1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines the parser class for .ll files.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "LLParser.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/AsmParser/SlotMapping.h"
21 #include "llvm/BinaryFormat/Dwarf.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/AutoUpgrade.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallingConv.h"
26 #include "llvm/IR/Comdat.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DebugInfoMetadata.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GlobalIFunc.h"
32 #include "llvm/IR/GlobalObject.h"
33 #include "llvm/IR/InlineAsm.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/LLVMContext.h"
38 #include "llvm/IR/Metadata.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/IR/Operator.h"
41 #include "llvm/IR/Type.h"
42 #include "llvm/IR/Value.h"
43 #include "llvm/IR/ValueSymbolTable.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/MathExtras.h"
47 #include "llvm/Support/SaveAndRestore.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <cstring>
52 #include <iterator>
53 #include <vector>
54 
55 using namespace llvm;
56 
57 static std::string getTypeString(Type *T) {
58   std::string Result;
59   raw_string_ostream Tmp(Result);
60   Tmp << *T;
61   return Tmp.str();
62 }
63 
64 /// Run: module ::= toplevelentity*
65 bool LLParser::Run() {
66   // Prime the lexer.
67   Lex.Lex();
68 
69   if (Context.shouldDiscardValueNames())
70     return Error(
71         Lex.getLoc(),
72         "Can't read textual IR with a Context that discards named Values");
73 
74   return ParseTopLevelEntities() ||
75          ValidateEndOfModule();
76 }
77 
78 bool LLParser::parseStandaloneConstantValue(Constant *&C,
79                                             const SlotMapping *Slots) {
80   restoreParsingState(Slots);
81   Lex.Lex();
82 
83   Type *Ty = nullptr;
84   if (ParseType(Ty) || parseConstantValue(Ty, C))
85     return true;
86   if (Lex.getKind() != lltok::Eof)
87     return Error(Lex.getLoc(), "expected end of string");
88   return false;
89 }
90 
91 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
92                                     const SlotMapping *Slots) {
93   restoreParsingState(Slots);
94   Lex.Lex();
95 
96   Read = 0;
97   SMLoc Start = Lex.getLoc();
98   Ty = nullptr;
99   if (ParseType(Ty))
100     return true;
101   SMLoc End = Lex.getLoc();
102   Read = End.getPointer() - Start.getPointer();
103 
104   return false;
105 }
106 
107 void LLParser::restoreParsingState(const SlotMapping *Slots) {
108   if (!Slots)
109     return;
110   NumberedVals = Slots->GlobalValues;
111   NumberedMetadata = Slots->MetadataNodes;
112   for (const auto &I : Slots->NamedTypes)
113     NamedTypes.insert(
114         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
115   for (const auto &I : Slots->Types)
116     NumberedTypes.insert(
117         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
118 }
119 
120 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
121 /// module.
122 bool LLParser::ValidateEndOfModule() {
123   // Handle any function attribute group forward references.
124   for (const auto &RAG : ForwardRefAttrGroups) {
125     Value *V = RAG.first;
126     const std::vector<unsigned> &Attrs = RAG.second;
127     AttrBuilder B;
128 
129     for (const auto &Attr : Attrs)
130       B.merge(NumberedAttrBuilders[Attr]);
131 
132     if (Function *Fn = dyn_cast<Function>(V)) {
133       AttributeList AS = Fn->getAttributes();
134       AttrBuilder FnAttrs(AS.getFnAttributes());
135       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
136 
137       FnAttrs.merge(B);
138 
139       // If the alignment was parsed as an attribute, move to the alignment
140       // field.
141       if (FnAttrs.hasAlignmentAttr()) {
142         Fn->setAlignment(FnAttrs.getAlignment());
143         FnAttrs.removeAttribute(Attribute::Alignment);
144       }
145 
146       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
147                             AttributeSet::get(Context, FnAttrs));
148       Fn->setAttributes(AS);
149     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
150       AttributeList AS = CI->getAttributes();
151       AttrBuilder FnAttrs(AS.getFnAttributes());
152       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
153       FnAttrs.merge(B);
154       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
155                             AttributeSet::get(Context, FnAttrs));
156       CI->setAttributes(AS);
157     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
158       AttributeList AS = II->getAttributes();
159       AttrBuilder FnAttrs(AS.getFnAttributes());
160       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
161       FnAttrs.merge(B);
162       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
163                             AttributeSet::get(Context, FnAttrs));
164       II->setAttributes(AS);
165     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
166       AttrBuilder Attrs(GV->getAttributes());
167       Attrs.merge(B);
168       GV->setAttributes(AttributeSet::get(Context,Attrs));
169     } else {
170       llvm_unreachable("invalid object with forward attribute group reference");
171     }
172   }
173 
174   // If there are entries in ForwardRefBlockAddresses at this point, the
175   // function was never defined.
176   if (!ForwardRefBlockAddresses.empty())
177     return Error(ForwardRefBlockAddresses.begin()->first.Loc,
178                  "expected function name in blockaddress");
179 
180   for (const auto &NT : NumberedTypes)
181     if (NT.second.second.isValid())
182       return Error(NT.second.second,
183                    "use of undefined type '%" + Twine(NT.first) + "'");
184 
185   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
186        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
187     if (I->second.second.isValid())
188       return Error(I->second.second,
189                    "use of undefined type named '" + I->getKey() + "'");
190 
191   if (!ForwardRefComdats.empty())
192     return Error(ForwardRefComdats.begin()->second,
193                  "use of undefined comdat '$" +
194                      ForwardRefComdats.begin()->first + "'");
195 
196   if (!ForwardRefVals.empty())
197     return Error(ForwardRefVals.begin()->second.second,
198                  "use of undefined value '@" + ForwardRefVals.begin()->first +
199                  "'");
200 
201   if (!ForwardRefValIDs.empty())
202     return Error(ForwardRefValIDs.begin()->second.second,
203                  "use of undefined value '@" +
204                  Twine(ForwardRefValIDs.begin()->first) + "'");
205 
206   if (!ForwardRefMDNodes.empty())
207     return Error(ForwardRefMDNodes.begin()->second.second,
208                  "use of undefined metadata '!" +
209                  Twine(ForwardRefMDNodes.begin()->first) + "'");
210 
211   // Resolve metadata cycles.
212   for (auto &N : NumberedMetadata) {
213     if (N.second && !N.second->isResolved())
214       N.second->resolveCycles();
215   }
216 
217   for (auto *Inst : InstsWithTBAATag) {
218     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
219     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
220     auto *UpgradedMD = UpgradeTBAANode(*MD);
221     if (MD != UpgradedMD)
222       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
223   }
224 
225   // Look for intrinsic functions and CallInst that need to be upgraded
226   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
227     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
228 
229   // Some types could be renamed during loading if several modules are
230   // loaded in the same LLVMContext (LTO scenario). In this case we should
231   // remangle intrinsics names as well.
232   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
233     Function *F = &*FI++;
234     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
235       F->replaceAllUsesWith(Remangled.getValue());
236       F->eraseFromParent();
237     }
238   }
239 
240   if (UpgradeDebugInfo)
241     llvm::UpgradeDebugInfo(*M);
242 
243   UpgradeModuleFlags(*M);
244   UpgradeSectionAttributes(*M);
245 
246   if (!Slots)
247     return false;
248   // Initialize the slot mapping.
249   // Because by this point we've parsed and validated everything, we can "steal"
250   // the mapping from LLParser as it doesn't need it anymore.
251   Slots->GlobalValues = std::move(NumberedVals);
252   Slots->MetadataNodes = std::move(NumberedMetadata);
253   for (const auto &I : NamedTypes)
254     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
255   for (const auto &I : NumberedTypes)
256     Slots->Types.insert(std::make_pair(I.first, I.second.first));
257 
258   return false;
259 }
260 
261 //===----------------------------------------------------------------------===//
262 // Top-Level Entities
263 //===----------------------------------------------------------------------===//
264 
265 bool LLParser::ParseTopLevelEntities() {
266   while (true) {
267     switch (Lex.getKind()) {
268     default:         return TokError("expected top-level entity");
269     case lltok::Eof: return false;
270     case lltok::kw_declare: if (ParseDeclare()) return true; break;
271     case lltok::kw_define:  if (ParseDefine()) return true; break;
272     case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
273     case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
274     case lltok::kw_source_filename:
275       if (ParseSourceFileName())
276         return true;
277       break;
278     case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
279     case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
280     case lltok::LocalVar:   if (ParseNamedType()) return true; break;
281     case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
282     case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
283     case lltok::ComdatVar:  if (parseComdat()) return true; break;
284     case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
285     case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
286     case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
287     case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
288     case lltok::kw_uselistorder_bb:
289       if (ParseUseListOrderBB())
290         return true;
291       break;
292     }
293   }
294 }
295 
296 /// toplevelentity
297 ///   ::= 'module' 'asm' STRINGCONSTANT
298 bool LLParser::ParseModuleAsm() {
299   assert(Lex.getKind() == lltok::kw_module);
300   Lex.Lex();
301 
302   std::string AsmStr;
303   if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
304       ParseStringConstant(AsmStr)) return true;
305 
306   M->appendModuleInlineAsm(AsmStr);
307   return false;
308 }
309 
310 /// toplevelentity
311 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
312 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
313 bool LLParser::ParseTargetDefinition() {
314   assert(Lex.getKind() == lltok::kw_target);
315   std::string Str;
316   switch (Lex.Lex()) {
317   default: return TokError("unknown target property");
318   case lltok::kw_triple:
319     Lex.Lex();
320     if (ParseToken(lltok::equal, "expected '=' after target triple") ||
321         ParseStringConstant(Str))
322       return true;
323     M->setTargetTriple(Str);
324     return false;
325   case lltok::kw_datalayout:
326     Lex.Lex();
327     if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
328         ParseStringConstant(Str))
329       return true;
330     if (DataLayoutStr.empty())
331       M->setDataLayout(Str);
332     return false;
333   }
334 }
335 
336 /// toplevelentity
337 ///   ::= 'source_filename' '=' STRINGCONSTANT
338 bool LLParser::ParseSourceFileName() {
339   assert(Lex.getKind() == lltok::kw_source_filename);
340   std::string Str;
341   Lex.Lex();
342   if (ParseToken(lltok::equal, "expected '=' after source_filename") ||
343       ParseStringConstant(Str))
344     return true;
345   M->setSourceFileName(Str);
346   return false;
347 }
348 
349 /// toplevelentity
350 ///   ::= 'deplibs' '=' '[' ']'
351 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
352 /// FIXME: Remove in 4.0. Currently parse, but ignore.
353 bool LLParser::ParseDepLibs() {
354   assert(Lex.getKind() == lltok::kw_deplibs);
355   Lex.Lex();
356   if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
357       ParseToken(lltok::lsquare, "expected '=' after deplibs"))
358     return true;
359 
360   if (EatIfPresent(lltok::rsquare))
361     return false;
362 
363   do {
364     std::string Str;
365     if (ParseStringConstant(Str)) return true;
366   } while (EatIfPresent(lltok::comma));
367 
368   return ParseToken(lltok::rsquare, "expected ']' at end of list");
369 }
370 
371 /// ParseUnnamedType:
372 ///   ::= LocalVarID '=' 'type' type
373 bool LLParser::ParseUnnamedType() {
374   LocTy TypeLoc = Lex.getLoc();
375   unsigned TypeID = Lex.getUIntVal();
376   Lex.Lex(); // eat LocalVarID;
377 
378   if (ParseToken(lltok::equal, "expected '=' after name") ||
379       ParseToken(lltok::kw_type, "expected 'type' after '='"))
380     return true;
381 
382   Type *Result = nullptr;
383   if (ParseStructDefinition(TypeLoc, "",
384                             NumberedTypes[TypeID], Result)) return true;
385 
386   if (!isa<StructType>(Result)) {
387     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
388     if (Entry.first)
389       return Error(TypeLoc, "non-struct types may not be recursive");
390     Entry.first = Result;
391     Entry.second = SMLoc();
392   }
393 
394   return false;
395 }
396 
397 /// toplevelentity
398 ///   ::= LocalVar '=' 'type' type
399 bool LLParser::ParseNamedType() {
400   std::string Name = Lex.getStrVal();
401   LocTy NameLoc = Lex.getLoc();
402   Lex.Lex();  // eat LocalVar.
403 
404   if (ParseToken(lltok::equal, "expected '=' after name") ||
405       ParseToken(lltok::kw_type, "expected 'type' after name"))
406     return true;
407 
408   Type *Result = nullptr;
409   if (ParseStructDefinition(NameLoc, Name,
410                             NamedTypes[Name], Result)) return true;
411 
412   if (!isa<StructType>(Result)) {
413     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
414     if (Entry.first)
415       return Error(NameLoc, "non-struct types may not be recursive");
416     Entry.first = Result;
417     Entry.second = SMLoc();
418   }
419 
420   return false;
421 }
422 
423 /// toplevelentity
424 ///   ::= 'declare' FunctionHeader
425 bool LLParser::ParseDeclare() {
426   assert(Lex.getKind() == lltok::kw_declare);
427   Lex.Lex();
428 
429   std::vector<std::pair<unsigned, MDNode *>> MDs;
430   while (Lex.getKind() == lltok::MetadataVar) {
431     unsigned MDK;
432     MDNode *N;
433     if (ParseMetadataAttachment(MDK, N))
434       return true;
435     MDs.push_back({MDK, N});
436   }
437 
438   Function *F;
439   if (ParseFunctionHeader(F, false))
440     return true;
441   for (auto &MD : MDs)
442     F->addMetadata(MD.first, *MD.second);
443   return false;
444 }
445 
446 /// toplevelentity
447 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
448 bool LLParser::ParseDefine() {
449   assert(Lex.getKind() == lltok::kw_define);
450   Lex.Lex();
451 
452   Function *F;
453   return ParseFunctionHeader(F, true) ||
454          ParseOptionalFunctionMetadata(*F) ||
455          ParseFunctionBody(*F);
456 }
457 
458 /// ParseGlobalType
459 ///   ::= 'constant'
460 ///   ::= 'global'
461 bool LLParser::ParseGlobalType(bool &IsConstant) {
462   if (Lex.getKind() == lltok::kw_constant)
463     IsConstant = true;
464   else if (Lex.getKind() == lltok::kw_global)
465     IsConstant = false;
466   else {
467     IsConstant = false;
468     return TokError("expected 'global' or 'constant'");
469   }
470   Lex.Lex();
471   return false;
472 }
473 
474 bool LLParser::ParseOptionalUnnamedAddr(
475     GlobalVariable::UnnamedAddr &UnnamedAddr) {
476   if (EatIfPresent(lltok::kw_unnamed_addr))
477     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
478   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
479     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
480   else
481     UnnamedAddr = GlobalValue::UnnamedAddr::None;
482   return false;
483 }
484 
485 /// ParseUnnamedGlobal:
486 ///   OptionalVisibility (ALIAS | IFUNC) ...
487 ///   OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
488 ///   OptionalDLLStorageClass
489 ///                                                     ...   -> global variable
490 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
491 ///   GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
492 ///                OptionalDLLStorageClass
493 ///                                                     ...   -> global variable
494 bool LLParser::ParseUnnamedGlobal() {
495   unsigned VarID = NumberedVals.size();
496   std::string Name;
497   LocTy NameLoc = Lex.getLoc();
498 
499   // Handle the GlobalID form.
500   if (Lex.getKind() == lltok::GlobalID) {
501     if (Lex.getUIntVal() != VarID)
502       return Error(Lex.getLoc(), "variable expected to be numbered '%" +
503                    Twine(VarID) + "'");
504     Lex.Lex(); // eat GlobalID;
505 
506     if (ParseToken(lltok::equal, "expected '=' after name"))
507       return true;
508   }
509 
510   bool HasLinkage;
511   unsigned Linkage, Visibility, DLLStorageClass;
512   bool DSOLocal;
513   GlobalVariable::ThreadLocalMode TLM;
514   GlobalVariable::UnnamedAddr UnnamedAddr;
515   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
516                            DSOLocal) ||
517       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
518     return true;
519 
520   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
521     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
522                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
523 
524   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
525                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
526 }
527 
528 /// ParseNamedGlobal:
529 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
530 ///   GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
531 ///                 OptionalVisibility OptionalDLLStorageClass
532 ///                                                     ...   -> global variable
533 bool LLParser::ParseNamedGlobal() {
534   assert(Lex.getKind() == lltok::GlobalVar);
535   LocTy NameLoc = Lex.getLoc();
536   std::string Name = Lex.getStrVal();
537   Lex.Lex();
538 
539   bool HasLinkage;
540   unsigned Linkage, Visibility, DLLStorageClass;
541   bool DSOLocal;
542   GlobalVariable::ThreadLocalMode TLM;
543   GlobalVariable::UnnamedAddr UnnamedAddr;
544   if (ParseToken(lltok::equal, "expected '=' in global variable") ||
545       ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
546                            DSOLocal) ||
547       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
548     return true;
549 
550   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
551     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
552                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
553 
554   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
555                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
556 }
557 
558 bool LLParser::parseComdat() {
559   assert(Lex.getKind() == lltok::ComdatVar);
560   std::string Name = Lex.getStrVal();
561   LocTy NameLoc = Lex.getLoc();
562   Lex.Lex();
563 
564   if (ParseToken(lltok::equal, "expected '=' here"))
565     return true;
566 
567   if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
568     return TokError("expected comdat type");
569 
570   Comdat::SelectionKind SK;
571   switch (Lex.getKind()) {
572   default:
573     return TokError("unknown selection kind");
574   case lltok::kw_any:
575     SK = Comdat::Any;
576     break;
577   case lltok::kw_exactmatch:
578     SK = Comdat::ExactMatch;
579     break;
580   case lltok::kw_largest:
581     SK = Comdat::Largest;
582     break;
583   case lltok::kw_noduplicates:
584     SK = Comdat::NoDuplicates;
585     break;
586   case lltok::kw_samesize:
587     SK = Comdat::SameSize;
588     break;
589   }
590   Lex.Lex();
591 
592   // See if the comdat was forward referenced, if so, use the comdat.
593   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
594   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
595   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
596     return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
597 
598   Comdat *C;
599   if (I != ComdatSymTab.end())
600     C = &I->second;
601   else
602     C = M->getOrInsertComdat(Name);
603   C->setSelectionKind(SK);
604 
605   return false;
606 }
607 
608 // MDString:
609 //   ::= '!' STRINGCONSTANT
610 bool LLParser::ParseMDString(MDString *&Result) {
611   std::string Str;
612   if (ParseStringConstant(Str)) return true;
613   Result = MDString::get(Context, Str);
614   return false;
615 }
616 
617 // MDNode:
618 //   ::= '!' MDNodeNumber
619 bool LLParser::ParseMDNodeID(MDNode *&Result) {
620   // !{ ..., !42, ... }
621   LocTy IDLoc = Lex.getLoc();
622   unsigned MID = 0;
623   if (ParseUInt32(MID))
624     return true;
625 
626   // If not a forward reference, just return it now.
627   if (NumberedMetadata.count(MID)) {
628     Result = NumberedMetadata[MID];
629     return false;
630   }
631 
632   // Otherwise, create MDNode forward reference.
633   auto &FwdRef = ForwardRefMDNodes[MID];
634   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
635 
636   Result = FwdRef.first.get();
637   NumberedMetadata[MID].reset(Result);
638   return false;
639 }
640 
641 /// ParseNamedMetadata:
642 ///   !foo = !{ !1, !2 }
643 bool LLParser::ParseNamedMetadata() {
644   assert(Lex.getKind() == lltok::MetadataVar);
645   std::string Name = Lex.getStrVal();
646   Lex.Lex();
647 
648   if (ParseToken(lltok::equal, "expected '=' here") ||
649       ParseToken(lltok::exclaim, "Expected '!' here") ||
650       ParseToken(lltok::lbrace, "Expected '{' here"))
651     return true;
652 
653   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
654   if (Lex.getKind() != lltok::rbrace)
655     do {
656       MDNode *N = nullptr;
657       // Parse DIExpressions inline as a special case. They are still MDNodes,
658       // so they can still appear in named metadata. Remove this logic if they
659       // become plain Metadata.
660       if (Lex.getKind() == lltok::MetadataVar &&
661           Lex.getStrVal() == "DIExpression") {
662         if (ParseDIExpression(N, /*IsDistinct=*/false))
663           return true;
664       } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
665                  ParseMDNodeID(N)) {
666         return true;
667       }
668       NMD->addOperand(N);
669     } while (EatIfPresent(lltok::comma));
670 
671   return ParseToken(lltok::rbrace, "expected end of metadata node");
672 }
673 
674 /// ParseStandaloneMetadata:
675 ///   !42 = !{...}
676 bool LLParser::ParseStandaloneMetadata() {
677   assert(Lex.getKind() == lltok::exclaim);
678   Lex.Lex();
679   unsigned MetadataID = 0;
680 
681   MDNode *Init;
682   if (ParseUInt32(MetadataID) ||
683       ParseToken(lltok::equal, "expected '=' here"))
684     return true;
685 
686   // Detect common error, from old metadata syntax.
687   if (Lex.getKind() == lltok::Type)
688     return TokError("unexpected type in metadata definition");
689 
690   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
691   if (Lex.getKind() == lltok::MetadataVar) {
692     if (ParseSpecializedMDNode(Init, IsDistinct))
693       return true;
694   } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
695              ParseMDTuple(Init, IsDistinct))
696     return true;
697 
698   // See if this was forward referenced, if so, handle it.
699   auto FI = ForwardRefMDNodes.find(MetadataID);
700   if (FI != ForwardRefMDNodes.end()) {
701     FI->second.first->replaceAllUsesWith(Init);
702     ForwardRefMDNodes.erase(FI);
703 
704     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
705   } else {
706     if (NumberedMetadata.count(MetadataID))
707       return TokError("Metadata id is already used");
708     NumberedMetadata[MetadataID].reset(Init);
709   }
710 
711   return false;
712 }
713 
714 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
715   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
716          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
717 }
718 
719 // If there was an explicit dso_local, update GV. In the absence of an explicit
720 // dso_local we keep the default value.
721 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
722   if (DSOLocal)
723     GV.setDSOLocal(true);
724 }
725 
726 /// parseIndirectSymbol:
727 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
728 ///                     OptionalVisibility OptionalDLLStorageClass
729 ///                     OptionalThreadLocal OptionalUnnamedAddr
730 //                      'alias|ifunc' IndirectSymbol
731 ///
732 /// IndirectSymbol
733 ///   ::= TypeAndValue
734 ///
735 /// Everything through OptionalUnnamedAddr has already been parsed.
736 ///
737 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
738                                    unsigned L, unsigned Visibility,
739                                    unsigned DLLStorageClass, bool DSOLocal,
740                                    GlobalVariable::ThreadLocalMode TLM,
741                                    GlobalVariable::UnnamedAddr UnnamedAddr) {
742   bool IsAlias;
743   if (Lex.getKind() == lltok::kw_alias)
744     IsAlias = true;
745   else if (Lex.getKind() == lltok::kw_ifunc)
746     IsAlias = false;
747   else
748     llvm_unreachable("Not an alias or ifunc!");
749   Lex.Lex();
750 
751   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
752 
753   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
754     return Error(NameLoc, "invalid linkage type for alias");
755 
756   if (!isValidVisibilityForLinkage(Visibility, L))
757     return Error(NameLoc,
758                  "symbol with local linkage must have default visibility");
759 
760   Type *Ty;
761   LocTy ExplicitTypeLoc = Lex.getLoc();
762   if (ParseType(Ty) ||
763       ParseToken(lltok::comma, "expected comma after alias or ifunc's type"))
764     return true;
765 
766   Constant *Aliasee;
767   LocTy AliaseeLoc = Lex.getLoc();
768   if (Lex.getKind() != lltok::kw_bitcast &&
769       Lex.getKind() != lltok::kw_getelementptr &&
770       Lex.getKind() != lltok::kw_addrspacecast &&
771       Lex.getKind() != lltok::kw_inttoptr) {
772     if (ParseGlobalTypeAndValue(Aliasee))
773       return true;
774   } else {
775     // The bitcast dest type is not present, it is implied by the dest type.
776     ValID ID;
777     if (ParseValID(ID))
778       return true;
779     if (ID.Kind != ValID::t_Constant)
780       return Error(AliaseeLoc, "invalid aliasee");
781     Aliasee = ID.ConstantVal;
782   }
783 
784   Type *AliaseeType = Aliasee->getType();
785   auto *PTy = dyn_cast<PointerType>(AliaseeType);
786   if (!PTy)
787     return Error(AliaseeLoc, "An alias or ifunc must have pointer type");
788   unsigned AddrSpace = PTy->getAddressSpace();
789 
790   if (IsAlias && Ty != PTy->getElementType())
791     return Error(
792         ExplicitTypeLoc,
793         "explicit pointee type doesn't match operand's pointee type");
794 
795   if (!IsAlias && !PTy->getElementType()->isFunctionTy())
796     return Error(
797         ExplicitTypeLoc,
798         "explicit pointee type should be a function type");
799 
800   GlobalValue *GVal = nullptr;
801 
802   // See if the alias was forward referenced, if so, prepare to replace the
803   // forward reference.
804   if (!Name.empty()) {
805     GVal = M->getNamedValue(Name);
806     if (GVal) {
807       if (!ForwardRefVals.erase(Name))
808         return Error(NameLoc, "redefinition of global '@" + Name + "'");
809     }
810   } else {
811     auto I = ForwardRefValIDs.find(NumberedVals.size());
812     if (I != ForwardRefValIDs.end()) {
813       GVal = I->second.first;
814       ForwardRefValIDs.erase(I);
815     }
816   }
817 
818   // Okay, create the alias but do not insert it into the module yet.
819   std::unique_ptr<GlobalIndirectSymbol> GA;
820   if (IsAlias)
821     GA.reset(GlobalAlias::create(Ty, AddrSpace,
822                                  (GlobalValue::LinkageTypes)Linkage, Name,
823                                  Aliasee, /*Parent*/ nullptr));
824   else
825     GA.reset(GlobalIFunc::create(Ty, AddrSpace,
826                                  (GlobalValue::LinkageTypes)Linkage, Name,
827                                  Aliasee, /*Parent*/ nullptr));
828   GA->setThreadLocalMode(TLM);
829   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
830   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
831   GA->setUnnamedAddr(UnnamedAddr);
832   maybeSetDSOLocal(DSOLocal, *GA);
833 
834   if (Name.empty())
835     NumberedVals.push_back(GA.get());
836 
837   if (GVal) {
838     // Verify that types agree.
839     if (GVal->getType() != GA->getType())
840       return Error(
841           ExplicitTypeLoc,
842           "forward reference and definition of alias have different types");
843 
844     // If they agree, just RAUW the old value with the alias and remove the
845     // forward ref info.
846     GVal->replaceAllUsesWith(GA.get());
847     GVal->eraseFromParent();
848   }
849 
850   // Insert into the module, we know its name won't collide now.
851   if (IsAlias)
852     M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
853   else
854     M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
855   assert(GA->getName() == Name && "Should not be a name conflict!");
856 
857   // The module owns this now
858   GA.release();
859 
860   return false;
861 }
862 
863 /// ParseGlobal
864 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
865 ///       OptionalVisibility OptionalDLLStorageClass
866 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
867 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
868 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
869 ///       OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
870 ///       OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
871 ///       Const OptionalAttrs
872 ///
873 /// Everything up to and including OptionalUnnamedAddr has been parsed
874 /// already.
875 ///
876 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
877                            unsigned Linkage, bool HasLinkage,
878                            unsigned Visibility, unsigned DLLStorageClass,
879                            bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
880                            GlobalVariable::UnnamedAddr UnnamedAddr) {
881   if (!isValidVisibilityForLinkage(Visibility, Linkage))
882     return Error(NameLoc,
883                  "symbol with local linkage must have default visibility");
884 
885   unsigned AddrSpace;
886   bool IsConstant, IsExternallyInitialized;
887   LocTy IsExternallyInitializedLoc;
888   LocTy TyLoc;
889 
890   Type *Ty = nullptr;
891   if (ParseOptionalAddrSpace(AddrSpace) ||
892       ParseOptionalToken(lltok::kw_externally_initialized,
893                          IsExternallyInitialized,
894                          &IsExternallyInitializedLoc) ||
895       ParseGlobalType(IsConstant) ||
896       ParseType(Ty, TyLoc))
897     return true;
898 
899   // If the linkage is specified and is external, then no initializer is
900   // present.
