1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the parser class for .ll files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "LLParser.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/None.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/AsmParser/SlotMapping.h"
20 #include "llvm/BinaryFormat/Dwarf.h"
21 #include "llvm/IR/Argument.h"
22 #include "llvm/IR/AutoUpgrade.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/CallingConv.h"
25 #include "llvm/IR/Comdat.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugInfoMetadata.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalIFunc.h"
31 #include "llvm/IR/GlobalObject.h"
32 #include "llvm/IR/InlineAsm.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/IR/Type.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/IR/ValueSymbolTable.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/MathExtras.h"
46 #include "llvm/Support/SaveAndRestore.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <cstring>
51 #include <iterator>
52 #include <vector>
53 
54 using namespace llvm;
55 
56 static std::string getTypeString(Type *T) {
57   std::string Result;
58   raw_string_ostream Tmp(Result);
59   Tmp << *T;
60   return Tmp.str();
61 }
62 
63 /// Run: module ::= toplevelentity*
64 bool LLParser::Run() {
65   // Prime the lexer.
66   Lex.Lex();
67 
68   if (Context.shouldDiscardValueNames())
69     return Error(
70         Lex.getLoc(),
71         "Can't read textual IR with a Context that discards named Values");
72 
73   return ParseTopLevelEntities() || ValidateEndOfModule() ||
74          ValidateEndOfIndex();
75 }
76 
77 bool LLParser::parseStandaloneConstantValue(Constant *&C,
78                                             const SlotMapping *Slots) {
79   restoreParsingState(Slots);
80   Lex.Lex();
81 
82   Type *Ty = nullptr;
83   if (ParseType(Ty) || parseConstantValue(Ty, C))
84     return true;
85   if (Lex.getKind() != lltok::Eof)
86     return Error(Lex.getLoc(), "expected end of string");
87   return false;
88 }
89 
90 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
91                                     const SlotMapping *Slots) {
92   restoreParsingState(Slots);
93   Lex.Lex();
94 
95   Read = 0;
96   SMLoc Start = Lex.getLoc();
97   Ty = nullptr;
98   if (ParseType(Ty))
99     return true;
100   SMLoc End = Lex.getLoc();
101   Read = End.getPointer() - Start.getPointer();
102 
103   return false;
104 }
105 
106 void LLParser::restoreParsingState(const SlotMapping *Slots) {
107   if (!Slots)
108     return;
109   NumberedVals = Slots->GlobalValues;
110   NumberedMetadata = Slots->MetadataNodes;
111   for (const auto &I : Slots->NamedTypes)
112     NamedTypes.insert(
113         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
114   for (const auto &I : Slots->Types)
115     NumberedTypes.insert(
116         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
117 }
118 
119 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
120 /// module.
121 bool LLParser::ValidateEndOfModule() {
122   if (!M)
123     return false;
124   // Handle any function attribute group forward references.
125   for (const auto &RAG : ForwardRefAttrGroups) {
126     Value *V = RAG.first;
127     const std::vector<unsigned> &Attrs = RAG.second;
128     AttrBuilder B;
129 
130     for (const auto &Attr : Attrs)
131       B.merge(NumberedAttrBuilders[Attr]);
132 
133     if (Function *Fn = dyn_cast<Function>(V)) {
134       AttributeList AS = Fn->getAttributes();
135       AttrBuilder FnAttrs(AS.getFnAttributes());
136       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
137 
138       FnAttrs.merge(B);
139 
140       // If the alignment was parsed as an attribute, move to the alignment
141       // field.
142       if (FnAttrs.hasAlignmentAttr()) {
143         Fn->setAlignment(MaybeAlign(FnAttrs.getAlignment()));
144         FnAttrs.removeAttribute(Attribute::Alignment);
145       }
146 
147       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
148                             AttributeSet::get(Context, FnAttrs));
149       Fn->setAttributes(AS);
150     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
151       AttributeList AS = CI->getAttributes();
152       AttrBuilder FnAttrs(AS.getFnAttributes());
153       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
154       FnAttrs.merge(B);
155       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
156                             AttributeSet::get(Context, FnAttrs));
157       CI->setAttributes(AS);
158     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
159       AttributeList AS = II->getAttributes();
160       AttrBuilder FnAttrs(AS.getFnAttributes());
161       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
162       FnAttrs.merge(B);
163       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
164                             AttributeSet::get(Context, FnAttrs));
165       II->setAttributes(AS);
166     } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
167       AttributeList AS = CBI->getAttributes();
168       AttrBuilder FnAttrs(AS.getFnAttributes());
169       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
170       FnAttrs.merge(B);
171       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
172                             AttributeSet::get(Context, FnAttrs));
173       CBI->setAttributes(AS);
174     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
175       AttrBuilder Attrs(GV->getAttributes());
176       Attrs.merge(B);
177       GV->setAttributes(AttributeSet::get(Context,Attrs));
178     } else {
179       llvm_unreachable("invalid object with forward attribute group reference");
180     }
181   }
182 
183   // If there are entries in ForwardRefBlockAddresses at this point, the
184   // function was never defined.
