1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the parser class for .ll files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "LLParser.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/None.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/AsmParser/SlotMapping.h" 20 #include "llvm/BinaryFormat/Dwarf.h" 21 #include "llvm/IR/Argument.h" 22 #include "llvm/IR/AutoUpgrade.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/CallingConv.h" 25 #include "llvm/IR/Comdat.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DebugInfoMetadata.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/GlobalIFunc.h" 31 #include "llvm/IR/GlobalObject.h" 32 #include "llvm/IR/InlineAsm.h" 33 #include "llvm/IR/Instruction.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/IR/Type.h" 41 #include "llvm/IR/Value.h" 42 #include "llvm/IR/ValueSymbolTable.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/MathExtras.h" 46 #include "llvm/Support/SaveAndRestore.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include <algorithm> 49 #include <cassert> 50 #include <cstring> 51 #include <iterator> 52 #include <vector> 53 54 using namespace llvm; 55 56 static std::string getTypeString(Type *T) { 57 std::string Result; 58 raw_string_ostream Tmp(Result); 59 Tmp << *T; 60 return Tmp.str(); 61 } 62 63 /// Run: module ::= toplevelentity* 64 bool LLParser::Run() { 65 // Prime the lexer. 66 Lex.Lex(); 67 68 if (Context.shouldDiscardValueNames()) 69 return Error( 70 Lex.getLoc(), 71 "Can't read textual IR with a Context that discards named Values"); 72 73 return ParseTopLevelEntities() || ValidateEndOfModule() || 74 ValidateEndOfIndex(); 75 } 76 77 bool LLParser::parseStandaloneConstantValue(Constant *&C, 78 const SlotMapping *Slots) { 79 restoreParsingState(Slots); 80 Lex.Lex(); 81 82 Type *Ty = nullptr; 83 if (ParseType(Ty) || parseConstantValue(Ty, C)) 84 return true; 85 if (Lex.getKind() != lltok::Eof) 86 return Error(Lex.getLoc(), "expected end of string"); 87 return false; 88 } 89 90 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 91 const SlotMapping *Slots) { 92 restoreParsingState(Slots); 93 Lex.Lex(); 94 95 Read = 0; 96 SMLoc Start = Lex.getLoc(); 97 Ty = nullptr; 98 if (ParseType(Ty)) 99 return true; 100 SMLoc End = Lex.getLoc(); 101 Read = End.getPointer() - Start.getPointer(); 102 103 return false; 104 } 105 106 void LLParser::restoreParsingState(const SlotMapping *Slots) { 107 if (!Slots) 108 return; 109 NumberedVals = Slots->GlobalValues; 110 NumberedMetadata = Slots->MetadataNodes; 111 for (const auto &I : Slots->NamedTypes) 112 NamedTypes.insert( 113 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 114 for (const auto &I : Slots->Types) 115 NumberedTypes.insert( 116 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 117 } 118 119 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the 120 /// module. 121 bool LLParser::ValidateEndOfModule() { 122 if (!M) 123 return false; 124 // Handle any function attribute group forward references. 125 for (const auto &RAG : ForwardRefAttrGroups) { 126 Value *V = RAG.first; 127 const std::vector<unsigned> &Attrs = RAG.second; 128 AttrBuilder B; 129 130 for (const auto &Attr : Attrs) 131 B.merge(NumberedAttrBuilders[Attr]); 132 133 if (Function *Fn = dyn_cast<Function>(V)) { 134 AttributeList AS = Fn->getAttributes(); 135 AttrBuilder FnAttrs(AS.getFnAttributes()); 136 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 137 138 FnAttrs.merge(B); 139 140 // If the alignment was parsed as an attribute, move to the alignment 141 // field. 142 if (FnAttrs.hasAlignmentAttr()) { 143 Fn->setAlignment(MaybeAlign(FnAttrs.getAlignment())); 144 FnAttrs.removeAttribute(Attribute::Alignment); 145 } 146 147 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 148 AttributeSet::get(Context, FnAttrs)); 149 Fn->setAttributes(AS); 150 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 151 AttributeList AS = CI->getAttributes(); 152 AttrBuilder FnAttrs(AS.getFnAttributes()); 153 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 154 FnAttrs.merge(B); 155 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 156 AttributeSet::get(Context, FnAttrs)); 157 CI->setAttributes(AS); 158 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 159 AttributeList AS = II->getAttributes(); 160 AttrBuilder FnAttrs(AS.getFnAttributes()); 161 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 162 FnAttrs.merge(B); 163 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 164 AttributeSet::get(Context, FnAttrs)); 165 II->setAttributes(AS); 166 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) { 167 AttributeList AS = CBI->getAttributes(); 168 AttrBuilder FnAttrs(AS.getFnAttributes()); 169 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 170 FnAttrs.merge(B); 171 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 172 AttributeSet::get(Context, FnAttrs)); 173 CBI->setAttributes(AS); 174 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) { 175 AttrBuilder Attrs(GV->getAttributes()); 176 Attrs.merge(B); 177 GV->setAttributes(AttributeSet::get(Context,Attrs)); 178 } else { 179 llvm_unreachable("invalid object with forward attribute group reference"); 180 } 181 } 182 183 // If there are entries in ForwardRefBlockAddresses at this point, the 184 // function was never defined. 185 if (!ForwardRefBlockAddresses.empty()) 186 return Error(ForwardRefBlockAddresses.begin()->first.Loc, 187 "expected function name in blockaddress"); 188 189 for (const auto &NT : NumberedTypes) 190 if (NT.second.second.isValid()) 191 return Error(NT.second.second, 192 "use of undefined type '%" + Twine(NT.first) + "'"); 193 194 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 195 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 196 if (I->second.second.isValid()) 197 return Error(I->second.second, 198 "use of undefined type named '" + I->getKey() + "'"); 199 200 if (!ForwardRefComdats.empty()) 201 return Error(ForwardRefComdats.begin()->second, 202 "use of undefined comdat '$" + 203 ForwardRefComdats.begin()->first + "'"); 204 205 if (!ForwardRefVals.empty()) 206 return Error(ForwardRefVals.begin()->second.second, 207 "use of undefined value '@" + ForwardRefVals.begin()->first + 208 "'"); 209 210 if (!ForwardRefValIDs.empty()) 211 return Error(ForwardRefValIDs.begin()->second.second, 212 "use of undefined value '@" + 213 Twine(ForwardRefValIDs.begin()->first) + "'"); 214 215 if (!ForwardRefMDNodes.empty()) 216 return Error(ForwardRefMDNodes.begin()->second.second, 217 "use of undefined metadata '!" + 218 Twine(ForwardRefMDNodes.begin()->first) + "'"); 219 220 // Resolve metadata cycles. 221 for (auto &N : NumberedMetadata) { 222 if (N.second && !N.second->isResolved()) 223 N.second->resolveCycles(); 224 } 225 226 for (auto *Inst : InstsWithTBAATag) { 227 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); 228 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); 229 auto *UpgradedMD = UpgradeTBAANode(*MD); 230 if (MD != UpgradedMD) 231 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); 232 } 233 234 // Look for intrinsic functions and CallInst that need to be upgraded 235 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 236 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove 237 238 // Some types could be renamed during loading if several modules are 239 // loaded in the same LLVMContext (LTO scenario). In this case we should 240 // remangle intrinsics names as well. 241 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) { 242 Function *F = &*FI++; 243 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) { 244 F->replaceAllUsesWith(Remangled.getValue()); 245 F->eraseFromParent(); 246 } 247 } 248 249 if (UpgradeDebugInfo) 250 llvm::UpgradeDebugInfo(*M); 251 252 UpgradeModuleFlags(*M); 253 UpgradeSectionAttributes(*M); 254 255 if (!Slots) 256 return false; 257 // Initialize the slot mapping. 258 // Because by this point we've parsed and validated everything, we can "steal" 259 // the mapping from LLParser as it doesn't need it anymore. 260 Slots->GlobalValues = std::move(NumberedVals); 261 Slots->MetadataNodes = std::move(NumberedMetadata); 262 for (const auto &I : NamedTypes) 263 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 264 for (const auto &I : NumberedTypes) 265 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 266 267 return false; 268 } 269 270 /// Do final validity and sanity checks at the end of the index. 271 bool LLParser::ValidateEndOfIndex() { 272 if (!Index) 273 return false; 274 275 if (!ForwardRefValueInfos.empty()) 276 return Error(ForwardRefValueInfos.begin()->second.front().second, 277 "use of undefined summary '^" + 278 Twine(ForwardRefValueInfos.begin()->first) + "'"); 279 280 if (!ForwardRefAliasees.empty()) 281 return Error(ForwardRefAliasees.begin()->second.front().second, 282 "use of undefined summary '^" + 283 Twine(ForwardRefAliasees.begin()->first) + "'"); 284 285 if (!ForwardRefTypeIds.empty()) 286 return Error(ForwardRefTypeIds.begin()->second.front().second, 287 "use of undefined type id summary '^" + 288 Twine(ForwardRefTypeIds.begin()->first) + "'"); 289 290 return false; 291 } 292 293 //===----------------------------------------------------------------------===// 294 // Top-Level Entities 295 //===----------------------------------------------------------------------===// 296 297 bool LLParser::ParseTopLevelEntities() { 298 // If there is no Module, then parse just the summary index entries. 299 if (!M) { 300 while (true) { 301 switch (Lex.getKind()) { 302 case lltok::Eof: 303 return false; 304 case lltok::SummaryID: 305 if (ParseSummaryEntry()) 306 return true; 307 break; 308 case lltok::kw_source_filename: 309 if (ParseSourceFileName()) 310 return true; 311 break; 312 default: 313 // Skip everything else 314 Lex.Lex(); 315 } 316 } 317 } 318 while (true) { 319 switch (Lex.getKind()) { 320 default: return TokError("expected top-level entity"); 321 case lltok::Eof: return false; 322 case lltok::kw_declare: if (ParseDeclare()) return true; break; 323 case lltok::kw_define: if (ParseDefine()) return true; break; 324 case lltok::kw_module: if (ParseModuleAsm()) return true; break; 325 case lltok::kw_target: if (ParseTargetDefinition()) return true; break; 326 case lltok::kw_source_filename: 327 if (ParseSourceFileName()) 328 return true; 329 break; 330 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; 331 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; 332 case lltok::LocalVar: if (ParseNamedType()) return true; break; 333 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; 334 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; 335 case lltok::ComdatVar: if (parseComdat()) return true; break; 336 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break; 337 case lltok::SummaryID: 338 if (ParseSummaryEntry()) 339 return true; 340 break; 341 case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break; 342 case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break; 343 case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break; 344 case lltok::kw_uselistorder_bb: 345 if (ParseUseListOrderBB()) 346 return true; 347 break; 348 } 349 } 350 } 351 352 /// toplevelentity 353 /// ::= 'module' 'asm' STRINGCONSTANT 354 bool LLParser::ParseModuleAsm() { 355 assert(Lex.getKind() == lltok::kw_module); 356 Lex.Lex(); 357 358 std::string AsmStr; 359 if (ParseToken(lltok::kw_asm, "expected 'module asm'") || 360 ParseStringConstant(AsmStr)) return true; 361 362 M->appendModuleInlineAsm(AsmStr); 363 return false; 364 } 365 366 /// toplevelentity 367 /// ::= 'target' 'triple' '=' STRINGCONSTANT 368 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 369 bool LLParser::ParseTargetDefinition() { 370 assert(Lex.getKind() == lltok::kw_target); 371 std::string Str; 372 switch (Lex.Lex()) { 373 default: return TokError("unknown target property"); 374 case lltok::kw_triple: 375 Lex.Lex(); 376 if (ParseToken(lltok::equal, "expected '=' after target triple") || 377 ParseStringConstant(Str)) 378 return true; 379 M->setTargetTriple(Str); 380 return false; 381 case lltok::kw_datalayout: 382 Lex.Lex(); 383 if (ParseToken(lltok::equal, "expected '=' after target datalayout") || 384 ParseStringConstant(Str)) 385 return true; 386 if (DataLayoutStr.empty()) 387 M->setDataLayout(Str); 388 return false; 389 } 390 } 391 392 /// toplevelentity 393 /// ::= 'source_filename' '=' STRINGCONSTANT 394 bool LLParser::ParseSourceFileName() { 395 assert(Lex.getKind() == lltok::kw_source_filename); 396 Lex.Lex(); 397 if (ParseToken(lltok::equal, "expected '=' after source_filename") || 398 ParseStringConstant(SourceFileName)) 399 return true; 400 if (M) 401 M->setSourceFileName(SourceFileName); 402 return false; 403 } 404 405 /// toplevelentity 406 /// ::= 'deplibs' '=' '[' ']' 407 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 408 /// FIXME: Remove in 4.0. Currently parse, but ignore. 409 bool LLParser::ParseDepLibs() { 410 assert(Lex.getKind() == lltok::kw_deplibs); 411 Lex.Lex(); 412 if (ParseToken(lltok::equal, "expected '=' after deplibs") || 413 ParseToken(lltok::lsquare, "expected '=' after deplibs")) 414 return true; 415 416 if (EatIfPresent(lltok::rsquare)) 417 return false; 418 419 do { 420 std::string Str; 421 if (ParseStringConstant(Str)) return true; 422 } while (EatIfPresent(lltok::comma)); 423 424 return ParseToken(lltok::rsquare, "expected ']' at end of list"); 425 } 426 427 /// ParseUnnamedType: 428 /// ::= LocalVarID '=' 'type' type 429 bool LLParser::ParseUnnamedType() { 430 LocTy TypeLoc = Lex.getLoc(); 431 unsigned TypeID = Lex.getUIntVal(); 432 Lex.Lex(); // eat LocalVarID; 433 434 if (ParseToken(lltok::equal, "expected '=' after name") || 435 ParseToken(lltok::kw_type, "expected 'type' after '='")) 436 return true; 437 438 Type *Result = nullptr; 439 if (ParseStructDefinition(TypeLoc, "", 440 NumberedTypes[TypeID], Result)) return true; 441 442 if (!isa<StructType>(Result)) { 443 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 444 if (Entry.first) 445 return Error(TypeLoc, "non-struct types may not be recursive"); 446 Entry.first = Result; 447 Entry.second = SMLoc(); 448 } 449 450 return false; 451 } 452 453 /// toplevelentity 454 /// ::= LocalVar '=' 'type' type 455 bool LLParser::ParseNamedType() { 456 std::string Name = Lex.getStrVal(); 457 LocTy NameLoc = Lex.getLoc(); 458 Lex.Lex(); // eat LocalVar. 459 460 if (ParseToken(lltok::equal, "expected '=' after name") || 461 ParseToken(lltok::kw_type, "expected 'type' after name")) 462 return true; 463 464 Type *Result = nullptr; 465 if (ParseStructDefinition(NameLoc, Name, 466 NamedTypes[Name], Result)) return true; 467 468 if (!isa<StructType>(Result)) { 469 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 470 if (Entry.first) 471 return Error(NameLoc, "non-struct types may not be recursive"); 472 Entry.first = Result; 473 Entry.second = SMLoc(); 474 } 475 476 return false; 477 } 478 479 /// toplevelentity 480 /// ::= 'declare' FunctionHeader 481 bool LLParser::ParseDeclare() { 482 assert(Lex.getKind() == lltok::kw_declare); 483 Lex.Lex(); 484 485 std::vector<std::pair<unsigned, MDNode *>> MDs; 486 while (Lex.getKind() == lltok::MetadataVar) { 487 unsigned MDK; 488 MDNode *N; 489 if (ParseMetadataAttachment(MDK, N)) 490 return true; 491 MDs.push_back({MDK, N}); 492 } 493 494 Function *F; 495 if (ParseFunctionHeader(F, false)) 496 return true; 497 for (auto &MD : MDs) 498 F->addMetadata(MD.first, *MD.second); 499 return false; 500 } 501 502 /// toplevelentity 503 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 504 bool LLParser::ParseDefine() { 505 assert(Lex.getKind() == lltok::kw_define); 506 Lex.Lex(); 507 508 Function *F; 509 return ParseFunctionHeader(F, true) || 510 ParseOptionalFunctionMetadata(*F) || 511 ParseFunctionBody(*F); 512 } 513 514 /// ParseGlobalType 515 /// ::= 'constant' 516 /// ::= 'global' 517 bool LLParser::ParseGlobalType(bool &IsConstant) { 518 if (Lex.getKind() == lltok::kw_constant) 519 IsConstant = true; 520 else if (Lex.getKind() == lltok::kw_global) 521 IsConstant = false; 522 else { 523 IsConstant = false; 524 return TokError("expected 'global' or 'constant'"); 525 } 526 Lex.Lex(); 527 return false; 528 } 529 530 bool LLParser::ParseOptionalUnnamedAddr( 531 GlobalVariable::UnnamedAddr &UnnamedAddr) { 532 if (EatIfPresent(lltok::kw_unnamed_addr)) 533 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 534 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 535 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 536 else 537 UnnamedAddr = GlobalValue::UnnamedAddr::None; 538 return false; 539 } 540 541 /// ParseUnnamedGlobal: 542 /// OptionalVisibility (ALIAS | IFUNC) ... 543 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 544 /// OptionalDLLStorageClass 545 /// ... -> global variable 546 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 547 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 548 /// OptionalDLLStorageClass 549 /// ... -> global variable 550 bool LLParser::ParseUnnamedGlobal() { 551 unsigned VarID = NumberedVals.size(); 552 std::string Name; 553 LocTy NameLoc = Lex.getLoc(); 554 555 // Handle the GlobalID form. 556 if (Lex.getKind() == lltok::GlobalID) { 557 if (Lex.getUIntVal() != VarID) 558 return Error(Lex.getLoc(), "variable expected to be numbered '%" + 559 Twine(VarID) + "'"); 560 Lex.Lex(); // eat GlobalID; 561 562 if (ParseToken(lltok::equal, "expected '=' after name")) 563 return true; 564 } 565 566 bool HasLinkage; 567 unsigned Linkage, Visibility, DLLStorageClass; 568 bool DSOLocal; 569 GlobalVariable::ThreadLocalMode TLM; 570 GlobalVariable::UnnamedAddr UnnamedAddr; 571 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 572 DSOLocal) || 573 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 574 return true; 575 576 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 577 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 578 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 579 580 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 581 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 582 } 583 584 /// ParseNamedGlobal: 585 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 586 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 587 /// OptionalVisibility OptionalDLLStorageClass 588 /// ... -> global variable 589 bool LLParser::ParseNamedGlobal() { 590 assert(Lex.getKind() == lltok::GlobalVar); 591 LocTy NameLoc = Lex.getLoc(); 592 std::string Name = Lex.getStrVal(); 593 Lex.Lex(); 594 595 bool HasLinkage; 596 unsigned Linkage, Visibility, DLLStorageClass; 597 bool DSOLocal; 598 GlobalVariable::ThreadLocalMode TLM; 599 GlobalVariable::UnnamedAddr UnnamedAddr; 600 if (ParseToken(lltok::equal, "expected '=' in global variable") || 601 ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 602 DSOLocal) || 603 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 604 return true; 605 606 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 607 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 608 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 609 610 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 611 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 612 } 613 614 bool LLParser::parseComdat() { 615 assert(Lex.getKind() == lltok::ComdatVar); 616 std::string Name = Lex.getStrVal(); 617 LocTy NameLoc = Lex.getLoc(); 618 Lex.Lex(); 619 620 if (ParseToken(lltok::equal, "expected '=' here")) 621 return true; 622 623 if (ParseToken(lltok::kw_comdat, "expected comdat keyword")) 624 return TokError("expected comdat type"); 625 626 Comdat::SelectionKind SK; 627 switch (Lex.getKind()) { 628 default: 629 return TokError("unknown selection kind"); 630 case lltok::kw_any: 631 SK = Comdat::Any; 632 break; 633 case lltok::kw_exactmatch: 634 SK = Comdat::ExactMatch; 635 break; 636 case lltok::kw_largest: 637 SK = Comdat::Largest; 638 break; 639 case lltok::kw_noduplicates: 640 SK = Comdat::NoDuplicates; 641 break; 642 case lltok::kw_samesize: 643 SK = Comdat::SameSize; 644 break; 645 } 646 Lex.Lex(); 647 648 // See if the comdat was forward referenced, if so, use the comdat. 649 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 650 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 651 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 652 return Error(NameLoc, "redefinition of comdat '$" + Name + "'"); 653 654 Comdat *C; 655 if (I != ComdatSymTab.end()) 656 C = &I->second; 657 else 658 C = M->getOrInsertComdat(Name); 659 C->setSelectionKind(SK); 660 661 return false; 662 } 663 664 // MDString: 665 // ::= '!' STRINGCONSTANT 666 bool LLParser::ParseMDString(MDString *&Result) { 667 std::string Str; 668 if (ParseStringConstant(Str)) return true; 669 Result = MDString::get(Context, Str); 670 return false; 671 } 672 673 // MDNode: 674 // ::= '!' MDNodeNumber 675 bool LLParser::ParseMDNodeID(MDNode *&Result) { 676 // !{ ..., !42, ... } 677 LocTy IDLoc = Lex.getLoc(); 678 unsigned MID = 0; 679 if (ParseUInt32(MID)) 680 return true; 681 682 // If not a forward reference, just return it now. 683 if (NumberedMetadata.count(MID)) { 684 Result = NumberedMetadata[MID]; 685 return false; 686 } 687 688 // Otherwise, create MDNode forward reference. 689 auto &FwdRef = ForwardRefMDNodes[MID]; 690 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 691 692 Result = FwdRef.first.get(); 693 NumberedMetadata[MID].reset(Result); 694 return false; 695 } 696 697 /// ParseNamedMetadata: 698 /// !foo = !{ !1, !2 } 699 bool LLParser::ParseNamedMetadata() { 700 assert(Lex.getKind() == lltok::MetadataVar); 701 std::string Name = Lex.getStrVal(); 702 Lex.Lex(); 703 704 if (ParseToken(lltok::equal, "expected '=' here") || 705 ParseToken(lltok::exclaim, "Expected '!' here") || 706 ParseToken(lltok::lbrace, "Expected '{' here")) 707 return true; 708 709 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 710 if (Lex.getKind() != lltok::rbrace) 711 do { 712 MDNode *N = nullptr; 713 // Parse DIExpressions inline as a special case. They are still MDNodes, 714 // so they can still appear in named metadata. Remove this logic if they 715 // become plain Metadata. 716 if (Lex.getKind() == lltok::MetadataVar && 717 Lex.getStrVal() == "DIExpression") { 718 if (ParseDIExpression(N, /*IsDistinct=*/false)) 719 return true; 720 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 721 ParseMDNodeID(N)) { 722 return true; 723 } 724 NMD->addOperand(N); 725 } while (EatIfPresent(lltok::comma)); 726 727 return ParseToken(lltok::rbrace, "expected end of metadata node"); 728 } 729 730 /// ParseStandaloneMetadata: 731 /// !42 = !{...} 732 bool LLParser::ParseStandaloneMetadata() { 733 assert(Lex.getKind() == lltok::exclaim); 734 Lex.Lex(); 735 unsigned MetadataID = 0; 736 737 MDNode *Init; 738 if (ParseUInt32(MetadataID) || 739 ParseToken(lltok::equal, "expected '=' here")) 740 return true; 741 742 // Detect common error, from old metadata syntax. 743 if (Lex.getKind() == lltok::Type) 744 return TokError("unexpected type in metadata definition"); 745 746 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 747 if (Lex.getKind() == lltok::MetadataVar) { 748 if (ParseSpecializedMDNode(Init, IsDistinct)) 749 return true; 750 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 751 ParseMDTuple(Init, IsDistinct)) 752 return true; 753 754 // See if this was forward referenced, if so, handle it. 755 auto FI = ForwardRefMDNodes.find(MetadataID); 756 if (FI != ForwardRefMDNodes.end()) { 757 FI->second.first->replaceAllUsesWith(Init); 758 ForwardRefMDNodes.erase(FI); 759 760 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 761 } else { 762 if (NumberedMetadata.count(MetadataID)) 763 return TokError("Metadata id is already used"); 764 NumberedMetadata[MetadataID].reset(Init); 765 } 766 767 return false; 768 } 769 770 // Skips a single module summary entry. 771 bool LLParser::SkipModuleSummaryEntry() { 772 // Each module summary entry consists of a tag for the entry 773 // type, followed by a colon, then the fields surrounded by nested sets of 774 // parentheses. The "tag:" looks like a Label. Once parsing support is 775 // in place we will look for the tokens corresponding to the expected tags. 776 if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module && 777 Lex.getKind() != lltok::kw_typeid) 778 return TokError( 779 "Expected 'gv', 'module', or 'typeid' at the start of summary entry"); 780 Lex.Lex(); 781 if (ParseToken(lltok::colon, "expected ':' at start of summary entry") || 782 ParseToken(lltok::lparen, "expected '(' at start of summary entry")) 783 return true; 784 // Now walk through the parenthesized entry, until the number of open 785 // parentheses goes back down to 0 (the first '(' was parsed above). 786 unsigned NumOpenParen = 1; 787 do { 788 switch (Lex.getKind()) { 789 case lltok::lparen: 790 NumOpenParen++; 791 break; 792 case lltok::rparen: 793 NumOpenParen--; 794 break; 795 case lltok::Eof: 796 return TokError("found end of file while parsing summary entry"); 797 default: 798 // Skip everything in between parentheses. 799 break; 800 } 801 Lex.Lex(); 802 } while (NumOpenParen > 0); 803 return false; 804 } 805 806 /// SummaryEntry 807 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry 808 bool LLParser::ParseSummaryEntry() { 809 assert(Lex.getKind() == lltok::SummaryID); 810 unsigned SummaryID = Lex.getUIntVal(); 811 812 // For summary entries, colons should be treated as distinct tokens, 813 // not an indication of the end of a label token. 814 Lex.setIgnoreColonInIdentifiers(true); 815 816 Lex.Lex(); 817 if (ParseToken(lltok::equal, "expected '=' here")) 818 return true; 819 820 // If we don't have an index object, skip the summary entry. 821 if (!Index) 822 return SkipModuleSummaryEntry(); 823 824 bool result = false; 825 switch (Lex.getKind()) { 826 case lltok::kw_gv: 827 result = ParseGVEntry(SummaryID); 828 break; 829 case lltok::kw_module: 830 result = ParseModuleEntry(SummaryID); 831 break; 832 case lltok::kw_typeid: 833 result = ParseTypeIdEntry(SummaryID); 834 break; 835 case lltok::kw_typeidCompatibleVTable: 836 result = ParseTypeIdCompatibleVtableEntry(SummaryID); 837 break; 838 default: 839 result = Error(Lex.getLoc(), "unexpected summary kind"); 840 break; 841 } 842 Lex.setIgnoreColonInIdentifiers(false); 843 return result; 844 } 845 846 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 847 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 848 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 849 } 850 851 // If there was an explicit dso_local, update GV. In the absence of an explicit 852 // dso_local we keep the default value. 853 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) { 854 if (DSOLocal) 855 GV.setDSOLocal(true); 856 } 857 858 /// parseIndirectSymbol: 859 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 860 /// OptionalVisibility OptionalDLLStorageClass 861 /// OptionalThreadLocal OptionalUnnamedAddr 862 /// 'alias|ifunc' IndirectSymbol IndirectSymbolAttr* 863 /// 864 /// IndirectSymbol 865 /// ::= TypeAndValue 866 /// 867 /// IndirectSymbolAttr 868 /// ::= ',' 'partition' StringConstant 869 /// 870 /// Everything through OptionalUnnamedAddr has already been parsed. 871 /// 872 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc, 873 unsigned L, unsigned Visibility, 874 unsigned DLLStorageClass, bool DSOLocal, 875 GlobalVariable::ThreadLocalMode TLM, 876 GlobalVariable::UnnamedAddr UnnamedAddr) { 877 bool IsAlias; 878 if (Lex.getKind() == lltok::kw_alias) 879 IsAlias = true; 880 else if (Lex.getKind() == lltok::kw_ifunc) 881 IsAlias = false; 882 else 883 llvm_unreachable("Not an alias or ifunc!"); 884 Lex.Lex(); 885 886 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 887 888 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 889 return Error(NameLoc, "invalid linkage type for alias"); 890 891 if (!isValidVisibilityForLinkage(Visibility, L)) 892 return Error(NameLoc, 893 "symbol with local linkage must have default visibility"); 894 895 Type *Ty; 896 LocTy ExplicitTypeLoc = Lex.getLoc(); 897 if (ParseType(Ty) || 898 ParseToken(lltok::comma, "expected comma after alias or ifunc's type")) 899 return true; 900 901 Constant *Aliasee; 902 LocTy AliaseeLoc = Lex.getLoc(); 903 if (Lex.getKind() != lltok::kw_bitcast && 904 Lex.getKind() != lltok::kw_getelementptr && 905 Lex.getKind() != lltok::kw_addrspacecast && 906 Lex.getKind() != lltok::kw_inttoptr) { 907 if (ParseGlobalTypeAndValue(Aliasee)) 908 return true; 909 } else { 910 // The bitcast dest type is not present, it is implied by the dest type. 911 ValID ID; 912 if (ParseValID(ID)) 913 return true; 914 if (ID.Kind != ValID::t_Constant) 915 return Error(AliaseeLoc, "invalid aliasee"); 916 Aliasee = ID.ConstantVal; 917 } 918 919 Type *AliaseeType = Aliasee->getType(); 920 auto *PTy = dyn_cast<PointerType>(AliaseeType); 921 if (!PTy) 922 return Error(AliaseeLoc, "An alias or ifunc must have pointer type"); 923 unsigned AddrSpace = PTy->getAddressSpace(); 924 925 if (IsAlias && Ty != PTy->getElementType()) 926 return Error( 927 ExplicitTypeLoc, 928 "explicit pointee type doesn't match operand's pointee type"); 929 930 if (!IsAlias && !PTy->getElementType()->isFunctionTy()) 931 return Error( 932 ExplicitTypeLoc, 933 "explicit pointee type should be a function type"); 934 935 GlobalValue *GVal = nullptr; 936 937 // See if the alias was forward referenced, if so, prepare to replace the 938 // forward reference. 939 if (!Name.empty()) { 940 GVal = M->getNamedValue(Name); 941 if (GVal) { 942 if (!ForwardRefVals.erase(Name)) 943 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 944 } 945 } else { 946 auto I = ForwardRefValIDs.find(NumberedVals.size()); 947 if (I != ForwardRefValIDs.end()) { 948 GVal = I->second.first; 949 ForwardRefValIDs.erase(I); 950 } 951 } 952 953 // Okay, create the alias but do not insert it into the module yet. 954 std::unique_ptr<GlobalIndirectSymbol> GA; 955 if (IsAlias) 956 GA.reset(GlobalAlias::create(Ty, AddrSpace, 957 (GlobalValue::LinkageTypes)Linkage, Name, 958 Aliasee, /*Parent*/ nullptr)); 959 else 960 GA.reset(GlobalIFunc::create(Ty, AddrSpace, 961 (GlobalValue::LinkageTypes)Linkage, Name, 962 Aliasee, /*Parent*/ nullptr)); 963 GA->setThreadLocalMode(TLM); 964 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 965 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 966 GA->setUnnamedAddr(UnnamedAddr); 967 maybeSetDSOLocal(DSOLocal, *GA); 968 969 // At this point we've parsed everything except for the IndirectSymbolAttrs. 970 // Now parse them if there are any. 971 while (Lex.getKind() == lltok::comma) { 972 Lex.Lex(); 973 974 if (Lex.getKind() == lltok::kw_partition) { 975 Lex.Lex(); 976 GA->setPartition(Lex.getStrVal()); 977 if (ParseToken(lltok::StringConstant, "expected partition string")) 978 return true; 979 } else { 980 return TokError("unknown alias or ifunc property!"); 981 } 982 } 983 984 if (Name.empty()) 985 NumberedVals.push_back(GA.get()); 986 987 if (GVal) { 988 // Verify that types agree. 989 if (GVal->getType() != GA->getType()) 990 return Error( 991 ExplicitTypeLoc, 992 "forward reference and definition of alias have different types"); 993 994 // If they agree, just RAUW the old value with the alias and remove the 995 // forward ref info. 996 GVal->replaceAllUsesWith(GA.get()); 997 GVal->eraseFromParent(); 998 } 999 1000 // Insert into the module, we know its name won't collide now. 1001 if (IsAlias) 1002 M->getAliasList().push_back(cast<GlobalAlias>(GA.get())); 1003 else 1004 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get())); 1005 assert(GA->getName() == Name && "Should not be a name conflict!"); 1006 1007 // The module owns this now 1008 GA.release(); 1009 1010 return false; 1011 } 1012 1013 /// ParseGlobal 1014 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 1015 /// OptionalVisibility OptionalDLLStorageClass 1016 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 1017 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs 1018 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 1019 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr 1020 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type 1021 /// Const OptionalAttrs 1022 /// 1023 /// Everything up to and including OptionalUnnamedAddr has been parsed 1024 /// already. 1025 /// 1026 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, 1027 unsigned Linkage, bool HasLinkage, 1028 unsigned Visibility, unsigned DLLStorageClass, 1029 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM, 1030 GlobalVariable::UnnamedAddr UnnamedAddr) { 1031 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 1032 return Error(NameLoc, 1033 "symbol with local linkage must have default visibility"); 1034 1035 unsigned AddrSpace; 1036 bool IsConstant, IsExternallyInitialized; 1037 LocTy IsExternallyInitializedLoc; 1038 LocTy TyLoc; 1039 1040 Type *Ty = nullptr; 1041 if (ParseOptionalAddrSpace(AddrSpace) || 1042 ParseOptionalToken(lltok::kw_externally_initialized, 1043 IsExternallyInitialized, 1044 &IsExternallyInitializedLoc) || 1045 ParseGlobalType(IsConstant) || 1046 ParseType(Ty, TyLoc)) 1047 return true; 1048 1049 // If the linkage is specified and is external, then no initializer is 1050 // present. 1051 Constant *Init = nullptr; 1052 if (!HasLinkage || 1053 !GlobalValue::isValidDeclarationLinkage( 1054 (GlobalValue::LinkageTypes)Linkage)) { 1055 if (ParseGlobalValue(Ty, Init)) 1056 return true; 1057 } 1058 1059 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 1060 return Error(TyLoc, "invalid type for global variable"); 1061 1062 GlobalValue *GVal = nullptr; 1063 1064 // See if the global was forward referenced, if so, use the global. 1065 if (!Name.empty()) { 1066 GVal = M->getNamedValue(Name); 1067 if (GVal) { 1068 if (!ForwardRefVals.erase(Name)) 1069 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 1070 } 1071 } else { 1072 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1073 if (I != ForwardRefValIDs.end()) { 1074 GVal = I->second.first; 1075 ForwardRefValIDs.erase(I); 1076 } 1077 } 1078 1079 GlobalVariable *GV; 1080 if (!GVal) { 1081 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, 1082 Name, nullptr, GlobalVariable::NotThreadLocal, 1083 AddrSpace); 1084 } else { 1085 if (GVal->getValueType() != Ty) 1086 return Error(TyLoc, 1087 "forward reference and definition of global have different types"); 1088 1089 GV = cast<GlobalVariable>(GVal); 1090 1091 // Move the forward-reference to the correct spot in the module. 1092 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 1093 } 1094 1095 if (Name.empty()) 1096 NumberedVals.push_back(GV); 1097 1098 // Set the parsed properties on the global. 1099 if (Init) 1100 GV->setInitializer(Init); 1101 GV->setConstant(IsConstant); 1102 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 1103 maybeSetDSOLocal(DSOLocal, *GV); 1104 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1105 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1106 GV->setExternallyInitialized(IsExternallyInitialized); 1107 GV->setThreadLocalMode(TLM); 1108 GV->setUnnamedAddr(UnnamedAddr); 1109 1110 // Parse attributes on the global. 1111 while (Lex.getKind() == lltok::comma) { 1112 Lex.Lex(); 1113 1114 if (Lex.getKind() == lltok::kw_section) { 1115 Lex.Lex(); 1116 GV->setSection(Lex.getStrVal()); 1117 if (ParseToken(lltok::StringConstant, "expected global section string")) 1118 return true; 1119 } else if (Lex.getKind() == lltok::kw_partition) { 1120 Lex.Lex(); 1121 GV->setPartition(Lex.getStrVal()); 1122 if (ParseToken(lltok::StringConstant, "expected partition string")) 1123 return true; 1124 } else if (Lex.getKind() == lltok::kw_align) { 1125 unsigned Alignment; 1126 if (ParseOptionalAlignment(Alignment)) return true; 1127 GV->setAlignment(MaybeAlign(Alignment)); 1128 } else if (Lex.getKind() == lltok::MetadataVar) { 1129 if (ParseGlobalObjectMetadataAttachment(*GV)) 1130 return true; 1131 } else { 1132 Comdat *C; 1133 if (parseOptionalComdat(Name, C)) 1134 return true; 1135 if (C) 1136 GV->setComdat(C); 1137 else 1138 return TokError("unknown global variable property!"); 1139 } 1140 } 1141 1142 AttrBuilder Attrs; 1143 LocTy BuiltinLoc; 1144 std::vector<unsigned> FwdRefAttrGrps; 1145 if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc)) 1146 return true; 1147 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) { 1148 GV->setAttributes(AttributeSet::get(Context, Attrs)); 1149 ForwardRefAttrGroups[GV] = FwdRefAttrGrps; 1150 } 1151 1152 return false; 1153 } 1154 1155 /// ParseUnnamedAttrGrp 1156 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 1157 bool LLParser::ParseUnnamedAttrGrp() { 1158 assert(Lex.getKind() == lltok::kw_attributes); 1159 LocTy AttrGrpLoc = Lex.getLoc(); 1160 Lex.Lex(); 1161 1162 if (Lex.getKind() != lltok::AttrGrpID) 1163 return TokError("expected attribute group id"); 1164 1165 unsigned VarID = Lex.getUIntVal(); 1166 std::vector<unsigned> unused; 1167 LocTy BuiltinLoc; 1168 Lex.Lex(); 1169 1170 if (ParseToken(lltok::equal, "expected '=' here") || 1171 ParseToken(lltok::lbrace, "expected '{' here") || 1172 ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 1173 BuiltinLoc) || 1174 ParseToken(lltok::rbrace, "expected end of attribute group")) 1175 return true; 1176 1177 if (!NumberedAttrBuilders[VarID].hasAttributes()) 1178 return Error(AttrGrpLoc, "attribute group has no attributes"); 1179 1180 return false; 1181 } 1182 1183 /// ParseFnAttributeValuePairs 1184 /// ::= <attr> | <attr> '=' <value> 1185 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B, 1186 std::vector<unsigned> &FwdRefAttrGrps, 1187 bool inAttrGrp, LocTy &BuiltinLoc) { 1188 bool HaveError = false; 1189 1190 B.clear(); 1191 1192 while (true) { 1193 lltok::Kind Token = Lex.getKind(); 1194 if (Token == lltok::kw_builtin) 1195 BuiltinLoc = Lex.getLoc(); 1196 switch (Token) { 1197 default: 1198 if (!inAttrGrp) return HaveError; 1199 return Error(Lex.getLoc(), "unterminated attribute group"); 1200 case lltok::rbrace: 1201 // Finished. 