901   Constant *Init = nullptr;
902   if (!HasLinkage ||
903       !GlobalValue::isValidDeclarationLinkage(
904           (GlobalValue::LinkageTypes)Linkage)) {
905     if (ParseGlobalValue(Ty, Init))
906       return true;
907   }
908 
909   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
910     return Error(TyLoc, "invalid type for global variable");
911 
912   GlobalValue *GVal = nullptr;
913 
914   // See if the global was forward referenced, if so, use the global.
915   if (!Name.empty()) {
916     GVal = M->getNamedValue(Name);
917     if (GVal) {
918       if (!ForwardRefVals.erase(Name))
919         return Error(NameLoc, "redefinition of global '@" + Name + "'");
920     }
921   } else {
922     auto I = ForwardRefValIDs.find(NumberedVals.size());
923     if (I != ForwardRefValIDs.end()) {
924       GVal = I->second.first;
925       ForwardRefValIDs.erase(I);
926     }
927   }
928 
929   GlobalVariable *GV;
930   if (!GVal) {
931     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
932                             Name, nullptr, GlobalVariable::NotThreadLocal,
933                             AddrSpace);
934   } else {
935     if (GVal->getValueType() != Ty)
936       return Error(TyLoc,
937             "forward reference and definition of global have different types");
938 
939     GV = cast<GlobalVariable>(GVal);
940 
941     // Move the forward-reference to the correct spot in the module.
942     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
943   }
944 
945   if (Name.empty())
946     NumberedVals.push_back(GV);
947 
948   // Set the parsed properties on the global.
949   if (Init)
950     GV->setInitializer(Init);
951   GV->setConstant(IsConstant);
952   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
953   maybeSetDSOLocal(DSOLocal, *GV);
954   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
955   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
956   GV->setExternallyInitialized(IsExternallyInitialized);
957   GV->setThreadLocalMode(TLM);
958   GV->setUnnamedAddr(UnnamedAddr);
959 
960   // Parse attributes on the global.
961   while (Lex.getKind() == lltok::comma) {
962     Lex.Lex();
963 
964     if (Lex.getKind() == lltok::kw_section) {
965       Lex.Lex();
966       GV->setSection(Lex.getStrVal());
967       if (ParseToken(lltok::StringConstant, "expected global section string"))
968         return true;
969     } else if (Lex.getKind() == lltok::kw_align) {
970       unsigned Alignment;
971       if (ParseOptionalAlignment(Alignment)) return true;
972       GV->setAlignment(Alignment);
973     } else if (Lex.getKind() == lltok::MetadataVar) {
974       if (ParseGlobalObjectMetadataAttachment(*GV))
975         return true;
976     } else {
977       Comdat *C;
978       if (parseOptionalComdat(Name, C))
979         return true;
980       if (C)
981         GV->setComdat(C);
982       else
983         return TokError("unknown global variable property!");
984     }
985   }
986 
987   AttrBuilder Attrs;
988   LocTy BuiltinLoc;
989   std::vector<unsigned> FwdRefAttrGrps;
990   if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
991     return true;
992   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
993     GV->setAttributes(AttributeSet::get(Context, Attrs));
994     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
995   }
996 
997   return false;
998 }
999 
1000 /// ParseUnnamedAttrGrp
1001 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1002 bool LLParser::ParseUnnamedAttrGrp() {
1003   assert(Lex.getKind() == lltok::kw_attributes);
1004   LocTy AttrGrpLoc = Lex.getLoc();
1005   Lex.Lex();
1006 
1007   if (Lex.getKind() != lltok::AttrGrpID)
1008     return TokError("expected attribute group id");
1009 
1010   unsigned VarID = Lex.getUIntVal();
1011   std::vector<unsigned> unused;
1012   LocTy BuiltinLoc;
1013   Lex.Lex();
1014 
1015   if (ParseToken(lltok::equal, "expected '=' here") ||
1016       ParseToken(lltok::lbrace, "expected '{' here") ||
1017       ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
1018                                  BuiltinLoc) ||
1019       ParseToken(lltok::rbrace, "expected end of attribute group"))
1020     return true;
1021 
1022   if (!NumberedAttrBuilders[VarID].hasAttributes())
1023     return Error(AttrGrpLoc, "attribute group has no attributes");
1024 
1025   return false;
1026 }
1027 
1028 /// ParseFnAttributeValuePairs
1029 ///   ::= <attr> | <attr> '=' <value>
1030 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
1031                                           std::vector<unsigned> &FwdRefAttrGrps,
1032                                           bool inAttrGrp, LocTy &BuiltinLoc) {
1033   bool HaveError = false;
1034 
1035   B.clear();
1036 
1037   while (true) {
1038     lltok::Kind Token = Lex.getKind();
1039     if (Token == lltok::kw_builtin)
1040       BuiltinLoc = Lex.getLoc();
1041     switch (Token) {
1042     default:
1043       if (!inAttrGrp) return HaveError;
1044       return Error(Lex.getLoc(), "unterminated attribute group");
1045     case lltok::rbrace:
1046       // Finished.
1047       return false;
1048 
1049     case lltok::AttrGrpID: {
1050       // Allow a function to reference an attribute group:
1051       //
1052       //   define void @foo() #1 { ... }
1053       if (inAttrGrp)
1054         HaveError |=
1055           Error(Lex.getLoc(),
1056               "cannot have an attribute group reference in an attribute group");
1057 
1058       unsigned AttrGrpNum = Lex.getUIntVal();
1059       if (inAttrGrp) break;
1060 
1061       // Save the reference to the attribute group. We'll fill it in later.
1062       FwdRefAttrGrps.push_back(AttrGrpNum);
1063       break;
1064     }
1065     // Target-dependent attributes:
1066     case lltok::StringConstant: {
1067       if (ParseStringAttribute(B))
1068         return true;
1069       continue;
1070     }
1071 
1072     // Target-independent attributes:
1073     case lltok::kw_align: {
1074       // As a hack, we allow function alignment to be initially parsed as an
1075       // attribute on a function declaration/definition or added to an attribute
1076       // group and later moved to the alignment field.
1077       unsigned Alignment;
1078       if (inAttrGrp) {
1079         Lex.Lex();
1080         if (ParseToken(lltok::equal, "expected '=' here") ||
1081             ParseUInt32(Alignment))
1082           return true;
1083       } else {
1084         if (ParseOptionalAlignment(Alignment))
1085           return true;
1086       }
1087       B.addAlignmentAttr(Alignment);
1088       continue;
1089     }
1090     case lltok::kw_alignstack: {
1091       unsigned Alignment;
1092       if (inAttrGrp) {
1093         Lex.Lex();
1094         if (ParseToken(lltok::equal, "expected '=' here") ||
1095             ParseUInt32(Alignment))
1096           return true;
1097       } else {
1098         if (ParseOptionalStackAlignment(Alignment))
1099           return true;
1100       }
1101       B.addStackAlignmentAttr(Alignment);
1102       continue;
1103     }
1104     case lltok::kw_allocsize: {
1105       unsigned ElemSizeArg;
1106       Optional<unsigned> NumElemsArg;
1107       // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1108       if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1109         return true;
1110       B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1111       continue;
1112     }
1113     case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1114     case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1115     case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1116     case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1117     case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1118     case lltok::kw_inaccessiblememonly:
1119       B.addAttribute(Attribute::InaccessibleMemOnly); break;
1120     case lltok::kw_inaccessiblemem_or_argmemonly:
1121       B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1122     case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1123     case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1124     case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1125     case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1126     case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1127     case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1128     case lltok::kw_noimplicitfloat:
1129       B.addAttribute(Attribute::NoImplicitFloat); break;
1130     case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1131     case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1132     case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1133     case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1134     case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1135     case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1136     case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1137     case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1138     case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1139     case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1140     case lltok::kw_returns_twice:
1141       B.addAttribute(Attribute::ReturnsTwice); break;
1142     case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break;
1143     case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1144     case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1145     case lltok::kw_sspstrong:
1146       B.addAttribute(Attribute::StackProtectStrong); break;
1147     case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1148     case lltok::kw_sanitize_address:
1149       B.addAttribute(Attribute::SanitizeAddress); break;
1150     case lltok::kw_sanitize_hwaddress:
1151       B.addAttribute(Attribute::SanitizeHWAddress); break;
1152     case lltok::kw_sanitize_thread:
1153       B.addAttribute(Attribute::SanitizeThread); break;
1154     case lltok::kw_sanitize_memory:
1155       B.addAttribute(Attribute::SanitizeMemory); break;
1156     case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break;
1157     case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1158     case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1159 
1160     // Error handling.
1161     case lltok::kw_inreg:
1162     case lltok::kw_signext:
1163     case lltok::kw_zeroext:
1164       HaveError |=
1165         Error(Lex.getLoc(),
1166               "invalid use of attribute on a function");
1167       break;
1168     case lltok::kw_byval:
1169     case lltok::kw_dereferenceable:
1170     case lltok::kw_dereferenceable_or_null:
1171     case lltok::kw_inalloca:
1172     case lltok::kw_nest:
1173     case lltok::kw_noalias:
1174     case lltok::kw_nocapture:
1175     case lltok::kw_nonnull:
1176     case lltok::kw_returned:
1177     case lltok::kw_sret:
1178     case lltok::kw_swifterror:
1179     case lltok::kw_swiftself:
1180       HaveError |=
1181         Error(Lex.getLoc(),
1182               "invalid use of parameter-only attribute on a function");
1183       break;
1184     }
1185 
1186     Lex.Lex();
1187   }
1188 }
1189 
1190 //===----------------------------------------------------------------------===//
1191 // GlobalValue Reference/Resolution Routines.
1192 //===----------------------------------------------------------------------===//
1193 
1194 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1195                                               const std::string &Name) {
1196   if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1197     return Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
1198   else
1199     return new GlobalVariable(*M, PTy->getElementType(), false,
1200                               GlobalValue::ExternalWeakLinkage, nullptr, Name,
1201                               nullptr, GlobalVariable::NotThreadLocal,
1202                               PTy->getAddressSpace());
1203 }
1204 
1205 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1206 /// forward reference record if needed.  This can return null if the value
1207 /// exists but does not have the right type.
1208 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
1209                                     LocTy Loc) {
1210   PointerType *PTy = dyn_cast<PointerType>(Ty);
1211   if (!PTy) {
1212     Error(Loc, "global variable reference must have pointer type");
1213     return nullptr;
1214   }
1215 
1216   // Look this name up in the normal function symbol table.
1217   GlobalValue *Val =
1218     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1219 
1220   // If this is a forward reference for the value, see if we already created a
1221   // forward ref record.
1222   if (!Val) {
1223     auto I = ForwardRefVals.find(Name);
1224     if (I != ForwardRefVals.end())
1225       Val = I->second.first;
1226   }
1227 
1228   // If we have the value in the symbol table or fwd-ref table, return it.
1229   if (Val) {
1230     if (Val->getType() == Ty) return Val;
1231     Error(Loc, "'@" + Name + "' defined with type '" +
1232           getTypeString(Val->getType()) + "'");
1233     return nullptr;
1234   }
1235 
1236   // Otherwise, create a new forward reference for this value and remember it.
1237   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1238   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1239   return FwdVal;
1240 }
1241 
1242 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
1243   PointerType *PTy = dyn_cast<PointerType>(Ty);
1244   if (!PTy) {
1245     Error(Loc, "global variable reference must have pointer type");
1246     return nullptr;
1247   }
1248 
1249   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1250 
1251   // If this is a forward reference for the value, see if we already created a
1252   // forward ref record.
1253   if (!Val) {
1254     auto I = ForwardRefValIDs.find(ID);
1255     if (I != ForwardRefValIDs.end())
1256       Val = I->second.first;
1257   }
1258 
1259   // If we have the value in the symbol table or fwd-ref table, return it.
1260   if (Val) {
1261     if (Val->getType() == Ty) return Val;
1262     Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
1263           getTypeString(Val->getType()) + "'");
1264     return nullptr;
1265   }
1266 
1267   // Otherwise, create a new forward reference for this value and remember it.
1268   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1269   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1270   return FwdVal;
1271 }
1272 
1273 //===----------------------------------------------------------------------===//
1274 // Comdat Reference/Resolution Routines.
1275 //===----------------------------------------------------------------------===//
1276 
1277 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1278   // Look this name up in the comdat symbol table.
1279   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1280   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1281   if (I != ComdatSymTab.end())
1282     return &I->second;
1283 
1284   // Otherwise, create a new forward reference for this value and remember it.
1285   Comdat *C = M->getOrInsertComdat(Name);
1286   ForwardRefComdats[Name] = Loc;
1287   return C;
1288 }
1289 
1290 //===----------------------------------------------------------------------===//
1291 // Helper Routines.
1292 //===----------------------------------------------------------------------===//
1293 
1294 /// ParseToken - If the current token has the specified kind, eat it and return
1295 /// success.  Otherwise, emit the specified error and return failure.
1296 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1297   if (Lex.getKind() != T)
1298     return TokError(ErrMsg);
1299   Lex.Lex();
1300   return false;
1301 }
1302 
1303 /// ParseStringConstant
1304 ///   ::= StringConstant
1305 bool LLParser::ParseStringConstant(std::string &Result) {
1306   if (Lex.getKind() != lltok::StringConstant)
1307     return TokError("expected string constant");
1308   Result = Lex.getStrVal();
1309   Lex.Lex();
1310   return false;
1311 }
1312 
1313 /// ParseUInt32
1314 ///   ::= uint32
1315 bool LLParser::ParseUInt32(uint32_t &Val) {
1316   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1317     return TokError("expected integer");
1318   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1319   if (Val64 != unsigned(Val64))
1320     return TokError("expected 32-bit integer (too large)");
1321   Val = Val64;
1322   Lex.Lex();
1323   return false;
1324 }
1325 
1326 /// ParseUInt64
1327 ///   ::= uint64
1328 bool LLParser::ParseUInt64(uint64_t &Val) {
1329   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1330     return TokError("expected integer");
1331   Val = Lex.getAPSIntVal().getLimitedValue();
1332   Lex.Lex();
1333   return false;
1334 }
1335 
1336 /// ParseTLSModel
1337 ///   := 'localdynamic'
1338 ///   := 'initialexec'
1339 ///   := 'localexec'
1340 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1341   switch (Lex.getKind()) {
1342     default:
1343       return TokError("expected localdynamic, initialexec or localexec");
1344     case lltok::kw_localdynamic:
1345       TLM = GlobalVariable::LocalDynamicTLSModel;
1346       break;
1347     case lltok::kw_initialexec:
1348       TLM = GlobalVariable::InitialExecTLSModel;
1349       break;
1350     case lltok::kw_localexec:
1351       TLM = GlobalVariable::LocalExecTLSModel;
1352       break;
1353   }
1354 
1355   Lex.Lex();
1356   return false;
1357 }
1358 
1359 /// ParseOptionalThreadLocal
1360 ///   := /*empty*/
1361 ///   := 'thread_local'
1362 ///   := 'thread_local' '(' tlsmodel ')'
1363 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1364   TLM = GlobalVariable::NotThreadLocal;
1365   if (!EatIfPresent(lltok::kw_thread_local))
1366     return false;
1367 
1368   TLM = GlobalVariable::GeneralDynamicTLSModel;
1369   if (Lex.getKind() == lltok::lparen) {
1370     Lex.Lex();
1371     return ParseTLSModel(TLM) ||
1372       ParseToken(lltok::rparen, "expected ')' after thread local model");
1373   }
1374   return false;
1375 }
1376 
1377 /// ParseOptionalAddrSpace
1378 ///   := /*empty*/
1379 ///   := 'addrspace' '(' uint32 ')'
1380 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
1381   AddrSpace = 0;
1382   if (!EatIfPresent(lltok::kw_addrspace))
1383     return false;
1384   return ParseToken(lltok::lparen, "expected '(' in address space") ||
1385          ParseUInt32(AddrSpace) ||
1386          ParseToken(lltok::rparen, "expected ')' in address space");
1387 }
1388 
1389 /// ParseStringAttribute
1390 ///   := StringConstant
1391 ///   := StringConstant '=' StringConstant
1392 bool LLParser::ParseStringAttribute(AttrBuilder &B) {
1393   std::string Attr = Lex.getStrVal();
1394   Lex.Lex();
1395   std::string Val;
1396   if (EatIfPresent(lltok::equal) && ParseStringConstant(Val))
1397     return true;
1398   B.addAttribute(Attr, Val);
1399   return false;
1400 }
1401 
1402 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1403 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1404   bool HaveError = false;
1405 
1406   B.clear();
1407 
1408   while (true) {
1409     lltok::Kind Token = Lex.getKind();
1410     switch (Token) {
1411     default:  // End of attributes.
1412       return HaveError;
1413     case lltok::StringConstant: {
1414       if (ParseStringAttribute(B))
1415         return true;
1416       continue;
1417     }
1418     case lltok::kw_align: {
1419       unsigned Alignment;
1420       if (ParseOptionalAlignment(Alignment))
1421         return true;
1422       B.addAlignmentAttr(Alignment);
1423       continue;
1424     }
1425     case lltok::kw_byval:           B.addAttribute(Attribute::ByVal); break;
1426     case lltok::kw_dereferenceable: {
1427       uint64_t Bytes;
1428       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1429         return true;
1430       B.addDereferenceableAttr(Bytes);
1431       continue;
1432     }
1433     case lltok::kw_dereferenceable_or_null: {
1434       uint64_t Bytes;
1435       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1436         return true;
1437       B.addDereferenceableOrNullAttr(Bytes);
1438       continue;
1439     }
1440     case lltok::kw_inalloca:        B.addAttribute(Attribute::InAlloca); break;
1441     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1442     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1443     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1444     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1445     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1446     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1447     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1448     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1449     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1450     case lltok::kw_sret:            B.addAttribute(Attribute::StructRet); break;
1451     case lltok::kw_swifterror:      B.addAttribute(Attribute::SwiftError); break;
1452     case lltok::kw_swiftself:       B.addAttribute(Attribute::SwiftSelf); break;
1453     case lltok::kw_writeonly:       B.addAttribute(Attribute::WriteOnly); break;
1454     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1455 
1456     case lltok::kw_alignstack:
1457     case lltok::kw_alwaysinline:
1458     case lltok::kw_argmemonly:
1459     case lltok::kw_builtin:
1460     case lltok::kw_inlinehint:
1461     case lltok::kw_jumptable:
1462     case lltok::kw_minsize:
1463     case lltok::kw_naked:
1464     case lltok::kw_nobuiltin:
1465     case lltok::kw_noduplicate:
1466     case lltok::kw_noimplicitfloat:
1467     case lltok::kw_noinline:
1468     case lltok::kw_nonlazybind:
1469     case lltok::kw_noredzone:
1470     case lltok::kw_noreturn:
1471     case lltok::kw_nounwind:
1472     case lltok::kw_optnone:
1473     case lltok::kw_optsize:
1474     case lltok::kw_returns_twice:
1475     case lltok::kw_sanitize_address:
1476     case lltok::kw_sanitize_hwaddress:
1477     case lltok::kw_sanitize_memory:
1478     case lltok::kw_sanitize_thread:
1479     case lltok::kw_ssp:
1480     case lltok::kw_sspreq:
1481     case lltok::kw_sspstrong:
1482     case lltok::kw_safestack:
1483     case lltok::kw_strictfp:
1484     case lltok::kw_uwtable:
1485       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1486       break;
1487     }
1488 
1489     Lex.Lex();
1490   }
1491 }
1492 
1493 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1494 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1495   bool HaveError = false;
1496 
1497   B.clear();
1498 
1499   while (true) {
1500     lltok::Kind Token = Lex.getKind();
1501     switch (Token) {
1502     default:  // End of attributes.
1503       return HaveError;
1504     case lltok::StringConstant: {
1505       if (ParseStringAttribute(B))
1506         return true;
1507       continue;
1508     }
1509     case lltok::kw_dereferenceable: {
1510       uint64_t Bytes;
1511       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1512         return true;
1513       B.addDereferenceableAttr(Bytes);
1514       continue;
1515     }
1516     case lltok::kw_dereferenceable_or_null: {
1517       uint64_t Bytes;
1518       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1519         return true;
1520       B.addDereferenceableOrNullAttr(Bytes);
1521       continue;
1522     }
1523     case lltok::kw_align: {
1524       unsigned Alignment;
1525       if (ParseOptionalAlignment(Alignment))
1526         return true;
1527       B.addAlignmentAttr(Alignment);
1528       continue;
1529     }
1530     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1531     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1532     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1533     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1534     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1535 
1536     // Error handling.
1537     case lltok::kw_byval:
1538     case lltok::kw_inalloca:
1539     case lltok::kw_nest:
1540     case lltok::kw_nocapture:
1541     case lltok::kw_returned:
1542     case lltok::kw_sret:
1543     case lltok::kw_swifterror:
1544     case lltok::kw_swiftself:
1545       HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1546       break;
1547 
1548     case lltok::kw_alignstack:
1549     case lltok::kw_alwaysinline:
1550     case lltok::kw_argmemonly:
1551     case lltok::kw_builtin:
1552     case lltok::kw_cold:
1553     case lltok::kw_inlinehint:
1554     case lltok::kw_jumptable:
1555     case lltok::kw_minsize:
1556     case lltok::kw_naked:
1557     case lltok::kw_nobuiltin:
1558     case lltok::kw_noduplicate:
1559     case lltok::kw_noimplicitfloat:
1560     case lltok::kw_noinline:
1561     case lltok::kw_nonlazybind:
1562     case lltok::kw_noredzone:
1563     case lltok::kw_noreturn:
1564     case lltok::kw_nounwind:
1565     case lltok::kw_optnone:
1566     case lltok::kw_optsize:
1567     case lltok::kw_returns_twice:
1568     case lltok::kw_sanitize_address:
1569     case lltok::kw_sanitize_hwaddress:
1570     case lltok::kw_sanitize_memory:
1571     case lltok::kw_sanitize_thread:
1572     case lltok::kw_ssp:
1573     case lltok::kw_sspreq:
1574     case lltok::kw_sspstrong:
1575     case lltok::kw_safestack:
1576     case lltok::kw_strictfp:
1577     case lltok::kw_uwtable:
1578       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1579       break;
1580 
1581     case lltok::kw_readnone:
1582     case lltok::kw_readonly:
1583       HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1584     }
1585 
1586     Lex.Lex();
1587   }
1588 }
1589 
1590 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1591   HasLinkage = true;
1592   switch (Kind) {
1593   default:
1594     HasLinkage = false;
1595     return GlobalValue::ExternalLinkage;
1596   case lltok::kw_private:
1597     return GlobalValue::PrivateLinkage;
1598   case lltok::kw_internal:
1599     return GlobalValue::InternalLinkage;
1600   case lltok::kw_weak:
1601     return GlobalValue::WeakAnyLinkage;
1602   case lltok::kw_weak_odr:
1603     return GlobalValue::WeakODRLinkage;
1604   case lltok::kw_linkonce:
1605     return GlobalValue::LinkOnceAnyLinkage;
1606   case lltok::kw_linkonce_odr:
1607     return GlobalValue::LinkOnceODRLinkage;
1608   case lltok::kw_available_externally:
1609     return GlobalValue::AvailableExternallyLinkage;
1610   case lltok::kw_appending:
1611     return GlobalValue::AppendingLinkage;
1612   case lltok::kw_common:
1613     return GlobalValue::CommonLinkage;
1614   case lltok::kw_extern_weak:
1615     return GlobalValue::ExternalWeakLinkage;
1616   case lltok::kw_external:
1617     return GlobalValue::ExternalLinkage;
1618   }
1619 }
1620 
1621 /// ParseOptionalLinkage
1622 ///   ::= /*empty*/
1623 ///   ::= 'private'
1624 ///   ::= 'internal'
1625 ///   ::= 'weak'
1626 ///   ::= 'weak_odr'
1627 ///   ::= 'linkonce'
1628 ///   ::= 'linkonce_odr'
1629 ///   ::= 'available_externally'
1630 ///   ::= 'appending'
1631 ///   ::= 'common'
1632 ///   ::= 'extern_weak'
1633 ///   ::= 'external'
1634 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1635                                     unsigned &Visibility,
1636                                     unsigned &DLLStorageClass,
1637                                     bool &DSOLocal) {
1638   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1639   if (HasLinkage)
1640     Lex.Lex();
1641   ParseOptionalDSOLocal(DSOLocal);
1642   ParseOptionalVisibility(Visibility);
1643   ParseOptionalDLLStorageClass(DLLStorageClass);
1644 
1645   if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
1646     return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
1647   }
1648 
1649   return false;
1650 }
1651 
1652 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) {
1653   switch (Lex.getKind()) {
1654   default:
1655     DSOLocal = false;
1656     break;
1657   case lltok::kw_dso_local:
1658     DSOLocal = true;
1659     Lex.Lex();
1660     break;
1661   case lltok::kw_dso_preemptable:
1662     DSOLocal = false;
1663     Lex.Lex();
1664     break;
1665   }
1666 }
1667 
1668 /// ParseOptionalVisibility
1669 ///   ::= /*empty*/
1670 ///   ::= 'default'
1671 ///   ::= 'hidden'
1672 ///   ::= 'protected'
1673 ///
1674 void LLParser::ParseOptionalVisibility(unsigned &Res) {
1675   switch (Lex.getKind()) {
1676   default:
1677     Res = GlobalValue::DefaultVisibility;
1678     return;
1679   case lltok::kw_default:
1680     Res = GlobalValue::DefaultVisibility;
1681     break;
1682   case lltok::kw_hidden:
1683     Res = GlobalValue::HiddenVisibility;
1684     break;
1685   case lltok::kw_protected:
1686     Res = GlobalValue::ProtectedVisibility;
1687     break;
1688   }
1689   Lex.Lex();
1690 }
1691 
1692 /// ParseOptionalDLLStorageClass
1693 ///   ::= /*empty*/
1694 ///   ::= 'dllimport'
1695 ///   ::= 'dllexport'
1696 ///
1697 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
1698   switch (Lex.getKind()) {
1699   default:
1700     Res = GlobalValue::DefaultStorageClass;
1701     return;
1702   case lltok::kw_dllimport:
1703     Res = GlobalValue::DLLImportStorageClass;
1704     break;
1705   case lltok::kw_dllexport:
1706     Res = GlobalValue::DLLExportStorageClass;
1707     break;
1708   }
1709   Lex.Lex();
1710 }
1711 
1712 /// ParseOptionalCallingConv
1713 ///   ::= /*empty*/
1714 ///   ::= 'ccc'
1715 ///   ::= 'fastcc'
1716 ///   ::= 'intel_ocl_bicc'
1717 ///   ::= 'coldcc'
1718 ///   ::= 'x86_stdcallcc'
1719 ///   ::= 'x86_fastcallcc'
1720 ///   ::= 'x86_thiscallcc'
1721 ///   ::= 'x86_vectorcallcc'
1722 ///   ::= 'arm_apcscc'
1723 ///   ::= 'arm_aapcscc'
1724 ///   ::= 'arm_aapcs_vfpcc'
1725 ///   ::= 'msp430_intrcc'
1726 ///   ::= 'avr_intrcc'
1727 ///   ::= 'avr_signalcc'
1728 ///   ::= 'ptx_kernel'
1729 ///   ::= 'ptx_device'
1730 ///   ::= 'spir_func'
1731 ///   ::= 'spir_kernel'
1732 ///   ::= 'x86_64_sysvcc'
1733 ///   ::= 'win64cc'
1734 ///   ::= 'webkit_jscc'
1735 ///   ::= 'anyregcc'
1736 ///   ::= 'preserve_mostcc'
1737 ///   ::= 'preserve_allcc'
1738 ///   ::= 'ghccc'
1739 ///   ::= 'swiftcc'
1740 ///   ::= 'x86_intrcc'
1741 ///   ::= 'hhvmcc'
1742 ///   ::= 'hhvm_ccc'
1743 ///   ::= 'cxx_fast_tlscc'
1744 ///   ::= 'amdgpu_vs'
1745 ///   ::= 'amdgpu_ls'
1746 ///   ::= 'amdgpu_hs'
1747 ///   ::= 'amdgpu_es'
1748 ///   ::= 'amdgpu_gs'
1749 ///   ::= 'amdgpu_ps'
1750 ///   ::= 'amdgpu_cs'
1751 ///   ::= 'amdgpu_kernel'
1752 ///   ::= 'cc' UINT
1753 ///
1754 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
1755   switch (Lex.getKind()) {
1756   default:                       CC = CallingConv::C; return false;
1757   case lltok::kw_ccc:            CC = CallingConv::C; break;
1758   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1759   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1760   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1761   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1762   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
1763   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1764   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
1765   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1766   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1767   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1768   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1769   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
1770   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
1771   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1772   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1773   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
1774   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
1775   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1776   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
1777   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
1778   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
1779   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
1780   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
1781   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
1782   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
1783   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
1784   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
1785   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
1786   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
1787   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
1788   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
1789   case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
1790   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
1791   case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
1792   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
1793   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
1794   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
1795   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
1796   case lltok::kw_cc: {
1797       Lex.Lex();
1798       return ParseUInt32(CC);
1799     }
1800   }
1801 
1802   Lex.Lex();
1803   return false;
1804 }
1805 
1806 /// ParseMetadataAttachment
1807 ///   ::= !dbg !42
1808 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
1809   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
1810 
1811   std::string Name = Lex.getStrVal();
1812   Kind = M->getMDKindID(Name);
1813   Lex.Lex();
1814 
1815   return ParseMDNode(MD);
1816 }
1817 
1818 /// ParseInstructionMetadata
1819 ///   ::= !dbg !42 (',' !dbg !57)*
1820 bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
1821   do {
1822     if (Lex.getKind() != lltok::MetadataVar)
1823       return TokError("expected metadata after comma");
1824 
1825     unsigned MDK;
1826     MDNode *N;
1827     if (ParseMetadataAttachment(MDK, N))
1828       return true;
1829 
1830     Inst.setMetadata(MDK, N);
1831     if (MDK == LLVMContext::MD_tbaa)
1832       InstsWithTBAATag.push_back(&Inst);
1833 
1834     // If this is the end of the list, we're done.
