1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the parser class for .ll files. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LLParser.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/AsmParser/SlotMapping.h" 21 #include "llvm/IR/Argument.h" 22 #include "llvm/IR/AutoUpgrade.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/CallingConv.h" 25 #include "llvm/IR/Comdat.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DebugInfoMetadata.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/GlobalIFunc.h" 31 #include "llvm/IR/GlobalObject.h" 32 #include "llvm/IR/InlineAsm.h" 33 #include "llvm/IR/Instruction.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/IR/Type.h" 41 #include "llvm/IR/Value.h" 42 #include "llvm/IR/ValueSymbolTable.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/Dwarf.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/MathExtras.h" 47 #include "llvm/Support/SaveAndRestore.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include <algorithm> 50 #include <cassert> 51 #include <cstring> 52 #include <iterator> 53 #include <vector> 54 55 using namespace llvm; 56 57 static std::string getTypeString(Type *T) { 58 std::string Result; 59 raw_string_ostream Tmp(Result); 60 Tmp << *T; 61 return Tmp.str(); 62 } 63 64 /// Run: module ::= toplevelentity* 65 bool LLParser::Run() { 66 // Prime the lexer. 67 Lex.Lex(); 68 69 if (Context.shouldDiscardValueNames()) 70 return Error( 71 Lex.getLoc(), 72 "Can't read textual IR with a Context that discards named Values"); 73 74 return ParseTopLevelEntities() || 75 ValidateEndOfModule(); 76 } 77 78 bool LLParser::parseStandaloneConstantValue(Constant *&C, 79 const SlotMapping *Slots) { 80 restoreParsingState(Slots); 81 Lex.Lex(); 82 83 Type *Ty = nullptr; 84 if (ParseType(Ty) || parseConstantValue(Ty, C)) 85 return true; 86 if (Lex.getKind() != lltok::Eof) 87 return Error(Lex.getLoc(), "expected end of string"); 88 return false; 89 } 90 91 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 92 const SlotMapping *Slots) { 93 restoreParsingState(Slots); 94 Lex.Lex(); 95 96 Read = 0; 97 SMLoc Start = Lex.getLoc(); 98 Ty = nullptr; 99 if (ParseType(Ty)) 100 return true; 101 SMLoc End = Lex.getLoc(); 102 Read = End.getPointer() - Start.getPointer(); 103 104 return false; 105 } 106 107 void LLParser::restoreParsingState(const SlotMapping *Slots) { 108 if (!Slots) 109 return; 110 NumberedVals = Slots->GlobalValues; 111 NumberedMetadata = Slots->MetadataNodes; 112 for (const auto &I : Slots->NamedTypes) 113 NamedTypes.insert( 114 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 115 for (const auto &I : Slots->Types) 116 NumberedTypes.insert( 117 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 118 } 119 120 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the 121 /// module. 122 bool LLParser::ValidateEndOfModule() { 123 // Handle any function attribute group forward references. 124 for (std::map<Value*, std::vector<unsigned> >::iterator 125 I = ForwardRefAttrGroups.begin(), E = ForwardRefAttrGroups.end(); 126 I != E; ++I) { 127 Value *V = I->first; 128 std::vector<unsigned> &Vec = I->second; 129 AttrBuilder B; 130 131 for (std::vector<unsigned>::iterator VI = Vec.begin(), VE = Vec.end(); 132 VI != VE; ++VI) 133 B.merge(NumberedAttrBuilders[*VI]); 134 135 if (Function *Fn = dyn_cast<Function>(V)) { 136 AttributeSet AS = Fn->getAttributes(); 137 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex); 138 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex, 139 AS.getFnAttributes()); 140 141 FnAttrs.merge(B); 142 143 // If the alignment was parsed as an attribute, move to the alignment 144 // field. 145 if (FnAttrs.hasAlignmentAttr()) { 146 Fn->setAlignment(FnAttrs.getAlignment()); 147 FnAttrs.removeAttribute(Attribute::Alignment); 148 } 149 150 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex, 151 AttributeSet::get(Context, 152 AttributeSet::FunctionIndex, 153 FnAttrs)); 154 Fn->setAttributes(AS); 155 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 156 AttributeSet AS = CI->getAttributes(); 157 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex); 158 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex, 159 AS.getFnAttributes()); 160 FnAttrs.merge(B); 161 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex, 162 AttributeSet::get(Context, 163 AttributeSet::FunctionIndex, 164 FnAttrs)); 165 CI->setAttributes(AS); 166 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 167 AttributeSet AS = II->getAttributes(); 168 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex); 169 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex, 170 AS.getFnAttributes()); 171 FnAttrs.merge(B); 172 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex, 173 AttributeSet::get(Context, 174 AttributeSet::FunctionIndex, 175 FnAttrs)); 176 II->setAttributes(AS); 177 } else { 178 llvm_unreachable("invalid object with forward attribute group reference"); 179 } 180 } 181 182 // If there are entries in ForwardRefBlockAddresses at this point, the 183 // function was never defined. 184 if (!ForwardRefBlockAddresses.empty()) 185 return Error(ForwardRefBlockAddresses.begin()->first.Loc, 186 "expected function name in blockaddress"); 187 188 for (const auto &NT : NumberedTypes) 189 if (NT.second.second.isValid()) 190 return Error(NT.second.second, 191 "use of undefined type '%" + Twine(NT.first) + "'"); 192 193 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 194 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 195 if (I->second.second.isValid()) 196 return Error(I->second.second, 197 "use of undefined type named '" + I->getKey() + "'"); 198 199 if (!ForwardRefComdats.empty()) 200 return Error(ForwardRefComdats.begin()->second, 201 "use of undefined comdat '$" + 202 ForwardRefComdats.begin()->first + "'"); 203 204 if (!ForwardRefVals.empty()) 205 return Error(ForwardRefVals.begin()->second.second, 206 "use of undefined value '@" + ForwardRefVals.begin()->first + 207 "'"); 208 209 if (!ForwardRefValIDs.empty()) 210 return Error(ForwardRefValIDs.begin()->second.second, 211 "use of undefined value '@" + 212 Twine(ForwardRefValIDs.begin()->first) + "'"); 213 214 if (!ForwardRefMDNodes.empty()) 215 return Error(ForwardRefMDNodes.begin()->second.second, 216 "use of undefined metadata '!" + 217 Twine(ForwardRefMDNodes.begin()->first) + "'"); 218 219 // Resolve metadata cycles. 220 for (auto &N : NumberedMetadata) { 221 if (N.second && !N.second->isResolved()) 222 N.second->resolveCycles(); 223 } 224 225 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 226 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 227 228 // Look for intrinsic functions and CallInst that need to be upgraded 229 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 230 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove 231 232 // Some types could be renamed during loading if several modules are 233 // loaded in the same LLVMContext (LTO scenario). In this case we should 234 // remangle intrinsics names as well. 235 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) { 236 Function *F = &*FI++; 237 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) { 238 F->replaceAllUsesWith(Remangled.getValue()); 239 F->eraseFromParent(); 240 } 241 } 242 243 UpgradeDebugInfo(*M); 244 245 UpgradeModuleFlags(*M); 246 247 if (!Slots) 248 return false; 249 // Initialize the slot mapping. 250 // Because by this point we've parsed and validated everything, we can "steal" 251 // the mapping from LLParser as it doesn't need it anymore. 252 Slots->GlobalValues = std::move(NumberedVals); 253 Slots->MetadataNodes = std::move(NumberedMetadata); 254 for (const auto &I : NamedTypes) 255 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 256 for (const auto &I : NumberedTypes) 257 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 258 259 return false; 260 } 261 262 //===----------------------------------------------------------------------===// 263 // Top-Level Entities 264 //===----------------------------------------------------------------------===// 265 266 bool LLParser::ParseTopLevelEntities() { 267 while (true) { 268 switch (Lex.getKind()) { 269 default: return TokError("expected top-level entity"); 270 case lltok::Eof: return false; 271 case lltok::kw_declare: if (ParseDeclare()) return true; break; 272 case lltok::kw_define: if (ParseDefine()) return true; break; 273 case lltok::kw_module: if (ParseModuleAsm()) return true; break; 274 case lltok::kw_target: if (ParseTargetDefinition()) return true; break; 275 case lltok::kw_source_filename: 276 if (ParseSourceFileName()) 277 return true; 278 break; 279 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; 280 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; 281 case lltok::LocalVar: if (ParseNamedType()) return true; break; 282 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; 283 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; 284 case lltok::ComdatVar: if (parseComdat()) return true; break; 285 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break; 286 case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break; 287 case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break; 288 case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break; 289 case lltok::kw_uselistorder_bb: 290 if (ParseUseListOrderBB()) 291 return true; 292 break; 293 } 294 } 295 } 296 297 /// toplevelentity 298 /// ::= 'module' 'asm' STRINGCONSTANT 299 bool LLParser::ParseModuleAsm() { 300 assert(Lex.getKind() == lltok::kw_module); 301 Lex.Lex(); 302 303 std::string AsmStr; 304 if (ParseToken(lltok::kw_asm, "expected 'module asm'") || 305 ParseStringConstant(AsmStr)) return true; 306 307 M->appendModuleInlineAsm(AsmStr); 308 return false; 309 } 310 311 /// toplevelentity 312 /// ::= 'target' 'triple' '=' STRINGCONSTANT 313 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 314 bool LLParser::ParseTargetDefinition() { 315 assert(Lex.getKind() == lltok::kw_target); 316 std::string Str; 317 switch (Lex.Lex()) { 318 default: return TokError("unknown target property"); 319 case lltok::kw_triple: 320 Lex.Lex(); 321 if (ParseToken(lltok::equal, "expected '=' after target triple") || 322 ParseStringConstant(Str)) 323 return true; 324 M->setTargetTriple(Str); 325 return false; 326 case lltok::kw_datalayout: 327 Lex.Lex(); 328 if (ParseToken(lltok::equal, "expected '=' after target datalayout") || 329 ParseStringConstant(Str)) 330 return true; 331 M->setDataLayout(Str); 332 return false; 333 } 334 } 335 336 /// toplevelentity 337 /// ::= 'source_filename' '=' STRINGCONSTANT 338 bool LLParser::ParseSourceFileName() { 339 assert(Lex.getKind() == lltok::kw_source_filename); 340 std::string Str; 341 Lex.Lex(); 342 if (ParseToken(lltok::equal, "expected '=' after source_filename") || 343 ParseStringConstant(Str)) 344 return true; 345 M->setSourceFileName(Str); 346 return false; 347 } 348 349 /// toplevelentity 350 /// ::= 'deplibs' '=' '[' ']' 351 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 352 /// FIXME: Remove in 4.0. Currently parse, but ignore. 353 bool LLParser::ParseDepLibs() { 354 assert(Lex.getKind() == lltok::kw_deplibs); 355 Lex.Lex(); 356 if (ParseToken(lltok::equal, "expected '=' after deplibs") || 357 ParseToken(lltok::lsquare, "expected '=' after deplibs")) 358 return true; 359 360 if (EatIfPresent(lltok::rsquare)) 361 return false; 362 363 do { 364 std::string Str; 365 if (ParseStringConstant(Str)) return true; 366 } while (EatIfPresent(lltok::comma)); 367 368 return ParseToken(lltok::rsquare, "expected ']' at end of list"); 369 } 370 371 /// ParseUnnamedType: 372 /// ::= LocalVarID '=' 'type' type 373 bool LLParser::ParseUnnamedType() { 374 LocTy TypeLoc = Lex.getLoc(); 375 unsigned TypeID = Lex.getUIntVal(); 376 Lex.Lex(); // eat LocalVarID; 377 378 if (ParseToken(lltok::equal, "expected '=' after name") || 379 ParseToken(lltok::kw_type, "expected 'type' after '='")) 380 return true; 381 382 Type *Result = nullptr; 383 if (ParseStructDefinition(TypeLoc, "", 384 NumberedTypes[TypeID], Result)) return true; 385 386 if (!isa<StructType>(Result)) { 387 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 388 if (Entry.first) 389 return Error(TypeLoc, "non-struct types may not be recursive"); 390 Entry.first = Result; 391 Entry.second = SMLoc(); 392 } 393 394 return false; 395 } 396 397 /// toplevelentity 398 /// ::= LocalVar '=' 'type' type 399 bool LLParser::ParseNamedType() { 400 std::string Name = Lex.getStrVal(); 401 LocTy NameLoc = Lex.getLoc(); 402 Lex.Lex(); // eat LocalVar. 403 404 if (ParseToken(lltok::equal, "expected '=' after name") || 405 ParseToken(lltok::kw_type, "expected 'type' after name")) 406 return true; 407 408 Type *Result = nullptr; 409 if (ParseStructDefinition(NameLoc, Name, 410 NamedTypes[Name], Result)) return true; 411 412 if (!isa<StructType>(Result)) { 413 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 414 if (Entry.first) 415 return Error(NameLoc, "non-struct types may not be recursive"); 416 Entry.first = Result; 417 Entry.second = SMLoc(); 418 } 419 420 return false; 421 } 422 423 /// toplevelentity 424 /// ::= 'declare' FunctionHeader 425 bool LLParser::ParseDeclare() { 426 assert(Lex.getKind() == lltok::kw_declare); 427 Lex.Lex(); 428 429 std::vector<std::pair<unsigned, MDNode *>> MDs; 430 while (Lex.getKind() == lltok::MetadataVar) { 431 unsigned MDK; 432 MDNode *N; 433 if (ParseMetadataAttachment(MDK, N)) 434 return true; 435 MDs.push_back({MDK, N}); 436 } 437 438 Function *F; 439 if (ParseFunctionHeader(F, false)) 440 return true; 441 for (auto &MD : MDs) 442 F->addMetadata(MD.first, *MD.second); 443 return false; 444 } 445 446 /// toplevelentity 447 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 448 bool LLParser::ParseDefine() { 449 assert(Lex.getKind() == lltok::kw_define); 450 Lex.Lex(); 451 452 Function *F; 453 return ParseFunctionHeader(F, true) || 454 ParseOptionalFunctionMetadata(*F) || 455 ParseFunctionBody(*F); 456 } 457 458 /// ParseGlobalType 459 /// ::= 'constant' 460 /// ::= 'global' 461 bool LLParser::ParseGlobalType(bool &IsConstant) { 462 if (Lex.getKind() == lltok::kw_constant) 463 IsConstant = true; 464 else if (Lex.getKind() == lltok::kw_global) 465 IsConstant = false; 466 else { 467 IsConstant = false; 468 return TokError("expected 'global' or 'constant'"); 469 } 470 Lex.Lex(); 471 return false; 472 } 473 474 bool LLParser::ParseOptionalUnnamedAddr( 475 GlobalVariable::UnnamedAddr &UnnamedAddr) { 476 if (EatIfPresent(lltok::kw_unnamed_addr)) 477 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 478 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 479 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 480 else 481 UnnamedAddr = GlobalValue::UnnamedAddr::None; 482 return false; 483 } 484 485 /// ParseUnnamedGlobal: 486 /// OptionalVisibility (ALIAS | IFUNC) ... 487 /// OptionalLinkage OptionalVisibility OptionalDLLStorageClass 488 /// ... -> global variable 489 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 490 /// GlobalID '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 491 /// ... -> global variable 492 bool LLParser::ParseUnnamedGlobal() { 493 unsigned VarID = NumberedVals.size(); 494 std::string Name; 495 LocTy NameLoc = Lex.getLoc(); 496 497 // Handle the GlobalID form. 498 if (Lex.getKind() == lltok::GlobalID) { 499 if (Lex.getUIntVal() != VarID) 500 return Error(Lex.getLoc(), "variable expected to be numbered '%" + 501 Twine(VarID) + "'"); 502 Lex.Lex(); // eat GlobalID; 503 504 if (ParseToken(lltok::equal, "expected '=' after name")) 505 return true; 506 } 507 508 bool HasLinkage; 509 unsigned Linkage, Visibility, DLLStorageClass; 510 GlobalVariable::ThreadLocalMode TLM; 511 GlobalVariable::UnnamedAddr UnnamedAddr; 512 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) || 513 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 514 return true; 515 516 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 517 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 518 DLLStorageClass, TLM, UnnamedAddr); 519 520 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 521 DLLStorageClass, TLM, UnnamedAddr); 522 } 523 524 /// ParseNamedGlobal: 525 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 526 /// GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 527 /// ... -> global variable 528 bool LLParser::ParseNamedGlobal() { 529 assert(Lex.getKind() == lltok::GlobalVar); 530 LocTy NameLoc = Lex.getLoc(); 531 std::string Name = Lex.getStrVal(); 532 Lex.Lex(); 533 534 bool HasLinkage; 535 unsigned Linkage, Visibility, DLLStorageClass; 536 GlobalVariable::ThreadLocalMode TLM; 537 GlobalVariable::UnnamedAddr UnnamedAddr; 538 if (ParseToken(lltok::equal, "expected '=' in global variable") || 539 ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) || 540 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 541 return true; 542 543 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 544 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 545 DLLStorageClass, TLM, UnnamedAddr); 546 547 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 548 DLLStorageClass, TLM, UnnamedAddr); 549 } 550 551 bool LLParser::parseComdat() { 552 assert(Lex.getKind() == lltok::ComdatVar); 553 std::string Name = Lex.getStrVal(); 554 LocTy NameLoc = Lex.getLoc(); 555 Lex.Lex(); 556 557 if (ParseToken(lltok::equal, "expected '=' here")) 558 return true; 559 560 if (ParseToken(lltok::kw_comdat, "expected comdat keyword")) 561 return TokError("expected comdat type"); 562 563 Comdat::SelectionKind SK; 564 switch (Lex.getKind()) { 565 default: 566 return TokError("unknown selection kind"); 567 case lltok::kw_any: 568 SK = Comdat::Any; 569 break; 570 case lltok::kw_exactmatch: 571 SK = Comdat::ExactMatch; 572 break; 573 case lltok::kw_largest: 574 SK = Comdat::Largest; 575 break; 576 case lltok::kw_noduplicates: 577 SK = Comdat::NoDuplicates; 578 break; 579 case lltok::kw_samesize: 580 SK = Comdat::SameSize; 581 break; 582 } 583 Lex.Lex(); 584 585 // See if the comdat was forward referenced, if so, use the comdat. 586 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 587 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 588 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 589 return Error(NameLoc, "redefinition of comdat '$" + Name + "'"); 590 591 Comdat *C; 592 if (I != ComdatSymTab.end()) 593 C = &I->second; 594 else 595 C = M->getOrInsertComdat(Name); 596 C->setSelectionKind(SK); 597 598 return false; 599 } 600 601 // MDString: 602 // ::= '!' STRINGCONSTANT 603 bool LLParser::ParseMDString(MDString *&Result) { 604 std::string Str; 605 if (ParseStringConstant(Str)) return true; 606 Result = MDString::get(Context, Str); 607 return false; 608 } 609 610 // MDNode: 611 // ::= '!' MDNodeNumber 612 bool LLParser::ParseMDNodeID(MDNode *&Result) { 613 // !{ ..., !42, ... } 614 LocTy IDLoc = Lex.getLoc(); 615 unsigned MID = 0; 616 if (ParseUInt32(MID)) 617 return true; 618 619 // If not a forward reference, just return it now. 620 if (NumberedMetadata.count(MID)) { 621 Result = NumberedMetadata[MID]; 622 return false; 623 } 624 625 // Otherwise, create MDNode forward reference. 626 auto &FwdRef = ForwardRefMDNodes[MID]; 627 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 628 629 Result = FwdRef.first.get(); 630 NumberedMetadata[MID].reset(Result); 631 return false; 632 } 633 634 /// ParseNamedMetadata: 635 /// !foo = !{ !1, !2 } 636 bool LLParser::ParseNamedMetadata() { 637 assert(Lex.getKind() == lltok::MetadataVar); 638 std::string Name = Lex.getStrVal(); 639 Lex.Lex(); 640 641 if (ParseToken(lltok::equal, "expected '=' here") || 642 ParseToken(lltok::exclaim, "Expected '!' here") || 643 ParseToken(lltok::lbrace, "Expected '{' here")) 644 return true; 645 646 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 647 if (Lex.getKind() != lltok::rbrace) 648 do { 649 if (ParseToken(lltok::exclaim, "Expected '!' here")) 650 return true; 651 652 MDNode *N = nullptr; 653 if (ParseMDNodeID(N)) return true; 654 NMD->addOperand(N); 655 } while (EatIfPresent(lltok::comma)); 656 657 return ParseToken(lltok::rbrace, "expected end of metadata node"); 658 } 659 660 /// ParseStandaloneMetadata: 661 /// !42 = !{...} 662 bool LLParser::ParseStandaloneMetadata() { 663 assert(Lex.getKind() == lltok::exclaim); 664 Lex.Lex(); 665 unsigned MetadataID = 0; 666 667 MDNode *Init; 668 if (ParseUInt32(MetadataID) || 669 ParseToken(lltok::equal, "expected '=' here")) 670 return true; 671 672 // Detect common error, from old metadata syntax. 673 if (Lex.getKind() == lltok::Type) 674 return TokError("unexpected type in metadata definition"); 675 676 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 677 if (Lex.getKind() == lltok::MetadataVar) { 678 if (ParseSpecializedMDNode(Init, IsDistinct)) 679 return true; 680 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 681 ParseMDTuple(Init, IsDistinct)) 682 return true; 683 684 // See if this was forward referenced, if so, handle it. 685 auto FI = ForwardRefMDNodes.find(MetadataID); 686 if (FI != ForwardRefMDNodes.end()) { 687 FI->second.first->replaceAllUsesWith(Init); 688 ForwardRefMDNodes.erase(FI); 689 690 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 691 } else { 692 if (NumberedMetadata.count(MetadataID)) 693 return TokError("Metadata id is already used"); 694 NumberedMetadata[MetadataID].reset(Init); 695 } 696 697 return false; 698 } 699 700 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 701 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 702 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 703 } 704 705 /// parseIndirectSymbol: 706 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility 707 /// OptionalDLLStorageClass OptionalThreadLocal 708 /// OptionalUnnamedAddr 'alias|ifunc' IndirectSymbol 709 /// 710 /// IndirectSymbol 711 /// ::= TypeAndValue 712 /// 713 /// Everything through OptionalUnnamedAddr has already been parsed. 714 /// 715 bool LLParser::parseIndirectSymbol( 716 const std::string &Name, LocTy NameLoc, unsigned L, unsigned Visibility, 717 unsigned DLLStorageClass, GlobalVariable::ThreadLocalMode TLM, 718 GlobalVariable::UnnamedAddr UnnamedAddr) { 719 bool IsAlias; 720 if (Lex.getKind() == lltok::kw_alias) 721 IsAlias = true; 722 else if (Lex.getKind() == lltok::kw_ifunc) 723 IsAlias = false; 724 else 725 llvm_unreachable("Not an alias or ifunc!"); 726 Lex.Lex(); 727 728 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 729 730 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 731 return Error(NameLoc, "invalid linkage type for alias"); 732 733 if (!isValidVisibilityForLinkage(Visibility, L)) 734 return Error(NameLoc, 735 "symbol with local linkage must have default visibility"); 736 737 Type *Ty; 738 LocTy ExplicitTypeLoc = Lex.getLoc(); 739 if (ParseType(Ty) || 740 ParseToken(lltok::comma, "expected comma after alias or ifunc's type")) 741 return true; 742 743 Constant *Aliasee; 744 LocTy AliaseeLoc = Lex.getLoc(); 745 if (Lex.getKind() != lltok::kw_bitcast && 746 Lex.getKind() != lltok::kw_getelementptr && 747 Lex.getKind() != lltok::kw_addrspacecast && 748 Lex.getKind() != lltok::kw_inttoptr) { 749 if (ParseGlobalTypeAndValue(Aliasee)) 750 return true; 751 } else { 752 // The bitcast dest type is not present, it is implied by the dest type. 753 ValID ID; 754 if (ParseValID(ID)) 755 return true; 756 if (ID.Kind != ValID::t_Constant) 757 return Error(AliaseeLoc, "invalid aliasee"); 758 Aliasee = ID.ConstantVal; 759 } 760 761 Type *AliaseeType = Aliasee->getType(); 762 auto *PTy = dyn_cast<PointerType>(AliaseeType); 763 if (!PTy) 764 return Error(AliaseeLoc, "An alias or ifunc must have pointer type"); 765 unsigned AddrSpace = PTy->getAddressSpace(); 766 767 if (IsAlias && Ty != PTy->getElementType()) 768 return Error( 769 ExplicitTypeLoc, 770 "explicit pointee type doesn't match operand's pointee type"); 771 772 if (!IsAlias && !PTy->getElementType()->isFunctionTy()) 773 return Error( 774 ExplicitTypeLoc, 775 "explicit pointee type should be a function type"); 776 777 GlobalValue *GVal = nullptr; 778 779 // See if the alias was forward referenced, if so, prepare to replace the 780 // forward reference. 781 if (!Name.empty()) { 782 GVal = M->getNamedValue(Name); 783 if (GVal) { 784 if (!ForwardRefVals.erase(Name)) 785 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 786 } 787 } else { 788 auto I = ForwardRefValIDs.find(NumberedVals.size()); 789 if (I != ForwardRefValIDs.end()) { 790 GVal = I->second.first; 791 ForwardRefValIDs.erase(I); 792 } 793 } 794 795 // Okay, create the alias but do not insert it into the module yet. 796 std::unique_ptr<GlobalIndirectSymbol> GA; 797 if (IsAlias) 798 GA.reset(GlobalAlias::create(Ty, AddrSpace, 799 (GlobalValue::LinkageTypes)Linkage, Name, 800 Aliasee, /*Parent*/ nullptr)); 801 else 802 GA.reset(GlobalIFunc::create(Ty, AddrSpace, 803 (GlobalValue::LinkageTypes)Linkage, Name, 804 Aliasee, /*Parent*/ nullptr)); 805 GA->setThreadLocalMode(TLM); 806 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 807 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 808 GA->setUnnamedAddr(UnnamedAddr); 809 810 if (Name.empty()) 811 NumberedVals.push_back(GA.get()); 812 813 if (GVal) { 814 // Verify that types agree. 815 if (GVal->getType() != GA->getType()) 816 return Error( 817 ExplicitTypeLoc, 818 "forward reference and definition of alias have different types"); 819 820 // If they agree, just RAUW the old value with the alias and remove the 821 // forward ref info. 822 GVal->replaceAllUsesWith(GA.get()); 823 GVal->eraseFromParent(); 824 } 825 826 // Insert into the module, we know its name won't collide now. 827 if (IsAlias) 828 M->getAliasList().push_back(cast<GlobalAlias>(GA.get())); 829 else 830 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get())); 831 assert(GA->getName() == Name && "Should not be a name conflict!"); 832 833 // The module owns this now 834 GA.release(); 835 836 return false; 837 } 838 839 /// ParseGlobal 840 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 841 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 842 /// OptionalExternallyInitialized GlobalType Type Const 843 /// ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass 844 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 845 /// OptionalExternallyInitialized GlobalType Type Const 846 /// 847 /// Everything up to and including OptionalUnnamedAddr has been parsed 848 /// already. 849 /// 850 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, 851 unsigned Linkage, bool HasLinkage, 852 unsigned Visibility, unsigned DLLStorageClass, 853 GlobalVariable::ThreadLocalMode TLM, 854 GlobalVariable::UnnamedAddr UnnamedAddr) { 855 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 856 return Error(NameLoc, 857 "symbol with local linkage must have default visibility"); 858 859 unsigned AddrSpace; 860 bool IsConstant, IsExternallyInitialized; 861 LocTy IsExternallyInitializedLoc; 862 LocTy TyLoc; 863 864 Type *Ty = nullptr; 865 if (ParseOptionalAddrSpace(AddrSpace) || 866 ParseOptionalToken(lltok::kw_externally_initialized, 867 IsExternallyInitialized, 868 &IsExternallyInitializedLoc) || 869 ParseGlobalType(IsConstant) || 870 ParseType(Ty, TyLoc)) 871 return true; 872 873 // If the linkage is specified and is external, then no initializer is 874 // present. 