185   if (!ForwardRefBlockAddresses.empty())
186     return Error(ForwardRefBlockAddresses.begin()->first.Loc,
187                  "expected function name in blockaddress");
188 
189   for (const auto &NT : NumberedTypes)
190     if (NT.second.second.isValid())
191       return Error(NT.second.second,
192                    "use of undefined type '%" + Twine(NT.first) + "'");
193 
194   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
195        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
196     if (I->second.second.isValid())
197       return Error(I->second.second,
198                    "use of undefined type named '" + I->getKey() + "'");
199 
200   if (!ForwardRefComdats.empty())
201     return Error(ForwardRefComdats.begin()->second,
202                  "use of undefined comdat '$" +
203                      ForwardRefComdats.begin()->first + "'");
204 
205   if (!ForwardRefVals.empty())
206     return Error(ForwardRefVals.begin()->second.second,
207                  "use of undefined value '@" + ForwardRefVals.begin()->first +
208                  "'");
209 
210   if (!ForwardRefValIDs.empty())
211     return Error(ForwardRefValIDs.begin()->second.second,
212                  "use of undefined value '@" +
213                  Twine(ForwardRefValIDs.begin()->first) + "'");
214 
215   if (!ForwardRefMDNodes.empty())
216     return Error(ForwardRefMDNodes.begin()->second.second,
217                  "use of undefined metadata '!" +
218                  Twine(ForwardRefMDNodes.begin()->first) + "'");
219 
220   // Resolve metadata cycles.
221   for (auto &N : NumberedMetadata) {
222     if (N.second && !N.second->isResolved())
223       N.second->resolveCycles();
224   }
225 
226   for (auto *Inst : InstsWithTBAATag) {
227     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
228     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
229     auto *UpgradedMD = UpgradeTBAANode(*MD);
230     if (MD != UpgradedMD)
231       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
232   }
233 
234   // Look for intrinsic functions and CallInst that need to be upgraded
235   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
236     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
237 
238   // Some types could be renamed during loading if several modules are
239   // loaded in the same LLVMContext (LTO scenario). In this case we should
240   // remangle intrinsics names as well.
241   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
242     Function *F = &*FI++;
243     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
244       F->replaceAllUsesWith(Remangled.getValue());
245       F->eraseFromParent();
246     }
247   }
248 
249   if (UpgradeDebugInfo)
250     llvm::UpgradeDebugInfo(*M);
251 
252   UpgradeModuleFlags(*M);
253   UpgradeSectionAttributes(*M);
254 
255   if (!Slots)
256     return false;
257   // Initialize the slot mapping.
258   // Because by this point we've parsed and validated everything, we can "steal"
259   // the mapping from LLParser as it doesn't need it anymore.
260   Slots->GlobalValues = std::move(NumberedVals);
261   Slots->MetadataNodes = std::move(NumberedMetadata);
262   for (const auto &I : NamedTypes)
263     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
264   for (const auto &I : NumberedTypes)
265     Slots->Types.insert(std::make_pair(I.first, I.second.first));
266 
267   return false;
268 }
269 
270 /// Do final validity and sanity checks at the end of the index.
271 bool LLParser::ValidateEndOfIndex() {
272   if (!Index)
273     return false;
274 
275   if (!ForwardRefValueInfos.empty())
276     return Error(ForwardRefValueInfos.begin()->second.front().second,
277                  "use of undefined summary '^" +
278                      Twine(ForwardRefValueInfos.begin()->first) + "'");
279 
280   if (!ForwardRefAliasees.empty())
281     return Error(ForwardRefAliasees.begin()->second.front().second,
282                  "use of undefined summary '^" +
283                      Twine(ForwardRefAliasees.begin()->first) + "'");
284 
285   if (!ForwardRefTypeIds.empty())
286     return Error(ForwardRefTypeIds.begin()->second.front().second,
287                  "use of undefined type id summary '^" +
288                      Twine(ForwardRefTypeIds.begin()->first) + "'");
289 
290   return false;
291 }
292 
293 //===----------------------------------------------------------------------===//
294 // Top-Level Entities
295 //===----------------------------------------------------------------------===//
296 
297 bool LLParser::ParseTopLevelEntities() {
298   // If there is no Module, then parse just the summary index entries.