1835   } while (EatIfPresent(lltok::comma));
1836   return false;
1837 }
1838 
1839 /// ParseGlobalObjectMetadataAttachment
1840 ///   ::= !dbg !57
1841 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) {
1842   unsigned MDK;
1843   MDNode *N;
1844   if (ParseMetadataAttachment(MDK, N))
1845     return true;
1846 
1847   GO.addMetadata(MDK, *N);
1848   return false;
1849 }
1850 
1851 /// ParseOptionalFunctionMetadata
1852 ///   ::= (!dbg !57)*
1853 bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
1854   while (Lex.getKind() == lltok::MetadataVar)
1855     if (ParseGlobalObjectMetadataAttachment(F))
1856       return true;
1857   return false;
1858 }
1859 
1860 /// ParseOptionalAlignment
1861 ///   ::= /* empty */
1862 ///   ::= 'align' 4
1863 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1864   Alignment = 0;
1865   if (!EatIfPresent(lltok::kw_align))
1866     return false;
1867   LocTy AlignLoc = Lex.getLoc();
1868   if (ParseUInt32(Alignment)) return true;
1869   if (!isPowerOf2_32(Alignment))
1870     return Error(AlignLoc, "alignment is not a power of two");
1871   if (Alignment > Value::MaximumAlignment)
1872     return Error(AlignLoc, "huge alignments are not supported yet");
1873   return false;
1874 }
1875 
1876 /// ParseOptionalDerefAttrBytes
1877 ///   ::= /* empty */
1878 ///   ::= AttrKind '(' 4 ')'
1879 ///
1880 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
1881 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
1882                                            uint64_t &Bytes) {
1883   assert((AttrKind == lltok::kw_dereferenceable ||
1884           AttrKind == lltok::kw_dereferenceable_or_null) &&
1885          "contract!");
1886 
1887   Bytes = 0;
1888   if (!EatIfPresent(AttrKind))
1889     return false;
1890   LocTy ParenLoc = Lex.getLoc();
1891   if (!EatIfPresent(lltok::lparen))
1892     return Error(ParenLoc, "expected '('");
1893   LocTy DerefLoc = Lex.getLoc();
1894   if (ParseUInt64(Bytes)) return true;
1895   ParenLoc = Lex.getLoc();
1896   if (!EatIfPresent(lltok::rparen))
1897     return Error(ParenLoc, "expected ')'");
1898   if (!Bytes)
1899     return Error(DerefLoc, "dereferenceable bytes must be non-zero");
1900   return false;
1901 }
1902 
1903 /// ParseOptionalCommaAlign
1904 ///   ::=
1905 ///   ::= ',' align 4
1906 ///
1907 /// This returns with AteExtraComma set to true if it ate an excess comma at the
1908 /// end.
1909 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
1910                                        bool &AteExtraComma) {
1911   AteExtraComma = false;
1912   while (EatIfPresent(lltok::comma)) {
1913     // Metadata at the end is an early exit.
1914     if (Lex.getKind() == lltok::MetadataVar) {
1915       AteExtraComma = true;
1916       return false;
1917     }
1918 
1919     if (Lex.getKind() != lltok::kw_align)
1920       return Error(Lex.getLoc(), "expected metadata or 'align'");
1921 
1922     if (ParseOptionalAlignment(Alignment)) return true;
1923   }
1924 
1925   return false;
1926 }
1927 
1928 /// ParseOptionalCommaAddrSpace
1929 ///   ::=
1930 ///   ::= ',' addrspace(1)
1931 ///
1932 /// This returns with AteExtraComma set to true if it ate an excess comma at the
1933 /// end.
1934 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace,
1935                                            LocTy &Loc,
1936                                            bool &AteExtraComma) {
1937   AteExtraComma = false;
1938   while (EatIfPresent(lltok::comma)) {
1939     // Metadata at the end is an early exit.
1940     if (Lex.getKind() == lltok::MetadataVar) {
1941       AteExtraComma = true;
1942       return false;
1943     }
1944 
1945     Loc = Lex.getLoc();
1946     if (Lex.getKind() != lltok::kw_addrspace)
1947       return Error(Lex.getLoc(), "expected metadata or 'addrspace'");
1948 
1949     if (ParseOptionalAddrSpace(AddrSpace))
1950       return true;
1951   }
1952 
1953   return false;
1954 }
1955 
1956 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
1957                                        Optional<unsigned> &HowManyArg) {
1958   Lex.Lex();
1959 
1960   auto StartParen = Lex.getLoc();
1961   if (!EatIfPresent(lltok::lparen))
1962     return Error(StartParen, "expected '('");
1963 
1964   if (ParseUInt32(BaseSizeArg))
1965     return true;
1966 
1967   if (EatIfPresent(lltok::comma)) {
1968     auto HowManyAt = Lex.getLoc();
1969     unsigned HowMany;
1970     if (ParseUInt32(HowMany))
1971       return true;
1972     if (HowMany == BaseSizeArg)
1973       return Error(HowManyAt,
1974                    "'allocsize' indices can't refer to the same parameter");
1975     HowManyArg = HowMany;
1976   } else
1977     HowManyArg = None;
1978 
1979   auto EndParen = Lex.getLoc();
1980   if (!EatIfPresent(lltok::rparen))
1981     return Error(EndParen, "expected ')'");
1982   return false;
1983 }
1984 
1985 /// ParseScopeAndOrdering
1986 ///   if isAtomic: ::= SyncScope? AtomicOrdering
1987 ///   else: ::=
1988 ///
1989 /// This sets Scope and Ordering to the parsed values.
1990 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID,
1991                                      AtomicOrdering &Ordering) {
1992   if (!isAtomic)
1993     return false;
1994 
1995   return ParseScope(SSID) || ParseOrdering(Ordering);
1996 }
1997 
1998 /// ParseScope
1999 ///   ::= syncscope("singlethread" | "<target scope>")?
2000 ///
2001 /// This sets synchronization scope ID to the ID of the parsed value.
2002 bool LLParser::ParseScope(SyncScope::ID &SSID) {
2003   SSID = SyncScope::System;
2004   if (EatIfPresent(lltok::kw_syncscope)) {
2005     auto StartParenAt = Lex.getLoc();
2006     if (!EatIfPresent(lltok::lparen))
2007       return Error(StartParenAt, "Expected '(' in syncscope");
2008 
2009     std::string SSN;
2010     auto SSNAt = Lex.getLoc();
2011     if (ParseStringConstant(SSN))
2012       return Error(SSNAt, "Expected synchronization scope name");
2013 
2014     auto EndParenAt = Lex.getLoc();
2015     if (!EatIfPresent(lltok::rparen))
2016       return Error(EndParenAt, "Expected ')' in syncscope");
2017 
2018     SSID = Context.getOrInsertSyncScopeID(SSN);
2019   }
2020 
2021   return false;
2022 }
2023 
2024 /// ParseOrdering
2025 ///   ::= AtomicOrdering
2026 ///
2027 /// This sets Ordering to the parsed value.
2028 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
2029   switch (Lex.getKind()) {
2030   default: return TokError("Expected ordering on atomic instruction");
2031   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2032   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2033   // Not specified yet:
2034   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2035   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2036   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2037   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2038   case lltok::kw_seq_cst:
2039     Ordering = AtomicOrdering::SequentiallyConsistent;
2040     break;
2041   }
2042   Lex.Lex();
2043   return false;
2044 }
2045 
2046 /// ParseOptionalStackAlignment
2047 ///   ::= /* empty */
2048 ///   ::= 'alignstack' '(' 4 ')'
2049 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
2050   Alignment = 0;
2051   if (!EatIfPresent(lltok::kw_alignstack))
2052     return false;
2053   LocTy ParenLoc = Lex.getLoc();
2054   if (!EatIfPresent(lltok::lparen))
2055     return Error(ParenLoc, "expected '('");
2056   LocTy AlignLoc = Lex.getLoc();
2057   if (ParseUInt32(Alignment)) return true;
2058   ParenLoc = Lex.getLoc();
2059   if (!EatIfPresent(lltok::rparen))
2060     return Error(ParenLoc, "expected ')'");
2061   if (!isPowerOf2_32(Alignment))
2062     return Error(AlignLoc, "stack alignment is not a power of two");
2063   return false;
2064 }
2065 
2066 /// ParseIndexList - This parses the index list for an insert/extractvalue
2067 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2068 /// comma at the end of the line and find that it is followed by metadata.
2069 /// Clients that don't allow metadata can call the version of this function that
2070 /// only takes one argument.
2071 ///
2072 /// ParseIndexList
2073 ///    ::=  (',' uint32)+
2074 ///
2075 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
2076                               bool &AteExtraComma) {
2077   AteExtraComma = false;
2078 
2079   if (Lex.getKind() != lltok::comma)
2080     return TokError("expected ',' as start of index list");
2081 
2082   while (EatIfPresent(lltok::comma)) {
2083     if (Lex.getKind() == lltok::MetadataVar) {
2084       if (Indices.empty()) return TokError("expected index");
2085       AteExtraComma = true;
2086       return false;
2087     }
2088     unsigned Idx = 0;
2089     if (ParseUInt32(Idx)) return true;
2090     Indices.push_back(Idx);
2091   }
2092 
2093   return false;
2094 }
2095 
2096 //===----------------------------------------------------------------------===//
2097 // Type Parsing.
2098 //===----------------------------------------------------------------------===//
2099 
2100 /// ParseType - Parse a type.
2101 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2102   SMLoc TypeLoc = Lex.getLoc();
2103   switch (Lex.getKind()) {
2104   default:
2105     return TokError(Msg);
2106   case lltok::Type:
2107     // Type ::= 'float' | 'void' (etc)
2108     Result = Lex.getTyVal();
2109     Lex.Lex();
2110     break;
2111   case lltok::lbrace:
2112     // Type ::= StructType
2113     if (ParseAnonStructType(Result, false))
2114       return true;
2115     break;
2116   case lltok::lsquare:
2117     // Type ::= '[' ... ']'
2118     Lex.Lex(); // eat the lsquare.
2119     if (ParseArrayVectorType(Result, false))
2120       return true;
2121     break;
2122   case lltok::less: // Either vector or packed struct.
2123     // Type ::= '<' ... '>'
2124     Lex.Lex();
2125     if (Lex.getKind() == lltok::lbrace) {
2126       if (ParseAnonStructType(Result, true) ||
2127           ParseToken(lltok::greater, "expected '>' at end of packed struct"))
2128         return true;
2129     } else if (ParseArrayVectorType(Result, true))
2130       return true;
2131     break;
2132   case lltok::LocalVar: {
2133     // Type ::= %foo
2134     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2135 
2136     // If the type hasn't been defined yet, create a forward definition and
2137     // remember where that forward def'n was seen (in case it never is defined).
2138     if (!Entry.first) {
2139       Entry.first = StructType::create(Context, Lex.getStrVal());
2140       Entry.second = Lex.getLoc();
2141     }
2142     Result = Entry.first;
2143     Lex.Lex();
2144     break;
2145   }
2146 
2147   case lltok::LocalVarID: {
2148     // Type ::= %4
2149     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2150 
2151     // If the type hasn't been defined yet, create a forward definition and
2152     // remember where that forward def'n was seen (in case it never is defined).
2153     if (!Entry.first) {
2154       Entry.first = StructType::create(Context);
2155       Entry.second = Lex.getLoc();
2156     }
2157     Result = Entry.first;
2158     Lex.Lex();
2159     break;
2160   }
2161   }
2162 
2163   // Parse the type suffixes.
2164   while (true) {
2165     switch (Lex.getKind()) {
2166     // End of type.
2167     default:
2168       if (!AllowVoid && Result->isVoidTy())
2169         return Error(TypeLoc, "void type only allowed for function results");
2170       return false;
2171 
2172     // Type ::= Type '*'
2173     case lltok::star:
2174       if (Result->isLabelTy())
2175         return TokError("basic block pointers are invalid");
2176       if (Result->isVoidTy())
2177         return TokError("pointers to void are invalid - use i8* instead");
2178       if (!PointerType::isValidElementType(Result))
2179         return TokError("pointer to this type is invalid");
2180       Result = PointerType::getUnqual(Result);
2181       Lex.Lex();
2182       break;
2183 
2184     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2185     case lltok::kw_addrspace: {
2186       if (Result->isLabelTy())
2187         return TokError("basic block pointers are invalid");
2188       if (Result->isVoidTy())
2189         return TokError("pointers to void are invalid; use i8* instead");
2190       if (!PointerType::isValidElementType(Result))
2191         return TokError("pointer to this type is invalid");
2192       unsigned AddrSpace;
2193       if (ParseOptionalAddrSpace(AddrSpace) ||
2194           ParseToken(lltok::star, "expected '*' in address space"))
2195         return true;
2196 
2197       Result = PointerType::get(Result, AddrSpace);
2198       break;
2199     }
2200 
2201     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2202     case lltok::lparen:
2203       if (ParseFunctionType(Result))
2204         return true;
2205       break;
2206     }
2207   }
2208 }
2209 
2210 /// ParseParameterList
2211 ///    ::= '(' ')'
2212 ///    ::= '(' Arg (',' Arg)* ')'
2213 ///  Arg
2214 ///    ::= Type OptionalAttributes Value OptionalAttributes
2215 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2216                                   PerFunctionState &PFS, bool IsMustTailCall,
2217                                   bool InVarArgsFunc) {
2218   if (ParseToken(lltok::lparen, "expected '(' in call"))
2219     return true;
2220 
2221   while (Lex.getKind() != lltok::rparen) {
2222     // If this isn't the first argument, we need a comma.
2223     if (!ArgList.empty() &&
2224         ParseToken(lltok::comma, "expected ',' in argument list"))
2225       return true;
2226 
2227     // Parse an ellipsis if this is a musttail call in a variadic function.
2228     if (Lex.getKind() == lltok::dotdotdot) {
2229       const char *Msg = "unexpected ellipsis in argument list for ";
2230       if (!IsMustTailCall)
2231         return TokError(Twine(Msg) + "non-musttail call");
2232       if (!InVarArgsFunc)
2233         return TokError(Twine(Msg) + "musttail call in non-varargs function");
2234       Lex.Lex();  // Lex the '...', it is purely for readability.
2235       return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2236     }
2237 
2238     // Parse the argument.
2239     LocTy ArgLoc;
2240     Type *ArgTy = nullptr;
2241     AttrBuilder ArgAttrs;
2242     Value *V;
2243     if (ParseType(ArgTy, ArgLoc))
2244       return true;
2245 
2246     if (ArgTy->isMetadataTy()) {
2247       if (ParseMetadataAsValue(V, PFS))
2248         return true;
2249     } else {
2250       // Otherwise, handle normal operands.
2251       if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
2252         return true;
2253     }
2254     ArgList.push_back(ParamInfo(
2255         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2256   }
2257 
2258   if (IsMustTailCall && InVarArgsFunc)
2259     return TokError("expected '...' at end of argument list for musttail call "
2260                     "in varargs function");
2261 
2262   Lex.Lex();  // Lex the ')'.
2263   return false;
2264 }
2265 
2266 /// ParseOptionalOperandBundles
2267 ///    ::= /*empty*/
2268 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2269 ///
2270 /// OperandBundle
2271 ///    ::= bundle-tag '(' ')'
2272 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2273 ///
2274 /// bundle-tag ::= String Constant
2275 bool LLParser::ParseOptionalOperandBundles(
2276     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2277   LocTy BeginLoc = Lex.getLoc();
2278   if (!EatIfPresent(lltok::lsquare))
2279     return false;
2280 
2281   while (Lex.getKind() != lltok::rsquare) {
2282     // If this isn't the first operand bundle, we need a comma.
2283     if (!BundleList.empty() &&
2284         ParseToken(lltok::comma, "expected ',' in input list"))
2285       return true;
2286 
2287     std::string Tag;
2288     if (ParseStringConstant(Tag))
2289       return true;
2290 
2291     if (ParseToken(lltok::lparen, "expected '(' in operand bundle"))
2292       return true;
2293 
2294     std::vector<Value *> Inputs;
2295     while (Lex.getKind() != lltok::rparen) {
2296       // If this isn't the first input, we need a comma.
2297       if (!Inputs.empty() &&
2298           ParseToken(lltok::comma, "expected ',' in input list"))
2299         return true;
2300 
2301       Type *Ty = nullptr;
2302       Value *Input = nullptr;
2303       if (ParseType(Ty) || ParseValue(Ty, Input, PFS))
2304         return true;
2305       Inputs.push_back(Input);
2306     }
2307 
2308     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2309 
2310     Lex.Lex(); // Lex the ')'.
2311   }
2312 
2313   if (BundleList.empty())
2314     return Error(BeginLoc, "operand bundle set must not be empty");
2315 
2316   Lex.Lex(); // Lex the ']'.
2317   return false;
2318 }
2319 
2320 /// ParseArgumentList - Parse the argument list for a function type or function
2321 /// prototype.
2322 ///   ::= '(' ArgTypeListI ')'
2323 /// ArgTypeListI
2324 ///   ::= /*empty*/
2325 ///   ::= '...'
2326 ///   ::= ArgTypeList ',' '...'
2327 ///   ::= ArgType (',' ArgType)*
2328 ///
2329 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2330                                  bool &isVarArg){
2331   isVarArg = false;
2332   assert(Lex.getKind() == lltok::lparen);
2333   Lex.Lex(); // eat the (.
2334 
2335   if (Lex.getKind() == lltok::rparen) {
2336     // empty
2337   } else if (Lex.getKind() == lltok::dotdotdot) {
2338     isVarArg = true;
2339     Lex.Lex();
2340   } else {
2341     LocTy TypeLoc = Lex.getLoc();
2342     Type *ArgTy = nullptr;
2343     AttrBuilder Attrs;
2344     std::string Name;
2345 
2346     if (ParseType(ArgTy) ||
2347         ParseOptionalParamAttrs(Attrs)) return true;
2348 
2349     if (ArgTy->isVoidTy())
2350       return Error(TypeLoc, "argument can not have void type");
2351 
2352     if (Lex.getKind() == lltok::LocalVar) {
2353       Name = Lex.getStrVal();
2354       Lex.Lex();
2355     }
2356 
2357     if (!FunctionType::isValidArgumentType(ArgTy))
2358       return Error(TypeLoc, "invalid type for function argument");
2359 
2360     ArgList.emplace_back(TypeLoc, ArgTy,
2361                          AttributeSet::get(ArgTy->getContext(), Attrs),
2362                          std::move(Name));
2363 
2364     while (EatIfPresent(lltok::comma)) {
2365       // Handle ... at end of arg list.
2366       if (EatIfPresent(lltok::dotdotdot)) {
2367         isVarArg = true;
2368         break;
2369       }
2370 
2371       // Otherwise must be an argument type.
2372       TypeLoc = Lex.getLoc();
2373       if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
2374 
2375       if (ArgTy->isVoidTy())
2376         return Error(TypeLoc, "argument can not have void type");
2377 
2378       if (Lex.getKind() == lltok::LocalVar) {
2379         Name = Lex.getStrVal();
2380         Lex.Lex();
2381       } else {
2382         Name = "";
2383       }
2384 
2385       if (!ArgTy->isFirstClassType())
2386         return Error(TypeLoc, "invalid type for function argument");
2387 
2388       ArgList.emplace_back(TypeLoc, ArgTy,
2389                            AttributeSet::get(ArgTy->getContext(), Attrs),
2390                            std::move(Name));
2391     }
2392   }
2393 
2394   return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2395 }
2396 
2397 /// ParseFunctionType
2398 ///  ::= Type ArgumentList OptionalAttrs
2399 bool LLParser::ParseFunctionType(Type *&Result) {
2400   assert(Lex.getKind() == lltok::lparen);
2401 
2402   if (!FunctionType::isValidReturnType(Result))
2403     return TokError("invalid function return type");
2404 
2405   SmallVector<ArgInfo, 8> ArgList;
2406   bool isVarArg;
2407   if (ParseArgumentList(ArgList, isVarArg))
2408     return true;
2409 
2410   // Reject names on the arguments lists.
2411   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2412     if (!ArgList[i].Name.empty())
2413       return Error(ArgList[i].Loc, "argument name invalid in function type");
2414     if (ArgList[i].Attrs.hasAttributes())
2415       return Error(ArgList[i].Loc,
2416                    "argument attributes invalid in function type");
2417   }
2418 
2419   SmallVector<Type*, 16> ArgListTy;
2420   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2421     ArgListTy.push_back(ArgList[i].Ty);
2422 
2423   Result = FunctionType::get(Result, ArgListTy, isVarArg);
2424   return false;
2425 }
2426 
2427 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
2428 /// other structs.
2429 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
2430   SmallVector<Type*, 8> Elts;
2431   if (ParseStructBody(Elts)) return true;
2432 
2433   Result = StructType::get(Context, Elts, Packed);
2434   return false;
2435 }
2436 
2437 /// ParseStructDefinition - Parse a struct in a 'type' definition.
2438 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
2439                                      std::pair<Type*, LocTy> &Entry,
2440                                      Type *&ResultTy) {
2441   // If the type was already defined, diagnose the redefinition.
2442   if (Entry.first && !Entry.second.isValid())
2443     return Error(TypeLoc, "redefinition of type");
2444 
2445   // If we have opaque, just return without filling in the definition for the
2446   // struct.  This counts as a definition as far as the .ll file goes.
2447   if (EatIfPresent(lltok::kw_opaque)) {
2448     // This type is being defined, so clear the location to indicate this.
2449     Entry.second = SMLoc();
2450 
2451     // If this type number has never been uttered, create it.
2452     if (!Entry.first)
2453       Entry.first = StructType::create(Context, Name);
2454     ResultTy = Entry.first;
2455     return false;
2456   }
2457 
2458   // If the type starts with '<', then it is either a packed struct or a vector.
2459   bool isPacked = EatIfPresent(lltok::less);
2460 
2461   // If we don't have a struct, then we have a random type alias, which we
2462   // accept for compatibility with old files.  These types are not allowed to be
2463   // forward referenced and not allowed to be recursive.
2464   if (Lex.getKind() != lltok::lbrace) {
2465     if (Entry.first)
2466       return Error(TypeLoc, "forward references to non-struct type");
2467 
2468     ResultTy = nullptr;
2469     if (isPacked)
2470       return ParseArrayVectorType(ResultTy, true);
2471     return ParseType(ResultTy);
2472   }
2473 
2474   // This type is being defined, so clear the location to indicate this.
2475   Entry.second = SMLoc();
2476 
2477   // If this type number has never been uttered, create it.
2478   if (!Entry.first)
2479     Entry.first = StructType::create(Context, Name);
2480 
2481   StructType *STy = cast<StructType>(Entry.first);
2482 
2483   SmallVector<Type*, 8> Body;
2484   if (ParseStructBody(Body) ||
2485       (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
2486     return true;
2487 
2488   STy->setBody(Body, isPacked);
2489   ResultTy = STy;
2490   return false;
2491 }
2492 
2493 /// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2494 ///   StructType
2495 ///     ::= '{' '}'
2496 ///     ::= '{' Type (',' Type)* '}'
2497 ///     ::= '<' '{' '}' '>'
2498 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2499 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
2500   assert(Lex.getKind() == lltok::lbrace);
2501   Lex.Lex(); // Consume the '{'
2502 
2503   // Handle the empty struct.
2504   if (EatIfPresent(lltok::rbrace))
2505     return false;
2506 
2507   LocTy EltTyLoc = Lex.getLoc();
2508   Type *Ty = nullptr;
2509   if (ParseType(Ty)) return true;
2510   Body.push_back(Ty);
2511 
2512   if (!StructType::isValidElementType(Ty))
2513     return Error(EltTyLoc, "invalid element type for struct");
2514 
2515   while (EatIfPresent(lltok::comma)) {
2516     EltTyLoc = Lex.getLoc();
2517     if (ParseType(Ty)) return true;
2518 
2519     if (!StructType::isValidElementType(Ty))
2520       return Error(EltTyLoc, "invalid element type for struct");
2521 
2522     Body.push_back(Ty);
2523   }
2524 
2525   return ParseToken(lltok::rbrace, "expected '}' at end of struct");
2526 }
2527 
2528 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2529 /// token has already been consumed.
2530 ///   Type
2531 ///     ::= '[' APSINTVAL 'x' Types ']'
2532 ///     ::= '<' APSINTVAL 'x' Types '>'
2533 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
2534   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2535       Lex.getAPSIntVal().getBitWidth() > 64)
2536     return TokError("expected number in address space");
2537 
2538   LocTy SizeLoc = Lex.getLoc();
2539   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2540   Lex.Lex();
2541 
2542   if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
2543       return true;
2544 
2545   LocTy TypeLoc = Lex.getLoc();
2546   Type *EltTy = nullptr;
2547   if (ParseType(EltTy)) return true;
2548 
2549   if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
2550                  "expected end of sequential type"))
2551     return true;
2552 
2553   if (isVector) {
2554     if (Size == 0)
2555       return Error(SizeLoc, "zero element vector is illegal");
2556     if ((unsigned)Size != Size)
2557       return Error(SizeLoc, "size too large for vector");
2558     if (!VectorType::isValidElementType(EltTy))
2559       return Error(TypeLoc, "invalid vector element type");
2560     Result = VectorType::get(EltTy, unsigned(Size));
2561   } else {
2562     if (!ArrayType::isValidElementType(EltTy))
2563       return Error(TypeLoc, "invalid array element type");
2564     Result = ArrayType::get(EltTy, Size);
2565   }
2566   return false;
2567 }
2568 
2569 //===----------------------------------------------------------------------===//
2570 // Function Semantic Analysis.
2571 //===----------------------------------------------------------------------===//
2572 
2573 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2574                                              int functionNumber)
2575   : P(p), F(f), FunctionNumber(functionNumber) {
2576 
2577   // Insert unnamed arguments into the NumberedVals list.
