
5188         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
5189       return Error(ID.Loc, "floating point constant invalid for type");
5190 
5191     // The lexer has no type info, so builds all half, float, and double FP
5192     // constants as double.  Fix this here.  Long double does not need this.
5193     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
5194       bool Ignored;
5195       if (Ty->isHalfTy())
5196         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
5197                               &Ignored);
5198       else if (Ty->isFloatTy())
5199         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
5200                               &Ignored);
5201     }
5202     V = ConstantFP::get(Context, ID.APFloatVal);
5203 
5204     if (V->getType() != Ty)
5205       return Error(ID.Loc, "floating point constant does not have type '" +
5206                    getTypeString(Ty) + "'");
5207 
5208     return false;
5209   case ValID::t_Null:
5210     if (!Ty->isPointerTy())
5211       return Error(ID.Loc, "null must be a pointer type");
5212     V = ConstantPointerNull::get(cast<PointerType>(Ty));
5213     return false;
5214   case ValID::t_Undef:
5215     // FIXME: LabelTy should not be a first-class type.
5216     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5217       return Error(ID.Loc, "invalid type for undef constant");
5218     V = UndefValue::get(Ty);
5219     return false;
5220   case ValID::t_EmptyArray:
5221     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
5222       return Error(ID.Loc, "invalid empty array initializer");
5223     V = UndefValue::get(Ty);
5224     return false;
5225   case ValID::t_Zero:
5226     // FIXME: LabelTy should not be a first-class type.
5227     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5228       return Error(ID.Loc, "invalid type for null constant");
5229     V = Constant::getNullValue(Ty);
5230     return false;
5231   case ValID::t_None:
5232     if (!Ty->isTokenTy())
5233       return Error(ID.Loc, "invalid type for none constant");
5234     V = Constant::getNullValue(Ty);
5235     return false;
5236   case ValID::t_Constant:
5237     if (ID.ConstantVal->getType() != Ty)
5238       return Error(ID.Loc, "constant expression type mismatch");
5239 
5240     V = ID.ConstantVal;
5241     return false;
5242   case ValID::t_ConstantStruct:
5243   case ValID::t_PackedConstantStruct:
5244     if (StructType *ST = dyn_cast<StructType>(Ty)) {
5245       if (ST->getNumElements() != ID.UIntVal)
5246         return Error(ID.Loc,
5247                      "initializer with struct type has wrong # elements");
5248       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5249         return Error(ID.Loc, "packed'ness of initializer and type don't match");
5250 
5251       // Verify that the elements are compatible with the structtype.
5252       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5253         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5254           return Error(ID.Loc, "element " + Twine(i) +
5255                     " of struct initializer doesn't match struct element type");
5256 
5257       V = ConstantStruct::get(
5258           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5259     } else
5260       return Error(ID.Loc, "constant expression type mismatch");
5261     return false;
5262   }
5263   llvm_unreachable("Invalid ValID");
5264 }
5265 
5266 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5267   C = nullptr;
5268   ValID ID;
5269   auto Loc = Lex.getLoc();
5270   if (ParseValID(ID, /*PFS=*/nullptr))
5271     return true;
5272   switch (ID.Kind) {
5273   case ValID::t_APSInt:
5274   case ValID::t_APFloat:
5275   case ValID::t_Undef:
5276   case ValID::t_Constant:
5277   case ValID::t_ConstantStruct:
5278   case ValID::t_PackedConstantStruct: {
5279     Value *V;
5280     if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false))
5281       return true;
5282     assert(isa<Constant>(V) && "Expected a constant value");
5283     C = cast<Constant>(V);
5284     return false;
5285   }
5286   case ValID::t_Null:
5287     C = Constant::getNullValue(Ty);
5288     return false;
5289   default:
5290     return Error(Loc, "expected a constant value");
5291   }
5292 }
5293 
5294 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5295   V = nullptr;
5296   ValID ID;
5297   return ParseValID(ID, PFS) ||
5298          ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false);
5299 }
5300 
5301 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5302   Type *Ty = nullptr;
5303   return ParseType(Ty) ||
5304          ParseValue(Ty, V, PFS);
5305 }
5306 
5307 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5308                                       PerFunctionState &PFS) {
5309   Value *V;
5310   Loc = Lex.getLoc();
5311   if (ParseTypeAndValue(V, PFS)) return true;
5312   if (!isa<BasicBlock>(V))
5313     return Error(Loc, "expected a basic block");
5314   BB = cast<BasicBlock>(V);
5315   return false;
5316 }
5317 
5318 /// FunctionHeader
5319 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5320 ///       OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5321 ///       '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5322 ///       OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
5323 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
5324   // Parse the linkage.
5325   LocTy LinkageLoc = Lex.getLoc();
5326   unsigned Linkage;
5327   unsigned Visibility;
5328   unsigned DLLStorageClass;
5329   bool DSOLocal;
5330   AttrBuilder RetAttrs;
5331   unsigned CC;
5332   bool HasLinkage;
5333   Type *RetType = nullptr;
5334   LocTy RetTypeLoc = Lex.getLoc();
5335   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5336                            DSOLocal) ||
5337       ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5338       ParseType(RetType, RetTypeLoc, true /*void allowed*/))
5339     return true;
5340 
5341   // Verify that the linkage is ok.
5342   switch ((GlobalValue::LinkageTypes)Linkage) {
5343   case GlobalValue::ExternalLinkage:
5344     break; // always ok.
5345   case GlobalValue::ExternalWeakLinkage:
5346     if (isDefine)
5347       return Error(LinkageLoc, "invalid linkage for function definition");
5348     break;
5349   case GlobalValue::PrivateLinkage:
5350   case GlobalValue::InternalLinkage:
5351   case GlobalValue::AvailableExternallyLinkage:
5352   case GlobalValue::LinkOnceAnyLinkage:
5353   case GlobalValue::LinkOnceODRLinkage:
5354   case GlobalValue::WeakAnyLinkage:
5355   case GlobalValue::WeakODRLinkage:
5356     if (!isDefine)
5357       return Error(LinkageLoc, "invalid linkage for function declaration");
5358     break;
5359   case GlobalValue::AppendingLinkage:
5360   case GlobalValue::CommonLinkage:
5361     return Error(LinkageLoc, "invalid function linkage type");
5362   }
5363 
5364   if (!isValidVisibilityForLinkage(Visibility, Linkage))
5365     return Error(LinkageLoc,
5366                  "symbol with local linkage must have default visibility");
5367 
5368   if (!FunctionType::isValidReturnType(RetType))
5369     return Error(RetTypeLoc, "invalid function return type");
5370 
5371   LocTy NameLoc = Lex.getLoc();
5372 
5373   std::string FunctionName;
5374   if (Lex.getKind() == lltok::GlobalVar) {
5375     FunctionName = Lex.getStrVal();
5376   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
5377     unsigned NameID = Lex.getUIntVal();
5378 
5379     if (NameID != NumberedVals.size())
5380       return TokError("function expected to be numbered '%" +
5381                       Twine(NumberedVals.size()) + "'");
5382   } else {
5383     return TokError("expected function name");
5384   }
5385 
5386   Lex.Lex();
5387 
5388   if (Lex.getKind() != lltok::lparen)
5389     return TokError("expected '(' in function argument list");
5390 
5391   SmallVector<ArgInfo, 8> ArgList;
5392   bool isVarArg;
5393   AttrBuilder FuncAttrs;
5394   std::vector<unsigned> FwdRefAttrGrps;
5395   LocTy BuiltinLoc;
5396   std::string Section;
5397   std::string Partition;
5398   MaybeAlign Alignment;
5399   std::string GC;
5400   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
5401   unsigned AddrSpace = 0;
5402   Constant *Prefix = nullptr;
5403   Constant *Prologue = nullptr;
5404   Constant *PersonalityFn = nullptr;
5405   Comdat *C;
5406 
5407   if (ParseArgumentList(ArgList, isVarArg) ||
5408       ParseOptionalUnnamedAddr(UnnamedAddr) ||
5409       ParseOptionalProgramAddrSpace(AddrSpace) ||
5410       ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5411                                  BuiltinLoc) ||
5412       (EatIfPresent(lltok::kw_section) &&
5413        ParseStringConstant(Section)) ||
5414       (EatIfPresent(lltok::kw_partition) &&
5415        ParseStringConstant(Partition)) ||
5416       parseOptionalComdat(FunctionName, C) ||
5417       ParseOptionalAlignment(Alignment) ||
5418       (EatIfPresent(lltok::kw_gc) &&
5419        ParseStringConstant(GC)) ||
5420       (EatIfPresent(lltok::kw_prefix) &&
5421        ParseGlobalTypeAndValue(Prefix)) ||
5422       (EatIfPresent(lltok::kw_prologue) &&
5423        ParseGlobalTypeAndValue(Prologue)) ||
5424       (EatIfPresent(lltok::kw_personality) &&
5425        ParseGlobalTypeAndValue(PersonalityFn)))
5426     return true;
5427 
5428   if (FuncAttrs.contains(Attribute::Builtin))
5429     return Error(BuiltinLoc, "'builtin' attribute not valid on function");
5430 
5431   // If the alignment was parsed as an attribute, move to the alignment field.
5432   if (FuncAttrs.hasAlignmentAttr()) {
5433     Alignment = FuncAttrs.getAlignment();
5434     FuncAttrs.removeAttribute(Attribute::Alignment);
5435   }
5436 
5437   // Okay, if we got here, the function is syntactically valid.  Convert types
5438   // and do semantic checks.
5439   std::vector<Type*> ParamTypeList;
5440   SmallVector<AttributeSet, 8> Attrs;
5441 
5442   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5443     ParamTypeList.push_back(ArgList[i].Ty);
5444     Attrs.push_back(ArgList[i].Attrs);
5445   }
5446 
5447   AttributeList PAL =
5448       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5449                          AttributeSet::get(Context, RetAttrs), Attrs);
5450 
5451   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
5452     return Error(RetTypeLoc, "functions with 'sret' argument must return void");
5453 
5454   FunctionType *FT =
5455     FunctionType::get(RetType, ParamTypeList, isVarArg);
5456   PointerType *PFT = PointerType::get(FT, AddrSpace);
5457 
5458   Fn = nullptr;
5459   if (!FunctionName.empty()) {
5460     // If this was a definition of a forward reference, remove the definition
5461     // from the forward reference table and fill in the forward ref.
5462     auto FRVI = ForwardRefVals.find(FunctionName);
5463     if (FRVI != ForwardRefVals.end()) {
5464       Fn = M->getFunction(FunctionName);
5465       if (!Fn)
5466         return Error(FRVI->second.second, "invalid forward reference to "
5467                      "function as global value!");
5468       if (Fn->getType() != PFT)
5469         return Error(FRVI->second.second, "invalid forward reference to "
5470                      "function '" + FunctionName + "' with wrong type: "
5471                      "expected '" + getTypeString(PFT) + "' but was '" +
5472                      getTypeString(Fn->getType()) + "'");
5473       ForwardRefVals.erase(FRVI);
5474     } else if ((Fn = M->getFunction(FunctionName))) {
5475       // Reject redefinitions.
5476       return Error(NameLoc, "invalid redefinition of function '" +
5477                    FunctionName + "'");
5478     } else if (M->getNamedValue(FunctionName)) {
5479       return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5480     }
5481 
5482   } else {
5483     // If this is a definition of a forward referenced function, make sure the
5484     // types agree.
5485     auto I = ForwardRefValIDs.find(NumberedVals.size());
5486     if (I != ForwardRefValIDs.end()) {
5487       Fn = cast<Function>(I->second.first);
5488       if (Fn->getType() != PFT)
5489         return Error(NameLoc, "type of definition and forward reference of '@" +
5490                      Twine(NumberedVals.size()) + "' disagree: "
5491                      "expected '" + getTypeString(PFT) + "' but was '" +
5492                      getTypeString(Fn->getType()) + "'");
5493       ForwardRefValIDs.erase(I);
5494     }
5495   }
5496 
5497   if (!Fn)
5498     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
5499                           FunctionName, M);
5500   else // Move the forward-reference to the correct spot in the module.
5501     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
5502 
5503   assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
5504 
5505   if (FunctionName.empty())
5506     NumberedVals.push_back(Fn);
5507 
5508   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5509   maybeSetDSOLocal(DSOLocal, *Fn);
5510   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5511   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5512   Fn->setCallingConv(CC);
5513   Fn->setAttributes(PAL);
5514   Fn->setUnnamedAddr(UnnamedAddr);
5515   Fn->setAlignment(MaybeAlign(Alignment));
5516   Fn->setSection(Section);
5517   Fn->setPartition(Partition);
5518   Fn->setComdat(C);
5519   Fn->setPersonalityFn(PersonalityFn);
5520   if (!GC.empty()) Fn->setGC(GC);
5521   Fn->setPrefixData(Prefix);
5522   Fn->setPrologueData(Prologue);
5523   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5524 
5525   // Add all of the arguments we parsed to the function.
5526   Function::arg_iterator ArgIt = Fn->arg_begin();
5527   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5528     // If the argument has a name, insert it into the argument symbol table.
5529     if (ArgList[i].Name.empty()) continue;
5530 
5531     // Set the name, if it conflicted, it will be auto-renamed.
5532     ArgIt->setName(ArgList[i].Name);
5533 
5534     if (ArgIt->getName() != ArgList[i].Name)
5535       return Error(ArgList[i].Loc, "redefinition of argument '%" +
5536                    ArgList[i].Name + "'");
5537   }
5538 
5539   if (isDefine)
5540     return false;
5541 
5542   // Check the declaration has no block address forward references.
5543   ValID ID;
5544   if (FunctionName.empty()) {
5545     ID.Kind = ValID::t_GlobalID;
5546     ID.UIntVal = NumberedVals.size() - 1;
5547   } else {
5548     ID.Kind = ValID::t_GlobalName;
5549     ID.StrVal = FunctionName;
5550   }
5551   auto Blocks = ForwardRefBlockAddresses.find(ID);
5552   if (Blocks != ForwardRefBlockAddresses.end())
5553     return Error(Blocks->first.Loc,
5554                  "cannot take blockaddress inside a declaration");
5555   return false;
5556 }
5557 
5558 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5559   ValID ID;
5560   if (FunctionNumber == -1) {
5561     ID.Kind = ValID::t_GlobalName;
5562     ID.StrVal = std::string(F.getName());
5563   } else {
5564     ID.Kind = ValID::t_GlobalID;
5565     ID.UIntVal = FunctionNumber;
5566   }
5567 
5568   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
5569   if (Blocks == P.ForwardRefBlockAddresses.end())
5570     return false;
5571 
5572   for (const auto &I : Blocks->second) {
5573     const ValID &BBID = I.first;
5574     GlobalValue *GV = I.second;
5575 
5576     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
5577            "Expected local id or name");
5578     BasicBlock *BB;
5579     if (BBID.Kind == ValID::t_LocalName)
5580       BB = GetBB(BBID.StrVal, BBID.Loc);
5581     else
5582       BB = GetBB(BBID.UIntVal, BBID.Loc);
5583     if (!BB)
5584       return P.Error(BBID.Loc, "referenced value is not a basic block");
5585 
5586     GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
5587     GV->eraseFromParent();
5588   }
5589 
5590   P.ForwardRefBlockAddresses.erase(Blocks);
5591   return false;
5592 }
5593 
5594 /// ParseFunctionBody
5595 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
5596 bool LLParser::ParseFunctionBody(Function &Fn) {
5597   if (Lex.getKind() != lltok::lbrace)
5598     return TokError("expected '{' in function body");
5599   Lex.Lex();  // eat the {.
5600 
5601   int FunctionNumber = -1;
5602   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
5603 
5604   PerFunctionState PFS(*this, Fn, FunctionNumber);
5605 
5606   // Resolve block addresses and allow basic blocks to be forward-declared
5607   // within this function.
5608   if (PFS.resolveForwardRefBlockAddresses())
5609     return true;
5610   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
5611 
5612   // We need at least one basic block.
5613   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
5614     return TokError("function body requires at least one basic block");
5615 
5616   while (Lex.getKind() != lltok::rbrace &&
5617          Lex.getKind() != lltok::kw_uselistorder)
5618     if (ParseBasicBlock(PFS)) return true;
5619 
5620   while (Lex.getKind() != lltok::rbrace)
5621     if (ParseUseListOrder(&PFS))
5622       return true;
5623 
5624   // Eat the }.
5625   Lex.Lex();
5626 
5627   // Verify function is ok.
