1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the parser class for .ll files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "LLParser.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/None.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/AsmParser/SlotMapping.h" 20 #include "llvm/BinaryFormat/Dwarf.h" 21 #include "llvm/IR/Argument.h" 22 #include "llvm/IR/AutoUpgrade.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/CallingConv.h" 25 #include "llvm/IR/Comdat.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DebugInfoMetadata.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/GlobalIFunc.h" 31 #include "llvm/IR/GlobalObject.h" 32 #include "llvm/IR/InlineAsm.h" 33 #include "llvm/IR/Instruction.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/IR/Type.h" 41 #include "llvm/IR/Value.h" 42 #include "llvm/IR/ValueSymbolTable.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/MathExtras.h" 46 #include "llvm/Support/SaveAndRestore.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include <algorithm> 49 #include <cassert> 50 #include <cstring> 51 #include <iterator> 52 #include <vector> 53 54 using namespace llvm; 55 56 static std::string getTypeString(Type *T) { 57 std::string Result; 58 raw_string_ostream Tmp(Result); 59 Tmp << *T; 60 return Tmp.str(); 61 } 62 63 /// Run: module ::= toplevelentity* 64 bool LLParser::Run() { 65 // Prime the lexer. 66 Lex.Lex(); 67 68 if (Context.shouldDiscardValueNames()) 69 return Error( 70 Lex.getLoc(), 71 "Can't read textual IR with a Context that discards named Values"); 72 73 return ParseTopLevelEntities() || ValidateEndOfModule() || 74 ValidateEndOfIndex(); 75 } 76 77 bool LLParser::parseStandaloneConstantValue(Constant *&C, 78 const SlotMapping *Slots) { 79 restoreParsingState(Slots); 80 Lex.Lex(); 81 82 Type *Ty = nullptr; 83 if (ParseType(Ty) || parseConstantValue(Ty, C)) 84 return true; 85 if (Lex.getKind() != lltok::Eof) 86 return Error(Lex.getLoc(), "expected end of string"); 87 return false; 88 } 89 90 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 91 const SlotMapping *Slots) { 92 restoreParsingState(Slots); 93 Lex.Lex(); 94 95 Read = 0; 96 SMLoc Start = Lex.getLoc(); 97 Ty = nullptr; 98 if (ParseType(Ty)) 99 return true; 100 SMLoc End = Lex.getLoc(); 101 Read = End.getPointer() - Start.getPointer(); 102 103 return false; 104 } 105 106 void LLParser::restoreParsingState(const SlotMapping *Slots) { 107 if (!Slots) 108 return; 109 NumberedVals = Slots->GlobalValues; 110 NumberedMetadata = Slots->MetadataNodes; 111 for (const auto &I : Slots->NamedTypes) 112 NamedTypes.insert( 113 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 114 for (const auto &I : Slots->Types) 115 NumberedTypes.insert( 116 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 117 } 118 119 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the 120 /// module. 121 bool LLParser::ValidateEndOfModule() { 122 if (!M) 123 return false; 124 // Handle any function attribute group forward references. 125 for (const auto &RAG : ForwardRefAttrGroups) { 126 Value *V = RAG.first; 127 const std::vector<unsigned> &Attrs = RAG.second; 128 AttrBuilder B; 129 130 for (const auto &Attr : Attrs) 131 B.merge(NumberedAttrBuilders[Attr]); 132 133 if (Function *Fn = dyn_cast<Function>(V)) { 134 AttributeList AS = Fn->getAttributes(); 135 AttrBuilder FnAttrs(AS.getFnAttributes()); 136 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 137 138 FnAttrs.merge(B); 139 140 // If the alignment was parsed as an attribute, move to the alignment 141 // field. 142 if (FnAttrs.hasAlignmentAttr()) { 143 Fn->setAlignment(FnAttrs.getAlignment()); 144 FnAttrs.removeAttribute(Attribute::Alignment); 145 } 146 147 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 148 AttributeSet::get(Context, FnAttrs)); 149 Fn->setAttributes(AS); 150 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 151 AttributeList AS = CI->getAttributes(); 152 AttrBuilder FnAttrs(AS.getFnAttributes()); 153 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 154 FnAttrs.merge(B); 155 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 156 AttributeSet::get(Context, FnAttrs)); 157 CI->setAttributes(AS); 158 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 159 AttributeList AS = II->getAttributes(); 160 AttrBuilder FnAttrs(AS.getFnAttributes()); 161 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 162 FnAttrs.merge(B); 163 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 164 AttributeSet::get(Context, FnAttrs)); 165 II->setAttributes(AS); 166 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) { 167 AttributeList AS = CBI->getAttributes(); 168 AttrBuilder FnAttrs(AS.getFnAttributes()); 169 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 170 FnAttrs.merge(B); 171 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 172 AttributeSet::get(Context, FnAttrs)); 173 CBI->setAttributes(AS); 174 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) { 175 AttrBuilder Attrs(GV->getAttributes()); 176 Attrs.merge(B); 177 GV->setAttributes(AttributeSet::get(Context,Attrs)); 178 } else { 179 llvm_unreachable("invalid object with forward attribute group reference"); 180 } 181 } 182 183 // If there are entries in ForwardRefBlockAddresses at this point, the 184 // function was never defined. 185 if (!ForwardRefBlockAddresses.empty()) 186 return Error(ForwardRefBlockAddresses.begin()->first.Loc, 187 "expected function name in blockaddress"); 188 189 for (const auto &NT : NumberedTypes) 190 if (NT.second.second.isValid()) 191 return Error(NT.second.second, 192 "use of undefined type '%" + Twine(NT.first) + "'"); 193 194 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 195 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 196 if (I->second.second.isValid()) 197 return Error(I->second.second, 198 "use of undefined type named '" + I->getKey() + "'"); 199 200 if (!ForwardRefComdats.empty()) 201 return Error(ForwardRefComdats.begin()->second, 202 "use of undefined comdat '$" + 203 ForwardRefComdats.begin()->first + "'"); 204 205 if (!ForwardRefVals.empty()) 206 return Error(ForwardRefVals.begin()->second.second, 207 "use of undefined value '@" + ForwardRefVals.begin()->first + 208 "'"); 209 210 if (!ForwardRefValIDs.empty()) 211 return Error(ForwardRefValIDs.begin()->second.second, 212 "use of undefined value '@" + 213 Twine(ForwardRefValIDs.begin()->first) + "'"); 214 215 if (!ForwardRefMDNodes.empty()) 216 return Error(ForwardRefMDNodes.begin()->second.second, 217 "use of undefined metadata '!" + 218 Twine(ForwardRefMDNodes.begin()->first) + "'"); 219 220 // Resolve metadata cycles. 221 for (auto &N : NumberedMetadata) { 222 if (N.second && !N.second->isResolved()) 223 N.second->resolveCycles(); 224 } 225 226 for (auto *Inst : InstsWithTBAATag) { 227 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); 228 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); 229 auto *UpgradedMD = UpgradeTBAANode(*MD); 230 if (MD != UpgradedMD) 231 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); 232 } 233 234 // Look for intrinsic functions and CallInst that need to be upgraded 235 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 236 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove 237 238 // Some types could be renamed during loading if several modules are 239 // loaded in the same LLVMContext (LTO scenario). In this case we should 240 // remangle intrinsics names as well. 241 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) { 242 Function *F = &*FI++; 243 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) { 244 F->replaceAllUsesWith(Remangled.getValue()); 245 F->eraseFromParent(); 246 } 247 } 248 249 if (UpgradeDebugInfo) 250 llvm::UpgradeDebugInfo(*M); 251 252 UpgradeModuleFlags(*M); 253 UpgradeSectionAttributes(*M); 254 255 if (!Slots) 256 return false; 257 // Initialize the slot mapping. 258 // Because by this point we've parsed and validated everything, we can "steal" 259 // the mapping from LLParser as it doesn't need it anymore. 260 Slots->GlobalValues = std::move(NumberedVals); 261 Slots->MetadataNodes = std::move(NumberedMetadata); 262 for (const auto &I : NamedTypes) 263 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 264 for (const auto &I : NumberedTypes) 265 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 266 267 return false; 268 } 269 270 /// Do final validity and sanity checks at the end of the index. 271 bool LLParser::ValidateEndOfIndex() { 272 if (!Index) 273 return false; 274 275 if (!ForwardRefValueInfos.empty()) 276 return Error(ForwardRefValueInfos.begin()->second.front().second, 277 "use of undefined summary '^" + 278 Twine(ForwardRefValueInfos.begin()->first) + "'"); 279 280 if (!ForwardRefAliasees.empty()) 281 return Error(ForwardRefAliasees.begin()->second.front().second, 282 "use of undefined summary '^" + 283 Twine(ForwardRefAliasees.begin()->first) + "'"); 284 285 if (!ForwardRefTypeIds.empty()) 286 return Error(ForwardRefTypeIds.begin()->second.front().second, 287 "use of undefined type id summary '^" + 288 Twine(ForwardRefTypeIds.begin()->first) + "'"); 289 290 return false; 291 } 292 293 //===----------------------------------------------------------------------===// 294 // Top-Level Entities 295 //===----------------------------------------------------------------------===// 296 297 bool LLParser::ParseTopLevelEntities() { 298 // If there is no Module, then parse just the summary index entries. 299 if (!M) { 300 while (true) { 301 switch (Lex.getKind()) { 302 case lltok::Eof: 303 return false; 304 case lltok::SummaryID: 305 if (ParseSummaryEntry()) 306 return true; 307 break; 308 case lltok::kw_source_filename: 309 if (ParseSourceFileName()) 310 return true; 311 break; 312 default: 313 // Skip everything else 314 Lex.Lex(); 315 } 316 } 317 } 318 while (true) { 319 switch (Lex.getKind()) { 320 default: return TokError("expected top-level entity"); 321 case lltok::Eof: return false; 322 case lltok::kw_declare: if (ParseDeclare()) return true; break; 323 case lltok::kw_define: if (ParseDefine()) return true; break; 324 case lltok::kw_module: if (ParseModuleAsm()) return true; break; 325 case lltok::kw_target: if (ParseTargetDefinition()) return true; break; 326 case lltok::kw_source_filename: 327 if (ParseSourceFileName()) 328 return true; 329 break; 330 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; 331 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; 332 case lltok::LocalVar: if (ParseNamedType()) return true; break; 333 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; 334 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; 335 case lltok::ComdatVar: if (parseComdat()) return true; break; 336 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break; 337 case lltok::SummaryID: 338 if (ParseSummaryEntry()) 339 return true; 340 break; 341 case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break; 342 case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break; 343 case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break; 344 case lltok::kw_uselistorder_bb: 345 if (ParseUseListOrderBB()) 346 return true; 347 break; 348 } 349 } 350 } 351 352 /// toplevelentity 353 /// ::= 'module' 'asm' STRINGCONSTANT 354 bool LLParser::ParseModuleAsm() { 355 assert(Lex.getKind() == lltok::kw_module); 356 Lex.Lex(); 357 358 std::string AsmStr; 359 if (ParseToken(lltok::kw_asm, "expected 'module asm'") || 360 ParseStringConstant(AsmStr)) return true; 361 362 M->appendModuleInlineAsm(AsmStr); 363 return false; 364 } 365 366 /// toplevelentity 367 /// ::= 'target' 'triple' '=' STRINGCONSTANT 368 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 369 bool LLParser::ParseTargetDefinition() { 370 assert(Lex.getKind() == lltok::kw_target); 371 std::string Str; 372 switch (Lex.Lex()) { 373 default: return TokError("unknown target property"); 374 case lltok::kw_triple: 375 Lex.Lex(); 376 if (ParseToken(lltok::equal, "expected '=' after target triple") || 377 ParseStringConstant(Str)) 378 return true; 379 M->setTargetTriple(Str); 380 return false; 381 case lltok::kw_datalayout: 382 Lex.Lex(); 383 if (ParseToken(lltok::equal, "expected '=' after target datalayout") || 384 ParseStringConstant(Str)) 385 return true; 386 if (DataLayoutStr.empty()) 387 M->setDataLayout(Str); 388 return false; 389 } 390 } 391 392 /// toplevelentity 393 /// ::= 'source_filename' '=' STRINGCONSTANT 394 bool LLParser::ParseSourceFileName() { 395 assert(Lex.getKind() == lltok::kw_source_filename); 396 Lex.Lex(); 397 if (ParseToken(lltok::equal, "expected '=' after source_filename") || 398 ParseStringConstant(SourceFileName)) 399 return true; 400 if (M) 401 M->setSourceFileName(SourceFileName); 402 return false; 403 } 404 405 /// toplevelentity 406 /// ::= 'deplibs' '=' '[' ']' 407 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 408 /// FIXME: Remove in 4.0. Currently parse, but ignore. 409 bool LLParser::ParseDepLibs() { 410 assert(Lex.getKind() == lltok::kw_deplibs); 411 Lex.Lex(); 412 if (ParseToken(lltok::equal, "expected '=' after deplibs") || 413 ParseToken(lltok::lsquare, "expected '=' after deplibs")) 414 return true; 415 416 if (EatIfPresent(lltok::rsquare)) 417 return false; 418 419 do { 420 std::string Str; 421 if (ParseStringConstant(Str)) return true; 422 } while (EatIfPresent(lltok::comma)); 423 424 return ParseToken(lltok::rsquare, "expected ']' at end of list"); 425 } 426 427 /// ParseUnnamedType: 428 /// ::= LocalVarID '=' 'type' type 429 bool LLParser::ParseUnnamedType() { 430 LocTy TypeLoc = Lex.getLoc(); 431 unsigned TypeID = Lex.getUIntVal(); 432 Lex.Lex(); // eat LocalVarID; 433 434 if (ParseToken(lltok::equal, "expected '=' after name") || 435 ParseToken(lltok::kw_type, "expected 'type' after '='")) 436 return true; 437 438 Type *Result = nullptr; 439 if (ParseStructDefinition(TypeLoc, "", 440 NumberedTypes[TypeID], Result)) return true; 441 442 if (!isa<StructType>(Result)) { 443 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 444 if (Entry.first) 445 return Error(TypeLoc, "non-struct types may not be recursive"); 446 Entry.first = Result; 447 Entry.second = SMLoc(); 448 } 449 450 return false; 451 } 452 453 /// toplevelentity 454 /// ::= LocalVar '=' 'type' type 455 bool LLParser::ParseNamedType() { 456 std::string Name = Lex.getStrVal(); 457 LocTy NameLoc = Lex.getLoc(); 458 Lex.Lex(); // eat LocalVar. 459 460 if (ParseToken(lltok::equal, "expected '=' after name") || 461 ParseToken(lltok::kw_type, "expected 'type' after name")) 462 return true; 463 464 Type *Result = nullptr; 465 if (ParseStructDefinition(NameLoc, Name, 466 NamedTypes[Name], Result)) return true; 467 468 if (!isa<StructType>(Result)) { 469 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 470 if (Entry.first) 471 return Error(NameLoc, "non-struct types may not be recursive"); 472 Entry.first = Result; 473 Entry.second = SMLoc(); 474 } 475 476 return false; 477 } 478 479 /// toplevelentity 480 /// ::= 'declare' FunctionHeader 481 bool LLParser::ParseDeclare() { 482 assert(Lex.getKind() == lltok::kw_declare); 483 Lex.Lex(); 484 485 std::vector<std::pair<unsigned, MDNode *>> MDs; 486 while (Lex.getKind() == lltok::MetadataVar) { 487 unsigned MDK; 488 MDNode *N; 489 if (ParseMetadataAttachment(MDK, N)) 490 return true; 491 MDs.push_back({MDK, N}); 492 } 493 494 Function *F; 495 if (ParseFunctionHeader(F, false)) 496 return true; 497 for (auto &MD : MDs) 498 F->addMetadata(MD.first, *MD.second); 499 return false; 500 } 501 502 /// toplevelentity 503 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 504 bool LLParser::ParseDefine() { 505 assert(Lex.getKind() == lltok::kw_define); 506 Lex.Lex(); 507 508 Function *F; 509 return ParseFunctionHeader(F, true) || 510 ParseOptionalFunctionMetadata(*F) || 511 ParseFunctionBody(*F); 512 } 513 514 /// ParseGlobalType 515 /// ::= 'constant' 516 /// ::= 'global' 517 bool LLParser::ParseGlobalType(bool &IsConstant) { 518 if (Lex.getKind() == lltok::kw_constant) 519 IsConstant = true; 520 else if (Lex.getKind() == lltok::kw_global) 521 IsConstant = false; 522 else { 523 IsConstant = false; 524 return TokError("expected 'global' or 'constant'"); 525 } 526 Lex.Lex(); 527 return false; 528 } 529 530 bool LLParser::ParseOptionalUnnamedAddr( 531 GlobalVariable::UnnamedAddr &UnnamedAddr) { 532 if (EatIfPresent(lltok::kw_unnamed_addr)) 533 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 534 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 535 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 536 else 537 UnnamedAddr = GlobalValue::UnnamedAddr::None; 538 return false; 539 } 540 541 /// ParseUnnamedGlobal: 542 /// OptionalVisibility (ALIAS | IFUNC) ... 543 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 544 /// OptionalDLLStorageClass 545 /// ... -> global variable 546 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 547 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 548 /// OptionalDLLStorageClass 549 /// ... -> global variable 550 bool LLParser::ParseUnnamedGlobal() { 551 unsigned VarID = NumberedVals.size(); 552 std::string Name; 553 LocTy NameLoc = Lex.getLoc(); 554 555 // Handle the GlobalID form. 556 if (Lex.getKind() == lltok::GlobalID) { 557 if (Lex.getUIntVal() != VarID) 558 return Error(Lex.getLoc(), "variable expected to be numbered '%" + 559 Twine(VarID) + "'"); 560 Lex.Lex(); // eat GlobalID; 561 562 if (ParseToken(lltok::equal, "expected '=' after name")) 563 return true; 564 } 565 566 bool HasLinkage; 567 unsigned Linkage, Visibility, DLLStorageClass; 568 bool DSOLocal; 569 GlobalVariable::ThreadLocalMode TLM; 570 GlobalVariable::UnnamedAddr UnnamedAddr; 571 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 572 DSOLocal) || 573 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 574 return true; 575 576 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 577 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 578 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 579 580 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 581 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 582 } 583 584 /// ParseNamedGlobal: 585 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 586 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 587 /// OptionalVisibility OptionalDLLStorageClass 588 /// ... -> global variable 589 bool LLParser::ParseNamedGlobal() { 590 assert(Lex.getKind() == lltok::GlobalVar); 591 LocTy NameLoc = Lex.getLoc(); 592 std::string Name = Lex.getStrVal(); 593 Lex.Lex(); 594 595 bool HasLinkage; 596 unsigned Linkage, Visibility, DLLStorageClass; 597 bool DSOLocal; 598 GlobalVariable::ThreadLocalMode TLM; 599 GlobalVariable::UnnamedAddr UnnamedAddr; 600 if (ParseToken(lltok::equal, "expected '=' in global variable") || 601 ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 602 DSOLocal) || 603 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 604 return true; 605 606 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 607 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 608 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 609 610 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 611 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 612 } 613 614 bool LLParser::parseComdat() { 615 assert(Lex.getKind() == lltok::ComdatVar); 616 std::string Name = Lex.getStrVal(); 617 LocTy NameLoc = Lex.getLoc(); 618 Lex.Lex(); 619 620 if (ParseToken(lltok::equal, "expected '=' here")) 621 return true; 622 623 if (ParseToken(lltok::kw_comdat, "expected comdat keyword")) 624 return TokError("expected comdat type"); 625 626 Comdat::SelectionKind SK; 627 switch (Lex.getKind()) { 628 default: 629 return TokError("unknown selection kind"); 630 case lltok::kw_any: 631 SK = Comdat::Any; 632 break; 633 case lltok::kw_exactmatch: 634 SK = Comdat::ExactMatch; 635 break; 636 case lltok::kw_largest: 637 SK = Comdat::Largest; 638 break; 639 case lltok::kw_noduplicates: 640 SK = Comdat::NoDuplicates; 641 break; 642 case lltok::kw_samesize: 643 SK = Comdat::SameSize; 644 break; 645 } 646 Lex.Lex(); 647 648 // See if the comdat was forward referenced, if so, use the comdat. 649 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 650 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 651 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 652 return Error(NameLoc, "redefinition of comdat '$" + Name + "'"); 653 654 Comdat *C; 655 if (I != ComdatSymTab.end()) 656 C = &I->second; 657 else 658 C = M->getOrInsertComdat(Name); 659 C->setSelectionKind(SK); 660 661 return false; 662 } 663 664 // MDString: 665 // ::= '!' STRINGCONSTANT 666 bool LLParser::ParseMDString(MDString *&Result) { 667 std::string Str; 668 if (ParseStringConstant(Str)) return true; 669 Result = MDString::get(Context, Str); 670 return false; 671 } 672 673 // MDNode: 674 // ::= '!' MDNodeNumber 675 bool LLParser::ParseMDNodeID(MDNode *&Result) { 676 // !{ ..., !42, ... } 677 LocTy IDLoc = Lex.getLoc(); 678 unsigned MID = 0; 679 if (ParseUInt32(MID)) 680 return true; 681 682 // If not a forward reference, just return it now. 683 if (NumberedMetadata.count(MID)) { 684 Result = NumberedMetadata[MID]; 685 return false; 686 } 687 688 // Otherwise, create MDNode forward reference. 689 auto &FwdRef = ForwardRefMDNodes[MID]; 690 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 691 692 Result = FwdRef.first.get(); 693 NumberedMetadata[MID].reset(Result); 694 return false; 695 } 696 697 /// ParseNamedMetadata: 698 /// !foo = !{ !1, !2 } 699 bool LLParser::ParseNamedMetadata() { 700 assert(Lex.getKind() == lltok::MetadataVar); 701 std::string Name = Lex.getStrVal(); 702 Lex.Lex(); 703 704 if (ParseToken(lltok::equal, "expected '=' here") || 705 ParseToken(lltok::exclaim, "Expected '!' here") || 706 ParseToken(lltok::lbrace, "Expected '{' here")) 707 return true; 708 709 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 710 if (Lex.getKind() != lltok::rbrace) 711 do { 712 MDNode *N = nullptr; 713 // Parse DIExpressions inline as a special case. They are still MDNodes, 714 // so they can still appear in named metadata. Remove this logic if they 715 // become plain Metadata. 716 if (Lex.getKind() == lltok::MetadataVar && 717 Lex.getStrVal() == "DIExpression") { 718 if (ParseDIExpression(N, /*IsDistinct=*/false)) 719 return true; 720 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 721 ParseMDNodeID(N)) { 722 return true; 723 } 724 NMD->addOperand(N); 725 } while (EatIfPresent(lltok::comma)); 726 727 return ParseToken(lltok::rbrace, "expected end of metadata node"); 728 } 729 730 /// ParseStandaloneMetadata: 731 /// !42 = !{...} 732 bool LLParser::ParseStandaloneMetadata() { 733 assert(Lex.getKind() == lltok::exclaim); 734 Lex.Lex(); 735 unsigned MetadataID = 0; 736 737 MDNode *Init; 738 if (ParseUInt32(MetadataID) || 739 ParseToken(lltok::equal, "expected '=' here")) 740 return true; 741 742 // Detect common error, from old metadata syntax. 743 if (Lex.getKind() == lltok::Type) 744 return TokError("unexpected type in metadata definition"); 745 746 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 747 if (Lex.getKind() == lltok::MetadataVar) { 748 if (ParseSpecializedMDNode(Init, IsDistinct)) 749 return true; 750 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 751 ParseMDTuple(Init, IsDistinct)) 752 return true; 753 754 // See if this was forward referenced, if so, handle it. 755 auto FI = ForwardRefMDNodes.find(MetadataID); 756 if (FI != ForwardRefMDNodes.end()) { 757 FI->second.first->replaceAllUsesWith(Init); 758 ForwardRefMDNodes.erase(FI); 759 760 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 761 } else { 762 if (NumberedMetadata.count(MetadataID)) 763 return TokError("Metadata id is already used"); 764 NumberedMetadata[MetadataID].reset(Init); 765 } 766 767 return false; 768 } 769 770 // Skips a single module summary entry. 771 bool LLParser::SkipModuleSummaryEntry() { 772 // Each module summary entry consists of a tag for the entry 773 // type, followed by a colon, then the fields surrounded by nested sets of 774 // parentheses. The "tag:" looks like a Label. Once parsing support is 775 // in place we will look for the tokens corresponding to the expected tags. 776 if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module && 777 Lex.getKind() != lltok::kw_typeid) 778 return TokError( 779 "Expected 'gv', 'module', or 'typeid' at the start of summary entry"); 780 Lex.Lex(); 781 if (ParseToken(lltok::colon, "expected ':' at start of summary entry") || 782 ParseToken(lltok::lparen, "expected '(' at start of summary entry")) 783 return true; 784 // Now walk through the parenthesized entry, until the number of open 785 // parentheses goes back down to 0 (the first '(' was parsed above). 786 unsigned NumOpenParen = 1; 787 do { 788 switch (Lex.getKind()) { 789 case lltok::lparen: 790 NumOpenParen++; 791 break; 792 case lltok::rparen: 793 NumOpenParen--; 794 break; 795 case lltok::Eof: 796 return TokError("found end of file while parsing summary entry"); 797 default: 798 // Skip everything in between parentheses. 799 break; 800 } 801 Lex.Lex(); 802 } while (NumOpenParen > 0); 803 return false; 804 } 805 806 /// SummaryEntry 807 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry 808 bool LLParser::ParseSummaryEntry() { 809 assert(Lex.getKind() == lltok::SummaryID); 810 unsigned SummaryID = Lex.getUIntVal(); 811 812 // For summary entries, colons should be treated as distinct tokens, 813 // not an indication of the end of a label token. 814 Lex.setIgnoreColonInIdentifiers(true); 815 816 Lex.Lex(); 817 if (ParseToken(lltok::equal, "expected '=' here")) 818 return true; 819 820 // If we don't have an index object, skip the summary entry. 821 if (!Index) 822 return SkipModuleSummaryEntry(); 823 824 bool result = false; 825 switch (Lex.getKind()) { 826 case lltok::kw_gv: 827 result = ParseGVEntry(SummaryID); 828 break; 829 case lltok::kw_module: 830 result = ParseModuleEntry(SummaryID); 831 break; 832 case lltok::kw_typeid: 833 result = ParseTypeIdEntry(SummaryID); 834 break; 835 case lltok::kw_typeidCompatibleVTable: 836 result = ParseTypeIdCompatibleVtableEntry(SummaryID); 837 break; 838 default: 839 result = Error(Lex.getLoc(), "unexpected summary kind"); 840 break; 841 } 842 Lex.setIgnoreColonInIdentifiers(false); 843 return result; 844 } 845 846 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 847 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 848 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 849 } 850 851 // If there was an explicit dso_local, update GV. In the absence of an explicit 852 // dso_local we keep the default value. 853 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) { 854 if (DSOLocal) 855 GV.setDSOLocal(true); 856 } 857 858 /// parseIndirectSymbol: 859 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 860 /// OptionalVisibility OptionalDLLStorageClass 861 /// OptionalThreadLocal OptionalUnnamedAddr 862 /// 'alias|ifunc' IndirectSymbol IndirectSymbolAttr* 863 /// 864 /// IndirectSymbol 865 /// ::= TypeAndValue 866 /// 867 /// IndirectSymbolAttr 868 /// ::= ',' 'partition' StringConstant 869 /// 870 /// Everything through OptionalUnnamedAddr has already been parsed. 871 /// 872 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc, 873 unsigned L, unsigned Visibility, 874 unsigned DLLStorageClass, bool DSOLocal, 875 GlobalVariable::ThreadLocalMode TLM, 876 GlobalVariable::UnnamedAddr UnnamedAddr) { 877 bool IsAlias; 878 if (Lex.getKind() == lltok::kw_alias) 879 IsAlias = true; 880 else if (Lex.getKind() == lltok::kw_ifunc) 881 IsAlias = false; 882 else 883 llvm_unreachable("Not an alias or ifunc!"); 884 Lex.Lex(); 885 886 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 887 888 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 889 return Error(NameLoc, "invalid linkage type for alias"); 890 891 if (!isValidVisibilityForLinkage(Visibility, L)) 892 return Error(NameLoc, 893 "symbol with local linkage must have default visibility"); 894 895 Type *Ty; 896 LocTy ExplicitTypeLoc = Lex.getLoc(); 897 if (ParseType(Ty) || 898 ParseToken(lltok::comma, "expected comma after alias or ifunc's type")) 899 return true; 900 901 Constant *Aliasee; 902 LocTy AliaseeLoc = Lex.getLoc(); 903 if (Lex.getKind() != lltok::kw_bitcast && 904 Lex.getKind() != lltok::kw_getelementptr && 905 Lex.getKind() != lltok::kw_addrspacecast && 906 Lex.getKind() != lltok::kw_inttoptr) { 907 if (ParseGlobalTypeAndValue(Aliasee)) 908 return true; 909 } else { 910 // The bitcast dest type is not present, it is implied by the dest type. 911 ValID ID; 912 if (ParseValID(ID)) 913 return true; 914 if (ID.Kind != ValID::t_Constant) 915 return Error(AliaseeLoc, "invalid aliasee"); 916 Aliasee = ID.ConstantVal; 917 } 918 919 Type *AliaseeType = Aliasee->getType(); 920 auto *PTy = dyn_cast<PointerType>(AliaseeType); 921 if (!PTy) 922 return Error(AliaseeLoc, "An alias or ifunc must have pointer type"); 923 unsigned AddrSpace = PTy->getAddressSpace(); 924 925 if (IsAlias && Ty != PTy->getElementType()) 926 return Error( 927 ExplicitTypeLoc, 928 "explicit pointee type doesn't match operand's pointee type"); 929 930 if (!IsAlias && !PTy->getElementType()->isFunctionTy()) 931 return Error( 932 ExplicitTypeLoc, 933 "explicit pointee type should be a function type"); 934 935 GlobalValue *GVal = nullptr; 936 937 // See if the alias was forward referenced, if so, prepare to replace the 938 // forward reference. 939 if (!Name.empty()) { 940 GVal = M->getNamedValue(Name); 941 if (GVal) { 942 if (!ForwardRefVals.erase(Name)) 943 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 944 } 945 } else { 946 auto I = ForwardRefValIDs.find(NumberedVals.size()); 947 if (I != ForwardRefValIDs.end()) { 948 GVal = I->second.first; 949 ForwardRefValIDs.erase(I); 950 } 951 } 952 953 // Okay, create the alias but do not insert it into the module yet. 954 std::unique_ptr<GlobalIndirectSymbol> GA; 955 if (IsAlias) 956 GA.reset(GlobalAlias::create(Ty, AddrSpace, 957 (GlobalValue::LinkageTypes)Linkage, Name, 958 Aliasee, /*Parent*/ nullptr)); 959 else 960 GA.reset(GlobalIFunc::create(Ty, AddrSpace, 961 (GlobalValue::LinkageTypes)Linkage, Name, 962 Aliasee, /*Parent*/ nullptr)); 963 GA->setThreadLocalMode(TLM); 964 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 965 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 966 GA->setUnnamedAddr(UnnamedAddr); 967 maybeSetDSOLocal(DSOLocal, *GA); 968 969 // At this point we've parsed everything except for the IndirectSymbolAttrs. 970 // Now parse them if there are any. 971 while (Lex.getKind() == lltok::comma) { 972 Lex.Lex(); 973 974 if (Lex.getKind() == lltok::kw_partition) { 975 Lex.Lex(); 976 GA->setPartition(Lex.getStrVal()); 977 if (ParseToken(lltok::StringConstant, "expected partition string")) 978 return true; 979 } else { 980 return TokError("unknown alias or ifunc property!"); 981 } 982 } 983 984 if (Name.empty()) 985 NumberedVals.push_back(GA.get()); 986 987 if (GVal) { 988 // Verify that types agree. 989 if (GVal->getType() != GA->getType()) 990 return Error( 991 ExplicitTypeLoc, 992 "forward reference and definition of alias have different types"); 993 994 // If they agree, just RAUW the old value with the alias and remove the 995 // forward ref info. 996 GVal->replaceAllUsesWith(GA.get()); 997 GVal->eraseFromParent(); 998 } 999 1000 // Insert into the module, we know its name won't collide now. 1001 if (IsAlias) 1002 M->getAliasList().push_back(cast<GlobalAlias>(GA.get())); 1003 else 1004 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get())); 1005 assert(GA->getName() == Name && "Should not be a name conflict!"); 1006 1007 // The module owns this now 1008 GA.release(); 1009 1010 return false; 1011 } 1012 1013 /// ParseGlobal 1014 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 1015 /// OptionalVisibility OptionalDLLStorageClass 1016 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 1017 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs 1018 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 1019 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr 1020 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type 1021 /// Const OptionalAttrs 1022 /// 1023 /// Everything up to and including OptionalUnnamedAddr has been parsed 1024 /// already. 1025 /// 1026 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, 1027 unsigned Linkage, bool HasLinkage, 1028 unsigned Visibility, unsigned DLLStorageClass, 1029 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM, 1030 GlobalVariable::UnnamedAddr UnnamedAddr) { 1031 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 1032 return Error(NameLoc, 1033 "symbol with local linkage must have default visibility"); 1034 1035 unsigned AddrSpace; 1036 bool IsConstant, IsExternallyInitialized; 1037 LocTy IsExternallyInitializedLoc; 1038 LocTy TyLoc; 1039 1040 Type *Ty = nullptr; 1041 if (ParseOptionalAddrSpace(AddrSpace) || 1042 ParseOptionalToken(lltok::kw_externally_initialized, 1043 IsExternallyInitialized, 1044 &IsExternallyInitializedLoc) || 1045 ParseGlobalType(IsConstant) || 1046 ParseType(Ty, TyLoc)) 1047 return true; 1048 1049 // If the linkage is specified and is external, then no initializer is 1050 // present. 1051 Constant *Init = nullptr; 1052 if (!HasLinkage || 1053 !GlobalValue::isValidDeclarationLinkage( 1054 (GlobalValue::LinkageTypes)Linkage)) { 1055 if (ParseGlobalValue(Ty, Init)) 1056 return true; 1057 } 1058 1059 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 1060 return Error(TyLoc, "invalid type for global variable"); 1061 1062 GlobalValue *GVal = nullptr; 1063 1064 // See if the global was forward referenced, if so, use the global. 1065 if (!Name.empty()) { 1066 GVal = M->getNamedValue(Name); 1067 if (GVal) { 1068 if (!ForwardRefVals.erase(Name)) 1069 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 1070 } 1071 } else { 1072 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1073 if (I != ForwardRefValIDs.end()) { 1074 GVal = I->second.first; 1075 ForwardRefValIDs.erase(I); 1076 } 1077 } 1078 1079 GlobalVariable *GV; 1080 if (!GVal) { 1081 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, 1082 Name, nullptr, GlobalVariable::NotThreadLocal, 1083 AddrSpace); 1084 } else { 1085 if (GVal->getValueType() != Ty) 1086 return Error(TyLoc, 1087 "forward reference and definition of global have different types"); 1088 1089 GV = cast<GlobalVariable>(GVal); 1090 1091 // Move the forward-reference to the correct spot in the module. 1092 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 1093 } 1094 1095 if (Name.empty()) 1096 NumberedVals.push_back(GV); 1097 1098 // Set the parsed properties on the global. 1099 if (Init) 1100 GV->setInitializer(Init); 1101 GV->setConstant(IsConstant); 1102 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 1103 maybeSetDSOLocal(DSOLocal, *GV); 1104 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1105 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1106 GV->setExternallyInitialized(IsExternallyInitialized); 1107 GV->setThreadLocalMode(TLM); 1108 GV->setUnnamedAddr(UnnamedAddr); 1109 1110 // Parse attributes on the global. 1111 while (Lex.getKind() == lltok::comma) { 1112 Lex.Lex(); 1113 1114 if (Lex.getKind() == lltok::kw_section) { 1115 Lex.Lex(); 1116 GV->setSection(Lex.getStrVal()); 1117 if (ParseToken(lltok::StringConstant, "expected global section string")) 1118 return true; 1119 } else if (Lex.getKind() == lltok::kw_partition) { 1120 Lex.Lex(); 1121 GV->setPartition(Lex.getStrVal()); 1122 if (ParseToken(lltok::StringConstant, "expected partition string")) 1123 return true; 1124 } else if (Lex.getKind() == lltok::kw_align) { 1125 MaybeAlign Alignment; 1126 if (ParseOptionalAlignment(Alignment)) return true; 1127 GV->setAlignment(Alignment); 1128 } else if (Lex.getKind() == lltok::MetadataVar) { 1129 if (ParseGlobalObjectMetadataAttachment(*GV)) 1130 return true; 1131 } else { 1132 Comdat *C; 1133 if (parseOptionalComdat(Name, C)) 1134 return true; 1135 if (C) 1136 GV->setComdat(C); 1137 else 1138 return TokError("unknown global variable property!"); 1139 } 1140 } 1141 1142 AttrBuilder Attrs; 1143 LocTy BuiltinLoc; 1144 std::vector<unsigned> FwdRefAttrGrps; 1145 if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc)) 1146 return true; 1147 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) { 1148 GV->setAttributes(AttributeSet::get(Context, Attrs)); 1149 ForwardRefAttrGroups[GV] = FwdRefAttrGrps; 1150 } 1151 1152 return false; 1153 } 1154 1155 /// ParseUnnamedAttrGrp 1156 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 1157 bool LLParser::ParseUnnamedAttrGrp() { 1158 assert(Lex.getKind() == lltok::kw_attributes); 1159 LocTy AttrGrpLoc = Lex.getLoc(); 1160 Lex.Lex(); 1161 1162 if (Lex.getKind() != lltok::AttrGrpID) 1163 return TokError("expected attribute group id"); 1164 1165 unsigned VarID = Lex.getUIntVal(); 1166 std::vector<unsigned> unused; 1167 LocTy BuiltinLoc; 1168 Lex.Lex(); 1169 1170 if (ParseToken(lltok::equal, "expected '=' here") || 1171 ParseToken(lltok::lbrace, "expected '{' here") || 1172 ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 1173 BuiltinLoc) || 1174 ParseToken(lltok::rbrace, "expected end of attribute group")) 1175 return true; 1176 1177 if (!NumberedAttrBuilders[VarID].hasAttributes()) 1178 return Error(AttrGrpLoc, "attribute group has no attributes"); 1179 1180 return false; 1181 } 1182 1183 /// ParseFnAttributeValuePairs 1184 /// ::= <attr> | <attr> '=' <value> 1185 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B, 1186 std::vector<unsigned> &FwdRefAttrGrps, 1187 bool inAttrGrp, LocTy &BuiltinLoc) { 1188 bool HaveError = false; 1189 1190 B.clear(); 1191 1192 while (true) { 1193 lltok::Kind Token = Lex.getKind(); 1194 if (Token == lltok::kw_builtin) 1195 BuiltinLoc = Lex.getLoc(); 1196 switch (Token) { 1197 default: 1198 if (!inAttrGrp) return HaveError; 1199 return Error(Lex.getLoc(), "unterminated attribute group"); 1200 case lltok::rbrace: 1201 // Finished. 