1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines the parser class for .ll files.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "LLParser.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/AsmParser/SlotMapping.h"
21 #include "llvm/IR/Argument.h"
22 #include "llvm/IR/AutoUpgrade.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/CallingConv.h"
25 #include "llvm/IR/Comdat.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugInfoMetadata.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalIFunc.h"
31 #include "llvm/IR/GlobalObject.h"
32 #include "llvm/IR/InlineAsm.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/IR/Type.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/IR/ValueSymbolTable.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/Dwarf.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/MathExtras.h"
47 #include "llvm/Support/SaveAndRestore.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <cstring>
52 #include <iterator>
53 #include <vector>
54 
55 using namespace llvm;
56 
57 static std::string getTypeString(Type *T) {
58   std::string Result;
59   raw_string_ostream Tmp(Result);
60   Tmp << *T;
61   return Tmp.str();
62 }
63 
64 /// Run: module ::= toplevelentity*
65 bool LLParser::Run() {
66   // Prime the lexer.
67   Lex.Lex();
68 
69   if (Context.shouldDiscardValueNames())
70     return Error(
71         Lex.getLoc(),
72         "Can't read textual IR with a Context that discards named Values");
73 
74   return ParseTopLevelEntities() ||
75          ValidateEndOfModule();
76 }
77 
78 bool LLParser::parseStandaloneConstantValue(Constant *&C,
79                                             const SlotMapping *Slots) {
80   restoreParsingState(Slots);
81   Lex.Lex();
82 
83   Type *Ty = nullptr;
84   if (ParseType(Ty) || parseConstantValue(Ty, C))
85     return true;
86   if (Lex.getKind() != lltok::Eof)
87     return Error(Lex.getLoc(), "expected end of string");
88   return false;
89 }
90 
91 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
92                                     const SlotMapping *Slots) {
93   restoreParsingState(Slots);
94   Lex.Lex();
95 
96   Read = 0;
97   SMLoc Start = Lex.getLoc();
98   Ty = nullptr;
99   if (ParseType(Ty))
100     return true;
101   SMLoc End = Lex.getLoc();
102   Read = End.getPointer() - Start.getPointer();
103 
104   return false;
105 }
106 
107 void LLParser::restoreParsingState(const SlotMapping *Slots) {
108   if (!Slots)
109     return;
110   NumberedVals = Slots->GlobalValues;
111   NumberedMetadata = Slots->MetadataNodes;
112   for (const auto &I : Slots->NamedTypes)
113     NamedTypes.insert(
114         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
115   for (const auto &I : Slots->Types)
116     NumberedTypes.insert(
117         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
118 }
119 
120 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
121 /// module.
122 bool LLParser::ValidateEndOfModule() {
123   // Handle any function attribute group forward references.
124   for (std::map<Value*, std::vector<unsigned> >::iterator
125          I = ForwardRefAttrGroups.begin(), E = ForwardRefAttrGroups.end();
126          I != E; ++I) {
127     Value *V = I->first;
128     std::vector<unsigned> &Vec = I->second;
129     AttrBuilder B;
130 
131     for (std::vector<unsigned>::iterator VI = Vec.begin(), VE = Vec.end();
132          VI != VE; ++VI)
133       B.merge(NumberedAttrBuilders[*VI]);
134 
135     if (Function *Fn = dyn_cast<Function>(V)) {
136       AttributeSet AS = Fn->getAttributes();
137       AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
138       AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
139                                AS.getFnAttributes());
140 
141       FnAttrs.merge(B);
142 
143       // If the alignment was parsed as an attribute, move to the alignment
144       // field.
145       if (FnAttrs.hasAlignmentAttr()) {
146         Fn->setAlignment(FnAttrs.getAlignment());
147         FnAttrs.removeAttribute(Attribute::Alignment);
148       }
149 
150       AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
151                             AttributeSet::get(Context,
152                                               AttributeSet::FunctionIndex,
153                                               FnAttrs));
154       Fn->setAttributes(AS);
155     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
156       AttributeSet AS = CI->getAttributes();
157       AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
158       AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
159                                AS.getFnAttributes());
160       FnAttrs.merge(B);
161       AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
162                             AttributeSet::get(Context,
163                                               AttributeSet::FunctionIndex,
164                                               FnAttrs));
165       CI->setAttributes(AS);
166     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
167       AttributeSet AS = II->getAttributes();
168       AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
169       AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
170                                AS.getFnAttributes());
171       FnAttrs.merge(B);
172       AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
173                             AttributeSet::get(Context,
174                                               AttributeSet::FunctionIndex,
175                                               FnAttrs));
176       II->setAttributes(AS);
177     } else {
178       llvm_unreachable("invalid object with forward attribute group reference");
179     }
180   }
181 
182   // If there are entries in ForwardRefBlockAddresses at this point, the
183   // function was never defined.
184   if (!ForwardRefBlockAddresses.empty())
185     return Error(ForwardRefBlockAddresses.begin()->first.Loc,
186                  "expected function name in blockaddress");
187 
188   for (const auto &NT : NumberedTypes)
189     if (NT.second.second.isValid())
190       return Error(NT.second.second,
191                    "use of undefined type '%" + Twine(NT.first) + "'");
192 
193   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
194        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
195     if (I->second.second.isValid())
196       return Error(I->second.second,
197                    "use of undefined type named '" + I->getKey() + "'");
198 
199   if (!ForwardRefComdats.empty())
200     return Error(ForwardRefComdats.begin()->second,
201                  "use of undefined comdat '$" +
202                      ForwardRefComdats.begin()->first + "'");
203 
204   if (!ForwardRefVals.empty())
205     return Error(ForwardRefVals.begin()->second.second,
206                  "use of undefined value '@" + ForwardRefVals.begin()->first +
207                  "'");
208 
209   if (!ForwardRefValIDs.empty())
210     return Error(ForwardRefValIDs.begin()->second.second,
211                  "use of undefined value '@" +
212                  Twine(ForwardRefValIDs.begin()->first) + "'");
213 
214   if (!ForwardRefMDNodes.empty())
215     return Error(ForwardRefMDNodes.begin()->second.second,
216                  "use of undefined metadata '!" +
217                  Twine(ForwardRefMDNodes.begin()->first) + "'");
218 
219   // Resolve metadata cycles.
220   for (auto &N : NumberedMetadata) {
221     if (N.second && !N.second->isResolved())
222       N.second->resolveCycles();
223   }
224 
225   for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++)
226     UpgradeInstWithTBAATag(InstsWithTBAATag[I]);
227 
228   // Look for intrinsic functions and CallInst that need to be upgraded
229   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
230     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
231 
232   // Some types could be renamed during loading if several modules are
233   // loaded in the same LLVMContext (LTO scenario). In this case we should
234   // remangle intrinsics names as well.
235   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
236     Function *F = &*FI++;
237     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
238       F->replaceAllUsesWith(Remangled.getValue());
239       F->eraseFromParent();
240     }
241   }
242 
243   UpgradeDebugInfo(*M);
244 
245   UpgradeModuleFlags(*M);
246 
247   if (!Slots)
248     return false;
249   // Initialize the slot mapping.
250   // Because by this point we've parsed and validated everything, we can "steal"
251   // the mapping from LLParser as it doesn't need it anymore.
252   Slots->GlobalValues = std::move(NumberedVals);
253   Slots->MetadataNodes = std::move(NumberedMetadata);
254   for (const auto &I : NamedTypes)
255     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
256   for (const auto &I : NumberedTypes)
257     Slots->Types.insert(std::make_pair(I.first, I.second.first));
258 
259   return false;
260 }
261 
262 //===----------------------------------------------------------------------===//
263 // Top-Level Entities
264 //===----------------------------------------------------------------------===//
265 
266 bool LLParser::ParseTopLevelEntities() {
267   while (true) {
268     switch (Lex.getKind()) {
269     default:         return TokError("expected top-level entity");
270     case lltok::Eof: return false;
271     case lltok::kw_declare: if (ParseDeclare()) return true; break;
272     case lltok::kw_define:  if (ParseDefine()) return true; break;
273     case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
274     case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
275     case lltok::kw_source_filename:
276       if (ParseSourceFileName())
277         return true;
278       break;
279     case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
280     case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
281     case lltok::LocalVar:   if (ParseNamedType()) return true; break;
282     case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
283     case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
284     case lltok::ComdatVar:  if (parseComdat()) return true; break;
285     case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
286     case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
287     case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
288     case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
289     case lltok::kw_uselistorder_bb:
290       if (ParseUseListOrderBB())
291         return true;
292       break;
293     }
294   }
295 }
296 
297 /// toplevelentity
298 ///   ::= 'module' 'asm' STRINGCONSTANT
299 bool LLParser::ParseModuleAsm() {
300   assert(Lex.getKind() == lltok::kw_module);
301   Lex.Lex();
302 
303   std::string AsmStr;
304   if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
305       ParseStringConstant(AsmStr)) return true;
306 
307   M->appendModuleInlineAsm(AsmStr);
308   return false;
309 }
310 
311 /// toplevelentity
312 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
313 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
314 bool LLParser::ParseTargetDefinition() {
315   assert(Lex.getKind() == lltok::kw_target);
316   std::string Str;
317   switch (Lex.Lex()) {
318   default: return TokError("unknown target property");
319   case lltok::kw_triple:
320     Lex.Lex();
321     if (ParseToken(lltok::equal, "expected '=' after target triple") ||
322         ParseStringConstant(Str))
323       return true;
324     M->setTargetTriple(Str);
325     return false;
326   case lltok::kw_datalayout:
327     Lex.Lex();
328     if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
329         ParseStringConstant(Str))
330       return true;
331     M->setDataLayout(Str);
332     return false;
333   }
334 }
335 
336 /// toplevelentity
337 ///   ::= 'source_filename' '=' STRINGCONSTANT
338 bool LLParser::ParseSourceFileName() {
339   assert(Lex.getKind() == lltok::kw_source_filename);
340   std::string Str;
341   Lex.Lex();
342   if (ParseToken(lltok::equal, "expected '=' after source_filename") ||
343       ParseStringConstant(Str))
344     return true;
345   M->setSourceFileName(Str);
346   return false;
347 }
348 
349 /// toplevelentity
350 ///   ::= 'deplibs' '=' '[' ']'
351 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
352 /// FIXME: Remove in 4.0. Currently parse, but ignore.
353 bool LLParser::ParseDepLibs() {
354   assert(Lex.getKind() == lltok::kw_deplibs);
355   Lex.Lex();
356   if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
357       ParseToken(lltok::lsquare, "expected '=' after deplibs"))
358     return true;
359 
360   if (EatIfPresent(lltok::rsquare))
361     return false;
362 
363   do {
364     std::string Str;
365     if (ParseStringConstant(Str)) return true;
366   } while (EatIfPresent(lltok::comma));
367 
368   return ParseToken(lltok::rsquare, "expected ']' at end of list");
369 }
370 
371 /// ParseUnnamedType:
372 ///   ::= LocalVarID '=' 'type' type
373 bool LLParser::ParseUnnamedType() {
374   LocTy TypeLoc = Lex.getLoc();
375   unsigned TypeID = Lex.getUIntVal();
376   Lex.Lex(); // eat LocalVarID;
377 
378   if (ParseToken(lltok::equal, "expected '=' after name") ||
379       ParseToken(lltok::kw_type, "expected 'type' after '='"))
380     return true;
381 
382   Type *Result = nullptr;
383   if (ParseStructDefinition(TypeLoc, "",
384                             NumberedTypes[TypeID], Result)) return true;
385 
386   if (!isa<StructType>(Result)) {
387     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
388     if (Entry.first)
389       return Error(TypeLoc, "non-struct types may not be recursive");
390     Entry.first = Result;
391     Entry.second = SMLoc();
392   }
393 
394   return false;
395 }
396 
397 /// toplevelentity
398 ///   ::= LocalVar '=' 'type' type
399 bool LLParser::ParseNamedType() {
400   std::string Name = Lex.getStrVal();
401   LocTy NameLoc = Lex.getLoc();
402   Lex.Lex();  // eat LocalVar.
403 
404   if (ParseToken(lltok::equal, "expected '=' after name") ||
405       ParseToken(lltok::kw_type, "expected 'type' after name"))
406     return true;
407 
408   Type *Result = nullptr;
409   if (ParseStructDefinition(NameLoc, Name,
410                             NamedTypes[Name], Result)) return true;
411 
412   if (!isa<StructType>(Result)) {
413     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
414     if (Entry.first)
415       return Error(NameLoc, "non-struct types may not be recursive");
416     Entry.first = Result;
417     Entry.second = SMLoc();
418   }
419 
420   return false;
421 }
422 
423 /// toplevelentity
424 ///   ::= 'declare' FunctionHeader
425 bool LLParser::ParseDeclare() {
426   assert(Lex.getKind() == lltok::kw_declare);
427   Lex.Lex();
428 
429   std::vector<std::pair<unsigned, MDNode *>> MDs;
430   while (Lex.getKind() == lltok::MetadataVar) {
431     unsigned MDK;
432     MDNode *N;
433     if (ParseMetadataAttachment(MDK, N))
434       return true;
435     MDs.push_back({MDK, N});
436   }
437 
438   Function *F;
439   if (ParseFunctionHeader(F, false))
440     return true;
441   for (auto &MD : MDs)
442     F->addMetadata(MD.first, *MD.second);
443   return false;
444 }
445 
446 /// toplevelentity
447 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
448 bool LLParser::ParseDefine() {
449   assert(Lex.getKind() == lltok::kw_define);
450   Lex.Lex();
451 
452   Function *F;
453   return ParseFunctionHeader(F, true) ||
454          ParseOptionalFunctionMetadata(*F) ||
455          ParseFunctionBody(*F);
456 }
457 
458 /// ParseGlobalType
459 ///   ::= 'constant'
460 ///   ::= 'global'
461 bool LLParser::ParseGlobalType(bool &IsConstant) {
462   if (Lex.getKind() == lltok::kw_constant)
463     IsConstant = true;
464   else if (Lex.getKind() == lltok::kw_global)
465     IsConstant = false;
466   else {
467     IsConstant = false;
468     return TokError("expected 'global' or 'constant'");
469   }
470   Lex.Lex();
471   return false;
472 }
473 
474 bool LLParser::ParseOptionalUnnamedAddr(
475     GlobalVariable::UnnamedAddr &UnnamedAddr) {
476   if (EatIfPresent(lltok::kw_unnamed_addr))
477     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
478   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
479     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
480   else
481     UnnamedAddr = GlobalValue::UnnamedAddr::None;
482   return false;
483 }
484 
485 /// ParseUnnamedGlobal:
486 ///   OptionalVisibility (ALIAS | IFUNC) ...
487 ///   OptionalLinkage OptionalVisibility OptionalDLLStorageClass
488 ///                                                     ...   -> global variable
489 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
490 ///   GlobalID '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
491 ///                                                     ...   -> global variable
492 bool LLParser::ParseUnnamedGlobal() {
493   unsigned VarID = NumberedVals.size();
494   std::string Name;
495   LocTy NameLoc = Lex.getLoc();
496 
497   // Handle the GlobalID form.
498   if (Lex.getKind() == lltok::GlobalID) {
499     if (Lex.getUIntVal() != VarID)
500       return Error(Lex.getLoc(), "variable expected to be numbered '%" +
501                    Twine(VarID) + "'");
502     Lex.Lex(); // eat GlobalID;
503 
504     if (ParseToken(lltok::equal, "expected '=' after name"))
505       return true;
506   }
507 
508   bool HasLinkage;
509   unsigned Linkage, Visibility, DLLStorageClass;
510   GlobalVariable::ThreadLocalMode TLM;
511   GlobalVariable::UnnamedAddr UnnamedAddr;
512   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) ||
513       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
514     return true;
515 
516   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
517     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
518                        DLLStorageClass, TLM, UnnamedAddr);
519 
520   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
521                              DLLStorageClass, TLM, UnnamedAddr);
522 }
523 
524 /// ParseNamedGlobal:
525 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
526 ///   GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
527 ///                                                     ...   -> global variable
528 bool LLParser::ParseNamedGlobal() {
529   assert(Lex.getKind() == lltok::GlobalVar);
530   LocTy NameLoc = Lex.getLoc();
531   std::string Name = Lex.getStrVal();
532   Lex.Lex();
533 
534   bool HasLinkage;
535   unsigned Linkage, Visibility, DLLStorageClass;
536   GlobalVariable::ThreadLocalMode TLM;
537   GlobalVariable::UnnamedAddr UnnamedAddr;
538   if (ParseToken(lltok::equal, "expected '=' in global variable") ||
539       ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) ||
540       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
541     return true;
542 
543   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
544     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
545                        DLLStorageClass, TLM, UnnamedAddr);
546 
547   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
548                              DLLStorageClass, TLM, UnnamedAddr);
549 }
550 
551 bool LLParser::parseComdat() {
552   assert(Lex.getKind() == lltok::ComdatVar);
553   std::string Name = Lex.getStrVal();
554   LocTy NameLoc = Lex.getLoc();
555   Lex.Lex();
556 
557   if (ParseToken(lltok::equal, "expected '=' here"))
558     return true;
559 
560   if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
561     return TokError("expected comdat type");
562 
563   Comdat::SelectionKind SK;
564   switch (Lex.getKind()) {
565   default:
566     return TokError("unknown selection kind");
567   case lltok::kw_any:
568     SK = Comdat::Any;
569     break;
570   case lltok::kw_exactmatch:
571     SK = Comdat::ExactMatch;
572     break;
573   case lltok::kw_largest:
574     SK = Comdat::Largest;
575     break;
576   case lltok::kw_noduplicates:
577     SK = Comdat::NoDuplicates;
578     break;
579   case lltok::kw_samesize:
580     SK = Comdat::SameSize;
581     break;
582   }
583   Lex.Lex();
584 
585   // See if the comdat was forward referenced, if so, use the comdat.
586   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
587   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
588   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
589     return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
590 
591   Comdat *C;
592   if (I != ComdatSymTab.end())
593     C = &I->second;
594   else
595     C = M->getOrInsertComdat(Name);
596   C->setSelectionKind(SK);
597 
598   return false;
599 }
600 
601 // MDString:
602 //   ::= '!' STRINGCONSTANT
603 bool LLParser::ParseMDString(MDString *&Result) {
604   std::string Str;
605   if (ParseStringConstant(Str)) return true;
606   Result = MDString::get(Context, Str);
607   return false;
608 }
609 
610 // MDNode:
611 //   ::= '!' MDNodeNumber
612 bool LLParser::ParseMDNodeID(MDNode *&Result) {
613   // !{ ..., !42, ... }
614   LocTy IDLoc = Lex.getLoc();
615   unsigned MID = 0;
616   if (ParseUInt32(MID))
617     return true;
618 
619   // If not a forward reference, just return it now.
620   if (NumberedMetadata.count(MID)) {
621     Result = NumberedMetadata[MID];
622     return false;
623   }
624 
625   // Otherwise, create MDNode forward reference.
626   auto &FwdRef = ForwardRefMDNodes[MID];
627   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
628 
629   Result = FwdRef.first.get();
630   NumberedMetadata[MID].reset(Result);
631   return false;
632 }
633 
634 /// ParseNamedMetadata:
635 ///   !foo = !{ !1, !2 }
636 bool LLParser::ParseNamedMetadata() {
637   assert(Lex.getKind() == lltok::MetadataVar);
638   std::string Name = Lex.getStrVal();
639   Lex.Lex();
640 
641   if (ParseToken(lltok::equal, "expected '=' here") ||
642       ParseToken(lltok::exclaim, "Expected '!' here") ||
643       ParseToken(lltok::lbrace, "Expected '{' here"))
644     return true;
645 
646   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
647   if (Lex.getKind() != lltok::rbrace)
648     do {
649       if (ParseToken(lltok::exclaim, "Expected '!' here"))
650         return true;
651 
652       MDNode *N = nullptr;
653       if (ParseMDNodeID(N)) return true;
654       NMD->addOperand(N);
655     } while (EatIfPresent(lltok::comma));
656 
657   return ParseToken(lltok::rbrace, "expected end of metadata node");
658 }
659 
660 /// ParseStandaloneMetadata:
661 ///   !42 = !{...}
662 bool LLParser::ParseStandaloneMetadata() {
663   assert(Lex.getKind() == lltok::exclaim);
664   Lex.Lex();
665   unsigned MetadataID = 0;
666 
667   MDNode *Init;
668   if (ParseUInt32(MetadataID) ||
669       ParseToken(lltok::equal, "expected '=' here"))
670     return true;
671 
672   // Detect common error, from old metadata syntax.
673   if (Lex.getKind() == lltok::Type)
674     return TokError("unexpected type in metadata definition");
675 
676   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
677   if (Lex.getKind() == lltok::MetadataVar) {
678     if (ParseSpecializedMDNode(Init, IsDistinct))
679       return true;
680   } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
681              ParseMDTuple(Init, IsDistinct))
682     return true;
683 
684   // See if this was forward referenced, if so, handle it.
685   auto FI = ForwardRefMDNodes.find(MetadataID);
686   if (FI != ForwardRefMDNodes.end()) {
687     FI->second.first->replaceAllUsesWith(Init);
688     ForwardRefMDNodes.erase(FI);
689 
690     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
691   } else {
692     if (NumberedMetadata.count(MetadataID))
693       return TokError("Metadata id is already used");
694     NumberedMetadata[MetadataID].reset(Init);
695   }
696 
697   return false;
698 }
699 
700 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
701   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
702          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
703 }
704 
705 /// parseIndirectSymbol:
706 ///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility
707 ///                     OptionalDLLStorageClass OptionalThreadLocal
708 ///                     OptionalUnnamedAddr 'alias|ifunc' IndirectSymbol
709 ///
710 /// IndirectSymbol
711 ///   ::= TypeAndValue
712 ///
713 /// Everything through OptionalUnnamedAddr has already been parsed.
714 ///
715 bool LLParser::parseIndirectSymbol(
716     const std::string &Name, LocTy NameLoc, unsigned L, unsigned Visibility,
717     unsigned DLLStorageClass, GlobalVariable::ThreadLocalMode TLM,
718     GlobalVariable::UnnamedAddr UnnamedAddr) {
719   bool IsAlias;
720   if (Lex.getKind() == lltok::kw_alias)
721     IsAlias = true;
722   else if (Lex.getKind() == lltok::kw_ifunc)
723     IsAlias = false;
724   else
725     llvm_unreachable("Not an alias or ifunc!");
726   Lex.Lex();
727 
728   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
729 
730   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
731     return Error(NameLoc, "invalid linkage type for alias");
732 
733   if (!isValidVisibilityForLinkage(Visibility, L))
734     return Error(NameLoc,
735                  "symbol with local linkage must have default visibility");
736 
737   Type *Ty;
738   LocTy ExplicitTypeLoc = Lex.getLoc();
739   if (ParseType(Ty) ||
740       ParseToken(lltok::comma, "expected comma after alias or ifunc's type"))
741     return true;
742 
743   Constant *Aliasee;
744   LocTy AliaseeLoc = Lex.getLoc();
745   if (Lex.getKind() != lltok::kw_bitcast &&
746       Lex.getKind() != lltok::kw_getelementptr &&
747       Lex.getKind() != lltok::kw_addrspacecast &&
748       Lex.getKind() != lltok::kw_inttoptr) {
749     if (ParseGlobalTypeAndValue(Aliasee))
750       return true;
751   } else {
752     // The bitcast dest type is not present, it is implied by the dest type.
753     ValID ID;
754     if (ParseValID(ID))
755       return true;
756     if (ID.Kind != ValID::t_Constant)
757       return Error(AliaseeLoc, "invalid aliasee");
758     Aliasee = ID.ConstantVal;
759   }
760 
761   Type *AliaseeType = Aliasee->getType();
762   auto *PTy = dyn_cast<PointerType>(AliaseeType);
763   if (!PTy)
764     return Error(AliaseeLoc, "An alias or ifunc must have pointer type");
765   unsigned AddrSpace = PTy->getAddressSpace();
766 
767   if (IsAlias && Ty != PTy->getElementType())
768     return Error(
769         ExplicitTypeLoc,
770         "explicit pointee type doesn't match operand's pointee type");
771 
772   if (!IsAlias && !PTy->getElementType()->isFunctionTy())
773     return Error(
774         ExplicitTypeLoc,
775         "explicit pointee type should be a function type");
776 
777   GlobalValue *GVal = nullptr;
778 
779   // See if the alias was forward referenced, if so, prepare to replace the
780   // forward reference.
781   if (!Name.empty()) {
782     GVal = M->getNamedValue(Name);
783     if (GVal) {
784       if (!ForwardRefVals.erase(Name))
785         return Error(NameLoc, "redefinition of global '@" + Name + "'");
786     }
787   } else {
788     auto I = ForwardRefValIDs.find(NumberedVals.size());
789     if (I != ForwardRefValIDs.end()) {
790       GVal = I->second.first;
791       ForwardRefValIDs.erase(I);
792     }
793   }
794 
795   // Okay, create the alias but do not insert it into the module yet.
796   std::unique_ptr<GlobalIndirectSymbol> GA;
797   if (IsAlias)
798     GA.reset(GlobalAlias::create(Ty, AddrSpace,
799                                  (GlobalValue::LinkageTypes)Linkage, Name,
800                                  Aliasee, /*Parent*/ nullptr));
801   else
802     GA.reset(GlobalIFunc::create(Ty, AddrSpace,
803                                  (GlobalValue::LinkageTypes)Linkage, Name,
804                                  Aliasee, /*Parent*/ nullptr));
805   GA->setThreadLocalMode(TLM);
806   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
807   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
808   GA->setUnnamedAddr(UnnamedAddr);
809 
810   if (Name.empty())
811     NumberedVals.push_back(GA.get());
812 
813   if (GVal) {
814     // Verify that types agree.
815     if (GVal->getType() != GA->getType())
816       return Error(
817           ExplicitTypeLoc,
818           "forward reference and definition of alias have different types");
819 
820     // If they agree, just RAUW the old value with the alias and remove the
821     // forward ref info.
822     GVal->replaceAllUsesWith(GA.get());
823     GVal->eraseFromParent();
824   }
825 
826   // Insert into the module, we know its name won't collide now.
827   if (IsAlias)
828     M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
829   else
830     M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
831   assert(GA->getName() == Name && "Should not be a name conflict!");
832 
833   // The module owns this now
834   GA.release();
835 
836   return false;
837 }
838 
839 /// ParseGlobal
840 ///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
841 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
842 ///       OptionalExternallyInitialized GlobalType Type Const
843 ///   ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass
844 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
845 ///       OptionalExternallyInitialized GlobalType Type Const
846 ///
847 /// Everything up to and including OptionalUnnamedAddr has been parsed
848 /// already.
849 ///
850 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
851                            unsigned Linkage, bool HasLinkage,
852                            unsigned Visibility, unsigned DLLStorageClass,
853                            GlobalVariable::ThreadLocalMode TLM,
854                            GlobalVariable::UnnamedAddr UnnamedAddr) {
855   if (!isValidVisibilityForLinkage(Visibility, Linkage))
856     return Error(NameLoc,
857                  "symbol with local linkage must have default visibility");
858 
859   unsigned AddrSpace;
860   bool IsConstant, IsExternallyInitialized;
861   LocTy IsExternallyInitializedLoc;
862   LocTy TyLoc;
863 
864   Type *Ty = nullptr;
865   if (ParseOptionalAddrSpace(AddrSpace) ||
866       ParseOptionalToken(lltok::kw_externally_initialized,
867                          IsExternallyInitialized,
868                          &IsExternallyInitializedLoc) ||
869       ParseGlobalType(IsConstant) ||
870       ParseType(Ty, TyLoc))
871     return true;
872 
873   // If the linkage is specified and is external, then no initializer is
874   // present.