875 Constant *Init = nullptr; 876 if (!HasLinkage || 877 !GlobalValue::isValidDeclarationLinkage( 878 (GlobalValue::LinkageTypes)Linkage)) { 879 if (ParseGlobalValue(Ty, Init)) 880 return true; 881 } 882 883 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 884 return Error(TyLoc, "invalid type for global variable"); 885 886 GlobalValue *GVal = nullptr; 887 888 // See if the global was forward referenced, if so, use the global. 889 if (!Name.empty()) { 890 GVal = M->getNamedValue(Name); 891 if (GVal) { 892 if (!ForwardRefVals.erase(Name)) 893 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 894 } 895 } else { 896 auto I = ForwardRefValIDs.find(NumberedVals.size()); 897 if (I != ForwardRefValIDs.end()) { 898 GVal = I->second.first; 899 ForwardRefValIDs.erase(I); 900 } 901 } 902 903 GlobalVariable *GV; 904 if (!GVal) { 905 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, 906 Name, nullptr, GlobalVariable::NotThreadLocal, 907 AddrSpace); 908 } else { 909 if (GVal->getValueType() != Ty) 910 return Error(TyLoc, 911 "forward reference and definition of global have different types"); 912 913 GV = cast<GlobalVariable>(GVal); 914 915 // Move the forward-reference to the correct spot in the module. 916 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 917 } 918 919 if (Name.empty()) 920 NumberedVals.push_back(GV); 921 922 // Set the parsed properties on the global. 923 if (Init) 924 GV->setInitializer(Init); 925 GV->setConstant(IsConstant); 926 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 927 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 928 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 929 GV->setExternallyInitialized(IsExternallyInitialized); 930 GV->setThreadLocalMode(TLM); 931 GV->setUnnamedAddr(UnnamedAddr); 932 933 // Parse attributes on the global. 934 while (Lex.getKind() == lltok::comma) { 935 Lex.Lex(); 936 937 if (Lex.getKind() == lltok::kw_section) { 938 Lex.Lex(); 939 GV->setSection(Lex.getStrVal()); 940 if (ParseToken(lltok::StringConstant, "expected global section string")) 941 return true; 942 } else if (Lex.getKind() == lltok::kw_align) { 943 unsigned Alignment; 944 if (ParseOptionalAlignment(Alignment)) return true; 945 GV->setAlignment(Alignment); 946 } else if (Lex.getKind() == lltok::MetadataVar) { 947 if (ParseGlobalObjectMetadataAttachment(*GV)) 948 return true; 949 } else { 950 Comdat *C; 951 if (parseOptionalComdat(Name, C)) 952 return true; 953 if (C) 954 GV->setComdat(C); 955 else 956 return TokError("unknown global variable property!"); 957 } 958 } 959 960 return false; 961 } 962 963 /// ParseUnnamedAttrGrp 964 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 965 bool LLParser::ParseUnnamedAttrGrp() { 966 assert(Lex.getKind() == lltok::kw_attributes); 967 LocTy AttrGrpLoc = Lex.getLoc(); 968 Lex.Lex(); 969 970 if (Lex.getKind() != lltok::AttrGrpID) 971 return TokError("expected attribute group id"); 972 973 unsigned VarID = Lex.getUIntVal(); 974 std::vector<unsigned> unused; 975 LocTy BuiltinLoc; 976 Lex.Lex(); 977 978 if (ParseToken(lltok::equal, "expected '=' here") || 979 ParseToken(lltok::lbrace, "expected '{' here") || 980 ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 981 BuiltinLoc) || 982 ParseToken(lltok::rbrace, "expected end of attribute group")) 983 return true; 984 985 if (!NumberedAttrBuilders[VarID].hasAttributes()) 986 return Error(AttrGrpLoc, "attribute group has no attributes"); 987 988 return false; 989 } 990 991 /// ParseFnAttributeValuePairs 992 /// ::= <attr> | <attr> '=' <value> 993 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B, 994 std::vector<unsigned> &FwdRefAttrGrps, 995 bool inAttrGrp, LocTy &BuiltinLoc) { 996 bool HaveError = false; 997 998 B.clear(); 999 1000 while (true) { 1001 lltok::Kind Token = Lex.getKind(); 1002 if (Token == lltok::kw_builtin) 1003 BuiltinLoc = Lex.getLoc(); 1004 switch (Token) { 1005 default: 1006 if (!inAttrGrp) return HaveError; 1007 return Error(Lex.getLoc(), "unterminated attribute group"); 1008 case lltok::rbrace: 1009 // Finished. 1010 return false; 1011 1012 case lltok::AttrGrpID: { 1013 // Allow a function to reference an attribute group: 1014 // 1015 // define void @foo() #1 { ... } 1016 if (inAttrGrp) 1017 HaveError |= 1018 Error(Lex.getLoc(), 1019 "cannot have an attribute group reference in an attribute group"); 1020 1021 unsigned AttrGrpNum = Lex.getUIntVal(); 1022 if (inAttrGrp) break; 1023 1024 // Save the reference to the attribute group. We'll fill it in later. 1025 FwdRefAttrGrps.push_back(AttrGrpNum); 1026 break; 1027 } 1028 // Target-dependent attributes: 1029 case lltok::StringConstant: { 1030 if (ParseStringAttribute(B)) 1031 return true; 1032 continue; 1033 } 1034 1035 // Target-independent attributes: 1036 case lltok::kw_align: { 1037 // As a hack, we allow function alignment to be initially parsed as an 1038 // attribute on a function declaration/definition or added to an attribute 1039 // group and later moved to the alignment field. 1040 unsigned Alignment; 1041 if (inAttrGrp) { 1042 Lex.Lex(); 1043 if (ParseToken(lltok::equal, "expected '=' here") || 1044 ParseUInt32(Alignment)) 1045 return true; 1046 } else { 1047 if (ParseOptionalAlignment(Alignment)) 1048 return true; 1049 } 1050 B.addAlignmentAttr(Alignment); 1051 continue; 1052 } 1053 case lltok::kw_alignstack: { 1054 unsigned Alignment; 1055 if (inAttrGrp) { 1056 Lex.Lex(); 1057 if (ParseToken(lltok::equal, "expected '=' here") || 1058 ParseUInt32(Alignment)) 1059 return true; 1060 } else { 1061 if (ParseOptionalStackAlignment(Alignment)) 1062 return true; 1063 } 1064 B.addStackAlignmentAttr(Alignment); 1065 continue; 1066 } 1067 case lltok::kw_allocsize: { 1068 unsigned ElemSizeArg; 1069 Optional<unsigned> NumElemsArg; 1070 // inAttrGrp doesn't matter; we only support allocsize(a[, b]) 1071 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1072 return true; 1073 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1074 continue; 1075 } 1076 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break; 1077 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break; 1078 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break; 1079 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break; 1080 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break; 1081 case lltok::kw_inaccessiblememonly: 1082 B.addAttribute(Attribute::InaccessibleMemOnly); break; 1083 case lltok::kw_inaccessiblemem_or_argmemonly: 1084 B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break; 1085 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break; 1086 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break; 1087 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break; 1088 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break; 1089 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break; 1090 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break; 1091 case lltok::kw_noimplicitfloat: 1092 B.addAttribute(Attribute::NoImplicitFloat); break; 1093 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break; 1094 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break; 1095 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break; 1096 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break; 1097 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break; 1098 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break; 1099 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break; 1100 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break; 1101 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1102 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1103 case lltok::kw_returns_twice: 1104 B.addAttribute(Attribute::ReturnsTwice); break; 1105 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break; 1106 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break; 1107 case lltok::kw_sspstrong: 1108 B.addAttribute(Attribute::StackProtectStrong); break; 1109 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break; 1110 case lltok::kw_sanitize_address: 1111 B.addAttribute(Attribute::SanitizeAddress); break; 1112 case lltok::kw_sanitize_thread: 1113 B.addAttribute(Attribute::SanitizeThread); break; 1114 case lltok::kw_sanitize_memory: 1115 B.addAttribute(Attribute::SanitizeMemory); break; 1116 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break; 1117 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1118 1119 // Error handling. 1120 case lltok::kw_inreg: 1121 case lltok::kw_signext: 1122 case lltok::kw_zeroext: 1123 HaveError |= 1124 Error(Lex.getLoc(), 1125 "invalid use of attribute on a function"); 1126 break; 1127 case lltok::kw_byval: 1128 case lltok::kw_dereferenceable: 1129 case lltok::kw_dereferenceable_or_null: 1130 case lltok::kw_inalloca: 1131 case lltok::kw_nest: 1132 case lltok::kw_noalias: 1133 case lltok::kw_nocapture: 1134 case lltok::kw_nonnull: 1135 case lltok::kw_returned: 1136 case lltok::kw_sret: 1137 case lltok::kw_swifterror: 1138 case lltok::kw_swiftself: 1139 HaveError |= 1140 Error(Lex.getLoc(), 1141 "invalid use of parameter-only attribute on a function"); 1142 break; 1143 } 1144 1145 Lex.Lex(); 1146 } 1147 } 1148 1149 //===----------------------------------------------------------------------===// 1150 // GlobalValue Reference/Resolution Routines. 1151 //===----------------------------------------------------------------------===// 1152 1153 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy, 1154 const std::string &Name) { 1155 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType())) 1156 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M); 1157 else 1158 return new GlobalVariable(*M, PTy->getElementType(), false, 1159 GlobalValue::ExternalWeakLinkage, nullptr, Name, 1160 nullptr, GlobalVariable::NotThreadLocal, 1161 PTy->getAddressSpace()); 1162 } 1163 1164 /// GetGlobalVal - Get a value with the specified name or ID, creating a 1165 /// forward reference record if needed. This can return null if the value 1166 /// exists but does not have the right type. 1167 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty, 1168 LocTy Loc) { 1169 PointerType *PTy = dyn_cast<PointerType>(Ty); 1170 if (!PTy) { 1171 Error(Loc, "global variable reference must have pointer type"); 1172 return nullptr; 1173 } 1174 1175 // Look this name up in the normal function symbol table. 1176 GlobalValue *Val = 1177 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1178 1179 // If this is a forward reference for the value, see if we already created a 1180 // forward ref record. 1181 if (!Val) { 1182 auto I = ForwardRefVals.find(Name); 1183 if (I != ForwardRefVals.end()) 1184 Val = I->second.first; 1185 } 1186 1187 // If we have the value in the symbol table or fwd-ref table, return it. 1188 if (Val) { 1189 if (Val->getType() == Ty) return Val; 1190 Error(Loc, "'@" + Name + "' defined with type '" + 1191 getTypeString(Val->getType()) + "'"); 1192 return nullptr; 1193 } 1194 1195 // Otherwise, create a new forward reference for this value and remember it. 1196 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name); 1197 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1198 return FwdVal; 1199 } 1200 1201 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) { 1202 PointerType *PTy = dyn_cast<PointerType>(Ty); 1203 if (!PTy) { 1204 Error(Loc, "global variable reference must have pointer type"); 1205 return nullptr; 1206 } 1207 1208 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1209 1210 // If this is a forward reference for the value, see if we already created a 1211 // forward ref record. 1212 if (!Val) { 1213 auto I = ForwardRefValIDs.find(ID); 1214 if (I != ForwardRefValIDs.end()) 1215 Val = I->second.first; 1216 } 1217 1218 // If we have the value in the symbol table or fwd-ref table, return it. 1219 if (Val) { 1220 if (Val->getType() == Ty) return Val; 1221 Error(Loc, "'@" + Twine(ID) + "' defined with type '" + 1222 getTypeString(Val->getType()) + "'"); 1223 return nullptr; 1224 } 1225 1226 // Otherwise, create a new forward reference for this value and remember it. 1227 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, ""); 1228 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1229 return FwdVal; 1230 } 1231 1232 //===----------------------------------------------------------------------===// 1233 // Comdat Reference/Resolution Routines. 1234 //===----------------------------------------------------------------------===// 1235 1236 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1237 // Look this name up in the comdat symbol table. 1238 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1239 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1240 if (I != ComdatSymTab.end()) 1241 return &I->second; 1242 1243 // Otherwise, create a new forward reference for this value and remember it. 1244 Comdat *C = M->getOrInsertComdat(Name); 1245 ForwardRefComdats[Name] = Loc; 1246 return C; 1247 } 1248 1249 //===----------------------------------------------------------------------===// 1250 // Helper Routines. 1251 //===----------------------------------------------------------------------===// 1252 1253 /// ParseToken - If the current token has the specified kind, eat it and return 1254 /// success. Otherwise, emit the specified error and return failure. 1255 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { 1256 if (Lex.getKind() != T) 1257 return TokError(ErrMsg); 1258 Lex.Lex(); 1259 return false; 1260 } 1261 1262 /// ParseStringConstant 1263 /// ::= StringConstant 1264 bool LLParser::ParseStringConstant(std::string &Result) { 1265 if (Lex.getKind() != lltok::StringConstant) 1266 return TokError("expected string constant"); 1267 Result = Lex.getStrVal(); 1268 Lex.Lex(); 1269 return false; 1270 } 1271 1272 /// ParseUInt32 1273 /// ::= uint32 1274 bool LLParser::ParseUInt32(uint32_t &Val) { 1275 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1276 return TokError("expected integer"); 1277 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1278 if (Val64 != unsigned(Val64)) 1279 return TokError("expected 32-bit integer (too large)"); 1280 Val = Val64; 1281 Lex.Lex(); 1282 return false; 1283 } 1284 1285 /// ParseUInt64 1286 /// ::= uint64 1287 bool LLParser::ParseUInt64(uint64_t &Val) { 1288 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1289 return TokError("expected integer"); 1290 Val = Lex.getAPSIntVal().getLimitedValue(); 1291 Lex.Lex(); 1292 return false; 1293 } 1294 1295 /// ParseTLSModel 1296 /// := 'localdynamic' 1297 /// := 'initialexec' 1298 /// := 'localexec' 1299 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1300 switch (Lex.getKind()) { 1301 default: 1302 return TokError("expected localdynamic, initialexec or localexec"); 1303 case lltok::kw_localdynamic: 1304 TLM = GlobalVariable::LocalDynamicTLSModel; 1305 break; 1306 case lltok::kw_initialexec: 1307 TLM = GlobalVariable::InitialExecTLSModel; 1308 break; 1309 case lltok::kw_localexec: 1310 TLM = GlobalVariable::LocalExecTLSModel; 1311 break; 1312 } 1313 1314 Lex.Lex(); 1315 return false; 1316 } 1317 1318 /// ParseOptionalThreadLocal 1319 /// := /*empty*/ 1320 /// := 'thread_local' 1321 /// := 'thread_local' '(' tlsmodel ')' 1322 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1323 TLM = GlobalVariable::NotThreadLocal; 1324 if (!EatIfPresent(lltok::kw_thread_local)) 1325 return false; 1326 1327 TLM = GlobalVariable::GeneralDynamicTLSModel; 1328 if (Lex.getKind() == lltok::lparen) { 1329 Lex.Lex(); 1330 return ParseTLSModel(TLM) || 1331 ParseToken(lltok::rparen, "expected ')' after thread local model"); 1332 } 1333 return false; 1334 } 1335 1336 /// ParseOptionalAddrSpace 1337 /// := /*empty*/ 1338 /// := 'addrspace' '(' uint32 ')' 1339 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) { 1340 AddrSpace = 0; 1341 if (!EatIfPresent(lltok::kw_addrspace)) 1342 return false; 1343 return ParseToken(lltok::lparen, "expected '(' in address space") || 1344 ParseUInt32(AddrSpace) || 1345 ParseToken(lltok::rparen, "expected ')' in address space"); 1346 } 1347 1348 /// ParseStringAttribute 1349 /// := StringConstant 1350 /// := StringConstant '=' StringConstant 1351 bool LLParser::ParseStringAttribute(AttrBuilder &B) { 1352 std::string Attr = Lex.getStrVal(); 1353 Lex.Lex(); 1354 std::string Val; 1355 if (EatIfPresent(lltok::equal) && ParseStringConstant(Val)) 1356 return true; 1357 B.addAttribute(Attr, Val); 1358 return false; 1359 } 1360 1361 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes. 1362 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) { 1363 bool HaveError = false; 1364 1365 B.clear(); 1366 1367 while (true) { 1368 lltok::Kind Token = Lex.getKind(); 1369 switch (Token) { 1370 default: // End of attributes. 1371 return HaveError; 1372 case lltok::StringConstant: { 1373 if (ParseStringAttribute(B)) 1374 return true; 1375 continue; 1376 } 1377 case lltok::kw_align: { 1378 unsigned Alignment; 1379 if (ParseOptionalAlignment(Alignment)) 1380 return true; 1381 B.addAlignmentAttr(Alignment); 1382 continue; 1383 } 1384 case lltok::kw_byval: B.addAttribute(Attribute::ByVal); break; 1385 case lltok::kw_dereferenceable: { 1386 uint64_t Bytes; 1387 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1388 return true; 1389 B.addDereferenceableAttr(Bytes); 1390 continue; 1391 } 1392 case lltok::kw_dereferenceable_or_null: { 1393 uint64_t Bytes; 1394 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1395 return true; 1396 B.addDereferenceableOrNullAttr(Bytes); 1397 continue; 1398 } 1399 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break; 1400 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1401 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break; 1402 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1403 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break; 1404 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1405 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1406 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1407 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break; 1408 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1409 case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break; 1410 case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break; 1411 case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break; 1412 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1413 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1414 1415 case lltok::kw_alignstack: 1416 case lltok::kw_alwaysinline: 1417 case lltok::kw_argmemonly: 1418 case lltok::kw_builtin: 1419 case lltok::kw_inlinehint: 1420 case lltok::kw_jumptable: 1421 case lltok::kw_minsize: 1422 case lltok::kw_naked: 1423 case lltok::kw_nobuiltin: 1424 case lltok::kw_noduplicate: 1425 case lltok::kw_noimplicitfloat: 1426 case lltok::kw_noinline: 1427 case lltok::kw_nonlazybind: 1428 case lltok::kw_noredzone: 1429 case lltok::kw_noreturn: 1430 case lltok::kw_nounwind: 1431 case lltok::kw_optnone: 1432 case lltok::kw_optsize: 1433 case lltok::kw_returns_twice: 1434 case lltok::kw_sanitize_address: 1435 case lltok::kw_sanitize_memory: 1436 case lltok::kw_sanitize_thread: 1437 case lltok::kw_ssp: 1438 case lltok::kw_sspreq: 1439 case lltok::kw_sspstrong: 1440 case lltok::kw_safestack: 1441 case lltok::kw_uwtable: 1442 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1443 break; 1444 } 1445 1446 Lex.Lex(); 1447 } 1448 } 1449 1450 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes. 1451 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) { 1452 bool HaveError = false; 1453 1454 B.clear(); 1455 1456 while (true) { 1457 lltok::Kind Token = Lex.getKind(); 1458 switch (Token) { 1459 default: // End of attributes. 1460 return HaveError; 1461 case lltok::StringConstant: { 1462 if (ParseStringAttribute(B)) 1463 return true; 1464 continue; 1465 } 1466 case lltok::kw_dereferenceable: { 1467 uint64_t Bytes; 1468 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1469 return true; 1470 B.addDereferenceableAttr(Bytes); 1471 continue; 1472 } 1473 case lltok::kw_dereferenceable_or_null: { 1474 uint64_t Bytes; 1475 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1476 return true; 1477 B.addDereferenceableOrNullAttr(Bytes); 1478 continue; 1479 } 1480 case lltok::kw_align: { 1481 unsigned Alignment; 1482 if (ParseOptionalAlignment(Alignment)) 1483 return true; 1484 B.addAlignmentAttr(Alignment); 1485 continue; 1486 } 1487 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1488 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1489 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1490 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1491 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1492 1493 // Error handling. 1494 case lltok::kw_byval: 1495 case lltok::kw_inalloca: 1496 case lltok::kw_nest: 1497 case lltok::kw_nocapture: 1498 case lltok::kw_returned: 1499 case lltok::kw_sret: 1500 case lltok::kw_swifterror: 1501 case lltok::kw_swiftself: 1502 HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute"); 1503 break; 1504 1505 case lltok::kw_alignstack: 1506 case lltok::kw_alwaysinline: 1507 case lltok::kw_argmemonly: 1508 case lltok::kw_builtin: 1509 case lltok::kw_cold: 1510 case lltok::kw_inlinehint: 1511 case lltok::kw_jumptable: 1512 case lltok::kw_minsize: 1513 case lltok::kw_naked: 1514 case lltok::kw_nobuiltin: 1515 case lltok::kw_noduplicate: 1516 case lltok::kw_noimplicitfloat: 1517 case lltok::kw_noinline: 1518 case lltok::kw_nonlazybind: 1519 case lltok::kw_noredzone: 1520 case lltok::kw_noreturn: 1521 case lltok::kw_nounwind: 1522 case lltok::kw_optnone: 1523 case lltok::kw_optsize: 1524 case lltok::kw_returns_twice: 1525 case lltok::kw_sanitize_address: 1526 case lltok::kw_sanitize_memory: 1527 case lltok::kw_sanitize_thread: 1528 case lltok::kw_ssp: 1529 case lltok::kw_sspreq: 1530 case lltok::kw_sspstrong: 1531 case lltok::kw_safestack: 1532 case lltok::kw_uwtable: 1533 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1534 break; 1535 1536 case lltok::kw_readnone: 1537 case lltok::kw_readonly: 1538 HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type"); 1539 } 1540 1541 Lex.Lex(); 1542 } 1543 } 1544 1545 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1546 HasLinkage = true; 1547 switch (Kind) { 1548 default: 1549 HasLinkage = false; 1550 return GlobalValue::ExternalLinkage; 1551 case lltok::kw_private: 1552 return GlobalValue::PrivateLinkage; 1553 case lltok::kw_internal: 1554 return GlobalValue::InternalLinkage; 1555 case lltok::kw_weak: 1556 return GlobalValue::WeakAnyLinkage; 1557 case lltok::kw_weak_odr: 1558 return GlobalValue::WeakODRLinkage; 1559 case lltok::kw_linkonce: 1560 return GlobalValue::LinkOnceAnyLinkage; 1561 case lltok::kw_linkonce_odr: 1562 return GlobalValue::LinkOnceODRLinkage; 1563 case lltok::kw_available_externally: 1564 return GlobalValue::AvailableExternallyLinkage; 1565 case lltok::kw_appending: 1566 return GlobalValue::AppendingLinkage; 1567 case lltok::kw_common: 1568 return GlobalValue::CommonLinkage; 1569 case lltok::kw_extern_weak: 1570 return GlobalValue::ExternalWeakLinkage; 1571 case lltok::kw_external: 1572 return GlobalValue::ExternalLinkage; 1573 } 1574 } 1575 1576 /// ParseOptionalLinkage 1577 /// ::= /*empty*/ 1578 /// ::= 'private' 1579 /// ::= 'internal' 1580 /// ::= 'weak' 1581 /// ::= 'weak_odr' 1582 /// ::= 'linkonce' 1583 /// ::= 'linkonce_odr' 1584 /// ::= 'available_externally' 1585 /// ::= 'appending' 1586 /// ::= 'common' 1587 /// ::= 'extern_weak' 1588 /// ::= 'external' 1589 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage, 1590 unsigned &Visibility, 1591 unsigned &DLLStorageClass) { 1592 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 1593 if (HasLinkage) 1594 Lex.Lex(); 1595 ParseOptionalVisibility(Visibility); 1596 ParseOptionalDLLStorageClass(DLLStorageClass); 1597 return false; 1598 } 1599 1600 /// ParseOptionalVisibility 1601 /// ::= /*empty*/ 1602 /// ::= 'default' 1603 /// ::= 'hidden' 1604 /// ::= 'protected' 1605 /// 1606 void LLParser::ParseOptionalVisibility(unsigned &Res) { 1607 switch (Lex.getKind()) { 1608 default: 1609 Res = GlobalValue::DefaultVisibility; 1610 return; 1611 case lltok::kw_default: 1612 Res = GlobalValue::DefaultVisibility; 1613 break; 1614 case lltok::kw_hidden: 1615 Res = GlobalValue::HiddenVisibility; 1616 break; 1617 case lltok::kw_protected: 1618 Res = GlobalValue::ProtectedVisibility; 1619 break; 1620 } 1621 Lex.Lex(); 1622 } 1623 1624 /// ParseOptionalDLLStorageClass 1625 /// ::= /*empty*/ 1626 /// ::= 'dllimport' 1627 /// ::= 'dllexport' 1628 /// 1629 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) { 1630 switch (Lex.getKind()) { 1631 default: 1632 Res = GlobalValue::DefaultStorageClass; 1633 return; 1634 case lltok::kw_dllimport: 1635 Res = GlobalValue::DLLImportStorageClass; 1636 break; 1637 case lltok::kw_dllexport: 1638 Res = GlobalValue::DLLExportStorageClass; 1639 break; 1640 } 1641 Lex.Lex(); 1642 } 1643 1644 /// ParseOptionalCallingConv 1645 /// ::= /*empty*/ 1646 /// ::= 'ccc' 1647 /// ::= 'fastcc' 1648 /// ::= 'intel_ocl_bicc' 1649 /// ::= 'coldcc' 1650 /// ::= 'x86_stdcallcc' 1651 /// ::= 'x86_fastcallcc' 1652 /// ::= 'x86_thiscallcc' 1653 /// ::= 'x86_vectorcallcc' 1654 /// ::= 'arm_apcscc' 1655 /// ::= 'arm_aapcscc' 1656 /// ::= 'arm_aapcs_vfpcc' 1657 /// ::= 'msp430_intrcc' 1658 /// ::= 'avr_intrcc' 1659 /// ::= 'avr_signalcc' 1660 /// ::= 'ptx_kernel' 1661 /// ::= 'ptx_device' 1662 /// ::= 'spir_func' 1663 /// ::= 'spir_kernel' 1664 /// ::= 'x86_64_sysvcc' 1665 /// ::= 'x86_64_win64cc' 1666 /// ::= 'webkit_jscc' 1667 /// ::= 'anyregcc' 1668 /// ::= 'preserve_mostcc' 1669 /// ::= 'preserve_allcc' 1670 /// ::= 'ghccc' 1671 /// ::= 'swiftcc' 1672 /// ::= 'x86_intrcc' 1673 /// ::= 'hhvmcc' 1674 /// ::= 'hhvm_ccc' 1675 /// ::= 'cxx_fast_tlscc' 1676 /// ::= 'amdgpu_vs' 1677 /// ::= 'amdgpu_tcs' 1678 /// ::= 'amdgpu_tes' 1679 /// ::= 'amdgpu_gs' 1680 /// ::= 'amdgpu_ps' 1681 /// ::= 'amdgpu_cs' 1682 /// ::= 'amdgpu_kernel' 1683 /// ::= 'cc' UINT 1684 /// 1685 bool LLParser::ParseOptionalCallingConv(unsigned &CC) { 1686 switch (Lex.getKind()) { 1687 default: CC = CallingConv::C; return false; 1688 case lltok::kw_ccc: CC = CallingConv::C; break; 1689 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1690 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1691 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1692 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1693 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1694 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 1695 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1696 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1697 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1698 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1699 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 1700 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 1701 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1702 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1703 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 1704 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 1705 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 1706 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 1707 case lltok::kw_x86_64_win64cc: CC = CallingConv::X86_64_Win64; break; 1708 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 1709 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 1710 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 1711 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 