1202 return false; 1203 1204 case lltok::AttrGrpID: { 1205 // Allow a function to reference an attribute group: 1206 // 1207 // define void @foo() #1 { ... } 1208 if (inAttrGrp) 1209 HaveError |= 1210 Error(Lex.getLoc(), 1211 "cannot have an attribute group reference in an attribute group"); 1212 1213 unsigned AttrGrpNum = Lex.getUIntVal(); 1214 if (inAttrGrp) break; 1215 1216 // Save the reference to the attribute group. We'll fill it in later. 1217 FwdRefAttrGrps.push_back(AttrGrpNum); 1218 break; 1219 } 1220 // Target-dependent attributes: 1221 case lltok::StringConstant: { 1222 if (ParseStringAttribute(B)) 1223 return true; 1224 continue; 1225 } 1226 1227 // Target-independent attributes: 1228 case lltok::kw_align: { 1229 // As a hack, we allow function alignment to be initially parsed as an 1230 // attribute on a function declaration/definition or added to an attribute 1231 // group and later moved to the alignment field. 1232 MaybeAlign Alignment; 1233 if (inAttrGrp) { 1234 Lex.Lex(); 1235 uint32_t Value = 0; 1236 if (ParseToken(lltok::equal, "expected '=' here") || ParseUInt32(Value)) 1237 return true; 1238 Alignment = Align(Value); 1239 } else { 1240 if (ParseOptionalAlignment(Alignment)) 1241 return true; 1242 } 1243 B.addAlignmentAttr(Alignment); 1244 continue; 1245 } 1246 case lltok::kw_alignstack: { 1247 unsigned Alignment; 1248 if (inAttrGrp) { 1249 Lex.Lex(); 1250 if (ParseToken(lltok::equal, "expected '=' here") || 1251 ParseUInt32(Alignment)) 1252 return true; 1253 } else { 1254 if (ParseOptionalStackAlignment(Alignment)) 1255 return true; 1256 } 1257 B.addStackAlignmentAttr(Alignment); 1258 continue; 1259 } 1260 case lltok::kw_allocsize: { 1261 unsigned ElemSizeArg; 1262 Optional<unsigned> NumElemsArg; 1263 // inAttrGrp doesn't matter; we only support allocsize(a[, b]) 1264 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1265 return true; 1266 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1267 continue; 1268 } 1269 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break; 1270 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break; 1271 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break; 1272 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break; 1273 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break; 1274 case lltok::kw_inaccessiblememonly: 1275 B.addAttribute(Attribute::InaccessibleMemOnly); break; 1276 case lltok::kw_inaccessiblemem_or_argmemonly: 1277 B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break; 1278 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break; 1279 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break; 1280 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break; 1281 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break; 1282 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break; 1283 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break; 1284 case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break; 1285 case lltok::kw_noimplicitfloat: 1286 B.addAttribute(Attribute::NoImplicitFloat); break; 1287 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break; 1288 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break; 1289 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break; 1290 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break; 1291 case lltok::kw_nosync: B.addAttribute(Attribute::NoSync); break; 1292 case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break; 1293 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break; 1294 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break; 1295 case lltok::kw_optforfuzzing: 1296 B.addAttribute(Attribute::OptForFuzzing); break; 1297 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break; 1298 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break; 1299 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1300 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1301 case lltok::kw_returns_twice: 1302 B.addAttribute(Attribute::ReturnsTwice); break; 1303 case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break; 1304 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break; 1305 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break; 1306 case lltok::kw_sspstrong: 1307 B.addAttribute(Attribute::StackProtectStrong); break; 1308 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break; 1309 case lltok::kw_shadowcallstack: 1310 B.addAttribute(Attribute::ShadowCallStack); break; 1311 case lltok::kw_sanitize_address: 1312 B.addAttribute(Attribute::SanitizeAddress); break; 1313 case lltok::kw_sanitize_hwaddress: 1314 B.addAttribute(Attribute::SanitizeHWAddress); break; 1315 case lltok::kw_sanitize_memtag: 1316 B.addAttribute(Attribute::SanitizeMemTag); break; 1317 case lltok::kw_sanitize_thread: 1318 B.addAttribute(Attribute::SanitizeThread); break; 1319 case lltok::kw_sanitize_memory: 1320 B.addAttribute(Attribute::SanitizeMemory); break; 1321 case lltok::kw_speculative_load_hardening: 1322 B.addAttribute(Attribute::SpeculativeLoadHardening); 1323 break; 1324 case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break; 1325 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break; 1326 case lltok::kw_willreturn: B.addAttribute(Attribute::WillReturn); break; 1327 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1328 1329 // Error handling. 1330 case lltok::kw_inreg: 1331 case lltok::kw_signext: 1332 case lltok::kw_zeroext: 1333 HaveError |= 1334 Error(Lex.getLoc(), 1335 "invalid use of attribute on a function"); 1336 break; 1337 case lltok::kw_byval: 1338 case lltok::kw_dereferenceable: 1339 case lltok::kw_dereferenceable_or_null: 1340 case lltok::kw_inalloca: 1341 case lltok::kw_nest: 1342 case lltok::kw_noalias: 1343 case lltok::kw_nocapture: 1344 case lltok::kw_nonnull: 1345 case lltok::kw_returned: 1346 case lltok::kw_sret: 1347 case lltok::kw_swifterror: 1348 case lltok::kw_swiftself: 1349 case lltok::kw_immarg: 1350 HaveError |= 1351 Error(Lex.getLoc(), 1352 "invalid use of parameter-only attribute on a function"); 1353 break; 1354 } 1355 1356 Lex.Lex(); 1357 } 1358 } 1359 1360 //===----------------------------------------------------------------------===// 1361 // GlobalValue Reference/Resolution Routines. 1362 //===----------------------------------------------------------------------===// 1363 1364 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy, 1365 const std::string &Name) { 1366 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType())) 1367 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, 1368 PTy->getAddressSpace(), Name, M); 1369 else 1370 return new GlobalVariable(*M, PTy->getElementType(), false, 1371 GlobalValue::ExternalWeakLinkage, nullptr, Name, 1372 nullptr, GlobalVariable::NotThreadLocal, 1373 PTy->getAddressSpace()); 1374 } 1375 1376 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty, 1377 Value *Val, bool IsCall) { 1378 if (Val->getType() == Ty) 1379 return Val; 1380 // For calls we also accept variables in the program address space. 1381 Type *SuggestedTy = Ty; 1382 if (IsCall && isa<PointerType>(Ty)) { 1383 Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo( 1384 M->getDataLayout().getProgramAddressSpace()); 1385 SuggestedTy = TyInProgAS; 1386 if (Val->getType() == TyInProgAS) 1387 return Val; 1388 } 1389 if (Ty->isLabelTy()) 1390 Error(Loc, "'" + Name + "' is not a basic block"); 1391 else 1392 Error(Loc, "'" + Name + "' defined with type '" + 1393 getTypeString(Val->getType()) + "' but expected '" + 1394 getTypeString(SuggestedTy) + "'"); 1395 return nullptr; 1396 } 1397 1398 /// GetGlobalVal - Get a value with the specified name or ID, creating a 1399 /// forward reference record if needed. This can return null if the value 1400 /// exists but does not have the right type. 1401 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty, 1402 LocTy Loc, bool IsCall) { 1403 PointerType *PTy = dyn_cast<PointerType>(Ty); 1404 if (!PTy) { 1405 Error(Loc, "global variable reference must have pointer type"); 1406 return nullptr; 1407 } 1408 1409 // Look this name up in the normal function symbol table. 1410 GlobalValue *Val = 1411 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1412 1413 // If this is a forward reference for the value, see if we already created a 1414 // forward ref record. 1415 if (!Val) { 1416 auto I = ForwardRefVals.find(Name); 1417 if (I != ForwardRefVals.end()) 1418 Val = I->second.first; 1419 } 1420 1421 // If we have the value in the symbol table or fwd-ref table, return it. 1422 if (Val) 1423 return cast_or_null<GlobalValue>( 1424 checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall)); 1425 1426 // Otherwise, create a new forward reference for this value and remember it. 1427 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name); 1428 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1429 return FwdVal; 1430 } 1431 1432 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc, 1433 bool IsCall) { 1434 PointerType *PTy = dyn_cast<PointerType>(Ty); 1435 if (!PTy) { 1436 Error(Loc, "global variable reference must have pointer type"); 1437 return nullptr; 1438 } 1439 1440 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1441 1442 // If this is a forward reference for the value, see if we already created a 1443 // forward ref record. 1444 if (!Val) { 1445 auto I = ForwardRefValIDs.find(ID); 1446 if (I != ForwardRefValIDs.end()) 1447 Val = I->second.first; 1448 } 1449 1450 // If we have the value in the symbol table or fwd-ref table, return it. 1451 if (Val) 1452 return cast_or_null<GlobalValue>( 1453 checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall)); 1454 1455 // Otherwise, create a new forward reference for this value and remember it. 1456 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, ""); 1457 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1458 return FwdVal; 1459 } 1460 1461 //===----------------------------------------------------------------------===// 1462 // Comdat Reference/Resolution Routines. 1463 //===----------------------------------------------------------------------===// 1464 1465 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1466 // Look this name up in the comdat symbol table. 1467 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1468 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1469 if (I != ComdatSymTab.end()) 1470 return &I->second; 1471 1472 // Otherwise, create a new forward reference for this value and remember it. 1473 Comdat *C = M->getOrInsertComdat(Name); 1474 ForwardRefComdats[Name] = Loc; 1475 return C; 1476 } 1477 1478 //===----------------------------------------------------------------------===// 1479 // Helper Routines. 1480 //===----------------------------------------------------------------------===// 1481 1482 /// ParseToken - If the current token has the specified kind, eat it and return 1483 /// success. Otherwise, emit the specified error and return failure. 1484 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { 1485 if (Lex.getKind() != T) 1486 return TokError(ErrMsg); 1487 Lex.Lex(); 1488 return false; 1489 } 1490 1491 /// ParseStringConstant 1492 /// ::= StringConstant 1493 bool LLParser::ParseStringConstant(std::string &Result) { 1494 if (Lex.getKind() != lltok::StringConstant) 1495 return TokError("expected string constant"); 1496 Result = Lex.getStrVal(); 1497 Lex.Lex(); 1498 return false; 1499 } 1500 1501 /// ParseUInt32 1502 /// ::= uint32 1503 bool LLParser::ParseUInt32(uint32_t &Val) { 1504 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1505 return TokError("expected integer"); 1506 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1507 if (Val64 != unsigned(Val64)) 1508 return TokError("expected 32-bit integer (too large)"); 1509 Val = Val64; 1510 Lex.Lex(); 1511 return false; 1512 } 1513 1514 /// ParseUInt64 1515 /// ::= uint64 1516 bool LLParser::ParseUInt64(uint64_t &Val) { 1517 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1518 return TokError("expected integer"); 1519 Val = Lex.getAPSIntVal().getLimitedValue(); 1520 Lex.Lex(); 1521 return false; 1522 } 1523 1524 /// ParseTLSModel 1525 /// := 'localdynamic' 1526 /// := 'initialexec' 1527 /// := 'localexec' 1528 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1529 switch (Lex.getKind()) { 1530 default: 1531 return TokError("expected localdynamic, initialexec or localexec"); 1532 case lltok::kw_localdynamic: 1533 TLM = GlobalVariable::LocalDynamicTLSModel; 1534 break; 1535 case lltok::kw_initialexec: 1536 TLM = GlobalVariable::InitialExecTLSModel; 1537 break; 1538 case lltok::kw_localexec: 1539 TLM = GlobalVariable::LocalExecTLSModel; 1540 break; 1541 } 1542 1543 Lex.Lex(); 1544 return false; 1545 } 1546 1547 /// ParseOptionalThreadLocal 1548 /// := /*empty*/ 1549 /// := 'thread_local' 1550 /// := 'thread_local' '(' tlsmodel ')' 1551 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1552 TLM = GlobalVariable::NotThreadLocal; 1553 if (!EatIfPresent(lltok::kw_thread_local)) 1554 return false; 1555 1556 TLM = GlobalVariable::GeneralDynamicTLSModel; 1557 if (Lex.getKind() == lltok::lparen) { 1558 Lex.Lex(); 1559 return ParseTLSModel(TLM) || 1560 ParseToken(lltok::rparen, "expected ')' after thread local model"); 1561 } 1562 return false; 1563 } 1564 1565 /// ParseOptionalAddrSpace 1566 /// := /*empty*/ 1567 /// := 'addrspace' '(' uint32 ')' 1568 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) { 1569 AddrSpace = DefaultAS; 1570 if (!EatIfPresent(lltok::kw_addrspace)) 1571 return false; 1572 return ParseToken(lltok::lparen, "expected '(' in address space") || 1573 ParseUInt32(AddrSpace) || 1574 ParseToken(lltok::rparen, "expected ')' in address space"); 1575 } 1576 1577 /// ParseStringAttribute 1578 /// := StringConstant 1579 /// := StringConstant '=' StringConstant 1580 bool LLParser::ParseStringAttribute(AttrBuilder &B) { 1581 std::string Attr = Lex.getStrVal(); 1582 Lex.Lex(); 1583 std::string Val; 1584 if (EatIfPresent(lltok::equal) && ParseStringConstant(Val)) 1585 return true; 1586 B.addAttribute(Attr, Val); 1587 return false; 1588 } 1589 1590 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes. 1591 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) { 1592 bool HaveError = false; 1593 1594 B.clear(); 1595 1596 while (true) { 1597 lltok::Kind Token = Lex.getKind(); 1598 switch (Token) { 1599 default: // End of attributes. 1600 return HaveError; 1601 case lltok::StringConstant: { 1602 if (ParseStringAttribute(B)) 1603 return true; 1604 continue; 1605 } 1606 case lltok::kw_align: { 1607 MaybeAlign Alignment; 1608 if (ParseOptionalAlignment(Alignment)) 1609 return true; 1610 B.addAlignmentAttr(Alignment); 1611 continue; 1612 } 1613 case lltok::kw_byval: { 1614 Type *Ty; 1615 if (ParseByValWithOptionalType(Ty)) 1616 return true; 1617 B.addByValAttr(Ty); 1618 continue; 1619 } 1620 case lltok::kw_dereferenceable: { 1621 uint64_t Bytes; 1622 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1623 return true; 1624 B.addDereferenceableAttr(Bytes); 1625 continue; 1626 } 1627 case lltok::kw_dereferenceable_or_null: { 1628 uint64_t Bytes; 1629 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1630 return true; 1631 B.addDereferenceableOrNullAttr(Bytes); 1632 continue; 1633 } 1634 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break; 1635 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1636 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break; 1637 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1638 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break; 1639 case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break; 1640 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1641 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1642 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1643 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break; 1644 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1645 case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break; 1646 case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break; 1647 case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break; 1648 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1649 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1650 case lltok::kw_immarg: B.addAttribute(Attribute::ImmArg); break; 1651 1652 case lltok::kw_alignstack: 1653 case lltok::kw_alwaysinline: 1654 case lltok::kw_argmemonly: 1655 case lltok::kw_builtin: 1656 case lltok::kw_inlinehint: 1657 case lltok::kw_jumptable: 1658 case lltok::kw_minsize: 1659 case lltok::kw_naked: 1660 case lltok::kw_nobuiltin: 1661 case lltok::kw_noduplicate: 1662 case lltok::kw_noimplicitfloat: 1663 case lltok::kw_noinline: 1664 case lltok::kw_nonlazybind: 1665 case lltok::kw_noredzone: 1666 case lltok::kw_noreturn: 1667 case lltok::kw_nocf_check: 1668 case lltok::kw_nounwind: 1669 case lltok::kw_optforfuzzing: 1670 case lltok::kw_optnone: 1671 case lltok::kw_optsize: 1672 case lltok::kw_returns_twice: 1673 case lltok::kw_sanitize_address: 1674 case lltok::kw_sanitize_hwaddress: 1675 case lltok::kw_sanitize_memtag: 1676 case lltok::kw_sanitize_memory: 1677 case lltok::kw_sanitize_thread: 1678 case lltok::kw_speculative_load_hardening: 1679 case lltok::kw_ssp: 1680 case lltok::kw_sspreq: 1681 case lltok::kw_sspstrong: 1682 case lltok::kw_safestack: 1683 case lltok::kw_shadowcallstack: 1684 case lltok::kw_strictfp: 1685 case lltok::kw_uwtable: 1686 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1687 break; 1688 } 1689 1690 Lex.Lex(); 1691 } 1692 } 1693 1694 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes. 1695 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) { 1696 bool HaveError = false; 1697 1698 B.clear(); 1699 1700 while (true) { 1701 lltok::Kind Token = Lex.getKind(); 1702 switch (Token) { 1703 default: // End of attributes. 1704 return HaveError; 1705 case lltok::StringConstant: { 1706 if (ParseStringAttribute(B)) 1707 return true; 1708 continue; 1709 } 1710 case lltok::kw_dereferenceable: { 1711 uint64_t Bytes; 1712 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1713 return true; 1714 B.addDereferenceableAttr(Bytes); 1715 continue; 1716 } 1717 case lltok::kw_dereferenceable_or_null: { 1718 uint64_t Bytes; 1719 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1720 return true; 1721 B.addDereferenceableOrNullAttr(Bytes); 1722 continue; 1723 } 1724 case lltok::kw_align: { 1725 MaybeAlign Alignment; 1726 if (ParseOptionalAlignment(Alignment)) 1727 return true; 1728 B.addAlignmentAttr(Alignment); 1729 continue; 1730 } 1731 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1732 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1733 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1734 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1735 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1736 1737 // Error handling. 1738 case lltok::kw_byval: 1739 case lltok::kw_inalloca: 1740 case lltok::kw_nest: 1741 case lltok::kw_nocapture: 1742 case lltok::kw_returned: 1743 case lltok::kw_sret: 1744 case lltok::kw_swifterror: 1745 case lltok::kw_swiftself: 1746 case lltok::kw_immarg: 1747 HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute"); 1748 break; 1749 1750 case lltok::kw_alignstack: 1751 case lltok::kw_alwaysinline: 1752 case lltok::kw_argmemonly: 1753 case lltok::kw_builtin: 1754 case lltok::kw_cold: 1755 case lltok::kw_inlinehint: 1756 case lltok::kw_jumptable: 1757 case lltok::kw_minsize: 1758 case lltok::kw_naked: 1759 case lltok::kw_nobuiltin: 1760 case lltok::kw_noduplicate: 1761 case lltok::kw_noimplicitfloat: 1762 case lltok::kw_noinline: 1763 case lltok::kw_nonlazybind: 1764 case lltok::kw_noredzone: 1765 case lltok::kw_noreturn: 1766 case lltok::kw_nocf_check: 1767 case lltok::kw_nounwind: 1768 case lltok::kw_optforfuzzing: 1769 case lltok::kw_optnone: 1770 case lltok::kw_optsize: 1771 case lltok::kw_returns_twice: 1772 case lltok::kw_sanitize_address: 1773 case lltok::kw_sanitize_hwaddress: 1774 case lltok::kw_sanitize_memtag: 1775 case lltok::kw_sanitize_memory: 1776 case lltok::kw_sanitize_thread: 1777 case lltok::kw_speculative_load_hardening: 1778 case lltok::kw_ssp: 1779 case lltok::kw_sspreq: 1780 case lltok::kw_sspstrong: 1781 case lltok::kw_safestack: 1782 case lltok::kw_shadowcallstack: 1783 case lltok::kw_strictfp: 1784 case lltok::kw_uwtable: 1785 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1786 break; 1787 1788 case lltok::kw_readnone: 1789 case lltok::kw_readonly: 1790 HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type"); 1791 } 1792 1793 Lex.Lex(); 1794 } 1795 } 1796 1797 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1798 HasLinkage = true; 1799 switch (Kind) { 1800 default: 1801 HasLinkage = false; 1802 return GlobalValue::ExternalLinkage; 1803 case lltok::kw_private: 1804 return GlobalValue::PrivateLinkage; 1805 case lltok::kw_internal: 1806 return GlobalValue::InternalLinkage; 1807 case lltok::kw_weak: 1808 return GlobalValue::WeakAnyLinkage; 1809 case lltok::kw_weak_odr: 1810 return GlobalValue::WeakODRLinkage; 1811 case lltok::kw_linkonce: 1812 return GlobalValue::LinkOnceAnyLinkage; 1813 case lltok::kw_linkonce_odr: 1814 return GlobalValue::LinkOnceODRLinkage; 1815 case lltok::kw_available_externally: 1816 return GlobalValue::AvailableExternallyLinkage; 1817 case lltok::kw_appending: 1818 return GlobalValue::AppendingLinkage; 1819 case lltok::kw_common: 1820 return GlobalValue::CommonLinkage; 1821 case lltok::kw_extern_weak: 1822 return GlobalValue::ExternalWeakLinkage; 1823 case lltok::kw_external: 1824 return GlobalValue::ExternalLinkage; 1825 } 1826 } 1827 1828 /// ParseOptionalLinkage 1829 /// ::= /*empty*/ 1830 /// ::= 'private' 1831 /// ::= 'internal' 1832 /// ::= 'weak' 1833 /// ::= 'weak_odr' 1834 /// ::= 'linkonce' 1835 /// ::= 'linkonce_odr' 1836 /// ::= 'available_externally' 1837 /// ::= 'appending' 1838 /// ::= 'common' 1839 /// ::= 'extern_weak' 1840 /// ::= 'external' 1841 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage, 1842 unsigned &Visibility, 1843 unsigned &DLLStorageClass, 1844 bool &DSOLocal) { 1845 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 1846 if (HasLinkage) 1847 Lex.Lex(); 1848 ParseOptionalDSOLocal(DSOLocal); 1849 ParseOptionalVisibility(Visibility); 1850 ParseOptionalDLLStorageClass(DLLStorageClass); 1851 1852 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) { 1853 return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch"); 1854 } 1855 1856 return false; 1857 } 1858 1859 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) { 1860 switch (Lex.getKind()) { 1861 default: 1862 DSOLocal = false; 1863 break; 1864 case lltok::kw_dso_local: 1865 DSOLocal = true; 1866 Lex.Lex(); 1867 break; 1868 case lltok::kw_dso_preemptable: 1869 DSOLocal = false; 1870 Lex.Lex(); 1871 break; 1872 } 1873 } 1874 1875 /// ParseOptionalVisibility 1876 /// ::= /*empty*/ 1877 /// ::= 'default' 1878 /// ::= 'hidden' 1879 /// ::= 'protected' 1880 /// 1881 void LLParser::ParseOptionalVisibility(unsigned &Res) { 1882 switch (Lex.getKind()) { 1883 default: 1884 Res = GlobalValue::DefaultVisibility; 1885 return; 1886 case lltok::kw_default: 1887 Res = GlobalValue::DefaultVisibility; 1888 break; 1889 case lltok::kw_hidden: 1890 Res = GlobalValue::HiddenVisibility; 1891 break; 1892 case lltok::kw_protected: 1893 Res = GlobalValue::ProtectedVisibility; 1894 break; 1895 } 1896 Lex.Lex(); 1897 } 1898 1899 /// ParseOptionalDLLStorageClass 1900 /// ::= /*empty*/ 1901 /// ::= 'dllimport' 1902 /// ::= 'dllexport' 1903 /// 1904 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) { 1905 switch (Lex.getKind()) { 1906 default: 1907 Res = GlobalValue::DefaultStorageClass; 1908 return; 1909 case lltok::kw_dllimport: 1910 Res = GlobalValue::DLLImportStorageClass; 1911 break; 1912 case lltok::kw_dllexport: 1913 Res = GlobalValue::DLLExportStorageClass; 1914 break; 1915 } 1916 Lex.Lex(); 1917 } 1918 1919 /// ParseOptionalCallingConv 1920 /// ::= /*empty*/ 1921 /// ::= 'ccc' 1922 /// ::= 'fastcc' 1923 /// ::= 'intel_ocl_bicc' 1924 /// ::= 'coldcc' 1925 /// ::= 'cfguard_checkcc' 1926 /// ::= 'x86_stdcallcc' 1927 /// ::= 'x86_fastcallcc' 1928 /// ::= 'x86_thiscallcc' 1929 /// ::= 'x86_vectorcallcc' 1930 /// ::= 'arm_apcscc' 1931 /// ::= 'arm_aapcscc' 1932 /// ::= 'arm_aapcs_vfpcc' 1933 /// ::= 'aarch64_vector_pcs' 1934 /// ::= 'msp430_intrcc' 1935 /// ::= 'avr_intrcc' 1936 /// ::= 'avr_signalcc' 1937 /// ::= 'ptx_kernel' 1938 /// ::= 'ptx_device' 1939 /// ::= 'spir_func' 1940 /// ::= 'spir_kernel' 1941 /// ::= 'x86_64_sysvcc' 1942 /// ::= 'win64cc' 1943 /// ::= 'webkit_jscc' 1944 /// ::= 'anyregcc' 1945 /// ::= 'preserve_mostcc' 1946 /// ::= 'preserve_allcc' 1947 /// ::= 'ghccc' 1948 /// ::= 'swiftcc' 1949 /// ::= 'x86_intrcc' 1950 /// ::= 'hhvmcc' 1951 /// ::= 'hhvm_ccc' 1952 /// ::= 'cxx_fast_tlscc' 1953 /// ::= 'amdgpu_vs' 1954 /// ::= 'amdgpu_ls' 1955 /// ::= 'amdgpu_hs' 1956 /// ::= 'amdgpu_es' 1957 /// ::= 'amdgpu_gs' 1958 /// ::= 'amdgpu_ps' 1959 /// ::= 'amdgpu_cs' 1960 /// ::= 'amdgpu_kernel' 1961 /// ::= 'tailcc' 1962 /// ::= 'cc' UINT 1963 /// 1964 bool LLParser::ParseOptionalCallingConv(unsigned &CC) { 1965 switch (Lex.getKind()) { 1966 default: CC = CallingConv::C; return false; 1967 case lltok::kw_ccc: CC = CallingConv::C; break; 1968 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1969 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1970 case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break; 1971 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1972 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1973 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break; 1974 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1975 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 1976 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1977 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1978 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1979 case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break; 1980 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1981 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 1982 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 1983 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1984 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1985 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 1986 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 1987 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 1988 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 1989 case lltok::kw_win64cc: CC = CallingConv::Win64; break; 1990 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 1991 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 1992 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 1993 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 1994 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 1995 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 1996 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 1997 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 1998 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 1999 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 2000 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 2001 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break; 2002 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break; 2003 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break; 2004 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 2005 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 2006 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 2007 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 2008 case lltok::kw_tailcc: CC = CallingConv::Tail; break; 2009 case lltok::kw_cc: { 2010 Lex.Lex(); 2011 return ParseUInt32(CC); 2012 } 2013 } 2014 2015 Lex.Lex(); 2016 return false; 2017 } 2018 2019 /// ParseMetadataAttachment 2020 /// ::= !dbg !42 2021 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 2022 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 2023 2024 std::string Name = Lex.getStrVal(); 2025 Kind = M->getMDKindID(Name); 2026 Lex.Lex(); 2027 2028 return ParseMDNode(MD); 2029 } 2030 2031 /// ParseInstructionMetadata 2032 /// ::= !dbg !42 (',' !dbg !57)* 2033 bool LLParser::ParseInstructionMetadata(Instruction &Inst) { 2034 do { 2035 if (Lex.getKind() != lltok::MetadataVar) 2036 return TokError("expected metadata after comma"); 2037 2038 unsigned MDK; 2039 MDNode *N; 2040 if (ParseMetadataAttachment(MDK, N)) 2041 return true; 2042 2043 Inst.setMetadata(MDK, N); 2044 if (MDK == LLVMContext::MD_tbaa) 2045 InstsWithTBAATag.push_back(&Inst); 2046 2047 // If this is the end of the list, we're done. 2048 } while (EatIfPresent(lltok::comma)); 2049 return false; 2050 } 2051 2052 /// ParseGlobalObjectMetadataAttachment 2053 /// ::= !dbg !57 2054 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) { 2055 unsigned MDK; 2056 MDNode *N; 2057 if (ParseMetadataAttachment(MDK, N)) 2058 return true; 2059 2060 GO.addMetadata(MDK, *N); 2061 return false; 2062 } 2063 2064 /// ParseOptionalFunctionMetadata 2065 /// ::= (!dbg !57)* 2066 bool LLParser::ParseOptionalFunctionMetadata(Function &F) { 2067 while (Lex.getKind() == lltok::MetadataVar) 2068 if (ParseGlobalObjectMetadataAttachment(F)) 2069 return true; 2070 return false; 2071 } 2072 2073 /// ParseOptionalAlignment 2074 /// ::= /* empty */ 2075 /// ::= 'align' 4 2076 bool LLParser::ParseOptionalAlignment(MaybeAlign &Alignment) { 2077 Alignment = None; 2078 if (!EatIfPresent(lltok::kw_align)) 2079 return false; 2080 LocTy AlignLoc = Lex.getLoc(); 2081 uint32_t Value = 0; 2082 if (ParseUInt32(Value)) 2083 return true; 2084 if (!isPowerOf2_32(Value)) 2085 return Error(AlignLoc, "alignment is not a power of two"); 2086 if (Value > Value::MaximumAlignment) 2087 return Error(AlignLoc, "huge alignments are not supported yet"); 2088 Alignment = Align(Value); 2089 return false; 2090 } 2091 2092 /// ParseOptionalDerefAttrBytes 2093 /// ::= /* empty */ 2094 /// ::= AttrKind '(' 4 ')' 2095 /// 2096 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 2097 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind, 2098 uint64_t &Bytes) { 2099 assert((AttrKind == lltok::kw_dereferenceable || 2100 AttrKind == lltok::kw_dereferenceable_or_null) && 2101 "contract!"); 2102 2103 Bytes = 0; 2104 if (!EatIfPresent(AttrKind)) 2105 return false; 2106 LocTy ParenLoc = Lex.getLoc(); 2107 if (!EatIfPresent(lltok::lparen)) 2108 return Error(ParenLoc, "expected '('"); 2109 LocTy DerefLoc = Lex.getLoc(); 2110 if (ParseUInt64(Bytes)) return true; 2111 ParenLoc = Lex.getLoc(); 2112 if (!EatIfPresent(lltok::rparen)) 2113 return Error(ParenLoc, "expected ')'"); 2114 if (!Bytes) 2115 return Error(DerefLoc, "dereferenceable bytes must be non-zero"); 2116 return false; 2117 } 2118 2119 /// ParseOptionalCommaAlign 2120 /// ::= 2121 /// ::= ',' align 4 2122 /// 2123 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2124 /// end. 2125 bool LLParser::ParseOptionalCommaAlign(MaybeAlign &Alignment, 2126 bool &AteExtraComma) { 2127 AteExtraComma = false; 2128 while (EatIfPresent(lltok::comma)) { 2129 // Metadata at the end is an early exit. 2130 if (Lex.getKind() == lltok::MetadataVar) { 2131 AteExtraComma = true; 2132 return false; 2133 } 2134 2135 if (Lex.getKind() != lltok::kw_align) 2136 return Error(Lex.getLoc(), "expected metadata or 'align'"); 2137 2138 if (ParseOptionalAlignment(Alignment)) return true; 2139 } 2140 2141 return false; 2142 } 2143 2144 /// ParseOptionalCommaAddrSpace 2145 /// ::= 2146 /// ::= ',' addrspace(1) 2147 /// 2148 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2149 /// end. 2150 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace, 2151 LocTy &Loc, 2152 bool &AteExtraComma) { 2153 AteExtraComma = false; 2154 while (EatIfPresent(lltok::comma)) { 2155 // Metadata at the end is an early exit. 2156 if (Lex.getKind() == lltok::MetadataVar) { 2157 AteExtraComma = true; 2158 return false; 2159 } 2160 2161 Loc = Lex.getLoc(); 2162 if (Lex.getKind() != lltok::kw_addrspace) 2163 return Error(Lex.getLoc(), "expected metadata or 'addrspace'"); 2164 2165 if (ParseOptionalAddrSpace(AddrSpace)) 2166 return true; 2167 } 2168 2169 return false; 2170 } 2171 2172 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 2173 Optional<unsigned> &HowManyArg) { 2174 Lex.Lex(); 2175 2176 auto StartParen = Lex.getLoc(); 2177 if (!EatIfPresent(lltok::lparen)) 2178 return Error(StartParen, "expected '('"); 2179 2180 if (ParseUInt32(BaseSizeArg)) 2181 return true; 2182 2183 if (EatIfPresent(lltok::comma)) { 2184 auto HowManyAt = Lex.getLoc(); 2185 unsigned HowMany; 2186 if (ParseUInt32(HowMany)) 2187 return true; 2188 if (HowMany == BaseSizeArg) 2189 return Error(HowManyAt, 2190 "'allocsize' indices can't refer to the same parameter"); 2191 HowManyArg = HowMany; 2192 } else 2193 HowManyArg = None; 2194 2195 auto EndParen = Lex.getLoc(); 2196 if (!EatIfPresent(lltok::rparen)) 2197 return Error(EndParen, "expected ')'"); 2198 return false; 2199 } 2200 2201 /// ParseScopeAndOrdering 2202 /// if isAtomic: ::= SyncScope? AtomicOrdering 2203 /// else: ::= 2204 /// 2205 /// This sets Scope and Ordering to the parsed values. 2206 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID, 2207 AtomicOrdering &Ordering) { 2208 if (!isAtomic) 2209 return false; 2210 2211 return ParseScope(SSID) || ParseOrdering(Ordering); 2212 } 2213 2214 /// ParseScope 2215 /// ::= syncscope("singlethread" | "<target scope>")? 2216 /// 2217 /// This sets synchronization scope ID to the ID of the parsed value. 2218 bool LLParser::ParseScope(SyncScope::ID &SSID) { 2219 SSID = SyncScope::System; 2220 if (EatIfPresent(lltok::kw_syncscope)) { 2221 auto StartParenAt = Lex.getLoc(); 2222 if (!EatIfPresent(lltok::lparen)) 2223 return Error(StartParenAt, "Expected '(' in syncscope"); 2224 2225 std::string SSN; 2226 auto SSNAt = Lex.getLoc(); 2227 if (ParseStringConstant(SSN)) 2228 return Error(SSNAt, "Expected synchronization scope name"); 2229 2230 auto EndParenAt = Lex.getLoc(); 2231 if (!EatIfPresent(lltok::rparen)) 2232 return Error(EndParenAt, "Expected ')' in syncscope"); 2233 2234 SSID = Context.getOrInsertSyncScopeID(SSN); 2235 } 2236 2237 return false; 2238 } 2239 2240 /// ParseOrdering 2241 /// ::= AtomicOrdering 2242 /// 2243 /// This sets Ordering to the parsed value. 2244 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) { 2245 switch (Lex.getKind()) { 2246 default: return TokError("Expected ordering on atomic instruction"); 2247 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 2248 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 2249 // Not specified yet: 2250 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 2251 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 2252 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 2253 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 2254 case lltok::kw_seq_cst: 2255 Ordering = AtomicOrdering::SequentiallyConsistent; 2256 break; 2257 } 2258 Lex.Lex(); 2259 return false; 2260 } 2261 2262 /// ParseOptionalStackAlignment 2263 /// ::= /* empty */ 2264 /// ::= 'alignstack' '(' 4 ')' 2265 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { 2266 Alignment = 0; 2267 if (!EatIfPresent(lltok::kw_alignstack)) 2268 return false; 2269 LocTy ParenLoc = Lex.getLoc(); 2270 if (!EatIfPresent(lltok::lparen)) 2271 return Error(ParenLoc, "expected '('"); 2272 LocTy AlignLoc = Lex.getLoc(); 2273 if (ParseUInt32(Alignment)) return true; 2274 ParenLoc = Lex.getLoc(); 2275 if (!EatIfPresent(lltok::rparen)) 2276 return Error(ParenLoc, "expected ')'"); 2277 if (!isPowerOf2_32(Alignment)) 2278 return Error(AlignLoc, "stack alignment is not a power of two"); 2279 return false; 2280 } 2281 2282 /// ParseIndexList - This parses the index list for an insert/extractvalue 2283 /// instruction. This sets AteExtraComma in the case where we eat an extra 2284 /// comma at the end of the line and find that it is followed by metadata. 2285 /// Clients that don't allow metadata can call the version of this function that 2286 /// only takes one argument. 2287 /// 2288 /// ParseIndexList 2289 /// ::= (',' uint32)+ 2290 /// 2291 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, 2292 bool &AteExtraComma) { 2293 AteExtraComma = false; 2294 2295 if (Lex.getKind() != lltok::comma) 2296 return TokError("expected ',' as start of index list"); 2297 2298 while (EatIfPresent(lltok::comma)) { 2299 if (Lex.getKind() == lltok::MetadataVar) { 2300 if (Indices.empty()) return TokError("expected index"); 2301 AteExtraComma = true; 2302 return false; 2303 } 2304 unsigned Idx = 0; 2305 if (ParseUInt32(Idx)) return true; 2306 Indices.push_back(Idx); 2307 } 2308 2309 return false; 2310 } 2311 2312 //===----------------------------------------------------------------------===// 2313 // Type Parsing. 