2578   for (Argument &A : F.args())
2579     if (!A.hasName())
2580       NumberedVals.push_back(&A);
2581 }
2582 
2583 LLParser::PerFunctionState::~PerFunctionState() {
2584   // If there were any forward referenced non-basicblock values, delete them.
2585 
2586   for (const auto &P : ForwardRefVals) {
2587     if (isa<BasicBlock>(P.second.first))
2588       continue;
2589     P.second.first->replaceAllUsesWith(
2590         UndefValue::get(P.second.first->getType()));
2591     P.second.first->deleteValue();
2592   }
2593 
2594   for (const auto &P : ForwardRefValIDs) {
2595     if (isa<BasicBlock>(P.second.first))
2596       continue;
2597     P.second.first->replaceAllUsesWith(
2598         UndefValue::get(P.second.first->getType()));
2599     P.second.first->deleteValue();
2600   }
2601 }
2602 
2603 bool LLParser::PerFunctionState::FinishFunction() {
2604   if (!ForwardRefVals.empty())
2605     return P.Error(ForwardRefVals.begin()->second.second,
2606                    "use of undefined value '%" + ForwardRefVals.begin()->first +
2607                    "'");
2608   if (!ForwardRefValIDs.empty())
2609     return P.Error(ForwardRefValIDs.begin()->second.second,
2610                    "use of undefined value '%" +
2611                    Twine(ForwardRefValIDs.begin()->first) + "'");
2612   return false;
2613 }
2614 
2615 /// GetVal - Get a value with the specified name or ID, creating a
2616 /// forward reference record if needed.  This can return null if the value
2617 /// exists but does not have the right type.
2618 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty,
2619                                           LocTy Loc) {
2620   // Look this name up in the normal function symbol table.
2621   Value *Val = F.getValueSymbolTable()->lookup(Name);
2622 
2623   // If this is a forward reference for the value, see if we already created a
2624   // forward ref record.
2625   if (!Val) {
2626     auto I = ForwardRefVals.find(Name);
2627     if (I != ForwardRefVals.end())
2628       Val = I->second.first;
2629   }
2630 
2631   // If we have the value in the symbol table or fwd-ref table, return it.
2632   if (Val) {
2633     if (Val->getType() == Ty) return Val;
2634     if (Ty->isLabelTy())
2635       P.Error(Loc, "'%" + Name + "' is not a basic block");
2636     else
2637       P.Error(Loc, "'%" + Name + "' defined with type '" +
2638               getTypeString(Val->getType()) + "'");
2639     return nullptr;
2640   }
2641 
2642   // Don't make placeholders with invalid type.
2643   if (!Ty->isFirstClassType()) {
2644     P.Error(Loc, "invalid use of a non-first-class type");
2645     return nullptr;
2646   }
2647 
2648   // Otherwise, create a new forward reference for this value and remember it.
2649   Value *FwdVal;
2650   if (Ty->isLabelTy()) {
2651     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2652   } else {
2653     FwdVal = new Argument(Ty, Name);
2654   }
2655 
2656   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2657   return FwdVal;
2658 }
2659 
2660 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc) {
2661   // Look this name up in the normal function symbol table.
2662   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2663 
2664   // If this is a forward reference for the value, see if we already created a
2665   // forward ref record.
2666   if (!Val) {
2667     auto I = ForwardRefValIDs.find(ID);
2668     if (I != ForwardRefValIDs.end())
2669       Val = I->second.first;
2670   }
2671 
2672   // If we have the value in the symbol table or fwd-ref table, return it.
2673   if (Val) {
2674     if (Val->getType() == Ty) return Val;
2675     if (Ty->isLabelTy())
2676       P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
2677     else
2678       P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
2679               getTypeString(Val->getType()) + "'");
2680     return nullptr;
2681   }
2682 
2683   if (!Ty->isFirstClassType()) {
2684     P.Error(Loc, "invalid use of a non-first-class type");
2685     return nullptr;
2686   }
2687 
2688   // Otherwise, create a new forward reference for this value and remember it.
2689   Value *FwdVal;
2690   if (Ty->isLabelTy()) {
2691     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2692   } else {
2693     FwdVal = new Argument(Ty);
2694   }
2695 
2696   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2697   return FwdVal;
2698 }
2699 
2700 /// SetInstName - After an instruction is parsed and inserted into its
2701 /// basic block, this installs its name.
2702 bool LLParser::PerFunctionState::SetInstName(int NameID,
2703                                              const std::string &NameStr,
2704                                              LocTy NameLoc, Instruction *Inst) {
2705   // If this instruction has void type, it cannot have a name or ID specified.
2706   if (Inst->getType()->isVoidTy()) {
2707     if (NameID != -1 || !NameStr.empty())
2708       return P.Error(NameLoc, "instructions returning void cannot have a name");
2709     return false;
2710   }
2711 
2712   // If this was a numbered instruction, verify that the instruction is the
2713   // expected value and resolve any forward references.
2714   if (NameStr.empty()) {
2715     // If neither a name nor an ID was specified, just use the next ID.
2716     if (NameID == -1)
2717       NameID = NumberedVals.size();
2718 
2719     if (unsigned(NameID) != NumberedVals.size())
2720       return P.Error(NameLoc, "instruction expected to be numbered '%" +
2721                      Twine(NumberedVals.size()) + "'");
2722 
2723     auto FI = ForwardRefValIDs.find(NameID);
2724     if (FI != ForwardRefValIDs.end()) {
2725       Value *Sentinel = FI->second.first;
2726       if (Sentinel->getType() != Inst->getType())
2727         return P.Error(NameLoc, "instruction forward referenced with type '" +
2728                        getTypeString(FI->second.first->getType()) + "'");
2729 
2730       Sentinel->replaceAllUsesWith(Inst);
2731       Sentinel->deleteValue();
2732       ForwardRefValIDs.erase(FI);
2733     }
2734 
2735     NumberedVals.push_back(Inst);
2736     return false;
2737   }
2738 
2739   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
2740   auto FI = ForwardRefVals.find(NameStr);
2741   if (FI != ForwardRefVals.end()) {
2742     Value *Sentinel = FI->second.first;
2743     if (Sentinel->getType() != Inst->getType())
2744       return P.Error(NameLoc, "instruction forward referenced with type '" +
2745                      getTypeString(FI->second.first->getType()) + "'");
2746 
2747     Sentinel->replaceAllUsesWith(Inst);
2748     Sentinel->deleteValue();
2749     ForwardRefVals.erase(FI);
2750   }
2751 
2752   // Set the name on the instruction.
2753   Inst->setName(NameStr);
2754 
2755   if (Inst->getName() != NameStr)
2756     return P.Error(NameLoc, "multiple definition of local value named '" +
2757                    NameStr + "'");
2758   return false;
2759 }
2760 
2761 /// GetBB - Get a basic block with the specified name or ID, creating a
2762 /// forward reference record if needed.
2763 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
2764                                               LocTy Loc) {
2765   return dyn_cast_or_null<BasicBlock>(GetVal(Name,
2766                                       Type::getLabelTy(F.getContext()), Loc));
2767 }
2768 
2769 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
2770   return dyn_cast_or_null<BasicBlock>(GetVal(ID,
2771                                       Type::getLabelTy(F.getContext()), Loc));
2772 }
2773 
2774 /// DefineBB - Define the specified basic block, which is either named or
2775 /// unnamed.  If there is an error, this returns null otherwise it returns
2776 /// the block being defined.
2777 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
2778                                                  LocTy Loc) {
2779   BasicBlock *BB;
2780   if (Name.empty())
2781     BB = GetBB(NumberedVals.size(), Loc);
2782   else
2783     BB = GetBB(Name, Loc);
2784   if (!BB) return nullptr; // Already diagnosed error.
2785 
2786   // Move the block to the end of the function.  Forward ref'd blocks are
2787   // inserted wherever they happen to be referenced.
2788   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
2789 
2790   // Remove the block from forward ref sets.
2791   if (Name.empty()) {
2792     ForwardRefValIDs.erase(NumberedVals.size());
2793     NumberedVals.push_back(BB);
2794   } else {
2795     // BB forward references are already in the function symbol table.
2796     ForwardRefVals.erase(Name);
2797   }
2798 
2799   return BB;
2800 }
2801 
2802 //===----------------------------------------------------------------------===//
2803 // Constants.
2804 //===----------------------------------------------------------------------===//
2805 
2806 /// ParseValID - Parse an abstract value that doesn't necessarily have a
2807 /// type implied.  For example, if we parse "4" we don't know what integer type
2808 /// it has.  The value will later be combined with its type and checked for
2809 /// sanity.  PFS is used to convert function-local operands of metadata (since
2810 /// metadata operands are not just parsed here but also converted to values).
2811 /// PFS can be null when we are not parsing metadata values inside a function.
2812 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
2813   ID.Loc = Lex.getLoc();
2814   switch (Lex.getKind()) {
2815   default: return TokError("expected value token");
2816   case lltok::GlobalID:  // @42
2817     ID.UIntVal = Lex.getUIntVal();
2818     ID.Kind = ValID::t_GlobalID;
2819     break;
2820   case lltok::GlobalVar:  // @foo
2821     ID.StrVal = Lex.getStrVal();
2822     ID.Kind = ValID::t_GlobalName;
2823     break;
2824   case lltok::LocalVarID:  // %42
2825     ID.UIntVal = Lex.getUIntVal();
2826     ID.Kind = ValID::t_LocalID;
2827     break;
2828   case lltok::LocalVar:  // %foo
2829     ID.StrVal = Lex.getStrVal();
2830     ID.Kind = ValID::t_LocalName;
2831     break;
2832   case lltok::APSInt:
2833     ID.APSIntVal = Lex.getAPSIntVal();
2834     ID.Kind = ValID::t_APSInt;
2835     break;
2836   case lltok::APFloat:
2837     ID.APFloatVal = Lex.getAPFloatVal();
2838     ID.Kind = ValID::t_APFloat;
2839     break;
2840   case lltok::kw_true:
2841     ID.ConstantVal = ConstantInt::getTrue(Context);
2842     ID.Kind = ValID::t_Constant;
2843     break;
2844   case lltok::kw_false:
2845     ID.ConstantVal = ConstantInt::getFalse(Context);
2846     ID.Kind = ValID::t_Constant;
2847     break;
2848   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
2849   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
2850   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
2851   case lltok::kw_none: ID.Kind = ValID::t_None; break;
2852 
2853   case lltok::lbrace: {
2854     // ValID ::= '{' ConstVector '}'
2855     Lex.Lex();
2856     SmallVector<Constant*, 16> Elts;
2857     if (ParseGlobalValueVector(Elts) ||
2858         ParseToken(lltok::rbrace, "expected end of struct constant"))
2859       return true;
2860 
2861     ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
2862     ID.UIntVal = Elts.size();
2863     memcpy(ID.ConstantStructElts.get(), Elts.data(),
2864            Elts.size() * sizeof(Elts[0]));
2865     ID.Kind = ValID::t_ConstantStruct;
2866     return false;
2867   }
2868   case lltok::less: {
2869     // ValID ::= '<' ConstVector '>'         --> Vector.
2870     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
2871     Lex.Lex();
2872     bool isPackedStruct = EatIfPresent(lltok::lbrace);
2873 
2874     SmallVector<Constant*, 16> Elts;
2875     LocTy FirstEltLoc = Lex.getLoc();
2876     if (ParseGlobalValueVector(Elts) ||
2877         (isPackedStruct &&
2878          ParseToken(lltok::rbrace, "expected end of packed struct")) ||
2879         ParseToken(lltok::greater, "expected end of constant"))
2880       return true;
2881 
2882     if (isPackedStruct) {
2883       ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
2884       memcpy(ID.ConstantStructElts.get(), Elts.data(),
2885              Elts.size() * sizeof(Elts[0]));
2886       ID.UIntVal = Elts.size();
2887       ID.Kind = ValID::t_PackedConstantStruct;
2888       return false;
2889     }
2890 
2891     if (Elts.empty())
2892       return Error(ID.Loc, "constant vector must not be empty");
2893 
2894     if (!Elts[0]->getType()->isIntegerTy() &&
2895         !Elts[0]->getType()->isFloatingPointTy() &&
2896         !Elts[0]->getType()->isPointerTy())
2897       return Error(FirstEltLoc,
2898             "vector elements must have integer, pointer or floating point type");
2899 
2900     // Verify that all the vector elements have the same type.
2901     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
2902       if (Elts[i]->getType() != Elts[0]->getType())
2903         return Error(FirstEltLoc,
2904                      "vector element #" + Twine(i) +
2905                     " is not of type '" + getTypeString(Elts[0]->getType()));
2906 
2907     ID.ConstantVal = ConstantVector::get(Elts);
2908     ID.Kind = ValID::t_Constant;
2909     return false;
2910   }
2911   case lltok::lsquare: {   // Array Constant
2912     Lex.Lex();
2913     SmallVector<Constant*, 16> Elts;
2914     LocTy FirstEltLoc = Lex.getLoc();
2915     if (ParseGlobalValueVector(Elts) ||
2916         ParseToken(lltok::rsquare, "expected end of array constant"))
2917       return true;
2918 
2919     // Handle empty element.
2920     if (Elts.empty()) {
2921       // Use undef instead of an array because it's inconvenient to determine
2922       // the element type at this point, there being no elements to examine.
2923       ID.Kind = ValID::t_EmptyArray;
2924       return false;
2925     }
2926 
2927     if (!Elts[0]->getType()->isFirstClassType())
2928       return Error(FirstEltLoc, "invalid array element type: " +
2929                    getTypeString(Elts[0]->getType()));
2930 
2931     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2932 
2933     // Verify all elements are correct type!
2934     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2935       if (Elts[i]->getType() != Elts[0]->getType())
2936         return Error(FirstEltLoc,
2937                      "array element #" + Twine(i) +
2938                      " is not of type '" + getTypeString(Elts[0]->getType()));
2939     }
2940 
2941     ID.ConstantVal = ConstantArray::get(ATy, Elts);
2942     ID.Kind = ValID::t_Constant;
2943     return false;
2944   }
2945   case lltok::kw_c:  // c "foo"
2946     Lex.Lex();
2947     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
2948                                                   false);
2949     if (ParseToken(lltok::StringConstant, "expected string")) return true;
2950     ID.Kind = ValID::t_Constant;
2951     return false;
2952 
2953   case lltok::kw_asm: {
2954     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
2955     //             STRINGCONSTANT
2956     bool HasSideEffect, AlignStack, AsmDialect;
2957     Lex.Lex();
2958     if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2959         ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2960         ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
2961         ParseStringConstant(ID.StrVal) ||
2962         ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2963         ParseToken(lltok::StringConstant, "expected constraint string"))
2964       return true;
2965     ID.StrVal2 = Lex.getStrVal();
2966     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
2967       (unsigned(AsmDialect)<<2);
2968     ID.Kind = ValID::t_InlineAsm;
2969     return false;
2970   }
2971 
2972   case lltok::kw_blockaddress: {
2973     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2974     Lex.Lex();
2975 
2976     ValID Fn, Label;
2977 
2978     if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2979         ParseValID(Fn) ||
2980         ParseToken(lltok::comma, "expected comma in block address expression")||
2981         ParseValID(Label) ||
2982         ParseToken(lltok::rparen, "expected ')' in block address expression"))
2983       return true;
2984 
2985     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
2986       return Error(Fn.Loc, "expected function name in blockaddress");
2987     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
2988       return Error(Label.Loc, "expected basic block name in blockaddress");
2989 
2990     // Try to find the function (but skip it if it's forward-referenced).
2991     GlobalValue *GV = nullptr;
2992     if (Fn.Kind == ValID::t_GlobalID) {
2993       if (Fn.UIntVal < NumberedVals.size())
2994         GV = NumberedVals[Fn.UIntVal];
2995     } else if (!ForwardRefVals.count(Fn.StrVal)) {
2996       GV = M->getNamedValue(Fn.StrVal);
2997     }
2998     Function *F = nullptr;
2999     if (GV) {
3000       // Confirm that it's actually a function with a definition.
3001       if (!isa<Function>(GV))
3002         return Error(Fn.Loc, "expected function name in blockaddress");
3003       F = cast<Function>(GV);
3004       if (F->isDeclaration())
3005         return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
3006     }
3007 
3008     if (!F) {
3009       // Make a global variable as a placeholder for this reference.
3010       GlobalValue *&FwdRef =
3011           ForwardRefBlockAddresses.insert(std::make_pair(
3012                                               std::move(Fn),
3013                                               std::map<ValID, GlobalValue *>()))
3014               .first->second.insert(std::make_pair(std::move(Label), nullptr))
3015               .first->second;
3016       if (!FwdRef)
3017         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
3018                                     GlobalValue::InternalLinkage, nullptr, "");
3019       ID.ConstantVal = FwdRef;
3020       ID.Kind = ValID::t_Constant;
3021       return false;
3022     }
3023 
3024     // We found the function; now find the basic block.  Don't use PFS, since we
3025     // might be inside a constant expression.
3026     BasicBlock *BB;
3027     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3028       if (Label.Kind == ValID::t_LocalID)
3029         BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
3030       else
3031         BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
3032       if (!BB)
3033         return Error(Label.Loc, "referenced value is not a basic block");
3034     } else {
3035       if (Label.Kind == ValID::t_LocalID)
3036         return Error(Label.Loc, "cannot take address of numeric label after "
3037                                 "the function is defined");
3038       BB = dyn_cast_or_null<BasicBlock>(
3039           F->getValueSymbolTable()->lookup(Label.StrVal));
3040       if (!BB)
3041         return Error(Label.Loc, "referenced value is not a basic block");
3042     }
3043 
3044     ID.ConstantVal = BlockAddress::get(F, BB);
3045     ID.Kind = ValID::t_Constant;
3046     return false;
3047   }
3048 
3049   case lltok::kw_trunc:
3050   case lltok::kw_zext:
3051   case lltok::kw_sext:
3052   case lltok::kw_fptrunc:
3053   case lltok::kw_fpext:
3054   case lltok::kw_bitcast:
3055   case lltok::kw_addrspacecast:
3056   case lltok::kw_uitofp:
3057   case lltok::kw_sitofp:
3058   case lltok::kw_fptoui:
3059   case lltok::kw_fptosi:
3060   case lltok::kw_inttoptr:
3061   case lltok::kw_ptrtoint: {
3062     unsigned Opc = Lex.getUIntVal();
3063     Type *DestTy = nullptr;
3064     Constant *SrcVal;
3065     Lex.Lex();
3066     if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3067         ParseGlobalTypeAndValue(SrcVal) ||
3068         ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3069         ParseType(DestTy) ||
3070         ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3071       return true;
3072     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3073       return Error(ID.Loc, "invalid cast opcode for cast from '" +
3074                    getTypeString(SrcVal->getType()) + "' to '" +
3075                    getTypeString(DestTy) + "'");
3076     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3077                                                  SrcVal, DestTy);
3078     ID.Kind = ValID::t_Constant;
3079     return false;
3080   }
3081   case lltok::kw_extractvalue: {
3082     Lex.Lex();
3083     Constant *Val;
3084     SmallVector<unsigned, 4> Indices;
3085     if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
3086         ParseGlobalTypeAndValue(Val) ||
3087         ParseIndexList(Indices) ||
3088         ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3089       return true;
3090 
3091     if (!Val->getType()->isAggregateType())
3092       return Error(ID.Loc, "extractvalue operand must be aggregate type");
3093     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3094       return Error(ID.Loc, "invalid indices for extractvalue");
3095     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3096     ID.Kind = ValID::t_Constant;
3097     return false;
3098   }
3099   case lltok::kw_insertvalue: {
3100     Lex.Lex();
3101     Constant *Val0, *Val1;
3102     SmallVector<unsigned, 4> Indices;
3103     if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
3104         ParseGlobalTypeAndValue(Val0) ||
3105         ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
3106         ParseGlobalTypeAndValue(Val1) ||
3107         ParseIndexList(Indices) ||
3108         ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3109       return true;
3110     if (!Val0->getType()->isAggregateType())
3111       return Error(ID.Loc, "insertvalue operand must be aggregate type");
3112     Type *IndexedType =
3113         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3114     if (!IndexedType)
3115       return Error(ID.Loc, "invalid indices for insertvalue");
3116     if (IndexedType != Val1->getType())
3117       return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3118                                getTypeString(Val1->getType()) +
3119                                "' instead of '" + getTypeString(IndexedType) +
3120                                "'");
3121     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3122     ID.Kind = ValID::t_Constant;
3123     return false;
3124   }
3125   case lltok::kw_icmp:
3126   case lltok::kw_fcmp: {
3127     unsigned PredVal, Opc = Lex.getUIntVal();
3128     Constant *Val0, *Val1;
3129     Lex.Lex();
3130     if (ParseCmpPredicate(PredVal, Opc) ||
3131         ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3132         ParseGlobalTypeAndValue(Val0) ||
3133         ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
3134         ParseGlobalTypeAndValue(Val1) ||
3135         ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3136       return true;
3137 
3138     if (Val0->getType() != Val1->getType())
3139       return Error(ID.Loc, "compare operands must have the same type");
3140 
3141     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3142 
3143     if (Opc == Instruction::FCmp) {
3144       if (!Val0->getType()->isFPOrFPVectorTy())
3145         return Error(ID.Loc, "fcmp requires floating point operands");
3146       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3147     } else {
3148       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3149       if (!Val0->getType()->isIntOrIntVectorTy() &&
3150           !Val0->getType()->isPtrOrPtrVectorTy())
3151         return Error(ID.Loc, "icmp requires pointer or integer operands");
3152       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3153     }
3154     ID.Kind = ValID::t_Constant;
3155     return false;
3156   }
3157 
3158   // Binary Operators.
3159   case lltok::kw_add:
3160   case lltok::kw_fadd:
3161   case lltok::kw_sub:
3162   case lltok::kw_fsub:
3163   case lltok::kw_mul:
3164   case lltok::kw_fmul:
3165   case lltok::kw_udiv:
3166   case lltok::kw_sdiv:
3167   case lltok::kw_fdiv:
3168   case lltok::kw_urem:
3169   case lltok::kw_srem:
3170   case lltok::kw_frem:
3171   case lltok::kw_shl:
3172   case lltok::kw_lshr:
3173   case lltok::kw_ashr: {
3174     bool NUW = false;
3175     bool NSW = false;
3176     bool Exact = false;
3177     unsigned Opc = Lex.getUIntVal();
3178     Constant *Val0, *Val1;
3179     Lex.Lex();
3180     LocTy ModifierLoc = Lex.getLoc();
3181     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3182         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3183       if (EatIfPresent(lltok::kw_nuw))
3184         NUW = true;
3185       if (EatIfPresent(lltok::kw_nsw)) {
3186         NSW = true;
3187         if (EatIfPresent(lltok::kw_nuw))
3188           NUW = true;
3189       }
3190     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3191                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3192       if (EatIfPresent(lltok::kw_exact))
3193         Exact = true;
3194     }
3195     if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3196         ParseGlobalTypeAndValue(Val0) ||
3197         ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
3198         ParseGlobalTypeAndValue(Val1) ||
3199         ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3200       return true;
3201     if (Val0->getType() != Val1->getType())
3202       return Error(ID.Loc, "operands of constexpr must have same type");
3203     if (!Val0->getType()->isIntOrIntVectorTy()) {
3204       if (NUW)
3205         return Error(ModifierLoc, "nuw only applies to integer operations");
3206       if (NSW)
3207         return Error(ModifierLoc, "nsw only applies to integer operations");
3208     }
3209     // Check that the type is valid for the operator.
3210     switch (Opc) {
3211     case Instruction::Add:
3212     case Instruction::Sub:
3213     case Instruction::Mul:
3214     case Instruction::UDiv:
3215     case Instruction::SDiv:
3216     case Instruction::URem:
3217     case Instruction::SRem:
3218     case Instruction::Shl:
3219     case Instruction::AShr:
3220     case Instruction::LShr:
3221       if (!Val0->getType()->isIntOrIntVectorTy())
3222         return Error(ID.Loc, "constexpr requires integer operands");
3223       break;
3224     case Instruction::FAdd:
3225     case Instruction::FSub:
3226     case Instruction::FMul:
3227     case Instruction::FDiv:
3228     case Instruction::FRem:
3229       if (!Val0->getType()->isFPOrFPVectorTy())
3230         return Error(ID.Loc, "constexpr requires fp operands");
3231       break;
3232     default: llvm_unreachable("Unknown binary operator!");
3233     }
3234     unsigned Flags = 0;
3235     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3236     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3237     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3238     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3239     ID.ConstantVal = C;
3240     ID.Kind = ValID::t_Constant;
3241     return false;
3242   }
3243 
3244   // Logical Operations
3245   case lltok::kw_and:
3246   case lltok::kw_or:
3247   case lltok::kw_xor: {
3248     unsigned Opc = Lex.getUIntVal();
3249     Constant *Val0, *Val1;
3250     Lex.Lex();
3251     if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3252         ParseGlobalTypeAndValue(Val0) ||
3253         ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
3254         ParseGlobalTypeAndValue(Val1) ||
3255         ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3256       return true;
3257     if (Val0->getType() != Val1->getType())
3258       return Error(ID.Loc, "operands of constexpr must have same type");
3259     if (!Val0->getType()->isIntOrIntVectorTy())
3260       return Error(ID.Loc,
3261                    "constexpr requires integer or integer vector operands");
3262     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3263     ID.Kind = ValID::t_Constant;
3264     return false;
3265   }
3266 
3267   case lltok::kw_getelementptr:
3268   case lltok::kw_shufflevector:
3269   case lltok::kw_insertelement:
3270   case lltok::kw_extractelement:
3271   case lltok::kw_select: {
3272     unsigned Opc = Lex.getUIntVal();
3273     SmallVector<Constant*, 16> Elts;
3274     bool InBounds = false;
3275     Type *Ty;
3276     Lex.Lex();
3277 
3278     if (Opc == Instruction::GetElementPtr)
3279       InBounds = EatIfPresent(lltok::kw_inbounds);
3280 
3281     if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
3282       return true;
3283 
3284     LocTy ExplicitTypeLoc = Lex.getLoc();
3285     if (Opc == Instruction::GetElementPtr) {
3286       if (ParseType(Ty) ||
3287           ParseToken(lltok::comma, "expected comma after getelementptr's type"))
3288         return true;
3289     }
3290 
3291     Optional<unsigned> InRangeOp;
3292     if (ParseGlobalValueVector(
3293             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3294         ParseToken(lltok::rparen, "expected ')' in constantexpr"))
3295       return true;
3296 
3297     if (Opc == Instruction::GetElementPtr) {
3298       if (Elts.size() == 0 ||
3299           !Elts[0]->getType()->isPtrOrPtrVectorTy())
3300         return Error(ID.Loc, "base of getelementptr must be a pointer");
3301 
3302       Type *BaseType = Elts[0]->getType();
3303       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3304       if (Ty != BasePointerType->getElementType())
3305         return Error(
3306             ExplicitTypeLoc,
3307             "explicit pointee type doesn't match operand's pointee type");
3308 
3309       unsigned GEPWidth =
3310           BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0;
3311 
3312       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3313       for (Constant *Val : Indices) {
3314         Type *ValTy = Val->getType();
3315         if (!ValTy->isIntOrIntVectorTy())
3316           return Error(ID.Loc, "getelementptr index must be an integer");
3317         if (ValTy->isVectorTy()) {
3318           unsigned ValNumEl = ValTy->getVectorNumElements();
3319           if (GEPWidth && (ValNumEl != GEPWidth))
3320             return Error(
3321                 ID.Loc,
3322                 "getelementptr vector index has a wrong number of elements");
3323           // GEPWidth may have been unknown because the base is a scalar,
3324           // but it is known now.