1712 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 1713 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 1714 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 1715 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 1716 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 1717 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 1718 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 1719 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 1720 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 1721 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 1722 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 1723 case lltok::kw_cc: { 1724 Lex.Lex(); 1725 return ParseUInt32(CC); 1726 } 1727 } 1728 1729 Lex.Lex(); 1730 return false; 1731 } 1732 1733 /// ParseMetadataAttachment 1734 /// ::= !dbg !42 1735 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 1736 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 1737 1738 std::string Name = Lex.getStrVal(); 1739 Kind = M->getMDKindID(Name); 1740 Lex.Lex(); 1741 1742 return ParseMDNode(MD); 1743 } 1744 1745 /// ParseInstructionMetadata 1746 /// ::= !dbg !42 (',' !dbg !57)* 1747 bool LLParser::ParseInstructionMetadata(Instruction &Inst) { 1748 do { 1749 if (Lex.getKind() != lltok::MetadataVar) 1750 return TokError("expected metadata after comma"); 1751 1752 unsigned MDK; 1753 MDNode *N; 1754 if (ParseMetadataAttachment(MDK, N)) 1755 return true; 1756 1757 Inst.setMetadata(MDK, N); 1758 if (MDK == LLVMContext::MD_tbaa) 1759 InstsWithTBAATag.push_back(&Inst); 1760 1761 // If this is the end of the list, we're done. 1762 } while (EatIfPresent(lltok::comma)); 1763 return false; 1764 } 1765 1766 /// ParseGlobalObjectMetadataAttachment 1767 /// ::= !dbg !57 1768 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) { 1769 unsigned MDK; 1770 MDNode *N; 1771 if (ParseMetadataAttachment(MDK, N)) 1772 return true; 1773 1774 GO.addMetadata(MDK, *N); 1775 return false; 1776 } 1777 1778 /// ParseOptionalFunctionMetadata 1779 /// ::= (!dbg !57)* 1780 bool LLParser::ParseOptionalFunctionMetadata(Function &F) { 1781 while (Lex.getKind() == lltok::MetadataVar) 1782 if (ParseGlobalObjectMetadataAttachment(F)) 1783 return true; 1784 return false; 1785 } 1786 1787 /// ParseOptionalAlignment 1788 /// ::= /* empty */ 1789 /// ::= 'align' 4 1790 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) { 1791 Alignment = 0; 1792 if (!EatIfPresent(lltok::kw_align)) 1793 return false; 1794 LocTy AlignLoc = Lex.getLoc(); 1795 if (ParseUInt32(Alignment)) return true; 1796 if (!isPowerOf2_32(Alignment)) 1797 return Error(AlignLoc, "alignment is not a power of two"); 1798 if (Alignment > Value::MaximumAlignment) 1799 return Error(AlignLoc, "huge alignments are not supported yet"); 1800 return false; 1801 } 1802 1803 /// ParseOptionalDerefAttrBytes 1804 /// ::= /* empty */ 1805 /// ::= AttrKind '(' 4 ')' 1806 /// 1807 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 1808 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind, 1809 uint64_t &Bytes) { 1810 assert((AttrKind == lltok::kw_dereferenceable || 1811 AttrKind == lltok::kw_dereferenceable_or_null) && 1812 "contract!"); 1813 1814 Bytes = 0; 1815 if (!EatIfPresent(AttrKind)) 1816 return false; 1817 LocTy ParenLoc = Lex.getLoc(); 1818 if (!EatIfPresent(lltok::lparen)) 1819 return Error(ParenLoc, "expected '('"); 1820 LocTy DerefLoc = Lex.getLoc(); 1821 if (ParseUInt64(Bytes)) return true; 1822 ParenLoc = Lex.getLoc(); 1823 if (!EatIfPresent(lltok::rparen)) 1824 return Error(ParenLoc, "expected ')'"); 1825 if (!Bytes) 1826 return Error(DerefLoc, "dereferenceable bytes must be non-zero"); 1827 return false; 1828 } 1829 1830 /// ParseOptionalCommaAlign 1831 /// ::= 1832 /// ::= ',' align 4 1833 /// 1834 /// This returns with AteExtraComma set to true if it ate an excess comma at the 1835 /// end. 1836 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment, 1837 bool &AteExtraComma) { 1838 AteExtraComma = false; 1839 while (EatIfPresent(lltok::comma)) { 1840 // Metadata at the end is an early exit. 1841 if (Lex.getKind() == lltok::MetadataVar) { 1842 AteExtraComma = true; 1843 return false; 1844 } 1845 1846 if (Lex.getKind() != lltok::kw_align) 1847 return Error(Lex.getLoc(), "expected metadata or 'align'"); 1848 1849 if (ParseOptionalAlignment(Alignment)) return true; 1850 } 1851 1852 return false; 1853 } 1854 1855 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 1856 Optional<unsigned> &HowManyArg) { 1857 Lex.Lex(); 1858 1859 auto StartParen = Lex.getLoc(); 1860 if (!EatIfPresent(lltok::lparen)) 1861 return Error(StartParen, "expected '('"); 1862 1863 if (ParseUInt32(BaseSizeArg)) 1864 return true; 1865 1866 if (EatIfPresent(lltok::comma)) { 1867 auto HowManyAt = Lex.getLoc(); 1868 unsigned HowMany; 1869 if (ParseUInt32(HowMany)) 1870 return true; 1871 if (HowMany == BaseSizeArg) 1872 return Error(HowManyAt, 1873 "'allocsize' indices can't refer to the same parameter"); 1874 HowManyArg = HowMany; 1875 } else 1876 HowManyArg = None; 1877 1878 auto EndParen = Lex.getLoc(); 1879 if (!EatIfPresent(lltok::rparen)) 1880 return Error(EndParen, "expected ')'"); 1881 return false; 1882 } 1883 1884 /// ParseScopeAndOrdering 1885 /// if isAtomic: ::= 'singlethread'? AtomicOrdering 1886 /// else: ::= 1887 /// 1888 /// This sets Scope and Ordering to the parsed values. 1889 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope, 1890 AtomicOrdering &Ordering) { 1891 if (!isAtomic) 1892 return false; 1893 1894 Scope = CrossThread; 1895 if (EatIfPresent(lltok::kw_singlethread)) 1896 Scope = SingleThread; 1897 1898 return ParseOrdering(Ordering); 1899 } 1900 1901 /// ParseOrdering 1902 /// ::= AtomicOrdering 1903 /// 1904 /// This sets Ordering to the parsed value. 1905 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) { 1906 switch (Lex.getKind()) { 1907 default: return TokError("Expected ordering on atomic instruction"); 1908 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 1909 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 1910 // Not specified yet: 1911 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 1912 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 1913 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 1914 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 1915 case lltok::kw_seq_cst: 1916 Ordering = AtomicOrdering::SequentiallyConsistent; 1917 break; 1918 } 1919 Lex.Lex(); 1920 return false; 1921 } 1922 1923 /// ParseOptionalStackAlignment 1924 /// ::= /* empty */ 1925 /// ::= 'alignstack' '(' 4 ')' 1926 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { 1927 Alignment = 0; 1928 if (!EatIfPresent(lltok::kw_alignstack)) 1929 return false; 1930 LocTy ParenLoc = Lex.getLoc(); 1931 if (!EatIfPresent(lltok::lparen)) 1932 return Error(ParenLoc, "expected '('"); 1933 LocTy AlignLoc = Lex.getLoc(); 1934 if (ParseUInt32(Alignment)) return true; 1935 ParenLoc = Lex.getLoc(); 1936 if (!EatIfPresent(lltok::rparen)) 1937 return Error(ParenLoc, "expected ')'"); 1938 if (!isPowerOf2_32(Alignment)) 1939 return Error(AlignLoc, "stack alignment is not a power of two"); 1940 return false; 1941 } 1942 1943 /// ParseIndexList - This parses the index list for an insert/extractvalue 1944 /// instruction. This sets AteExtraComma in the case where we eat an extra 1945 /// comma at the end of the line and find that it is followed by metadata. 1946 /// Clients that don't allow metadata can call the version of this function that 1947 /// only takes one argument. 1948 /// 1949 /// ParseIndexList 1950 /// ::= (',' uint32)+ 1951 /// 1952 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, 1953 bool &AteExtraComma) { 1954 AteExtraComma = false; 1955 1956 if (Lex.getKind() != lltok::comma) 1957 return TokError("expected ',' as start of index list"); 1958 1959 while (EatIfPresent(lltok::comma)) { 1960 if (Lex.getKind() == lltok::MetadataVar) { 1961 if (Indices.empty()) return TokError("expected index"); 1962 AteExtraComma = true; 1963 return false; 1964 } 1965 unsigned Idx = 0; 1966 if (ParseUInt32(Idx)) return true; 1967 Indices.push_back(Idx); 1968 } 1969 1970 return false; 1971 } 1972 1973 //===----------------------------------------------------------------------===// 1974 // Type Parsing. 1975 //===----------------------------------------------------------------------===// 1976 1977 /// ParseType - Parse a type. 1978 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 1979 SMLoc TypeLoc = Lex.getLoc(); 1980 switch (Lex.getKind()) { 1981 default: 1982 return TokError(Msg); 1983 case lltok::Type: 1984 // Type ::= 'float' | 'void' (etc) 1985 Result = Lex.getTyVal(); 1986 Lex.Lex(); 1987 break; 1988 case lltok::lbrace: 1989 // Type ::= StructType 1990 if (ParseAnonStructType(Result, false)) 1991 return true; 1992 break; 1993 case lltok::lsquare: 1994 // Type ::= '[' ... ']' 1995 Lex.Lex(); // eat the lsquare. 1996 if (ParseArrayVectorType(Result, false)) 1997 return true; 1998 break; 1999 case lltok::less: // Either vector or packed struct. 2000 // Type ::= '<' ... '>' 2001 Lex.Lex(); 2002 if (Lex.getKind() == lltok::lbrace) { 2003 if (ParseAnonStructType(Result, true) || 2004 ParseToken(lltok::greater, "expected '>' at end of packed struct")) 2005 return true; 2006 } else if (ParseArrayVectorType(Result, true)) 2007 return true; 2008 break; 2009 case lltok::LocalVar: { 2010 // Type ::= %foo 2011 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2012 2013 // If the type hasn't been defined yet, create a forward definition and 2014 // remember where that forward def'n was seen (in case it never is defined). 2015 if (!Entry.first) { 2016 Entry.first = StructType::create(Context, Lex.getStrVal()); 2017 Entry.second = Lex.getLoc(); 2018 } 2019 Result = Entry.first; 2020 Lex.Lex(); 2021 break; 2022 } 2023 2024 case lltok::LocalVarID: { 2025 // Type ::= %4 2026 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2027 2028 // If the type hasn't been defined yet, create a forward definition and 2029 // remember where that forward def'n was seen (in case it never is defined). 2030 if (!Entry.first) { 2031 Entry.first = StructType::create(Context); 2032 Entry.second = Lex.getLoc(); 2033 } 2034 Result = Entry.first; 2035 Lex.Lex(); 2036 break; 2037 } 2038 } 2039 2040 // Parse the type suffixes. 2041 while (true) { 2042 switch (Lex.getKind()) { 2043 // End of type. 2044 default: 2045 if (!AllowVoid && Result->isVoidTy()) 2046 return Error(TypeLoc, "void type only allowed for function results"); 2047 return false; 2048 2049 // Type ::= Type '*' 2050 case lltok::star: 2051 if (Result->isLabelTy()) 2052 return TokError("basic block pointers are invalid"); 2053 if (Result->isVoidTy()) 2054 return TokError("pointers to void are invalid - use i8* instead"); 2055 if (!PointerType::isValidElementType(Result)) 2056 return TokError("pointer to this type is invalid"); 2057 Result = PointerType::getUnqual(Result); 2058 Lex.Lex(); 2059 break; 2060 2061 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2062 case lltok::kw_addrspace: { 2063 if (Result->isLabelTy()) 2064 return TokError("basic block pointers are invalid"); 2065 if (Result->isVoidTy()) 2066 return TokError("pointers to void are invalid; use i8* instead"); 2067 if (!PointerType::isValidElementType(Result)) 2068 return TokError("pointer to this type is invalid"); 2069 unsigned AddrSpace; 2070 if (ParseOptionalAddrSpace(AddrSpace) || 2071 ParseToken(lltok::star, "expected '*' in address space")) 2072 return true; 2073 2074 Result = PointerType::get(Result, AddrSpace); 2075 break; 2076 } 2077 2078 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2079 case lltok::lparen: 2080 if (ParseFunctionType(Result)) 2081 return true; 2082 break; 2083 } 2084 } 2085 } 2086 2087 /// ParseParameterList 2088 /// ::= '(' ')' 2089 /// ::= '(' Arg (',' Arg)* ')' 2090 /// Arg 2091 /// ::= Type OptionalAttributes Value OptionalAttributes 2092 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2093 PerFunctionState &PFS, bool IsMustTailCall, 2094 bool InVarArgsFunc) { 2095 if (ParseToken(lltok::lparen, "expected '(' in call")) 2096 return true; 2097 2098 unsigned AttrIndex = 1; 2099 while (Lex.getKind() != lltok::rparen) { 2100 // If this isn't the first argument, we need a comma. 2101 if (!ArgList.empty() && 2102 ParseToken(lltok::comma, "expected ',' in argument list")) 2103 return true; 2104 2105 // Parse an ellipsis if this is a musttail call in a variadic function. 2106 if (Lex.getKind() == lltok::dotdotdot) { 2107 const char *Msg = "unexpected ellipsis in argument list for "; 2108 if (!IsMustTailCall) 2109 return TokError(Twine(Msg) + "non-musttail call"); 2110 if (!InVarArgsFunc) 2111 return TokError(Twine(Msg) + "musttail call in non-varargs function"); 2112 Lex.Lex(); // Lex the '...', it is purely for readability. 2113 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2114 } 2115 2116 // Parse the argument. 2117 LocTy ArgLoc; 2118 Type *ArgTy = nullptr; 2119 AttrBuilder ArgAttrs; 2120 Value *V; 2121 if (ParseType(ArgTy, ArgLoc)) 2122 return true; 2123 2124 if (ArgTy->isMetadataTy()) { 2125 if (ParseMetadataAsValue(V, PFS)) 2126 return true; 2127 } else { 2128 // Otherwise, handle normal operands. 2129 if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS)) 2130 return true; 2131 } 2132 ArgList.push_back(ParamInfo(ArgLoc, V, AttributeSet::get(V->getContext(), 2133 AttrIndex++, 2134 ArgAttrs))); 2135 } 2136 2137 if (IsMustTailCall && InVarArgsFunc) 2138 return TokError("expected '...' at end of argument list for musttail call " 2139 "in varargs function"); 2140 2141 Lex.Lex(); // Lex the ')'. 2142 return false; 2143 } 2144 2145 /// ParseOptionalOperandBundles 2146 /// ::= /*empty*/ 2147 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2148 /// 2149 /// OperandBundle 2150 /// ::= bundle-tag '(' ')' 2151 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2152 /// 2153 /// bundle-tag ::= String Constant 2154 bool LLParser::ParseOptionalOperandBundles( 2155 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2156 LocTy BeginLoc = Lex.getLoc(); 2157 if (!EatIfPresent(lltok::lsquare)) 2158 return false; 2159 2160 while (Lex.getKind() != lltok::rsquare) { 2161 // If this isn't the first operand bundle, we need a comma. 2162 if (!BundleList.empty() && 2163 ParseToken(lltok::comma, "expected ',' in input list")) 2164 return true; 2165 2166 std::string Tag; 2167 if (ParseStringConstant(Tag)) 2168 return true; 2169 2170 if (ParseToken(lltok::lparen, "expected '(' in operand bundle")) 2171 return true; 2172 2173 std::vector<Value *> Inputs; 2174 while (Lex.getKind() != lltok::rparen) { 2175 // If this isn't the first input, we need a comma. 2176 if (!Inputs.empty() && 2177 ParseToken(lltok::comma, "expected ',' in input list")) 2178 return true; 2179 2180 Type *Ty = nullptr; 2181 Value *Input = nullptr; 2182 if (ParseType(Ty) || ParseValue(Ty, Input, PFS)) 2183 return true; 2184 Inputs.push_back(Input); 2185 } 2186 2187 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2188 2189 Lex.Lex(); // Lex the ')'. 2190 } 2191 2192 if (BundleList.empty()) 2193 return Error(BeginLoc, "operand bundle set must not be empty"); 2194 2195 Lex.Lex(); // Lex the ']'. 2196 return false; 2197 } 2198 2199 /// ParseArgumentList - Parse the argument list for a function type or function 2200 /// prototype. 2201 /// ::= '(' ArgTypeListI ')' 2202 /// ArgTypeListI 2203 /// ::= /*empty*/ 2204 /// ::= '...' 2205 /// ::= ArgTypeList ',' '...' 2206 /// ::= ArgType (',' ArgType)* 2207 /// 2208 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2209 bool &isVarArg){ 2210 isVarArg = false; 2211 assert(Lex.getKind() == lltok::lparen); 2212 Lex.Lex(); // eat the (. 2213 2214 if (Lex.getKind() == lltok::rparen) { 2215 // empty 2216 } else if (Lex.getKind() == lltok::dotdotdot) { 2217 isVarArg = true; 2218 Lex.Lex(); 2219 } else { 2220 LocTy TypeLoc = Lex.getLoc(); 2221 Type *ArgTy = nullptr; 2222 AttrBuilder Attrs; 2223 std::string Name; 2224 2225 if (ParseType(ArgTy) || 2226 ParseOptionalParamAttrs(Attrs)) return true; 2227 2228 if (ArgTy->isVoidTy()) 2229 return Error(TypeLoc, "argument can not have void type"); 2230 2231 if (Lex.getKind() == lltok::LocalVar) { 2232 Name = Lex.getStrVal(); 2233 Lex.Lex(); 2234 } 2235 2236 if (!FunctionType::isValidArgumentType(ArgTy)) 2237 return Error(TypeLoc, "invalid type for function argument"); 2238 2239 unsigned AttrIndex = 1; 2240 ArgList.emplace_back(TypeLoc, ArgTy, AttributeSet::get(ArgTy->getContext(), 2241 AttrIndex++, Attrs), 2242 std::move(Name)); 2243 2244 while (EatIfPresent(lltok::comma)) { 2245 // Handle ... at end of arg list. 2246 if (EatIfPresent(lltok::dotdotdot)) { 2247 isVarArg = true; 2248 break; 2249 } 2250 2251 // Otherwise must be an argument type. 2252 TypeLoc = Lex.getLoc(); 2253 if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true; 2254 2255 if (ArgTy->isVoidTy()) 2256 return Error(TypeLoc, "argument can not have void type"); 2257 2258 if (Lex.getKind() == lltok::LocalVar) { 2259 Name = Lex.getStrVal(); 2260 Lex.Lex(); 2261 } else { 2262 Name = ""; 2263 } 2264 2265 if (!ArgTy->isFirstClassType()) 2266 return Error(TypeLoc, "invalid type for function argument"); 2267 2268 ArgList.emplace_back( 2269 TypeLoc, ArgTy, 2270 AttributeSet::get(ArgTy->getContext(), AttrIndex++, Attrs), 2271 std::move(Name)); 2272 } 2273 } 2274 2275 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2276 } 2277 2278 /// ParseFunctionType 2279 /// ::= Type ArgumentList OptionalAttrs 2280 bool LLParser::ParseFunctionType(Type *&Result) { 2281 assert(Lex.getKind() == lltok::lparen); 2282 2283 if (!FunctionType::isValidReturnType(Result)) 2284 return TokError("invalid function return type"); 2285 2286 SmallVector<ArgInfo, 8> ArgList; 2287 bool isVarArg; 2288 if (ParseArgumentList(ArgList, isVarArg)) 2289 return true; 2290 2291 // Reject names on the arguments lists. 2292 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2293 if (!ArgList[i].Name.empty()) 2294 return Error(ArgList[i].Loc, "argument name invalid in function type"); 2295 if (ArgList[i].Attrs.hasAttributes(i + 1)) 2296 return Error(ArgList[i].Loc, 2297 "argument attributes invalid in function type"); 2298 } 2299 2300 SmallVector<Type*, 16> ArgListTy; 2301 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2302 ArgListTy.push_back(ArgList[i].Ty); 2303 2304 Result = FunctionType::get(Result, ArgListTy, isVarArg); 2305 return false; 2306 } 2307 2308 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into 2309 /// other structs. 2310 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) { 2311 SmallVector<Type*, 8> Elts; 2312 if (ParseStructBody(Elts)) return true; 2313 2314 Result = StructType::get(Context, Elts, Packed); 2315 return false; 2316 } 2317 2318 /// ParseStructDefinition - Parse a struct in a 'type' definition. 2319 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name, 2320 std::pair<Type*, LocTy> &Entry, 2321 Type *&ResultTy) { 2322 // If the type was already defined, diagnose the redefinition. 2323 if (Entry.first && !Entry.second.isValid()) 2324 return Error(TypeLoc, "redefinition of type"); 2325 2326 // If we have opaque, just return without filling in the definition for the 2327 // struct. This counts as a definition as far as the .ll file goes. 2328 if (EatIfPresent(lltok::kw_opaque)) { 2329 // This type is being defined, so clear the location to indicate this. 2330 Entry.second = SMLoc(); 2331 2332 // If this type number has never been uttered, create it. 2333 if (!Entry.first) 2334 Entry.first = StructType::create(Context, Name); 2335 ResultTy = Entry.first; 2336 return false; 2337 } 2338 2339 // If the type starts with '<', then it is either a packed struct or a vector. 2340 bool isPacked = EatIfPresent(lltok::less); 2341 2342 // If we don't have a struct, then we have a random type alias, which we 2343 // accept for compatibility with old files. These types are not allowed to be 2344 // forward referenced and not allowed to be recursive. 2345 if (Lex.getKind() != lltok::lbrace) { 2346 if (Entry.first) 2347 return Error(TypeLoc, "forward references to non-struct type"); 2348 2349 ResultTy = nullptr; 2350 if (isPacked) 2351 return ParseArrayVectorType(ResultTy, true); 2352 return ParseType(ResultTy); 2353 } 2354 2355 // This type is being defined, so clear the location to indicate this. 2356 Entry.second = SMLoc(); 2357 2358 // If this type number has never been uttered, create it. 2359 if (!Entry.first) 2360 Entry.first = StructType::create(Context, Name); 2361 2362 StructType *STy = cast<StructType>(Entry.first); 2363 2364 SmallVector<Type*, 8> Body; 2365 if (ParseStructBody(Body) || 2366 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct"))) 2367 return true; 2368 2369 STy->setBody(Body, isPacked); 2370 ResultTy = STy; 2371 return false; 2372 } 2373 2374 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2375 /// StructType 2376 /// ::= '{' '}' 2377 /// ::= '{' Type (',' Type)* '}' 2378 /// ::= '<' '{' '}' '>' 2379 /// ::= '<' '{' Type (',' Type)* '}' '>' 2380 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) { 2381 assert(Lex.getKind() == lltok::lbrace); 2382 Lex.Lex(); // Consume the '{' 2383 2384 // Handle the empty struct. 2385 if (EatIfPresent(lltok::rbrace)) 2386 return false; 2387 2388 LocTy EltTyLoc = Lex.getLoc(); 2389 Type *Ty = nullptr; 2390 if (ParseType(Ty)) return true; 2391 Body.push_back(Ty); 2392 2393 if (!StructType::isValidElementType(Ty)) 2394 return Error(EltTyLoc, "invalid element type for struct"); 2395 2396 while (EatIfPresent(lltok::comma)) { 2397 EltTyLoc = Lex.getLoc(); 2398 if (ParseType(Ty)) return true; 2399 2400 if (!StructType::isValidElementType(Ty)) 2401 return Error(EltTyLoc, "invalid element type for struct"); 2402 2403 Body.push_back(Ty); 2404 } 2405 2406 return ParseToken(lltok::rbrace, "expected '}' at end of struct"); 2407 } 2408 2409 /// ParseArrayVectorType - Parse an array or vector type, assuming the first 2410 /// token has already been consumed. 2411 /// Type 2412 /// ::= '[' APSINTVAL 'x' Types ']' 2413 /// ::= '<' APSINTVAL 'x' Types '>' 2414 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) { 2415 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2416 Lex.getAPSIntVal().getBitWidth() > 64) 2417 return TokError("expected number in address space"); 2418 2419 LocTy SizeLoc = Lex.getLoc(); 2420 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2421 Lex.Lex(); 2422 2423 if (ParseToken(lltok::kw_x, "expected 'x' after element count")) 2424 return true; 2425 2426 LocTy TypeLoc = Lex.getLoc(); 2427 Type *EltTy = nullptr; 2428 if (ParseType(EltTy)) return true; 2429 2430 if (ParseToken(isVector ? lltok::greater : lltok::rsquare, 2431 "expected end of sequential type")) 2432 return true; 2433 2434 if (isVector) { 2435 if (Size == 0) 2436 return Error(SizeLoc, "zero element vector is illegal"); 2437 if ((unsigned)Size != Size) 2438 return Error(SizeLoc, "size too large for vector"); 2439 if (!VectorType::isValidElementType(EltTy)) 2440 return Error(TypeLoc, "invalid vector element type"); 2441 Result = VectorType::get(EltTy, unsigned(Size)); 2442 } else { 2443 if (!ArrayType::isValidElementType(EltTy)) 2444 return Error(TypeLoc, "invalid array element type"); 2445 Result = ArrayType::get(EltTy, Size); 2446 } 2447 return false; 2448 } 2449 2450 //===----------------------------------------------------------------------===// 2451 // Function Semantic Analysis. 2452 //===----------------------------------------------------------------------===// 2453 2454 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 2455 int functionNumber) 2456 : P(p), F(f), FunctionNumber(functionNumber) { 2457 2458 // Insert unnamed arguments into the NumberedVals list. 2459 for (Argument &A : F.args()) 2460 if (!A.hasName()) 2461 NumberedVals.push_back(&A); 2462 } 2463 2464 LLParser::PerFunctionState::~PerFunctionState() { 2465 // If there were any forward referenced non-basicblock values, delete them. 2466 2467 for (const auto &P : ForwardRefVals) { 2468 if (isa<BasicBlock>(P.second.first)) 2469 continue; 2470 P.second.first->replaceAllUsesWith( 2471 UndefValue::get(P.second.first->getType())); 2472 delete P.second.first; 2473 } 2474 2475 for (const auto &P : ForwardRefValIDs) { 2476 if (isa<BasicBlock>(P.second.first)) 2477 continue; 2478 P.second.first->replaceAllUsesWith( 2479 UndefValue::get(P.second.first->getType())); 2480 delete P.second.first; 2481 } 2482 } 2483 2484 bool LLParser::PerFunctionState::FinishFunction() { 2485 if (!ForwardRefVals.empty()) 2486 return P.Error(ForwardRefVals.begin()->second.second, 2487 "use of undefined value '%" + ForwardRefVals.begin()->first + 2488 "'"); 2489 if (!ForwardRefValIDs.empty()) 2490 return P.Error(ForwardRefValIDs.begin()->second.second, 2491 "use of undefined value '%" + 2492 Twine(ForwardRefValIDs.begin()->first) + "'"); 2493 return false; 2494 } 2495 2496 /// GetVal - Get a value with the specified name or ID, creating a 2497 /// forward reference record if needed. This can return null if the value 2498 /// exists but does not have the right type. 2499 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty, 2500 LocTy Loc) { 2501 // Look this name up in the normal function symbol table. 2502 Value *Val = F.getValueSymbolTable().lookup(Name); 2503 2504 // If this is a forward reference for the value, see if we already created a 2505 // forward ref record. 2506 if (!Val) { 2507 auto I = ForwardRefVals.find(Name); 2508 if (I != ForwardRefVals.end()) 2509 Val = I->second.first; 2510 } 2511 2512 // If we have the value in the symbol table or fwd-ref table, return it. 2513 if (Val) { 2514 if (Val->getType() == Ty) return Val; 2515 if (Ty->isLabelTy()) 2516 P.Error(Loc, "'%" + Name + "' is not a basic block"); 2517 else 2518 P.Error(Loc, "'%" + Name + "' defined with type '" + 2519 getTypeString(Val->getType()) + "'"); 2520 return nullptr; 2521 } 2522 2523 // Don't make placeholders with invalid type. 2524 if (!Ty->isFirstClassType()) { 2525 P.Error(Loc, "invalid use of a non-first-class type"); 2526 return nullptr; 2527 } 2528 2529 // Otherwise, create a new forward reference for this value and remember it. 2530 Value *FwdVal; 2531 if (Ty->isLabelTy()) { 2532 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 2533 } else { 2534 FwdVal = new Argument(Ty, Name); 2535 } 2536 2537 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 2538 return FwdVal; 2539 } 2540 2541 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc) { 2542 // Look this name up in the normal function symbol table. 2543 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 2544 2545 // If this is a forward reference for the value, see if we already created a 2546 // forward ref record. 2547 if (!Val) { 2548 auto I = ForwardRefValIDs.find(ID); 2549 if (I != ForwardRefValIDs.end()) 2550 Val = I->second.first; 2551 } 2552 2553 // If we have the value in the symbol table or fwd-ref table, return it. 2554 if (Val) { 2555 if (Val->getType() == Ty) return Val; 2556 if (Ty->isLabelTy()) 2557 P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block"); 2558 else 2559 P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" + 2560 getTypeString(Val->getType()) + "'"); 2561 return nullptr; 2562 } 2563 2564 if (!Ty->isFirstClassType()) { 2565 P.Error(Loc, "invalid use of a non-first-class type"); 2566 return nullptr; 2567 } 2568 2569 // Otherwise, create a new forward reference for this value and remember it. 2570 Value *FwdVal; 2571 if (Ty->isLabelTy()) { 2572 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 2573 } else { 2574 FwdVal = new Argument(Ty); 2575 } 2576 2577 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 2578 return FwdVal; 2579 } 2580 2581 /// SetInstName - After an instruction is parsed and inserted into its 2582 /// basic block, this installs its name. 2583 bool LLParser::PerFunctionState::SetInstName(int NameID, 2584 const std::string &NameStr, 2585 LocTy NameLoc, Instruction *Inst) { 2586 // If this instruction has void type, it cannot have a name or ID specified. 