5628   return PFS.FinishFunction();
5629 }
5630 
5631 /// ParseBasicBlock
5632 ///   ::= (LabelStr|LabelID)? Instruction*
5633 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
5634   // If this basic block starts out with a name, remember it.
5635   std::string Name;
5636   int NameID = -1;
5637   LocTy NameLoc = Lex.getLoc();
5638   if (Lex.getKind() == lltok::LabelStr) {
5639     Name = Lex.getStrVal();
5640     Lex.Lex();
5641   } else if (Lex.getKind() == lltok::LabelID) {
5642     NameID = Lex.getUIntVal();
5643     Lex.Lex();
5644   }
5645 
5646   BasicBlock *BB = PFS.DefineBB(Name, NameID, NameLoc);
5647   if (!BB)
5648     return true;
5649 
5650   std::string NameStr;
5651 
5652   // Parse the instructions in this block until we get a terminator.
5653   Instruction *Inst;
5654   do {
5655     // This instruction may have three possibilities for a name: a) none
5656     // specified, b) name specified "%foo =", c) number specified: "%4 =".
5657     LocTy NameLoc = Lex.getLoc();
5658     int NameID = -1;
5659     NameStr = "";
5660 
5661     if (Lex.getKind() == lltok::LocalVarID) {
5662       NameID = Lex.getUIntVal();
5663       Lex.Lex();
5664       if (ParseToken(lltok::equal, "expected '=' after instruction id"))
5665         return true;
5666     } else if (Lex.getKind() == lltok::LocalVar) {
5667       NameStr = Lex.getStrVal();
5668       Lex.Lex();
5669       if (ParseToken(lltok::equal, "expected '=' after instruction name"))
5670         return true;
5671     }
5672 
5673     switch (ParseInstruction(Inst, BB, PFS)) {
5674     default: llvm_unreachable("Unknown ParseInstruction result!");
5675     case InstError: return true;
5676     case InstNormal:
5677       BB->getInstList().push_back(Inst);
5678 
5679       // With a normal result, we check to see if the instruction is followed by
5680       // a comma and metadata.
5681       if (EatIfPresent(lltok::comma))
5682         if (ParseInstructionMetadata(*Inst))
5683           return true;
5684       break;
5685     case InstExtraComma:
5686       BB->getInstList().push_back(Inst);
5687 
5688       // If the instruction parser ate an extra comma at the end of it, it
5689       // *must* be followed by metadata.
5690       if (ParseInstructionMetadata(*Inst))
5691         return true;
5692       break;
5693     }
5694 
5695     // Set the name on the instruction.
5696     if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
5697   } while (!Inst->isTerminator());
5698 
5699   return false;
5700 }
5701 
5702 //===----------------------------------------------------------------------===//
5703 // Instruction Parsing.
5704 //===----------------------------------------------------------------------===//
5705 
5706 /// ParseInstruction - Parse one of the many different instructions.
5707 ///
5708 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
5709                                PerFunctionState &PFS) {
5710   lltok::Kind Token = Lex.getKind();
5711   if (Token == lltok::Eof)
5712     return TokError("found end of file when expecting more instructions");
5713   LocTy Loc = Lex.getLoc();
5714   unsigned KeywordVal = Lex.getUIntVal();
5715   Lex.Lex();  // Eat the keyword.
5716 
5717   switch (Token) {
5718   default:                    return Error(Loc, "expected instruction opcode");
5719   // Terminator Instructions.
5720   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
5721   case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
5722   case lltok::kw_br:          return ParseBr(Inst, PFS);
5723   case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
5724   case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
5725   case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
5726   case lltok::kw_resume:      return ParseResume(Inst, PFS);
5727   case lltok::kw_cleanupret:  return ParseCleanupRet(Inst, PFS);
5728   case lltok::kw_catchret:    return ParseCatchRet(Inst, PFS);
5729   case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS);
5730   case lltok::kw_catchpad:    return ParseCatchPad(Inst, PFS);
5731   case lltok::kw_cleanuppad:  return ParseCleanupPad(Inst, PFS);
5732   case lltok::kw_callbr:      return ParseCallBr(Inst, PFS);
5733   // Unary Operators.
5734   case lltok::kw_fneg: {
5735     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5736     int Res = ParseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/true);
5737     if (Res != 0)
5738       return Res;
5739     if (FMF.any())
5740       Inst->setFastMathFlags(FMF);
5741     return false;
5742   }
5743   // Binary Operators.
5744   case lltok::kw_add:
5745   case lltok::kw_sub:
5746   case lltok::kw_mul:
5747   case lltok::kw_shl: {
5748     bool NUW = EatIfPresent(lltok::kw_nuw);
5749     bool NSW = EatIfPresent(lltok::kw_nsw);
5750     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
5751 
5752     if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true;
5753 
5754     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
5755     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
5756     return false;
5757   }
5758   case lltok::kw_fadd:
5759   case lltok::kw_fsub:
5760   case lltok::kw_fmul:
5761   case lltok::kw_fdiv:
5762   case lltok::kw_frem: {
5763     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5764     int Res = ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/true);
5765     if (Res != 0)
5766       return Res;
5767     if (FMF.any())
5768       Inst->setFastMathFlags(FMF);
5769     return 0;
5770   }
5771 
5772   case lltok::kw_sdiv:
5773   case lltok::kw_udiv:
5774   case lltok::kw_lshr:
5775   case lltok::kw_ashr: {
5776     bool Exact = EatIfPresent(lltok::kw_exact);
5777 
5778     if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true;
5779     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
5780     return false;
5781   }
5782 
5783   case lltok::kw_urem:
5784   case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal,
5785                                                 /*IsFP*/false);
5786   case lltok::kw_and:
5787   case lltok::kw_or:
5788   case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
5789   case lltok::kw_icmp:   return ParseCompare(Inst, PFS, KeywordVal);
5790   case lltok::kw_fcmp: {
5791     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5792     int Res = ParseCompare(Inst, PFS, KeywordVal);
5793     if (Res != 0)
5794       return Res;
5795     if (FMF.any())
5796       Inst->setFastMathFlags(FMF);
5797     return 0;
5798   }
5799 
5800   // Casts.
5801   case lltok::kw_trunc:
5802   case lltok::kw_zext:
5803   case lltok::kw_sext:
5804   case lltok::kw_fptrunc:
5805   case lltok::kw_fpext:
5806   case lltok::kw_bitcast:
5807   case lltok::kw_addrspacecast:
5808   case lltok::kw_uitofp:
5809   case lltok::kw_sitofp:
5810   case lltok::kw_fptoui:
5811   case lltok::kw_fptosi:
5812   case lltok::kw_inttoptr:
5813   case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
5814   // Other.
5815   case lltok::kw_select: {
5816     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5817     int Res = ParseSelect(Inst, PFS);
5818     if (Res != 0)
5819       return Res;
5820     if (FMF.any()) {
5821       if (!isa<FPMathOperator>(Inst))
5822         return Error(Loc, "fast-math-flags specified for select without "
5823                           "floating-point scalar or vector return type");
5824       Inst->setFastMathFlags(FMF);
5825     }
5826     return 0;
5827   }
5828   case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
5829   case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
5830   case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
5831   case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
5832   case lltok::kw_phi: {
5833     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5834     int Res = ParsePHI(Inst, PFS);
5835     if (Res != 0)
5836       return Res;
5837     if (FMF.any()) {
5838       if (!isa<FPMathOperator>(Inst))
5839         return Error(Loc, "fast-math-flags specified for phi without "
5840                           "floating-point scalar or vector return type");
5841       Inst->setFastMathFlags(FMF);
5842     }
5843     return 0;
5844   }
5845   case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
5846   case lltok::kw_freeze:         return ParseFreeze(Inst, PFS);
5847   // Call.
5848   case lltok::kw_call:     return ParseCall(Inst, PFS, CallInst::TCK_None);
5849   case lltok::kw_tail:     return ParseCall(Inst, PFS, CallInst::TCK_Tail);
5850   case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail);
5851   case lltok::kw_notail:   return ParseCall(Inst, PFS, CallInst::TCK_NoTail);
5852   // Memory.
5853   case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
5854   case lltok::kw_load:           return ParseLoad(Inst, PFS);
5855   case lltok::kw_store:          return ParseStore(Inst, PFS);
5856   case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
5857   case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
5858   case lltok::kw_fence:          return ParseFence(Inst, PFS);
5859   case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
5860   case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
5861   case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
5862   }
5863 }
5864 
5865 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
5866 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
5867   if (Opc == Instruction::FCmp) {
5868     switch (Lex.getKind()) {
5869     default: return TokError("expected fcmp predicate (e.g. 'oeq')");
5870     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
5871     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
5872     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
5873     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
5874     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
5875     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
5876     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
5877     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
5878     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
5879     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
5880     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
5881     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
5882     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
5883     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
5884     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
5885     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
5886     }
5887   } else {
5888     switch (Lex.getKind()) {
5889     default: return TokError("expected icmp predicate (e.g. 'eq')");
5890     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
5891     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
5892     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
5893     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
5894     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
5895     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
5896     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
5897     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
5898     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
5899     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
5900     }
5901   }
5902   Lex.Lex();
5903   return false;
5904 }
5905 
5906 //===----------------------------------------------------------------------===//
5907 // Terminator Instructions.
5908 //===----------------------------------------------------------------------===//
5909 
5910 /// ParseRet - Parse a return instruction.
5911 ///   ::= 'ret' void (',' !dbg, !1)*
5912 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
5913 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
5914                         PerFunctionState &PFS) {
5915   SMLoc TypeLoc = Lex.getLoc();
5916   Type *Ty = nullptr;
5917   if (ParseType(Ty, true /*void allowed*/)) return true;
5918 
5919   Type *ResType = PFS.getFunction().getReturnType();
5920 
5921   if (Ty->isVoidTy()) {
5922     if (!ResType->isVoidTy())
5923       return Error(TypeLoc, "value doesn't match function result type '" +
5924                    getTypeString(ResType) + "'");
5925 
5926     Inst = ReturnInst::Create(Context);
5927     return false;
5928   }
5929 
5930   Value *RV;
5931   if (ParseValue(Ty, RV, PFS)) return true;
5932 
5933   if (ResType != RV->getType())
5934     return Error(TypeLoc, "value doesn't match function result type '" +
5935                  getTypeString(ResType) + "'");
5936 
5937   Inst = ReturnInst::Create(Context, RV);
5938   return false;
5939 }
5940 
5941 /// ParseBr
5942 ///   ::= 'br' TypeAndValue
5943 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5944 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
5945   LocTy Loc, Loc2;
5946   Value *Op0;
5947   BasicBlock *Op1, *Op2;
5948   if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
5949 
5950   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
5951     Inst = BranchInst::Create(BB);
5952     return false;
5953   }
5954 
5955   if (Op0->getType() != Type::getInt1Ty(Context))
5956     return Error(Loc, "branch condition must have 'i1' type");
5957 
5958   if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
5959       ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
5960       ParseToken(lltok::comma, "expected ',' after true destination") ||
5961       ParseTypeAndBasicBlock(Op2, Loc2, PFS))
5962     return true;
5963 
5964   Inst = BranchInst::Create(Op1, Op2, Op0);
5965   return false;
5966 }
5967 
5968 /// ParseSwitch
5969 ///  Instruction
5970 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
5971 ///  JumpTable
5972 ///    ::= (TypeAndValue ',' TypeAndValue)*
5973 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5974   LocTy CondLoc, BBLoc;
5975   Value *Cond;
5976   BasicBlock *DefaultBB;
5977   if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
5978       ParseToken(lltok::comma, "expected ',' after switch condition") ||
5979       ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
5980       ParseToken(lltok::lsquare, "expected '[' with switch table"))
5981     return true;
5982 
5983   if (!Cond->getType()->isIntegerTy())
5984     return Error(CondLoc, "switch condition must have integer type");
5985 
5986   // Parse the jump table pairs.
5987   SmallPtrSet<Value*, 32> SeenCases;
5988   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
5989   while (Lex.getKind() != lltok::rsquare) {
5990     Value *Constant;
5991     BasicBlock *DestBB;
5992 
5993     if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
5994         ParseToken(lltok::comma, "expected ',' after case value") ||
5995         ParseTypeAndBasicBlock(DestBB, PFS))
5996       return true;
5997 
5998     if (!SeenCases.insert(Constant).second)
5999       return Error(CondLoc, "duplicate case value in switch");
6000     if (!isa<ConstantInt>(Constant))
6001       return Error(CondLoc, "case value is not a constant integer");
6002 
6003     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
6004   }
6005 
6006   Lex.Lex();  // Eat the ']'.
6007 
6008   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
6009   for (unsigned i = 0, e = Table.size(); i != e; ++i)
6010     SI->addCase(Table[i].first, Table[i].second);
6011   Inst = SI;
6012   return false;
6013 }
6014 
6015 /// ParseIndirectBr
6016 ///  Instruction
6017 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
6018 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
6019   LocTy AddrLoc;
6020   Value *Address;
6021   if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
6022       ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
6023       ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
6024     return true;
6025 
6026   if (!Address->getType()->isPointerTy())
6027     return Error(AddrLoc, "indirectbr address must have pointer type");
6028 
6029   // Parse the destination list.
6030   SmallVector<BasicBlock*, 16> DestList;
6031 
6032   if (Lex.getKind() != lltok::rsquare) {
6033     BasicBlock *DestBB;
6034     if (ParseTypeAndBasicBlock(DestBB, PFS))
6035       return true;
6036     DestList.push_back(DestBB);
6037 
6038     while (EatIfPresent(lltok::comma)) {
6039       if (ParseTypeAndBasicBlock(DestBB, PFS))
6040         return true;
6041       DestList.push_back(DestBB);
6042     }
6043   }
6044 
6045   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
6046     return true;
6047 
6048   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
6049   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
6050     IBI->addDestination(DestList[i]);
6051   Inst = IBI;
6052   return false;
6053 }
6054 
6055 /// ParseInvoke
6056 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
6057 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
6058 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
6059   LocTy CallLoc = Lex.getLoc();
6060   AttrBuilder RetAttrs, FnAttrs;
6061   std::vector<unsigned> FwdRefAttrGrps;
6062   LocTy NoBuiltinLoc;
6063   unsigned CC;
6064   unsigned InvokeAddrSpace;
6065   Type *RetType = nullptr;
6066   LocTy RetTypeLoc;
6067   ValID CalleeID;
6068   SmallVector<ParamInfo, 16> ArgList;
6069   SmallVector<OperandBundleDef, 2> BundleList;
6070 
6071   BasicBlock *NormalBB, *UnwindBB;
6072   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6073       ParseOptionalProgramAddrSpace(InvokeAddrSpace) ||
6074       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6075       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
6076       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6077                                  NoBuiltinLoc) ||
6078       ParseOptionalOperandBundles(BundleList, PFS) ||
6079       ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
6080       ParseTypeAndBasicBlock(NormalBB, PFS) ||
6081       ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
6082       ParseTypeAndBasicBlock(UnwindBB, PFS))
6083     return true;
6084 
6085   // If RetType is a non-function pointer type, then this is the short syntax
6086   // for the call, which means that RetType is just the return type.  Infer the
6087   // rest of the function argument types from the arguments that are present.
6088   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6089   if (!Ty) {
6090     // Pull out the types of all of the arguments...
6091     std::vector<Type*> ParamTypes;
6092     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6093       ParamTypes.push_back(ArgList[i].V->getType());
6094 
6095     if (!FunctionType::isValidReturnType(RetType))
6096       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6097 
6098     Ty = FunctionType::get(RetType, ParamTypes, false);
6099   }
6100 
6101   CalleeID.FTy = Ty;
6102 
6103   // Look up the callee.
6104   Value *Callee;
6105   if (ConvertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
6106                           Callee, &PFS, /*IsCall=*/true))
6107     return true;
6108 
6109   // Set up the Attribute for the function.
6110   SmallVector<Value *, 8> Args;
6111   SmallVector<AttributeSet, 8> ArgAttrs;
6112 
6113   // Loop through FunctionType's arguments and ensure they are specified
6114   // correctly.  Also, gather any parameter attributes.