3325           GEPWidth = ValNumEl;
3326         }
3327       }
3328 
3329       SmallPtrSet<Type*, 4> Visited;
3330       if (!Indices.empty() && !Ty->isSized(&Visited))
3331         return Error(ID.Loc, "base element of getelementptr must be sized");
3332 
3333       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3334         return Error(ID.Loc, "invalid getelementptr indices");
3335 
3336       if (InRangeOp) {
3337         if (*InRangeOp == 0)
3338           return Error(ID.Loc,
3339                        "inrange keyword may not appear on pointer operand");
3340         --*InRangeOp;
3341       }
3342 
3343       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3344                                                       InBounds, InRangeOp);
3345     } else if (Opc == Instruction::Select) {
3346       if (Elts.size() != 3)
3347         return Error(ID.Loc, "expected three operands to select");
3348       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3349                                                               Elts[2]))
3350         return Error(ID.Loc, Reason);
3351       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3352     } else if (Opc == Instruction::ShuffleVector) {
3353       if (Elts.size() != 3)
3354         return Error(ID.Loc, "expected three operands to shufflevector");
3355       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3356         return Error(ID.Loc, "invalid operands to shufflevector");
3357       ID.ConstantVal =
3358                  ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
3359     } else if (Opc == Instruction::ExtractElement) {
3360       if (Elts.size() != 2)
3361         return Error(ID.Loc, "expected two operands to extractelement");
3362       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3363         return Error(ID.Loc, "invalid extractelement operands");
3364       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3365     } else {
3366       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3367       if (Elts.size() != 3)
3368       return Error(ID.Loc, "expected three operands to insertelement");
3369       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3370         return Error(ID.Loc, "invalid insertelement operands");
3371       ID.ConstantVal =
3372                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3373     }
3374 
3375     ID.Kind = ValID::t_Constant;
3376     return false;
3377   }
3378   }
3379 
3380   Lex.Lex();
3381   return false;
3382 }
3383 
3384 /// ParseGlobalValue - Parse a global value with the specified type.
3385 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
3386   C = nullptr;
3387   ValID ID;
3388   Value *V = nullptr;
3389   bool Parsed = ParseValID(ID) ||
3390                 ConvertValIDToValue(Ty, ID, V, nullptr);
3391   if (V && !(C = dyn_cast<Constant>(V)))
3392     return Error(ID.Loc, "global values must be constants");
3393   return Parsed;
3394 }
3395 
3396 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
3397   Type *Ty = nullptr;
3398   return ParseType(Ty) ||
3399          ParseGlobalValue(Ty, V);
3400 }
3401 
3402 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3403   C = nullptr;
3404 
3405   LocTy KwLoc = Lex.getLoc();
3406   if (!EatIfPresent(lltok::kw_comdat))
3407     return false;
3408 
3409   if (EatIfPresent(lltok::lparen)) {
3410     if (Lex.getKind() != lltok::ComdatVar)
3411       return TokError("expected comdat variable");
3412     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3413     Lex.Lex();
3414     if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
3415       return true;
3416   } else {
3417     if (GlobalName.empty())
3418       return TokError("comdat cannot be unnamed");
3419     C = getComdat(GlobalName, KwLoc);
3420   }
3421 
3422   return false;
3423 }
3424 
3425 /// ParseGlobalValueVector
3426 ///   ::= /*empty*/
3427 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3428 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3429                                       Optional<unsigned> *InRangeOp) {
3430   // Empty list.
3431   if (Lex.getKind() == lltok::rbrace ||
3432       Lex.getKind() == lltok::rsquare ||
3433       Lex.getKind() == lltok::greater ||
3434       Lex.getKind() == lltok::rparen)
3435     return false;
3436 
3437   do {
3438     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3439       *InRangeOp = Elts.size();
3440 
3441     Constant *C;
3442     if (ParseGlobalTypeAndValue(C)) return true;
3443     Elts.push_back(C);
3444   } while (EatIfPresent(lltok::comma));
3445 
3446   return false;
3447 }
3448 
3449 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
3450   SmallVector<Metadata *, 16> Elts;
3451   if (ParseMDNodeVector(Elts))
3452     return true;
3453 
3454   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3455   return false;
3456 }
3457 
3458 /// MDNode:
3459 ///  ::= !{ ... }
3460 ///  ::= !7
3461 ///  ::= !DILocation(...)
3462 bool LLParser::ParseMDNode(MDNode *&N) {
3463   if (Lex.getKind() == lltok::MetadataVar)
3464     return ParseSpecializedMDNode(N);
3465 
3466   return ParseToken(lltok::exclaim, "expected '!' here") ||
3467          ParseMDNodeTail(N);
3468 }
3469 
3470 bool LLParser::ParseMDNodeTail(MDNode *&N) {
3471   // !{ ... }
3472   if (Lex.getKind() == lltok::lbrace)
3473     return ParseMDTuple(N);
3474 
3475   // !42
3476   return ParseMDNodeID(N);
3477 }
3478 
3479 namespace {
3480 
3481 /// Structure to represent an optional metadata field.
3482 template <class FieldTy> struct MDFieldImpl {
3483   typedef MDFieldImpl ImplTy;
3484   FieldTy Val;
3485   bool Seen;
3486 
3487   void assign(FieldTy Val) {
3488     Seen = true;
3489     this->Val = std::move(Val);
3490   }
3491 
3492   explicit MDFieldImpl(FieldTy Default)
3493       : Val(std::move(Default)), Seen(false) {}
3494 };
3495 
3496 /// Structure to represent an optional metadata field that
3497 /// can be of either type (A or B) and encapsulates the
3498 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
3499 /// to reimplement the specifics for representing each Field.
3500 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
3501   typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
3502   FieldTypeA A;
3503   FieldTypeB B;
3504   bool Seen;
3505 
3506   enum {
3507     IsInvalid = 0,
3508     IsTypeA = 1,
3509     IsTypeB = 2
3510   } WhatIs;
3511 
3512   void assign(FieldTypeA A) {
3513     Seen = true;
3514     this->A = std::move(A);
3515     WhatIs = IsTypeA;
3516   }
3517 
3518   void assign(FieldTypeB B) {
3519     Seen = true;
3520     this->B = std::move(B);
3521     WhatIs = IsTypeB;
3522   }
3523 
3524   explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
3525       : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
3526         WhatIs(IsInvalid) {}
3527 };
3528 
3529 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3530   uint64_t Max;
3531 
3532   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3533       : ImplTy(Default), Max(Max) {}
3534 };
3535 
3536 struct LineField : public MDUnsignedField {
3537   LineField() : MDUnsignedField(0, UINT32_MAX) {}
3538 };
3539 
3540 struct ColumnField : public MDUnsignedField {
3541   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3542 };
3543 
3544 struct DwarfTagField : public MDUnsignedField {
3545   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3546   DwarfTagField(dwarf::Tag DefaultTag)
3547       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3548 };
3549 
3550 struct DwarfMacinfoTypeField : public MDUnsignedField {
3551   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3552   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3553     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3554 };
3555 
3556 struct DwarfAttEncodingField : public MDUnsignedField {
3557   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3558 };
3559 
3560 struct DwarfVirtualityField : public MDUnsignedField {
3561   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3562 };
3563 
3564 struct DwarfLangField : public MDUnsignedField {
3565   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3566 };
3567 
3568 struct DwarfCCField : public MDUnsignedField {
3569   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3570 };
3571 
3572 struct EmissionKindField : public MDUnsignedField {
3573   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3574 };
3575 
3576 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
3577   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3578 };
3579 
3580 struct MDSignedField : public MDFieldImpl<int64_t> {
3581   int64_t Min;
3582   int64_t Max;
3583 
3584   MDSignedField(int64_t Default = 0)
3585       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3586   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3587       : ImplTy(Default), Min(Min), Max(Max) {}
3588 };
3589 
3590 struct MDBoolField : public MDFieldImpl<bool> {
3591   MDBoolField(bool Default = false) : ImplTy(Default) {}
3592 };
3593 
3594 struct MDField : public MDFieldImpl<Metadata *> {
3595   bool AllowNull;
3596 
3597   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3598 };
3599 
3600 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
3601   MDConstant() : ImplTy(nullptr) {}
3602 };
3603 
3604 struct MDStringField : public MDFieldImpl<MDString *> {
3605   bool AllowEmpty;
3606   MDStringField(bool AllowEmpty = true)
3607       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3608 };
3609 
3610 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3611   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3612 };
3613 
3614 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
3615   ChecksumKindField() : ImplTy(DIFile::CSK_None) {}
3616   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
3617 };
3618 
3619 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
3620   MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
3621       : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
3622 
3623   MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
3624                     bool AllowNull = true)
3625       : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
3626 
3627   bool isMDSignedField() const { return WhatIs == IsTypeA; }
3628   bool isMDField() const { return WhatIs == IsTypeB; }
3629   int64_t getMDSignedValue() const {
3630     assert(isMDSignedField() && "Wrong field type");
3631     return A.Val;
3632   }
3633   Metadata *getMDFieldValue() const {
3634     assert(isMDField() && "Wrong field type");
3635     return B.Val;
3636   }
3637 };
3638 
3639 } // end anonymous namespace
3640 
3641 namespace llvm {
3642 
3643 template <>
3644 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3645                             MDUnsignedField &Result) {
3646   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3647     return TokError("expected unsigned integer");
3648 
3649   auto &U = Lex.getAPSIntVal();
3650   if (U.ugt(Result.Max))
3651     return TokError("value for '" + Name + "' too large, limit is " +
3652                     Twine(Result.Max));
3653   Result.assign(U.getZExtValue());
3654   assert(Result.Val <= Result.Max && "Expected value in range");
3655   Lex.Lex();
3656   return false;
3657 }
3658 
3659 template <>
3660 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
3661   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3662 }
3663 template <>
3664 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
3665   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3666 }
3667 
3668 template <>
3669 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
3670   if (Lex.getKind() == lltok::APSInt)
3671     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3672 
3673   if (Lex.getKind() != lltok::DwarfTag)
3674     return TokError("expected DWARF tag");
3675 
3676   unsigned Tag = dwarf::getTag(Lex.getStrVal());
3677   if (Tag == dwarf::DW_TAG_invalid)
3678     return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
3679   assert(Tag <= Result.Max && "Expected valid DWARF tag");
3680 
3681   Result.assign(Tag);
3682   Lex.Lex();
3683   return false;
3684 }
3685 
3686 template <>
3687 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3688                             DwarfMacinfoTypeField &Result) {
3689   if (Lex.getKind() == lltok::APSInt)
3690     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3691 
3692   if (Lex.getKind() != lltok::DwarfMacinfo)
3693     return TokError("expected DWARF macinfo type");
3694 
3695   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
3696   if (Macinfo == dwarf::DW_MACINFO_invalid)
3697     return TokError(
3698         "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'");
3699   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
3700 
3701   Result.assign(Macinfo);
3702   Lex.Lex();
3703   return false;
3704 }
3705 
3706 template <>
3707 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3708                             DwarfVirtualityField &Result) {
3709   if (Lex.getKind() == lltok::APSInt)
3710     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3711 
3712   if (Lex.getKind() != lltok::DwarfVirtuality)
3713     return TokError("expected DWARF virtuality code");
3714 
3715   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
3716   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
3717     return TokError("invalid DWARF virtuality code" + Twine(" '") +
3718                     Lex.getStrVal() + "'");
3719   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
3720   Result.assign(Virtuality);
3721   Lex.Lex();
3722   return false;
3723 }
3724 
3725 template <>
3726 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
3727   if (Lex.getKind() == lltok::APSInt)
3728     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3729 
3730   if (Lex.getKind() != lltok::DwarfLang)
3731     return TokError("expected DWARF language");
3732 
3733   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
3734   if (!Lang)
3735     return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
3736                     "'");
3737   assert(Lang <= Result.Max && "Expected valid DWARF language");
3738   Result.assign(Lang);
3739   Lex.Lex();
3740   return false;
3741 }
3742 
3743 template <>
3744 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
3745   if (Lex.getKind() == lltok::APSInt)
3746     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3747 
3748   if (Lex.getKind() != lltok::DwarfCC)
3749     return TokError("expected DWARF calling convention");
3750 
3751   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
3752   if (!CC)
3753     return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() +
3754                     "'");
3755   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
3756   Result.assign(CC);
3757   Lex.Lex();
3758   return false;
3759 }
3760 
3761 template <>
3762 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) {
3763   if (Lex.getKind() == lltok::APSInt)
3764     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3765 
3766   if (Lex.getKind() != lltok::EmissionKind)
3767     return TokError("expected emission kind");
3768 
3769   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
3770   if (!Kind)
3771     return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
3772                     "'");
3773   assert(*Kind <= Result.Max && "Expected valid emission kind");
3774   Result.assign(*Kind);
3775   Lex.Lex();
3776   return false;
3777 }
3778 
3779 template <>
3780 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3781                             DwarfAttEncodingField &Result) {
3782   if (Lex.getKind() == lltok::APSInt)
3783     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3784 
3785   if (Lex.getKind() != lltok::DwarfAttEncoding)
3786     return TokError("expected DWARF type attribute encoding");
3787 
3788   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
3789   if (!Encoding)
3790     return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
3791                     Lex.getStrVal() + "'");
3792   assert(Encoding <= Result.Max && "Expected valid DWARF language");
3793   Result.assign(Encoding);
3794   Lex.Lex();
3795   return false;
3796 }
3797 
3798 /// DIFlagField
3799 ///  ::= uint32
3800 ///  ::= DIFlagVector
3801 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
3802 template <>
3803 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
3804 
3805   // Parser for a single flag.
3806   auto parseFlag = [&](DINode::DIFlags &Val) {
3807     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
3808       uint32_t TempVal = static_cast<uint32_t>(Val);
3809       bool Res = ParseUInt32(TempVal);
3810       Val = static_cast<DINode::DIFlags>(TempVal);
3811       return Res;
3812     }
3813 
3814     if (Lex.getKind() != lltok::DIFlag)
3815       return TokError("expected debug info flag");
3816 
3817     Val = DINode::getFlag(Lex.getStrVal());
3818     if (!Val)
3819       return TokError(Twine("invalid debug info flag flag '") +
3820                       Lex.getStrVal() + "'");
3821     Lex.Lex();
3822     return false;
3823   };
3824 
3825   // Parse the flags and combine them together.
3826   DINode::DIFlags Combined = DINode::FlagZero;
3827   do {
3828     DINode::DIFlags Val;
3829     if (parseFlag(Val))
3830       return true;
3831     Combined |= Val;
3832   } while (EatIfPresent(lltok::bar));
3833 
3834   Result.assign(Combined);
3835   return false;
3836 }
3837 
3838 template <>
3839 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3840                             MDSignedField &Result) {
3841   if (Lex.getKind() != lltok::APSInt)
3842     return TokError("expected signed integer");
3843 
3844   auto &S = Lex.getAPSIntVal();
3845   if (S < Result.Min)
3846     return TokError("value for '" + Name + "' too small, limit is " +
3847                     Twine(Result.Min));
3848   if (S > Result.Max)
3849     return TokError("value for '" + Name + "' too large, limit is " +
3850                     Twine(Result.Max));
3851   Result.assign(S.getExtValue());
3852   assert(Result.Val >= Result.Min && "Expected value in range");
3853   assert(Result.Val <= Result.Max && "Expected value in range");
3854   Lex.Lex();
3855   return false;
3856 }
3857 
3858 template <>
3859 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
3860   switch (Lex.getKind()) {
3861   default:
3862     return TokError("expected 'true' or 'false'");
3863   case lltok::kw_true:
3864     Result.assign(true);
3865     break;
3866   case lltok::kw_false:
3867     Result.assign(false);
3868     break;
3869   }
3870   Lex.Lex();
3871   return false;
3872 }
3873 
3874 template <>
3875 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
3876   if (Lex.getKind() == lltok::kw_null) {
3877     if (!Result.AllowNull)
3878       return TokError("'" + Name + "' cannot be null");
3879     Lex.Lex();
3880     Result.assign(nullptr);
3881     return false;
3882   }
3883 
3884   Metadata *MD;
3885   if (ParseMetadata(MD, nullptr))
3886     return true;
3887 
3888   Result.assign(MD);
3889   return false;
3890 }
3891 
3892 template <>
3893 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3894                             MDSignedOrMDField &Result) {
3895   // Try to parse a signed int.
3896   if (Lex.getKind() == lltok::APSInt) {
3897     MDSignedField Res = Result.A;
3898     if (!ParseMDField(Loc, Name, Res)) {
3899       Result.assign(Res);
3900       return false;
3901     }
3902     return true;
3903   }
3904 
3905   // Otherwise, try to parse as an MDField.
3906   MDField Res = Result.B;
3907   if (!ParseMDField(Loc, Name, Res)) {
3908     Result.assign(Res);
3909     return false;
3910   }
3911 
3912   return true;
3913 }
3914 
3915 template <>
3916 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
3917   LocTy ValueLoc = Lex.getLoc();
3918   std::string S;
3919   if (ParseStringConstant(S))
3920     return true;
3921 
3922   if (!Result.AllowEmpty && S.empty())
3923     return Error(ValueLoc, "'" + Name + "' cannot be empty");
3924 
3925   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
3926   return false;
3927 }
3928 
3929 template <>
3930 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
3931   SmallVector<Metadata *, 4> MDs;
3932   if (ParseMDNodeVector(MDs))
3933     return true;
3934 
3935   Result.assign(std::move(MDs));
3936   return false;
3937 }
3938 
3939 template <>
3940 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3941                             ChecksumKindField &Result) {
3942   if (Lex.getKind() != lltok::ChecksumKind)
3943     return TokError(
3944         "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'");
3945 
3946   DIFile::ChecksumKind CSKind = DIFile::getChecksumKind(Lex.getStrVal());
3947 
3948   Result.assign(CSKind);
3949   Lex.Lex();
3950   return false;
3951 }
3952 
3953 } // end namespace llvm
3954 
3955 template <class ParserTy>
3956 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
3957   do {
3958     if (Lex.getKind() != lltok::LabelStr)
3959       return TokError("expected field label here");
3960 
3961     if (parseField())
3962       return true;
3963   } while (EatIfPresent(lltok::comma));
3964 
3965   return false;
3966 }
3967 
3968 template <class ParserTy>
3969 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
3970   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
3971   Lex.Lex();
3972 
3973   if (ParseToken(lltok::lparen, "expected '(' here"))
3974     return true;
3975   if (Lex.getKind() != lltok::rparen)
3976     if (ParseMDFieldsImplBody(parseField))
3977       return true;
3978 
3979   ClosingLoc = Lex.getLoc();
3980   return ParseToken(lltok::rparen, "expected ')' here");
3981 }
3982 
3983 template <class FieldTy>
3984 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
3985   if (Result.Seen)
3986     return TokError("field '" + Name + "' cannot be specified more than once");
3987 
3988   LocTy Loc = Lex.getLoc();
3989   Lex.Lex();
3990   return ParseMDField(Loc, Name, Result);
3991 }
3992 
3993 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
3994   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
3995 
3996 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
3997   if (Lex.getStrVal() == #CLASS)                                               \
3998     return Parse##CLASS(N, IsDistinct);
3999 #include "llvm/IR/Metadata.def"
4000 
4001   return TokError("expected metadata type");
4002 }
4003 
4004 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4005 #define NOP_FIELD(NAME, TYPE, INIT)
4006 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
4007   if (!NAME.Seen)                                                              \
4008     return Error(ClosingLoc, "missing required field '" #NAME "'");
4009 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
4010   if (Lex.getStrVal() == #NAME)                                                \
4011     return ParseMDField(#NAME, NAME);
4012 #define PARSE_MD_FIELDS()                                                      \
4013   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
4014   do {                                                                         \
4015     LocTy ClosingLoc;                                                          \
4016     if (ParseMDFieldsImpl([&]() -> bool {                                      \
4017       VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                          \
4018       return TokError(Twine("invalid field '") + Lex.getStrVal() + "'");       \
4019     }, ClosingLoc))                                                            \
4020       return true;                                                             \
4021     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
4022   } while (false)
4023 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
4024   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4025 
4026 /// ParseDILocationFields:
4027 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6)
4028 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
4029 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4030   OPTIONAL(line, LineField, );                                                 \
4031   OPTIONAL(column, ColumnField, );                                             \
4032   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4033   OPTIONAL(inlinedAt, MDField, );
4034   PARSE_MD_FIELDS();
4035 #undef VISIT_MD_FIELDS
4036 
4037   Result = GET_OR_DISTINCT(
4038       DILocation, (Context, line.Val, column.Val, scope.Val, inlinedAt.Val));
4039   return false;
4040 }
4041 
4042 /// ParseGenericDINode:
4043 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4044 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
4045 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4046   REQUIRED(tag, DwarfTagField, );                                              \
4047   OPTIONAL(header, MDStringField, );                                           \
4048   OPTIONAL(operands, MDFieldList, );
4049   PARSE_MD_FIELDS();
4050 #undef VISIT_MD_FIELDS
4051 
4052   Result = GET_OR_DISTINCT(GenericDINode,
4053                            (Context, tag.Val, header.Val, operands.Val));
4054   return false;
4055 }
4056 
4057 /// ParseDISubrange:
4058 ///   ::= !DISubrange(count: 30, lowerBound: 2)
4059 ///   ::= !DISubrange(count: !node, lowerBound: 2)
4060 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
4061 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4062   REQUIRED(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false));              \
4063   OPTIONAL(lowerBound, MDSignedField, );
4064   PARSE_MD_FIELDS();
4065 #undef VISIT_MD_FIELDS
4066 
4067   if (count.isMDSignedField())
4068     Result = GET_OR_DISTINCT(
4069         DISubrange, (Context, count.getMDSignedValue(), lowerBound.Val));
4070   else if (count.isMDField())
4071     Result = GET_OR_DISTINCT(
4072         DISubrange, (Context, count.getMDFieldValue(), lowerBound.Val));
4073   else
4074     return true;
4075 
4076   return false;
4077 }
4078 
4079 /// ParseDIEnumerator:
4080 ///   ::= !DIEnumerator(value: 30, name: "SomeKind")
4081 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4082 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4083   REQUIRED(name, MDStringField, );                                             \
4084   REQUIRED(value, MDSignedField, );
4085   PARSE_MD_FIELDS();
4086 #undef VISIT_MD_FIELDS
4087 
4088   Result = GET_OR_DISTINCT(DIEnumerator, (Context, value.Val, name.Val));
4089   return false;
4090 }
4091 
4092 /// ParseDIBasicType:
4093 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32)
4094 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
4095 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4096   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
4097   OPTIONAL(name, MDStringField, );                                             \
4098   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4099   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4100   OPTIONAL(encoding, DwarfAttEncodingField, );
4101   PARSE_MD_FIELDS();
4102 #undef VISIT_MD_FIELDS
4103 
4104   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4105                                          align.Val, encoding.Val));
4106   return false;
4107 }
4108 
4109 /// ParseDIDerivedType:
4110 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4111 ///                      line: 7, scope: !1, baseType: !2, size: 32,
4112 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
4113 ///                      dwarfAddressSpace: 3)
4114 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4115 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4116   REQUIRED(tag, DwarfTagField, );                                              \
4117   OPTIONAL(name, MDStringField, );                                             \
4118   OPTIONAL(file, MDField, );                                                   \
4119   OPTIONAL(line, LineField, );                                                 \
4120   OPTIONAL(scope, MDField, );                                                  \
4121   REQUIRED(baseType, MDField, );                                               \
4122   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4123   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4124   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4125   OPTIONAL(flags, DIFlagField, );                                              \
4126   OPTIONAL(extraData, MDField, );                                              \
4127   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
4128   PARSE_MD_FIELDS();
4129 #undef VISIT_MD_FIELDS
4130 
4131   Optional<unsigned> DWARFAddressSpace;
4132   if (dwarfAddressSpace.Val != UINT32_MAX)
4133     DWARFAddressSpace = dwarfAddressSpace.Val;
4134 
4135   Result = GET_OR_DISTINCT(DIDerivedType,
4136                            (Context, tag.Val, name.Val, file.Val, line.Val,
4137                             scope.Val, baseType.Val, size.Val, align.Val,
4138                             offset.Val, DWARFAddressSpace, flags.Val,
4139                             extraData.Val));
4140   return false;
4141 }
4142 
4143 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
4144 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4145   REQUIRED(tag, DwarfTagField, );                                              \
4146   OPTIONAL(name, MDStringField, );                                             \
4147   OPTIONAL(file, MDField, );                                                   \
4148   OPTIONAL(line, LineField, );                                                 \
4149   OPTIONAL(scope, MDField, );                                                  \
4150   OPTIONAL(baseType, MDField, );                                               \
4151   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4152   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4153   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4154   OPTIONAL(flags, DIFlagField, );                                              \
4155   OPTIONAL(elements, MDField, );                                               \
4156   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
4157   OPTIONAL(vtableHolder, MDField, );                                           \
4158   OPTIONAL(templateParams, MDField, );                                         \
4159   OPTIONAL(identifier, MDStringField, );
4160   PARSE_MD_FIELDS();
4161 #undef VISIT_MD_FIELDS
4162 
4163   // If this has an identifier try to build an ODR type.
4164   if (identifier.Val)
4165     if (auto *CT = DICompositeType::buildODRType(
4166             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4167             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4168             elements.Val, runtimeLang.Val, vtableHolder.Val,
4169             templateParams.Val)) {
4170       Result = CT;
4171       return false;
4172     }
4173 
4174   // Create a new node, and save it in the context if it belongs in the type
4175   // map.