1202 return false; 1203 1204 case lltok::AttrGrpID: { 1205 // Allow a function to reference an attribute group: 1206 // 1207 // define void @foo() #1 { ... } 1208 if (inAttrGrp) 1209 HaveError |= 1210 Error(Lex.getLoc(), 1211 "cannot have an attribute group reference in an attribute group"); 1212 1213 unsigned AttrGrpNum = Lex.getUIntVal(); 1214 if (inAttrGrp) break; 1215 1216 // Save the reference to the attribute group. We'll fill it in later. 1217 FwdRefAttrGrps.push_back(AttrGrpNum); 1218 break; 1219 } 1220 // Target-dependent attributes: 1221 case lltok::StringConstant: { 1222 if (ParseStringAttribute(B)) 1223 return true; 1224 continue; 1225 } 1226 1227 // Target-independent attributes: 1228 case lltok::kw_align: { 1229 // As a hack, we allow function alignment to be initially parsed as an 1230 // attribute on a function declaration/definition or added to an attribute 1231 // group and later moved to the alignment field. 1232 unsigned Alignment; 1233 if (inAttrGrp) { 1234 Lex.Lex(); 1235 if (ParseToken(lltok::equal, "expected '=' here") || 1236 ParseUInt32(Alignment)) 1237 return true; 1238 } else { 1239 if (ParseOptionalAlignment(Alignment)) 1240 return true; 1241 } 1242 B.addAlignmentAttr(Alignment); 1243 continue; 1244 } 1245 case lltok::kw_alignstack: { 1246 unsigned Alignment; 1247 if (inAttrGrp) { 1248 Lex.Lex(); 1249 if (ParseToken(lltok::equal, "expected '=' here") || 1250 ParseUInt32(Alignment)) 1251 return true; 1252 } else { 1253 if (ParseOptionalStackAlignment(Alignment)) 1254 return true; 1255 } 1256 B.addStackAlignmentAttr(Alignment); 1257 continue; 1258 } 1259 case lltok::kw_allocsize: { 1260 unsigned ElemSizeArg; 1261 Optional<unsigned> NumElemsArg; 1262 // inAttrGrp doesn't matter; we only support allocsize(a[, b]) 1263 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1264 return true; 1265 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1266 continue; 1267 } 1268 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break; 1269 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break; 1270 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break; 1271 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break; 1272 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break; 1273 case lltok::kw_inaccessiblememonly: 1274 B.addAttribute(Attribute::InaccessibleMemOnly); break; 1275 case lltok::kw_inaccessiblemem_or_argmemonly: 1276 B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break; 1277 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break; 1278 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break; 1279 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break; 1280 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break; 1281 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break; 1282 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break; 1283 case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break; 1284 case lltok::kw_noimplicitfloat: 1285 B.addAttribute(Attribute::NoImplicitFloat); break; 1286 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break; 1287 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break; 1288 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break; 1289 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break; 1290 case lltok::kw_nosync: B.addAttribute(Attribute::NoSync); break; 1291 case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break; 1292 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break; 1293 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break; 1294 case lltok::kw_optforfuzzing: 1295 B.addAttribute(Attribute::OptForFuzzing); break; 1296 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break; 1297 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break; 1298 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1299 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1300 case lltok::kw_returns_twice: 1301 B.addAttribute(Attribute::ReturnsTwice); break; 1302 case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break; 1303 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break; 1304 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break; 1305 case lltok::kw_sspstrong: 1306 B.addAttribute(Attribute::StackProtectStrong); break; 1307 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break; 1308 case lltok::kw_shadowcallstack: 1309 B.addAttribute(Attribute::ShadowCallStack); break; 1310 case lltok::kw_sanitize_address: 1311 B.addAttribute(Attribute::SanitizeAddress); break; 1312 case lltok::kw_sanitize_hwaddress: 1313 B.addAttribute(Attribute::SanitizeHWAddress); break; 1314 case lltok::kw_sanitize_memtag: 1315 B.addAttribute(Attribute::SanitizeMemTag); break; 1316 case lltok::kw_sanitize_thread: 1317 B.addAttribute(Attribute::SanitizeThread); break; 1318 case lltok::kw_sanitize_memory: 1319 B.addAttribute(Attribute::SanitizeMemory); break; 1320 case lltok::kw_speculative_load_hardening: 1321 B.addAttribute(Attribute::SpeculativeLoadHardening); 1322 break; 1323 case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break; 1324 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break; 1325 case lltok::kw_willreturn: B.addAttribute(Attribute::WillReturn); break; 1326 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1327 1328 // Error handling. 1329 case lltok::kw_inreg: 1330 case lltok::kw_signext: 1331 case lltok::kw_zeroext: 1332 HaveError |= 1333 Error(Lex.getLoc(), 1334 "invalid use of attribute on a function"); 1335 break; 1336 case lltok::kw_byval: 1337 case lltok::kw_dereferenceable: 1338 case lltok::kw_dereferenceable_or_null: 1339 case lltok::kw_inalloca: 1340 case lltok::kw_nest: 1341 case lltok::kw_noalias: 1342 case lltok::kw_nocapture: 1343 case lltok::kw_nonnull: 1344 case lltok::kw_returned: 1345 case lltok::kw_sret: 1346 case lltok::kw_swifterror: 1347 case lltok::kw_swiftself: 1348 case lltok::kw_immarg: 1349 HaveError |= 1350 Error(Lex.getLoc(), 1351 "invalid use of parameter-only attribute on a function"); 1352 break; 1353 } 1354 1355 Lex.Lex(); 1356 } 1357 } 1358 1359 //===----------------------------------------------------------------------===// 1360 // GlobalValue Reference/Resolution Routines. 1361 //===----------------------------------------------------------------------===// 1362 1363 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy, 1364 const std::string &Name) { 1365 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType())) 1366 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, 1367 PTy->getAddressSpace(), Name, M); 1368 else 1369 return new GlobalVariable(*M, PTy->getElementType(), false, 1370 GlobalValue::ExternalWeakLinkage, nullptr, Name, 1371 nullptr, GlobalVariable::NotThreadLocal, 1372 PTy->getAddressSpace()); 1373 } 1374 1375 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty, 1376 Value *Val, bool IsCall) { 1377 if (Val->getType() == Ty) 1378 return Val; 1379 // For calls we also accept variables in the program address space. 1380 Type *SuggestedTy = Ty; 1381 if (IsCall && isa<PointerType>(Ty)) { 1382 Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo( 1383 M->getDataLayout().getProgramAddressSpace()); 1384 SuggestedTy = TyInProgAS; 1385 if (Val->getType() == TyInProgAS) 1386 return Val; 1387 } 1388 if (Ty->isLabelTy()) 1389 Error(Loc, "'" + Name + "' is not a basic block"); 1390 else 1391 Error(Loc, "'" + Name + "' defined with type '" + 1392 getTypeString(Val->getType()) + "' but expected '" + 1393 getTypeString(SuggestedTy) + "'"); 1394 return nullptr; 1395 } 1396 1397 /// GetGlobalVal - Get a value with the specified name or ID, creating a 1398 /// forward reference record if needed. This can return null if the value 1399 /// exists but does not have the right type. 1400 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty, 1401 LocTy Loc, bool IsCall) { 1402 PointerType *PTy = dyn_cast<PointerType>(Ty); 1403 if (!PTy) { 1404 Error(Loc, "global variable reference must have pointer type"); 1405 return nullptr; 1406 } 1407 1408 // Look this name up in the normal function symbol table. 1409 GlobalValue *Val = 1410 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1411 1412 // If this is a forward reference for the value, see if we already created a 1413 // forward ref record. 1414 if (!Val) { 1415 auto I = ForwardRefVals.find(Name); 1416 if (I != ForwardRefVals.end()) 1417 Val = I->second.first; 1418 } 1419 1420 // If we have the value in the symbol table or fwd-ref table, return it. 1421 if (Val) 1422 return cast_or_null<GlobalValue>( 1423 checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall)); 1424 1425 // Otherwise, create a new forward reference for this value and remember it. 1426 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name); 1427 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1428 return FwdVal; 1429 } 1430 1431 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc, 1432 bool IsCall) { 1433 PointerType *PTy = dyn_cast<PointerType>(Ty); 1434 if (!PTy) { 1435 Error(Loc, "global variable reference must have pointer type"); 1436 return nullptr; 1437 } 1438 1439 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1440 1441 // If this is a forward reference for the value, see if we already created a 1442 // forward ref record. 1443 if (!Val) { 1444 auto I = ForwardRefValIDs.find(ID); 1445 if (I != ForwardRefValIDs.end()) 1446 Val = I->second.first; 1447 } 1448 1449 // If we have the value in the symbol table or fwd-ref table, return it. 1450 if (Val) 1451 return cast_or_null<GlobalValue>( 1452 checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall)); 1453 1454 // Otherwise, create a new forward reference for this value and remember it. 1455 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, ""); 1456 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1457 return FwdVal; 1458 } 1459 1460 //===----------------------------------------------------------------------===// 1461 // Comdat Reference/Resolution Routines. 1462 //===----------------------------------------------------------------------===// 1463 1464 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1465 // Look this name up in the comdat symbol table. 1466 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1467 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1468 if (I != ComdatSymTab.end()) 1469 return &I->second; 1470 1471 // Otherwise, create a new forward reference for this value and remember it. 1472 Comdat *C = M->getOrInsertComdat(Name); 1473 ForwardRefComdats[Name] = Loc; 1474 return C; 1475 } 1476 1477 //===----------------------------------------------------------------------===// 1478 // Helper Routines. 1479 //===----------------------------------------------------------------------===// 1480 1481 /// ParseToken - If the current token has the specified kind, eat it and return 1482 /// success. Otherwise, emit the specified error and return failure. 1483 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { 1484 if (Lex.getKind() != T) 1485 return TokError(ErrMsg); 1486 Lex.Lex(); 1487 return false; 1488 } 1489 1490 /// ParseStringConstant 1491 /// ::= StringConstant 1492 bool LLParser::ParseStringConstant(std::string &Result) { 1493 if (Lex.getKind() != lltok::StringConstant) 1494 return TokError("expected string constant"); 1495 Result = Lex.getStrVal(); 1496 Lex.Lex(); 1497 return false; 1498 } 1499 1500 /// ParseUInt32 1501 /// ::= uint32 1502 bool LLParser::ParseUInt32(uint32_t &Val) { 1503 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1504 return TokError("expected integer"); 1505 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1506 if (Val64 != unsigned(Val64)) 1507 return TokError("expected 32-bit integer (too large)"); 1508 Val = Val64; 1509 Lex.Lex(); 1510 return false; 1511 } 1512 1513 /// ParseUInt64 1514 /// ::= uint64 1515 bool LLParser::ParseUInt64(uint64_t &Val) { 1516 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1517 return TokError("expected integer"); 1518 Val = Lex.getAPSIntVal().getLimitedValue(); 1519 Lex.Lex(); 1520 return false; 1521 } 1522 1523 /// ParseTLSModel 1524 /// := 'localdynamic' 1525 /// := 'initialexec' 1526 /// := 'localexec' 1527 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1528 switch (Lex.getKind()) { 1529 default: 1530 return TokError("expected localdynamic, initialexec or localexec"); 1531 case lltok::kw_localdynamic: 1532 TLM = GlobalVariable::LocalDynamicTLSModel; 1533 break; 1534 case lltok::kw_initialexec: 1535 TLM = GlobalVariable::InitialExecTLSModel; 1536 break; 1537 case lltok::kw_localexec: 1538 TLM = GlobalVariable::LocalExecTLSModel; 1539 break; 1540 } 1541 1542 Lex.Lex(); 1543 return false; 1544 } 1545 1546 /// ParseOptionalThreadLocal 1547 /// := /*empty*/ 1548 /// := 'thread_local' 1549 /// := 'thread_local' '(' tlsmodel ')' 1550 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1551 TLM = GlobalVariable::NotThreadLocal; 1552 if (!EatIfPresent(lltok::kw_thread_local)) 1553 return false; 1554 1555 TLM = GlobalVariable::GeneralDynamicTLSModel; 1556 if (Lex.getKind() == lltok::lparen) { 1557 Lex.Lex(); 1558 return ParseTLSModel(TLM) || 1559 ParseToken(lltok::rparen, "expected ')' after thread local model"); 1560 } 1561 return false; 1562 } 1563 1564 /// ParseOptionalAddrSpace 1565 /// := /*empty*/ 1566 /// := 'addrspace' '(' uint32 ')' 1567 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) { 1568 AddrSpace = DefaultAS; 1569 if (!EatIfPresent(lltok::kw_addrspace)) 1570 return false; 1571 return ParseToken(lltok::lparen, "expected '(' in address space") || 1572 ParseUInt32(AddrSpace) || 1573 ParseToken(lltok::rparen, "expected ')' in address space"); 1574 } 1575 1576 /// ParseStringAttribute 1577 /// := StringConstant 1578 /// := StringConstant '=' StringConstant 1579 bool LLParser::ParseStringAttribute(AttrBuilder &B) { 1580 std::string Attr = Lex.getStrVal(); 1581 Lex.Lex(); 1582 std::string Val; 1583 if (EatIfPresent(lltok::equal) && ParseStringConstant(Val)) 1584 return true; 1585 B.addAttribute(Attr, Val); 1586 return false; 1587 } 1588 1589 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes. 1590 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) { 1591 bool HaveError = false; 1592 1593 B.clear(); 1594 1595 while (true) { 1596 lltok::Kind Token = Lex.getKind(); 1597 switch (Token) { 1598 default: // End of attributes. 1599 return HaveError; 1600 case lltok::StringConstant: { 1601 if (ParseStringAttribute(B)) 1602 return true; 1603 continue; 1604 } 1605 case lltok::kw_align: { 1606 unsigned Alignment; 1607 if (ParseOptionalAlignment(Alignment)) 1608 return true; 1609 B.addAlignmentAttr(Alignment); 1610 continue; 1611 } 1612 case lltok::kw_byval: { 1613 Type *Ty; 1614 if (ParseByValWithOptionalType(Ty)) 1615 return true; 1616 B.addByValAttr(Ty); 1617 continue; 1618 } 1619 case lltok::kw_dereferenceable: { 1620 uint64_t Bytes; 1621 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1622 return true; 1623 B.addDereferenceableAttr(Bytes); 1624 continue; 1625 } 1626 case lltok::kw_dereferenceable_or_null: { 1627 uint64_t Bytes; 1628 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1629 return true; 1630 B.addDereferenceableOrNullAttr(Bytes); 1631 continue; 1632 } 1633 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break; 1634 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1635 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break; 1636 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1637 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break; 1638 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1639 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1640 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1641 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break; 1642 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1643 case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break; 1644 case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break; 1645 case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break; 1646 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1647 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1648 case lltok::kw_immarg: B.addAttribute(Attribute::ImmArg); break; 1649 1650 case lltok::kw_alignstack: 1651 case lltok::kw_alwaysinline: 1652 case lltok::kw_argmemonly: 1653 case lltok::kw_builtin: 1654 case lltok::kw_inlinehint: 1655 case lltok::kw_jumptable: 1656 case lltok::kw_minsize: 1657 case lltok::kw_naked: 1658 case lltok::kw_nobuiltin: 1659 case lltok::kw_noduplicate: 1660 case lltok::kw_noimplicitfloat: 1661 case lltok::kw_noinline: 1662 case lltok::kw_nonlazybind: 1663 case lltok::kw_noredzone: 1664 case lltok::kw_noreturn: 1665 case lltok::kw_nocf_check: 1666 case lltok::kw_nounwind: 1667 case lltok::kw_optforfuzzing: 1668 case lltok::kw_optnone: 1669 case lltok::kw_optsize: 1670 case lltok::kw_returns_twice: 1671 case lltok::kw_sanitize_address: 1672 case lltok::kw_sanitize_hwaddress: 1673 case lltok::kw_sanitize_memtag: 1674 case lltok::kw_sanitize_memory: 1675 case lltok::kw_sanitize_thread: 1676 case lltok::kw_speculative_load_hardening: 1677 case lltok::kw_ssp: 1678 case lltok::kw_sspreq: 1679 case lltok::kw_sspstrong: 1680 case lltok::kw_safestack: 1681 case lltok::kw_shadowcallstack: 1682 case lltok::kw_strictfp: 1683 case lltok::kw_uwtable: 1684 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1685 break; 1686 } 1687 1688 Lex.Lex(); 1689 } 1690 } 1691 1692 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes. 1693 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) { 1694 bool HaveError = false; 1695 1696 B.clear(); 1697 1698 while (true) { 1699 lltok::Kind Token = Lex.getKind(); 1700 switch (Token) { 1701 default: // End of attributes. 1702 return HaveError; 1703 case lltok::StringConstant: { 1704 if (ParseStringAttribute(B)) 1705 return true; 1706 continue; 1707 } 1708 case lltok::kw_dereferenceable: { 1709 uint64_t Bytes; 1710 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1711 return true; 1712 B.addDereferenceableAttr(Bytes); 1713 continue; 1714 } 1715 case lltok::kw_dereferenceable_or_null: { 1716 uint64_t Bytes; 1717 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1718 return true; 1719 B.addDereferenceableOrNullAttr(Bytes); 1720 continue; 1721 } 1722 case lltok::kw_align: { 1723 unsigned Alignment; 1724 if (ParseOptionalAlignment(Alignment)) 1725 return true; 1726 B.addAlignmentAttr(Alignment); 1727 continue; 1728 } 1729 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1730 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1731 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1732 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1733 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1734 1735 // Error handling. 1736 case lltok::kw_byval: 1737 case lltok::kw_inalloca: 1738 case lltok::kw_nest: 1739 case lltok::kw_nocapture: 1740 case lltok::kw_returned: 1741 case lltok::kw_sret: 1742 case lltok::kw_swifterror: 1743 case lltok::kw_swiftself: 1744 case lltok::kw_immarg: 1745 HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute"); 1746 break; 1747 1748 case lltok::kw_alignstack: 1749 case lltok::kw_alwaysinline: 1750 case lltok::kw_argmemonly: 1751 case lltok::kw_builtin: 1752 case lltok::kw_cold: 1753 case lltok::kw_inlinehint: 1754 case lltok::kw_jumptable: 1755 case lltok::kw_minsize: 1756 case lltok::kw_naked: 1757 case lltok::kw_nobuiltin: 1758 case lltok::kw_noduplicate: 1759 case lltok::kw_noimplicitfloat: 1760 case lltok::kw_noinline: 1761 case lltok::kw_nonlazybind: 1762 case lltok::kw_noredzone: 1763 case lltok::kw_noreturn: 1764 case lltok::kw_nocf_check: 1765 case lltok::kw_nounwind: 1766 case lltok::kw_optforfuzzing: 1767 case lltok::kw_optnone: 1768 case lltok::kw_optsize: 1769 case lltok::kw_returns_twice: 1770 case lltok::kw_sanitize_address: 1771 case lltok::kw_sanitize_hwaddress: 1772 case lltok::kw_sanitize_memtag: 1773 case lltok::kw_sanitize_memory: 1774 case lltok::kw_sanitize_thread: 1775 case lltok::kw_speculative_load_hardening: 1776 case lltok::kw_ssp: 1777 case lltok::kw_sspreq: 1778 case lltok::kw_sspstrong: 1779 case lltok::kw_safestack: 1780 case lltok::kw_shadowcallstack: 1781 case lltok::kw_strictfp: 1782 case lltok::kw_uwtable: 1783 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1784 break; 1785 1786 case lltok::kw_readnone: 1787 case lltok::kw_readonly: 1788 HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type"); 1789 } 1790 1791 Lex.Lex(); 1792 } 1793 } 1794 1795 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1796 HasLinkage = true; 1797 switch (Kind) { 1798 default: 1799 HasLinkage = false; 1800 return GlobalValue::ExternalLinkage; 1801 case lltok::kw_private: 1802 return GlobalValue::PrivateLinkage; 1803 case lltok::kw_internal: 1804 return GlobalValue::InternalLinkage; 1805 case lltok::kw_weak: 1806 return GlobalValue::WeakAnyLinkage; 1807 case lltok::kw_weak_odr: 1808 return GlobalValue::WeakODRLinkage; 1809 case lltok::kw_linkonce: 1810 return GlobalValue::LinkOnceAnyLinkage; 1811 case lltok::kw_linkonce_odr: 1812 return GlobalValue::LinkOnceODRLinkage; 1813 case lltok::kw_available_externally: 1814 return GlobalValue::AvailableExternallyLinkage; 1815 case lltok::kw_appending: 1816 return GlobalValue::AppendingLinkage; 1817 case lltok::kw_common: 1818 return GlobalValue::CommonLinkage; 1819 case lltok::kw_extern_weak: 1820 return GlobalValue::ExternalWeakLinkage; 1821 case lltok::kw_external: 1822 return GlobalValue::ExternalLinkage; 1823 } 1824 } 1825 1826 /// ParseOptionalLinkage 1827 /// ::= /*empty*/ 1828 /// ::= 'private' 1829 /// ::= 'internal' 1830 /// ::= 'weak' 1831 /// ::= 'weak_odr' 1832 /// ::= 'linkonce' 1833 /// ::= 'linkonce_odr' 1834 /// ::= 'available_externally' 1835 /// ::= 'appending' 1836 /// ::= 'common' 1837 /// ::= 'extern_weak' 1838 /// ::= 'external' 1839 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage, 1840 unsigned &Visibility, 1841 unsigned &DLLStorageClass, 1842 bool &DSOLocal) { 1843 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 1844 if (HasLinkage) 1845 Lex.Lex(); 1846 ParseOptionalDSOLocal(DSOLocal); 1847 ParseOptionalVisibility(Visibility); 1848 ParseOptionalDLLStorageClass(DLLStorageClass); 1849 1850 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) { 1851 return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch"); 1852 } 1853 1854 return false; 1855 } 1856 1857 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) { 1858 switch (Lex.getKind()) { 1859 default: 1860 DSOLocal = false; 1861 break; 1862 case lltok::kw_dso_local: 1863 DSOLocal = true; 1864 Lex.Lex(); 1865 break; 1866 case lltok::kw_dso_preemptable: 1867 DSOLocal = false; 1868 Lex.Lex(); 1869 break; 1870 } 1871 } 1872 1873 /// ParseOptionalVisibility 1874 /// ::= /*empty*/ 1875 /// ::= 'default' 1876 /// ::= 'hidden' 1877 /// ::= 'protected' 1878 /// 1879 void LLParser::ParseOptionalVisibility(unsigned &Res) { 1880 switch (Lex.getKind()) { 1881 default: 1882 Res = GlobalValue::DefaultVisibility; 1883 return; 1884 case lltok::kw_default: 1885 Res = GlobalValue::DefaultVisibility; 1886 break; 1887 case lltok::kw_hidden: 1888 Res = GlobalValue::HiddenVisibility; 1889 break; 1890 case lltok::kw_protected: 1891 Res = GlobalValue::ProtectedVisibility; 1892 break; 1893 } 1894 Lex.Lex(); 1895 } 1896 1897 /// ParseOptionalDLLStorageClass 1898 /// ::= /*empty*/ 1899 /// ::= 'dllimport' 1900 /// ::= 'dllexport' 1901 /// 1902 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) { 1903 switch (Lex.getKind()) { 1904 default: 1905 Res = GlobalValue::DefaultStorageClass; 1906 return; 1907 case lltok::kw_dllimport: 1908 Res = GlobalValue::DLLImportStorageClass; 1909 break; 1910 case lltok::kw_dllexport: 1911 Res = GlobalValue::DLLExportStorageClass; 1912 break; 1913 } 1914 Lex.Lex(); 1915 } 1916 1917 /// ParseOptionalCallingConv 1918 /// ::= /*empty*/ 1919 /// ::= 'ccc' 1920 /// ::= 'fastcc' 1921 /// ::= 'intel_ocl_bicc' 1922 /// ::= 'coldcc' 1923 /// ::= 'x86_stdcallcc' 1924 /// ::= 'x86_fastcallcc' 1925 /// ::= 'x86_thiscallcc' 1926 /// ::= 'x86_vectorcallcc' 1927 /// ::= 'arm_apcscc' 1928 /// ::= 'arm_aapcscc' 1929 /// ::= 'arm_aapcs_vfpcc' 1930 /// ::= 'aarch64_vector_pcs' 1931 /// ::= 'msp430_intrcc' 1932 /// ::= 'avr_intrcc' 1933 /// ::= 'avr_signalcc' 1934 /// ::= 'ptx_kernel' 1935 /// ::= 'ptx_device' 1936 /// ::= 'spir_func' 1937 /// ::= 'spir_kernel' 1938 /// ::= 'x86_64_sysvcc' 1939 /// ::= 'win64cc' 1940 /// ::= 'webkit_jscc' 1941 /// ::= 'anyregcc' 1942 /// ::= 'preserve_mostcc' 1943 /// ::= 'preserve_allcc' 1944 /// ::= 'ghccc' 1945 /// ::= 'swiftcc' 1946 /// ::= 'x86_intrcc' 1947 /// ::= 'hhvmcc' 1948 /// ::= 'hhvm_ccc' 1949 /// ::= 'cxx_fast_tlscc' 1950 /// ::= 'amdgpu_vs' 1951 /// ::= 'amdgpu_ls' 1952 /// ::= 'amdgpu_hs' 1953 /// ::= 'amdgpu_es' 1954 /// ::= 'amdgpu_gs' 1955 /// ::= 'amdgpu_ps' 1956 /// ::= 'amdgpu_cs' 1957 /// ::= 'amdgpu_kernel' 1958 /// ::= 'tailcc' 1959 /// ::= 'cc' UINT 1960 /// 1961 bool LLParser::ParseOptionalCallingConv(unsigned &CC) { 1962 switch (Lex.getKind()) { 1963 default: CC = CallingConv::C; return false; 1964 case lltok::kw_ccc: CC = CallingConv::C; break; 1965 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1966 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1967 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1968 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1969 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break; 1970 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1971 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 1972 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1973 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1974 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1975 case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break; 1976 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1977 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 1978 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 1979 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1980 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1981 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 1982 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 1983 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 1984 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 1985 case lltok::kw_win64cc: CC = CallingConv::Win64; break; 1986 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 1987 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 1988 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 1989 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 1990 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 1991 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 1992 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 1993 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 1994 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 1995 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 1996 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 1997 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break; 1998 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break; 1999 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break; 2000 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 2001 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 2002 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 2003 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 2004 case lltok::kw_tailcc: CC = CallingConv::Tail; break; 2005 case lltok::kw_cc: { 2006 Lex.Lex(); 2007 return ParseUInt32(CC); 2008 } 2009 } 2010 2011 Lex.Lex(); 2012 return false; 2013 } 2014 2015 /// ParseMetadataAttachment 2016 /// ::= !dbg !42 2017 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 2018 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 2019 2020 std::string Name = Lex.getStrVal(); 2021 Kind = M->getMDKindID(Name); 2022 Lex.Lex(); 2023 2024 return ParseMDNode(MD); 2025 } 2026 2027 /// ParseInstructionMetadata 2028 /// ::= !dbg !42 (',' !dbg !57)* 2029 bool LLParser::ParseInstructionMetadata(Instruction &Inst) { 2030 do { 2031 if (Lex.getKind() != lltok::MetadataVar) 2032 return TokError("expected metadata after comma"); 2033 2034 unsigned MDK; 2035 MDNode *N; 2036 if (ParseMetadataAttachment(MDK, N)) 2037 return true; 2038 2039 Inst.setMetadata(MDK, N); 2040 if (MDK == LLVMContext::MD_tbaa) 2041 InstsWithTBAATag.push_back(&Inst); 2042 2043 // If this is the end of the list, we're done. 2044 } while (EatIfPresent(lltok::comma)); 2045 return false; 2046 } 2047 2048 /// ParseGlobalObjectMetadataAttachment 2049 /// ::= !dbg !57 2050 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) { 2051 unsigned MDK; 2052 MDNode *N; 2053 if (ParseMetadataAttachment(MDK, N)) 2054 return true; 2055 2056 GO.addMetadata(MDK, *N); 2057 return false; 2058 } 2059 2060 /// ParseOptionalFunctionMetadata 2061 /// ::= (!dbg !57)* 2062 bool LLParser::ParseOptionalFunctionMetadata(Function &F) { 2063 while (Lex.getKind() == lltok::MetadataVar) 2064 if (ParseGlobalObjectMetadataAttachment(F)) 2065 return true; 2066 return false; 2067 } 2068 2069 /// ParseOptionalAlignment 2070 /// ::= /* empty */ 2071 /// ::= 'align' 4 2072 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) { 2073 Alignment = 0; 2074 if (!EatIfPresent(lltok::kw_align)) 2075 return false; 2076 LocTy AlignLoc = Lex.getLoc(); 2077 if (ParseUInt32(Alignment)) return true; 2078 if (!isPowerOf2_32(Alignment)) 2079 return Error(AlignLoc, "alignment is not a power of two"); 2080 if (Alignment > Value::MaximumAlignment) 2081 return Error(AlignLoc, "huge alignments are not supported yet"); 2082 return false; 2083 } 2084 2085 /// ParseOptionalDerefAttrBytes 2086 /// ::= /* empty */ 2087 /// ::= AttrKind '(' 4 ')' 2088 /// 2089 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 2090 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind, 2091 uint64_t &Bytes) { 2092 assert((AttrKind == lltok::kw_dereferenceable || 2093 AttrKind == lltok::kw_dereferenceable_or_null) && 2094 "contract!"); 2095 2096 Bytes = 0; 2097 if (!EatIfPresent(AttrKind)) 2098 return false; 2099 LocTy ParenLoc = Lex.getLoc(); 2100 if (!EatIfPresent(lltok::lparen)) 2101 return Error(ParenLoc, "expected '('"); 2102 LocTy DerefLoc = Lex.getLoc(); 2103 if (ParseUInt64(Bytes)) return true; 2104 ParenLoc = Lex.getLoc(); 2105 if (!EatIfPresent(lltok::rparen)) 2106 return Error(ParenLoc, "expected ')'"); 2107 if (!Bytes) 2108 return Error(DerefLoc, "dereferenceable bytes must be non-zero"); 2109 return false; 2110 } 2111 2112 /// ParseOptionalCommaAlign 2113 /// ::= 2114 /// ::= ',' align 4 2115 /// 2116 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2117 /// end. 2118 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment, 2119 bool &AteExtraComma) { 2120 AteExtraComma = false; 2121 while (EatIfPresent(lltok::comma)) { 2122 // Metadata at the end is an early exit. 2123 if (Lex.getKind() == lltok::MetadataVar) { 2124 AteExtraComma = true; 2125 return false; 2126 } 2127 2128 if (Lex.getKind() != lltok::kw_align) 2129 return Error(Lex.getLoc(), "expected metadata or 'align'"); 2130 2131 if (ParseOptionalAlignment(Alignment)) return true; 2132 } 2133 2134 return false; 2135 } 2136 2137 /// ParseOptionalCommaAddrSpace 2138 /// ::= 2139 /// ::= ',' addrspace(1) 2140 /// 2141 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2142 /// end. 2143 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace, 2144 LocTy &Loc, 2145 bool &AteExtraComma) { 2146 AteExtraComma = false; 2147 while (EatIfPresent(lltok::comma)) { 2148 // Metadata at the end is an early exit. 2149 if (Lex.getKind() == lltok::MetadataVar) { 2150 AteExtraComma = true; 2151 return false; 2152 } 2153 2154 Loc = Lex.getLoc(); 2155 if (Lex.getKind() != lltok::kw_addrspace) 2156 return Error(Lex.getLoc(), "expected metadata or 'addrspace'"); 2157 2158 if (ParseOptionalAddrSpace(AddrSpace)) 2159 return true; 2160 } 2161 2162 return false; 2163 } 2164 2165 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 2166 Optional<unsigned> &HowManyArg) { 2167 Lex.Lex(); 2168 2169 auto StartParen = Lex.getLoc(); 2170 if (!EatIfPresent(lltok::lparen)) 2171 return Error(StartParen, "expected '('"); 2172 2173 if (ParseUInt32(BaseSizeArg)) 2174 return true; 2175 2176 if (EatIfPresent(lltok::comma)) { 2177 auto HowManyAt = Lex.getLoc(); 2178 unsigned HowMany; 2179 if (ParseUInt32(HowMany)) 2180 return true; 2181 if (HowMany == BaseSizeArg) 2182 return Error(HowManyAt, 2183 "'allocsize' indices can't refer to the same parameter"); 2184 HowManyArg = HowMany; 2185 } else 2186 HowManyArg = None; 2187 2188 auto EndParen = Lex.getLoc(); 2189 if (!EatIfPresent(lltok::rparen)) 2190 return Error(EndParen, "expected ')'"); 2191 return false; 2192 } 2193 2194 /// ParseScopeAndOrdering 2195 /// if isAtomic: ::= SyncScope? AtomicOrdering 2196 /// else: ::= 2197 /// 2198 /// This sets Scope and Ordering to the parsed values. 2199 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID, 2200 AtomicOrdering &Ordering) { 2201 if (!isAtomic) 2202 return false; 2203 2204 return ParseScope(SSID) || ParseOrdering(Ordering); 2205 } 2206 2207 /// ParseScope 2208 /// ::= syncscope("singlethread" | "<target scope>")? 2209 /// 2210 /// This sets synchronization scope ID to the ID of the parsed value. 2211 bool LLParser::ParseScope(SyncScope::ID &SSID) { 2212 SSID = SyncScope::System; 2213 if (EatIfPresent(lltok::kw_syncscope)) { 2214 auto StartParenAt = Lex.getLoc(); 2215 if (!EatIfPresent(lltok::lparen)) 2216 return Error(StartParenAt, "Expected '(' in syncscope"); 2217 2218 std::string SSN; 2219 auto SSNAt = Lex.getLoc(); 2220 if (ParseStringConstant(SSN)) 2221 return Error(SSNAt, "Expected synchronization scope name"); 2222 2223 auto EndParenAt = Lex.getLoc(); 2224 if (!EatIfPresent(lltok::rparen)) 2225 return Error(EndParenAt, "Expected ')' in syncscope"); 2226 2227 SSID = Context.getOrInsertSyncScopeID(SSN); 2228 } 2229 2230 return false; 2231 } 2232 2233 /// ParseOrdering 2234 /// ::= AtomicOrdering 2235 /// 2236 /// This sets Ordering to the parsed value. 2237 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) { 2238 switch (Lex.getKind()) { 2239 default: return TokError("Expected ordering on atomic instruction"); 2240 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 2241 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 2242 // Not specified yet: 2243 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 2244 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 2245 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 2246 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 2247 case lltok::kw_seq_cst: 2248 Ordering = AtomicOrdering::SequentiallyConsistent; 2249 break; 2250 } 2251 Lex.Lex(); 2252 return false; 2253 } 2254 2255 /// ParseOptionalStackAlignment 2256 /// ::= /* empty */ 2257 /// ::= 'alignstack' '(' 4 ')' 2258 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { 2259 Alignment = 0; 2260 if (!EatIfPresent(lltok::kw_alignstack)) 2261 return false; 2262 LocTy ParenLoc = Lex.getLoc(); 2263 if (!EatIfPresent(lltok::lparen)) 2264 return Error(ParenLoc, "expected '('"); 2265 LocTy AlignLoc = Lex.getLoc(); 2266 if (ParseUInt32(Alignment)) return true; 2267 ParenLoc = Lex.getLoc(); 2268 if (!EatIfPresent(lltok::rparen)) 2269 return Error(ParenLoc, "expected ')'"); 2270 if (!isPowerOf2_32(Alignment)) 2271 return Error(AlignLoc, "stack alignment is not a power of two"); 2272 return false; 2273 } 2274 2275 /// ParseIndexList - This parses the index list for an insert/extractvalue 2276 /// instruction. This sets AteExtraComma in the case where we eat an extra 2277 /// comma at the end of the line and find that it is followed by metadata. 2278 /// Clients that don't allow metadata can call the version of this function that 2279 /// only takes one argument. 2280 /// 2281 /// ParseIndexList 2282 /// ::= (',' uint32)+ 2283 /// 2284 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, 2285 bool &AteExtraComma) { 2286 AteExtraComma = false; 2287 2288 if (Lex.getKind() != lltok::comma) 2289 return TokError("expected ',' as start of index list"); 2290 2291 while (EatIfPresent(lltok::comma)) { 2292 if (Lex.getKind() == lltok::MetadataVar) { 2293 if (Indices.empty()) return TokError("expected index"); 2294 AteExtraComma = true; 2295 return false; 2296 } 2297 unsigned Idx = 0; 2298 if (ParseUInt32(Idx)) return true; 2299 Indices.push_back(Idx); 2300 } 2301 2302 return false; 2303 } 2304 2305 //===----------------------------------------------------------------------===// 2306 // Type Parsing. 