875   Constant *Init = nullptr;
876   if (!HasLinkage ||
877       !GlobalValue::isValidDeclarationLinkage(
878           (GlobalValue::LinkageTypes)Linkage)) {
879     if (ParseGlobalValue(Ty, Init))
880       return true;
881   }
882 
883   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
884     return Error(TyLoc, "invalid type for global variable");
885 
886   GlobalValue *GVal = nullptr;
887 
888   // See if the global was forward referenced, if so, use the global.
889   if (!Name.empty()) {
890     GVal = M->getNamedValue(Name);
891     if (GVal) {
892       if (!ForwardRefVals.erase(Name))
893         return Error(NameLoc, "redefinition of global '@" + Name + "'");
894     }
895   } else {
896     auto I = ForwardRefValIDs.find(NumberedVals.size());
897     if (I != ForwardRefValIDs.end()) {
898       GVal = I->second.first;
899       ForwardRefValIDs.erase(I);
900     }
901   }
902 
903   GlobalVariable *GV;
904   if (!GVal) {
905     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
906                             Name, nullptr, GlobalVariable::NotThreadLocal,
907                             AddrSpace);
908   } else {
909     if (GVal->getValueType() != Ty)
910       return Error(TyLoc,
911             "forward reference and definition of global have different types");
912 
913     GV = cast<GlobalVariable>(GVal);
914 
915     // Move the forward-reference to the correct spot in the module.
916     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
917   }
918 
919   if (Name.empty())
920     NumberedVals.push_back(GV);
921 
922   // Set the parsed properties on the global.
923   if (Init)
924     GV->setInitializer(Init);
925   GV->setConstant(IsConstant);
926   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
927   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
928   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
929   GV->setExternallyInitialized(IsExternallyInitialized);
930   GV->setThreadLocalMode(TLM);
931   GV->setUnnamedAddr(UnnamedAddr);
932 
933   // Parse attributes on the global.
934   while (Lex.getKind() == lltok::comma) {
935     Lex.Lex();
936 
937     if (Lex.getKind() == lltok::kw_section) {
938       Lex.Lex();
939       GV->setSection(Lex.getStrVal());
940       if (ParseToken(lltok::StringConstant, "expected global section string"))
941         return true;
942     } else if (Lex.getKind() == lltok::kw_align) {
943       unsigned Alignment;
944       if (ParseOptionalAlignment(Alignment)) return true;
945       GV->setAlignment(Alignment);
946     } else if (Lex.getKind() == lltok::MetadataVar) {
947       if (ParseGlobalObjectMetadataAttachment(*GV))
948         return true;
949     } else {
950       Comdat *C;
951       if (parseOptionalComdat(Name, C))
952         return true;
953       if (C)
954         GV->setComdat(C);
955       else
956         return TokError("unknown global variable property!");
957     }
958   }
959 
960   return false;
961 }
962 
963 /// ParseUnnamedAttrGrp
964 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
965 bool LLParser::ParseUnnamedAttrGrp() {
966   assert(Lex.getKind() == lltok::kw_attributes);
967   LocTy AttrGrpLoc = Lex.getLoc();
968   Lex.Lex();
969 
970   if (Lex.getKind() != lltok::AttrGrpID)
971     return TokError("expected attribute group id");
972 
973   unsigned VarID = Lex.getUIntVal();
974   std::vector<unsigned> unused;
975   LocTy BuiltinLoc;
976   Lex.Lex();
977 
978   if (ParseToken(lltok::equal, "expected '=' here") ||
979       ParseToken(lltok::lbrace, "expected '{' here") ||
980       ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
981                                  BuiltinLoc) ||
982       ParseToken(lltok::rbrace, "expected end of attribute group"))
983     return true;
984 
985   if (!NumberedAttrBuilders[VarID].hasAttributes())
986     return Error(AttrGrpLoc, "attribute group has no attributes");
987 
988   return false;
989 }
990 
991 /// ParseFnAttributeValuePairs
992 ///   ::= <attr> | <attr> '=' <value>
993 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
994                                           std::vector<unsigned> &FwdRefAttrGrps,
995                                           bool inAttrGrp, LocTy &BuiltinLoc) {
996   bool HaveError = false;
997 
998   B.clear();
999 
1000   while (true) {
1001     lltok::Kind Token = Lex.getKind();
1002     if (Token == lltok::kw_builtin)
1003       BuiltinLoc = Lex.getLoc();
1004     switch (Token) {
1005     default:
1006       if (!inAttrGrp) return HaveError;
1007       return Error(Lex.getLoc(), "unterminated attribute group");
1008     case lltok::rbrace:
1009       // Finished.
1010       return false;
1011 
1012     case lltok::AttrGrpID: {
1013       // Allow a function to reference an attribute group:
1014       //
1015       //   define void @foo() #1 { ... }
1016       if (inAttrGrp)
1017         HaveError |=
1018           Error(Lex.getLoc(),
1019               "cannot have an attribute group reference in an attribute group");
1020 
1021       unsigned AttrGrpNum = Lex.getUIntVal();
1022       if (inAttrGrp) break;
1023 
1024       // Save the reference to the attribute group. We'll fill it in later.
1025       FwdRefAttrGrps.push_back(AttrGrpNum);
1026       break;
1027     }
1028     // Target-dependent attributes:
1029     case lltok::StringConstant: {
1030       if (ParseStringAttribute(B))
1031         return true;
1032       continue;
1033     }
1034 
1035     // Target-independent attributes:
1036     case lltok::kw_align: {
1037       // As a hack, we allow function alignment to be initially parsed as an
1038       // attribute on a function declaration/definition or added to an attribute
1039       // group and later moved to the alignment field.
1040       unsigned Alignment;
1041       if (inAttrGrp) {
1042         Lex.Lex();
1043         if (ParseToken(lltok::equal, "expected '=' here") ||
1044             ParseUInt32(Alignment))
1045           return true;
1046       } else {
1047         if (ParseOptionalAlignment(Alignment))
1048           return true;
1049       }
1050       B.addAlignmentAttr(Alignment);
1051       continue;
1052     }
1053     case lltok::kw_alignstack: {
1054       unsigned Alignment;
1055       if (inAttrGrp) {
1056         Lex.Lex();
1057         if (ParseToken(lltok::equal, "expected '=' here") ||
1058             ParseUInt32(Alignment))
1059           return true;
1060       } else {
1061         if (ParseOptionalStackAlignment(Alignment))
1062           return true;
1063       }
1064       B.addStackAlignmentAttr(Alignment);
1065       continue;
1066     }
1067     case lltok::kw_allocsize: {
1068       unsigned ElemSizeArg;
1069       Optional<unsigned> NumElemsArg;
1070       // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1071       if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1072         return true;
1073       B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1074       continue;
1075     }
1076     case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1077     case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1078     case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1079     case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1080     case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1081     case lltok::kw_inaccessiblememonly:
1082       B.addAttribute(Attribute::InaccessibleMemOnly); break;
1083     case lltok::kw_inaccessiblemem_or_argmemonly:
1084       B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1085     case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1086     case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1087     case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1088     case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1089     case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1090     case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1091     case lltok::kw_noimplicitfloat:
1092       B.addAttribute(Attribute::NoImplicitFloat); break;
1093     case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1094     case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1095     case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1096     case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1097     case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1098     case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1099     case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1100     case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1101     case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1102     case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1103     case lltok::kw_returns_twice:
1104       B.addAttribute(Attribute::ReturnsTwice); break;
1105     case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1106     case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1107     case lltok::kw_sspstrong:
1108       B.addAttribute(Attribute::StackProtectStrong); break;
1109     case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1110     case lltok::kw_sanitize_address:
1111       B.addAttribute(Attribute::SanitizeAddress); break;
1112     case lltok::kw_sanitize_thread:
1113       B.addAttribute(Attribute::SanitizeThread); break;
1114     case lltok::kw_sanitize_memory:
1115       B.addAttribute(Attribute::SanitizeMemory); break;
1116     case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1117     case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1118 
1119     // Error handling.
1120     case lltok::kw_inreg:
1121     case lltok::kw_signext:
1122     case lltok::kw_zeroext:
1123       HaveError |=
1124         Error(Lex.getLoc(),
1125               "invalid use of attribute on a function");
1126       break;
1127     case lltok::kw_byval:
1128     case lltok::kw_dereferenceable:
1129     case lltok::kw_dereferenceable_or_null:
1130     case lltok::kw_inalloca:
1131     case lltok::kw_nest:
1132     case lltok::kw_noalias:
1133     case lltok::kw_nocapture:
1134     case lltok::kw_nonnull:
1135     case lltok::kw_returned:
1136     case lltok::kw_sret:
1137     case lltok::kw_swifterror:
1138     case lltok::kw_swiftself:
1139       HaveError |=
1140         Error(Lex.getLoc(),
1141               "invalid use of parameter-only attribute on a function");
1142       break;
1143     }
1144 
1145     Lex.Lex();
1146   }
1147 }
1148 
1149 //===----------------------------------------------------------------------===//
1150 // GlobalValue Reference/Resolution Routines.
1151 //===----------------------------------------------------------------------===//
1152 
1153 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1154                                               const std::string &Name) {
1155   if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1156     return Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
1157   else
1158     return new GlobalVariable(*M, PTy->getElementType(), false,
1159                               GlobalValue::ExternalWeakLinkage, nullptr, Name,
1160                               nullptr, GlobalVariable::NotThreadLocal,
1161                               PTy->getAddressSpace());
1162 }
1163 
1164 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1165 /// forward reference record if needed.  This can return null if the value
1166 /// exists but does not have the right type.
1167 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
1168                                     LocTy Loc) {
1169   PointerType *PTy = dyn_cast<PointerType>(Ty);
1170   if (!PTy) {
1171     Error(Loc, "global variable reference must have pointer type");
1172     return nullptr;
1173   }
1174 
1175   // Look this name up in the normal function symbol table.
1176   GlobalValue *Val =
1177     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1178 
1179   // If this is a forward reference for the value, see if we already created a
1180   // forward ref record.
1181   if (!Val) {
1182     auto I = ForwardRefVals.find(Name);
1183     if (I != ForwardRefVals.end())
1184       Val = I->second.first;
1185   }
1186 
1187   // If we have the value in the symbol table or fwd-ref table, return it.
1188   if (Val) {
1189     if (Val->getType() == Ty) return Val;
1190     Error(Loc, "'@" + Name + "' defined with type '" +
1191           getTypeString(Val->getType()) + "'");
1192     return nullptr;
1193   }
1194 
1195   // Otherwise, create a new forward reference for this value and remember it.
1196   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1197   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1198   return FwdVal;
1199 }
1200 
1201 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
1202   PointerType *PTy = dyn_cast<PointerType>(Ty);
1203   if (!PTy) {
1204     Error(Loc, "global variable reference must have pointer type");
1205     return nullptr;
1206   }
1207 
1208   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1209 
1210   // If this is a forward reference for the value, see if we already created a
1211   // forward ref record.
1212   if (!Val) {
1213     auto I = ForwardRefValIDs.find(ID);
1214     if (I != ForwardRefValIDs.end())
1215       Val = I->second.first;
1216   }
1217 
1218   // If we have the value in the symbol table or fwd-ref table, return it.
1219   if (Val) {
1220     if (Val->getType() == Ty) return Val;
1221     Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
1222           getTypeString(Val->getType()) + "'");
1223     return nullptr;
1224   }
1225 
1226   // Otherwise, create a new forward reference for this value and remember it.
1227   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1228   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1229   return FwdVal;
1230 }
1231 
1232 //===----------------------------------------------------------------------===//
1233 // Comdat Reference/Resolution Routines.
1234 //===----------------------------------------------------------------------===//
1235 
1236 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1237   // Look this name up in the comdat symbol table.
1238   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1239   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1240   if (I != ComdatSymTab.end())
1241     return &I->second;
1242 
1243   // Otherwise, create a new forward reference for this value and remember it.
1244   Comdat *C = M->getOrInsertComdat(Name);
1245   ForwardRefComdats[Name] = Loc;
1246   return C;
1247 }
1248 
1249 //===----------------------------------------------------------------------===//
1250 // Helper Routines.
1251 //===----------------------------------------------------------------------===//
1252 
1253 /// ParseToken - If the current token has the specified kind, eat it and return
1254 /// success.  Otherwise, emit the specified error and return failure.
1255 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1256   if (Lex.getKind() != T)
1257     return TokError(ErrMsg);
1258   Lex.Lex();
1259   return false;
1260 }
1261 
1262 /// ParseStringConstant
1263 ///   ::= StringConstant
1264 bool LLParser::ParseStringConstant(std::string &Result) {
1265   if (Lex.getKind() != lltok::StringConstant)
1266     return TokError("expected string constant");
1267   Result = Lex.getStrVal();
1268   Lex.Lex();
1269   return false;
1270 }
1271 
1272 /// ParseUInt32
1273 ///   ::= uint32
1274 bool LLParser::ParseUInt32(uint32_t &Val) {
1275   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1276     return TokError("expected integer");
1277   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1278   if (Val64 != unsigned(Val64))
1279     return TokError("expected 32-bit integer (too large)");
1280   Val = Val64;
1281   Lex.Lex();
1282   return false;
1283 }
1284 
1285 /// ParseUInt64
1286 ///   ::= uint64
1287 bool LLParser::ParseUInt64(uint64_t &Val) {
1288   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1289     return TokError("expected integer");
1290   Val = Lex.getAPSIntVal().getLimitedValue();
1291   Lex.Lex();
1292   return false;
1293 }
1294 
1295 /// ParseTLSModel
1296 ///   := 'localdynamic'
1297 ///   := 'initialexec'
1298 ///   := 'localexec'
1299 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1300   switch (Lex.getKind()) {
1301     default:
1302       return TokError("expected localdynamic, initialexec or localexec");
1303     case lltok::kw_localdynamic:
1304       TLM = GlobalVariable::LocalDynamicTLSModel;
1305       break;
1306     case lltok::kw_initialexec:
1307       TLM = GlobalVariable::InitialExecTLSModel;
1308       break;
1309     case lltok::kw_localexec:
1310       TLM = GlobalVariable::LocalExecTLSModel;
1311       break;
1312   }
1313 
1314   Lex.Lex();
1315   return false;
1316 }
1317 
1318 /// ParseOptionalThreadLocal
1319 ///   := /*empty*/
1320 ///   := 'thread_local'
1321 ///   := 'thread_local' '(' tlsmodel ')'
1322 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1323   TLM = GlobalVariable::NotThreadLocal;
1324   if (!EatIfPresent(lltok::kw_thread_local))
1325     return false;
1326 
1327   TLM = GlobalVariable::GeneralDynamicTLSModel;
1328   if (Lex.getKind() == lltok::lparen) {
1329     Lex.Lex();
1330     return ParseTLSModel(TLM) ||
1331       ParseToken(lltok::rparen, "expected ')' after thread local model");
1332   }
1333   return false;
1334 }
1335 
1336 /// ParseOptionalAddrSpace
1337 ///   := /*empty*/
1338 ///   := 'addrspace' '(' uint32 ')'
1339 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
1340   AddrSpace = 0;
1341   if (!EatIfPresent(lltok::kw_addrspace))
1342     return false;
1343   return ParseToken(lltok::lparen, "expected '(' in address space") ||
1344          ParseUInt32(AddrSpace) ||
1345          ParseToken(lltok::rparen, "expected ')' in address space");
1346 }
1347 
1348 /// ParseStringAttribute
1349 ///   := StringConstant
1350 ///   := StringConstant '=' StringConstant
1351 bool LLParser::ParseStringAttribute(AttrBuilder &B) {
1352   std::string Attr = Lex.getStrVal();
1353   Lex.Lex();
1354   std::string Val;
1355   if (EatIfPresent(lltok::equal) && ParseStringConstant(Val))
1356     return true;
1357   B.addAttribute(Attr, Val);
1358   return false;
1359 }
1360 
1361 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1362 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1363   bool HaveError = false;
1364 
1365   B.clear();
1366 
1367   while (true) {
1368     lltok::Kind Token = Lex.getKind();
1369     switch (Token) {
1370     default:  // End of attributes.
1371       return HaveError;
1372     case lltok::StringConstant: {
1373       if (ParseStringAttribute(B))
1374         return true;
1375       continue;
1376     }
1377     case lltok::kw_align: {
1378       unsigned Alignment;
1379       if (ParseOptionalAlignment(Alignment))
1380         return true;
1381       B.addAlignmentAttr(Alignment);
1382       continue;
1383     }
1384     case lltok::kw_byval:           B.addAttribute(Attribute::ByVal); break;
1385     case lltok::kw_dereferenceable: {
1386       uint64_t Bytes;
1387       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1388         return true;
1389       B.addDereferenceableAttr(Bytes);
1390       continue;
1391     }
1392     case lltok::kw_dereferenceable_or_null: {
1393       uint64_t Bytes;
1394       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1395         return true;
1396       B.addDereferenceableOrNullAttr(Bytes);
1397       continue;
1398     }
1399     case lltok::kw_inalloca:        B.addAttribute(Attribute::InAlloca); break;
1400     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1401     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1402     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1403     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1404     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1405     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1406     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1407     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1408     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1409     case lltok::kw_sret:            B.addAttribute(Attribute::StructRet); break;
1410     case lltok::kw_swifterror:      B.addAttribute(Attribute::SwiftError); break;
1411     case lltok::kw_swiftself:       B.addAttribute(Attribute::SwiftSelf); break;
1412     case lltok::kw_writeonly:       B.addAttribute(Attribute::WriteOnly); break;
1413     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1414 
1415     case lltok::kw_alignstack:
1416     case lltok::kw_alwaysinline:
1417     case lltok::kw_argmemonly:
1418     case lltok::kw_builtin:
1419     case lltok::kw_inlinehint:
1420     case lltok::kw_jumptable:
1421     case lltok::kw_minsize:
1422     case lltok::kw_naked:
1423     case lltok::kw_nobuiltin:
1424     case lltok::kw_noduplicate:
1425     case lltok::kw_noimplicitfloat:
1426     case lltok::kw_noinline:
1427     case lltok::kw_nonlazybind:
1428     case lltok::kw_noredzone:
1429     case lltok::kw_noreturn:
1430     case lltok::kw_nounwind:
1431     case lltok::kw_optnone:
1432     case lltok::kw_optsize:
1433     case lltok::kw_returns_twice:
1434     case lltok::kw_sanitize_address:
1435     case lltok::kw_sanitize_memory:
1436     case lltok::kw_sanitize_thread:
1437     case lltok::kw_ssp:
1438     case lltok::kw_sspreq:
1439     case lltok::kw_sspstrong:
1440     case lltok::kw_safestack:
1441     case lltok::kw_uwtable:
1442       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1443       break;
1444     }
1445 
1446     Lex.Lex();
1447   }
1448 }
1449 
1450 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1451 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1452   bool HaveError = false;
1453 
1454   B.clear();
1455 
1456   while (true) {
1457     lltok::Kind Token = Lex.getKind();
1458     switch (Token) {
1459     default:  // End of attributes.
1460       return HaveError;
1461     case lltok::StringConstant: {
1462       if (ParseStringAttribute(B))
1463         return true;
1464       continue;
1465     }
1466     case lltok::kw_dereferenceable: {
1467       uint64_t Bytes;
1468       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1469         return true;
1470       B.addDereferenceableAttr(Bytes);
1471       continue;
1472     }
1473     case lltok::kw_dereferenceable_or_null: {
1474       uint64_t Bytes;
1475       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1476         return true;
1477       B.addDereferenceableOrNullAttr(Bytes);
1478       continue;
1479     }
1480     case lltok::kw_align: {
1481       unsigned Alignment;
1482       if (ParseOptionalAlignment(Alignment))
1483         return true;
1484       B.addAlignmentAttr(Alignment);
1485       continue;
1486     }
1487     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1488     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1489     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1490     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1491     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1492 
1493     // Error handling.
1494     case lltok::kw_byval:
1495     case lltok::kw_inalloca:
1496     case lltok::kw_nest:
1497     case lltok::kw_nocapture:
1498     case lltok::kw_returned:
1499     case lltok::kw_sret:
1500     case lltok::kw_swifterror:
1501     case lltok::kw_swiftself:
1502       HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1503       break;
1504 
1505     case lltok::kw_alignstack:
1506     case lltok::kw_alwaysinline:
1507     case lltok::kw_argmemonly:
1508     case lltok::kw_builtin:
1509     case lltok::kw_cold:
1510     case lltok::kw_inlinehint:
1511     case lltok::kw_jumptable:
1512     case lltok::kw_minsize:
1513     case lltok::kw_naked:
1514     case lltok::kw_nobuiltin:
1515     case lltok::kw_noduplicate:
1516     case lltok::kw_noimplicitfloat:
1517     case lltok::kw_noinline:
1518     case lltok::kw_nonlazybind:
1519     case lltok::kw_noredzone:
1520     case lltok::kw_noreturn:
1521     case lltok::kw_nounwind:
1522     case lltok::kw_optnone:
1523     case lltok::kw_optsize:
1524     case lltok::kw_returns_twice:
1525     case lltok::kw_sanitize_address:
1526     case lltok::kw_sanitize_memory:
1527     case lltok::kw_sanitize_thread:
1528     case lltok::kw_ssp:
1529     case lltok::kw_sspreq:
1530     case lltok::kw_sspstrong:
1531     case lltok::kw_safestack:
1532     case lltok::kw_uwtable:
1533       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1534       break;
1535 
1536     case lltok::kw_readnone:
1537     case lltok::kw_readonly:
1538       HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1539     }
1540 
1541     Lex.Lex();
1542   }
1543 }
1544 
1545 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1546   HasLinkage = true;
1547   switch (Kind) {
1548   default:
1549     HasLinkage = false;
1550     return GlobalValue::ExternalLinkage;
1551   case lltok::kw_private:
1552     return GlobalValue::PrivateLinkage;
1553   case lltok::kw_internal:
1554     return GlobalValue::InternalLinkage;
1555   case lltok::kw_weak:
1556     return GlobalValue::WeakAnyLinkage;
1557   case lltok::kw_weak_odr:
1558     return GlobalValue::WeakODRLinkage;
1559   case lltok::kw_linkonce:
1560     return GlobalValue::LinkOnceAnyLinkage;
1561   case lltok::kw_linkonce_odr:
1562     return GlobalValue::LinkOnceODRLinkage;
1563   case lltok::kw_available_externally:
1564     return GlobalValue::AvailableExternallyLinkage;
1565   case lltok::kw_appending:
1566     return GlobalValue::AppendingLinkage;
1567   case lltok::kw_common:
1568     return GlobalValue::CommonLinkage;
1569   case lltok::kw_extern_weak:
1570     return GlobalValue::ExternalWeakLinkage;
1571   case lltok::kw_external:
1572     return GlobalValue::ExternalLinkage;
1573   }
1574 }
1575 
1576 /// ParseOptionalLinkage
1577 ///   ::= /*empty*/
1578 ///   ::= 'private'
1579 ///   ::= 'internal'
1580 ///   ::= 'weak'
1581 ///   ::= 'weak_odr'
1582 ///   ::= 'linkonce'
1583 ///   ::= 'linkonce_odr'
1584 ///   ::= 'available_externally'
1585 ///   ::= 'appending'
1586 ///   ::= 'common'
1587 ///   ::= 'extern_weak'
1588 ///   ::= 'external'
1589 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1590                                     unsigned &Visibility,
1591                                     unsigned &DLLStorageClass) {
1592   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1593   if (HasLinkage)
1594     Lex.Lex();
1595   ParseOptionalVisibility(Visibility);
1596   ParseOptionalDLLStorageClass(DLLStorageClass);
1597   return false;
1598 }
1599 
1600 /// ParseOptionalVisibility
1601 ///   ::= /*empty*/
1602 ///   ::= 'default'
1603 ///   ::= 'hidden'
1604 ///   ::= 'protected'
1605 ///
1606 void LLParser::ParseOptionalVisibility(unsigned &Res) {
1607   switch (Lex.getKind()) {
1608   default:
1609     Res = GlobalValue::DefaultVisibility;
1610     return;
1611   case lltok::kw_default:
1612     Res = GlobalValue::DefaultVisibility;
1613     break;
1614   case lltok::kw_hidden:
1615     Res = GlobalValue::HiddenVisibility;
1616     break;
1617   case lltok::kw_protected:
1618     Res = GlobalValue::ProtectedVisibility;
1619     break;
1620   }
1621   Lex.Lex();
1622 }
1623 
1624 /// ParseOptionalDLLStorageClass
1625 ///   ::= /*empty*/
1626 ///   ::= 'dllimport'
1627 ///   ::= 'dllexport'
1628 ///
1629 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
1630   switch (Lex.getKind()) {
1631   default:
1632     Res = GlobalValue::DefaultStorageClass;
1633     return;
1634   case lltok::kw_dllimport:
1635     Res = GlobalValue::DLLImportStorageClass;
1636     break;
1637   case lltok::kw_dllexport:
1638     Res = GlobalValue::DLLExportStorageClass;
1639     break;
1640   }
1641   Lex.Lex();
1642 }
1643 
1644 /// ParseOptionalCallingConv
1645 ///   ::= /*empty*/
1646 ///   ::= 'ccc'
1647 ///   ::= 'fastcc'
1648 ///   ::= 'intel_ocl_bicc'
1649 ///   ::= 'coldcc'
1650 ///   ::= 'x86_stdcallcc'
1651 ///   ::= 'x86_fastcallcc'
1652 ///   ::= 'x86_thiscallcc'
1653 ///   ::= 'x86_vectorcallcc'
1654 ///   ::= 'arm_apcscc'
1655 ///   ::= 'arm_aapcscc'
1656 ///   ::= 'arm_aapcs_vfpcc'
1657 ///   ::= 'msp430_intrcc'
1658 ///   ::= 'avr_intrcc'
1659 ///   ::= 'avr_signalcc'
1660 ///   ::= 'ptx_kernel'
1661 ///   ::= 'ptx_device'
1662 ///   ::= 'spir_func'
1663 ///   ::= 'spir_kernel'
1664 ///   ::= 'x86_64_sysvcc'
1665 ///   ::= 'x86_64_win64cc'
1666 ///   ::= 'webkit_jscc'
1667 ///   ::= 'anyregcc'
1668 ///   ::= 'preserve_mostcc'
1669 ///   ::= 'preserve_allcc'
1670 ///   ::= 'ghccc'
1671 ///   ::= 'swiftcc'
1672 ///   ::= 'x86_intrcc'
1673 ///   ::= 'hhvmcc'
1674 ///   ::= 'hhvm_ccc'
1675 ///   ::= 'cxx_fast_tlscc'
1676 ///   ::= 'amdgpu_vs'
1677 ///   ::= 'amdgpu_tcs'
1678 ///   ::= 'amdgpu_tes'
1679 ///   ::= 'amdgpu_gs'
1680 ///   ::= 'amdgpu_ps'
1681 ///   ::= 'amdgpu_cs'
1682 ///   ::= 'amdgpu_kernel'
1683 ///   ::= 'cc' UINT
1684 ///
1685 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
1686   switch (Lex.getKind()) {
1687   default:                       CC = CallingConv::C; return false;
1688   case lltok::kw_ccc:            CC = CallingConv::C; break;
1689   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1690   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1691   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1692   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1693   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1694   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
1695   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1696   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1697   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1698   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1699   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
1700   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
1701   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1702   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1703   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
1704   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
1705   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1706   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
1707   case lltok::kw_x86_64_win64cc: CC = CallingConv::X86_64_Win64; break;
1708   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
1709   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
1710   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
1711   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
1712   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
1713   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
1714   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
1715   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
1716   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
1717   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
1718   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
1719   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
1720   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
1721   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
1722   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
1723   case lltok::kw_cc: {
1724       Lex.Lex();
1725       return ParseUInt32(CC);
1726     }
1727   }
1728 
1729   Lex.Lex();
1730   return false;
1731 }
1732 
1733 /// ParseMetadataAttachment
1734 ///   ::= !dbg !42
1735 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
1736   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
1737 
1738   std::string Name = Lex.getStrVal();
1739   Kind = M->getMDKindID(Name);
1740   Lex.Lex();
1741 
1742   return ParseMDNode(MD);
1743 }
1744 
1745 /// ParseInstructionMetadata
1746 ///   ::= !dbg !42 (',' !dbg !57)*
1747 bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
1748   do {
1749     if (Lex.getKind() != lltok::MetadataVar)
1750       return TokError("expected metadata after comma");
1751 
1752     unsigned MDK;
1753     MDNode *N;
1754     if (ParseMetadataAttachment(MDK, N))
1755       return true;
1756 
1757     Inst.setMetadata(MDK, N);
1758     if (MDK == LLVMContext::MD_tbaa)
1759       InstsWithTBAATag.push_back(&Inst);
1760 
1761     // If this is the end of the list, we're done.