4176   Result = GET_OR_DISTINCT(
4177       DICompositeType,
4178       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4179        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4180        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val));
4181   return false;
4182 }
4183 
4184 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4185 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4186   OPTIONAL(flags, DIFlagField, );                                              \
4187   OPTIONAL(cc, DwarfCCField, );                                                \
4188   REQUIRED(types, MDField, );
4189   PARSE_MD_FIELDS();
4190 #undef VISIT_MD_FIELDS
4191 
4192   Result = GET_OR_DISTINCT(DISubroutineType,
4193                            (Context, flags.Val, cc.Val, types.Val));
4194   return false;
4195 }
4196 
4197 /// ParseDIFileType:
4198 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir"
4199 ///                   checksumkind: CSK_MD5,
4200 ///                   checksum: "000102030405060708090a0b0c0d0e0f")
4201 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
4202 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4203   REQUIRED(filename, MDStringField, );                                         \
4204   REQUIRED(directory, MDStringField, );                                        \
4205   OPTIONAL(checksumkind, ChecksumKindField, );                                 \
4206   OPTIONAL(checksum, MDStringField, );
4207   PARSE_MD_FIELDS();
4208 #undef VISIT_MD_FIELDS
4209 
4210   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4211                                     checksumkind.Val, checksum.Val));
4212   return false;
4213 }
4214 
4215 /// ParseDICompileUnit:
4216 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4217 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
4218 ///                      splitDebugFilename: "abc.debug",
4219 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4220 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd)
4221 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4222   if (!IsDistinct)
4223     return Lex.Error("missing 'distinct', required for !DICompileUnit");
4224 
4225 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4226   REQUIRED(language, DwarfLangField, );                                        \
4227   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
4228   OPTIONAL(producer, MDStringField, );                                         \
4229   OPTIONAL(isOptimized, MDBoolField, );                                        \
4230   OPTIONAL(flags, MDStringField, );                                            \
4231   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
4232   OPTIONAL(splitDebugFilename, MDStringField, );                               \
4233   OPTIONAL(emissionKind, EmissionKindField, );                                 \
4234   OPTIONAL(enums, MDField, );                                                  \
4235   OPTIONAL(retainedTypes, MDField, );                                          \
4236   OPTIONAL(globals, MDField, );                                                \
4237   OPTIONAL(imports, MDField, );                                                \
4238   OPTIONAL(macros, MDField, );                                                 \
4239   OPTIONAL(dwoId, MDUnsignedField, );                                          \
4240   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
4241   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
4242   OPTIONAL(gnuPubnames, MDBoolField, = false);
4243   PARSE_MD_FIELDS();
4244 #undef VISIT_MD_FIELDS
4245 
4246   Result = DICompileUnit::getDistinct(
4247       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4248       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4249       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4250       splitDebugInlining.Val, debugInfoForProfiling.Val, gnuPubnames.Val);
4251   return false;
4252 }
4253 
4254 /// ParseDISubprogram:
4255 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4256 ///                     file: !1, line: 7, type: !2, isLocal: false,
4257 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
4258 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
4259 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
4260 ///                     isOptimized: false, templateParams: !4, declaration: !5,
4261 ///                     variables: !6, thrownTypes: !7)
4262 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
4263   auto Loc = Lex.getLoc();
4264 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4265   OPTIONAL(scope, MDField, );                                                  \
4266   OPTIONAL(name, MDStringField, );                                             \
4267   OPTIONAL(linkageName, MDStringField, );                                      \
4268   OPTIONAL(file, MDField, );                                                   \
4269   OPTIONAL(line, LineField, );                                                 \
4270   OPTIONAL(type, MDField, );                                                   \
4271   OPTIONAL(isLocal, MDBoolField, );                                            \
4272   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4273   OPTIONAL(scopeLine, LineField, );                                            \
4274   OPTIONAL(containingType, MDField, );                                         \
4275   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
4276   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
4277   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
4278   OPTIONAL(flags, DIFlagField, );                                              \
4279   OPTIONAL(isOptimized, MDBoolField, );                                        \
4280   OPTIONAL(unit, MDField, );                                                   \
4281   OPTIONAL(templateParams, MDField, );                                         \
4282   OPTIONAL(declaration, MDField, );                                            \
4283   OPTIONAL(variables, MDField, );                                              \
4284   OPTIONAL(thrownTypes, MDField, );
4285   PARSE_MD_FIELDS();
4286 #undef VISIT_MD_FIELDS
4287 
4288   if (isDefinition.Val && !IsDistinct)
4289     return Lex.Error(
4290         Loc,
4291         "missing 'distinct', required for !DISubprogram when 'isDefinition'");
4292 
4293   Result = GET_OR_DISTINCT(
4294       DISubprogram,
4295       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
4296        type.Val, isLocal.Val, isDefinition.Val, scopeLine.Val,
4297        containingType.Val, virtuality.Val, virtualIndex.Val, thisAdjustment.Val,
4298        flags.Val, isOptimized.Val, unit.Val, templateParams.Val,
4299        declaration.Val, variables.Val, thrownTypes.Val));
4300   return false;
4301 }
4302 
4303 /// ParseDILexicalBlock:
4304 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4305 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4306 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4307   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4308   OPTIONAL(file, MDField, );                                                   \
4309   OPTIONAL(line, LineField, );                                                 \
4310   OPTIONAL(column, ColumnField, );
4311   PARSE_MD_FIELDS();
4312 #undef VISIT_MD_FIELDS
4313 
4314   Result = GET_OR_DISTINCT(
4315       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4316   return false;
4317 }
4318 
4319 /// ParseDILexicalBlockFile:
4320 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4321 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4322 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4323   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4324   OPTIONAL(file, MDField, );                                                   \
4325   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4326   PARSE_MD_FIELDS();
4327 #undef VISIT_MD_FIELDS
4328 
4329   Result = GET_OR_DISTINCT(DILexicalBlockFile,
4330                            (Context, scope.Val, file.Val, discriminator.Val));
4331   return false;
4332 }
4333 
4334 /// ParseDINamespace:
4335 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4336 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
4337 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4338   REQUIRED(scope, MDField, );                                                  \
4339   OPTIONAL(name, MDStringField, );                                             \
4340   OPTIONAL(exportSymbols, MDBoolField, );
4341   PARSE_MD_FIELDS();
4342 #undef VISIT_MD_FIELDS
4343 
4344   Result = GET_OR_DISTINCT(DINamespace,
4345                            (Context, scope.Val, name.Val, exportSymbols.Val));
4346   return false;
4347 }
4348 
4349 /// ParseDIMacro:
4350 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
4351 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) {
4352 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4353   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
4354   OPTIONAL(line, LineField, );                                                 \
4355   REQUIRED(name, MDStringField, );                                             \
4356   OPTIONAL(value, MDStringField, );
4357   PARSE_MD_FIELDS();
4358 #undef VISIT_MD_FIELDS
4359 
4360   Result = GET_OR_DISTINCT(DIMacro,
4361                            (Context, type.Val, line.Val, name.Val, value.Val));
4362   return false;
4363 }
4364 
4365 /// ParseDIMacroFile:
4366 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4367 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4368 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4369   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
4370   OPTIONAL(line, LineField, );                                                 \
4371   REQUIRED(file, MDField, );                                                   \
4372   OPTIONAL(nodes, MDField, );
4373   PARSE_MD_FIELDS();
4374 #undef VISIT_MD_FIELDS
4375 
4376   Result = GET_OR_DISTINCT(DIMacroFile,
4377                            (Context, type.Val, line.Val, file.Val, nodes.Val));
4378   return false;
4379 }
4380 
4381 /// ParseDIModule:
4382 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG",
4383 ///                 includePath: "/usr/include", isysroot: "/")
4384 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
4385 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4386   REQUIRED(scope, MDField, );                                                  \
4387   REQUIRED(name, MDStringField, );                                             \
4388   OPTIONAL(configMacros, MDStringField, );                                     \
4389   OPTIONAL(includePath, MDStringField, );                                      \
4390   OPTIONAL(isysroot, MDStringField, );
4391   PARSE_MD_FIELDS();
4392 #undef VISIT_MD_FIELDS
4393 
4394   Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val,
4395                            configMacros.Val, includePath.Val, isysroot.Val));
4396   return false;
4397 }
4398 
4399 /// ParseDITemplateTypeParameter:
4400 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1)
4401 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4402 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4403   OPTIONAL(name, MDStringField, );                                             \
4404   REQUIRED(type, MDField, );
4405   PARSE_MD_FIELDS();
4406 #undef VISIT_MD_FIELDS
4407 
4408   Result =
4409       GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val));
4410   return false;
4411 }
4412 
4413 /// ParseDITemplateValueParameter:
4414 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4415 ///                                 name: "V", type: !1, value: i32 7)
4416 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4417 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4418   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
4419   OPTIONAL(name, MDStringField, );                                             \
4420   OPTIONAL(type, MDField, );                                                   \
4421   REQUIRED(value, MDField, );
4422   PARSE_MD_FIELDS();
4423 #undef VISIT_MD_FIELDS
4424 
4425   Result = GET_OR_DISTINCT(DITemplateValueParameter,
4426                            (Context, tag.Val, name.Val, type.Val, value.Val));
4427   return false;
4428 }
4429 
4430 /// ParseDIGlobalVariable:
4431 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
4432 ///                         file: !1, line: 7, type: !2, isLocal: false,
4433 ///                         isDefinition: true, declaration: !3, align: 8)
4434 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
4435 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4436   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
4437   OPTIONAL(scope, MDField, );                                                  \
4438   OPTIONAL(linkageName, MDStringField, );                                      \
4439   OPTIONAL(file, MDField, );                                                   \
4440   OPTIONAL(line, LineField, );                                                 \
4441   OPTIONAL(type, MDField, );                                                   \
4442   OPTIONAL(isLocal, MDBoolField, );                                            \
4443   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4444   OPTIONAL(declaration, MDField, );                                            \
4445   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4446   PARSE_MD_FIELDS();
4447 #undef VISIT_MD_FIELDS
4448 
4449   Result = GET_OR_DISTINCT(DIGlobalVariable,
4450                            (Context, scope.Val, name.Val, linkageName.Val,
4451                             file.Val, line.Val, type.Val, isLocal.Val,
4452                             isDefinition.Val, declaration.Val, align.Val));
4453   return false;
4454 }
4455 
4456 /// ParseDILocalVariable:
4457 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
4458 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4459 ///                        align: 8)
4460 ///   ::= !DILocalVariable(scope: !0, name: "foo",
4461 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4462 ///                        align: 8)
4463 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
4464 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4465   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4466   OPTIONAL(name, MDStringField, );                                             \
4467   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
4468   OPTIONAL(file, MDField, );                                                   \
4469   OPTIONAL(line, LineField, );                                                 \
4470   OPTIONAL(type, MDField, );                                                   \
4471   OPTIONAL(flags, DIFlagField, );                                              \
4472   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4473   PARSE_MD_FIELDS();
4474 #undef VISIT_MD_FIELDS
4475 
4476   Result = GET_OR_DISTINCT(DILocalVariable,
4477                            (Context, scope.Val, name.Val, file.Val, line.Val,
4478                             type.Val, arg.Val, flags.Val, align.Val));
4479   return false;
4480 }
4481 
4482 /// ParseDIExpression:
4483 ///   ::= !DIExpression(0, 7, -1)
4484 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
4485   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4486   Lex.Lex();
4487 
4488   if (ParseToken(lltok::lparen, "expected '(' here"))
4489     return true;
4490 
4491   SmallVector<uint64_t, 8> Elements;
4492   if (Lex.getKind() != lltok::rparen)
4493     do {
4494       if (Lex.getKind() == lltok::DwarfOp) {
4495         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
4496           Lex.Lex();
4497           Elements.push_back(Op);
4498           continue;
4499         }
4500         return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
4501       }
4502 
4503       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4504         return TokError("expected unsigned integer");
4505 
4506       auto &U = Lex.getAPSIntVal();
4507       if (U.ugt(UINT64_MAX))
4508         return TokError("element too large, limit is " + Twine(UINT64_MAX));
4509       Elements.push_back(U.getZExtValue());
4510       Lex.Lex();
4511     } while (EatIfPresent(lltok::comma));
4512 
4513   if (ParseToken(lltok::rparen, "expected ')' here"))
4514     return true;
4515 
4516   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
4517   return false;
4518 }
4519 
4520 /// ParseDIGlobalVariableExpression:
4521 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
4522 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result,
4523                                                bool IsDistinct) {
4524 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4525   REQUIRED(var, MDField, );                                                    \
4526   REQUIRED(expr, MDField, );
4527   PARSE_MD_FIELDS();
4528 #undef VISIT_MD_FIELDS
4529 
4530   Result =
4531       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
4532   return false;
4533 }
4534 
4535 /// ParseDIObjCProperty:
4536 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
4537 ///                       getter: "getFoo", attributes: 7, type: !2)
4538 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
4539 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4540   OPTIONAL(name, MDStringField, );                                             \
4541   OPTIONAL(file, MDField, );                                                   \
4542   OPTIONAL(line, LineField, );                                                 \
4543   OPTIONAL(setter, MDStringField, );                                           \
4544   OPTIONAL(getter, MDStringField, );                                           \
4545   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
4546   OPTIONAL(type, MDField, );
4547   PARSE_MD_FIELDS();
4548 #undef VISIT_MD_FIELDS
4549 
4550   Result = GET_OR_DISTINCT(DIObjCProperty,
4551                            (Context, name.Val, file.Val, line.Val, setter.Val,
4552                             getter.Val, attributes.Val, type.Val));
4553   return false;
4554 }
4555 
4556 /// ParseDIImportedEntity:
4557 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
4558 ///                         line: 7, name: "foo")
4559 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
4560 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4561   REQUIRED(tag, DwarfTagField, );                                              \
4562   REQUIRED(scope, MDField, );                                                  \
4563   OPTIONAL(entity, MDField, );                                                 \
4564   OPTIONAL(file, MDField, );                                                   \
4565   OPTIONAL(line, LineField, );                                                 \
4566   OPTIONAL(name, MDStringField, );
4567   PARSE_MD_FIELDS();
4568 #undef VISIT_MD_FIELDS
4569 
4570   Result = GET_OR_DISTINCT(
4571       DIImportedEntity,
4572       (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
4573   return false;
4574 }
4575 
4576 #undef PARSE_MD_FIELD
4577 #undef NOP_FIELD
4578 #undef REQUIRE_FIELD
4579 #undef DECLARE_FIELD
4580 
4581 /// ParseMetadataAsValue
4582 ///  ::= metadata i32 %local
4583 ///  ::= metadata i32 @global
4584 ///  ::= metadata i32 7
4585 ///  ::= metadata !0
4586 ///  ::= metadata !{...}
4587 ///  ::= metadata !"string"
4588 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
4589   // Note: the type 'metadata' has already been parsed.
4590   Metadata *MD;
4591   if (ParseMetadata(MD, &PFS))
4592     return true;
4593 
4594   V = MetadataAsValue::get(Context, MD);
4595   return false;
4596 }
4597 
4598 /// ParseValueAsMetadata
4599 ///  ::= i32 %local
4600 ///  ::= i32 @global
4601 ///  ::= i32 7
4602 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
4603                                     PerFunctionState *PFS) {
4604   Type *Ty;
4605   LocTy Loc;
4606   if (ParseType(Ty, TypeMsg, Loc))
4607     return true;
4608   if (Ty->isMetadataTy())
4609     return Error(Loc, "invalid metadata-value-metadata roundtrip");
4610 
4611   Value *V;
4612   if (ParseValue(Ty, V, PFS))
4613     return true;
4614 
4615   MD = ValueAsMetadata::get(V);
4616   return false;
4617 }
4618 
4619 /// ParseMetadata
4620 ///  ::= i32 %local
4621 ///  ::= i32 @global
4622 ///  ::= i32 7
4623 ///  ::= !42
4624 ///  ::= !{...}
4625 ///  ::= !"string"
4626 ///  ::= !DILocation(...)
4627 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
4628   if (Lex.getKind() == lltok::MetadataVar) {
4629     MDNode *N;
4630     if (ParseSpecializedMDNode(N))
4631       return true;
4632     MD = N;
4633     return false;
4634   }
4635 
4636   // ValueAsMetadata:
4637   // <type> <value>
4638   if (Lex.getKind() != lltok::exclaim)
4639     return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
4640 
4641   // '!'.
4642   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
4643   Lex.Lex();
4644 
4645   // MDString:
4646   //   ::= '!' STRINGCONSTANT
4647   if (Lex.getKind() == lltok::StringConstant) {
4648     MDString *S;
4649     if (ParseMDString(S))
4650       return true;
4651     MD = S;
4652     return false;
4653   }
4654 
4655   // MDNode:
4656   // !{ ... }
4657   // !7
4658   MDNode *N;
4659   if (ParseMDNodeTail(N))
4660     return true;
4661   MD = N;
4662   return false;
4663 }
4664 
4665 //===----------------------------------------------------------------------===//
4666 // Function Parsing.
4667 //===----------------------------------------------------------------------===//
4668 
4669 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
4670                                    PerFunctionState *PFS) {
4671   if (Ty->isFunctionTy())
4672     return Error(ID.Loc, "functions are not values, refer to them as pointers");
4673 
4674   switch (ID.Kind) {
4675   case ValID::t_LocalID:
4676     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
4677     V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
4678     return V == nullptr;
4679   case ValID::t_LocalName:
4680     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
4681     V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
4682     return V == nullptr;
4683   case ValID::t_InlineAsm: {
4684     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
4685       return Error(ID.Loc, "invalid type for inline asm constraint string");
4686     V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
4687                        (ID.UIntVal >> 1) & 1,
4688                        (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
4689     return false;
4690   }
4691   case ValID::t_GlobalName:
4692     V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
4693     return V == nullptr;
4694   case ValID::t_GlobalID:
4695     V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
4696     return V == nullptr;
4697   case ValID::t_APSInt:
4698     if (!Ty->isIntegerTy())
4699       return Error(ID.Loc, "integer constant must have integer type");
4700     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
4701     V = ConstantInt::get(Context, ID.APSIntVal);
4702     return false;
4703   case ValID::t_APFloat:
4704     if (!Ty->isFloatingPointTy() ||
4705         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
4706       return Error(ID.Loc, "floating point constant invalid for type");
4707 
4708     // The lexer has no type info, so builds all half, float, and double FP
4709     // constants as double.  Fix this here.  Long double does not need this.
4710     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
4711       bool Ignored;
4712       if (Ty->isHalfTy())
4713         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
4714                               &Ignored);
4715       else if (Ty->isFloatTy())
4716         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
4717                               &Ignored);
4718     }
4719     V = ConstantFP::get(Context, ID.APFloatVal);
4720 
4721     if (V->getType() != Ty)
4722       return Error(ID.Loc, "floating point constant does not have type '" +
4723                    getTypeString(Ty) + "'");
4724 
4725     return false;
4726   case ValID::t_Null:
4727     if (!Ty->isPointerTy())
4728       return Error(ID.Loc, "null must be a pointer type");
4729     V = ConstantPointerNull::get(cast<PointerType>(Ty));
4730     return false;
4731   case ValID::t_Undef:
4732     // FIXME: LabelTy should not be a first-class type.
4733     if (!Ty->isFirstClassType() || Ty->isLabelTy())
4734       return Error(ID.Loc, "invalid type for undef constant");
4735     V = UndefValue::get(Ty);
4736     return false;
4737   case ValID::t_EmptyArray:
4738     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
4739       return Error(ID.Loc, "invalid empty array initializer");
4740     V = UndefValue::get(Ty);
4741     return false;
4742   case ValID::t_Zero:
4743     // FIXME: LabelTy should not be a first-class type.
4744     if (!Ty->isFirstClassType() || Ty->isLabelTy())
4745       return Error(ID.Loc, "invalid type for null constant");
4746     V = Constant::getNullValue(Ty);
4747     return false;
4748   case ValID::t_None:
4749     if (!Ty->isTokenTy())
4750       return Error(ID.Loc, "invalid type for none constant");
4751     V = Constant::getNullValue(Ty);
4752     return false;
4753   case ValID::t_Constant:
4754     if (ID.ConstantVal->getType() != Ty)
4755       return Error(ID.Loc, "constant expression type mismatch");
4756 
4757     V = ID.ConstantVal;
4758     return false;
4759   case ValID::t_ConstantStruct:
4760   case ValID::t_PackedConstantStruct:
4761     if (StructType *ST = dyn_cast<StructType>(Ty)) {
4762       if (ST->getNumElements() != ID.UIntVal)
4763         return Error(ID.Loc,
4764                      "initializer with struct type has wrong # elements");
4765       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
4766         return Error(ID.Loc, "packed'ness of initializer and type don't match");
4767 
4768       // Verify that the elements are compatible with the structtype.
4769       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
4770         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
4771           return Error(ID.Loc, "element " + Twine(i) +
4772                     " of struct initializer doesn't match struct element type");
4773 
4774       V = ConstantStruct::get(
4775           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
4776     } else
4777       return Error(ID.Loc, "constant expression type mismatch");
4778     return false;
4779   }
4780   llvm_unreachable("Invalid ValID");
4781 }
4782 
4783 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
4784   C = nullptr;
4785   ValID ID;
4786   auto Loc = Lex.getLoc();
4787   if (ParseValID(ID, /*PFS=*/nullptr))
4788     return true;
4789   switch (ID.Kind) {
4790   case ValID::t_APSInt:
4791   case ValID::t_APFloat:
4792   case ValID::t_Undef:
4793   case ValID::t_Constant:
4794   case ValID::t_ConstantStruct:
4795   case ValID::t_PackedConstantStruct: {
4796     Value *V;
4797     if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr))
4798       return true;
4799     assert(isa<Constant>(V) && "Expected a constant value");
4800     C = cast<Constant>(V);
4801     return false;
4802   }
4803   case ValID::t_Null:
4804     C = Constant::getNullValue(Ty);
4805     return false;
4806   default:
4807     return Error(Loc, "expected a constant value");
4808   }
4809 }
4810 
4811 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
4812   V = nullptr;
4813   ValID ID;
4814   return ParseValID(ID, PFS) || ConvertValIDToValue(Ty, ID, V, PFS);
4815 }
4816 
4817 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
4818   Type *Ty = nullptr;
4819   return ParseType(Ty) ||
4820          ParseValue(Ty, V, PFS);
4821 }
4822 
4823 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
4824                                       PerFunctionState &PFS) {
4825   Value *V;
4826   Loc = Lex.getLoc();
4827   if (ParseTypeAndValue(V, PFS)) return true;
4828   if (!isa<BasicBlock>(V))
4829     return Error(Loc, "expected a basic block");
4830   BB = cast<BasicBlock>(V);
4831   return false;
4832 }
4833 
4834 /// FunctionHeader
4835 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
4836 ///       OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
4837 ///       '(' ArgList ')' OptFuncAttrs OptSection OptionalAlign OptGC
4838 ///       OptionalPrefix OptionalPrologue OptPersonalityFn
4839 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
4840   // Parse the linkage.
4841   LocTy LinkageLoc = Lex.getLoc();
4842   unsigned Linkage;
4843   unsigned Visibility;
4844   unsigned DLLStorageClass;
4845   bool DSOLocal;
4846   AttrBuilder RetAttrs;
4847   unsigned CC;
4848   bool HasLinkage;
4849   Type *RetType = nullptr;
4850   LocTy RetTypeLoc = Lex.getLoc();
4851   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
4852                            DSOLocal) ||
4853       ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
4854       ParseType(RetType, RetTypeLoc, true /*void allowed*/))
4855     return true;
4856 
4857   // Verify that the linkage is ok.
4858   switch ((GlobalValue::LinkageTypes)Linkage) {
4859   case GlobalValue::ExternalLinkage:
4860     break; // always ok.
4861   case GlobalValue::ExternalWeakLinkage:
4862     if (isDefine)
4863       return Error(LinkageLoc, "invalid linkage for function definition");
4864     break;
4865   case GlobalValue::PrivateLinkage:
4866   case GlobalValue::InternalLinkage:
4867   case GlobalValue::AvailableExternallyLinkage:
4868   case GlobalValue::LinkOnceAnyLinkage:
4869   case GlobalValue::LinkOnceODRLinkage:
4870   case GlobalValue::WeakAnyLinkage:
4871   case GlobalValue::WeakODRLinkage:
4872     if (!isDefine)
4873       return Error(LinkageLoc, "invalid linkage for function declaration");
4874     break;
4875   case GlobalValue::AppendingLinkage:
4876   case GlobalValue::CommonLinkage:
4877     return Error(LinkageLoc, "invalid function linkage type");
4878   }
4879 
4880   if (!isValidVisibilityForLinkage(Visibility, Linkage))
4881     return Error(LinkageLoc,
4882                  "symbol with local linkage must have default visibility");
4883 
4884   if (!FunctionType::isValidReturnType(RetType))
4885     return Error(RetTypeLoc, "invalid function return type");
4886 
4887   LocTy NameLoc = Lex.getLoc();
4888 
4889   std::string FunctionName;
4890   if (Lex.getKind() == lltok::GlobalVar) {
4891     FunctionName = Lex.getStrVal();
4892   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
4893     unsigned NameID = Lex.getUIntVal();
4894 
4895     if (NameID != NumberedVals.size())
4896       return TokError("function expected to be numbered '%" +
4897                       Twine(NumberedVals.size()) + "'");
4898   } else {
4899     return TokError("expected function name");
4900   }
4901 
4902   Lex.Lex();
4903 
4904   if (Lex.getKind() != lltok::lparen)
4905     return TokError("expected '(' in function argument list");
4906 
4907   SmallVector<ArgInfo, 8> ArgList;
4908   bool isVarArg;
4909   AttrBuilder FuncAttrs;
4910   std::vector<unsigned> FwdRefAttrGrps;
4911   LocTy BuiltinLoc;
4912   std::string Section;
4913   unsigned Alignment;
4914   std::string GC;
4915   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4916   Constant *Prefix = nullptr;
4917   Constant *Prologue = nullptr;
4918   Constant *PersonalityFn = nullptr;
4919   Comdat *C;
4920 
4921   if (ParseArgumentList(ArgList, isVarArg) ||
4922       ParseOptionalUnnamedAddr(UnnamedAddr) ||
4923       ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
4924                                  BuiltinLoc) ||
4925       (EatIfPresent(lltok::kw_section) &&
4926        ParseStringConstant(Section)) ||
4927       parseOptionalComdat(FunctionName, C) ||
4928       ParseOptionalAlignment(Alignment) ||
4929       (EatIfPresent(lltok::kw_gc) &&
4930        ParseStringConstant(GC)) ||
4931       (EatIfPresent(lltok::kw_prefix) &&
4932        ParseGlobalTypeAndValue(Prefix)) ||
4933       (EatIfPresent(lltok::kw_prologue) &&
4934        ParseGlobalTypeAndValue(Prologue)) ||
4935       (EatIfPresent(lltok::kw_personality) &&
4936        ParseGlobalTypeAndValue(PersonalityFn)))
4937     return true;
4938 
4939   if (FuncAttrs.contains(Attribute::Builtin))
4940     return Error(BuiltinLoc, "'builtin' attribute not valid on function");
4941 
4942   // If the alignment was parsed as an attribute, move to the alignment field.
4943   if (FuncAttrs.hasAlignmentAttr()) {
4944     Alignment = FuncAttrs.getAlignment();
4945     FuncAttrs.removeAttribute(Attribute::Alignment);
4946   }
4947 
4948   // Okay, if we got here, the function is syntactically valid.  Convert types
4949   // and do semantic checks.
4950   std::vector<Type*> ParamTypeList;
4951   SmallVector<AttributeSet, 8> Attrs;
4952 
4953   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
4954     ParamTypeList.push_back(ArgList[i].Ty);
4955     Attrs.push_back(ArgList[i].Attrs);
4956   }
4957 
4958   AttributeList PAL =
4959       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
4960                          AttributeSet::get(Context, RetAttrs), Attrs);
4961 
4962   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
4963     return Error(RetTypeLoc, "functions with 'sret' argument must return void");
4964 
4965   FunctionType *FT =
4966     FunctionType::get(RetType, ParamTypeList, isVarArg);
4967   PointerType *PFT = PointerType::getUnqual(FT);
4968 
4969   Fn = nullptr;
4970   if (!FunctionName.empty()) {
4971     // If this was a definition of a forward reference, remove the definition
4972     // from the forward reference table and fill in the forward ref.
4973     auto FRVI = ForwardRefVals.find(FunctionName);
4974     if (FRVI != ForwardRefVals.end()) {
4975       Fn = M->getFunction(FunctionName);
4976       if (!Fn)
4977         return Error(FRVI->second.second, "invalid forward reference to "
4978                      "function as global value!");
4979       if (Fn->getType() != PFT)
4980         return Error(FRVI->second.second, "invalid forward reference to "
4981                      "function '" + FunctionName + "' with wrong type!");
4982 
4983       ForwardRefVals.erase(FRVI);
4984     } else if ((Fn = M->getFunction(FunctionName))) {
4985       // Reject redefinitions.
4986       return Error(NameLoc, "invalid redefinition of function '" +
4987                    FunctionName + "'");
4988     } else if (M->getNamedValue(FunctionName)) {
4989       return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
4990     }
4991 
4992   } else {
4993     // If this is a definition of a forward referenced function, make sure the
4994     // types agree.
4995     auto I = ForwardRefValIDs.find(NumberedVals.size());
4996     if (I != ForwardRefValIDs.end()) {
4997       Fn = cast<Function>(I->second.first);
4998       if (Fn->getType() != PFT)
4999         return Error(NameLoc, "type of definition and forward reference of '@" +
5000                      Twine(NumberedVals.size()) + "' disagree");
5001       ForwardRefValIDs.erase(I);
5002     }
5003   }
5004 
5005   if (!Fn)
5006     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
5007   else // Move the forward-reference to the correct spot in the module.
5008     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
5009 
5010   if (FunctionName.empty())
5011     NumberedVals.push_back(Fn);
5012 
5013   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5014   maybeSetDSOLocal(DSOLocal, *Fn);
5015   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5016   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5017   Fn->setCallingConv(CC);
5018   Fn->setAttributes(PAL);
5019   Fn->setUnnamedAddr(UnnamedAddr);
5020   Fn->setAlignment(Alignment);
5021   Fn->setSection(Section);
5022   Fn->setComdat(C);
5023   Fn->setPersonalityFn(PersonalityFn);
5024   if (!GC.empty()) Fn->setGC(GC);
5025   Fn->setPrefixData(Prefix);
5026   Fn->setPrologueData(Prologue);
5027   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5028 
5029   // Add all of the arguments we parsed to the function.
5030   Function::arg_iterator ArgIt = Fn->arg_begin();
5031   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5032     // If the argument has a name, insert it into the argument symbol table.
5033     if (ArgList[i].Name.empty()) continue;
5034 
5035     // Set the name, if it conflicted, it will be auto-renamed.
5036     ArgIt->setName(ArgList[i].Name);
5037 
5038     if (ArgIt->getName() != ArgList[i].Name)
5039       return Error(ArgList[i].Loc, "redefinition of argument '%" +
5040                    ArgList[i].Name + "'");
5041   }
5042 
5043   if (isDefine)
5044     return false;
5045 
5046   // Check the declaration has no block address forward references.