2587 if (Inst->getType()->isVoidTy()) { 2588 if (NameID != -1 || !NameStr.empty()) 2589 return P.Error(NameLoc, "instructions returning void cannot have a name"); 2590 return false; 2591 } 2592 2593 // If this was a numbered instruction, verify that the instruction is the 2594 // expected value and resolve any forward references. 2595 if (NameStr.empty()) { 2596 // If neither a name nor an ID was specified, just use the next ID. 2597 if (NameID == -1) 2598 NameID = NumberedVals.size(); 2599 2600 if (unsigned(NameID) != NumberedVals.size()) 2601 return P.Error(NameLoc, "instruction expected to be numbered '%" + 2602 Twine(NumberedVals.size()) + "'"); 2603 2604 auto FI = ForwardRefValIDs.find(NameID); 2605 if (FI != ForwardRefValIDs.end()) { 2606 Value *Sentinel = FI->second.first; 2607 if (Sentinel->getType() != Inst->getType()) 2608 return P.Error(NameLoc, "instruction forward referenced with type '" + 2609 getTypeString(FI->second.first->getType()) + "'"); 2610 2611 Sentinel->replaceAllUsesWith(Inst); 2612 delete Sentinel; 2613 ForwardRefValIDs.erase(FI); 2614 } 2615 2616 NumberedVals.push_back(Inst); 2617 return false; 2618 } 2619 2620 // Otherwise, the instruction had a name. Resolve forward refs and set it. 2621 auto FI = ForwardRefVals.find(NameStr); 2622 if (FI != ForwardRefVals.end()) { 2623 Value *Sentinel = FI->second.first; 2624 if (Sentinel->getType() != Inst->getType()) 2625 return P.Error(NameLoc, "instruction forward referenced with type '" + 2626 getTypeString(FI->second.first->getType()) + "'"); 2627 2628 Sentinel->replaceAllUsesWith(Inst); 2629 delete Sentinel; 2630 ForwardRefVals.erase(FI); 2631 } 2632 2633 // Set the name on the instruction. 2634 Inst->setName(NameStr); 2635 2636 if (Inst->getName() != NameStr) 2637 return P.Error(NameLoc, "multiple definition of local value named '" + 2638 NameStr + "'"); 2639 return false; 2640 } 2641 2642 /// GetBB - Get a basic block with the specified name or ID, creating a 2643 /// forward reference record if needed. 2644 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, 2645 LocTy Loc) { 2646 return dyn_cast_or_null<BasicBlock>(GetVal(Name, 2647 Type::getLabelTy(F.getContext()), Loc)); 2648 } 2649 2650 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { 2651 return dyn_cast_or_null<BasicBlock>(GetVal(ID, 2652 Type::getLabelTy(F.getContext()), Loc)); 2653 } 2654 2655 /// DefineBB - Define the specified basic block, which is either named or 2656 /// unnamed. If there is an error, this returns null otherwise it returns 2657 /// the block being defined. 2658 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, 2659 LocTy Loc) { 2660 BasicBlock *BB; 2661 if (Name.empty()) 2662 BB = GetBB(NumberedVals.size(), Loc); 2663 else 2664 BB = GetBB(Name, Loc); 2665 if (!BB) return nullptr; // Already diagnosed error. 2666 2667 // Move the block to the end of the function. Forward ref'd blocks are 2668 // inserted wherever they happen to be referenced. 2669 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 2670 2671 // Remove the block from forward ref sets. 2672 if (Name.empty()) { 2673 ForwardRefValIDs.erase(NumberedVals.size()); 2674 NumberedVals.push_back(BB); 2675 } else { 2676 // BB forward references are already in the function symbol table. 2677 ForwardRefVals.erase(Name); 2678 } 2679 2680 return BB; 2681 } 2682 2683 //===----------------------------------------------------------------------===// 2684 // Constants. 2685 //===----------------------------------------------------------------------===// 2686 2687 /// ParseValID - Parse an abstract value that doesn't necessarily have a 2688 /// type implied. For example, if we parse "4" we don't know what integer type 2689 /// it has. The value will later be combined with its type and checked for 2690 /// sanity. PFS is used to convert function-local operands of metadata (since 2691 /// metadata operands are not just parsed here but also converted to values). 2692 /// PFS can be null when we are not parsing metadata values inside a function. 2693 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { 2694 ID.Loc = Lex.getLoc(); 2695 switch (Lex.getKind()) { 2696 default: return TokError("expected value token"); 2697 case lltok::GlobalID: // @42 2698 ID.UIntVal = Lex.getUIntVal(); 2699 ID.Kind = ValID::t_GlobalID; 2700 break; 2701 case lltok::GlobalVar: // @foo 2702 ID.StrVal = Lex.getStrVal(); 2703 ID.Kind = ValID::t_GlobalName; 2704 break; 2705 case lltok::LocalVarID: // %42 2706 ID.UIntVal = Lex.getUIntVal(); 2707 ID.Kind = ValID::t_LocalID; 2708 break; 2709 case lltok::LocalVar: // %foo 2710 ID.StrVal = Lex.getStrVal(); 2711 ID.Kind = ValID::t_LocalName; 2712 break; 2713 case lltok::APSInt: 2714 ID.APSIntVal = Lex.getAPSIntVal(); 2715 ID.Kind = ValID::t_APSInt; 2716 break; 2717 case lltok::APFloat: 2718 ID.APFloatVal = Lex.getAPFloatVal(); 2719 ID.Kind = ValID::t_APFloat; 2720 break; 2721 case lltok::kw_true: 2722 ID.ConstantVal = ConstantInt::getTrue(Context); 2723 ID.Kind = ValID::t_Constant; 2724 break; 2725 case lltok::kw_false: 2726 ID.ConstantVal = ConstantInt::getFalse(Context); 2727 ID.Kind = ValID::t_Constant; 2728 break; 2729 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 2730 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 2731 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 2732 case lltok::kw_none: ID.Kind = ValID::t_None; break; 2733 2734 case lltok::lbrace: { 2735 // ValID ::= '{' ConstVector '}' 2736 Lex.Lex(); 2737 SmallVector<Constant*, 16> Elts; 2738 if (ParseGlobalValueVector(Elts) || 2739 ParseToken(lltok::rbrace, "expected end of struct constant")) 2740 return true; 2741 2742 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 2743 ID.UIntVal = Elts.size(); 2744 memcpy(ID.ConstantStructElts.get(), Elts.data(), 2745 Elts.size() * sizeof(Elts[0])); 2746 ID.Kind = ValID::t_ConstantStruct; 2747 return false; 2748 } 2749 case lltok::less: { 2750 // ValID ::= '<' ConstVector '>' --> Vector. 2751 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 2752 Lex.Lex(); 2753 bool isPackedStruct = EatIfPresent(lltok::lbrace); 2754 2755 SmallVector<Constant*, 16> Elts; 2756 LocTy FirstEltLoc = Lex.getLoc(); 2757 if (ParseGlobalValueVector(Elts) || 2758 (isPackedStruct && 2759 ParseToken(lltok::rbrace, "expected end of packed struct")) || 2760 ParseToken(lltok::greater, "expected end of constant")) 2761 return true; 2762 2763 if (isPackedStruct) { 2764 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 2765 memcpy(ID.ConstantStructElts.get(), Elts.data(), 2766 Elts.size() * sizeof(Elts[0])); 2767 ID.UIntVal = Elts.size(); 2768 ID.Kind = ValID::t_PackedConstantStruct; 2769 return false; 2770 } 2771 2772 if (Elts.empty()) 2773 return Error(ID.Loc, "constant vector must not be empty"); 2774 2775 if (!Elts[0]->getType()->isIntegerTy() && 2776 !Elts[0]->getType()->isFloatingPointTy() && 2777 !Elts[0]->getType()->isPointerTy()) 2778 return Error(FirstEltLoc, 2779 "vector elements must have integer, pointer or floating point type"); 2780 2781 // Verify that all the vector elements have the same type. 2782 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 2783 if (Elts[i]->getType() != Elts[0]->getType()) 2784 return Error(FirstEltLoc, 2785 "vector element #" + Twine(i) + 2786 " is not of type '" + getTypeString(Elts[0]->getType())); 2787 2788 ID.ConstantVal = ConstantVector::get(Elts); 2789 ID.Kind = ValID::t_Constant; 2790 return false; 2791 } 2792 case lltok::lsquare: { // Array Constant 2793 Lex.Lex(); 2794 SmallVector<Constant*, 16> Elts; 2795 LocTy FirstEltLoc = Lex.getLoc(); 2796 if (ParseGlobalValueVector(Elts) || 2797 ParseToken(lltok::rsquare, "expected end of array constant")) 2798 return true; 2799 2800 // Handle empty element. 2801 if (Elts.empty()) { 2802 // Use undef instead of an array because it's inconvenient to determine 2803 // the element type at this point, there being no elements to examine. 2804 ID.Kind = ValID::t_EmptyArray; 2805 return false; 2806 } 2807 2808 if (!Elts[0]->getType()->isFirstClassType()) 2809 return Error(FirstEltLoc, "invalid array element type: " + 2810 getTypeString(Elts[0]->getType())); 2811 2812 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 2813 2814 // Verify all elements are correct type! 2815 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 2816 if (Elts[i]->getType() != Elts[0]->getType()) 2817 return Error(FirstEltLoc, 2818 "array element #" + Twine(i) + 2819 " is not of type '" + getTypeString(Elts[0]->getType())); 2820 } 2821 2822 ID.ConstantVal = ConstantArray::get(ATy, Elts); 2823 ID.Kind = ValID::t_Constant; 2824 return false; 2825 } 2826 case lltok::kw_c: // c "foo" 2827 Lex.Lex(); 2828 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 2829 false); 2830 if (ParseToken(lltok::StringConstant, "expected string")) return true; 2831 ID.Kind = ValID::t_Constant; 2832 return false; 2833 2834 case lltok::kw_asm: { 2835 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 2836 // STRINGCONSTANT 2837 bool HasSideEffect, AlignStack, AsmDialect; 2838 Lex.Lex(); 2839 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 2840 ParseOptionalToken(lltok::kw_alignstack, AlignStack) || 2841 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 2842 ParseStringConstant(ID.StrVal) || 2843 ParseToken(lltok::comma, "expected comma in inline asm expression") || 2844 ParseToken(lltok::StringConstant, "expected constraint string")) 2845 return true; 2846 ID.StrVal2 = Lex.getStrVal(); 2847 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) | 2848 (unsigned(AsmDialect)<<2); 2849 ID.Kind = ValID::t_InlineAsm; 2850 return false; 2851 } 2852 2853 case lltok::kw_blockaddress: { 2854 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 2855 Lex.Lex(); 2856 2857 ValID Fn, Label; 2858 2859 if (ParseToken(lltok::lparen, "expected '(' in block address expression") || 2860 ParseValID(Fn) || 2861 ParseToken(lltok::comma, "expected comma in block address expression")|| 2862 ParseValID(Label) || 2863 ParseToken(lltok::rparen, "expected ')' in block address expression")) 2864 return true; 2865 2866 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 2867 return Error(Fn.Loc, "expected function name in blockaddress"); 2868 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 2869 return Error(Label.Loc, "expected basic block name in blockaddress"); 2870 2871 // Try to find the function (but skip it if it's forward-referenced). 2872 GlobalValue *GV = nullptr; 2873 if (Fn.Kind == ValID::t_GlobalID) { 2874 if (Fn.UIntVal < NumberedVals.size()) 2875 GV = NumberedVals[Fn.UIntVal]; 2876 } else if (!ForwardRefVals.count(Fn.StrVal)) { 2877 GV = M->getNamedValue(Fn.StrVal); 2878 } 2879 Function *F = nullptr; 2880 if (GV) { 2881 // Confirm that it's actually a function with a definition. 2882 if (!isa<Function>(GV)) 2883 return Error(Fn.Loc, "expected function name in blockaddress"); 2884 F = cast<Function>(GV); 2885 if (F->isDeclaration()) 2886 return Error(Fn.Loc, "cannot take blockaddress inside a declaration"); 2887 } 2888 2889 if (!F) { 2890 // Make a global variable as a placeholder for this reference. 2891 GlobalValue *&FwdRef = 2892 ForwardRefBlockAddresses.insert(std::make_pair( 2893 std::move(Fn), 2894 std::map<ValID, GlobalValue *>())) 2895 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 2896 .first->second; 2897 if (!FwdRef) 2898 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 2899 GlobalValue::InternalLinkage, nullptr, ""); 2900 ID.ConstantVal = FwdRef; 2901 ID.Kind = ValID::t_Constant; 2902 return false; 2903 } 2904 2905 // We found the function; now find the basic block. Don't use PFS, since we 2906 // might be inside a constant expression. 2907 BasicBlock *BB; 2908 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 2909 if (Label.Kind == ValID::t_LocalID) 2910 BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc); 2911 else 2912 BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc); 2913 if (!BB) 2914 return Error(Label.Loc, "referenced value is not a basic block"); 2915 } else { 2916 if (Label.Kind == ValID::t_LocalID) 2917 return Error(Label.Loc, "cannot take address of numeric label after " 2918 "the function is defined"); 2919 BB = dyn_cast_or_null<BasicBlock>( 2920 F->getValueSymbolTable().lookup(Label.StrVal)); 2921 if (!BB) 2922 return Error(Label.Loc, "referenced value is not a basic block"); 2923 } 2924 2925 ID.ConstantVal = BlockAddress::get(F, BB); 2926 ID.Kind = ValID::t_Constant; 2927 return false; 2928 } 2929 2930 case lltok::kw_trunc: 2931 case lltok::kw_zext: 2932 case lltok::kw_sext: 2933 case lltok::kw_fptrunc: 2934 case lltok::kw_fpext: 2935 case lltok::kw_bitcast: 2936 case lltok::kw_addrspacecast: 2937 case lltok::kw_uitofp: 2938 case lltok::kw_sitofp: 2939 case lltok::kw_fptoui: 2940 case lltok::kw_fptosi: 2941 case lltok::kw_inttoptr: 2942 case lltok::kw_ptrtoint: { 2943 unsigned Opc = Lex.getUIntVal(); 2944 Type *DestTy = nullptr; 2945 Constant *SrcVal; 2946 Lex.Lex(); 2947 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || 2948 ParseGlobalTypeAndValue(SrcVal) || 2949 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 2950 ParseType(DestTy) || 2951 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 2952 return true; 2953 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 2954 return Error(ID.Loc, "invalid cast opcode for cast from '" + 2955 getTypeString(SrcVal->getType()) + "' to '" + 2956 getTypeString(DestTy) + "'"); 2957 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 2958 SrcVal, DestTy); 2959 ID.Kind = ValID::t_Constant; 2960 return false; 2961 } 2962 case lltok::kw_extractvalue: { 2963 Lex.Lex(); 2964 Constant *Val; 2965 SmallVector<unsigned, 4> Indices; 2966 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| 2967 ParseGlobalTypeAndValue(Val) || 2968 ParseIndexList(Indices) || 2969 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 2970 return true; 2971 2972 if (!Val->getType()->isAggregateType()) 2973 return Error(ID.Loc, "extractvalue operand must be aggregate type"); 2974 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 2975 return Error(ID.Loc, "invalid indices for extractvalue"); 2976 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 2977 ID.Kind = ValID::t_Constant; 2978 return false; 2979 } 2980 case lltok::kw_insertvalue: { 2981 Lex.Lex(); 2982 Constant *Val0, *Val1; 2983 SmallVector<unsigned, 4> Indices; 2984 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| 2985 ParseGlobalTypeAndValue(Val0) || 2986 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| 2987 ParseGlobalTypeAndValue(Val1) || 2988 ParseIndexList(Indices) || 2989 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 2990 return true; 2991 if (!Val0->getType()->isAggregateType()) 2992 return Error(ID.Loc, "insertvalue operand must be aggregate type"); 2993 Type *IndexedType = 2994 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 2995 if (!IndexedType) 2996 return Error(ID.Loc, "invalid indices for insertvalue"); 2997 if (IndexedType != Val1->getType()) 2998 return Error(ID.Loc, "insertvalue operand and field disagree in type: '" + 2999 getTypeString(Val1->getType()) + 3000 "' instead of '" + getTypeString(IndexedType) + 3001 "'"); 3002 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 3003 ID.Kind = ValID::t_Constant; 3004 return false; 3005 } 3006 case lltok::kw_icmp: 3007 case lltok::kw_fcmp: { 3008 unsigned PredVal, Opc = Lex.getUIntVal(); 3009 Constant *Val0, *Val1; 3010 Lex.Lex(); 3011 if (ParseCmpPredicate(PredVal, Opc) || 3012 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || 3013 ParseGlobalTypeAndValue(Val0) || 3014 ParseToken(lltok::comma, "expected comma in compare constantexpr") || 3015 ParseGlobalTypeAndValue(Val1) || 3016 ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) 3017 return true; 3018 3019 if (Val0->getType() != Val1->getType()) 3020 return Error(ID.Loc, "compare operands must have the same type"); 3021 3022 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 3023 3024 if (Opc == Instruction::FCmp) { 3025 if (!Val0->getType()->isFPOrFPVectorTy()) 3026 return Error(ID.Loc, "fcmp requires floating point operands"); 3027 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3028 } else { 3029 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3030 if (!Val0->getType()->isIntOrIntVectorTy() && 3031 !Val0->getType()->getScalarType()->isPointerTy()) 3032 return Error(ID.Loc, "icmp requires pointer or integer operands"); 3033 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3034 } 3035 ID.Kind = ValID::t_Constant; 3036 return false; 3037 } 3038 3039 // Binary Operators. 3040 case lltok::kw_add: 3041 case lltok::kw_fadd: 3042 case lltok::kw_sub: 3043 case lltok::kw_fsub: 3044 case lltok::kw_mul: 3045 case lltok::kw_fmul: 3046 case lltok::kw_udiv: 3047 case lltok::kw_sdiv: 3048 case lltok::kw_fdiv: 3049 case lltok::kw_urem: 3050 case lltok::kw_srem: 3051 case lltok::kw_frem: 3052 case lltok::kw_shl: 3053 case lltok::kw_lshr: 3054 case lltok::kw_ashr: { 3055 bool NUW = false; 3056 bool NSW = false; 3057 bool Exact = false; 3058 unsigned Opc = Lex.getUIntVal(); 3059 Constant *Val0, *Val1; 3060 Lex.Lex(); 3061 LocTy ModifierLoc = Lex.getLoc(); 3062 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3063 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3064 if (EatIfPresent(lltok::kw_nuw)) 3065 NUW = true; 3066 if (EatIfPresent(lltok::kw_nsw)) { 3067 NSW = true; 3068 if (EatIfPresent(lltok::kw_nuw)) 3069 NUW = true; 3070 } 3071 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3072 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3073 if (EatIfPresent(lltok::kw_exact)) 3074 Exact = true; 3075 } 3076 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3077 ParseGlobalTypeAndValue(Val0) || 3078 ParseToken(lltok::comma, "expected comma in binary constantexpr") || 3079 ParseGlobalTypeAndValue(Val1) || 3080 ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3081 return true; 3082 if (Val0->getType() != Val1->getType()) 3083 return Error(ID.Loc, "operands of constexpr must have same type"); 3084 if (!Val0->getType()->isIntOrIntVectorTy()) { 3085 if (NUW) 3086 return Error(ModifierLoc, "nuw only applies to integer operations"); 3087 if (NSW) 3088 return Error(ModifierLoc, "nsw only applies to integer operations"); 3089 } 3090 // Check that the type is valid for the operator. 3091 switch (Opc) { 3092 case Instruction::Add: 3093 case Instruction::Sub: 3094 case Instruction::Mul: 3095 case Instruction::UDiv: 3096 case Instruction::SDiv: 3097 case Instruction::URem: 3098 case Instruction::SRem: 3099 case Instruction::Shl: 3100 case Instruction::AShr: 3101 case Instruction::LShr: 3102 if (!Val0->getType()->isIntOrIntVectorTy()) 3103 return Error(ID.Loc, "constexpr requires integer operands"); 3104 break; 3105 case Instruction::FAdd: 3106 case Instruction::FSub: 3107 case Instruction::FMul: 3108 case Instruction::FDiv: 3109 case Instruction::FRem: 3110 if (!Val0->getType()->isFPOrFPVectorTy()) 3111 return Error(ID.Loc, "constexpr requires fp operands"); 3112 break; 3113 default: llvm_unreachable("Unknown binary operator!"); 3114 } 3115 unsigned Flags = 0; 3116 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3117 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3118 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3119 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3120 ID.ConstantVal = C; 3121 ID.Kind = ValID::t_Constant; 3122 return false; 3123 } 3124 3125 // Logical Operations 3126 case lltok::kw_and: 3127 case lltok::kw_or: 3128 case lltok::kw_xor: { 3129 unsigned Opc = Lex.getUIntVal(); 3130 Constant *Val0, *Val1; 3131 Lex.Lex(); 3132 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3133 ParseGlobalTypeAndValue(Val0) || 3134 ParseToken(lltok::comma, "expected comma in logical constantexpr") || 3135 ParseGlobalTypeAndValue(Val1) || 3136 ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3137 return true; 3138 if (Val0->getType() != Val1->getType()) 3139 return Error(ID.Loc, "operands of constexpr must have same type"); 3140 if (!Val0->getType()->isIntOrIntVectorTy()) 3141 return Error(ID.Loc, 3142 "constexpr requires integer or integer vector operands"); 3143 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3144 ID.Kind = ValID::t_Constant; 3145 return false; 3146 } 3147 3148 case lltok::kw_getelementptr: 3149 case lltok::kw_shufflevector: 3150 case lltok::kw_insertelement: 3151 case lltok::kw_extractelement: 3152 case lltok::kw_select: { 3153 unsigned Opc = Lex.getUIntVal(); 3154 SmallVector<Constant*, 16> Elts; 3155 bool InBounds = false; 3156 Type *Ty; 3157 Lex.Lex(); 3158 3159 if (Opc == Instruction::GetElementPtr) 3160 InBounds = EatIfPresent(lltok::kw_inbounds); 3161 3162 if (ParseToken(lltok::lparen, "expected '(' in constantexpr")) 3163 return true; 3164 3165 LocTy ExplicitTypeLoc = Lex.getLoc(); 3166 if (Opc == Instruction::GetElementPtr) { 3167 if (ParseType(Ty) || 3168 ParseToken(lltok::comma, "expected comma after getelementptr's type")) 3169 return true; 3170 } 3171 3172 if (ParseGlobalValueVector(Elts) || 3173 ParseToken(lltok::rparen, "expected ')' in constantexpr")) 3174 return true; 3175 3176 if (Opc == Instruction::GetElementPtr) { 3177 if (Elts.size() == 0 || 3178 !Elts[0]->getType()->getScalarType()->isPointerTy()) 3179 return Error(ID.Loc, "base of getelementptr must be a pointer"); 3180 3181 Type *BaseType = Elts[0]->getType(); 3182 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3183 if (Ty != BasePointerType->getElementType()) 3184 return Error( 3185 ExplicitTypeLoc, 3186 "explicit pointee type doesn't match operand's pointee type"); 3187 3188 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3189 for (Constant *Val : Indices) { 3190 Type *ValTy = Val->getType(); 3191 if (!ValTy->getScalarType()->isIntegerTy()) 3192 return Error(ID.Loc, "getelementptr index must be an integer"); 3193 if (ValTy->isVectorTy() != BaseType->isVectorTy()) 3194 return Error(ID.Loc, "getelementptr index type missmatch"); 3195 if (ValTy->isVectorTy()) { 3196 unsigned ValNumEl = ValTy->getVectorNumElements(); 3197 unsigned PtrNumEl = BaseType->getVectorNumElements(); 3198 if (ValNumEl != PtrNumEl) 3199 return Error( 3200 ID.Loc, 3201 "getelementptr vector index has a wrong number of elements"); 3202 } 3203 } 3204 3205 SmallPtrSet<Type*, 4> Visited; 3206 if (!Indices.empty() && !Ty->isSized(&Visited)) 3207 return Error(ID.Loc, "base element of getelementptr must be sized"); 3208 3209 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3210 return Error(ID.Loc, "invalid getelementptr indices"); 3211 ID.ConstantVal = 3212 ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, InBounds); 3213 } else if (Opc == Instruction::Select) { 3214 if (Elts.size() != 3) 3215 return Error(ID.Loc, "expected three operands to select"); 3216 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3217 Elts[2])) 3218 return Error(ID.Loc, Reason); 3219 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3220 } else if (Opc == Instruction::ShuffleVector) { 3221 if (Elts.size() != 3) 3222 return Error(ID.Loc, "expected three operands to shufflevector"); 3223 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3224 return Error(ID.Loc, "invalid operands to shufflevector"); 3225 ID.ConstantVal = 3226 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); 3227 } else if (Opc == Instruction::ExtractElement) { 3228 if (Elts.size() != 2) 3229 return Error(ID.Loc, "expected two operands to extractelement"); 3230 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3231 return Error(ID.Loc, "invalid extractelement operands"); 3232 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3233 } else { 3234 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3235 if (Elts.size() != 3) 3236 return Error(ID.Loc, "expected three operands to insertelement"); 3237 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3238 return Error(ID.Loc, "invalid insertelement operands"); 3239 ID.ConstantVal = 3240 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3241 } 3242 3243 ID.Kind = ValID::t_Constant; 3244 return false; 3245 } 3246 } 3247 3248 Lex.Lex(); 3249 return false; 3250 } 3251 3252 /// ParseGlobalValue - Parse a global value with the specified type. 3253 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) { 3254 C = nullptr; 3255 ValID ID; 3256 Value *V = nullptr; 3257 bool Parsed = ParseValID(ID) || 3258 ConvertValIDToValue(Ty, ID, V, nullptr); 3259 if (V && !(C = dyn_cast<Constant>(V))) 3260 return Error(ID.Loc, "global values must be constants"); 3261 return Parsed; 3262 } 3263 3264 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { 3265 Type *Ty = nullptr; 3266 return ParseType(Ty) || 3267 ParseGlobalValue(Ty, V); 3268 } 3269 3270 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3271 C = nullptr; 3272 3273 LocTy KwLoc = Lex.getLoc(); 3274 if (!EatIfPresent(lltok::kw_comdat)) 3275 return false; 3276 3277 if (EatIfPresent(lltok::lparen)) { 3278 if (Lex.getKind() != lltok::ComdatVar) 3279 return TokError("expected comdat variable"); 3280 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3281 Lex.Lex(); 3282 if (ParseToken(lltok::rparen, "expected ')' after comdat var")) 3283 return true; 3284 } else { 3285 if (GlobalName.empty()) 3286 return TokError("comdat cannot be unnamed"); 3287 C = getComdat(GlobalName, KwLoc); 3288 } 3289 3290 return false; 3291 } 3292 3293 /// ParseGlobalValueVector 3294 /// ::= /*empty*/ 3295 /// ::= TypeAndValue (',' TypeAndValue)* 3296 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts) { 3297 // Empty list. 3298 if (Lex.getKind() == lltok::rbrace || 3299 Lex.getKind() == lltok::rsquare || 3300 Lex.getKind() == lltok::greater || 3301 Lex.getKind() == lltok::rparen) 3302 return false; 3303 3304 Constant *C; 3305 if (ParseGlobalTypeAndValue(C)) return true; 3306 Elts.push_back(C); 3307 3308 while (EatIfPresent(lltok::comma)) { 3309 if (ParseGlobalTypeAndValue(C)) return true; 3310 Elts.push_back(C); 3311 } 3312 3313 return false; 3314 } 3315 3316 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) { 3317 SmallVector<Metadata *, 16> Elts; 3318 if (ParseMDNodeVector(Elts)) 3319 return true; 3320 3321 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3322 return false; 3323 } 3324 3325 /// MDNode: 3326 /// ::= !{ ... } 3327 /// ::= !7 3328 /// ::= !DILocation(...) 3329 bool LLParser::ParseMDNode(MDNode *&N) { 3330 if (Lex.getKind() == lltok::MetadataVar) 3331 return ParseSpecializedMDNode(N); 3332 3333 return ParseToken(lltok::exclaim, "expected '!' here") || 3334 ParseMDNodeTail(N); 3335 } 3336 3337 bool LLParser::ParseMDNodeTail(MDNode *&N) { 3338 // !{ ... } 3339 if (Lex.getKind() == lltok::lbrace) 3340 return ParseMDTuple(N); 3341 3342 // !42 3343 return ParseMDNodeID(N); 3344 } 3345 3346 namespace { 3347 3348 /// Structure to represent an optional metadata field. 