1762   } while (EatIfPresent(lltok::comma));
1763   return false;
1764 }
1765 
1766 /// ParseGlobalObjectMetadataAttachment
1767 ///   ::= !dbg !57
1768 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) {
1769   unsigned MDK;
1770   MDNode *N;
1771   if (ParseMetadataAttachment(MDK, N))
1772     return true;
1773 
1774   GO.addMetadata(MDK, *N);
1775   return false;
1776 }
1777 
1778 /// ParseOptionalFunctionMetadata
1779 ///   ::= (!dbg !57)*
1780 bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
1781   while (Lex.getKind() == lltok::MetadataVar)
1782     if (ParseGlobalObjectMetadataAttachment(F))
1783       return true;
1784   return false;
1785 }
1786 
1787 /// ParseOptionalAlignment
1788 ///   ::= /* empty */
1789 ///   ::= 'align' 4
1790 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1791   Alignment = 0;
1792   if (!EatIfPresent(lltok::kw_align))
1793     return false;
1794   LocTy AlignLoc = Lex.getLoc();
1795   if (ParseUInt32(Alignment)) return true;
1796   if (!isPowerOf2_32(Alignment))
1797     return Error(AlignLoc, "alignment is not a power of two");
1798   if (Alignment > Value::MaximumAlignment)
1799     return Error(AlignLoc, "huge alignments are not supported yet");
1800   return false;
1801 }
1802 
1803 /// ParseOptionalDerefAttrBytes
1804 ///   ::= /* empty */
1805 ///   ::= AttrKind '(' 4 ')'
1806 ///
1807 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
1808 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
1809                                            uint64_t &Bytes) {
1810   assert((AttrKind == lltok::kw_dereferenceable ||
1811           AttrKind == lltok::kw_dereferenceable_or_null) &&
1812          "contract!");
1813 
1814   Bytes = 0;
1815   if (!EatIfPresent(AttrKind))
1816     return false;
1817   LocTy ParenLoc = Lex.getLoc();
1818   if (!EatIfPresent(lltok::lparen))
1819     return Error(ParenLoc, "expected '('");
1820   LocTy DerefLoc = Lex.getLoc();
1821   if (ParseUInt64(Bytes)) return true;
1822   ParenLoc = Lex.getLoc();
1823   if (!EatIfPresent(lltok::rparen))
1824     return Error(ParenLoc, "expected ')'");
1825   if (!Bytes)
1826     return Error(DerefLoc, "dereferenceable bytes must be non-zero");
1827   return false;
1828 }
1829 
1830 /// ParseOptionalCommaAlign
1831 ///   ::=
1832 ///   ::= ',' align 4
1833 ///
1834 /// This returns with AteExtraComma set to true if it ate an excess comma at the
1835 /// end.
1836 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
1837                                        bool &AteExtraComma) {
1838   AteExtraComma = false;
1839   while (EatIfPresent(lltok::comma)) {
1840     // Metadata at the end is an early exit.
1841     if (Lex.getKind() == lltok::MetadataVar) {
1842       AteExtraComma = true;
1843       return false;
1844     }
1845 
1846     if (Lex.getKind() != lltok::kw_align)
1847       return Error(Lex.getLoc(), "expected metadata or 'align'");
1848 
1849     if (ParseOptionalAlignment(Alignment)) return true;
1850   }
1851 
1852   return false;
1853 }
1854 
1855 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
1856                                        Optional<unsigned> &HowManyArg) {
1857   Lex.Lex();
1858 
1859   auto StartParen = Lex.getLoc();
1860   if (!EatIfPresent(lltok::lparen))
1861     return Error(StartParen, "expected '('");
1862 
1863   if (ParseUInt32(BaseSizeArg))
1864     return true;
1865 
1866   if (EatIfPresent(lltok::comma)) {
1867     auto HowManyAt = Lex.getLoc();
1868     unsigned HowMany;
1869     if (ParseUInt32(HowMany))
1870       return true;
1871     if (HowMany == BaseSizeArg)
1872       return Error(HowManyAt,
1873                    "'allocsize' indices can't refer to the same parameter");
1874     HowManyArg = HowMany;
1875   } else
1876     HowManyArg = None;
1877 
1878   auto EndParen = Lex.getLoc();
1879   if (!EatIfPresent(lltok::rparen))
1880     return Error(EndParen, "expected ')'");
1881   return false;
1882 }
1883 
1884 /// ParseScopeAndOrdering
1885 ///   if isAtomic: ::= 'singlethread'? AtomicOrdering
1886 ///   else: ::=
1887 ///
1888 /// This sets Scope and Ordering to the parsed values.
1889 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope,
1890                                      AtomicOrdering &Ordering) {
1891   if (!isAtomic)
1892     return false;
1893 
1894   Scope = CrossThread;
1895   if (EatIfPresent(lltok::kw_singlethread))
1896     Scope = SingleThread;
1897 
1898   return ParseOrdering(Ordering);
1899 }
1900 
1901 /// ParseOrdering
1902 ///   ::= AtomicOrdering
1903 ///
1904 /// This sets Ordering to the parsed value.
1905 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
1906   switch (Lex.getKind()) {
1907   default: return TokError("Expected ordering on atomic instruction");
1908   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
1909   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
1910   // Not specified yet:
1911   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
1912   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
1913   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
1914   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
1915   case lltok::kw_seq_cst:
1916     Ordering = AtomicOrdering::SequentiallyConsistent;
1917     break;
1918   }
1919   Lex.Lex();
1920   return false;
1921 }
1922 
1923 /// ParseOptionalStackAlignment
1924 ///   ::= /* empty */
1925 ///   ::= 'alignstack' '(' 4 ')'
1926 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
1927   Alignment = 0;
1928   if (!EatIfPresent(lltok::kw_alignstack))
1929     return false;
1930   LocTy ParenLoc = Lex.getLoc();
1931   if (!EatIfPresent(lltok::lparen))
1932     return Error(ParenLoc, "expected '('");
1933   LocTy AlignLoc = Lex.getLoc();
1934   if (ParseUInt32(Alignment)) return true;
1935   ParenLoc = Lex.getLoc();
1936   if (!EatIfPresent(lltok::rparen))
1937     return Error(ParenLoc, "expected ')'");
1938   if (!isPowerOf2_32(Alignment))
1939     return Error(AlignLoc, "stack alignment is not a power of two");
1940   return false;
1941 }
1942 
1943 /// ParseIndexList - This parses the index list for an insert/extractvalue
1944 /// instruction.  This sets AteExtraComma in the case where we eat an extra
1945 /// comma at the end of the line and find that it is followed by metadata.
1946 /// Clients that don't allow metadata can call the version of this function that
1947 /// only takes one argument.
1948 ///
1949 /// ParseIndexList
1950 ///    ::=  (',' uint32)+
1951 ///
1952 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
1953                               bool &AteExtraComma) {
1954   AteExtraComma = false;
1955 
1956   if (Lex.getKind() != lltok::comma)
1957     return TokError("expected ',' as start of index list");
1958 
1959   while (EatIfPresent(lltok::comma)) {
1960     if (Lex.getKind() == lltok::MetadataVar) {
1961       if (Indices.empty()) return TokError("expected index");
1962       AteExtraComma = true;
1963       return false;
1964     }
1965     unsigned Idx = 0;
1966     if (ParseUInt32(Idx)) return true;
1967     Indices.push_back(Idx);
1968   }
1969 
1970   return false;
1971 }
1972 
1973 //===----------------------------------------------------------------------===//
1974 // Type Parsing.
1975 //===----------------------------------------------------------------------===//
1976 
1977 /// ParseType - Parse a type.
1978 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
1979   SMLoc TypeLoc = Lex.getLoc();
1980   switch (Lex.getKind()) {
1981   default:
1982     return TokError(Msg);
1983   case lltok::Type:
1984     // Type ::= 'float' | 'void' (etc)
1985     Result = Lex.getTyVal();
1986     Lex.Lex();
1987     break;
1988   case lltok::lbrace:
1989     // Type ::= StructType
1990     if (ParseAnonStructType(Result, false))
1991       return true;
1992     break;
1993   case lltok::lsquare:
1994     // Type ::= '[' ... ']'
1995     Lex.Lex(); // eat the lsquare.
1996     if (ParseArrayVectorType(Result, false))
1997       return true;
1998     break;
1999   case lltok::less: // Either vector or packed struct.
2000     // Type ::= '<' ... '>'
2001     Lex.Lex();
2002     if (Lex.getKind() == lltok::lbrace) {
2003       if (ParseAnonStructType(Result, true) ||
2004           ParseToken(lltok::greater, "expected '>' at end of packed struct"))
2005         return true;
2006     } else if (ParseArrayVectorType(Result, true))
2007       return true;
2008     break;
2009   case lltok::LocalVar: {
2010     // Type ::= %foo
2011     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2012 
2013     // If the type hasn't been defined yet, create a forward definition and
2014     // remember where that forward def'n was seen (in case it never is defined).
2015     if (!Entry.first) {
2016       Entry.first = StructType::create(Context, Lex.getStrVal());
2017       Entry.second = Lex.getLoc();
2018     }
2019     Result = Entry.first;
2020     Lex.Lex();
2021     break;
2022   }
2023 
2024   case lltok::LocalVarID: {
2025     // Type ::= %4
2026     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2027 
2028     // If the type hasn't been defined yet, create a forward definition and
2029     // remember where that forward def'n was seen (in case it never is defined).
2030     if (!Entry.first) {
2031       Entry.first = StructType::create(Context);
2032       Entry.second = Lex.getLoc();
2033     }
2034     Result = Entry.first;
2035     Lex.Lex();
2036     break;
2037   }
2038   }
2039 
2040   // Parse the type suffixes.
2041   while (true) {
2042     switch (Lex.getKind()) {
2043     // End of type.
2044     default:
2045       if (!AllowVoid && Result->isVoidTy())
2046         return Error(TypeLoc, "void type only allowed for function results");
2047       return false;
2048 
2049     // Type ::= Type '*'
2050     case lltok::star:
2051       if (Result->isLabelTy())
2052         return TokError("basic block pointers are invalid");
2053       if (Result->isVoidTy())
2054         return TokError("pointers to void are invalid - use i8* instead");
2055       if (!PointerType::isValidElementType(Result))
2056         return TokError("pointer to this type is invalid");
2057       Result = PointerType::getUnqual(Result);
2058       Lex.Lex();
2059       break;
2060 
2061     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2062     case lltok::kw_addrspace: {
2063       if (Result->isLabelTy())
2064         return TokError("basic block pointers are invalid");
2065       if (Result->isVoidTy())
2066         return TokError("pointers to void are invalid; use i8* instead");
2067       if (!PointerType::isValidElementType(Result))
2068         return TokError("pointer to this type is invalid");
2069       unsigned AddrSpace;
2070       if (ParseOptionalAddrSpace(AddrSpace) ||
2071           ParseToken(lltok::star, "expected '*' in address space"))
2072         return true;
2073 
2074       Result = PointerType::get(Result, AddrSpace);
2075       break;
2076     }
2077 
2078     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2079     case lltok::lparen:
2080       if (ParseFunctionType(Result))
2081         return true;
2082       break;
2083     }
2084   }
2085 }
2086 
2087 /// ParseParameterList
2088 ///    ::= '(' ')'
2089 ///    ::= '(' Arg (',' Arg)* ')'
2090 ///  Arg
2091 ///    ::= Type OptionalAttributes Value OptionalAttributes
2092 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2093                                   PerFunctionState &PFS, bool IsMustTailCall,
2094                                   bool InVarArgsFunc) {
2095   if (ParseToken(lltok::lparen, "expected '(' in call"))
2096     return true;
2097 
2098   unsigned AttrIndex = 1;
2099   while (Lex.getKind() != lltok::rparen) {
2100     // If this isn't the first argument, we need a comma.
2101     if (!ArgList.empty() &&
2102         ParseToken(lltok::comma, "expected ',' in argument list"))
2103       return true;
2104 
2105     // Parse an ellipsis if this is a musttail call in a variadic function.
2106     if (Lex.getKind() == lltok::dotdotdot) {
2107       const char *Msg = "unexpected ellipsis in argument list for ";
2108       if (!IsMustTailCall)
2109         return TokError(Twine(Msg) + "non-musttail call");
2110       if (!InVarArgsFunc)
2111         return TokError(Twine(Msg) + "musttail call in non-varargs function");
2112       Lex.Lex();  // Lex the '...', it is purely for readability.
2113       return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2114     }
2115 
2116     // Parse the argument.
2117     LocTy ArgLoc;
2118     Type *ArgTy = nullptr;
2119     AttrBuilder ArgAttrs;
2120     Value *V;
2121     if (ParseType(ArgTy, ArgLoc))
2122       return true;
2123 
2124     if (ArgTy->isMetadataTy()) {
2125       if (ParseMetadataAsValue(V, PFS))
2126         return true;
2127     } else {
2128       // Otherwise, handle normal operands.
2129       if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
2130         return true;
2131     }
2132     ArgList.push_back(ParamInfo(ArgLoc, V, AttributeSet::get(V->getContext(),
2133                                                              AttrIndex++,
2134                                                              ArgAttrs)));
2135   }
2136 
2137   if (IsMustTailCall && InVarArgsFunc)
2138     return TokError("expected '...' at end of argument list for musttail call "
2139                     "in varargs function");
2140 
2141   Lex.Lex();  // Lex the ')'.
2142   return false;
2143 }
2144 
2145 /// ParseOptionalOperandBundles
2146 ///    ::= /*empty*/
2147 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2148 ///
2149 /// OperandBundle
2150 ///    ::= bundle-tag '(' ')'
2151 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2152 ///
2153 /// bundle-tag ::= String Constant
2154 bool LLParser::ParseOptionalOperandBundles(
2155     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2156   LocTy BeginLoc = Lex.getLoc();
2157   if (!EatIfPresent(lltok::lsquare))
2158     return false;
2159 
2160   while (Lex.getKind() != lltok::rsquare) {
2161     // If this isn't the first operand bundle, we need a comma.
2162     if (!BundleList.empty() &&
2163         ParseToken(lltok::comma, "expected ',' in input list"))
2164       return true;
2165 
2166     std::string Tag;
2167     if (ParseStringConstant(Tag))
2168       return true;
2169 
2170     if (ParseToken(lltok::lparen, "expected '(' in operand bundle"))
2171       return true;
2172 
2173     std::vector<Value *> Inputs;
2174     while (Lex.getKind() != lltok::rparen) {
2175       // If this isn't the first input, we need a comma.
2176       if (!Inputs.empty() &&
2177           ParseToken(lltok::comma, "expected ',' in input list"))
2178         return true;
2179 
2180       Type *Ty = nullptr;
2181       Value *Input = nullptr;
2182       if (ParseType(Ty) || ParseValue(Ty, Input, PFS))
2183         return true;
2184       Inputs.push_back(Input);
2185     }
2186 
2187     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2188 
2189     Lex.Lex(); // Lex the ')'.
2190   }
2191 
2192   if (BundleList.empty())
2193     return Error(BeginLoc, "operand bundle set must not be empty");
2194 
2195   Lex.Lex(); // Lex the ']'.
2196   return false;
2197 }
2198 
2199 /// ParseArgumentList - Parse the argument list for a function type or function
2200 /// prototype.
2201 ///   ::= '(' ArgTypeListI ')'
2202 /// ArgTypeListI
2203 ///   ::= /*empty*/
2204 ///   ::= '...'
2205 ///   ::= ArgTypeList ',' '...'
2206 ///   ::= ArgType (',' ArgType)*
2207 ///
2208 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2209                                  bool &isVarArg){
2210   isVarArg = false;
2211   assert(Lex.getKind() == lltok::lparen);
2212   Lex.Lex(); // eat the (.
2213 
2214   if (Lex.getKind() == lltok::rparen) {
2215     // empty
2216   } else if (Lex.getKind() == lltok::dotdotdot) {
2217     isVarArg = true;
2218     Lex.Lex();
2219   } else {
2220     LocTy TypeLoc = Lex.getLoc();
2221     Type *ArgTy = nullptr;
2222     AttrBuilder Attrs;
2223     std::string Name;
2224 
2225     if (ParseType(ArgTy) ||
2226         ParseOptionalParamAttrs(Attrs)) return true;
2227 
2228     if (ArgTy->isVoidTy())
2229       return Error(TypeLoc, "argument can not have void type");
2230 
2231     if (Lex.getKind() == lltok::LocalVar) {
2232       Name = Lex.getStrVal();
2233       Lex.Lex();
2234     }
2235 
2236     if (!FunctionType::isValidArgumentType(ArgTy))
2237       return Error(TypeLoc, "invalid type for function argument");
2238 
2239     unsigned AttrIndex = 1;
2240     ArgList.emplace_back(TypeLoc, ArgTy, AttributeSet::get(ArgTy->getContext(),
2241                                                            AttrIndex++, Attrs),
2242                          std::move(Name));
2243 
2244     while (EatIfPresent(lltok::comma)) {
2245       // Handle ... at end of arg list.
2246       if (EatIfPresent(lltok::dotdotdot)) {
2247         isVarArg = true;
2248         break;
2249       }
2250 
2251       // Otherwise must be an argument type.
2252       TypeLoc = Lex.getLoc();
2253       if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
2254 
2255       if (ArgTy->isVoidTy())
2256         return Error(TypeLoc, "argument can not have void type");
2257 
2258       if (Lex.getKind() == lltok::LocalVar) {
2259         Name = Lex.getStrVal();
2260         Lex.Lex();
2261       } else {
2262         Name = "";
2263       }
2264 
2265       if (!ArgTy->isFirstClassType())
2266         return Error(TypeLoc, "invalid type for function argument");
2267 
2268       ArgList.emplace_back(
2269           TypeLoc, ArgTy,
2270           AttributeSet::get(ArgTy->getContext(), AttrIndex++, Attrs),
2271           std::move(Name));
2272     }
2273   }
2274 
2275   return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2276 }
2277 
2278 /// ParseFunctionType
2279 ///  ::= Type ArgumentList OptionalAttrs
2280 bool LLParser::ParseFunctionType(Type *&Result) {
2281   assert(Lex.getKind() == lltok::lparen);
2282 
2283   if (!FunctionType::isValidReturnType(Result))
2284     return TokError("invalid function return type");
2285 
2286   SmallVector<ArgInfo, 8> ArgList;
2287   bool isVarArg;
2288   if (ParseArgumentList(ArgList, isVarArg))
2289     return true;
2290 
2291   // Reject names on the arguments lists.
2292   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2293     if (!ArgList[i].Name.empty())
2294       return Error(ArgList[i].Loc, "argument name invalid in function type");
2295     if (ArgList[i].Attrs.hasAttributes(i + 1))
2296       return Error(ArgList[i].Loc,
2297                    "argument attributes invalid in function type");
2298   }
2299 
2300   SmallVector<Type*, 16> ArgListTy;
2301   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2302     ArgListTy.push_back(ArgList[i].Ty);
2303 
2304   Result = FunctionType::get(Result, ArgListTy, isVarArg);
2305   return false;
2306 }
2307 
2308 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
2309 /// other structs.
2310 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
2311   SmallVector<Type*, 8> Elts;
2312   if (ParseStructBody(Elts)) return true;
2313 
2314   Result = StructType::get(Context, Elts, Packed);
2315   return false;
2316 }
2317 
2318 /// ParseStructDefinition - Parse a struct in a 'type' definition.
2319 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
2320                                      std::pair<Type*, LocTy> &Entry,
2321                                      Type *&ResultTy) {
2322   // If the type was already defined, diagnose the redefinition.
2323   if (Entry.first && !Entry.second.isValid())
2324     return Error(TypeLoc, "redefinition of type");
2325 
2326   // If we have opaque, just return without filling in the definition for the
2327   // struct.  This counts as a definition as far as the .ll file goes.
2328   if (EatIfPresent(lltok::kw_opaque)) {
2329     // This type is being defined, so clear the location to indicate this.
2330     Entry.second = SMLoc();
2331 
2332     // If this type number has never been uttered, create it.
2333     if (!Entry.first)
2334       Entry.first = StructType::create(Context, Name);
2335     ResultTy = Entry.first;
2336     return false;
2337   }
2338 
2339   // If the type starts with '<', then it is either a packed struct or a vector.
2340   bool isPacked = EatIfPresent(lltok::less);
2341 
2342   // If we don't have a struct, then we have a random type alias, which we
2343   // accept for compatibility with old files.  These types are not allowed to be
2344   // forward referenced and not allowed to be recursive.
2345   if (Lex.getKind() != lltok::lbrace) {
2346     if (Entry.first)
2347       return Error(TypeLoc, "forward references to non-struct type");
2348 
2349     ResultTy = nullptr;
2350     if (isPacked)
2351       return ParseArrayVectorType(ResultTy, true);
2352     return ParseType(ResultTy);
2353   }
2354 
2355   // This type is being defined, so clear the location to indicate this.
2356   Entry.second = SMLoc();
2357 
2358   // If this type number has never been uttered, create it.
2359   if (!Entry.first)
2360     Entry.first = StructType::create(Context, Name);
2361 
2362   StructType *STy = cast<StructType>(Entry.first);
2363 
2364   SmallVector<Type*, 8> Body;
2365   if (ParseStructBody(Body) ||
2366       (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
2367     return true;
2368 
2369   STy->setBody(Body, isPacked);
2370   ResultTy = STy;
2371   return false;
2372 }
2373 
2374 /// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2375 ///   StructType
2376 ///     ::= '{' '}'
2377 ///     ::= '{' Type (',' Type)* '}'
2378 ///     ::= '<' '{' '}' '>'
2379 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2380 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
2381   assert(Lex.getKind() == lltok::lbrace);
2382   Lex.Lex(); // Consume the '{'
2383 
2384   // Handle the empty struct.
2385   if (EatIfPresent(lltok::rbrace))
2386     return false;
2387 
2388   LocTy EltTyLoc = Lex.getLoc();
2389   Type *Ty = nullptr;
2390   if (ParseType(Ty)) return true;
2391   Body.push_back(Ty);
2392 
2393   if (!StructType::isValidElementType(Ty))
2394     return Error(EltTyLoc, "invalid element type for struct");
2395 
2396   while (EatIfPresent(lltok::comma)) {
2397     EltTyLoc = Lex.getLoc();
2398     if (ParseType(Ty)) return true;
2399 
2400     if (!StructType::isValidElementType(Ty))
2401       return Error(EltTyLoc, "invalid element type for struct");
2402 
2403     Body.push_back(Ty);
2404   }
2405 
2406   return ParseToken(lltok::rbrace, "expected '}' at end of struct");
2407 }
2408 
2409 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2410 /// token has already been consumed.
2411 ///   Type
2412 ///     ::= '[' APSINTVAL 'x' Types ']'
2413 ///     ::= '<' APSINTVAL 'x' Types '>'
2414 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
2415   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2416       Lex.getAPSIntVal().getBitWidth() > 64)
2417     return TokError("expected number in address space");
2418 
2419   LocTy SizeLoc = Lex.getLoc();
2420   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2421   Lex.Lex();
2422 
2423   if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
2424       return true;
2425 
2426   LocTy TypeLoc = Lex.getLoc();
2427   Type *EltTy = nullptr;
2428   if (ParseType(EltTy)) return true;
2429 
2430   if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
2431                  "expected end of sequential type"))
2432     return true;
2433 
2434   if (isVector) {
2435     if (Size == 0)
2436       return Error(SizeLoc, "zero element vector is illegal");
2437     if ((unsigned)Size != Size)
2438       return Error(SizeLoc, "size too large for vector");
2439     if (!VectorType::isValidElementType(EltTy))
2440       return Error(TypeLoc, "invalid vector element type");
2441     Result = VectorType::get(EltTy, unsigned(Size));
2442   } else {
2443     if (!ArrayType::isValidElementType(EltTy))
2444       return Error(TypeLoc, "invalid array element type");
2445     Result = ArrayType::get(EltTy, Size);
2446   }
2447   return false;
2448 }
2449 
2450 //===----------------------------------------------------------------------===//
2451 // Function Semantic Analysis.
2452 //===----------------------------------------------------------------------===//
2453 
2454 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2455                                              int functionNumber)
2456   : P(p), F(f), FunctionNumber(functionNumber) {
2457 
2458   // Insert unnamed arguments into the NumberedVals list.
2459   for (Argument &A : F.args())
2460     if (!A.hasName())
2461       NumberedVals.push_back(&A);
2462 }
2463 
2464 LLParser::PerFunctionState::~PerFunctionState() {
2465   // If there were any forward referenced non-basicblock values, delete them.
2466 
2467   for (const auto &P : ForwardRefVals) {
2468     if (isa<BasicBlock>(P.second.first))
2469       continue;
2470     P.second.first->replaceAllUsesWith(
2471         UndefValue::get(P.second.first->getType()));
2472     delete P.second.first;
2473   }
2474 
2475   for (const auto &P : ForwardRefValIDs) {
2476     if (isa<BasicBlock>(P.second.first))
2477       continue;
2478     P.second.first->replaceAllUsesWith(
2479         UndefValue::get(P.second.first->getType()));
2480     delete P.second.first;
2481   }
2482 }
2483 
2484 bool LLParser::PerFunctionState::FinishFunction() {
2485   if (!ForwardRefVals.empty())
2486     return P.Error(ForwardRefVals.begin()->second.second,
2487                    "use of undefined value '%" + ForwardRefVals.begin()->first +
2488                    "'");
2489   if (!ForwardRefValIDs.empty())
2490     return P.Error(ForwardRefValIDs.begin()->second.second,
2491                    "use of undefined value '%" +
2492                    Twine(ForwardRefValIDs.begin()->first) + "'");
2493   return false;
2494 }
2495 
2496 /// GetVal - Get a value with the specified name or ID, creating a
2497 /// forward reference record if needed.  This can return null if the value
2498 /// exists but does not have the right type.