299   if (!M) {
300     while (true) {
301       switch (Lex.getKind()) {
302       case lltok::Eof:
303         return false;
304       case lltok::SummaryID:
305         if (ParseSummaryEntry())
306           return true;
307         break;
308       case lltok::kw_source_filename:
309         if (ParseSourceFileName())
310           return true;
311         break;
312       default:
313         // Skip everything else
314         Lex.Lex();
315       }
316     }
317   }
318   while (true) {
319     switch (Lex.getKind()) {
320     default:         return TokError("expected top-level entity");
321     case lltok::Eof: return false;
322     case lltok::kw_declare: if (ParseDeclare()) return true; break;
323     case lltok::kw_define:  if (ParseDefine()) return true; break;
324     case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
325     case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
326     case lltok::kw_source_filename:
327       if (ParseSourceFileName())
328         return true;
329       break;
330     case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
331     case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
332     case lltok::LocalVar:   if (ParseNamedType()) return true; break;
333     case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
334     case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
335     case lltok::ComdatVar:  if (parseComdat()) return true; break;
336     case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
337     case lltok::SummaryID:
338       if (ParseSummaryEntry())
339         return true;
340       break;
341     case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
342     case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
343     case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
344     case lltok::kw_uselistorder_bb:
345       if (ParseUseListOrderBB())
346         return true;
347       break;
348     }
349   }
350 }
351 
352 /// toplevelentity
353 ///   ::= 'module' 'asm' STRINGCONSTANT
354 bool LLParser::ParseModuleAsm() {
355   assert(Lex.getKind() == lltok::kw_module);
356   Lex.Lex();
357 
358   std::string AsmStr;
359   if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
360       ParseStringConstant(AsmStr)) return true;
361 
362   M->appendModuleInlineAsm(AsmStr);
363   return false;
364 }
365 
366 /// toplevelentity
367 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
368 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
369 bool LLParser::ParseTargetDefinition() {
370   assert(Lex.getKind() == lltok::kw_target);
371   std::string Str;
372   switch (Lex.Lex()) {
373   default: return TokError("unknown target property");
374   case lltok::kw_triple:
375     Lex.Lex();
376     if (ParseToken(lltok::equal, "expected '=' after target triple") ||
377         ParseStringConstant(Str))
378       return true;
379     M->setTargetTriple(Str);
380     return false;
381   case lltok::kw_datalayout:
382     Lex.Lex();
383     if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
384         ParseStringConstant(Str))
385       return true;
386     if (DataLayoutStr.empty())
387       M->setDataLayout(Str);
388     return false;
389   }
390 }
391 
392 /// toplevelentity
393 ///   ::= 'source_filename' '=' STRINGCONSTANT
394 bool LLParser::ParseSourceFileName() {
395   assert(Lex.getKind() == lltok::kw_source_filename);
396   Lex.Lex();
397   if (ParseToken(lltok::equal, "expected '=' after source_filename") ||
398       ParseStringConstant(SourceFileName))
399     return true;
400   if (M)
401     M->setSourceFileName(SourceFileName);
402   return false;
403 }
404 
405 /// toplevelentity
406 ///   ::= 'deplibs' '=' '[' ']'
407 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
408 /// FIXME: Remove in 4.0. Currently parse, but ignore.
409 bool LLParser::ParseDepLibs() {
410   assert(Lex.getKind() == lltok::kw_deplibs);
411   Lex.Lex();
412   if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
413       ParseToken(lltok::lsquare, "expected '=' after deplibs"))
414     return true;
415 
416   if (EatIfPresent(lltok::rsquare))
417     return false;
418 
419   do {
420     std::string Str;
421     if (ParseStringConstant(Str)) return true;
422   } while (EatIfPresent(lltok::comma));
423 
424   return ParseToken(lltok::rsquare, "expected ']' at end of list");
425 }
426 
427 /// ParseUnnamedType:
428 ///   ::= LocalVarID '=' 'type' type
429 bool LLParser::ParseUnnamedType() {
430   LocTy TypeLoc = Lex.getLoc();
431   unsigned TypeID = Lex.getUIntVal();
432   Lex.Lex(); // eat LocalVarID;
433 
434   if (ParseToken(lltok::equal, "expected '=' after name") ||
435       ParseToken(lltok::kw_type, "expected 'type' after '='"))
436     return true;
437 
438   Type *Result = nullptr;
439   if (ParseStructDefinition(TypeLoc, "",
440                             NumberedTypes[TypeID], Result)) return true;
441 
442   if (!isa<StructType>(Result)) {
443     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
444     if (Entry.first)
445       return Error(TypeLoc, "non-struct types may not be recursive");
446     Entry.first = Result;
447     Entry.second = SMLoc();
448   }
449 
450   return false;
451 }
452 
453 /// toplevelentity
454 ///   ::= LocalVar '=' 'type' type
455 bool LLParser::ParseNamedType() {
456   std::string Name = Lex.getStrVal();