3349 template <class FieldTy> struct MDFieldImpl { 3350 typedef MDFieldImpl ImplTy; 3351 FieldTy Val; 3352 bool Seen; 3353 3354 void assign(FieldTy Val) { 3355 Seen = true; 3356 this->Val = std::move(Val); 3357 } 3358 3359 explicit MDFieldImpl(FieldTy Default) 3360 : Val(std::move(Default)), Seen(false) {} 3361 }; 3362 3363 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 3364 uint64_t Max; 3365 3366 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 3367 : ImplTy(Default), Max(Max) {} 3368 }; 3369 3370 struct LineField : public MDUnsignedField { 3371 LineField() : MDUnsignedField(0, UINT32_MAX) {} 3372 }; 3373 3374 struct ColumnField : public MDUnsignedField { 3375 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 3376 }; 3377 3378 struct DwarfTagField : public MDUnsignedField { 3379 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 3380 DwarfTagField(dwarf::Tag DefaultTag) 3381 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 3382 }; 3383 3384 struct DwarfMacinfoTypeField : public MDUnsignedField { 3385 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 3386 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 3387 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 3388 }; 3389 3390 struct DwarfAttEncodingField : public MDUnsignedField { 3391 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 3392 }; 3393 3394 struct DwarfVirtualityField : public MDUnsignedField { 3395 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 3396 }; 3397 3398 struct DwarfLangField : public MDUnsignedField { 3399 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 3400 }; 3401 3402 struct DwarfCCField : public MDUnsignedField { 3403 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 3404 }; 3405 3406 struct EmissionKindField : public MDUnsignedField { 3407 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 3408 }; 3409 3410 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 3411 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 3412 }; 3413 3414 struct MDSignedField : public MDFieldImpl<int64_t> { 3415 int64_t Min; 3416 int64_t Max; 3417 3418 MDSignedField(int64_t Default = 0) 3419 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 3420 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 3421 : ImplTy(Default), Min(Min), Max(Max) {} 3422 }; 3423 3424 struct MDBoolField : public MDFieldImpl<bool> { 3425 MDBoolField(bool Default = false) : ImplTy(Default) {} 3426 }; 3427 3428 struct MDField : public MDFieldImpl<Metadata *> { 3429 bool AllowNull; 3430 3431 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 3432 }; 3433 3434 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> { 3435 MDConstant() : ImplTy(nullptr) {} 3436 }; 3437 3438 struct MDStringField : public MDFieldImpl<MDString *> { 3439 bool AllowEmpty; 3440 MDStringField(bool AllowEmpty = true) 3441 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 3442 }; 3443 3444 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 3445 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 3446 }; 3447 3448 } // end anonymous namespace 3449 3450 namespace llvm { 3451 3452 template <> 3453 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3454 MDUnsignedField &Result) { 3455 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 3456 return TokError("expected unsigned integer"); 3457 3458 auto &U = Lex.getAPSIntVal(); 3459 if (U.ugt(Result.Max)) 3460 return TokError("value for '" + Name + "' too large, limit is " + 3461 Twine(Result.Max)); 3462 Result.assign(U.getZExtValue()); 3463 assert(Result.Val <= Result.Max && "Expected value in range"); 3464 Lex.Lex(); 3465 return false; 3466 } 3467 3468 template <> 3469 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) { 3470 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3471 } 3472 template <> 3473 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 3474 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3475 } 3476 3477 template <> 3478 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 3479 if (Lex.getKind() == lltok::APSInt) 3480 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3481 3482 if (Lex.getKind() != lltok::DwarfTag) 3483 return TokError("expected DWARF tag"); 3484 3485 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 3486 if (Tag == dwarf::DW_TAG_invalid) 3487 return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 3488 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 3489 3490 Result.assign(Tag); 3491 Lex.Lex(); 3492 return false; 3493 } 3494 3495 template <> 3496 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3497 DwarfMacinfoTypeField &Result) { 3498 if (Lex.getKind() == lltok::APSInt) 3499 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3500 3501 if (Lex.getKind() != lltok::DwarfMacinfo) 3502 return TokError("expected DWARF macinfo type"); 3503 3504 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 3505 if (Macinfo == dwarf::DW_MACINFO_invalid) 3506 return TokError( 3507 "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'"); 3508 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 3509 3510 Result.assign(Macinfo); 3511 Lex.Lex(); 3512 return false; 3513 } 3514 3515 template <> 3516 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3517 DwarfVirtualityField &Result) { 3518 if (Lex.getKind() == lltok::APSInt) 3519 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3520 3521 if (Lex.getKind() != lltok::DwarfVirtuality) 3522 return TokError("expected DWARF virtuality code"); 3523 3524 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 3525 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 3526 return TokError("invalid DWARF virtuality code" + Twine(" '") + 3527 Lex.getStrVal() + "'"); 3528 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 3529 Result.assign(Virtuality); 3530 Lex.Lex(); 3531 return false; 3532 } 3533 3534 template <> 3535 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 3536 if (Lex.getKind() == lltok::APSInt) 3537 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3538 3539 if (Lex.getKind() != lltok::DwarfLang) 3540 return TokError("expected DWARF language"); 3541 3542 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 3543 if (!Lang) 3544 return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 3545 "'"); 3546 assert(Lang <= Result.Max && "Expected valid DWARF language"); 3547 Result.assign(Lang); 3548 Lex.Lex(); 3549 return false; 3550 } 3551 3552 template <> 3553 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 3554 if (Lex.getKind() == lltok::APSInt) 3555 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3556 3557 if (Lex.getKind() != lltok::DwarfCC) 3558 return TokError("expected DWARF calling convention"); 3559 3560 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 3561 if (!CC) 3562 return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() + 3563 "'"); 3564 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 3565 Result.assign(CC); 3566 Lex.Lex(); 3567 return false; 3568 } 3569 3570 template <> 3571 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) { 3572 if (Lex.getKind() == lltok::APSInt) 3573 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3574 3575 if (Lex.getKind() != lltok::EmissionKind) 3576 return TokError("expected emission kind"); 3577 3578 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 3579 if (!Kind) 3580 return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 3581 "'"); 3582 assert(*Kind <= Result.Max && "Expected valid emission kind"); 3583 Result.assign(*Kind); 3584 Lex.Lex(); 3585 return false; 3586 } 3587 3588 template <> 3589 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3590 DwarfAttEncodingField &Result) { 3591 if (Lex.getKind() == lltok::APSInt) 3592 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3593 3594 if (Lex.getKind() != lltok::DwarfAttEncoding) 3595 return TokError("expected DWARF type attribute encoding"); 3596 3597 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 3598 if (!Encoding) 3599 return TokError("invalid DWARF type attribute encoding" + Twine(" '") + 3600 Lex.getStrVal() + "'"); 3601 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 3602 Result.assign(Encoding); 3603 Lex.Lex(); 3604 return false; 3605 } 3606 3607 /// DIFlagField 3608 /// ::= uint32 3609 /// ::= DIFlagVector 3610 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 3611 template <> 3612 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 3613 3614 // Parser for a single flag. 3615 auto parseFlag = [&](DINode::DIFlags &Val) { 3616 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 3617 uint32_t TempVal = static_cast<uint32_t>(Val); 3618 bool Res = ParseUInt32(TempVal); 3619 Val = static_cast<DINode::DIFlags>(TempVal); 3620 return Res; 3621 } 3622 3623 if (Lex.getKind() != lltok::DIFlag) 3624 return TokError("expected debug info flag"); 3625 3626 Val = DINode::getFlag(Lex.getStrVal()); 3627 if (!Val) 3628 return TokError(Twine("invalid debug info flag flag '") + 3629 Lex.getStrVal() + "'"); 3630 Lex.Lex(); 3631 return false; 3632 }; 3633 3634 // Parse the flags and combine them together. 3635 DINode::DIFlags Combined = DINode::FlagZero; 3636 do { 3637 DINode::DIFlags Val; 3638 if (parseFlag(Val)) 3639 return true; 3640 Combined |= Val; 3641 } while (EatIfPresent(lltok::bar)); 3642 3643 Result.assign(Combined); 3644 return false; 3645 } 3646 3647 template <> 3648 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3649 MDSignedField &Result) { 3650 if (Lex.getKind() != lltok::APSInt) 3651 return TokError("expected signed integer"); 3652 3653 auto &S = Lex.getAPSIntVal(); 3654 if (S < Result.Min) 3655 return TokError("value for '" + Name + "' too small, limit is " + 3656 Twine(Result.Min)); 3657 if (S > Result.Max) 3658 return TokError("value for '" + Name + "' too large, limit is " + 3659 Twine(Result.Max)); 3660 Result.assign(S.getExtValue()); 3661 assert(Result.Val >= Result.Min && "Expected value in range"); 3662 assert(Result.Val <= Result.Max && "Expected value in range"); 3663 Lex.Lex(); 3664 return false; 3665 } 3666 3667 template <> 3668 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 3669 switch (Lex.getKind()) { 3670 default: 3671 return TokError("expected 'true' or 'false'"); 3672 case lltok::kw_true: 3673 Result.assign(true); 3674 break; 3675 case lltok::kw_false: 3676 Result.assign(false); 3677 break; 3678 } 3679 Lex.Lex(); 3680 return false; 3681 } 3682 3683 template <> 3684 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) { 3685 if (Lex.getKind() == lltok::kw_null) { 3686 if (!Result.AllowNull) 3687 return TokError("'" + Name + "' cannot be null"); 3688 Lex.Lex(); 3689 Result.assign(nullptr); 3690 return false; 3691 } 3692 3693 Metadata *MD; 3694 if (ParseMetadata(MD, nullptr)) 3695 return true; 3696 3697 Result.assign(MD); 3698 return false; 3699 } 3700 3701 template <> 3702 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDConstant &Result) { 3703 Metadata *MD; 3704 if (ParseValueAsMetadata(MD, "expected constant", nullptr)) 3705 return true; 3706 3707 Result.assign(cast<ConstantAsMetadata>(MD)); 3708 return false; 3709 } 3710 3711 template <> 3712 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 3713 LocTy ValueLoc = Lex.getLoc(); 3714 std::string S; 3715 if (ParseStringConstant(S)) 3716 return true; 3717 3718 if (!Result.AllowEmpty && S.empty()) 3719 return Error(ValueLoc, "'" + Name + "' cannot be empty"); 3720 3721 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 3722 return false; 3723 } 3724 3725 template <> 3726 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 3727 SmallVector<Metadata *, 4> MDs; 3728 if (ParseMDNodeVector(MDs)) 3729 return true; 3730 3731 Result.assign(std::move(MDs)); 3732 return false; 3733 } 3734 3735 } // end namespace llvm 3736 3737 template <class ParserTy> 3738 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) { 3739 do { 3740 if (Lex.getKind() != lltok::LabelStr) 3741 return TokError("expected field label here"); 3742 3743 if (parseField()) 3744 return true; 3745 } while (EatIfPresent(lltok::comma)); 3746 3747 return false; 3748 } 3749 3750 template <class ParserTy> 3751 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) { 3752 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 3753 Lex.Lex(); 3754 3755 if (ParseToken(lltok::lparen, "expected '(' here")) 3756 return true; 3757 if (Lex.getKind() != lltok::rparen) 3758 if (ParseMDFieldsImplBody(parseField)) 3759 return true; 3760 3761 ClosingLoc = Lex.getLoc(); 3762 return ParseToken(lltok::rparen, "expected ')' here"); 3763 } 3764 3765 template <class FieldTy> 3766 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) { 3767 if (Result.Seen) 3768 return TokError("field '" + Name + "' cannot be specified more than once"); 3769 3770 LocTy Loc = Lex.getLoc(); 3771 Lex.Lex(); 3772 return ParseMDField(Loc, Name, Result); 3773 } 3774 3775 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 3776 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 3777 3778 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 3779 if (Lex.getStrVal() == #CLASS) \ 3780 return Parse##CLASS(N, IsDistinct); 3781 #include "llvm/IR/Metadata.def" 3782 3783 return TokError("expected metadata type"); 3784 } 3785 3786 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 3787 #define NOP_FIELD(NAME, TYPE, INIT) 3788 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 3789 if (!NAME.Seen) \ 3790 return Error(ClosingLoc, "missing required field '" #NAME "'"); 3791 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 3792 if (Lex.getStrVal() == #NAME) \ 3793 return ParseMDField(#NAME, NAME); 3794 #define PARSE_MD_FIELDS() \ 3795 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 3796 do { \ 3797 LocTy ClosingLoc; \ 3798 if (ParseMDFieldsImpl([&]() -> bool { \ 3799 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 3800 return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \ 3801 }, ClosingLoc)) \ 3802 return true; \ 3803 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 3804 } while (false) 3805 #define GET_OR_DISTINCT(CLASS, ARGS) \ 3806 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 3807 3808 /// ParseDILocationFields: 3809 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6) 3810 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) { 3811 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3812 OPTIONAL(line, LineField, ); \ 3813 OPTIONAL(column, ColumnField, ); \ 3814 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 3815 OPTIONAL(inlinedAt, MDField, ); 3816 PARSE_MD_FIELDS(); 3817 #undef VISIT_MD_FIELDS 3818 3819 Result = GET_OR_DISTINCT( 3820 DILocation, (Context, line.Val, column.Val, scope.Val, inlinedAt.Val)); 3821 return false; 3822 } 3823 3824 /// ParseGenericDINode: 3825 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 3826 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) { 3827 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3828 REQUIRED(tag, DwarfTagField, ); \ 3829 OPTIONAL(header, MDStringField, ); \ 3830 OPTIONAL(operands, MDFieldList, ); 3831 PARSE_MD_FIELDS(); 3832 #undef VISIT_MD_FIELDS 3833 3834 Result = GET_OR_DISTINCT(GenericDINode, 3835 (Context, tag.Val, header.Val, operands.Val)); 3836 return false; 3837 } 3838 3839 /// ParseDISubrange: 3840 /// ::= !DISubrange(count: 30, lowerBound: 2) 3841 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) { 3842 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3843 REQUIRED(count, MDSignedField, (-1, -1, INT64_MAX)); \ 3844 OPTIONAL(lowerBound, MDSignedField, ); 3845 PARSE_MD_FIELDS(); 3846 #undef VISIT_MD_FIELDS 3847 3848 Result = GET_OR_DISTINCT(DISubrange, (Context, count.Val, lowerBound.Val)); 3849 return false; 3850 } 3851 3852 /// ParseDIEnumerator: 3853 /// ::= !DIEnumerator(value: 30, name: "SomeKind") 3854 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) { 3855 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3856 REQUIRED(name, MDStringField, ); \ 3857 REQUIRED(value, MDSignedField, ); 3858 PARSE_MD_FIELDS(); 3859 #undef VISIT_MD_FIELDS 3860 3861 Result = GET_OR_DISTINCT(DIEnumerator, (Context, value.Val, name.Val)); 3862 return false; 3863 } 3864 3865 /// ParseDIBasicType: 3866 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32) 3867 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) { 3868 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3869 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 3870 OPTIONAL(name, MDStringField, ); \ 3871 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 3872 OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX)); \ 3873 OPTIONAL(encoding, DwarfAttEncodingField, ); 3874 PARSE_MD_FIELDS(); 3875 #undef VISIT_MD_FIELDS 3876 3877 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 3878 align.Val, encoding.Val)); 3879 return false; 3880 } 3881 3882 /// ParseDIDerivedType: 3883 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 3884 /// line: 7, scope: !1, baseType: !2, size: 32, 3885 /// align: 32, offset: 0, flags: 0, extraData: !3) 3886 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) { 3887 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3888 REQUIRED(tag, DwarfTagField, ); \ 3889 OPTIONAL(name, MDStringField, ); \ 3890 OPTIONAL(file, MDField, ); \ 3891 OPTIONAL(line, LineField, ); \ 3892 OPTIONAL(scope, MDField, ); \ 3893 REQUIRED(baseType, MDField, ); \ 3894 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 3895 OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX)); \ 3896 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 3897 OPTIONAL(flags, DIFlagField, ); \ 3898 OPTIONAL(extraData, MDField, ); 3899 PARSE_MD_FIELDS(); 3900 #undef VISIT_MD_FIELDS 3901 3902 Result = GET_OR_DISTINCT(DIDerivedType, 3903 (Context, tag.Val, name.Val, file.Val, line.Val, 3904 scope.Val, baseType.Val, size.Val, align.Val, 3905 offset.Val, flags.Val, extraData.Val)); 3906 return false; 3907 } 3908 3909 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) { 3910 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3911 REQUIRED(tag, DwarfTagField, ); \ 3912 OPTIONAL(name, MDStringField, ); \ 3913 OPTIONAL(file, MDField, ); \ 3914 OPTIONAL(line, LineField, ); \ 3915 OPTIONAL(scope, MDField, ); \ 3916 OPTIONAL(baseType, MDField, ); \ 3917 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 3918 OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX)); \ 3919 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 3920 OPTIONAL(flags, DIFlagField, ); \ 3921 OPTIONAL(elements, MDField, ); \ 3922 OPTIONAL(runtimeLang, DwarfLangField, ); \ 3923 OPTIONAL(vtableHolder, MDField, ); \ 3924 OPTIONAL(templateParams, MDField, ); \ 3925 OPTIONAL(identifier, MDStringField, ); 3926 PARSE_MD_FIELDS(); 3927 #undef VISIT_MD_FIELDS 3928 3929 // If this has an identifier try to build an ODR type. 3930 if (identifier.Val) 3931 if (auto *CT = DICompositeType::buildODRType( 3932 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 3933 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 3934 elements.Val, runtimeLang.Val, vtableHolder.Val, 3935 templateParams.Val)) { 3936 Result = CT; 3937 return false; 3938 } 3939 3940 // Create a new node, and save it in the context if it belongs in the type 3941 // map. 3942 Result = GET_OR_DISTINCT( 3943 DICompositeType, 3944 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 3945 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 3946 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val)); 3947 return false; 3948 } 3949 3950 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) { 3951 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3952 OPTIONAL(flags, DIFlagField, ); \ 3953 OPTIONAL(cc, DwarfCCField, ); \ 3954 REQUIRED(types, MDField, ); 3955 PARSE_MD_FIELDS(); 3956 #undef VISIT_MD_FIELDS 3957 3958 Result = GET_OR_DISTINCT(DISubroutineType, 3959 (Context, flags.Val, cc.Val, types.Val)); 3960 return false; 3961 } 3962 3963 /// ParseDIFileType: 3964 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir") 3965 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) { 3966 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3967 REQUIRED(filename, MDStringField, ); \ 3968 REQUIRED(directory, MDStringField, ); 3969 PARSE_MD_FIELDS(); 3970 #undef VISIT_MD_FIELDS 3971 3972 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val)); 3973 return false; 3974 } 3975 3976 /// ParseDICompileUnit: 3977 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 3978 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 3979 /// splitDebugFilename: "abc.debug", 3980 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 3981 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd) 3982 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) { 3983 if (!IsDistinct) 3984 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 3985 3986 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3987 REQUIRED(language, DwarfLangField, ); \ 3988 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 3989 OPTIONAL(producer, MDStringField, ); \ 3990 OPTIONAL(isOptimized, MDBoolField, ); \ 3991 OPTIONAL(flags, MDStringField, ); \ 3992 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 3993 OPTIONAL(splitDebugFilename, MDStringField, ); \ 3994 OPTIONAL(emissionKind, EmissionKindField, ); \ 3995 OPTIONAL(enums, MDField, ); \ 3996 OPTIONAL(retainedTypes, MDField, ); \ 3997 OPTIONAL(globals, MDField, ); \ 3998 OPTIONAL(imports, MDField, ); \ 3999 OPTIONAL(macros, MDField, ); \ 4000 OPTIONAL(dwoId, MDUnsignedField, ); \ 4001 OPTIONAL(splitDebugInlining, MDBoolField, = true); 4002 PARSE_MD_FIELDS(); 4003 #undef VISIT_MD_FIELDS 4004 4005 Result = DICompileUnit::getDistinct( 4006 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 4007 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 4008 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 4009 splitDebugInlining.Val); 4010 return false; 4011 } 4012 4013 /// ParseDISubprogram: 4014 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 4015 /// file: !1, line: 7, type: !2, isLocal: false, 4016 /// isDefinition: true, scopeLine: 8, containingType: !3, 4017 /// virtuality: DW_VIRTUALTIY_pure_virtual, 4018 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 4019 /// isOptimized: false, templateParams: !4, declaration: !5, 4020 /// variables: !6) 4021 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) { 4022 auto Loc = Lex.getLoc(); 4023 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4024 OPTIONAL(scope, MDField, ); \ 4025 OPTIONAL(name, MDStringField, ); \ 4026 OPTIONAL(linkageName, MDStringField, ); \ 4027 OPTIONAL(file, MDField, ); \ 4028 OPTIONAL(line, LineField, ); \ 4029 OPTIONAL(type, MDField, ); \ 4030 OPTIONAL(isLocal, MDBoolField, ); \ 4031 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4032 OPTIONAL(scopeLine, LineField, ); \ 4033 OPTIONAL(containingType, MDField, ); \ 4034 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 4035 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 4036 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 4037 OPTIONAL(flags, DIFlagField, ); \ 4038 OPTIONAL(isOptimized, MDBoolField, ); \ 4039 OPTIONAL(unit, MDField, ); \ 4040 OPTIONAL(templateParams, MDField, ); \ 4041 OPTIONAL(declaration, MDField, ); \ 4042 OPTIONAL(variables, MDField, ); 4043 PARSE_MD_FIELDS(); 4044 #undef VISIT_MD_FIELDS 4045 4046 if (isDefinition.Val && !IsDistinct) 4047 return Lex.Error( 4048 Loc, 4049 "missing 'distinct', required for !DISubprogram when 'isDefinition'"); 4050 4051 Result = GET_OR_DISTINCT( 4052 DISubprogram, (Context, scope.Val, name.Val, linkageName.Val, file.Val, 4053 line.Val, type.Val, isLocal.Val, isDefinition.Val, 4054 scopeLine.Val, containingType.Val, virtuality.Val, 4055 virtualIndex.Val, thisAdjustment.Val, flags.Val, 4056 isOptimized.Val, unit.Val, templateParams.Val, 4057 declaration.Val, variables.Val)); 4058 return false; 4059 } 4060 4061 /// ParseDILexicalBlock: 4062 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 4063 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 4064 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4065 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4066 OPTIONAL(file, MDField, ); \ 4067 OPTIONAL(line, LineField, ); \ 4068 OPTIONAL(column, ColumnField, ); 4069 PARSE_MD_FIELDS(); 4070 #undef VISIT_MD_FIELDS 4071 4072 Result = GET_OR_DISTINCT( 4073 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 4074 return false; 4075 } 4076 4077 /// ParseDILexicalBlockFile: 4078 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 4079 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 4080 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4081 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4082 OPTIONAL(file, MDField, ); \ 4083 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 4084 PARSE_MD_FIELDS(); 4085 #undef VISIT_MD_FIELDS 4086 4087 Result = GET_OR_DISTINCT(DILexicalBlockFile, 4088 (Context, scope.Val, file.Val, discriminator.Val)); 4089 return false; 4090 } 4091 4092 /// ParseDINamespace: 4093 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 4094 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) { 4095 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4096 REQUIRED(scope, MDField, ); \ 4097 OPTIONAL(file, MDField, ); \ 4098 OPTIONAL(name, MDStringField, ); \ 4099 OPTIONAL(line, LineField, ); 4100 PARSE_MD_FIELDS(); 4101 #undef VISIT_MD_FIELDS 4102 4103 Result = GET_OR_DISTINCT(DINamespace, 4104 (Context, scope.Val, file.Val, name.Val, line.Val)); 4105 return false; 4106 } 4107 4108 /// ParseDIMacro: 4109 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue") 4110 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) { 4111 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4112 REQUIRED(type, DwarfMacinfoTypeField, ); \ 4113 REQUIRED(line, LineField, ); \ 4114 REQUIRED(name, MDStringField, ); \ 4115 OPTIONAL(value, MDStringField, ); 4116 PARSE_MD_FIELDS(); 4117 #undef VISIT_MD_FIELDS 4118 4119 Result = GET_OR_DISTINCT(DIMacro, 4120 (Context, type.Val, line.Val, name.Val, value.Val)); 4121 return false; 4122 } 4123 4124 /// ParseDIMacroFile: 4125 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 4126 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) { 4127 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4128 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 4129 REQUIRED(line, LineField, ); \ 4130 REQUIRED(file, MDField, ); \ 4131 OPTIONAL(nodes, MDField, ); 4132 PARSE_MD_FIELDS(); 4133 #undef VISIT_MD_FIELDS 4134 4135 Result = GET_OR_DISTINCT(DIMacroFile, 4136 (Context, type.Val, line.Val, file.Val, nodes.Val)); 4137 return false; 4138 } 4139 4140 /// ParseDIModule: 4141 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG", 4142 /// includePath: "/usr/include", isysroot: "/") 4143 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) { 4144 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4145 REQUIRED(scope, MDField, ); \ 4146 REQUIRED(name, MDStringField, ); \ 4147 OPTIONAL(configMacros, MDStringField, ); \ 4148 OPTIONAL(includePath, MDStringField, ); \ 4149 OPTIONAL(isysroot, MDStringField, ); 4150 PARSE_MD_FIELDS(); 4151 #undef VISIT_MD_FIELDS 4152 4153 Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val, 4154 configMacros.Val, includePath.Val, isysroot.Val)); 4155 return false; 4156 } 4157 4158 /// ParseDITemplateTypeParameter: 4159 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1) 4160 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 4161 