2307 //===----------------------------------------------------------------------===// 2308 2309 /// ParseType - Parse a type. 2310 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 2311 SMLoc TypeLoc = Lex.getLoc(); 2312 switch (Lex.getKind()) { 2313 default: 2314 return TokError(Msg); 2315 case lltok::Type: 2316 // Type ::= 'float' | 'void' (etc) 2317 Result = Lex.getTyVal(); 2318 Lex.Lex(); 2319 break; 2320 case lltok::lbrace: 2321 // Type ::= StructType 2322 if (ParseAnonStructType(Result, false)) 2323 return true; 2324 break; 2325 case lltok::lsquare: 2326 // Type ::= '[' ... ']' 2327 Lex.Lex(); // eat the lsquare. 2328 if (ParseArrayVectorType(Result, false)) 2329 return true; 2330 break; 2331 case lltok::less: // Either vector or packed struct. 2332 // Type ::= '<' ... '>' 2333 Lex.Lex(); 2334 if (Lex.getKind() == lltok::lbrace) { 2335 if (ParseAnonStructType(Result, true) || 2336 ParseToken(lltok::greater, "expected '>' at end of packed struct")) 2337 return true; 2338 } else if (ParseArrayVectorType(Result, true)) 2339 return true; 2340 break; 2341 case lltok::LocalVar: { 2342 // Type ::= %foo 2343 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2344 2345 // If the type hasn't been defined yet, create a forward definition and 2346 // remember where that forward def'n was seen (in case it never is defined). 2347 if (!Entry.first) { 2348 Entry.first = StructType::create(Context, Lex.getStrVal()); 2349 Entry.second = Lex.getLoc(); 2350 } 2351 Result = Entry.first; 2352 Lex.Lex(); 2353 break; 2354 } 2355 2356 case lltok::LocalVarID: { 2357 // Type ::= %4 2358 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2359 2360 // If the type hasn't been defined yet, create a forward definition and 2361 // remember where that forward def'n was seen (in case it never is defined). 2362 if (!Entry.first) { 2363 Entry.first = StructType::create(Context); 2364 Entry.second = Lex.getLoc(); 2365 } 2366 Result = Entry.first; 2367 Lex.Lex(); 2368 break; 2369 } 2370 } 2371 2372 // Parse the type suffixes. 2373 while (true) { 2374 switch (Lex.getKind()) { 2375 // End of type. 2376 default: 2377 if (!AllowVoid && Result->isVoidTy()) 2378 return Error(TypeLoc, "void type only allowed for function results"); 2379 return false; 2380 2381 // Type ::= Type '*' 2382 case lltok::star: 2383 if (Result->isLabelTy()) 2384 return TokError("basic block pointers are invalid"); 2385 if (Result->isVoidTy()) 2386 return TokError("pointers to void are invalid - use i8* instead"); 2387 if (!PointerType::isValidElementType(Result)) 2388 return TokError("pointer to this type is invalid"); 2389 Result = PointerType::getUnqual(Result); 2390 Lex.Lex(); 2391 break; 2392 2393 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2394 case lltok::kw_addrspace: { 2395 if (Result->isLabelTy()) 2396 return TokError("basic block pointers are invalid"); 2397 if (Result->isVoidTy()) 2398 return TokError("pointers to void are invalid; use i8* instead"); 2399 if (!PointerType::isValidElementType(Result)) 2400 return TokError("pointer to this type is invalid"); 2401 unsigned AddrSpace; 2402 if (ParseOptionalAddrSpace(AddrSpace) || 2403 ParseToken(lltok::star, "expected '*' in address space")) 2404 return true; 2405 2406 Result = PointerType::get(Result, AddrSpace); 2407 break; 2408 } 2409 2410 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2411 case lltok::lparen: 2412 if (ParseFunctionType(Result)) 2413 return true; 2414 break; 2415 } 2416 } 2417 } 2418 2419 /// ParseParameterList 2420 /// ::= '(' ')' 2421 /// ::= '(' Arg (',' Arg)* ')' 2422 /// Arg 2423 /// ::= Type OptionalAttributes Value OptionalAttributes 2424 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2425 PerFunctionState &PFS, bool IsMustTailCall, 2426 bool InVarArgsFunc) { 2427 if (ParseToken(lltok::lparen, "expected '(' in call")) 2428 return true; 2429 2430 while (Lex.getKind() != lltok::rparen) { 2431 // If this isn't the first argument, we need a comma. 2432 if (!ArgList.empty() && 2433 ParseToken(lltok::comma, "expected ',' in argument list")) 2434 return true; 2435 2436 // Parse an ellipsis if this is a musttail call in a variadic function. 2437 if (Lex.getKind() == lltok::dotdotdot) { 2438 const char *Msg = "unexpected ellipsis in argument list for "; 2439 if (!IsMustTailCall) 2440 return TokError(Twine(Msg) + "non-musttail call"); 2441 if (!InVarArgsFunc) 2442 return TokError(Twine(Msg) + "musttail call in non-varargs function"); 2443 Lex.Lex(); // Lex the '...', it is purely for readability. 2444 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2445 } 2446 2447 // Parse the argument. 2448 LocTy ArgLoc; 2449 Type *ArgTy = nullptr; 2450 AttrBuilder ArgAttrs; 2451 Value *V; 2452 if (ParseType(ArgTy, ArgLoc)) 2453 return true; 2454 2455 if (ArgTy->isMetadataTy()) { 2456 if (ParseMetadataAsValue(V, PFS)) 2457 return true; 2458 } else { 2459 // Otherwise, handle normal operands. 2460 if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS)) 2461 return true; 2462 } 2463 ArgList.push_back(ParamInfo( 2464 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs))); 2465 } 2466 2467 if (IsMustTailCall && InVarArgsFunc) 2468 return TokError("expected '...' at end of argument list for musttail call " 2469 "in varargs function"); 2470 2471 Lex.Lex(); // Lex the ')'. 2472 return false; 2473 } 2474 2475 /// ParseByValWithOptionalType 2476 /// ::= byval 2477 /// ::= byval(<ty>) 2478 bool LLParser::ParseByValWithOptionalType(Type *&Result) { 2479 Result = nullptr; 2480 if (!EatIfPresent(lltok::kw_byval)) 2481 return true; 2482 if (!EatIfPresent(lltok::lparen)) 2483 return false; 2484 if (ParseType(Result)) 2485 return true; 2486 if (!EatIfPresent(lltok::rparen)) 2487 return Error(Lex.getLoc(), "expected ')'"); 2488 return false; 2489 } 2490 2491 /// ParseOptionalOperandBundles 2492 /// ::= /*empty*/ 2493 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2494 /// 2495 /// OperandBundle 2496 /// ::= bundle-tag '(' ')' 2497 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2498 /// 2499 /// bundle-tag ::= String Constant 2500 bool LLParser::ParseOptionalOperandBundles( 2501 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2502 LocTy BeginLoc = Lex.getLoc(); 2503 if (!EatIfPresent(lltok::lsquare)) 2504 return false; 2505 2506 while (Lex.getKind() != lltok::rsquare) { 2507 // If this isn't the first operand bundle, we need a comma. 2508 if (!BundleList.empty() && 2509 ParseToken(lltok::comma, "expected ',' in input list")) 2510 return true; 2511 2512 std::string Tag; 2513 if (ParseStringConstant(Tag)) 2514 return true; 2515 2516 if (ParseToken(lltok::lparen, "expected '(' in operand bundle")) 2517 return true; 2518 2519 std::vector<Value *> Inputs; 2520 while (Lex.getKind() != lltok::rparen) { 2521 // If this isn't the first input, we need a comma. 2522 if (!Inputs.empty() && 2523 ParseToken(lltok::comma, "expected ',' in input list")) 2524 return true; 2525 2526 Type *Ty = nullptr; 2527 Value *Input = nullptr; 2528 if (ParseType(Ty) || ParseValue(Ty, Input, PFS)) 2529 return true; 2530 Inputs.push_back(Input); 2531 } 2532 2533 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2534 2535 Lex.Lex(); // Lex the ')'. 2536 } 2537 2538 if (BundleList.empty()) 2539 return Error(BeginLoc, "operand bundle set must not be empty"); 2540 2541 Lex.Lex(); // Lex the ']'. 2542 return false; 2543 } 2544 2545 /// ParseArgumentList - Parse the argument list for a function type or function 2546 /// prototype. 2547 /// ::= '(' ArgTypeListI ')' 2548 /// ArgTypeListI 2549 /// ::= /*empty*/ 2550 /// ::= '...' 2551 /// ::= ArgTypeList ',' '...' 2552 /// ::= ArgType (',' ArgType)* 2553 /// 2554 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2555 bool &isVarArg){ 2556 unsigned CurValID = 0; 2557 isVarArg = false; 2558 assert(Lex.getKind() == lltok::lparen); 2559 Lex.Lex(); // eat the (. 2560 2561 if (Lex.getKind() == lltok::rparen) { 2562 // empty 2563 } else if (Lex.getKind() == lltok::dotdotdot) { 2564 isVarArg = true; 2565 Lex.Lex(); 2566 } else { 2567 LocTy TypeLoc = Lex.getLoc(); 2568 Type *ArgTy = nullptr; 2569 AttrBuilder Attrs; 2570 std::string Name; 2571 2572 if (ParseType(ArgTy) || 2573 ParseOptionalParamAttrs(Attrs)) return true; 2574 2575 if (ArgTy->isVoidTy()) 2576 return Error(TypeLoc, "argument can not have void type"); 2577 2578 if (Lex.getKind() == lltok::LocalVar) { 2579 Name = Lex.getStrVal(); 2580 Lex.Lex(); 2581 } else if (Lex.getKind() == lltok::LocalVarID) { 2582 if (Lex.getUIntVal() != CurValID) 2583 return Error(TypeLoc, "argument expected to be numbered '%" + 2584 Twine(CurValID) + "'"); 2585 ++CurValID; 2586 Lex.Lex(); 2587 } 2588 2589 if (!FunctionType::isValidArgumentType(ArgTy)) 2590 return Error(TypeLoc, "invalid type for function argument"); 2591 2592 ArgList.emplace_back(TypeLoc, ArgTy, 2593 AttributeSet::get(ArgTy->getContext(), Attrs), 2594 std::move(Name)); 2595 2596 while (EatIfPresent(lltok::comma)) { 2597 // Handle ... at end of arg list. 2598 if (EatIfPresent(lltok::dotdotdot)) { 2599 isVarArg = true; 2600 break; 2601 } 2602 2603 // Otherwise must be an argument type. 2604 TypeLoc = Lex.getLoc(); 2605 if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true; 2606 2607 if (ArgTy->isVoidTy()) 2608 return Error(TypeLoc, "argument can not have void type"); 2609 2610 if (Lex.getKind() == lltok::LocalVar) { 2611 Name = Lex.getStrVal(); 2612 Lex.Lex(); 2613 } else { 2614 if (Lex.getKind() == lltok::LocalVarID) { 2615 if (Lex.getUIntVal() != CurValID) 2616 return Error(TypeLoc, "argument expected to be numbered '%" + 2617 Twine(CurValID) + "'"); 2618 Lex.Lex(); 2619 } 2620 ++CurValID; 2621 Name = ""; 2622 } 2623 2624 if (!ArgTy->isFirstClassType()) 2625 return Error(TypeLoc, "invalid type for function argument"); 2626 2627 ArgList.emplace_back(TypeLoc, ArgTy, 2628 AttributeSet::get(ArgTy->getContext(), Attrs), 2629 std::move(Name)); 2630 } 2631 } 2632 2633 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2634 } 2635 2636 /// ParseFunctionType 2637 /// ::= Type ArgumentList OptionalAttrs 2638 bool LLParser::ParseFunctionType(Type *&Result) { 2639 assert(Lex.getKind() == lltok::lparen); 2640 2641 if (!FunctionType::isValidReturnType(Result)) 2642 return TokError("invalid function return type"); 2643 2644 SmallVector<ArgInfo, 8> ArgList; 2645 bool isVarArg; 2646 if (ParseArgumentList(ArgList, isVarArg)) 2647 return true; 2648 2649 // Reject names on the arguments lists. 2650 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2651 if (!ArgList[i].Name.empty()) 2652 return Error(ArgList[i].Loc, "argument name invalid in function type"); 2653 if (ArgList[i].Attrs.hasAttributes()) 2654 return Error(ArgList[i].Loc, 2655 "argument attributes invalid in function type"); 2656 } 2657 2658 SmallVector<Type*, 16> ArgListTy; 2659 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2660 ArgListTy.push_back(ArgList[i].Ty); 2661 2662 Result = FunctionType::get(Result, ArgListTy, isVarArg); 2663 return false; 2664 } 2665 2666 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into 2667 /// other structs. 2668 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) { 2669 SmallVector<Type*, 8> Elts; 2670 if (ParseStructBody(Elts)) return true; 2671 2672 Result = StructType::get(Context, Elts, Packed); 2673 return false; 2674 } 2675 2676 /// ParseStructDefinition - Parse a struct in a 'type' definition. 2677 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name, 2678 std::pair<Type*, LocTy> &Entry, 2679 Type *&ResultTy) { 2680 // If the type was already defined, diagnose the redefinition. 2681 if (Entry.first && !Entry.second.isValid()) 2682 return Error(TypeLoc, "redefinition of type"); 2683 2684 // If we have opaque, just return without filling in the definition for the 2685 // struct. This counts as a definition as far as the .ll file goes. 2686 if (EatIfPresent(lltok::kw_opaque)) { 2687 // This type is being defined, so clear the location to indicate this. 2688 Entry.second = SMLoc(); 2689 2690 // If this type number has never been uttered, create it. 2691 if (!Entry.first) 2692 Entry.first = StructType::create(Context, Name); 2693 ResultTy = Entry.first; 2694 return false; 2695 } 2696 2697 // If the type starts with '<', then it is either a packed struct or a vector. 2698 bool isPacked = EatIfPresent(lltok::less); 2699 2700 // If we don't have a struct, then we have a random type alias, which we 2701 // accept for compatibility with old files. These types are not allowed to be 2702 // forward referenced and not allowed to be recursive. 2703 if (Lex.getKind() != lltok::lbrace) { 2704 if (Entry.first) 2705 return Error(TypeLoc, "forward references to non-struct type"); 2706 2707 ResultTy = nullptr; 2708 if (isPacked) 2709 return ParseArrayVectorType(ResultTy, true); 2710 return ParseType(ResultTy); 2711 } 2712 2713 // This type is being defined, so clear the location to indicate this. 2714 Entry.second = SMLoc(); 2715 2716 // If this type number has never been uttered, create it. 2717 if (!Entry.first) 2718 Entry.first = StructType::create(Context, Name); 2719 2720 StructType *STy = cast<StructType>(Entry.first); 2721 2722 SmallVector<Type*, 8> Body; 2723 if (ParseStructBody(Body) || 2724 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct"))) 2725 return true; 2726 2727 STy->setBody(Body, isPacked); 2728 ResultTy = STy; 2729 return false; 2730 } 2731 2732 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2733 /// StructType 2734 /// ::= '{' '}' 2735 /// ::= '{' Type (',' Type)* '}' 2736 /// ::= '<' '{' '}' '>' 2737 /// ::= '<' '{' Type (',' Type)* '}' '>' 2738 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) { 2739 assert(Lex.getKind() == lltok::lbrace); 2740 Lex.Lex(); // Consume the '{' 2741 2742 // Handle the empty struct. 2743 if (EatIfPresent(lltok::rbrace)) 2744 return false; 2745 2746 LocTy EltTyLoc = Lex.getLoc(); 2747 Type *Ty = nullptr; 2748 if (ParseType(Ty)) return true; 2749 Body.push_back(Ty); 2750 2751 if (!StructType::isValidElementType(Ty)) 2752 return Error(EltTyLoc, "invalid element type for struct"); 2753 2754 while (EatIfPresent(lltok::comma)) { 2755 EltTyLoc = Lex.getLoc(); 2756 if (ParseType(Ty)) return true; 2757 2758 if (!StructType::isValidElementType(Ty)) 2759 return Error(EltTyLoc, "invalid element type for struct"); 2760 2761 Body.push_back(Ty); 2762 } 2763 2764 return ParseToken(lltok::rbrace, "expected '}' at end of struct"); 2765 } 2766 2767 /// ParseArrayVectorType - Parse an array or vector type, assuming the first 2768 /// token has already been consumed. 2769 /// Type 2770 /// ::= '[' APSINTVAL 'x' Types ']' 2771 /// ::= '<' APSINTVAL 'x' Types '>' 2772 /// ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>' 2773 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) { 2774 bool Scalable = false; 2775 2776 if (isVector && Lex.getKind() == lltok::kw_vscale) { 2777 Lex.Lex(); // consume the 'vscale' 2778 if (ParseToken(lltok::kw_x, "expected 'x' after vscale")) 2779 return true; 2780 2781 Scalable = true; 2782 } 2783 2784 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2785 Lex.getAPSIntVal().getBitWidth() > 64) 2786 return TokError("expected number in address space"); 2787 2788 LocTy SizeLoc = Lex.getLoc(); 2789 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2790 Lex.Lex(); 2791 2792 if (ParseToken(lltok::kw_x, "expected 'x' after element count")) 2793 return true; 2794 2795 LocTy TypeLoc = Lex.getLoc(); 2796 Type *EltTy = nullptr; 2797 if (ParseType(EltTy)) return true; 2798 2799 if (ParseToken(isVector ? lltok::greater : lltok::rsquare, 2800 "expected end of sequential type")) 2801 return true; 2802 2803 if (isVector) { 2804 if (Size == 0) 2805 return Error(SizeLoc, "zero element vector is illegal"); 2806 if ((unsigned)Size != Size) 2807 return Error(SizeLoc, "size too large for vector"); 2808 if (!VectorType::isValidElementType(EltTy)) 2809 return Error(TypeLoc, "invalid vector element type"); 2810 Result = VectorType::get(EltTy, unsigned(Size), Scalable); 2811 } else { 2812 if (!ArrayType::isValidElementType(EltTy)) 2813 return Error(TypeLoc, "invalid array element type"); 2814 Result = ArrayType::get(EltTy, Size); 2815 } 2816 return false; 2817 } 2818 2819 //===----------------------------------------------------------------------===// 2820 // Function Semantic Analysis. 2821 //===----------------------------------------------------------------------===// 2822 2823 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 2824 int functionNumber) 2825 : P(p), F(f), FunctionNumber(functionNumber) { 2826 2827 // Insert unnamed arguments into the NumberedVals list. 2828 for (Argument &A : F.args()) 2829 if (!A.hasName()) 2830 NumberedVals.push_back(&A); 2831 } 2832 2833 LLParser::PerFunctionState::~PerFunctionState() { 2834 // If there were any forward referenced non-basicblock values, delete them. 2835 2836 for (const auto &P : ForwardRefVals) { 2837 if (isa<BasicBlock>(P.second.first)) 2838 continue; 2839 P.second.first->replaceAllUsesWith( 2840 UndefValue::get(P.second.first->getType())); 2841 P.second.first->deleteValue(); 2842 } 2843 2844 for (const auto &P : ForwardRefValIDs) { 2845 if (isa<BasicBlock>(P.second.first)) 2846 continue; 2847 P.second.first->replaceAllUsesWith( 2848 UndefValue::get(P.second.first->getType())); 2849 P.second.first->deleteValue(); 2850 } 2851 } 2852 2853 bool LLParser::PerFunctionState::FinishFunction() { 2854 if (!ForwardRefVals.empty()) 2855 return P.Error(ForwardRefVals.begin()->second.second, 2856 "use of undefined value '%" + ForwardRefVals.begin()->first + 2857 "'"); 2858 if (!ForwardRefValIDs.empty()) 2859 return P.Error(ForwardRefValIDs.begin()->second.second, 2860 "use of undefined value '%" + 2861 Twine(ForwardRefValIDs.begin()->first) + "'"); 2862 return false; 2863 } 2864 2865 /// GetVal - Get a value with the specified name or ID, creating a 2866 /// forward reference record if needed. This can return null if the value 2867 /// exists but does not have the right type. 2868 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty, 2869 LocTy Loc, bool IsCall) { 2870 // Look this name up in the normal function symbol table. 2871 Value *Val = F.getValueSymbolTable()->lookup(Name); 2872 2873 // If this is a forward reference for the value, see if we already created a 2874 // forward ref record. 2875 if (!Val) { 2876 auto I = ForwardRefVals.find(Name); 2877 if (I != ForwardRefVals.end()) 2878 Val = I->second.first; 2879 } 2880 2881 // If we have the value in the symbol table or fwd-ref table, return it. 2882 if (Val) 2883 return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall); 2884 2885 // Don't make placeholders with invalid type. 2886 if (!Ty->isFirstClassType()) { 2887 P.Error(Loc, "invalid use of a non-first-class type"); 2888 return nullptr; 2889 } 2890 2891 // Otherwise, create a new forward reference for this value and remember it. 2892 Value *FwdVal; 2893 if (Ty->isLabelTy()) { 2894 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 2895 } else { 2896 FwdVal = new Argument(Ty, Name); 2897 } 2898 2899 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 2900 return FwdVal; 2901 } 2902 2903 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc, 2904 bool IsCall) { 2905 // Look this name up in the normal function symbol table. 2906 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 2907 2908 // If this is a forward reference for the value, see if we already created a 2909 // forward ref record. 2910 if (!Val) { 2911 auto I = ForwardRefValIDs.find(ID); 2912 if (I != ForwardRefValIDs.end()) 2913 Val = I->second.first; 2914 } 2915 2916 // If we have the value in the symbol table or fwd-ref table, return it. 2917 if (Val) 2918 return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall); 2919 2920 if (!Ty->isFirstClassType()) { 2921 P.Error(Loc, "invalid use of a non-first-class type"); 2922 return nullptr; 2923 } 2924 2925 // Otherwise, create a new forward reference for this value and remember it. 2926 Value *FwdVal; 2927 if (Ty->isLabelTy()) { 2928 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 2929 } else { 2930 FwdVal = new Argument(Ty); 2931 } 2932 2933 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 2934 return FwdVal; 2935 } 2936 2937 /// SetInstName - After an instruction is parsed and inserted into its 2938 /// basic block, this installs its name. 2939 bool LLParser::PerFunctionState::SetInstName(int NameID, 2940 const std::string &NameStr, 2941 LocTy NameLoc, Instruction *Inst) { 2942 // If this instruction has void type, it cannot have a name or ID specified. 2943 if (Inst->getType()->isVoidTy()) { 2944 if (NameID != -1 || !NameStr.empty()) 2945 return P.Error(NameLoc, "instructions returning void cannot have a name"); 2946 return false; 2947 } 2948 2949 // If this was a numbered instruction, verify that the instruction is the 2950 // expected value and resolve any forward references. 2951 if (NameStr.empty()) { 2952 // If neither a name nor an ID was specified, just use the next ID. 2953 if (NameID == -1) 2954 NameID = NumberedVals.size(); 2955 2956 if (unsigned(NameID) != NumberedVals.size()) 2957 return P.Error(NameLoc, "instruction expected to be numbered '%" + 2958 Twine(NumberedVals.size()) + "'"); 2959 2960 auto FI = ForwardRefValIDs.find(NameID); 2961 if (FI != ForwardRefValIDs.end()) { 2962 Value *Sentinel = FI->second.first; 2963 if (Sentinel->getType() != Inst->getType()) 2964 return P.Error(NameLoc, "instruction forward referenced with type '" + 2965 getTypeString(FI->second.first->getType()) + "'"); 2966 2967 Sentinel->replaceAllUsesWith(Inst); 2968 Sentinel->deleteValue(); 2969 ForwardRefValIDs.erase(FI); 2970 } 2971 2972 NumberedVals.push_back(Inst); 2973 return false; 2974 } 2975 2976 // Otherwise, the instruction had a name. Resolve forward refs and set it. 2977 auto FI = ForwardRefVals.find(NameStr); 2978 if (FI != ForwardRefVals.end()) { 2979 Value *Sentinel = FI->second.first; 2980 if (Sentinel->getType() != Inst->getType()) 2981 return P.Error(NameLoc, "instruction forward referenced with type '" + 2982 getTypeString(FI->second.first->getType()) + "'"); 2983 2984 Sentinel->replaceAllUsesWith(Inst); 2985 Sentinel->deleteValue(); 2986 ForwardRefVals.erase(FI); 2987 } 2988 2989 // Set the name on the instruction. 2990 Inst->setName(NameStr); 2991 2992 if (Inst->getName() != NameStr) 2993 return P.Error(NameLoc, "multiple definition of local value named '" + 2994 NameStr + "'"); 2995 return false; 2996 } 2997 2998 /// GetBB - Get a basic block with the specified name or ID, creating a 2999 /// forward reference record if needed. 3000 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, 3001 LocTy Loc) { 3002 return dyn_cast_or_null<BasicBlock>( 3003 GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 3004 } 3005 3006 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { 3007 return dyn_cast_or_null<BasicBlock>( 3008 GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 3009 } 3010 3011 /// DefineBB - Define the specified basic block, which is either named or 3012 /// unnamed. If there is an error, this returns null otherwise it returns 3013 /// the block being defined. 3014 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, 3015 int NameID, LocTy Loc) { 3016 BasicBlock *BB; 3017 if (Name.empty()) { 3018 if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) { 3019 P.Error(Loc, "label expected to be numbered '" + 3020 Twine(NumberedVals.size()) + "'"); 3021 return nullptr; 3022 } 3023 BB = GetBB(NumberedVals.size(), Loc); 3024 if (!BB) { 3025 P.Error(Loc, "unable to create block numbered '" + 3026 Twine(NumberedVals.size()) + "'"); 3027 return nullptr; 3028 } 3029 } else { 3030 BB = GetBB(Name, Loc); 3031 if (!BB) { 3032 P.Error(Loc, "unable to create block named '" + Name + "'"); 3033 return nullptr; 3034 } 3035 } 3036 3037 // Move the block to the end of the function. Forward ref'd blocks are 3038 // inserted wherever they happen to be referenced. 3039 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 3040 3041 // Remove the block from forward ref sets. 3042 if (Name.empty()) { 3043 ForwardRefValIDs.erase(NumberedVals.size()); 3044 NumberedVals.push_back(BB); 3045 } else { 3046 // BB forward references are already in the function symbol table. 3047 ForwardRefVals.erase(Name); 3048 } 3049 3050 return BB; 3051 } 3052 3053 //===----------------------------------------------------------------------===// 3054 // Constants. 3055 //===----------------------------------------------------------------------===// 3056 3057 /// ParseValID - Parse an abstract value that doesn't necessarily have a 3058 /// type implied. For example, if we parse "4" we don't know what integer type 3059 /// it has. The value will later be combined with its type and checked for 3060 /// sanity. PFS is used to convert function-local operands of metadata (since 3061 /// metadata operands are not just parsed here but also converted to values). 3062 /// PFS can be null when we are not parsing metadata values inside a function. 3063 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { 3064 ID.Loc = Lex.getLoc(); 3065 switch (Lex.getKind()) { 3066 default: return TokError("expected value token"); 3067 case lltok::GlobalID: // @42 3068 ID.UIntVal = Lex.getUIntVal(); 3069 ID.Kind = ValID::t_GlobalID; 3070 break; 3071 case lltok::GlobalVar: // @foo 3072 ID.StrVal = Lex.getStrVal(); 3073 ID.Kind = ValID::t_GlobalName; 3074 break; 3075 case lltok::LocalVarID: // %42 3076 ID.UIntVal = Lex.getUIntVal(); 3077 ID.Kind = ValID::t_LocalID; 3078 break; 3079 case lltok::LocalVar: // %foo 3080 ID.StrVal = Lex.getStrVal(); 3081 ID.Kind = ValID::t_LocalName; 3082 break; 3083 case lltok::APSInt: 3084 ID.APSIntVal = Lex.getAPSIntVal(); 3085 ID.Kind = ValID::t_APSInt; 3086 break; 3087 case lltok::APFloat: 3088 ID.APFloatVal = Lex.getAPFloatVal(); 3089 ID.Kind = ValID::t_APFloat; 3090 break; 3091 case lltok::kw_true: 3092 ID.ConstantVal = ConstantInt::getTrue(Context); 3093 ID.Kind = ValID::t_Constant; 3094 break; 3095 case lltok::kw_false: 3096 ID.ConstantVal = ConstantInt::getFalse(Context); 3097 ID.Kind = ValID::t_Constant; 3098 break; 3099 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 3100 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 3101 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 3102 case lltok::kw_none: ID.Kind = ValID::t_None; break; 3103 3104 case lltok::lbrace: { 3105 // ValID ::= '{' ConstVector '}' 3106 Lex.Lex(); 3107 SmallVector<Constant*, 16> Elts; 3108 if (ParseGlobalValueVector(Elts) || 3109 ParseToken(lltok::rbrace, "expected end of struct constant")) 3110 return true; 3111 3112 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3113 ID.UIntVal = Elts.size(); 3114 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3115 Elts.size() * sizeof(Elts[0])); 3116 ID.Kind = ValID::t_ConstantStruct; 3117 return false; 3118 } 3119 case lltok::less: { 3120 // ValID ::= '<' ConstVector '>' --> Vector. 3121 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 3122 Lex.Lex(); 3123 bool isPackedStruct = EatIfPresent(lltok::lbrace); 3124 3125 SmallVector<Constant*, 16> Elts; 3126 LocTy FirstEltLoc = Lex.getLoc(); 3127 if (ParseGlobalValueVector(Elts) || 3128 (isPackedStruct && 3129 ParseToken(lltok::rbrace, "expected end of packed struct")) || 3130 ParseToken(lltok::greater, "expected end of constant")) 3131 return true; 3132 3133 if (isPackedStruct) { 3134 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3135 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3136 Elts.size() * sizeof(Elts[0])); 3137 ID.UIntVal = Elts.size(); 3138 ID.Kind = ValID::t_PackedConstantStruct; 3139 return false; 3140 } 3141 3142 if (Elts.empty()) 3143 return Error(ID.Loc, "constant vector must not be empty"); 3144 3145 if (!Elts[0]->getType()->isIntegerTy() && 3146 !Elts[0]->getType()->isFloatingPointTy() && 3147 !Elts[0]->getType()->isPointerTy()) 3148 return Error(FirstEltLoc, 3149 "vector elements must have integer, pointer or floating point type"); 3150 3151 // Verify that all the vector elements have the same type. 3152 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 3153 if (Elts[i]->getType() != Elts[0]->getType()) 3154 return Error(FirstEltLoc, 3155 "vector element #" + Twine(i) + 3156 " is not of type '" + getTypeString(Elts[0]->getType())); 3157 3158 ID.ConstantVal = ConstantVector::get(Elts); 3159 ID.Kind = ValID::t_Constant; 3160 return false; 3161 } 3162 case lltok::lsquare: { // Array Constant 3163 Lex.Lex(); 3164 SmallVector<Constant*, 16> Elts; 3165 LocTy FirstEltLoc = Lex.getLoc(); 3166 if (ParseGlobalValueVector(Elts) || 3167 ParseToken(lltok::rsquare, "expected end of array constant")) 3168 return true; 3169 3170 // Handle empty element. 3171 if (Elts.empty()) { 3172 // Use undef instead of an array because it's inconvenient to determine 3173 // the element type at this point, there being no elements to examine. 3174 ID.Kind = ValID::t_EmptyArray; 3175 return false; 3176 } 3177 3178 if (!Elts[0]->getType()->isFirstClassType()) 3179 return Error(FirstEltLoc, "invalid array element type: " + 3180 getTypeString(Elts[0]->getType())); 3181 3182 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 3183 3184 // Verify all elements are correct type! 3185 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 3186 if (Elts[i]->getType() != Elts[0]->getType()) 3187 return Error(FirstEltLoc, 3188 "array element #" + Twine(i) + 3189 " is not of type '" + getTypeString(Elts[0]->getType())); 3190 } 3191 3192 ID.ConstantVal = ConstantArray::get(ATy, Elts); 3193 ID.Kind = ValID::t_Constant; 3194 return false; 3195 } 3196 case lltok::kw_c: // c "foo" 3197 Lex.Lex(); 3198 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 3199 false); 3200 if (ParseToken(lltok::StringConstant, "expected string")) return true; 3201 ID.Kind = ValID::t_Constant; 3202 return false; 3203 3204 case lltok::kw_asm: { 3205 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 3206 // STRINGCONSTANT 3207 bool HasSideEffect, AlignStack, AsmDialect; 3208 Lex.Lex(); 3209 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 3210 ParseOptionalToken(lltok::kw_alignstack, AlignStack) || 3211 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 3212 ParseStringConstant(ID.StrVal) || 3213 ParseToken(lltok::comma, "expected comma in inline asm expression") || 3214 ParseToken(lltok::StringConstant, "expected constraint string")) 3215 return true; 3216 ID.StrVal2 = Lex.getStrVal(); 3217 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) | 3218 (unsigned(AsmDialect)<<2); 3219 ID.Kind = ValID::t_InlineAsm; 3220 return false; 3221 } 3222 3223 case lltok::kw_blockaddress: { 3224 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 3225 Lex.Lex(); 3226 3227 ValID Fn, Label; 3228 3229 if (ParseToken(lltok::lparen, "expected '(' in block address expression") || 3230 ParseValID(Fn) || 3231 ParseToken(lltok::comma, "expected comma in block address expression")|| 3232 ParseValID(Label) || 3233 ParseToken(lltok::rparen, "expected ')' in block address expression")) 3234 return true; 3235 3236 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3237 return Error(Fn.Loc, "expected function name in blockaddress"); 3238 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 3239 return Error(Label.Loc, "expected basic block name in blockaddress"); 3240 3241 // Try to find the function (but skip it if it's forward-referenced). 3242 GlobalValue *GV = nullptr; 3243 if (Fn.Kind == ValID::t_GlobalID) { 3244 if (Fn.UIntVal < NumberedVals.size()) 3245 GV = NumberedVals[Fn.UIntVal]; 3246 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3247 GV = M->getNamedValue(Fn.StrVal); 3248 } 3249 Function *F = nullptr; 3250 if (GV) { 3251 // Confirm that it's actually a function with a definition. 3252 if (!isa<Function>(GV)) 3253 return Error(Fn.Loc, "expected function name in blockaddress"); 3254 F = cast<Function>(GV); 3255 if (F->isDeclaration()) 3256 return Error(Fn.Loc, "cannot take blockaddress inside a declaration"); 3257 } 3258 3259 if (!F) { 3260 // Make a global variable as a placeholder for this reference. 3261 GlobalValue *&FwdRef = 3262 ForwardRefBlockAddresses.insert(std::make_pair( 3263 std::move(Fn), 3264 std::map<ValID, GlobalValue *>())) 3265 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 3266 .first->second; 3267 if (!FwdRef) 3268 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 3269 GlobalValue::InternalLinkage, nullptr, ""); 3270 ID.ConstantVal = FwdRef; 3271 ID.Kind = ValID::t_Constant; 3272 return false; 3273 } 3274 3275 // We found the function; now find the basic block. Don't use PFS, since we 3276 // might be inside a constant expression. 3277 BasicBlock *BB; 3278 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 3279 if (Label.Kind == ValID::t_LocalID) 3280 BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc); 3281 else 3282 BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc); 3283 if (!BB) 3284 return Error(Label.Loc, "referenced value is not a basic block"); 3285 } else { 3286 if (Label.Kind == ValID::t_LocalID) 3287 return Error(Label.Loc, "cannot take address of numeric label after " 3288 "the function is defined"); 3289 BB = dyn_cast_or_null<BasicBlock>( 3290 F->getValueSymbolTable()->lookup(Label.StrVal)); 3291 if (!BB) 3292 return Error(Label.Loc, "referenced value is not a basic block"); 3293 } 3294 3295 ID.ConstantVal = BlockAddress::get(F, BB); 3296 ID.Kind = ValID::t_Constant; 3297 return false; 3298 } 3299 3300 case lltok::kw_trunc: 3301 case lltok::kw_zext: 3302 case lltok::kw_sext: 3303 case lltok::kw_fptrunc: 3304 case lltok::kw_fpext: 3305 case lltok::kw_bitcast: 3306 case lltok::kw_addrspacecast: 3307 case lltok::kw_uitofp: 3308 case lltok::kw_sitofp: 3309 case lltok::kw_fptoui: 3310 case lltok::kw_fptosi: 3311 case lltok::kw_inttoptr: 3312 case lltok::kw_ptrtoint: { 3313 unsigned Opc = Lex.getUIntVal(); 3314 Type *DestTy = nullptr; 3315 Constant *SrcVal; 3316 Lex.Lex(); 3317 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || 3318 ParseGlobalTypeAndValue(SrcVal) || 3319 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 3320 ParseType(DestTy) || 3321 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 3322 return true; 3323 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 3324 return Error(ID.Loc, "invalid cast opcode for cast from '" + 3325 getTypeString(SrcVal->getType()) + "' to '" + 3326 getTypeString(DestTy) + "'"); 3327 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 3328 SrcVal, DestTy); 3329 ID.Kind = ValID::t_Constant; 3330 return false; 3331 } 3332 case lltok::kw_extractvalue: { 3333 Lex.Lex(); 3334 Constant *Val; 3335 SmallVector<unsigned, 4> Indices; 3336 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| 3337 ParseGlobalTypeAndValue(Val) || 3338 ParseIndexList(Indices) || 3339 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 3340 return true; 3341 3342 if (!Val->getType()->isAggregateType()) 3343 return Error(ID.Loc, "extractvalue operand must be aggregate type"); 3344 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 3345 return Error(ID.Loc, "invalid indices for extractvalue"); 3346 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 3347 ID.Kind = ValID::t_Constant; 3348 return false; 3349 } 3350 case lltok::kw_insertvalue: { 3351 Lex.Lex(); 3352 Constant *Val0, *Val1; 3353 SmallVector<unsigned, 4> Indices; 3354 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| 3355 ParseGlobalTypeAndValue(Val0) || 3356 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| 3357 ParseGlobalTypeAndValue(Val1) || 3358 ParseIndexList(Indices) || 3359 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 3360 return true; 3361 if (!Val0->getType()->isAggregateType()) 3362 return Error(ID.Loc, "insertvalue operand must be aggregate type"); 3363 Type *IndexedType = 3364 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 3365 if (!IndexedType) 3366 return Error(ID.Loc, "invalid indices for insertvalue"); 3367 if (IndexedType != Val1->getType()) 3368 return Error(ID.Loc, "insertvalue operand and field disagree in type: '" + 3369 getTypeString(Val1->getType()) + 3370 "' instead of '" + getTypeString(IndexedType) + 3371 "'"); 3372 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 3373 ID.Kind = ValID::t_Constant; 3374 return false; 3375 } 3376 case lltok::kw_icmp: 3377 case lltok::kw_fcmp: { 3378 unsigned PredVal, Opc = Lex.getUIntVal(); 3379 Constant *Val0, *Val1; 3380 Lex.Lex(); 3381 if (ParseCmpPredicate(PredVal, Opc) || 3382 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || 3383 ParseGlobalTypeAndValue(Val0) || 3384 ParseToken(lltok::comma, "expected comma in compare constantexpr") || 3385 ParseGlobalTypeAndValue(Val1) || 3386 ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) 3387 return true; 3388 3389 if (Val0->getType() != Val1->getType()) 3390 return Error(ID.Loc, "compare operands must have the same type"); 3391 3392 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 3393 3394 if (Opc == Instruction::FCmp) { 3395 if (!Val0->getType()->isFPOrFPVectorTy()) 3396 return Error(ID.Loc, "fcmp requires floating point operands"); 3397 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3398 } else { 3399 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3400 if (!Val0->getType()->isIntOrIntVectorTy() && 3401 !Val0->getType()->isPtrOrPtrVectorTy()) 3402 return Error(ID.Loc, "icmp requires pointer or integer operands"); 3403 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3404 } 3405 ID.Kind = ValID::t_Constant; 3406 return false; 3407 } 3408 3409 // Unary Operators. 