2499 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty,
2500                                           LocTy Loc) {
2501   // Look this name up in the normal function symbol table.
2502   Value *Val = F.getValueSymbolTable().lookup(Name);
2503 
2504   // If this is a forward reference for the value, see if we already created a
2505   // forward ref record.
2506   if (!Val) {
2507     auto I = ForwardRefVals.find(Name);
2508     if (I != ForwardRefVals.end())
2509       Val = I->second.first;
2510   }
2511 
2512   // If we have the value in the symbol table or fwd-ref table, return it.
2513   if (Val) {
2514     if (Val->getType() == Ty) return Val;
2515     if (Ty->isLabelTy())
2516       P.Error(Loc, "'%" + Name + "' is not a basic block");
2517     else
2518       P.Error(Loc, "'%" + Name + "' defined with type '" +
2519               getTypeString(Val->getType()) + "'");
2520     return nullptr;
2521   }
2522 
2523   // Don't make placeholders with invalid type.
2524   if (!Ty->isFirstClassType()) {
2525     P.Error(Loc, "invalid use of a non-first-class type");
2526     return nullptr;
2527   }
2528 
2529   // Otherwise, create a new forward reference for this value and remember it.
2530   Value *FwdVal;
2531   if (Ty->isLabelTy()) {
2532     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2533   } else {
2534     FwdVal = new Argument(Ty, Name);
2535   }
2536 
2537   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2538   return FwdVal;
2539 }
2540 
2541 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc) {
2542   // Look this name up in the normal function symbol table.
2543   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2544 
2545   // If this is a forward reference for the value, see if we already created a
2546   // forward ref record.
2547   if (!Val) {
2548     auto I = ForwardRefValIDs.find(ID);
2549     if (I != ForwardRefValIDs.end())
2550       Val = I->second.first;
2551   }
2552 
2553   // If we have the value in the symbol table or fwd-ref table, return it.
2554   if (Val) {
2555     if (Val->getType() == Ty) return Val;
2556     if (Ty->isLabelTy())
2557       P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
2558     else
2559       P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
2560               getTypeString(Val->getType()) + "'");
2561     return nullptr;
2562   }
2563 
2564   if (!Ty->isFirstClassType()) {
2565     P.Error(Loc, "invalid use of a non-first-class type");
2566     return nullptr;
2567   }
2568 
2569   // Otherwise, create a new forward reference for this value and remember it.
2570   Value *FwdVal;
2571   if (Ty->isLabelTy()) {
2572     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2573   } else {
2574     FwdVal = new Argument(Ty);
2575   }
2576 
2577   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2578   return FwdVal;
2579 }
2580 
2581 /// SetInstName - After an instruction is parsed and inserted into its
2582 /// basic block, this installs its name.
2583 bool LLParser::PerFunctionState::SetInstName(int NameID,
2584                                              const std::string &NameStr,
2585                                              LocTy NameLoc, Instruction *Inst) {
2586   // If this instruction has void type, it cannot have a name or ID specified.
2587   if (Inst->getType()->isVoidTy()) {
2588     if (NameID != -1 || !NameStr.empty())
2589       return P.Error(NameLoc, "instructions returning void cannot have a name");
2590     return false;
2591   }
2592 
2593   // If this was a numbered instruction, verify that the instruction is the
2594   // expected value and resolve any forward references.
2595   if (NameStr.empty()) {
2596     // If neither a name nor an ID was specified, just use the next ID.
2597     if (NameID == -1)
2598       NameID = NumberedVals.size();
2599 
2600     if (unsigned(NameID) != NumberedVals.size())
2601       return P.Error(NameLoc, "instruction expected to be numbered '%" +
2602                      Twine(NumberedVals.size()) + "'");
2603 
2604     auto FI = ForwardRefValIDs.find(NameID);
2605     if (FI != ForwardRefValIDs.end()) {
2606       Value *Sentinel = FI->second.first;
2607       if (Sentinel->getType() != Inst->getType())
2608         return P.Error(NameLoc, "instruction forward referenced with type '" +
2609                        getTypeString(FI->second.first->getType()) + "'");
2610 
2611       Sentinel->replaceAllUsesWith(Inst);
2612       delete Sentinel;
2613       ForwardRefValIDs.erase(FI);
2614     }
2615 
2616     NumberedVals.push_back(Inst);
2617     return false;
2618   }
2619 
2620   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
2621   auto FI = ForwardRefVals.find(NameStr);
2622   if (FI != ForwardRefVals.end()) {
2623     Value *Sentinel = FI->second.first;
2624     if (Sentinel->getType() != Inst->getType())
2625       return P.Error(NameLoc, "instruction forward referenced with type '" +
2626                      getTypeString(FI->second.first->getType()) + "'");
2627 
2628     Sentinel->replaceAllUsesWith(Inst);
2629     delete Sentinel;
2630     ForwardRefVals.erase(FI);
2631   }
2632 
2633   // Set the name on the instruction.
2634   Inst->setName(NameStr);
2635 
2636   if (Inst->getName() != NameStr)
2637     return P.Error(NameLoc, "multiple definition of local value named '" +
2638                    NameStr + "'");
2639   return false;
2640 }
2641 
2642 /// GetBB - Get a basic block with the specified name or ID, creating a
2643 /// forward reference record if needed.
2644 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
2645                                               LocTy Loc) {
2646   return dyn_cast_or_null<BasicBlock>(GetVal(Name,
2647                                       Type::getLabelTy(F.getContext()), Loc));
2648 }
2649 
2650 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
2651   return dyn_cast_or_null<BasicBlock>(GetVal(ID,
2652                                       Type::getLabelTy(F.getContext()), Loc));
2653 }
2654 
2655 /// DefineBB - Define the specified basic block, which is either named or
2656 /// unnamed.  If there is an error, this returns null otherwise it returns
2657 /// the block being defined.
2658 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
2659                                                  LocTy Loc) {
2660   BasicBlock *BB;
2661   if (Name.empty())
2662     BB = GetBB(NumberedVals.size(), Loc);
2663   else
2664     BB = GetBB(Name, Loc);
2665   if (!BB) return nullptr; // Already diagnosed error.
2666 
2667   // Move the block to the end of the function.  Forward ref'd blocks are
2668   // inserted wherever they happen to be referenced.
2669   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
2670 
2671   // Remove the block from forward ref sets.
2672   if (Name.empty()) {
2673     ForwardRefValIDs.erase(NumberedVals.size());
2674     NumberedVals.push_back(BB);
2675   } else {
2676     // BB forward references are already in the function symbol table.
2677     ForwardRefVals.erase(Name);
2678   }
2679 
2680   return BB;
2681 }
2682 
2683 //===----------------------------------------------------------------------===//
2684 // Constants.
2685 //===----------------------------------------------------------------------===//
2686 
2687 /// ParseValID - Parse an abstract value that doesn't necessarily have a
2688 /// type implied.  For example, if we parse "4" we don't know what integer type
2689 /// it has.  The value will later be combined with its type and checked for
2690 /// sanity.  PFS is used to convert function-local operands of metadata (since
2691 /// metadata operands are not just parsed here but also converted to values).
2692 /// PFS can be null when we are not parsing metadata values inside a function.
2693 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
2694   ID.Loc = Lex.getLoc();
2695   switch (Lex.getKind()) {
2696   default: return TokError("expected value token");
2697   case lltok::GlobalID:  // @42
2698     ID.UIntVal = Lex.getUIntVal();
2699     ID.Kind = ValID::t_GlobalID;
2700     break;
2701   case lltok::GlobalVar:  // @foo
2702     ID.StrVal = Lex.getStrVal();
2703     ID.Kind = ValID::t_GlobalName;
2704     break;
2705   case lltok::LocalVarID:  // %42
2706     ID.UIntVal = Lex.getUIntVal();
2707     ID.Kind = ValID::t_LocalID;
2708     break;
2709   case lltok::LocalVar:  // %foo
2710     ID.StrVal = Lex.getStrVal();
2711     ID.Kind = ValID::t_LocalName;
2712     break;
2713   case lltok::APSInt:
2714     ID.APSIntVal = Lex.getAPSIntVal();
2715     ID.Kind = ValID::t_APSInt;
2716     break;
2717   case lltok::APFloat:
2718     ID.APFloatVal = Lex.getAPFloatVal();
2719     ID.Kind = ValID::t_APFloat;
2720     break;
2721   case lltok::kw_true:
2722     ID.ConstantVal = ConstantInt::getTrue(Context);
2723     ID.Kind = ValID::t_Constant;
2724     break;
2725   case lltok::kw_false:
2726     ID.ConstantVal = ConstantInt::getFalse(Context);
2727     ID.Kind = ValID::t_Constant;
2728     break;
2729   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
2730   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
2731   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
2732   case lltok::kw_none: ID.Kind = ValID::t_None; break;
2733 
2734   case lltok::lbrace: {
2735     // ValID ::= '{' ConstVector '}'
2736     Lex.Lex();
2737     SmallVector<Constant*, 16> Elts;
2738     if (ParseGlobalValueVector(Elts) ||
2739         ParseToken(lltok::rbrace, "expected end of struct constant"))
2740       return true;
2741 
2742     ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
2743     ID.UIntVal = Elts.size();
2744     memcpy(ID.ConstantStructElts.get(), Elts.data(),
2745            Elts.size() * sizeof(Elts[0]));
2746     ID.Kind = ValID::t_ConstantStruct;
2747     return false;
2748   }
2749   case lltok::less: {
2750     // ValID ::= '<' ConstVector '>'         --> Vector.
2751     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
2752     Lex.Lex();
2753     bool isPackedStruct = EatIfPresent(lltok::lbrace);
2754 
2755     SmallVector<Constant*, 16> Elts;
2756     LocTy FirstEltLoc = Lex.getLoc();
2757     if (ParseGlobalValueVector(Elts) ||
2758         (isPackedStruct &&
2759          ParseToken(lltok::rbrace, "expected end of packed struct")) ||
2760         ParseToken(lltok::greater, "expected end of constant"))
2761       return true;
2762 
2763     if (isPackedStruct) {
2764       ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
2765       memcpy(ID.ConstantStructElts.get(), Elts.data(),
2766              Elts.size() * sizeof(Elts[0]));
2767       ID.UIntVal = Elts.size();
2768       ID.Kind = ValID::t_PackedConstantStruct;
2769       return false;
2770     }
2771 
2772     if (Elts.empty())
2773       return Error(ID.Loc, "constant vector must not be empty");
2774 
2775     if (!Elts[0]->getType()->isIntegerTy() &&
2776         !Elts[0]->getType()->isFloatingPointTy() &&
2777         !Elts[0]->getType()->isPointerTy())
2778       return Error(FirstEltLoc,
2779             "vector elements must have integer, pointer or floating point type");
2780 
2781     // Verify that all the vector elements have the same type.
2782     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
2783       if (Elts[i]->getType() != Elts[0]->getType())
2784         return Error(FirstEltLoc,
2785                      "vector element #" + Twine(i) +
2786                     " is not of type '" + getTypeString(Elts[0]->getType()));
2787 
2788     ID.ConstantVal = ConstantVector::get(Elts);
2789     ID.Kind = ValID::t_Constant;
2790     return false;
2791   }
2792   case lltok::lsquare: {   // Array Constant
2793     Lex.Lex();
2794     SmallVector<Constant*, 16> Elts;
2795     LocTy FirstEltLoc = Lex.getLoc();
2796     if (ParseGlobalValueVector(Elts) ||
2797         ParseToken(lltok::rsquare, "expected end of array constant"))
2798       return true;
2799 
2800     // Handle empty element.
2801     if (Elts.empty()) {
2802       // Use undef instead of an array because it's inconvenient to determine
2803       // the element type at this point, there being no elements to examine.
2804       ID.Kind = ValID::t_EmptyArray;
2805       return false;
2806     }
2807 
2808     if (!Elts[0]->getType()->isFirstClassType())
2809       return Error(FirstEltLoc, "invalid array element type: " +
2810                    getTypeString(Elts[0]->getType()));
2811 
2812     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2813 
2814     // Verify all elements are correct type!
2815     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2816       if (Elts[i]->getType() != Elts[0]->getType())
2817         return Error(FirstEltLoc,
2818                      "array element #" + Twine(i) +
2819                      " is not of type '" + getTypeString(Elts[0]->getType()));
2820     }
2821 
2822     ID.ConstantVal = ConstantArray::get(ATy, Elts);
2823     ID.Kind = ValID::t_Constant;
2824     return false;
2825   }
2826   case lltok::kw_c:  // c "foo"
2827     Lex.Lex();
2828     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
2829                                                   false);
2830     if (ParseToken(lltok::StringConstant, "expected string")) return true;
2831     ID.Kind = ValID::t_Constant;
2832     return false;
2833 
2834   case lltok::kw_asm: {
2835     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
2836     //             STRINGCONSTANT
2837     bool HasSideEffect, AlignStack, AsmDialect;
2838     Lex.Lex();
2839     if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2840         ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2841         ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
2842         ParseStringConstant(ID.StrVal) ||
2843         ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2844         ParseToken(lltok::StringConstant, "expected constraint string"))
2845       return true;
2846     ID.StrVal2 = Lex.getStrVal();
2847     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
2848       (unsigned(AsmDialect)<<2);
2849     ID.Kind = ValID::t_InlineAsm;
2850     return false;
2851   }
2852 
2853   case lltok::kw_blockaddress: {
2854     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2855     Lex.Lex();
2856 
2857     ValID Fn, Label;
2858 
2859     if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2860         ParseValID(Fn) ||
2861         ParseToken(lltok::comma, "expected comma in block address expression")||
2862         ParseValID(Label) ||
2863         ParseToken(lltok::rparen, "expected ')' in block address expression"))
2864       return true;
2865 
2866     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
2867       return Error(Fn.Loc, "expected function name in blockaddress");
2868     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
2869       return Error(Label.Loc, "expected basic block name in blockaddress");
2870 
2871     // Try to find the function (but skip it if it's forward-referenced).
2872     GlobalValue *GV = nullptr;
2873     if (Fn.Kind == ValID::t_GlobalID) {
2874       if (Fn.UIntVal < NumberedVals.size())
2875         GV = NumberedVals[Fn.UIntVal];
2876     } else if (!ForwardRefVals.count(Fn.StrVal)) {
2877       GV = M->getNamedValue(Fn.StrVal);
2878     }
2879     Function *F = nullptr;
2880     if (GV) {
2881       // Confirm that it's actually a function with a definition.
2882       if (!isa<Function>(GV))
2883         return Error(Fn.Loc, "expected function name in blockaddress");
2884       F = cast<Function>(GV);
2885       if (F->isDeclaration())
2886         return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
2887     }
2888 
2889     if (!F) {
2890       // Make a global variable as a placeholder for this reference.
2891       GlobalValue *&FwdRef =
2892           ForwardRefBlockAddresses.insert(std::make_pair(
2893                                               std::move(Fn),
2894                                               std::map<ValID, GlobalValue *>()))
2895               .first->second.insert(std::make_pair(std::move(Label), nullptr))
2896               .first->second;
2897       if (!FwdRef)
2898         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
2899                                     GlobalValue::InternalLinkage, nullptr, "");
2900       ID.ConstantVal = FwdRef;
2901       ID.Kind = ValID::t_Constant;
2902       return false;
2903     }
2904 
2905     // We found the function; now find the basic block.  Don't use PFS, since we
2906     // might be inside a constant expression.
2907     BasicBlock *BB;
2908     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
2909       if (Label.Kind == ValID::t_LocalID)
2910         BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
2911       else
2912         BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
2913       if (!BB)
2914         return Error(Label.Loc, "referenced value is not a basic block");
2915     } else {
2916       if (Label.Kind == ValID::t_LocalID)
2917         return Error(Label.Loc, "cannot take address of numeric label after "
2918                                 "the function is defined");
2919       BB = dyn_cast_or_null<BasicBlock>(
2920           F->getValueSymbolTable().lookup(Label.StrVal));
2921       if (!BB)
2922         return Error(Label.Loc, "referenced value is not a basic block");
2923     }
2924 
2925     ID.ConstantVal = BlockAddress::get(F, BB);
2926     ID.Kind = ValID::t_Constant;
2927     return false;
2928   }
2929 
2930   case lltok::kw_trunc:
2931   case lltok::kw_zext:
2932   case lltok::kw_sext:
2933   case lltok::kw_fptrunc:
2934   case lltok::kw_fpext:
2935   case lltok::kw_bitcast:
2936   case lltok::kw_addrspacecast:
2937   case lltok::kw_uitofp:
2938   case lltok::kw_sitofp:
2939   case lltok::kw_fptoui:
2940   case lltok::kw_fptosi:
2941   case lltok::kw_inttoptr:
2942   case lltok::kw_ptrtoint: {
2943     unsigned Opc = Lex.getUIntVal();
2944     Type *DestTy = nullptr;
2945     Constant *SrcVal;
2946     Lex.Lex();
2947     if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
2948         ParseGlobalTypeAndValue(SrcVal) ||
2949         ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
2950         ParseType(DestTy) ||
2951         ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
2952       return true;
2953     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
2954       return Error(ID.Loc, "invalid cast opcode for cast from '" +
2955                    getTypeString(SrcVal->getType()) + "' to '" +
2956                    getTypeString(DestTy) + "'");
2957     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
2958                                                  SrcVal, DestTy);
2959     ID.Kind = ValID::t_Constant;
2960     return false;
2961   }
2962   case lltok::kw_extractvalue: {
2963     Lex.Lex();
2964     Constant *Val;
2965     SmallVector<unsigned, 4> Indices;
2966     if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
2967         ParseGlobalTypeAndValue(Val) ||
2968         ParseIndexList(Indices) ||
2969         ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
2970       return true;
2971 
2972     if (!Val->getType()->isAggregateType())
2973       return Error(ID.Loc, "extractvalue operand must be aggregate type");
2974     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
2975       return Error(ID.Loc, "invalid indices for extractvalue");
2976     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
2977     ID.Kind = ValID::t_Constant;
2978     return false;
2979   }
2980   case lltok::kw_insertvalue: {
2981     Lex.Lex();
2982     Constant *Val0, *Val1;
2983     SmallVector<unsigned, 4> Indices;
2984     if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
2985         ParseGlobalTypeAndValue(Val0) ||
2986         ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
2987         ParseGlobalTypeAndValue(Val1) ||
2988         ParseIndexList(Indices) ||
2989         ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
2990       return true;
2991     if (!Val0->getType()->isAggregateType())
2992       return Error(ID.Loc, "insertvalue operand must be aggregate type");
2993     Type *IndexedType =
2994         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
2995     if (!IndexedType)
2996       return Error(ID.Loc, "invalid indices for insertvalue");
2997     if (IndexedType != Val1->getType())
2998       return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
2999                                getTypeString(Val1->getType()) +
3000                                "' instead of '" + getTypeString(IndexedType) +
3001                                "'");
3002     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3003     ID.Kind = ValID::t_Constant;
3004     return false;
3005   }
3006   case lltok::kw_icmp:
3007   case lltok::kw_fcmp: {
3008     unsigned PredVal, Opc = Lex.getUIntVal();
3009     Constant *Val0, *Val1;
3010     Lex.Lex();
3011     if (ParseCmpPredicate(PredVal, Opc) ||
3012         ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3013         ParseGlobalTypeAndValue(Val0) ||
3014         ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
3015         ParseGlobalTypeAndValue(Val1) ||
3016         ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3017       return true;
3018 
3019     if (Val0->getType() != Val1->getType())
3020       return Error(ID.Loc, "compare operands must have the same type");
3021 
3022     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3023 
3024     if (Opc == Instruction::FCmp) {
3025       if (!Val0->getType()->isFPOrFPVectorTy())
3026         return Error(ID.Loc, "fcmp requires floating point operands");
3027       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3028     } else {
3029       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3030       if (!Val0->getType()->isIntOrIntVectorTy() &&
3031           !Val0->getType()->getScalarType()->isPointerTy())
3032         return Error(ID.Loc, "icmp requires pointer or integer operands");
3033       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3034     }
3035     ID.Kind = ValID::t_Constant;
3036     return false;
3037   }
3038 
3039   // Binary Operators.
3040   case lltok::kw_add:
3041   case lltok::kw_fadd:
3042   case lltok::kw_sub:
3043   case lltok::kw_fsub:
3044   case lltok::kw_mul:
3045   case lltok::kw_fmul:
3046   case lltok::kw_udiv:
3047   case lltok::kw_sdiv:
3048   case lltok::kw_fdiv:
3049   case lltok::kw_urem:
3050   case lltok::kw_srem:
3051   case lltok::kw_frem:
3052   case lltok::kw_shl:
3053   case lltok::kw_lshr:
3054   case lltok::kw_ashr: {
3055     bool NUW = false;
3056     bool NSW = false;
3057     bool Exact = false;
3058     unsigned Opc = Lex.getUIntVal();
3059     Constant *Val0, *Val1;
3060     Lex.Lex();
3061     LocTy ModifierLoc = Lex.getLoc();
3062     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3063         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3064       if (EatIfPresent(lltok::kw_nuw))
3065         NUW = true;
3066       if (EatIfPresent(lltok::kw_nsw)) {
3067         NSW = true;
3068         if (EatIfPresent(lltok::kw_nuw))
3069           NUW = true;
3070       }
3071     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3072                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3073       if (EatIfPresent(lltok::kw_exact))
3074         Exact = true;
3075     }
3076     if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3077         ParseGlobalTypeAndValue(Val0) ||
3078         ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
3079         ParseGlobalTypeAndValue(Val1) ||
3080         ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3081       return true;
3082     if (Val0->getType() != Val1->getType())
3083       return Error(ID.Loc, "operands of constexpr must have same type");
3084     if (!Val0->getType()->isIntOrIntVectorTy()) {
3085       if (NUW)
3086         return Error(ModifierLoc, "nuw only applies to integer operations");
3087       if (NSW)
3088         return Error(ModifierLoc, "nsw only applies to integer operations");
3089     }
3090     // Check that the type is valid for the operator.
3091     switch (Opc) {
3092     case Instruction::Add:
3093     case Instruction::Sub:
3094     case Instruction::Mul:
3095     case Instruction::UDiv:
3096     case Instruction::SDiv:
3097     case Instruction::URem:
3098     case Instruction::SRem:
3099     case Instruction::Shl:
3100     case Instruction::AShr:
3101     case Instruction::LShr:
3102       if (!Val0->getType()->isIntOrIntVectorTy())
3103         return Error(ID.Loc, "constexpr requires integer operands");
3104       break;
3105     case Instruction::FAdd:
3106     case Instruction::FSub:
3107     case Instruction::FMul:
3108     case Instruction::FDiv:
3109     case Instruction::FRem:
3110       if (!Val0->getType()->isFPOrFPVectorTy())
3111         return Error(ID.Loc, "constexpr requires fp operands");
3112       break;
3113     default: llvm_unreachable("Unknown binary operator!");
3114     }
3115     unsigned Flags = 0;
3116     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3117     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3118     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3119     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3120     ID.ConstantVal = C;
3121     ID.Kind = ValID::t_Constant;
3122     return false;
3123   }
3124 
3125   // Logical Operations
3126   case lltok::kw_and:
3127   case lltok::kw_or:
3128   case lltok::kw_xor: {
3129     unsigned Opc = Lex.getUIntVal();
3130     Constant *Val0, *Val1;
3131     Lex.Lex();
3132     if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3133         ParseGlobalTypeAndValue(Val0) ||
3134         ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
3135         ParseGlobalTypeAndValue(Val1) ||
3136         ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3137       return true;
3138     if (Val0->getType() != Val1->getType())
3139       return Error(ID.Loc, "operands of constexpr must have same type");
3140     if (!Val0->getType()->isIntOrIntVectorTy())
3141       return Error(ID.Loc,
3142                    "constexpr requires integer or integer vector operands");
3143     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3144     ID.Kind = ValID::t_Constant;
3145     return false;
3146   }
3147 
3148   case lltok::kw_getelementptr:
3149   case lltok::kw_shufflevector:
3150   case lltok::kw_insertelement:
3151   case lltok::kw_extractelement:
3152   case lltok::kw_select: {
3153     unsigned Opc = Lex.getUIntVal();
3154     SmallVector<Constant*, 16> Elts;
3155     bool InBounds = false;
3156     Type *Ty;
3157     Lex.Lex();
3158 
3159     if (Opc == Instruction::GetElementPtr)
3160       InBounds = EatIfPresent(lltok::kw_inbounds);
3161 
3162     if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
3163       return true;
3164 
3165     LocTy ExplicitTypeLoc = Lex.getLoc();
3166     if (Opc == Instruction::GetElementPtr) {
3167       if (ParseType(Ty) ||
3168           ParseToken(lltok::comma, "expected comma after getelementptr's type"))
3169         return true;
3170     }
3171 
3172     if (ParseGlobalValueVector(Elts) ||
3173         ParseToken(lltok::rparen, "expected ')' in constantexpr"))
3174       return true;
3175 
3176     if (Opc == Instruction::GetElementPtr) {
3177       if (Elts.size() == 0 ||
3178           !Elts[0]->getType()->getScalarType()->isPointerTy())
3179         return Error(ID.Loc, "base of getelementptr must be a pointer");
3180 
3181       Type *BaseType = Elts[0]->getType();
3182       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3183       if (Ty != BasePointerType->getElementType())
3184         return Error(
3185             ExplicitTypeLoc,
3186             "explicit pointee type doesn't match operand's pointee type");
3187 
3188       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3189       for (Constant *Val : Indices) {
3190         Type *ValTy = Val->getType();
3191         if (!ValTy->getScalarType()->isIntegerTy())
3192           return Error(ID.Loc, "getelementptr index must be an integer");
3193         if (ValTy->isVectorTy() != BaseType->isVectorTy())
3194           return Error(ID.Loc, "getelementptr index type missmatch");
3195         if (ValTy->isVectorTy()) {
3196           unsigned ValNumEl = ValTy->getVectorNumElements();
3197           unsigned PtrNumEl = BaseType->getVectorNumElements();
3198           if (ValNumEl != PtrNumEl)
3199             return Error(
3200                 ID.Loc,
3201                 "getelementptr vector index has a wrong number of elements");
3202         }
3203       }
3204 
3205       SmallPtrSet<Type*, 4> Visited;
3206       if (!Indices.empty() && !Ty->isSized(&Visited))
3207         return Error(ID.Loc, "base element of getelementptr must be sized");
3208 
3209       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3210         return Error(ID.Loc, "invalid getelementptr indices");
3211       ID.ConstantVal =
3212           ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, InBounds);
3213     } else if (Opc == Instruction::Select) {
3214       if (Elts.size() != 3)
3215         return Error(ID.Loc, "expected three operands to select");
3216       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3217                                                               Elts[2]))
3218         return Error(ID.Loc, Reason);
3219       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3220     } else if (Opc == Instruction::ShuffleVector) {
3221       if (Elts.size() != 3)
3222         return Error(ID.Loc, "expected three operands to shufflevector");
3223       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3224         return Error(ID.Loc, "invalid operands to shufflevector");
3225       ID.ConstantVal =
3226                  ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
3227     } else if (Opc == Instruction::ExtractElement) {
3228       if (Elts.size() != 2)
3229         return Error(ID.Loc, "expected two operands to extractelement");
3230       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3231         return Error(ID.Loc, "invalid extractelement operands");
3232       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3233     } else {
3234       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3235       if (Elts.size() != 3)
3236       return Error(ID.Loc, "expected three operands to insertelement");
3237       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3238         return Error(ID.Loc, "invalid insertelement operands");
3239       ID.ConstantVal =
3240                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3241     }
3242 
3243     ID.Kind = ValID::t_Constant;
3244     return false;
3245   }
3246   }
3247 
3248   Lex.Lex();
3249   return false;
3250 }
3251 
3252 /// ParseGlobalValue - Parse a global value with the specified type.