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4162 OPTIONAL(name, MDStringField, ); \ 4163 REQUIRED(type, MDField, ); 4164 PARSE_MD_FIELDS(); 4165 #undef VISIT_MD_FIELDS 4166 4167 Result = 4168 GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val)); 4169 return false; 4170 } 4171 4172 /// ParseDITemplateValueParameter: 4173 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 4174 /// name: "V", type: !1, value: i32 7) 4175 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 4176 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4177 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 4178 OPTIONAL(name, MDStringField, ); \ 4179 OPTIONAL(type, MDField, ); \ 4180 REQUIRED(value, MDField, ); 4181 PARSE_MD_FIELDS(); 4182 #undef VISIT_MD_FIELDS 4183 4184 Result = GET_OR_DISTINCT(DITemplateValueParameter, 4185 (Context, tag.Val, name.Val, type.Val, value.Val)); 4186 return false; 4187 } 4188 4189 /// ParseDIGlobalVariable: 4190 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 4191 /// file: !1, line: 7, type: !2, isLocal: false, 4192 /// isDefinition: true, variable: i32* @foo, 4193 /// declaration: !3) 4194 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 4195 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4196 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 4197 OPTIONAL(scope, MDField, ); \ 4198 OPTIONAL(linkageName, MDStringField, ); \ 4199 OPTIONAL(file, MDField, ); \ 4200 OPTIONAL(line, LineField, ); \ 4201 OPTIONAL(type, MDField, ); \ 4202 OPTIONAL(isLocal, MDBoolField, ); \ 4203 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4204 OPTIONAL(variable, MDConstant, ); \ 4205 OPTIONAL(declaration, MDField, ); 4206 PARSE_MD_FIELDS(); 4207 #undef VISIT_MD_FIELDS 4208 4209 Result = GET_OR_DISTINCT(DIGlobalVariable, 4210 (Context, scope.Val, name.Val, linkageName.Val, 4211 file.Val, line.Val, type.Val, isLocal.Val, 4212 isDefinition.Val, variable.Val, declaration.Val)); 4213 return false; 4214 } 4215 4216 /// ParseDILocalVariable: 4217 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 4218 /// file: !1, line: 7, type: !2, arg: 2, flags: 7) 4219 /// ::= !DILocalVariable(scope: !0, name: "foo", 4220 /// file: !1, line: 7, type: !2, arg: 2, flags: 7) 4221 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) { 4222 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4223 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4224 OPTIONAL(name, MDStringField, ); \ 4225 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 4226 OPTIONAL(file, MDField, ); \ 4227 OPTIONAL(line, LineField, ); \ 4228 OPTIONAL(type, MDField, ); \ 4229 OPTIONAL(flags, DIFlagField, ); 4230 PARSE_MD_FIELDS(); 4231 #undef VISIT_MD_FIELDS 4232 4233 Result = GET_OR_DISTINCT(DILocalVariable, 4234 (Context, scope.Val, name.Val, file.Val, line.Val, 4235 type.Val, arg.Val, flags.Val)); 4236 return false; 4237 } 4238 4239 /// ParseDIExpression: 4240 /// ::= !DIExpression(0, 7, -1) 4241 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) { 4242 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4243 Lex.Lex(); 4244 4245 if (ParseToken(lltok::lparen, "expected '(' here")) 4246 return true; 4247 4248 SmallVector<uint64_t, 8> Elements; 4249 if (Lex.getKind() != lltok::rparen) 4250 do { 4251 if (Lex.getKind() == lltok::DwarfOp) { 4252 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 4253 Lex.Lex(); 4254 Elements.push_back(Op); 4255 continue; 4256 } 4257 return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 4258 } 4259 4260 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4261 return TokError("expected unsigned integer"); 4262 4263 auto &U = Lex.getAPSIntVal(); 4264 if (U.ugt(UINT64_MAX)) 4265 return TokError("element too large, limit is " + Twine(UINT64_MAX)); 4266 Elements.push_back(U.getZExtValue()); 4267 Lex.Lex(); 4268 } while (EatIfPresent(lltok::comma)); 4269 4270 if (ParseToken(lltok::rparen, "expected ')' here")) 4271 return true; 4272 4273 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 4274 return false; 4275 } 4276 4277 /// ParseDIObjCProperty: 4278 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 4279 /// getter: "getFoo", attributes: 7, type: !2) 4280 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 4281 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4282 OPTIONAL(name, MDStringField, ); \ 4283 OPTIONAL(file, MDField, ); \ 4284 OPTIONAL(line, LineField, ); \ 4285 OPTIONAL(setter, MDStringField, ); \ 4286 OPTIONAL(getter, MDStringField, ); \ 4287 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 4288 OPTIONAL(type, MDField, ); 4289 PARSE_MD_FIELDS(); 4290 #undef VISIT_MD_FIELDS 4291 4292 Result = GET_OR_DISTINCT(DIObjCProperty, 4293 (Context, name.Val, file.Val, line.Val, setter.Val, 4294 getter.Val, attributes.Val, type.Val)); 4295 return false; 4296 } 4297 4298 /// ParseDIImportedEntity: 4299 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 4300 /// line: 7, name: "foo") 4301 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 4302 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4303 REQUIRED(tag, DwarfTagField, ); \ 4304 REQUIRED(scope, MDField, ); \ 4305 OPTIONAL(entity, MDField, ); \ 4306 OPTIONAL(line, LineField, ); \ 4307 OPTIONAL(name, MDStringField, ); 4308 PARSE_MD_FIELDS(); 4309 #undef VISIT_MD_FIELDS 4310 4311 Result = GET_OR_DISTINCT(DIImportedEntity, (Context, tag.Val, scope.Val, 4312 entity.Val, line.Val, name.Val)); 4313 return false; 4314 } 4315 4316 #undef PARSE_MD_FIELD 4317 #undef NOP_FIELD 4318 #undef REQUIRE_FIELD 4319 #undef DECLARE_FIELD 4320 4321 /// ParseMetadataAsValue 4322 /// ::= metadata i32 %local 4323 /// ::= metadata i32 @global 4324 /// ::= metadata i32 7 4325 /// ::= metadata !0 4326 /// ::= metadata !{...} 4327 /// ::= metadata !"string" 4328 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 4329 // Note: the type 'metadata' has already been parsed. 4330 Metadata *MD; 4331 if (ParseMetadata(MD, &PFS)) 4332 return true; 4333 4334 V = MetadataAsValue::get(Context, MD); 4335 return false; 4336 } 4337 4338 /// ParseValueAsMetadata 4339 /// ::= i32 %local 4340 /// ::= i32 @global 4341 /// ::= i32 7 4342 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 4343 PerFunctionState *PFS) { 4344 Type *Ty; 4345 LocTy Loc; 4346 if (ParseType(Ty, TypeMsg, Loc)) 4347 return true; 4348 if (Ty->isMetadataTy()) 4349 return Error(Loc, "invalid metadata-value-metadata roundtrip"); 4350 4351 Value *V; 4352 if (ParseValue(Ty, V, PFS)) 4353 return true; 4354 4355 MD = ValueAsMetadata::get(V); 4356 return false; 4357 } 4358 4359 /// ParseMetadata 4360 /// ::= i32 %local 4361 /// ::= i32 @global 4362 /// ::= i32 7 4363 /// ::= !42 4364 /// ::= !{...} 4365 /// ::= !"string" 4366 /// ::= !DILocation(...) 4367 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) { 4368 if (Lex.getKind() == lltok::MetadataVar) { 4369 MDNode *N; 4370 if (ParseSpecializedMDNode(N)) 4371 return true; 4372 MD = N; 4373 return false; 4374 } 4375 4376 // ValueAsMetadata: 4377 // <type> <value> 4378 if (Lex.getKind() != lltok::exclaim) 4379 return ParseValueAsMetadata(MD, "expected metadata operand", PFS); 4380 4381 // '!'. 4382 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 4383 Lex.Lex(); 4384 4385 // MDString: 4386 // ::= '!' STRINGCONSTANT 4387 if (Lex.getKind() == lltok::StringConstant) { 4388 MDString *S; 4389 if (ParseMDString(S)) 4390 return true; 4391 MD = S; 4392 return false; 4393 } 4394 4395 // MDNode: 4396 // !{ ... } 4397 // !7 4398 MDNode *N; 4399 if (ParseMDNodeTail(N)) 4400 return true; 4401 MD = N; 4402 return false; 4403 } 4404 4405 //===----------------------------------------------------------------------===// 4406 // Function Parsing. 4407 //===----------------------------------------------------------------------===// 4408 4409 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, 4410 PerFunctionState *PFS) { 4411 if (Ty->isFunctionTy()) 4412 return Error(ID.Loc, "functions are not values, refer to them as pointers"); 4413 4414 switch (ID.Kind) { 4415 case ValID::t_LocalID: 4416 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 4417 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc); 4418 return V == nullptr; 4419 case ValID::t_LocalName: 4420 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 4421 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc); 4422 return V == nullptr; 4423 case ValID::t_InlineAsm: { 4424 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 4425 return Error(ID.Loc, "invalid type for inline asm constraint string"); 4426 V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, 4427 (ID.UIntVal >> 1) & 1, 4428 (InlineAsm::AsmDialect(ID.UIntVal >> 2))); 4429 return false; 4430 } 4431 case ValID::t_GlobalName: 4432 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc); 4433 return V == nullptr; 4434 case ValID::t_GlobalID: 4435 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc); 4436 return V == nullptr; 4437 case ValID::t_APSInt: 4438 if (!Ty->isIntegerTy()) 4439 return Error(ID.Loc, "integer constant must have integer type"); 4440 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 4441 V = ConstantInt::get(Context, ID.APSIntVal); 4442 return false; 4443 case ValID::t_APFloat: 4444 if (!Ty->isFloatingPointTy() || 4445 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 4446 return Error(ID.Loc, "floating point constant invalid for type"); 4447 4448 // The lexer has no type info, so builds all half, float, and double FP 4449 // constants as double. Fix this here. Long double does not need this. 4450 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) { 4451 bool Ignored; 4452 if (Ty->isHalfTy()) 4453 ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, 4454 &Ignored); 4455 else if (Ty->isFloatTy()) 4456 ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, 4457 &Ignored); 4458 } 4459 V = ConstantFP::get(Context, ID.APFloatVal); 4460 4461 if (V->getType() != Ty) 4462 return Error(ID.Loc, "floating point constant does not have type '" + 4463 getTypeString(Ty) + "'"); 4464 4465 return false; 4466 case ValID::t_Null: 4467 if (!Ty->isPointerTy()) 4468 return Error(ID.Loc, "null must be a pointer type"); 4469 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 4470 return false; 4471 case ValID::t_Undef: 4472 // FIXME: LabelTy should not be a first-class type. 4473 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 4474 return Error(ID.Loc, "invalid type for undef constant"); 4475 V = UndefValue::get(Ty); 4476 return false; 4477 case ValID::t_EmptyArray: 4478 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 4479 return Error(ID.Loc, "invalid empty array initializer"); 4480 V = UndefValue::get(Ty); 4481 return false; 4482 case ValID::t_Zero: 4483 // FIXME: LabelTy should not be a first-class type. 4484 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 4485 return Error(ID.Loc, "invalid type for null constant"); 4486 V = Constant::getNullValue(Ty); 4487 return false; 4488 case ValID::t_None: 4489 if (!Ty->isTokenTy()) 4490 return Error(ID.Loc, "invalid type for none constant"); 4491 V = Constant::getNullValue(Ty); 4492 return false; 4493 case ValID::t_Constant: 4494 if (ID.ConstantVal->getType() != Ty) 4495 return Error(ID.Loc, "constant expression type mismatch"); 4496 4497 V = ID.ConstantVal; 4498 return false; 4499 case ValID::t_ConstantStruct: 4500 case ValID::t_PackedConstantStruct: 4501 if (StructType *ST = dyn_cast<StructType>(Ty)) { 4502 if (ST->getNumElements() != ID.UIntVal) 4503 return Error(ID.Loc, 4504 "initializer with struct type has wrong # elements"); 4505 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 4506 return Error(ID.Loc, "packed'ness of initializer and type don't match"); 4507 4508 // Verify that the elements are compatible with the structtype. 4509 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 4510 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 4511 return Error(ID.Loc, "element " + Twine(i) + 4512 " of struct initializer doesn't match struct element type"); 4513 4514 V = ConstantStruct::get( 4515 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 4516 } else 4517 return Error(ID.Loc, "constant expression type mismatch"); 4518 return false; 4519 } 4520 llvm_unreachable("Invalid ValID"); 4521 } 4522 4523 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 4524 C = nullptr; 4525 ValID ID; 4526 auto Loc = Lex.getLoc(); 4527 if (ParseValID(ID, /*PFS=*/nullptr)) 4528 return true; 4529 switch (ID.Kind) { 4530 case ValID::t_APSInt: 4531 case ValID::t_APFloat: 4532 case ValID::t_Undef: 4533 case ValID::t_Constant: 4534 case ValID::t_ConstantStruct: 4535 case ValID::t_PackedConstantStruct: { 4536 Value *V; 4537 if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr)) 4538 return true; 4539 assert(isa<Constant>(V) && "Expected a constant value"); 4540 C = cast<Constant>(V); 4541 return false; 4542 } 4543 default: 4544 return Error(Loc, "expected a constant value"); 4545 } 4546 } 4547 4548 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 4549 V = nullptr; 4550 ValID ID; 4551 return ParseValID(ID, PFS) || ConvertValIDToValue(Ty, ID, V, PFS); 4552 } 4553 4554 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) { 4555 Type *Ty = nullptr; 4556 return ParseType(Ty) || 4557 ParseValue(Ty, V, PFS); 4558 } 4559 4560 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 4561 PerFunctionState &PFS) { 4562 Value *V; 4563 Loc = Lex.getLoc(); 4564 if (ParseTypeAndValue(V, PFS)) return true; 4565 if (!isa<BasicBlock>(V)) 4566 return Error(Loc, "expected a basic block"); 4567 BB = cast<BasicBlock>(V); 4568 return false; 4569 } 4570 4571 /// FunctionHeader 4572 /// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs 4573 /// OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection 4574 /// OptionalAlign OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 4575 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { 4576 // Parse the linkage. 4577 LocTy LinkageLoc = Lex.getLoc(); 4578 unsigned Linkage; 4579 4580 unsigned Visibility; 4581 unsigned DLLStorageClass; 4582 AttrBuilder RetAttrs; 4583 unsigned CC; 4584 bool HasLinkage; 4585 Type *RetType = nullptr; 4586 LocTy RetTypeLoc = Lex.getLoc(); 4587 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) || 4588 ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 4589 ParseType(RetType, RetTypeLoc, true /*void allowed*/)) 4590 return true; 4591 4592 // Verify that the linkage is ok. 4593 switch ((GlobalValue::LinkageTypes)Linkage) { 4594 case GlobalValue::ExternalLinkage: 4595 break; // always ok. 4596 case GlobalValue::ExternalWeakLinkage: 4597 if (isDefine) 4598 return Error(LinkageLoc, "invalid linkage for function definition"); 4599 break; 4600 case GlobalValue::PrivateLinkage: 4601 case GlobalValue::InternalLinkage: 4602 case GlobalValue::AvailableExternallyLinkage: 4603 case GlobalValue::LinkOnceAnyLinkage: 4604 case GlobalValue::LinkOnceODRLinkage: 4605 case GlobalValue::WeakAnyLinkage: 4606 case GlobalValue::WeakODRLinkage: 4607 if (!isDefine) 4608 return Error(LinkageLoc, "invalid linkage for function declaration"); 4609 break; 4610 case GlobalValue::AppendingLinkage: 4611 case GlobalValue::CommonLinkage: 4612 return Error(LinkageLoc, "invalid function linkage type"); 4613 } 4614 4615 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 4616 return Error(LinkageLoc, 4617 "symbol with local linkage must have default visibility"); 4618 4619 if (!FunctionType::isValidReturnType(RetType)) 4620 return Error(RetTypeLoc, "invalid function return type"); 4621 4622 LocTy NameLoc = Lex.getLoc(); 4623 4624 std::string FunctionName; 4625 if (Lex.getKind() == lltok::GlobalVar) { 4626 FunctionName = Lex.getStrVal(); 4627 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 4628 unsigned NameID = Lex.getUIntVal(); 4629 4630 if (NameID != NumberedVals.size()) 4631 return TokError("function expected to be numbered '%" + 4632 Twine(NumberedVals.size()) + "'"); 4633 } else { 4634 return TokError("expected function name"); 4635 } 4636 4637 Lex.Lex(); 4638 4639 if (Lex.getKind() != lltok::lparen) 4640 return TokError("expected '(' in function argument list"); 4641 4642 SmallVector<ArgInfo, 8> ArgList; 4643 bool isVarArg; 4644 AttrBuilder FuncAttrs; 4645 std::vector<unsigned> FwdRefAttrGrps; 4646 LocTy BuiltinLoc; 4647 std::string Section; 4648 unsigned Alignment; 4649 std::string GC; 4650 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4651 LocTy UnnamedAddrLoc; 4652 Constant *Prefix = nullptr; 4653 Constant *Prologue = nullptr; 4654 Constant *PersonalityFn = nullptr; 4655 Comdat *C; 4656 4657 if (ParseArgumentList(ArgList, isVarArg) || 4658 ParseOptionalUnnamedAddr(UnnamedAddr) || 4659 ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 4660 BuiltinLoc) || 4661 (EatIfPresent(lltok::kw_section) && 4662 ParseStringConstant(Section)) || 4663 parseOptionalComdat(FunctionName, C) || 4664 ParseOptionalAlignment(Alignment) || 4665 (EatIfPresent(lltok::kw_gc) && 4666 ParseStringConstant(GC)) || 4667 (EatIfPresent(lltok::kw_prefix) && 4668 ParseGlobalTypeAndValue(Prefix)) || 4669 (EatIfPresent(lltok::kw_prologue) && 4670 ParseGlobalTypeAndValue(Prologue)) || 4671 (EatIfPresent(lltok::kw_personality) && 4672 ParseGlobalTypeAndValue(PersonalityFn))) 4673 return true; 4674 4675 if (FuncAttrs.contains(Attribute::Builtin)) 4676 return Error(BuiltinLoc, "'builtin' attribute not valid on function"); 4677 4678 // If the alignment was parsed as an attribute, move to the alignment field. 4679 if (FuncAttrs.hasAlignmentAttr()) { 4680 Alignment = FuncAttrs.getAlignment(); 4681 FuncAttrs.removeAttribute(Attribute::Alignment); 4682 } 4683 4684 // Okay, if we got here, the function is syntactically valid. Convert types 4685 // and do semantic checks. 4686 std::vector<Type*> ParamTypeList; 4687 SmallVector<AttributeSet, 8> Attrs; 4688 4689 if (RetAttrs.hasAttributes()) 4690 Attrs.push_back(AttributeSet::get(RetType->getContext(), 4691 AttributeSet::ReturnIndex, 4692 RetAttrs)); 4693 4694 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 4695 ParamTypeList.push_back(ArgList[i].Ty); 4696 if (ArgList[i].Attrs.hasAttributes(i + 1)) { 4697 AttrBuilder B(ArgList[i].Attrs, i + 1); 4698 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B)); 4699 } 4700 } 4701 4702 if (FuncAttrs.hasAttributes()) 4703 Attrs.push_back(AttributeSet::get(RetType->getContext(), 4704 AttributeSet::FunctionIndex, 4705 FuncAttrs)); 4706 4707 AttributeSet PAL = AttributeSet::get(Context, Attrs); 4708 4709 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy()) 4710 return Error(RetTypeLoc, "functions with 'sret' argument must return void"); 4711 4712 FunctionType *FT = 4713 FunctionType::get(RetType, ParamTypeList, isVarArg); 4714 PointerType *PFT = PointerType::getUnqual(FT); 4715 4716 Fn = nullptr; 4717 if (!FunctionName.empty()) { 4718 // If this was a definition of a forward reference, remove the definition 4719 // from the forward reference table and fill in the forward ref. 4720 auto FRVI = ForwardRefVals.find(FunctionName); 4721 if (FRVI != ForwardRefVals.end()) { 4722 Fn = M->getFunction(FunctionName); 4723 if (!Fn) 4724 return Error(FRVI->second.second, "invalid forward reference to " 4725 "function as global value!"); 4726 if (Fn->getType() != PFT) 4727 return Error(FRVI->second.second, "invalid forward reference to " 4728 "function '" + FunctionName + "' with wrong type!"); 4729 4730 ForwardRefVals.erase(FRVI); 4731 } else if ((Fn = M->getFunction(FunctionName))) { 4732 // Reject redefinitions. 4733 return Error(NameLoc, "invalid redefinition of function '" + 4734 FunctionName + "'"); 4735 } else if (M->getNamedValue(FunctionName)) { 4736 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 4737 } 4738 4739 } else { 4740 // If this is a definition of a forward referenced function, make sure the 4741 // types agree. 4742 auto I = ForwardRefValIDs.find(NumberedVals.size()); 4743 if (I != ForwardRefValIDs.end()) { 4744 Fn = cast<Function>(I->second.first); 4745 if (Fn->getType() != PFT) 4746 return Error(NameLoc, "type of definition and forward reference of '@" + 4747 Twine(NumberedVals.size()) + "' disagree"); 4748 ForwardRefValIDs.erase(I); 4749 } 4750 } 4751 4752 if (!Fn) 4753 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M); 4754 else // Move the forward-reference to the correct spot in the module. 4755 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 4756 4757 if (FunctionName.empty()) 4758 NumberedVals.push_back(Fn); 4759 4760 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 4761 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 4762 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 4763 Fn->setCallingConv(CC); 4764 Fn->setAttributes(PAL); 4765 Fn->setUnnamedAddr(UnnamedAddr); 4766 Fn->setAlignment(Alignment); 4767 Fn->setSection(Section); 4768 Fn->setComdat(C); 4769 Fn->setPersonalityFn(PersonalityFn); 4770 if (!GC.empty()) Fn->setGC(GC); 4771 Fn->setPrefixData(Prefix); 4772 Fn->setPrologueData(Prologue); 4773 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 4774 4775 // Add all of the arguments we parsed to the function. 4776 Function::arg_iterator ArgIt = Fn->arg_begin(); 4777 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 4778 // If the argument has a name, insert it into the argument symbol table. 4779 if (ArgList[i].Name.empty()) continue; 4780 4781 // Set the name, if it conflicted, it will be auto-renamed. 4782 ArgIt->setName(ArgList[i].Name); 4783 4784 if (ArgIt->getName() != ArgList[i].Name) 4785 return Error(ArgList[i].Loc, "redefinition of argument '%" + 4786 ArgList[i].Name + "'"); 4787 } 4788 4789 if (isDefine) 4790 return false; 4791 4792 // Check the declaration has no block address forward references. 4793 ValID ID; 4794 if (FunctionName.empty()) { 4795 ID.Kind = ValID::t_GlobalID; 4796 ID.UIntVal = NumberedVals.size() - 1; 4797 } else { 4798 ID.Kind = ValID::t_GlobalName; 4799 ID.StrVal = FunctionName; 4800 } 4801 auto Blocks = ForwardRefBlockAddresses.find(ID); 4802 if (Blocks != ForwardRefBlockAddresses.end()) 4803 return Error(Blocks->first.Loc, 4804 "cannot take blockaddress inside a declaration"); 4805 return false; 4806 } 4807 4808 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 4809 ValID ID; 4810 if (FunctionNumber == -1) { 4811 ID.Kind = ValID::t_GlobalName; 4812 ID.StrVal = F.getName(); 4813 } else { 4814 ID.Kind = ValID::t_GlobalID; 4815 ID.UIntVal = FunctionNumber; 4816 } 4817 4818 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 4819 if (Blocks == P.ForwardRefBlockAddresses.end()) 4820 return false; 4821 4822 for (const auto &I : Blocks->second) { 4823 const ValID &BBID = I.first; 4824 GlobalValue *GV = I.second; 4825 4826 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 4827 "Expected local id or name"); 4828 BasicBlock *BB; 4829 if (BBID.Kind == ValID::t_LocalName) 4830 BB = GetBB(BBID.StrVal, BBID.Loc); 4831 else 4832 BB = GetBB(BBID.UIntVal, BBID.Loc); 4833 if (!BB) 4834 return P.Error(BBID.Loc, "referenced value is not a basic block"); 4835 4836 GV->replaceAllUsesWith(BlockAddress::get(&F, BB)); 4837 GV->eraseFromParent(); 4838 } 4839 4840 P.ForwardRefBlockAddresses.erase(Blocks); 4841 return false; 4842 } 4843 4844 /// ParseFunctionBody 4845 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 4846 bool LLParser::ParseFunctionBody(Function &Fn) { 4847 if (Lex.getKind() != lltok::lbrace) 4848 return TokError("expected '{' in function body"); 4849 Lex.Lex(); // eat the {. 4850 4851 int FunctionNumber = -1; 4852 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 4853 4854 PerFunctionState PFS(*this, Fn, FunctionNumber); 4855 4856 // Resolve block addresses and allow basic blocks to be forward-declared 4857 // within this function. 4858 if (PFS.resolveForwardRefBlockAddresses()) 4859 return true; 4860 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 4861 4862 // We need at least one basic block. 4863 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 4864 return TokError("function body requires at least one basic block"); 4865 4866 while (Lex.getKind() != lltok::rbrace && 4867 Lex.getKind() != lltok::kw_uselistorder) 4868 if (ParseBasicBlock(PFS)) return true; 4869 4870 while (Lex.getKind() != lltok::rbrace) 4871 if (ParseUseListOrder(&PFS)) 4872 return true; 4873 4874 // Eat the }. 4875 Lex.Lex(); 4876 4877 // Verify function is ok. 4878 return PFS.FinishFunction(); 4879 } 4880 4881 /// ParseBasicBlock 4882 /// ::= LabelStr? Instruction* 4883 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { 4884 // If this basic block starts out with a name, remember it. 4885 std::string Name; 4886 LocTy NameLoc = Lex.getLoc(); 4887 if (Lex.getKind() == lltok::LabelStr) { 4888 Name = Lex.getStrVal(); 4889 Lex.Lex(); 4890 } 4891 4892 BasicBlock *BB = PFS.DefineBB(Name, NameLoc); 4893 if (!BB) 4894 return Error(NameLoc, 4895 "unable to create block named '" + Name + "'"); 4896 4897 std::string NameStr; 4898 4899 // Parse the instructions in this block until we get a terminator. 4900 Instruction *Inst; 4901 do { 4902 // This instruction may have three possibilities for a name: a) none 4903 // specified, b) name specified "%foo =", c) number specified: "%4 =". 4904 LocTy NameLoc = Lex.getLoc(); 4905 int NameID = -1; 4906 NameStr = ""; 4907 4908 if (Lex.getKind() == lltok::LocalVarID) { 4909 NameID = Lex.getUIntVal(); 4910 Lex.Lex(); 4911 if (ParseToken(lltok::equal, "expected '=' after instruction id")) 4912 return true; 4913 } else if (Lex.getKind() == lltok::LocalVar) { 4914 NameStr = Lex.getStrVal(); 4915 Lex.Lex(); 4916 if (ParseToken(lltok::equal, "expected '=' after instruction name")) 4917 return true; 4918 } 4919 4920 switch (ParseInstruction(Inst, BB, PFS)) { 4921 default: llvm_unreachable("Unknown ParseInstruction result!"); 4922 case InstError: return true; 4923 case InstNormal: 4924 BB->getInstList().push_back(Inst); 4925 4926 // With a normal result, we check to see if the instruction is followed by 4927 // a comma and metadata. 4928 if (EatIfPresent(lltok::comma)) 4929 if (ParseInstructionMetadata(*Inst)) 4930 return true; 4931 break; 4932 case InstExtraComma: 4933 BB->getInstList().push_back(Inst); 4934 4935 // If the instruction parser ate an extra comma at the end of it, it 4936 // *must* be followed by metadata. 4937 if (ParseInstructionMetadata(*Inst)) 4938 return true; 4939 break; 4940 } 4941 4942 // Set the name on the instruction. 4943 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; 4944 } while (!isa<TerminatorInst>(Inst)); 4945 4946 return false; 4947 } 4948 4949 //===----------------------------------------------------------------------===// 4950 // Instruction Parsing. 4951 //===----------------------------------------------------------------------===// 4952 4953 /// ParseInstruction - Parse one of the many different instructions. 4954 /// 4955 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, 4956 PerFunctionState &PFS) { 4957 lltok::Kind Token = Lex.getKind(); 4958 if (Token == lltok::Eof) 4959 return TokError("found end of file when expecting more instructions"); 4960 LocTy Loc = Lex.getLoc(); 4961 unsigned KeywordVal = Lex.getUIntVal(); 4962 Lex.Lex(); // Eat the keyword. 4963 4964 switch (Token) { 4965 default: return Error(Loc, "expected instruction opcode"); 4966 // Terminator Instructions. 