3410 case lltok::kw_fneg: { 3411 unsigned Opc = Lex.getUIntVal(); 3412 Constant *Val; 3413 Lex.Lex(); 3414 if (ParseToken(lltok::lparen, "expected '(' in unary constantexpr") || 3415 ParseGlobalTypeAndValue(Val) || 3416 ParseToken(lltok::rparen, "expected ')' in unary constantexpr")) 3417 return true; 3418 3419 // Check that the type is valid for the operator. 3420 switch (Opc) { 3421 case Instruction::FNeg: 3422 if (!Val->getType()->isFPOrFPVectorTy()) 3423 return Error(ID.Loc, "constexpr requires fp operands"); 3424 break; 3425 default: llvm_unreachable("Unknown unary operator!"); 3426 } 3427 unsigned Flags = 0; 3428 Constant *C = ConstantExpr::get(Opc, Val, Flags); 3429 ID.ConstantVal = C; 3430 ID.Kind = ValID::t_Constant; 3431 return false; 3432 } 3433 // Binary Operators. 3434 case lltok::kw_add: 3435 case lltok::kw_fadd: 3436 case lltok::kw_sub: 3437 case lltok::kw_fsub: 3438 case lltok::kw_mul: 3439 case lltok::kw_fmul: 3440 case lltok::kw_udiv: 3441 case lltok::kw_sdiv: 3442 case lltok::kw_fdiv: 3443 case lltok::kw_urem: 3444 case lltok::kw_srem: 3445 case lltok::kw_frem: 3446 case lltok::kw_shl: 3447 case lltok::kw_lshr: 3448 case lltok::kw_ashr: { 3449 bool NUW = false; 3450 bool NSW = false; 3451 bool Exact = false; 3452 unsigned Opc = Lex.getUIntVal(); 3453 Constant *Val0, *Val1; 3454 Lex.Lex(); 3455 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3456 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3457 if (EatIfPresent(lltok::kw_nuw)) 3458 NUW = true; 3459 if (EatIfPresent(lltok::kw_nsw)) { 3460 NSW = true; 3461 if (EatIfPresent(lltok::kw_nuw)) 3462 NUW = true; 3463 } 3464 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3465 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3466 if (EatIfPresent(lltok::kw_exact)) 3467 Exact = true; 3468 } 3469 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3470 ParseGlobalTypeAndValue(Val0) || 3471 ParseToken(lltok::comma, "expected comma in binary constantexpr") || 3472 ParseGlobalTypeAndValue(Val1) || 3473 ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3474 return true; 3475 if (Val0->getType() != Val1->getType()) 3476 return Error(ID.Loc, "operands of constexpr must have same type"); 3477 // Check that the type is valid for the operator. 3478 switch (Opc) { 3479 case Instruction::Add: 3480 case Instruction::Sub: 3481 case Instruction::Mul: 3482 case Instruction::UDiv: 3483 case Instruction::SDiv: 3484 case Instruction::URem: 3485 case Instruction::SRem: 3486 case Instruction::Shl: 3487 case Instruction::AShr: 3488 case Instruction::LShr: 3489 if (!Val0->getType()->isIntOrIntVectorTy()) 3490 return Error(ID.Loc, "constexpr requires integer operands"); 3491 break; 3492 case Instruction::FAdd: 3493 case Instruction::FSub: 3494 case Instruction::FMul: 3495 case Instruction::FDiv: 3496 case Instruction::FRem: 3497 if (!Val0->getType()->isFPOrFPVectorTy()) 3498 return Error(ID.Loc, "constexpr requires fp operands"); 3499 break; 3500 default: llvm_unreachable("Unknown binary operator!"); 3501 } 3502 unsigned Flags = 0; 3503 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3504 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3505 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3506 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3507 ID.ConstantVal = C; 3508 ID.Kind = ValID::t_Constant; 3509 return false; 3510 } 3511 3512 // Logical Operations 3513 case lltok::kw_and: 3514 case lltok::kw_or: 3515 case lltok::kw_xor: { 3516 unsigned Opc = Lex.getUIntVal(); 3517 Constant *Val0, *Val1; 3518 Lex.Lex(); 3519 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3520 ParseGlobalTypeAndValue(Val0) || 3521 ParseToken(lltok::comma, "expected comma in logical constantexpr") || 3522 ParseGlobalTypeAndValue(Val1) || 3523 ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3524 return true; 3525 if (Val0->getType() != Val1->getType()) 3526 return Error(ID.Loc, "operands of constexpr must have same type"); 3527 if (!Val0->getType()->isIntOrIntVectorTy()) 3528 return Error(ID.Loc, 3529 "constexpr requires integer or integer vector operands"); 3530 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3531 ID.Kind = ValID::t_Constant; 3532 return false; 3533 } 3534 3535 case lltok::kw_getelementptr: 3536 case lltok::kw_shufflevector: 3537 case lltok::kw_insertelement: 3538 case lltok::kw_extractelement: 3539 case lltok::kw_select: { 3540 unsigned Opc = Lex.getUIntVal(); 3541 SmallVector<Constant*, 16> Elts; 3542 bool InBounds = false; 3543 Type *Ty; 3544 Lex.Lex(); 3545 3546 if (Opc == Instruction::GetElementPtr) 3547 InBounds = EatIfPresent(lltok::kw_inbounds); 3548 3549 if (ParseToken(lltok::lparen, "expected '(' in constantexpr")) 3550 return true; 3551 3552 LocTy ExplicitTypeLoc = Lex.getLoc(); 3553 if (Opc == Instruction::GetElementPtr) { 3554 if (ParseType(Ty) || 3555 ParseToken(lltok::comma, "expected comma after getelementptr's type")) 3556 return true; 3557 } 3558 3559 Optional<unsigned> InRangeOp; 3560 if (ParseGlobalValueVector( 3561 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) || 3562 ParseToken(lltok::rparen, "expected ')' in constantexpr")) 3563 return true; 3564 3565 if (Opc == Instruction::GetElementPtr) { 3566 if (Elts.size() == 0 || 3567 !Elts[0]->getType()->isPtrOrPtrVectorTy()) 3568 return Error(ID.Loc, "base of getelementptr must be a pointer"); 3569 3570 Type *BaseType = Elts[0]->getType(); 3571 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3572 if (Ty != BasePointerType->getElementType()) 3573 return Error( 3574 ExplicitTypeLoc, 3575 "explicit pointee type doesn't match operand's pointee type"); 3576 3577 unsigned GEPWidth = 3578 BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0; 3579 3580 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3581 for (Constant *Val : Indices) { 3582 Type *ValTy = Val->getType(); 3583 if (!ValTy->isIntOrIntVectorTy()) 3584 return Error(ID.Loc, "getelementptr index must be an integer"); 3585 if (ValTy->isVectorTy()) { 3586 unsigned ValNumEl = ValTy->getVectorNumElements(); 3587 if (GEPWidth && (ValNumEl != GEPWidth)) 3588 return Error( 3589 ID.Loc, 3590 "getelementptr vector index has a wrong number of elements"); 3591 // GEPWidth may have been unknown because the base is a scalar, 3592 // but it is known now. 3593 GEPWidth = ValNumEl; 3594 } 3595 } 3596 3597 SmallPtrSet<Type*, 4> Visited; 3598 if (!Indices.empty() && !Ty->isSized(&Visited)) 3599 return Error(ID.Loc, "base element of getelementptr must be sized"); 3600 3601 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3602 return Error(ID.Loc, "invalid getelementptr indices"); 3603 3604 if (InRangeOp) { 3605 if (*InRangeOp == 0) 3606 return Error(ID.Loc, 3607 "inrange keyword may not appear on pointer operand"); 3608 --*InRangeOp; 3609 } 3610 3611 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, 3612 InBounds, InRangeOp); 3613 } else if (Opc == Instruction::Select) { 3614 if (Elts.size() != 3) 3615 return Error(ID.Loc, "expected three operands to select"); 3616 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3617 Elts[2])) 3618 return Error(ID.Loc, Reason); 3619 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3620 } else if (Opc == Instruction::ShuffleVector) { 3621 if (Elts.size() != 3) 3622 return Error(ID.Loc, "expected three operands to shufflevector"); 3623 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3624 return Error(ID.Loc, "invalid operands to shufflevector"); 3625 ID.ConstantVal = 3626 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); 3627 } else if (Opc == Instruction::ExtractElement) { 3628 if (Elts.size() != 2) 3629 return Error(ID.Loc, "expected two operands to extractelement"); 3630 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3631 return Error(ID.Loc, "invalid extractelement operands"); 3632 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3633 } else { 3634 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3635 if (Elts.size() != 3) 3636 return Error(ID.Loc, "expected three operands to insertelement"); 3637 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3638 return Error(ID.Loc, "invalid insertelement operands"); 3639 ID.ConstantVal = 3640 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3641 } 3642 3643 ID.Kind = ValID::t_Constant; 3644 return false; 3645 } 3646 } 3647 3648 Lex.Lex(); 3649 return false; 3650 } 3651 3652 /// ParseGlobalValue - Parse a global value with the specified type. 3653 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) { 3654 C = nullptr; 3655 ValID ID; 3656 Value *V = nullptr; 3657 bool Parsed = ParseValID(ID) || 3658 ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false); 3659 if (V && !(C = dyn_cast<Constant>(V))) 3660 return Error(ID.Loc, "global values must be constants"); 3661 return Parsed; 3662 } 3663 3664 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { 3665 Type *Ty = nullptr; 3666 return ParseType(Ty) || 3667 ParseGlobalValue(Ty, V); 3668 } 3669 3670 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3671 C = nullptr; 3672 3673 LocTy KwLoc = Lex.getLoc(); 3674 if (!EatIfPresent(lltok::kw_comdat)) 3675 return false; 3676 3677 if (EatIfPresent(lltok::lparen)) { 3678 if (Lex.getKind() != lltok::ComdatVar) 3679 return TokError("expected comdat variable"); 3680 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3681 Lex.Lex(); 3682 if (ParseToken(lltok::rparen, "expected ')' after comdat var")) 3683 return true; 3684 } else { 3685 if (GlobalName.empty()) 3686 return TokError("comdat cannot be unnamed"); 3687 C = getComdat(GlobalName, KwLoc); 3688 } 3689 3690 return false; 3691 } 3692 3693 /// ParseGlobalValueVector 3694 /// ::= /*empty*/ 3695 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)* 3696 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts, 3697 Optional<unsigned> *InRangeOp) { 3698 // Empty list. 3699 if (Lex.getKind() == lltok::rbrace || 3700 Lex.getKind() == lltok::rsquare || 3701 Lex.getKind() == lltok::greater || 3702 Lex.getKind() == lltok::rparen) 3703 return false; 3704 3705 do { 3706 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange)) 3707 *InRangeOp = Elts.size(); 3708 3709 Constant *C; 3710 if (ParseGlobalTypeAndValue(C)) return true; 3711 Elts.push_back(C); 3712 } while (EatIfPresent(lltok::comma)); 3713 3714 return false; 3715 } 3716 3717 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) { 3718 SmallVector<Metadata *, 16> Elts; 3719 if (ParseMDNodeVector(Elts)) 3720 return true; 3721 3722 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3723 return false; 3724 } 3725 3726 /// MDNode: 3727 /// ::= !{ ... } 3728 /// ::= !7 3729 /// ::= !DILocation(...) 3730 bool LLParser::ParseMDNode(MDNode *&N) { 3731 if (Lex.getKind() == lltok::MetadataVar) 3732 return ParseSpecializedMDNode(N); 3733 3734 return ParseToken(lltok::exclaim, "expected '!' here") || 3735 ParseMDNodeTail(N); 3736 } 3737 3738 bool LLParser::ParseMDNodeTail(MDNode *&N) { 3739 // !{ ... } 3740 if (Lex.getKind() == lltok::lbrace) 3741 return ParseMDTuple(N); 3742 3743 // !42 3744 return ParseMDNodeID(N); 3745 } 3746 3747 namespace { 3748 3749 /// Structure to represent an optional metadata field. 3750 template <class FieldTy> struct MDFieldImpl { 3751 typedef MDFieldImpl ImplTy; 3752 FieldTy Val; 3753 bool Seen; 3754 3755 void assign(FieldTy Val) { 3756 Seen = true; 3757 this->Val = std::move(Val); 3758 } 3759 3760 explicit MDFieldImpl(FieldTy Default) 3761 : Val(std::move(Default)), Seen(false) {} 3762 }; 3763 3764 /// Structure to represent an optional metadata field that 3765 /// can be of either type (A or B) and encapsulates the 3766 /// MD<typeofA>Field and MD<typeofB>Field structs, so not 3767 /// to reimplement the specifics for representing each Field. 3768 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl { 3769 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy; 3770 FieldTypeA A; 3771 FieldTypeB B; 3772 bool Seen; 3773 3774 enum { 3775 IsInvalid = 0, 3776 IsTypeA = 1, 3777 IsTypeB = 2 3778 } WhatIs; 3779 3780 void assign(FieldTypeA A) { 3781 Seen = true; 3782 this->A = std::move(A); 3783 WhatIs = IsTypeA; 3784 } 3785 3786 void assign(FieldTypeB B) { 3787 Seen = true; 3788 this->B = std::move(B); 3789 WhatIs = IsTypeB; 3790 } 3791 3792 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB) 3793 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false), 3794 WhatIs(IsInvalid) {} 3795 }; 3796 3797 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 3798 uint64_t Max; 3799 3800 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 3801 : ImplTy(Default), Max(Max) {} 3802 }; 3803 3804 struct LineField : public MDUnsignedField { 3805 LineField() : MDUnsignedField(0, UINT32_MAX) {} 3806 }; 3807 3808 struct ColumnField : public MDUnsignedField { 3809 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 3810 }; 3811 3812 struct DwarfTagField : public MDUnsignedField { 3813 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 3814 DwarfTagField(dwarf::Tag DefaultTag) 3815 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 3816 }; 3817 3818 struct DwarfMacinfoTypeField : public MDUnsignedField { 3819 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 3820 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 3821 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 3822 }; 3823 3824 struct DwarfAttEncodingField : public MDUnsignedField { 3825 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 3826 }; 3827 3828 struct DwarfVirtualityField : public MDUnsignedField { 3829 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 3830 }; 3831 3832 struct DwarfLangField : public MDUnsignedField { 3833 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 3834 }; 3835 3836 struct DwarfCCField : public MDUnsignedField { 3837 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 3838 }; 3839 3840 struct EmissionKindField : public MDUnsignedField { 3841 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 3842 }; 3843 3844 struct NameTableKindField : public MDUnsignedField { 3845 NameTableKindField() 3846 : MDUnsignedField( 3847 0, (unsigned) 3848 DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {} 3849 }; 3850 3851 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 3852 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 3853 }; 3854 3855 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> { 3856 DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {} 3857 }; 3858 3859 struct MDSignedField : public MDFieldImpl<int64_t> { 3860 int64_t Min; 3861 int64_t Max; 3862 3863 MDSignedField(int64_t Default = 0) 3864 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 3865 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 3866 : ImplTy(Default), Min(Min), Max(Max) {} 3867 }; 3868 3869 struct MDBoolField : public MDFieldImpl<bool> { 3870 MDBoolField(bool Default = false) : ImplTy(Default) {} 3871 }; 3872 3873 struct MDField : public MDFieldImpl<Metadata *> { 3874 bool AllowNull; 3875 3876 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 3877 }; 3878 3879 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> { 3880 MDConstant() : ImplTy(nullptr) {} 3881 }; 3882 3883 struct MDStringField : public MDFieldImpl<MDString *> { 3884 bool AllowEmpty; 3885 MDStringField(bool AllowEmpty = true) 3886 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 3887 }; 3888 3889 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 3890 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 3891 }; 3892 3893 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> { 3894 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {} 3895 }; 3896 3897 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> { 3898 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true) 3899 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {} 3900 3901 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max, 3902 bool AllowNull = true) 3903 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {} 3904 3905 bool isMDSignedField() const { return WhatIs == IsTypeA; } 3906 bool isMDField() const { return WhatIs == IsTypeB; } 3907 int64_t getMDSignedValue() const { 3908 assert(isMDSignedField() && "Wrong field type"); 3909 return A.Val; 3910 } 3911 Metadata *getMDFieldValue() const { 3912 assert(isMDField() && "Wrong field type"); 3913 return B.Val; 3914 } 3915 }; 3916 3917 struct MDSignedOrUnsignedField 3918 : MDEitherFieldImpl<MDSignedField, MDUnsignedField> { 3919 MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {} 3920 3921 bool isMDSignedField() const { return WhatIs == IsTypeA; } 3922 bool isMDUnsignedField() const { return WhatIs == IsTypeB; } 3923 int64_t getMDSignedValue() const { 3924 assert(isMDSignedField() && "Wrong field type"); 3925 return A.Val; 3926 } 3927 uint64_t getMDUnsignedValue() const { 3928 assert(isMDUnsignedField() && "Wrong field type"); 3929 return B.Val; 3930 } 3931 }; 3932 3933 } // end anonymous namespace 3934 3935 namespace llvm { 3936 3937 template <> 3938 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3939 MDUnsignedField &Result) { 3940 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 3941 return TokError("expected unsigned integer"); 3942 3943 auto &U = Lex.getAPSIntVal(); 3944 if (U.ugt(Result.Max)) 3945 return TokError("value for '" + Name + "' too large, limit is " + 3946 Twine(Result.Max)); 3947 Result.assign(U.getZExtValue()); 3948 assert(Result.Val <= Result.Max && "Expected value in range"); 3949 Lex.Lex(); 3950 return false; 3951 } 3952 3953 template <> 3954 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) { 3955 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3956 } 3957 template <> 3958 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 3959 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3960 } 3961 3962 template <> 3963 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 3964 if (Lex.getKind() == lltok::APSInt) 3965 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3966 3967 if (Lex.getKind() != lltok::DwarfTag) 3968 return TokError("expected DWARF tag"); 3969 3970 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 3971 if (Tag == dwarf::DW_TAG_invalid) 3972 return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 3973 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 3974 3975 Result.assign(Tag); 3976 Lex.Lex(); 3977 return false; 3978 } 3979 3980 template <> 3981 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3982 DwarfMacinfoTypeField &Result) { 3983 if (Lex.getKind() == lltok::APSInt) 3984 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3985 3986 if (Lex.getKind() != lltok::DwarfMacinfo) 3987 return TokError("expected DWARF macinfo type"); 3988 3989 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 3990 if (Macinfo == dwarf::DW_MACINFO_invalid) 3991 return TokError( 3992 "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'"); 3993 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 3994 3995 Result.assign(Macinfo); 3996 Lex.Lex(); 3997 return false; 3998 } 3999 4000 template <> 4001 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4002 DwarfVirtualityField &Result) { 4003 if (Lex.getKind() == lltok::APSInt) 4004 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4005 4006 if (Lex.getKind() != lltok::DwarfVirtuality) 4007 return TokError("expected DWARF virtuality code"); 4008 4009 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 4010 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 4011 return TokError("invalid DWARF virtuality code" + Twine(" '") + 4012 Lex.getStrVal() + "'"); 4013 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 4014 Result.assign(Virtuality); 4015 Lex.Lex(); 4016 return false; 4017 } 4018 4019 template <> 4020 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 4021 if (Lex.getKind() == lltok::APSInt) 4022 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4023 4024 if (Lex.getKind() != lltok::DwarfLang) 4025 return TokError("expected DWARF language"); 4026 4027 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 4028 if (!Lang) 4029 return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 4030 "'"); 4031 assert(Lang <= Result.Max && "Expected valid DWARF language"); 4032 Result.assign(Lang); 4033 Lex.Lex(); 4034 return false; 4035 } 4036 4037 template <> 4038 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 4039 if (Lex.getKind() == lltok::APSInt) 4040 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4041 4042 if (Lex.getKind() != lltok::DwarfCC) 4043 return TokError("expected DWARF calling convention"); 4044 4045 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 4046 if (!CC) 4047 return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() + 4048 "'"); 4049 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 4050 Result.assign(CC); 4051 Lex.Lex(); 4052 return false; 4053 } 4054 4055 template <> 4056 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) { 4057 if (Lex.getKind() == lltok::APSInt) 4058 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4059 4060 if (Lex.getKind() != lltok::EmissionKind) 4061 return TokError("expected emission kind"); 4062 4063 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 4064 if (!Kind) 4065 return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 4066 "'"); 4067 assert(*Kind <= Result.Max && "Expected valid emission kind"); 4068 Result.assign(*Kind); 4069 Lex.Lex(); 4070 return false; 4071 } 4072 4073 template <> 4074 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4075 NameTableKindField &Result) { 4076 if (Lex.getKind() == lltok::APSInt) 4077 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4078 4079 if (Lex.getKind() != lltok::NameTableKind) 4080 return TokError("expected nameTable kind"); 4081 4082 auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal()); 4083 if (!Kind) 4084 return TokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() + 4085 "'"); 4086 assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind"); 4087 Result.assign((unsigned)*Kind); 4088 Lex.Lex(); 4089 return false; 4090 } 4091 4092 template <> 4093 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4094 DwarfAttEncodingField &Result) { 4095 if (Lex.getKind() == lltok::APSInt) 4096 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4097 4098 if (Lex.getKind() != lltok::DwarfAttEncoding) 4099 return TokError("expected DWARF type attribute encoding"); 4100 4101 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 4102 if (!Encoding) 4103 return TokError("invalid DWARF type attribute encoding" + Twine(" '") + 4104 Lex.getStrVal() + "'"); 4105 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 4106 Result.assign(Encoding); 4107 Lex.Lex(); 4108 return false; 4109 } 4110 4111 /// DIFlagField 4112 /// ::= uint32 4113 /// ::= DIFlagVector 4114 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 4115 template <> 4116 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 4117 4118 // Parser for a single flag. 4119 auto parseFlag = [&](DINode::DIFlags &Val) { 4120 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4121 uint32_t TempVal = static_cast<uint32_t>(Val); 4122 bool Res = ParseUInt32(TempVal); 4123 Val = static_cast<DINode::DIFlags>(TempVal); 4124 return Res; 4125 } 4126 4127 if (Lex.getKind() != lltok::DIFlag) 4128 return TokError("expected debug info flag"); 4129 4130 Val = DINode::getFlag(Lex.getStrVal()); 4131 if (!Val) 4132 return TokError(Twine("invalid debug info flag flag '") + 4133 Lex.getStrVal() + "'"); 4134 Lex.Lex(); 4135 return false; 4136 }; 4137 4138 // Parse the flags and combine them together. 4139 DINode::DIFlags Combined = DINode::FlagZero; 4140 do { 4141 DINode::DIFlags Val; 4142 if (parseFlag(Val)) 4143 return true; 4144 Combined |= Val; 4145 } while (EatIfPresent(lltok::bar)); 4146 4147 Result.assign(Combined); 4148 return false; 4149 } 4150 4151 /// DISPFlagField 4152 /// ::= uint32 4153 /// ::= DISPFlagVector 4154 /// ::= DISPFlagVector '|' DISPFlag* '|' uint32 4155 template <> 4156 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) { 4157 4158 // Parser for a single flag. 4159 auto parseFlag = [&](DISubprogram::DISPFlags &Val) { 4160 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4161 uint32_t TempVal = static_cast<uint32_t>(Val); 4162 bool Res = ParseUInt32(TempVal); 4163 Val = static_cast<DISubprogram::DISPFlags>(TempVal); 4164 return Res; 4165 } 4166 4167 if (Lex.getKind() != lltok::DISPFlag) 4168 return TokError("expected debug info flag"); 4169 4170 Val = DISubprogram::getFlag(Lex.getStrVal()); 4171 if (!Val) 4172 return TokError(Twine("invalid subprogram debug info flag '") + 4173 Lex.getStrVal() + "'"); 4174 Lex.Lex(); 4175 return false; 4176 }; 4177 4178 // Parse the flags and combine them together. 4179 DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero; 4180 do { 4181 DISubprogram::DISPFlags Val; 4182 if (parseFlag(Val)) 4183 return true; 4184 Combined |= Val; 4185 } while (EatIfPresent(lltok::bar)); 4186 4187 Result.assign(Combined); 4188 return false; 4189 } 4190 4191 template <> 4192 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4193 MDSignedField &Result) { 4194 if (Lex.getKind() != lltok::APSInt) 4195 return TokError("expected signed integer"); 4196 4197 auto &S = Lex.getAPSIntVal(); 4198 if (S < Result.Min) 4199 return TokError("value for '" + Name + "' too small, limit is " + 4200 Twine(Result.Min)); 4201 if (S > Result.Max) 4202 return TokError("value for '" + Name + "' too large, limit is " + 4203 Twine(Result.Max)); 4204 Result.assign(S.getExtValue()); 4205 assert(Result.Val >= Result.Min && "Expected value in range"); 4206 assert(Result.Val <= Result.Max && "Expected value in range"); 4207 Lex.Lex(); 4208 return false; 4209 } 4210 4211 template <> 4212 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 4213 switch (Lex.getKind()) { 4214 default: 4215 return TokError("expected 'true' or 'false'"); 4216 case lltok::kw_true: 4217 Result.assign(true); 4218 break; 4219 case lltok::kw_false: 4220 Result.assign(false); 4221 break; 4222 } 4223 Lex.Lex(); 4224 return false; 4225 } 4226 4227 template <> 4228 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) { 4229 if (Lex.getKind() == lltok::kw_null) { 4230 if (!Result.AllowNull) 4231 return TokError("'" + Name + "' cannot be null"); 4232 Lex.Lex(); 4233 Result.assign(nullptr); 4234 return false; 4235 } 4236 4237 Metadata *MD; 4238 if (ParseMetadata(MD, nullptr)) 4239 return true; 4240 4241 Result.assign(MD); 4242 return false; 4243 } 4244 4245 template <> 4246 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4247 MDSignedOrMDField &Result) { 4248 // Try to parse a signed int. 4249 if (Lex.getKind() == lltok::APSInt) { 4250 MDSignedField Res = Result.A; 4251 if (!ParseMDField(Loc, Name, Res)) { 4252 Result.assign(Res); 4253 return false; 4254 } 4255 return true; 4256 } 4257 4258 // Otherwise, try to parse as an MDField. 4259 MDField Res = Result.B; 4260 if (!ParseMDField(Loc, Name, Res)) { 4261 Result.assign(Res); 4262 return false; 4263 } 4264 4265 return true; 4266 } 4267 4268 template <> 4269 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4270 MDSignedOrUnsignedField &Result) { 4271 if (Lex.getKind() != lltok::APSInt) 4272 return false; 4273 4274 if (Lex.getAPSIntVal().isSigned()) { 4275 MDSignedField Res = Result.A; 4276 if (ParseMDField(Loc, Name, Res)) 4277 return true; 4278 Result.assign(Res); 4279 return false; 4280 } 4281 4282 MDUnsignedField Res = Result.B; 4283 if (ParseMDField(Loc, Name, Res)) 4284 return true; 4285 Result.assign(Res); 4286 return false; 4287 } 4288 4289 template <> 4290 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 4291 LocTy ValueLoc = Lex.getLoc(); 4292 std::string S; 4293 if (ParseStringConstant(S)) 4294 return true; 4295 4296 if (!Result.AllowEmpty && S.empty()) 4297 return Error(ValueLoc, "'" + Name + "' cannot be empty"); 4298 4299 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 4300 return false; 4301 } 4302 4303 template <> 4304 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 4305 SmallVector<Metadata *, 4> MDs; 4306 if (ParseMDNodeVector(MDs)) 4307 return true; 4308 4309 Result.assign(std::move(MDs)); 4310 return false; 4311 } 4312 4313 template <> 4314 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4315 ChecksumKindField &Result) { 4316 Optional<DIFile::ChecksumKind> CSKind = 4317 DIFile::getChecksumKind(Lex.getStrVal()); 4318 4319 if (Lex.getKind() != lltok::ChecksumKind || !CSKind) 4320 return TokError( 4321 "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'"); 4322 4323 Result.assign(*CSKind); 4324 Lex.Lex(); 4325 return false; 4326 } 4327 4328 } // end namespace llvm 4329 4330 template <class ParserTy> 4331 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) { 4332 do { 4333 if (Lex.getKind() != lltok::LabelStr) 4334 return TokError("expected field label here"); 4335 4336 if (parseField()) 4337 return true; 4338 } while (EatIfPresent(lltok::comma)); 4339 4340 return false; 4341 } 4342 4343 template <class ParserTy> 4344 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) { 4345 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4346 Lex.Lex(); 4347 4348 if (ParseToken(lltok::lparen, "expected '(' here")) 4349 return true; 4350 if (Lex.getKind() != lltok::rparen) 4351 if (ParseMDFieldsImplBody(parseField)) 4352 return true; 4353 4354 ClosingLoc = Lex.getLoc(); 4355 return ParseToken(lltok::rparen, "expected ')' here"); 4356 } 4357 4358 template <class FieldTy> 4359 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) { 4360 if (Result.Seen) 4361 return TokError("field '" + Name + "' cannot be specified more than once"); 4362 4363 LocTy Loc = Lex.getLoc(); 4364 Lex.Lex(); 4365 return ParseMDField(Loc, Name, Result); 4366 } 4367 4368 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 4369 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4370 4371 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 4372 if (Lex.getStrVal() == #CLASS) \ 4373 return Parse##CLASS(N, IsDistinct); 4374 #include "llvm/IR/Metadata.def" 4375 4376 return TokError("expected metadata type"); 4377 } 4378 4379 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 4380 #define NOP_FIELD(NAME, TYPE, INIT) 4381 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 4382 if (!NAME.Seen) \ 4383 return Error(ClosingLoc, "missing required field '" #NAME "'"); 4384 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 4385 if (Lex.getStrVal() == #NAME) \ 4386 return ParseMDField(#NAME, NAME); 4387 #define PARSE_MD_FIELDS() \ 4388 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 4389 do { \ 4390 LocTy ClosingLoc; \ 4391 if (ParseMDFieldsImpl([&]() -> bool { \ 4392 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 4393 return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \ 4394 }, ClosingLoc)) \ 4395 return true; \ 4396 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 4397 } while (false) 4398 #define GET_OR_DISTINCT(CLASS, ARGS) \ 4399 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 4400 4401 /// ParseDILocationFields: 4402 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6, 4403 /// isImplicitCode: true) 4404 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) { 4405 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4406 OPTIONAL(line, LineField, ); \ 4407 OPTIONAL(column, ColumnField, ); \ 4408 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4409 OPTIONAL(inlinedAt, MDField, ); \ 4410 OPTIONAL(isImplicitCode, MDBoolField, (false)); 4411 PARSE_MD_FIELDS(); 4412 #undef VISIT_MD_FIELDS 4413 4414 Result = 4415 GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val, 4416 inlinedAt.Val, isImplicitCode.Val)); 4417 return false; 4418 } 4419 4420 /// ParseGenericDINode: 4421 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 4422 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) { 4423 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4424 REQUIRED(tag, DwarfTagField, ); \ 4425 OPTIONAL(header, MDStringField, ); \ 4426 OPTIONAL(operands, MDFieldList, ); 4427 PARSE_MD_FIELDS(); 4428 #undef VISIT_MD_FIELDS 4429 4430 Result = GET_OR_DISTINCT(GenericDINode, 4431 (Context, tag.Val, header.Val, operands.Val)); 4432 return false; 4433 } 4434 4435 /// ParseDISubrange: 4436 /// ::= !DISubrange(count: 30, lowerBound: 2) 4437 /// ::= !DISubrange(count: !node, lowerBound: 2) 4438 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) { 4439 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4440 REQUIRED(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \ 4441 OPTIONAL(lowerBound, MDSignedField, ); 4442 PARSE_MD_FIELDS(); 4443 #undef VISIT_MD_FIELDS 4444 4445 if (count.isMDSignedField()) 4446 Result = GET_OR_DISTINCT( 4447 DISubrange, (Context, count.getMDSignedValue(), lowerBound.Val)); 4448 else if (count.isMDField()) 4449 Result = GET_OR_DISTINCT( 4450 DISubrange, (Context, count.getMDFieldValue(), lowerBound.Val)); 4451 else 4452 return true; 4453 4454 return false; 4455 } 4456 4457 /// ParseDIEnumerator: 4458 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind") 4459 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) { 4460 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4461 REQUIRED(name, MDStringField, ); \ 4462 REQUIRED(value, MDSignedOrUnsignedField, ); \ 4463 OPTIONAL(isUnsigned, MDBoolField, (false)); 4464 PARSE_MD_FIELDS(); 4465 #undef VISIT_MD_FIELDS 4466 4467 if (isUnsigned.Val && value.isMDSignedField()) 4468 return TokError("unsigned enumerator with negative value"); 4469 4470 int64_t Value = value.isMDSignedField() 4471 ? value.getMDSignedValue() 4472 : static_cast<int64_t>(value.getMDUnsignedValue()); 4473 Result = 4474 GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val)); 4475 4476 return false; 4477 } 4478 4479 /// ParseDIBasicType: 4480 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32, 4481 /// encoding: DW_ATE_encoding, flags: 0) 4482 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) { 4483 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4484 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 4485 OPTIONAL(name, MDStringField, ); \ 4486 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4487 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4488 OPTIONAL(encoding, DwarfAttEncodingField, ); \ 4489 OPTIONAL(flags, DIFlagField, ); 4490 PARSE_MD_FIELDS(); 4491 #undef VISIT_MD_FIELDS 4492 4493 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 4494 align.Val, encoding.Val, flags.Val)); 4495 return false; 4496 } 4497 4498 /// ParseDIDerivedType: 4499 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 4500 /// line: 7, scope: !1, baseType: !2, size: 32, 4501 /// align: 32, offset: 0, flags: 0, extraData: !3, 4502 /// dwarfAddressSpace: 3) 4503 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) { 4504 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4505 REQUIRED(tag, DwarfTagField, ); \ 4506 OPTIONAL(name, MDStringField, ); \ 4507 OPTIONAL(file, MDField, ); \ 4508 OPTIONAL(line, LineField, ); \ 4509 OPTIONAL(scope, MDField, ); \ 4510 REQUIRED(baseType, MDField, ); \ 4511 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4512 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4513 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4514 OPTIONAL(flags, DIFlagField, ); \ 4515 OPTIONAL(extraData, MDField, ); \ 4516 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); 4517 PARSE_MD_FIELDS(); 4518 #undef VISIT_MD_FIELDS 4519 4520 Optional<unsigned> DWARFAddressSpace; 4521 if (dwarfAddressSpace.Val != UINT32_MAX) 4522 DWARFAddressSpace = dwarfAddressSpace.Val; 4523 4524 Result = GET_OR_DISTINCT(DIDerivedType, 4525 (Context, tag.Val, name.Val, file.Val, line.Val, 4526 scope.Val, baseType.Val, size.Val, align.Val, 4527 offset.Val, DWARFAddressSpace, flags.Val, 4528 extraData.Val)); 4529 return false; 4530 } 4531 4532 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) { 4533 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4534 REQUIRED(tag, DwarfTagField, ); \ 4535 OPTIONAL(name, MDStringField, ); \ 4536 OPTIONAL(file, MDField, ); \ 4537 OPTIONAL(line, LineField, ); \ 4538 OPTIONAL(scope, MDField, ); \ 4539 OPTIONAL(baseType, MDField, ); \ 4540 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4541 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4542 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4543 OPTIONAL(flags, DIFlagField, ); \ 4544 OPTIONAL(elements, MDField, ); \ 4545 OPTIONAL(runtimeLang, DwarfLangField, ); \ 4546 OPTIONAL(vtableHolder, MDField, ); \ 4547 OPTIONAL(templateParams, MDField, ); \ 4548 OPTIONAL(identifier, MDStringField, ); \ 4549 OPTIONAL(discriminator, MDField, ); 4550 PARSE_MD_FIELDS(); 4551 #undef VISIT_MD_FIELDS 4552 4553 // If this has an identifier try to build an ODR type. 4554 if (identifier.Val) 4555 if (auto *CT = DICompositeType::buildODRType( 4556 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 4557 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 4558 elements.Val, runtimeLang.Val, vtableHolder.Val, 4559 templateParams.Val, discriminator.Val)) { 4560 Result = CT; 4561 return false; 4562 } 4563 4564 // Create a new node, and save it in the context if it belongs in the type 4565 // map. 4566 Result = GET_OR_DISTINCT( 4567 DICompositeType, 4568 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 4569 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 4570 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val, 4571 discriminator.Val)); 4572 return false; 4573 } 4574 4575 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) { 4576 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4577 OPTIONAL(flags, DIFlagField, ); \ 4578 OPTIONAL(cc, DwarfCCField, ); \ 4579 REQUIRED(types, MDField, ); 4580 PARSE_MD_FIELDS(); 4581 #undef VISIT_MD_FIELDS 4582 4583 Result = GET_OR_DISTINCT(DISubroutineType, 4584 (Context, flags.Val, cc.Val, types.Val)); 4585 return false; 4586 } 4587 4588 /// ParseDIFileType: 4589 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir", 4590 /// checksumkind: CSK_MD5, 4591 /// checksum: "000102030405060708090a0b0c0d0e0f", 4592 /// source: "source file contents") 4593 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) { 4594 // The default constructed value for checksumkind is required, but will never 4595 // be used, as the parser checks if the field was actually Seen before using 4596 // the Val. 4597 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4598 REQUIRED(filename, MDStringField, ); \ 4599 REQUIRED(directory, MDStringField, ); \ 4600 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \ 4601 OPTIONAL(checksum, MDStringField, ); \ 4602 OPTIONAL(source, MDStringField, ); 4603 PARSE_MD_FIELDS(); 4604 #undef VISIT_MD_FIELDS 4605 4606 Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum; 4607 if (checksumkind.Seen && checksum.Seen) 4608 OptChecksum.emplace(checksumkind.Val, checksum.Val); 4609 else if (checksumkind.Seen || checksum.Seen) 4610 return Lex.Error("'checksumkind' and 'checksum' must be provided together"); 4611 4612 Optional<MDString *> OptSource; 4613 if (source.Seen) 4614 OptSource = source.Val; 4615 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val, 4616 OptChecksum, OptSource)); 4617 return false; 4618 } 4619 4620 /// ParseDICompileUnit: 4621 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 4622 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 4623 /// splitDebugFilename: "abc.debug", 4624 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 4625 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd) 4626 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) { 4627 if (!IsDistinct) 4628 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 4629 4630 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4631 REQUIRED(language, DwarfLangField, ); \ 4632 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 4633 OPTIONAL(producer, MDStringField, ); \ 4634 OPTIONAL(isOptimized, MDBoolField, ); \ 4635 OPTIONAL(flags, MDStringField, ); \ 4636 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 4637 OPTIONAL(splitDebugFilename, MDStringField, ); \ 4638 OPTIONAL(emissionKind, EmissionKindField, ); \ 4639 OPTIONAL(enums, MDField, ); \ 4640 OPTIONAL(retainedTypes, MDField, ); \ 4641 OPTIONAL(globals, MDField, ); \ 4642 OPTIONAL(imports, MDField, ); \ 4643 OPTIONAL(macros, MDField, ); \ 4644 OPTIONAL(dwoId, MDUnsignedField, ); \ 4645 OPTIONAL(splitDebugInlining, MDBoolField, = true); \ 4646 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \ 4647 OPTIONAL(nameTableKind, NameTableKindField, ); \ 4648 OPTIONAL(debugBaseAddress, MDBoolField, = false); 4649 PARSE_MD_FIELDS(); 4650 #undef VISIT_MD_FIELDS 4651 4652 Result = DICompileUnit::getDistinct( 4653 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 4654 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 4655 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 4656 splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val, 4657 debugBaseAddress.Val); 4658 return false; 4659 } 4660 4661 /// ParseDISubprogram: 4662 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 4663 /// file: !1, line: 7, type: !2, isLocal: false, 4664 /// isDefinition: true, scopeLine: 8, containingType: !3, 4665 /// virtuality: DW_VIRTUALTIY_pure_virtual, 4666 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 4667 /// spFlags: 10, isOptimized: false, templateParams: !4, 4668 /// declaration: !5, retainedNodes: !6, thrownTypes: !7) 4669 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) { 4670 auto Loc = Lex.getLoc(); 4671 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4672 OPTIONAL(scope, MDField, ); \ 4673 OPTIONAL(name, MDStringField, ); \ 4674 OPTIONAL(linkageName, MDStringField, ); \ 4675 OPTIONAL(file, MDField, ); \ 4676 OPTIONAL(line, LineField, ); \ 4677 OPTIONAL(type, MDField, ); \ 4678 OPTIONAL(isLocal, MDBoolField, ); \ 4679 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4680 OPTIONAL(scopeLine, LineField, ); \ 4681 OPTIONAL(containingType, MDField, ); \ 4682 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 4683 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 4684 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 4685 OPTIONAL(flags, DIFlagField, ); \ 4686 OPTIONAL(spFlags, DISPFlagField, ); \ 4687 OPTIONAL(isOptimized, MDBoolField, ); \ 4688 OPTIONAL(unit, MDField, ); \ 4689 OPTIONAL(templateParams, MDField, ); \ 4690 OPTIONAL(declaration, MDField, ); \ 4691 OPTIONAL(retainedNodes, MDField, ); \ 4692 OPTIONAL(thrownTypes, MDField, ); 4693 PARSE_MD_FIELDS(); 4694 #undef VISIT_MD_FIELDS 4695 4696 // An explicit spFlags field takes precedence over individual fields in 4697 // older IR versions. 