6115   FunctionType::param_iterator I = Ty->param_begin();
6116   FunctionType::param_iterator E = Ty->param_end();
6117   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6118     Type *ExpectedTy = nullptr;
6119     if (I != E) {
6120       ExpectedTy = *I++;
6121     } else if (!Ty->isVarArg()) {
6122       return Error(ArgList[i].Loc, "too many arguments specified");
6123     }
6124 
6125     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6126       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6127                    getTypeString(ExpectedTy) + "'");
6128     Args.push_back(ArgList[i].V);
6129     ArgAttrs.push_back(ArgList[i].Attrs);
6130   }
6131 
6132   if (I != E)
6133     return Error(CallLoc, "not enough parameters specified for call");
6134 
6135   if (FnAttrs.hasAlignmentAttr())
6136     return Error(CallLoc, "invoke instructions may not have an alignment");
6137 
6138   // Finish off the Attribute and check them
6139   AttributeList PAL =
6140       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6141                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6142 
6143   InvokeInst *II =
6144       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
6145   II->setCallingConv(CC);
6146   II->setAttributes(PAL);
6147   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
6148   Inst = II;
6149   return false;
6150 }
6151 
6152 /// ParseResume
6153 ///   ::= 'resume' TypeAndValue
6154 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
6155   Value *Exn; LocTy ExnLoc;
6156   if (ParseTypeAndValue(Exn, ExnLoc, PFS))
6157     return true;
6158 
6159   ResumeInst *RI = ResumeInst::Create(Exn);
6160   Inst = RI;
6161   return false;
6162 }
6163 
6164 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args,
6165                                   PerFunctionState &PFS) {
6166   if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
6167     return true;
6168 
6169   while (Lex.getKind() != lltok::rsquare) {
6170     // If this isn't the first argument, we need a comma.
6171     if (!Args.empty() &&
6172         ParseToken(lltok::comma, "expected ',' in argument list"))
6173       return true;
6174 
6175     // Parse the argument.
6176     LocTy ArgLoc;
6177     Type *ArgTy = nullptr;
6178     if (ParseType(ArgTy, ArgLoc))
6179       return true;
6180 
6181     Value *V;
6182     if (ArgTy->isMetadataTy()) {
6183       if (ParseMetadataAsValue(V, PFS))
6184         return true;
6185     } else {
6186       if (ParseValue(ArgTy, V, PFS))
6187         return true;
6188     }
6189     Args.push_back(V);
6190   }
6191 
6192   Lex.Lex();  // Lex the ']'.
6193   return false;
6194 }
6195 
6196 /// ParseCleanupRet
6197 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
6198 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
6199   Value *CleanupPad = nullptr;
6200 
6201   if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret"))
6202     return true;
6203 
6204   if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS))
6205     return true;
6206 
6207   if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
6208     return true;
6209 
6210   BasicBlock *UnwindBB = nullptr;
6211   if (Lex.getKind() == lltok::kw_to) {
6212     Lex.Lex();
6213     if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
6214       return true;
6215   } else {
6216     if (ParseTypeAndBasicBlock(UnwindBB, PFS)) {
6217       return true;
6218     }
6219   }
6220 
6221   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
6222   return false;
6223 }
6224 
6225 /// ParseCatchRet
6226 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
6227 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
6228   Value *CatchPad = nullptr;
6229 
6230   if (ParseToken(lltok::kw_from, "expected 'from' after catchret"))
6231     return true;
6232 
6233   if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS))
6234     return true;
6235 
6236   BasicBlock *BB;
6237   if (ParseToken(lltok::kw_to, "expected 'to' in catchret") ||
6238       ParseTypeAndBasicBlock(BB, PFS))
6239       return true;
6240 
6241   Inst = CatchReturnInst::Create(CatchPad, BB);
6242   return false;
6243 }
6244 
6245 /// ParseCatchSwitch
6246 ///   ::= 'catchswitch' within Parent
6247 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6248   Value *ParentPad;
6249 
6250   if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch"))
6251     return true;
6252 
6253   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6254       Lex.getKind() != lltok::LocalVarID)
6255     return TokError("expected scope value for catchswitch");
6256 
6257   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
6258     return true;
6259 
6260   if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
6261     return true;
6262 
6263   SmallVector<BasicBlock *, 32> Table;
6264   do {
6265     BasicBlock *DestBB;
6266     if (ParseTypeAndBasicBlock(DestBB, PFS))
6267       return true;
6268     Table.push_back(DestBB);
6269   } while (EatIfPresent(lltok::comma));
6270 
6271   if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
6272     return true;
6273 
6274   if (ParseToken(lltok::kw_unwind,
6275                  "expected 'unwind' after catchswitch scope"))
6276     return true;
6277 
6278   BasicBlock *UnwindBB = nullptr;
6279   if (EatIfPresent(lltok::kw_to)) {
6280     if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
6281       return true;
6282   } else {
6283     if (ParseTypeAndBasicBlock(UnwindBB, PFS))
6284       return true;
6285   }
6286 
6287   auto *CatchSwitch =
6288       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
6289   for (BasicBlock *DestBB : Table)
6290     CatchSwitch->addHandler(DestBB);
6291   Inst = CatchSwitch;
6292   return false;
6293 }
6294 
6295 /// ParseCatchPad
6296 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
6297 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
6298   Value *CatchSwitch = nullptr;
6299 
6300   if (ParseToken(lltok::kw_within, "expected 'within' after catchpad"))
6301     return true;
6302 
6303   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
6304     return TokError("expected scope value for catchpad");
6305 
6306   if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
6307     return true;
6308 
6309   SmallVector<Value *, 8> Args;
6310   if (ParseExceptionArgs(Args, PFS))
6311     return true;
6312 
6313   Inst = CatchPadInst::Create(CatchSwitch, Args);
6314   return false;
6315 }
6316 
6317 /// ParseCleanupPad
6318 ///   ::= 'cleanuppad' within Parent ParamList
6319 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
6320   Value *ParentPad = nullptr;
6321 
6322   if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
6323     return true;
6324 
6325   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6326       Lex.getKind() != lltok::LocalVarID)
6327     return TokError("expected scope value for cleanuppad");
6328 
6329   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
6330     return true;
6331 
6332   SmallVector<Value *, 8> Args;
6333   if (ParseExceptionArgs(Args, PFS))
6334     return true;
6335 
6336   Inst = CleanupPadInst::Create(ParentPad, Args);
6337   return false;
6338 }
6339 
6340 //===----------------------------------------------------------------------===//
6341 // Unary Operators.
6342 //===----------------------------------------------------------------------===//
6343 
6344 /// ParseUnaryOp
6345 ///  ::= UnaryOp TypeAndValue ',' Value
6346 ///
6347 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6348 /// operand is allowed.
6349 bool LLParser::ParseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
6350                             unsigned Opc, bool IsFP) {
6351   LocTy Loc; Value *LHS;
6352   if (ParseTypeAndValue(LHS, Loc, PFS))
6353     return true;
6354 
6355   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6356                     : LHS->getType()->isIntOrIntVectorTy();
6357 
6358   if (!Valid)
6359     return Error(Loc, "invalid operand type for instruction");
6360 
6361   Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
6362   return false;
6363 }
6364 
6365 /// ParseCallBr
6366 ///   ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
6367 ///       OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
6368 ///       '[' LabelList ']'
6369 bool LLParser::ParseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
6370   LocTy CallLoc = Lex.getLoc();
6371   AttrBuilder RetAttrs, FnAttrs;
6372   std::vector<unsigned> FwdRefAttrGrps;
6373   LocTy NoBuiltinLoc;
6374   unsigned CC;
6375   Type *RetType = nullptr;
6376   LocTy RetTypeLoc;
6377   ValID CalleeID;
6378   SmallVector<ParamInfo, 16> ArgList;
6379   SmallVector<OperandBundleDef, 2> BundleList;
6380 
6381   BasicBlock *DefaultDest;
6382   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6383       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6384       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
6385       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6386                                  NoBuiltinLoc) ||
6387       ParseOptionalOperandBundles(BundleList, PFS) ||
6388       ParseToken(lltok::kw_to, "expected 'to' in callbr") ||
6389       ParseTypeAndBasicBlock(DefaultDest, PFS) ||
6390       ParseToken(lltok::lsquare, "expected '[' in callbr"))
6391     return true;
6392 
6393   // Parse the destination list.
6394   SmallVector<BasicBlock *, 16> IndirectDests;
6395 
6396   if (Lex.getKind() != lltok::rsquare) {
6397     BasicBlock *DestBB;
6398     if (ParseTypeAndBasicBlock(DestBB, PFS))
6399       return true;
6400     IndirectDests.push_back(DestBB);
6401 
6402     while (EatIfPresent(lltok::comma)) {
6403       if (ParseTypeAndBasicBlock(DestBB, PFS))
6404         return true;
6405       IndirectDests.push_back(DestBB);
6406     }
6407   }
6408 
6409   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
6410     return true;
6411 
6412   // If RetType is a non-function pointer type, then this is the short syntax
6413   // for the call, which means that RetType is just the return type.  Infer the
6414   // rest of the function argument types from the arguments that are present.
6415   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6416   if (!Ty) {
6417     // Pull out the types of all of the arguments...
6418     std::vector<Type *> ParamTypes;
6419     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6420       ParamTypes.push_back(ArgList[i].V->getType());
6421 
6422     if (!FunctionType::isValidReturnType(RetType))
6423       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6424 
6425     Ty = FunctionType::get(RetType, ParamTypes, false);
6426   }
6427 
6428   CalleeID.FTy = Ty;
6429 
6430   // Look up the callee.
6431   Value *Callee;
6432   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS,
6433                           /*IsCall=*/true))
6434     return true;
6435 
6436   // Set up the Attribute for the function.
6437   SmallVector<Value *, 8> Args;
6438   SmallVector<AttributeSet, 8> ArgAttrs;
6439 
6440   // Loop through FunctionType's arguments and ensure they are specified
6441   // correctly.  Also, gather any parameter attributes.
6442   FunctionType::param_iterator I = Ty->param_begin();
6443   FunctionType::param_iterator E = Ty->param_end();
6444   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6445     Type *ExpectedTy = nullptr;
6446     if (I != E) {
6447       ExpectedTy = *I++;
6448     } else if (!Ty->isVarArg()) {
6449       return Error(ArgList[i].Loc, "too many arguments specified");
6450     }
6451 
6452     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6453       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6454                                        getTypeString(ExpectedTy) + "'");
6455     Args.push_back(ArgList[i].V);
6456     ArgAttrs.push_back(ArgList[i].Attrs);
6457   }
6458 
6459   if (I != E)
6460     return Error(CallLoc, "not enough parameters specified for call");
6461 
6462   if (FnAttrs.hasAlignmentAttr())
6463     return Error(CallLoc, "callbr instructions may not have an alignment");
6464 
6465   // Finish off the Attribute and check them
6466   AttributeList PAL =
6467       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6468                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6469 
6470   CallBrInst *CBI =
6471       CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
6472                          BundleList);
6473   CBI->setCallingConv(CC);
6474   CBI->setAttributes(PAL);
6475   ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
6476   Inst = CBI;
6477   return false;
6478 }
6479 
6480 //===----------------------------------------------------------------------===//
6481 // Binary Operators.
6482 //===----------------------------------------------------------------------===//
6483 
6484 /// ParseArithmetic
6485 ///  ::= ArithmeticOps TypeAndValue ',' Value
6486 ///
6487 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6488 /// operand is allowed.
6489 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
6490                                unsigned Opc, bool IsFP) {
6491   LocTy Loc; Value *LHS, *RHS;
6492   if (ParseTypeAndValue(LHS, Loc, PFS) ||
6493       ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
6494       ParseValue(LHS->getType(), RHS, PFS))
6495     return true;
6496 
6497   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6498                     : LHS->getType()->isIntOrIntVectorTy();
6499 
6500   if (!Valid)
6501     return Error(Loc, "invalid operand type for instruction");
6502 
6503   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6504   return false;
6505 }
6506 
6507 /// ParseLogical
6508 ///  ::= ArithmeticOps TypeAndValue ',' Value {
6509 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
6510                             unsigned Opc) {
6511   LocTy Loc; Value *LHS, *RHS;
6512   if (ParseTypeAndValue(LHS, Loc, PFS) ||
6513       ParseToken(lltok::comma, "expected ',' in logical operation") ||
6514       ParseValue(LHS->getType(), RHS, PFS))
6515     return true;
6516 
6517   if (!LHS->getType()->isIntOrIntVectorTy())
6518     return Error(Loc,"instruction requires integer or integer vector operands");
6519 
6520   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6521   return false;
6522 }
6523 
6524 /// ParseCompare
6525 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
6526 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
6527 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
6528                             unsigned Opc) {
6529   // Parse the integer/fp comparison predicate.
6530   LocTy Loc;
6531   unsigned Pred;
6532   Value *LHS, *RHS;
6533   if (ParseCmpPredicate(Pred, Opc) ||
6534       ParseTypeAndValue(LHS, Loc, PFS) ||
6535       ParseToken(lltok::comma, "expected ',' after compare value") ||
6536       ParseValue(LHS->getType(), RHS, PFS))
6537     return true;
6538 
6539   if (Opc == Instruction::FCmp) {
6540     if (!LHS->getType()->isFPOrFPVectorTy())
6541       return Error(Loc, "fcmp requires floating point operands");
6542     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6543   } else {
6544     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
6545     if (!LHS->getType()->isIntOrIntVectorTy() &&
6546         !LHS->getType()->isPtrOrPtrVectorTy())
6547       return Error(Loc, "icmp requires integer operands");
6548     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6549   }
6550   return false;
6551 }
6552 
6553 //===----------------------------------------------------------------------===//
6554 // Other Instructions.
6555 //===----------------------------------------------------------------------===//
6556 
6557 
6558 /// ParseCast
6559 ///   ::= CastOpc TypeAndValue 'to' Type
6560 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
6561                          unsigned Opc) {
6562   LocTy Loc;
6563   Value *Op;
6564   Type *DestTy = nullptr;
6565   if (ParseTypeAndValue(Op, Loc, PFS) ||
6566       ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
6567       ParseType(DestTy))
6568     return true;
6569 
6570   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
6571     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
6572     return Error(Loc, "invalid cast opcode for cast from '" +
6573                  getTypeString(Op->getType()) + "' to '" +
6574                  getTypeString(DestTy) + "'");
6575   }
6576   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
6577   return false;
6578 }
6579 
6580 /// ParseSelect
6581 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6582 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
6583   LocTy Loc;
6584   Value *Op0, *Op1, *Op2;
6585   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6586       ParseToken(lltok::comma, "expected ',' after select condition") ||
6587       ParseTypeAndValue(Op1, PFS) ||
6588       ParseToken(lltok::comma, "expected ',' after select value") ||
6589       ParseTypeAndValue(Op2, PFS))
6590     return true;
6591 
6592   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
6593     return Error(Loc, Reason);
6594 
6595   Inst = SelectInst::Create(Op0, Op1, Op2);
6596   return false;
6597 }
6598 
6599 /// ParseVA_Arg
6600 ///   ::= 'va_arg' TypeAndValue ',' Type
6601 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
6602   Value *Op;
6603   Type *EltTy = nullptr;
6604   LocTy TypeLoc;
6605   if (ParseTypeAndValue(Op, PFS) ||
6606       ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
6607       ParseType(EltTy, TypeLoc))
6608     return true;
6609 
6610   if (!EltTy->isFirstClassType())
6611     return Error(TypeLoc, "va_arg requires operand with first class type");
6612 
6613   Inst = new VAArgInst(Op, EltTy);
6614   return false;
6615 }
6616 
6617 /// ParseExtractElement
6618 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
6619 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
6620   LocTy Loc;
6621   Value *Op0, *Op1;
6622   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6623       ParseToken(lltok::comma, "expected ',' after extract value") ||
6624       ParseTypeAndValue(Op1, PFS))
6625     return true;
6626 
6627   if (!ExtractElementInst::isValidOperands(Op0, Op1))
6628     return Error(Loc, "invalid extractelement operands");
6629 
6630   Inst = ExtractElementInst::Create(Op0, Op1);
6631   return false;
6632 }
6633 
6634 /// ParseInsertElement
6635 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6636 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
6637   LocTy Loc;
6638   Value *Op0, *Op1, *Op2;
6639   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6640       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6641       ParseTypeAndValue(Op1, PFS) ||
6642       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6643       ParseTypeAndValue(Op2, PFS))
6644     return true;
6645 
6646   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
6647     return Error(Loc, "invalid insertelement operands");
6648 
6649   Inst = InsertElementInst::Create(Op0, Op1, Op2);
6650   return false;
6651 }
6652 
6653 /// ParseShuffleVector
6654 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6655 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
6656   LocTy Loc;
6657   Value *Op0, *Op1, *Op2;
6658   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6659       ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
6660       ParseTypeAndValue(Op1, PFS) ||
6661       ParseToken(lltok::comma, "expected ',' after shuffle value") ||
6662       ParseTypeAndValue(Op2, PFS))
6663     return true;
6664 
6665   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
6666     return Error(Loc, "invalid shufflevector operands");
6667 
6668   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
6669   return false;
6670 }
6671 
6672 /// ParsePHI
6673 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
6674 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
6675   Type *Ty = nullptr;  LocTy TypeLoc;
6676   Value *Op0, *Op1;
6677 
6678   if (ParseType(Ty, TypeLoc) ||
6679       ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6680       ParseValue(Ty, Op0, PFS) ||
6681       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6682       ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6683       ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6684     return true;
6685 
6686   bool AteExtraComma = false;
6687   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
6688 
6689   while (true) {
6690     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
6691 
6692     if (!EatIfPresent(lltok::comma))
6693       break;
6694 
6695     if (Lex.getKind() == lltok::MetadataVar) {
6696       AteExtraComma = true;
6697       break;
6698     }
6699 
6700     if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6701         ParseValue(Ty, Op0, PFS) ||
6702         ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6703         ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6704         ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6705       return true;
6706   }
6707 
6708   if (!Ty->isFirstClassType())
6709     return Error(TypeLoc, "phi node must have first class type");
6710 
6711   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
6712   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
6713     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
6714   Inst = PN;
6715   return AteExtraComma ? InstExtraComma : InstNormal;
6716 }
6717 
6718 /// ParseLandingPad
6719 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
6720 /// Clause
6721 ///   ::= 'catch' TypeAndValue
6722 ///   ::= 'filter'
6723 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
6724 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
6725   Type *Ty = nullptr; LocTy TyLoc;
6726 
6727   if (ParseType(Ty, TyLoc))
6728     return true;
6729 
6730   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
6731   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
6732 
6733   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
6734     LandingPadInst::ClauseType CT;
6735     if (EatIfPresent(lltok::kw_catch))
6736       CT = LandingPadInst::Catch;
6737     else if (EatIfPresent(lltok::kw_filter))
6738       CT = LandingPadInst::Filter;
6739     else
6740       return TokError("expected 'catch' or 'filter' clause type");
6741 
6742     Value *V;
6743     LocTy VLoc;
6744     if (ParseTypeAndValue(V, VLoc, PFS))
6745       return true;
6746 
6747     // A 'catch' type expects a non-array constant. A filter clause expects an
6748     // array constant.