2314 //===----------------------------------------------------------------------===// 2315 2316 /// ParseType - Parse a type. 2317 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 2318 SMLoc TypeLoc = Lex.getLoc(); 2319 switch (Lex.getKind()) { 2320 default: 2321 return TokError(Msg); 2322 case lltok::Type: 2323 // Type ::= 'float' | 'void' (etc) 2324 Result = Lex.getTyVal(); 2325 Lex.Lex(); 2326 break; 2327 case lltok::lbrace: 2328 // Type ::= StructType 2329 if (ParseAnonStructType(Result, false)) 2330 return true; 2331 break; 2332 case lltok::lsquare: 2333 // Type ::= '[' ... ']' 2334 Lex.Lex(); // eat the lsquare. 2335 if (ParseArrayVectorType(Result, false)) 2336 return true; 2337 break; 2338 case lltok::less: // Either vector or packed struct. 2339 // Type ::= '<' ... '>' 2340 Lex.Lex(); 2341 if (Lex.getKind() == lltok::lbrace) { 2342 if (ParseAnonStructType(Result, true) || 2343 ParseToken(lltok::greater, "expected '>' at end of packed struct")) 2344 return true; 2345 } else if (ParseArrayVectorType(Result, true)) 2346 return true; 2347 break; 2348 case lltok::LocalVar: { 2349 // Type ::= %foo 2350 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2351 2352 // If the type hasn't been defined yet, create a forward definition and 2353 // remember where that forward def'n was seen (in case it never is defined). 2354 if (!Entry.first) { 2355 Entry.first = StructType::create(Context, Lex.getStrVal()); 2356 Entry.second = Lex.getLoc(); 2357 } 2358 Result = Entry.first; 2359 Lex.Lex(); 2360 break; 2361 } 2362 2363 case lltok::LocalVarID: { 2364 // Type ::= %4 2365 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2366 2367 // If the type hasn't been defined yet, create a forward definition and 2368 // remember where that forward def'n was seen (in case it never is defined). 2369 if (!Entry.first) { 2370 Entry.first = StructType::create(Context); 2371 Entry.second = Lex.getLoc(); 2372 } 2373 Result = Entry.first; 2374 Lex.Lex(); 2375 break; 2376 } 2377 } 2378 2379 // Parse the type suffixes. 2380 while (true) { 2381 switch (Lex.getKind()) { 2382 // End of type. 2383 default: 2384 if (!AllowVoid && Result->isVoidTy()) 2385 return Error(TypeLoc, "void type only allowed for function results"); 2386 return false; 2387 2388 // Type ::= Type '*' 2389 case lltok::star: 2390 if (Result->isLabelTy()) 2391 return TokError("basic block pointers are invalid"); 2392 if (Result->isVoidTy()) 2393 return TokError("pointers to void are invalid - use i8* instead"); 2394 if (!PointerType::isValidElementType(Result)) 2395 return TokError("pointer to this type is invalid"); 2396 Result = PointerType::getUnqual(Result); 2397 Lex.Lex(); 2398 break; 2399 2400 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2401 case lltok::kw_addrspace: { 2402 if (Result->isLabelTy()) 2403 return TokError("basic block pointers are invalid"); 2404 if (Result->isVoidTy()) 2405 return TokError("pointers to void are invalid; use i8* instead"); 2406 if (!PointerType::isValidElementType(Result)) 2407 return TokError("pointer to this type is invalid"); 2408 unsigned AddrSpace; 2409 if (ParseOptionalAddrSpace(AddrSpace) || 2410 ParseToken(lltok::star, "expected '*' in address space")) 2411 return true; 2412 2413 Result = PointerType::get(Result, AddrSpace); 2414 break; 2415 } 2416 2417 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2418 case lltok::lparen: 2419 if (ParseFunctionType(Result)) 2420 return true; 2421 break; 2422 } 2423 } 2424 } 2425 2426 /// ParseParameterList 2427 /// ::= '(' ')' 2428 /// ::= '(' Arg (',' Arg)* ')' 2429 /// Arg 2430 /// ::= Type OptionalAttributes Value OptionalAttributes 2431 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2432 PerFunctionState &PFS, bool IsMustTailCall, 2433 bool InVarArgsFunc) { 2434 if (ParseToken(lltok::lparen, "expected '(' in call")) 2435 return true; 2436 2437 while (Lex.getKind() != lltok::rparen) { 2438 // If this isn't the first argument, we need a comma. 2439 if (!ArgList.empty() && 2440 ParseToken(lltok::comma, "expected ',' in argument list")) 2441 return true; 2442 2443 // Parse an ellipsis if this is a musttail call in a variadic function. 2444 if (Lex.getKind() == lltok::dotdotdot) { 2445 const char *Msg = "unexpected ellipsis in argument list for "; 2446 if (!IsMustTailCall) 2447 return TokError(Twine(Msg) + "non-musttail call"); 2448 if (!InVarArgsFunc) 2449 return TokError(Twine(Msg) + "musttail call in non-varargs function"); 2450 Lex.Lex(); // Lex the '...', it is purely for readability. 2451 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2452 } 2453 2454 // Parse the argument. 2455 LocTy ArgLoc; 2456 Type *ArgTy = nullptr; 2457 AttrBuilder ArgAttrs; 2458 Value *V; 2459 if (ParseType(ArgTy, ArgLoc)) 2460 return true; 2461 2462 if (ArgTy->isMetadataTy()) { 2463 if (ParseMetadataAsValue(V, PFS)) 2464 return true; 2465 } else { 2466 // Otherwise, handle normal operands. 2467 if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS)) 2468 return true; 2469 } 2470 ArgList.push_back(ParamInfo( 2471 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs))); 2472 } 2473 2474 if (IsMustTailCall && InVarArgsFunc) 2475 return TokError("expected '...' at end of argument list for musttail call " 2476 "in varargs function"); 2477 2478 Lex.Lex(); // Lex the ')'. 2479 return false; 2480 } 2481 2482 /// ParseByValWithOptionalType 2483 /// ::= byval 2484 /// ::= byval(<ty>) 2485 bool LLParser::ParseByValWithOptionalType(Type *&Result) { 2486 Result = nullptr; 2487 if (!EatIfPresent(lltok::kw_byval)) 2488 return true; 2489 if (!EatIfPresent(lltok::lparen)) 2490 return false; 2491 if (ParseType(Result)) 2492 return true; 2493 if (!EatIfPresent(lltok::rparen)) 2494 return Error(Lex.getLoc(), "expected ')'"); 2495 return false; 2496 } 2497 2498 /// ParseOptionalOperandBundles 2499 /// ::= /*empty*/ 2500 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2501 /// 2502 /// OperandBundle 2503 /// ::= bundle-tag '(' ')' 2504 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2505 /// 2506 /// bundle-tag ::= String Constant 2507 bool LLParser::ParseOptionalOperandBundles( 2508 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2509 LocTy BeginLoc = Lex.getLoc(); 2510 if (!EatIfPresent(lltok::lsquare)) 2511 return false; 2512 2513 while (Lex.getKind() != lltok::rsquare) { 2514 // If this isn't the first operand bundle, we need a comma. 2515 if (!BundleList.empty() && 2516 ParseToken(lltok::comma, "expected ',' in input list")) 2517 return true; 2518 2519 std::string Tag; 2520 if (ParseStringConstant(Tag)) 2521 return true; 2522 2523 if (ParseToken(lltok::lparen, "expected '(' in operand bundle")) 2524 return true; 2525 2526 std::vector<Value *> Inputs; 2527 while (Lex.getKind() != lltok::rparen) { 2528 // If this isn't the first input, we need a comma. 2529 if (!Inputs.empty() && 2530 ParseToken(lltok::comma, "expected ',' in input list")) 2531 return true; 2532 2533 Type *Ty = nullptr; 2534 Value *Input = nullptr; 2535 if (ParseType(Ty) || ParseValue(Ty, Input, PFS)) 2536 return true; 2537 Inputs.push_back(Input); 2538 } 2539 2540 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2541 2542 Lex.Lex(); // Lex the ')'. 2543 } 2544 2545 if (BundleList.empty()) 2546 return Error(BeginLoc, "operand bundle set must not be empty"); 2547 2548 Lex.Lex(); // Lex the ']'. 2549 return false; 2550 } 2551 2552 /// ParseArgumentList - Parse the argument list for a function type or function 2553 /// prototype. 2554 /// ::= '(' ArgTypeListI ')' 2555 /// ArgTypeListI 2556 /// ::= /*empty*/ 2557 /// ::= '...' 2558 /// ::= ArgTypeList ',' '...' 2559 /// ::= ArgType (',' ArgType)* 2560 /// 2561 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2562 bool &isVarArg){ 2563 unsigned CurValID = 0; 2564 isVarArg = false; 2565 assert(Lex.getKind() == lltok::lparen); 2566 Lex.Lex(); // eat the (. 2567 2568 if (Lex.getKind() == lltok::rparen) { 2569 // empty 2570 } else if (Lex.getKind() == lltok::dotdotdot) { 2571 isVarArg = true; 2572 Lex.Lex(); 2573 } else { 2574 LocTy TypeLoc = Lex.getLoc(); 2575 Type *ArgTy = nullptr; 2576 AttrBuilder Attrs; 2577 std::string Name; 2578 2579 if (ParseType(ArgTy) || 2580 ParseOptionalParamAttrs(Attrs)) return true; 2581 2582 if (ArgTy->isVoidTy()) 2583 return Error(TypeLoc, "argument can not have void type"); 2584 2585 if (Lex.getKind() == lltok::LocalVar) { 2586 Name = Lex.getStrVal(); 2587 Lex.Lex(); 2588 } else if (Lex.getKind() == lltok::LocalVarID) { 2589 if (Lex.getUIntVal() != CurValID) 2590 return Error(TypeLoc, "argument expected to be numbered '%" + 2591 Twine(CurValID) + "'"); 2592 ++CurValID; 2593 Lex.Lex(); 2594 } 2595 2596 if (!FunctionType::isValidArgumentType(ArgTy)) 2597 return Error(TypeLoc, "invalid type for function argument"); 2598 2599 ArgList.emplace_back(TypeLoc, ArgTy, 2600 AttributeSet::get(ArgTy->getContext(), Attrs), 2601 std::move(Name)); 2602 2603 while (EatIfPresent(lltok::comma)) { 2604 // Handle ... at end of arg list. 2605 if (EatIfPresent(lltok::dotdotdot)) { 2606 isVarArg = true; 2607 break; 2608 } 2609 2610 // Otherwise must be an argument type. 2611 TypeLoc = Lex.getLoc(); 2612 if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true; 2613 2614 if (ArgTy->isVoidTy()) 2615 return Error(TypeLoc, "argument can not have void type"); 2616 2617 if (Lex.getKind() == lltok::LocalVar) { 2618 Name = Lex.getStrVal(); 2619 Lex.Lex(); 2620 } else { 2621 if (Lex.getKind() == lltok::LocalVarID) { 2622 if (Lex.getUIntVal() != CurValID) 2623 return Error(TypeLoc, "argument expected to be numbered '%" + 2624 Twine(CurValID) + "'"); 2625 Lex.Lex(); 2626 } 2627 ++CurValID; 2628 Name = ""; 2629 } 2630 2631 if (!ArgTy->isFirstClassType()) 2632 return Error(TypeLoc, "invalid type for function argument"); 2633 2634 ArgList.emplace_back(TypeLoc, ArgTy, 2635 AttributeSet::get(ArgTy->getContext(), Attrs), 2636 std::move(Name)); 2637 } 2638 } 2639 2640 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2641 } 2642 2643 /// ParseFunctionType 2644 /// ::= Type ArgumentList OptionalAttrs 2645 bool LLParser::ParseFunctionType(Type *&Result) { 2646 assert(Lex.getKind() == lltok::lparen); 2647 2648 if (!FunctionType::isValidReturnType(Result)) 2649 return TokError("invalid function return type"); 2650 2651 SmallVector<ArgInfo, 8> ArgList; 2652 bool isVarArg; 2653 if (ParseArgumentList(ArgList, isVarArg)) 2654 return true; 2655 2656 // Reject names on the arguments lists. 2657 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2658 if (!ArgList[i].Name.empty()) 2659 return Error(ArgList[i].Loc, "argument name invalid in function type"); 2660 if (ArgList[i].Attrs.hasAttributes()) 2661 return Error(ArgList[i].Loc, 2662 "argument attributes invalid in function type"); 2663 } 2664 2665 SmallVector<Type*, 16> ArgListTy; 2666 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2667 ArgListTy.push_back(ArgList[i].Ty); 2668 2669 Result = FunctionType::get(Result, ArgListTy, isVarArg); 2670 return false; 2671 } 2672 2673 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into 2674 /// other structs. 2675 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) { 2676 SmallVector<Type*, 8> Elts; 2677 if (ParseStructBody(Elts)) return true; 2678 2679 Result = StructType::get(Context, Elts, Packed); 2680 return false; 2681 } 2682 2683 /// ParseStructDefinition - Parse a struct in a 'type' definition. 2684 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name, 2685 std::pair<Type*, LocTy> &Entry, 2686 Type *&ResultTy) { 2687 // If the type was already defined, diagnose the redefinition. 2688 if (Entry.first && !Entry.second.isValid()) 2689 return Error(TypeLoc, "redefinition of type"); 2690 2691 // If we have opaque, just return without filling in the definition for the 2692 // struct. This counts as a definition as far as the .ll file goes. 2693 if (EatIfPresent(lltok::kw_opaque)) { 2694 // This type is being defined, so clear the location to indicate this. 2695 Entry.second = SMLoc(); 2696 2697 // If this type number has never been uttered, create it. 2698 if (!Entry.first) 2699 Entry.first = StructType::create(Context, Name); 2700 ResultTy = Entry.first; 2701 return false; 2702 } 2703 2704 // If the type starts with '<', then it is either a packed struct or a vector. 2705 bool isPacked = EatIfPresent(lltok::less); 2706 2707 // If we don't have a struct, then we have a random type alias, which we 2708 // accept for compatibility with old files. These types are not allowed to be 2709 // forward referenced and not allowed to be recursive. 2710 if (Lex.getKind() != lltok::lbrace) { 2711 if (Entry.first) 2712 return Error(TypeLoc, "forward references to non-struct type"); 2713 2714 ResultTy = nullptr; 2715 if (isPacked) 2716 return ParseArrayVectorType(ResultTy, true); 2717 return ParseType(ResultTy); 2718 } 2719 2720 // This type is being defined, so clear the location to indicate this. 2721 Entry.second = SMLoc(); 2722 2723 // If this type number has never been uttered, create it. 2724 if (!Entry.first) 2725 Entry.first = StructType::create(Context, Name); 2726 2727 StructType *STy = cast<StructType>(Entry.first); 2728 2729 SmallVector<Type*, 8> Body; 2730 if (ParseStructBody(Body) || 2731 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct"))) 2732 return true; 2733 2734 STy->setBody(Body, isPacked); 2735 ResultTy = STy; 2736 return false; 2737 } 2738 2739 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2740 /// StructType 2741 /// ::= '{' '}' 2742 /// ::= '{' Type (',' Type)* '}' 2743 /// ::= '<' '{' '}' '>' 2744 /// ::= '<' '{' Type (',' Type)* '}' '>' 2745 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) { 2746 assert(Lex.getKind() == lltok::lbrace); 2747 Lex.Lex(); // Consume the '{' 2748 2749 // Handle the empty struct. 2750 if (EatIfPresent(lltok::rbrace)) 2751 return false; 2752 2753 LocTy EltTyLoc = Lex.getLoc(); 2754 Type *Ty = nullptr; 2755 if (ParseType(Ty)) return true; 2756 Body.push_back(Ty); 2757 2758 if (!StructType::isValidElementType(Ty)) 2759 return Error(EltTyLoc, "invalid element type for struct"); 2760 2761 while (EatIfPresent(lltok::comma)) { 2762 EltTyLoc = Lex.getLoc(); 2763 if (ParseType(Ty)) return true; 2764 2765 if (!StructType::isValidElementType(Ty)) 2766 return Error(EltTyLoc, "invalid element type for struct"); 2767 2768 Body.push_back(Ty); 2769 } 2770 2771 return ParseToken(lltok::rbrace, "expected '}' at end of struct"); 2772 } 2773 2774 /// ParseArrayVectorType - Parse an array or vector type, assuming the first 2775 /// token has already been consumed. 2776 /// Type 2777 /// ::= '[' APSINTVAL 'x' Types ']' 2778 /// ::= '<' APSINTVAL 'x' Types '>' 2779 /// ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>' 2780 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) { 2781 bool Scalable = false; 2782 2783 if (isVector && Lex.getKind() == lltok::kw_vscale) { 2784 Lex.Lex(); // consume the 'vscale' 2785 if (ParseToken(lltok::kw_x, "expected 'x' after vscale")) 2786 return true; 2787 2788 Scalable = true; 2789 } 2790 2791 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2792 Lex.getAPSIntVal().getBitWidth() > 64) 2793 return TokError("expected number in address space"); 2794 2795 LocTy SizeLoc = Lex.getLoc(); 2796 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2797 Lex.Lex(); 2798 2799 if (ParseToken(lltok::kw_x, "expected 'x' after element count")) 2800 return true; 2801 2802 LocTy TypeLoc = Lex.getLoc(); 2803 Type *EltTy = nullptr; 2804 if (ParseType(EltTy)) return true; 2805 2806 if (ParseToken(isVector ? lltok::greater : lltok::rsquare, 2807 "expected end of sequential type")) 2808 return true; 2809 2810 if (isVector) { 2811 if (Size == 0) 2812 return Error(SizeLoc, "zero element vector is illegal"); 2813 if ((unsigned)Size != Size) 2814 return Error(SizeLoc, "size too large for vector"); 2815 if (!VectorType::isValidElementType(EltTy)) 2816 return Error(TypeLoc, "invalid vector element type"); 2817 Result = VectorType::get(EltTy, unsigned(Size), Scalable); 2818 } else { 2819 if (!ArrayType::isValidElementType(EltTy)) 2820 return Error(TypeLoc, "invalid array element type"); 2821 Result = ArrayType::get(EltTy, Size); 2822 } 2823 return false; 2824 } 2825 2826 //===----------------------------------------------------------------------===// 2827 // Function Semantic Analysis. 2828 //===----------------------------------------------------------------------===// 2829 2830 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 2831 int functionNumber) 2832 : P(p), F(f), FunctionNumber(functionNumber) { 2833 2834 // Insert unnamed arguments into the NumberedVals list. 2835 for (Argument &A : F.args()) 2836 if (!A.hasName()) 2837 NumberedVals.push_back(&A); 2838 } 2839 2840 LLParser::PerFunctionState::~PerFunctionState() { 2841 // If there were any forward referenced non-basicblock values, delete them. 2842 2843 for (const auto &P : ForwardRefVals) { 2844 if (isa<BasicBlock>(P.second.first)) 2845 continue; 2846 P.second.first->replaceAllUsesWith( 2847 UndefValue::get(P.second.first->getType())); 2848 P.second.first->deleteValue(); 2849 } 2850 2851 for (const auto &P : ForwardRefValIDs) { 2852 if (isa<BasicBlock>(P.second.first)) 2853 continue; 2854 P.second.first->replaceAllUsesWith( 2855 UndefValue::get(P.second.first->getType())); 2856 P.second.first->deleteValue(); 2857 } 2858 } 2859 2860 bool LLParser::PerFunctionState::FinishFunction() { 2861 if (!ForwardRefVals.empty()) 2862 return P.Error(ForwardRefVals.begin()->second.second, 2863 "use of undefined value '%" + ForwardRefVals.begin()->first + 2864 "'"); 2865 if (!ForwardRefValIDs.empty()) 2866 return P.Error(ForwardRefValIDs.begin()->second.second, 2867 "use of undefined value '%" + 2868 Twine(ForwardRefValIDs.begin()->first) + "'"); 2869 return false; 2870 } 2871 2872 /// GetVal - Get a value with the specified name or ID, creating a 2873 /// forward reference record if needed. This can return null if the value 2874 /// exists but does not have the right type. 2875 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty, 2876 LocTy Loc, bool IsCall) { 2877 // Look this name up in the normal function symbol table. 2878 Value *Val = F.getValueSymbolTable()->lookup(Name); 2879 2880 // If this is a forward reference for the value, see if we already created a 2881 // forward ref record. 2882 if (!Val) { 2883 auto I = ForwardRefVals.find(Name); 2884 if (I != ForwardRefVals.end()) 2885 Val = I->second.first; 2886 } 2887 2888 // If we have the value in the symbol table or fwd-ref table, return it. 2889 if (Val) 2890 return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall); 2891 2892 // Don't make placeholders with invalid type. 2893 if (!Ty->isFirstClassType()) { 2894 P.Error(Loc, "invalid use of a non-first-class type"); 2895 return nullptr; 2896 } 2897 2898 // Otherwise, create a new forward reference for this value and remember it. 2899 Value *FwdVal; 2900 if (Ty->isLabelTy()) { 2901 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 2902 } else { 2903 FwdVal = new Argument(Ty, Name); 2904 } 2905 2906 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 2907 return FwdVal; 2908 } 2909 2910 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc, 2911 bool IsCall) { 2912 // Look this name up in the normal function symbol table. 2913 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 2914 2915 // If this is a forward reference for the value, see if we already created a 2916 // forward ref record. 2917 if (!Val) { 2918 auto I = ForwardRefValIDs.find(ID); 2919 if (I != ForwardRefValIDs.end()) 2920 Val = I->second.first; 2921 } 2922 2923 // If we have the value in the symbol table or fwd-ref table, return it. 2924 if (Val) 2925 return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall); 2926 2927 if (!Ty->isFirstClassType()) { 2928 P.Error(Loc, "invalid use of a non-first-class type"); 2929 return nullptr; 2930 } 2931 2932 // Otherwise, create a new forward reference for this value and remember it. 2933 Value *FwdVal; 2934 if (Ty->isLabelTy()) { 2935 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 2936 } else { 2937 FwdVal = new Argument(Ty); 2938 } 2939 2940 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 2941 return FwdVal; 2942 } 2943 2944 /// SetInstName - After an instruction is parsed and inserted into its 2945 /// basic block, this installs its name. 2946 bool LLParser::PerFunctionState::SetInstName(int NameID, 2947 const std::string &NameStr, 2948 LocTy NameLoc, Instruction *Inst) { 2949 // If this instruction has void type, it cannot have a name or ID specified. 2950 if (Inst->getType()->isVoidTy()) { 2951 if (NameID != -1 || !NameStr.empty()) 2952 return P.Error(NameLoc, "instructions returning void cannot have a name"); 2953 return false; 2954 } 2955 2956 // If this was a numbered instruction, verify that the instruction is the 2957 // expected value and resolve any forward references. 2958 if (NameStr.empty()) { 2959 // If neither a name nor an ID was specified, just use the next ID. 2960 if (NameID == -1) 2961 NameID = NumberedVals.size(); 2962 2963 if (unsigned(NameID) != NumberedVals.size()) 2964 return P.Error(NameLoc, "instruction expected to be numbered '%" + 2965 Twine(NumberedVals.size()) + "'"); 2966 2967 auto FI = ForwardRefValIDs.find(NameID); 2968 if (FI != ForwardRefValIDs.end()) { 2969 Value *Sentinel = FI->second.first; 2970 if (Sentinel->getType() != Inst->getType()) 2971 return P.Error(NameLoc, "instruction forward referenced with type '" + 2972 getTypeString(FI->second.first->getType()) + "'"); 2973 2974 Sentinel->replaceAllUsesWith(Inst); 2975 Sentinel->deleteValue(); 2976 ForwardRefValIDs.erase(FI); 2977 } 2978 2979 NumberedVals.push_back(Inst); 2980 return false; 2981 } 2982 2983 // Otherwise, the instruction had a name. Resolve forward refs and set it. 2984 auto FI = ForwardRefVals.find(NameStr); 2985 if (FI != ForwardRefVals.end()) { 2986 Value *Sentinel = FI->second.first; 2987 if (Sentinel->getType() != Inst->getType()) 2988 return P.Error(NameLoc, "instruction forward referenced with type '" + 2989 getTypeString(FI->second.first->getType()) + "'"); 2990 2991 Sentinel->replaceAllUsesWith(Inst); 2992 Sentinel->deleteValue(); 2993 ForwardRefVals.erase(FI); 2994 } 2995 2996 // Set the name on the instruction. 2997 Inst->setName(NameStr); 2998 2999 if (Inst->getName() != NameStr) 3000 return P.Error(NameLoc, "multiple definition of local value named '" + 3001 NameStr + "'"); 3002 return false; 3003 } 3004 3005 /// GetBB - Get a basic block with the specified name or ID, creating a 3006 /// forward reference record if needed. 3007 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, 3008 LocTy Loc) { 3009 return dyn_cast_or_null<BasicBlock>( 3010 GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 3011 } 3012 3013 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { 3014 return dyn_cast_or_null<BasicBlock>( 3015 GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 3016 } 3017 3018 /// DefineBB - Define the specified basic block, which is either named or 3019 /// unnamed. If there is an error, this returns null otherwise it returns 3020 /// the block being defined. 3021 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, 3022 int NameID, LocTy Loc) { 3023 BasicBlock *BB; 3024 if (Name.empty()) { 3025 if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) { 3026 P.Error(Loc, "label expected to be numbered '" + 3027 Twine(NumberedVals.size()) + "'"); 3028 return nullptr; 3029 } 3030 BB = GetBB(NumberedVals.size(), Loc); 3031 if (!BB) { 3032 P.Error(Loc, "unable to create block numbered '" + 3033 Twine(NumberedVals.size()) + "'"); 3034 return nullptr; 3035 } 3036 } else { 3037 BB = GetBB(Name, Loc); 3038 if (!BB) { 3039 P.Error(Loc, "unable to create block named '" + Name + "'"); 3040 return nullptr; 3041 } 3042 } 3043 3044 // Move the block to the end of the function. Forward ref'd blocks are 3045 // inserted wherever they happen to be referenced. 3046 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 3047 3048 // Remove the block from forward ref sets. 3049 if (Name.empty()) { 3050 ForwardRefValIDs.erase(NumberedVals.size()); 3051 NumberedVals.push_back(BB); 3052 } else { 3053 // BB forward references are already in the function symbol table. 3054 ForwardRefVals.erase(Name); 3055 } 3056 3057 return BB; 3058 } 3059 3060 //===----------------------------------------------------------------------===// 3061 // Constants. 3062 //===----------------------------------------------------------------------===// 3063 3064 /// ParseValID - Parse an abstract value that doesn't necessarily have a 3065 /// type implied. For example, if we parse "4" we don't know what integer type 3066 /// it has. The value will later be combined with its type and checked for 3067 /// sanity. PFS is used to convert function-local operands of metadata (since 3068 /// metadata operands are not just parsed here but also converted to values). 3069 /// PFS can be null when we are not parsing metadata values inside a function. 3070 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { 3071 ID.Loc = Lex.getLoc(); 3072 switch (Lex.getKind()) { 3073 default: return TokError("expected value token"); 3074 case lltok::GlobalID: // @42 3075 ID.UIntVal = Lex.getUIntVal(); 3076 ID.Kind = ValID::t_GlobalID; 3077 break; 3078 case lltok::GlobalVar: // @foo 3079 ID.StrVal = Lex.getStrVal(); 3080 ID.Kind = ValID::t_GlobalName; 3081 break; 3082 case lltok::LocalVarID: // %42 3083 ID.UIntVal = Lex.getUIntVal(); 3084 ID.Kind = ValID::t_LocalID; 3085 break; 3086 case lltok::LocalVar: // %foo 3087 ID.StrVal = Lex.getStrVal(); 3088 ID.Kind = ValID::t_LocalName; 3089 break; 3090 case lltok::APSInt: 3091 ID.APSIntVal = Lex.getAPSIntVal(); 3092 ID.Kind = ValID::t_APSInt; 3093 break; 3094 case lltok::APFloat: 3095 ID.APFloatVal = Lex.getAPFloatVal(); 3096 ID.Kind = ValID::t_APFloat; 3097 break; 3098 case lltok::kw_true: 3099 ID.ConstantVal = ConstantInt::getTrue(Context); 3100 ID.Kind = ValID::t_Constant; 3101 break; 3102 case lltok::kw_false: 3103 ID.ConstantVal = ConstantInt::getFalse(Context); 3104 ID.Kind = ValID::t_Constant; 3105 break; 3106 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 3107 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 3108 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 3109 case lltok::kw_none: ID.Kind = ValID::t_None; break; 3110 3111 case lltok::lbrace: { 3112 // ValID ::= '{' ConstVector '}' 3113 Lex.Lex(); 3114 SmallVector<Constant*, 16> Elts; 3115 if (ParseGlobalValueVector(Elts) || 3116 ParseToken(lltok::rbrace, "expected end of struct constant")) 3117 return true; 3118 3119 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3120 ID.UIntVal = Elts.size(); 3121 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3122 Elts.size() * sizeof(Elts[0])); 3123 ID.Kind = ValID::t_ConstantStruct; 3124 return false; 3125 } 3126 case lltok::less: { 3127 // ValID ::= '<' ConstVector '>' --> Vector. 3128 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 3129 Lex.Lex(); 3130 bool isPackedStruct = EatIfPresent(lltok::lbrace); 3131 3132 SmallVector<Constant*, 16> Elts; 3133 LocTy FirstEltLoc = Lex.getLoc(); 3134 if (ParseGlobalValueVector(Elts) || 3135 (isPackedStruct && 3136 ParseToken(lltok::rbrace, "expected end of packed struct")) || 3137 ParseToken(lltok::greater, "expected end of constant")) 3138 return true; 3139 3140 if (isPackedStruct) { 3141 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3142 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3143 Elts.size() * sizeof(Elts[0])); 3144 ID.UIntVal = Elts.size(); 3145 ID.Kind = ValID::t_PackedConstantStruct; 3146 return false; 3147 } 3148 3149 if (Elts.empty()) 3150 return Error(ID.Loc, "constant vector must not be empty"); 3151 3152 if (!Elts[0]->getType()->isIntegerTy() && 3153 !Elts[0]->getType()->isFloatingPointTy() && 3154 !Elts[0]->getType()->isPointerTy()) 3155 return Error(FirstEltLoc, 3156 "vector elements must have integer, pointer or floating point type"); 3157 3158 // Verify that all the vector elements have the same type. 3159 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 3160 if (Elts[i]->getType() != Elts[0]->getType()) 3161 return Error(FirstEltLoc, 3162 "vector element #" + Twine(i) + 3163 " is not of type '" + getTypeString(Elts[0]->getType())); 3164 3165 ID.ConstantVal = ConstantVector::get(Elts); 3166 ID.Kind = ValID::t_Constant; 3167 return false; 3168 } 3169 case lltok::lsquare: { // Array Constant 3170 Lex.Lex(); 3171 SmallVector<Constant*, 16> Elts; 3172 LocTy FirstEltLoc = Lex.getLoc(); 3173 if (ParseGlobalValueVector(Elts) || 3174 ParseToken(lltok::rsquare, "expected end of array constant")) 3175 return true; 3176 3177 // Handle empty element. 3178 if (Elts.empty()) { 3179 // Use undef instead of an array because it's inconvenient to determine 3180 // the element type at this point, there being no elements to examine. 3181 ID.Kind = ValID::t_EmptyArray; 3182 return false; 3183 } 3184 3185 if (!Elts[0]->getType()->isFirstClassType()) 3186 return Error(FirstEltLoc, "invalid array element type: " + 3187 getTypeString(Elts[0]->getType())); 3188 3189 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 3190 3191 // Verify all elements are correct type! 3192 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 3193 if (Elts[i]->getType() != Elts[0]->getType()) 3194 return Error(FirstEltLoc, 3195 "array element #" + Twine(i) + 3196 " is not of type '" + getTypeString(Elts[0]->getType())); 3197 } 3198 3199 ID.ConstantVal = ConstantArray::get(ATy, Elts); 3200 ID.Kind = ValID::t_Constant; 3201 return false; 3202 } 3203 case lltok::kw_c: // c "foo" 3204 Lex.Lex(); 3205 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 3206 false); 3207 if (ParseToken(lltok::StringConstant, "expected string")) return true; 3208 ID.Kind = ValID::t_Constant; 3209 return false; 3210 3211 case lltok::kw_asm: { 3212 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 3213 // STRINGCONSTANT 3214 bool HasSideEffect, AlignStack, AsmDialect; 3215 Lex.Lex(); 3216 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 3217 ParseOptionalToken(lltok::kw_alignstack, AlignStack) || 3218 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 3219 ParseStringConstant(ID.StrVal) || 3220 ParseToken(lltok::comma, "expected comma in inline asm expression") || 3221 ParseToken(lltok::StringConstant, "expected constraint string")) 3222 return true; 3223 ID.StrVal2 = Lex.getStrVal(); 3224 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) | 3225 (unsigned(AsmDialect)<<2); 3226 ID.Kind = ValID::t_InlineAsm; 3227 return false; 3228 } 3229 3230 case lltok::kw_blockaddress: { 3231 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 3232 Lex.Lex(); 3233 3234 ValID Fn, Label; 3235 3236 if (ParseToken(lltok::lparen, "expected '(' in block address expression") || 3237 ParseValID(Fn) || 3238 ParseToken(lltok::comma, "expected comma in block address expression")|| 3239 ParseValID(Label) || 3240 ParseToken(lltok::rparen, "expected ')' in block address expression")) 3241 return true; 3242 3243 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3244 return Error(Fn.Loc, "expected function name in blockaddress"); 3245 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 3246 return Error(Label.Loc, "expected basic block name in blockaddress"); 3247 3248 // Try to find the function (but skip it if it's forward-referenced). 3249 GlobalValue *GV = nullptr; 3250 if (Fn.Kind == ValID::t_GlobalID) { 3251 if (Fn.UIntVal < NumberedVals.size()) 3252 GV = NumberedVals[Fn.UIntVal]; 3253 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3254 GV = M->getNamedValue(Fn.StrVal); 3255 } 3256 Function *F = nullptr; 3257 if (GV) { 3258 // Confirm that it's actually a function with a definition. 3259 if (!isa<Function>(GV)) 3260 return Error(Fn.Loc, "expected function name in blockaddress"); 3261 F = cast<Function>(GV); 3262 if (F->isDeclaration()) 3263 return Error(Fn.Loc, "cannot take blockaddress inside a declaration"); 3264 } 3265 3266 if (!F) { 3267 // Make a global variable as a placeholder for this reference. 3268 GlobalValue *&FwdRef = 3269 ForwardRefBlockAddresses.insert(std::make_pair( 3270 std::move(Fn), 3271 std::map<ValID, GlobalValue *>())) 3272 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 3273 .first->second; 3274 if (!FwdRef) 3275 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 3276 GlobalValue::InternalLinkage, nullptr, ""); 3277 ID.ConstantVal = FwdRef; 3278 ID.Kind = ValID::t_Constant; 3279 return false; 3280 } 3281 3282 // We found the function; now find the basic block. Don't use PFS, since we 3283 // might be inside a constant expression. 3284 BasicBlock *BB; 3285 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 3286 if (Label.Kind == ValID::t_LocalID) 3287 BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc); 3288 else 3289 BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc); 3290 if (!BB) 3291 return Error(Label.Loc, "referenced value is not a basic block"); 3292 } else { 3293 if (Label.Kind == ValID::t_LocalID) 3294 return Error(Label.Loc, "cannot take address of numeric label after " 3295 "the function is defined"); 3296 BB = dyn_cast_or_null<BasicBlock>( 3297 F->getValueSymbolTable()->lookup(Label.StrVal)); 3298 if (!BB) 3299 return Error(Label.Loc, "referenced value is not a basic block"); 3300 } 3301 3302 ID.ConstantVal = BlockAddress::get(F, BB); 3303 ID.Kind = ValID::t_Constant; 3304 return false; 3305 } 3306 3307 case lltok::kw_trunc: 3308 case lltok::kw_zext: 3309 case lltok::kw_sext: 3310 case lltok::kw_fptrunc: 3311 case lltok::kw_fpext: 3312 case lltok::kw_bitcast: 3313 case lltok::kw_addrspacecast: 3314 case lltok::kw_uitofp: 3315 case lltok::kw_sitofp: 3316 case lltok::kw_fptoui: 3317 case lltok::kw_fptosi: 3318 case lltok::kw_inttoptr: 3319 case lltok::kw_ptrtoint: { 3320 unsigned Opc = Lex.getUIntVal(); 3321 Type *DestTy = nullptr; 3322 Constant *SrcVal; 3323 Lex.Lex(); 3324 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || 3325 ParseGlobalTypeAndValue(SrcVal) || 3326 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 3327 ParseType(DestTy) || 3328 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 3329 return true; 3330 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 3331 return Error(ID.Loc, "invalid cast opcode for cast from '" + 3332 getTypeString(SrcVal->getType()) + "' to '" + 3333 getTypeString(DestTy) + "'"); 3334 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 3335 SrcVal, DestTy); 3336 ID.Kind = ValID::t_Constant; 3337 return false; 3338 } 3339 case lltok::kw_extractvalue: { 3340 Lex.Lex(); 3341 Constant *Val; 3342 SmallVector<unsigned, 4> Indices; 3343 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| 3344 ParseGlobalTypeAndValue(Val) || 3345 ParseIndexList(Indices) || 3346 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 3347 return true; 3348 3349 if (!Val->getType()->isAggregateType()) 3350 return Error(ID.Loc, "extractvalue operand must be aggregate type"); 3351 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 3352 return Error(ID.Loc, "invalid indices for extractvalue"); 3353 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 3354 ID.Kind = ValID::t_Constant; 3355 return false; 3356 } 3357 case lltok::kw_insertvalue: { 3358 Lex.Lex(); 3359 Constant *Val0, *Val1; 3360 SmallVector<unsigned, 4> Indices; 3361 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| 3362 ParseGlobalTypeAndValue(Val0) || 3363 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| 3364 ParseGlobalTypeAndValue(Val1) || 3365 ParseIndexList(Indices) || 3366 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 3367 return true; 3368 if (!Val0->getType()->isAggregateType()) 3369 return Error(ID.Loc, "insertvalue operand must be aggregate type"); 3370 Type *IndexedType = 3371 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 3372 if (!IndexedType) 3373 return Error(ID.Loc, "invalid indices for insertvalue"); 3374 if (IndexedType != Val1->getType()) 3375 return Error(ID.Loc, "insertvalue operand and field disagree in type: '" + 3376 getTypeString(Val1->getType()) + 3377 "' instead of '" + getTypeString(IndexedType) + 3378 "'"); 3379 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 3380 ID.Kind = ValID::t_Constant; 3381 return false; 3382 } 3383 case lltok::kw_icmp: 3384 case lltok::kw_fcmp: { 3385 unsigned PredVal, Opc = Lex.getUIntVal(); 3386 Constant *Val0, *Val1; 3387 Lex.Lex(); 3388 if (ParseCmpPredicate(PredVal, Opc) || 3389 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || 3390 ParseGlobalTypeAndValue(Val0) || 3391 ParseToken(lltok::comma, "expected comma in compare constantexpr") || 3392 ParseGlobalTypeAndValue(Val1) || 3393 ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) 3394 return true; 3395 3396 if (Val0->getType() != Val1->getType()) 3397 return Error(ID.Loc, "compare operands must have the same type"); 3398 3399 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 3400 3401 if (Opc == Instruction::FCmp) { 3402 if (!Val0->getType()->isFPOrFPVectorTy()) 3403 return Error(ID.Loc, "fcmp requires floating point operands"); 3404 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3405 } else { 3406 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3407 if (!Val0->getType()->isIntOrIntVectorTy() && 3408 !Val0->getType()->isPtrOrPtrVectorTy()) 3409 return Error(ID.Loc, "icmp requires pointer or integer operands"); 3410 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3411 } 3412 ID.Kind = ValID::t_Constant; 3413 return false; 3414 } 3415 3416 // Unary Operators. 