3253 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
3254   C = nullptr;
3255   ValID ID;
3256   Value *V = nullptr;
3257   bool Parsed = ParseValID(ID) ||
3258                 ConvertValIDToValue(Ty, ID, V, nullptr);
3259   if (V && !(C = dyn_cast<Constant>(V)))
3260     return Error(ID.Loc, "global values must be constants");
3261   return Parsed;
3262 }
3263 
3264 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
3265   Type *Ty = nullptr;
3266   return ParseType(Ty) ||
3267          ParseGlobalValue(Ty, V);
3268 }
3269 
3270 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3271   C = nullptr;
3272 
3273   LocTy KwLoc = Lex.getLoc();
3274   if (!EatIfPresent(lltok::kw_comdat))
3275     return false;
3276 
3277   if (EatIfPresent(lltok::lparen)) {
3278     if (Lex.getKind() != lltok::ComdatVar)
3279       return TokError("expected comdat variable");
3280     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3281     Lex.Lex();
3282     if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
3283       return true;
3284   } else {
3285     if (GlobalName.empty())
3286       return TokError("comdat cannot be unnamed");
3287     C = getComdat(GlobalName, KwLoc);
3288   }
3289 
3290   return false;
3291 }
3292 
3293 /// ParseGlobalValueVector
3294 ///   ::= /*empty*/
3295 ///   ::= TypeAndValue (',' TypeAndValue)*
3296 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts) {
3297   // Empty list.
3298   if (Lex.getKind() == lltok::rbrace ||
3299       Lex.getKind() == lltok::rsquare ||
3300       Lex.getKind() == lltok::greater ||
3301       Lex.getKind() == lltok::rparen)
3302     return false;
3303 
3304   Constant *C;
3305   if (ParseGlobalTypeAndValue(C)) return true;
3306   Elts.push_back(C);
3307 
3308   while (EatIfPresent(lltok::comma)) {
3309     if (ParseGlobalTypeAndValue(C)) return true;
3310     Elts.push_back(C);
3311   }
3312 
3313   return false;
3314 }
3315 
3316 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
3317   SmallVector<Metadata *, 16> Elts;
3318   if (ParseMDNodeVector(Elts))
3319     return true;
3320 
3321   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3322   return false;
3323 }
3324 
3325 /// MDNode:
3326 ///  ::= !{ ... }
3327 ///  ::= !7
3328 ///  ::= !DILocation(...)
3329 bool LLParser::ParseMDNode(MDNode *&N) {
3330   if (Lex.getKind() == lltok::MetadataVar)
3331     return ParseSpecializedMDNode(N);
3332 
3333   return ParseToken(lltok::exclaim, "expected '!' here") ||
3334          ParseMDNodeTail(N);
3335 }
3336 
3337 bool LLParser::ParseMDNodeTail(MDNode *&N) {
3338   // !{ ... }
3339   if (Lex.getKind() == lltok::lbrace)
3340     return ParseMDTuple(N);
3341 
3342   // !42
3343   return ParseMDNodeID(N);
3344 }
3345 
3346 namespace {
3347 
3348 /// Structure to represent an optional metadata field.
3349 template <class FieldTy> struct MDFieldImpl {
3350   typedef MDFieldImpl ImplTy;
3351   FieldTy Val;
3352   bool Seen;
3353 
3354   void assign(FieldTy Val) {
3355     Seen = true;
3356     this->Val = std::move(Val);
3357   }
3358 
3359   explicit MDFieldImpl(FieldTy Default)
3360       : Val(std::move(Default)), Seen(false) {}
3361 };
3362 
3363 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3364   uint64_t Max;
3365 
3366   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3367       : ImplTy(Default), Max(Max) {}
3368 };
3369 
3370 struct LineField : public MDUnsignedField {
3371   LineField() : MDUnsignedField(0, UINT32_MAX) {}
3372 };
3373 
3374 struct ColumnField : public MDUnsignedField {
3375   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3376 };
3377 
3378 struct DwarfTagField : public MDUnsignedField {
3379   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3380   DwarfTagField(dwarf::Tag DefaultTag)
3381       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3382 };
3383 
3384 struct DwarfMacinfoTypeField : public MDUnsignedField {
3385   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3386   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3387     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3388 };
3389 
3390 struct DwarfAttEncodingField : public MDUnsignedField {
3391   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3392 };
3393 
3394 struct DwarfVirtualityField : public MDUnsignedField {
3395   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3396 };
3397 
3398 struct DwarfLangField : public MDUnsignedField {
3399   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3400 };
3401 
3402 struct DwarfCCField : public MDUnsignedField {
3403   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3404 };
3405 
3406 struct EmissionKindField : public MDUnsignedField {
3407   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3408 };
3409 
3410 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
3411   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3412 };
3413 
3414 struct MDSignedField : public MDFieldImpl<int64_t> {
3415   int64_t Min;
3416   int64_t Max;
3417 
3418   MDSignedField(int64_t Default = 0)
3419       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3420   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3421       : ImplTy(Default), Min(Min), Max(Max) {}
3422 };
3423 
3424 struct MDBoolField : public MDFieldImpl<bool> {
3425   MDBoolField(bool Default = false) : ImplTy(Default) {}
3426 };
3427 
3428 struct MDField : public MDFieldImpl<Metadata *> {
3429   bool AllowNull;
3430 
3431   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3432 };
3433 
3434 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
3435   MDConstant() : ImplTy(nullptr) {}
3436 };
3437 
3438 struct MDStringField : public MDFieldImpl<MDString *> {
3439   bool AllowEmpty;
3440   MDStringField(bool AllowEmpty = true)
3441       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3442 };
3443 
3444 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3445   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3446 };
3447 
3448 } // end anonymous namespace
3449 
3450 namespace llvm {
3451 
3452 template <>
3453 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3454                             MDUnsignedField &Result) {
3455   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3456     return TokError("expected unsigned integer");
3457 
3458   auto &U = Lex.getAPSIntVal();
3459   if (U.ugt(Result.Max))
3460     return TokError("value for '" + Name + "' too large, limit is " +
3461                     Twine(Result.Max));
3462   Result.assign(U.getZExtValue());
3463   assert(Result.Val <= Result.Max && "Expected value in range");
3464   Lex.Lex();
3465   return false;
3466 }
3467 
3468 template <>
3469 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
3470   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3471 }
3472 template <>
3473 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
3474   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3475 }
3476 
3477 template <>
3478 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
3479   if (Lex.getKind() == lltok::APSInt)
3480     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3481 
3482   if (Lex.getKind() != lltok::DwarfTag)
3483     return TokError("expected DWARF tag");
3484 
3485   unsigned Tag = dwarf::getTag(Lex.getStrVal());
3486   if (Tag == dwarf::DW_TAG_invalid)
3487     return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
3488   assert(Tag <= Result.Max && "Expected valid DWARF tag");
3489 
3490   Result.assign(Tag);
3491   Lex.Lex();
3492   return false;
3493 }
3494 
3495 template <>
3496 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3497                             DwarfMacinfoTypeField &Result) {
3498   if (Lex.getKind() == lltok::APSInt)
3499     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3500 
3501   if (Lex.getKind() != lltok::DwarfMacinfo)
3502     return TokError("expected DWARF macinfo type");
3503 
3504   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
3505   if (Macinfo == dwarf::DW_MACINFO_invalid)
3506     return TokError(
3507         "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'");
3508   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
3509 
3510   Result.assign(Macinfo);
3511   Lex.Lex();
3512   return false;
3513 }
3514 
3515 template <>
3516 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3517                             DwarfVirtualityField &Result) {
3518   if (Lex.getKind() == lltok::APSInt)
3519     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3520 
3521   if (Lex.getKind() != lltok::DwarfVirtuality)
3522     return TokError("expected DWARF virtuality code");
3523 
3524   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
3525   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
3526     return TokError("invalid DWARF virtuality code" + Twine(" '") +
3527                     Lex.getStrVal() + "'");
3528   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
3529   Result.assign(Virtuality);
3530   Lex.Lex();
3531   return false;
3532 }
3533 
3534 template <>
3535 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
3536   if (Lex.getKind() == lltok::APSInt)
3537     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3538 
3539   if (Lex.getKind() != lltok::DwarfLang)
3540     return TokError("expected DWARF language");
3541 
3542   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
3543   if (!Lang)
3544     return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
3545                     "'");
3546   assert(Lang <= Result.Max && "Expected valid DWARF language");
3547   Result.assign(Lang);
3548   Lex.Lex();
3549   return false;
3550 }
3551 
3552 template <>
3553 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
3554   if (Lex.getKind() == lltok::APSInt)
3555     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3556 
3557   if (Lex.getKind() != lltok::DwarfCC)
3558     return TokError("expected DWARF calling convention");
3559 
3560   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
3561   if (!CC)
3562     return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() +
3563                     "'");
3564   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
3565   Result.assign(CC);
3566   Lex.Lex();
3567   return false;
3568 }
3569 
3570 template <>
3571 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) {
3572   if (Lex.getKind() == lltok::APSInt)
3573     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3574 
3575   if (Lex.getKind() != lltok::EmissionKind)
3576     return TokError("expected emission kind");
3577 
3578   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
3579   if (!Kind)
3580     return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
3581                     "'");
3582   assert(*Kind <= Result.Max && "Expected valid emission kind");
3583   Result.assign(*Kind);
3584   Lex.Lex();
3585   return false;
3586 }
3587 
3588 template <>
3589 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3590                             DwarfAttEncodingField &Result) {
3591   if (Lex.getKind() == lltok::APSInt)
3592     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3593 
3594   if (Lex.getKind() != lltok::DwarfAttEncoding)
3595     return TokError("expected DWARF type attribute encoding");
3596 
3597   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
3598   if (!Encoding)
3599     return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
3600                     Lex.getStrVal() + "'");
3601   assert(Encoding <= Result.Max && "Expected valid DWARF language");
3602   Result.assign(Encoding);
3603   Lex.Lex();
3604   return false;
3605 }
3606 
3607 /// DIFlagField
3608 ///  ::= uint32
3609 ///  ::= DIFlagVector
3610 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
3611 template <>
3612 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
3613 
3614   // Parser for a single flag.
3615   auto parseFlag = [&](DINode::DIFlags &Val) {
3616     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
3617       uint32_t TempVal = static_cast<uint32_t>(Val);
3618       bool Res = ParseUInt32(TempVal);
3619       Val = static_cast<DINode::DIFlags>(TempVal);
3620       return Res;
3621     }
3622 
3623     if (Lex.getKind() != lltok::DIFlag)
3624       return TokError("expected debug info flag");
3625 
3626     Val = DINode::getFlag(Lex.getStrVal());
3627     if (!Val)
3628       return TokError(Twine("invalid debug info flag flag '") +
3629                       Lex.getStrVal() + "'");
3630     Lex.Lex();
3631     return false;
3632   };
3633 
3634   // Parse the flags and combine them together.
3635   DINode::DIFlags Combined = DINode::FlagZero;
3636   do {
3637     DINode::DIFlags Val;
3638     if (parseFlag(Val))
3639       return true;
3640     Combined |= Val;
3641   } while (EatIfPresent(lltok::bar));
3642 
3643   Result.assign(Combined);
3644   return false;
3645 }
3646 
3647 template <>
3648 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3649                             MDSignedField &Result) {
3650   if (Lex.getKind() != lltok::APSInt)
3651     return TokError("expected signed integer");
3652 
3653   auto &S = Lex.getAPSIntVal();
3654   if (S < Result.Min)
3655     return TokError("value for '" + Name + "' too small, limit is " +
3656                     Twine(Result.Min));
3657   if (S > Result.Max)
3658     return TokError("value for '" + Name + "' too large, limit is " +
3659                     Twine(Result.Max));
3660   Result.assign(S.getExtValue());
3661   assert(Result.Val >= Result.Min && "Expected value in range");
3662   assert(Result.Val <= Result.Max && "Expected value in range");
3663   Lex.Lex();
3664   return false;
3665 }
3666 
3667 template <>
3668 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
3669   switch (Lex.getKind()) {
3670   default:
3671     return TokError("expected 'true' or 'false'");
3672   case lltok::kw_true:
3673     Result.assign(true);
3674     break;
3675   case lltok::kw_false:
3676     Result.assign(false);
3677     break;
3678   }
3679   Lex.Lex();
3680   return false;
3681 }
3682 
3683 template <>
3684 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
3685   if (Lex.getKind() == lltok::kw_null) {
3686     if (!Result.AllowNull)
3687       return TokError("'" + Name + "' cannot be null");
3688     Lex.Lex();
3689     Result.assign(nullptr);
3690     return false;
3691   }
3692 
3693   Metadata *MD;
3694   if (ParseMetadata(MD, nullptr))
3695     return true;
3696 
3697   Result.assign(MD);
3698   return false;
3699 }
3700 
3701 template <>
3702 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDConstant &Result) {
3703   Metadata *MD;
3704   if (ParseValueAsMetadata(MD, "expected constant", nullptr))
3705     return true;
3706 
3707   Result.assign(cast<ConstantAsMetadata>(MD));
3708   return false;
3709 }
3710 
3711 template <>
3712 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
3713   LocTy ValueLoc = Lex.getLoc();
3714   std::string S;
3715   if (ParseStringConstant(S))
3716     return true;
3717 
3718   if (!Result.AllowEmpty && S.empty())
3719     return Error(ValueLoc, "'" + Name + "' cannot be empty");
3720 
3721   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
3722   return false;
3723 }
3724 
3725 template <>
3726 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
3727   SmallVector<Metadata *, 4> MDs;
3728   if (ParseMDNodeVector(MDs))
3729     return true;
3730 
3731   Result.assign(std::move(MDs));
3732   return false;
3733 }
3734 
3735 } // end namespace llvm
3736 
3737 template <class ParserTy>
3738 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
3739   do {
3740     if (Lex.getKind() != lltok::LabelStr)
3741       return TokError("expected field label here");
3742 
3743     if (parseField())
3744       return true;
3745   } while (EatIfPresent(lltok::comma));
3746 
3747   return false;
3748 }
3749 
3750 template <class ParserTy>
3751 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
3752   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
3753   Lex.Lex();
3754 
3755   if (ParseToken(lltok::lparen, "expected '(' here"))
3756     return true;
3757   if (Lex.getKind() != lltok::rparen)
3758     if (ParseMDFieldsImplBody(parseField))
3759       return true;
3760 
3761   ClosingLoc = Lex.getLoc();
3762   return ParseToken(lltok::rparen, "expected ')' here");
3763 }
3764 
3765 template <class FieldTy>
3766 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
3767   if (Result.Seen)
3768     return TokError("field '" + Name + "' cannot be specified more than once");
3769 
3770   LocTy Loc = Lex.getLoc();
3771   Lex.Lex();
3772   return ParseMDField(Loc, Name, Result);
3773 }
3774 
3775 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
3776   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
3777 
3778 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
3779   if (Lex.getStrVal() == #CLASS)                                               \
3780     return Parse##CLASS(N, IsDistinct);
3781 #include "llvm/IR/Metadata.def"
3782 
3783   return TokError("expected metadata type");
3784 }
3785 
3786 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
3787 #define NOP_FIELD(NAME, TYPE, INIT)
3788 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
3789   if (!NAME.Seen)                                                              \
3790     return Error(ClosingLoc, "missing required field '" #NAME "'");
3791 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
3792   if (Lex.getStrVal() == #NAME)                                                \
3793     return ParseMDField(#NAME, NAME);
3794 #define PARSE_MD_FIELDS()                                                      \
3795   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
3796   do {                                                                         \
3797     LocTy ClosingLoc;                                                          \
3798     if (ParseMDFieldsImpl([&]() -> bool {                                      \
3799       VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                          \
3800       return TokError(Twine("invalid field '") + Lex.getStrVal() + "'");       \
3801     }, ClosingLoc))                                                            \
3802       return true;                                                             \
3803     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
3804   } while (false)
3805 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
3806   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
3807 
3808 /// ParseDILocationFields:
3809 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6)
3810 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
3811 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3812   OPTIONAL(line, LineField, );                                                 \
3813   OPTIONAL(column, ColumnField, );                                             \
3814   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
3815   OPTIONAL(inlinedAt, MDField, );
3816   PARSE_MD_FIELDS();
3817 #undef VISIT_MD_FIELDS
3818 
3819   Result = GET_OR_DISTINCT(
3820       DILocation, (Context, line.Val, column.Val, scope.Val, inlinedAt.Val));
3821   return false;
3822 }
3823 
3824 /// ParseGenericDINode:
3825 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
3826 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
3827 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3828   REQUIRED(tag, DwarfTagField, );                                              \
3829   OPTIONAL(header, MDStringField, );                                           \
3830   OPTIONAL(operands, MDFieldList, );
3831   PARSE_MD_FIELDS();
3832 #undef VISIT_MD_FIELDS
3833 
3834   Result = GET_OR_DISTINCT(GenericDINode,
3835                            (Context, tag.Val, header.Val, operands.Val));
3836   return false;
3837 }
3838 
3839 /// ParseDISubrange:
3840 ///   ::= !DISubrange(count: 30, lowerBound: 2)
3841 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
3842 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3843   REQUIRED(count, MDSignedField, (-1, -1, INT64_MAX));                         \
3844   OPTIONAL(lowerBound, MDSignedField, );
3845   PARSE_MD_FIELDS();
3846 #undef VISIT_MD_FIELDS
3847 
3848   Result = GET_OR_DISTINCT(DISubrange, (Context, count.Val, lowerBound.Val));
3849   return false;
3850 }
3851 
3852 /// ParseDIEnumerator:
3853 ///   ::= !DIEnumerator(value: 30, name: "SomeKind")
3854 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
3855 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3856   REQUIRED(name, MDStringField, );                                             \
3857   REQUIRED(value, MDSignedField, );
3858   PARSE_MD_FIELDS();
3859 #undef VISIT_MD_FIELDS
3860 
3861   Result = GET_OR_DISTINCT(DIEnumerator, (Context, value.Val, name.Val));
3862   return false;
3863 }
3864 
3865 /// ParseDIBasicType:
3866 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32)
3867 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
3868 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3869   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
3870   OPTIONAL(name, MDStringField, );                                             \
3871   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
3872   OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX));                           \
3873   OPTIONAL(encoding, DwarfAttEncodingField, );
3874   PARSE_MD_FIELDS();
3875 #undef VISIT_MD_FIELDS
3876 
3877   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
3878                                          align.Val, encoding.Val));
3879   return false;
3880 }
3881 
3882 /// ParseDIDerivedType:
3883 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
3884 ///                      line: 7, scope: !1, baseType: !2, size: 32,
3885 ///                      align: 32, offset: 0, flags: 0, extraData: !3)
3886 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
3887 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3888   REQUIRED(tag, DwarfTagField, );                                              \
3889   OPTIONAL(name, MDStringField, );                                             \
3890   OPTIONAL(file, MDField, );                                                   \
3891   OPTIONAL(line, LineField, );                                                 \
3892   OPTIONAL(scope, MDField, );                                                  \
3893   REQUIRED(baseType, MDField, );                                               \
3894   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
3895   OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX));                           \
3896   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
3897   OPTIONAL(flags, DIFlagField, );                                              \
3898   OPTIONAL(extraData, MDField, );
3899   PARSE_MD_FIELDS();
3900 #undef VISIT_MD_FIELDS
3901 
3902   Result = GET_OR_DISTINCT(DIDerivedType,
3903                            (Context, tag.Val, name.Val, file.Val, line.Val,
3904                             scope.Val, baseType.Val, size.Val, align.Val,
3905                             offset.Val, flags.Val, extraData.Val));
3906   return false;
3907 }
3908 
3909 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
3910 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3911   REQUIRED(tag, DwarfTagField, );                                              \
3912   OPTIONAL(name, MDStringField, );                                             \
3913   OPTIONAL(file, MDField, );                                                   \
3914   OPTIONAL(line, LineField, );                                                 \
3915   OPTIONAL(scope, MDField, );                                                  \
3916   OPTIONAL(baseType, MDField, );                                               \
3917   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
3918   OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX));                           \
3919   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
3920   OPTIONAL(flags, DIFlagField, );                                              \
3921   OPTIONAL(elements, MDField, );                                               \
3922   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
3923   OPTIONAL(vtableHolder, MDField, );                                           \
3924   OPTIONAL(templateParams, MDField, );                                         \
3925   OPTIONAL(identifier, MDStringField, );
3926   PARSE_MD_FIELDS();
3927 #undef VISIT_MD_FIELDS
3928 
3929   // If this has an identifier try to build an ODR type.
3930   if (identifier.Val)
3931     if (auto *CT = DICompositeType::buildODRType(
3932             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
3933             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
3934             elements.Val, runtimeLang.Val, vtableHolder.Val,
3935             templateParams.Val)) {
3936       Result = CT;
3937       return false;
3938     }
3939 
3940   // Create a new node, and save it in the context if it belongs in the type
3941   // map.