5047   ValID ID;
5048   if (FunctionName.empty()) {
5049     ID.Kind = ValID::t_GlobalID;
5050     ID.UIntVal = NumberedVals.size() - 1;
5051   } else {
5052     ID.Kind = ValID::t_GlobalName;
5053     ID.StrVal = FunctionName;
5054   }
5055   auto Blocks = ForwardRefBlockAddresses.find(ID);
5056   if (Blocks != ForwardRefBlockAddresses.end())
5057     return Error(Blocks->first.Loc,
5058                  "cannot take blockaddress inside a declaration");
5059   return false;
5060 }
5061 
5062 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5063   ValID ID;
5064   if (FunctionNumber == -1) {
5065     ID.Kind = ValID::t_GlobalName;
5066     ID.StrVal = F.getName();
5067   } else {
5068     ID.Kind = ValID::t_GlobalID;
5069     ID.UIntVal = FunctionNumber;
5070   }
5071 
5072   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
5073   if (Blocks == P.ForwardRefBlockAddresses.end())
5074     return false;
5075 
5076   for (const auto &I : Blocks->second) {
5077     const ValID &BBID = I.first;
5078     GlobalValue *GV = I.second;
5079 
5080     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
5081            "Expected local id or name");
5082     BasicBlock *BB;
5083     if (BBID.Kind == ValID::t_LocalName)
5084       BB = GetBB(BBID.StrVal, BBID.Loc);
5085     else
5086       BB = GetBB(BBID.UIntVal, BBID.Loc);
5087     if (!BB)
5088       return P.Error(BBID.Loc, "referenced value is not a basic block");
5089 
5090     GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
5091     GV->eraseFromParent();
5092   }
5093 
5094   P.ForwardRefBlockAddresses.erase(Blocks);
5095   return false;
5096 }
5097 
5098 /// ParseFunctionBody
5099 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
5100 bool LLParser::ParseFunctionBody(Function &Fn) {
5101   if (Lex.getKind() != lltok::lbrace)
5102     return TokError("expected '{' in function body");
5103   Lex.Lex();  // eat the {.
5104 
5105   int FunctionNumber = -1;
5106   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
5107 
5108   PerFunctionState PFS(*this, Fn, FunctionNumber);
5109 
5110   // Resolve block addresses and allow basic blocks to be forward-declared
5111   // within this function.
5112   if (PFS.resolveForwardRefBlockAddresses())
5113     return true;
5114   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
5115 
5116   // We need at least one basic block.
5117   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
5118     return TokError("function body requires at least one basic block");
5119 
5120   while (Lex.getKind() != lltok::rbrace &&
5121          Lex.getKind() != lltok::kw_uselistorder)
5122     if (ParseBasicBlock(PFS)) return true;
5123 
5124   while (Lex.getKind() != lltok::rbrace)
5125     if (ParseUseListOrder(&PFS))
5126       return true;
5127 
5128   // Eat the }.
5129   Lex.Lex();
5130 
5131   // Verify function is ok.
5132   return PFS.FinishFunction();
5133 }
5134 
5135 /// ParseBasicBlock
5136 ///   ::= LabelStr? Instruction*
5137 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
5138   // If this basic block starts out with a name, remember it.
5139   std::string Name;
5140   LocTy NameLoc = Lex.getLoc();
5141   if (Lex.getKind() == lltok::LabelStr) {
5142     Name = Lex.getStrVal();
5143     Lex.Lex();
5144   }
5145 
5146   BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
5147   if (!BB)
5148     return Error(NameLoc,
5149                  "unable to create block named '" + Name + "'");
5150 
5151   std::string NameStr;
5152 
5153   // Parse the instructions in this block until we get a terminator.
5154   Instruction *Inst;
5155   do {
5156     // This instruction may have three possibilities for a name: a) none
5157     // specified, b) name specified "%foo =", c) number specified: "%4 =".
5158     LocTy NameLoc = Lex.getLoc();
5159     int NameID = -1;
5160     NameStr = "";
5161 
5162     if (Lex.getKind() == lltok::LocalVarID) {
5163       NameID = Lex.getUIntVal();
5164       Lex.Lex();
5165       if (ParseToken(lltok::equal, "expected '=' after instruction id"))
5166         return true;
5167     } else if (Lex.getKind() == lltok::LocalVar) {
5168       NameStr = Lex.getStrVal();
5169       Lex.Lex();
5170       if (ParseToken(lltok::equal, "expected '=' after instruction name"))
5171         return true;
5172     }
5173 
5174     switch (ParseInstruction(Inst, BB, PFS)) {
5175     default: llvm_unreachable("Unknown ParseInstruction result!");
5176     case InstError: return true;
5177     case InstNormal:
5178       BB->getInstList().push_back(Inst);
5179 
5180       // With a normal result, we check to see if the instruction is followed by
5181       // a comma and metadata.
5182       if (EatIfPresent(lltok::comma))
5183         if (ParseInstructionMetadata(*Inst))
5184           return true;
5185       break;
5186     case InstExtraComma:
5187       BB->getInstList().push_back(Inst);
5188 
5189       // If the instruction parser ate an extra comma at the end of it, it
5190       // *must* be followed by metadata.
5191       if (ParseInstructionMetadata(*Inst))
5192         return true;
5193       break;
5194     }
5195 
5196     // Set the name on the instruction.
5197     if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
5198   } while (!isa<TerminatorInst>(Inst));
5199 
5200   return false;
5201 }
5202 
5203 //===----------------------------------------------------------------------===//
5204 // Instruction Parsing.
5205 //===----------------------------------------------------------------------===//
5206 
5207 /// ParseInstruction - Parse one of the many different instructions.
5208 ///
5209 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
5210                                PerFunctionState &PFS) {
5211   lltok::Kind Token = Lex.getKind();
5212   if (Token == lltok::Eof)
5213     return TokError("found end of file when expecting more instructions");
5214   LocTy Loc = Lex.getLoc();
5215   unsigned KeywordVal = Lex.getUIntVal();
5216   Lex.Lex();  // Eat the keyword.
5217 
5218   switch (Token) {
5219   default:                    return Error(Loc, "expected instruction opcode");
5220   // Terminator Instructions.
5221   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
5222   case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
5223   case lltok::kw_br:          return ParseBr(Inst, PFS);
5224   case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
5225   case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
5226   case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
5227   case lltok::kw_resume:      return ParseResume(Inst, PFS);
5228   case lltok::kw_cleanupret:  return ParseCleanupRet(Inst, PFS);
5229   case lltok::kw_catchret:    return ParseCatchRet(Inst, PFS);
5230   case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS);
5231   case lltok::kw_catchpad:    return ParseCatchPad(Inst, PFS);
5232   case lltok::kw_cleanuppad:  return ParseCleanupPad(Inst, PFS);
5233   // Binary Operators.
5234   case lltok::kw_add:
5235   case lltok::kw_sub:
5236   case lltok::kw_mul:
5237   case lltok::kw_shl: {
5238     bool NUW = EatIfPresent(lltok::kw_nuw);
5239     bool NSW = EatIfPresent(lltok::kw_nsw);
5240     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
5241 
5242     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
5243 
5244     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
5245     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
5246     return false;
5247   }
5248   case lltok::kw_fadd:
5249   case lltok::kw_fsub:
5250   case lltok::kw_fmul:
5251   case lltok::kw_fdiv:
5252   case lltok::kw_frem: {
5253     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5254     int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2);
5255     if (Res != 0)
5256       return Res;
5257     if (FMF.any())
5258       Inst->setFastMathFlags(FMF);
5259     return 0;
5260   }
5261 
5262   case lltok::kw_sdiv:
5263   case lltok::kw_udiv:
5264   case lltok::kw_lshr:
5265   case lltok::kw_ashr: {
5266     bool Exact = EatIfPresent(lltok::kw_exact);
5267 
5268     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
5269     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
5270     return false;
5271   }
5272 
5273   case lltok::kw_urem:
5274   case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
5275   case lltok::kw_and:
5276   case lltok::kw_or:
5277   case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
5278   case lltok::kw_icmp:   return ParseCompare(Inst, PFS, KeywordVal);
5279   case lltok::kw_fcmp: {
5280     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5281     int Res = ParseCompare(Inst, PFS, KeywordVal);
5282     if (Res != 0)
5283       return Res;
5284     if (FMF.any())
5285       Inst->setFastMathFlags(FMF);
5286     return 0;
5287   }
5288 
5289   // Casts.
5290   case lltok::kw_trunc:
5291   case lltok::kw_zext:
5292   case lltok::kw_sext:
5293   case lltok::kw_fptrunc:
5294   case lltok::kw_fpext:
5295   case lltok::kw_bitcast:
5296   case lltok::kw_addrspacecast:
5297   case lltok::kw_uitofp:
5298   case lltok::kw_sitofp:
5299   case lltok::kw_fptoui:
5300   case lltok::kw_fptosi:
5301   case lltok::kw_inttoptr:
5302   case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
5303   // Other.
5304   case lltok::kw_select:         return ParseSelect(Inst, PFS);
5305   case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
5306   case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
5307   case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
5308   case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
5309   case lltok::kw_phi:            return ParsePHI(Inst, PFS);
5310   case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
5311   // Call.
5312   case lltok::kw_call:     return ParseCall(Inst, PFS, CallInst::TCK_None);
5313   case lltok::kw_tail:     return ParseCall(Inst, PFS, CallInst::TCK_Tail);
5314   case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail);
5315   case lltok::kw_notail:   return ParseCall(Inst, PFS, CallInst::TCK_NoTail);
5316   // Memory.
5317   case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
5318   case lltok::kw_load:           return ParseLoad(Inst, PFS);
5319   case lltok::kw_store:          return ParseStore(Inst, PFS);
5320   case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
5321   case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
5322   case lltok::kw_fence:          return ParseFence(Inst, PFS);
5323   case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
5324   case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
5325   case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
5326   }
5327 }
5328 
5329 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
5330 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
5331   if (Opc == Instruction::FCmp) {
5332     switch (Lex.getKind()) {
5333     default: return TokError("expected fcmp predicate (e.g. 'oeq')");
5334     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
5335     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
5336     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
5337     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
5338     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
5339     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
5340     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
5341     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
5342     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
5343     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
5344     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
5345     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
5346     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
5347     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
5348     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
5349     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
5350     }
5351   } else {
5352     switch (Lex.getKind()) {
5353     default: return TokError("expected icmp predicate (e.g. 'eq')");
5354     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
5355     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
5356     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
5357     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
5358     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
5359     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
5360     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
5361     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
5362     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
5363     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
5364     }
5365   }
5366   Lex.Lex();
5367   return false;
5368 }
5369 
5370 //===----------------------------------------------------------------------===//
5371 // Terminator Instructions.
5372 //===----------------------------------------------------------------------===//
5373 
5374 /// ParseRet - Parse a return instruction.
5375 ///   ::= 'ret' void (',' !dbg, !1)*
5376 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
5377 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
5378                         PerFunctionState &PFS) {
5379   SMLoc TypeLoc = Lex.getLoc();
5380   Type *Ty = nullptr;
5381   if (ParseType(Ty, true /*void allowed*/)) return true;
5382 
5383   Type *ResType = PFS.getFunction().getReturnType();
5384 
5385   if (Ty->isVoidTy()) {
5386     if (!ResType->isVoidTy())
5387       return Error(TypeLoc, "value doesn't match function result type '" +
5388                    getTypeString(ResType) + "'");
5389 
5390     Inst = ReturnInst::Create(Context);
5391     return false;
5392   }
5393 
5394   Value *RV;
5395   if (ParseValue(Ty, RV, PFS)) return true;
5396 
5397   if (ResType != RV->getType())
5398     return Error(TypeLoc, "value doesn't match function result type '" +
5399                  getTypeString(ResType) + "'");
5400 
5401   Inst = ReturnInst::Create(Context, RV);
5402   return false;
5403 }
5404 
5405 /// ParseBr
5406 ///   ::= 'br' TypeAndValue
5407 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5408 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
5409   LocTy Loc, Loc2;
5410   Value *Op0;
5411   BasicBlock *Op1, *Op2;
5412   if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
5413 
5414   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
5415     Inst = BranchInst::Create(BB);
5416     return false;
5417   }
5418 
5419   if (Op0->getType() != Type::getInt1Ty(Context))
5420     return Error(Loc, "branch condition must have 'i1' type");
5421 
5422   if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
5423       ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
5424       ParseToken(lltok::comma, "expected ',' after true destination") ||
5425       ParseTypeAndBasicBlock(Op2, Loc2, PFS))
5426     return true;
5427 
5428   Inst = BranchInst::Create(Op1, Op2, Op0);
5429   return false;
5430 }
5431 
5432 /// ParseSwitch
5433 ///  Instruction
5434 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
5435 ///  JumpTable
5436 ///    ::= (TypeAndValue ',' TypeAndValue)*
5437 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5438   LocTy CondLoc, BBLoc;
5439   Value *Cond;
5440   BasicBlock *DefaultBB;
5441   if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
5442       ParseToken(lltok::comma, "expected ',' after switch condition") ||
5443       ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
5444       ParseToken(lltok::lsquare, "expected '[' with switch table"))
5445     return true;
5446 
5447   if (!Cond->getType()->isIntegerTy())
5448     return Error(CondLoc, "switch condition must have integer type");
5449 
5450   // Parse the jump table pairs.
5451   SmallPtrSet<Value*, 32> SeenCases;
5452   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
5453   while (Lex.getKind() != lltok::rsquare) {
5454     Value *Constant;
5455     BasicBlock *DestBB;
5456 
5457     if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
5458         ParseToken(lltok::comma, "expected ',' after case value") ||
5459         ParseTypeAndBasicBlock(DestBB, PFS))
5460       return true;
5461 
5462     if (!SeenCases.insert(Constant).second)
5463       return Error(CondLoc, "duplicate case value in switch");
5464     if (!isa<ConstantInt>(Constant))
5465       return Error(CondLoc, "case value is not a constant integer");
5466 
5467     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
5468   }
5469 
5470   Lex.Lex();  // Eat the ']'.
5471 
5472   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
5473   for (unsigned i = 0, e = Table.size(); i != e; ++i)
5474     SI->addCase(Table[i].first, Table[i].second);
5475   Inst = SI;
5476   return false;
5477 }
5478 
5479 /// ParseIndirectBr
5480 ///  Instruction
5481 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
5482 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
5483   LocTy AddrLoc;
5484   Value *Address;
5485   if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
5486       ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
5487       ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
5488     return true;
5489 
5490   if (!Address->getType()->isPointerTy())
5491     return Error(AddrLoc, "indirectbr address must have pointer type");
5492 
5493   // Parse the destination list.
5494   SmallVector<BasicBlock*, 16> DestList;
5495 
5496   if (Lex.getKind() != lltok::rsquare) {
5497     BasicBlock *DestBB;
5498     if (ParseTypeAndBasicBlock(DestBB, PFS))
5499       return true;
5500     DestList.push_back(DestBB);
5501 
5502     while (EatIfPresent(lltok::comma)) {
5503       if (ParseTypeAndBasicBlock(DestBB, PFS))
5504         return true;
5505       DestList.push_back(DestBB);
5506     }
5507   }
5508 
5509   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
5510     return true;
5511 
5512   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
5513   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
5514     IBI->addDestination(DestList[i]);
5515   Inst = IBI;
5516   return false;
5517 }
5518 
5519 /// ParseInvoke
5520 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
5521 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
5522 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
5523   LocTy CallLoc = Lex.getLoc();
5524   AttrBuilder RetAttrs, FnAttrs;
5525   std::vector<unsigned> FwdRefAttrGrps;
5526   LocTy NoBuiltinLoc;
5527   unsigned CC;
5528   Type *RetType = nullptr;
5529   LocTy RetTypeLoc;
5530   ValID CalleeID;
5531   SmallVector<ParamInfo, 16> ArgList;
5532   SmallVector<OperandBundleDef, 2> BundleList;
5533 
5534   BasicBlock *NormalBB, *UnwindBB;
5535   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5536       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
5537       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
5538       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
5539                                  NoBuiltinLoc) ||
5540       ParseOptionalOperandBundles(BundleList, PFS) ||
5541       ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
5542       ParseTypeAndBasicBlock(NormalBB, PFS) ||
5543       ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
5544       ParseTypeAndBasicBlock(UnwindBB, PFS))
5545     return true;
5546 
5547   // If RetType is a non-function pointer type, then this is the short syntax
5548   // for the call, which means that RetType is just the return type.  Infer the
5549   // rest of the function argument types from the arguments that are present.
5550   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
5551   if (!Ty) {
5552     // Pull out the types of all of the arguments...
5553     std::vector<Type*> ParamTypes;
5554     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
5555       ParamTypes.push_back(ArgList[i].V->getType());
5556 
5557     if (!FunctionType::isValidReturnType(RetType))
5558       return Error(RetTypeLoc, "Invalid result type for LLVM function");
5559 
5560     Ty = FunctionType::get(RetType, ParamTypes, false);
5561   }
5562 
5563   CalleeID.FTy = Ty;
5564 
5565   // Look up the callee.
5566   Value *Callee;
5567   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS))
5568     return true;
5569 
5570   // Set up the Attribute for the function.
5571   SmallVector<Value *, 8> Args;
5572   SmallVector<AttributeSet, 8> ArgAttrs;
5573 
5574   // Loop through FunctionType's arguments and ensure they are specified
5575   // correctly.  Also, gather any parameter attributes.
5576   FunctionType::param_iterator I = Ty->param_begin();
5577   FunctionType::param_iterator E = Ty->param_end();
5578   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5579     Type *ExpectedTy = nullptr;
5580     if (I != E) {
5581       ExpectedTy = *I++;
5582     } else if (!Ty->isVarArg()) {
5583       return Error(ArgList[i].Loc, "too many arguments specified");
5584     }
5585 
5586     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
5587       return Error(ArgList[i].Loc, "argument is not of expected type '" +
5588                    getTypeString(ExpectedTy) + "'");
5589     Args.push_back(ArgList[i].V);
5590     ArgAttrs.push_back(ArgList[i].Attrs);
5591   }
5592 
5593   if (I != E)
5594     return Error(CallLoc, "not enough parameters specified for call");
5595 
5596   if (FnAttrs.hasAlignmentAttr())
5597     return Error(CallLoc, "invoke instructions may not have an alignment");
5598 
5599   // Finish off the Attribute and check them
5600   AttributeList PAL =
5601       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
5602                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
5603 
5604   InvokeInst *II =
5605       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
5606   II->setCallingConv(CC);
5607   II->setAttributes(PAL);
5608   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
5609   Inst = II;
5610   return false;
5611 }
5612 
5613 /// ParseResume
5614 ///   ::= 'resume' TypeAndValue
5615 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
5616   Value *Exn; LocTy ExnLoc;
5617   if (ParseTypeAndValue(Exn, ExnLoc, PFS))
5618     return true;
5619 
5620   ResumeInst *RI = ResumeInst::Create(Exn);
5621   Inst = RI;
5622   return false;
5623 }
5624 
5625 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args,
5626                                   PerFunctionState &PFS) {
5627   if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
5628     return true;
5629 
5630   while (Lex.getKind() != lltok::rsquare) {
5631     // If this isn't the first argument, we need a comma.
5632     if (!Args.empty() &&
5633         ParseToken(lltok::comma, "expected ',' in argument list"))
5634       return true;
5635 
5636     // Parse the argument.
5637     LocTy ArgLoc;
5638     Type *ArgTy = nullptr;
5639     if (ParseType(ArgTy, ArgLoc))
5640       return true;
5641 
5642     Value *V;
5643     if (ArgTy->isMetadataTy()) {
5644       if (ParseMetadataAsValue(V, PFS))
5645         return true;
5646     } else {
5647       if (ParseValue(ArgTy, V, PFS))
5648         return true;
5649     }
5650     Args.push_back(V);
5651   }
5652 
5653   Lex.Lex();  // Lex the ']'.
5654   return false;
5655 }
5656 
5657 /// ParseCleanupRet
5658 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
5659 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
5660   Value *CleanupPad = nullptr;
5661 
5662   if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret"))
5663     return true;
5664 
5665   if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS))
5666     return true;
5667 
5668   if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
5669     return true;
5670 
5671   BasicBlock *UnwindBB = nullptr;
5672   if (Lex.getKind() == lltok::kw_to) {
5673     Lex.Lex();
5674     if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
5675       return true;
5676   } else {
5677     if (ParseTypeAndBasicBlock(UnwindBB, PFS)) {
5678       return true;
5679     }
5680   }
5681 
5682   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
5683   return false;
5684 }
5685 
5686 /// ParseCatchRet
5687 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
5688 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
5689   Value *CatchPad = nullptr;
5690 
5691   if (ParseToken(lltok::kw_from, "expected 'from' after catchret"))
5692     return true;
5693 
5694   if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS))
5695     return true;
5696 
5697   BasicBlock *BB;
5698   if (ParseToken(lltok::kw_to, "expected 'to' in catchret") ||
5699       ParseTypeAndBasicBlock(BB, PFS))
5700       return true;
5701 
5702   Inst = CatchReturnInst::Create(CatchPad, BB);
5703   return false;
5704 }
5705 
5706 /// ParseCatchSwitch
5707 ///   ::= 'catchswitch' within Parent
5708 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5709   Value *ParentPad;
5710 
5711   if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch"))
5712     return true;
5713 
5714   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
5715       Lex.getKind() != lltok::LocalVarID)
5716     return TokError("expected scope value for catchswitch");
5717 
5718   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
5719     return true;
5720 
5721   if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
5722     return true;
5723 
5724   SmallVector<BasicBlock *, 32> Table;
5725   do {
5726     BasicBlock *DestBB;
5727     if (ParseTypeAndBasicBlock(DestBB, PFS))
5728       return true;
5729     Table.push_back(DestBB);
5730   } while (EatIfPresent(lltok::comma));
5731 
5732   if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
5733     return true;
5734 
5735   if (ParseToken(lltok::kw_unwind,
5736                  "expected 'unwind' after catchswitch scope"))
5737     return true;
5738 
5739   BasicBlock *UnwindBB = nullptr;
5740   if (EatIfPresent(lltok::kw_to)) {
5741     if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
5742       return true;
5743   } else {
5744     if (ParseTypeAndBasicBlock(UnwindBB, PFS))
5745       return true;
5746   }
5747 
5748   auto *CatchSwitch =
5749       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
5750   for (BasicBlock *DestBB : Table)
5751     CatchSwitch->addHandler(DestBB);
5752   Inst = CatchSwitch;
5753   return false;
5754 }
5755 
5756 /// ParseCatchPad
5757 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
5758 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
5759   Value *CatchSwitch = nullptr;
5760 
5761   if (ParseToken(lltok::kw_within, "expected 'within' after catchpad"))
5762     return true;
5763 
5764   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
5765     return TokError("expected scope value for catchpad");
5766 
5767   if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
5768     return true;
5769 
5770   SmallVector<Value *, 8> Args;
5771   if (ParseExceptionArgs(Args, PFS))
5772     return true;
5773 
5774   Inst = CatchPadInst::Create(CatchSwitch, Args);
5775   return false;
5776 }
5777 
5778 /// ParseCleanupPad
5779 ///   ::= 'cleanuppad' within Parent ParamList
5780 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
5781   Value *ParentPad = nullptr;
5782 
5783   if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
5784     return true;
5785 
5786   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
5787       Lex.getKind() != lltok::LocalVarID)
5788     return TokError("expected scope value for cleanuppad");
5789 
5790   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
5791     return true;
5792 
5793   SmallVector<Value *, 8> Args;
5794   if (ParseExceptionArgs(Args, PFS))
5795     return true;
5796 
5797   Inst = CleanupPadInst::Create(ParentPad, Args);
5798   return false;
5799 }
5800 
5801 //===----------------------------------------------------------------------===//
5802 // Binary Operators.
5803 //===----------------------------------------------------------------------===//
5804 
5805 /// ParseArithmetic
5806 ///  ::= ArithmeticOps TypeAndValue ',' Value
5807 ///
5808 /// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
5809 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
5810 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
5811                                unsigned Opc, unsigned OperandType) {
5812   LocTy Loc; Value *LHS, *RHS;
5813   if (ParseTypeAndValue(LHS, Loc, PFS) ||
5814       ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
5815       ParseValue(LHS->getType(), RHS, PFS))
5816     return true;
5817 
5818   bool Valid;
5819   switch (OperandType) {
5820   default: llvm_unreachable("Unknown operand type!");
5821   case 0: // int or FP.
5822     Valid = LHS->getType()->isIntOrIntVectorTy() ||
5823             LHS->getType()->isFPOrFPVectorTy();
5824     break;
5825   case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
5826   case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
5827   }
5828 
5829   if (!Valid)
5830     return Error(Loc, "invalid operand type for instruction");
5831 
5832   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
5833   return false;
5834 }
5835 
5836 /// ParseLogical
5837 ///  ::= ArithmeticOps TypeAndValue ',' Value {
5838 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
5839                             unsigned Opc) {
5840   LocTy Loc; Value *LHS, *RHS;
5841   if (ParseTypeAndValue(LHS, Loc, PFS) ||
5842       ParseToken(lltok::comma, "expected ',' in logical operation") ||
5843       ParseValue(LHS->getType(), RHS, PFS))
5844     return true;
5845 
5846   if (!LHS->getType()->isIntOrIntVectorTy())
5847     return Error(Loc,"instruction requires integer or integer vector operands");
5848 
5849   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
5850   return false;
5851 }
5852 
5853 /// ParseCompare
5854 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
5855 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
5856 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
5857                             unsigned Opc) {
5858   // Parse the integer/fp comparison predicate.
5859   LocTy Loc;
5860   unsigned Pred;
5861   Value *LHS, *RHS;
5862   if (ParseCmpPredicate(Pred, Opc) ||
5863       ParseTypeAndValue(LHS, Loc, PFS) ||
5864       ParseToken(lltok::comma, "expected ',' after compare value") ||
5865       ParseValue(LHS->getType(), RHS, PFS))
5866     return true;
5867 
5868   if (Opc == Instruction::FCmp) {
5869     if (!LHS->getType()->isFPOrFPVectorTy())
5870       return Error(Loc, "fcmp requires floating point operands");
5871     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
5872   } else {
5873     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
5874     if (!LHS->getType()->isIntOrIntVectorTy() &&
5875         !LHS->getType()->isPtrOrPtrVectorTy())
5876       return Error(Loc, "icmp requires integer operands");
5877     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
5878   }
5879   return false;
5880 }
5881 
5882 //===----------------------------------------------------------------------===//
5883 // Other Instructions.