3417 case lltok::kw_fneg: 3418 case lltok::kw_freeze: { 3419 unsigned Opc = Lex.getUIntVal(); 3420 Constant *Val; 3421 Lex.Lex(); 3422 if (ParseToken(lltok::lparen, "expected '(' in unary constantexpr") || 3423 ParseGlobalTypeAndValue(Val) || 3424 ParseToken(lltok::rparen, "expected ')' in unary constantexpr")) 3425 return true; 3426 3427 // Check that the type is valid for the operator. 3428 switch (Opc) { 3429 case Instruction::FNeg: 3430 if (!Val->getType()->isFPOrFPVectorTy()) 3431 return Error(ID.Loc, "constexpr requires fp operands"); 3432 break; 3433 case Instruction::Freeze: 3434 break; 3435 default: llvm_unreachable("Unknown unary operator!"); 3436 } 3437 unsigned Flags = 0; 3438 Constant *C = ConstantExpr::get(Opc, Val, Flags); 3439 ID.ConstantVal = C; 3440 ID.Kind = ValID::t_Constant; 3441 return false; 3442 } 3443 // Binary Operators. 3444 case lltok::kw_add: 3445 case lltok::kw_fadd: 3446 case lltok::kw_sub: 3447 case lltok::kw_fsub: 3448 case lltok::kw_mul: 3449 case lltok::kw_fmul: 3450 case lltok::kw_udiv: 3451 case lltok::kw_sdiv: 3452 case lltok::kw_fdiv: 3453 case lltok::kw_urem: 3454 case lltok::kw_srem: 3455 case lltok::kw_frem: 3456 case lltok::kw_shl: 3457 case lltok::kw_lshr: 3458 case lltok::kw_ashr: { 3459 bool NUW = false; 3460 bool NSW = false; 3461 bool Exact = false; 3462 unsigned Opc = Lex.getUIntVal(); 3463 Constant *Val0, *Val1; 3464 Lex.Lex(); 3465 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3466 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3467 if (EatIfPresent(lltok::kw_nuw)) 3468 NUW = true; 3469 if (EatIfPresent(lltok::kw_nsw)) { 3470 NSW = true; 3471 if (EatIfPresent(lltok::kw_nuw)) 3472 NUW = true; 3473 } 3474 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3475 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3476 if (EatIfPresent(lltok::kw_exact)) 3477 Exact = true; 3478 } 3479 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3480 ParseGlobalTypeAndValue(Val0) || 3481 ParseToken(lltok::comma, "expected comma in binary constantexpr") || 3482 ParseGlobalTypeAndValue(Val1) || 3483 ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3484 return true; 3485 if (Val0->getType() != Val1->getType()) 3486 return Error(ID.Loc, "operands of constexpr must have same type"); 3487 // Check that the type is valid for the operator. 3488 switch (Opc) { 3489 case Instruction::Add: 3490 case Instruction::Sub: 3491 case Instruction::Mul: 3492 case Instruction::UDiv: 3493 case Instruction::SDiv: 3494 case Instruction::URem: 3495 case Instruction::SRem: 3496 case Instruction::Shl: 3497 case Instruction::AShr: 3498 case Instruction::LShr: 3499 if (!Val0->getType()->isIntOrIntVectorTy()) 3500 return Error(ID.Loc, "constexpr requires integer operands"); 3501 break; 3502 case Instruction::FAdd: 3503 case Instruction::FSub: 3504 case Instruction::FMul: 3505 case Instruction::FDiv: 3506 case Instruction::FRem: 3507 if (!Val0->getType()->isFPOrFPVectorTy()) 3508 return Error(ID.Loc, "constexpr requires fp operands"); 3509 break; 3510 default: llvm_unreachable("Unknown binary operator!"); 3511 } 3512 unsigned Flags = 0; 3513 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3514 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3515 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3516 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3517 ID.ConstantVal = C; 3518 ID.Kind = ValID::t_Constant; 3519 return false; 3520 } 3521 3522 // Logical Operations 3523 case lltok::kw_and: 3524 case lltok::kw_or: 3525 case lltok::kw_xor: { 3526 unsigned Opc = Lex.getUIntVal(); 3527 Constant *Val0, *Val1; 3528 Lex.Lex(); 3529 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3530 ParseGlobalTypeAndValue(Val0) || 3531 ParseToken(lltok::comma, "expected comma in logical constantexpr") || 3532 ParseGlobalTypeAndValue(Val1) || 3533 ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3534 return true; 3535 if (Val0->getType() != Val1->getType()) 3536 return Error(ID.Loc, "operands of constexpr must have same type"); 3537 if (!Val0->getType()->isIntOrIntVectorTy()) 3538 return Error(ID.Loc, 3539 "constexpr requires integer or integer vector operands"); 3540 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3541 ID.Kind = ValID::t_Constant; 3542 return false; 3543 } 3544 3545 case lltok::kw_getelementptr: 3546 case lltok::kw_shufflevector: 3547 case lltok::kw_insertelement: 3548 case lltok::kw_extractelement: 3549 case lltok::kw_select: { 3550 unsigned Opc = Lex.getUIntVal(); 3551 SmallVector<Constant*, 16> Elts; 3552 bool InBounds = false; 3553 Type *Ty; 3554 Lex.Lex(); 3555 3556 if (Opc == Instruction::GetElementPtr) 3557 InBounds = EatIfPresent(lltok::kw_inbounds); 3558 3559 if (ParseToken(lltok::lparen, "expected '(' in constantexpr")) 3560 return true; 3561 3562 LocTy ExplicitTypeLoc = Lex.getLoc(); 3563 if (Opc == Instruction::GetElementPtr) { 3564 if (ParseType(Ty) || 3565 ParseToken(lltok::comma, "expected comma after getelementptr's type")) 3566 return true; 3567 } 3568 3569 Optional<unsigned> InRangeOp; 3570 if (ParseGlobalValueVector( 3571 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) || 3572 ParseToken(lltok::rparen, "expected ')' in constantexpr")) 3573 return true; 3574 3575 if (Opc == Instruction::GetElementPtr) { 3576 if (Elts.size() == 0 || 3577 !Elts[0]->getType()->isPtrOrPtrVectorTy()) 3578 return Error(ID.Loc, "base of getelementptr must be a pointer"); 3579 3580 Type *BaseType = Elts[0]->getType(); 3581 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3582 if (Ty != BasePointerType->getElementType()) 3583 return Error( 3584 ExplicitTypeLoc, 3585 "explicit pointee type doesn't match operand's pointee type"); 3586 3587 unsigned GEPWidth = 3588 BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0; 3589 3590 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3591 for (Constant *Val : Indices) { 3592 Type *ValTy = Val->getType(); 3593 if (!ValTy->isIntOrIntVectorTy()) 3594 return Error(ID.Loc, "getelementptr index must be an integer"); 3595 if (ValTy->isVectorTy()) { 3596 unsigned ValNumEl = ValTy->getVectorNumElements(); 3597 if (GEPWidth && (ValNumEl != GEPWidth)) 3598 return Error( 3599 ID.Loc, 3600 "getelementptr vector index has a wrong number of elements"); 3601 // GEPWidth may have been unknown because the base is a scalar, 3602 // but it is known now. 3603 GEPWidth = ValNumEl; 3604 } 3605 } 3606 3607 SmallPtrSet<Type*, 4> Visited; 3608 if (!Indices.empty() && !Ty->isSized(&Visited)) 3609 return Error(ID.Loc, "base element of getelementptr must be sized"); 3610 3611 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3612 return Error(ID.Loc, "invalid getelementptr indices"); 3613 3614 if (InRangeOp) { 3615 if (*InRangeOp == 0) 3616 return Error(ID.Loc, 3617 "inrange keyword may not appear on pointer operand"); 3618 --*InRangeOp; 3619 } 3620 3621 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, 3622 InBounds, InRangeOp); 3623 } else if (Opc == Instruction::Select) { 3624 if (Elts.size() != 3) 3625 return Error(ID.Loc, "expected three operands to select"); 3626 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3627 Elts[2])) 3628 return Error(ID.Loc, Reason); 3629 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3630 } else if (Opc == Instruction::ShuffleVector) { 3631 if (Elts.size() != 3) 3632 return Error(ID.Loc, "expected three operands to shufflevector"); 3633 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3634 return Error(ID.Loc, "invalid operands to shufflevector"); 3635 ID.ConstantVal = 3636 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); 3637 } else if (Opc == Instruction::ExtractElement) { 3638 if (Elts.size() != 2) 3639 return Error(ID.Loc, "expected two operands to extractelement"); 3640 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3641 return Error(ID.Loc, "invalid extractelement operands"); 3642 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3643 } else { 3644 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3645 if (Elts.size() != 3) 3646 return Error(ID.Loc, "expected three operands to insertelement"); 3647 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3648 return Error(ID.Loc, "invalid insertelement operands"); 3649 ID.ConstantVal = 3650 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3651 } 3652 3653 ID.Kind = ValID::t_Constant; 3654 return false; 3655 } 3656 } 3657 3658 Lex.Lex(); 3659 return false; 3660 } 3661 3662 /// ParseGlobalValue - Parse a global value with the specified type. 3663 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) { 3664 C = nullptr; 3665 ValID ID; 3666 Value *V = nullptr; 3667 bool Parsed = ParseValID(ID) || 3668 ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false); 3669 if (V && !(C = dyn_cast<Constant>(V))) 3670 return Error(ID.Loc, "global values must be constants"); 3671 return Parsed; 3672 } 3673 3674 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { 3675 Type *Ty = nullptr; 3676 return ParseType(Ty) || 3677 ParseGlobalValue(Ty, V); 3678 } 3679 3680 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3681 C = nullptr; 3682 3683 LocTy KwLoc = Lex.getLoc(); 3684 if (!EatIfPresent(lltok::kw_comdat)) 3685 return false; 3686 3687 if (EatIfPresent(lltok::lparen)) { 3688 if (Lex.getKind() != lltok::ComdatVar) 3689 return TokError("expected comdat variable"); 3690 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3691 Lex.Lex(); 3692 if (ParseToken(lltok::rparen, "expected ')' after comdat var")) 3693 return true; 3694 } else { 3695 if (GlobalName.empty()) 3696 return TokError("comdat cannot be unnamed"); 3697 C = getComdat(GlobalName, KwLoc); 3698 } 3699 3700 return false; 3701 } 3702 3703 /// ParseGlobalValueVector 3704 /// ::= /*empty*/ 3705 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)* 3706 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts, 3707 Optional<unsigned> *InRangeOp) { 3708 // Empty list. 3709 if (Lex.getKind() == lltok::rbrace || 3710 Lex.getKind() == lltok::rsquare || 3711 Lex.getKind() == lltok::greater || 3712 Lex.getKind() == lltok::rparen) 3713 return false; 3714 3715 do { 3716 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange)) 3717 *InRangeOp = Elts.size(); 3718 3719 Constant *C; 3720 if (ParseGlobalTypeAndValue(C)) return true; 3721 Elts.push_back(C); 3722 } while (EatIfPresent(lltok::comma)); 3723 3724 return false; 3725 } 3726 3727 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) { 3728 SmallVector<Metadata *, 16> Elts; 3729 if (ParseMDNodeVector(Elts)) 3730 return true; 3731 3732 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3733 return false; 3734 } 3735 3736 /// MDNode: 3737 /// ::= !{ ... } 3738 /// ::= !7 3739 /// ::= !DILocation(...) 3740 bool LLParser::ParseMDNode(MDNode *&N) { 3741 if (Lex.getKind() == lltok::MetadataVar) 3742 return ParseSpecializedMDNode(N); 3743 3744 return ParseToken(lltok::exclaim, "expected '!' here") || 3745 ParseMDNodeTail(N); 3746 } 3747 3748 bool LLParser::ParseMDNodeTail(MDNode *&N) { 3749 // !{ ... } 3750 if (Lex.getKind() == lltok::lbrace) 3751 return ParseMDTuple(N); 3752 3753 // !42 3754 return ParseMDNodeID(N); 3755 } 3756 3757 namespace { 3758 3759 /// Structure to represent an optional metadata field. 3760 template <class FieldTy> struct MDFieldImpl { 3761 typedef MDFieldImpl ImplTy; 3762 FieldTy Val; 3763 bool Seen; 3764 3765 void assign(FieldTy Val) { 3766 Seen = true; 3767 this->Val = std::move(Val); 3768 } 3769 3770 explicit MDFieldImpl(FieldTy Default) 3771 : Val(std::move(Default)), Seen(false) {} 3772 }; 3773 3774 /// Structure to represent an optional metadata field that 3775 /// can be of either type (A or B) and encapsulates the 3776 /// MD<typeofA>Field and MD<typeofB>Field structs, so not 3777 /// to reimplement the specifics for representing each Field. 3778 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl { 3779 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy; 3780 FieldTypeA A; 3781 FieldTypeB B; 3782 bool Seen; 3783 3784 enum { 3785 IsInvalid = 0, 3786 IsTypeA = 1, 3787 IsTypeB = 2 3788 } WhatIs; 3789 3790 void assign(FieldTypeA A) { 3791 Seen = true; 3792 this->A = std::move(A); 3793 WhatIs = IsTypeA; 3794 } 3795 3796 void assign(FieldTypeB B) { 3797 Seen = true; 3798 this->B = std::move(B); 3799 WhatIs = IsTypeB; 3800 } 3801 3802 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB) 3803 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false), 3804 WhatIs(IsInvalid) {} 3805 }; 3806 3807 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 3808 uint64_t Max; 3809 3810 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 3811 : ImplTy(Default), Max(Max) {} 3812 }; 3813 3814 struct LineField : public MDUnsignedField { 3815 LineField() : MDUnsignedField(0, UINT32_MAX) {} 3816 }; 3817 3818 struct ColumnField : public MDUnsignedField { 3819 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 3820 }; 3821 3822 struct DwarfTagField : public MDUnsignedField { 3823 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 3824 DwarfTagField(dwarf::Tag DefaultTag) 3825 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 3826 }; 3827 3828 struct DwarfMacinfoTypeField : public MDUnsignedField { 3829 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 3830 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 3831 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 3832 }; 3833 3834 struct DwarfAttEncodingField : public MDUnsignedField { 3835 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 3836 }; 3837 3838 struct DwarfVirtualityField : public MDUnsignedField { 3839 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 3840 }; 3841 3842 struct DwarfLangField : public MDUnsignedField { 3843 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 3844 }; 3845 3846 struct DwarfCCField : public MDUnsignedField { 3847 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 3848 }; 3849 3850 struct EmissionKindField : public MDUnsignedField { 3851 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 3852 }; 3853 3854 struct NameTableKindField : public MDUnsignedField { 3855 NameTableKindField() 3856 : MDUnsignedField( 3857 0, (unsigned) 3858 DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {} 3859 }; 3860 3861 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 3862 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 3863 }; 3864 3865 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> { 3866 DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {} 3867 }; 3868 3869 struct MDSignedField : public MDFieldImpl<int64_t> { 3870 int64_t Min; 3871 int64_t Max; 3872 3873 MDSignedField(int64_t Default = 0) 3874 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 3875 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 3876 : ImplTy(Default), Min(Min), Max(Max) {} 3877 }; 3878 3879 struct MDBoolField : public MDFieldImpl<bool> { 3880 MDBoolField(bool Default = false) : ImplTy(Default) {} 3881 }; 3882 3883 struct MDField : public MDFieldImpl<Metadata *> { 3884 bool AllowNull; 3885 3886 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 3887 }; 3888 3889 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> { 3890 MDConstant() : ImplTy(nullptr) {} 3891 }; 3892 3893 struct MDStringField : public MDFieldImpl<MDString *> { 3894 bool AllowEmpty; 3895 MDStringField(bool AllowEmpty = true) 3896 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 3897 }; 3898 3899 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 3900 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 3901 }; 3902 3903 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> { 3904 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {} 3905 }; 3906 3907 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> { 3908 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true) 3909 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {} 3910 3911 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max, 3912 bool AllowNull = true) 3913 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {} 3914 3915 bool isMDSignedField() const { return WhatIs == IsTypeA; } 3916 bool isMDField() const { return WhatIs == IsTypeB; } 3917 int64_t getMDSignedValue() const { 3918 assert(isMDSignedField() && "Wrong field type"); 3919 return A.Val; 3920 } 3921 Metadata *getMDFieldValue() const { 3922 assert(isMDField() && "Wrong field type"); 3923 return B.Val; 3924 } 3925 }; 3926 3927 struct MDSignedOrUnsignedField 3928 : MDEitherFieldImpl<MDSignedField, MDUnsignedField> { 3929 MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {} 3930 3931 bool isMDSignedField() const { return WhatIs == IsTypeA; } 3932 bool isMDUnsignedField() const { return WhatIs == IsTypeB; } 3933 int64_t getMDSignedValue() const { 3934 assert(isMDSignedField() && "Wrong field type"); 3935 return A.Val; 3936 } 3937 uint64_t getMDUnsignedValue() const { 3938 assert(isMDUnsignedField() && "Wrong field type"); 3939 return B.Val; 3940 } 3941 }; 3942 3943 } // end anonymous namespace 3944 3945 namespace llvm { 3946 3947 template <> 3948 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3949 MDUnsignedField &Result) { 3950 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 3951 return TokError("expected unsigned integer"); 3952 3953 auto &U = Lex.getAPSIntVal(); 3954 if (U.ugt(Result.Max)) 3955 return TokError("value for '" + Name + "' too large, limit is " + 3956 Twine(Result.Max)); 3957 Result.assign(U.getZExtValue()); 3958 assert(Result.Val <= Result.Max && "Expected value in range"); 3959 Lex.Lex(); 3960 return false; 3961 } 3962 3963 template <> 3964 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) { 3965 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3966 } 3967 template <> 3968 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 3969 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3970 } 3971 3972 template <> 3973 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 3974 if (Lex.getKind() == lltok::APSInt) 3975 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3976 3977 if (Lex.getKind() != lltok::DwarfTag) 3978 return TokError("expected DWARF tag"); 3979 3980 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 3981 if (Tag == dwarf::DW_TAG_invalid) 3982 return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 3983 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 3984 3985 Result.assign(Tag); 3986 Lex.Lex(); 3987 return false; 3988 } 3989 3990 template <> 3991 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3992 DwarfMacinfoTypeField &Result) { 3993 if (Lex.getKind() == lltok::APSInt) 3994 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3995 3996 if (Lex.getKind() != lltok::DwarfMacinfo) 3997 return TokError("expected DWARF macinfo type"); 3998 3999 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 4000 if (Macinfo == dwarf::DW_MACINFO_invalid) 4001 return TokError( 4002 "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'"); 4003 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 4004 4005 Result.assign(Macinfo); 4006 Lex.Lex(); 4007 return false; 4008 } 4009 4010 template <> 4011 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4012 DwarfVirtualityField &Result) { 4013 if (Lex.getKind() == lltok::APSInt) 4014 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4015 4016 if (Lex.getKind() != lltok::DwarfVirtuality) 4017 return TokError("expected DWARF virtuality code"); 4018 4019 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 4020 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 4021 return TokError("invalid DWARF virtuality code" + Twine(" '") + 4022 Lex.getStrVal() + "'"); 4023 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 4024 Result.assign(Virtuality); 4025 Lex.Lex(); 4026 return false; 4027 } 4028 4029 template <> 4030 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 4031 if (Lex.getKind() == lltok::APSInt) 4032 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4033 4034 if (Lex.getKind() != lltok::DwarfLang) 4035 return TokError("expected DWARF language"); 4036 4037 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 4038 if (!Lang) 4039 return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 4040 "'"); 4041 assert(Lang <= Result.Max && "Expected valid DWARF language"); 4042 Result.assign(Lang); 4043 Lex.Lex(); 4044 return false; 4045 } 4046 4047 template <> 4048 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 4049 if (Lex.getKind() == lltok::APSInt) 4050 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4051 4052 if (Lex.getKind() != lltok::DwarfCC) 4053 return TokError("expected DWARF calling convention"); 4054 4055 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 4056 if (!CC) 4057 return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() + 4058 "'"); 4059 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 4060 Result.assign(CC); 4061 Lex.Lex(); 4062 return false; 4063 } 4064 4065 template <> 4066 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) { 4067 if (Lex.getKind() == lltok::APSInt) 4068 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4069 4070 if (Lex.getKind() != lltok::EmissionKind) 4071 return TokError("expected emission kind"); 4072 4073 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 4074 if (!Kind) 4075 return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 4076 "'"); 4077 assert(*Kind <= Result.Max && "Expected valid emission kind"); 4078 Result.assign(*Kind); 4079 Lex.Lex(); 4080 return false; 4081 } 4082 4083 template <> 4084 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4085 NameTableKindField &Result) { 4086 if (Lex.getKind() == lltok::APSInt) 4087 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4088 4089 if (Lex.getKind() != lltok::NameTableKind) 4090 return TokError("expected nameTable kind"); 4091 4092 auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal()); 4093 if (!Kind) 4094 return TokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() + 4095 "'"); 4096 assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind"); 4097 Result.assign((unsigned)*Kind); 4098 Lex.Lex(); 4099 return false; 4100 } 4101 4102 template <> 4103 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4104 DwarfAttEncodingField &Result) { 4105 if (Lex.getKind() == lltok::APSInt) 4106 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4107 4108 if (Lex.getKind() != lltok::DwarfAttEncoding) 4109 return TokError("expected DWARF type attribute encoding"); 4110 4111 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 4112 if (!Encoding) 4113 return TokError("invalid DWARF type attribute encoding" + Twine(" '") + 4114 Lex.getStrVal() + "'"); 4115 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 4116 Result.assign(Encoding); 4117 Lex.Lex(); 4118 return false; 4119 } 4120 4121 /// DIFlagField 4122 /// ::= uint32 4123 /// ::= DIFlagVector 4124 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 4125 template <> 4126 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 4127 4128 // Parser for a single flag. 4129 auto parseFlag = [&](DINode::DIFlags &Val) { 4130 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4131 uint32_t TempVal = static_cast<uint32_t>(Val); 4132 bool Res = ParseUInt32(TempVal); 4133 Val = static_cast<DINode::DIFlags>(TempVal); 4134 return Res; 4135 } 4136 4137 if (Lex.getKind() != lltok::DIFlag) 4138 return TokError("expected debug info flag"); 4139 4140 Val = DINode::getFlag(Lex.getStrVal()); 4141 if (!Val) 4142 return TokError(Twine("invalid debug info flag flag '") + 4143 Lex.getStrVal() + "'"); 4144 Lex.Lex(); 4145 return false; 4146 }; 4147 4148 // Parse the flags and combine them together. 4149 DINode::DIFlags Combined = DINode::FlagZero; 4150 do { 4151 DINode::DIFlags Val; 4152 if (parseFlag(Val)) 4153 return true; 4154 Combined |= Val; 4155 } while (EatIfPresent(lltok::bar)); 4156 4157 Result.assign(Combined); 4158 return false; 4159 } 4160 4161 /// DISPFlagField 4162 /// ::= uint32 4163 /// ::= DISPFlagVector 4164 /// ::= DISPFlagVector '|' DISPFlag* '|' uint32 4165 template <> 4166 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) { 4167 4168 // Parser for a single flag. 4169 auto parseFlag = [&](DISubprogram::DISPFlags &Val) { 4170 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4171 uint32_t TempVal = static_cast<uint32_t>(Val); 4172 bool Res = ParseUInt32(TempVal); 4173 Val = static_cast<DISubprogram::DISPFlags>(TempVal); 4174 return Res; 4175 } 4176 4177 if (Lex.getKind() != lltok::DISPFlag) 4178 return TokError("expected debug info flag"); 4179 4180 Val = DISubprogram::getFlag(Lex.getStrVal()); 4181 if (!Val) 4182 return TokError(Twine("invalid subprogram debug info flag '") + 4183 Lex.getStrVal() + "'"); 4184 Lex.Lex(); 4185 return false; 4186 }; 4187 4188 // Parse the flags and combine them together. 4189 DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero; 4190 do { 4191 DISubprogram::DISPFlags Val; 4192 if (parseFlag(Val)) 4193 return true; 4194 Combined |= Val; 4195 } while (EatIfPresent(lltok::bar)); 4196 4197 Result.assign(Combined); 4198 return false; 4199 } 4200 4201 template <> 4202 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4203 MDSignedField &Result) { 4204 if (Lex.getKind() != lltok::APSInt) 4205 return TokError("expected signed integer"); 4206 4207 auto &S = Lex.getAPSIntVal(); 4208 if (S < Result.Min) 4209 return TokError("value for '" + Name + "' too small, limit is " + 4210 Twine(Result.Min)); 4211 if (S > Result.Max) 4212 return TokError("value for '" + Name + "' too large, limit is " + 4213 Twine(Result.Max)); 4214 Result.assign(S.getExtValue()); 4215 assert(Result.Val >= Result.Min && "Expected value in range"); 4216 assert(Result.Val <= Result.Max && "Expected value in range"); 4217 Lex.Lex(); 4218 return false; 4219 } 4220 4221 template <> 4222 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 4223 switch (Lex.getKind()) { 4224 default: 4225 return TokError("expected 'true' or 'false'"); 4226 case lltok::kw_true: 4227 Result.assign(true); 4228 break; 4229 case lltok::kw_false: 4230 Result.assign(false); 4231 break; 4232 } 4233 Lex.Lex(); 4234 return false; 4235 } 4236 4237 template <> 4238 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) { 4239 if (Lex.getKind() == lltok::kw_null) { 4240 if (!Result.AllowNull) 4241 return TokError("'" + Name + "' cannot be null"); 4242 Lex.Lex(); 4243 Result.assign(nullptr); 4244 return false; 4245 } 4246 4247 Metadata *MD; 4248 if (ParseMetadata(MD, nullptr)) 4249 return true; 4250 4251 Result.assign(MD); 4252 return false; 4253 } 4254 4255 template <> 4256 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4257 MDSignedOrMDField &Result) { 4258 // Try to parse a signed int. 4259 if (Lex.getKind() == lltok::APSInt) { 4260 MDSignedField Res = Result.A; 4261 if (!ParseMDField(Loc, Name, Res)) { 4262 Result.assign(Res); 4263 return false; 4264 } 4265 return true; 4266 } 4267 4268 // Otherwise, try to parse as an MDField. 4269 MDField Res = Result.B; 4270 if (!ParseMDField(Loc, Name, Res)) { 4271 Result.assign(Res); 4272 return false; 4273 } 4274 4275 return true; 4276 } 4277 4278 template <> 4279 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4280 MDSignedOrUnsignedField &Result) { 4281 if (Lex.getKind() != lltok::APSInt) 4282 return false; 4283 4284 if (Lex.getAPSIntVal().isSigned()) { 4285 MDSignedField Res = Result.A; 4286 if (ParseMDField(Loc, Name, Res)) 4287 return true; 4288 Result.assign(Res); 4289 return false; 4290 } 4291 4292 MDUnsignedField Res = Result.B; 4293 if (ParseMDField(Loc, Name, Res)) 4294 return true; 4295 Result.assign(Res); 4296 return false; 4297 } 4298 4299 template <> 4300 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 4301 LocTy ValueLoc = Lex.getLoc(); 4302 std::string S; 4303 if (ParseStringConstant(S)) 4304 return true; 4305 4306 if (!Result.AllowEmpty && S.empty()) 4307 return Error(ValueLoc, "'" + Name + "' cannot be empty"); 4308 4309 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 4310 return false; 4311 } 4312 4313 template <> 4314 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 4315 SmallVector<Metadata *, 4> MDs; 4316 if (ParseMDNodeVector(MDs)) 4317 return true; 4318 4319 Result.assign(std::move(MDs)); 4320 return false; 4321 } 4322 4323 template <> 4324 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4325 ChecksumKindField &Result) { 4326 Optional<DIFile::ChecksumKind> CSKind = 4327 DIFile::getChecksumKind(Lex.getStrVal()); 4328 4329 if (Lex.getKind() != lltok::ChecksumKind || !CSKind) 4330 return TokError( 4331 "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'"); 4332 4333 Result.assign(*CSKind); 4334 Lex.Lex(); 4335 return false; 4336 } 4337 4338 } // end namespace llvm 4339 4340 template <class ParserTy> 4341 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) { 4342 do { 4343 if (Lex.getKind() != lltok::LabelStr) 4344 return TokError("expected field label here"); 4345 4346 if (parseField()) 4347 return true; 4348 } while (EatIfPresent(lltok::comma)); 4349 4350 return false; 4351 } 4352 4353 template <class ParserTy> 4354 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) { 4355 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4356 Lex.Lex(); 4357 4358 if (ParseToken(lltok::lparen, "expected '(' here")) 4359 return true; 4360 if (Lex.getKind() != lltok::rparen) 4361 if (ParseMDFieldsImplBody(parseField)) 4362 return true; 4363 4364 ClosingLoc = Lex.getLoc(); 4365 return ParseToken(lltok::rparen, "expected ')' here"); 4366 } 4367 4368 template <class FieldTy> 4369 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) { 4370 if (Result.Seen) 4371 return TokError("field '" + Name + "' cannot be specified more than once"); 4372 4373 LocTy Loc = Lex.getLoc(); 4374 Lex.Lex(); 4375 return ParseMDField(Loc, Name, Result); 4376 } 4377 4378 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 4379 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4380 4381 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 4382 if (Lex.getStrVal() == #CLASS) \ 4383 return Parse##CLASS(N, IsDistinct); 4384 #include "llvm/IR/Metadata.def" 4385 4386 return TokError("expected metadata type"); 4387 } 4388 4389 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 4390 #define NOP_FIELD(NAME, TYPE, INIT) 4391 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 4392 if (!NAME.Seen) \ 4393 return Error(ClosingLoc, "missing required field '" #NAME "'"); 4394 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 4395 if (Lex.getStrVal() == #NAME) \ 4396 return ParseMDField(#NAME, NAME); 4397 #define PARSE_MD_FIELDS() \ 4398 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 4399 do { \ 4400 LocTy ClosingLoc; \ 4401 if (ParseMDFieldsImpl([&]() -> bool { \ 4402 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 4403 return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \ 4404 }, ClosingLoc)) \ 4405 return true; \ 4406 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 4407 } while (false) 4408 #define GET_OR_DISTINCT(CLASS, ARGS) \ 4409 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 4410 4411 /// ParseDILocationFields: 4412 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6, 4413 /// isImplicitCode: true) 4414 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) { 4415 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4416 OPTIONAL(line, LineField, ); \ 4417 OPTIONAL(column, ColumnField, ); \ 4418 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4419 OPTIONAL(inlinedAt, MDField, ); \ 4420 OPTIONAL(isImplicitCode, MDBoolField, (false)); 4421 PARSE_MD_FIELDS(); 4422 #undef VISIT_MD_FIELDS 4423 4424 Result = 4425 GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val, 4426 inlinedAt.Val, isImplicitCode.Val)); 4427 return false; 4428 } 4429 4430 /// ParseGenericDINode: 4431 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 4432 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) { 4433 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4434 REQUIRED(tag, DwarfTagField, ); \ 4435 OPTIONAL(header, MDStringField, ); \ 4436 OPTIONAL(operands, MDFieldList, ); 4437 PARSE_MD_FIELDS(); 4438 #undef VISIT_MD_FIELDS 4439 4440 Result = GET_OR_DISTINCT(GenericDINode, 4441 (Context, tag.Val, header.Val, operands.Val)); 4442 return false; 4443 } 4444 4445 /// ParseDISubrange: 4446 /// ::= !DISubrange(count: 30, lowerBound: 2) 4447 /// ::= !DISubrange(count: !node, lowerBound: 2) 4448 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) { 4449 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4450 REQUIRED(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \ 4451 OPTIONAL(lowerBound, MDSignedField, ); 4452 PARSE_MD_FIELDS(); 4453 #undef VISIT_MD_FIELDS 4454 4455 if (count.isMDSignedField()) 4456 Result = GET_OR_DISTINCT( 4457 DISubrange, (Context, count.getMDSignedValue(), lowerBound.Val)); 4458 else if (count.isMDField()) 4459 Result = GET_OR_DISTINCT( 4460 DISubrange, (Context, count.getMDFieldValue(), lowerBound.Val)); 4461 else 4462 return true; 4463 4464 return false; 4465 } 4466 4467 /// ParseDIEnumerator: 4468 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind") 4469 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) { 4470 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4471 REQUIRED(name, MDStringField, ); \ 4472 REQUIRED(value, MDSignedOrUnsignedField, ); \ 4473 OPTIONAL(isUnsigned, MDBoolField, (false)); 4474 PARSE_MD_FIELDS(); 4475 #undef VISIT_MD_FIELDS 4476 4477 if (isUnsigned.Val && value.isMDSignedField()) 4478 return TokError("unsigned enumerator with negative value"); 4479 4480 int64_t Value = value.isMDSignedField() 4481 ? value.getMDSignedValue() 4482 : static_cast<int64_t>(value.getMDUnsignedValue()); 4483 Result = 4484 GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val)); 4485 4486 return false; 4487 } 4488 4489 /// ParseDIBasicType: 4490 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32, 4491 /// encoding: DW_ATE_encoding, flags: 0) 4492 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) { 4493 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4494 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 4495 OPTIONAL(name, MDStringField, ); \ 4496 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4497 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4498 OPTIONAL(encoding, DwarfAttEncodingField, ); \ 4499 OPTIONAL(flags, DIFlagField, ); 4500 PARSE_MD_FIELDS(); 4501 #undef VISIT_MD_FIELDS 4502 4503 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 4504 align.Val, encoding.Val, flags.Val)); 4505 return false; 4506 } 4507 4508 /// ParseDIDerivedType: 4509 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 4510 /// line: 7, scope: !1, baseType: !2, size: 32, 4511 /// align: 32, offset: 0, flags: 0, extraData: !3, 4512 /// dwarfAddressSpace: 3) 4513 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) { 4514 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4515 REQUIRED(tag, DwarfTagField, ); \ 4516 OPTIONAL(name, MDStringField, ); \ 4517 OPTIONAL(file, MDField, ); \ 4518 OPTIONAL(line, LineField, ); \ 4519 OPTIONAL(scope, MDField, ); \ 4520 REQUIRED(baseType, MDField, ); \ 4521 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4522 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4523 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4524 OPTIONAL(flags, DIFlagField, ); \ 4525 OPTIONAL(extraData, MDField, ); \ 4526 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); 4527 PARSE_MD_FIELDS(); 4528 #undef VISIT_MD_FIELDS 4529 4530 Optional<unsigned> DWARFAddressSpace; 4531 if (dwarfAddressSpace.Val != UINT32_MAX) 4532 DWARFAddressSpace = dwarfAddressSpace.Val; 4533 4534 Result = GET_OR_DISTINCT(DIDerivedType, 4535 (Context, tag.Val, name.Val, file.Val, line.Val, 4536 scope.Val, baseType.Val, size.Val, align.Val, 4537 offset.Val, DWARFAddressSpace, flags.Val, 4538 extraData.Val)); 4539 return false; 4540 } 4541 4542 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) { 4543 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4544 REQUIRED(tag, DwarfTagField, ); \ 4545 OPTIONAL(name, MDStringField, ); \ 4546 OPTIONAL(file, MDField, ); \ 4547 OPTIONAL(line, LineField, ); \ 4548 OPTIONAL(scope, MDField, ); \ 4549 OPTIONAL(baseType, MDField, ); \ 4550 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4551 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4552 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4553 OPTIONAL(flags, DIFlagField, ); \ 4554 OPTIONAL(elements, MDField, ); \ 4555 OPTIONAL(runtimeLang, DwarfLangField, ); \ 4556 OPTIONAL(vtableHolder, MDField, ); \ 4557 OPTIONAL(templateParams, MDField, ); \ 4558 OPTIONAL(identifier, MDStringField, ); \ 4559 OPTIONAL(discriminator, MDField, ); 4560 PARSE_MD_FIELDS(); 4561 #undef VISIT_MD_FIELDS 4562 4563 // If this has an identifier try to build an ODR type. 4564 if (identifier.Val) 4565 if (auto *CT = DICompositeType::buildODRType( 4566 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 4567 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 4568 elements.Val, runtimeLang.Val, vtableHolder.Val, 4569 templateParams.Val, discriminator.Val)) { 4570 Result = CT; 4571 return false; 4572 } 4573 4574 // Create a new node, and save it in the context if it belongs in the type 4575 // map. 4576 Result = GET_OR_DISTINCT( 4577 DICompositeType, 4578 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 4579 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 4580 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val, 4581 discriminator.Val)); 4582 return false; 4583 } 4584 4585 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) { 4586 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4587 OPTIONAL(flags, DIFlagField, ); \ 4588 OPTIONAL(cc, DwarfCCField, ); \ 4589 REQUIRED(types, MDField, ); 4590 PARSE_MD_FIELDS(); 4591 #undef VISIT_MD_FIELDS 4592 4593 Result = GET_OR_DISTINCT(DISubroutineType, 4594 (Context, flags.Val, cc.Val, types.Val)); 4595 return false; 4596 } 4597 4598 /// ParseDIFileType: 4599 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir", 4600 /// checksumkind: CSK_MD5, 4601 /// checksum: "000102030405060708090a0b0c0d0e0f", 4602 /// source: "source file contents") 4603 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) { 4604 // The default constructed value for checksumkind is required, but will never 4605 // be used, as the parser checks if the field was actually Seen before using 4606 // the Val. 4607 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4608 REQUIRED(filename, MDStringField, ); \ 4609 REQUIRED(directory, MDStringField, ); \ 4610 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \ 4611 OPTIONAL(checksum, MDStringField, ); \ 4612 OPTIONAL(source, MDStringField, ); 4613 PARSE_MD_FIELDS(); 4614 #undef VISIT_MD_FIELDS 4615 4616 Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum; 4617 if (checksumkind.Seen && checksum.Seen) 4618 OptChecksum.emplace(checksumkind.Val, checksum.Val); 4619 else if (checksumkind.Seen || checksum.Seen) 4620 return Lex.Error("'checksumkind' and 'checksum' must be provided together"); 4621 4622 Optional<MDString *> OptSource; 4623 if (source.Seen) 4624 OptSource = source.Val; 4625 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val, 4626 OptChecksum, OptSource)); 4627 return false; 4628 } 4629 4630 /// ParseDICompileUnit: 4631 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 4632 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 4633 /// splitDebugFilename: "abc.debug", 4634 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 4635 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd) 4636 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) { 4637 if (!IsDistinct) 4638 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 4639 4640 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4641 REQUIRED(language, DwarfLangField, ); \ 4642 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 4643 OPTIONAL(producer, MDStringField, ); \ 4644 OPTIONAL(isOptimized, MDBoolField, ); \ 4645 OPTIONAL(flags, MDStringField, ); \ 4646 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 4647 OPTIONAL(splitDebugFilename, MDStringField, ); \ 4648 OPTIONAL(emissionKind, EmissionKindField, ); \ 4649 OPTIONAL(enums, MDField, ); \ 4650 OPTIONAL(retainedTypes, MDField, ); \ 4651 OPTIONAL(globals, MDField, ); \ 4652 OPTIONAL(imports, MDField, ); \ 4653 OPTIONAL(macros, MDField, ); \ 4654 OPTIONAL(dwoId, MDUnsignedField, ); \ 4655 OPTIONAL(splitDebugInlining, MDBoolField, = true); \ 4656 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \ 4657 OPTIONAL(nameTableKind, NameTableKindField, ); \ 4658 OPTIONAL(debugBaseAddress, MDBoolField, = false); 4659 PARSE_MD_FIELDS(); 4660 #undef VISIT_MD_FIELDS 4661 4662 Result = DICompileUnit::getDistinct( 4663 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 4664 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 4665 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 4666 splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val, 4667 debugBaseAddress.Val); 4668 return false; 4669 } 4670 4671 /// ParseDISubprogram: 4672 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 4673 /// file: !1, line: 7, type: !2, isLocal: false, 4674 /// isDefinition: true, scopeLine: 8, containingType: !3, 4675 /// virtuality: DW_VIRTUALTIY_pure_virtual, 4676 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 4677 /// spFlags: 10, isOptimized: false, templateParams: !4, 4678 /// declaration: !5, retainedNodes: !6, thrownTypes: !7) 4679 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) { 4680 auto Loc = Lex.getLoc(); 4681 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4682 OPTIONAL(scope, MDField, ); \ 4683 OPTIONAL(name, MDStringField, ); \ 4684 OPTIONAL(linkageName, MDStringField, ); \ 4685 OPTIONAL(file, MDField, ); \ 4686 OPTIONAL(line, LineField, ); \ 4687 OPTIONAL(type, MDField, ); \ 4688 OPTIONAL(isLocal, MDBoolField, ); \ 4689 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4690 OPTIONAL(scopeLine, LineField, ); \ 4691 OPTIONAL(containingType, MDField, ); \ 4692 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 4693 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 4694 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 4695 OPTIONAL(flags, DIFlagField, ); \ 4696 OPTIONAL(spFlags, DISPFlagField, ); \ 4697 OPTIONAL(isOptimized, MDBoolField, ); \ 4698 OPTIONAL(unit, MDField, ); \ 4699 OPTIONAL(templateParams, MDField, ); \ 4700 OPTIONAL(declaration, MDField, ); \ 4701 OPTIONAL(retainedNodes, MDField, ); \ 4702 OPTIONAL(thrownTypes, MDField, ); 4703 PARSE_MD_FIELDS(); 4704 #undef VISIT_MD_FIELDS 4705 4706 // An explicit spFlags field takes precedence over individual fields in 4707 // older IR versions. 