6749     if (CT == LandingPadInst::Catch) {
6750       if (isa<ArrayType>(V->getType()))
6751         Error(VLoc, "'catch' clause has an invalid type");
6752     } else {
6753       if (!isa<ArrayType>(V->getType()))
6754         Error(VLoc, "'filter' clause has an invalid type");
6755     }
6756 
6757     Constant *CV = dyn_cast<Constant>(V);
6758     if (!CV)
6759       return Error(VLoc, "clause argument must be a constant");
6760     LP->addClause(CV);
6761   }
6762 
6763   Inst = LP.release();
6764   return false;
6765 }
6766 
6767 /// ParseFreeze
6768 ///   ::= 'freeze' Type Value
6769 bool LLParser::ParseFreeze(Instruction *&Inst, PerFunctionState &PFS) {
6770   LocTy Loc;
6771   Value *Op;
6772   if (ParseTypeAndValue(Op, Loc, PFS))
6773     return true;
6774 
6775   Inst = new FreezeInst(Op);
6776   return false;
6777 }
6778 
6779 /// ParseCall
6780 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
6781 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6782 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
6783 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6784 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
6785 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6786 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
6787 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6788 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
6789                          CallInst::TailCallKind TCK) {
6790   AttrBuilder RetAttrs, FnAttrs;
6791   std::vector<unsigned> FwdRefAttrGrps;
6792   LocTy BuiltinLoc;
6793   unsigned CallAddrSpace;
6794   unsigned CC;
6795   Type *RetType = nullptr;
6796   LocTy RetTypeLoc;
6797   ValID CalleeID;
6798   SmallVector<ParamInfo, 16> ArgList;
6799   SmallVector<OperandBundleDef, 2> BundleList;
6800   LocTy CallLoc = Lex.getLoc();
6801 
6802   if (TCK != CallInst::TCK_None &&
6803       ParseToken(lltok::kw_call,
6804                  "expected 'tail call', 'musttail call', or 'notail call'"))
6805     return true;
6806 
6807   FastMathFlags FMF = EatFastMathFlagsIfPresent();
6808 
6809   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6810       ParseOptionalProgramAddrSpace(CallAddrSpace) ||
6811       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6812       ParseValID(CalleeID) ||
6813       ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
6814                          PFS.getFunction().isVarArg()) ||
6815       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
6816       ParseOptionalOperandBundles(BundleList, PFS))
6817     return true;
6818 
6819   // If RetType is a non-function pointer type, then this is the short syntax
6820   // for the call, which means that RetType is just the return type.  Infer the
6821   // rest of the function argument types from the arguments that are present.
6822   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6823   if (!Ty) {
6824     // Pull out the types of all of the arguments...
6825     std::vector<Type*> ParamTypes;
6826     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6827       ParamTypes.push_back(ArgList[i].V->getType());
6828 
6829     if (!FunctionType::isValidReturnType(RetType))
6830       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6831 
6832     Ty = FunctionType::get(RetType, ParamTypes, false);
6833   }
6834 
6835   CalleeID.FTy = Ty;
6836 
6837   // Look up the callee.
6838   Value *Callee;
6839   if (ConvertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
6840                           &PFS, /*IsCall=*/true))
6841     return true;
6842 
6843   // Set up the Attribute for the function.
6844   SmallVector<AttributeSet, 8> Attrs;
6845 
6846   SmallVector<Value*, 8> Args;
6847 
6848   // Loop through FunctionType's arguments and ensure they are specified
6849   // correctly.  Also, gather any parameter attributes.
6850   FunctionType::param_iterator I = Ty->param_begin();
6851   FunctionType::param_iterator E = Ty->param_end();
6852   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6853     Type *ExpectedTy = nullptr;
6854     if (I != E) {
6855       ExpectedTy = *I++;
6856     } else if (!Ty->isVarArg()) {
6857       return Error(ArgList[i].Loc, "too many arguments specified");
6858     }
6859 
6860     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6861       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6862                    getTypeString(ExpectedTy) + "'");
6863     Args.push_back(ArgList[i].V);
6864     Attrs.push_back(ArgList[i].Attrs);
6865   }
6866 
6867   if (I != E)
6868     return Error(CallLoc, "not enough parameters specified for call");
6869 
6870   if (FnAttrs.hasAlignmentAttr())
6871     return Error(CallLoc, "call instructions may not have an alignment");
6872 
6873   // Finish off the Attribute and check them
6874   AttributeList PAL =
6875       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6876                          AttributeSet::get(Context, RetAttrs), Attrs);
6877 
6878   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
6879   CI->setTailCallKind(TCK);
6880   CI->setCallingConv(CC);
6881   if (FMF.any()) {
6882     if (!isa<FPMathOperator>(CI))
6883       return Error(CallLoc, "fast-math-flags specified for call without "
6884                    "floating-point scalar or vector return type");
6885     CI->setFastMathFlags(FMF);
6886   }
6887   CI->setAttributes(PAL);
6888   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
6889   Inst = CI;
6890   return false;
6891 }
6892 
6893 //===----------------------------------------------------------------------===//
6894 // Memory Instructions.
6895 //===----------------------------------------------------------------------===//
6896 
6897 /// ParseAlloc
6898 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
6899 ///       (',' 'align' i32)? (',', 'addrspace(n))?
6900 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
6901   Value *Size = nullptr;
6902   LocTy SizeLoc, TyLoc, ASLoc;
6903   MaybeAlign Alignment;
6904   unsigned AddrSpace = 0;
6905   Type *Ty = nullptr;
6906 
6907   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
6908   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
6909 
6910   if (ParseType(Ty, TyLoc)) return true;
6911 
6912   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
6913     return Error(TyLoc, "invalid type for alloca");
6914 
6915   bool AteExtraComma = false;
6916   if (EatIfPresent(lltok::comma)) {
6917     if (Lex.getKind() == lltok::kw_align) {
6918       if (ParseOptionalAlignment(Alignment))
6919         return true;
6920       if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6921         return true;
6922     } else if (Lex.getKind() == lltok::kw_addrspace) {
6923       ASLoc = Lex.getLoc();
6924       if (ParseOptionalAddrSpace(AddrSpace))
6925         return true;
6926     } else if (Lex.getKind() == lltok::MetadataVar) {
6927       AteExtraComma = true;
6928     } else {
6929       if (ParseTypeAndValue(Size, SizeLoc, PFS))
6930         return true;
6931       if (EatIfPresent(lltok::comma)) {
6932         if (Lex.getKind() == lltok::kw_align) {
6933           if (ParseOptionalAlignment(Alignment))
6934             return true;
6935           if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6936             return true;
6937         } else if (Lex.getKind() == lltok::kw_addrspace) {
6938           ASLoc = Lex.getLoc();
6939           if (ParseOptionalAddrSpace(AddrSpace))
6940             return true;
6941         } else if (Lex.getKind() == lltok::MetadataVar) {
6942           AteExtraComma = true;
6943         }
6944       }
6945     }
6946   }
6947 
6948   if (Size && !Size->getType()->isIntegerTy())
6949     return Error(SizeLoc, "element count must have integer type");
6950 
6951   AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, Alignment);
6952   AI->setUsedWithInAlloca(IsInAlloca);
6953   AI->setSwiftError(IsSwiftError);
6954   Inst = AI;
6955   return AteExtraComma ? InstExtraComma : InstNormal;
6956 }
6957 
6958 /// ParseLoad
6959 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
6960 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
6961 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
6962 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
6963   Value *Val; LocTy Loc;
6964   MaybeAlign Alignment;
6965   bool AteExtraComma = false;
6966   bool isAtomic = false;
6967   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6968   SyncScope::ID SSID = SyncScope::System;
6969 
6970   if (Lex.getKind() == lltok::kw_atomic) {
6971     isAtomic = true;
6972     Lex.Lex();
6973   }
6974 
6975   bool isVolatile = false;
6976   if (Lex.getKind() == lltok::kw_volatile) {
6977     isVolatile = true;
6978     Lex.Lex();
6979   }
6980 
6981   Type *Ty;
6982   LocTy ExplicitTypeLoc = Lex.getLoc();
6983   if (ParseType(Ty) ||
6984       ParseToken(lltok::comma, "expected comma after load's type") ||
6985       ParseTypeAndValue(Val, Loc, PFS) ||
6986       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
6987       ParseOptionalCommaAlign(Alignment, AteExtraComma))
6988     return true;
6989 
6990   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
6991     return Error(Loc, "load operand must be a pointer to a first class type");
6992   if (isAtomic && !Alignment)
6993     return Error(Loc, "atomic load must have explicit non-zero alignment");
6994   if (Ordering == AtomicOrdering::Release ||
6995       Ordering == AtomicOrdering::AcquireRelease)
6996     return Error(Loc, "atomic load cannot use Release ordering");
6997 
6998   if (Ty != cast<PointerType>(Val->getType())->getElementType())
6999     return Error(ExplicitTypeLoc,
7000                  "explicit pointee type doesn't match operand's pointee type");
7001 
7002   Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, SSID);
7003   return AteExtraComma ? InstExtraComma : InstNormal;
7004 }
7005 
7006 /// ParseStore
7007 
7008 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
7009 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
7010 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7011 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
7012   Value *Val, *Ptr; LocTy Loc, PtrLoc;
7013   MaybeAlign Alignment;
7014   bool AteExtraComma = false;
7015   bool isAtomic = false;
7016   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7017   SyncScope::ID SSID = SyncScope::System;
7018 
7019   if (Lex.getKind() == lltok::kw_atomic) {
7020     isAtomic = true;
7021     Lex.Lex();
7022   }
7023 
7024   bool isVolatile = false;
7025   if (Lex.getKind() == lltok::kw_volatile) {
7026     isVolatile = true;
7027     Lex.Lex();
7028   }
7029 
7030   if (ParseTypeAndValue(Val, Loc, PFS) ||
7031       ParseToken(lltok::comma, "expected ',' after store operand") ||
7032       ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
7033       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7034       ParseOptionalCommaAlign(Alignment, AteExtraComma))
7035     return true;
7036 
7037   if (!Ptr->getType()->isPointerTy())
7038     return Error(PtrLoc, "store operand must be a pointer");
7039   if (!Val->getType()->isFirstClassType())
7040     return Error(Loc, "store operand must be a first class value");
7041   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
7042     return Error(Loc, "stored value and pointer type do not match");
7043   if (isAtomic && !Alignment)
7044     return Error(Loc, "atomic store must have explicit non-zero alignment");
7045   if (Ordering == AtomicOrdering::Acquire ||
7046       Ordering == AtomicOrdering::AcquireRelease)
7047     return Error(Loc, "atomic store cannot use Acquire ordering");
7048 
7049   Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, SSID);
7050   return AteExtraComma ? InstExtraComma : InstNormal;
7051 }
7052 
7053 /// ParseCmpXchg
7054 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
7055 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
7056 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
7057   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
7058   bool AteExtraComma = false;
7059   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
7060   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
7061   SyncScope::ID SSID = SyncScope::System;
7062   bool isVolatile = false;
7063   bool isWeak = false;
7064 
7065   if (EatIfPresent(lltok::kw_weak))
7066     isWeak = true;
7067 
7068   if (EatIfPresent(lltok::kw_volatile))
7069     isVolatile = true;
7070 
7071   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
7072       ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
7073       ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
7074       ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
7075       ParseTypeAndValue(New, NewLoc, PFS) ||
7076       ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
7077       ParseOrdering(FailureOrdering))
7078     return true;
7079 
7080   if (SuccessOrdering == AtomicOrdering::Unordered ||
7081       FailureOrdering == AtomicOrdering::Unordered)
7082     return TokError("cmpxchg cannot be unordered");
7083   if (isStrongerThan(FailureOrdering, SuccessOrdering))
7084     return TokError("cmpxchg failure argument shall be no stronger than the "
7085                     "success argument");
7086   if (FailureOrdering == AtomicOrdering::Release ||
7087       FailureOrdering == AtomicOrdering::AcquireRelease)
7088     return TokError(
7089         "cmpxchg failure ordering cannot include release semantics");
7090   if (!Ptr->getType()->isPointerTy())
7091     return Error(PtrLoc, "cmpxchg operand must be a pointer");
7092   if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
7093     return Error(CmpLoc, "compare value and pointer type do not match");
7094   if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
7095     return Error(NewLoc, "new value and pointer type do not match");
7096   if (!New->getType()->isFirstClassType())
7097     return Error(NewLoc, "cmpxchg operand must be a first class value");
7098   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
7099       Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID);
7100   CXI->setVolatile(isVolatile);
7101   CXI->setWeak(isWeak);
7102   Inst = CXI;
7103   return AteExtraComma ? InstExtraComma : InstNormal;
7104 }
7105 
7106 /// ParseAtomicRMW
7107 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
7108 ///       'singlethread'? AtomicOrdering
7109 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
7110   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
7111   bool AteExtraComma = false;
7112   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7113   SyncScope::ID SSID = SyncScope::System;
7114   bool isVolatile = false;
7115   bool IsFP = false;
7116   AtomicRMWInst::BinOp Operation;
7117 
7118   if (EatIfPresent(lltok::kw_volatile))
7119     isVolatile = true;
7120 
7121   switch (Lex.getKind()) {
7122   default: return TokError("expected binary operation in atomicrmw");
7123   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
7124   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
7125   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
7126   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
7127   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
7128   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
7129   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
7130   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
7131   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
7132   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
7133   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
7134   case lltok::kw_fadd:
7135     Operation = AtomicRMWInst::FAdd;
7136     IsFP = true;
7137     break;
7138   case lltok::kw_fsub:
7139     Operation = AtomicRMWInst::FSub;
7140     IsFP = true;
7141     break;