4967 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 4968 case lltok::kw_ret: return ParseRet(Inst, BB, PFS); 4969 case lltok::kw_br: return ParseBr(Inst, PFS); 4970 case lltok::kw_switch: return ParseSwitch(Inst, PFS); 4971 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS); 4972 case lltok::kw_invoke: return ParseInvoke(Inst, PFS); 4973 case lltok::kw_resume: return ParseResume(Inst, PFS); 4974 case lltok::kw_cleanupret: return ParseCleanupRet(Inst, PFS); 4975 case lltok::kw_catchret: return ParseCatchRet(Inst, PFS); 4976 case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS); 4977 case lltok::kw_catchpad: return ParseCatchPad(Inst, PFS); 4978 case lltok::kw_cleanuppad: return ParseCleanupPad(Inst, PFS); 4979 // Binary Operators. 4980 case lltok::kw_add: 4981 case lltok::kw_sub: 4982 case lltok::kw_mul: 4983 case lltok::kw_shl: { 4984 bool NUW = EatIfPresent(lltok::kw_nuw); 4985 bool NSW = EatIfPresent(lltok::kw_nsw); 4986 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 4987 4988 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 4989 4990 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 4991 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 4992 return false; 4993 } 4994 case lltok::kw_fadd: 4995 case lltok::kw_fsub: 4996 case lltok::kw_fmul: 4997 case lltok::kw_fdiv: 4998 case lltok::kw_frem: { 4999 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5000 int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2); 5001 if (Res != 0) 5002 return Res; 5003 if (FMF.any()) 5004 Inst->setFastMathFlags(FMF); 5005 return 0; 5006 } 5007 5008 case lltok::kw_sdiv: 5009 case lltok::kw_udiv: 5010 case lltok::kw_lshr: 5011 case lltok::kw_ashr: { 5012 bool Exact = EatIfPresent(lltok::kw_exact); 5013 5014 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 5015 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 5016 return false; 5017 } 5018 5019 case lltok::kw_urem: 5020 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1); 5021 case lltok::kw_and: 5022 case lltok::kw_or: 5023 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); 5024 case lltok::kw_icmp: return ParseCompare(Inst, PFS, KeywordVal); 5025 case lltok::kw_fcmp: { 5026 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5027 int Res = ParseCompare(Inst, PFS, KeywordVal); 5028 if (Res != 0) 5029 return Res; 5030 if (FMF.any()) 5031 Inst->setFastMathFlags(FMF); 5032 return 0; 5033 } 5034 5035 // Casts. 5036 case lltok::kw_trunc: 5037 case lltok::kw_zext: 5038 case lltok::kw_sext: 5039 case lltok::kw_fptrunc: 5040 case lltok::kw_fpext: 5041 case lltok::kw_bitcast: 5042 case lltok::kw_addrspacecast: 5043 case lltok::kw_uitofp: 5044 case lltok::kw_sitofp: 5045 case lltok::kw_fptoui: 5046 case lltok::kw_fptosi: 5047 case lltok::kw_inttoptr: 5048 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); 5049 // Other. 5050 case lltok::kw_select: return ParseSelect(Inst, PFS); 5051 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); 5052 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); 5053 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); 5054 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); 5055 case lltok::kw_phi: return ParsePHI(Inst, PFS); 5056 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS); 5057 // Call. 5058 case lltok::kw_call: return ParseCall(Inst, PFS, CallInst::TCK_None); 5059 case lltok::kw_tail: return ParseCall(Inst, PFS, CallInst::TCK_Tail); 5060 case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail); 5061 case lltok::kw_notail: return ParseCall(Inst, PFS, CallInst::TCK_NoTail); 5062 // Memory. 5063 case lltok::kw_alloca: return ParseAlloc(Inst, PFS); 5064 case lltok::kw_load: return ParseLoad(Inst, PFS); 5065 case lltok::kw_store: return ParseStore(Inst, PFS); 5066 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS); 5067 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS); 5068 case lltok::kw_fence: return ParseFence(Inst, PFS); 5069 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); 5070 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); 5071 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); 5072 } 5073 } 5074 5075 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. 5076 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { 5077 if (Opc == Instruction::FCmp) { 5078 switch (Lex.getKind()) { 5079 default: return TokError("expected fcmp predicate (e.g. 'oeq')"); 5080 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 5081 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 5082 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 5083 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 5084 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 5085 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 5086 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 5087 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 5088 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 5089 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 5090 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 5091 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 5092 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 5093 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 5094 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 5095 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 5096 } 5097 } else { 5098 switch (Lex.getKind()) { 5099 default: return TokError("expected icmp predicate (e.g. 'eq')"); 5100 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 5101 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 5102 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 5103 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 5104 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 5105 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 5106 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 5107 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 5108 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 5109 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 5110 } 5111 } 5112 Lex.Lex(); 5113 return false; 5114 } 5115 5116 //===----------------------------------------------------------------------===// 5117 // Terminator Instructions. 5118 //===----------------------------------------------------------------------===// 5119 5120 /// ParseRet - Parse a return instruction. 5121 /// ::= 'ret' void (',' !dbg, !1)* 5122 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 5123 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, 5124 PerFunctionState &PFS) { 5125 SMLoc TypeLoc = Lex.getLoc(); 5126 Type *Ty = nullptr; 5127 if (ParseType(Ty, true /*void allowed*/)) return true; 5128 5129 Type *ResType = PFS.getFunction().getReturnType(); 5130 5131 if (Ty->isVoidTy()) { 5132 if (!ResType->isVoidTy()) 5133 return Error(TypeLoc, "value doesn't match function result type '" + 5134 getTypeString(ResType) + "'"); 5135 5136 Inst = ReturnInst::Create(Context); 5137 return false; 5138 } 5139 5140 Value *RV; 5141 if (ParseValue(Ty, RV, PFS)) return true; 5142 5143 if (ResType != RV->getType()) 5144 return Error(TypeLoc, "value doesn't match function result type '" + 5145 getTypeString(ResType) + "'"); 5146 5147 Inst = ReturnInst::Create(Context, RV); 5148 return false; 5149 } 5150 5151 /// ParseBr 5152 /// ::= 'br' TypeAndValue 5153 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5154 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { 5155 LocTy Loc, Loc2; 5156 Value *Op0; 5157 BasicBlock *Op1, *Op2; 5158 if (ParseTypeAndValue(Op0, Loc, PFS)) return true; 5159 5160 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 5161 Inst = BranchInst::Create(BB); 5162 return false; 5163 } 5164 5165 if (Op0->getType() != Type::getInt1Ty(Context)) 5166 return Error(Loc, "branch condition must have 'i1' type"); 5167 5168 if (ParseToken(lltok::comma, "expected ',' after branch condition") || 5169 ParseTypeAndBasicBlock(Op1, Loc, PFS) || 5170 ParseToken(lltok::comma, "expected ',' after true destination") || 5171 ParseTypeAndBasicBlock(Op2, Loc2, PFS)) 5172 return true; 5173 5174 Inst = BranchInst::Create(Op1, Op2, Op0); 5175 return false; 5176 } 5177 5178 /// ParseSwitch 5179 /// Instruction 5180 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 5181 /// JumpTable 5182 /// ::= (TypeAndValue ',' TypeAndValue)* 5183 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 5184 LocTy CondLoc, BBLoc; 5185 Value *Cond; 5186 BasicBlock *DefaultBB; 5187 if (ParseTypeAndValue(Cond, CondLoc, PFS) || 5188 ParseToken(lltok::comma, "expected ',' after switch condition") || 5189 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 5190 ParseToken(lltok::lsquare, "expected '[' with switch table")) 5191 return true; 5192 5193 if (!Cond->getType()->isIntegerTy()) 5194 return Error(CondLoc, "switch condition must have integer type"); 5195 5196 // Parse the jump table pairs. 5197 SmallPtrSet<Value*, 32> SeenCases; 5198 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 5199 while (Lex.getKind() != lltok::rsquare) { 5200 Value *Constant; 5201 BasicBlock *DestBB; 5202 5203 if (ParseTypeAndValue(Constant, CondLoc, PFS) || 5204 ParseToken(lltok::comma, "expected ',' after case value") || 5205 ParseTypeAndBasicBlock(DestBB, PFS)) 5206 return true; 5207 5208 if (!SeenCases.insert(Constant).second) 5209 return Error(CondLoc, "duplicate case value in switch"); 5210 if (!isa<ConstantInt>(Constant)) 5211 return Error(CondLoc, "case value is not a constant integer"); 5212 5213 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 5214 } 5215 5216 Lex.Lex(); // Eat the ']'. 5217 5218 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 5219 for (unsigned i = 0, e = Table.size(); i != e; ++i) 5220 SI->addCase(Table[i].first, Table[i].second); 5221 Inst = SI; 5222 return false; 5223 } 5224 5225 /// ParseIndirectBr 5226 /// Instruction 5227 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 5228 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 5229 LocTy AddrLoc; 5230 Value *Address; 5231 if (ParseTypeAndValue(Address, AddrLoc, PFS) || 5232 ParseToken(lltok::comma, "expected ',' after indirectbr address") || 5233 ParseToken(lltok::lsquare, "expected '[' with indirectbr")) 5234 return true; 5235 5236 if (!Address->getType()->isPointerTy()) 5237 return Error(AddrLoc, "indirectbr address must have pointer type"); 5238 5239 // Parse the destination list. 5240 SmallVector<BasicBlock*, 16> DestList; 5241 5242 if (Lex.getKind() != lltok::rsquare) { 5243 BasicBlock *DestBB; 5244 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5245 return true; 5246 DestList.push_back(DestBB); 5247 5248 while (EatIfPresent(lltok::comma)) { 5249 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5250 return true; 5251 DestList.push_back(DestBB); 5252 } 5253 } 5254 5255 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 5256 return true; 5257 5258 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 5259 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 5260 IBI->addDestination(DestList[i]); 5261 Inst = IBI; 5262 return false; 5263 } 5264 5265 /// ParseInvoke 5266 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 5267 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 5268 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 5269 LocTy CallLoc = Lex.getLoc(); 5270 AttrBuilder RetAttrs, FnAttrs; 5271 std::vector<unsigned> FwdRefAttrGrps; 5272 LocTy NoBuiltinLoc; 5273 unsigned CC; 5274 Type *RetType = nullptr; 5275 LocTy RetTypeLoc; 5276 ValID CalleeID; 5277 SmallVector<ParamInfo, 16> ArgList; 5278 SmallVector<OperandBundleDef, 2> BundleList; 5279 5280 BasicBlock *NormalBB, *UnwindBB; 5281 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5282 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 5283 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || 5284 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 5285 NoBuiltinLoc) || 5286 ParseOptionalOperandBundles(BundleList, PFS) || 5287 ParseToken(lltok::kw_to, "expected 'to' in invoke") || 5288 ParseTypeAndBasicBlock(NormalBB, PFS) || 5289 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 5290 ParseTypeAndBasicBlock(UnwindBB, PFS)) 5291 return true; 5292 5293 // If RetType is a non-function pointer type, then this is the short syntax 5294 // for the call, which means that RetType is just the return type. Infer the 5295 // rest of the function argument types from the arguments that are present. 5296 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 5297 if (!Ty) { 5298 // Pull out the types of all of the arguments... 5299 std::vector<Type*> ParamTypes; 5300 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 5301 ParamTypes.push_back(ArgList[i].V->getType()); 5302 5303 if (!FunctionType::isValidReturnType(RetType)) 5304 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 5305 5306 Ty = FunctionType::get(RetType, ParamTypes, false); 5307 } 5308 5309 CalleeID.FTy = Ty; 5310 5311 // Look up the callee. 5312 Value *Callee; 5313 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS)) 5314 return true; 5315 5316 // Set up the Attribute for the function. 5317 SmallVector<AttributeSet, 8> Attrs; 5318 if (RetAttrs.hasAttributes()) 5319 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5320 AttributeSet::ReturnIndex, 5321 RetAttrs)); 5322 5323 SmallVector<Value*, 8> Args; 5324 5325 // Loop through FunctionType's arguments and ensure they are specified 5326 // correctly. Also, gather any parameter attributes. 5327 FunctionType::param_iterator I = Ty->param_begin(); 5328 FunctionType::param_iterator E = Ty->param_end(); 5329 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5330 Type *ExpectedTy = nullptr; 5331 if (I != E) { 5332 ExpectedTy = *I++; 5333 } else if (!Ty->isVarArg()) { 5334 return Error(ArgList[i].Loc, "too many arguments specified"); 5335 } 5336 5337 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 5338 return Error(ArgList[i].Loc, "argument is not of expected type '" + 5339 getTypeString(ExpectedTy) + "'"); 5340 Args.push_back(ArgList[i].V); 5341 if (ArgList[i].Attrs.hasAttributes(i + 1)) { 5342 AttrBuilder B(ArgList[i].Attrs, i + 1); 5343 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B)); 5344 } 5345 } 5346 5347 if (I != E) 5348 return Error(CallLoc, "not enough parameters specified for call"); 5349 5350 if (FnAttrs.hasAttributes()) { 5351 if (FnAttrs.hasAlignmentAttr()) 5352 return Error(CallLoc, "invoke instructions may not have an alignment"); 5353 5354 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5355 AttributeSet::FunctionIndex, 5356 FnAttrs)); 5357 } 5358 5359 // Finish off the Attribute and check them 5360 AttributeSet PAL = AttributeSet::get(Context, Attrs); 5361 5362 InvokeInst *II = 5363 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 5364 II->setCallingConv(CC); 5365 II->setAttributes(PAL); 5366 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 5367 Inst = II; 5368 return false; 5369 } 5370 5371 /// ParseResume 5372 /// ::= 'resume' TypeAndValue 5373 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) { 5374 Value *Exn; LocTy ExnLoc; 5375 if (ParseTypeAndValue(Exn, ExnLoc, PFS)) 5376 return true; 5377 5378 ResumeInst *RI = ResumeInst::Create(Exn); 5379 Inst = RI; 5380 return false; 5381 } 5382 5383 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args, 5384 PerFunctionState &PFS) { 5385 if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 5386 return true; 5387 5388 while (Lex.getKind() != lltok::rsquare) { 5389 // If this isn't the first argument, we need a comma. 5390 if (!Args.empty() && 5391 ParseToken(lltok::comma, "expected ',' in argument list")) 5392 return true; 5393 5394 // Parse the argument. 5395 LocTy ArgLoc; 5396 Type *ArgTy = nullptr; 5397 if (ParseType(ArgTy, ArgLoc)) 5398 return true; 5399 5400 Value *V; 5401 if (ArgTy->isMetadataTy()) { 5402 if (ParseMetadataAsValue(V, PFS)) 5403 return true; 5404 } else { 5405 if (ParseValue(ArgTy, V, PFS)) 5406 return true; 5407 } 5408 Args.push_back(V); 5409 } 5410 5411 Lex.Lex(); // Lex the ']'. 5412 return false; 5413 } 5414 5415 /// ParseCleanupRet 5416 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 5417 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 5418 Value *CleanupPad = nullptr; 5419 5420 if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret")) 5421 return true; 5422 5423 if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 5424 return true; 5425 5426 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 5427 return true; 5428 5429 BasicBlock *UnwindBB = nullptr; 5430 if (Lex.getKind() == lltok::kw_to) { 5431 Lex.Lex(); 5432 if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 5433 return true; 5434 } else { 5435 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 5436 return true; 5437 } 5438 } 5439 5440 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 5441 return false; 5442 } 5443 5444 /// ParseCatchRet 5445 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 5446 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 5447 Value *CatchPad = nullptr; 5448 5449 if (ParseToken(lltok::kw_from, "expected 'from' after catchret")) 5450 return true; 5451 5452 if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS)) 5453 return true; 5454 5455 BasicBlock *BB; 5456 if (ParseToken(lltok::kw_to, "expected 'to' in catchret") || 5457 ParseTypeAndBasicBlock(BB, PFS)) 5458 return true; 5459 5460 Inst = CatchReturnInst::Create(CatchPad, BB); 5461 return false; 5462 } 5463 5464 /// ParseCatchSwitch 5465 /// ::= 'catchswitch' within Parent 5466 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 5467 Value *ParentPad; 5468 LocTy BBLoc; 5469 5470 if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch")) 5471 return true; 5472 5473 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 5474 Lex.getKind() != lltok::LocalVarID) 5475 return TokError("expected scope value for catchswitch"); 5476 5477 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 5478 return true; 5479 5480 if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 5481 return true; 5482 5483 SmallVector<BasicBlock *, 32> Table; 5484 do { 5485 BasicBlock *DestBB; 5486 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5487 return true; 5488 Table.push_back(DestBB); 5489 } while (EatIfPresent(lltok::comma)); 5490 5491 if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 5492 return true; 5493 5494 if (ParseToken(lltok::kw_unwind, 5495 "expected 'unwind' after catchswitch scope")) 5496 return true; 5497 5498 BasicBlock *UnwindBB = nullptr; 5499 if (EatIfPresent(lltok::kw_to)) { 5500 if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 5501 return true; 5502 } else { 5503 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) 5504 return true; 5505 } 5506 5507 auto *CatchSwitch = 5508 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 5509 for (BasicBlock *DestBB : Table) 5510 CatchSwitch->addHandler(DestBB); 5511 Inst = CatchSwitch; 5512 return false; 5513 } 5514 5515 /// ParseCatchPad 5516 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 5517 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 5518 Value *CatchSwitch = nullptr; 5519 5520 if (ParseToken(lltok::kw_within, "expected 'within' after catchpad")) 5521 return true; 5522 5523 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 5524 return TokError("expected scope value for catchpad"); 5525 5526 if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 5527 return true; 5528 5529 SmallVector<Value *, 8> Args; 5530 if (ParseExceptionArgs(Args, PFS)) 5531 return true; 5532 5533 Inst = CatchPadInst::Create(CatchSwitch, Args); 5534 return false; 5535 } 5536 5537 /// ParseCleanupPad 5538 /// ::= 'cleanuppad' within Parent ParamList 5539 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 5540 Value *ParentPad = nullptr; 5541 5542 if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 5543 return true; 5544 5545 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 5546 Lex.getKind() != lltok::LocalVarID) 5547 return TokError("expected scope value for cleanuppad"); 5548 5549 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 5550 return true; 5551 5552 SmallVector<Value *, 8> Args; 5553 if (ParseExceptionArgs(Args, PFS)) 5554 return true; 5555 5556 Inst = CleanupPadInst::Create(ParentPad, Args); 5557 return false; 5558 } 5559 5560 //===----------------------------------------------------------------------===// 5561 // Binary Operators. 5562 //===----------------------------------------------------------------------===// 5563 5564 /// ParseArithmetic 5565 /// ::= ArithmeticOps TypeAndValue ',' Value 5566 /// 5567 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1, 5568 /// then any integer operand is allowed, if it is 2, any fp operand is allowed. 5569 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 5570 unsigned Opc, unsigned OperandType) { 5571 LocTy Loc; Value *LHS, *RHS; 5572 if (ParseTypeAndValue(LHS, Loc, PFS) || 5573 ParseToken(lltok::comma, "expected ',' in arithmetic operation") || 5574 ParseValue(LHS->getType(), RHS, PFS)) 5575 return true; 5576 5577 bool Valid; 5578 switch (OperandType) { 5579 default: llvm_unreachable("Unknown operand type!"); 5580 case 0: // int or FP. 5581 Valid = LHS->getType()->isIntOrIntVectorTy() || 5582 LHS->getType()->isFPOrFPVectorTy(); 5583 break; 5584 case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break; 5585 case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break; 5586 } 5587 5588 if (!Valid) 5589 return Error(Loc, "invalid operand type for instruction"); 5590 5591 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 5592 return false; 5593 } 5594 5595 /// ParseLogical 5596 /// ::= ArithmeticOps TypeAndValue ',' Value { 5597 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, 5598 unsigned Opc) { 5599 LocTy Loc; Value *LHS, *RHS; 5600 if (ParseTypeAndValue(LHS, Loc, PFS) || 5601 ParseToken(lltok::comma, "expected ',' in logical operation") || 5602 ParseValue(LHS->getType(), RHS, PFS)) 5603 return true; 5604 5605 if (!LHS->getType()->isIntOrIntVectorTy()) 5606 return Error(Loc,"instruction requires integer or integer vector operands"); 5607 5608 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 5609 return false; 5610 } 5611 5612 /// ParseCompare 5613 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 5614 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 5615 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, 5616 unsigned Opc) { 5617 // Parse the integer/fp comparison predicate. 5618 LocTy Loc; 5619 unsigned Pred; 5620 Value *LHS, *RHS; 5621 if (ParseCmpPredicate(Pred, Opc) || 5622 ParseTypeAndValue(LHS, Loc, PFS) || 5623 ParseToken(lltok::comma, "expected ',' after compare value") || 5624 ParseValue(LHS->getType(), RHS, PFS)) 5625 return true; 5626 5627 if (Opc == Instruction::FCmp) { 5628 if (!LHS->getType()->isFPOrFPVectorTy()) 5629 return Error(Loc, "fcmp requires floating point operands"); 5630 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 5631 } else { 5632 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 5633 if (!LHS->getType()->isIntOrIntVectorTy() && 5634 !LHS->getType()->getScalarType()->isPointerTy()) 5635 return Error(Loc, "icmp requires integer operands"); 5636 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 5637 } 5638 return false; 5639 } 5640 5641 //===----------------------------------------------------------------------===// 5642 // Other Instructions. 5643 //===----------------------------------------------------------------------===// 5644 5645 5646 /// ParseCast 5647 /// ::= CastOpc TypeAndValue 'to' Type 5648 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, 5649 unsigned Opc) { 5650 LocTy Loc; 5651 Value *Op; 5652 Type *DestTy = nullptr; 5653 if (ParseTypeAndValue(Op, Loc, PFS) || 5654 ParseToken(lltok::kw_to, "expected 'to' after cast value") || 5655 ParseType(DestTy)) 5656 return true; 5657 5658 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 5659 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 5660 return Error(Loc, "invalid cast opcode for cast from '" + 5661 getTypeString(Op->getType()) + "' to '" + 5662 getTypeString(DestTy) + "'"); 5663 } 5664 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 5665 return false; 5666 } 5667 5668 /// ParseSelect 5669 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5670 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { 5671 LocTy Loc; 5672 Value *Op0, *Op1, *Op2; 5673 if (ParseTypeAndValue(Op0, Loc, PFS) || 5674 ParseToken(lltok::comma, "expected ',' after select condition") || 5675 ParseTypeAndValue(Op1, PFS) || 5676 ParseToken(lltok::comma, "expected ',' after select value") || 5677 ParseTypeAndValue(Op2, PFS)) 5678 return true; 5679 5680 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 5681 return Error(Loc, Reason); 5682 5683 Inst = SelectInst::Create(Op0, Op1, Op2); 5684 return false; 5685 } 5686 5687 /// ParseVA_Arg 5688 /// ::= 'va_arg' TypeAndValue ',' Type 5689 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { 5690 Value *Op; 5691 Type *EltTy = nullptr; 5692 LocTy TypeLoc; 5693 if (ParseTypeAndValue(Op, PFS) || 5694 ParseToken(lltok::comma, "expected ',' after vaarg operand") || 5695 ParseType(EltTy, TypeLoc)) 5696 return true; 5697 5698 if (!EltTy->isFirstClassType()) 5699 return Error(TypeLoc, "va_arg requires operand with first class type"); 5700 5701 Inst = new VAArgInst(Op, EltTy); 5702 return false; 5703 } 5704 5705 /// ParseExtractElement 5706 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 5707 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 5708 LocTy Loc; 5709 Value *Op0, *Op1; 5710 if (ParseTypeAndValue(Op0, Loc, PFS) || 5711 ParseToken(lltok::comma, "expected ',' after extract value") || 5712 ParseTypeAndValue(Op1, PFS)) 5713 return true; 5714 5715 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 5716 return Error(Loc, "invalid extractelement operands"); 5717 5718 Inst = ExtractElementInst::Create(Op0, Op1); 5719 return false; 5720 } 5721 5722 /// ParseInsertElement 5723 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5724 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 5725 LocTy Loc; 5726 Value *Op0, *Op1, *Op2; 5727 if (ParseTypeAndValue(Op0, Loc, PFS) || 5728 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5729 ParseTypeAndValue(Op1, PFS) || 5730 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5731 ParseTypeAndValue(Op2, PFS)) 5732 return true; 5733 5734 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 5735 return Error(Loc, "invalid insertelement operands"); 5736 5737 Inst = InsertElementInst::Create(Op0, Op1, Op2); 5738 return false; 5739 } 5740 5741 /// ParseShuffleVector 5742 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5743 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 5744 LocTy Loc; 5745 Value *Op0, *Op1, *Op2; 5746 if (ParseTypeAndValue(Op0, Loc, PFS) || 5747 ParseToken(lltok::comma, "expected ',' after shuffle mask") || 5748 ParseTypeAndValue(Op1, PFS) || 5749 ParseToken(lltok::comma, "expected ',' after shuffle value") || 5750 ParseTypeAndValue(Op2, PFS)) 5751 return true; 5752 5753 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 5754 return Error(Loc, "invalid shufflevector operands"); 5755 5756 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 5757 return false; 5758 } 5759 5760 /// ParsePHI 5761 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 5762 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { 5763 Type *Ty = nullptr; LocTy TypeLoc; 5764 Value *Op0, *Op1; 5765 5766 if (ParseType(Ty, TypeLoc) || 5767 ParseToken(lltok::lsquare, "expected '[' in phi value list") || 5768 ParseValue(Ty, Op0, PFS) || 5769 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5770 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 5771 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 5772 return true; 5773 5774 bool AteExtraComma = false; 5775 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 5776 5777 while (true) { 5778 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 5779 5780 if (!EatIfPresent(lltok::comma)) 5781 break; 5782 5783 if (Lex.getKind() == lltok::MetadataVar) { 5784 AteExtraComma = true; 5785 break; 5786 } 5787 5788 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || 5789 ParseValue(Ty, Op0, PFS) || 5790 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5791 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 5792 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 5793 return true; 5794 } 5795 5796 if (!Ty->isFirstClassType()) 5797 return Error(TypeLoc, "phi node must have first class type"); 5798 5799 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 5800 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 5801 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 5802 Inst = PN; 5803 return AteExtraComma ? InstExtraComma : InstNormal; 5804 } 5805 5806 /// ParseLandingPad 5807 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 5808 /// Clause 5809 /// ::= 'catch' TypeAndValue 5810 /// ::= 'filter' 5811 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 5812 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 5813 Type *Ty = nullptr; LocTy TyLoc; 5814 5815 if (ParseType(Ty, TyLoc)) 5816 return true; 5817 5818 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 5819 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 5820 5821 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 5822 LandingPadInst::ClauseType CT; 5823 if (EatIfPresent(lltok::kw_catch)) 5824 CT = LandingPadInst::Catch; 5825 else if (EatIfPresent(lltok::kw_filter)) 5826 CT = LandingPadInst::Filter; 5827 else 5828 return TokError("expected 'catch' or 'filter' clause type"); 5829 5830 Value *V; 5831 LocTy VLoc; 5832 if (ParseTypeAndValue(V, VLoc, PFS)) 5833 return true; 5834 5835 // A 'catch' type expects a non-array constant. A filter clause expects an 5836 // array constant. 