4708 DISubprogram::DISPFlags SPFlags = 4709 spFlags.Seen ? spFlags.Val 4710 : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val, 4711 isOptimized.Val, virtuality.Val); 4712 if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct) 4713 return Lex.Error( 4714 Loc, 4715 "missing 'distinct', required for !DISubprogram that is a Definition"); 4716 Result = GET_OR_DISTINCT( 4717 DISubprogram, 4718 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 4719 type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val, 4720 thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val, 4721 declaration.Val, retainedNodes.Val, thrownTypes.Val)); 4722 return false; 4723 } 4724 4725 /// ParseDILexicalBlock: 4726 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 4727 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 4728 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4729 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4730 OPTIONAL(file, MDField, ); \ 4731 OPTIONAL(line, LineField, ); \ 4732 OPTIONAL(column, ColumnField, ); 4733 PARSE_MD_FIELDS(); 4734 #undef VISIT_MD_FIELDS 4735 4736 Result = GET_OR_DISTINCT( 4737 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 4738 return false; 4739 } 4740 4741 /// ParseDILexicalBlockFile: 4742 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 4743 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 4744 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4745 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4746 OPTIONAL(file, MDField, ); \ 4747 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 4748 PARSE_MD_FIELDS(); 4749 #undef VISIT_MD_FIELDS 4750 4751 Result = GET_OR_DISTINCT(DILexicalBlockFile, 4752 (Context, scope.Val, file.Val, discriminator.Val)); 4753 return false; 4754 } 4755 4756 /// ParseDICommonBlock: 4757 /// ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9) 4758 bool LLParser::ParseDICommonBlock(MDNode *&Result, bool IsDistinct) { 4759 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4760 REQUIRED(scope, MDField, ); \ 4761 OPTIONAL(declaration, MDField, ); \ 4762 OPTIONAL(name, MDStringField, ); \ 4763 OPTIONAL(file, MDField, ); \ 4764 OPTIONAL(line, LineField, ); 4765 PARSE_MD_FIELDS(); 4766 #undef VISIT_MD_FIELDS 4767 4768 Result = GET_OR_DISTINCT(DICommonBlock, 4769 (Context, scope.Val, declaration.Val, name.Val, 4770 file.Val, line.Val)); 4771 return false; 4772 } 4773 4774 /// ParseDINamespace: 4775 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 4776 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) { 4777 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4778 REQUIRED(scope, MDField, ); \ 4779 OPTIONAL(name, MDStringField, ); \ 4780 OPTIONAL(exportSymbols, MDBoolField, ); 4781 PARSE_MD_FIELDS(); 4782 #undef VISIT_MD_FIELDS 4783 4784 Result = GET_OR_DISTINCT(DINamespace, 4785 (Context, scope.Val, name.Val, exportSymbols.Val)); 4786 return false; 4787 } 4788 4789 /// ParseDIMacro: 4790 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue") 4791 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) { 4792 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4793 REQUIRED(type, DwarfMacinfoTypeField, ); \ 4794 OPTIONAL(line, LineField, ); \ 4795 REQUIRED(name, MDStringField, ); \ 4796 OPTIONAL(value, MDStringField, ); 4797 PARSE_MD_FIELDS(); 4798 #undef VISIT_MD_FIELDS 4799 4800 Result = GET_OR_DISTINCT(DIMacro, 4801 (Context, type.Val, line.Val, name.Val, value.Val)); 4802 return false; 4803 } 4804 4805 /// ParseDIMacroFile: 4806 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 4807 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) { 4808 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4809 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 4810 OPTIONAL(line, LineField, ); \ 4811 REQUIRED(file, MDField, ); \ 4812 OPTIONAL(nodes, MDField, ); 4813 PARSE_MD_FIELDS(); 4814 #undef VISIT_MD_FIELDS 4815 4816 Result = GET_OR_DISTINCT(DIMacroFile, 4817 (Context, type.Val, line.Val, file.Val, nodes.Val)); 4818 return false; 4819 } 4820 4821 /// ParseDIModule: 4822 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG", 4823 /// includePath: "/usr/include", isysroot: "/") 4824 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) { 4825 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4826 REQUIRED(scope, MDField, ); \ 4827 REQUIRED(name, MDStringField, ); \ 4828 OPTIONAL(configMacros, MDStringField, ); \ 4829 OPTIONAL(includePath, MDStringField, ); \ 4830 OPTIONAL(isysroot, MDStringField, ); 4831 PARSE_MD_FIELDS(); 4832 #undef VISIT_MD_FIELDS 4833 4834 Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val, 4835 configMacros.Val, includePath.Val, isysroot.Val)); 4836 return false; 4837 } 4838 4839 /// ParseDITemplateTypeParameter: 4840 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1) 4841 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 4842 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4843 OPTIONAL(name, MDStringField, ); \ 4844 REQUIRED(type, MDField, ); 4845 PARSE_MD_FIELDS(); 4846 #undef VISIT_MD_FIELDS 4847 4848 Result = 4849 GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val)); 4850 return false; 4851 } 4852 4853 /// ParseDITemplateValueParameter: 4854 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 4855 /// name: "V", type: !1, value: i32 7) 4856 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 4857 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4858 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 4859 OPTIONAL(name, MDStringField, ); \ 4860 OPTIONAL(type, MDField, ); \ 4861 REQUIRED(value, MDField, ); 4862 PARSE_MD_FIELDS(); 4863 #undef VISIT_MD_FIELDS 4864 4865 Result = GET_OR_DISTINCT(DITemplateValueParameter, 4866 (Context, tag.Val, name.Val, type.Val, value.Val)); 4867 return false; 4868 } 4869 4870 /// ParseDIGlobalVariable: 4871 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 4872 /// file: !1, line: 7, type: !2, isLocal: false, 4873 /// isDefinition: true, templateParams: !3, 4874 /// declaration: !4, align: 8) 4875 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 4876 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4877 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 4878 OPTIONAL(scope, MDField, ); \ 4879 OPTIONAL(linkageName, MDStringField, ); \ 4880 OPTIONAL(file, MDField, ); \ 4881 OPTIONAL(line, LineField, ); \ 4882 OPTIONAL(type, MDField, ); \ 4883 OPTIONAL(isLocal, MDBoolField, ); \ 4884 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4885 OPTIONAL(templateParams, MDField, ); \ 4886 OPTIONAL(declaration, MDField, ); \ 4887 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4888 PARSE_MD_FIELDS(); 4889 #undef VISIT_MD_FIELDS 4890 4891 Result = 4892 GET_OR_DISTINCT(DIGlobalVariable, 4893 (Context, scope.Val, name.Val, linkageName.Val, file.Val, 4894 line.Val, type.Val, isLocal.Val, isDefinition.Val, 4895 declaration.Val, templateParams.Val, align.Val)); 4896 return false; 4897 } 4898 4899 /// ParseDILocalVariable: 4900 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 4901 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4902 /// align: 8) 4903 /// ::= !DILocalVariable(scope: !0, name: "foo", 4904 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4905 /// align: 8) 4906 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) { 4907 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4908 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4909 OPTIONAL(name, MDStringField, ); \ 4910 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 4911 OPTIONAL(file, MDField, ); \ 4912 OPTIONAL(line, LineField, ); \ 4913 OPTIONAL(type, MDField, ); \ 4914 OPTIONAL(flags, DIFlagField, ); \ 4915 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4916 PARSE_MD_FIELDS(); 4917 #undef VISIT_MD_FIELDS 4918 4919 Result = GET_OR_DISTINCT(DILocalVariable, 4920 (Context, scope.Val, name.Val, file.Val, line.Val, 4921 type.Val, arg.Val, flags.Val, align.Val)); 4922 return false; 4923 } 4924 4925 /// ParseDILabel: 4926 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7) 4927 bool LLParser::ParseDILabel(MDNode *&Result, bool IsDistinct) { 4928 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4929 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4930 REQUIRED(name, MDStringField, ); \ 4931 REQUIRED(file, MDField, ); \ 4932 REQUIRED(line, LineField, ); 4933 PARSE_MD_FIELDS(); 4934 #undef VISIT_MD_FIELDS 4935 4936 Result = GET_OR_DISTINCT(DILabel, 4937 (Context, scope.Val, name.Val, file.Val, line.Val)); 4938 return false; 4939 } 4940 4941 /// ParseDIExpression: 4942 /// ::= !DIExpression(0, 7, -1) 4943 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) { 4944 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4945 Lex.Lex(); 4946 4947 if (ParseToken(lltok::lparen, "expected '(' here")) 4948 return true; 4949 4950 SmallVector<uint64_t, 8> Elements; 4951 if (Lex.getKind() != lltok::rparen) 4952 do { 4953 if (Lex.getKind() == lltok::DwarfOp) { 4954 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 4955 Lex.Lex(); 4956 Elements.push_back(Op); 4957 continue; 4958 } 4959 return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 4960 } 4961 4962 if (Lex.getKind() == lltok::DwarfAttEncoding) { 4963 if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) { 4964 Lex.Lex(); 4965 Elements.push_back(Op); 4966 continue; 4967 } 4968 return TokError(Twine("invalid DWARF attribute encoding '") + Lex.getStrVal() + "'"); 4969 } 4970 4971 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4972 return TokError("expected unsigned integer"); 4973 4974 auto &U = Lex.getAPSIntVal(); 4975 if (U.ugt(UINT64_MAX)) 4976 return TokError("element too large, limit is " + Twine(UINT64_MAX)); 4977 Elements.push_back(U.getZExtValue()); 4978 Lex.Lex(); 4979 } while (EatIfPresent(lltok::comma)); 4980 4981 if (ParseToken(lltok::rparen, "expected ')' here")) 4982 return true; 4983 4984 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 4985 return false; 4986 } 4987 4988 /// ParseDIGlobalVariableExpression: 4989 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1) 4990 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result, 4991 bool IsDistinct) { 4992 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4993 REQUIRED(var, MDField, ); \ 4994 REQUIRED(expr, MDField, ); 4995 PARSE_MD_FIELDS(); 4996 #undef VISIT_MD_FIELDS 4997 4998 Result = 4999 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val)); 5000 return false; 5001 } 5002 5003 /// ParseDIObjCProperty: 5004 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 5005 /// getter: "getFoo", attributes: 7, type: !2) 5006 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 5007 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5008 OPTIONAL(name, MDStringField, ); \ 5009 OPTIONAL(file, MDField, ); \ 5010 OPTIONAL(line, LineField, ); \ 5011 OPTIONAL(setter, MDStringField, ); \ 5012 OPTIONAL(getter, MDStringField, ); \ 5013 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 5014 OPTIONAL(type, MDField, ); 5015 PARSE_MD_FIELDS(); 5016 #undef VISIT_MD_FIELDS 5017 5018 Result = GET_OR_DISTINCT(DIObjCProperty, 5019 (Context, name.Val, file.Val, line.Val, setter.Val, 5020 getter.Val, attributes.Val, type.Val)); 5021 return false; 5022 } 5023 5024 /// ParseDIImportedEntity: 5025 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 5026 /// line: 7, name: "foo") 5027 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 5028 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5029 REQUIRED(tag, DwarfTagField, ); \ 5030 REQUIRED(scope, MDField, ); \ 5031 OPTIONAL(entity, MDField, ); \ 5032 OPTIONAL(file, MDField, ); \ 5033 OPTIONAL(line, LineField, ); \ 5034 OPTIONAL(name, MDStringField, ); 5035 PARSE_MD_FIELDS(); 5036 #undef VISIT_MD_FIELDS 5037 5038 Result = GET_OR_DISTINCT( 5039 DIImportedEntity, 5040 (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val)); 5041 return false; 5042 } 5043 5044 #undef PARSE_MD_FIELD 5045 #undef NOP_FIELD 5046 #undef REQUIRE_FIELD 5047 #undef DECLARE_FIELD 5048 5049 /// ParseMetadataAsValue 5050 /// ::= metadata i32 %local 5051 /// ::= metadata i32 @global 5052 /// ::= metadata i32 7 5053 /// ::= metadata !0 5054 /// ::= metadata !{...} 5055 /// ::= metadata !"string" 5056 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 5057 // Note: the type 'metadata' has already been parsed. 5058 Metadata *MD; 5059 if (ParseMetadata(MD, &PFS)) 5060 return true; 5061 5062 V = MetadataAsValue::get(Context, MD); 5063 return false; 5064 } 5065 5066 /// ParseValueAsMetadata 5067 /// ::= i32 %local 5068 /// ::= i32 @global 5069 /// ::= i32 7 5070 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 5071 PerFunctionState *PFS) { 5072 Type *Ty; 5073 LocTy Loc; 5074 if (ParseType(Ty, TypeMsg, Loc)) 5075 return true; 5076 if (Ty->isMetadataTy()) 5077 return Error(Loc, "invalid metadata-value-metadata roundtrip"); 5078 5079 Value *V; 5080 if (ParseValue(Ty, V, PFS)) 5081 return true; 5082 5083 MD = ValueAsMetadata::get(V); 5084 return false; 5085 } 5086 5087 /// ParseMetadata 5088 /// ::= i32 %local 5089 /// ::= i32 @global 5090 /// ::= i32 7 5091 /// ::= !42 5092 /// ::= !{...} 5093 /// ::= !"string" 5094 /// ::= !DILocation(...) 5095 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) { 5096 if (Lex.getKind() == lltok::MetadataVar) { 5097 MDNode *N; 5098 if (ParseSpecializedMDNode(N)) 5099 return true; 5100 MD = N; 5101 return false; 5102 } 5103 5104 // ValueAsMetadata: 5105 // <type> <value> 5106 if (Lex.getKind() != lltok::exclaim) 5107 return ParseValueAsMetadata(MD, "expected metadata operand", PFS); 5108 5109 // '!'. 5110 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 5111 Lex.Lex(); 5112 5113 // MDString: 5114 // ::= '!' STRINGCONSTANT 5115 if (Lex.getKind() == lltok::StringConstant) { 5116 MDString *S; 5117 if (ParseMDString(S)) 5118 return true; 5119 MD = S; 5120 return false; 5121 } 5122 5123 // MDNode: 5124 // !{ ... } 5125 // !7 5126 MDNode *N; 5127 if (ParseMDNodeTail(N)) 5128 return true; 5129 MD = N; 5130 return false; 5131 } 5132 5133 //===----------------------------------------------------------------------===// 5134 // Function Parsing. 5135 //===----------------------------------------------------------------------===// 5136 5137 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, 5138 PerFunctionState *PFS, bool IsCall) { 5139 if (Ty->isFunctionTy()) 5140 return Error(ID.Loc, "functions are not values, refer to them as pointers"); 5141 5142 switch (ID.Kind) { 5143 case ValID::t_LocalID: 5144 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 5145 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5146 return V == nullptr; 5147 case ValID::t_LocalName: 5148 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 5149 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall); 5150 return V == nullptr; 5151 case ValID::t_InlineAsm: { 5152 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 5153 return Error(ID.Loc, "invalid type for inline asm constraint string"); 5154 V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, 5155 (ID.UIntVal >> 1) & 1, 5156 (InlineAsm::AsmDialect(ID.UIntVal >> 2))); 5157 return false; 5158 } 5159 case ValID::t_GlobalName: 5160 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall); 5161 return V == nullptr; 5162 case ValID::t_GlobalID: 5163 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5164 return V == nullptr; 5165 case ValID::t_APSInt: 5166 if (!Ty->isIntegerTy()) 5167 return Error(ID.Loc, "integer constant must have integer type"); 5168 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 5169 V = ConstantInt::get(Context, ID.APSIntVal); 5170 return false; 5171 case ValID::t_APFloat: 5172 if (!Ty->isFloatingPointTy() || 5173 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 5174 return Error(ID.Loc, "floating point constant invalid for type"); 5175 5176 // The lexer has no type info, so builds all half, float, and double FP 5177 // constants as double. Fix this here. Long double does not need this. 5178 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) { 5179 bool Ignored; 5180 if (Ty->isHalfTy()) 5181 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, 5182 &Ignored); 5183 else if (Ty->isFloatTy()) 5184 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 5185 &Ignored); 5186 } 5187 V = ConstantFP::get(Context, ID.APFloatVal); 5188 5189 if (V->getType() != Ty) 5190 return Error(ID.Loc, "floating point constant does not have type '" + 5191 getTypeString(Ty) + "'"); 5192 5193 return false; 5194 case ValID::t_Null: 5195 if (!Ty->isPointerTy()) 5196 return Error(ID.Loc, "null must be a pointer type"); 5197 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 5198 return false; 5199 case ValID::t_Undef: 5200 // FIXME: LabelTy should not be a first-class type. 5201 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5202 return Error(ID.Loc, "invalid type for undef constant"); 5203 V = UndefValue::get(Ty); 5204 return false; 5205 case ValID::t_EmptyArray: 5206 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 5207 return Error(ID.Loc, "invalid empty array initializer"); 5208 V = UndefValue::get(Ty); 5209 return false; 5210 case ValID::t_Zero: 5211 // FIXME: LabelTy should not be a first-class type. 5212 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5213 return Error(ID.Loc, "invalid type for null constant"); 5214 V = Constant::getNullValue(Ty); 5215 return false; 5216 case ValID::t_None: 5217 if (!Ty->isTokenTy()) 5218 return Error(ID.Loc, "invalid type for none constant"); 5219 V = Constant::getNullValue(Ty); 5220 return false; 5221 case ValID::t_Constant: 5222 if (ID.ConstantVal->getType() != Ty) 5223 return Error(ID.Loc, "constant expression type mismatch"); 5224 5225 V = ID.ConstantVal; 5226 return false; 5227 case ValID::t_ConstantStruct: 5228 case ValID::t_PackedConstantStruct: 5229 if (StructType *ST = dyn_cast<StructType>(Ty)) { 5230 if (ST->getNumElements() != ID.UIntVal) 5231 return Error(ID.Loc, 5232 "initializer with struct type has wrong # elements"); 5233 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 5234 return Error(ID.Loc, "packed'ness of initializer and type don't match"); 5235 5236 // Verify that the elements are compatible with the structtype. 5237 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 5238 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 5239 return Error(ID.Loc, "element " + Twine(i) + 5240 " of struct initializer doesn't match struct element type"); 5241 5242 V = ConstantStruct::get( 5243 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 5244 } else 5245 return Error(ID.Loc, "constant expression type mismatch"); 5246 return false; 5247 } 5248 llvm_unreachable("Invalid ValID"); 5249 } 5250 5251 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 5252 C = nullptr; 5253 ValID ID; 5254 auto Loc = Lex.getLoc(); 5255 if (ParseValID(ID, /*PFS=*/nullptr)) 5256 return true; 5257 switch (ID.Kind) { 5258 case ValID::t_APSInt: 5259 case ValID::t_APFloat: 5260 case ValID::t_Undef: 5261 case ValID::t_Constant: 5262 case ValID::t_ConstantStruct: 5263 case ValID::t_PackedConstantStruct: { 5264 Value *V; 5265 if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false)) 5266 return true; 5267 assert(isa<Constant>(V) && "Expected a constant value"); 5268 C = cast<Constant>(V); 5269 return false; 5270 } 5271 case ValID::t_Null: 5272 C = Constant::getNullValue(Ty); 5273 return false; 5274 default: 5275 return Error(Loc, "expected a constant value"); 5276 } 5277 } 5278 5279 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 5280 V = nullptr; 5281 ValID ID; 5282 return ParseValID(ID, PFS) || 5283 ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false); 5284 } 5285 5286 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) { 5287 Type *Ty = nullptr; 5288 return ParseType(Ty) || 5289 ParseValue(Ty, V, PFS); 5290 } 5291 5292 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 5293 PerFunctionState &PFS) { 5294 Value *V; 5295 Loc = Lex.getLoc(); 5296 if (ParseTypeAndValue(V, PFS)) return true; 5297 if (!isa<BasicBlock>(V)) 5298 return Error(Loc, "expected a basic block"); 5299 BB = cast<BasicBlock>(V); 5300 return false; 5301 } 5302 5303 /// FunctionHeader 5304 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 5305 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName 5306 /// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign 5307 /// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 5308 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { 5309 // Parse the linkage. 5310 LocTy LinkageLoc = Lex.getLoc(); 5311 unsigned Linkage; 5312 unsigned Visibility; 5313 unsigned DLLStorageClass; 5314 bool DSOLocal; 5315 AttrBuilder RetAttrs; 5316 unsigned CC; 5317 bool HasLinkage; 5318 Type *RetType = nullptr; 5319 LocTy RetTypeLoc = Lex.getLoc(); 5320 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 5321 DSOLocal) || 5322 ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5323 ParseType(RetType, RetTypeLoc, true /*void allowed*/)) 5324 return true; 5325 5326 // Verify that the linkage is ok. 5327 switch ((GlobalValue::LinkageTypes)Linkage) { 5328 case GlobalValue::ExternalLinkage: 5329 break; // always ok. 5330 case GlobalValue::ExternalWeakLinkage: 5331 if (isDefine) 5332 return Error(LinkageLoc, "invalid linkage for function definition"); 5333 break; 5334 case GlobalValue::PrivateLinkage: 5335 case GlobalValue::InternalLinkage: 5336 case GlobalValue::AvailableExternallyLinkage: 5337 case GlobalValue::LinkOnceAnyLinkage: 5338 case GlobalValue::LinkOnceODRLinkage: 5339 case GlobalValue::WeakAnyLinkage: 5340 case GlobalValue::WeakODRLinkage: 5341 if (!isDefine) 5342 return Error(LinkageLoc, "invalid linkage for function declaration"); 5343 break; 5344 case GlobalValue::AppendingLinkage: 5345 case GlobalValue::CommonLinkage: 5346 return Error(LinkageLoc, "invalid function linkage type"); 5347 } 5348 5349 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 5350 return Error(LinkageLoc, 5351 "symbol with local linkage must have default visibility"); 5352 5353 if (!FunctionType::isValidReturnType(RetType)) 5354 return Error(RetTypeLoc, "invalid function return type"); 5355 5356 LocTy NameLoc = Lex.getLoc(); 5357 5358 std::string FunctionName; 5359 if (Lex.getKind() == lltok::GlobalVar) { 5360 FunctionName = Lex.getStrVal(); 5361 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 5362 unsigned NameID = Lex.getUIntVal(); 5363 5364 if (NameID != NumberedVals.size()) 5365 return TokError("function expected to be numbered '%" + 5366 Twine(NumberedVals.size()) + "'"); 5367 } else { 5368 return TokError("expected function name"); 5369 } 5370 5371 Lex.Lex(); 5372 5373 if (Lex.getKind() != lltok::lparen) 5374 return TokError("expected '(' in function argument list"); 5375 5376 SmallVector<ArgInfo, 8> ArgList; 5377 bool isVarArg; 5378 AttrBuilder FuncAttrs; 5379 std::vector<unsigned> FwdRefAttrGrps; 5380 LocTy BuiltinLoc; 5381 std::string Section; 5382 std::string Partition; 5383 MaybeAlign Alignment; 5384 std::string GC; 5385 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 5386 unsigned AddrSpace = 0; 5387 Constant *Prefix = nullptr; 5388 Constant *Prologue = nullptr; 5389 Constant *PersonalityFn = nullptr; 5390 Comdat *C; 5391 5392 if (ParseArgumentList(ArgList, isVarArg) || 5393 ParseOptionalUnnamedAddr(UnnamedAddr) || 5394 ParseOptionalProgramAddrSpace(AddrSpace) || 5395 ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 5396 BuiltinLoc) || 5397 (EatIfPresent(lltok::kw_section) && 5398 ParseStringConstant(Section)) || 5399 (EatIfPresent(lltok::kw_partition) && 5400 ParseStringConstant(Partition)) || 5401 parseOptionalComdat(FunctionName, C) || 5402 ParseOptionalAlignment(Alignment) || 5403 (EatIfPresent(lltok::kw_gc) && 5404 ParseStringConstant(GC)) || 5405 (EatIfPresent(lltok::kw_prefix) && 5406 ParseGlobalTypeAndValue(Prefix)) || 5407 (EatIfPresent(lltok::kw_prologue) && 5408 ParseGlobalTypeAndValue(Prologue)) || 5409 (EatIfPresent(lltok::kw_personality) && 5410 ParseGlobalTypeAndValue(PersonalityFn))) 5411 return true; 5412 5413 if (FuncAttrs.contains(Attribute::Builtin)) 5414 return Error(BuiltinLoc, "'builtin' attribute not valid on function"); 5415 5416 // If the alignment was parsed as an attribute, move to the alignment field. 5417 if (FuncAttrs.hasAlignmentAttr()) { 5418 Alignment = FuncAttrs.getAlignment(); 5419 FuncAttrs.removeAttribute(Attribute::Alignment); 5420 } 5421 5422 // Okay, if we got here, the function is syntactically valid. Convert types 5423 // and do semantic checks. 5424 std::vector<Type*> ParamTypeList; 5425 SmallVector<AttributeSet, 8> Attrs; 5426 5427 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5428 ParamTypeList.push_back(ArgList[i].Ty); 5429 Attrs.push_back(ArgList[i].Attrs); 5430 } 5431 5432 AttributeList PAL = 5433 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs), 5434 AttributeSet::get(Context, RetAttrs), Attrs); 5435 5436 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy()) 5437 return Error(RetTypeLoc, "functions with 'sret' argument must return void"); 5438 5439 FunctionType *FT = 5440 FunctionType::get(RetType, ParamTypeList, isVarArg); 5441 PointerType *PFT = PointerType::get(FT, AddrSpace); 5442 5443 Fn = nullptr; 5444 if (!FunctionName.empty()) { 5445 // If this was a definition of a forward reference, remove the definition 5446 // from the forward reference table and fill in the forward ref. 5447 auto FRVI = ForwardRefVals.find(FunctionName); 5448 if (FRVI != ForwardRefVals.end()) { 5449 Fn = M->getFunction(FunctionName); 5450 if (!Fn) 5451 return Error(FRVI->second.second, "invalid forward reference to " 5452 "function as global value!"); 5453 if (Fn->getType() != PFT) 5454 return Error(FRVI->second.second, "invalid forward reference to " 5455 "function '" + FunctionName + "' with wrong type: " 5456 "expected '" + getTypeString(PFT) + "' but was '" + 5457 getTypeString(Fn->getType()) + "'"); 5458 ForwardRefVals.erase(FRVI); 5459 } else if ((Fn = M->getFunction(FunctionName))) { 5460 // Reject redefinitions. 5461 return Error(NameLoc, "invalid redefinition of function '" + 5462 FunctionName + "'"); 5463 } else if (M->getNamedValue(FunctionName)) { 5464 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 5465 } 5466 5467 } else { 5468 // If this is a definition of a forward referenced function, make sure the 5469 // types agree. 5470 auto I = ForwardRefValIDs.find(NumberedVals.size()); 5471 if (I != ForwardRefValIDs.end()) { 5472 Fn = cast<Function>(I->second.first); 5473 if (Fn->getType() != PFT) 5474 return Error(NameLoc, "type of definition and forward reference of '@" + 5475 Twine(NumberedVals.size()) + "' disagree: " 5476 "expected '" + getTypeString(PFT) + "' but was '" + 5477 getTypeString(Fn->getType()) + "'"); 5478 ForwardRefValIDs.erase(I); 5479 } 5480 } 5481 5482 if (!Fn) 5483 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace, 5484 FunctionName, M); 5485 else // Move the forward-reference to the correct spot in the module. 5486 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 5487 5488 assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS"); 5489 5490 if (FunctionName.empty()) 5491 NumberedVals.push_back(Fn); 5492 5493 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 5494 maybeSetDSOLocal(DSOLocal, *Fn); 5495 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 5496 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 5497 Fn->setCallingConv(CC); 5498 Fn->setAttributes(PAL); 5499 Fn->setUnnamedAddr(UnnamedAddr); 5500 Fn->setAlignment(MaybeAlign(Alignment)); 5501 Fn->setSection(Section); 5502 Fn->setPartition(Partition); 5503 Fn->setComdat(C); 5504 Fn->setPersonalityFn(PersonalityFn); 5505 if (!GC.empty()) Fn->setGC(GC); 5506 Fn->setPrefixData(Prefix); 5507 Fn->setPrologueData(Prologue); 5508 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 5509 5510 // Add all of the arguments we parsed to the function. 5511 Function::arg_iterator ArgIt = Fn->arg_begin(); 5512 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 5513 // If the argument has a name, insert it into the argument symbol table. 5514 if (ArgList[i].Name.empty()) continue; 5515 5516 // Set the name, if it conflicted, it will be auto-renamed. 5517 ArgIt->setName(ArgList[i].Name); 5518 5519 if (ArgIt->getName() != ArgList[i].Name) 5520 return Error(ArgList[i].Loc, "redefinition of argument '%" + 5521 ArgList[i].Name + "'"); 5522 } 5523 5524 if (isDefine) 5525 return false; 5526 5527 // Check the declaration has no block address forward references. 5528 ValID ID; 5529 if (FunctionName.empty()) { 5530 ID.Kind = ValID::t_GlobalID; 5531 ID.UIntVal = NumberedVals.size() - 1; 5532 } else { 5533 ID.Kind = ValID::t_GlobalName; 5534 ID.StrVal = FunctionName; 5535 } 5536 auto Blocks = ForwardRefBlockAddresses.find(ID); 5537 if (Blocks != ForwardRefBlockAddresses.end()) 5538 return Error(Blocks->first.Loc, 5539 "cannot take blockaddress inside a declaration"); 5540 return false; 5541 } 5542 5543 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 5544 ValID ID; 5545 if (FunctionNumber == -1) { 5546 ID.Kind = ValID::t_GlobalName; 5547 ID.StrVal = F.getName(); 5548 } else { 5549 ID.Kind = ValID::t_GlobalID; 5550 ID.UIntVal = FunctionNumber; 5551 } 5552 5553 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 5554 if (Blocks == P.ForwardRefBlockAddresses.end()) 5555 return false; 5556 5557 for (const auto &I : Blocks->second) { 5558 const ValID &BBID = I.first; 5559 GlobalValue *GV = I.second; 5560 5561 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 5562 "Expected local id or name"); 5563 BasicBlock *BB; 5564 if (BBID.Kind == ValID::t_LocalName) 5565 BB = GetBB(BBID.StrVal, BBID.Loc); 5566 else 5567 BB = GetBB(BBID.UIntVal, BBID.Loc); 5568 if (!BB) 5569 return P.Error(BBID.Loc, "referenced value is not a basic block"); 5570 5571 GV->replaceAllUsesWith(BlockAddress::get(&F, BB)); 5572 GV->eraseFromParent(); 5573 } 5574 5575 P.ForwardRefBlockAddresses.erase(Blocks); 5576 return false; 5577 } 5578 5579 /// ParseFunctionBody 5580 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 5581 bool LLParser::ParseFunctionBody(Function &Fn) { 5582 if (Lex.getKind() != lltok::lbrace) 5583 return TokError("expected '{' in function body"); 5584 Lex.Lex(); // eat the {. 5585 5586 int FunctionNumber = -1; 5587 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 5588 5589 PerFunctionState PFS(*this, Fn, FunctionNumber); 5590 5591 // Resolve block addresses and allow basic blocks to be forward-declared 5592 // within this function. 5593 if (PFS.resolveForwardRefBlockAddresses()) 5594 return true; 5595 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 5596 5597 // We need at least one basic block. 5598 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 5599 return TokError("function body requires at least one basic block"); 5600 5601 while (Lex.getKind() != lltok::rbrace && 5602 Lex.getKind() != lltok::kw_uselistorder) 5603 if (ParseBasicBlock(PFS)) return true; 5604 5605 while (Lex.getKind() != lltok::rbrace) 5606 if (ParseUseListOrder(&PFS)) 5607 return true; 5608 5609 // Eat the }. 5610 Lex.Lex(); 5611 5612 // Verify function is ok. 5613 return PFS.FinishFunction(); 5614 } 5615 5616 /// ParseBasicBlock 5617 /// ::= (LabelStr|LabelID)? Instruction* 5618 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { 5619 // If this basic block starts out with a name, remember it. 5620 std::string Name; 5621 int NameID = -1; 5622 LocTy NameLoc = Lex.getLoc(); 5623 if (Lex.getKind() == lltok::LabelStr) { 5624 Name = Lex.getStrVal(); 5625 Lex.Lex(); 5626 } else if (Lex.getKind() == lltok::LabelID) { 5627 NameID = Lex.getUIntVal(); 5628 Lex.Lex(); 5629 } 5630 5631 BasicBlock *BB = PFS.DefineBB(Name, NameID, NameLoc); 5632 if (!BB) 5633 return true; 5634 5635 std::string NameStr; 5636 5637 // Parse the instructions in this block until we get a terminator. 5638 Instruction *Inst; 5639 do { 5640 // This instruction may have three possibilities for a name: a) none 5641 // specified, b) name specified "%foo =", c) number specified: "%4 =". 