4698 DISubprogram::DISPFlags SPFlags = 4699 spFlags.Seen ? spFlags.Val 4700 : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val, 4701 isOptimized.Val, virtuality.Val); 4702 if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct) 4703 return Lex.Error( 4704 Loc, 4705 "missing 'distinct', required for !DISubprogram that is a Definition"); 4706 Result = GET_OR_DISTINCT( 4707 DISubprogram, 4708 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 4709 type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val, 4710 thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val, 4711 declaration.Val, retainedNodes.Val, thrownTypes.Val)); 4712 return false; 4713 } 4714 4715 /// ParseDILexicalBlock: 4716 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 4717 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 4718 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4719 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4720 OPTIONAL(file, MDField, ); \ 4721 OPTIONAL(line, LineField, ); \ 4722 OPTIONAL(column, ColumnField, ); 4723 PARSE_MD_FIELDS(); 4724 #undef VISIT_MD_FIELDS 4725 4726 Result = GET_OR_DISTINCT( 4727 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 4728 return false; 4729 } 4730 4731 /// ParseDILexicalBlockFile: 4732 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 4733 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 4734 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4735 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4736 OPTIONAL(file, MDField, ); \ 4737 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 4738 PARSE_MD_FIELDS(); 4739 #undef VISIT_MD_FIELDS 4740 4741 Result = GET_OR_DISTINCT(DILexicalBlockFile, 4742 (Context, scope.Val, file.Val, discriminator.Val)); 4743 return false; 4744 } 4745 4746 /// ParseDICommonBlock: 4747 /// ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9) 4748 bool LLParser::ParseDICommonBlock(MDNode *&Result, bool IsDistinct) { 4749 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4750 REQUIRED(scope, MDField, ); \ 4751 OPTIONAL(declaration, MDField, ); \ 4752 OPTIONAL(name, MDStringField, ); \ 4753 OPTIONAL(file, MDField, ); \ 4754 OPTIONAL(line, LineField, ); 4755 PARSE_MD_FIELDS(); 4756 #undef VISIT_MD_FIELDS 4757 4758 Result = GET_OR_DISTINCT(DICommonBlock, 4759 (Context, scope.Val, declaration.Val, name.Val, 4760 file.Val, line.Val)); 4761 return false; 4762 } 4763 4764 /// ParseDINamespace: 4765 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 4766 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) { 4767 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4768 REQUIRED(scope, MDField, ); \ 4769 OPTIONAL(name, MDStringField, ); \ 4770 OPTIONAL(exportSymbols, MDBoolField, ); 4771 PARSE_MD_FIELDS(); 4772 #undef VISIT_MD_FIELDS 4773 4774 Result = GET_OR_DISTINCT(DINamespace, 4775 (Context, scope.Val, name.Val, exportSymbols.Val)); 4776 return false; 4777 } 4778 4779 /// ParseDIMacro: 4780 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue") 4781 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) { 4782 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4783 REQUIRED(type, DwarfMacinfoTypeField, ); \ 4784 OPTIONAL(line, LineField, ); \ 4785 REQUIRED(name, MDStringField, ); \ 4786 OPTIONAL(value, MDStringField, ); 4787 PARSE_MD_FIELDS(); 4788 #undef VISIT_MD_FIELDS 4789 4790 Result = GET_OR_DISTINCT(DIMacro, 4791 (Context, type.Val, line.Val, name.Val, value.Val)); 4792 return false; 4793 } 4794 4795 /// ParseDIMacroFile: 4796 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 4797 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) { 4798 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4799 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 4800 OPTIONAL(line, LineField, ); \ 4801 REQUIRED(file, MDField, ); \ 4802 OPTIONAL(nodes, MDField, ); 4803 PARSE_MD_FIELDS(); 4804 #undef VISIT_MD_FIELDS 4805 4806 Result = GET_OR_DISTINCT(DIMacroFile, 4807 (Context, type.Val, line.Val, file.Val, nodes.Val)); 4808 return false; 4809 } 4810 4811 /// ParseDIModule: 4812 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG", 4813 /// includePath: "/usr/include", isysroot: "/") 4814 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) { 4815 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4816 REQUIRED(scope, MDField, ); \ 4817 REQUIRED(name, MDStringField, ); \ 4818 OPTIONAL(configMacros, MDStringField, ); \ 4819 OPTIONAL(includePath, MDStringField, ); \ 4820 OPTIONAL(isysroot, MDStringField, ); 4821 PARSE_MD_FIELDS(); 4822 #undef VISIT_MD_FIELDS 4823 4824 Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val, 4825 configMacros.Val, includePath.Val, isysroot.Val)); 4826 return false; 4827 } 4828 4829 /// ParseDITemplateTypeParameter: 4830 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1) 4831 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 4832 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4833 OPTIONAL(name, MDStringField, ); \ 4834 REQUIRED(type, MDField, ); 4835 PARSE_MD_FIELDS(); 4836 #undef VISIT_MD_FIELDS 4837 4838 Result = 4839 GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val)); 4840 return false; 4841 } 4842 4843 /// ParseDITemplateValueParameter: 4844 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 4845 /// name: "V", type: !1, value: i32 7) 4846 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 4847 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4848 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 4849 OPTIONAL(name, MDStringField, ); \ 4850 OPTIONAL(type, MDField, ); \ 4851 REQUIRED(value, MDField, ); 4852 PARSE_MD_FIELDS(); 4853 #undef VISIT_MD_FIELDS 4854 4855 Result = GET_OR_DISTINCT(DITemplateValueParameter, 4856 (Context, tag.Val, name.Val, type.Val, value.Val)); 4857 return false; 4858 } 4859 4860 /// ParseDIGlobalVariable: 4861 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 4862 /// file: !1, line: 7, type: !2, isLocal: false, 4863 /// isDefinition: true, templateParams: !3, 4864 /// declaration: !4, align: 8) 4865 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 4866 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4867 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 4868 OPTIONAL(scope, MDField, ); \ 4869 OPTIONAL(linkageName, MDStringField, ); \ 4870 OPTIONAL(file, MDField, ); \ 4871 OPTIONAL(line, LineField, ); \ 4872 OPTIONAL(type, MDField, ); \ 4873 OPTIONAL(isLocal, MDBoolField, ); \ 4874 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4875 OPTIONAL(templateParams, MDField, ); \ 4876 OPTIONAL(declaration, MDField, ); \ 4877 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4878 PARSE_MD_FIELDS(); 4879 #undef VISIT_MD_FIELDS 4880 4881 Result = 4882 GET_OR_DISTINCT(DIGlobalVariable, 4883 (Context, scope.Val, name.Val, linkageName.Val, file.Val, 4884 line.Val, type.Val, isLocal.Val, isDefinition.Val, 4885 declaration.Val, templateParams.Val, align.Val)); 4886 return false; 4887 } 4888 4889 /// ParseDILocalVariable: 4890 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 4891 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4892 /// align: 8) 4893 /// ::= !DILocalVariable(scope: !0, name: "foo", 4894 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4895 /// align: 8) 4896 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) { 4897 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4898 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4899 OPTIONAL(name, MDStringField, ); \ 4900 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 4901 OPTIONAL(file, MDField, ); \ 4902 OPTIONAL(line, LineField, ); \ 4903 OPTIONAL(type, MDField, ); \ 4904 OPTIONAL(flags, DIFlagField, ); \ 4905 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4906 PARSE_MD_FIELDS(); 4907 #undef VISIT_MD_FIELDS 4908 4909 Result = GET_OR_DISTINCT(DILocalVariable, 4910 (Context, scope.Val, name.Val, file.Val, line.Val, 4911 type.Val, arg.Val, flags.Val, align.Val)); 4912 return false; 4913 } 4914 4915 /// ParseDILabel: 4916 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7) 4917 bool LLParser::ParseDILabel(MDNode *&Result, bool IsDistinct) { 4918 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4919 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4920 REQUIRED(name, MDStringField, ); \ 4921 REQUIRED(file, MDField, ); \ 4922 REQUIRED(line, LineField, ); 4923 PARSE_MD_FIELDS(); 4924 #undef VISIT_MD_FIELDS 4925 4926 Result = GET_OR_DISTINCT(DILabel, 4927 (Context, scope.Val, name.Val, file.Val, line.Val)); 4928 return false; 4929 } 4930 4931 /// ParseDIExpression: 4932 /// ::= !DIExpression(0, 7, -1) 4933 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) { 4934 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4935 Lex.Lex(); 4936 4937 if (ParseToken(lltok::lparen, "expected '(' here")) 4938 return true; 4939 4940 SmallVector<uint64_t, 8> Elements; 4941 if (Lex.getKind() != lltok::rparen) 4942 do { 4943 if (Lex.getKind() == lltok::DwarfOp) { 4944 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 4945 Lex.Lex(); 4946 Elements.push_back(Op); 4947 continue; 4948 } 4949 return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 4950 } 4951 4952 if (Lex.getKind() == lltok::DwarfAttEncoding) { 4953 if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) { 4954 Lex.Lex(); 4955 Elements.push_back(Op); 4956 continue; 4957 } 4958 return TokError(Twine("invalid DWARF attribute encoding '") + Lex.getStrVal() + "'"); 4959 } 4960 4961 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4962 return TokError("expected unsigned integer"); 4963 4964 auto &U = Lex.getAPSIntVal(); 4965 if (U.ugt(UINT64_MAX)) 4966 return TokError("element too large, limit is " + Twine(UINT64_MAX)); 4967 Elements.push_back(U.getZExtValue()); 4968 Lex.Lex(); 4969 } while (EatIfPresent(lltok::comma)); 4970 4971 if (ParseToken(lltok::rparen, "expected ')' here")) 4972 return true; 4973 4974 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 4975 return false; 4976 } 4977 4978 /// ParseDIGlobalVariableExpression: 4979 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1) 4980 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result, 4981 bool IsDistinct) { 4982 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4983 REQUIRED(var, MDField, ); \ 4984 REQUIRED(expr, MDField, ); 4985 PARSE_MD_FIELDS(); 4986 #undef VISIT_MD_FIELDS 4987 4988 Result = 4989 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val)); 4990 return false; 4991 } 4992 4993 /// ParseDIObjCProperty: 4994 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 4995 /// getter: "getFoo", attributes: 7, type: !2) 4996 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 4997 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4998 OPTIONAL(name, MDStringField, ); \ 4999 OPTIONAL(file, MDField, ); \ 5000 OPTIONAL(line, LineField, ); \ 5001 OPTIONAL(setter, MDStringField, ); \ 5002 OPTIONAL(getter, MDStringField, ); \ 5003 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 5004 OPTIONAL(type, MDField, ); 5005 PARSE_MD_FIELDS(); 5006 #undef VISIT_MD_FIELDS 5007 5008 Result = GET_OR_DISTINCT(DIObjCProperty, 5009 (Context, name.Val, file.Val, line.Val, setter.Val, 5010 getter.Val, attributes.Val, type.Val)); 5011 return false; 5012 } 5013 5014 /// ParseDIImportedEntity: 5015 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 5016 /// line: 7, name: "foo") 5017 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 5018 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5019 REQUIRED(tag, DwarfTagField, ); \ 5020 REQUIRED(scope, MDField, ); \ 5021 OPTIONAL(entity, MDField, ); \ 5022 OPTIONAL(file, MDField, ); \ 5023 OPTIONAL(line, LineField, ); \ 5024 OPTIONAL(name, MDStringField, ); 5025 PARSE_MD_FIELDS(); 5026 #undef VISIT_MD_FIELDS 5027 5028 Result = GET_OR_DISTINCT( 5029 DIImportedEntity, 5030 (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val)); 5031 return false; 5032 } 5033 5034 #undef PARSE_MD_FIELD 5035 #undef NOP_FIELD 5036 #undef REQUIRE_FIELD 5037 #undef DECLARE_FIELD 5038 5039 /// ParseMetadataAsValue 5040 /// ::= metadata i32 %local 5041 /// ::= metadata i32 @global 5042 /// ::= metadata i32 7 5043 /// ::= metadata !0 5044 /// ::= metadata !{...} 5045 /// ::= metadata !"string" 5046 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 5047 // Note: the type 'metadata' has already been parsed. 5048 Metadata *MD; 5049 if (ParseMetadata(MD, &PFS)) 5050 return true; 5051 5052 V = MetadataAsValue::get(Context, MD); 5053 return false; 5054 } 5055 5056 /// ParseValueAsMetadata 5057 /// ::= i32 %local 5058 /// ::= i32 @global 5059 /// ::= i32 7 5060 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 5061 PerFunctionState *PFS) { 5062 Type *Ty; 5063 LocTy Loc; 5064 if (ParseType(Ty, TypeMsg, Loc)) 5065 return true; 5066 if (Ty->isMetadataTy()) 5067 return Error(Loc, "invalid metadata-value-metadata roundtrip"); 5068 5069 Value *V; 5070 if (ParseValue(Ty, V, PFS)) 5071 return true; 5072 5073 MD = ValueAsMetadata::get(V); 5074 return false; 5075 } 5076 5077 /// ParseMetadata 5078 /// ::= i32 %local 5079 /// ::= i32 @global 5080 /// ::= i32 7 5081 /// ::= !42 5082 /// ::= !{...} 5083 /// ::= !"string" 5084 /// ::= !DILocation(...) 5085 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) { 5086 if (Lex.getKind() == lltok::MetadataVar) { 5087 MDNode *N; 5088 if (ParseSpecializedMDNode(N)) 5089 return true; 5090 MD = N; 5091 return false; 5092 } 5093 5094 // ValueAsMetadata: 5095 // <type> <value> 5096 if (Lex.getKind() != lltok::exclaim) 5097 return ParseValueAsMetadata(MD, "expected metadata operand", PFS); 5098 5099 // '!'. 5100 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 5101 Lex.Lex(); 5102 5103 // MDString: 5104 // ::= '!' STRINGCONSTANT 5105 if (Lex.getKind() == lltok::StringConstant) { 5106 MDString *S; 5107 if (ParseMDString(S)) 5108 return true; 5109 MD = S; 5110 return false; 5111 } 5112 5113 // MDNode: 5114 // !{ ... } 5115 // !7 5116 MDNode *N; 5117 if (ParseMDNodeTail(N)) 5118 return true; 5119 MD = N; 5120 return false; 5121 } 5122 5123 //===----------------------------------------------------------------------===// 5124 // Function Parsing. 5125 //===----------------------------------------------------------------------===// 5126 5127 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, 5128 PerFunctionState *PFS, bool IsCall) { 5129 if (Ty->isFunctionTy()) 5130 return Error(ID.Loc, "functions are not values, refer to them as pointers"); 5131 5132 switch (ID.Kind) { 5133 case ValID::t_LocalID: 5134 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 5135 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5136 return V == nullptr; 5137 case ValID::t_LocalName: 5138 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 5139 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall); 5140 return V == nullptr; 5141 case ValID::t_InlineAsm: { 5142 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 5143 return Error(ID.Loc, "invalid type for inline asm constraint string"); 5144 V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, 5145 (ID.UIntVal >> 1) & 1, 5146 (InlineAsm::AsmDialect(ID.UIntVal >> 2))); 5147 return false; 5148 } 5149 case ValID::t_GlobalName: 5150 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall); 5151 return V == nullptr; 5152 case ValID::t_GlobalID: 5153 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5154 return V == nullptr; 5155 case ValID::t_APSInt: 5156 if (!Ty->isIntegerTy()) 5157 return Error(ID.Loc, "integer constant must have integer type"); 5158 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 5159 V = ConstantInt::get(Context, ID.APSIntVal); 5160 return false; 5161 case ValID::t_APFloat: 5162 if (!Ty->isFloatingPointTy() || 5163 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 5164 return Error(ID.Loc, "floating point constant invalid for type"); 5165 5166 // The lexer has no type info, so builds all half, float, and double FP 5167 // constants as double. Fix this here. Long double does not need this. 5168 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) { 5169 bool Ignored; 5170 if (Ty->isHalfTy()) 5171 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, 5172 &Ignored); 5173 else if (Ty->isFloatTy()) 5174 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 5175 &Ignored); 5176 } 5177 V = ConstantFP::get(Context, ID.APFloatVal); 5178 5179 if (V->getType() != Ty) 5180 return Error(ID.Loc, "floating point constant does not have type '" + 5181 getTypeString(Ty) + "'"); 5182 5183 return false; 5184 case ValID::t_Null: 5185 if (!Ty->isPointerTy()) 5186 return Error(ID.Loc, "null must be a pointer type"); 5187 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 5188 return false; 5189 case ValID::t_Undef: 5190 // FIXME: LabelTy should not be a first-class type. 5191 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5192 return Error(ID.Loc, "invalid type for undef constant"); 5193 V = UndefValue::get(Ty); 5194 return false; 5195 case ValID::t_EmptyArray: 5196 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 5197 return Error(ID.Loc, "invalid empty array initializer"); 5198 V = UndefValue::get(Ty); 5199 return false; 5200 case ValID::t_Zero: 5201 // FIXME: LabelTy should not be a first-class type. 5202 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5203 return Error(ID.Loc, "invalid type for null constant"); 5204 V = Constant::getNullValue(Ty); 5205 return false; 5206 case ValID::t_None: 5207 if (!Ty->isTokenTy()) 5208 return Error(ID.Loc, "invalid type for none constant"); 5209 V = Constant::getNullValue(Ty); 5210 return false; 5211 case ValID::t_Constant: 5212 if (ID.ConstantVal->getType() != Ty) 5213 return Error(ID.Loc, "constant expression type mismatch"); 5214 5215 V = ID.ConstantVal; 5216 return false; 5217 case ValID::t_ConstantStruct: 5218 case ValID::t_PackedConstantStruct: 5219 if (StructType *ST = dyn_cast<StructType>(Ty)) { 5220 if (ST->getNumElements() != ID.UIntVal) 5221 return Error(ID.Loc, 5222 "initializer with struct type has wrong # elements"); 5223 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 5224 return Error(ID.Loc, "packed'ness of initializer and type don't match"); 5225 5226 // Verify that the elements are compatible with the structtype. 5227 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 5228 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 5229 return Error(ID.Loc, "element " + Twine(i) + 5230 " of struct initializer doesn't match struct element type"); 5231 5232 V = ConstantStruct::get( 5233 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 5234 } else 5235 return Error(ID.Loc, "constant expression type mismatch"); 5236 return false; 5237 } 5238 llvm_unreachable("Invalid ValID"); 5239 } 5240 5241 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 5242 C = nullptr; 5243 ValID ID; 5244 auto Loc = Lex.getLoc(); 5245 if (ParseValID(ID, /*PFS=*/nullptr)) 5246 return true; 5247 switch (ID.Kind) { 5248 case ValID::t_APSInt: 5249 case ValID::t_APFloat: 5250 case ValID::t_Undef: 5251 case ValID::t_Constant: 5252 case ValID::t_ConstantStruct: 5253 case ValID::t_PackedConstantStruct: { 5254 Value *V; 5255 if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false)) 5256 return true; 5257 assert(isa<Constant>(V) && "Expected a constant value"); 5258 C = cast<Constant>(V); 5259 return false; 5260 } 5261 case ValID::t_Null: 5262 C = Constant::getNullValue(Ty); 5263 return false; 5264 default: 5265 return Error(Loc, "expected a constant value"); 5266 } 5267 } 5268 5269 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 5270 V = nullptr; 5271 ValID ID; 5272 return ParseValID(ID, PFS) || 5273 ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false); 5274 } 5275 5276 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) { 5277 Type *Ty = nullptr; 5278 return ParseType(Ty) || 5279 ParseValue(Ty, V, PFS); 5280 } 5281 5282 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 5283 PerFunctionState &PFS) { 5284 Value *V; 5285 Loc = Lex.getLoc(); 5286 if (ParseTypeAndValue(V, PFS)) return true; 5287 if (!isa<BasicBlock>(V)) 5288 return Error(Loc, "expected a basic block"); 5289 BB = cast<BasicBlock>(V); 5290 return false; 5291 } 5292 5293 /// FunctionHeader 5294 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 5295 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName 5296 /// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign 5297 /// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 5298 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { 5299 // Parse the linkage. 5300 LocTy LinkageLoc = Lex.getLoc(); 5301 unsigned Linkage; 5302 unsigned Visibility; 5303 unsigned DLLStorageClass; 5304 bool DSOLocal; 5305 AttrBuilder RetAttrs; 5306 unsigned CC; 5307 bool HasLinkage; 5308 Type *RetType = nullptr; 5309 LocTy RetTypeLoc = Lex.getLoc(); 5310 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 5311 DSOLocal) || 5312 ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5313 ParseType(RetType, RetTypeLoc, true /*void allowed*/)) 5314 return true; 5315 5316 // Verify that the linkage is ok. 5317 switch ((GlobalValue::LinkageTypes)Linkage) { 5318 case GlobalValue::ExternalLinkage: 5319 break; // always ok. 5320 case GlobalValue::ExternalWeakLinkage: 5321 if (isDefine) 5322 return Error(LinkageLoc, "invalid linkage for function definition"); 5323 break; 5324 case GlobalValue::PrivateLinkage: 5325 case GlobalValue::InternalLinkage: 5326 case GlobalValue::AvailableExternallyLinkage: 5327 case GlobalValue::LinkOnceAnyLinkage: 5328 case GlobalValue::LinkOnceODRLinkage: 5329 case GlobalValue::WeakAnyLinkage: 5330 case GlobalValue::WeakODRLinkage: 5331 if (!isDefine) 5332 return Error(LinkageLoc, "invalid linkage for function declaration"); 5333 break; 5334 case GlobalValue::AppendingLinkage: 5335 case GlobalValue::CommonLinkage: 5336 return Error(LinkageLoc, "invalid function linkage type"); 5337 } 5338 5339 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 5340 return Error(LinkageLoc, 5341 "symbol with local linkage must have default visibility"); 5342 5343 if (!FunctionType::isValidReturnType(RetType)) 5344 return Error(RetTypeLoc, "invalid function return type"); 5345 5346 LocTy NameLoc = Lex.getLoc(); 5347 5348 std::string FunctionName; 5349 if (Lex.getKind() == lltok::GlobalVar) { 5350 FunctionName = Lex.getStrVal(); 5351 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 5352 unsigned NameID = Lex.getUIntVal(); 5353 5354 if (NameID != NumberedVals.size()) 5355 return TokError("function expected to be numbered '%" + 5356 Twine(NumberedVals.size()) + "'"); 5357 } else { 5358 return TokError("expected function name"); 5359 } 5360 5361 Lex.Lex(); 5362 5363 if (Lex.getKind() != lltok::lparen) 5364 return TokError("expected '(' in function argument list"); 5365 5366 SmallVector<ArgInfo, 8> ArgList; 5367 bool isVarArg; 5368 AttrBuilder FuncAttrs; 5369 std::vector<unsigned> FwdRefAttrGrps; 5370 LocTy BuiltinLoc; 5371 std::string Section; 5372 std::string Partition; 5373 unsigned Alignment; 5374 std::string GC; 5375 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 5376 unsigned AddrSpace = 0; 5377 Constant *Prefix = nullptr; 5378 Constant *Prologue = nullptr; 5379 Constant *PersonalityFn = nullptr; 5380 Comdat *C; 5381 5382 if (ParseArgumentList(ArgList, isVarArg) || 5383 ParseOptionalUnnamedAddr(UnnamedAddr) || 5384 ParseOptionalProgramAddrSpace(AddrSpace) || 5385 ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 5386 BuiltinLoc) || 5387 (EatIfPresent(lltok::kw_section) && 5388 ParseStringConstant(Section)) || 5389 (EatIfPresent(lltok::kw_partition) && 5390 ParseStringConstant(Partition)) || 5391 parseOptionalComdat(FunctionName, C) || 5392 ParseOptionalAlignment(Alignment) || 5393 (EatIfPresent(lltok::kw_gc) && 5394 ParseStringConstant(GC)) || 5395 (EatIfPresent(lltok::kw_prefix) && 5396 ParseGlobalTypeAndValue(Prefix)) || 5397 (EatIfPresent(lltok::kw_prologue) && 5398 ParseGlobalTypeAndValue(Prologue)) || 5399 (EatIfPresent(lltok::kw_personality) && 5400 ParseGlobalTypeAndValue(PersonalityFn))) 5401 return true; 5402 5403 if (FuncAttrs.contains(Attribute::Builtin)) 5404 return Error(BuiltinLoc, "'builtin' attribute not valid on function"); 5405 5406 // If the alignment was parsed as an attribute, move to the alignment field. 5407 if (FuncAttrs.hasAlignmentAttr()) { 5408 Alignment = FuncAttrs.getAlignment(); 5409 FuncAttrs.removeAttribute(Attribute::Alignment); 5410 } 5411 5412 // Okay, if we got here, the function is syntactically valid. Convert types 5413 // and do semantic checks. 5414 std::vector<Type*> ParamTypeList; 5415 SmallVector<AttributeSet, 8> Attrs; 5416 5417 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5418 ParamTypeList.push_back(ArgList[i].Ty); 5419 Attrs.push_back(ArgList[i].Attrs); 5420 } 5421 5422 AttributeList PAL = 5423 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs), 5424 AttributeSet::get(Context, RetAttrs), Attrs); 5425 5426 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy()) 5427 return Error(RetTypeLoc, "functions with 'sret' argument must return void"); 5428 5429 FunctionType *FT = 5430 FunctionType::get(RetType, ParamTypeList, isVarArg); 5431 PointerType *PFT = PointerType::get(FT, AddrSpace); 5432 5433 Fn = nullptr; 5434 if (!FunctionName.empty()) { 5435 // If this was a definition of a forward reference, remove the definition 5436 // from the forward reference table and fill in the forward ref. 5437 auto FRVI = ForwardRefVals.find(FunctionName); 5438 if (FRVI != ForwardRefVals.end()) { 5439 Fn = M->getFunction(FunctionName); 5440 if (!Fn) 5441 return Error(FRVI->second.second, "invalid forward reference to " 5442 "function as global value!"); 5443 if (Fn->getType() != PFT) 5444 return Error(FRVI->second.second, "invalid forward reference to " 5445 "function '" + FunctionName + "' with wrong type: " 5446 "expected '" + getTypeString(PFT) + "' but was '" + 5447 getTypeString(Fn->getType()) + "'"); 5448 ForwardRefVals.erase(FRVI); 5449 } else if ((Fn = M->getFunction(FunctionName))) { 5450 // Reject redefinitions. 5451 return Error(NameLoc, "invalid redefinition of function '" + 5452 FunctionName + "'"); 5453 } else if (M->getNamedValue(FunctionName)) { 5454 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 5455 } 5456 5457 } else { 5458 // If this is a definition of a forward referenced function, make sure the 5459 // types agree. 5460 auto I = ForwardRefValIDs.find(NumberedVals.size()); 5461 if (I != ForwardRefValIDs.end()) { 5462 Fn = cast<Function>(I->second.first); 5463 if (Fn->getType() != PFT) 5464 return Error(NameLoc, "type of definition and forward reference of '@" + 5465 Twine(NumberedVals.size()) + "' disagree: " 5466 "expected '" + getTypeString(PFT) + "' but was '" + 5467 getTypeString(Fn->getType()) + "'"); 5468 ForwardRefValIDs.erase(I); 5469 } 5470 } 5471 5472 if (!Fn) 5473 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace, 5474 FunctionName, M); 5475 else // Move the forward-reference to the correct spot in the module. 5476 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 5477 5478 assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS"); 5479 5480 if (FunctionName.empty()) 5481 NumberedVals.push_back(Fn); 5482 5483 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 5484 maybeSetDSOLocal(DSOLocal, *Fn); 5485 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 5486 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 5487 Fn->setCallingConv(CC); 5488 Fn->setAttributes(PAL); 5489 Fn->setUnnamedAddr(UnnamedAddr); 5490 Fn->setAlignment(MaybeAlign(Alignment)); 5491 Fn->setSection(Section); 5492 Fn->setPartition(Partition); 5493 Fn->setComdat(C); 5494 Fn->setPersonalityFn(PersonalityFn); 5495 if (!GC.empty()) Fn->setGC(GC); 5496 Fn->setPrefixData(Prefix); 5497 Fn->setPrologueData(Prologue); 5498 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 5499 5500 // Add all of the arguments we parsed to the function. 5501 Function::arg_iterator ArgIt = Fn->arg_begin(); 5502 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 5503 // If the argument has a name, insert it into the argument symbol table. 5504 if (ArgList[i].Name.empty()) continue; 5505 5506 // Set the name, if it conflicted, it will be auto-renamed. 5507 ArgIt->setName(ArgList[i].Name); 5508 5509 if (ArgIt->getName() != ArgList[i].Name) 5510 return Error(ArgList[i].Loc, "redefinition of argument '%" + 5511 ArgList[i].Name + "'"); 5512 } 5513 5514 if (isDefine) 5515 return false; 5516 5517 // Check the declaration has no block address forward references. 5518 ValID ID; 5519 if (FunctionName.empty()) { 5520 ID.Kind = ValID::t_GlobalID; 5521 ID.UIntVal = NumberedVals.size() - 1; 5522 } else { 5523 ID.Kind = ValID::t_GlobalName; 5524 ID.StrVal = FunctionName; 5525 } 5526 auto Blocks = ForwardRefBlockAddresses.find(ID); 5527 if (Blocks != ForwardRefBlockAddresses.end()) 5528 return Error(Blocks->first.Loc, 5529 "cannot take blockaddress inside a declaration"); 5530 return false; 5531 } 5532 5533 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 5534 ValID ID; 5535 if (FunctionNumber == -1) { 5536 ID.Kind = ValID::t_GlobalName; 5537 ID.StrVal = F.getName(); 5538 } else { 5539 ID.Kind = ValID::t_GlobalID; 5540 ID.UIntVal = FunctionNumber; 5541 } 5542 5543 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 5544 if (Blocks == P.ForwardRefBlockAddresses.end()) 5545 return false; 5546 5547 for (const auto &I : Blocks->second) { 5548 const ValID &BBID = I.first; 5549 GlobalValue *GV = I.second; 5550 5551 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 5552 "Expected local id or name"); 5553 BasicBlock *BB; 5554 if (BBID.Kind == ValID::t_LocalName) 5555 BB = GetBB(BBID.StrVal, BBID.Loc); 5556 else 5557 BB = GetBB(BBID.UIntVal, BBID.Loc); 5558 if (!BB) 5559 return P.Error(BBID.Loc, "referenced value is not a basic block"); 5560 5561 GV->replaceAllUsesWith(BlockAddress::get(&F, BB)); 5562 GV->eraseFromParent(); 5563 } 5564 5565 P.ForwardRefBlockAddresses.erase(Blocks); 5566 return false; 5567 } 5568 5569 /// ParseFunctionBody 5570 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 5571 bool LLParser::ParseFunctionBody(Function &Fn) { 5572 if (Lex.getKind() != lltok::lbrace) 5573 return TokError("expected '{' in function body"); 5574 Lex.Lex(); // eat the {. 5575 5576 int FunctionNumber = -1; 5577 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 5578 5579 PerFunctionState PFS(*this, Fn, FunctionNumber); 5580 5581 // Resolve block addresses and allow basic blocks to be forward-declared 5582 // within this function. 5583 if (PFS.resolveForwardRefBlockAddresses()) 5584 return true; 5585 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 5586 5587 // We need at least one basic block. 5588 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 5589 return TokError("function body requires at least one basic block"); 5590 5591 while (Lex.getKind() != lltok::rbrace && 5592 Lex.getKind() != lltok::kw_uselistorder) 5593 if (ParseBasicBlock(PFS)) return true; 5594 5595 while (Lex.getKind() != lltok::rbrace) 5596 if (ParseUseListOrder(&PFS)) 5597 return true; 5598 5599 // Eat the }. 5600 Lex.Lex(); 5601 5602 // Verify function is ok. 5603 return PFS.FinishFunction(); 5604 } 5605 5606 /// ParseBasicBlock 5607 /// ::= (LabelStr|LabelID)? Instruction* 5608 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { 5609 // If this basic block starts out with a name, remember it. 5610 std::string Name; 5611 int NameID = -1; 5612 LocTy NameLoc = Lex.getLoc(); 5613 if (Lex.getKind() == lltok::LabelStr) { 5614 Name = Lex.getStrVal(); 5615 Lex.Lex(); 5616 } else if (Lex.getKind() == lltok::LabelID) { 5617 NameID = Lex.getUIntVal(); 5618 Lex.Lex(); 5619 } 5620 5621 BasicBlock *BB = PFS.DefineBB(Name, NameID, NameLoc); 5622 if (!BB) 5623 return true; 5624 5625 std::string NameStr; 5626 5627 // Parse the instructions in this block until we get a terminator. 5628 Instruction *Inst; 5629 do { 5630 // This instruction may have three possibilities for a name: a) none 5631 // specified, b) name specified "%foo =", c) number specified: "%4 =". 