457   LocTy NameLoc = Lex.getLoc();
458   Lex.Lex();  // eat LocalVar.
459 
460   if (ParseToken(lltok::equal, "expected '=' after name") ||
461       ParseToken(lltok::kw_type, "expected 'type' after name"))
462     return true;
463 
464   Type *Result = nullptr;
465   if (ParseStructDefinition(NameLoc, Name,
466                             NamedTypes[Name], Result)) return true;
467 
468   if (!isa<StructType>(Result)) {
469     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
470     if (Entry.first)
471       return Error(NameLoc, "non-struct types may not be recursive");
472     Entry.first = Result;
473     Entry.second = SMLoc();
474   }
475 
476   return false;
477 }
478 
479 /// toplevelentity
480 ///   ::= 'declare' FunctionHeader
481 bool LLParser::ParseDeclare() {
482   assert(Lex.getKind() == lltok::kw_declare);
483   Lex.Lex();
484 
485   std::vector<std::pair<unsigned, MDNode *>> MDs;
486   while (Lex.getKind() == lltok::MetadataVar) {
487     unsigned MDK;
488     MDNode *N;
489     if (ParseMetadataAttachment(MDK, N))
490       return true;
491     MDs.push_back({MDK, N});
492   }
493 
494   Function *F;
495   if (ParseFunctionHeader(F, false))
496     return true;
497   for (auto &MD : MDs)
498     F->addMetadata(MD.first, *MD.second);
499   return false;
500 }
501 
502 /// toplevelentity
503 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
504 bool LLParser::ParseDefine() {
505   assert(Lex.getKind() == lltok::kw_define);
506   Lex.Lex();
507 
508   Function *F;
509   return ParseFunctionHeader(F, true) ||
510          ParseOptionalFunctionMetadata(*F) ||
511          ParseFunctionBody(*F);
512 }
513 
514 /// ParseGlobalType
515 ///   ::= 'constant'
516 ///   ::= 'global'
517 bool LLParser::ParseGlobalType(bool &IsConstant) {
518   if (Lex.getKind() == lltok::kw_constant)
519     IsConstant = true;
520   else if (Lex.getKind() == lltok::kw_global)
521     IsConstant = false;
522   else {
523     IsConstant = false;
524     return TokError("expected 'global' or 'constant'");
525   }
526   Lex.Lex();
527   return false;
528 }
529 
530 bool LLParser::ParseOptionalUnnamedAddr(
531     GlobalVariable::UnnamedAddr &UnnamedAddr) {
532   if (EatIfPresent(lltok::kw_unnamed_addr))
533     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
534   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
535     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
536   else
537     UnnamedAddr = GlobalValue::UnnamedAddr::None;
538   return false;
539 }
540 
541 /// ParseUnnamedGlobal:
542 ///   OptionalVisibility (ALIAS | IFUNC) ...
543 ///   OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
544 ///   OptionalDLLStorageClass
545 ///                                                     ...   -> global variable
546 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
547 ///   GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
548 ///                OptionalDLLStorageClass
549 ///                                                     ...   -> global variable
550 bool LLParser::ParseUnnamedGlobal() {
551   unsigned VarID = NumberedVals.size();
552   std::string Name;
553   LocTy NameLoc = Lex.getLoc();
554 
555   // Handle the GlobalID form.
556   if (Lex.getKind() == lltok::GlobalID) {
557     if (Lex.getUIntVal() != VarID)
558       return Error(Lex.getLoc(), "variable expected to be numbered '%" +
559                    Twine(VarID) + "'");
560     Lex.Lex(); // eat GlobalID;
561 
562     if (ParseToken(lltok::equal, "expected '=' after name"))
563       return true;
564   }
565 
566   bool HasLinkage;
567   unsigned Linkage, Visibility, DLLStorageClass;
568   bool DSOLocal;
569   GlobalVariable::ThreadLocalMode TLM;
570   GlobalVariable::UnnamedAddr UnnamedAddr;
571   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
572                            DSOLocal) ||
573       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
574     return true;
575 
576   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
577     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
578                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
579 
580   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
581                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
582 }
583 
584 /// ParseNamedGlobal:
585 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
586 ///   GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
587 ///                 OptionalVisibility OptionalDLLStorageClass
588 ///                                                     ...   -> global variable
589 bool LLParser::ParseNamedGlobal() {
590   assert(Lex.getKind() == lltok::GlobalVar);
591   LocTy NameLoc = Lex.getLoc();
592   std::string Name = Lex.getStrVal();
593   Lex.Lex();
594 
595   bool HasLinkage;
596   unsigned Linkage, Visibility, DLLStorageClass;
597   bool DSOLocal;
598   GlobalVariable::ThreadLocalMode TLM;
599   GlobalVariable::UnnamedAddr UnnamedAddr;
600   if (ParseToken(lltok::equal, "expected '=' in global variable") ||
601       ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
602                            DSOLocal) ||
603       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
604     return true;
605 
606   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
607     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
608                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
609 
610   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
611                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
612 }
613 
614 bool LLParser::parseComdat() {
615   assert(Lex.getKind() == lltok::ComdatVar);
616   std::string Name = Lex.getStrVal();
617   LocTy NameLoc = Lex.getLoc();
618   Lex.Lex();
619 
620   if (ParseToken(lltok::equal, "expected '=' here"))
621     return true;
622 
623   if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
624     return TokError("expected comdat type");
625 
626   Comdat::SelectionKind SK;
627   switch (Lex.getKind()) {
628   default:
629     return TokError("unknown selection kind");
630   case lltok::kw_any:
631     SK = Comdat::Any;
632     break;
633   case lltok::kw_exactmatch:
634     SK = Comdat::ExactMatch;
635     break;
636   case lltok::kw_largest:
637     SK = Comdat::Largest;
638     break;
639   case lltok::kw_noduplicates:
640     SK = Comdat::NoDuplicates;
641     break;
642   case lltok::kw_samesize:
643     SK = Comdat::SameSize;
644     break;
645   }
646   Lex.Lex();
647 
648   // See if the comdat was forward referenced, if so, use the comdat.