5642 LocTy NameLoc = Lex.getLoc(); 5643 int NameID = -1; 5644 NameStr = ""; 5645 5646 if (Lex.getKind() == lltok::LocalVarID) { 5647 NameID = Lex.getUIntVal(); 5648 Lex.Lex(); 5649 if (ParseToken(lltok::equal, "expected '=' after instruction id")) 5650 return true; 5651 } else if (Lex.getKind() == lltok::LocalVar) { 5652 NameStr = Lex.getStrVal(); 5653 Lex.Lex(); 5654 if (ParseToken(lltok::equal, "expected '=' after instruction name")) 5655 return true; 5656 } 5657 5658 switch (ParseInstruction(Inst, BB, PFS)) { 5659 default: llvm_unreachable("Unknown ParseInstruction result!"); 5660 case InstError: return true; 5661 case InstNormal: 5662 BB->getInstList().push_back(Inst); 5663 5664 // With a normal result, we check to see if the instruction is followed by 5665 // a comma and metadata. 5666 if (EatIfPresent(lltok::comma)) 5667 if (ParseInstructionMetadata(*Inst)) 5668 return true; 5669 break; 5670 case InstExtraComma: 5671 BB->getInstList().push_back(Inst); 5672 5673 // If the instruction parser ate an extra comma at the end of it, it 5674 // *must* be followed by metadata. 5675 if (ParseInstructionMetadata(*Inst)) 5676 return true; 5677 break; 5678 } 5679 5680 // Set the name on the instruction. 5681 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; 5682 } while (!Inst->isTerminator()); 5683 5684 return false; 5685 } 5686 5687 //===----------------------------------------------------------------------===// 5688 // Instruction Parsing. 5689 //===----------------------------------------------------------------------===// 5690 5691 /// ParseInstruction - Parse one of the many different instructions. 5692 /// 5693 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, 5694 PerFunctionState &PFS) { 5695 lltok::Kind Token = Lex.getKind(); 5696 if (Token == lltok::Eof) 5697 return TokError("found end of file when expecting more instructions"); 5698 LocTy Loc = Lex.getLoc(); 5699 unsigned KeywordVal = Lex.getUIntVal(); 5700 Lex.Lex(); // Eat the keyword. 5701 5702 switch (Token) { 5703 default: return Error(Loc, "expected instruction opcode"); 5704 // Terminator Instructions. 5705 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 5706 case lltok::kw_ret: return ParseRet(Inst, BB, PFS); 5707 case lltok::kw_br: return ParseBr(Inst, PFS); 5708 case lltok::kw_switch: return ParseSwitch(Inst, PFS); 5709 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS); 5710 case lltok::kw_invoke: return ParseInvoke(Inst, PFS); 5711 case lltok::kw_resume: return ParseResume(Inst, PFS); 5712 case lltok::kw_cleanupret: return ParseCleanupRet(Inst, PFS); 5713 case lltok::kw_catchret: return ParseCatchRet(Inst, PFS); 5714 case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS); 5715 case lltok::kw_catchpad: return ParseCatchPad(Inst, PFS); 5716 case lltok::kw_cleanuppad: return ParseCleanupPad(Inst, PFS); 5717 case lltok::kw_callbr: return ParseCallBr(Inst, PFS); 5718 // Unary Operators. 5719 case lltok::kw_fneg: { 5720 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5721 int Res = ParseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/true); 5722 if (Res != 0) 5723 return Res; 5724 if (FMF.any()) 5725 Inst->setFastMathFlags(FMF); 5726 return false; 5727 } 5728 case lltok::kw_freeze: return ParseUnaryOp(Inst, PFS, KeywordVal, false); 5729 // Binary Operators. 5730 case lltok::kw_add: 5731 case lltok::kw_sub: 5732 case lltok::kw_mul: 5733 case lltok::kw_shl: { 5734 bool NUW = EatIfPresent(lltok::kw_nuw); 5735 bool NSW = EatIfPresent(lltok::kw_nsw); 5736 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 5737 5738 if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true; 5739 5740 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 5741 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 5742 return false; 5743 } 5744 case lltok::kw_fadd: 5745 case lltok::kw_fsub: 5746 case lltok::kw_fmul: 5747 case lltok::kw_fdiv: 5748 case lltok::kw_frem: { 5749 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5750 int Res = ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/true); 5751 if (Res != 0) 5752 return Res; 5753 if (FMF.any()) 5754 Inst->setFastMathFlags(FMF); 5755 return 0; 5756 } 5757 5758 case lltok::kw_sdiv: 5759 case lltok::kw_udiv: 5760 case lltok::kw_lshr: 5761 case lltok::kw_ashr: { 5762 bool Exact = EatIfPresent(lltok::kw_exact); 5763 5764 if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true; 5765 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 5766 return false; 5767 } 5768 5769 case lltok::kw_urem: 5770 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 5771 /*IsFP*/false); 5772 case lltok::kw_and: 5773 case lltok::kw_or: 5774 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); 5775 case lltok::kw_icmp: return ParseCompare(Inst, PFS, KeywordVal); 5776 case lltok::kw_fcmp: { 5777 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5778 int Res = ParseCompare(Inst, PFS, KeywordVal); 5779 if (Res != 0) 5780 return Res; 5781 if (FMF.any()) 5782 Inst->setFastMathFlags(FMF); 5783 return 0; 5784 } 5785 5786 // Casts. 5787 case lltok::kw_trunc: 5788 case lltok::kw_zext: 5789 case lltok::kw_sext: 5790 case lltok::kw_fptrunc: 5791 case lltok::kw_fpext: 5792 case lltok::kw_bitcast: 5793 case lltok::kw_addrspacecast: 5794 case lltok::kw_uitofp: 5795 case lltok::kw_sitofp: 5796 case lltok::kw_fptoui: 5797 case lltok::kw_fptosi: 5798 case lltok::kw_inttoptr: 5799 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); 5800 // Other. 5801 case lltok::kw_select: { 5802 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5803 int Res = ParseSelect(Inst, PFS); 5804 if (Res != 0) 5805 return Res; 5806 if (FMF.any()) { 5807 if (!isa<FPMathOperator>(Inst)) 5808 return Error(Loc, "fast-math-flags specified for select without " 5809 "floating-point scalar or vector return type"); 5810 Inst->setFastMathFlags(FMF); 5811 } 5812 return 0; 5813 } 5814 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); 5815 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); 5816 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); 5817 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); 5818 case lltok::kw_phi: { 5819 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5820 int Res = ParsePHI(Inst, PFS); 5821 if (Res != 0) 5822 return Res; 5823 if (FMF.any()) { 5824 if (!isa<FPMathOperator>(Inst)) 5825 return Error(Loc, "fast-math-flags specified for phi without " 5826 "floating-point scalar or vector return type"); 5827 Inst->setFastMathFlags(FMF); 5828 } 5829 return 0; 5830 } 5831 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS); 5832 // Call. 5833 case lltok::kw_call: return ParseCall(Inst, PFS, CallInst::TCK_None); 5834 case lltok::kw_tail: return ParseCall(Inst, PFS, CallInst::TCK_Tail); 5835 case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail); 5836 case lltok::kw_notail: return ParseCall(Inst, PFS, CallInst::TCK_NoTail); 5837 // Memory. 5838 case lltok::kw_alloca: return ParseAlloc(Inst, PFS); 5839 case lltok::kw_load: return ParseLoad(Inst, PFS); 5840 case lltok::kw_store: return ParseStore(Inst, PFS); 5841 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS); 5842 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS); 5843 case lltok::kw_fence: return ParseFence(Inst, PFS); 5844 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); 5845 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); 5846 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); 5847 } 5848 } 5849 5850 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. 5851 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { 5852 if (Opc == Instruction::FCmp) { 5853 switch (Lex.getKind()) { 5854 default: return TokError("expected fcmp predicate (e.g. 'oeq')"); 5855 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 5856 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 5857 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 5858 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 5859 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 5860 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 5861 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 5862 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 5863 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 5864 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 5865 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 5866 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 5867 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 5868 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 5869 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 5870 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 5871 } 5872 } else { 5873 switch (Lex.getKind()) { 5874 default: return TokError("expected icmp predicate (e.g. 'eq')"); 5875 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 5876 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 5877 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 5878 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 5879 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 5880 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 5881 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 5882 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 5883 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 5884 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 5885 } 5886 } 5887 Lex.Lex(); 5888 return false; 5889 } 5890 5891 //===----------------------------------------------------------------------===// 5892 // Terminator Instructions. 5893 //===----------------------------------------------------------------------===// 5894 5895 /// ParseRet - Parse a return instruction. 5896 /// ::= 'ret' void (',' !dbg, !1)* 5897 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 5898 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, 5899 PerFunctionState &PFS) { 5900 SMLoc TypeLoc = Lex.getLoc(); 5901 Type *Ty = nullptr; 5902 if (ParseType(Ty, true /*void allowed*/)) return true; 5903 5904 Type *ResType = PFS.getFunction().getReturnType(); 5905 5906 if (Ty->isVoidTy()) { 5907 if (!ResType->isVoidTy()) 5908 return Error(TypeLoc, "value doesn't match function result type '" + 5909 getTypeString(ResType) + "'"); 5910 5911 Inst = ReturnInst::Create(Context); 5912 return false; 5913 } 5914 5915 Value *RV; 5916 if (ParseValue(Ty, RV, PFS)) return true; 5917 5918 if (ResType != RV->getType()) 5919 return Error(TypeLoc, "value doesn't match function result type '" + 5920 getTypeString(ResType) + "'"); 5921 5922 Inst = ReturnInst::Create(Context, RV); 5923 return false; 5924 } 5925 5926 /// ParseBr 5927 /// ::= 'br' TypeAndValue 5928 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5929 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { 5930 LocTy Loc, Loc2; 5931 Value *Op0; 5932 BasicBlock *Op1, *Op2; 5933 if (ParseTypeAndValue(Op0, Loc, PFS)) return true; 5934 5935 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 5936 Inst = BranchInst::Create(BB); 5937 return false; 5938 } 5939 5940 if (Op0->getType() != Type::getInt1Ty(Context)) 5941 return Error(Loc, "branch condition must have 'i1' type"); 5942 5943 if (ParseToken(lltok::comma, "expected ',' after branch condition") || 5944 ParseTypeAndBasicBlock(Op1, Loc, PFS) || 5945 ParseToken(lltok::comma, "expected ',' after true destination") || 5946 ParseTypeAndBasicBlock(Op2, Loc2, PFS)) 5947 return true; 5948 5949 Inst = BranchInst::Create(Op1, Op2, Op0); 5950 return false; 5951 } 5952 5953 /// ParseSwitch 5954 /// Instruction 5955 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 5956 /// JumpTable 5957 /// ::= (TypeAndValue ',' TypeAndValue)* 5958 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 5959 LocTy CondLoc, BBLoc; 5960 Value *Cond; 5961 BasicBlock *DefaultBB; 5962 if (ParseTypeAndValue(Cond, CondLoc, PFS) || 5963 ParseToken(lltok::comma, "expected ',' after switch condition") || 5964 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 5965 ParseToken(lltok::lsquare, "expected '[' with switch table")) 5966 return true; 5967 5968 if (!Cond->getType()->isIntegerTy()) 5969 return Error(CondLoc, "switch condition must have integer type"); 5970 5971 // Parse the jump table pairs. 5972 SmallPtrSet<Value*, 32> SeenCases; 5973 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 5974 while (Lex.getKind() != lltok::rsquare) { 5975 Value *Constant; 5976 BasicBlock *DestBB; 5977 5978 if (ParseTypeAndValue(Constant, CondLoc, PFS) || 5979 ParseToken(lltok::comma, "expected ',' after case value") || 5980 ParseTypeAndBasicBlock(DestBB, PFS)) 5981 return true; 5982 5983 if (!SeenCases.insert(Constant).second) 5984 return Error(CondLoc, "duplicate case value in switch"); 5985 if (!isa<ConstantInt>(Constant)) 5986 return Error(CondLoc, "case value is not a constant integer"); 5987 5988 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 5989 } 5990 5991 Lex.Lex(); // Eat the ']'. 5992 5993 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 5994 for (unsigned i = 0, e = Table.size(); i != e; ++i) 5995 SI->addCase(Table[i].first, Table[i].second); 5996 Inst = SI; 5997 return false; 5998 } 5999 6000 /// ParseIndirectBr 6001 /// Instruction 6002 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 6003 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 6004 LocTy AddrLoc; 6005 Value *Address; 6006 if (ParseTypeAndValue(Address, AddrLoc, PFS) || 6007 ParseToken(lltok::comma, "expected ',' after indirectbr address") || 6008 ParseToken(lltok::lsquare, "expected '[' with indirectbr")) 6009 return true; 6010 6011 if (!Address->getType()->isPointerTy()) 6012 return Error(AddrLoc, "indirectbr address must have pointer type"); 6013 6014 // Parse the destination list. 6015 SmallVector<BasicBlock*, 16> DestList; 6016 6017 if (Lex.getKind() != lltok::rsquare) { 6018 BasicBlock *DestBB; 6019 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6020 return true; 6021 DestList.push_back(DestBB); 6022 6023 while (EatIfPresent(lltok::comma)) { 6024 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6025 return true; 6026 DestList.push_back(DestBB); 6027 } 6028 } 6029 6030 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 6031 return true; 6032 6033 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 6034 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 6035 IBI->addDestination(DestList[i]); 6036 Inst = IBI; 6037 return false; 6038 } 6039 6040 /// ParseInvoke 6041 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 6042 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 6043 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 6044 LocTy CallLoc = Lex.getLoc(); 6045 AttrBuilder RetAttrs, FnAttrs; 6046 std::vector<unsigned> FwdRefAttrGrps; 6047 LocTy NoBuiltinLoc; 6048 unsigned CC; 6049 unsigned InvokeAddrSpace; 6050 Type *RetType = nullptr; 6051 LocTy RetTypeLoc; 6052 ValID CalleeID; 6053 SmallVector<ParamInfo, 16> ArgList; 6054 SmallVector<OperandBundleDef, 2> BundleList; 6055 6056 BasicBlock *NormalBB, *UnwindBB; 6057 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 6058 ParseOptionalProgramAddrSpace(InvokeAddrSpace) || 6059 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 6060 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || 6061 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6062 NoBuiltinLoc) || 6063 ParseOptionalOperandBundles(BundleList, PFS) || 6064 ParseToken(lltok::kw_to, "expected 'to' in invoke") || 6065 ParseTypeAndBasicBlock(NormalBB, PFS) || 6066 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 6067 ParseTypeAndBasicBlock(UnwindBB, PFS)) 6068 return true; 6069 6070 // If RetType is a non-function pointer type, then this is the short syntax 6071 // for the call, which means that RetType is just the return type. Infer the 6072 // rest of the function argument types from the arguments that are present. 6073 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6074 if (!Ty) { 6075 // Pull out the types of all of the arguments... 6076 std::vector<Type*> ParamTypes; 6077 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6078 ParamTypes.push_back(ArgList[i].V->getType()); 6079 6080 if (!FunctionType::isValidReturnType(RetType)) 6081 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 6082 6083 Ty = FunctionType::get(RetType, ParamTypes, false); 6084 } 6085 6086 CalleeID.FTy = Ty; 6087 6088 // Look up the callee. 6089 Value *Callee; 6090 if (ConvertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID, 6091 Callee, &PFS, /*IsCall=*/true)) 6092 return true; 6093 6094 // Set up the Attribute for the function. 6095 SmallVector<Value *, 8> Args; 6096 SmallVector<AttributeSet, 8> ArgAttrs; 6097 6098 // Loop through FunctionType's arguments and ensure they are specified 6099 // correctly. Also, gather any parameter attributes. 6100 FunctionType::param_iterator I = Ty->param_begin(); 6101 FunctionType::param_iterator E = Ty->param_end(); 6102 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6103 Type *ExpectedTy = nullptr; 6104 if (I != E) { 6105 ExpectedTy = *I++; 6106 } else if (!Ty->isVarArg()) { 6107 return Error(ArgList[i].Loc, "too many arguments specified"); 6108 } 6109 6110 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6111 return Error(ArgList[i].Loc, "argument is not of expected type '" + 6112 getTypeString(ExpectedTy) + "'"); 6113 Args.push_back(ArgList[i].V); 6114 ArgAttrs.push_back(ArgList[i].Attrs); 6115 } 6116 6117 if (I != E) 6118 return Error(CallLoc, "not enough parameters specified for call"); 6119 6120 if (FnAttrs.hasAlignmentAttr()) 6121 return Error(CallLoc, "invoke instructions may not have an alignment"); 6122 6123 // Finish off the Attribute and check them 6124 AttributeList PAL = 6125 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6126 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6127 6128 InvokeInst *II = 6129 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 6130 II->setCallingConv(CC); 6131 II->setAttributes(PAL); 6132 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 6133 Inst = II; 6134 return false; 6135 } 6136 6137 /// ParseResume 6138 /// ::= 'resume' TypeAndValue 6139 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) { 6140 Value *Exn; LocTy ExnLoc; 6141 if (ParseTypeAndValue(Exn, ExnLoc, PFS)) 6142 return true; 6143 6144 ResumeInst *RI = ResumeInst::Create(Exn); 6145 Inst = RI; 6146 return false; 6147 } 6148 6149 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args, 6150 PerFunctionState &PFS) { 6151 if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 6152 return true; 6153 6154 while (Lex.getKind() != lltok::rsquare) { 6155 // If this isn't the first argument, we need a comma. 6156 if (!Args.empty() && 6157 ParseToken(lltok::comma, "expected ',' in argument list")) 6158 return true; 6159 6160 // Parse the argument. 6161 LocTy ArgLoc; 6162 Type *ArgTy = nullptr; 6163 if (ParseType(ArgTy, ArgLoc)) 6164 return true; 6165 6166 Value *V; 6167 if (ArgTy->isMetadataTy()) { 6168 if (ParseMetadataAsValue(V, PFS)) 6169 return true; 6170 } else { 6171 if (ParseValue(ArgTy, V, PFS)) 6172 return true; 6173 } 6174 Args.push_back(V); 6175 } 6176 6177 Lex.Lex(); // Lex the ']'. 6178 return false; 6179 } 6180 6181 /// ParseCleanupRet 6182 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 6183 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 6184 Value *CleanupPad = nullptr; 6185 6186 if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret")) 6187 return true; 6188 6189 if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 6190 return true; 6191 6192 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 6193 return true; 6194 6195 BasicBlock *UnwindBB = nullptr; 6196 if (Lex.getKind() == lltok::kw_to) { 6197 Lex.Lex(); 6198 if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 6199 return true; 6200 } else { 6201 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 6202 return true; 6203 } 6204 } 6205 6206 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 6207 return false; 6208 } 6209 6210 /// ParseCatchRet 6211 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 6212 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 6213 Value *CatchPad = nullptr; 6214 6215 if (ParseToken(lltok::kw_from, "expected 'from' after catchret")) 6216 return true; 6217 6218 if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS)) 6219 return true; 6220 6221 BasicBlock *BB; 6222 if (ParseToken(lltok::kw_to, "expected 'to' in catchret") || 6223 ParseTypeAndBasicBlock(BB, PFS)) 6224 return true; 6225 6226 Inst = CatchReturnInst::Create(CatchPad, BB); 6227 return false; 6228 } 6229 6230 /// ParseCatchSwitch 6231 /// ::= 'catchswitch' within Parent 6232 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6233 Value *ParentPad; 6234 6235 if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch")) 6236 return true; 6237 6238 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6239 Lex.getKind() != lltok::LocalVarID) 6240 return TokError("expected scope value for catchswitch"); 6241 6242 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6243 return true; 6244 6245 if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 6246 return true; 6247 6248 SmallVector<BasicBlock *, 32> Table; 6249 do { 6250 BasicBlock *DestBB; 6251 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6252 return true; 6253 Table.push_back(DestBB); 6254 } while (EatIfPresent(lltok::comma)); 6255 6256 if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 6257 return true; 6258 6259 if (ParseToken(lltok::kw_unwind, 6260 "expected 'unwind' after catchswitch scope")) 6261 return true; 6262 6263 BasicBlock *UnwindBB = nullptr; 6264 if (EatIfPresent(lltok::kw_to)) { 6265 if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 6266 return true; 6267 } else { 6268 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) 6269 return true; 6270 } 6271 6272 auto *CatchSwitch = 6273 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 6274 for (BasicBlock *DestBB : Table) 6275 CatchSwitch->addHandler(DestBB); 6276 Inst = CatchSwitch; 6277 return false; 6278 } 6279 6280 /// ParseCatchPad 6281 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 6282 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 6283 Value *CatchSwitch = nullptr; 6284 6285 if (ParseToken(lltok::kw_within, "expected 'within' after catchpad")) 6286 return true; 6287 6288 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 6289 return TokError("expected scope value for catchpad"); 6290 6291 if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 6292 return true; 6293 6294 SmallVector<Value *, 8> Args; 6295 if (ParseExceptionArgs(Args, PFS)) 6296 return true; 6297 6298 Inst = CatchPadInst::Create(CatchSwitch, Args); 6299 return false; 6300 } 6301 6302 /// ParseCleanupPad 6303 /// ::= 'cleanuppad' within Parent ParamList 6304 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 6305 Value *ParentPad = nullptr; 6306 6307 if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 6308 return true; 6309 6310 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6311 Lex.getKind() != lltok::LocalVarID) 6312 return TokError("expected scope value for cleanuppad"); 6313 6314 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6315 return true; 6316 6317 SmallVector<Value *, 8> Args; 6318 if (ParseExceptionArgs(Args, PFS)) 6319 return true; 6320 6321 Inst = CleanupPadInst::Create(ParentPad, Args); 6322 return false; 6323 } 6324 6325 //===----------------------------------------------------------------------===// 6326 // Unary Operators. 6327 //===----------------------------------------------------------------------===// 6328 6329 /// ParseUnaryOp 6330 /// ::= UnaryOp TypeAndValue ',' Value 6331 /// 6332 /// If IsFP is true, then fp operand is only allowed. 6333 bool LLParser::ParseUnaryOp(Instruction *&Inst, PerFunctionState &PFS, 6334 unsigned Opc, bool IsFP) { 6335 LocTy Loc; Value *LHS; 6336 if (ParseTypeAndValue(LHS, Loc, PFS)) 6337 return true; 6338 6339 bool Valid = !IsFP || LHS->getType()->isFPOrFPVectorTy(); 6340 6341 if (!Valid) 6342 return Error(Loc, "invalid operand type for instruction"); 6343 6344 Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 6345 return false; 6346 } 6347 6348 /// ParseCallBr 6349 /// ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList 6350 /// OptionalAttrs OptionalOperandBundles 'to' TypeAndValue 6351 /// '[' LabelList ']' 6352 bool LLParser::ParseCallBr(Instruction *&Inst, PerFunctionState &PFS) { 6353 LocTy CallLoc = Lex.getLoc(); 6354 AttrBuilder RetAttrs, FnAttrs; 6355 std::vector<unsigned> FwdRefAttrGrps; 6356 LocTy NoBuiltinLoc; 6357 unsigned CC; 6358 Type *RetType = nullptr; 6359 LocTy RetTypeLoc; 6360 ValID CalleeID; 6361 SmallVector<ParamInfo, 16> ArgList; 6362 SmallVector<OperandBundleDef, 2> BundleList; 6363 6364 BasicBlock *DefaultDest; 6365 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 6366 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 6367 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || 6368 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6369 NoBuiltinLoc) || 6370 ParseOptionalOperandBundles(BundleList, PFS) || 6371 ParseToken(lltok::kw_to, "expected 'to' in callbr") || 6372 ParseTypeAndBasicBlock(DefaultDest, PFS) || 6373 ParseToken(lltok::lsquare, "expected '[' in callbr")) 6374 return true; 6375 6376 // Parse the destination list. 6377 SmallVector<BasicBlock *, 16> IndirectDests; 6378 6379 if (Lex.getKind() != lltok::rsquare) { 6380 BasicBlock *DestBB; 6381 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6382 return true; 6383 IndirectDests.push_back(DestBB); 6384 6385 while (EatIfPresent(lltok::comma)) { 6386 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6387 return true; 6388 IndirectDests.push_back(DestBB); 6389 } 6390 } 6391 6392 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 6393 return true; 6394 6395 // If RetType is a non-function pointer type, then this is the short syntax 6396 // for the call, which means that RetType is just the return type. Infer the 6397 // rest of the function argument types from the arguments that are present. 6398 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6399 if (!Ty) { 6400 // Pull out the types of all of the arguments... 6401 std::vector<Type *> ParamTypes; 6402 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6403 ParamTypes.push_back(ArgList[i].V->getType()); 6404 6405 if (!FunctionType::isValidReturnType(RetType)) 6406 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 6407 6408 Ty = FunctionType::get(RetType, ParamTypes, false); 6409 } 6410 6411 CalleeID.FTy = Ty; 6412 6413 // Look up the callee. 6414 Value *Callee; 6415 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS, 6416 /*IsCall=*/true)) 6417 return true; 6418 6419 if (isa<InlineAsm>(Callee) && !Ty->getReturnType()->isVoidTy()) 6420 return Error(RetTypeLoc, "asm-goto outputs not supported"); 6421 6422 // Set up the Attribute for the function. 6423 SmallVector<Value *, 8> Args; 6424 SmallVector<AttributeSet, 8> ArgAttrs; 6425 6426 // Loop through FunctionType's arguments and ensure they are specified 6427 // correctly. Also, gather any parameter attributes. 6428 FunctionType::param_iterator I = Ty->param_begin(); 6429 FunctionType::param_iterator E = Ty->param_end(); 6430 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6431 Type *ExpectedTy = nullptr; 6432 if (I != E) { 6433 ExpectedTy = *I++; 6434 } else if (!Ty->isVarArg()) { 6435 return Error(ArgList[i].Loc, "too many arguments specified"); 6436 } 6437 6438 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6439 return Error(ArgList[i].Loc, "argument is not of expected type '" + 6440 getTypeString(ExpectedTy) + "'"); 6441 Args.push_back(ArgList[i].V); 6442 ArgAttrs.push_back(ArgList[i].Attrs); 6443 } 6444 6445 if (I != E) 6446 return Error(CallLoc, "not enough parameters specified for call"); 6447 6448 if (FnAttrs.hasAlignmentAttr()) 6449 return Error(CallLoc, "callbr instructions may not have an alignment"); 6450 6451 // Finish off the Attribute and check them 6452 AttributeList PAL = 6453 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6454 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6455 6456 CallBrInst *CBI = 6457 CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args, 6458 BundleList); 6459 CBI->setCallingConv(CC); 6460 CBI->setAttributes(PAL); 6461 ForwardRefAttrGroups[CBI] = FwdRefAttrGrps; 6462 Inst = CBI; 6463 return false; 6464 } 6465 6466 //===----------------------------------------------------------------------===// 6467 // Binary Operators. 6468 //===----------------------------------------------------------------------===// 6469 6470 /// ParseArithmetic 6471 /// ::= ArithmeticOps TypeAndValue ',' Value 6472 /// 6473 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6474 /// operand is allowed. 6475 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 6476 unsigned Opc, bool IsFP) { 6477 LocTy Loc; Value *LHS, *RHS; 6478 if (ParseTypeAndValue(LHS, Loc, PFS) || 6479 ParseToken(lltok::comma, "expected ',' in arithmetic operation") || 6480 ParseValue(LHS->getType(), RHS, PFS)) 6481 return true; 6482 6483 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6484 : LHS->getType()->isIntOrIntVectorTy(); 6485 6486 if (!Valid) 6487 return Error(Loc, "invalid operand type for instruction"); 6488 6489 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6490 return false; 6491 } 6492 6493 /// ParseLogical 6494 /// ::= ArithmeticOps TypeAndValue ',' Value { 6495 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, 6496 unsigned Opc) { 6497 LocTy Loc; Value *LHS, *RHS; 6498 if (ParseTypeAndValue(LHS, Loc, PFS) || 6499 ParseToken(lltok::comma, "expected ',' in logical operation") || 6500 ParseValue(LHS->getType(), RHS, PFS)) 6501 return true; 6502 6503 if (!LHS->getType()->isIntOrIntVectorTy()) 6504 return Error(Loc,"instruction requires integer or integer vector operands"); 6505 6506 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6507 return false; 6508 } 6509 6510 /// ParseCompare 6511 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 6512 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 6513 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, 6514 unsigned Opc) { 6515 // Parse the integer/fp comparison predicate. 6516 LocTy Loc; 6517 unsigned Pred; 6518 Value *LHS, *RHS; 6519 if (ParseCmpPredicate(Pred, Opc) || 6520 ParseTypeAndValue(LHS, Loc, PFS) || 6521 ParseToken(lltok::comma, "expected ',' after compare value") || 6522 ParseValue(LHS->getType(), RHS, PFS)) 6523 return true; 6524 6525 if (Opc == Instruction::FCmp) { 6526 if (!LHS->getType()->isFPOrFPVectorTy()) 6527 return Error(Loc, "fcmp requires floating point operands"); 6528 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6529 } else { 6530 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 6531 if (!LHS->getType()->isIntOrIntVectorTy() && 6532 !LHS->getType()->isPtrOrPtrVectorTy()) 6533 return Error(Loc, "icmp requires integer operands"); 6534 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6535 } 6536 return false; 6537 } 6538 6539 //===----------------------------------------------------------------------===// 6540 // Other Instructions. 6541 //===----------------------------------------------------------------------===// 6542 6543 6544 /// ParseCast 6545 /// ::= CastOpc TypeAndValue 'to' Type 6546 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, 6547 unsigned Opc) { 6548 LocTy Loc; 6549 Value *Op; 6550 Type *DestTy = nullptr; 6551 if (ParseTypeAndValue(Op, Loc, PFS) || 6552 ParseToken(lltok::kw_to, "expected 'to' after cast value") || 6553 ParseType(DestTy)) 6554 return true; 6555 6556 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 6557 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 6558 return Error(Loc, "invalid cast opcode for cast from '" + 6559 getTypeString(Op->getType()) + "' to '" + 6560 getTypeString(DestTy) + "'"); 6561 } 6562 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 6563 return false; 6564 } 6565 6566 /// ParseSelect 6567 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6568 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { 6569 LocTy Loc; 6570 Value *Op0, *Op1, *Op2; 6571 if (ParseTypeAndValue(Op0, Loc, PFS) || 6572 ParseToken(lltok::comma, "expected ',' after select condition") || 6573 ParseTypeAndValue(Op1, PFS) || 6574 ParseToken(lltok::comma, "expected ',' after select value") || 6575 ParseTypeAndValue(Op2, PFS)) 6576 return true; 6577 6578 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 6579 return Error(Loc, Reason); 6580 6581 Inst = SelectInst::Create(Op0, Op1, Op2); 6582 return false; 6583 } 6584 6585 /// ParseVA_Arg 6586 /// ::= 'va_arg' TypeAndValue ',' Type 6587 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { 6588 Value *Op; 6589 Type *EltTy = nullptr; 6590 LocTy TypeLoc; 6591 if (ParseTypeAndValue(Op, PFS) || 6592 ParseToken(lltok::comma, "expected ',' after vaarg operand") || 6593 ParseType(EltTy, TypeLoc)) 6594 return true; 6595 6596 if (!EltTy->isFirstClassType()) 6597 return Error(TypeLoc, "va_arg requires operand with first class type"); 6598 6599 Inst = new VAArgInst(Op, EltTy); 6600 return false; 6601 } 6602 6603 /// ParseExtractElement 6604 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 6605 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 6606 LocTy Loc; 6607 Value *Op0, *Op1; 6608 if (ParseTypeAndValue(Op0, Loc, PFS) || 6609 ParseToken(lltok::comma, "expected ',' after extract value") || 6610 ParseTypeAndValue(Op1, PFS)) 6611 return true; 6612 6613 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 6614 return Error(Loc, "invalid extractelement operands"); 6615 6616 Inst = ExtractElementInst::Create(Op0, Op1); 6617 return false; 6618 } 6619 6620 /// ParseInsertElement 6621 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6622 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 6623 LocTy Loc; 6624 Value *Op0, *Op1, *Op2; 6625 if (ParseTypeAndValue(Op0, Loc, PFS) || 6626 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6627 ParseTypeAndValue(Op1, PFS) || 6628 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6629 ParseTypeAndValue(Op2, PFS)) 6630 return true; 6631 6632 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 6633 return Error(Loc, "invalid insertelement operands"); 6634 6635 Inst = InsertElementInst::Create(Op0, Op1, Op2); 6636 return false; 6637 } 6638 6639 /// ParseShuffleVector 6640 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6641 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 6642 LocTy Loc; 6643 Value *Op0, *Op1, *Op2; 6644 if (ParseTypeAndValue(Op0, Loc, PFS) || 6645 ParseToken(lltok::comma, "expected ',' after shuffle mask") || 6646 ParseTypeAndValue(Op1, PFS) || 6647 ParseToken(lltok::comma, "expected ',' after shuffle value") || 6648 ParseTypeAndValue(Op2, PFS)) 6649 return true; 6650 6651 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 6652 return Error(Loc, "invalid shufflevector operands"); 6653 6654 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 6655 return false; 6656 } 6657 6658 /// ParsePHI 6659 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 6660 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { 6661 Type *Ty = nullptr; LocTy TypeLoc; 6662 Value *Op0, *Op1; 6663 6664 if (ParseType(Ty, TypeLoc) || 6665 ParseToken(lltok::lsquare, "expected '[' in phi value list") || 6666 ParseValue(Ty, Op0, PFS) || 6667 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6668 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 6669 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 6670 return true; 6671 6672 bool AteExtraComma = false; 6673 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 6674 6675 while (true) { 6676 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 6677 6678 if (!EatIfPresent(lltok::comma)) 6679 break; 6680 6681 if (Lex.getKind() == lltok::MetadataVar) { 6682 AteExtraComma = true; 6683 break; 6684 } 6685 6686 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || 6687 ParseValue(Ty, Op0, PFS) || 6688 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6689 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 6690 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 6691 return true; 6692 } 6693 6694 if (!Ty->isFirstClassType()) 6695 return Error(TypeLoc, "phi node must have first class type"); 6696 6697 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 6698 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 6699 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 6700 Inst = PN; 6701 return AteExtraComma ? InstExtraComma : InstNormal; 6702 } 6703 6704 /// ParseLandingPad 6705 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 6706 /// Clause 6707 /// ::= 'catch' TypeAndValue 6708 /// ::= 'filter' 6709 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 6710 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 6711 Type *Ty = nullptr; LocTy TyLoc; 6712 6713 if (ParseType(Ty, TyLoc)) 6714 return true; 6715 6716 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 6717 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 6718 6719 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 6720 LandingPadInst::ClauseType CT; 6721 if (EatIfPresent(lltok::kw_catch)) 6722 CT = LandingPadInst::Catch; 6723 else if (EatIfPresent(lltok::kw_filter)) 6724 CT = LandingPadInst::Filter; 6725 else 6726 return TokError("expected 'catch' or 'filter' clause type"); 6727 6728 Value *V; 6729 LocTy VLoc; 6730 if (ParseTypeAndValue(V, VLoc, PFS)) 6731 return true; 6732 6733 // A 'catch' type expects a non-array constant. A filter clause expects an 6734 // array constant. 