5632 LocTy NameLoc = Lex.getLoc(); 5633 int NameID = -1; 5634 NameStr = ""; 5635 5636 if (Lex.getKind() == lltok::LocalVarID) { 5637 NameID = Lex.getUIntVal(); 5638 Lex.Lex(); 5639 if (ParseToken(lltok::equal, "expected '=' after instruction id")) 5640 return true; 5641 } else if (Lex.getKind() == lltok::LocalVar) { 5642 NameStr = Lex.getStrVal(); 5643 Lex.Lex(); 5644 if (ParseToken(lltok::equal, "expected '=' after instruction name")) 5645 return true; 5646 } 5647 5648 switch (ParseInstruction(Inst, BB, PFS)) { 5649 default: llvm_unreachable("Unknown ParseInstruction result!"); 5650 case InstError: return true; 5651 case InstNormal: 5652 BB->getInstList().push_back(Inst); 5653 5654 // With a normal result, we check to see if the instruction is followed by 5655 // a comma and metadata. 5656 if (EatIfPresent(lltok::comma)) 5657 if (ParseInstructionMetadata(*Inst)) 5658 return true; 5659 break; 5660 case InstExtraComma: 5661 BB->getInstList().push_back(Inst); 5662 5663 // If the instruction parser ate an extra comma at the end of it, it 5664 // *must* be followed by metadata. 5665 if (ParseInstructionMetadata(*Inst)) 5666 return true; 5667 break; 5668 } 5669 5670 // Set the name on the instruction. 5671 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; 5672 } while (!Inst->isTerminator()); 5673 5674 return false; 5675 } 5676 5677 //===----------------------------------------------------------------------===// 5678 // Instruction Parsing. 5679 //===----------------------------------------------------------------------===// 5680 5681 /// ParseInstruction - Parse one of the many different instructions. 5682 /// 5683 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, 5684 PerFunctionState &PFS) { 5685 lltok::Kind Token = Lex.getKind(); 5686 if (Token == lltok::Eof) 5687 return TokError("found end of file when expecting more instructions"); 5688 LocTy Loc = Lex.getLoc(); 5689 unsigned KeywordVal = Lex.getUIntVal(); 5690 Lex.Lex(); // Eat the keyword. 5691 5692 switch (Token) { 5693 default: return Error(Loc, "expected instruction opcode"); 5694 // Terminator Instructions. 5695 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 5696 case lltok::kw_ret: return ParseRet(Inst, BB, PFS); 5697 case lltok::kw_br: return ParseBr(Inst, PFS); 5698 case lltok::kw_switch: return ParseSwitch(Inst, PFS); 5699 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS); 5700 case lltok::kw_invoke: return ParseInvoke(Inst, PFS); 5701 case lltok::kw_resume: return ParseResume(Inst, PFS); 5702 case lltok::kw_cleanupret: return ParseCleanupRet(Inst, PFS); 5703 case lltok::kw_catchret: return ParseCatchRet(Inst, PFS); 5704 case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS); 5705 case lltok::kw_catchpad: return ParseCatchPad(Inst, PFS); 5706 case lltok::kw_cleanuppad: return ParseCleanupPad(Inst, PFS); 5707 case lltok::kw_callbr: return ParseCallBr(Inst, PFS); 5708 // Unary Operators. 5709 case lltok::kw_fneg: { 5710 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5711 int Res = ParseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/true); 5712 if (Res != 0) 5713 return Res; 5714 if (FMF.any()) 5715 Inst->setFastMathFlags(FMF); 5716 return false; 5717 } 5718 // Binary Operators. 5719 case lltok::kw_add: 5720 case lltok::kw_sub: 5721 case lltok::kw_mul: 5722 case lltok::kw_shl: { 5723 bool NUW = EatIfPresent(lltok::kw_nuw); 5724 bool NSW = EatIfPresent(lltok::kw_nsw); 5725 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 5726 5727 if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true; 5728 5729 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 5730 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 5731 return false; 5732 } 5733 case lltok::kw_fadd: 5734 case lltok::kw_fsub: 5735 case lltok::kw_fmul: 5736 case lltok::kw_fdiv: 5737 case lltok::kw_frem: { 5738 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5739 int Res = ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/true); 5740 if (Res != 0) 5741 return Res; 5742 if (FMF.any()) 5743 Inst->setFastMathFlags(FMF); 5744 return 0; 5745 } 5746 5747 case lltok::kw_sdiv: 5748 case lltok::kw_udiv: 5749 case lltok::kw_lshr: 5750 case lltok::kw_ashr: { 5751 bool Exact = EatIfPresent(lltok::kw_exact); 5752 5753 if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true; 5754 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 5755 return false; 5756 } 5757 5758 case lltok::kw_urem: 5759 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 5760 /*IsFP*/false); 5761 case lltok::kw_and: 5762 case lltok::kw_or: 5763 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); 5764 case lltok::kw_icmp: return ParseCompare(Inst, PFS, KeywordVal); 5765 case lltok::kw_fcmp: { 5766 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5767 int Res = ParseCompare(Inst, PFS, KeywordVal); 5768 if (Res != 0) 5769 return Res; 5770 if (FMF.any()) 5771 Inst->setFastMathFlags(FMF); 5772 return 0; 5773 } 5774 5775 // Casts. 5776 case lltok::kw_trunc: 5777 case lltok::kw_zext: 5778 case lltok::kw_sext: 5779 case lltok::kw_fptrunc: 5780 case lltok::kw_fpext: 5781 case lltok::kw_bitcast: 5782 case lltok::kw_addrspacecast: 5783 case lltok::kw_uitofp: 5784 case lltok::kw_sitofp: 5785 case lltok::kw_fptoui: 5786 case lltok::kw_fptosi: 5787 case lltok::kw_inttoptr: 5788 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); 5789 // Other. 5790 case lltok::kw_select: { 5791 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5792 int Res = ParseSelect(Inst, PFS); 5793 if (Res != 0) 5794 return Res; 5795 if (FMF.any()) { 5796 if (!Inst->getType()->isFPOrFPVectorTy()) 5797 return Error(Loc, "fast-math-flags specified for select without " 5798 "floating-point scalar or vector return type"); 5799 Inst->setFastMathFlags(FMF); 5800 } 5801 return 0; 5802 } 5803 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); 5804 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); 5805 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); 5806 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); 5807 case lltok::kw_phi: { 5808 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5809 int Res = ParsePHI(Inst, PFS); 5810 if (Res != 0) 5811 return Res; 5812 if (FMF.any()) { 5813 if (!Inst->getType()->isFPOrFPVectorTy()) 5814 return Error(Loc, "fast-math-flags specified for phi without " 5815 "floating-point scalar or vector return type"); 5816 Inst->setFastMathFlags(FMF); 5817 } 5818 return 0; 5819 } 5820 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS); 5821 // Call. 5822 case lltok::kw_call: return ParseCall(Inst, PFS, CallInst::TCK_None); 5823 case lltok::kw_tail: return ParseCall(Inst, PFS, CallInst::TCK_Tail); 5824 case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail); 5825 case lltok::kw_notail: return ParseCall(Inst, PFS, CallInst::TCK_NoTail); 5826 // Memory. 5827 case lltok::kw_alloca: return ParseAlloc(Inst, PFS); 5828 case lltok::kw_load: return ParseLoad(Inst, PFS); 5829 case lltok::kw_store: return ParseStore(Inst, PFS); 5830 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS); 5831 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS); 5832 case lltok::kw_fence: return ParseFence(Inst, PFS); 5833 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); 5834 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); 5835 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); 5836 } 5837 } 5838 5839 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. 5840 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { 5841 if (Opc == Instruction::FCmp) { 5842 switch (Lex.getKind()) { 5843 default: return TokError("expected fcmp predicate (e.g. 'oeq')"); 5844 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 5845 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 5846 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 5847 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 5848 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 5849 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 5850 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 5851 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 5852 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 5853 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 5854 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 5855 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 5856 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 5857 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 5858 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 5859 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 5860 } 5861 } else { 5862 switch (Lex.getKind()) { 5863 default: return TokError("expected icmp predicate (e.g. 'eq')"); 5864 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 5865 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 5866 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 5867 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 5868 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 5869 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 5870 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 5871 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 5872 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 5873 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 5874 } 5875 } 5876 Lex.Lex(); 5877 return false; 5878 } 5879 5880 //===----------------------------------------------------------------------===// 5881 // Terminator Instructions. 5882 //===----------------------------------------------------------------------===// 5883 5884 /// ParseRet - Parse a return instruction. 5885 /// ::= 'ret' void (',' !dbg, !1)* 5886 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 5887 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, 5888 PerFunctionState &PFS) { 5889 SMLoc TypeLoc = Lex.getLoc(); 5890 Type *Ty = nullptr; 5891 if (ParseType(Ty, true /*void allowed*/)) return true; 5892 5893 Type *ResType = PFS.getFunction().getReturnType(); 5894 5895 if (Ty->isVoidTy()) { 5896 if (!ResType->isVoidTy()) 5897 return Error(TypeLoc, "value doesn't match function result type '" + 5898 getTypeString(ResType) + "'"); 5899 5900 Inst = ReturnInst::Create(Context); 5901 return false; 5902 } 5903 5904 Value *RV; 5905 if (ParseValue(Ty, RV, PFS)) return true; 5906 5907 if (ResType != RV->getType()) 5908 return Error(TypeLoc, "value doesn't match function result type '" + 5909 getTypeString(ResType) + "'"); 5910 5911 Inst = ReturnInst::Create(Context, RV); 5912 return false; 5913 } 5914 5915 /// ParseBr 5916 /// ::= 'br' TypeAndValue 5917 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5918 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { 5919 LocTy Loc, Loc2; 5920 Value *Op0; 5921 BasicBlock *Op1, *Op2; 5922 if (ParseTypeAndValue(Op0, Loc, PFS)) return true; 5923 5924 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 5925 Inst = BranchInst::Create(BB); 5926 return false; 5927 } 5928 5929 if (Op0->getType() != Type::getInt1Ty(Context)) 5930 return Error(Loc, "branch condition must have 'i1' type"); 5931 5932 if (ParseToken(lltok::comma, "expected ',' after branch condition") || 5933 ParseTypeAndBasicBlock(Op1, Loc, PFS) || 5934 ParseToken(lltok::comma, "expected ',' after true destination") || 5935 ParseTypeAndBasicBlock(Op2, Loc2, PFS)) 5936 return true; 5937 5938 Inst = BranchInst::Create(Op1, Op2, Op0); 5939 return false; 5940 } 5941 5942 /// ParseSwitch 5943 /// Instruction 5944 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 5945 /// JumpTable 5946 /// ::= (TypeAndValue ',' TypeAndValue)* 5947 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 5948 LocTy CondLoc, BBLoc; 5949 Value *Cond; 5950 BasicBlock *DefaultBB; 5951 if (ParseTypeAndValue(Cond, CondLoc, PFS) || 5952 ParseToken(lltok::comma, "expected ',' after switch condition") || 5953 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 5954 ParseToken(lltok::lsquare, "expected '[' with switch table")) 5955 return true; 5956 5957 if (!Cond->getType()->isIntegerTy()) 5958 return Error(CondLoc, "switch condition must have integer type"); 5959 5960 // Parse the jump table pairs. 5961 SmallPtrSet<Value*, 32> SeenCases; 5962 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 5963 while (Lex.getKind() != lltok::rsquare) { 5964 Value *Constant; 5965 BasicBlock *DestBB; 5966 5967 if (ParseTypeAndValue(Constant, CondLoc, PFS) || 5968 ParseToken(lltok::comma, "expected ',' after case value") || 5969 ParseTypeAndBasicBlock(DestBB, PFS)) 5970 return true; 5971 5972 if (!SeenCases.insert(Constant).second) 5973 return Error(CondLoc, "duplicate case value in switch"); 5974 if (!isa<ConstantInt>(Constant)) 5975 return Error(CondLoc, "case value is not a constant integer"); 5976 5977 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 5978 } 5979 5980 Lex.Lex(); // Eat the ']'. 5981 5982 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 5983 for (unsigned i = 0, e = Table.size(); i != e; ++i) 5984 SI->addCase(Table[i].first, Table[i].second); 5985 Inst = SI; 5986 return false; 5987 } 5988 5989 /// ParseIndirectBr 5990 /// Instruction 5991 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 5992 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 5993 LocTy AddrLoc; 5994 Value *Address; 5995 if (ParseTypeAndValue(Address, AddrLoc, PFS) || 5996 ParseToken(lltok::comma, "expected ',' after indirectbr address") || 5997 ParseToken(lltok::lsquare, "expected '[' with indirectbr")) 5998 return true; 5999 6000 if (!Address->getType()->isPointerTy()) 6001 return Error(AddrLoc, "indirectbr address must have pointer type"); 6002 6003 // Parse the destination list. 6004 SmallVector<BasicBlock*, 16> DestList; 6005 6006 if (Lex.getKind() != lltok::rsquare) { 6007 BasicBlock *DestBB; 6008 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6009 return true; 6010 DestList.push_back(DestBB); 6011 6012 while (EatIfPresent(lltok::comma)) { 6013 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6014 return true; 6015 DestList.push_back(DestBB); 6016 } 6017 } 6018 6019 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 6020 return true; 6021 6022 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 6023 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 6024 IBI->addDestination(DestList[i]); 6025 Inst = IBI; 6026 return false; 6027 } 6028 6029 /// ParseInvoke 6030 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 6031 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 6032 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 6033 LocTy CallLoc = Lex.getLoc(); 6034 AttrBuilder RetAttrs, FnAttrs; 6035 std::vector<unsigned> FwdRefAttrGrps; 6036 LocTy NoBuiltinLoc; 6037 unsigned CC; 6038 unsigned InvokeAddrSpace; 6039 Type *RetType = nullptr; 6040 LocTy RetTypeLoc; 6041 ValID CalleeID; 6042 SmallVector<ParamInfo, 16> ArgList; 6043 SmallVector<OperandBundleDef, 2> BundleList; 6044 6045 BasicBlock *NormalBB, *UnwindBB; 6046 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 6047 ParseOptionalProgramAddrSpace(InvokeAddrSpace) || 6048 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 6049 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || 6050 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6051 NoBuiltinLoc) || 6052 ParseOptionalOperandBundles(BundleList, PFS) || 6053 ParseToken(lltok::kw_to, "expected 'to' in invoke") || 6054 ParseTypeAndBasicBlock(NormalBB, PFS) || 6055 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 6056 ParseTypeAndBasicBlock(UnwindBB, PFS)) 6057 return true; 6058 6059 // If RetType is a non-function pointer type, then this is the short syntax 6060 // for the call, which means that RetType is just the return type. Infer the 6061 // rest of the function argument types from the arguments that are present. 6062 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6063 if (!Ty) { 6064 // Pull out the types of all of the arguments... 6065 std::vector<Type*> ParamTypes; 6066 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6067 ParamTypes.push_back(ArgList[i].V->getType()); 6068 6069 if (!FunctionType::isValidReturnType(RetType)) 6070 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 6071 6072 Ty = FunctionType::get(RetType, ParamTypes, false); 6073 } 6074 6075 CalleeID.FTy = Ty; 6076 6077 // Look up the callee. 6078 Value *Callee; 6079 if (ConvertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID, 6080 Callee, &PFS, /*IsCall=*/true)) 6081 return true; 6082 6083 // Set up the Attribute for the function. 6084 SmallVector<Value *, 8> Args; 6085 SmallVector<AttributeSet, 8> ArgAttrs; 6086 6087 // Loop through FunctionType's arguments and ensure they are specified 6088 // correctly. Also, gather any parameter attributes. 6089 FunctionType::param_iterator I = Ty->param_begin(); 6090 FunctionType::param_iterator E = Ty->param_end(); 6091 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6092 Type *ExpectedTy = nullptr; 6093 if (I != E) { 6094 ExpectedTy = *I++; 6095 } else if (!Ty->isVarArg()) { 6096 return Error(ArgList[i].Loc, "too many arguments specified"); 6097 } 6098 6099 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6100 return Error(ArgList[i].Loc, "argument is not of expected type '" + 6101 getTypeString(ExpectedTy) + "'"); 6102 Args.push_back(ArgList[i].V); 6103 ArgAttrs.push_back(ArgList[i].Attrs); 6104 } 6105 6106 if (I != E) 6107 return Error(CallLoc, "not enough parameters specified for call"); 6108 6109 if (FnAttrs.hasAlignmentAttr()) 6110 return Error(CallLoc, "invoke instructions may not have an alignment"); 6111 6112 // Finish off the Attribute and check them 6113 AttributeList PAL = 6114 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6115 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6116 6117 InvokeInst *II = 6118 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 6119 II->setCallingConv(CC); 6120 II->setAttributes(PAL); 6121 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 6122 Inst = II; 6123 return false; 6124 } 6125 6126 /// ParseResume 6127 /// ::= 'resume' TypeAndValue 6128 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) { 6129 Value *Exn; LocTy ExnLoc; 6130 if (ParseTypeAndValue(Exn, ExnLoc, PFS)) 6131 return true; 6132 6133 ResumeInst *RI = ResumeInst::Create(Exn); 6134 Inst = RI; 6135 return false; 6136 } 6137 6138 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args, 6139 PerFunctionState &PFS) { 6140 if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 6141 return true; 6142 6143 while (Lex.getKind() != lltok::rsquare) { 6144 // If this isn't the first argument, we need a comma. 6145 if (!Args.empty() && 6146 ParseToken(lltok::comma, "expected ',' in argument list")) 6147 return true; 6148 6149 // Parse the argument. 6150 LocTy ArgLoc; 6151 Type *ArgTy = nullptr; 6152 if (ParseType(ArgTy, ArgLoc)) 6153 return true; 6154 6155 Value *V; 6156 if (ArgTy->isMetadataTy()) { 6157 if (ParseMetadataAsValue(V, PFS)) 6158 return true; 6159 } else { 6160 if (ParseValue(ArgTy, V, PFS)) 6161 return true; 6162 } 6163 Args.push_back(V); 6164 } 6165 6166 Lex.Lex(); // Lex the ']'. 6167 return false; 6168 } 6169 6170 /// ParseCleanupRet 6171 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 6172 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 6173 Value *CleanupPad = nullptr; 6174 6175 if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret")) 6176 return true; 6177 6178 if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 6179 return true; 6180 6181 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 6182 return true; 6183 6184 BasicBlock *UnwindBB = nullptr; 6185 if (Lex.getKind() == lltok::kw_to) { 6186 Lex.Lex(); 6187 if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 6188 return true; 6189 } else { 6190 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 6191 return true; 6192 } 6193 } 6194 6195 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 6196 return false; 6197 } 6198 6199 /// ParseCatchRet 6200 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 6201 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 6202 Value *CatchPad = nullptr; 6203 6204 if (ParseToken(lltok::kw_from, "expected 'from' after catchret")) 6205 return true; 6206 6207 if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS)) 6208 return true; 6209 6210 BasicBlock *BB; 6211 if (ParseToken(lltok::kw_to, "expected 'to' in catchret") || 6212 ParseTypeAndBasicBlock(BB, PFS)) 6213 return true; 6214 6215 Inst = CatchReturnInst::Create(CatchPad, BB); 6216 return false; 6217 } 6218 6219 /// ParseCatchSwitch 6220 /// ::= 'catchswitch' within Parent 6221 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6222 Value *ParentPad; 6223 6224 if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch")) 6225 return true; 6226 6227 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6228 Lex.getKind() != lltok::LocalVarID) 6229 return TokError("expected scope value for catchswitch"); 6230 6231 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6232 return true; 6233 6234 if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 6235 return true; 6236 6237 SmallVector<BasicBlock *, 32> Table; 6238 do { 6239 BasicBlock *DestBB; 6240 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6241 return true; 6242 Table.push_back(DestBB); 6243 } while (EatIfPresent(lltok::comma)); 6244 6245 if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 6246 return true; 6247 6248 if (ParseToken(lltok::kw_unwind, 6249 "expected 'unwind' after catchswitch scope")) 6250 return true; 6251 6252 BasicBlock *UnwindBB = nullptr; 6253 if (EatIfPresent(lltok::kw_to)) { 6254 if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 6255 return true; 6256 } else { 6257 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) 6258 return true; 6259 } 6260 6261 auto *CatchSwitch = 6262 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 6263 for (BasicBlock *DestBB : Table) 6264 CatchSwitch->addHandler(DestBB); 6265 Inst = CatchSwitch; 6266 return false; 6267 } 6268 6269 /// ParseCatchPad 6270 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 6271 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 6272 Value *CatchSwitch = nullptr; 6273 6274 if (ParseToken(lltok::kw_within, "expected 'within' after catchpad")) 6275 return true; 6276 6277 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 6278 return TokError("expected scope value for catchpad"); 6279 6280 if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 6281 return true; 6282 6283 SmallVector<Value *, 8> Args; 6284 if (ParseExceptionArgs(Args, PFS)) 6285 return true; 6286 6287 Inst = CatchPadInst::Create(CatchSwitch, Args); 6288 return false; 6289 } 6290 6291 /// ParseCleanupPad 6292 /// ::= 'cleanuppad' within Parent ParamList 6293 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 6294 Value *ParentPad = nullptr; 6295 6296 if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 6297 return true; 6298 6299 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6300 Lex.getKind() != lltok::LocalVarID) 6301 return TokError("expected scope value for cleanuppad"); 6302 6303 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6304 return true; 6305 6306 SmallVector<Value *, 8> Args; 6307 if (ParseExceptionArgs(Args, PFS)) 6308 return true; 6309 6310 Inst = CleanupPadInst::Create(ParentPad, Args); 6311 return false; 6312 } 6313 6314 //===----------------------------------------------------------------------===// 6315 // Unary Operators. 6316 //===----------------------------------------------------------------------===// 6317 6318 /// ParseUnaryOp 6319 /// ::= UnaryOp TypeAndValue ',' Value 6320 /// 6321 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6322 /// operand is allowed. 6323 bool LLParser::ParseUnaryOp(Instruction *&Inst, PerFunctionState &PFS, 6324 unsigned Opc, bool IsFP) { 6325 LocTy Loc; Value *LHS; 6326 if (ParseTypeAndValue(LHS, Loc, PFS)) 6327 return true; 6328 6329 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6330 : LHS->getType()->isIntOrIntVectorTy(); 6331 6332 if (!Valid) 6333 return Error(Loc, "invalid operand type for instruction"); 6334 6335 Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 6336 return false; 6337 } 6338 6339 /// ParseCallBr 6340 /// ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList 6341 /// OptionalAttrs OptionalOperandBundles 'to' TypeAndValue 6342 /// '[' LabelList ']' 6343 bool LLParser::ParseCallBr(Instruction *&Inst, PerFunctionState &PFS) { 6344 LocTy CallLoc = Lex.getLoc(); 6345 AttrBuilder RetAttrs, FnAttrs; 6346 std::vector<unsigned> FwdRefAttrGrps; 6347 LocTy NoBuiltinLoc; 6348 unsigned CC; 6349 Type *RetType = nullptr; 6350 LocTy RetTypeLoc; 6351 ValID CalleeID; 6352 SmallVector<ParamInfo, 16> ArgList; 6353 SmallVector<OperandBundleDef, 2> BundleList; 6354 6355 BasicBlock *DefaultDest; 6356 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 6357 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 6358 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || 6359 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6360 NoBuiltinLoc) || 6361 ParseOptionalOperandBundles(BundleList, PFS) || 6362 ParseToken(lltok::kw_to, "expected 'to' in callbr") || 6363 ParseTypeAndBasicBlock(DefaultDest, PFS) || 6364 ParseToken(lltok::lsquare, "expected '[' in callbr")) 6365 return true; 6366 6367 // Parse the destination list. 6368 SmallVector<BasicBlock *, 16> IndirectDests; 6369 6370 if (Lex.getKind() != lltok::rsquare) { 6371 BasicBlock *DestBB; 6372 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6373 return true; 6374 IndirectDests.push_back(DestBB); 6375 6376 while (EatIfPresent(lltok::comma)) { 6377 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6378 return true; 6379 IndirectDests.push_back(DestBB); 6380 } 6381 } 6382 6383 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 6384 return true; 6385 6386 // If RetType is a non-function pointer type, then this is the short syntax 6387 // for the call, which means that RetType is just the return type. Infer the 6388 // rest of the function argument types from the arguments that are present. 6389 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6390 if (!Ty) { 6391 // Pull out the types of all of the arguments... 6392 std::vector<Type *> ParamTypes; 6393 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6394 ParamTypes.push_back(ArgList[i].V->getType()); 6395 6396 if (!FunctionType::isValidReturnType(RetType)) 6397 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 6398 6399 Ty = FunctionType::get(RetType, ParamTypes, false); 6400 } 6401 6402 CalleeID.FTy = Ty; 6403 6404 // Look up the callee. 6405 Value *Callee; 6406 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS, 6407 /*IsCall=*/true)) 6408 return true; 6409 6410 if (isa<InlineAsm>(Callee) && !Ty->getReturnType()->isVoidTy()) 6411 return Error(RetTypeLoc, "asm-goto outputs not supported"); 6412 6413 // Set up the Attribute for the function. 6414 SmallVector<Value *, 8> Args; 6415 SmallVector<AttributeSet, 8> ArgAttrs; 6416 6417 // Loop through FunctionType's arguments and ensure they are specified 6418 // correctly. Also, gather any parameter attributes. 6419 FunctionType::param_iterator I = Ty->param_begin(); 6420 FunctionType::param_iterator E = Ty->param_end(); 6421 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6422 Type *ExpectedTy = nullptr; 6423 if (I != E) { 6424 ExpectedTy = *I++; 6425 } else if (!Ty->isVarArg()) { 6426 return Error(ArgList[i].Loc, "too many arguments specified"); 6427 } 6428 6429 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6430 return Error(ArgList[i].Loc, "argument is not of expected type '" + 6431 getTypeString(ExpectedTy) + "'"); 6432 Args.push_back(ArgList[i].V); 6433 ArgAttrs.push_back(ArgList[i].Attrs); 6434 } 6435 6436 if (I != E) 6437 return Error(CallLoc, "not enough parameters specified for call"); 6438 6439 if (FnAttrs.hasAlignmentAttr()) 6440 return Error(CallLoc, "callbr instructions may not have an alignment"); 6441 6442 // Finish off the Attribute and check them 6443 AttributeList PAL = 6444 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6445 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6446 6447 CallBrInst *CBI = 6448 CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args, 6449 BundleList); 6450 CBI->setCallingConv(CC); 6451 CBI->setAttributes(PAL); 6452 ForwardRefAttrGroups[CBI] = FwdRefAttrGrps; 6453 Inst = CBI; 6454 return false; 6455 } 6456 6457 //===----------------------------------------------------------------------===// 6458 // Binary Operators. 6459 //===----------------------------------------------------------------------===// 6460 6461 /// ParseArithmetic 6462 /// ::= ArithmeticOps TypeAndValue ',' Value 6463 /// 6464 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6465 /// operand is allowed. 6466 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 6467 unsigned Opc, bool IsFP) { 6468 LocTy Loc; Value *LHS, *RHS; 6469 if (ParseTypeAndValue(LHS, Loc, PFS) || 6470 ParseToken(lltok::comma, "expected ',' in arithmetic operation") || 6471 ParseValue(LHS->getType(), RHS, PFS)) 6472 return true; 6473 6474 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6475 : LHS->getType()->isIntOrIntVectorTy(); 6476 6477 if (!Valid) 6478 return Error(Loc, "invalid operand type for instruction"); 6479 6480 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6481 return false; 6482 } 6483 6484 /// ParseLogical 6485 /// ::= ArithmeticOps TypeAndValue ',' Value { 6486 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, 6487 unsigned Opc) { 6488 LocTy Loc; Value *LHS, *RHS; 6489 if (ParseTypeAndValue(LHS, Loc, PFS) || 6490 ParseToken(lltok::comma, "expected ',' in logical operation") || 6491 ParseValue(LHS->getType(), RHS, PFS)) 6492 return true; 6493 6494 if (!LHS->getType()->isIntOrIntVectorTy()) 6495 return Error(Loc,"instruction requires integer or integer vector operands"); 6496 6497 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6498 return false; 6499 } 6500 6501 /// ParseCompare 6502 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 6503 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 6504 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, 6505 unsigned Opc) { 6506 // Parse the integer/fp comparison predicate. 6507 LocTy Loc; 6508 unsigned Pred; 6509 Value *LHS, *RHS; 6510 if (ParseCmpPredicate(Pred, Opc) || 6511 ParseTypeAndValue(LHS, Loc, PFS) || 6512 ParseToken(lltok::comma, "expected ',' after compare value") || 6513 ParseValue(LHS->getType(), RHS, PFS)) 6514 return true; 6515 6516 if (Opc == Instruction::FCmp) { 6517 if (!LHS->getType()->isFPOrFPVectorTy()) 6518 return Error(Loc, "fcmp requires floating point operands"); 6519 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6520 } else { 6521 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 6522 if (!LHS->getType()->isIntOrIntVectorTy() && 6523 !LHS->getType()->isPtrOrPtrVectorTy()) 6524 return Error(Loc, "icmp requires integer operands"); 6525 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6526 } 6527 return false; 6528 } 6529 6530 //===----------------------------------------------------------------------===// 6531 // Other Instructions. 6532 //===----------------------------------------------------------------------===// 6533 6534 6535 /// ParseCast 6536 /// ::= CastOpc TypeAndValue 'to' Type 6537 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, 6538 unsigned Opc) { 6539 LocTy Loc; 6540 Value *Op; 6541 Type *DestTy = nullptr; 6542 if (ParseTypeAndValue(Op, Loc, PFS) || 6543 ParseToken(lltok::kw_to, "expected 'to' after cast value") || 6544 ParseType(DestTy)) 6545 return true; 6546 6547 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 6548 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 6549 return Error(Loc, "invalid cast opcode for cast from '" + 6550 getTypeString(Op->getType()) + "' to '" + 6551 getTypeString(DestTy) + "'"); 6552 } 6553 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 6554 return false; 6555 } 6556 6557 /// ParseSelect 6558 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6559 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { 6560 LocTy Loc; 6561 Value *Op0, *Op1, *Op2; 6562 if (ParseTypeAndValue(Op0, Loc, PFS) || 6563 ParseToken(lltok::comma, "expected ',' after select condition") || 6564 ParseTypeAndValue(Op1, PFS) || 6565 ParseToken(lltok::comma, "expected ',' after select value") || 6566 ParseTypeAndValue(Op2, PFS)) 6567 return true; 6568 6569 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 6570 return Error(Loc, Reason); 6571 6572 Inst = SelectInst::Create(Op0, Op1, Op2); 6573 return false; 6574 } 6575 6576 /// ParseVA_Arg 6577 /// ::= 'va_arg' TypeAndValue ',' Type 6578 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { 6579 Value *Op; 6580 Type *EltTy = nullptr; 6581 LocTy TypeLoc; 6582 if (ParseTypeAndValue(Op, PFS) || 6583 ParseToken(lltok::comma, "expected ',' after vaarg operand") || 6584 ParseType(EltTy, TypeLoc)) 6585 return true; 6586 6587 if (!EltTy->isFirstClassType()) 6588 return Error(TypeLoc, "va_arg requires operand with first class type"); 6589 6590 Inst = new VAArgInst(Op, EltTy); 6591 return false; 6592 } 6593 6594 /// ParseExtractElement 6595 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 6596 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 6597 LocTy Loc; 6598 Value *Op0, *Op1; 6599 if (ParseTypeAndValue(Op0, Loc, PFS) || 6600 ParseToken(lltok::comma, "expected ',' after extract value") || 6601 ParseTypeAndValue(Op1, PFS)) 6602 return true; 6603 6604 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 6605 return Error(Loc, "invalid extractelement operands"); 6606 6607 Inst = ExtractElementInst::Create(Op0, Op1); 6608 return false; 6609 } 6610 6611 /// ParseInsertElement 6612 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6613 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 6614 LocTy Loc; 6615 Value *Op0, *Op1, *Op2; 6616 if (ParseTypeAndValue(Op0, Loc, PFS) || 6617 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6618 ParseTypeAndValue(Op1, PFS) || 6619 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6620 ParseTypeAndValue(Op2, PFS)) 6621 return true; 6622 6623 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 6624 return Error(Loc, "invalid insertelement operands"); 6625 6626 Inst = InsertElementInst::Create(Op0, Op1, Op2); 6627 return false; 6628 } 6629 6630 /// ParseShuffleVector 6631 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6632 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 6633 LocTy Loc; 6634 Value *Op0, *Op1, *Op2; 6635 if (ParseTypeAndValue(Op0, Loc, PFS) || 6636 ParseToken(lltok::comma, "expected ',' after shuffle mask") || 6637 ParseTypeAndValue(Op1, PFS) || 6638 ParseToken(lltok::comma, "expected ',' after shuffle value") || 6639 ParseTypeAndValue(Op2, PFS)) 6640 return true; 6641 6642 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 6643 return Error(Loc, "invalid shufflevector operands"); 6644 6645 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 6646 return false; 6647 } 6648 6649 /// ParsePHI 6650 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 6651 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { 6652 Type *Ty = nullptr; LocTy TypeLoc; 6653 Value *Op0, *Op1; 6654 6655 if (ParseType(Ty, TypeLoc) || 6656 ParseToken(lltok::lsquare, "expected '[' in phi value list") || 6657 ParseValue(Ty, Op0, PFS) || 6658 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6659 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 6660 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 6661 return true; 6662 6663 bool AteExtraComma = false; 6664 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 6665 6666 while (true) { 6667 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 6668 6669 if (!EatIfPresent(lltok::comma)) 6670 break; 6671 6672 if (Lex.getKind() == lltok::MetadataVar) { 6673 AteExtraComma = true; 6674 break; 6675 } 6676 6677 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || 6678 ParseValue(Ty, Op0, PFS) || 6679 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6680 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 6681 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 6682 return true; 6683 } 6684 6685 if (!Ty->isFirstClassType()) 6686 return Error(TypeLoc, "phi node must have first class type"); 6687 6688 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 6689 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 6690 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 6691 Inst = PN; 6692 return AteExtraComma ? InstExtraComma : InstNormal; 6693 } 6694 6695 /// ParseLandingPad 6696 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 6697 /// Clause 6698 /// ::= 'catch' TypeAndValue 6699 /// ::= 'filter' 6700 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 6701 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 6702 Type *Ty = nullptr; LocTy TyLoc; 6703 6704 if (ParseType(Ty, TyLoc)) 6705 return true; 6706 6707 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 6708 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 6709 6710 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 6711 LandingPadInst::ClauseType CT; 6712 if (EatIfPresent(lltok::kw_catch)) 6713 CT = LandingPadInst::Catch; 6714 else if (EatIfPresent(lltok::kw_filter)) 6715 CT = LandingPadInst::Filter; 6716 else 6717 return TokError("expected 'catch' or 'filter' clause type"); 6718 6719 Value *V; 6720 LocTy VLoc; 6721 if (ParseTypeAndValue(V, VLoc, PFS)) 6722 return true; 6723 6724 // A 'catch' type expects a non-array constant. A filter clause expects an 6725 // array constant. 