649   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
650   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
651   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
652     return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
653 
654   Comdat *C;
655   if (I != ComdatSymTab.end())
656     C = &I->second;
657   else
658     C = M->getOrInsertComdat(Name);
659   C->setSelectionKind(SK);
660 
661   return false;
662 }
663 
664 // MDString:
665 //   ::= '!' STRINGCONSTANT
666 bool LLParser::ParseMDString(MDString *&Result) {
667   std::string Str;
668   if (ParseStringConstant(Str)) return true;
669   Result = MDString::get(Context, Str);
670   return false;
671 }
672 
673 // MDNode:
674 //   ::= '!' MDNodeNumber
675 bool LLParser::ParseMDNodeID(MDNode *&Result) {
676   // !{ ..., !42, ... }
677   LocTy IDLoc = Lex.getLoc();
678   unsigned MID = 0;
679   if (ParseUInt32(MID))
680     return true;
681 
682   // If not a forward reference, just return it now.
683   if (NumberedMetadata.count(MID)) {
684     Result = NumberedMetadata[MID];
685     return false;
686   }
687 
688   // Otherwise, create MDNode forward reference.
689   auto &FwdRef = ForwardRefMDNodes[MID];
690   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
691 
692   Result = FwdRef.first.get();
693   NumberedMetadata[MID].reset(Result);
694   return false;
695 }
696 
697 /// ParseNamedMetadata:
698 ///   !foo = !{ !1, !2 }
699 bool LLParser::ParseNamedMetadata() {
700   assert(Lex.getKind() == lltok::MetadataVar);
701   std::string Name = Lex.getStrVal();
702   Lex.Lex();
703 
704   if (ParseToken(lltok::equal, "expected '=' here") ||
705       ParseToken(lltok::exclaim, "Expected '!' here") ||
706       ParseToken(lltok::lbrace, "Expected '{' here"))
707     return true;
708 
709   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
710   if (Lex.getKind() != lltok::rbrace)
711     do {
712       MDNode *N = nullptr;
713       // Parse DIExpressions inline as a special case. They are still MDNodes,
714       // so they can still appear in named metadata. Remove this logic if they
715       // become plain Metadata.
716       if (Lex.getKind() == lltok::MetadataVar &&
717           Lex.getStrVal() == "DIExpression") {
718         if (ParseDIExpression(N, /*IsDistinct=*/false))
719           return true;
720       } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
721                  ParseMDNodeID(N)) {
722         return true;
723       }
724       NMD->addOperand(N);
725     } while (EatIfPresent(lltok::comma));
726 
727   return ParseToken(lltok::rbrace, "expected end of metadata node");
728 }
729 
730 /// ParseStandaloneMetadata:
731 ///   !42 = !{...}
732 bool LLParser::ParseStandaloneMetadata() {
733   assert(Lex.getKind() == lltok::exclaim);
734   Lex.Lex();
735   unsigned MetadataID = 0;
736 
737   MDNode *Init;
738   if (ParseUInt32(MetadataID) ||
739       ParseToken(lltok::equal, "expected '=' here"))
740     return true;
741 
742   // Detect common error, from old metadata syntax.
743   if (Lex.getKind() == lltok::Type)
744     return TokError("unexpected type in metadata definition");
745 
746   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
747   if (Lex.getKind() == lltok::MetadataVar) {
748     if (ParseSpecializedMDNode(Init, IsDistinct))
749       return true;
750   } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
751              ParseMDTuple(Init, IsDistinct))
752     return true;
753 
754   // See if this was forward referenced, if so, handle it.
755   auto FI = ForwardRefMDNodes.find(MetadataID);
756   if (FI != ForwardRefMDNodes.end()) {
757     FI->second.first->replaceAllUsesWith(Init);
758     ForwardRefMDNodes.erase(FI);
759 
760     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
761   } else {
762     if (NumberedMetadata.count(MetadataID))
763       return TokError("Metadata id is already used");
764     NumberedMetadata[MetadataID].reset(Init);
765   }
766 
767   return false;
768 }
769 
770 // Skips a single module summary entry.
771 bool LLParser::SkipModuleSummaryEntry() {
772   // Each module summary entry consists of a tag for the entry
773   // type, followed by a colon, then the fields surrounded by nested sets of
774   // parentheses. The "tag:" looks like a Label. Once parsing support is
775   // in place we will look for the tokens corresponding to the expected tags.
776   if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
777       Lex.getKind() != lltok::kw_typeid)
778     return TokError(
779         "Expected 'gv', 'module', or 'typeid' at the start of summary entry");
780   Lex.Lex();
781   if (ParseToken(lltok::colon, "expected ':' at start of summary entry") ||
782       ParseToken(lltok::lparen, "expected '(' at start of summary entry"))
783     return true;
784   // Now walk through the parenthesized entry, until the number of open
785   // parentheses goes back down to 0 (the first '(' was parsed above).
786   unsigned NumOpenParen = 1;
787   do {
788     switch (Lex.getKind()) {
789     case lltok::lparen:
790       NumOpenParen++;
791       break;
792     case lltok::rparen:
793       NumOpenParen--;
794       break;
795     case lltok::Eof:
796       return TokError("found end of file while parsing summary entry");
797     default:
798       // Skip everything in between parentheses.