6735 if (CT == LandingPadInst::Catch) { 6736 if (isa<ArrayType>(V->getType())) 6737 Error(VLoc, "'catch' clause has an invalid type"); 6738 } else { 6739 if (!isa<ArrayType>(V->getType())) 6740 Error(VLoc, "'filter' clause has an invalid type"); 6741 } 6742 6743 Constant *CV = dyn_cast<Constant>(V); 6744 if (!CV) 6745 return Error(VLoc, "clause argument must be a constant"); 6746 LP->addClause(CV); 6747 } 6748 6749 Inst = LP.release(); 6750 return false; 6751 } 6752 6753 /// ParseCall 6754 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 6755 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6756 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 6757 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6758 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 6759 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6760 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 6761 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6762 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, 6763 CallInst::TailCallKind TCK) { 6764 AttrBuilder RetAttrs, FnAttrs; 6765 std::vector<unsigned> FwdRefAttrGrps; 6766 LocTy BuiltinLoc; 6767 unsigned CallAddrSpace; 6768 unsigned CC; 6769 Type *RetType = nullptr; 6770 LocTy RetTypeLoc; 6771 ValID CalleeID; 6772 SmallVector<ParamInfo, 16> ArgList; 6773 SmallVector<OperandBundleDef, 2> BundleList; 6774 LocTy CallLoc = Lex.getLoc(); 6775 6776 if (TCK != CallInst::TCK_None && 6777 ParseToken(lltok::kw_call, 6778 "expected 'tail call', 'musttail call', or 'notail call'")) 6779 return true; 6780 6781 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6782 6783 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 6784 ParseOptionalProgramAddrSpace(CallAddrSpace) || 6785 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 6786 ParseValID(CalleeID) || 6787 ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 6788 PFS.getFunction().isVarArg()) || 6789 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 6790 ParseOptionalOperandBundles(BundleList, PFS)) 6791 return true; 6792 6793 // If RetType is a non-function pointer type, then this is the short syntax 6794 // for the call, which means that RetType is just the return type. Infer the 6795 // rest of the function argument types from the arguments that are present. 6796 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6797 if (!Ty) { 6798 // Pull out the types of all of the arguments... 6799 std::vector<Type*> ParamTypes; 6800 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6801 ParamTypes.push_back(ArgList[i].V->getType()); 6802 6803 if (!FunctionType::isValidReturnType(RetType)) 6804 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 6805 6806 Ty = FunctionType::get(RetType, ParamTypes, false); 6807 } 6808 6809 CalleeID.FTy = Ty; 6810 6811 // Look up the callee. 6812 Value *Callee; 6813 if (ConvertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee, 6814 &PFS, /*IsCall=*/true)) 6815 return true; 6816 6817 // Set up the Attribute for the function. 6818 SmallVector<AttributeSet, 8> Attrs; 6819 6820 SmallVector<Value*, 8> Args; 6821 6822 // Loop through FunctionType's arguments and ensure they are specified 6823 // correctly. Also, gather any parameter attributes. 6824 FunctionType::param_iterator I = Ty->param_begin(); 6825 FunctionType::param_iterator E = Ty->param_end(); 6826 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6827 Type *ExpectedTy = nullptr; 6828 if (I != E) { 6829 ExpectedTy = *I++; 6830 } else if (!Ty->isVarArg()) { 6831 return Error(ArgList[i].Loc, "too many arguments specified"); 6832 } 6833 6834 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6835 return Error(ArgList[i].Loc, "argument is not of expected type '" + 6836 getTypeString(ExpectedTy) + "'"); 6837 Args.push_back(ArgList[i].V); 6838 Attrs.push_back(ArgList[i].Attrs); 6839 } 6840 6841 if (I != E) 6842 return Error(CallLoc, "not enough parameters specified for call"); 6843 6844 if (FnAttrs.hasAlignmentAttr()) 6845 return Error(CallLoc, "call instructions may not have an alignment"); 6846 6847 // Finish off the Attribute and check them 6848 AttributeList PAL = 6849 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6850 AttributeSet::get(Context, RetAttrs), Attrs); 6851 6852 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 6853 CI->setTailCallKind(TCK); 6854 CI->setCallingConv(CC); 6855 if (FMF.any()) { 6856 if (!isa<FPMathOperator>(CI)) 6857 return Error(CallLoc, "fast-math-flags specified for call without " 6858 "floating-point scalar or vector return type"); 6859 CI->setFastMathFlags(FMF); 6860 } 6861 CI->setAttributes(PAL); 6862 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 6863 Inst = CI; 6864 return false; 6865 } 6866 6867 //===----------------------------------------------------------------------===// 6868 // Memory Instructions. 6869 //===----------------------------------------------------------------------===// 6870 6871 /// ParseAlloc 6872 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 6873 /// (',' 'align' i32)? (',', 'addrspace(n))? 6874 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 6875 Value *Size = nullptr; 6876 LocTy SizeLoc, TyLoc, ASLoc; 6877 MaybeAlign Alignment; 6878 unsigned AddrSpace = 0; 6879 Type *Ty = nullptr; 6880 6881 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 6882 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 6883 6884 if (ParseType(Ty, TyLoc)) return true; 6885 6886 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 6887 return Error(TyLoc, "invalid type for alloca"); 6888 6889 bool AteExtraComma = false; 6890 if (EatIfPresent(lltok::comma)) { 6891 if (Lex.getKind() == lltok::kw_align) { 6892 if (ParseOptionalAlignment(Alignment)) 6893 return true; 6894 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 6895 return true; 6896 } else if (Lex.getKind() == lltok::kw_addrspace) { 6897 ASLoc = Lex.getLoc(); 6898 if (ParseOptionalAddrSpace(AddrSpace)) 6899 return true; 6900 } else if (Lex.getKind() == lltok::MetadataVar) { 6901 AteExtraComma = true; 6902 } else { 6903 if (ParseTypeAndValue(Size, SizeLoc, PFS)) 6904 return true; 6905 if (EatIfPresent(lltok::comma)) { 6906 if (Lex.getKind() == lltok::kw_align) { 6907 if (ParseOptionalAlignment(Alignment)) 6908 return true; 6909 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 6910 return true; 6911 } else if (Lex.getKind() == lltok::kw_addrspace) { 6912 ASLoc = Lex.getLoc(); 6913 if (ParseOptionalAddrSpace(AddrSpace)) 6914 return true; 6915 } else if (Lex.getKind() == lltok::MetadataVar) { 6916 AteExtraComma = true; 6917 } 6918 } 6919 } 6920 } 6921 6922 if (Size && !Size->getType()->isIntegerTy()) 6923 return Error(SizeLoc, "element count must have integer type"); 6924 6925 AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, Alignment); 6926 AI->setUsedWithInAlloca(IsInAlloca); 6927 AI->setSwiftError(IsSwiftError); 6928 Inst = AI; 6929 return AteExtraComma ? InstExtraComma : InstNormal; 6930 } 6931 6932 /// ParseLoad 6933 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 6934 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 6935 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6936 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) { 6937 Value *Val; LocTy Loc; 6938 MaybeAlign Alignment; 6939 bool AteExtraComma = false; 6940 bool isAtomic = false; 6941 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6942 SyncScope::ID SSID = SyncScope::System; 6943 6944 if (Lex.getKind() == lltok::kw_atomic) { 6945 isAtomic = true; 6946 Lex.Lex(); 6947 } 6948 6949 bool isVolatile = false; 6950 if (Lex.getKind() == lltok::kw_volatile) { 6951 isVolatile = true; 6952 Lex.Lex(); 6953 } 6954 6955 Type *Ty; 6956 LocTy ExplicitTypeLoc = Lex.getLoc(); 6957 if (ParseType(Ty) || 6958 ParseToken(lltok::comma, "expected comma after load's type") || 6959 ParseTypeAndValue(Val, Loc, PFS) || 6960 ParseScopeAndOrdering(isAtomic, SSID, Ordering) || 6961 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6962 return true; 6963 6964 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 6965 return Error(Loc, "load operand must be a pointer to a first class type"); 6966 if (isAtomic && !Alignment) 6967 return Error(Loc, "atomic load must have explicit non-zero alignment"); 6968 if (Ordering == AtomicOrdering::Release || 6969 Ordering == AtomicOrdering::AcquireRelease) 6970 return Error(Loc, "atomic load cannot use Release ordering"); 6971 6972 if (Ty != cast<PointerType>(Val->getType())->getElementType()) 6973 return Error(ExplicitTypeLoc, 6974 "explicit pointee type doesn't match operand's pointee type"); 6975 6976 Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, SSID); 6977 return AteExtraComma ? InstExtraComma : InstNormal; 6978 } 6979 6980 /// ParseStore 6981 6982 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 6983 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 6984 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6985 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) { 6986 Value *Val, *Ptr; LocTy Loc, PtrLoc; 6987 MaybeAlign Alignment; 6988 bool AteExtraComma = false; 6989 bool isAtomic = false; 6990 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6991 SyncScope::ID SSID = SyncScope::System; 6992 6993 if (Lex.getKind() == lltok::kw_atomic) { 6994 isAtomic = true; 6995 Lex.Lex(); 6996 } 6997 6998 bool isVolatile = false; 6999 if (Lex.getKind() == lltok::kw_volatile) { 7000 isVolatile = true; 7001 Lex.Lex(); 7002 } 7003 7004 if (ParseTypeAndValue(Val, Loc, PFS) || 7005 ParseToken(lltok::comma, "expected ',' after store operand") || 7006 ParseTypeAndValue(Ptr, PtrLoc, PFS) || 7007 ParseScopeAndOrdering(isAtomic, SSID, Ordering) || 7008 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 7009 return true; 7010 7011 if (!Ptr->getType()->isPointerTy()) 7012 return Error(PtrLoc, "store operand must be a pointer"); 7013 if (!Val->getType()->isFirstClassType()) 7014 return Error(Loc, "store operand must be a first class value"); 7015 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 7016 return Error(Loc, "stored value and pointer type do not match"); 7017 if (isAtomic && !Alignment) 7018 return Error(Loc, "atomic store must have explicit non-zero alignment"); 7019 if (Ordering == AtomicOrdering::Acquire || 7020 Ordering == AtomicOrdering::AcquireRelease) 7021 return Error(Loc, "atomic store cannot use Acquire ordering"); 7022 7023 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, SSID); 7024 return AteExtraComma ? InstExtraComma : InstNormal; 7025 } 7026 7027 /// ParseCmpXchg 7028 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 7029 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering 7030 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 7031 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 7032 bool AteExtraComma = false; 7033 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 7034 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 7035 SyncScope::ID SSID = SyncScope::System; 7036 bool isVolatile = false; 7037 bool isWeak = false; 7038 7039 if (EatIfPresent(lltok::kw_weak)) 7040 isWeak = true; 7041 7042 if (EatIfPresent(lltok::kw_volatile)) 7043 isVolatile = true; 7044 7045 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 7046 ParseToken(lltok::comma, "expected ',' after cmpxchg address") || 7047 ParseTypeAndValue(Cmp, CmpLoc, PFS) || 7048 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 7049 ParseTypeAndValue(New, NewLoc, PFS) || 7050 ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) || 7051 ParseOrdering(FailureOrdering)) 7052 return true; 7053 7054 if (SuccessOrdering == AtomicOrdering::Unordered || 7055 FailureOrdering == AtomicOrdering::Unordered) 7056 return TokError("cmpxchg cannot be unordered"); 7057 if (isStrongerThan(FailureOrdering, SuccessOrdering)) 7058 return TokError("cmpxchg failure argument shall be no stronger than the " 7059 "success argument"); 7060 if (FailureOrdering == AtomicOrdering::Release || 7061 FailureOrdering == AtomicOrdering::AcquireRelease) 7062 return TokError( 7063 "cmpxchg failure ordering cannot include release semantics"); 7064 if (!Ptr->getType()->isPointerTy()) 7065 return Error(PtrLoc, "cmpxchg operand must be a pointer"); 7066 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 7067 return Error(CmpLoc, "compare value and pointer type do not match"); 7068 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 7069 return Error(NewLoc, "new value and pointer type do not match"); 7070 if (!New->getType()->isFirstClassType()) 7071 return Error(NewLoc, "cmpxchg operand must be a first class value"); 7072 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 7073 Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID); 7074 CXI->setVolatile(isVolatile); 7075 CXI->setWeak(isWeak); 7076 Inst = CXI; 7077 return AteExtraComma ? InstExtraComma : InstNormal; 7078 } 7079 7080 /// ParseAtomicRMW 7081 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 7082 /// 'singlethread'? AtomicOrdering 7083 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 7084 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 7085 bool AteExtraComma = false; 7086 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7087 SyncScope::ID SSID = SyncScope::System; 7088 bool isVolatile = false; 7089 bool IsFP = false; 7090 AtomicRMWInst::BinOp Operation; 7091 7092 if (EatIfPresent(lltok::kw_volatile)) 7093 isVolatile = true; 7094 7095 switch (Lex.getKind()) { 7096 default: return TokError("expected binary operation in atomicrmw"); 7097 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 7098 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 7099 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 7100 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 7101 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 7102 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 7103 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 7104 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 7105 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 7106 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 7107 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 7108 case lltok::kw_fadd: 7109 Operation = AtomicRMWInst::FAdd; 7110 IsFP = true; 7111 break; 7112 case lltok::kw_fsub: 7113 Operation = AtomicRMWInst::FSub; 7114 IsFP = true; 7115 break; 7116 } 7117 Lex.Lex(); // Eat the operation. 7118 7119 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 7120 ParseToken(lltok::comma, "expected ',' after atomicrmw address") || 7121 ParseTypeAndValue(Val, ValLoc, PFS) || 7122 ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 7123 return true; 7124 7125 if (Ordering == AtomicOrdering::Unordered) 7126 return TokError("atomicrmw cannot be unordered"); 7127 if (!Ptr->getType()->isPointerTy()) 7128 return Error(PtrLoc, "atomicrmw operand must be a pointer"); 7129 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 7130 return Error(ValLoc, "atomicrmw value and pointer type do not match"); 7131 7132 if (Operation == AtomicRMWInst::Xchg) { 7133 if (!Val->getType()->isIntegerTy() && 7134 !Val->getType()->isFloatingPointTy()) { 7135 return Error(ValLoc, "atomicrmw " + 7136 AtomicRMWInst::getOperationName(Operation) + 7137 " operand must be an integer or floating point type"); 7138 } 7139 } else if (IsFP) { 7140 if (!Val->getType()->isFloatingPointTy()) { 7141 return Error(ValLoc, "atomicrmw " + 7142 AtomicRMWInst::getOperationName(Operation) + 7143 " operand must be a floating point type"); 7144 } 7145 } else { 7146 if (!Val->getType()->isIntegerTy()) { 7147 return Error(ValLoc, "atomicrmw " + 7148 AtomicRMWInst::getOperationName(Operation) + 7149 " operand must be an integer"); 7150 } 7151 } 7152 7153 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 7154 if (Size < 8 || (Size & (Size - 1))) 7155 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 7156 " integer"); 7157 7158 AtomicRMWInst *RMWI = 7159 new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 7160 RMWI->setVolatile(isVolatile); 7161 Inst = RMWI; 7162 return AteExtraComma ? InstExtraComma : InstNormal; 7163 } 7164 7165 /// ParseFence 7166 /// ::= 'fence' 'singlethread'? AtomicOrdering 7167 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) { 7168 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7169 SyncScope::ID SSID = SyncScope::System; 7170 if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 7171 return true; 7172 7173 if (Ordering == AtomicOrdering::Unordered) 7174 return TokError("fence cannot be unordered"); 7175 if (Ordering == AtomicOrdering::Monotonic) 7176 return TokError("fence cannot be monotonic"); 7177 7178 Inst = new FenceInst(Context, Ordering, SSID); 7179 return InstNormal; 7180 } 7181 7182 /// ParseGetElementPtr 7183 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 7184 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 7185 Value *Ptr = nullptr; 7186 Value *Val = nullptr; 7187 LocTy Loc, EltLoc; 7188 7189 bool InBounds = EatIfPresent(lltok::kw_inbounds); 7190 7191 Type *Ty = nullptr; 7192 LocTy ExplicitTypeLoc = Lex.getLoc(); 7193 if (ParseType(Ty) || 7194 ParseToken(lltok::comma, "expected comma after getelementptr's type") || 7195 ParseTypeAndValue(Ptr, Loc, PFS)) 7196 return true; 7197 7198 Type *BaseType = Ptr->getType(); 7199 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 7200 if (!BasePointerType) 7201 return Error(Loc, "base of getelementptr must be a pointer"); 7202 7203 if (Ty != BasePointerType->getElementType()) 7204 return Error(ExplicitTypeLoc, 7205 "explicit pointee type doesn't match operand's pointee type"); 7206 7207 SmallVector<Value*, 16> Indices; 7208 bool AteExtraComma = false; 7209 // GEP returns a vector of pointers if at least one of parameters is a vector. 7210 // All vector parameters should have the same vector width. 7211 unsigned GEPWidth = BaseType->isVectorTy() ? 7212 BaseType->getVectorNumElements() : 0; 7213 7214 while (EatIfPresent(lltok::comma)) { 7215 if (Lex.getKind() == lltok::MetadataVar) { 7216 AteExtraComma = true; 7217 break; 7218 } 7219 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; 7220 if (!Val->getType()->isIntOrIntVectorTy()) 7221 return Error(EltLoc, "getelementptr index must be an integer"); 7222 7223 if (Val->getType()->isVectorTy()) { 7224 unsigned ValNumEl = Val->getType()->getVectorNumElements(); 7225 if (GEPWidth && GEPWidth != ValNumEl) 7226 return Error(EltLoc, 7227 "getelementptr vector index has a wrong number of elements"); 7228 GEPWidth = ValNumEl; 7229 } 7230 Indices.push_back(Val); 7231 } 7232 7233 SmallPtrSet<Type*, 4> Visited; 7234 if (!Indices.empty() && !Ty->isSized(&Visited)) 7235 return Error(Loc, "base element of getelementptr must be sized"); 7236 7237 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 7238 return Error(Loc, "invalid getelementptr indices"); 7239 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 7240 if (InBounds) 7241 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 7242 return AteExtraComma ? InstExtraComma : InstNormal; 7243 } 7244 7245 /// ParseExtractValue 7246 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 7247 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 7248 Value *Val; LocTy Loc; 7249 SmallVector<unsigned, 4> Indices; 7250 bool AteExtraComma; 7251 if (ParseTypeAndValue(Val, Loc, PFS) || 7252 ParseIndexList(Indices, AteExtraComma)) 7253 return true; 7254 7255 if (!Val->getType()->isAggregateType()) 7256 return Error(Loc, "extractvalue operand must be aggregate type"); 7257 7258 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 7259 return Error(Loc, "invalid indices for extractvalue"); 7260 Inst = ExtractValueInst::Create(Val, Indices); 7261 return AteExtraComma ? InstExtraComma : InstNormal; 7262 } 7263 7264 /// ParseInsertValue 7265 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 7266 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 7267 Value *Val0, *Val1; LocTy Loc0, Loc1; 7268 SmallVector<unsigned, 4> Indices; 7269 bool AteExtraComma; 7270 if (ParseTypeAndValue(Val0, Loc0, PFS) || 7271 ParseToken(lltok::comma, "expected comma after insertvalue operand") || 7272 ParseTypeAndValue(Val1, Loc1, PFS) || 7273 ParseIndexList(Indices, AteExtraComma)) 7274 return true; 7275 7276 if (!Val0->getType()->isAggregateType()) 7277 return Error(Loc0, "insertvalue operand must be aggregate type"); 7278 7279 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 7280 if (!IndexedType) 7281 return Error(Loc0, "invalid indices for insertvalue"); 7282 if (IndexedType != Val1->getType()) 7283 return Error(Loc1, "insertvalue operand and field disagree in type: '" + 7284 getTypeString(Val1->getType()) + "' instead of '" + 7285 getTypeString(IndexedType) + "'"); 7286 Inst = InsertValueInst::Create(Val0, Val1, Indices); 7287 return AteExtraComma ? InstExtraComma : InstNormal; 7288 } 7289 7290 //===----------------------------------------------------------------------===// 7291 // Embedded metadata. 7292 //===----------------------------------------------------------------------===// 7293 7294 /// ParseMDNodeVector 7295 /// ::= { Element (',' Element)* } 7296 /// Element 7297 /// ::= 'null' | TypeAndValue 7298 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 7299 if (ParseToken(lltok::lbrace, "expected '{' here")) 7300 return true; 7301 7302 // Check for an empty list. 7303 if (EatIfPresent(lltok::rbrace)) 7304 return false; 7305 7306 do { 7307 // Null is a special case since it is typeless. 7308 if (EatIfPresent(lltok::kw_null)) { 7309 Elts.push_back(nullptr); 7310 continue; 7311 } 7312 7313 Metadata *MD; 7314 if (ParseMetadata(MD, nullptr)) 7315 return true; 7316 Elts.push_back(MD); 7317 } while (EatIfPresent(lltok::comma)); 7318 7319 return ParseToken(lltok::rbrace, "expected end of metadata node"); 7320 } 7321 7322 //===----------------------------------------------------------------------===// 7323 // Use-list order directives. 7324 //===----------------------------------------------------------------------===// 7325 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 7326 SMLoc Loc) { 7327 if (V->use_empty()) 7328 return Error(Loc, "value has no uses"); 7329 7330 unsigned NumUses = 0; 7331 SmallDenseMap<const Use *, unsigned, 16> Order; 7332 for (const Use &U : V->uses()) { 7333 if (++NumUses > Indexes.size()) 7334 break; 7335 Order[&U] = Indexes[NumUses - 1]; 7336 } 7337 if (NumUses < 2) 7338 return Error(Loc, "value only has one use"); 7339 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 7340 return Error(Loc, 7341 "wrong number of indexes, expected " + Twine(V->getNumUses())); 7342 7343 V->sortUseList([&](const Use &L, const Use &R) { 7344 return Order.lookup(&L) < Order.lookup(&R); 7345 }); 7346 return false; 7347 } 7348 7349 /// ParseUseListOrderIndexes 7350 /// ::= '{' uint32 (',' uint32)+ '}' 7351 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 7352 SMLoc Loc = Lex.getLoc(); 7353 if (ParseToken(lltok::lbrace, "expected '{' here")) 7354 return true; 7355 if (Lex.getKind() == lltok::rbrace) 7356 return Lex.Error("expected non-empty list of uselistorder indexes"); 7357 7358 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 7359 // indexes should be distinct numbers in the range [0, size-1], and should 7360 // not be in order. 7361 unsigned Offset = 0; 7362 unsigned Max = 0; 7363 bool IsOrdered = true; 7364 assert(Indexes.empty() && "Expected empty order vector"); 7365 do { 7366 unsigned Index; 7367 if (ParseUInt32(Index)) 7368 return true; 7369 7370 // Update consistency checks. 7371 Offset += Index - Indexes.size(); 7372 Max = std::max(Max, Index); 7373 IsOrdered &= Index == Indexes.size(); 7374 7375 Indexes.push_back(Index); 7376 } while (EatIfPresent(lltok::comma)); 7377 7378 if (ParseToken(lltok::rbrace, "expected '}' here")) 7379 return true; 7380 7381 if (Indexes.size() < 2) 7382 return Error(Loc, "expected >= 2 uselistorder indexes"); 7383 if (Offset != 0 || Max >= Indexes.size()) 7384 return Error(Loc, "expected distinct uselistorder indexes in range [0, size)"); 7385 if (IsOrdered) 7386 return Error(Loc, "expected uselistorder indexes to change the order"); 7387 7388 return false; 7389 } 7390 7391 /// ParseUseListOrder 7392 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 7393 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) { 7394 SMLoc Loc = Lex.getLoc(); 7395 if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 7396 return true; 7397 7398 Value *V; 7399 SmallVector<unsigned, 16> Indexes; 7400 if (ParseTypeAndValue(V, PFS) || 7401 ParseToken(lltok::comma, "expected comma in uselistorder directive") || 7402 ParseUseListOrderIndexes(Indexes)) 7403 return true; 7404 7405 return sortUseListOrder(V, Indexes, Loc); 7406 } 7407 7408 /// ParseUseListOrderBB 7409 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 7410 bool LLParser::ParseUseListOrderBB() { 7411 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 7412 SMLoc Loc = Lex.getLoc(); 7413 Lex.Lex(); 7414 7415 ValID Fn, Label; 7416 SmallVector<unsigned, 16> Indexes; 7417 if (ParseValID(Fn) || 7418 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7419 ParseValID(Label) || 7420 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7421 ParseUseListOrderIndexes(Indexes)) 7422 return true; 7423 7424 // Check the function. 7425 GlobalValue *GV; 7426 if (Fn.Kind == ValID::t_GlobalName) 7427 GV = M->getNamedValue(Fn.StrVal); 7428 else if (Fn.Kind == ValID::t_GlobalID) 7429 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 7430 else 7431 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 7432 if (!GV) 7433 return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb"); 7434 auto *F = dyn_cast<Function>(GV); 7435 if (!F) 7436 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 7437 if (F->isDeclaration()) 7438 return Error(Fn.Loc, "invalid declaration in uselistorder_bb"); 7439 7440 // Check the basic block. 7441 if (Label.Kind == ValID::t_LocalID) 7442 return Error(Label.Loc, "invalid numeric label in uselistorder_bb"); 7443 if (Label.Kind != ValID::t_LocalName) 7444 return Error(Label.Loc, "expected basic block name in uselistorder_bb"); 7445 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); 7446 if (!V) 7447 return Error(Label.Loc, "invalid basic block in uselistorder_bb"); 7448 if (!isa<BasicBlock>(V)) 7449 return Error(Label.Loc, "expected basic block in uselistorder_bb"); 7450 7451 return sortUseListOrder(V, Indexes, Loc); 7452 } 7453 7454 /// ModuleEntry 7455 /// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')' 7456 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')' 7457 bool LLParser::ParseModuleEntry(unsigned ID) { 7458 assert(Lex.getKind() == lltok::kw_module); 7459 Lex.Lex(); 7460 7461 std::string Path; 7462 if (ParseToken(lltok::colon, "expected ':' here") || 7463 ParseToken(lltok::lparen, "expected '(' here") || 7464 ParseToken(lltok::kw_path, "expected 'path' here") || 7465 ParseToken(lltok::colon, "expected ':' here") || 7466 ParseStringConstant(Path) || 7467 ParseToken(lltok::comma, "expected ',' here") || 7468 ParseToken(lltok::kw_hash, "expected 'hash' here") || 7469 ParseToken(lltok::colon, "expected ':' here") || 7470 ParseToken(lltok::lparen, "expected '(' here")) 7471 return true; 7472 7473 ModuleHash Hash; 7474 if (ParseUInt32(Hash[0]) || ParseToken(lltok::comma, "expected ',' here") || 7475 ParseUInt32(Hash[1]) || ParseToken(lltok::comma, "expected ',' here") || 7476 ParseUInt32(Hash[2]) || ParseToken(lltok::comma, "expected ',' here") || 7477 ParseUInt32(Hash[3]) || ParseToken(lltok::comma, "expected ',' here") || 7478 ParseUInt32(Hash[4])) 7479 return true; 7480 7481 if (ParseToken(lltok::rparen, "expected ')' here") || 7482 ParseToken(lltok::rparen, "expected ')' here")) 7483 return true; 7484 7485 auto ModuleEntry = Index->addModule(Path, ID, Hash); 7486 ModuleIdMap[ID] = ModuleEntry->first(); 7487 7488 return false; 7489 } 7490 7491 /// TypeIdEntry 7492 /// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')' 7493 bool LLParser::ParseTypeIdEntry(unsigned ID) { 7494 assert(Lex.getKind() == lltok::kw_typeid); 7495 Lex.Lex(); 7496 7497 std::string Name; 7498 if (ParseToken(lltok::colon, "expected ':' here") || 7499 ParseToken(lltok::lparen, "expected '(' here") || 7500 ParseToken(lltok::kw_name, "expected 'name' here") || 7501 ParseToken(lltok::colon, "expected ':' here") || 7502 ParseStringConstant(Name)) 7503 return true; 7504 7505 TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name); 7506 if (ParseToken(lltok::comma, "expected ',' here") || 7507 ParseTypeIdSummary(TIS) || ParseToken(lltok::rparen, "expected ')' here")) 7508 return true; 7509 7510 // Check if this ID was forward referenced, and if so, update the 7511 // corresponding GUIDs. 7512 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 7513 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 7514 for (auto TIDRef : FwdRefTIDs->second) { 7515 assert(!*TIDRef.first && 7516 "Forward referenced type id GUID expected to be 0"); 7517 *TIDRef.first = GlobalValue::getGUID(Name); 7518 } 7519 ForwardRefTypeIds.erase(FwdRefTIDs); 7520 } 7521 7522 return false; 7523 } 7524 7525 /// TypeIdSummary 7526 /// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')' 7527 bool LLParser::ParseTypeIdSummary(TypeIdSummary &TIS) { 7528 if (ParseToken(lltok::kw_summary, "expected 'summary' here") || 7529 ParseToken(lltok::colon, "expected ':' here") || 7530 ParseToken(lltok::lparen, "expected '(' here") || 7531 ParseTypeTestResolution(TIS.TTRes)) 7532 return true; 7533 7534 if (EatIfPresent(lltok::comma)) { 7535 // Expect optional wpdResolutions field 7536 if (ParseOptionalWpdResolutions(TIS.WPDRes)) 7537 return true; 7538 } 7539 7540 if (ParseToken(lltok::rparen, "expected ')' here")) 7541 return true; 7542 7543 return false; 7544 } 7545 7546 static ValueInfo EmptyVI = 7547 ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8); 7548 7549 /// TypeIdCompatibleVtableEntry 7550 /// ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ',' 7551 /// TypeIdCompatibleVtableInfo 7552 /// ')' 7553 bool LLParser::ParseTypeIdCompatibleVtableEntry(unsigned ID) { 7554 assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable); 7555 Lex.Lex(); 7556 7557 std::string Name; 7558 if (ParseToken(lltok::colon, "expected ':' here") || 7559 ParseToken(lltok::lparen, "expected '(' here") || 7560 ParseToken(lltok::kw_name, "expected 'name' here") || 7561 ParseToken(lltok::colon, "expected ':' here") || 7562 ParseStringConstant(Name)) 7563 return true; 7564 7565 TypeIdCompatibleVtableInfo &TI = 7566 Index->getOrInsertTypeIdCompatibleVtableSummary(Name); 7567 if (ParseToken(lltok::comma, "expected ',' here") || 7568 ParseToken(lltok::kw_summary, "expected 'summary' here") || 7569 ParseToken(lltok::colon, "expected ':' here") || 7570 ParseToken(lltok::lparen, "expected '(' here")) 7571 return true; 7572 7573 IdToIndexMapType IdToIndexMap; 7574 // Parse each call edge 7575 do { 7576 uint64_t Offset; 7577 if (ParseToken(lltok::lparen, "expected '(' here") || 7578 ParseToken(lltok::kw_offset, "expected 'offset' here") || 7579 ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) || 7580 ParseToken(lltok::comma, "expected ',' here")) 7581 return true; 7582 7583 LocTy Loc = Lex.getLoc(); 7584 unsigned GVId; 7585 ValueInfo VI; 7586 if (ParseGVReference(VI, GVId)) 7587 return true; 7588 7589 // Keep track of the TypeIdCompatibleVtableInfo array index needing a 7590 // forward reference. We will save the location of the ValueInfo needing an 7591 // update, but can only do so once the std::vector is finalized. 7592 if (VI == EmptyVI) 7593 IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc)); 7594 TI.push_back({Offset, VI}); 7595 7596 if (ParseToken(lltok::rparen, "expected ')' in call")) 7597 return true; 7598 } while (EatIfPresent(lltok::comma)); 7599 7600 // Now that the TI vector is finalized, it is safe to save the locations 7601 // of any forward GV references that need updating later. 7602 for (auto I : IdToIndexMap) { 7603 for (auto P : I.second) { 7604 assert(TI[P.first].VTableVI == EmptyVI && 7605 "Forward referenced ValueInfo expected to be empty"); 7606 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 7607 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 7608 FwdRef.first->second.push_back( 7609 std::make_pair(&TI[P.first].VTableVI, P.second)); 7610 } 7611 } 7612 7613 if (ParseToken(lltok::rparen, "expected ')' here") || 7614 ParseToken(lltok::rparen, "expected ')' here")) 7615 return true; 7616 7617 // Check if this ID was forward referenced, and if so, update the 7618 // corresponding GUIDs. 7619 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 7620 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 7621 for (auto TIDRef : FwdRefTIDs->second) { 7622 assert(!*TIDRef.first && 7623 "Forward referenced type id GUID expected to be 0"); 7624 *TIDRef.first = GlobalValue::getGUID(Name); 7625 } 7626 ForwardRefTypeIds.erase(FwdRefTIDs); 7627 } 7628 7629 return false; 7630 } 7631 7632 /// TypeTestResolution 7633 /// ::= 'typeTestRes' ':' '(' 'kind' ':' 7634 /// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ',' 7635 /// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]? 7636 /// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]? 7637 /// [',' 'inlinesBits' ':' UInt64]? ')' 7638 bool LLParser::ParseTypeTestResolution(TypeTestResolution &TTRes) { 7639 if (ParseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") || 7640 ParseToken(lltok::colon, "expected ':' here") || 7641 ParseToken(lltok::lparen, "expected '(' here") || 7642 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7643 ParseToken(lltok::colon, "expected ':' here")) 7644 return true; 7645 7646 switch (Lex.getKind()) { 7647 case lltok::kw_unsat: 7648 TTRes.TheKind = TypeTestResolution::Unsat; 7649 break; 7650 case lltok::kw_byteArray: 7651 TTRes.TheKind = TypeTestResolution::ByteArray; 7652 break; 7653 case lltok::kw_inline: 7654 TTRes.TheKind = TypeTestResolution::Inline; 7655 break; 7656 case lltok::kw_single: 7657 TTRes.TheKind = TypeTestResolution::Single; 7658 break; 7659 case lltok::kw_allOnes: 7660 TTRes.TheKind = TypeTestResolution::AllOnes; 7661 break; 7662 default: 7663 return Error(Lex.getLoc(), "unexpected TypeTestResolution kind"); 7664 } 7665 Lex.Lex(); 7666 7667 if (ParseToken(lltok::comma, "expected ',' here") || 7668 ParseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") || 7669 ParseToken(lltok::colon, "expected ':' here") || 7670 ParseUInt32(TTRes.SizeM1BitWidth)) 7671 return true; 7672 7673 // Parse optional fields 7674 while (EatIfPresent(lltok::comma)) { 7675 switch (Lex.getKind()) { 7676 case lltok::kw_alignLog2: 7677 Lex.Lex(); 7678 if (ParseToken(lltok::colon, "expected ':'") || 7679 ParseUInt64(TTRes.AlignLog2)) 7680 return true; 7681 break; 7682 case lltok::kw_sizeM1: 7683 Lex.Lex(); 7684 if (ParseToken(lltok::colon, "expected ':'") || ParseUInt64(TTRes.SizeM1)) 7685 return true; 7686 break; 7687 case lltok::kw_bitMask: { 7688 unsigned Val; 7689 Lex.Lex(); 7690 if (ParseToken(lltok::colon, "expected ':'") || ParseUInt32(Val)) 7691 return true; 7692 assert(Val <= 0xff); 7693 TTRes.BitMask = (uint8_t)Val; 7694 break; 7695 } 7696 case lltok::kw_inlineBits: 7697 Lex.Lex(); 7698 if (ParseToken(lltok::colon, "expected ':'") || 7699 ParseUInt64(TTRes.InlineBits)) 7700 return true; 7701 break; 7702 default: 7703 return Error(Lex.getLoc(), "expected optional TypeTestResolution field"); 7704 } 7705 } 7706 7707 if (ParseToken(lltok::rparen, "expected ')' here")) 7708 return true; 7709 7710 return false; 7711 } 7712 7713 /// OptionalWpdResolutions 7714 /// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')' 7715 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')' 7716 bool LLParser::ParseOptionalWpdResolutions( 7717 std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) { 7718 if (ParseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") || 7719 ParseToken(lltok::colon, "expected ':' here") || 7720 ParseToken(lltok::lparen, "expected '(' here")) 7721 return true; 7722 7723 do { 7724 uint64_t Offset; 7725 WholeProgramDevirtResolution WPDRes; 7726 if (ParseToken(lltok::lparen, "expected '(' here") || 7727 ParseToken(lltok::kw_offset, "expected 'offset' here") || 7728 ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) || 7729 ParseToken(lltok::comma, "expected ',' here") || ParseWpdRes(WPDRes) || 7730 ParseToken(lltok::rparen, "expected ')' here")) 7731 return true; 7732 WPDResMap[Offset] = WPDRes; 7733 } while (EatIfPresent(lltok::comma)); 7734 7735 if (ParseToken(lltok::rparen, "expected ')' here")) 7736 return true; 7737 7738 return false; 7739 } 7740 7741 /// WpdRes 7742 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir' 7743 /// [',' OptionalResByArg]? ')' 7744 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl' 7745 /// ',' 'singleImplName' ':' STRINGCONSTANT ',' 7746 /// [',' OptionalResByArg]? ')' 7747 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel' 7748 /// [',' OptionalResByArg]? ')' 7749 bool LLParser::ParseWpdRes(WholeProgramDevirtResolution &WPDRes) { 7750 if (ParseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") || 7751 ParseToken(lltok::colon, "expected ':' here") || 7752 ParseToken(lltok::lparen, "expected '(' here") || 7753 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7754 ParseToken(lltok::colon, "expected ':' here")) 7755 return true; 7756 7757 switch (Lex.getKind()) { 7758 case lltok::kw_indir: 7759 WPDRes.TheKind = WholeProgramDevirtResolution::Indir; 7760 break; 7761 case lltok::kw_singleImpl: 7762 WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl; 7763 break; 7764 case lltok::kw_branchFunnel: 7765 WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel; 7766 break; 7767 default: 7768 return Error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind"); 7769 } 7770 Lex.Lex(); 7771 7772 // Parse optional fields 7773 while (EatIfPresent(lltok::comma)) { 7774 switch (Lex.getKind()) { 7775 case lltok::kw_singleImplName: 7776 Lex.Lex(); 7777 if (ParseToken(lltok::colon, "expected ':' here") || 7778 ParseStringConstant(WPDRes.SingleImplName)) 7779 return true; 7780 break; 7781 case lltok::kw_resByArg: 7782 if (ParseOptionalResByArg(WPDRes.ResByArg)) 7783 return true; 7784 break; 7785 default: 7786 return Error(Lex.getLoc(), 7787 "expected optional WholeProgramDevirtResolution field"); 7788 } 7789 } 7790 7791 if (ParseToken(lltok::rparen, "expected ')' here")) 7792 return true; 7793 7794 return false; 7795 } 7796 7797 /// OptionalResByArg 7798 /// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')' 7799 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':' 7800 /// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' | 7801 /// 'virtualConstProp' ) 7802 /// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]? 