6726 if (CT == LandingPadInst::Catch) { 6727 if (isa<ArrayType>(V->getType())) 6728 Error(VLoc, "'catch' clause has an invalid type"); 6729 } else { 6730 if (!isa<ArrayType>(V->getType())) 6731 Error(VLoc, "'filter' clause has an invalid type"); 6732 } 6733 6734 Constant *CV = dyn_cast<Constant>(V); 6735 if (!CV) 6736 return Error(VLoc, "clause argument must be a constant"); 6737 LP->addClause(CV); 6738 } 6739 6740 Inst = LP.release(); 6741 return false; 6742 } 6743 6744 /// ParseCall 6745 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 6746 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6747 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 6748 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6749 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 6750 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6751 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 6752 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6753 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, 6754 CallInst::TailCallKind TCK) { 6755 AttrBuilder RetAttrs, FnAttrs; 6756 std::vector<unsigned> FwdRefAttrGrps; 6757 LocTy BuiltinLoc; 6758 unsigned CallAddrSpace; 6759 unsigned CC; 6760 Type *RetType = nullptr; 6761 LocTy RetTypeLoc; 6762 ValID CalleeID; 6763 SmallVector<ParamInfo, 16> ArgList; 6764 SmallVector<OperandBundleDef, 2> BundleList; 6765 LocTy CallLoc = Lex.getLoc(); 6766 6767 if (TCK != CallInst::TCK_None && 6768 ParseToken(lltok::kw_call, 6769 "expected 'tail call', 'musttail call', or 'notail call'")) 6770 return true; 6771 6772 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6773 6774 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 6775 ParseOptionalProgramAddrSpace(CallAddrSpace) || 6776 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 6777 ParseValID(CalleeID) || 6778 ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 6779 PFS.getFunction().isVarArg()) || 6780 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 6781 ParseOptionalOperandBundles(BundleList, PFS)) 6782 return true; 6783 6784 if (FMF.any() && !RetType->isFPOrFPVectorTy()) 6785 return Error(CallLoc, "fast-math-flags specified for call without " 6786 "floating-point scalar or vector return type"); 6787 6788 // If RetType is a non-function pointer type, then this is the short syntax 6789 // for the call, which means that RetType is just the return type. Infer the 6790 // rest of the function argument types from the arguments that are present. 6791 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6792 if (!Ty) { 6793 // Pull out the types of all of the arguments... 6794 std::vector<Type*> ParamTypes; 6795 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6796 ParamTypes.push_back(ArgList[i].V->getType()); 6797 6798 if (!FunctionType::isValidReturnType(RetType)) 6799 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 6800 6801 Ty = FunctionType::get(RetType, ParamTypes, false); 6802 } 6803 6804 CalleeID.FTy = Ty; 6805 6806 // Look up the callee. 6807 Value *Callee; 6808 if (ConvertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee, 6809 &PFS, /*IsCall=*/true)) 6810 return true; 6811 6812 // Set up the Attribute for the function. 6813 SmallVector<AttributeSet, 8> Attrs; 6814 6815 SmallVector<Value*, 8> Args; 6816 6817 // Loop through FunctionType's arguments and ensure they are specified 6818 // correctly. Also, gather any parameter attributes. 6819 FunctionType::param_iterator I = Ty->param_begin(); 6820 FunctionType::param_iterator E = Ty->param_end(); 6821 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6822 Type *ExpectedTy = nullptr; 6823 if (I != E) { 6824 ExpectedTy = *I++; 6825 } else if (!Ty->isVarArg()) { 6826 return Error(ArgList[i].Loc, "too many arguments specified"); 6827 } 6828 6829 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6830 return Error(ArgList[i].Loc, "argument is not of expected type '" + 6831 getTypeString(ExpectedTy) + "'"); 6832 Args.push_back(ArgList[i].V); 6833 Attrs.push_back(ArgList[i].Attrs); 6834 } 6835 6836 if (I != E) 6837 return Error(CallLoc, "not enough parameters specified for call"); 6838 6839 if (FnAttrs.hasAlignmentAttr()) 6840 return Error(CallLoc, "call instructions may not have an alignment"); 6841 6842 // Finish off the Attribute and check them 6843 AttributeList PAL = 6844 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6845 AttributeSet::get(Context, RetAttrs), Attrs); 6846 6847 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 6848 CI->setTailCallKind(TCK); 6849 CI->setCallingConv(CC); 6850 if (FMF.any()) 6851 CI->setFastMathFlags(FMF); 6852 CI->setAttributes(PAL); 6853 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 6854 Inst = CI; 6855 return false; 6856 } 6857 6858 //===----------------------------------------------------------------------===// 6859 // Memory Instructions. 6860 //===----------------------------------------------------------------------===// 6861 6862 /// ParseAlloc 6863 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 6864 /// (',' 'align' i32)? (',', 'addrspace(n))? 6865 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 6866 Value *Size = nullptr; 6867 LocTy SizeLoc, TyLoc, ASLoc; 6868 unsigned Alignment = 0; 6869 unsigned AddrSpace = 0; 6870 Type *Ty = nullptr; 6871 6872 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 6873 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 6874 6875 if (ParseType(Ty, TyLoc)) return true; 6876 6877 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 6878 return Error(TyLoc, "invalid type for alloca"); 6879 6880 bool AteExtraComma = false; 6881 if (EatIfPresent(lltok::comma)) { 6882 if (Lex.getKind() == lltok::kw_align) { 6883 if (ParseOptionalAlignment(Alignment)) 6884 return true; 6885 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 6886 return true; 6887 } else if (Lex.getKind() == lltok::kw_addrspace) { 6888 ASLoc = Lex.getLoc(); 6889 if (ParseOptionalAddrSpace(AddrSpace)) 6890 return true; 6891 } else if (Lex.getKind() == lltok::MetadataVar) { 6892 AteExtraComma = true; 6893 } else { 6894 if (ParseTypeAndValue(Size, SizeLoc, PFS)) 6895 return true; 6896 if (EatIfPresent(lltok::comma)) { 6897 if (Lex.getKind() == lltok::kw_align) { 6898 if (ParseOptionalAlignment(Alignment)) 6899 return true; 6900 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 6901 return true; 6902 } else if (Lex.getKind() == lltok::kw_addrspace) { 6903 ASLoc = Lex.getLoc(); 6904 if (ParseOptionalAddrSpace(AddrSpace)) 6905 return true; 6906 } else if (Lex.getKind() == lltok::MetadataVar) { 6907 AteExtraComma = true; 6908 } 6909 } 6910 } 6911 } 6912 6913 if (Size && !Size->getType()->isIntegerTy()) 6914 return Error(SizeLoc, "element count must have integer type"); 6915 6916 AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, Alignment); 6917 AI->setUsedWithInAlloca(IsInAlloca); 6918 AI->setSwiftError(IsSwiftError); 6919 Inst = AI; 6920 return AteExtraComma ? InstExtraComma : InstNormal; 6921 } 6922 6923 /// ParseLoad 6924 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 6925 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 6926 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6927 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) { 6928 Value *Val; LocTy Loc; 6929 unsigned Alignment = 0; 6930 bool AteExtraComma = false; 6931 bool isAtomic = false; 6932 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6933 SyncScope::ID SSID = SyncScope::System; 6934 6935 if (Lex.getKind() == lltok::kw_atomic) { 6936 isAtomic = true; 6937 Lex.Lex(); 6938 } 6939 6940 bool isVolatile = false; 6941 if (Lex.getKind() == lltok::kw_volatile) { 6942 isVolatile = true; 6943 Lex.Lex(); 6944 } 6945 6946 Type *Ty; 6947 LocTy ExplicitTypeLoc = Lex.getLoc(); 6948 if (ParseType(Ty) || 6949 ParseToken(lltok::comma, "expected comma after load's type") || 6950 ParseTypeAndValue(Val, Loc, PFS) || 6951 ParseScopeAndOrdering(isAtomic, SSID, Ordering) || 6952 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6953 return true; 6954 6955 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 6956 return Error(Loc, "load operand must be a pointer to a first class type"); 6957 if (isAtomic && !Alignment) 6958 return Error(Loc, "atomic load must have explicit non-zero alignment"); 6959 if (Ordering == AtomicOrdering::Release || 6960 Ordering == AtomicOrdering::AcquireRelease) 6961 return Error(Loc, "atomic load cannot use Release ordering"); 6962 6963 if (Ty != cast<PointerType>(Val->getType())->getElementType()) 6964 return Error(ExplicitTypeLoc, 6965 "explicit pointee type doesn't match operand's pointee type"); 6966 6967 Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, SSID); 6968 return AteExtraComma ? InstExtraComma : InstNormal; 6969 } 6970 6971 /// ParseStore 6972 6973 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 6974 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 6975 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6976 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) { 6977 Value *Val, *Ptr; LocTy Loc, PtrLoc; 6978 unsigned Alignment = 0; 6979 bool AteExtraComma = false; 6980 bool isAtomic = false; 6981 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6982 SyncScope::ID SSID = SyncScope::System; 6983 6984 if (Lex.getKind() == lltok::kw_atomic) { 6985 isAtomic = true; 6986 Lex.Lex(); 6987 } 6988 6989 bool isVolatile = false; 6990 if (Lex.getKind() == lltok::kw_volatile) { 6991 isVolatile = true; 6992 Lex.Lex(); 6993 } 6994 6995 if (ParseTypeAndValue(Val, Loc, PFS) || 6996 ParseToken(lltok::comma, "expected ',' after store operand") || 6997 ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6998 ParseScopeAndOrdering(isAtomic, SSID, Ordering) || 6999 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 7000 return true; 7001 7002 if (!Ptr->getType()->isPointerTy()) 7003 return Error(PtrLoc, "store operand must be a pointer"); 7004 if (!Val->getType()->isFirstClassType()) 7005 return Error(Loc, "store operand must be a first class value"); 7006 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 7007 return Error(Loc, "stored value and pointer type do not match"); 7008 if (isAtomic && !Alignment) 7009 return Error(Loc, "atomic store must have explicit non-zero alignment"); 7010 if (Ordering == AtomicOrdering::Acquire || 7011 Ordering == AtomicOrdering::AcquireRelease) 7012 return Error(Loc, "atomic store cannot use Acquire ordering"); 7013 7014 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, SSID); 7015 return AteExtraComma ? InstExtraComma : InstNormal; 7016 } 7017 7018 /// ParseCmpXchg 7019 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 7020 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering 7021 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 7022 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 7023 bool AteExtraComma = false; 7024 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 7025 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 7026 SyncScope::ID SSID = SyncScope::System; 7027 bool isVolatile = false; 7028 bool isWeak = false; 7029 7030 if (EatIfPresent(lltok::kw_weak)) 7031 isWeak = true; 7032 7033 if (EatIfPresent(lltok::kw_volatile)) 7034 isVolatile = true; 7035 7036 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 7037 ParseToken(lltok::comma, "expected ',' after cmpxchg address") || 7038 ParseTypeAndValue(Cmp, CmpLoc, PFS) || 7039 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 7040 ParseTypeAndValue(New, NewLoc, PFS) || 7041 ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) || 7042 ParseOrdering(FailureOrdering)) 7043 return true; 7044 7045 if (SuccessOrdering == AtomicOrdering::Unordered || 7046 FailureOrdering == AtomicOrdering::Unordered) 7047 return TokError("cmpxchg cannot be unordered"); 7048 if (isStrongerThan(FailureOrdering, SuccessOrdering)) 7049 return TokError("cmpxchg failure argument shall be no stronger than the " 7050 "success argument"); 7051 if (FailureOrdering == AtomicOrdering::Release || 7052 FailureOrdering == AtomicOrdering::AcquireRelease) 7053 return TokError( 7054 "cmpxchg failure ordering cannot include release semantics"); 7055 if (!Ptr->getType()->isPointerTy()) 7056 return Error(PtrLoc, "cmpxchg operand must be a pointer"); 7057 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 7058 return Error(CmpLoc, "compare value and pointer type do not match"); 7059 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 7060 return Error(NewLoc, "new value and pointer type do not match"); 7061 if (!New->getType()->isFirstClassType()) 7062 return Error(NewLoc, "cmpxchg operand must be a first class value"); 7063 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 7064 Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID); 7065 CXI->setVolatile(isVolatile); 7066 CXI->setWeak(isWeak); 7067 Inst = CXI; 7068 return AteExtraComma ? InstExtraComma : InstNormal; 7069 } 7070 7071 /// ParseAtomicRMW 7072 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 7073 /// 'singlethread'? AtomicOrdering 7074 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 7075 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 7076 bool AteExtraComma = false; 7077 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7078 SyncScope::ID SSID = SyncScope::System; 7079 bool isVolatile = false; 7080 bool IsFP = false; 7081 AtomicRMWInst::BinOp Operation; 7082 7083 if (EatIfPresent(lltok::kw_volatile)) 7084 isVolatile = true; 7085 7086 switch (Lex.getKind()) { 7087 default: return TokError("expected binary operation in atomicrmw"); 7088 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 7089 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 7090 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 7091 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 7092 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 7093 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 7094 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 7095 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 7096 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 7097 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 7098 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 7099 case lltok::kw_fadd: 7100 Operation = AtomicRMWInst::FAdd; 7101 IsFP = true; 7102 break; 7103 case lltok::kw_fsub: 7104 Operation = AtomicRMWInst::FSub; 7105 IsFP = true; 7106 break; 7107 } 7108 Lex.Lex(); // Eat the operation. 7109 7110 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 7111 ParseToken(lltok::comma, "expected ',' after atomicrmw address") || 7112 ParseTypeAndValue(Val, ValLoc, PFS) || 7113 ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 7114 return true; 7115 7116 if (Ordering == AtomicOrdering::Unordered) 7117 return TokError("atomicrmw cannot be unordered"); 7118 if (!Ptr->getType()->isPointerTy()) 7119 return Error(PtrLoc, "atomicrmw operand must be a pointer"); 7120 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 7121 return Error(ValLoc, "atomicrmw value and pointer type do not match"); 7122 7123 if (Operation == AtomicRMWInst::Xchg) { 7124 if (!Val->getType()->isIntegerTy() && 7125 !Val->getType()->isFloatingPointTy()) { 7126 return Error(ValLoc, "atomicrmw " + 7127 AtomicRMWInst::getOperationName(Operation) + 7128 " operand must be an integer or floating point type"); 7129 } 7130 } else if (IsFP) { 7131 if (!Val->getType()->isFloatingPointTy()) { 7132 return Error(ValLoc, "atomicrmw " + 7133 AtomicRMWInst::getOperationName(Operation) + 7134 " operand must be a floating point type"); 7135 } 7136 } else { 7137 if (!Val->getType()->isIntegerTy()) { 7138 return Error(ValLoc, "atomicrmw " + 7139 AtomicRMWInst::getOperationName(Operation) + 7140 " operand must be an integer"); 7141 } 7142 } 7143 7144 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 7145 if (Size < 8 || (Size & (Size - 1))) 7146 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 7147 " integer"); 7148 7149 AtomicRMWInst *RMWI = 7150 new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 7151 RMWI->setVolatile(isVolatile); 7152 Inst = RMWI; 7153 return AteExtraComma ? InstExtraComma : InstNormal; 7154 } 7155 7156 /// ParseFence 7157 /// ::= 'fence' 'singlethread'? AtomicOrdering 7158 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) { 7159 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7160 SyncScope::ID SSID = SyncScope::System; 7161 if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 7162 return true; 7163 7164 if (Ordering == AtomicOrdering::Unordered) 7165 return TokError("fence cannot be unordered"); 7166 if (Ordering == AtomicOrdering::Monotonic) 7167 return TokError("fence cannot be monotonic"); 7168 7169 Inst = new FenceInst(Context, Ordering, SSID); 7170 return InstNormal; 7171 } 7172 7173 /// ParseGetElementPtr 7174 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 7175 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 7176 Value *Ptr = nullptr; 7177 Value *Val = nullptr; 7178 LocTy Loc, EltLoc; 7179 7180 bool InBounds = EatIfPresent(lltok::kw_inbounds); 7181 7182 Type *Ty = nullptr; 7183 LocTy ExplicitTypeLoc = Lex.getLoc(); 7184 if (ParseType(Ty) || 7185 ParseToken(lltok::comma, "expected comma after getelementptr's type") || 7186 ParseTypeAndValue(Ptr, Loc, PFS)) 7187 return true; 7188 7189 Type *BaseType = Ptr->getType(); 7190 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 7191 if (!BasePointerType) 7192 return Error(Loc, "base of getelementptr must be a pointer"); 7193 7194 if (Ty != BasePointerType->getElementType()) 7195 return Error(ExplicitTypeLoc, 7196 "explicit pointee type doesn't match operand's pointee type"); 7197 7198 SmallVector<Value*, 16> Indices; 7199 bool AteExtraComma = false; 7200 // GEP returns a vector of pointers if at least one of parameters is a vector. 7201 // All vector parameters should have the same vector width. 7202 unsigned GEPWidth = BaseType->isVectorTy() ? 7203 BaseType->getVectorNumElements() : 0; 7204 7205 while (EatIfPresent(lltok::comma)) { 7206 if (Lex.getKind() == lltok::MetadataVar) { 7207 AteExtraComma = true; 7208 break; 7209 } 7210 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; 7211 if (!Val->getType()->isIntOrIntVectorTy()) 7212 return Error(EltLoc, "getelementptr index must be an integer"); 7213 7214 if (Val->getType()->isVectorTy()) { 7215 unsigned ValNumEl = Val->getType()->getVectorNumElements(); 7216 if (GEPWidth && GEPWidth != ValNumEl) 7217 return Error(EltLoc, 7218 "getelementptr vector index has a wrong number of elements"); 7219 GEPWidth = ValNumEl; 7220 } 7221 Indices.push_back(Val); 7222 } 7223 7224 SmallPtrSet<Type*, 4> Visited; 7225 if (!Indices.empty() && !Ty->isSized(&Visited)) 7226 return Error(Loc, "base element of getelementptr must be sized"); 7227 7228 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 7229 return Error(Loc, "invalid getelementptr indices"); 7230 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 7231 if (InBounds) 7232 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 7233 return AteExtraComma ? InstExtraComma : InstNormal; 7234 } 7235 7236 /// ParseExtractValue 7237 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 7238 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 7239 Value *Val; LocTy Loc; 7240 SmallVector<unsigned, 4> Indices; 7241 bool AteExtraComma; 7242 if (ParseTypeAndValue(Val, Loc, PFS) || 7243 ParseIndexList(Indices, AteExtraComma)) 7244 return true; 7245 7246 if (!Val->getType()->isAggregateType()) 7247 return Error(Loc, "extractvalue operand must be aggregate type"); 7248 7249 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 7250 return Error(Loc, "invalid indices for extractvalue"); 7251 Inst = ExtractValueInst::Create(Val, Indices); 7252 return AteExtraComma ? InstExtraComma : InstNormal; 7253 } 7254 7255 /// ParseInsertValue 7256 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 7257 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 7258 Value *Val0, *Val1; LocTy Loc0, Loc1; 7259 SmallVector<unsigned, 4> Indices; 7260 bool AteExtraComma; 7261 if (ParseTypeAndValue(Val0, Loc0, PFS) || 7262 ParseToken(lltok::comma, "expected comma after insertvalue operand") || 7263 ParseTypeAndValue(Val1, Loc1, PFS) || 7264 ParseIndexList(Indices, AteExtraComma)) 7265 return true; 7266 7267 if (!Val0->getType()->isAggregateType()) 7268 return Error(Loc0, "insertvalue operand must be aggregate type"); 7269 7270 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 7271 if (!IndexedType) 7272 return Error(Loc0, "invalid indices for insertvalue"); 7273 if (IndexedType != Val1->getType()) 7274 return Error(Loc1, "insertvalue operand and field disagree in type: '" + 7275 getTypeString(Val1->getType()) + "' instead of '" + 7276 getTypeString(IndexedType) + "'"); 7277 Inst = InsertValueInst::Create(Val0, Val1, Indices); 7278 return AteExtraComma ? InstExtraComma : InstNormal; 7279 } 7280 7281 //===----------------------------------------------------------------------===// 7282 // Embedded metadata. 7283 //===----------------------------------------------------------------------===// 7284 7285 /// ParseMDNodeVector 7286 /// ::= { Element (',' Element)* } 7287 /// Element 7288 /// ::= 'null' | TypeAndValue 7289 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 7290 if (ParseToken(lltok::lbrace, "expected '{' here")) 7291 return true; 7292 7293 // Check for an empty list. 7294 if (EatIfPresent(lltok::rbrace)) 7295 return false; 7296 7297 do { 7298 // Null is a special case since it is typeless. 7299 if (EatIfPresent(lltok::kw_null)) { 7300 Elts.push_back(nullptr); 7301 continue; 7302 } 7303 7304 Metadata *MD; 7305 if (ParseMetadata(MD, nullptr)) 7306 return true; 7307 Elts.push_back(MD); 7308 } while (EatIfPresent(lltok::comma)); 7309 7310 return ParseToken(lltok::rbrace, "expected end of metadata node"); 7311 } 7312 7313 //===----------------------------------------------------------------------===// 7314 // Use-list order directives. 7315 //===----------------------------------------------------------------------===// 7316 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 7317 SMLoc Loc) { 7318 if (V->use_empty()) 7319 return Error(Loc, "value has no uses"); 7320 7321 unsigned NumUses = 0; 7322 SmallDenseMap<const Use *, unsigned, 16> Order; 7323 for (const Use &U : V->uses()) { 7324 if (++NumUses > Indexes.size()) 7325 break; 7326 Order[&U] = Indexes[NumUses - 1]; 7327 } 7328 if (NumUses < 2) 7329 return Error(Loc, "value only has one use"); 7330 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 7331 return Error(Loc, 7332 "wrong number of indexes, expected " + Twine(V->getNumUses())); 7333 7334 V->sortUseList([&](const Use &L, const Use &R) { 7335 return Order.lookup(&L) < Order.lookup(&R); 7336 }); 7337 return false; 7338 } 7339 7340 /// ParseUseListOrderIndexes 7341 /// ::= '{' uint32 (',' uint32)+ '}' 7342 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 7343 SMLoc Loc = Lex.getLoc(); 7344 if (ParseToken(lltok::lbrace, "expected '{' here")) 7345 return true; 7346 if (Lex.getKind() == lltok::rbrace) 7347 return Lex.Error("expected non-empty list of uselistorder indexes"); 7348 7349 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 7350 // indexes should be distinct numbers in the range [0, size-1], and should 7351 // not be in order. 7352 unsigned Offset = 0; 7353 unsigned Max = 0; 7354 bool IsOrdered = true; 7355 assert(Indexes.empty() && "Expected empty order vector"); 7356 do { 7357 unsigned Index; 7358 if (ParseUInt32(Index)) 7359 return true; 7360 7361 // Update consistency checks. 7362 Offset += Index - Indexes.size(); 7363 Max = std::max(Max, Index); 7364 IsOrdered &= Index == Indexes.size(); 7365 7366 Indexes.push_back(Index); 7367 } while (EatIfPresent(lltok::comma)); 7368 7369 if (ParseToken(lltok::rbrace, "expected '}' here")) 7370 return true; 7371 7372 if (Indexes.size() < 2) 7373 return Error(Loc, "expected >= 2 uselistorder indexes"); 7374 if (Offset != 0 || Max >= Indexes.size()) 7375 return Error(Loc, "expected distinct uselistorder indexes in range [0, size)"); 7376 if (IsOrdered) 7377 return Error(Loc, "expected uselistorder indexes to change the order"); 7378 7379 return false; 7380 } 7381 7382 /// ParseUseListOrder 7383 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 7384 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) { 7385 SMLoc Loc = Lex.getLoc(); 7386 if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 7387 return true; 7388 7389 Value *V; 7390 SmallVector<unsigned, 16> Indexes; 7391 if (ParseTypeAndValue(V, PFS) || 7392 ParseToken(lltok::comma, "expected comma in uselistorder directive") || 7393 ParseUseListOrderIndexes(Indexes)) 7394 return true; 7395 7396 return sortUseListOrder(V, Indexes, Loc); 7397 } 7398 7399 /// ParseUseListOrderBB 7400 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 7401 bool LLParser::ParseUseListOrderBB() { 7402 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 7403 SMLoc Loc = Lex.getLoc(); 7404 Lex.Lex(); 7405 7406 ValID Fn, Label; 7407 SmallVector<unsigned, 16> Indexes; 7408 if (ParseValID(Fn) || 7409 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7410 ParseValID(Label) || 7411 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7412 ParseUseListOrderIndexes(Indexes)) 7413 return true; 7414 7415 // Check the function. 7416 GlobalValue *GV; 7417 if (Fn.Kind == ValID::t_GlobalName) 7418 GV = M->getNamedValue(Fn.StrVal); 7419 else if (Fn.Kind == ValID::t_GlobalID) 7420 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 7421 else 7422 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 7423 if (!GV) 7424 return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb"); 7425 auto *F = dyn_cast<Function>(GV); 7426 if (!F) 7427 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 7428 if (F->isDeclaration()) 7429 return Error(Fn.Loc, "invalid declaration in uselistorder_bb"); 7430 7431 // Check the basic block. 7432 if (Label.Kind == ValID::t_LocalID) 7433 return Error(Label.Loc, "invalid numeric label in uselistorder_bb"); 7434 if (Label.Kind != ValID::t_LocalName) 7435 return Error(Label.Loc, "expected basic block name in uselistorder_bb"); 7436 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); 7437 if (!V) 7438 return Error(Label.Loc, "invalid basic block in uselistorder_bb"); 7439 if (!isa<BasicBlock>(V)) 7440 return Error(Label.Loc, "expected basic block in uselistorder_bb"); 7441 7442 return sortUseListOrder(V, Indexes, Loc); 7443 } 7444 7445 /// ModuleEntry 7446 /// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')' 7447 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')' 7448 bool LLParser::ParseModuleEntry(unsigned ID) { 7449 assert(Lex.getKind() == lltok::kw_module); 7450 Lex.Lex(); 7451 7452 std::string Path; 7453 if (ParseToken(lltok::colon, "expected ':' here") || 7454 ParseToken(lltok::lparen, "expected '(' here") || 7455 ParseToken(lltok::kw_path, "expected 'path' here") || 7456 ParseToken(lltok::colon, "expected ':' here") || 7457 ParseStringConstant(Path) || 7458 ParseToken(lltok::comma, "expected ',' here") || 7459 ParseToken(lltok::kw_hash, "expected 'hash' here") || 7460 ParseToken(lltok::colon, "expected ':' here") || 7461 ParseToken(lltok::lparen, "expected '(' here")) 7462 return true; 7463 7464 ModuleHash Hash; 7465 if (ParseUInt32(Hash[0]) || ParseToken(lltok::comma, "expected ',' here") || 7466 ParseUInt32(Hash[1]) || ParseToken(lltok::comma, "expected ',' here") || 7467 ParseUInt32(Hash[2]) || ParseToken(lltok::comma, "expected ',' here") || 7468 ParseUInt32(Hash[3]) || ParseToken(lltok::comma, "expected ',' here") || 7469 ParseUInt32(Hash[4])) 7470 return true; 7471 7472 if (ParseToken(lltok::rparen, "expected ')' here") || 7473 ParseToken(lltok::rparen, "expected ')' here")) 7474 return true; 7475 7476 auto ModuleEntry = Index->addModule(Path, ID, Hash); 7477 ModuleIdMap[ID] = ModuleEntry->first(); 7478 7479 return false; 7480 } 7481 7482 /// TypeIdEntry 7483 /// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')' 7484 bool LLParser::ParseTypeIdEntry(unsigned ID) { 7485 assert(Lex.getKind() == lltok::kw_typeid); 7486 Lex.Lex(); 7487 7488 std::string Name; 7489 if (ParseToken(lltok::colon, "expected ':' here") || 7490 ParseToken(lltok::lparen, "expected '(' here") || 7491 ParseToken(lltok::kw_name, "expected 'name' here") || 7492 ParseToken(lltok::colon, "expected ':' here") || 7493 ParseStringConstant(Name)) 7494 return true; 7495 7496 TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name); 7497 if (ParseToken(lltok::comma, "expected ',' here") || 7498 ParseTypeIdSummary(TIS) || ParseToken(lltok::rparen, "expected ')' here")) 7499 return true; 7500 7501 // Check if this ID was forward referenced, and if so, update the 7502 // corresponding GUIDs. 7503 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 7504 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 7505 for (auto TIDRef : FwdRefTIDs->second) { 7506 assert(!*TIDRef.first && 7507 "Forward referenced type id GUID expected to be 0"); 7508 *TIDRef.first = GlobalValue::getGUID(Name); 7509 } 7510 ForwardRefTypeIds.erase(FwdRefTIDs); 7511 } 7512 7513 return false; 7514 } 7515 7516 /// TypeIdSummary 7517 /// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')' 7518 bool LLParser::ParseTypeIdSummary(TypeIdSummary &TIS) { 7519 if (ParseToken(lltok::kw_summary, "expected 'summary' here") || 7520 ParseToken(lltok::colon, "expected ':' here") || 7521 ParseToken(lltok::lparen, "expected '(' here") || 7522 ParseTypeTestResolution(TIS.TTRes)) 7523 return true; 7524 7525 if (EatIfPresent(lltok::comma)) { 7526 // Expect optional wpdResolutions field 7527 if (ParseOptionalWpdResolutions(TIS.WPDRes)) 7528 return true; 7529 } 7530 7531 if (ParseToken(lltok::rparen, "expected ')' here")) 7532 return true; 7533 7534 return false; 7535 } 7536 7537 static ValueInfo EmptyVI = 7538 ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8); 7539 7540 /// TypeIdCompatibleVtableEntry 7541 /// ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ',' 7542 /// TypeIdCompatibleVtableInfo 7543 /// ')' 7544 bool LLParser::ParseTypeIdCompatibleVtableEntry(unsigned ID) { 7545 assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable); 7546 Lex.Lex(); 7547 7548 std::string Name; 7549 if (ParseToken(lltok::colon, "expected ':' here") || 7550 ParseToken(lltok::lparen, "expected '(' here") || 7551 ParseToken(lltok::kw_name, "expected 'name' here") || 7552 ParseToken(lltok::colon, "expected ':' here") || 7553 ParseStringConstant(Name)) 7554 return true; 7555 7556 TypeIdCompatibleVtableInfo &TI = 7557 Index->getOrInsertTypeIdCompatibleVtableSummary(Name); 7558 if (ParseToken(lltok::comma, "expected ',' here") || 7559 ParseToken(lltok::kw_summary, "expected 'summary' here") || 7560 ParseToken(lltok::colon, "expected ':' here") || 7561 ParseToken(lltok::lparen, "expected '(' here")) 7562 return true; 7563 7564 IdToIndexMapType IdToIndexMap; 7565 // Parse each call edge 7566 do { 7567 uint64_t Offset; 7568 if (ParseToken(lltok::lparen, "expected '(' here") || 7569 ParseToken(lltok::kw_offset, "expected 'offset' here") || 7570 ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) || 7571 ParseToken(lltok::comma, "expected ',' here")) 7572 return true; 7573 7574 LocTy Loc = Lex.getLoc(); 7575 unsigned GVId; 7576 ValueInfo VI; 7577 if (ParseGVReference(VI, GVId)) 7578 return true; 7579 7580 // Keep track of the TypeIdCompatibleVtableInfo array index needing a 7581 // forward reference. We will save the location of the ValueInfo needing an 7582 // update, but can only do so once the std::vector is finalized. 7583 if (VI == EmptyVI) 7584 IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc)); 7585 TI.push_back({Offset, VI}); 7586 7587 if (ParseToken(lltok::rparen, "expected ')' in call")) 7588 return true; 7589 } while (EatIfPresent(lltok::comma)); 7590 7591 // Now that the TI vector is finalized, it is safe to save the locations 7592 // of any forward GV references that need updating later. 7593 for (auto I : IdToIndexMap) { 7594 for (auto P : I.second) { 7595 assert(TI[P.first].VTableVI == EmptyVI && 7596 "Forward referenced ValueInfo expected to be empty"); 7597 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 7598 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 7599 FwdRef.first->second.push_back( 7600 std::make_pair(&TI[P.first].VTableVI, P.second)); 7601 } 7602 } 7603 7604 if (ParseToken(lltok::rparen, "expected ')' here") || 7605 ParseToken(lltok::rparen, "expected ')' here")) 7606 return true; 7607 7608 // Check if this ID was forward referenced, and if so, update the 7609 // corresponding GUIDs. 7610 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 7611 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 7612 for (auto TIDRef : FwdRefTIDs->second) { 7613 assert(!*TIDRef.first && 7614 "Forward referenced type id GUID expected to be 0"); 7615 *TIDRef.first = GlobalValue::getGUID(Name); 7616 } 7617 ForwardRefTypeIds.erase(FwdRefTIDs); 7618 } 7619 7620 return false; 7621 } 7622 7623 /// TypeTestResolution 7624 /// ::= 'typeTestRes' ':' '(' 'kind' ':' 7625 /// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ',' 7626 /// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]? 7627 /// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]? 7628 /// [',' 'inlinesBits' ':' UInt64]? ')' 7629 bool LLParser::ParseTypeTestResolution(TypeTestResolution &TTRes) { 7630 if (ParseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") || 7631 ParseToken(lltok::colon, "expected ':' here") || 7632 ParseToken(lltok::lparen, "expected '(' here") || 7633 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7634 ParseToken(lltok::colon, "expected ':' here")) 7635 return true; 7636 7637 switch (Lex.getKind()) { 7638 case lltok::kw_unsat: 7639 TTRes.TheKind = TypeTestResolution::Unsat; 7640 break; 7641 case lltok::kw_byteArray: 7642 TTRes.TheKind = TypeTestResolution::ByteArray; 7643 break; 7644 case lltok::kw_inline: 7645 TTRes.TheKind = TypeTestResolution::Inline; 7646 break; 7647 case lltok::kw_single: 7648 TTRes.TheKind = TypeTestResolution::Single; 7649 break; 7650 case lltok::kw_allOnes: 7651 TTRes.TheKind = TypeTestResolution::AllOnes; 7652 break; 7653 default: 7654 return Error(Lex.getLoc(), "unexpected TypeTestResolution kind"); 7655 } 7656 Lex.Lex(); 7657 7658 if (ParseToken(lltok::comma, "expected ',' here") || 7659 ParseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") || 7660 ParseToken(lltok::colon, "expected ':' here") || 7661 ParseUInt32(TTRes.SizeM1BitWidth)) 7662 return true; 7663 7664 // Parse optional fields 7665 while (EatIfPresent(lltok::comma)) { 7666 switch (Lex.getKind()) { 7667 case lltok::kw_alignLog2: 7668 Lex.Lex(); 7669 if (ParseToken(lltok::colon, "expected ':'") || 7670 ParseUInt64(TTRes.AlignLog2)) 7671 return true; 7672 break; 7673 case lltok::kw_sizeM1: 7674 Lex.Lex(); 7675 if (ParseToken(lltok::colon, "expected ':'") || ParseUInt64(TTRes.SizeM1)) 7676 return true; 7677 break; 7678 case lltok::kw_bitMask: { 7679 unsigned Val; 7680 Lex.Lex(); 7681 if (ParseToken(lltok::colon, "expected ':'") || ParseUInt32(Val)) 7682 return true; 7683 assert(Val <= 0xff); 7684 TTRes.BitMask = (uint8_t)Val; 7685 break; 7686 } 7687 case lltok::kw_inlineBits: 7688 Lex.Lex(); 7689 if (ParseToken(lltok::colon, "expected ':'") || 7690 ParseUInt64(TTRes.InlineBits)) 7691 return true; 7692 break; 7693 default: 7694 return Error(Lex.getLoc(), "expected optional TypeTestResolution field"); 7695 } 7696 } 7697 7698 if (ParseToken(lltok::rparen, "expected ')' here")) 7699 return true; 7700 7701 return false; 7702 } 7703 7704 /// OptionalWpdResolutions 7705 /// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')' 7706 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')' 7707 bool LLParser::ParseOptionalWpdResolutions( 7708 std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) { 7709 if (ParseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") || 7710 ParseToken(lltok::colon, "expected ':' here") || 7711 ParseToken(lltok::lparen, "expected '(' here")) 7712 return true; 7713 7714 do { 7715 uint64_t Offset; 7716 WholeProgramDevirtResolution WPDRes; 7717 if (ParseToken(lltok::lparen, "expected '(' here") || 7718 ParseToken(lltok::kw_offset, "expected 'offset' here") || 7719 ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) || 7720 ParseToken(lltok::comma, "expected ',' here") || ParseWpdRes(WPDRes) || 7721 ParseToken(lltok::rparen, "expected ')' here")) 7722 return true; 7723 WPDResMap[Offset] = WPDRes; 7724 } while (EatIfPresent(lltok::comma)); 7725 7726 if (ParseToken(lltok::rparen, "expected ')' here")) 7727 return true; 7728 7729 return false; 7730 } 7731 7732 /// WpdRes 7733 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir' 7734 /// [',' OptionalResByArg]? ')' 7735 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl' 7736 /// ',' 'singleImplName' ':' STRINGCONSTANT ',' 7737 /// [',' OptionalResByArg]? ')' 7738 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel' 7739 /// [',' OptionalResByArg]? ')' 7740 bool LLParser::ParseWpdRes(WholeProgramDevirtResolution &WPDRes) { 7741 if (ParseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") || 7742 ParseToken(lltok::colon, "expected ':' here") || 7743 ParseToken(lltok::lparen, "expected '(' here") || 7744 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7745 ParseToken(lltok::colon, "expected ':' here")) 7746 return true; 7747 7748 switch (Lex.getKind()) { 7749 case lltok::kw_indir: 7750 WPDRes.TheKind = WholeProgramDevirtResolution::Indir; 7751 break; 7752 case lltok::kw_singleImpl: 7753 WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl; 7754 break; 7755 case lltok::kw_branchFunnel: 7756 WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel; 7757 break; 7758 default: 7759 return Error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind"); 7760 } 7761 Lex.Lex(); 7762 7763 // Parse optional fields 7764 while (EatIfPresent(lltok::comma)) { 7765 switch (Lex.getKind()) { 7766 case lltok::kw_singleImplName: 7767 Lex.Lex(); 7768 if (ParseToken(lltok::colon, "expected ':' here") || 7769 ParseStringConstant(WPDRes.SingleImplName)) 7770 return true; 7771 break; 7772 case lltok::kw_resByArg: 7773 if (ParseOptionalResByArg(WPDRes.ResByArg)) 7774 return true; 7775 break; 7776 default: 7777 return Error(Lex.getLoc(), 7778 "expected optional WholeProgramDevirtResolution field"); 7779 } 7780 } 7781 7782 if (ParseToken(lltok::rparen, "expected ')' here")) 7783 return true; 7784 7785 return false; 7786 } 7787 7788 /// OptionalResByArg 7789 /// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')' 7790 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':' 7791 /// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' | 7792 /// 'virtualConstProp' ) 7793 /// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]? 