7142   }
7143   Lex.Lex();  // Eat the operation.
7144 
7145   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
7146       ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
7147       ParseTypeAndValue(Val, ValLoc, PFS) ||
7148       ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7149     return true;
7150 
7151   if (Ordering == AtomicOrdering::Unordered)
7152     return TokError("atomicrmw cannot be unordered");
7153   if (!Ptr->getType()->isPointerTy())
7154     return Error(PtrLoc, "atomicrmw operand must be a pointer");
7155   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
7156     return Error(ValLoc, "atomicrmw value and pointer type do not match");
7157 
7158   if (Operation == AtomicRMWInst::Xchg) {
7159     if (!Val->getType()->isIntegerTy() &&
7160         !Val->getType()->isFloatingPointTy()) {
7161       return Error(ValLoc, "atomicrmw " +
7162                    AtomicRMWInst::getOperationName(Operation) +
7163                    " operand must be an integer or floating point type");
7164     }
7165   } else if (IsFP) {
7166     if (!Val->getType()->isFloatingPointTy()) {
7167       return Error(ValLoc, "atomicrmw " +
7168                    AtomicRMWInst::getOperationName(Operation) +
7169                    " operand must be a floating point type");
7170     }
7171   } else {
7172     if (!Val->getType()->isIntegerTy()) {
7173       return Error(ValLoc, "atomicrmw " +
7174                    AtomicRMWInst::getOperationName(Operation) +
7175                    " operand must be an integer");
7176     }
7177   }
7178 
7179   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
7180   if (Size < 8 || (Size & (Size - 1)))
7181     return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
7182                          " integer");
7183 
7184   AtomicRMWInst *RMWI =
7185     new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
7186   RMWI->setVolatile(isVolatile);
7187   Inst = RMWI;
7188   return AteExtraComma ? InstExtraComma : InstNormal;
7189 }
7190 
7191 /// ParseFence
7192 ///   ::= 'fence' 'singlethread'? AtomicOrdering
7193 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
7194   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7195   SyncScope::ID SSID = SyncScope::System;
7196   if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7197     return true;
7198 
7199   if (Ordering == AtomicOrdering::Unordered)
7200     return TokError("fence cannot be unordered");
7201   if (Ordering == AtomicOrdering::Monotonic)
7202     return TokError("fence cannot be monotonic");
7203 
7204   Inst = new FenceInst(Context, Ordering, SSID);
7205   return InstNormal;
7206 }
7207 
7208 /// ParseGetElementPtr
7209 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
7210 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
7211   Value *Ptr = nullptr;
7212   Value *Val = nullptr;
7213   LocTy Loc, EltLoc;
7214 
7215   bool InBounds = EatIfPresent(lltok::kw_inbounds);
7216 
7217   Type *Ty = nullptr;
7218   LocTy ExplicitTypeLoc = Lex.getLoc();
7219   if (ParseType(Ty) ||
7220       ParseToken(lltok::comma, "expected comma after getelementptr's type") ||
7221       ParseTypeAndValue(Ptr, Loc, PFS))
7222     return true;
7223 
7224   Type *BaseType = Ptr->getType();
7225   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
7226   if (!BasePointerType)
7227     return Error(Loc, "base of getelementptr must be a pointer");
7228 
7229   if (Ty != BasePointerType->getElementType())
7230     return Error(ExplicitTypeLoc,
7231                  "explicit pointee type doesn't match operand's pointee type");
7232 
7233   SmallVector<Value*, 16> Indices;
7234   bool AteExtraComma = false;
7235   // GEP returns a vector of pointers if at least one of parameters is a vector.
7236   // All vector parameters should have the same vector width.
7237   ElementCount GEPWidth = BaseType->isVectorTy()
7238                               ? cast<VectorType>(BaseType)->getElementCount()
7239                               : ElementCount(0, false);
7240 
7241   while (EatIfPresent(lltok::comma)) {
7242     if (Lex.getKind() == lltok::MetadataVar) {
7243       AteExtraComma = true;
7244       break;
7245     }
7246     if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
7247     if (!Val->getType()->isIntOrIntVectorTy())
7248       return Error(EltLoc, "getelementptr index must be an integer");
7249 
7250     if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) {
7251       ElementCount ValNumEl = ValVTy->getElementCount();
7252       if (GEPWidth != ElementCount(0, false) && GEPWidth != ValNumEl)
7253         return Error(EltLoc,
7254           "getelementptr vector index has a wrong number of elements");
7255       GEPWidth = ValNumEl;
7256     }
7257     Indices.push_back(Val);
7258   }
7259 
7260   SmallPtrSet<Type*, 4> Visited;
7261   if (!Indices.empty() && !Ty->isSized(&Visited))
7262     return Error(Loc, "base element of getelementptr must be sized");
7263 
7264   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
7265     return Error(Loc, "invalid getelementptr indices");
7266   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
7267   if (InBounds)
7268     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
7269   return AteExtraComma ? InstExtraComma : InstNormal;
7270 }
7271 
7272 /// ParseExtractValue
7273 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
7274 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
7275   Value *Val; LocTy Loc;
7276   SmallVector<unsigned, 4> Indices;
7277   bool AteExtraComma;
7278   if (ParseTypeAndValue(Val, Loc, PFS) ||
7279       ParseIndexList(Indices, AteExtraComma))
7280     return true;
7281 
7282   if (!Val->getType()->isAggregateType())
7283     return Error(Loc, "extractvalue operand must be aggregate type");
7284 
7285   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
7286     return Error(Loc, "invalid indices for extractvalue");
7287   Inst = ExtractValueInst::Create(Val, Indices);
7288   return AteExtraComma ? InstExtraComma : InstNormal;
7289 }
7290 
7291 /// ParseInsertValue
7292 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
7293 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
7294   Value *Val0, *Val1; LocTy Loc0, Loc1;
7295   SmallVector<unsigned, 4> Indices;
7296   bool AteExtraComma;
7297   if (ParseTypeAndValue(Val0, Loc0, PFS) ||
7298       ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
7299       ParseTypeAndValue(Val1, Loc1, PFS) ||
7300       ParseIndexList(Indices, AteExtraComma))
7301     return true;
7302 
7303   if (!Val0->getType()->isAggregateType())
7304     return Error(Loc0, "insertvalue operand must be aggregate type");
7305 
7306   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
7307   if (!IndexedType)
7308     return Error(Loc0, "invalid indices for insertvalue");
7309   if (IndexedType != Val1->getType())
7310     return Error(Loc1, "insertvalue operand and field disagree in type: '" +
7311                            getTypeString(Val1->getType()) + "' instead of '" +
7312                            getTypeString(IndexedType) + "'");
7313   Inst = InsertValueInst::Create(Val0, Val1, Indices);
7314   return AteExtraComma ? InstExtraComma : InstNormal;
7315 }
7316 
7317 //===----------------------------------------------------------------------===//
7318 // Embedded metadata.
7319 //===----------------------------------------------------------------------===//
7320 
7321 /// ParseMDNodeVector
7322 ///   ::= { Element (',' Element)* }
7323 /// Element
7324 ///   ::= 'null' | TypeAndValue
7325 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
7326   if (ParseToken(lltok::lbrace, "expected '{' here"))
7327     return true;
7328 
7329   // Check for an empty list.
7330   if (EatIfPresent(lltok::rbrace))
7331     return false;
7332 
7333   do {
7334     // Null is a special case since it is typeless.
7335     if (EatIfPresent(lltok::kw_null)) {
7336       Elts.push_back(nullptr);
7337       continue;
7338     }
7339 
7340     Metadata *MD;
7341     if (ParseMetadata(MD, nullptr))
7342       return true;
7343     Elts.push_back(MD);
7344   } while (EatIfPresent(lltok::comma));
7345 
7346   return ParseToken(lltok::rbrace, "expected end of metadata node");
7347 }
7348 
7349 //===----------------------------------------------------------------------===//
7350 // Use-list order directives.
7351 //===----------------------------------------------------------------------===//
7352 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
7353                                 SMLoc Loc) {
7354   if (V->use_empty())
7355     return Error(Loc, "value has no uses");
7356 
7357   unsigned NumUses = 0;
7358   SmallDenseMap<const Use *, unsigned, 16> Order;
7359   for (const Use &U : V->uses()) {
7360     if (++NumUses > Indexes.size())
7361       break;
7362     Order[&U] = Indexes[NumUses - 1];
7363   }
7364   if (NumUses < 2)
7365     return Error(Loc, "value only has one use");
7366   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
7367     return Error(Loc,
7368                  "wrong number of indexes, expected " + Twine(V->getNumUses()));
7369 
7370   V->sortUseList([&](const Use &L, const Use &R) {
7371     return Order.lookup(&L) < Order.lookup(&R);
7372   });
7373   return false;
7374 }
7375 
7376 /// ParseUseListOrderIndexes
7377 ///   ::= '{' uint32 (',' uint32)+ '}'
7378 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
7379   SMLoc Loc = Lex.getLoc();
7380   if (ParseToken(lltok::lbrace, "expected '{' here"))
7381     return true;
7382   if (Lex.getKind() == lltok::rbrace)
7383     return Lex.Error("expected non-empty list of uselistorder indexes");
7384 
7385   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
7386   // indexes should be distinct numbers in the range [0, size-1], and should
7387   // not be in order.
7388   unsigned Offset = 0;
7389   unsigned Max = 0;
7390   bool IsOrdered = true;
7391   assert(Indexes.empty() && "Expected empty order vector");
7392   do {
7393     unsigned Index;
7394     if (ParseUInt32(Index))
7395       return true;
7396 
7397     // Update consistency checks.
7398     Offset += Index - Indexes.size();
7399     Max = std::max(Max, Index);
7400     IsOrdered &= Index == Indexes.size();
7401 
7402     Indexes.push_back(Index);
7403   } while (EatIfPresent(lltok::comma));
7404 
7405   if (ParseToken(lltok::rbrace, "expected '}' here"))
7406     return true;
7407 
7408   if (Indexes.size() < 2)
7409     return Error(Loc, "expected >= 2 uselistorder indexes");
7410   if (Offset != 0 || Max >= Indexes.size())
7411     return Error(Loc, "expected distinct uselistorder indexes in range [0, size)");
7412   if (IsOrdered)
7413     return Error(Loc, "expected uselistorder indexes to change the order");
7414 
7415   return false;
7416 }
7417 
7418 /// ParseUseListOrder
7419 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
7420 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) {
7421   SMLoc Loc = Lex.getLoc();
7422   if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
7423     return true;
7424 
7425   Value *V;
7426   SmallVector<unsigned, 16> Indexes;
7427   if (ParseTypeAndValue(V, PFS) ||
7428       ParseToken(lltok::comma, "expected comma in uselistorder directive") ||
7429       ParseUseListOrderIndexes(Indexes))
7430     return true;
7431 
7432   return sortUseListOrder(V, Indexes, Loc);
7433 }
7434 
7435 /// ParseUseListOrderBB
7436 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
7437 bool LLParser::ParseUseListOrderBB() {
7438   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
7439   SMLoc Loc = Lex.getLoc();
7440   Lex.Lex();
7441 
7442   ValID Fn, Label;
7443   SmallVector<unsigned, 16> Indexes;
7444   if (ParseValID(Fn) ||
7445       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7446       ParseValID(Label) ||
7447       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7448       ParseUseListOrderIndexes(Indexes))
7449     return true;
7450 
7451   // Check the function.
7452   GlobalValue *GV;
7453   if (Fn.Kind == ValID::t_GlobalName)
7454     GV = M->getNamedValue(Fn.StrVal);
7455   else if (Fn.Kind == ValID::t_GlobalID)
7456     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
7457   else
7458     return Error(Fn.Loc, "expected function name in uselistorder_bb");
7459   if (!GV)
7460     return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb");
7461   auto *F = dyn_cast<Function>(GV);
7462   if (!F)
7463     return Error(Fn.Loc, "expected function name in uselistorder_bb");
7464   if (F->isDeclaration())
7465     return Error(Fn.Loc, "invalid declaration in uselistorder_bb");
7466 
7467   // Check the basic block.
7468   if (Label.Kind == ValID::t_LocalID)
7469     return Error(Label.Loc, "invalid numeric label in uselistorder_bb");
7470   if (Label.Kind != ValID::t_LocalName)
7471     return Error(Label.Loc, "expected basic block name in uselistorder_bb");
7472   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
7473   if (!V)
7474     return Error(Label.Loc, "invalid basic block in uselistorder_bb");
7475   if (!isa<BasicBlock>(V))
7476     return Error(Label.Loc, "expected basic block in uselistorder_bb");
7477 
7478   return sortUseListOrder(V, Indexes, Loc);
7479 }
7480 
7481 /// ModuleEntry
7482 ///   ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
7483 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
7484 bool LLParser::ParseModuleEntry(unsigned ID) {
7485   assert(Lex.getKind() == lltok::kw_module);
7486   Lex.Lex();
7487 
7488   std::string Path;
7489   if (ParseToken(lltok::colon, "expected ':' here") ||
7490       ParseToken(lltok::lparen, "expected '(' here") ||
7491       ParseToken(lltok::kw_path, "expected 'path' here") ||
7492       ParseToken(lltok::colon, "expected ':' here") ||
7493       ParseStringConstant(Path) ||
7494       ParseToken(lltok::comma, "expected ',' here") ||
7495       ParseToken(lltok::kw_hash, "expected 'hash' here") ||
7496       ParseToken(lltok::colon, "expected ':' here") ||
7497       ParseToken(lltok::lparen, "expected '(' here"))
7498     return true;
7499 
7500   ModuleHash Hash;
7501   if (ParseUInt32(Hash[0]) || ParseToken(lltok::comma, "expected ',' here") ||
7502       ParseUInt32(Hash[1]) || ParseToken(lltok::comma, "expected ',' here") ||
7503       ParseUInt32(Hash[2]) || ParseToken(lltok::comma, "expected ',' here") ||
7504       ParseUInt32(Hash[3]) || ParseToken(lltok::comma, "expected ',' here") ||
7505       ParseUInt32(Hash[4]))
7506     return true;
7507 
7508   if (ParseToken(lltok::rparen, "expected ')' here") ||
7509       ParseToken(lltok::rparen, "expected ')' here"))
7510     return true;
7511 
7512   auto ModuleEntry = Index->addModule(Path, ID, Hash);
7513   ModuleIdMap[ID] = ModuleEntry->first();
7514 
7515   return false;
7516 }
7517 
7518 /// TypeIdEntry
7519 ///   ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
7520 bool LLParser::ParseTypeIdEntry(unsigned ID) {
7521   assert(Lex.getKind() == lltok::kw_typeid);
7522   Lex.Lex();
7523 
7524   std::string Name;
7525   if (ParseToken(lltok::colon, "expected ':' here") ||
7526       ParseToken(lltok::lparen, "expected '(' here") ||
7527       ParseToken(lltok::kw_name, "expected 'name' here") ||
7528       ParseToken(lltok::colon, "expected ':' here") ||
7529       ParseStringConstant(Name))
7530     return true;
7531 
7532   TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
7533   if (ParseToken(lltok::comma, "expected ',' here") ||
7534       ParseTypeIdSummary(TIS) || ParseToken(lltok::rparen, "expected ')' here"))
7535     return true;
7536 
7537   // Check if this ID was forward referenced, and if so, update the
7538   // corresponding GUIDs.
7539   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7540   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7541     for (auto TIDRef : FwdRefTIDs->second) {
7542       assert(!*TIDRef.first &&
7543              "Forward referenced type id GUID expected to be 0");
7544       *TIDRef.first = GlobalValue::getGUID(Name);
7545     }
7546     ForwardRefTypeIds.erase(FwdRefTIDs);
7547   }
7548 
7549   return false;
7550 }
7551 
7552 /// TypeIdSummary
7553 ///   ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
7554 bool LLParser::ParseTypeIdSummary(TypeIdSummary &TIS) {
7555   if (ParseToken(lltok::kw_summary, "expected 'summary' here") ||
7556       ParseToken(lltok::colon, "expected ':' here") ||
7557       ParseToken(lltok::lparen, "expected '(' here") ||
7558       ParseTypeTestResolution(TIS.TTRes))
7559     return true;
7560 
7561   if (EatIfPresent(lltok::comma)) {
7562     // Expect optional wpdResolutions field
7563     if (ParseOptionalWpdResolutions(TIS.WPDRes))
7564       return true;
7565   }
7566 
7567   if (ParseToken(lltok::rparen, "expected ')' here"))
7568     return true;
7569 
7570   return false;
7571 }
7572 
7573 static ValueInfo EmptyVI =
7574     ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
7575 
7576 /// TypeIdCompatibleVtableEntry
7577 ///   ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ','
7578 ///   TypeIdCompatibleVtableInfo
7579 ///   ')'
7580 bool LLParser::ParseTypeIdCompatibleVtableEntry(unsigned ID) {
7581   assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable);
7582   Lex.Lex();
7583 
7584   std::string Name;
7585   if (ParseToken(lltok::colon, "expected ':' here") ||
7586       ParseToken(lltok::lparen, "expected '(' here") ||
7587       ParseToken(lltok::kw_name, "expected 'name' here") ||
7588       ParseToken(lltok::colon, "expected ':' here") ||
7589       ParseStringConstant(Name))
7590     return true;
7591 
7592   TypeIdCompatibleVtableInfo &TI =
7593       Index->getOrInsertTypeIdCompatibleVtableSummary(Name);
7594   if (ParseToken(lltok::comma, "expected ',' here") ||
7595       ParseToken(lltok::kw_summary, "expected 'summary' here") ||
7596       ParseToken(lltok::colon, "expected ':' here") ||
7597       ParseToken(lltok::lparen, "expected '(' here"))
7598     return true;
7599 
7600   IdToIndexMapType IdToIndexMap;
7601   // Parse each call edge
7602   do {
7603     uint64_t Offset;
7604     if (ParseToken(lltok::lparen, "expected '(' here") ||
7605         ParseToken(lltok::kw_offset, "expected 'offset' here") ||
7606         ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) ||
7607         ParseToken(lltok::comma, "expected ',' here"))
7608       return true;
7609 
7610     LocTy Loc = Lex.getLoc();
7611     unsigned GVId;
7612     ValueInfo VI;
7613     if (ParseGVReference(VI, GVId))
7614       return true;
7615 
7616     // Keep track of the TypeIdCompatibleVtableInfo array index needing a
7617     // forward reference. We will save the location of the ValueInfo needing an
7618     // update, but can only do so once the std::vector is finalized.