799       break;
800     }
801     Lex.Lex();
802   } while (NumOpenParen > 0);
803   return false;
804 }
805 
806 /// SummaryEntry
807 ///   ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
808 bool LLParser::ParseSummaryEntry() {
809   assert(Lex.getKind() == lltok::SummaryID);
810   unsigned SummaryID = Lex.getUIntVal();
811 
812   // For summary entries, colons should be treated as distinct tokens,
813   // not an indication of the end of a label token.
814   Lex.setIgnoreColonInIdentifiers(true);
815 
816   Lex.Lex();
817   if (ParseToken(lltok::equal, "expected '=' here"))
818     return true;
819 
820   // If we don't have an index object, skip the summary entry.
821   if (!Index)
822     return SkipModuleSummaryEntry();
823 
824   bool result = false;
825   switch (Lex.getKind()) {
826   case lltok::kw_gv:
827     result = ParseGVEntry(SummaryID);
828     break;
829   case lltok::kw_module:
830     result = ParseModuleEntry(SummaryID);
831     break;
832   case lltok::kw_typeid:
833     result = ParseTypeIdEntry(SummaryID);
834     break;
835   case lltok::kw_typeidCompatibleVTable:
836     result = ParseTypeIdCompatibleVtableEntry(SummaryID);
837     break;
838   default:
839     result = Error(Lex.getLoc(), "unexpected summary kind");
840     break;
841   }
842   Lex.setIgnoreColonInIdentifiers(false);
843   return result;
844 }
845 
846 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
847   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
848          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
849 }
850 
851 // If there was an explicit dso_local, update GV. In the absence of an explicit
852 // dso_local we keep the default value.
853 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
854   if (DSOLocal)
855     GV.setDSOLocal(true);
856 }
857 
858 /// parseIndirectSymbol:
859 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
860 ///                     OptionalVisibility OptionalDLLStorageClass
861 ///                     OptionalThreadLocal OptionalUnnamedAddr
862 ///                     'alias|ifunc' IndirectSymbol IndirectSymbolAttr*
863 ///
864 /// IndirectSymbol
865 ///   ::= TypeAndValue
866 ///
867 /// IndirectSymbolAttr
868 ///   ::= ',' 'partition' StringConstant
869 ///
870 /// Everything through OptionalUnnamedAddr has already been parsed.
871 ///
872 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
873                                    unsigned L, unsigned Visibility,
874                                    unsigned DLLStorageClass, bool DSOLocal,
875                                    GlobalVariable::ThreadLocalMode TLM,
876                                    GlobalVariable::UnnamedAddr UnnamedAddr) {
877   bool IsAlias;
878   if (Lex.getKind() == lltok::kw_alias)
879     IsAlias = true;
880   else if (Lex.getKind() == lltok::kw_ifunc)
881     IsAlias = false;
882   else
883     llvm_unreachable("Not an alias or ifunc!");
884   Lex.Lex();
885 
886   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
887 
888   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
889     return Error(NameLoc, "invalid linkage type for alias");
890 
891   if (!isValidVisibilityForLinkage(Visibility, L))
892     return Error(NameLoc,
893                  "symbol with local linkage must have default visibility");
894 
895   Type *Ty;
896   LocTy ExplicitTypeLoc = Lex.getLoc();
897   if (ParseType(Ty) ||
898       ParseToken(lltok::comma, "expected comma after alias or ifunc's type"))
899     return true;
900 
901   Constant *Aliasee;
902   LocTy AliaseeLoc = Lex.getLoc();
903   if (Lex.getKind() != lltok::kw_bitcast &&
904       Lex.getKind() != lltok::kw_getelementptr &&
905       Lex.getKind() != lltok::kw_addrspacecast &&
906       Lex.getKind() != lltok::kw_inttoptr) {
907     if (ParseGlobalTypeAndValue(Aliasee))
908       return true;
909   } else {
910     // The bitcast dest type is not present, it is implied by the dest type.
911     ValID ID;
912     if (ParseValID(ID))
913       return true;
914     if (ID.Kind != ValID::t_Constant)
915       return Error(AliaseeLoc, "invalid aliasee");
916     Aliasee = ID.ConstantVal;
917   }
918 
919   Type *AliaseeType = Aliasee->getType();
920   auto *PTy = dyn_cast<PointerType>(AliaseeType);
921   if (!PTy)
922     return Error(AliaseeLoc, "An alias or ifunc must have pointer type");
923   unsigned AddrSpace = PTy->getAddressSpace();
924 
925   if (IsAlias && Ty != PTy->getElementType())
926     return Error(
927         ExplicitTypeLoc,
928         "explicit pointee type doesn't match operand's pointee type");
929 
930   if (!IsAlias && !PTy->getElementType()->isFunctionTy())
931     return Error(
932         ExplicitTypeLoc,
933         "explicit pointee type should be a function type");
934 
935   GlobalValue *GVal = nullptr;
936 
937   // See if the alias was forward referenced, if so, prepare to replace the
938   // forward reference.
939   if (!Name.empty()) {
940     GVal = M->getNamedValue(Name);
941     if (GVal) {
942       if (!ForwardRefVals.erase(Name))
943         return Error(NameLoc, "redefinition of global '@" + Name + "'");
944     }
945   } else {
946     auto I = ForwardRefValIDs.find(NumberedVals.size());
947     if (I != ForwardRefValIDs.end()) {
948       GVal = I->second.first;
949       ForwardRefValIDs.erase(I);
950     }
951   }
952 
953   // Okay, create the alias but do not insert it into the module yet.