3942   Result = GET_OR_DISTINCT(
3943       DICompositeType,
3944       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
3945        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
3946        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val));
3947   return false;
3948 }
3949 
3950 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
3951 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3952   OPTIONAL(flags, DIFlagField, );                                              \
3953   OPTIONAL(cc, DwarfCCField, );                                                \
3954   REQUIRED(types, MDField, );
3955   PARSE_MD_FIELDS();
3956 #undef VISIT_MD_FIELDS
3957 
3958   Result = GET_OR_DISTINCT(DISubroutineType,
3959                            (Context, flags.Val, cc.Val, types.Val));
3960   return false;
3961 }
3962 
3963 /// ParseDIFileType:
3964 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir")
3965 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
3966 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3967   REQUIRED(filename, MDStringField, );                                         \
3968   REQUIRED(directory, MDStringField, );
3969   PARSE_MD_FIELDS();
3970 #undef VISIT_MD_FIELDS
3971 
3972   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val));
3973   return false;
3974 }
3975 
3976 /// ParseDICompileUnit:
3977 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
3978 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
3979 ///                      splitDebugFilename: "abc.debug",
3980 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
3981 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd)
3982 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
3983   if (!IsDistinct)
3984     return Lex.Error("missing 'distinct', required for !DICompileUnit");
3985 
3986 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3987   REQUIRED(language, DwarfLangField, );                                        \
3988   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
3989   OPTIONAL(producer, MDStringField, );                                         \
3990   OPTIONAL(isOptimized, MDBoolField, );                                        \
3991   OPTIONAL(flags, MDStringField, );                                            \
3992   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
3993   OPTIONAL(splitDebugFilename, MDStringField, );                               \
3994   OPTIONAL(emissionKind, EmissionKindField, );                                 \
3995   OPTIONAL(enums, MDField, );                                                  \
3996   OPTIONAL(retainedTypes, MDField, );                                          \
3997   OPTIONAL(globals, MDField, );                                                \
3998   OPTIONAL(imports, MDField, );                                                \
3999   OPTIONAL(macros, MDField, );                                                 \
4000   OPTIONAL(dwoId, MDUnsignedField, );                                          \
4001   OPTIONAL(splitDebugInlining, MDBoolField, = true);
4002   PARSE_MD_FIELDS();
4003 #undef VISIT_MD_FIELDS
4004 
4005   Result = DICompileUnit::getDistinct(
4006       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4007       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4008       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4009       splitDebugInlining.Val);
4010   return false;
4011 }
4012 
4013 /// ParseDISubprogram:
4014 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4015 ///                     file: !1, line: 7, type: !2, isLocal: false,
4016 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
4017 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
4018 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
4019 ///                     isOptimized: false, templateParams: !4, declaration: !5,
4020 ///                     variables: !6)
4021 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
4022   auto Loc = Lex.getLoc();
4023 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4024   OPTIONAL(scope, MDField, );                                                  \
4025   OPTIONAL(name, MDStringField, );                                             \
4026   OPTIONAL(linkageName, MDStringField, );                                      \
4027   OPTIONAL(file, MDField, );                                                   \
4028   OPTIONAL(line, LineField, );                                                 \
4029   OPTIONAL(type, MDField, );                                                   \
4030   OPTIONAL(isLocal, MDBoolField, );                                            \
4031   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4032   OPTIONAL(scopeLine, LineField, );                                            \
4033   OPTIONAL(containingType, MDField, );                                         \
4034   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
4035   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
4036   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
4037   OPTIONAL(flags, DIFlagField, );                                              \
4038   OPTIONAL(isOptimized, MDBoolField, );                                        \
4039   OPTIONAL(unit, MDField, );                                                   \
4040   OPTIONAL(templateParams, MDField, );                                         \
4041   OPTIONAL(declaration, MDField, );                                            \
4042   OPTIONAL(variables, MDField, );
4043   PARSE_MD_FIELDS();
4044 #undef VISIT_MD_FIELDS
4045 
4046   if (isDefinition.Val && !IsDistinct)
4047     return Lex.Error(
4048         Loc,
4049         "missing 'distinct', required for !DISubprogram when 'isDefinition'");
4050 
4051   Result = GET_OR_DISTINCT(
4052       DISubprogram, (Context, scope.Val, name.Val, linkageName.Val, file.Val,
4053                      line.Val, type.Val, isLocal.Val, isDefinition.Val,
4054                      scopeLine.Val, containingType.Val, virtuality.Val,
4055                      virtualIndex.Val, thisAdjustment.Val, flags.Val,
4056                      isOptimized.Val, unit.Val, templateParams.Val,
4057                      declaration.Val, variables.Val));
4058   return false;
4059 }
4060 
4061 /// ParseDILexicalBlock:
4062 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4063 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4064 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4065   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4066   OPTIONAL(file, MDField, );                                                   \
4067   OPTIONAL(line, LineField, );                                                 \
4068   OPTIONAL(column, ColumnField, );
4069   PARSE_MD_FIELDS();
4070 #undef VISIT_MD_FIELDS
4071 
4072   Result = GET_OR_DISTINCT(
4073       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4074   return false;
4075 }
4076 
4077 /// ParseDILexicalBlockFile:
4078 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4079 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4080 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4081   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4082   OPTIONAL(file, MDField, );                                                   \
4083   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4084   PARSE_MD_FIELDS();
4085 #undef VISIT_MD_FIELDS
4086 
4087   Result = GET_OR_DISTINCT(DILexicalBlockFile,
4088                            (Context, scope.Val, file.Val, discriminator.Val));
4089   return false;
4090 }
4091 
4092 /// ParseDINamespace:
4093 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4094 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
4095 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4096   REQUIRED(scope, MDField, );                                                  \
4097   OPTIONAL(file, MDField, );                                                   \
4098   OPTIONAL(name, MDStringField, );                                             \
4099   OPTIONAL(line, LineField, );
4100   PARSE_MD_FIELDS();
4101 #undef VISIT_MD_FIELDS
4102 
4103   Result = GET_OR_DISTINCT(DINamespace,
4104                            (Context, scope.Val, file.Val, name.Val, line.Val));
4105   return false;
4106 }
4107 
4108 /// ParseDIMacro:
4109 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
4110 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) {
4111 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4112   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
4113   REQUIRED(line, LineField, );                                                 \
4114   REQUIRED(name, MDStringField, );                                             \
4115   OPTIONAL(value, MDStringField, );
4116   PARSE_MD_FIELDS();
4117 #undef VISIT_MD_FIELDS
4118 
4119   Result = GET_OR_DISTINCT(DIMacro,
4120                            (Context, type.Val, line.Val, name.Val, value.Val));
4121   return false;
4122 }
4123 
4124 /// ParseDIMacroFile:
4125 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4126 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4127 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4128   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
4129   REQUIRED(line, LineField, );                                                 \
4130   REQUIRED(file, MDField, );                                                   \
4131   OPTIONAL(nodes, MDField, );
4132   PARSE_MD_FIELDS();
4133 #undef VISIT_MD_FIELDS
4134 
4135   Result = GET_OR_DISTINCT(DIMacroFile,
4136                            (Context, type.Val, line.Val, file.Val, nodes.Val));
4137   return false;
4138 }
4139 
4140 /// ParseDIModule:
4141 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG",
4142 ///                 includePath: "/usr/include", isysroot: "/")
4143 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
4144 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4145   REQUIRED(scope, MDField, );                                                  \
4146   REQUIRED(name, MDStringField, );                                             \
4147   OPTIONAL(configMacros, MDStringField, );                                     \
4148   OPTIONAL(includePath, MDStringField, );                                      \
4149   OPTIONAL(isysroot, MDStringField, );
4150   PARSE_MD_FIELDS();
4151 #undef VISIT_MD_FIELDS
4152 
4153   Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val,
4154                            configMacros.Val, includePath.Val, isysroot.Val));
4155   return false;
4156 }
4157 
4158 /// ParseDITemplateTypeParameter:
4159 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1)
4160 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4161 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4162   OPTIONAL(name, MDStringField, );                                             \
4163   REQUIRED(type, MDField, );
4164   PARSE_MD_FIELDS();
4165 #undef VISIT_MD_FIELDS
4166 
4167   Result =
4168       GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val));
4169   return false;
4170 }
4171 
4172 /// ParseDITemplateValueParameter:
4173 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4174 ///                                 name: "V", type: !1, value: i32 7)
4175 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4176 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4177   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
4178   OPTIONAL(name, MDStringField, );                                             \
4179   OPTIONAL(type, MDField, );                                                   \
4180   REQUIRED(value, MDField, );
4181   PARSE_MD_FIELDS();
4182 #undef VISIT_MD_FIELDS
4183 
4184   Result = GET_OR_DISTINCT(DITemplateValueParameter,
4185                            (Context, tag.Val, name.Val, type.Val, value.Val));
4186   return false;
4187 }
4188 
4189 /// ParseDIGlobalVariable:
4190 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
4191 ///                         file: !1, line: 7, type: !2, isLocal: false,
4192 ///                         isDefinition: true, variable: i32* @foo,
4193 ///                         declaration: !3)
4194 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
4195 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4196   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
4197   OPTIONAL(scope, MDField, );                                                  \
4198   OPTIONAL(linkageName, MDStringField, );                                      \
4199   OPTIONAL(file, MDField, );                                                   \
4200   OPTIONAL(line, LineField, );                                                 \
4201   OPTIONAL(type, MDField, );                                                   \
4202   OPTIONAL(isLocal, MDBoolField, );                                            \
4203   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4204   OPTIONAL(variable, MDConstant, );                                            \
4205   OPTIONAL(declaration, MDField, );
4206   PARSE_MD_FIELDS();
4207 #undef VISIT_MD_FIELDS
4208 
4209   Result = GET_OR_DISTINCT(DIGlobalVariable,
4210                            (Context, scope.Val, name.Val, linkageName.Val,
4211                             file.Val, line.Val, type.Val, isLocal.Val,
4212                             isDefinition.Val, variable.Val, declaration.Val));
4213   return false;
4214 }
4215 
4216 /// ParseDILocalVariable:
4217 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
4218 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7)
4219 ///   ::= !DILocalVariable(scope: !0, name: "foo",
4220 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7)
4221 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
4222 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4223   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4224   OPTIONAL(name, MDStringField, );                                             \
4225   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
4226   OPTIONAL(file, MDField, );                                                   \
4227   OPTIONAL(line, LineField, );                                                 \
4228   OPTIONAL(type, MDField, );                                                   \
4229   OPTIONAL(flags, DIFlagField, );
4230   PARSE_MD_FIELDS();
4231 #undef VISIT_MD_FIELDS
4232 
4233   Result = GET_OR_DISTINCT(DILocalVariable,
4234                            (Context, scope.Val, name.Val, file.Val, line.Val,
4235                             type.Val, arg.Val, flags.Val));
4236   return false;
4237 }
4238 
4239 /// ParseDIExpression:
4240 ///   ::= !DIExpression(0, 7, -1)
4241 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
4242   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4243   Lex.Lex();
4244 
4245   if (ParseToken(lltok::lparen, "expected '(' here"))
4246     return true;
4247 
4248   SmallVector<uint64_t, 8> Elements;
4249   if (Lex.getKind() != lltok::rparen)
4250     do {
4251       if (Lex.getKind() == lltok::DwarfOp) {
4252         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
4253           Lex.Lex();
4254           Elements.push_back(Op);
4255           continue;
4256         }
4257         return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
4258       }
4259 
4260       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4261         return TokError("expected unsigned integer");
4262 
4263       auto &U = Lex.getAPSIntVal();
4264       if (U.ugt(UINT64_MAX))
4265         return TokError("element too large, limit is " + Twine(UINT64_MAX));
4266       Elements.push_back(U.getZExtValue());
4267       Lex.Lex();
4268     } while (EatIfPresent(lltok::comma));
4269 
4270   if (ParseToken(lltok::rparen, "expected ')' here"))
4271     return true;
4272 
4273   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
4274   return false;
4275 }
4276 
4277 /// ParseDIObjCProperty:
4278 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
4279 ///                       getter: "getFoo", attributes: 7, type: !2)
4280 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
4281 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4282   OPTIONAL(name, MDStringField, );                                             \
4283   OPTIONAL(file, MDField, );                                                   \
4284   OPTIONAL(line, LineField, );                                                 \
4285   OPTIONAL(setter, MDStringField, );                                           \
4286   OPTIONAL(getter, MDStringField, );                                           \
4287   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
4288   OPTIONAL(type, MDField, );
4289   PARSE_MD_FIELDS();
4290 #undef VISIT_MD_FIELDS
4291 
4292   Result = GET_OR_DISTINCT(DIObjCProperty,
4293                            (Context, name.Val, file.Val, line.Val, setter.Val,
4294                             getter.Val, attributes.Val, type.Val));
4295   return false;
4296 }
4297 
4298 /// ParseDIImportedEntity:
4299 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
4300 ///                         line: 7, name: "foo")
4301 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
4302 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4303   REQUIRED(tag, DwarfTagField, );                                              \
4304   REQUIRED(scope, MDField, );                                                  \
4305   OPTIONAL(entity, MDField, );                                                 \
4306   OPTIONAL(line, LineField, );                                                 \
4307   OPTIONAL(name, MDStringField, );
4308   PARSE_MD_FIELDS();
4309 #undef VISIT_MD_FIELDS
4310 
4311   Result = GET_OR_DISTINCT(DIImportedEntity, (Context, tag.Val, scope.Val,
4312                                               entity.Val, line.Val, name.Val));
4313   return false;
4314 }
4315 
4316 #undef PARSE_MD_FIELD
4317 #undef NOP_FIELD
4318 #undef REQUIRE_FIELD
4319 #undef DECLARE_FIELD
4320 
4321 /// ParseMetadataAsValue
4322 ///  ::= metadata i32 %local
4323 ///  ::= metadata i32 @global
4324 ///  ::= metadata i32 7
4325 ///  ::= metadata !0
4326 ///  ::= metadata !{...}
4327 ///  ::= metadata !"string"
4328 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
4329   // Note: the type 'metadata' has already been parsed.
4330   Metadata *MD;
4331   if (ParseMetadata(MD, &PFS))
4332     return true;
4333 
4334   V = MetadataAsValue::get(Context, MD);
4335   return false;
4336 }
4337 
4338 /// ParseValueAsMetadata
4339 ///  ::= i32 %local
4340 ///  ::= i32 @global
4341 ///  ::= i32 7
4342 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
4343                                     PerFunctionState *PFS) {
4344   Type *Ty;
4345   LocTy Loc;
4346   if (ParseType(Ty, TypeMsg, Loc))
4347     return true;
4348   if (Ty->isMetadataTy())
4349     return Error(Loc, "invalid metadata-value-metadata roundtrip");
4350 
4351   Value *V;
4352   if (ParseValue(Ty, V, PFS))
4353     return true;
4354 
4355   MD = ValueAsMetadata::get(V);
4356   return false;
4357 }
4358 
4359 /// ParseMetadata
4360 ///  ::= i32 %local
4361 ///  ::= i32 @global
4362 ///  ::= i32 7
4363 ///  ::= !42
4364 ///  ::= !{...}
4365 ///  ::= !"string"
4366 ///  ::= !DILocation(...)
4367 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
4368   if (Lex.getKind() == lltok::MetadataVar) {
4369     MDNode *N;
4370     if (ParseSpecializedMDNode(N))
4371       return true;
4372     MD = N;
4373     return false;
4374   }
4375 
4376   // ValueAsMetadata:
4377   // <type> <value>
4378   if (Lex.getKind() != lltok::exclaim)
4379     return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
4380 
4381   // '!'.
4382   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
4383   Lex.Lex();
4384 
4385   // MDString:
4386   //   ::= '!' STRINGCONSTANT
4387   if (Lex.getKind() == lltok::StringConstant) {
4388     MDString *S;
4389     if (ParseMDString(S))
4390       return true;
4391     MD = S;
4392     return false;
4393   }
4394 
4395   // MDNode:
4396   // !{ ... }
4397   // !7
4398   MDNode *N;
4399   if (ParseMDNodeTail(N))
4400     return true;
4401   MD = N;
4402   return false;
4403 }
4404 
4405 //===----------------------------------------------------------------------===//
4406 // Function Parsing.
4407 //===----------------------------------------------------------------------===//
4408 
4409 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
4410                                    PerFunctionState *PFS) {
4411   if (Ty->isFunctionTy())
4412     return Error(ID.Loc, "functions are not values, refer to them as pointers");
4413 
4414   switch (ID.Kind) {
4415   case ValID::t_LocalID:
4416     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
4417     V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
4418     return V == nullptr;
4419   case ValID::t_LocalName:
4420     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
4421     V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
4422     return V == nullptr;
4423   case ValID::t_InlineAsm: {
4424     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
4425       return Error(ID.Loc, "invalid type for inline asm constraint string");
4426     V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
4427                        (ID.UIntVal >> 1) & 1,
4428                        (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
4429     return false;
4430   }
4431   case ValID::t_GlobalName:
4432     V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
4433     return V == nullptr;
4434   case ValID::t_GlobalID:
4435     V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
4436     return V == nullptr;
4437   case ValID::t_APSInt:
4438     if (!Ty->isIntegerTy())
4439       return Error(ID.Loc, "integer constant must have integer type");
4440     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
4441     V = ConstantInt::get(Context, ID.APSIntVal);
4442     return false;
4443   case ValID::t_APFloat:
4444     if (!Ty->isFloatingPointTy() ||
4445         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
4446       return Error(ID.Loc, "floating point constant invalid for type");
4447 
4448     // The lexer has no type info, so builds all half, float, and double FP
4449     // constants as double.  Fix this here.  Long double does not need this.
4450     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) {
4451       bool Ignored;
4452       if (Ty->isHalfTy())
4453         ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven,
4454                               &Ignored);
4455       else if (Ty->isFloatTy())
4456         ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
4457                               &Ignored);
4458     }
4459     V = ConstantFP::get(Context, ID.APFloatVal);
4460 
4461     if (V->getType() != Ty)
4462       return Error(ID.Loc, "floating point constant does not have type '" +
4463                    getTypeString(Ty) + "'");
4464 
4465     return false;
4466   case ValID::t_Null:
4467     if (!Ty->isPointerTy())
4468       return Error(ID.Loc, "null must be a pointer type");
4469     V = ConstantPointerNull::get(cast<PointerType>(Ty));
4470     return false;
4471   case ValID::t_Undef:
4472     // FIXME: LabelTy should not be a first-class type.
4473     if (!Ty->isFirstClassType() || Ty->isLabelTy())
4474       return Error(ID.Loc, "invalid type for undef constant");
4475     V = UndefValue::get(Ty);
4476     return false;
4477   case ValID::t_EmptyArray:
4478     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
4479       return Error(ID.Loc, "invalid empty array initializer");
4480     V = UndefValue::get(Ty);
4481     return false;
4482   case ValID::t_Zero:
4483     // FIXME: LabelTy should not be a first-class type.
4484     if (!Ty->isFirstClassType() || Ty->isLabelTy())
4485       return Error(ID.Loc, "invalid type for null constant");
4486     V = Constant::getNullValue(Ty);
4487     return false;
4488   case ValID::t_None:
4489     if (!Ty->isTokenTy())
4490       return Error(ID.Loc, "invalid type for none constant");
4491     V = Constant::getNullValue(Ty);
4492     return false;
4493   case ValID::t_Constant:
4494     if (ID.ConstantVal->getType() != Ty)
4495       return Error(ID.Loc, "constant expression type mismatch");
4496 
4497     V = ID.ConstantVal;
4498     return false;
4499   case ValID::t_ConstantStruct:
4500   case ValID::t_PackedConstantStruct:
4501     if (StructType *ST = dyn_cast<StructType>(Ty)) {
4502       if (ST->getNumElements() != ID.UIntVal)
4503         return Error(ID.Loc,
4504                      "initializer with struct type has wrong # elements");
4505       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
4506         return Error(ID.Loc, "packed'ness of initializer and type don't match");
4507 
4508       // Verify that the elements are compatible with the structtype.
4509       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
4510         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
4511           return Error(ID.Loc, "element " + Twine(i) +
4512                     " of struct initializer doesn't match struct element type");
4513 
4514       V = ConstantStruct::get(
4515           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
4516     } else
4517       return Error(ID.Loc, "constant expression type mismatch");
4518     return false;
4519   }
4520   llvm_unreachable("Invalid ValID");
4521 }
4522 
4523 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
4524   C = nullptr;
4525   ValID ID;
4526   auto Loc = Lex.getLoc();
4527   if (ParseValID(ID, /*PFS=*/nullptr))
4528     return true;
4529   switch (ID.Kind) {
4530   case ValID::t_APSInt:
4531   case ValID::t_APFloat:
4532   case ValID::t_Undef:
4533   case ValID::t_Constant:
4534   case ValID::t_ConstantStruct:
4535   case ValID::t_PackedConstantStruct: {
4536     Value *V;
4537     if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr))
4538       return true;
4539     assert(isa<Constant>(V) && "Expected a constant value");
4540     C = cast<Constant>(V);
4541     return false;
4542   }
4543   default:
4544     return Error(Loc, "expected a constant value");
4545   }
4546 }
4547 
4548 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
4549   V = nullptr;
4550   ValID ID;
4551   return ParseValID(ID, PFS) || ConvertValIDToValue(Ty, ID, V, PFS);
4552 }
4553 
4554 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
4555   Type *Ty = nullptr;
4556   return ParseType(Ty) ||
4557          ParseValue(Ty, V, PFS);
4558 }
4559 
4560 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
4561                                       PerFunctionState &PFS) {
4562   Value *V;
4563   Loc = Lex.getLoc();
4564   if (ParseTypeAndValue(V, PFS)) return true;
4565   if (!isa<BasicBlock>(V))
4566     return Error(Loc, "expected a basic block");
4567   BB = cast<BasicBlock>(V);
4568   return false;
4569 }
4570 
4571 /// FunctionHeader
4572 ///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
4573 ///       OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
4574 ///       OptionalAlign OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
4575 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
4576   // Parse the linkage.
4577   LocTy LinkageLoc = Lex.getLoc();
4578   unsigned Linkage;
4579 
4580   unsigned Visibility;
4581   unsigned DLLStorageClass;
4582   AttrBuilder RetAttrs;
4583   unsigned CC;
4584   bool HasLinkage;
4585   Type *RetType = nullptr;
4586   LocTy RetTypeLoc = Lex.getLoc();
4587   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) ||
4588       ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
4589       ParseType(RetType, RetTypeLoc, true /*void allowed*/))
4590     return true;
4591 
4592   // Verify that the linkage is ok.
4593   switch ((GlobalValue::LinkageTypes)Linkage) {
4594   case GlobalValue::ExternalLinkage:
4595     break; // always ok.
4596   case GlobalValue::ExternalWeakLinkage:
4597     if (isDefine)
4598       return Error(LinkageLoc, "invalid linkage for function definition");
4599     break;
4600   case GlobalValue::PrivateLinkage:
4601   case GlobalValue::InternalLinkage:
4602   case GlobalValue::AvailableExternallyLinkage:
4603   case GlobalValue::LinkOnceAnyLinkage:
4604   case GlobalValue::LinkOnceODRLinkage:
4605   case GlobalValue::WeakAnyLinkage:
4606   case GlobalValue::WeakODRLinkage:
4607     if (!isDefine)
4608       return Error(LinkageLoc, "invalid linkage for function declaration");
4609     break;
4610   case GlobalValue::AppendingLinkage:
4611   case GlobalValue::CommonLinkage:
4612     return Error(LinkageLoc, "invalid function linkage type");
4613   }
4614 
4615   if (!isValidVisibilityForLinkage(Visibility, Linkage))
4616     return Error(LinkageLoc,
4617                  "symbol with local linkage must have default visibility");
4618 
4619   if (!FunctionType::isValidReturnType(RetType))
4620     return Error(RetTypeLoc, "invalid function return type");
4621 
4622   LocTy NameLoc = Lex.getLoc();
4623 
4624   std::string FunctionName;
4625   if (Lex.getKind() == lltok::GlobalVar) {
4626     FunctionName = Lex.getStrVal();
4627   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
4628     unsigned NameID = Lex.getUIntVal();
4629 
4630     if (NameID != NumberedVals.size())
4631       return TokError("function expected to be numbered '%" +
4632                       Twine(NumberedVals.size()) + "'");
4633   } else {
4634     return TokError("expected function name");
4635   }
4636 
4637   Lex.Lex();
4638 
4639   if (Lex.getKind() != lltok::lparen)
4640     return TokError("expected '(' in function argument list");
4641 
4642   SmallVector<ArgInfo, 8> ArgList;
4643   bool isVarArg;
4644   AttrBuilder FuncAttrs;
4645   std::vector<unsigned> FwdRefAttrGrps;
4646   LocTy BuiltinLoc;
4647   std::string Section;
4648   unsigned Alignment;
4649   std::string GC;
4650   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4651   LocTy UnnamedAddrLoc;
4652   Constant *Prefix = nullptr;
4653   Constant *Prologue = nullptr;
4654   Constant *PersonalityFn = nullptr;
4655   Comdat *C;
4656 
4657   if (ParseArgumentList(ArgList, isVarArg) ||
4658       ParseOptionalUnnamedAddr(UnnamedAddr) ||
4659       ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
4660                                  BuiltinLoc) ||
4661       (EatIfPresent(lltok::kw_section) &&
4662        ParseStringConstant(Section)) ||
4663       parseOptionalComdat(FunctionName, C) ||
4664       ParseOptionalAlignment(Alignment) ||
4665       (EatIfPresent(lltok::kw_gc) &&
4666        ParseStringConstant(GC)) ||
4667       (EatIfPresent(lltok::kw_prefix) &&
4668        ParseGlobalTypeAndValue(Prefix)) ||
4669       (EatIfPresent(lltok::kw_prologue) &&
4670        ParseGlobalTypeAndValue(Prologue)) ||
4671       (EatIfPresent(lltok::kw_personality) &&
4672        ParseGlobalTypeAndValue(PersonalityFn)))
4673     return true;
4674 
4675   if (FuncAttrs.contains(Attribute::Builtin))
4676     return Error(BuiltinLoc, "'builtin' attribute not valid on function");
4677 
4678   // If the alignment was parsed as an attribute, move to the alignment field.
4679   if (FuncAttrs.hasAlignmentAttr()) {
4680     Alignment = FuncAttrs.getAlignment();
4681     FuncAttrs.removeAttribute(Attribute::Alignment);
4682   }
4683 
4684   // Okay, if we got here, the function is syntactically valid.  Convert types
4685   // and do semantic checks.
4686   std::vector<Type*> ParamTypeList;
4687   SmallVector<AttributeSet, 8> Attrs;
4688 
4689   if (RetAttrs.hasAttributes())
4690     Attrs.push_back(AttributeSet::get(RetType->getContext(),
4691                                       AttributeSet::ReturnIndex,
4692                                       RetAttrs));
4693 
4694   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
4695     ParamTypeList.push_back(ArgList[i].Ty);
4696     if (ArgList[i].Attrs.hasAttributes(i + 1)) {
4697       AttrBuilder B(ArgList[i].Attrs, i + 1);
4698       Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
4699     }
4700   }
4701 
4702   if (FuncAttrs.hasAttributes())
4703     Attrs.push_back(AttributeSet::get(RetType->getContext(),
4704                                       AttributeSet::FunctionIndex,
4705                                       FuncAttrs));
4706 
4707   AttributeSet PAL = AttributeSet::get(Context, Attrs);
4708 
4709   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
4710     return Error(RetTypeLoc, "functions with 'sret' argument must return void");
4711 
4712   FunctionType *FT =
4713     FunctionType::get(RetType, ParamTypeList, isVarArg);
4714   PointerType *PFT = PointerType::getUnqual(FT);
4715 
4716   Fn = nullptr;
4717   if (!FunctionName.empty()) {
4718     // If this was a definition of a forward reference, remove the definition
4719     // from the forward reference table and fill in the forward ref.
4720     auto FRVI = ForwardRefVals.find(FunctionName);
4721     if (FRVI != ForwardRefVals.end()) {
4722       Fn = M->getFunction(FunctionName);
4723       if (!Fn)
4724         return Error(FRVI->second.second, "invalid forward reference to "
4725                      "function as global value!");
4726       if (Fn->getType() != PFT)
4727         return Error(FRVI->second.second, "invalid forward reference to "
4728                      "function '" + FunctionName + "' with wrong type!");
4729 
4730       ForwardRefVals.erase(FRVI);
4731     } else if ((Fn = M->getFunction(FunctionName))) {
4732       // Reject redefinitions.
4733       return Error(NameLoc, "invalid redefinition of function '" +
4734                    FunctionName + "'");
4735     } else if (M->getNamedValue(FunctionName)) {
4736       return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
4737     }
4738 
4739   } else {
4740     // If this is a definition of a forward referenced function, make sure the
4741     // types agree.
4742     auto I = ForwardRefValIDs.find(NumberedVals.size());
4743     if (I != ForwardRefValIDs.end()) {
4744       Fn = cast<Function>(I->second.first);
4745       if (Fn->getType() != PFT)
4746         return Error(NameLoc, "type of definition and forward reference of '@" +
4747                      Twine(NumberedVals.size()) + "' disagree");
4748       ForwardRefValIDs.erase(I);
4749     }
4750   }
4751 
4752   if (!Fn)
4753     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
4754   else // Move the forward-reference to the correct spot in the module.
4755     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
4756 
4757   if (FunctionName.empty())
4758     NumberedVals.push_back(Fn);
4759 
4760   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
4761   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
4762   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
4763   Fn->setCallingConv(CC);
4764   Fn->setAttributes(PAL);
4765   Fn->setUnnamedAddr(UnnamedAddr);
4766   Fn->setAlignment(Alignment);
4767   Fn->setSection(Section);
4768   Fn->setComdat(C);
4769   Fn->setPersonalityFn(PersonalityFn);
4770   if (!GC.empty()) Fn->setGC(GC);
4771   Fn->setPrefixData(Prefix);
4772   Fn->setPrologueData(Prologue);
4773   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
4774 
4775   // Add all of the arguments we parsed to the function.
4776   Function::arg_iterator ArgIt = Fn->arg_begin();
4777   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
4778     // If the argument has a name, insert it into the argument symbol table.
4779     if (ArgList[i].Name.empty()) continue;
4780 
4781     // Set the name, if it conflicted, it will be auto-renamed.
4782     ArgIt->setName(ArgList[i].Name);
4783 
4784     if (ArgIt->getName() != ArgList[i].Name)
4785       return Error(ArgList[i].Loc, "redefinition of argument '%" +
4786                    ArgList[i].Name + "'");
4787   }
4788 
4789   if (isDefine)
4790     return false;
4791 
4792   // Check the declaration has no block address forward references.
4793   ValID ID;
4794   if (FunctionName.empty()) {
4795     ID.Kind = ValID::t_GlobalID;
4796     ID.UIntVal = NumberedVals.size() - 1;
4797   } else {
4798     ID.Kind = ValID::t_GlobalName;
4799     ID.StrVal = FunctionName;
4800   }
4801   auto Blocks = ForwardRefBlockAddresses.find(ID);
4802   if (Blocks != ForwardRefBlockAddresses.end())
4803     return Error(Blocks->first.Loc,
4804                  "cannot take blockaddress inside a declaration");
4805   return false;
4806 }
4807 
4808 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
4809   ValID ID;
4810   if (FunctionNumber == -1) {
4811     ID.Kind = ValID::t_GlobalName;
4812     ID.StrVal = F.getName();
4813   } else {
4814     ID.Kind = ValID::t_GlobalID;
4815     ID.UIntVal = FunctionNumber;
4816   }
4817 
4818   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
4819   if (Blocks == P.ForwardRefBlockAddresses.end())
4820     return false;
4821 
4822   for (const auto &I : Blocks->second) {
4823     const ValID &BBID = I.first;
4824     GlobalValue *GV = I.second;
4825 
4826     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
4827            "Expected local id or name");
4828     BasicBlock *BB;
4829     if (BBID.Kind == ValID::t_LocalName)
4830       BB = GetBB(BBID.StrVal, BBID.Loc);
4831     else
4832       BB = GetBB(BBID.UIntVal, BBID.Loc);
4833     if (!BB)
4834       return P.Error(BBID.Loc, "referenced value is not a basic block");
4835 
4836     GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
4837     GV->eraseFromParent();
4838   }
4839 
4840   P.ForwardRefBlockAddresses.erase(Blocks);
4841   return false;
4842 }
4843 
4844 /// ParseFunctionBody
4845 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
4846 bool LLParser::ParseFunctionBody(Function &Fn) {
4847   if (Lex.getKind() != lltok::lbrace)
4848     return TokError("expected '{' in function body");
4849   Lex.Lex();  // eat the {.
4850 
4851   int FunctionNumber = -1;
4852   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
4853 
4854   PerFunctionState PFS(*this, Fn, FunctionNumber);
4855 
4856   // Resolve block addresses and allow basic blocks to be forward-declared
4857   // within this function.
4858   if (PFS.resolveForwardRefBlockAddresses())
4859     return true;
4860   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
4861 
4862   // We need at least one basic block.