7619     if (VI == EmptyVI)
7620       IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc));
7621     TI.push_back({Offset, VI});
7622 
7623     if (ParseToken(lltok::rparen, "expected ')' in call"))
7624       return true;
7625   } while (EatIfPresent(lltok::comma));
7626 
7627   // Now that the TI vector is finalized, it is safe to save the locations
7628   // of any forward GV references that need updating later.
7629   for (auto I : IdToIndexMap) {
7630     for (auto P : I.second) {
7631       assert(TI[P.first].VTableVI == EmptyVI &&
7632              "Forward referenced ValueInfo expected to be empty");
7633       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
7634           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
7635       FwdRef.first->second.push_back(
7636           std::make_pair(&TI[P.first].VTableVI, P.second));
7637     }
7638   }
7639 
7640   if (ParseToken(lltok::rparen, "expected ')' here") ||
7641       ParseToken(lltok::rparen, "expected ')' here"))
7642     return true;
7643 
7644   // Check if this ID was forward referenced, and if so, update the
7645   // corresponding GUIDs.
7646   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7647   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7648     for (auto TIDRef : FwdRefTIDs->second) {
7649       assert(!*TIDRef.first &&
7650              "Forward referenced type id GUID expected to be 0");
7651       *TIDRef.first = GlobalValue::getGUID(Name);
7652     }
7653     ForwardRefTypeIds.erase(FwdRefTIDs);
7654   }
7655 
7656   return false;
7657 }
7658 
7659 /// TypeTestResolution
7660 ///   ::= 'typeTestRes' ':' '(' 'kind' ':'
7661 ///         ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
7662 ///         'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
7663 ///         [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
7664 ///         [',' 'inlinesBits' ':' UInt64]? ')'
7665 bool LLParser::ParseTypeTestResolution(TypeTestResolution &TTRes) {
7666   if (ParseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
7667       ParseToken(lltok::colon, "expected ':' here") ||
7668       ParseToken(lltok::lparen, "expected '(' here") ||
7669       ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7670       ParseToken(lltok::colon, "expected ':' here"))
7671     return true;
7672 
7673   switch (Lex.getKind()) {
7674   case lltok::kw_unsat:
7675     TTRes.TheKind = TypeTestResolution::Unsat;
7676     break;
7677   case lltok::kw_byteArray:
7678     TTRes.TheKind = TypeTestResolution::ByteArray;
7679     break;
7680   case lltok::kw_inline:
7681     TTRes.TheKind = TypeTestResolution::Inline;
7682     break;
7683   case lltok::kw_single:
7684     TTRes.TheKind = TypeTestResolution::Single;
7685     break;
7686   case lltok::kw_allOnes:
7687     TTRes.TheKind = TypeTestResolution::AllOnes;
7688     break;
7689   default:
7690     return Error(Lex.getLoc(), "unexpected TypeTestResolution kind");
7691   }
7692   Lex.Lex();
7693 
7694   if (ParseToken(lltok::comma, "expected ',' here") ||
7695       ParseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
7696       ParseToken(lltok::colon, "expected ':' here") ||
7697       ParseUInt32(TTRes.SizeM1BitWidth))
7698     return true;
7699 
7700   // Parse optional fields
7701   while (EatIfPresent(lltok::comma)) {
7702     switch (Lex.getKind()) {
7703     case lltok::kw_alignLog2:
7704       Lex.Lex();
7705       if (ParseToken(lltok::colon, "expected ':'") ||
7706           ParseUInt64(TTRes.AlignLog2))
7707         return true;
7708       break;
7709     case lltok::kw_sizeM1:
7710       Lex.Lex();
7711       if (ParseToken(lltok::colon, "expected ':'") || ParseUInt64(TTRes.SizeM1))
7712         return true;
7713       break;
7714     case lltok::kw_bitMask: {
7715       unsigned Val;
7716       Lex.Lex();
7717       if (ParseToken(lltok::colon, "expected ':'") || ParseUInt32(Val))
7718         return true;
7719       assert(Val <= 0xff);
7720       TTRes.BitMask = (uint8_t)Val;
7721       break;
7722     }
7723     case lltok::kw_inlineBits:
7724       Lex.Lex();
7725       if (ParseToken(lltok::colon, "expected ':'") ||
7726           ParseUInt64(TTRes.InlineBits))
7727         return true;
7728       break;
7729     default:
7730       return Error(Lex.getLoc(), "expected optional TypeTestResolution field");
7731     }
7732   }
7733 
7734   if (ParseToken(lltok::rparen, "expected ')' here"))
7735     return true;
7736 
7737   return false;
7738 }
7739 
7740 /// OptionalWpdResolutions
7741 ///   ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
7742 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
7743 bool LLParser::ParseOptionalWpdResolutions(
7744     std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
7745   if (ParseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
7746       ParseToken(lltok::colon, "expected ':' here") ||
7747       ParseToken(lltok::lparen, "expected '(' here"))
7748     return true;
7749 
7750   do {
7751     uint64_t Offset;
7752     WholeProgramDevirtResolution WPDRes;
7753     if (ParseToken(lltok::lparen, "expected '(' here") ||
7754         ParseToken(lltok::kw_offset, "expected 'offset' here") ||
7755         ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) ||
7756         ParseToken(lltok::comma, "expected ',' here") || ParseWpdRes(WPDRes) ||
7757         ParseToken(lltok::rparen, "expected ')' here"))
7758       return true;
7759     WPDResMap[Offset] = WPDRes;
7760   } while (EatIfPresent(lltok::comma));
7761 
7762   if (ParseToken(lltok::rparen, "expected ')' here"))
7763     return true;
7764 
7765   return false;
7766 }
7767 
7768 /// WpdRes
7769 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
7770 ///         [',' OptionalResByArg]? ')'
7771 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
7772 ///         ',' 'singleImplName' ':' STRINGCONSTANT ','
7773 ///         [',' OptionalResByArg]? ')'
7774 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
7775 ///         [',' OptionalResByArg]? ')'
7776 bool LLParser::ParseWpdRes(WholeProgramDevirtResolution &WPDRes) {
7777   if (ParseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
7778       ParseToken(lltok::colon, "expected ':' here") ||
7779       ParseToken(lltok::lparen, "expected '(' here") ||
7780       ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7781       ParseToken(lltok::colon, "expected ':' here"))
7782     return true;
7783 
7784   switch (Lex.getKind()) {
7785   case lltok::kw_indir:
7786     WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
7787     break;
7788   case lltok::kw_singleImpl:
7789     WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
7790     break;
7791   case lltok::kw_branchFunnel:
7792     WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
7793     break;
7794   default:
7795     return Error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
7796   }
7797   Lex.Lex();
7798 
7799   // Parse optional fields
7800   while (EatIfPresent(lltok::comma)) {
7801     switch (Lex.getKind()) {
7802     case lltok::kw_singleImplName:
7803       Lex.Lex();
7804       if (ParseToken(lltok::colon, "expected ':' here") ||
7805           ParseStringConstant(WPDRes.SingleImplName))
7806         return true;
7807       break;
7808     case lltok::kw_resByArg:
7809       if (ParseOptionalResByArg(WPDRes.ResByArg))
7810         return true;
7811       break;
7812     default:
7813       return Error(Lex.getLoc(),
7814                    "expected optional WholeProgramDevirtResolution field");
7815     }
7816   }
7817 
7818   if (ParseToken(lltok::rparen, "expected ')' here"))
7819     return true;
7820 
7821   return false;
7822 }
7823 
7824 /// OptionalResByArg
7825 ///   ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
7826 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
7827 ///                ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
7828 ///                  'virtualConstProp' )
7829 ///                [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
7830 ///                [',' 'bit' ':' UInt32]? ')'
7831 bool LLParser::ParseOptionalResByArg(
7832     std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
7833         &ResByArg) {
7834   if (ParseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
7835       ParseToken(lltok::colon, "expected ':' here") ||
7836       ParseToken(lltok::lparen, "expected '(' here"))
7837     return true;
7838 
7839   do {
7840     std::vector<uint64_t> Args;
7841     if (ParseArgs(Args) || ParseToken(lltok::comma, "expected ',' here") ||
7842         ParseToken(lltok::kw_byArg, "expected 'byArg here") ||
7843         ParseToken(lltok::colon, "expected ':' here") ||
7844         ParseToken(lltok::lparen, "expected '(' here") ||
7845         ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7846         ParseToken(lltok::colon, "expected ':' here"))
7847       return true;
7848 
7849     WholeProgramDevirtResolution::ByArg ByArg;
7850     switch (Lex.getKind()) {
7851     case lltok::kw_indir:
7852       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
7853       break;
7854     case lltok::kw_uniformRetVal:
7855       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
7856       break;
7857     case lltok::kw_uniqueRetVal:
7858       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
7859       break;
7860     case lltok::kw_virtualConstProp:
7861       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
7862       break;
7863     default:
7864       return Error(Lex.getLoc(),
7865                    "unexpected WholeProgramDevirtResolution::ByArg kind");
7866     }
7867     Lex.Lex();
7868 
7869     // Parse optional fields
7870     while (EatIfPresent(lltok::comma)) {
7871       switch (Lex.getKind()) {
7872       case lltok::kw_info:
7873         Lex.Lex();
7874         if (ParseToken(lltok::colon, "expected ':' here") ||
7875             ParseUInt64(ByArg.Info))
7876           return true;
7877         break;
7878       case lltok::kw_byte:
7879         Lex.Lex();
7880         if (ParseToken(lltok::colon, "expected ':' here") ||
7881             ParseUInt32(ByArg.Byte))
7882           return true;
7883         break;
7884       case lltok::kw_bit:
7885         Lex.Lex();
7886         if (ParseToken(lltok::colon, "expected ':' here") ||
7887             ParseUInt32(ByArg.Bit))
7888           return true;
7889         break;
7890       default:
7891         return Error(Lex.getLoc(),
7892                      "expected optional whole program devirt field");
7893       }
7894     }
7895 
7896     if (ParseToken(lltok::rparen, "expected ')' here"))
7897       return true;
7898 
7899     ResByArg[Args] = ByArg;
7900   } while (EatIfPresent(lltok::comma));
7901 
7902   if (ParseToken(lltok::rparen, "expected ')' here"))
7903     return true;
7904 
7905   return false;
7906 }
7907 
7908 /// OptionalResByArg
7909 ///   ::= 'args' ':' '(' UInt64[, UInt64]* ')'
7910 bool LLParser::ParseArgs(std::vector<uint64_t> &Args) {
7911   if (ParseToken(lltok::kw_args, "expected 'args' here") ||
7912       ParseToken(lltok::colon, "expected ':' here") ||
7913       ParseToken(lltok::lparen, "expected '(' here"))
7914     return true;
7915 
7916   do {
7917     uint64_t Val;
7918     if (ParseUInt64(Val))
7919       return true;
7920     Args.push_back(Val);
7921   } while (EatIfPresent(lltok::comma));
7922 
7923   if (ParseToken(lltok::rparen, "expected ')' here"))
7924     return true;
7925 
7926   return false;
7927 }
7928 
7929 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
7930 
7931 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
7932   bool ReadOnly = Fwd->isReadOnly();
7933   bool WriteOnly = Fwd->isWriteOnly();
7934   assert(!(ReadOnly && WriteOnly));
7935   *Fwd = Resolved;
7936   if (ReadOnly)
7937     Fwd->setReadOnly();
7938   if (WriteOnly)
7939     Fwd->setWriteOnly();
7940 }
7941 
7942 /// Stores the given Name/GUID and associated summary into the Index.
7943 /// Also updates any forward references to the associated entry ID.
7944 void LLParser::AddGlobalValueToIndex(
7945     std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
7946     unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) {
7947   // First create the ValueInfo utilizing the Name or GUID.
7948   ValueInfo VI;
7949   if (GUID != 0) {
7950     assert(Name.empty());
7951     VI = Index->getOrInsertValueInfo(GUID);
7952   } else {
7953     assert(!Name.empty());
7954     if (M) {
7955       auto *GV = M->getNamedValue(Name);
7956       assert(GV);
7957       VI = Index->getOrInsertValueInfo(GV);
7958     } else {
7959       assert(
7960           (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
7961           "Need a source_filename to compute GUID for local");
7962       GUID = GlobalValue::getGUID(
7963           GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
7964       VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
7965     }
7966   }
7967 
7968   // Resolve forward references from calls/refs
7969   auto FwdRefVIs = ForwardRefValueInfos.find(ID);
7970   if (FwdRefVIs != ForwardRefValueInfos.end()) {
7971     for (auto VIRef : FwdRefVIs->second) {
7972       assert(VIRef.first->getRef() == FwdVIRef &&
7973              "Forward referenced ValueInfo expected to be empty");
7974       resolveFwdRef(VIRef.first, VI);
7975     }
7976     ForwardRefValueInfos.erase(FwdRefVIs);
7977   }
7978 
7979   // Resolve forward references from aliases
7980   auto FwdRefAliasees = ForwardRefAliasees.find(ID);
7981   if (FwdRefAliasees != ForwardRefAliasees.end()) {
7982     for (auto AliaseeRef : FwdRefAliasees->second) {
7983       assert(!AliaseeRef.first->hasAliasee() &&
7984              "Forward referencing alias already has aliasee");
7985       assert(Summary && "Aliasee must be a definition");
7986       AliaseeRef.first->setAliasee(VI, Summary.get());
7987     }
7988     ForwardRefAliasees.erase(FwdRefAliasees);
7989   }
7990 
7991   // Add the summary if one was provided.
7992   if (Summary)
7993     Index->addGlobalValueSummary(VI, std::move(Summary));
7994 
7995   // Save the associated ValueInfo for use in later references by ID.
7996   if (ID == NumberedValueInfos.size())
7997     NumberedValueInfos.push_back(VI);
7998   else {
7999     // Handle non-continuous numbers (to make test simplification easier).
8000     if (ID > NumberedValueInfos.size())
8001       NumberedValueInfos.resize(ID + 1);
8002     NumberedValueInfos[ID] = VI;
8003   }
8004 }
8005 
8006 /// ParseSummaryIndexFlags
8007 ///   ::= 'flags' ':' UInt64
8008 bool LLParser::ParseSummaryIndexFlags() {
8009   assert(Lex.getKind() == lltok::kw_flags);
8010   Lex.Lex();
8011 
8012   if (ParseToken(lltok::colon, "expected ':' here"))
8013     return true;
8014   uint64_t Flags;
8015   if (ParseUInt64(Flags))
8016     return true;
8017   Index->setFlags(Flags);
8018   return false;
8019 }
8020 
8021 /// ParseGVEntry
8022 ///   ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
8023 ///         [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
8024 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
8025 bool LLParser::ParseGVEntry(unsigned ID) {
8026   assert(Lex.getKind() == lltok::kw_gv);
8027   Lex.Lex();
8028 
8029   if (ParseToken(lltok::colon, "expected ':' here") ||
8030       ParseToken(lltok::lparen, "expected '(' here"))
8031     return true;
8032 
8033   std::string Name;
8034   GlobalValue::GUID GUID = 0;
8035   switch (Lex.getKind()) {
8036   case lltok::kw_name:
8037     Lex.Lex();
8038     if (ParseToken(lltok::colon, "expected ':' here") ||
8039         ParseStringConstant(Name))
8040       return true;
8041     // Can't create GUID/ValueInfo until we have the linkage.