954   std::unique_ptr<GlobalIndirectSymbol> GA;
955   if (IsAlias)
956     GA.reset(GlobalAlias::create(Ty, AddrSpace,
957                                  (GlobalValue::LinkageTypes)Linkage, Name,
958                                  Aliasee, /*Parent*/ nullptr));
959   else
960     GA.reset(GlobalIFunc::create(Ty, AddrSpace,
961                                  (GlobalValue::LinkageTypes)Linkage, Name,
962                                  Aliasee, /*Parent*/ nullptr));
963   GA->setThreadLocalMode(TLM);
964   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
965   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
966   GA->setUnnamedAddr(UnnamedAddr);
967   maybeSetDSOLocal(DSOLocal, *GA);
968 
969   // At this point we've parsed everything except for the IndirectSymbolAttrs.
970   // Now parse them if there are any.
971   while (Lex.getKind() == lltok::comma) {
972     Lex.Lex();
973 
974     if (Lex.getKind() == lltok::kw_partition) {
975       Lex.Lex();
976       GA->setPartition(Lex.getStrVal());
977       if (ParseToken(lltok::StringConstant, "expected partition string"))
978         return true;
979     } else {
980       return TokError("unknown alias or ifunc property!");
981     }
982   }
983 
984   if (Name.empty())
985     NumberedVals.push_back(GA.get());
986 
987   if (GVal) {
988     // Verify that types agree.
989     if (GVal->getType() != GA->getType())
990       return Error(
991           ExplicitTypeLoc,
992           "forward reference and definition of alias have different types");
993 
994     // If they agree, just RAUW the old value with the alias and remove the
995     // forward ref info.
996     GVal->replaceAllUsesWith(GA.get());
997     GVal->eraseFromParent();
998   }
999 
1000   // Insert into the module, we know its name won't collide now.
1001   if (IsAlias)
1002     M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
1003   else
1004     M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
1005   assert(GA->getName() == Name && "Should not be a name conflict!");
1006 
1007   // The module owns this now
1008   GA.release();
1009 
1010   return false;
1011 }
1012 
1013 /// ParseGlobal
1014 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1015 ///       OptionalVisibility OptionalDLLStorageClass
1016 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
1017 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
1018 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
1019 ///       OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
1020 ///       OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
1021 ///       Const OptionalAttrs
1022 ///
1023 /// Everything up to and including OptionalUnnamedAddr has been parsed
1024 /// already.
1025 ///
1026 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
1027                            unsigned Linkage, bool HasLinkage,
1028                            unsigned Visibility, unsigned DLLStorageClass,
1029                            bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1030                            GlobalVariable::UnnamedAddr UnnamedAddr) {
1031   if (!isValidVisibilityForLinkage(Visibility, Linkage))
1032     return Error(NameLoc,
1033                  "symbol with local linkage must have default visibility");
1034 
1035   unsigned AddrSpace;
1036   bool IsConstant, IsExternallyInitialized;
1037   LocTy IsExternallyInitializedLoc;
1038   LocTy TyLoc;
1039 
1040   Type *Ty = nullptr;
1041   if (ParseOptionalAddrSpace(AddrSpace) ||
1042       ParseOptionalToken(lltok::kw_externally_initialized,
1043                          IsExternallyInitialized,
1044                          &IsExternallyInitializedLoc) ||
1045       ParseGlobalType(IsConstant) ||
1046       ParseType(Ty, TyLoc))
1047     return true;
1048 
1049   // If the linkage is specified and is external, then no initializer is
1050   // present.
1051   Constant *Init = nullptr;
1052   if (!HasLinkage ||
1053       !GlobalValue::isValidDeclarationLinkage(
1054           (GlobalValue::LinkageTypes)Linkage)) {
1055     if (ParseGlobalValue(Ty, Init))
1056       return true;
1057   }
1058 
1059   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1060     return Error(TyLoc, "invalid type for global variable");
1061 
1062   GlobalValue *GVal = nullptr;
1063 
1064   // See if the global was forward referenced, if so, use the global.
1065   if (!Name.empty()) {
1066     GVal = M->getNamedValue(Name);
1067     if (GVal) {
1068       if (!ForwardRefVals.erase(Name))
1069         return Error(NameLoc, "redefinition of global '@" + Name + "'");
1070     }
1071   } else {
1072     auto I = ForwardRefValIDs.find(NumberedVals.size());
1073     if (I != ForwardRefValIDs.end()) {
1074       GVal = I->second.first;
1075       ForwardRefValIDs.erase(I);
1076     }
1077   }
1078 
1079   GlobalVariable *GV;
1080   if (!GVal) {
1081     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
1082                             Name, nullptr, GlobalVariable::NotThreadLocal,
1083                             AddrSpace);
1084   } else {
1085     if (GVal->getValueType() != Ty)
1086       return Error(TyLoc,
1087             "forward reference and definition of global have different types");
1088 
1089     GV = cast<GlobalVariable>(GVal);
1090 
1091     // Move the forward-reference to the correct spot in the module.