4863   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
4864     return TokError("function body requires at least one basic block");
4865 
4866   while (Lex.getKind() != lltok::rbrace &&
4867          Lex.getKind() != lltok::kw_uselistorder)
4868     if (ParseBasicBlock(PFS)) return true;
4869 
4870   while (Lex.getKind() != lltok::rbrace)
4871     if (ParseUseListOrder(&PFS))
4872       return true;
4873 
4874   // Eat the }.
4875   Lex.Lex();
4876 
4877   // Verify function is ok.
4878   return PFS.FinishFunction();
4879 }
4880 
4881 /// ParseBasicBlock
4882 ///   ::= LabelStr? Instruction*
4883 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
4884   // If this basic block starts out with a name, remember it.
4885   std::string Name;
4886   LocTy NameLoc = Lex.getLoc();
4887   if (Lex.getKind() == lltok::LabelStr) {
4888     Name = Lex.getStrVal();
4889     Lex.Lex();
4890   }
4891 
4892   BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
4893   if (!BB)
4894     return Error(NameLoc,
4895                  "unable to create block named '" + Name + "'");
4896 
4897   std::string NameStr;
4898 
4899   // Parse the instructions in this block until we get a terminator.
4900   Instruction *Inst;
4901   do {
4902     // This instruction may have three possibilities for a name: a) none
4903     // specified, b) name specified "%foo =", c) number specified: "%4 =".
4904     LocTy NameLoc = Lex.getLoc();
4905     int NameID = -1;
4906     NameStr = "";
4907 
4908     if (Lex.getKind() == lltok::LocalVarID) {
4909       NameID = Lex.getUIntVal();
4910       Lex.Lex();
4911       if (ParseToken(lltok::equal, "expected '=' after instruction id"))
4912         return true;
4913     } else if (Lex.getKind() == lltok::LocalVar) {
4914       NameStr = Lex.getStrVal();
4915       Lex.Lex();
4916       if (ParseToken(lltok::equal, "expected '=' after instruction name"))
4917         return true;
4918     }
4919 
4920     switch (ParseInstruction(Inst, BB, PFS)) {
4921     default: llvm_unreachable("Unknown ParseInstruction result!");
4922     case InstError: return true;
4923     case InstNormal:
4924       BB->getInstList().push_back(Inst);
4925 
4926       // With a normal result, we check to see if the instruction is followed by
4927       // a comma and metadata.
4928       if (EatIfPresent(lltok::comma))
4929         if (ParseInstructionMetadata(*Inst))
4930           return true;
4931       break;
4932     case InstExtraComma:
4933       BB->getInstList().push_back(Inst);
4934 
4935       // If the instruction parser ate an extra comma at the end of it, it
4936       // *must* be followed by metadata.
4937       if (ParseInstructionMetadata(*Inst))
4938         return true;
4939       break;
4940     }
4941 
4942     // Set the name on the instruction.
4943     if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
4944   } while (!isa<TerminatorInst>(Inst));
4945 
4946   return false;
4947 }
4948 
4949 //===----------------------------------------------------------------------===//
4950 // Instruction Parsing.
4951 //===----------------------------------------------------------------------===//
4952 
4953 /// ParseInstruction - Parse one of the many different instructions.
4954 ///
4955 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
4956                                PerFunctionState &PFS) {
4957   lltok::Kind Token = Lex.getKind();
4958   if (Token == lltok::Eof)
4959     return TokError("found end of file when expecting more instructions");
4960   LocTy Loc = Lex.getLoc();
4961   unsigned KeywordVal = Lex.getUIntVal();
4962   Lex.Lex();  // Eat the keyword.
4963 
4964   switch (Token) {
4965   default:                    return Error(Loc, "expected instruction opcode");
4966   // Terminator Instructions.
4967   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
4968   case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
4969   case lltok::kw_br:          return ParseBr(Inst, PFS);
4970   case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
4971   case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
4972   case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
4973   case lltok::kw_resume:      return ParseResume(Inst, PFS);
4974   case lltok::kw_cleanupret:  return ParseCleanupRet(Inst, PFS);
4975   case lltok::kw_catchret:    return ParseCatchRet(Inst, PFS);
4976   case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS);
4977   case lltok::kw_catchpad:    return ParseCatchPad(Inst, PFS);
4978   case lltok::kw_cleanuppad:  return ParseCleanupPad(Inst, PFS);
4979   // Binary Operators.
4980   case lltok::kw_add:
4981   case lltok::kw_sub:
4982   case lltok::kw_mul:
4983   case lltok::kw_shl: {
4984     bool NUW = EatIfPresent(lltok::kw_nuw);
4985     bool NSW = EatIfPresent(lltok::kw_nsw);
4986     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
4987 
4988     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
4989 
4990     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
4991     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
4992     return false;
4993   }
4994   case lltok::kw_fadd:
4995   case lltok::kw_fsub:
4996   case lltok::kw_fmul:
4997   case lltok::kw_fdiv:
4998   case lltok::kw_frem: {
4999     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5000     int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2);
5001     if (Res != 0)
5002       return Res;
5003     if (FMF.any())
5004       Inst->setFastMathFlags(FMF);
5005     return 0;
5006   }
5007 
5008   case lltok::kw_sdiv:
5009   case lltok::kw_udiv:
5010   case lltok::kw_lshr:
5011   case lltok::kw_ashr: {
5012     bool Exact = EatIfPresent(lltok::kw_exact);
5013 
5014     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
5015     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
5016     return false;
5017   }
5018 
5019   case lltok::kw_urem:
5020   case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
5021   case lltok::kw_and:
5022   case lltok::kw_or:
5023   case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
5024   case lltok::kw_icmp:   return ParseCompare(Inst, PFS, KeywordVal);
5025   case lltok::kw_fcmp: {
5026     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5027     int Res = ParseCompare(Inst, PFS, KeywordVal);
5028     if (Res != 0)
5029       return Res;
5030     if (FMF.any())
5031       Inst->setFastMathFlags(FMF);
5032     return 0;
5033   }
5034 
5035   // Casts.
5036   case lltok::kw_trunc:
5037   case lltok::kw_zext:
5038   case lltok::kw_sext:
5039   case lltok::kw_fptrunc:
5040   case lltok::kw_fpext:
5041   case lltok::kw_bitcast:
5042   case lltok::kw_addrspacecast:
5043   case lltok::kw_uitofp:
5044   case lltok::kw_sitofp:
5045   case lltok::kw_fptoui:
5046   case lltok::kw_fptosi:
5047   case lltok::kw_inttoptr:
5048   case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
5049   // Other.
5050   case lltok::kw_select:         return ParseSelect(Inst, PFS);
5051   case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
5052   case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
5053   case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
5054   case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
5055   case lltok::kw_phi:            return ParsePHI(Inst, PFS);
5056   case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
5057   // Call.
5058   case lltok::kw_call:     return ParseCall(Inst, PFS, CallInst::TCK_None);
5059   case lltok::kw_tail:     return ParseCall(Inst, PFS, CallInst::TCK_Tail);
5060   case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail);
5061   case lltok::kw_notail:   return ParseCall(Inst, PFS, CallInst::TCK_NoTail);
5062   // Memory.
5063   case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
5064   case lltok::kw_load:           return ParseLoad(Inst, PFS);
5065   case lltok::kw_store:          return ParseStore(Inst, PFS);
5066   case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
5067   case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
5068   case lltok::kw_fence:          return ParseFence(Inst, PFS);
5069   case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
5070   case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
5071   case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
5072   }
5073 }
5074 
5075 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
5076 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
5077   if (Opc == Instruction::FCmp) {
5078     switch (Lex.getKind()) {
5079     default: return TokError("expected fcmp predicate (e.g. 'oeq')");
5080     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
5081     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
5082     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
5083     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
5084     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
5085     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
5086     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
5087     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
5088     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
5089     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
5090     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
5091     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
5092     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
5093     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
5094     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
5095     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
5096     }
5097   } else {
5098     switch (Lex.getKind()) {
5099     default: return TokError("expected icmp predicate (e.g. 'eq')");
5100     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
5101     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
5102     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
5103     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
5104     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
5105     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
5106     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
5107     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
5108     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
5109     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
5110     }
5111   }
5112   Lex.Lex();
5113   return false;
5114 }
5115 
5116 //===----------------------------------------------------------------------===//
5117 // Terminator Instructions.
5118 //===----------------------------------------------------------------------===//
5119 
5120 /// ParseRet - Parse a return instruction.
5121 ///   ::= 'ret' void (',' !dbg, !1)*
5122 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
5123 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
5124                         PerFunctionState &PFS) {
5125   SMLoc TypeLoc = Lex.getLoc();
5126   Type *Ty = nullptr;
5127   if (ParseType(Ty, true /*void allowed*/)) return true;
5128 
5129   Type *ResType = PFS.getFunction().getReturnType();
5130 
5131   if (Ty->isVoidTy()) {
5132     if (!ResType->isVoidTy())
5133       return Error(TypeLoc, "value doesn't match function result type '" +
5134                    getTypeString(ResType) + "'");
5135 
5136     Inst = ReturnInst::Create(Context);
5137     return false;
5138   }
5139 
5140   Value *RV;
5141   if (ParseValue(Ty, RV, PFS)) return true;
5142 
5143   if (ResType != RV->getType())
5144     return Error(TypeLoc, "value doesn't match function result type '" +
5145                  getTypeString(ResType) + "'");
5146 
5147   Inst = ReturnInst::Create(Context, RV);
5148   return false;
5149 }
5150 
5151 /// ParseBr
5152 ///   ::= 'br' TypeAndValue
5153 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5154 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
5155   LocTy Loc, Loc2;
5156   Value *Op0;
5157   BasicBlock *Op1, *Op2;
5158   if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
5159 
5160   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
5161     Inst = BranchInst::Create(BB);
5162     return false;
5163   }
5164 
5165   if (Op0->getType() != Type::getInt1Ty(Context))
5166     return Error(Loc, "branch condition must have 'i1' type");
5167 
5168   if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
5169       ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
5170       ParseToken(lltok::comma, "expected ',' after true destination") ||
5171       ParseTypeAndBasicBlock(Op2, Loc2, PFS))
5172     return true;
5173 
5174   Inst = BranchInst::Create(Op1, Op2, Op0);
5175   return false;
5176 }
5177 
5178 /// ParseSwitch
5179 ///  Instruction
5180 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
5181 ///  JumpTable
5182 ///    ::= (TypeAndValue ',' TypeAndValue)*
5183 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5184   LocTy CondLoc, BBLoc;
5185   Value *Cond;
5186   BasicBlock *DefaultBB;
5187   if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
5188       ParseToken(lltok::comma, "expected ',' after switch condition") ||
5189       ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
5190       ParseToken(lltok::lsquare, "expected '[' with switch table"))
5191     return true;
5192 
5193   if (!Cond->getType()->isIntegerTy())
5194     return Error(CondLoc, "switch condition must have integer type");
5195 
5196   // Parse the jump table pairs.
5197   SmallPtrSet<Value*, 32> SeenCases;
5198   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
5199   while (Lex.getKind() != lltok::rsquare) {
5200     Value *Constant;
5201     BasicBlock *DestBB;
5202 
5203     if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
5204         ParseToken(lltok::comma, "expected ',' after case value") ||
5205         ParseTypeAndBasicBlock(DestBB, PFS))
5206       return true;
5207 
5208     if (!SeenCases.insert(Constant).second)
5209       return Error(CondLoc, "duplicate case value in switch");
5210     if (!isa<ConstantInt>(Constant))
5211       return Error(CondLoc, "case value is not a constant integer");
5212 
5213     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
5214   }
5215 
5216   Lex.Lex();  // Eat the ']'.
5217 
5218   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
5219   for (unsigned i = 0, e = Table.size(); i != e; ++i)
5220     SI->addCase(Table[i].first, Table[i].second);
5221   Inst = SI;
5222   return false;
5223 }
5224 
5225 /// ParseIndirectBr
5226 ///  Instruction
5227 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
5228 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
5229   LocTy AddrLoc;
5230   Value *Address;
5231   if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
5232       ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
5233       ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
5234     return true;
5235 
5236   if (!Address->getType()->isPointerTy())
5237     return Error(AddrLoc, "indirectbr address must have pointer type");
5238 
5239   // Parse the destination list.
5240   SmallVector<BasicBlock*, 16> DestList;
5241 
5242   if (Lex.getKind() != lltok::rsquare) {
5243     BasicBlock *DestBB;
5244     if (ParseTypeAndBasicBlock(DestBB, PFS))
5245       return true;
5246     DestList.push_back(DestBB);
5247 
5248     while (EatIfPresent(lltok::comma)) {
5249       if (ParseTypeAndBasicBlock(DestBB, PFS))
5250         return true;
5251       DestList.push_back(DestBB);
5252     }
5253   }
5254 
5255   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
5256     return true;
5257 
5258   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
5259   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
5260     IBI->addDestination(DestList[i]);
5261   Inst = IBI;
5262   return false;
5263 }
5264 
5265 /// ParseInvoke
5266 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
5267 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
5268 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
5269   LocTy CallLoc = Lex.getLoc();
5270   AttrBuilder RetAttrs, FnAttrs;
5271   std::vector<unsigned> FwdRefAttrGrps;
5272   LocTy NoBuiltinLoc;
5273   unsigned CC;
5274   Type *RetType = nullptr;
5275   LocTy RetTypeLoc;
5276   ValID CalleeID;
5277   SmallVector<ParamInfo, 16> ArgList;
5278   SmallVector<OperandBundleDef, 2> BundleList;
5279 
5280   BasicBlock *NormalBB, *UnwindBB;
5281   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5282       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
5283       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
5284       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
5285                                  NoBuiltinLoc) ||
5286       ParseOptionalOperandBundles(BundleList, PFS) ||
5287       ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
5288       ParseTypeAndBasicBlock(NormalBB, PFS) ||
5289       ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
5290       ParseTypeAndBasicBlock(UnwindBB, PFS))
5291     return true;
5292 
5293   // If RetType is a non-function pointer type, then this is the short syntax
5294   // for the call, which means that RetType is just the return type.  Infer the
5295   // rest of the function argument types from the arguments that are present.
5296   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
5297   if (!Ty) {
5298     // Pull out the types of all of the arguments...
5299     std::vector<Type*> ParamTypes;
5300     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
5301       ParamTypes.push_back(ArgList[i].V->getType());
5302 
5303     if (!FunctionType::isValidReturnType(RetType))
5304       return Error(RetTypeLoc, "Invalid result type for LLVM function");
5305 
5306     Ty = FunctionType::get(RetType, ParamTypes, false);
5307   }
5308 
5309   CalleeID.FTy = Ty;
5310 
5311   // Look up the callee.
5312   Value *Callee;
5313   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS))
5314     return true;
5315 
5316   // Set up the Attribute for the function.
5317   SmallVector<AttributeSet, 8> Attrs;
5318   if (RetAttrs.hasAttributes())
5319     Attrs.push_back(AttributeSet::get(RetType->getContext(),
5320                                       AttributeSet::ReturnIndex,
5321                                       RetAttrs));
5322 
5323   SmallVector<Value*, 8> Args;
5324 
5325   // Loop through FunctionType's arguments and ensure they are specified
5326   // correctly.  Also, gather any parameter attributes.
5327   FunctionType::param_iterator I = Ty->param_begin();
5328   FunctionType::param_iterator E = Ty->param_end();
5329   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5330     Type *ExpectedTy = nullptr;
5331     if (I != E) {
5332       ExpectedTy = *I++;
5333     } else if (!Ty->isVarArg()) {
5334       return Error(ArgList[i].Loc, "too many arguments specified");
5335     }
5336 
5337     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
5338       return Error(ArgList[i].Loc, "argument is not of expected type '" +
5339                    getTypeString(ExpectedTy) + "'");
5340     Args.push_back(ArgList[i].V);
5341     if (ArgList[i].Attrs.hasAttributes(i + 1)) {
5342       AttrBuilder B(ArgList[i].Attrs, i + 1);
5343       Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
5344     }
5345   }
5346 
5347   if (I != E)
5348     return Error(CallLoc, "not enough parameters specified for call");
5349 
5350   if (FnAttrs.hasAttributes()) {
5351     if (FnAttrs.hasAlignmentAttr())
5352       return Error(CallLoc, "invoke instructions may not have an alignment");
5353 
5354     Attrs.push_back(AttributeSet::get(RetType->getContext(),
5355                                       AttributeSet::FunctionIndex,
5356                                       FnAttrs));
5357   }
5358 
5359   // Finish off the Attribute and check them
5360   AttributeSet PAL = AttributeSet::get(Context, Attrs);
5361 
5362   InvokeInst *II =
5363       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
5364   II->setCallingConv(CC);
5365   II->setAttributes(PAL);
5366   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
5367   Inst = II;
5368   return false;
5369 }
5370 
5371 /// ParseResume
5372 ///   ::= 'resume' TypeAndValue
5373 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
5374   Value *Exn; LocTy ExnLoc;
5375   if (ParseTypeAndValue(Exn, ExnLoc, PFS))
5376     return true;
5377 
5378   ResumeInst *RI = ResumeInst::Create(Exn);
5379   Inst = RI;
5380   return false;
5381 }
5382 
5383 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args,
5384                                   PerFunctionState &PFS) {
5385   if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
5386     return true;
5387 
5388   while (Lex.getKind() != lltok::rsquare) {
5389     // If this isn't the first argument, we need a comma.
5390     if (!Args.empty() &&
5391         ParseToken(lltok::comma, "expected ',' in argument list"))
5392       return true;
5393 
5394     // Parse the argument.
5395     LocTy ArgLoc;
5396     Type *ArgTy = nullptr;
5397     if (ParseType(ArgTy, ArgLoc))
5398       return true;
5399 
5400     Value *V;
5401     if (ArgTy->isMetadataTy()) {
5402       if (ParseMetadataAsValue(V, PFS))
5403         return true;
5404     } else {
5405       if (ParseValue(ArgTy, V, PFS))
5406         return true;
5407     }
5408     Args.push_back(V);
5409   }
5410 
5411   Lex.Lex();  // Lex the ']'.
5412   return false;
5413 }
5414 
5415 /// ParseCleanupRet
5416 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
5417 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
5418   Value *CleanupPad = nullptr;
5419 
5420   if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret"))
5421     return true;
5422 
5423   if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS))
5424     return true;
5425 
5426   if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
5427     return true;
5428 
5429   BasicBlock *UnwindBB = nullptr;
5430   if (Lex.getKind() == lltok::kw_to) {
5431     Lex.Lex();
5432     if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
5433       return true;
5434   } else {
5435     if (ParseTypeAndBasicBlock(UnwindBB, PFS)) {
5436       return true;
5437     }
5438   }
5439 
5440   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
5441   return false;
5442 }
5443 
5444 /// ParseCatchRet
5445 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
5446 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
5447   Value *CatchPad = nullptr;
5448 
5449   if (ParseToken(lltok::kw_from, "expected 'from' after catchret"))
5450     return true;
5451 
5452   if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS))
5453     return true;
5454 
5455   BasicBlock *BB;
5456   if (ParseToken(lltok::kw_to, "expected 'to' in catchret") ||
5457       ParseTypeAndBasicBlock(BB, PFS))
5458       return true;
5459 
5460   Inst = CatchReturnInst::Create(CatchPad, BB);
5461   return false;
5462 }
5463 
5464 /// ParseCatchSwitch
5465 ///   ::= 'catchswitch' within Parent
5466 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5467   Value *ParentPad;
5468   LocTy BBLoc;
5469 
5470   if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch"))
5471     return true;
5472 
5473   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
5474       Lex.getKind() != lltok::LocalVarID)
5475     return TokError("expected scope value for catchswitch");
5476 
5477   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
5478     return true;
5479 
5480   if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
5481     return true;
5482 
5483   SmallVector<BasicBlock *, 32> Table;
5484   do {
5485     BasicBlock *DestBB;
5486     if (ParseTypeAndBasicBlock(DestBB, PFS))
5487       return true;
5488     Table.push_back(DestBB);
5489   } while (EatIfPresent(lltok::comma));
5490 
5491   if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
5492     return true;
5493 
5494   if (ParseToken(lltok::kw_unwind,
5495                  "expected 'unwind' after catchswitch scope"))
5496     return true;
5497 
5498   BasicBlock *UnwindBB = nullptr;
5499   if (EatIfPresent(lltok::kw_to)) {
5500     if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
5501       return true;
5502   } else {
5503     if (ParseTypeAndBasicBlock(UnwindBB, PFS))
5504       return true;
5505   }
5506 
5507   auto *CatchSwitch =
5508       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
5509   for (BasicBlock *DestBB : Table)
5510     CatchSwitch->addHandler(DestBB);
5511   Inst = CatchSwitch;
5512   return false;
5513 }
5514 
5515 /// ParseCatchPad
5516 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
5517 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
5518   Value *CatchSwitch = nullptr;
5519 
5520   if (ParseToken(lltok::kw_within, "expected 'within' after catchpad"))
5521     return true;
5522 
5523   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
5524     return TokError("expected scope value for catchpad");
5525 
5526   if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
5527     return true;
5528 
5529   SmallVector<Value *, 8> Args;
5530   if (ParseExceptionArgs(Args, PFS))
5531     return true;
5532 
5533   Inst = CatchPadInst::Create(CatchSwitch, Args);
5534   return false;
5535 }
5536 
5537 /// ParseCleanupPad
5538 ///   ::= 'cleanuppad' within Parent ParamList
5539 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
5540   Value *ParentPad = nullptr;
5541 
5542   if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
5543     return true;
5544 
5545   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
5546       Lex.getKind() != lltok::LocalVarID)
5547     return TokError("expected scope value for cleanuppad");
5548 
5549   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
5550     return true;
5551 
5552   SmallVector<Value *, 8> Args;
5553   if (ParseExceptionArgs(Args, PFS))
5554     return true;
5555 
5556   Inst = CleanupPadInst::Create(ParentPad, Args);
5557   return false;
5558 }
5559 
5560 //===----------------------------------------------------------------------===//
5561 // Binary Operators.
5562 //===----------------------------------------------------------------------===//
5563 
5564 /// ParseArithmetic
5565 ///  ::= ArithmeticOps TypeAndValue ',' Value
5566 ///
5567 /// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
5568 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
5569 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
5570                                unsigned Opc, unsigned OperandType) {
5571   LocTy Loc; Value *LHS, *RHS;
5572   if (ParseTypeAndValue(LHS, Loc, PFS) ||
5573       ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
5574       ParseValue(LHS->getType(), RHS, PFS))
5575     return true;
5576 
5577   bool Valid;
5578   switch (OperandType) {
5579   default: llvm_unreachable("Unknown operand type!");
5580   case 0: // int or FP.
5581     Valid = LHS->getType()->isIntOrIntVectorTy() ||
5582             LHS->getType()->isFPOrFPVectorTy();
5583     break;
5584   case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
5585   case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
5586   }
5587 
5588   if (!Valid)
5589     return Error(Loc, "invalid operand type for instruction");
5590 
5591   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
5592   return false;
5593 }
5594 
5595 /// ParseLogical
5596 ///  ::= ArithmeticOps TypeAndValue ',' Value {
5597 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
5598                             unsigned Opc) {
5599   LocTy Loc; Value *LHS, *RHS;
5600   if (ParseTypeAndValue(LHS, Loc, PFS) ||
5601       ParseToken(lltok::comma, "expected ',' in logical operation") ||
5602       ParseValue(LHS->getType(), RHS, PFS))
5603     return true;
5604 
5605   if (!LHS->getType()->isIntOrIntVectorTy())
5606     return Error(Loc,"instruction requires integer or integer vector operands");
5607 
5608   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
5609   return false;
5610 }
5611 
5612 /// ParseCompare
5613 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
5614 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
5615 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
5616                             unsigned Opc) {
5617   // Parse the integer/fp comparison predicate.
5618   LocTy Loc;
5619   unsigned Pred;
5620   Value *LHS, *RHS;
5621   if (ParseCmpPredicate(Pred, Opc) ||
5622       ParseTypeAndValue(LHS, Loc, PFS) ||
5623       ParseToken(lltok::comma, "expected ',' after compare value") ||
5624       ParseValue(LHS->getType(), RHS, PFS))
5625     return true;
5626 
5627   if (Opc == Instruction::FCmp) {
5628     if (!LHS->getType()->isFPOrFPVectorTy())
5629       return Error(Loc, "fcmp requires floating point operands");
5630     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
5631   } else {
5632     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
5633     if (!LHS->getType()->isIntOrIntVectorTy() &&
5634         !LHS->getType()->getScalarType()->isPointerTy())
5635       return Error(Loc, "icmp requires integer operands");
5636     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
5637   }
5638   return false;
5639 }
5640 
5641 //===----------------------------------------------------------------------===//
5642 // Other Instructions.