5884 //===----------------------------------------------------------------------===//
5885 
5886 
5887 /// ParseCast
5888 ///   ::= CastOpc TypeAndValue 'to' Type
5889 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
5890                          unsigned Opc) {
5891   LocTy Loc;
5892   Value *Op;
5893   Type *DestTy = nullptr;
5894   if (ParseTypeAndValue(Op, Loc, PFS) ||
5895       ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
5896       ParseType(DestTy))
5897     return true;
5898 
5899   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
5900     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
5901     return Error(Loc, "invalid cast opcode for cast from '" +
5902                  getTypeString(Op->getType()) + "' to '" +
5903                  getTypeString(DestTy) + "'");
5904   }
5905   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
5906   return false;
5907 }
5908 
5909 /// ParseSelect
5910 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5911 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
5912   LocTy Loc;
5913   Value *Op0, *Op1, *Op2;
5914   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5915       ParseToken(lltok::comma, "expected ',' after select condition") ||
5916       ParseTypeAndValue(Op1, PFS) ||
5917       ParseToken(lltok::comma, "expected ',' after select value") ||
5918       ParseTypeAndValue(Op2, PFS))
5919     return true;
5920 
5921   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
5922     return Error(Loc, Reason);
5923 
5924   Inst = SelectInst::Create(Op0, Op1, Op2);
5925   return false;
5926 }
5927 
5928 /// ParseVA_Arg
5929 ///   ::= 'va_arg' TypeAndValue ',' Type
5930 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
5931   Value *Op;
5932   Type *EltTy = nullptr;
5933   LocTy TypeLoc;
5934   if (ParseTypeAndValue(Op, PFS) ||
5935       ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
5936       ParseType(EltTy, TypeLoc))
5937     return true;
5938 
5939   if (!EltTy->isFirstClassType())
5940     return Error(TypeLoc, "va_arg requires operand with first class type");
5941 
5942   Inst = new VAArgInst(Op, EltTy);
5943   return false;
5944 }
5945 
5946 /// ParseExtractElement
5947 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
5948 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
5949   LocTy Loc;
5950   Value *Op0, *Op1;
5951   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5952       ParseToken(lltok::comma, "expected ',' after extract value") ||
5953       ParseTypeAndValue(Op1, PFS))
5954     return true;
5955 
5956   if (!ExtractElementInst::isValidOperands(Op0, Op1))
5957     return Error(Loc, "invalid extractelement operands");
5958 
5959   Inst = ExtractElementInst::Create(Op0, Op1);
5960   return false;
5961 }
5962 
5963 /// ParseInsertElement
5964 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5965 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
5966   LocTy Loc;
5967   Value *Op0, *Op1, *Op2;
5968   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5969       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5970       ParseTypeAndValue(Op1, PFS) ||
5971       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5972       ParseTypeAndValue(Op2, PFS))
5973     return true;
5974 
5975   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
5976     return Error(Loc, "invalid insertelement operands");
5977 
5978   Inst = InsertElementInst::Create(Op0, Op1, Op2);
5979   return false;
5980 }
5981 
5982 /// ParseShuffleVector
5983 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5984 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
5985   LocTy Loc;
5986   Value *Op0, *Op1, *Op2;
5987   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5988       ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
5989       ParseTypeAndValue(Op1, PFS) ||
5990       ParseToken(lltok::comma, "expected ',' after shuffle value") ||
5991       ParseTypeAndValue(Op2, PFS))
5992     return true;
5993 
5994   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
5995     return Error(Loc, "invalid shufflevector operands");
5996 
5997   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
5998   return false;
5999 }
6000 
6001 /// ParsePHI
6002 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
6003 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
6004   Type *Ty = nullptr;  LocTy TypeLoc;
6005   Value *Op0, *Op1;
6006 
6007   if (ParseType(Ty, TypeLoc) ||
6008       ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6009       ParseValue(Ty, Op0, PFS) ||
6010       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6011       ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6012       ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6013     return true;
6014 
6015   bool AteExtraComma = false;
6016   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
6017 
6018   while (true) {
6019     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
6020 
6021     if (!EatIfPresent(lltok::comma))
6022       break;
6023 
6024     if (Lex.getKind() == lltok::MetadataVar) {
6025       AteExtraComma = true;
6026       break;
6027     }
6028 
6029     if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6030         ParseValue(Ty, Op0, PFS) ||
6031         ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6032         ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6033         ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6034       return true;
6035   }
6036 
6037   if (!Ty->isFirstClassType())
6038     return Error(TypeLoc, "phi node must have first class type");
6039 
6040   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
6041   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
6042     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
6043   Inst = PN;
6044   return AteExtraComma ? InstExtraComma : InstNormal;
6045 }
6046 
6047 /// ParseLandingPad
6048 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
6049 /// Clause
6050 ///   ::= 'catch' TypeAndValue
6051 ///   ::= 'filter'
6052 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
6053 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
6054   Type *Ty = nullptr; LocTy TyLoc;
6055 
6056   if (ParseType(Ty, TyLoc))
6057     return true;
6058 
6059   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
6060   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
6061 
6062   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
6063     LandingPadInst::ClauseType CT;
6064     if (EatIfPresent(lltok::kw_catch))
6065       CT = LandingPadInst::Catch;
6066     else if (EatIfPresent(lltok::kw_filter))
6067       CT = LandingPadInst::Filter;
6068     else
6069       return TokError("expected 'catch' or 'filter' clause type");
6070 
6071     Value *V;
6072     LocTy VLoc;
6073     if (ParseTypeAndValue(V, VLoc, PFS))
6074       return true;
6075 
6076     // A 'catch' type expects a non-array constant. A filter clause expects an
6077     // array constant.
6078     if (CT == LandingPadInst::Catch) {
6079       if (isa<ArrayType>(V->getType()))
6080         Error(VLoc, "'catch' clause has an invalid type");
6081     } else {
6082       if (!isa<ArrayType>(V->getType()))
6083         Error(VLoc, "'filter' clause has an invalid type");
6084     }
6085 
6086     Constant *CV = dyn_cast<Constant>(V);
6087     if (!CV)
6088       return Error(VLoc, "clause argument must be a constant");
6089     LP->addClause(CV);
6090   }
6091 
6092   Inst = LP.release();
6093   return false;
6094 }
6095 
6096 /// ParseCall
6097 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
6098 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6099 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
6100 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6101 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
6102 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6103 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
6104 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6105 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
6106                          CallInst::TailCallKind TCK) {
6107   AttrBuilder RetAttrs, FnAttrs;
6108   std::vector<unsigned> FwdRefAttrGrps;
6109   LocTy BuiltinLoc;
6110   unsigned CC;
6111   Type *RetType = nullptr;
6112   LocTy RetTypeLoc;
6113   ValID CalleeID;
6114   SmallVector<ParamInfo, 16> ArgList;
6115   SmallVector<OperandBundleDef, 2> BundleList;
6116   LocTy CallLoc = Lex.getLoc();
6117 
6118   if (TCK != CallInst::TCK_None &&
6119       ParseToken(lltok::kw_call,
6120                  "expected 'tail call', 'musttail call', or 'notail call'"))
6121     return true;
6122 
6123   FastMathFlags FMF = EatFastMathFlagsIfPresent();
6124 
6125   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6126       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6127       ParseValID(CalleeID) ||
6128       ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
6129                          PFS.getFunction().isVarArg()) ||
6130       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
6131       ParseOptionalOperandBundles(BundleList, PFS))
6132     return true;
6133 
6134   if (FMF.any() && !RetType->isFPOrFPVectorTy())
6135     return Error(CallLoc, "fast-math-flags specified for call without "
6136                           "floating-point scalar or vector return type");
6137 
6138   // If RetType is a non-function pointer type, then this is the short syntax
6139   // for the call, which means that RetType is just the return type.  Infer the
6140   // rest of the function argument types from the arguments that are present.
6141   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6142   if (!Ty) {
6143     // Pull out the types of all of the arguments...
6144     std::vector<Type*> ParamTypes;
6145     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6146       ParamTypes.push_back(ArgList[i].V->getType());
6147 
6148     if (!FunctionType::isValidReturnType(RetType))
6149       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6150 
6151     Ty = FunctionType::get(RetType, ParamTypes, false);
6152   }
6153 
6154   CalleeID.FTy = Ty;
6155 
6156   // Look up the callee.
6157   Value *Callee;
6158   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS))
6159     return true;
6160 
6161   // Set up the Attribute for the function.
6162   SmallVector<AttributeSet, 8> Attrs;
6163 
6164   SmallVector<Value*, 8> Args;
6165 
6166   // Loop through FunctionType's arguments and ensure they are specified
6167   // correctly.  Also, gather any parameter attributes.
6168   FunctionType::param_iterator I = Ty->param_begin();
6169   FunctionType::param_iterator E = Ty->param_end();
6170   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6171     Type *ExpectedTy = nullptr;
6172     if (I != E) {
6173       ExpectedTy = *I++;
6174     } else if (!Ty->isVarArg()) {
6175       return Error(ArgList[i].Loc, "too many arguments specified");
6176     }
6177 
6178     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6179       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6180                    getTypeString(ExpectedTy) + "'");
6181     Args.push_back(ArgList[i].V);
6182     Attrs.push_back(ArgList[i].Attrs);
6183   }
6184 
6185   if (I != E)
6186     return Error(CallLoc, "not enough parameters specified for call");
6187 
6188   if (FnAttrs.hasAlignmentAttr())
6189     return Error(CallLoc, "call instructions may not have an alignment");
6190 
6191   // Finish off the Attribute and check them
6192   AttributeList PAL =
6193       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6194                          AttributeSet::get(Context, RetAttrs), Attrs);
6195 
6196   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
6197   CI->setTailCallKind(TCK);
6198   CI->setCallingConv(CC);
6199   if (FMF.any())
6200     CI->setFastMathFlags(FMF);
6201   CI->setAttributes(PAL);
6202   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
6203   Inst = CI;
6204   return false;
6205 }
6206 
6207 //===----------------------------------------------------------------------===//
6208 // Memory Instructions.
6209 //===----------------------------------------------------------------------===//
6210 
6211 /// ParseAlloc
6212 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
6213 ///       (',' 'align' i32)? (',', 'addrspace(n))?
6214 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
6215   Value *Size = nullptr;
6216   LocTy SizeLoc, TyLoc, ASLoc;
6217   unsigned Alignment = 0;
6218   unsigned AddrSpace = 0;
6219   Type *Ty = nullptr;
6220 
6221   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
6222   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
6223 
6224   if (ParseType(Ty, TyLoc)) return true;
6225 
6226   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
6227     return Error(TyLoc, "invalid type for alloca");
6228 
6229   bool AteExtraComma = false;
6230   if (EatIfPresent(lltok::comma)) {
6231     if (Lex.getKind() == lltok::kw_align) {
6232       if (ParseOptionalAlignment(Alignment))
6233         return true;
6234       if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6235         return true;
6236     } else if (Lex.getKind() == lltok::kw_addrspace) {
6237       ASLoc = Lex.getLoc();
6238       if (ParseOptionalAddrSpace(AddrSpace))
6239         return true;
6240     } else if (Lex.getKind() == lltok::MetadataVar) {
6241       AteExtraComma = true;
6242     } else {
6243       if (ParseTypeAndValue(Size, SizeLoc, PFS))
6244         return true;
6245       if (EatIfPresent(lltok::comma)) {
6246         if (Lex.getKind() == lltok::kw_align) {
6247           if (ParseOptionalAlignment(Alignment))
6248             return true;
6249           if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6250             return true;
6251         } else if (Lex.getKind() == lltok::kw_addrspace) {
6252           ASLoc = Lex.getLoc();
6253           if (ParseOptionalAddrSpace(AddrSpace))
6254             return true;
6255         } else if (Lex.getKind() == lltok::MetadataVar) {
6256           AteExtraComma = true;
6257         }
6258       }
6259     }
6260   }
6261 
6262   if (Size && !Size->getType()->isIntegerTy())
6263     return Error(SizeLoc, "element count must have integer type");
6264 
6265   AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, Alignment);
6266   AI->setUsedWithInAlloca(IsInAlloca);
6267   AI->setSwiftError(IsSwiftError);
6268   Inst = AI;
6269   return AteExtraComma ? InstExtraComma : InstNormal;
6270 }
6271 
6272 /// ParseLoad
6273 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
6274 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
6275 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
6276 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
6277   Value *Val; LocTy Loc;
6278   unsigned Alignment = 0;
6279   bool AteExtraComma = false;
6280   bool isAtomic = false;
6281   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6282   SyncScope::ID SSID = SyncScope::System;
6283 
6284   if (Lex.getKind() == lltok::kw_atomic) {
6285     isAtomic = true;
6286     Lex.Lex();
6287   }
6288 
6289   bool isVolatile = false;
6290   if (Lex.getKind() == lltok::kw_volatile) {
6291     isVolatile = true;
6292     Lex.Lex();
6293   }
6294 
6295   Type *Ty;
6296   LocTy ExplicitTypeLoc = Lex.getLoc();
6297   if (ParseType(Ty) ||
6298       ParseToken(lltok::comma, "expected comma after load's type") ||
6299       ParseTypeAndValue(Val, Loc, PFS) ||
6300       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
6301       ParseOptionalCommaAlign(Alignment, AteExtraComma))
6302     return true;
6303 
6304   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
6305     return Error(Loc, "load operand must be a pointer to a first class type");
6306   if (isAtomic && !Alignment)
6307     return Error(Loc, "atomic load must have explicit non-zero alignment");
6308   if (Ordering == AtomicOrdering::Release ||
6309       Ordering == AtomicOrdering::AcquireRelease)
6310     return Error(Loc, "atomic load cannot use Release ordering");
6311 
6312   if (Ty != cast<PointerType>(Val->getType())->getElementType())
6313     return Error(ExplicitTypeLoc,
6314                  "explicit pointee type doesn't match operand's pointee type");
6315 
6316   Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, SSID);
6317   return AteExtraComma ? InstExtraComma : InstNormal;
6318 }
6319 
6320 /// ParseStore
6321 
6322 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
6323 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
6324 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
6325 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
6326   Value *Val, *Ptr; LocTy Loc, PtrLoc;
6327   unsigned Alignment = 0;
6328   bool AteExtraComma = false;
6329   bool isAtomic = false;
6330   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6331   SyncScope::ID SSID = SyncScope::System;
6332 
6333   if (Lex.getKind() == lltok::kw_atomic) {
6334     isAtomic = true;
6335     Lex.Lex();
6336   }
6337 
6338   bool isVolatile = false;
6339   if (Lex.getKind() == lltok::kw_volatile) {
6340     isVolatile = true;
6341     Lex.Lex();
6342   }
6343 
6344   if (ParseTypeAndValue(Val, Loc, PFS) ||
6345       ParseToken(lltok::comma, "expected ',' after store operand") ||
6346       ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6347       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
6348       ParseOptionalCommaAlign(Alignment, AteExtraComma))
6349     return true;
6350 
6351   if (!Ptr->getType()->isPointerTy())
6352     return Error(PtrLoc, "store operand must be a pointer");
6353   if (!Val->getType()->isFirstClassType())
6354     return Error(Loc, "store operand must be a first class value");
6355   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
6356     return Error(Loc, "stored value and pointer type do not match");
6357   if (isAtomic && !Alignment)
6358     return Error(Loc, "atomic store must have explicit non-zero alignment");
6359   if (Ordering == AtomicOrdering::Acquire ||
6360       Ordering == AtomicOrdering::AcquireRelease)
6361     return Error(Loc, "atomic store cannot use Acquire ordering");
6362 
6363   Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, SSID);
6364   return AteExtraComma ? InstExtraComma : InstNormal;
6365 }
6366 
6367 /// ParseCmpXchg
6368 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
6369 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
6370 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
6371   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
6372   bool AteExtraComma = false;
6373   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
6374   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
6375   SyncScope::ID SSID = SyncScope::System;
6376   bool isVolatile = false;
6377   bool isWeak = false;
6378 
6379   if (EatIfPresent(lltok::kw_weak))
6380     isWeak = true;
6381 
6382   if (EatIfPresent(lltok::kw_volatile))
6383     isVolatile = true;
6384 
6385   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6386       ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
6387       ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
6388       ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
6389       ParseTypeAndValue(New, NewLoc, PFS) ||
6390       ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
6391       ParseOrdering(FailureOrdering))
6392     return true;
6393 
6394   if (SuccessOrdering == AtomicOrdering::Unordered ||
6395       FailureOrdering == AtomicOrdering::Unordered)
6396     return TokError("cmpxchg cannot be unordered");
6397   if (isStrongerThan(FailureOrdering, SuccessOrdering))
6398     return TokError("cmpxchg failure argument shall be no stronger than the "
6399                     "success argument");
6400   if (FailureOrdering == AtomicOrdering::Release ||
6401       FailureOrdering == AtomicOrdering::AcquireRelease)
6402     return TokError(
6403         "cmpxchg failure ordering cannot include release semantics");
6404   if (!Ptr->getType()->isPointerTy())
6405     return Error(PtrLoc, "cmpxchg operand must be a pointer");
6406   if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
6407     return Error(CmpLoc, "compare value and pointer type do not match");
6408   if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
6409     return Error(NewLoc, "new value and pointer type do not match");
6410   if (!New->getType()->isFirstClassType())
6411     return Error(NewLoc, "cmpxchg operand must be a first class value");
6412   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
6413       Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID);
6414   CXI->setVolatile(isVolatile);
6415   CXI->setWeak(isWeak);
6416   Inst = CXI;
6417   return AteExtraComma ? InstExtraComma : InstNormal;
6418 }
6419 
6420 /// ParseAtomicRMW
6421 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
6422 ///       'singlethread'? AtomicOrdering
6423 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
6424   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
6425   bool AteExtraComma = false;
6426   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6427   SyncScope::ID SSID = SyncScope::System;
6428   bool isVolatile = false;
6429   AtomicRMWInst::BinOp Operation;
6430 
6431   if (EatIfPresent(lltok::kw_volatile))
6432     isVolatile = true;
6433 
6434   switch (Lex.getKind()) {
6435   default: return TokError("expected binary operation in atomicrmw");
6436   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
6437   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
6438   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
6439   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
6440   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
6441   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
6442   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
6443   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
6444   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
6445   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
6446   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
6447   }
6448   Lex.Lex();  // Eat the operation.
6449 
6450   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6451       ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
6452       ParseTypeAndValue(Val, ValLoc, PFS) ||
6453       ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
6454     return true;
6455 
6456   if (Ordering == AtomicOrdering::Unordered)
6457     return TokError("atomicrmw cannot be unordered");
6458   if (!Ptr->getType()->isPointerTy())
6459     return Error(PtrLoc, "atomicrmw operand must be a pointer");
6460   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
6461     return Error(ValLoc, "atomicrmw value and pointer type do not match");
6462   if (!Val->getType()->isIntegerTy())
6463     return Error(ValLoc, "atomicrmw operand must be an integer");
6464   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
6465   if (Size < 8 || (Size & (Size - 1)))
6466     return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
6467                          " integer");
6468 
6469   AtomicRMWInst *RMWI =
6470     new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
6471   RMWI->setVolatile(isVolatile);
6472   Inst = RMWI;
6473   return AteExtraComma ? InstExtraComma : InstNormal;
6474 }
6475 
6476 /// ParseFence
6477 ///   ::= 'fence' 'singlethread'? AtomicOrdering
6478 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
6479   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6480   SyncScope::ID SSID = SyncScope::System;
6481   if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
6482     return true;
6483 
6484   if (Ordering == AtomicOrdering::Unordered)
6485     return TokError("fence cannot be unordered");
6486   if (Ordering == AtomicOrdering::Monotonic)
6487     return TokError("fence cannot be monotonic");
6488 
6489   Inst = new FenceInst(Context, Ordering, SSID);
6490   return InstNormal;
6491 }
6492 
6493 /// ParseGetElementPtr
6494 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
6495 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
6496   Value *Ptr = nullptr;
6497   Value *Val = nullptr;
6498   LocTy Loc, EltLoc;
6499 
6500   bool InBounds = EatIfPresent(lltok::kw_inbounds);
6501 
6502   Type *Ty = nullptr;
6503   LocTy ExplicitTypeLoc = Lex.getLoc();
6504   if (ParseType(Ty) ||
6505       ParseToken(lltok::comma, "expected comma after getelementptr's type") ||
6506       ParseTypeAndValue(Ptr, Loc, PFS))
6507     return true;
6508 
6509   Type *BaseType = Ptr->getType();
6510   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
6511   if (!BasePointerType)
6512     return Error(Loc, "base of getelementptr must be a pointer");
6513 
6514   if (Ty != BasePointerType->getElementType())
6515     return Error(ExplicitTypeLoc,
6516                  "explicit pointee type doesn't match operand's pointee type");
6517 
6518   SmallVector<Value*, 16> Indices;
6519   bool AteExtraComma = false;
6520   // GEP returns a vector of pointers if at least one of parameters is a vector.
6521   // All vector parameters should have the same vector width.
6522   unsigned GEPWidth = BaseType->isVectorTy() ?
6523     BaseType->getVectorNumElements() : 0;
6524 
6525   while (EatIfPresent(lltok::comma)) {
6526     if (Lex.getKind() == lltok::MetadataVar) {
6527       AteExtraComma = true;
6528       break;
6529     }
6530     if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
6531     if (!Val->getType()->isIntOrIntVectorTy())
6532       return Error(EltLoc, "getelementptr index must be an integer");
6533 
6534     if (Val->getType()->isVectorTy()) {
6535       unsigned ValNumEl = Val->getType()->getVectorNumElements();
6536       if (GEPWidth && GEPWidth != ValNumEl)
6537         return Error(EltLoc,
6538           "getelementptr vector index has a wrong number of elements");
6539       GEPWidth = ValNumEl;
6540     }
6541     Indices.push_back(Val);
6542   }
6543 
6544   SmallPtrSet<Type*, 4> Visited;
6545   if (!Indices.empty() && !Ty->isSized(&Visited))
6546     return Error(Loc, "base element of getelementptr must be sized");
6547 
6548   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
6549     return Error(Loc, "invalid getelementptr indices");
6550   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
6551   if (InBounds)
6552     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
6553   return AteExtraComma ? InstExtraComma : InstNormal;
6554 }
6555 
6556 /// ParseExtractValue
6557 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
6558 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
6559   Value *Val; LocTy Loc;
6560   SmallVector<unsigned, 4> Indices;
6561   bool AteExtraComma;
6562   if (ParseTypeAndValue(Val, Loc, PFS) ||
6563       ParseIndexList(Indices, AteExtraComma))
6564     return true;
6565 
6566   if (!Val->getType()->isAggregateType())
6567     return Error(Loc, "extractvalue operand must be aggregate type");
6568 
6569   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
6570     return Error(Loc, "invalid indices for extractvalue");
6571   Inst = ExtractValueInst::Create(Val, Indices);
6572   return AteExtraComma ? InstExtraComma : InstNormal;
6573 }
6574 
6575 /// ParseInsertValue
6576 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
6577 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
6578   Value *Val0, *Val1; LocTy Loc0, Loc1;
6579   SmallVector<unsigned, 4> Indices;
6580   bool AteExtraComma;
6581   if (ParseTypeAndValue(Val0, Loc0, PFS) ||
6582       ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
6583       ParseTypeAndValue(Val1, Loc1, PFS) ||
6584       ParseIndexList(Indices, AteExtraComma))
6585     return true;
6586 
6587   if (!Val0->getType()->isAggregateType())
6588     return Error(Loc0, "insertvalue operand must be aggregate type");
6589 
6590   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
6591   if (!IndexedType)
6592     return Error(Loc0, "invalid indices for insertvalue");
6593   if (IndexedType != Val1->getType())
6594     return Error(Loc1, "insertvalue operand and field disagree in type: '" +
6595                            getTypeString(Val1->getType()) + "' instead of '" +
6596                            getTypeString(IndexedType) + "'");
6597   Inst = InsertValueInst::Create(Val0, Val1, Indices);
6598   return AteExtraComma ? InstExtraComma : InstNormal;
6599 }
6600 
6601 //===----------------------------------------------------------------------===//
6602 // Embedded metadata.
6603 //===----------------------------------------------------------------------===//
6604 
6605 /// ParseMDNodeVector
6606 ///   ::= { Element (',' Element)* }
6607 /// Element
6608 ///   ::= 'null' | TypeAndValue
6609 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
6610   if (ParseToken(lltok::lbrace, "expected '{' here"))
6611     return true;
6612 
6613   // Check for an empty list.
6614   if (EatIfPresent(lltok::rbrace))
6615     return false;
6616 
6617   do {
6618     // Null is a special case since it is typeless.
6619     if (EatIfPresent(lltok::kw_null)) {
6620       Elts.push_back(nullptr);
6621       continue;
6622     }
6623 
6624     Metadata *MD;
6625     if (ParseMetadata(MD, nullptr))
6626       return true;
6627     Elts.push_back(MD);
6628   } while (EatIfPresent(lltok::comma));
6629 
6630   return ParseToken(lltok::rbrace, "expected end of metadata node");
6631 }
6632 
6633 //===----------------------------------------------------------------------===//
6634 // Use-list order directives.
6635 //===----------------------------------------------------------------------===//
6636 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
6637                                 SMLoc Loc) {
6638   if (V->use_empty())
6639     return Error(Loc, "value has no uses");
6640 
6641   unsigned NumUses = 0;
6642   SmallDenseMap<const Use *, unsigned, 16> Order;
6643   for (const Use &U : V->uses()) {
6644     if (++NumUses > Indexes.size())
6645       break;
6646     Order[&U] = Indexes[NumUses - 1];
6647   }
6648   if (NumUses < 2)
6649     return Error(Loc, "value only has one use");
6650   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
6651     return Error(Loc, "wrong number of indexes, expected " +
6652                           Twine(std::distance(V->use_begin(), V->use_end())));
6653 
6654   V->sortUseList([&](const Use &L, const Use &R) {
6655     return Order.lookup(&L) < Order.lookup(&R);
6656   });
6657   return false;
6658 }
6659 
6660 /// ParseUseListOrderIndexes
6661 ///   ::= '{' uint32 (',' uint32)+ '}'
6662 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
6663   SMLoc Loc = Lex.getLoc();
6664   if (ParseToken(lltok::lbrace, "expected '{' here"))
6665     return true;
6666   if (Lex.getKind() == lltok::rbrace)
6667     return Lex.Error("expected non-empty list of uselistorder indexes");
6668 
6669   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
6670   // indexes should be distinct numbers in the range [0, size-1], and should
6671   // not be in order.
6672   unsigned Offset = 0;
6673   unsigned Max = 0;
6674   bool IsOrdered = true;
6675   assert(Indexes.empty() && "Expected empty order vector");
6676   do {
6677     unsigned Index;
6678     if (ParseUInt32(Index))
6679       return true;
6680 
6681     // Update consistency checks.
6682     Offset += Index - Indexes.size();
6683     Max = std::max(Max, Index);
6684     IsOrdered &= Index == Indexes.size();
6685 
6686     Indexes.push_back(Index);
6687   } while (EatIfPresent(lltok::comma));
6688 
6689   if (ParseToken(lltok::rbrace, "expected '}' here"))
6690     return true;
6691 
6692   if (Indexes.size() < 2)
6693     return Error(Loc, "expected >= 2 uselistorder indexes");
6694   if (Offset != 0 || Max >= Indexes.size())
6695     return Error(Loc, "expected distinct uselistorder indexes in range [0, size)");
6696   if (IsOrdered)
6697     return Error(Loc, "expected uselistorder indexes to change the order");
6698 
6699   return false;
6700 }
6701 
6702 /// ParseUseListOrder
6703 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
6704 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) {
6705   SMLoc Loc = Lex.getLoc();
6706   if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
6707     return true;
6708 
6709   Value *V;
6710   SmallVector<unsigned, 16> Indexes;
6711   if (ParseTypeAndValue(V, PFS) ||
6712       ParseToken(lltok::comma, "expected comma in uselistorder directive") ||
6713       ParseUseListOrderIndexes(Indexes))
6714     return true;
6715 
6716   return sortUseListOrder(V, Indexes, Loc);
6717 }
6718 
6719 /// ParseUseListOrderBB
6720 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
6721 bool LLParser::ParseUseListOrderBB() {
6722   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
6723   SMLoc Loc = Lex.getLoc();
6724   Lex.Lex();
6725 
6726   ValID Fn, Label;
6727   SmallVector<unsigned, 16> Indexes;
6728   if (ParseValID(Fn) ||
6729       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
6730       ParseValID(Label) ||
6731       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
6732       ParseUseListOrderIndexes(Indexes))
6733     return true;
6734 
6735   // Check the function.
6736   GlobalValue *GV;
6737   if (Fn.Kind == ValID::t_GlobalName)
6738     GV = M->getNamedValue(Fn.StrVal);
6739   else if (Fn.Kind == ValID::t_GlobalID)
6740     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
6741   else
6742     return Error(Fn.Loc, "expected function name in uselistorder_bb");
6743   if (!GV)
6744     return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb");
6745   auto *F = dyn_cast<Function>(GV);
6746   if (!F)
6747     return Error(Fn.Loc, "expected function name in uselistorder_bb");
6748   if (F->isDeclaration())
6749     return Error(Fn.Loc, "invalid declaration in uselistorder_bb");
6750 
6751   // Check the basic block.
6752   if (Label.Kind == ValID::t_LocalID)
6753     return Error(Label.Loc, "invalid numeric label in uselistorder_bb");
6754   if (Label.Kind != ValID::t_LocalName)
6755     return Error(Label.Loc, "expected basic block name in uselistorder_bb");
6756   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
6757   if (!V)
6758     return Error(Label.Loc, "invalid basic block in uselistorder_bb");
6759   if (!isa<BasicBlock>(V))
6760     return Error(Label.Loc, "expected basic block in uselistorder_bb");
6761 
6762   return sortUseListOrder(V, Indexes, Loc);
6763 }
6764