8042     break;
8043   case lltok::kw_guid:
8044     Lex.Lex();
8045     if (ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(GUID))
8046       return true;
8047     break;
8048   default:
8049     return Error(Lex.getLoc(), "expected name or guid tag");
8050   }
8051 
8052   if (!EatIfPresent(lltok::comma)) {
8053     // No summaries. Wrap up.
8054     if (ParseToken(lltok::rparen, "expected ')' here"))
8055       return true;
8056     // This was created for a call to an external or indirect target.
8057     // A GUID with no summary came from a VALUE_GUID record, dummy GUID
8058     // created for indirect calls with VP. A Name with no GUID came from
8059     // an external definition. We pass ExternalLinkage since that is only
8060     // used when the GUID must be computed from Name, and in that case
8061     // the symbol must have external linkage.
8062     AddGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
8063                           nullptr);
8064     return false;
8065   }
8066 
8067   // Have a list of summaries
8068   if (ParseToken(lltok::kw_summaries, "expected 'summaries' here") ||
8069       ParseToken(lltok::colon, "expected ':' here") ||
8070       ParseToken(lltok::lparen, "expected '(' here"))
8071     return true;
8072   do {
8073     switch (Lex.getKind()) {
8074     case lltok::kw_function:
8075       if (ParseFunctionSummary(Name, GUID, ID))
8076         return true;
8077       break;
8078     case lltok::kw_variable:
8079       if (ParseVariableSummary(Name, GUID, ID))
8080         return true;
8081       break;
8082     case lltok::kw_alias:
8083       if (ParseAliasSummary(Name, GUID, ID))
8084         return true;
8085       break;
8086     default:
8087       return Error(Lex.getLoc(), "expected summary type");
8088     }
8089   } while (EatIfPresent(lltok::comma));
8090 
8091   if (ParseToken(lltok::rparen, "expected ')' here") ||
8092       ParseToken(lltok::rparen, "expected ')' here"))
8093     return true;
8094 
8095   return false;
8096 }
8097 
8098 /// FunctionSummary
8099 ///   ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8100 ///         ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
8101 ///         [',' OptionalTypeIdInfo]? [',' OptionalRefs]? ')'
8102 bool LLParser::ParseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
8103                                     unsigned ID) {
8104   assert(Lex.getKind() == lltok::kw_function);
8105   Lex.Lex();
8106 
8107   StringRef ModulePath;
8108   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8109       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8110       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8111   unsigned InstCount;
8112   std::vector<FunctionSummary::EdgeTy> Calls;
8113   FunctionSummary::TypeIdInfo TypeIdInfo;
8114   std::vector<ValueInfo> Refs;
8115   // Default is all-zeros (conservative values).
8116   FunctionSummary::FFlags FFlags = {};
8117   if (ParseToken(lltok::colon, "expected ':' here") ||
8118       ParseToken(lltok::lparen, "expected '(' here") ||
8119       ParseModuleReference(ModulePath) ||
8120       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
8121       ParseToken(lltok::comma, "expected ',' here") ||
8122       ParseToken(lltok::kw_insts, "expected 'insts' here") ||
8123       ParseToken(lltok::colon, "expected ':' here") || ParseUInt32(InstCount))
8124     return true;
8125 
8126   // Parse optional fields
8127   while (EatIfPresent(lltok::comma)) {
8128     switch (Lex.getKind()) {
8129     case lltok::kw_funcFlags:
8130       if (ParseOptionalFFlags(FFlags))
8131         return true;
8132       break;
8133     case lltok::kw_calls:
8134       if (ParseOptionalCalls(Calls))
8135         return true;
8136       break;
8137     case lltok::kw_typeIdInfo:
8138       if (ParseOptionalTypeIdInfo(TypeIdInfo))
8139         return true;
8140       break;
8141     case lltok::kw_refs:
8142       if (ParseOptionalRefs(Refs))
8143         return true;
8144       break;
8145     default:
8146       return Error(Lex.getLoc(), "expected optional function summary field");
8147     }
8148   }
8149 
8150   if (ParseToken(lltok::rparen, "expected ')' here"))
8151     return true;
8152 
8153   auto FS = std::make_unique<FunctionSummary>(
8154       GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
8155       std::move(Calls), std::move(TypeIdInfo.TypeTests),
8156       std::move(TypeIdInfo.TypeTestAssumeVCalls),
8157       std::move(TypeIdInfo.TypeCheckedLoadVCalls),
8158       std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
8159       std::move(TypeIdInfo.TypeCheckedLoadConstVCalls));
8160 
8161   FS->setModulePath(ModulePath);
8162 
8163   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8164                         ID, std::move(FS));
8165 
8166   return false;
8167 }
8168 
8169 /// VariableSummary
8170 ///   ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8171 ///         [',' OptionalRefs]? ')'
8172 bool LLParser::ParseVariableSummary(std::string Name, GlobalValue::GUID GUID,
8173                                     unsigned ID) {
8174   assert(Lex.getKind() == lltok::kw_variable);
8175   Lex.Lex();
8176 
8177   StringRef ModulePath;
8178   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8179       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8180       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8181   GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false,
8182                                         /* WriteOnly */ false,
8183                                         /* Constant */ false,
8184                                         GlobalObject::VCallVisibilityPublic);
8185   std::vector<ValueInfo> Refs;
8186   VTableFuncList VTableFuncs;
8187   if (ParseToken(lltok::colon, "expected ':' here") ||
8188       ParseToken(lltok::lparen, "expected '(' here") ||
8189       ParseModuleReference(ModulePath) ||
8190       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
8191       ParseToken(lltok::comma, "expected ',' here") ||
8192       ParseGVarFlags(GVarFlags))
8193     return true;
8194 
8195   // Parse optional fields
8196   while (EatIfPresent(lltok::comma)) {
8197     switch (Lex.getKind()) {
8198     case lltok::kw_vTableFuncs:
8199       if (ParseOptionalVTableFuncs(VTableFuncs))
8200         return true;
8201       break;
8202     case lltok::kw_refs:
8203       if (ParseOptionalRefs(Refs))
8204         return true;
8205       break;
8206     default:
8207       return Error(Lex.getLoc(), "expected optional variable summary field");
8208     }
8209   }
8210 
8211   if (ParseToken(lltok::rparen, "expected ')' here"))
8212     return true;
8213 
8214   auto GS =
8215       std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
8216 
8217   GS->setModulePath(ModulePath);
8218   GS->setVTableFuncs(std::move(VTableFuncs));
8219 
8220   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8221                         ID, std::move(GS));
8222 
8223   return false;
8224 }
8225 
8226 /// AliasSummary
8227 ///   ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
8228 ///         'aliasee' ':' GVReference ')'
8229 bool LLParser::ParseAliasSummary(std::string Name, GlobalValue::GUID GUID,
8230                                  unsigned ID) {
8231   assert(Lex.getKind() == lltok::kw_alias);
8232   LocTy Loc = Lex.getLoc();
8233   Lex.Lex();
8234 
8235   StringRef ModulePath;
8236   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8237       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8238       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8239   if (ParseToken(lltok::colon, "expected ':' here") ||
8240       ParseToken(lltok::lparen, "expected '(' here") ||
8241       ParseModuleReference(ModulePath) ||
8242       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
8243       ParseToken(lltok::comma, "expected ',' here") ||
8244       ParseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
8245       ParseToken(lltok::colon, "expected ':' here"))
8246     return true;
8247 
8248   ValueInfo AliaseeVI;
8249   unsigned GVId;
8250   if (ParseGVReference(AliaseeVI, GVId))
8251     return true;
8252 
8253   if (ParseToken(lltok::rparen, "expected ')' here"))
8254     return true;
8255 
8256   auto AS = std::make_unique<AliasSummary>(GVFlags);
8257 
8258   AS->setModulePath(ModulePath);
8259 
8260   // Record forward reference if the aliasee is not parsed yet.
8261   if (AliaseeVI.getRef() == FwdVIRef) {
8262     auto FwdRef = ForwardRefAliasees.insert(
8263         std::make_pair(GVId, std::vector<std::pair<AliasSummary *, LocTy>>()));
8264     FwdRef.first->second.push_back(std::make_pair(AS.get(), Loc));
8265   } else {
8266     auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath);
8267     assert(Summary && "Aliasee must be a definition");
8268     AS->setAliasee(AliaseeVI, Summary);
8269   }
8270 
8271   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8272                         ID, std::move(AS));
8273 
8274   return false;
8275 }
8276 
8277 /// Flag
8278 ///   ::= [0|1]
8279 bool LLParser::ParseFlag(unsigned &Val) {
8280   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
8281     return TokError("expected integer");
8282   Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
8283   Lex.Lex();
8284   return false;
8285 }
8286 
8287 /// OptionalFFlags
8288 ///   := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
8289 ///        [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
8290 ///        [',' 'returnDoesNotAlias' ':' Flag]? ')'
8291 ///        [',' 'noInline' ':' Flag]? ')'
8292 ///        [',' 'alwaysInline' ':' Flag]? ')'
8293 
8294 bool LLParser::ParseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
8295   assert(Lex.getKind() == lltok::kw_funcFlags);
8296   Lex.Lex();
8297 
8298   if (ParseToken(lltok::colon, "expected ':' in funcFlags") |
8299       ParseToken(lltok::lparen, "expected '(' in funcFlags"))
8300     return true;
8301 
8302   do {
8303     unsigned Val = 0;
8304     switch (Lex.getKind()) {
8305     case lltok::kw_readNone:
8306       Lex.Lex();
8307       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8308         return true;
8309       FFlags.ReadNone = Val;
8310       break;
8311     case lltok::kw_readOnly:
8312       Lex.Lex();
8313       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8314         return true;
8315       FFlags.ReadOnly = Val;
8316       break;
8317     case lltok::kw_noRecurse:
8318       Lex.Lex();
8319       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8320         return true;
8321       FFlags.NoRecurse = Val;
8322       break;
8323     case lltok::kw_returnDoesNotAlias:
8324       Lex.Lex();
8325       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8326         return true;
8327       FFlags.ReturnDoesNotAlias = Val;
8328       break;
8329     case lltok::kw_noInline:
8330       Lex.Lex();
8331       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8332         return true;
8333       FFlags.NoInline = Val;
8334       break;
8335     case lltok::kw_alwaysInline:
8336       Lex.Lex();
8337       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8338         return true;
8339       FFlags.AlwaysInline = Val;
8340       break;
8341     default:
8342       return Error(Lex.getLoc(), "expected function flag type");
8343     }
8344   } while (EatIfPresent(lltok::comma));
8345 
8346   if (ParseToken(lltok::rparen, "expected ')' in funcFlags"))
8347     return true;
8348 
8349   return false;
8350 }
8351 
8352 /// OptionalCalls
8353 ///   := 'calls' ':' '(' Call [',' Call]* ')'
8354 /// Call ::= '(' 'callee' ':' GVReference
8355 ///            [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
8356 bool LLParser::ParseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
8357   assert(Lex.getKind() == lltok::kw_calls);
8358   Lex.Lex();
8359 
8360   if (ParseToken(lltok::colon, "expected ':' in calls") |
8361       ParseToken(lltok::lparen, "expected '(' in calls"))
8362     return true;
8363 
8364   IdToIndexMapType IdToIndexMap;
8365   // Parse each call edge
8366   do {
8367     ValueInfo VI;
8368     if (ParseToken(lltok::lparen, "expected '(' in call") ||
8369         ParseToken(lltok::kw_callee, "expected 'callee' in call") ||
8370         ParseToken(lltok::colon, "expected ':'"))
8371       return true;
8372 
8373     LocTy Loc = Lex.getLoc();
8374     unsigned GVId;
8375     if (ParseGVReference(VI, GVId))
8376       return true;
8377 
8378     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
8379     unsigned RelBF = 0;
8380     if (EatIfPresent(lltok::comma)) {
8381       // Expect either hotness or relbf
8382       if (EatIfPresent(lltok::kw_hotness)) {
8383         if (ParseToken(lltok::colon, "expected ':'") || ParseHotness(Hotness))
8384           return true;
8385       } else {
8386         if (ParseToken(lltok::kw_relbf, "expected relbf") ||
8387             ParseToken(lltok::colon, "expected ':'") || ParseUInt32(RelBF))
8388           return true;
8389       }
8390     }
8391     // Keep track of the Call array index needing a forward reference.
8392     // We will save the location of the ValueInfo needing an update, but
8393     // can only do so once the std::vector is finalized.
8394     if (VI.getRef() == FwdVIRef)
8395       IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
8396     Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)});
8397 
8398     if (ParseToken(lltok::rparen, "expected ')' in call"))
8399       return true;
8400   } while (EatIfPresent(lltok::comma));
8401 
8402   // Now that the Calls vector is finalized, it is safe to save the locations
8403   // of any forward GV references that need updating later.
8404   for (auto I : IdToIndexMap) {
8405     for (auto P : I.second) {
8406       assert(Calls[P.first].first.getRef() == FwdVIRef &&
8407              "Forward referenced ValueInfo expected to be empty");
8408       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8409           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8410       FwdRef.first->second.push_back(
8411           std::make_pair(&Calls[P.first].first, P.second));
8412     }
8413   }
8414 
8415   if (ParseToken(lltok::rparen, "expected ')' in calls"))
8416     return true;
8417 
8418   return false;
8419 }
8420 
8421 /// Hotness
8422 ///   := ('unknown'|'cold'|'none'|'hot'|'critical')
8423 bool LLParser::ParseHotness(CalleeInfo::HotnessType &Hotness) {
8424   switch (Lex.getKind()) {
8425   case lltok::kw_unknown:
8426     Hotness = CalleeInfo::HotnessType::Unknown;
8427     break;
8428   case lltok::kw_cold:
8429     Hotness = CalleeInfo::HotnessType::Cold;
8430     break;
8431   case lltok::kw_none:
8432     Hotness = CalleeInfo::HotnessType::None;
8433     break;
8434   case lltok::kw_hot:
8435     Hotness = CalleeInfo::HotnessType::Hot;
8436     break;
8437   case lltok::kw_critical:
8438     Hotness = CalleeInfo::HotnessType::Critical;
8439     break;
8440   default:
8441     return Error(Lex.getLoc(), "invalid call edge hotness");
8442   }
8443   Lex.Lex();
8444   return false;
8445 }
8446 
8447 /// OptionalVTableFuncs
8448 ///   := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')'
8449 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')'
8450 bool LLParser::ParseOptionalVTableFuncs(VTableFuncList &VTableFuncs) {
8451   assert(Lex.getKind() == lltok::kw_vTableFuncs);
8452   Lex.Lex();
8453 
8454   if (ParseToken(lltok::colon, "expected ':' in vTableFuncs") |
8455       ParseToken(lltok::lparen, "expected '(' in vTableFuncs"))
8456     return true;
8457 
8458   IdToIndexMapType IdToIndexMap;
8459   // Parse each virtual function pair
8460   do {
8461     ValueInfo VI;
8462     if (ParseToken(lltok::lparen, "expected '(' in vTableFunc") ||
8463         ParseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") ||
8464         ParseToken(lltok::colon, "expected ':'"))
8465       return true;
8466 
8467     LocTy Loc = Lex.getLoc();
8468     unsigned GVId;
8469     if (ParseGVReference(VI, GVId))
8470       return true;
8471 
8472     uint64_t Offset;
8473     if (ParseToken(lltok::comma, "expected comma") ||
8474         ParseToken(lltok::kw_offset, "expected offset") ||
8475         ParseToken(lltok::colon, "expected ':'") || ParseUInt64(Offset))
8476       return true;
8477 
8478     // Keep track of the VTableFuncs array index needing a forward reference.
8479     // We will save the location of the ValueInfo needing an update, but
8480     // can only do so once the std::vector is finalized.
8481     if (VI == EmptyVI)
8482       IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc));
8483     VTableFuncs.push_back({VI, Offset});
8484 
8485     if (ParseToken(lltok::rparen, "expected ')' in vTableFunc"))
8486       return true;
8487   } while (EatIfPresent(lltok::comma));
8488 
8489   // Now that the VTableFuncs vector is finalized, it is safe to save the
8490   // locations of any forward GV references that need updating later.