7794 /// [',' 'bit' ':' UInt32]? ')' 7795 bool LLParser::ParseOptionalResByArg( 7796 std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg> 7797 &ResByArg) { 7798 if (ParseToken(lltok::kw_resByArg, "expected 'resByArg' here") || 7799 ParseToken(lltok::colon, "expected ':' here") || 7800 ParseToken(lltok::lparen, "expected '(' here")) 7801 return true; 7802 7803 do { 7804 std::vector<uint64_t> Args; 7805 if (ParseArgs(Args) || ParseToken(lltok::comma, "expected ',' here") || 7806 ParseToken(lltok::kw_byArg, "expected 'byArg here") || 7807 ParseToken(lltok::colon, "expected ':' here") || 7808 ParseToken(lltok::lparen, "expected '(' here") || 7809 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7810 ParseToken(lltok::colon, "expected ':' here")) 7811 return true; 7812 7813 WholeProgramDevirtResolution::ByArg ByArg; 7814 switch (Lex.getKind()) { 7815 case lltok::kw_indir: 7816 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir; 7817 break; 7818 case lltok::kw_uniformRetVal: 7819 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 7820 break; 7821 case lltok::kw_uniqueRetVal: 7822 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 7823 break; 7824 case lltok::kw_virtualConstProp: 7825 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 7826 break; 7827 default: 7828 return Error(Lex.getLoc(), 7829 "unexpected WholeProgramDevirtResolution::ByArg kind"); 7830 } 7831 Lex.Lex(); 7832 7833 // Parse optional fields 7834 while (EatIfPresent(lltok::comma)) { 7835 switch (Lex.getKind()) { 7836 case lltok::kw_info: 7837 Lex.Lex(); 7838 if (ParseToken(lltok::colon, "expected ':' here") || 7839 ParseUInt64(ByArg.Info)) 7840 return true; 7841 break; 7842 case lltok::kw_byte: 7843 Lex.Lex(); 7844 if (ParseToken(lltok::colon, "expected ':' here") || 7845 ParseUInt32(ByArg.Byte)) 7846 return true; 7847 break; 7848 case lltok::kw_bit: 7849 Lex.Lex(); 7850 if (ParseToken(lltok::colon, "expected ':' here") || 7851 ParseUInt32(ByArg.Bit)) 7852 return true; 7853 break; 7854 default: 7855 return Error(Lex.getLoc(), 7856 "expected optional whole program devirt field"); 7857 } 7858 } 7859 7860 if (ParseToken(lltok::rparen, "expected ')' here")) 7861 return true; 7862 7863 ResByArg[Args] = ByArg; 7864 } while (EatIfPresent(lltok::comma)); 7865 7866 if (ParseToken(lltok::rparen, "expected ')' here")) 7867 return true; 7868 7869 return false; 7870 } 7871 7872 /// OptionalResByArg 7873 /// ::= 'args' ':' '(' UInt64[, UInt64]* ')' 7874 bool LLParser::ParseArgs(std::vector<uint64_t> &Args) { 7875 if (ParseToken(lltok::kw_args, "expected 'args' here") || 7876 ParseToken(lltok::colon, "expected ':' here") || 7877 ParseToken(lltok::lparen, "expected '(' here")) 7878 return true; 7879 7880 do { 7881 uint64_t Val; 7882 if (ParseUInt64(Val)) 7883 return true; 7884 Args.push_back(Val); 7885 } while (EatIfPresent(lltok::comma)); 7886 7887 if (ParseToken(lltok::rparen, "expected ')' here")) 7888 return true; 7889 7890 return false; 7891 } 7892 7893 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8; 7894 7895 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) { 7896 bool ReadOnly = Fwd->isReadOnly(); 7897 bool WriteOnly = Fwd->isWriteOnly(); 7898 assert(!(ReadOnly && WriteOnly)); 7899 *Fwd = Resolved; 7900 if (ReadOnly) 7901 Fwd->setReadOnly(); 7902 if (WriteOnly) 7903 Fwd->setWriteOnly(); 7904 } 7905 7906 /// Stores the given Name/GUID and associated summary into the Index. 7907 /// Also updates any forward references to the associated entry ID. 7908 void LLParser::AddGlobalValueToIndex( 7909 std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage, 7910 unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) { 7911 // First create the ValueInfo utilizing the Name or GUID. 7912 ValueInfo VI; 7913 if (GUID != 0) { 7914 assert(Name.empty()); 7915 VI = Index->getOrInsertValueInfo(GUID); 7916 } else { 7917 assert(!Name.empty()); 7918 if (M) { 7919 auto *GV = M->getNamedValue(Name); 7920 assert(GV); 7921 VI = Index->getOrInsertValueInfo(GV); 7922 } else { 7923 assert( 7924 (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) && 7925 "Need a source_filename to compute GUID for local"); 7926 GUID = GlobalValue::getGUID( 7927 GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName)); 7928 VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name)); 7929 } 7930 } 7931 7932 // Resolve forward references from calls/refs 7933 auto FwdRefVIs = ForwardRefValueInfos.find(ID); 7934 if (FwdRefVIs != ForwardRefValueInfos.end()) { 7935 for (auto VIRef : FwdRefVIs->second) { 7936 assert(VIRef.first->getRef() == FwdVIRef && 7937 "Forward referenced ValueInfo expected to be empty"); 7938 resolveFwdRef(VIRef.first, VI); 7939 } 7940 ForwardRefValueInfos.erase(FwdRefVIs); 7941 } 7942 7943 // Resolve forward references from aliases 7944 auto FwdRefAliasees = ForwardRefAliasees.find(ID); 7945 if (FwdRefAliasees != ForwardRefAliasees.end()) { 7946 for (auto AliaseeRef : FwdRefAliasees->second) { 7947 assert(!AliaseeRef.first->hasAliasee() && 7948 "Forward referencing alias already has aliasee"); 7949 assert(Summary && "Aliasee must be a definition"); 7950 AliaseeRef.first->setAliasee(VI, Summary.get()); 7951 } 7952 ForwardRefAliasees.erase(FwdRefAliasees); 7953 } 7954 7955 // Add the summary if one was provided. 7956 if (Summary) 7957 Index->addGlobalValueSummary(VI, std::move(Summary)); 7958 7959 // Save the associated ValueInfo for use in later references by ID. 7960 if (ID == NumberedValueInfos.size()) 7961 NumberedValueInfos.push_back(VI); 7962 else { 7963 // Handle non-continuous numbers (to make test simplification easier). 7964 if (ID > NumberedValueInfos.size()) 7965 NumberedValueInfos.resize(ID + 1); 7966 NumberedValueInfos[ID] = VI; 7967 } 7968 } 7969 7970 /// ParseGVEntry 7971 /// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64) 7972 /// [',' 'summaries' ':' Summary[',' Summary]* ]? ')' 7973 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')' 7974 bool LLParser::ParseGVEntry(unsigned ID) { 7975 assert(Lex.getKind() == lltok::kw_gv); 7976 Lex.Lex(); 7977 7978 if (ParseToken(lltok::colon, "expected ':' here") || 7979 ParseToken(lltok::lparen, "expected '(' here")) 7980 return true; 7981 7982 std::string Name; 7983 GlobalValue::GUID GUID = 0; 7984 switch (Lex.getKind()) { 7985 case lltok::kw_name: 7986 Lex.Lex(); 7987 if (ParseToken(lltok::colon, "expected ':' here") || 7988 ParseStringConstant(Name)) 7989 return true; 7990 // Can't create GUID/ValueInfo until we have the linkage. 7991 break; 7992 case lltok::kw_guid: 7993 Lex.Lex(); 7994 if (ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(GUID)) 7995 return true; 7996 break; 7997 default: 7998 return Error(Lex.getLoc(), "expected name or guid tag"); 7999 } 8000 8001 if (!EatIfPresent(lltok::comma)) { 8002 // No summaries. Wrap up. 8003 if (ParseToken(lltok::rparen, "expected ')' here")) 8004 return true; 8005 // This was created for a call to an external or indirect target. 8006 // A GUID with no summary came from a VALUE_GUID record, dummy GUID 8007 // created for indirect calls with VP. A Name with no GUID came from 8008 // an external definition. We pass ExternalLinkage since that is only 8009 // used when the GUID must be computed from Name, and in that case 8010 // the symbol must have external linkage. 8011 AddGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID, 8012 nullptr); 8013 return false; 8014 } 8015 8016 // Have a list of summaries 8017 if (ParseToken(lltok::kw_summaries, "expected 'summaries' here") || 8018 ParseToken(lltok::colon, "expected ':' here")) 8019 return true; 8020 8021 do { 8022 if (ParseToken(lltok::lparen, "expected '(' here")) 8023 return true; 8024 switch (Lex.getKind()) { 8025 case lltok::kw_function: 8026 if (ParseFunctionSummary(Name, GUID, ID)) 8027 return true; 8028 break; 8029 case lltok::kw_variable: 8030 if (ParseVariableSummary(Name, GUID, ID)) 8031 return true; 8032 break; 8033 case lltok::kw_alias: 8034 if (ParseAliasSummary(Name, GUID, ID)) 8035 return true; 8036 break; 8037 default: 8038 return Error(Lex.getLoc(), "expected summary type"); 8039 } 8040 if (ParseToken(lltok::rparen, "expected ')' here")) 8041 return true; 8042 } while (EatIfPresent(lltok::comma)); 8043 8044 if (ParseToken(lltok::rparen, "expected ')' here")) 8045 return true; 8046 8047 return false; 8048 } 8049 8050 /// FunctionSummary 8051 /// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8052 /// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]? 8053 /// [',' OptionalTypeIdInfo]? [',' OptionalRefs]? ')' 8054 bool LLParser::ParseFunctionSummary(std::string Name, GlobalValue::GUID GUID, 8055 unsigned ID) { 8056 assert(Lex.getKind() == lltok::kw_function); 8057 Lex.Lex(); 8058 8059 StringRef ModulePath; 8060 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8061 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 8062 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8063 unsigned InstCount; 8064 std::vector<FunctionSummary::EdgeTy> Calls; 8065 FunctionSummary::TypeIdInfo TypeIdInfo; 8066 std::vector<ValueInfo> Refs; 8067 // Default is all-zeros (conservative values). 8068 FunctionSummary::FFlags FFlags = {}; 8069 if (ParseToken(lltok::colon, "expected ':' here") || 8070 ParseToken(lltok::lparen, "expected '(' here") || 8071 ParseModuleReference(ModulePath) || 8072 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 8073 ParseToken(lltok::comma, "expected ',' here") || 8074 ParseToken(lltok::kw_insts, "expected 'insts' here") || 8075 ParseToken(lltok::colon, "expected ':' here") || ParseUInt32(InstCount)) 8076 return true; 8077 8078 // Parse optional fields 8079 while (EatIfPresent(lltok::comma)) { 8080 switch (Lex.getKind()) { 8081 case lltok::kw_funcFlags: 8082 if (ParseOptionalFFlags(FFlags)) 8083 return true; 8084 break; 8085 case lltok::kw_calls: 8086 if (ParseOptionalCalls(Calls)) 8087 return true; 8088 break; 8089 case lltok::kw_typeIdInfo: 8090 if (ParseOptionalTypeIdInfo(TypeIdInfo)) 8091 return true; 8092 break; 8093 case lltok::kw_refs: 8094 if (ParseOptionalRefs(Refs)) 8095 return true; 8096 break; 8097 default: 8098 return Error(Lex.getLoc(), "expected optional function summary field"); 8099 } 8100 } 8101 8102 if (ParseToken(lltok::rparen, "expected ')' here")) 8103 return true; 8104 8105 auto FS = std::make_unique<FunctionSummary>( 8106 GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs), 8107 std::move(Calls), std::move(TypeIdInfo.TypeTests), 8108 std::move(TypeIdInfo.TypeTestAssumeVCalls), 8109 std::move(TypeIdInfo.TypeCheckedLoadVCalls), 8110 std::move(TypeIdInfo.TypeTestAssumeConstVCalls), 8111 std::move(TypeIdInfo.TypeCheckedLoadConstVCalls)); 8112 8113 FS->setModulePath(ModulePath); 8114 8115 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8116 ID, std::move(FS)); 8117 8118 return false; 8119 } 8120 8121 /// VariableSummary 8122 /// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8123 /// [',' OptionalRefs]? ')' 8124 bool LLParser::ParseVariableSummary(std::string Name, GlobalValue::GUID GUID, 8125 unsigned ID) { 8126 assert(Lex.getKind() == lltok::kw_variable); 8127 Lex.Lex(); 8128 8129 StringRef ModulePath; 8130 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8131 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 8132 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8133 GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false, 8134 /* WriteOnly */ false); 8135 std::vector<ValueInfo> Refs; 8136 VTableFuncList VTableFuncs; 8137 if (ParseToken(lltok::colon, "expected ':' here") || 8138 ParseToken(lltok::lparen, "expected '(' here") || 8139 ParseModuleReference(ModulePath) || 8140 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 8141 ParseToken(lltok::comma, "expected ',' here") || 8142 ParseGVarFlags(GVarFlags)) 8143 return true; 8144 8145 // Parse optional fields 8146 while (EatIfPresent(lltok::comma)) { 8147 switch (Lex.getKind()) { 8148 case lltok::kw_vTableFuncs: 8149 if (ParseOptionalVTableFuncs(VTableFuncs)) 8150 return true; 8151 break; 8152 case lltok::kw_refs: 8153 if (ParseOptionalRefs(Refs)) 8154 return true; 8155 break; 8156 default: 8157 return Error(Lex.getLoc(), "expected optional variable summary field"); 8158 } 8159 } 8160 8161 if (ParseToken(lltok::rparen, "expected ')' here")) 8162 return true; 8163 8164 auto GS = 8165 std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs)); 8166 8167 GS->setModulePath(ModulePath); 8168 GS->setVTableFuncs(std::move(VTableFuncs)); 8169 8170 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8171 ID, std::move(GS)); 8172 8173 return false; 8174 } 8175 8176 /// AliasSummary 8177 /// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ',' 8178 /// 'aliasee' ':' GVReference ')' 8179 bool LLParser::ParseAliasSummary(std::string Name, GlobalValue::GUID GUID, 8180 unsigned ID) { 8181 assert(Lex.getKind() == lltok::kw_alias); 8182 LocTy Loc = Lex.getLoc(); 8183 Lex.Lex(); 8184 8185 StringRef ModulePath; 8186 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8187 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 8188 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8189 if (ParseToken(lltok::colon, "expected ':' here") || 8190 ParseToken(lltok::lparen, "expected '(' here") || 8191 ParseModuleReference(ModulePath) || 8192 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 8193 ParseToken(lltok::comma, "expected ',' here") || 8194 ParseToken(lltok::kw_aliasee, "expected 'aliasee' here") || 8195 ParseToken(lltok::colon, "expected ':' here")) 8196 return true; 8197 8198 ValueInfo AliaseeVI; 8199 unsigned GVId; 8200 if (ParseGVReference(AliaseeVI, GVId)) 8201 return true; 8202 8203 if (ParseToken(lltok::rparen, "expected ')' here")) 8204 return true; 8205 8206 auto AS = std::make_unique<AliasSummary>(GVFlags); 8207 8208 AS->setModulePath(ModulePath); 8209 8210 // Record forward reference if the aliasee is not parsed yet. 8211 if (AliaseeVI.getRef() == FwdVIRef) { 8212 auto FwdRef = ForwardRefAliasees.insert( 8213 std::make_pair(GVId, std::vector<std::pair<AliasSummary *, LocTy>>())); 8214 FwdRef.first->second.push_back(std::make_pair(AS.get(), Loc)); 8215 } else { 8216 auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath); 8217 assert(Summary && "Aliasee must be a definition"); 8218 AS->setAliasee(AliaseeVI, Summary); 8219 } 8220 8221 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8222 ID, std::move(AS)); 8223 8224 return false; 8225 } 8226 8227 /// Flag 8228 /// ::= [0|1] 8229 bool LLParser::ParseFlag(unsigned &Val) { 8230 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 8231 return TokError("expected integer"); 8232 Val = (unsigned)Lex.getAPSIntVal().getBoolValue(); 8233 Lex.Lex(); 8234 return false; 8235 } 8236 8237 /// OptionalFFlags 8238 /// := 'funcFlags' ':' '(' ['readNone' ':' Flag]? 8239 /// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]? 8240 /// [',' 'returnDoesNotAlias' ':' Flag]? ')' 8241 /// [',' 'noInline' ':' Flag]? ')' 8242 bool LLParser::ParseOptionalFFlags(FunctionSummary::FFlags &FFlags) { 8243 assert(Lex.getKind() == lltok::kw_funcFlags); 8244 Lex.Lex(); 8245 8246 if (ParseToken(lltok::colon, "expected ':' in funcFlags") | 8247 ParseToken(lltok::lparen, "expected '(' in funcFlags")) 8248 return true; 8249 8250 do { 8251 unsigned Val = 0; 8252 switch (Lex.getKind()) { 8253 case lltok::kw_readNone: 8254 Lex.Lex(); 8255 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8256 return true; 8257 FFlags.ReadNone = Val; 8258 break; 8259 case lltok::kw_readOnly: 8260 Lex.Lex(); 8261 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8262 return true; 8263 FFlags.ReadOnly = Val; 8264 break; 8265 case lltok::kw_noRecurse: 8266 Lex.Lex(); 8267 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8268 return true; 8269 FFlags.NoRecurse = Val; 8270 break; 8271 case lltok::kw_returnDoesNotAlias: 8272 Lex.Lex(); 8273 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8274 return true; 8275 FFlags.ReturnDoesNotAlias = Val; 8276 break; 8277 case lltok::kw_noInline: 8278 Lex.Lex(); 8279 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8280 return true; 8281 FFlags.NoInline = Val; 8282 break; 8283 default: 8284 return Error(Lex.getLoc(), "expected function flag type"); 8285 } 8286 } while (EatIfPresent(lltok::comma)); 8287 8288 if (ParseToken(lltok::rparen, "expected ')' in funcFlags")) 8289 return true; 8290 8291 return false; 8292 } 8293 8294 /// OptionalCalls 8295 /// := 'calls' ':' '(' Call [',' Call]* ')' 8296 /// Call ::= '(' 'callee' ':' GVReference 8297 /// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')' 8298 bool LLParser::ParseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) { 8299 assert(Lex.getKind() == lltok::kw_calls); 8300 Lex.Lex(); 8301 8302 if (ParseToken(lltok::colon, "expected ':' in calls") | 8303 ParseToken(lltok::lparen, "expected '(' in calls")) 8304 return true; 8305 8306 IdToIndexMapType IdToIndexMap; 8307 // Parse each call edge 8308 do { 8309 ValueInfo VI; 8310 if (ParseToken(lltok::lparen, "expected '(' in call") || 8311 ParseToken(lltok::kw_callee, "expected 'callee' in call") || 8312 ParseToken(lltok::colon, "expected ':'")) 8313 return true; 8314 8315 LocTy Loc = Lex.getLoc(); 8316 unsigned GVId; 8317 if (ParseGVReference(VI, GVId)) 8318 return true; 8319 8320 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 8321 unsigned RelBF = 0; 8322 if (EatIfPresent(lltok::comma)) { 8323 // Expect either hotness or relbf 8324 if (EatIfPresent(lltok::kw_hotness)) { 8325 if (ParseToken(lltok::colon, "expected ':'") || ParseHotness(Hotness)) 8326 return true; 8327 } else { 8328 if (ParseToken(lltok::kw_relbf, "expected relbf") || 8329 ParseToken(lltok::colon, "expected ':'") || ParseUInt32(RelBF)) 8330 return true; 8331 } 8332 } 8333 // Keep track of the Call array index needing a forward reference. 8334 // We will save the location of the ValueInfo needing an update, but 8335 // can only do so once the std::vector is finalized. 8336 if (VI.getRef() == FwdVIRef) 8337 IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc)); 8338 Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)}); 8339 8340 if (ParseToken(lltok::rparen, "expected ')' in call")) 8341 return true; 8342 } while (EatIfPresent(lltok::comma)); 8343 8344 // Now that the Calls vector is finalized, it is safe to save the locations 8345 // of any forward GV references that need updating later. 8346 for (auto I : IdToIndexMap) { 8347 for (auto P : I.second) { 8348 assert(Calls[P.first].first.getRef() == FwdVIRef && 8349 "Forward referenced ValueInfo expected to be empty"); 8350 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 8351 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 8352 FwdRef.first->second.push_back( 8353 std::make_pair(&Calls[P.first].first, P.second)); 8354 } 8355 } 8356 8357 if (ParseToken(lltok::rparen, "expected ')' in calls")) 8358 return true; 8359 8360 return false; 8361 } 8362 8363 /// Hotness 8364 /// := ('unknown'|'cold'|'none'|'hot'|'critical') 8365 bool LLParser::ParseHotness(CalleeInfo::HotnessType &Hotness) { 8366 switch (Lex.getKind()) { 8367 case lltok::kw_unknown: 8368 Hotness = CalleeInfo::HotnessType::Unknown; 8369 break; 8370 case lltok::kw_cold: 8371 Hotness = CalleeInfo::HotnessType::Cold; 8372 break; 8373 case lltok::kw_none: 8374 Hotness = CalleeInfo::HotnessType::None; 8375 break; 8376 case lltok::kw_hot: 8377 Hotness = CalleeInfo::HotnessType::Hot; 8378 break; 8379 case lltok::kw_critical: 8380 Hotness = CalleeInfo::HotnessType::Critical; 8381 break; 8382 default: 8383 return Error(Lex.getLoc(), "invalid call edge hotness"); 8384 } 8385 Lex.Lex(); 8386 return false; 8387 } 8388 8389 /// OptionalVTableFuncs 8390 /// := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')' 8391 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')' 8392 bool LLParser::ParseOptionalVTableFuncs(VTableFuncList &VTableFuncs) { 8393 assert(Lex.getKind() == lltok::kw_vTableFuncs); 8394 Lex.Lex(); 8395 8396 if (ParseToken(lltok::colon, "expected ':' in vTableFuncs") | 8397 ParseToken(lltok::lparen, "expected '(' in vTableFuncs")) 8398 return true; 8399 8400 IdToIndexMapType IdToIndexMap; 8401 // Parse each virtual function pair 8402 do { 8403 ValueInfo VI; 8404 if (ParseToken(lltok::lparen, "expected '(' in vTableFunc") || 8405 ParseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") || 8406 ParseToken(lltok::colon, "expected ':'")) 8407 return true; 8408 8409 LocTy Loc = Lex.getLoc(); 8410 unsigned GVId; 8411 if (ParseGVReference(VI, GVId)) 8412 return true; 8413 8414 uint64_t Offset; 8415 if (ParseToken(lltok::comma, "expected comma") || 8416 ParseToken(lltok::kw_offset, "expected offset") || 8417 ParseToken(lltok::colon, "expected ':'") || ParseUInt64(Offset)) 8418 return true; 8419 8420 // Keep track of the VTableFuncs array index needing a forward reference. 8421 // We will save the location of the ValueInfo needing an update, but 8422 // can only do so once the std::vector is finalized. 8423 if (VI == EmptyVI) 8424 IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc)); 8425 VTableFuncs.push_back({VI, Offset}); 8426 8427 if (ParseToken(lltok::rparen, "expected ')' in vTableFunc")) 8428 return true; 8429 } while (EatIfPresent(lltok::comma)); 8430 8431 // Now that the VTableFuncs vector is finalized, it is safe to save the 8432 // locations of any forward GV references that need updating later. 8433 for (auto I : IdToIndexMap) { 8434 for (auto P : I.second) { 8435 assert(VTableFuncs[P.first].FuncVI == EmptyVI && 8436 "Forward referenced ValueInfo expected to be empty"); 8437 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 8438 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 8439 FwdRef.first->second.push_back( 8440 std::make_pair(&VTableFuncs[P.first].FuncVI, P.second)); 8441 } 8442 } 8443 8444 if (ParseToken(lltok::rparen, "expected ')' in vTableFuncs")) 8445 return true; 8446 8447 return false; 8448 } 8449 8450 /// OptionalRefs 8451 /// := 'refs' ':' '(' GVReference [',' GVReference]* ')' 8452 bool LLParser::ParseOptionalRefs(std::vector<ValueInfo> &Refs) { 8453 assert(Lex.getKind() == lltok::kw_refs); 8454 Lex.Lex(); 8455 8456 if (ParseToken(lltok::colon, "expected ':' in refs") | 8457 ParseToken(lltok::lparen, "expected '(' in refs")) 8458 return true; 8459 8460 struct ValueContext { 8461 ValueInfo VI; 8462 unsigned GVId; 8463 LocTy Loc; 8464 }; 8465 std::vector<ValueContext> VContexts; 8466 // Parse each ref edge 8467 do { 8468 ValueContext VC; 8469 VC.Loc = Lex.getLoc(); 8470 if (ParseGVReference(VC.VI, VC.GVId)) 8471 return true; 8472 VContexts.push_back(VC); 8473 } while (EatIfPresent(lltok::comma)); 8474 8475 // Sort value contexts so that ones with writeonly 8476 // and readonly ValueInfo are at the end of VContexts vector. 8477 // See FunctionSummary::specialRefCounts() 8478 llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) { 8479 return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier(); 8480 }); 8481 8482 IdToIndexMapType IdToIndexMap; 8483 for (auto &VC : VContexts) { 8484 // Keep track of the Refs array index needing a forward reference. 8485 // We will save the location of the ValueInfo needing an update, but 8486 // can only do so once the std::vector is finalized. 8487 if (VC.VI.getRef() == FwdVIRef) 8488 IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc)); 8489 Refs.push_back(VC.VI); 8490 } 8491 8492 // Now that the Refs vector is finalized, it is safe to save the locations 8493 // of any forward GV references that need updating later. 8494 for (auto I : IdToIndexMap) { 8495 for (auto P : I.second) { 8496 assert(Refs[P.first].getRef() == FwdVIRef && 8497 "Forward referenced ValueInfo expected to be empty"); 8498 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 8499 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 8500 FwdRef.first->second.push_back(std::make_pair(&Refs[P.first], P.second)); 8501 } 8502 } 8503 8504 if (ParseToken(lltok::rparen, "expected ')' in refs")) 8505 return true; 8506 8507 return false; 8508 } 8509 8510 /// OptionalTypeIdInfo 8511 /// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]? 8512 /// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]? 8513 /// [',' TypeCheckedLoadConstVCalls]? ')' 8514 bool LLParser::ParseOptionalTypeIdInfo( 8515 FunctionSummary::TypeIdInfo &TypeIdInfo) { 8516 assert(Lex.getKind() == lltok::kw_typeIdInfo); 8517 Lex.Lex(); 8518 8519 if (ParseToken(lltok::colon, "expected ':' here") || 8520 ParseToken(lltok::lparen, "expected '(' in typeIdInfo")) 8521 return true; 8522 8523 do { 8524 switch (Lex.getKind()) { 8525 case lltok::kw_typeTests: 8526 if (ParseTypeTests(TypeIdInfo.TypeTests)) 8527 return true; 8528 break; 8529 case lltok::kw_typeTestAssumeVCalls: 8530 if (ParseVFuncIdList(lltok::kw_typeTestAssumeVCalls, 8531 TypeIdInfo.TypeTestAssumeVCalls)) 8532 return true; 8533 break; 8534 case lltok::kw_typeCheckedLoadVCalls: 8535 if (ParseVFuncIdList(lltok::kw_typeCheckedLoadVCalls, 8536 TypeIdInfo.TypeCheckedLoadVCalls)) 8537 return true; 8538 break; 8539 case lltok::kw_typeTestAssumeConstVCalls: 8540 if (ParseConstVCallList(lltok::kw_typeTestAssumeConstVCalls, 8541 TypeIdInfo.TypeTestAssumeConstVCalls)) 8542 return true; 8543 break; 8544 case lltok::kw_typeCheckedLoadConstVCalls: 8545 if (ParseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls, 8546 TypeIdInfo.TypeCheckedLoadConstVCalls)) 8547 return true; 8548 break; 8549 default: 8550 return Error(Lex.getLoc(), "invalid typeIdInfo list type"); 8551 } 8552 } while (EatIfPresent(lltok::comma)); 8553 8554 if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo")) 8555 return true; 8556 8557 return false; 8558 } 8559 8560 /// TypeTests 8561 /// ::= 'typeTests' ':' '(' (SummaryID | UInt64) 8562 /// [',' (SummaryID | UInt64)]* ')' 8563 bool LLParser::ParseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) { 8564 assert(Lex.getKind() == lltok::kw_typeTests); 8565 Lex.Lex(); 8566 8567 if (ParseToken(lltok::colon, "expected ':' here") || 8568 ParseToken(lltok::lparen, "expected '(' in typeIdInfo")) 8569 return true; 8570 8571 IdToIndexMapType IdToIndexMap; 8572 do { 8573 GlobalValue::GUID GUID = 0; 8574 if (Lex.getKind() == lltok::SummaryID) { 8575 unsigned ID = Lex.getUIntVal(); 8576 LocTy Loc = Lex.getLoc(); 8577 // Keep track of the TypeTests array index needing a forward reference. 8578 // We will save the location of the GUID needing an update, but 8579 // can only do so once the std::vector is finalized. 8580 IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc)); 8581 Lex.Lex(); 8582 } else if (ParseUInt64(GUID)) 8583 return true; 8584 TypeTests.push_back(GUID); 8585 } while (EatIfPresent(lltok::comma)); 8586 8587 // Now that the TypeTests vector is finalized, it is safe to save the 8588 // locations of any forward GV references that need updating later. 8589 for (auto I : IdToIndexMap) { 8590 for (auto P : I.second) { 8591 assert(TypeTests[P.first] == 0 && 8592 "Forward referenced type id GUID expected to be 0"); 8593 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 8594 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 8595 FwdRef.first->second.push_back( 8596 std::make_pair(&TypeTests[P.first], P.second)); 8597 } 8598 } 8599 8600 if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo")) 8601 return true; 8602 8603 return false; 8604 } 8605 8606 /// VFuncIdList 8607 /// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')' 8608 bool LLParser::ParseVFuncIdList( 8609 lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) { 8610 assert(Lex.getKind() == Kind); 8611 Lex.Lex(); 8612 8613 if (ParseToken(lltok::colon, "expected ':' here") || 8614 ParseToken(lltok::lparen, "expected '(' here")) 8615 return true; 8616 8617 IdToIndexMapType IdToIndexMap; 8618 do { 8619 FunctionSummary::VFuncId VFuncId; 8620 if (ParseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size())) 8621 return true; 8622 VFuncIdList.push_back(VFuncId); 8623 } while (EatIfPresent(lltok::comma)); 8624 8625 if (ParseToken(lltok::rparen, "expected ')' here")) 8626 return true; 8627 8628 // Now that the VFuncIdList vector is finalized, it is safe to save the 8629 // locations of any forward GV references that need updating later. 8630 for (auto I : IdToIndexMap) { 8631 for (auto P : I.second) { 8632 assert(VFuncIdList[P.first].GUID == 0 && 8633 "Forward referenced type id GUID expected to be 0"); 8634 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 8635 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 8636 FwdRef.first->second.push_back( 8637 std::make_pair(&VFuncIdList[P.first].GUID, P.second)); 8638 } 8639 } 8640 8641 return false; 8642 } 8643 8644 /// ConstVCallList 8645 /// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')' 8646 bool LLParser::ParseConstVCallList( 8647 lltok::Kind Kind, 8648 std::vector<FunctionSummary::ConstVCall> &ConstVCallList) { 8649 assert(Lex.getKind() == Kind); 8650 Lex.Lex(); 8651 8652 if (ParseToken(lltok::colon, "expected ':' here") || 8653 ParseToken(lltok::lparen, "expected '(' here")) 8654 return true; 8655 8656 IdToIndexMapType IdToIndexMap; 8657 do { 8658 FunctionSummary::ConstVCall ConstVCall; 8659 if (ParseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size())) 8660 return true; 8661 ConstVCallList.push_back(ConstVCall); 8662 } while (EatIfPresent(lltok::comma)); 8663 8664 if (ParseToken(lltok::rparen, "expected ')' here")) 8665 return true; 8666 8667 // Now that the ConstVCallList vector is finalized, it is safe to save the 8668 // locations of any forward GV references that need updating later. 8669 for (auto I : IdToIndexMap) { 8670 for (auto P : I.second) { 8671 assert(ConstVCallList[P.first].VFunc.GUID == 0 && 8672 "Forward referenced type id GUID expected to be 0"); 8673 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 8674 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 8675 FwdRef.first->second.push_back( 8676 std::make_pair(&ConstVCallList[P.first].VFunc.GUID, P.second)); 8677 } 8678 } 8679 8680 return false; 8681 } 8682 8683 /// ConstVCall 8684 /// ::= '(' VFuncId ',' Args ')' 8685 bool LLParser::ParseConstVCall(FunctionSummary::ConstVCall &ConstVCall, 8686 IdToIndexMapType &IdToIndexMap, unsigned Index) { 8687 if (ParseToken(lltok::lparen, "expected '(' here") || 8688 ParseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index)) 8689 return true; 8690 8691 if (EatIfPresent(lltok::comma)) 8692 if (ParseArgs(ConstVCall.Args)) 8693 return true; 8694 8695 if (ParseToken(lltok::rparen, "expected ')' here")) 8696 return true; 8697 8698 return false; 8699 } 8700 8701 /// VFuncId 8702 /// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ',' 8703 /// 'offset' ':' UInt64 ')' 8704 bool LLParser::ParseVFuncId(FunctionSummary::VFuncId &VFuncId, 8705 IdToIndexMapType &IdToIndexMap, unsigned Index) { 8706 assert(Lex.getKind() == lltok::kw_vFuncId); 8707 Lex.Lex(); 8708 8709 if (ParseToken(lltok::colon, "expected ':' here") || 8710 ParseToken(lltok::lparen, "expected '(' here")) 8711 return true; 8712 8713 if (Lex.getKind() == lltok::SummaryID) { 8714 VFuncId.GUID = 0; 8715 unsigned ID = Lex.getUIntVal(); 8716 LocTy Loc = Lex.getLoc(); 8717 // Keep track of the array index needing a forward reference. 8718 // We will save the location of the GUID needing an update, but 8719 // can only do so once the caller's std::vector is finalized. 8720 IdToIndexMap[ID].push_back(std::make_pair(Index, Loc)); 8721 Lex.Lex(); 8722 } else if (ParseToken(lltok::kw_guid, "expected 'guid' here") || 8723 ParseToken(lltok::colon, "expected ':' here") || 8724 ParseUInt64(VFuncId.GUID)) 8725 return true; 8726 8727 if (ParseToken(lltok::comma, "expected ',' here") || 8728 ParseToken(lltok::kw_offset, "expected 'offset' here") || 8729 ParseToken(lltok::colon, "expected ':' here") || 8730 ParseUInt64(VFuncId.Offset) || 8731 ParseToken(lltok::rparen, "expected ')' here")) 8732 return true; 8733 8734 return false; 8735 } 8736 8737 /// GVFlags 8738 /// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ',' 8739 /// 'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ',' 8740 /// 'dsoLocal' ':' Flag ',' 'canAutoHide' ':' Flag ')' 8741 bool LLParser::ParseGVFlags(GlobalValueSummary::GVFlags &GVFlags) { 8742 assert(Lex.getKind() == lltok::kw_flags); 8743 Lex.Lex(); 8744 8745 if (ParseToken(lltok::colon, "expected ':' here") || 8746 ParseToken(lltok::lparen, "expected '(' here")) 8747 return true; 8748 8749 do { 8750 unsigned Flag = 0; 8751 switch (Lex.getKind()) { 8752 case lltok::kw_linkage: 8753 Lex.Lex(); 8754 if (ParseToken(lltok::colon, "expected ':'")) 8755 return true; 8756 bool HasLinkage; 8757 GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 8758 assert(HasLinkage && "Linkage not optional in summary entry"); 8759 Lex.Lex(); 8760 break; 8761 case lltok::kw_notEligibleToImport: 8762 Lex.Lex(); 8763 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag)) 8764 return true; 8765 GVFlags.NotEligibleToImport = Flag; 8766 break; 8767 case lltok::kw_live: 8768 Lex.Lex(); 8769 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag)) 8770 return true; 8771 GVFlags.Live = Flag; 8772 break; 8773 case lltok::kw_dsoLocal: 8774 Lex.Lex(); 8775 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag)) 8776 return true; 8777 GVFlags.DSOLocal = Flag; 8778 break; 8779 case lltok::kw_canAutoHide: 8780 Lex.Lex(); 8781 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag)) 8782 return true; 8783 GVFlags.CanAutoHide = Flag; 8784 break; 8785 default: 8786 return Error(Lex.getLoc(), "expected gv flag type"); 8787 } 8788 } while (EatIfPresent(lltok::comma)); 8789 8790 if (ParseToken(lltok::rparen, "expected ')' here")) 8791 return true; 8792 8793 return false; 8794 } 8795 8796 /// GVarFlags 8797 /// ::= 'varFlags' ':' '(' 'readonly' ':' Flag 8798 /// ',' 'writeonly' ':' Flag ')' 8799 bool LLParser::ParseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) { 8800 assert(Lex.getKind() == lltok::kw_varFlags); 8801 Lex.Lex(); 8802 8803 if (ParseToken(lltok::colon, "expected ':' here") || 8804 ParseToken(lltok::lparen, "expected '(' here")) 8805 return true; 8806 8807 auto ParseRest = [this](unsigned int &Val) { 8808 Lex.Lex(); 8809 if (ParseToken(lltok::colon, "expected ':'")) 8810 return true; 8811 return ParseFlag(Val); 8812 }; 8813 8814 do { 8815 unsigned Flag = 0; 8816 switch (Lex.getKind()) { 8817 case lltok::kw_readonly: 8818 if (ParseRest(Flag)) 8819 return true; 8820 GVarFlags.MaybeReadOnly = Flag; 8821 break; 8822 case lltok::kw_writeonly: 8823 if (ParseRest(Flag)) 8824 return true; 8825 GVarFlags.MaybeWriteOnly = Flag; 8826 break; 8827 default: 8828 return Error(Lex.getLoc(), "expected gvar flag type"); 8829 } 8830 } while (EatIfPresent(lltok::comma)); 8831 return ParseToken(lltok::rparen, "expected ')' here"); 8832 } 8833 8834 /// ModuleReference 8835 /// ::= 'module' ':' UInt 8836 bool LLParser::ParseModuleReference(StringRef &ModulePath) { 8837 // Parse module id. 8838 if (ParseToken(lltok::kw_module, "expected 'module' here") || 8839 ParseToken(lltok::colon, "expected ':' here") || 8840 ParseToken(lltok::SummaryID, "expected module ID")) 8841 return true; 8842 8843 unsigned ModuleID = Lex.getUIntVal(); 8844 auto I = ModuleIdMap.find(ModuleID); 8845 // We should have already parsed all module IDs 8846 assert(I != ModuleIdMap.end()); 8847 ModulePath = I->second; 8848 return false; 8849 } 8850 8851 /// GVReference 8852 /// ::= SummaryID 8853 bool LLParser::ParseGVReference(ValueInfo &VI, unsigned &GVId) { 8854 bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly); 8855 if (!ReadOnly) 8856 WriteOnly = EatIfPresent(lltok::kw_writeonly); 8857 if (ParseToken(lltok::SummaryID, "expected GV ID")) 8858 return true; 8859 8860 GVId = Lex.getUIntVal(); 8861 // Check if we already have a VI for this GV 8862 if (GVId < NumberedValueInfos.size()) { 8863 assert(NumberedValueInfos[GVId].getRef() != FwdVIRef); 8864 VI = NumberedValueInfos[GVId]; 8865 } else 8866 // We will create a forward reference to the stored location. 8867 VI = ValueInfo(false, FwdVIRef); 8868 8869 if (ReadOnly) 8870 VI.setReadOnly(); 8871 if (WriteOnly) 8872 VI.setWriteOnly(); 8873 return false; 8874 } 8875