7803 /// [',' 'bit' ':' UInt32]? ')' 7804 bool LLParser::ParseOptionalResByArg( 7805 std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg> 7806 &ResByArg) { 7807 if (ParseToken(lltok::kw_resByArg, "expected 'resByArg' here") || 7808 ParseToken(lltok::colon, "expected ':' here") || 7809 ParseToken(lltok::lparen, "expected '(' here")) 7810 return true; 7811 7812 do { 7813 std::vector<uint64_t> Args; 7814 if (ParseArgs(Args) || ParseToken(lltok::comma, "expected ',' here") || 7815 ParseToken(lltok::kw_byArg, "expected 'byArg here") || 7816 ParseToken(lltok::colon, "expected ':' here") || 7817 ParseToken(lltok::lparen, "expected '(' here") || 7818 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7819 ParseToken(lltok::colon, "expected ':' here")) 7820 return true; 7821 7822 WholeProgramDevirtResolution::ByArg ByArg; 7823 switch (Lex.getKind()) { 7824 case lltok::kw_indir: 7825 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir; 7826 break; 7827 case lltok::kw_uniformRetVal: 7828 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 7829 break; 7830 case lltok::kw_uniqueRetVal: 7831 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 7832 break; 7833 case lltok::kw_virtualConstProp: 7834 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 7835 break; 7836 default: 7837 return Error(Lex.getLoc(), 7838 "unexpected WholeProgramDevirtResolution::ByArg kind"); 7839 } 7840 Lex.Lex(); 7841 7842 // Parse optional fields 7843 while (EatIfPresent(lltok::comma)) { 7844 switch (Lex.getKind()) { 7845 case lltok::kw_info: 7846 Lex.Lex(); 7847 if (ParseToken(lltok::colon, "expected ':' here") || 7848 ParseUInt64(ByArg.Info)) 7849 return true; 7850 break; 7851 case lltok::kw_byte: 7852 Lex.Lex(); 7853 if (ParseToken(lltok::colon, "expected ':' here") || 7854 ParseUInt32(ByArg.Byte)) 7855 return true; 7856 break; 7857 case lltok::kw_bit: 7858 Lex.Lex(); 7859 if (ParseToken(lltok::colon, "expected ':' here") || 7860 ParseUInt32(ByArg.Bit)) 7861 return true; 7862 break; 7863 default: 7864 return Error(Lex.getLoc(), 7865 "expected optional whole program devirt field"); 7866 } 7867 } 7868 7869 if (ParseToken(lltok::rparen, "expected ')' here")) 7870 return true; 7871 7872 ResByArg[Args] = ByArg; 7873 } while (EatIfPresent(lltok::comma)); 7874 7875 if (ParseToken(lltok::rparen, "expected ')' here")) 7876 return true; 7877 7878 return false; 7879 } 7880 7881 /// OptionalResByArg 7882 /// ::= 'args' ':' '(' UInt64[, UInt64]* ')' 7883 bool LLParser::ParseArgs(std::vector<uint64_t> &Args) { 7884 if (ParseToken(lltok::kw_args, "expected 'args' here") || 7885 ParseToken(lltok::colon, "expected ':' here") || 7886 ParseToken(lltok::lparen, "expected '(' here")) 7887 return true; 7888 7889 do { 7890 uint64_t Val; 7891 if (ParseUInt64(Val)) 7892 return true; 7893 Args.push_back(Val); 7894 } while (EatIfPresent(lltok::comma)); 7895 7896 if (ParseToken(lltok::rparen, "expected ')' here")) 7897 return true; 7898 7899 return false; 7900 } 7901 7902 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8; 7903 7904 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) { 7905 bool ReadOnly = Fwd->isReadOnly(); 7906 bool WriteOnly = Fwd->isWriteOnly(); 7907 assert(!(ReadOnly && WriteOnly)); 7908 *Fwd = Resolved; 7909 if (ReadOnly) 7910 Fwd->setReadOnly(); 7911 if (WriteOnly) 7912 Fwd->setWriteOnly(); 7913 } 7914 7915 /// Stores the given Name/GUID and associated summary into the Index. 7916 /// Also updates any forward references to the associated entry ID. 7917 void LLParser::AddGlobalValueToIndex( 7918 std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage, 7919 unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) { 7920 // First create the ValueInfo utilizing the Name or GUID. 7921 ValueInfo VI; 7922 if (GUID != 0) { 7923 assert(Name.empty()); 7924 VI = Index->getOrInsertValueInfo(GUID); 7925 } else { 7926 assert(!Name.empty()); 7927 if (M) { 7928 auto *GV = M->getNamedValue(Name); 7929 assert(GV); 7930 VI = Index->getOrInsertValueInfo(GV); 7931 } else { 7932 assert( 7933 (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) && 7934 "Need a source_filename to compute GUID for local"); 7935 GUID = GlobalValue::getGUID( 7936 GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName)); 7937 VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name)); 7938 } 7939 } 7940 7941 // Resolve forward references from calls/refs 7942 auto FwdRefVIs = ForwardRefValueInfos.find(ID); 7943 if (FwdRefVIs != ForwardRefValueInfos.end()) { 7944 for (auto VIRef : FwdRefVIs->second) { 7945 assert(VIRef.first->getRef() == FwdVIRef && 7946 "Forward referenced ValueInfo expected to be empty"); 7947 resolveFwdRef(VIRef.first, VI); 7948 } 7949 ForwardRefValueInfos.erase(FwdRefVIs); 7950 } 7951 7952 // Resolve forward references from aliases 7953 auto FwdRefAliasees = ForwardRefAliasees.find(ID); 7954 if (FwdRefAliasees != ForwardRefAliasees.end()) { 7955 for (auto AliaseeRef : FwdRefAliasees->second) { 7956 assert(!AliaseeRef.first->hasAliasee() && 7957 "Forward referencing alias already has aliasee"); 7958 assert(Summary && "Aliasee must be a definition"); 7959 AliaseeRef.first->setAliasee(VI, Summary.get()); 7960 } 7961 ForwardRefAliasees.erase(FwdRefAliasees); 7962 } 7963 7964 // Add the summary if one was provided. 7965 if (Summary) 7966 Index->addGlobalValueSummary(VI, std::move(Summary)); 7967 7968 // Save the associated ValueInfo for use in later references by ID. 7969 if (ID == NumberedValueInfos.size()) 7970 NumberedValueInfos.push_back(VI); 7971 else { 7972 // Handle non-continuous numbers (to make test simplification easier). 7973 if (ID > NumberedValueInfos.size()) 7974 NumberedValueInfos.resize(ID + 1); 7975 NumberedValueInfos[ID] = VI; 7976 } 7977 } 7978 7979 /// ParseGVEntry 7980 /// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64) 7981 /// [',' 'summaries' ':' Summary[',' Summary]* ]? ')' 7982 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')' 7983 bool LLParser::ParseGVEntry(unsigned ID) { 7984 assert(Lex.getKind() == lltok::kw_gv); 7985 Lex.Lex(); 7986 7987 if (ParseToken(lltok::colon, "expected ':' here") || 7988 ParseToken(lltok::lparen, "expected '(' here")) 7989 return true; 7990 7991 std::string Name; 7992 GlobalValue::GUID GUID = 0; 7993 switch (Lex.getKind()) { 7994 case lltok::kw_name: 7995 Lex.Lex(); 7996 if (ParseToken(lltok::colon, "expected ':' here") || 7997 ParseStringConstant(Name)) 7998 return true; 7999 // Can't create GUID/ValueInfo until we have the linkage. 8000 break; 8001 case lltok::kw_guid: 8002 Lex.Lex(); 8003 if (ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(GUID)) 8004 return true; 8005 break; 8006 default: 8007 return Error(Lex.getLoc(), "expected name or guid tag"); 8008 } 8009 8010 if (!EatIfPresent(lltok::comma)) { 8011 // No summaries. Wrap up. 8012 if (ParseToken(lltok::rparen, "expected ')' here")) 8013 return true; 8014 // This was created for a call to an external or indirect target. 8015 // A GUID with no summary came from a VALUE_GUID record, dummy GUID 8016 // created for indirect calls with VP. A Name with no GUID came from 8017 // an external definition. We pass ExternalLinkage since that is only 8018 // used when the GUID must be computed from Name, and in that case 8019 // the symbol must have external linkage. 8020 AddGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID, 8021 nullptr); 8022 return false; 8023 } 8024 8025 // Have a list of summaries 8026 if (ParseToken(lltok::kw_summaries, "expected 'summaries' here") || 8027 ParseToken(lltok::colon, "expected ':' here")) 8028 return true; 8029 8030 do { 8031 if (ParseToken(lltok::lparen, "expected '(' here")) 8032 return true; 8033 switch (Lex.getKind()) { 8034 case lltok::kw_function: 8035 if (ParseFunctionSummary(Name, GUID, ID)) 8036 return true; 8037 break; 8038 case lltok::kw_variable: 8039 if (ParseVariableSummary(Name, GUID, ID)) 8040 return true; 8041 break; 8042 case lltok::kw_alias: 8043 if (ParseAliasSummary(Name, GUID, ID)) 8044 return true; 8045 break; 8046 default: 8047 return Error(Lex.getLoc(), "expected summary type"); 8048 } 8049 if (ParseToken(lltok::rparen, "expected ')' here")) 8050 return true; 8051 } while (EatIfPresent(lltok::comma)); 8052 8053 if (ParseToken(lltok::rparen, "expected ')' here")) 8054 return true; 8055 8056 return false; 8057 } 8058 8059 /// FunctionSummary 8060 /// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8061 /// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]? 8062 /// [',' OptionalTypeIdInfo]? [',' OptionalRefs]? ')' 8063 bool LLParser::ParseFunctionSummary(std::string Name, GlobalValue::GUID GUID, 8064 unsigned ID) { 8065 assert(Lex.getKind() == lltok::kw_function); 8066 Lex.Lex(); 8067 8068 StringRef ModulePath; 8069 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8070 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 8071 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8072 unsigned InstCount; 8073 std::vector<FunctionSummary::EdgeTy> Calls; 8074 FunctionSummary::TypeIdInfo TypeIdInfo; 8075 std::vector<ValueInfo> Refs; 8076 // Default is all-zeros (conservative values). 8077 FunctionSummary::FFlags FFlags = {}; 8078 if (ParseToken(lltok::colon, "expected ':' here") || 8079 ParseToken(lltok::lparen, "expected '(' here") || 8080 ParseModuleReference(ModulePath) || 8081 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 8082 ParseToken(lltok::comma, "expected ',' here") || 8083 ParseToken(lltok::kw_insts, "expected 'insts' here") || 8084 ParseToken(lltok::colon, "expected ':' here") || ParseUInt32(InstCount)) 8085 return true; 8086 8087 // Parse optional fields 8088 while (EatIfPresent(lltok::comma)) { 8089 switch (Lex.getKind()) { 8090 case lltok::kw_funcFlags: 8091 if (ParseOptionalFFlags(FFlags)) 8092 return true; 8093 break; 8094 case lltok::kw_calls: 8095 if (ParseOptionalCalls(Calls)) 8096 return true; 8097 break; 8098 case lltok::kw_typeIdInfo: 8099 if (ParseOptionalTypeIdInfo(TypeIdInfo)) 8100 return true; 8101 break; 8102 case lltok::kw_refs: 8103 if (ParseOptionalRefs(Refs)) 8104 return true; 8105 break; 8106 default: 8107 return Error(Lex.getLoc(), "expected optional function summary field"); 8108 } 8109 } 8110 8111 if (ParseToken(lltok::rparen, "expected ')' here")) 8112 return true; 8113 8114 auto FS = std::make_unique<FunctionSummary>( 8115 GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs), 8116 std::move(Calls), std::move(TypeIdInfo.TypeTests), 8117 std::move(TypeIdInfo.TypeTestAssumeVCalls), 8118 std::move(TypeIdInfo.TypeCheckedLoadVCalls), 8119 std::move(TypeIdInfo.TypeTestAssumeConstVCalls), 8120 std::move(TypeIdInfo.TypeCheckedLoadConstVCalls)); 8121 8122 FS->setModulePath(ModulePath); 8123 8124 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8125 ID, std::move(FS)); 8126 8127 return false; 8128 } 8129 8130 /// VariableSummary 8131 /// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8132 /// [',' OptionalRefs]? ')' 8133 bool LLParser::ParseVariableSummary(std::string Name, GlobalValue::GUID GUID, 8134 unsigned ID) { 8135 assert(Lex.getKind() == lltok::kw_variable); 8136 Lex.Lex(); 8137 8138 StringRef ModulePath; 8139 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8140 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 8141 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8142 GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false, 8143 /* WriteOnly */ false); 8144 std::vector<ValueInfo> Refs; 8145 VTableFuncList VTableFuncs; 8146 if (ParseToken(lltok::colon, "expected ':' here") || 8147 ParseToken(lltok::lparen, "expected '(' here") || 8148 ParseModuleReference(ModulePath) || 8149 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 8150 ParseToken(lltok::comma, "expected ',' here") || 8151 ParseGVarFlags(GVarFlags)) 8152 return true; 8153 8154 // Parse optional fields 8155 while (EatIfPresent(lltok::comma)) { 8156 switch (Lex.getKind()) { 8157 case lltok::kw_vTableFuncs: 8158 if (ParseOptionalVTableFuncs(VTableFuncs)) 8159 return true; 8160 break; 8161 case lltok::kw_refs: 8162 if (ParseOptionalRefs(Refs)) 8163 return true; 8164 break; 8165 default: 8166 return Error(Lex.getLoc(), "expected optional variable summary field"); 8167 } 8168 } 8169 8170 if (ParseToken(lltok::rparen, "expected ')' here")) 8171 return true; 8172 8173 auto GS = 8174 std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs)); 8175 8176 GS->setModulePath(ModulePath); 8177 GS->setVTableFuncs(std::move(VTableFuncs)); 8178 8179 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8180 ID, std::move(GS)); 8181 8182 return false; 8183 } 8184 8185 /// AliasSummary 8186 /// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ',' 8187 /// 'aliasee' ':' GVReference ')' 8188 bool LLParser::ParseAliasSummary(std::string Name, GlobalValue::GUID GUID, 8189 unsigned ID) { 8190 assert(Lex.getKind() == lltok::kw_alias); 8191 LocTy Loc = Lex.getLoc(); 8192 Lex.Lex(); 8193 8194 StringRef ModulePath; 8195 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8196 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 8197 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8198 if (ParseToken(lltok::colon, "expected ':' here") || 8199 ParseToken(lltok::lparen, "expected '(' here") || 8200 ParseModuleReference(ModulePath) || 8201 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 8202 ParseToken(lltok::comma, "expected ',' here") || 8203 ParseToken(lltok::kw_aliasee, "expected 'aliasee' here") || 8204 ParseToken(lltok::colon, "expected ':' here")) 8205 return true; 8206 8207 ValueInfo AliaseeVI; 8208 unsigned GVId; 8209 if (ParseGVReference(AliaseeVI, GVId)) 8210 return true; 8211 8212 if (ParseToken(lltok::rparen, "expected ')' here")) 8213 return true; 8214 8215 auto AS = std::make_unique<AliasSummary>(GVFlags); 8216 8217 AS->setModulePath(ModulePath); 8218 8219 // Record forward reference if the aliasee is not parsed yet. 8220 if (AliaseeVI.getRef() == FwdVIRef) { 8221 auto FwdRef = ForwardRefAliasees.insert( 8222 std::make_pair(GVId, std::vector<std::pair<AliasSummary *, LocTy>>())); 8223 FwdRef.first->second.push_back(std::make_pair(AS.get(), Loc)); 8224 } else { 8225 auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath); 8226 assert(Summary && "Aliasee must be a definition"); 8227 AS->setAliasee(AliaseeVI, Summary); 8228 } 8229 8230 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8231 ID, std::move(AS)); 8232 8233 return false; 8234 } 8235 8236 /// Flag 8237 /// ::= [0|1] 8238 bool LLParser::ParseFlag(unsigned &Val) { 8239 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 8240 return TokError("expected integer"); 8241 Val = (unsigned)Lex.getAPSIntVal().getBoolValue(); 8242 Lex.Lex(); 8243 return false; 8244 } 8245 8246 /// OptionalFFlags 8247 /// := 'funcFlags' ':' '(' ['readNone' ':' Flag]? 8248 /// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]? 8249 /// [',' 'returnDoesNotAlias' ':' Flag]? ')' 8250 /// [',' 'noInline' ':' Flag]? ')' 8251 bool LLParser::ParseOptionalFFlags(FunctionSummary::FFlags &FFlags) { 8252 assert(Lex.getKind() == lltok::kw_funcFlags); 8253 Lex.Lex(); 8254 8255 if (ParseToken(lltok::colon, "expected ':' in funcFlags") | 8256 ParseToken(lltok::lparen, "expected '(' in funcFlags")) 8257 return true; 8258 8259 do { 8260 unsigned Val = 0; 8261 switch (Lex.getKind()) { 8262 case lltok::kw_readNone: 8263 Lex.Lex(); 8264 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8265 return true; 8266 FFlags.ReadNone = Val; 8267 break; 8268 case lltok::kw_readOnly: 8269 Lex.Lex(); 8270 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8271 return true; 8272 FFlags.ReadOnly = Val; 8273 break; 8274 case lltok::kw_noRecurse: 8275 Lex.Lex(); 8276 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8277 return true; 8278 FFlags.NoRecurse = Val; 8279 break; 8280 case lltok::kw_returnDoesNotAlias: 8281 Lex.Lex(); 8282 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8283 return true; 8284 FFlags.ReturnDoesNotAlias = Val; 8285 break; 8286 case lltok::kw_noInline: 8287 Lex.Lex(); 8288 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8289 return true; 8290 FFlags.NoInline = Val; 8291 break; 8292 default: 8293 return Error(Lex.getLoc(), "expected function flag type"); 8294 } 8295 } while (EatIfPresent(lltok::comma)); 8296 8297 if (ParseToken(lltok::rparen, "expected ')' in funcFlags")) 8298 return true; 8299 8300 return false; 8301 } 8302 8303 /// OptionalCalls 8304 /// := 'calls' ':' '(' Call [',' Call]* ')' 8305 /// Call ::= '(' 'callee' ':' GVReference 8306 /// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')' 8307 bool LLParser::ParseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) { 8308 assert(Lex.getKind() == lltok::kw_calls); 8309 Lex.Lex(); 8310 8311 if (ParseToken(lltok::colon, "expected ':' in calls") | 8312 ParseToken(lltok::lparen, "expected '(' in calls")) 8313 return true; 8314 8315 IdToIndexMapType IdToIndexMap; 8316 // Parse each call edge 8317 do { 8318 ValueInfo VI; 8319 if (ParseToken(lltok::lparen, "expected '(' in call") || 8320 ParseToken(lltok::kw_callee, "expected 'callee' in call") || 8321 ParseToken(lltok::colon, "expected ':'")) 8322 return true; 8323 8324 LocTy Loc = Lex.getLoc(); 8325 unsigned GVId; 8326 if (ParseGVReference(VI, GVId)) 8327 return true; 8328 8329 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 8330 unsigned RelBF = 0; 8331 if (EatIfPresent(lltok::comma)) { 8332 // Expect either hotness or relbf 8333 if (EatIfPresent(lltok::kw_hotness)) { 8334 if (ParseToken(lltok::colon, "expected ':'") || ParseHotness(Hotness)) 8335 return true; 8336 } else { 8337 if (ParseToken(lltok::kw_relbf, "expected relbf") || 8338 ParseToken(lltok::colon, "expected ':'") || ParseUInt32(RelBF)) 8339 return true; 8340 } 8341 } 8342 // Keep track of the Call array index needing a forward reference. 8343 // We will save the location of the ValueInfo needing an update, but 8344 // can only do so once the std::vector is finalized. 8345 if (VI.getRef() == FwdVIRef) 8346 IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc)); 8347 Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)}); 8348 8349 if (ParseToken(lltok::rparen, "expected ')' in call")) 8350 return true; 8351 } while (EatIfPresent(lltok::comma)); 8352 8353 // Now that the Calls vector is finalized, it is safe to save the locations 8354 // of any forward GV references that need updating later. 8355 for (auto I : IdToIndexMap) { 8356 for (auto P : I.second) { 8357 assert(Calls[P.first].first.getRef() == FwdVIRef && 8358 "Forward referenced ValueInfo expected to be empty"); 8359 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 8360 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 8361 FwdRef.first->second.push_back( 8362 std::make_pair(&Calls[P.first].first, P.second)); 8363 } 8364 } 8365 8366 if (ParseToken(lltok::rparen, "expected ')' in calls")) 8367 return true; 8368 8369 return false; 8370 } 8371 8372 /// Hotness 8373 /// := ('unknown'|'cold'|'none'|'hot'|'critical') 8374 bool LLParser::ParseHotness(CalleeInfo::HotnessType &Hotness) { 8375 switch (Lex.getKind()) { 8376 case lltok::kw_unknown: 8377 Hotness = CalleeInfo::HotnessType::Unknown; 8378 break; 8379 case lltok::kw_cold: 8380 Hotness = CalleeInfo::HotnessType::Cold; 8381 break; 8382 case lltok::kw_none: 8383 Hotness = CalleeInfo::HotnessType::None; 8384 break; 8385 case lltok::kw_hot: 8386 Hotness = CalleeInfo::HotnessType::Hot; 8387 break; 8388 case lltok::kw_critical: 8389 Hotness = CalleeInfo::HotnessType::Critical; 8390 break; 8391 default: 8392 return Error(Lex.getLoc(), "invalid call edge hotness"); 8393 } 8394 Lex.Lex(); 8395 return false; 8396 } 8397 8398 /// OptionalVTableFuncs 8399 /// := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')' 8400 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')' 8401 bool LLParser::ParseOptionalVTableFuncs(VTableFuncList &VTableFuncs) { 8402 assert(Lex.getKind() == lltok::kw_vTableFuncs); 8403 Lex.Lex(); 8404 8405 if (ParseToken(lltok::colon, "expected ':' in vTableFuncs") | 8406 ParseToken(lltok::lparen, "expected '(' in vTableFuncs")) 8407 return true; 8408 8409 IdToIndexMapType IdToIndexMap; 8410 // Parse each virtual function pair 8411 do { 8412 ValueInfo VI; 8413 if (ParseToken(lltok::lparen, "expected '(' in vTableFunc") || 8414 ParseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") || 8415 ParseToken(lltok::colon, "expected ':'")) 8416 return true; 8417 8418 LocTy Loc = Lex.getLoc(); 8419 unsigned GVId; 8420 if (ParseGVReference(VI, GVId)) 8421 return true; 8422 8423 uint64_t Offset; 8424 if (ParseToken(lltok::comma, "expected comma") || 8425 ParseToken(lltok::kw_offset, "expected offset") || 8426 ParseToken(lltok::colon, "expected ':'") || ParseUInt64(Offset)) 8427 return true; 8428 8429 // Keep track of the VTableFuncs array index needing a forward reference. 8430 // We will save the location of the ValueInfo needing an update, but 8431 // can only do so once the std::vector is finalized. 8432 if (VI == EmptyVI) 8433 IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc)); 8434 VTableFuncs.push_back({VI, Offset}); 8435 8436 if (ParseToken(lltok::rparen, "expected ')' in vTableFunc")) 8437 return true; 8438 } while (EatIfPresent(lltok::comma)); 8439 8440 // Now that the VTableFuncs vector is finalized, it is safe to save the 8441 // locations of any forward GV references that need updating later. 8442 for (auto I : IdToIndexMap) { 8443 for (auto P : I.second) { 8444 assert(VTableFuncs[P.first].FuncVI == EmptyVI && 8445 "Forward referenced ValueInfo expected to be empty"); 8446 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 8447 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 8448 FwdRef.first->second.push_back( 8449 std::make_pair(&VTableFuncs[P.first].FuncVI, P.second)); 8450 } 8451 } 8452 8453 if (ParseToken(lltok::rparen, "expected ')' in vTableFuncs")) 8454 return true; 8455 8456 return false; 8457 } 8458 8459 /// OptionalRefs 8460 /// := 'refs' ':' '(' GVReference [',' GVReference]* ')' 8461 bool LLParser::ParseOptionalRefs(std::vector<ValueInfo> &Refs) { 8462 assert(Lex.getKind() == lltok::kw_refs); 8463 Lex.Lex(); 8464 8465 if (ParseToken(lltok::colon, "expected ':' in refs") | 8466 ParseToken(lltok::lparen, "expected '(' in refs")) 8467 return true; 8468 8469 struct ValueContext { 8470 ValueInfo VI; 8471 unsigned GVId; 8472 LocTy Loc; 8473 }; 8474 std::vector<ValueContext> VContexts; 8475 // Parse each ref edge 8476 do { 8477 ValueContext VC; 8478 VC.Loc = Lex.getLoc(); 8479 if (ParseGVReference(VC.VI, VC.GVId)) 8480 return true; 8481 VContexts.push_back(VC); 8482 } while (EatIfPresent(lltok::comma)); 8483 8484 // Sort value contexts so that ones with writeonly 8485 // and readonly ValueInfo are at the end of VContexts vector. 8486 // See FunctionSummary::specialRefCounts() 8487 llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) { 8488 return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier(); 8489 }); 8490 8491 IdToIndexMapType IdToIndexMap; 8492 for (auto &VC : VContexts) { 8493 // Keep track of the Refs array index needing a forward reference. 8494 // We will save the location of the ValueInfo needing an update, but 8495 // can only do so once the std::vector is finalized. 8496 if (VC.VI.getRef() == FwdVIRef) 8497 IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc)); 8498 Refs.push_back(VC.VI); 8499 } 8500 8501 // Now that the Refs vector is finalized, it is safe to save the locations 8502 // of any forward GV references that need updating later. 8503 for (auto I : IdToIndexMap) { 8504 for (auto P : I.second) { 8505 assert(Refs[P.first].getRef() == FwdVIRef && 8506 "Forward referenced ValueInfo expected to be empty"); 8507 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 8508 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 8509 FwdRef.first->second.push_back(std::make_pair(&Refs[P.first], P.second)); 8510 } 8511 } 8512 8513 if (ParseToken(lltok::rparen, "expected ')' in refs")) 8514 return true; 8515 8516 return false; 8517 } 8518 8519 /// OptionalTypeIdInfo 8520 /// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]? 8521 /// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]? 8522 /// [',' TypeCheckedLoadConstVCalls]? ')' 8523 bool LLParser::ParseOptionalTypeIdInfo( 8524 FunctionSummary::TypeIdInfo &TypeIdInfo) { 8525 assert(Lex.getKind() == lltok::kw_typeIdInfo); 8526 Lex.Lex(); 8527 8528 if (ParseToken(lltok::colon, "expected ':' here") || 8529 ParseToken(lltok::lparen, "expected '(' in typeIdInfo")) 8530 return true; 8531 8532 do { 8533 switch (Lex.getKind()) { 8534 case lltok::kw_typeTests: 8535 if (ParseTypeTests(TypeIdInfo.TypeTests)) 8536 return true; 8537 break; 8538 case lltok::kw_typeTestAssumeVCalls: 8539 if (ParseVFuncIdList(lltok::kw_typeTestAssumeVCalls, 8540 TypeIdInfo.TypeTestAssumeVCalls)) 8541 return true; 8542 break; 8543 case lltok::kw_typeCheckedLoadVCalls: 8544 if (ParseVFuncIdList(lltok::kw_typeCheckedLoadVCalls, 8545 TypeIdInfo.TypeCheckedLoadVCalls)) 8546 return true; 8547 break; 8548 case lltok::kw_typeTestAssumeConstVCalls: 8549 if (ParseConstVCallList(lltok::kw_typeTestAssumeConstVCalls, 8550 TypeIdInfo.TypeTestAssumeConstVCalls)) 8551 return true; 8552 break; 8553 case lltok::kw_typeCheckedLoadConstVCalls: 8554 if (ParseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls, 8555 TypeIdInfo.TypeCheckedLoadConstVCalls)) 8556 return true; 8557 break; 8558 default: 8559 return Error(Lex.getLoc(), "invalid typeIdInfo list type"); 8560 } 8561 } while (EatIfPresent(lltok::comma)); 8562 8563 if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo")) 8564 return true; 8565 8566 return false; 8567 } 8568 8569 /// TypeTests 8570 /// ::= 'typeTests' ':' '(' (SummaryID | UInt64) 8571 /// [',' (SummaryID | UInt64)]* ')' 8572 bool LLParser::ParseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) { 8573 assert(Lex.getKind() == lltok::kw_typeTests); 8574 Lex.Lex(); 8575 8576 if (ParseToken(lltok::colon, "expected ':' here") || 8577 ParseToken(lltok::lparen, "expected '(' in typeIdInfo")) 8578 return true; 8579 8580 IdToIndexMapType IdToIndexMap; 8581 do { 8582 GlobalValue::GUID GUID = 0; 8583 if (Lex.getKind() == lltok::SummaryID) { 8584 unsigned ID = Lex.getUIntVal(); 8585 LocTy Loc = Lex.getLoc(); 8586 // Keep track of the TypeTests array index needing a forward reference. 8587 // We will save the location of the GUID needing an update, but 8588 // can only do so once the std::vector is finalized. 8589 IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc)); 8590 Lex.Lex(); 8591 } else if (ParseUInt64(GUID)) 8592 return true; 8593 TypeTests.push_back(GUID); 8594 } while (EatIfPresent(lltok::comma)); 8595 8596 // Now that the TypeTests vector is finalized, it is safe to save the 8597 // locations of any forward GV references that need updating later. 8598 for (auto I : IdToIndexMap) { 8599 for (auto P : I.second) { 8600 assert(TypeTests[P.first] == 0 && 8601 "Forward referenced type id GUID expected to be 0"); 8602 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 8603 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 8604 FwdRef.first->second.push_back( 8605 std::make_pair(&TypeTests[P.first], P.second)); 8606 } 8607 } 8608 8609 if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo")) 8610 return true; 8611 8612 return false; 8613 } 8614 8615 /// VFuncIdList 8616 /// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')' 8617 bool LLParser::ParseVFuncIdList( 8618 lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) { 8619 assert(Lex.getKind() == Kind); 8620 Lex.Lex(); 8621 8622 if (ParseToken(lltok::colon, "expected ':' here") || 8623 ParseToken(lltok::lparen, "expected '(' here")) 8624 return true; 8625 8626 IdToIndexMapType IdToIndexMap; 8627 do { 8628 FunctionSummary::VFuncId VFuncId; 8629 if (ParseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size())) 8630 return true; 8631 VFuncIdList.push_back(VFuncId); 8632 } while (EatIfPresent(lltok::comma)); 8633 8634 if (ParseToken(lltok::rparen, "expected ')' here")) 8635 return true; 8636 8637 // Now that the VFuncIdList vector is finalized, it is safe to save the 8638 // locations of any forward GV references that need updating later. 8639 for (auto I : IdToIndexMap) { 8640 for (auto P : I.second) { 8641 assert(VFuncIdList[P.first].GUID == 0 && 8642 "Forward referenced type id GUID expected to be 0"); 8643 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 8644 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 8645 FwdRef.first->second.push_back( 8646 std::make_pair(&VFuncIdList[P.first].GUID, P.second)); 8647 } 8648 } 8649 8650 return false; 8651 } 8652 8653 /// ConstVCallList 8654 /// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')' 8655 bool LLParser::ParseConstVCallList( 8656 lltok::Kind Kind, 8657 std::vector<FunctionSummary::ConstVCall> &ConstVCallList) { 8658 assert(Lex.getKind() == Kind); 8659 Lex.Lex(); 8660 8661 if (ParseToken(lltok::colon, "expected ':' here") || 8662 ParseToken(lltok::lparen, "expected '(' here")) 8663 return true; 8664 8665 IdToIndexMapType IdToIndexMap; 8666 do { 8667 FunctionSummary::ConstVCall ConstVCall; 8668 if (ParseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size())) 8669 return true; 8670 ConstVCallList.push_back(ConstVCall); 8671 } while (EatIfPresent(lltok::comma)); 8672 8673 if (ParseToken(lltok::rparen, "expected ')' here")) 8674 return true; 8675 8676 // Now that the ConstVCallList vector is finalized, it is safe to save the 8677 // locations of any forward GV references that need updating later. 8678 for (auto I : IdToIndexMap) { 8679 for (auto P : I.second) { 8680 assert(ConstVCallList[P.first].VFunc.GUID == 0 && 8681 "Forward referenced type id GUID expected to be 0"); 8682 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 8683 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 8684 FwdRef.first->second.push_back( 8685 std::make_pair(&ConstVCallList[P.first].VFunc.GUID, P.second)); 8686 } 8687 } 8688 8689 return false; 8690 } 8691 8692 /// ConstVCall 8693 /// ::= '(' VFuncId ',' Args ')' 8694 bool LLParser::ParseConstVCall(FunctionSummary::ConstVCall &ConstVCall, 8695 IdToIndexMapType &IdToIndexMap, unsigned Index) { 8696 if (ParseToken(lltok::lparen, "expected '(' here") || 8697 ParseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index)) 8698 return true; 8699 8700 if (EatIfPresent(lltok::comma)) 8701 if (ParseArgs(ConstVCall.Args)) 8702 return true; 8703 8704 if (ParseToken(lltok::rparen, "expected ')' here")) 8705 return true; 8706 8707 return false; 8708 } 8709 8710 /// VFuncId 8711 /// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ',' 8712 /// 'offset' ':' UInt64 ')' 8713 bool LLParser::ParseVFuncId(FunctionSummary::VFuncId &VFuncId, 8714 IdToIndexMapType &IdToIndexMap, unsigned Index) { 8715 assert(Lex.getKind() == lltok::kw_vFuncId); 8716 Lex.Lex(); 8717 8718 if (ParseToken(lltok::colon, "expected ':' here") || 8719 ParseToken(lltok::lparen, "expected '(' here")) 8720 return true; 8721 8722 if (Lex.getKind() == lltok::SummaryID) { 8723 VFuncId.GUID = 0; 8724 unsigned ID = Lex.getUIntVal(); 8725 LocTy Loc = Lex.getLoc(); 8726 // Keep track of the array index needing a forward reference. 8727 // We will save the location of the GUID needing an update, but 8728 // can only do so once the caller's std::vector is finalized. 8729 IdToIndexMap[ID].push_back(std::make_pair(Index, Loc)); 8730 Lex.Lex(); 8731 } else if (ParseToken(lltok::kw_guid, "expected 'guid' here") || 8732 ParseToken(lltok::colon, "expected ':' here") || 8733 ParseUInt64(VFuncId.GUID)) 8734 return true; 8735 8736 if (ParseToken(lltok::comma, "expected ',' here") || 8737 ParseToken(lltok::kw_offset, "expected 'offset' here") || 8738 ParseToken(lltok::colon, "expected ':' here") || 8739 ParseUInt64(VFuncId.Offset) || 8740 ParseToken(lltok::rparen, "expected ')' here")) 8741 return true; 8742 8743 return false; 8744 } 8745 8746 /// GVFlags 8747 /// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ',' 8748 /// 'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ',' 8749 /// 'dsoLocal' ':' Flag ',' 'canAutoHide' ':' Flag ')' 8750 bool LLParser::ParseGVFlags(GlobalValueSummary::GVFlags &GVFlags) { 8751 assert(Lex.getKind() == lltok::kw_flags); 8752 Lex.Lex(); 8753 8754 if (ParseToken(lltok::colon, "expected ':' here") || 8755 ParseToken(lltok::lparen, "expected '(' here")) 8756 return true; 8757 8758 do { 8759 unsigned Flag = 0; 8760 switch (Lex.getKind()) { 8761 case lltok::kw_linkage: 8762 Lex.Lex(); 8763 if (ParseToken(lltok::colon, "expected ':'")) 8764 return true; 8765 bool HasLinkage; 8766 GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 8767 assert(HasLinkage && "Linkage not optional in summary entry"); 8768 Lex.Lex(); 8769 break; 8770 case lltok::kw_notEligibleToImport: 8771 Lex.Lex(); 8772 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag)) 8773 return true; 8774 GVFlags.NotEligibleToImport = Flag; 8775 break; 8776 case lltok::kw_live: 8777 Lex.Lex(); 8778 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag)) 8779 return true; 8780 GVFlags.Live = Flag; 8781 break; 8782 case lltok::kw_dsoLocal: 8783 Lex.Lex(); 8784 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag)) 8785 return true; 8786 GVFlags.DSOLocal = Flag; 8787 break; 8788 case lltok::kw_canAutoHide: 8789 Lex.Lex(); 8790 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag)) 8791 return true; 8792 GVFlags.CanAutoHide = Flag; 8793 break; 8794 default: 8795 return Error(Lex.getLoc(), "expected gv flag type"); 8796 } 8797 } while (EatIfPresent(lltok::comma)); 8798 8799 if (ParseToken(lltok::rparen, "expected ')' here")) 8800 return true; 8801 8802 return false; 8803 } 8804 8805 /// GVarFlags 8806 /// ::= 'varFlags' ':' '(' 'readonly' ':' Flag 8807 /// ',' 'writeonly' ':' Flag ')' 8808 bool LLParser::ParseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) { 8809 assert(Lex.getKind() == lltok::kw_varFlags); 8810 Lex.Lex(); 8811 8812 if (ParseToken(lltok::colon, "expected ':' here") || 8813 ParseToken(lltok::lparen, "expected '(' here")) 8814 return true; 8815 8816 auto ParseRest = [this](unsigned int &Val) { 8817 Lex.Lex(); 8818 if (ParseToken(lltok::colon, "expected ':'")) 8819 return true; 8820 return ParseFlag(Val); 8821 }; 8822 8823 do { 8824 unsigned Flag = 0; 8825 switch (Lex.getKind()) { 8826 case lltok::kw_readonly: 8827 if (ParseRest(Flag)) 8828 return true; 8829 GVarFlags.MaybeReadOnly = Flag; 8830 break; 8831 case lltok::kw_writeonly: 8832 if (ParseRest(Flag)) 8833 return true; 8834 GVarFlags.MaybeWriteOnly = Flag; 8835 break; 8836 default: 8837 return Error(Lex.getLoc(), "expected gvar flag type"); 8838 } 8839 } while (EatIfPresent(lltok::comma)); 8840 return ParseToken(lltok::rparen, "expected ')' here"); 8841 } 8842 8843 /// ModuleReference 8844 /// ::= 'module' ':' UInt 8845 bool LLParser::ParseModuleReference(StringRef &ModulePath) { 8846 // Parse module id. 8847 if (ParseToken(lltok::kw_module, "expected 'module' here") || 8848 ParseToken(lltok::colon, "expected ':' here") || 8849 ParseToken(lltok::SummaryID, "expected module ID")) 8850 return true; 8851 8852 unsigned ModuleID = Lex.getUIntVal(); 8853 auto I = ModuleIdMap.find(ModuleID); 8854 // We should have already parsed all module IDs 8855 assert(I != ModuleIdMap.end()); 8856 ModulePath = I->second; 8857 return false; 8858 } 8859 8860 /// GVReference 8861 /// ::= SummaryID 8862 bool LLParser::ParseGVReference(ValueInfo &VI, unsigned &GVId) { 8863 bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly); 8864 if (!ReadOnly) 8865 WriteOnly = EatIfPresent(lltok::kw_writeonly); 8866 if (ParseToken(lltok::SummaryID, "expected GV ID")) 8867 return true; 8868 8869 GVId = Lex.getUIntVal(); 8870 // Check if we already have a VI for this GV 8871 if (GVId < NumberedValueInfos.size()) { 8872 assert(NumberedValueInfos[GVId].getRef() != FwdVIRef); 8873 VI = NumberedValueInfos[GVId]; 8874 } else 8875 // We will create a forward reference to the stored location. 8876 VI = ValueInfo(false, FwdVIRef); 8877 8878 if (ReadOnly) 8879 VI.setReadOnly(); 8880 if (WriteOnly) 8881 VI.setWriteOnly(); 8882 return false; 8883 } 8884