8491   for (auto I : IdToIndexMap) {
8492     for (auto P : I.second) {
8493       assert(VTableFuncs[P.first].FuncVI == EmptyVI &&
8494              "Forward referenced ValueInfo expected to be empty");
8495       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8496           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8497       FwdRef.first->second.push_back(
8498           std::make_pair(&VTableFuncs[P.first].FuncVI, P.second));
8499     }
8500   }
8501 
8502   if (ParseToken(lltok::rparen, "expected ')' in vTableFuncs"))
8503     return true;
8504 
8505   return false;
8506 }
8507 
8508 /// OptionalRefs
8509 ///   := 'refs' ':' '(' GVReference [',' GVReference]* ')'
8510 bool LLParser::ParseOptionalRefs(std::vector<ValueInfo> &Refs) {
8511   assert(Lex.getKind() == lltok::kw_refs);
8512   Lex.Lex();
8513 
8514   if (ParseToken(lltok::colon, "expected ':' in refs") |
8515       ParseToken(lltok::lparen, "expected '(' in refs"))
8516     return true;
8517 
8518   struct ValueContext {
8519     ValueInfo VI;
8520     unsigned GVId;
8521     LocTy Loc;
8522   };
8523   std::vector<ValueContext> VContexts;
8524   // Parse each ref edge
8525   do {
8526     ValueContext VC;
8527     VC.Loc = Lex.getLoc();
8528     if (ParseGVReference(VC.VI, VC.GVId))
8529       return true;
8530     VContexts.push_back(VC);
8531   } while (EatIfPresent(lltok::comma));
8532 
8533   // Sort value contexts so that ones with writeonly
8534   // and readonly ValueInfo  are at the end of VContexts vector.
8535   // See FunctionSummary::specialRefCounts()
8536   llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
8537     return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier();
8538   });
8539 
8540   IdToIndexMapType IdToIndexMap;
8541   for (auto &VC : VContexts) {
8542     // Keep track of the Refs array index needing a forward reference.
8543     // We will save the location of the ValueInfo needing an update, but
8544     // can only do so once the std::vector is finalized.
8545     if (VC.VI.getRef() == FwdVIRef)
8546       IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
8547     Refs.push_back(VC.VI);
8548   }
8549 
8550   // Now that the Refs vector is finalized, it is safe to save the locations
8551   // of any forward GV references that need updating later.
8552   for (auto I : IdToIndexMap) {
8553     for (auto P : I.second) {
8554       assert(Refs[P.first].getRef() == FwdVIRef &&
8555              "Forward referenced ValueInfo expected to be empty");
8556       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8557           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8558       FwdRef.first->second.push_back(std::make_pair(&Refs[P.first], P.second));
8559     }
8560   }
8561 
8562   if (ParseToken(lltok::rparen, "expected ')' in refs"))
8563     return true;
8564 
8565   return false;
8566 }
8567 
8568 /// OptionalTypeIdInfo
8569 ///   := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
8570 ///         [',' TypeCheckedLoadVCalls]?  [',' TypeTestAssumeConstVCalls]?
8571 ///         [',' TypeCheckedLoadConstVCalls]? ')'
8572 bool LLParser::ParseOptionalTypeIdInfo(
8573     FunctionSummary::TypeIdInfo &TypeIdInfo) {
8574   assert(Lex.getKind() == lltok::kw_typeIdInfo);
8575   Lex.Lex();
8576 
8577   if (ParseToken(lltok::colon, "expected ':' here") ||
8578       ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8579     return true;
8580 
8581   do {
8582     switch (Lex.getKind()) {
8583     case lltok::kw_typeTests:
8584       if (ParseTypeTests(TypeIdInfo.TypeTests))
8585         return true;
8586       break;
8587     case lltok::kw_typeTestAssumeVCalls:
8588       if (ParseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
8589                            TypeIdInfo.TypeTestAssumeVCalls))
8590         return true;
8591       break;
8592     case lltok::kw_typeCheckedLoadVCalls:
8593       if (ParseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
8594                            TypeIdInfo.TypeCheckedLoadVCalls))
8595         return true;
8596       break;
8597     case lltok::kw_typeTestAssumeConstVCalls:
8598       if (ParseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
8599                               TypeIdInfo.TypeTestAssumeConstVCalls))
8600         return true;
8601       break;
8602     case lltok::kw_typeCheckedLoadConstVCalls:
8603       if (ParseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
8604                               TypeIdInfo.TypeCheckedLoadConstVCalls))
8605         return true;
8606       break;
8607     default:
8608       return Error(Lex.getLoc(), "invalid typeIdInfo list type");
8609     }
8610   } while (EatIfPresent(lltok::comma));
8611 
8612   if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8613     return true;
8614 
8615   return false;
8616 }
8617 
8618 /// TypeTests
8619 ///   ::= 'typeTests' ':' '(' (SummaryID | UInt64)
8620 ///         [',' (SummaryID | UInt64)]* ')'
8621 bool LLParser::ParseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
8622   assert(Lex.getKind() == lltok::kw_typeTests);
8623   Lex.Lex();
8624 
8625   if (ParseToken(lltok::colon, "expected ':' here") ||
8626       ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8627     return true;
8628 
8629   IdToIndexMapType IdToIndexMap;
8630   do {
8631     GlobalValue::GUID GUID = 0;
8632     if (Lex.getKind() == lltok::SummaryID) {
8633       unsigned ID = Lex.getUIntVal();
8634       LocTy Loc = Lex.getLoc();
8635       // Keep track of the TypeTests array index needing a forward reference.
8636       // We will save the location of the GUID needing an update, but
8637       // can only do so once the std::vector is finalized.
8638       IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
8639       Lex.Lex();
8640     } else if (ParseUInt64(GUID))
8641       return true;
8642     TypeTests.push_back(GUID);
8643   } while (EatIfPresent(lltok::comma));
8644 
8645   // Now that the TypeTests vector is finalized, it is safe to save the
8646   // locations of any forward GV references that need updating later.
8647   for (auto I : IdToIndexMap) {
8648     for (auto P : I.second) {
8649       assert(TypeTests[P.first] == 0 &&
8650              "Forward referenced type id GUID expected to be 0");
8651       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8652           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8653       FwdRef.first->second.push_back(
8654           std::make_pair(&TypeTests[P.first], P.second));
8655     }
8656   }
8657 
8658   if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8659     return true;
8660 
8661   return false;
8662 }
8663 
8664 /// VFuncIdList
8665 ///   ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
8666 bool LLParser::ParseVFuncIdList(
8667     lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
8668   assert(Lex.getKind() == Kind);
8669   Lex.Lex();
8670 
8671   if (ParseToken(lltok::colon, "expected ':' here") ||
8672       ParseToken(lltok::lparen, "expected '(' here"))
8673     return true;
8674 
8675   IdToIndexMapType IdToIndexMap;
8676   do {
8677     FunctionSummary::VFuncId VFuncId;
8678     if (ParseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
8679       return true;
8680     VFuncIdList.push_back(VFuncId);
8681   } while (EatIfPresent(lltok::comma));
8682 
8683   if (ParseToken(lltok::rparen, "expected ')' here"))
8684     return true;
8685 
8686   // Now that the VFuncIdList vector is finalized, it is safe to save the
8687   // locations of any forward GV references that need updating later.
8688   for (auto I : IdToIndexMap) {
8689     for (auto P : I.second) {
8690       assert(VFuncIdList[P.first].GUID == 0 &&
8691              "Forward referenced type id GUID expected to be 0");
8692       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8693           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8694       FwdRef.first->second.push_back(
8695           std::make_pair(&VFuncIdList[P.first].GUID, P.second));
8696     }
8697   }
8698 
8699   return false;
8700 }
8701 
8702 /// ConstVCallList
8703 ///   ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
8704 bool LLParser::ParseConstVCallList(
8705     lltok::Kind Kind,
8706     std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
8707   assert(Lex.getKind() == Kind);
8708   Lex.Lex();
8709 
8710   if (ParseToken(lltok::colon, "expected ':' here") ||
8711       ParseToken(lltok::lparen, "expected '(' here"))
8712     return true;
8713 
8714   IdToIndexMapType IdToIndexMap;
8715   do {
8716     FunctionSummary::ConstVCall ConstVCall;
8717     if (ParseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
8718       return true;
8719     ConstVCallList.push_back(ConstVCall);
8720   } while (EatIfPresent(lltok::comma));
8721 
8722   if (ParseToken(lltok::rparen, "expected ')' here"))
8723     return true;
8724 
8725   // Now that the ConstVCallList vector is finalized, it is safe to save the
8726   // locations of any forward GV references that need updating later.
8727   for (auto I : IdToIndexMap) {
8728     for (auto P : I.second) {
8729       assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
8730              "Forward referenced type id GUID expected to be 0");
8731       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8732           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8733       FwdRef.first->second.push_back(
8734           std::make_pair(&ConstVCallList[P.first].VFunc.GUID, P.second));
8735     }
8736   }
8737 
8738   return false;
8739 }
8740 
8741 /// ConstVCall
8742 ///   ::= '(' VFuncId ',' Args ')'
8743 bool LLParser::ParseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
8744                                IdToIndexMapType &IdToIndexMap, unsigned Index) {
8745   if (ParseToken(lltok::lparen, "expected '(' here") ||
8746       ParseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
8747     return true;
8748 
8749   if (EatIfPresent(lltok::comma))
8750     if (ParseArgs(ConstVCall.Args))
8751       return true;
8752 
8753   if (ParseToken(lltok::rparen, "expected ')' here"))
8754     return true;
8755 
8756   return false;
8757 }
8758 
8759 /// VFuncId
8760 ///   ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
8761 ///         'offset' ':' UInt64 ')'
8762 bool LLParser::ParseVFuncId(FunctionSummary::VFuncId &VFuncId,
8763                             IdToIndexMapType &IdToIndexMap, unsigned Index) {
8764   assert(Lex.getKind() == lltok::kw_vFuncId);
8765   Lex.Lex();
8766 
8767   if (ParseToken(lltok::colon, "expected ':' here") ||
8768       ParseToken(lltok::lparen, "expected '(' here"))
8769     return true;
8770 
8771   if (Lex.getKind() == lltok::SummaryID) {
8772     VFuncId.GUID = 0;
8773     unsigned ID = Lex.getUIntVal();
8774     LocTy Loc = Lex.getLoc();
8775     // Keep track of the array index needing a forward reference.
8776     // We will save the location of the GUID needing an update, but
8777     // can only do so once the caller's std::vector is finalized.
8778     IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
8779     Lex.Lex();
8780   } else if (ParseToken(lltok::kw_guid, "expected 'guid' here") ||
8781              ParseToken(lltok::colon, "expected ':' here") ||
8782              ParseUInt64(VFuncId.GUID))
8783     return true;
8784 
8785   if (ParseToken(lltok::comma, "expected ',' here") ||
8786       ParseToken(lltok::kw_offset, "expected 'offset' here") ||
8787       ParseToken(lltok::colon, "expected ':' here") ||
8788       ParseUInt64(VFuncId.Offset) ||
8789       ParseToken(lltok::rparen, "expected ')' here"))
8790     return true;
8791 
8792   return false;
8793 }
8794 
8795 /// GVFlags
8796 ///   ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
8797 ///         'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ','
8798 ///         'dsoLocal' ':' Flag ',' 'canAutoHide' ':' Flag ')'
8799 bool LLParser::ParseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
8800   assert(Lex.getKind() == lltok::kw_flags);
8801   Lex.Lex();
8802 
8803   if (ParseToken(lltok::colon, "expected ':' here") ||
8804       ParseToken(lltok::lparen, "expected '(' here"))
8805     return true;
8806 
8807   do {
8808     unsigned Flag = 0;
8809     switch (Lex.getKind()) {
8810     case lltok::kw_linkage:
8811       Lex.Lex();
8812       if (ParseToken(lltok::colon, "expected ':'"))
8813         return true;
8814       bool HasLinkage;
8815       GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
8816       assert(HasLinkage && "Linkage not optional in summary entry");
8817       Lex.Lex();
8818       break;
8819     case lltok::kw_notEligibleToImport:
8820       Lex.Lex();
8821       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8822         return true;
8823       GVFlags.NotEligibleToImport = Flag;
8824       break;
8825     case lltok::kw_live:
8826       Lex.Lex();
8827       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8828         return true;
8829       GVFlags.Live = Flag;
8830       break;
8831     case lltok::kw_dsoLocal:
8832       Lex.Lex();
8833       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8834         return true;
8835       GVFlags.DSOLocal = Flag;
8836       break;
8837     case lltok::kw_canAutoHide:
8838       Lex.Lex();
8839       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8840         return true;
8841       GVFlags.CanAutoHide = Flag;
8842       break;
8843     default:
8844       return Error(Lex.getLoc(), "expected gv flag type");
8845     }
8846   } while (EatIfPresent(lltok::comma));
8847 
8848   if (ParseToken(lltok::rparen, "expected ')' here"))
8849     return true;
8850 
8851   return false;
8852 }
8853 
8854 /// GVarFlags
8855 ///   ::= 'varFlags' ':' '(' 'readonly' ':' Flag
8856 ///                      ',' 'writeonly' ':' Flag
8857 ///                      ',' 'constant' ':' Flag ')'
8858 bool LLParser::ParseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
8859   assert(Lex.getKind() == lltok::kw_varFlags);
8860   Lex.Lex();
8861 
8862   if (ParseToken(lltok::colon, "expected ':' here") ||
8863       ParseToken(lltok::lparen, "expected '(' here"))
8864     return true;
8865 
8866   auto ParseRest = [this](unsigned int &Val) {
8867     Lex.Lex();
8868     if (ParseToken(lltok::colon, "expected ':'"))
8869       return true;
8870     return ParseFlag(Val);
8871   };
8872 
8873   do {
8874     unsigned Flag = 0;
8875     switch (Lex.getKind()) {
8876     case lltok::kw_readonly:
8877       if (ParseRest(Flag))
8878         return true;
8879       GVarFlags.MaybeReadOnly = Flag;
8880       break;
8881     case lltok::kw_writeonly:
8882       if (ParseRest(Flag))
8883         return true;
8884       GVarFlags.MaybeWriteOnly = Flag;
8885       break;
8886     case lltok::kw_constant:
8887       if (ParseRest(Flag))
8888         return true;
8889       GVarFlags.Constant = Flag;
8890       break;
8891     case lltok::kw_vcall_visibility:
8892       if (ParseRest(Flag))
8893         return true;
8894       GVarFlags.VCallVisibility = Flag;
8895       break;
8896     default:
8897       return Error(Lex.getLoc(), "expected gvar flag type");
8898     }
8899   } while (EatIfPresent(lltok::comma));
8900   return ParseToken(lltok::rparen, "expected ')' here");
8901 }
8902 
8903 /// ModuleReference
8904 ///   ::= 'module' ':' UInt
8905 bool LLParser::ParseModuleReference(StringRef &ModulePath) {
8906   // Parse module id.
8907   if (ParseToken(lltok::kw_module, "expected 'module' here") ||
8908       ParseToken(lltok::colon, "expected ':' here") ||
8909       ParseToken(lltok::SummaryID, "expected module ID"))
8910     return true;
8911 
8912   unsigned ModuleID = Lex.getUIntVal();
8913   auto I = ModuleIdMap.find(ModuleID);
8914   // We should have already parsed all module IDs
8915   assert(I != ModuleIdMap.end());
8916   ModulePath = I->second;
8917   return false;
8918 }
8919 
8920 /// GVReference
8921 ///   ::= SummaryID
8922 bool LLParser::ParseGVReference(ValueInfo &VI, unsigned &GVId) {
8923   bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly);
8924   if (!ReadOnly)
8925     WriteOnly = EatIfPresent(lltok::kw_writeonly);
8926   if (ParseToken(lltok::SummaryID, "expected GV ID"))
8927     return true;
8928 
8929   GVId = Lex.getUIntVal();
8930   // Check if we already have a VI for this GV
8931   if (GVId < NumberedValueInfos.size()) {
8932     assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
8933     VI = NumberedValueInfos[GVId];
8934   } else
8935     // We will create a forward reference to the stored location.
8936     VI = ValueInfo(false, FwdVIRef);
8937 
8938   if (ReadOnly)
8939     VI.setReadOnly();
8940   if (WriteOnly)
8941     VI.setWriteOnly();
8942   return false;
8943 }
8944