5643 //===----------------------------------------------------------------------===//
5644 
5645 
5646 /// ParseCast
5647 ///   ::= CastOpc TypeAndValue 'to' Type
5648 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
5649                          unsigned Opc) {
5650   LocTy Loc;
5651   Value *Op;
5652   Type *DestTy = nullptr;
5653   if (ParseTypeAndValue(Op, Loc, PFS) ||
5654       ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
5655       ParseType(DestTy))
5656     return true;
5657 
5658   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
5659     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
5660     return Error(Loc, "invalid cast opcode for cast from '" +
5661                  getTypeString(Op->getType()) + "' to '" +
5662                  getTypeString(DestTy) + "'");
5663   }
5664   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
5665   return false;
5666 }
5667 
5668 /// ParseSelect
5669 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5670 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
5671   LocTy Loc;
5672   Value *Op0, *Op1, *Op2;
5673   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5674       ParseToken(lltok::comma, "expected ',' after select condition") ||
5675       ParseTypeAndValue(Op1, PFS) ||
5676       ParseToken(lltok::comma, "expected ',' after select value") ||
5677       ParseTypeAndValue(Op2, PFS))
5678     return true;
5679 
5680   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
5681     return Error(Loc, Reason);
5682 
5683   Inst = SelectInst::Create(Op0, Op1, Op2);
5684   return false;
5685 }
5686 
5687 /// ParseVA_Arg
5688 ///   ::= 'va_arg' TypeAndValue ',' Type
5689 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
5690   Value *Op;
5691   Type *EltTy = nullptr;
5692   LocTy TypeLoc;
5693   if (ParseTypeAndValue(Op, PFS) ||
5694       ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
5695       ParseType(EltTy, TypeLoc))
5696     return true;
5697 
5698   if (!EltTy->isFirstClassType())
5699     return Error(TypeLoc, "va_arg requires operand with first class type");
5700 
5701   Inst = new VAArgInst(Op, EltTy);
5702   return false;
5703 }
5704 
5705 /// ParseExtractElement
5706 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
5707 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
5708   LocTy Loc;
5709   Value *Op0, *Op1;
5710   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5711       ParseToken(lltok::comma, "expected ',' after extract value") ||
5712       ParseTypeAndValue(Op1, PFS))
5713     return true;
5714 
5715   if (!ExtractElementInst::isValidOperands(Op0, Op1))
5716     return Error(Loc, "invalid extractelement operands");
5717 
5718   Inst = ExtractElementInst::Create(Op0, Op1);
5719   return false;
5720 }
5721 
5722 /// ParseInsertElement
5723 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5724 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
5725   LocTy Loc;
5726   Value *Op0, *Op1, *Op2;
5727   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5728       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5729       ParseTypeAndValue(Op1, PFS) ||
5730       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5731       ParseTypeAndValue(Op2, PFS))
5732     return true;
5733 
5734   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
5735     return Error(Loc, "invalid insertelement operands");
5736 
5737   Inst = InsertElementInst::Create(Op0, Op1, Op2);
5738   return false;
5739 }
5740 
5741 /// ParseShuffleVector
5742 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5743 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
5744   LocTy Loc;
5745   Value *Op0, *Op1, *Op2;
5746   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5747       ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
5748       ParseTypeAndValue(Op1, PFS) ||
5749       ParseToken(lltok::comma, "expected ',' after shuffle value") ||
5750       ParseTypeAndValue(Op2, PFS))
5751     return true;
5752 
5753   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
5754     return Error(Loc, "invalid shufflevector operands");
5755 
5756   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
5757   return false;
5758 }
5759 
5760 /// ParsePHI
5761 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
5762 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
5763   Type *Ty = nullptr;  LocTy TypeLoc;
5764   Value *Op0, *Op1;
5765 
5766   if (ParseType(Ty, TypeLoc) ||
5767       ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
5768       ParseValue(Ty, Op0, PFS) ||
5769       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5770       ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
5771       ParseToken(lltok::rsquare, "expected ']' in phi value list"))
5772     return true;
5773 
5774   bool AteExtraComma = false;
5775   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
5776 
5777   while (true) {
5778     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
5779 
5780     if (!EatIfPresent(lltok::comma))
5781       break;
5782 
5783     if (Lex.getKind() == lltok::MetadataVar) {
5784       AteExtraComma = true;
5785       break;
5786     }
5787 
5788     if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
5789         ParseValue(Ty, Op0, PFS) ||
5790         ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5791         ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
5792         ParseToken(lltok::rsquare, "expected ']' in phi value list"))
5793       return true;
5794   }
5795 
5796   if (!Ty->isFirstClassType())
5797     return Error(TypeLoc, "phi node must have first class type");
5798 
5799   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
5800   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
5801     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
5802   Inst = PN;
5803   return AteExtraComma ? InstExtraComma : InstNormal;
5804 }
5805 
5806 /// ParseLandingPad
5807 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
5808 /// Clause
5809 ///   ::= 'catch' TypeAndValue
5810 ///   ::= 'filter'
5811 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
5812 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
5813   Type *Ty = nullptr; LocTy TyLoc;
5814 
5815   if (ParseType(Ty, TyLoc))
5816     return true;
5817 
5818   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
5819   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
5820 
5821   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
5822     LandingPadInst::ClauseType CT;
5823     if (EatIfPresent(lltok::kw_catch))
5824       CT = LandingPadInst::Catch;
5825     else if (EatIfPresent(lltok::kw_filter))
5826       CT = LandingPadInst::Filter;
5827     else
5828       return TokError("expected 'catch' or 'filter' clause type");
5829 
5830     Value *V;
5831     LocTy VLoc;
5832     if (ParseTypeAndValue(V, VLoc, PFS))
5833       return true;
5834 
5835     // A 'catch' type expects a non-array constant. A filter clause expects an
5836     // array constant.
5837     if (CT == LandingPadInst::Catch) {
5838       if (isa<ArrayType>(V->getType()))
5839         Error(VLoc, "'catch' clause has an invalid type");
5840     } else {
5841       if (!isa<ArrayType>(V->getType()))
5842         Error(VLoc, "'filter' clause has an invalid type");
5843     }
5844 
5845     Constant *CV = dyn_cast<Constant>(V);
5846     if (!CV)
5847       return Error(VLoc, "clause argument must be a constant");
5848     LP->addClause(CV);
5849   }
5850 
5851   Inst = LP.release();
5852   return false;
5853 }
5854 
5855 /// ParseCall
5856 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
5857 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
5858 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
5859 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
5860 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
5861 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
5862 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
5863 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
5864 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
5865                          CallInst::TailCallKind TCK) {
5866   AttrBuilder RetAttrs, FnAttrs;
5867   std::vector<unsigned> FwdRefAttrGrps;
5868   LocTy BuiltinLoc;
5869   unsigned CC;
5870   Type *RetType = nullptr;
5871   LocTy RetTypeLoc;
5872   ValID CalleeID;
5873   SmallVector<ParamInfo, 16> ArgList;
5874   SmallVector<OperandBundleDef, 2> BundleList;
5875   LocTy CallLoc = Lex.getLoc();
5876 
5877   if (TCK != CallInst::TCK_None &&
5878       ParseToken(lltok::kw_call,
5879                  "expected 'tail call', 'musttail call', or 'notail call'"))
5880     return true;
5881 
5882   FastMathFlags FMF = EatFastMathFlagsIfPresent();
5883 
5884   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5885       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
5886       ParseValID(CalleeID) ||
5887       ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
5888                          PFS.getFunction().isVarArg()) ||
5889       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
5890       ParseOptionalOperandBundles(BundleList, PFS))
5891     return true;
5892 
5893   if (FMF.any() && !RetType->isFPOrFPVectorTy())
5894     return Error(CallLoc, "fast-math-flags specified for call without "
5895                           "floating-point scalar or vector return type");
5896 
5897   // If RetType is a non-function pointer type, then this is the short syntax
5898   // for the call, which means that RetType is just the return type.  Infer the
5899   // rest of the function argument types from the arguments that are present.
5900   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
5901   if (!Ty) {
5902     // Pull out the types of all of the arguments...
5903     std::vector<Type*> ParamTypes;
5904     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
5905       ParamTypes.push_back(ArgList[i].V->getType());
5906 
5907     if (!FunctionType::isValidReturnType(RetType))
5908       return Error(RetTypeLoc, "Invalid result type for LLVM function");
5909 
5910     Ty = FunctionType::get(RetType, ParamTypes, false);
5911   }
5912 
5913   CalleeID.FTy = Ty;
5914 
5915   // Look up the callee.
5916   Value *Callee;
5917   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS))
5918     return true;
5919 
5920   // Set up the Attribute for the function.
5921   SmallVector<AttributeSet, 8> Attrs;
5922   if (RetAttrs.hasAttributes())
5923     Attrs.push_back(AttributeSet::get(RetType->getContext(),
5924                                       AttributeSet::ReturnIndex,
5925                                       RetAttrs));
5926 
5927   SmallVector<Value*, 8> Args;
5928 
5929   // Loop through FunctionType's arguments and ensure they are specified
5930   // correctly.  Also, gather any parameter attributes.
5931   FunctionType::param_iterator I = Ty->param_begin();
5932   FunctionType::param_iterator E = Ty->param_end();
5933   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5934     Type *ExpectedTy = nullptr;
5935     if (I != E) {
5936       ExpectedTy = *I++;
5937     } else if (!Ty->isVarArg()) {
5938       return Error(ArgList[i].Loc, "too many arguments specified");
5939     }
5940 
5941     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
5942       return Error(ArgList[i].Loc, "argument is not of expected type '" +
5943                    getTypeString(ExpectedTy) + "'");
5944     Args.push_back(ArgList[i].V);
5945     if (ArgList[i].Attrs.hasAttributes(i + 1)) {
5946       AttrBuilder B(ArgList[i].Attrs, i + 1);
5947       Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
5948     }
5949   }
5950 
5951   if (I != E)
5952     return Error(CallLoc, "not enough parameters specified for call");
5953 
5954   if (FnAttrs.hasAttributes()) {
5955     if (FnAttrs.hasAlignmentAttr())
5956       return Error(CallLoc, "call instructions may not have an alignment");
5957 
5958     Attrs.push_back(AttributeSet::get(RetType->getContext(),
5959                                       AttributeSet::FunctionIndex,
5960                                       FnAttrs));
5961   }
5962 
5963   // Finish off the Attribute and check them
5964   AttributeSet PAL = AttributeSet::get(Context, Attrs);
5965 
5966   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
5967   CI->setTailCallKind(TCK);
5968   CI->setCallingConv(CC);
5969   if (FMF.any())
5970     CI->setFastMathFlags(FMF);
5971   CI->setAttributes(PAL);
5972   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
5973   Inst = CI;
5974   return false;
5975 }
5976 
5977 //===----------------------------------------------------------------------===//
5978 // Memory Instructions.
5979 //===----------------------------------------------------------------------===//
5980 
5981 /// ParseAlloc
5982 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
5983 ///       (',' 'align' i32)?
5984 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
5985   Value *Size = nullptr;
5986   LocTy SizeLoc, TyLoc;
5987   unsigned Alignment = 0;
5988   Type *Ty = nullptr;
5989 
5990   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
5991   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
5992 
5993   if (ParseType(Ty, TyLoc)) return true;
5994 
5995   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
5996     return Error(TyLoc, "invalid type for alloca");
5997 
5998   bool AteExtraComma = false;
5999   if (EatIfPresent(lltok::comma)) {
6000     if (Lex.getKind() == lltok::kw_align) {
6001       if (ParseOptionalAlignment(Alignment)) return true;
6002     } else if (Lex.getKind() == lltok::MetadataVar) {
6003       AteExtraComma = true;
6004     } else {
6005       if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
6006           ParseOptionalCommaAlign(Alignment, AteExtraComma))
6007         return true;
6008     }
6009   }
6010 
6011   if (Size && !Size->getType()->isIntegerTy())
6012     return Error(SizeLoc, "element count must have integer type");
6013 
6014   AllocaInst *AI = new AllocaInst(Ty, Size, Alignment);
6015   AI->setUsedWithInAlloca(IsInAlloca);
6016   AI->setSwiftError(IsSwiftError);
6017   Inst = AI;
6018   return AteExtraComma ? InstExtraComma : InstNormal;
6019 }
6020 
6021 /// ParseLoad
6022 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
6023 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
6024 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
6025 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
6026   Value *Val; LocTy Loc;
6027   unsigned Alignment = 0;
6028   bool AteExtraComma = false;
6029   bool isAtomic = false;
6030   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6031   SynchronizationScope Scope = CrossThread;
6032 
6033   if (Lex.getKind() == lltok::kw_atomic) {
6034     isAtomic = true;
6035     Lex.Lex();
6036   }
6037 
6038   bool isVolatile = false;
6039   if (Lex.getKind() == lltok::kw_volatile) {
6040     isVolatile = true;
6041     Lex.Lex();
6042   }
6043 
6044   Type *Ty;
6045   LocTy ExplicitTypeLoc = Lex.getLoc();
6046   if (ParseType(Ty) ||
6047       ParseToken(lltok::comma, "expected comma after load's type") ||
6048       ParseTypeAndValue(Val, Loc, PFS) ||
6049       ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
6050       ParseOptionalCommaAlign(Alignment, AteExtraComma))
6051     return true;
6052 
6053   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
6054     return Error(Loc, "load operand must be a pointer to a first class type");
6055   if (isAtomic && !Alignment)
6056     return Error(Loc, "atomic load must have explicit non-zero alignment");
6057   if (Ordering == AtomicOrdering::Release ||
6058       Ordering == AtomicOrdering::AcquireRelease)
6059     return Error(Loc, "atomic load cannot use Release ordering");
6060 
6061   if (Ty != cast<PointerType>(Val->getType())->getElementType())
6062     return Error(ExplicitTypeLoc,
6063                  "explicit pointee type doesn't match operand's pointee type");
6064 
6065   Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, Scope);
6066   return AteExtraComma ? InstExtraComma : InstNormal;
6067 }
6068 
6069 /// ParseStore
6070 
6071 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
6072 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
6073 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
6074 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
6075   Value *Val, *Ptr; LocTy Loc, PtrLoc;
6076   unsigned Alignment = 0;
6077   bool AteExtraComma = false;
6078   bool isAtomic = false;
6079   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6080   SynchronizationScope Scope = CrossThread;
6081 
6082   if (Lex.getKind() == lltok::kw_atomic) {
6083     isAtomic = true;
6084     Lex.Lex();
6085   }
6086 
6087   bool isVolatile = false;
6088   if (Lex.getKind() == lltok::kw_volatile) {
6089     isVolatile = true;
6090     Lex.Lex();
6091   }
6092 
6093   if (ParseTypeAndValue(Val, Loc, PFS) ||
6094       ParseToken(lltok::comma, "expected ',' after store operand") ||
6095       ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6096       ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
6097       ParseOptionalCommaAlign(Alignment, AteExtraComma))
6098     return true;
6099 
6100   if (!Ptr->getType()->isPointerTy())
6101     return Error(PtrLoc, "store operand must be a pointer");
6102   if (!Val->getType()->isFirstClassType())
6103     return Error(Loc, "store operand must be a first class value");
6104   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
6105     return Error(Loc, "stored value and pointer type do not match");
6106   if (isAtomic && !Alignment)
6107     return Error(Loc, "atomic store must have explicit non-zero alignment");
6108   if (Ordering == AtomicOrdering::Acquire ||
6109       Ordering == AtomicOrdering::AcquireRelease)
6110     return Error(Loc, "atomic store cannot use Acquire ordering");
6111 
6112   Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope);
6113   return AteExtraComma ? InstExtraComma : InstNormal;
6114 }
6115 
6116 /// ParseCmpXchg
6117 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
6118 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
6119 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
6120   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
6121   bool AteExtraComma = false;
6122   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
6123   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
6124   SynchronizationScope Scope = CrossThread;
6125   bool isVolatile = false;
6126   bool isWeak = false;
6127 
6128   if (EatIfPresent(lltok::kw_weak))
6129     isWeak = true;
6130 
6131   if (EatIfPresent(lltok::kw_volatile))
6132     isVolatile = true;
6133 
6134   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6135       ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
6136       ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
6137       ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
6138       ParseTypeAndValue(New, NewLoc, PFS) ||
6139       ParseScopeAndOrdering(true /*Always atomic*/, Scope, SuccessOrdering) ||
6140       ParseOrdering(FailureOrdering))
6141     return true;
6142 
6143   if (SuccessOrdering == AtomicOrdering::Unordered ||
6144       FailureOrdering == AtomicOrdering::Unordered)
6145     return TokError("cmpxchg cannot be unordered");
6146   if (isStrongerThan(FailureOrdering, SuccessOrdering))
6147     return TokError("cmpxchg failure argument shall be no stronger than the "
6148                     "success argument");
6149   if (FailureOrdering == AtomicOrdering::Release ||
6150       FailureOrdering == AtomicOrdering::AcquireRelease)
6151     return TokError(
6152         "cmpxchg failure ordering cannot include release semantics");
6153   if (!Ptr->getType()->isPointerTy())
6154     return Error(PtrLoc, "cmpxchg operand must be a pointer");
6155   if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
6156     return Error(CmpLoc, "compare value and pointer type do not match");
6157   if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
6158     return Error(NewLoc, "new value and pointer type do not match");
6159   if (!New->getType()->isFirstClassType())
6160     return Error(NewLoc, "cmpxchg operand must be a first class value");
6161   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
6162       Ptr, Cmp, New, SuccessOrdering, FailureOrdering, Scope);
6163   CXI->setVolatile(isVolatile);
6164   CXI->setWeak(isWeak);
6165   Inst = CXI;
6166   return AteExtraComma ? InstExtraComma : InstNormal;
6167 }
6168 
6169 /// ParseAtomicRMW
6170 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
6171 ///       'singlethread'? AtomicOrdering
6172 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
6173   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
6174   bool AteExtraComma = false;
6175   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6176   SynchronizationScope Scope = CrossThread;
6177   bool isVolatile = false;
6178   AtomicRMWInst::BinOp Operation;
6179 
6180   if (EatIfPresent(lltok::kw_volatile))
6181     isVolatile = true;
6182 
6183   switch (Lex.getKind()) {
6184   default: return TokError("expected binary operation in atomicrmw");
6185   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
6186   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
6187   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
6188   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
6189   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
6190   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
6191   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
6192   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
6193   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
6194   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
6195   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
6196   }
6197   Lex.Lex();  // Eat the operation.
6198 
6199   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6200       ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
6201       ParseTypeAndValue(Val, ValLoc, PFS) ||
6202       ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
6203     return true;
6204 
6205   if (Ordering == AtomicOrdering::Unordered)
6206     return TokError("atomicrmw cannot be unordered");
6207   if (!Ptr->getType()->isPointerTy())
6208     return Error(PtrLoc, "atomicrmw operand must be a pointer");
6209   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
6210     return Error(ValLoc, "atomicrmw value and pointer type do not match");
6211   if (!Val->getType()->isIntegerTy())
6212     return Error(ValLoc, "atomicrmw operand must be an integer");
6213   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
6214   if (Size < 8 || (Size & (Size - 1)))
6215     return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
6216                          " integer");
6217 
6218   AtomicRMWInst *RMWI =
6219     new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope);
6220   RMWI->setVolatile(isVolatile);
6221   Inst = RMWI;
6222   return AteExtraComma ? InstExtraComma : InstNormal;
6223 }
6224 
6225 /// ParseFence
6226 ///   ::= 'fence' 'singlethread'? AtomicOrdering
6227 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
6228   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6229   SynchronizationScope Scope = CrossThread;
6230   if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
6231     return true;
6232 
6233   if (Ordering == AtomicOrdering::Unordered)
6234     return TokError("fence cannot be unordered");
6235   if (Ordering == AtomicOrdering::Monotonic)
6236     return TokError("fence cannot be monotonic");
6237 
6238   Inst = new FenceInst(Context, Ordering, Scope);
6239   return InstNormal;
6240 }
6241 
6242 /// ParseGetElementPtr
6243 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
6244 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
6245   Value *Ptr = nullptr;
6246   Value *Val = nullptr;
6247   LocTy Loc, EltLoc;
6248 
6249   bool InBounds = EatIfPresent(lltok::kw_inbounds);
6250 
6251   Type *Ty = nullptr;
6252   LocTy ExplicitTypeLoc = Lex.getLoc();
6253   if (ParseType(Ty) ||
6254       ParseToken(lltok::comma, "expected comma after getelementptr's type") ||
6255       ParseTypeAndValue(Ptr, Loc, PFS))
6256     return true;
6257 
6258   Type *BaseType = Ptr->getType();
6259   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
6260   if (!BasePointerType)
6261     return Error(Loc, "base of getelementptr must be a pointer");
6262 
6263   if (Ty != BasePointerType->getElementType())
6264     return Error(ExplicitTypeLoc,
6265                  "explicit pointee type doesn't match operand's pointee type");
6266 
6267   SmallVector<Value*, 16> Indices;
6268   bool AteExtraComma = false;
6269   // GEP returns a vector of pointers if at least one of parameters is a vector.
6270   // All vector parameters should have the same vector width.
6271   unsigned GEPWidth = BaseType->isVectorTy() ?
6272     BaseType->getVectorNumElements() : 0;
6273 
6274   while (EatIfPresent(lltok::comma)) {
6275     if (Lex.getKind() == lltok::MetadataVar) {
6276       AteExtraComma = true;
6277       break;
6278     }
6279     if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
6280     if (!Val->getType()->getScalarType()->isIntegerTy())
6281       return Error(EltLoc, "getelementptr index must be an integer");
6282 
6283     if (Val->getType()->isVectorTy()) {
6284       unsigned ValNumEl = Val->getType()->getVectorNumElements();
6285       if (GEPWidth && GEPWidth != ValNumEl)
6286         return Error(EltLoc,
6287           "getelementptr vector index has a wrong number of elements");
6288       GEPWidth = ValNumEl;
6289     }
6290     Indices.push_back(Val);
6291   }
6292 
6293   SmallPtrSet<Type*, 4> Visited;
6294   if (!Indices.empty() && !Ty->isSized(&Visited))
6295     return Error(Loc, "base element of getelementptr must be sized");
6296 
6297   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
6298     return Error(Loc, "invalid getelementptr indices");
6299   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
6300   if (InBounds)
6301     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
6302   return AteExtraComma ? InstExtraComma : InstNormal;
6303 }
6304 
6305 /// ParseExtractValue
6306 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
6307 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
6308   Value *Val; LocTy Loc;
6309   SmallVector<unsigned, 4> Indices;
6310   bool AteExtraComma;
6311   if (ParseTypeAndValue(Val, Loc, PFS) ||
6312       ParseIndexList(Indices, AteExtraComma))
6313     return true;
6314 
6315   if (!Val->getType()->isAggregateType())
6316     return Error(Loc, "extractvalue operand must be aggregate type");
6317 
6318   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
6319     return Error(Loc, "invalid indices for extractvalue");
6320   Inst = ExtractValueInst::Create(Val, Indices);
6321   return AteExtraComma ? InstExtraComma : InstNormal;
6322 }
6323 
6324 /// ParseInsertValue
6325 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
6326 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
6327   Value *Val0, *Val1; LocTy Loc0, Loc1;
6328   SmallVector<unsigned, 4> Indices;
6329   bool AteExtraComma;
6330   if (ParseTypeAndValue(Val0, Loc0, PFS) ||
6331       ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
6332       ParseTypeAndValue(Val1, Loc1, PFS) ||
6333       ParseIndexList(Indices, AteExtraComma))
6334     return true;
6335 
6336   if (!Val0->getType()->isAggregateType())
6337     return Error(Loc0, "insertvalue operand must be aggregate type");
6338 
6339   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
6340   if (!IndexedType)
6341     return Error(Loc0, "invalid indices for insertvalue");
6342   if (IndexedType != Val1->getType())
6343     return Error(Loc1, "insertvalue operand and field disagree in type: '" +
6344                            getTypeString(Val1->getType()) + "' instead of '" +
6345                            getTypeString(IndexedType) + "'");
6346   Inst = InsertValueInst::Create(Val0, Val1, Indices);
6347   return AteExtraComma ? InstExtraComma : InstNormal;
6348 }
6349 
6350 //===----------------------------------------------------------------------===//
6351 // Embedded metadata.
6352 //===----------------------------------------------------------------------===//
6353 
6354 /// ParseMDNodeVector
6355 ///   ::= { Element (',' Element)* }
6356 /// Element
6357 ///   ::= 'null' | TypeAndValue
6358 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
6359   if (ParseToken(lltok::lbrace, "expected '{' here"))
6360     return true;
6361 
6362   // Check for an empty list.
6363   if (EatIfPresent(lltok::rbrace))
6364     return false;
6365 
6366   do {
6367     // Null is a special case since it is typeless.
6368     if (EatIfPresent(lltok::kw_null)) {
6369       Elts.push_back(nullptr);
6370       continue;
6371     }
6372 
6373     Metadata *MD;
6374     if (ParseMetadata(MD, nullptr))
6375       return true;
6376     Elts.push_back(MD);
6377   } while (EatIfPresent(lltok::comma));
6378 
6379   return ParseToken(lltok::rbrace, "expected end of metadata node");
6380 }
6381 
6382 //===----------------------------------------------------------------------===//
6383 // Use-list order directives.
6384 //===----------------------------------------------------------------------===//
6385 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
6386                                 SMLoc Loc) {
6387   if (V->use_empty())
6388     return Error(Loc, "value has no uses");
6389 
6390   unsigned NumUses = 0;
6391   SmallDenseMap<const Use *, unsigned, 16> Order;
6392   for (const Use &U : V->uses()) {
6393     if (++NumUses > Indexes.size())
6394       break;
6395     Order[&U] = Indexes[NumUses - 1];
6396   }
6397   if (NumUses < 2)
6398     return Error(Loc, "value only has one use");
6399   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
6400     return Error(Loc, "wrong number of indexes, expected " +
6401                           Twine(std::distance(V->use_begin(), V->use_end())));
6402 
6403   V->sortUseList([&](const Use &L, const Use &R) {
6404     return Order.lookup(&L) < Order.lookup(&R);
6405   });
6406   return false;
6407 }
6408 
6409 /// ParseUseListOrderIndexes
6410 ///   ::= '{' uint32 (',' uint32)+ '}'
6411 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
6412   SMLoc Loc = Lex.getLoc();
6413   if (ParseToken(lltok::lbrace, "expected '{' here"))
6414     return true;
6415   if (Lex.getKind() == lltok::rbrace)
6416     return Lex.Error("expected non-empty list of uselistorder indexes");
6417 
6418   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
6419   // indexes should be distinct numbers in the range [0, size-1], and should
6420   // not be in order.
6421   unsigned Offset = 0;
6422   unsigned Max = 0;
6423   bool IsOrdered = true;
6424   assert(Indexes.empty() && "Expected empty order vector");
6425   do {
6426     unsigned Index;
6427     if (ParseUInt32(Index))
6428       return true;
6429 
6430     // Update consistency checks.
6431     Offset += Index - Indexes.size();
6432     Max = std::max(Max, Index);
6433     IsOrdered &= Index == Indexes.size();
6434 
6435     Indexes.push_back(Index);
6436   } while (EatIfPresent(lltok::comma));
6437 
6438   if (ParseToken(lltok::rbrace, "expected '}' here"))
6439     return true;
6440 
6441   if (Indexes.size() < 2)
6442     return Error(Loc, "expected >= 2 uselistorder indexes");
6443   if (Offset != 0 || Max >= Indexes.size())
6444     return Error(Loc, "expected distinct uselistorder indexes in range [0, size)");
6445   if (IsOrdered)
6446     return Error(Loc, "expected uselistorder indexes to change the order");
6447 
6448   return false;
6449 }
6450 
6451 /// ParseUseListOrder
6452 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
6453 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) {
6454   SMLoc Loc = Lex.getLoc();
6455   if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
6456     return true;
6457 
6458   Value *V;
6459   SmallVector<unsigned, 16> Indexes;
6460   if (ParseTypeAndValue(V, PFS) ||
6461       ParseToken(lltok::comma, "expected comma in uselistorder directive") ||
6462       ParseUseListOrderIndexes(Indexes))
6463     return true;
6464 
6465   return sortUseListOrder(V, Indexes, Loc);
6466 }
6467 
6468 /// ParseUseListOrderBB
6469 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
6470 bool LLParser::ParseUseListOrderBB() {
6471   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
6472   SMLoc Loc = Lex.getLoc();
6473   Lex.Lex();
6474 
6475   ValID Fn, Label;
6476   SmallVector<unsigned, 16> Indexes;
6477   if (ParseValID(Fn) ||
6478       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
6479       ParseValID(Label) ||
6480       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
6481       ParseUseListOrderIndexes(Indexes))
6482     return true;
6483 
6484   // Check the function.
6485   GlobalValue *GV;
6486   if (Fn.Kind == ValID::t_GlobalName)
6487     GV = M->getNamedValue(Fn.StrVal);
6488   else if (Fn.Kind == ValID::t_GlobalID)
6489     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
6490   else
6491     return Error(Fn.Loc, "expected function name in uselistorder_bb");
6492   if (!GV)
6493     return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb");
6494   auto *F = dyn_cast<Function>(GV);
6495   if (!F)
6496     return Error(Fn.Loc, "expected function name in uselistorder_bb");
6497   if (F->isDeclaration())
6498     return Error(Fn.Loc, "invalid declaration in uselistorder_bb");
6499 
6500   // Check the basic block.
6501   if (Label.Kind == ValID::t_LocalID)
6502     return Error(Label.Loc, "invalid numeric label in uselistorder_bb");
6503   if (Label.Kind != ValID::t_LocalName)
6504     return Error(Label.Loc, "expected basic block name in uselistorder_bb");
6505   Value *V = F->getValueSymbolTable().lookup(Label.StrVal);
6506   if (!V)
6507     return Error(Label.Loc, "invalid basic block in uselistorder_bb");
6508   if (!isa<BasicBlock>(V))
6509     return Error(Label.Loc, "expected basic block in uselistorder_bb");
6510 
6511   return sortUseListOrder(V, Indexes, Loc);
6512 }
6513