5837 if (CT == LandingPadInst::Catch) { 5838 if (isa<ArrayType>(V->getType())) 5839 Error(VLoc, "'catch' clause has an invalid type"); 5840 } else { 5841 if (!isa<ArrayType>(V->getType())) 5842 Error(VLoc, "'filter' clause has an invalid type"); 5843 } 5844 5845 Constant *CV = dyn_cast<Constant>(V); 5846 if (!CV) 5847 return Error(VLoc, "clause argument must be a constant"); 5848 LP->addClause(CV); 5849 } 5850 5851 Inst = LP.release(); 5852 return false; 5853 } 5854 5855 /// ParseCall 5856 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 5857 /// OptionalAttrs Type Value ParameterList OptionalAttrs 5858 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 5859 /// OptionalAttrs Type Value ParameterList OptionalAttrs 5860 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 5861 /// OptionalAttrs Type Value ParameterList OptionalAttrs 5862 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 5863 /// OptionalAttrs Type Value ParameterList OptionalAttrs 5864 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, 5865 CallInst::TailCallKind TCK) { 5866 AttrBuilder RetAttrs, FnAttrs; 5867 std::vector<unsigned> FwdRefAttrGrps; 5868 LocTy BuiltinLoc; 5869 unsigned CC; 5870 Type *RetType = nullptr; 5871 LocTy RetTypeLoc; 5872 ValID CalleeID; 5873 SmallVector<ParamInfo, 16> ArgList; 5874 SmallVector<OperandBundleDef, 2> BundleList; 5875 LocTy CallLoc = Lex.getLoc(); 5876 5877 if (TCK != CallInst::TCK_None && 5878 ParseToken(lltok::kw_call, 5879 "expected 'tail call', 'musttail call', or 'notail call'")) 5880 return true; 5881 5882 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5883 5884 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5885 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 5886 ParseValID(CalleeID) || 5887 ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 5888 PFS.getFunction().isVarArg()) || 5889 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 5890 ParseOptionalOperandBundles(BundleList, PFS)) 5891 return true; 5892 5893 if (FMF.any() && !RetType->isFPOrFPVectorTy()) 5894 return Error(CallLoc, "fast-math-flags specified for call without " 5895 "floating-point scalar or vector return type"); 5896 5897 // If RetType is a non-function pointer type, then this is the short syntax 5898 // for the call, which means that RetType is just the return type. Infer the 5899 // rest of the function argument types from the arguments that are present. 5900 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 5901 if (!Ty) { 5902 // Pull out the types of all of the arguments... 5903 std::vector<Type*> ParamTypes; 5904 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 5905 ParamTypes.push_back(ArgList[i].V->getType()); 5906 5907 if (!FunctionType::isValidReturnType(RetType)) 5908 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 5909 5910 Ty = FunctionType::get(RetType, ParamTypes, false); 5911 } 5912 5913 CalleeID.FTy = Ty; 5914 5915 // Look up the callee. 5916 Value *Callee; 5917 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS)) 5918 return true; 5919 5920 // Set up the Attribute for the function. 5921 SmallVector<AttributeSet, 8> Attrs; 5922 if (RetAttrs.hasAttributes()) 5923 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5924 AttributeSet::ReturnIndex, 5925 RetAttrs)); 5926 5927 SmallVector<Value*, 8> Args; 5928 5929 // Loop through FunctionType's arguments and ensure they are specified 5930 // correctly. Also, gather any parameter attributes. 5931 FunctionType::param_iterator I = Ty->param_begin(); 5932 FunctionType::param_iterator E = Ty->param_end(); 5933 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5934 Type *ExpectedTy = nullptr; 5935 if (I != E) { 5936 ExpectedTy = *I++; 5937 } else if (!Ty->isVarArg()) { 5938 return Error(ArgList[i].Loc, "too many arguments specified"); 5939 } 5940 5941 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 5942 return Error(ArgList[i].Loc, "argument is not of expected type '" + 5943 getTypeString(ExpectedTy) + "'"); 5944 Args.push_back(ArgList[i].V); 5945 if (ArgList[i].Attrs.hasAttributes(i + 1)) { 5946 AttrBuilder B(ArgList[i].Attrs, i + 1); 5947 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B)); 5948 } 5949 } 5950 5951 if (I != E) 5952 return Error(CallLoc, "not enough parameters specified for call"); 5953 5954 if (FnAttrs.hasAttributes()) { 5955 if (FnAttrs.hasAlignmentAttr()) 5956 return Error(CallLoc, "call instructions may not have an alignment"); 5957 5958 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5959 AttributeSet::FunctionIndex, 5960 FnAttrs)); 5961 } 5962 5963 // Finish off the Attribute and check them 5964 AttributeSet PAL = AttributeSet::get(Context, Attrs); 5965 5966 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 5967 CI->setTailCallKind(TCK); 5968 CI->setCallingConv(CC); 5969 if (FMF.any()) 5970 CI->setFastMathFlags(FMF); 5971 CI->setAttributes(PAL); 5972 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 5973 Inst = CI; 5974 return false; 5975 } 5976 5977 //===----------------------------------------------------------------------===// 5978 // Memory Instructions. 5979 //===----------------------------------------------------------------------===// 5980 5981 /// ParseAlloc 5982 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 5983 /// (',' 'align' i32)? 5984 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 5985 Value *Size = nullptr; 5986 LocTy SizeLoc, TyLoc; 5987 unsigned Alignment = 0; 5988 Type *Ty = nullptr; 5989 5990 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 5991 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 5992 5993 if (ParseType(Ty, TyLoc)) return true; 5994 5995 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 5996 return Error(TyLoc, "invalid type for alloca"); 5997 5998 bool AteExtraComma = false; 5999 if (EatIfPresent(lltok::comma)) { 6000 if (Lex.getKind() == lltok::kw_align) { 6001 if (ParseOptionalAlignment(Alignment)) return true; 6002 } else if (Lex.getKind() == lltok::MetadataVar) { 6003 AteExtraComma = true; 6004 } else { 6005 if (ParseTypeAndValue(Size, SizeLoc, PFS) || 6006 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6007 return true; 6008 } 6009 } 6010 6011 if (Size && !Size->getType()->isIntegerTy()) 6012 return Error(SizeLoc, "element count must have integer type"); 6013 6014 AllocaInst *AI = new AllocaInst(Ty, Size, Alignment); 6015 AI->setUsedWithInAlloca(IsInAlloca); 6016 AI->setSwiftError(IsSwiftError); 6017 Inst = AI; 6018 return AteExtraComma ? InstExtraComma : InstNormal; 6019 } 6020 6021 /// ParseLoad 6022 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 6023 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 6024 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6025 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) { 6026 Value *Val; LocTy Loc; 6027 unsigned Alignment = 0; 6028 bool AteExtraComma = false; 6029 bool isAtomic = false; 6030 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6031 SynchronizationScope Scope = CrossThread; 6032 6033 if (Lex.getKind() == lltok::kw_atomic) { 6034 isAtomic = true; 6035 Lex.Lex(); 6036 } 6037 6038 bool isVolatile = false; 6039 if (Lex.getKind() == lltok::kw_volatile) { 6040 isVolatile = true; 6041 Lex.Lex(); 6042 } 6043 6044 Type *Ty; 6045 LocTy ExplicitTypeLoc = Lex.getLoc(); 6046 if (ParseType(Ty) || 6047 ParseToken(lltok::comma, "expected comma after load's type") || 6048 ParseTypeAndValue(Val, Loc, PFS) || 6049 ParseScopeAndOrdering(isAtomic, Scope, Ordering) || 6050 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6051 return true; 6052 6053 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 6054 return Error(Loc, "load operand must be a pointer to a first class type"); 6055 if (isAtomic && !Alignment) 6056 return Error(Loc, "atomic load must have explicit non-zero alignment"); 6057 if (Ordering == AtomicOrdering::Release || 6058 Ordering == AtomicOrdering::AcquireRelease) 6059 return Error(Loc, "atomic load cannot use Release ordering"); 6060 6061 if (Ty != cast<PointerType>(Val->getType())->getElementType()) 6062 return Error(ExplicitTypeLoc, 6063 "explicit pointee type doesn't match operand's pointee type"); 6064 6065 Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, Scope); 6066 return AteExtraComma ? InstExtraComma : InstNormal; 6067 } 6068 6069 /// ParseStore 6070 6071 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 6072 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 6073 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6074 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) { 6075 Value *Val, *Ptr; LocTy Loc, PtrLoc; 6076 unsigned Alignment = 0; 6077 bool AteExtraComma = false; 6078 bool isAtomic = false; 6079 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6080 SynchronizationScope Scope = CrossThread; 6081 6082 if (Lex.getKind() == lltok::kw_atomic) { 6083 isAtomic = true; 6084 Lex.Lex(); 6085 } 6086 6087 bool isVolatile = false; 6088 if (Lex.getKind() == lltok::kw_volatile) { 6089 isVolatile = true; 6090 Lex.Lex(); 6091 } 6092 6093 if (ParseTypeAndValue(Val, Loc, PFS) || 6094 ParseToken(lltok::comma, "expected ',' after store operand") || 6095 ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6096 ParseScopeAndOrdering(isAtomic, Scope, Ordering) || 6097 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6098 return true; 6099 6100 if (!Ptr->getType()->isPointerTy()) 6101 return Error(PtrLoc, "store operand must be a pointer"); 6102 if (!Val->getType()->isFirstClassType()) 6103 return Error(Loc, "store operand must be a first class value"); 6104 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 6105 return Error(Loc, "stored value and pointer type do not match"); 6106 if (isAtomic && !Alignment) 6107 return Error(Loc, "atomic store must have explicit non-zero alignment"); 6108 if (Ordering == AtomicOrdering::Acquire || 6109 Ordering == AtomicOrdering::AcquireRelease) 6110 return Error(Loc, "atomic store cannot use Acquire ordering"); 6111 6112 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope); 6113 return AteExtraComma ? InstExtraComma : InstNormal; 6114 } 6115 6116 /// ParseCmpXchg 6117 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 6118 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering 6119 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 6120 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 6121 bool AteExtraComma = false; 6122 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 6123 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 6124 SynchronizationScope Scope = CrossThread; 6125 bool isVolatile = false; 6126 bool isWeak = false; 6127 6128 if (EatIfPresent(lltok::kw_weak)) 6129 isWeak = true; 6130 6131 if (EatIfPresent(lltok::kw_volatile)) 6132 isVolatile = true; 6133 6134 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6135 ParseToken(lltok::comma, "expected ',' after cmpxchg address") || 6136 ParseTypeAndValue(Cmp, CmpLoc, PFS) || 6137 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 6138 ParseTypeAndValue(New, NewLoc, PFS) || 6139 ParseScopeAndOrdering(true /*Always atomic*/, Scope, SuccessOrdering) || 6140 ParseOrdering(FailureOrdering)) 6141 return true; 6142 6143 if (SuccessOrdering == AtomicOrdering::Unordered || 6144 FailureOrdering == AtomicOrdering::Unordered) 6145 return TokError("cmpxchg cannot be unordered"); 6146 if (isStrongerThan(FailureOrdering, SuccessOrdering)) 6147 return TokError("cmpxchg failure argument shall be no stronger than the " 6148 "success argument"); 6149 if (FailureOrdering == AtomicOrdering::Release || 6150 FailureOrdering == AtomicOrdering::AcquireRelease) 6151 return TokError( 6152 "cmpxchg failure ordering cannot include release semantics"); 6153 if (!Ptr->getType()->isPointerTy()) 6154 return Error(PtrLoc, "cmpxchg operand must be a pointer"); 6155 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 6156 return Error(CmpLoc, "compare value and pointer type do not match"); 6157 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 6158 return Error(NewLoc, "new value and pointer type do not match"); 6159 if (!New->getType()->isFirstClassType()) 6160 return Error(NewLoc, "cmpxchg operand must be a first class value"); 6161 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 6162 Ptr, Cmp, New, SuccessOrdering, FailureOrdering, Scope); 6163 CXI->setVolatile(isVolatile); 6164 CXI->setWeak(isWeak); 6165 Inst = CXI; 6166 return AteExtraComma ? InstExtraComma : InstNormal; 6167 } 6168 6169 /// ParseAtomicRMW 6170 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 6171 /// 'singlethread'? AtomicOrdering 6172 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 6173 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 6174 bool AteExtraComma = false; 6175 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6176 SynchronizationScope Scope = CrossThread; 6177 bool isVolatile = false; 6178 AtomicRMWInst::BinOp Operation; 6179 6180 if (EatIfPresent(lltok::kw_volatile)) 6181 isVolatile = true; 6182 6183 switch (Lex.getKind()) { 6184 default: return TokError("expected binary operation in atomicrmw"); 6185 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 6186 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 6187 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 6188 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 6189 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 6190 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 6191 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 6192 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 6193 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 6194 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 6195 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 6196 } 6197 Lex.Lex(); // Eat the operation. 6198 6199 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6200 ParseToken(lltok::comma, "expected ',' after atomicrmw address") || 6201 ParseTypeAndValue(Val, ValLoc, PFS) || 6202 ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 6203 return true; 6204 6205 if (Ordering == AtomicOrdering::Unordered) 6206 return TokError("atomicrmw cannot be unordered"); 6207 if (!Ptr->getType()->isPointerTy()) 6208 return Error(PtrLoc, "atomicrmw operand must be a pointer"); 6209 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 6210 return Error(ValLoc, "atomicrmw value and pointer type do not match"); 6211 if (!Val->getType()->isIntegerTy()) 6212 return Error(ValLoc, "atomicrmw operand must be an integer"); 6213 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 6214 if (Size < 8 || (Size & (Size - 1))) 6215 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 6216 " integer"); 6217 6218 AtomicRMWInst *RMWI = 6219 new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope); 6220 RMWI->setVolatile(isVolatile); 6221 Inst = RMWI; 6222 return AteExtraComma ? InstExtraComma : InstNormal; 6223 } 6224 6225 /// ParseFence 6226 /// ::= 'fence' 'singlethread'? AtomicOrdering 6227 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) { 6228 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6229 SynchronizationScope Scope = CrossThread; 6230 if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 6231 return true; 6232 6233 if (Ordering == AtomicOrdering::Unordered) 6234 return TokError("fence cannot be unordered"); 6235 if (Ordering == AtomicOrdering::Monotonic) 6236 return TokError("fence cannot be monotonic"); 6237 6238 Inst = new FenceInst(Context, Ordering, Scope); 6239 return InstNormal; 6240 } 6241 6242 /// ParseGetElementPtr 6243 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 6244 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 6245 Value *Ptr = nullptr; 6246 Value *Val = nullptr; 6247 LocTy Loc, EltLoc; 6248 6249 bool InBounds = EatIfPresent(lltok::kw_inbounds); 6250 6251 Type *Ty = nullptr; 6252 LocTy ExplicitTypeLoc = Lex.getLoc(); 6253 if (ParseType(Ty) || 6254 ParseToken(lltok::comma, "expected comma after getelementptr's type") || 6255 ParseTypeAndValue(Ptr, Loc, PFS)) 6256 return true; 6257 6258 Type *BaseType = Ptr->getType(); 6259 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 6260 if (!BasePointerType) 6261 return Error(Loc, "base of getelementptr must be a pointer"); 6262 6263 if (Ty != BasePointerType->getElementType()) 6264 return Error(ExplicitTypeLoc, 6265 "explicit pointee type doesn't match operand's pointee type"); 6266 6267 SmallVector<Value*, 16> Indices; 6268 bool AteExtraComma = false; 6269 // GEP returns a vector of pointers if at least one of parameters is a vector. 6270 // All vector parameters should have the same vector width. 6271 unsigned GEPWidth = BaseType->isVectorTy() ? 6272 BaseType->getVectorNumElements() : 0; 6273 6274 while (EatIfPresent(lltok::comma)) { 6275 if (Lex.getKind() == lltok::MetadataVar) { 6276 AteExtraComma = true; 6277 break; 6278 } 6279 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; 6280 if (!Val->getType()->getScalarType()->isIntegerTy()) 6281 return Error(EltLoc, "getelementptr index must be an integer"); 6282 6283 if (Val->getType()->isVectorTy()) { 6284 unsigned ValNumEl = Val->getType()->getVectorNumElements(); 6285 if (GEPWidth && GEPWidth != ValNumEl) 6286 return Error(EltLoc, 6287 "getelementptr vector index has a wrong number of elements"); 6288 GEPWidth = ValNumEl; 6289 } 6290 Indices.push_back(Val); 6291 } 6292 6293 SmallPtrSet<Type*, 4> Visited; 6294 if (!Indices.empty() && !Ty->isSized(&Visited)) 6295 return Error(Loc, "base element of getelementptr must be sized"); 6296 6297 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 6298 return Error(Loc, "invalid getelementptr indices"); 6299 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 6300 if (InBounds) 6301 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 6302 return AteExtraComma ? InstExtraComma : InstNormal; 6303 } 6304 6305 /// ParseExtractValue 6306 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 6307 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 6308 Value *Val; LocTy Loc; 6309 SmallVector<unsigned, 4> Indices; 6310 bool AteExtraComma; 6311 if (ParseTypeAndValue(Val, Loc, PFS) || 6312 ParseIndexList(Indices, AteExtraComma)) 6313 return true; 6314 6315 if (!Val->getType()->isAggregateType()) 6316 return Error(Loc, "extractvalue operand must be aggregate type"); 6317 6318 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 6319 return Error(Loc, "invalid indices for extractvalue"); 6320 Inst = ExtractValueInst::Create(Val, Indices); 6321 return AteExtraComma ? InstExtraComma : InstNormal; 6322 } 6323 6324 /// ParseInsertValue 6325 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 6326 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 6327 Value *Val0, *Val1; LocTy Loc0, Loc1; 6328 SmallVector<unsigned, 4> Indices; 6329 bool AteExtraComma; 6330 if (ParseTypeAndValue(Val0, Loc0, PFS) || 6331 ParseToken(lltok::comma, "expected comma after insertvalue operand") || 6332 ParseTypeAndValue(Val1, Loc1, PFS) || 6333 ParseIndexList(Indices, AteExtraComma)) 6334 return true; 6335 6336 if (!Val0->getType()->isAggregateType()) 6337 return Error(Loc0, "insertvalue operand must be aggregate type"); 6338 6339 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 6340 if (!IndexedType) 6341 return Error(Loc0, "invalid indices for insertvalue"); 6342 if (IndexedType != Val1->getType()) 6343 return Error(Loc1, "insertvalue operand and field disagree in type: '" + 6344 getTypeString(Val1->getType()) + "' instead of '" + 6345 getTypeString(IndexedType) + "'"); 6346 Inst = InsertValueInst::Create(Val0, Val1, Indices); 6347 return AteExtraComma ? InstExtraComma : InstNormal; 6348 } 6349 6350 //===----------------------------------------------------------------------===// 6351 // Embedded metadata. 6352 //===----------------------------------------------------------------------===// 6353 6354 /// ParseMDNodeVector 6355 /// ::= { Element (',' Element)* } 6356 /// Element 6357 /// ::= 'null' | TypeAndValue 6358 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 6359 if (ParseToken(lltok::lbrace, "expected '{' here")) 6360 return true; 6361 6362 // Check for an empty list. 6363 if (EatIfPresent(lltok::rbrace)) 6364 return false; 6365 6366 do { 6367 // Null is a special case since it is typeless. 6368 if (EatIfPresent(lltok::kw_null)) { 6369 Elts.push_back(nullptr); 6370 continue; 6371 } 6372 6373 Metadata *MD; 6374 if (ParseMetadata(MD, nullptr)) 6375 return true; 6376 Elts.push_back(MD); 6377 } while (EatIfPresent(lltok::comma)); 6378 6379 return ParseToken(lltok::rbrace, "expected end of metadata node"); 6380 } 6381 6382 //===----------------------------------------------------------------------===// 6383 // Use-list order directives. 6384 //===----------------------------------------------------------------------===// 6385 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 6386 SMLoc Loc) { 6387 if (V->use_empty()) 6388 return Error(Loc, "value has no uses"); 6389 6390 unsigned NumUses = 0; 6391 SmallDenseMap<const Use *, unsigned, 16> Order; 6392 for (const Use &U : V->uses()) { 6393 if (++NumUses > Indexes.size()) 6394 break; 6395 Order[&U] = Indexes[NumUses - 1]; 6396 } 6397 if (NumUses < 2) 6398 return Error(Loc, "value only has one use"); 6399 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 6400 return Error(Loc, "wrong number of indexes, expected " + 6401 Twine(std::distance(V->use_begin(), V->use_end()))); 6402 6403 V->sortUseList([&](const Use &L, const Use &R) { 6404 return Order.lookup(&L) < Order.lookup(&R); 6405 }); 6406 return false; 6407 } 6408 6409 /// ParseUseListOrderIndexes 6410 /// ::= '{' uint32 (',' uint32)+ '}' 6411 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 6412 SMLoc Loc = Lex.getLoc(); 6413 if (ParseToken(lltok::lbrace, "expected '{' here")) 6414 return true; 6415 if (Lex.getKind() == lltok::rbrace) 6416 return Lex.Error("expected non-empty list of uselistorder indexes"); 6417 6418 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 6419 // indexes should be distinct numbers in the range [0, size-1], and should 6420 // not be in order. 6421 unsigned Offset = 0; 6422 unsigned Max = 0; 6423 bool IsOrdered = true; 6424 assert(Indexes.empty() && "Expected empty order vector"); 6425 do { 6426 unsigned Index; 6427 if (ParseUInt32(Index)) 6428 return true; 6429 6430 // Update consistency checks. 6431 Offset += Index - Indexes.size(); 6432 Max = std::max(Max, Index); 6433 IsOrdered &= Index == Indexes.size(); 6434 6435 Indexes.push_back(Index); 6436 } while (EatIfPresent(lltok::comma)); 6437 6438 if (ParseToken(lltok::rbrace, "expected '}' here")) 6439 return true; 6440 6441 if (Indexes.size() < 2) 6442 return Error(Loc, "expected >= 2 uselistorder indexes"); 6443 if (Offset != 0 || Max >= Indexes.size()) 6444 return Error(Loc, "expected distinct uselistorder indexes in range [0, size)"); 6445 if (IsOrdered) 6446 return Error(Loc, "expected uselistorder indexes to change the order"); 6447 6448 return false; 6449 } 6450 6451 /// ParseUseListOrder 6452 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 6453 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) { 6454 SMLoc Loc = Lex.getLoc(); 6455 if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 6456 return true; 6457 6458 Value *V; 6459 SmallVector<unsigned, 16> Indexes; 6460 if (ParseTypeAndValue(V, PFS) || 6461 ParseToken(lltok::comma, "expected comma in uselistorder directive") || 6462 ParseUseListOrderIndexes(Indexes)) 6463 return true; 6464 6465 return sortUseListOrder(V, Indexes, Loc); 6466 } 6467 6468 /// ParseUseListOrderBB 6469 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 6470 bool LLParser::ParseUseListOrderBB() { 6471 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 6472 SMLoc Loc = Lex.getLoc(); 6473 Lex.Lex(); 6474 6475 ValID Fn, Label; 6476 SmallVector<unsigned, 16> Indexes; 6477 if (ParseValID(Fn) || 6478 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 6479 ParseValID(Label) || 6480 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 6481 ParseUseListOrderIndexes(Indexes)) 6482 return true; 6483 6484 // Check the function. 6485 GlobalValue *GV; 6486 if (Fn.Kind == ValID::t_GlobalName) 6487 GV = M->getNamedValue(Fn.StrVal); 6488 else if (Fn.Kind == ValID::t_GlobalID) 6489 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 6490 else 6491 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 6492 if (!GV) 6493 return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb"); 6494 auto *F = dyn_cast<Function>(GV); 6495 if (!F) 6496 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 6497 if (F->isDeclaration()) 6498 return Error(Fn.Loc, "invalid declaration in uselistorder_bb"); 6499 6500 // Check the basic block. 6501 if (Label.Kind == ValID::t_LocalID) 6502 return Error(Label.Loc, "invalid numeric label in uselistorder_bb"); 6503 if (Label.Kind != ValID::t_LocalName) 6504 return Error(Label.Loc, "expected basic block name in uselistorder_bb"); 6505 Value *V = F->getValueSymbolTable().lookup(Label.StrVal); 6506 if (!V) 6507 return Error(Label.Loc, "invalid basic block in uselistorder_bb"); 6508 if (!isa<BasicBlock>(V)) 6509 return Error(Label.Loc, "expected basic block in uselistorder_bb"); 6510 6511 return sortUseListOrder(V, Indexes, Loc); 6512 } 6513