1092     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
1093   }
1094 
1095   if (Name.empty())
1096     NumberedVals.push_back(GV);
1097 
1098   // Set the parsed properties on the global.
1099   if (Init)
1100     GV->setInitializer(Init);
1101   GV->setConstant(IsConstant);
1102   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1103   maybeSetDSOLocal(DSOLocal, *GV);
1104   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1105   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1106   GV->setExternallyInitialized(IsExternallyInitialized);
1107   GV->setThreadLocalMode(TLM);
1108   GV->setUnnamedAddr(UnnamedAddr);
1109 
1110   // Parse attributes on the global.
1111   while (Lex.getKind() == lltok::comma) {
1112     Lex.Lex();
1113 
1114     if (Lex.getKind() == lltok::kw_section) {
1115       Lex.Lex();
1116       GV->setSection(Lex.getStrVal());
1117       if (ParseToken(lltok::StringConstant, "expected global section string"))
1118         return true;
1119     } else if (Lex.getKind() == lltok::kw_partition) {
1120       Lex.Lex();
1121       GV->setPartition(Lex.getStrVal());
1122       if (ParseToken(lltok::StringConstant, "expected partition string"))
1123         return true;
1124     } else if (Lex.getKind() == lltok::kw_align) {
1125       unsigned Alignment;
1126       if (ParseOptionalAlignment(Alignment)) return true;
1127       GV->setAlignment(MaybeAlign(Alignment));
1128     } else if (Lex.getKind() == lltok::MetadataVar) {
1129       if (ParseGlobalObjectMetadataAttachment(*GV))
1130         return true;
1131     } else {
1132       Comdat *C;
1133       if (parseOptionalComdat(Name, C))
1134         return true;
1135       if (C)
1136         GV->setComdat(C);
1137       else
1138         return TokError("unknown global variable property!");
1139     }
1140   }
1141 
1142   AttrBuilder Attrs;
1143   LocTy BuiltinLoc;
1144   std::vector<unsigned> FwdRefAttrGrps;
1145   if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1146     return true;
1147   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1148     GV->setAttributes(AttributeSet::get(Context, Attrs));
1149     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1150   }
1151 
1152   return false;
1153 }
1154 
1155 /// ParseUnnamedAttrGrp
1156 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1157 bool LLParser::ParseUnnamedAttrGrp() {
1158   assert(Lex.getKind() == lltok::kw_attributes);
1159   LocTy AttrGrpLoc = Lex.getLoc();
1160   Lex.Lex();
1161 
1162   if (Lex.getKind() != lltok::AttrGrpID)
1163     return TokError("expected attribute group id");
1164 
1165   unsigned VarID = Lex.getUIntVal();
1166   std::vector<unsigned> unused;
1167   LocTy BuiltinLoc;
1168   Lex.Lex();
1169 
1170   if (ParseToken(lltok::equal, "expected '=' here") ||
1171       ParseToken(lltok::lbrace, "expected '{' here") ||
1172       ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
1173                                  BuiltinLoc) ||
1174       ParseToken(lltok::rbrace, "expected end of attribute group"))
1175     return true;
1176 
1177   if (!NumberedAttrBuilders[VarID].hasAttributes())
1178     return Error(AttrGrpLoc, "attribute group has no attributes");
1179 
1180   return false;
1181 }
1182 
1183 /// ParseFnAttributeValuePairs
1184 ///   ::= <attr> | <attr> '=' <value>
1185 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
1186                                           std::vector<unsigned> &FwdRefAttrGrps,
1187                                           bool inAttrGrp, LocTy &BuiltinLoc) {
1188   bool HaveError = false;
1189 
1190   B.clear();
1191 
1192   while (true) {
1193     lltok::Kind Token = Lex.getKind();
1194     if (Token == lltok::kw_builtin)
1195       BuiltinLoc = Lex.getLoc();
1196     switch (Token) {
1197     default:
1198       if (!inAttrGrp) return HaveError;
1199       return Error(Lex.getLoc(), "unterminated attribute group");
1200     case lltok::rbrace:
1201       // Finished.
1202       return false;
1203 
1204     case lltok::AttrGrpID: {
1205       // Allow a function to reference an attribute group:
1206       //
1207       //   define void @foo() #1 { ... }
1208       if (inAttrGrp)
1209         HaveError |=
1210           Error(Lex.getLoc(),
1211               "cannot have an attribute group reference in an attribute group");
1212 
1213       unsigned AttrGrpNum = Lex.getUIntVal();
1214       if (inAttrGrp) break;
1215 
1216       // Save the reference to the attribute group. We'll fill it in later.
1217       FwdRefAttrGrps.push_back(AttrGrpNum);
1218       break;
1219     }
1220     // Target-dependent attributes:
1221     case lltok::StringConstant: {
1222       if (ParseStringAttribute(B))
1223         return true;
1224       continue;
1225     }
1226 
1227     // Target-independent attributes:
1228     case lltok::kw_align: {
1229       // As a hack, we allow function alignment to be initially parsed as an
1230       // attribute on a function declaration/definition or added to an attribute
1231       // group and later moved to the alignment field.
1232       unsigned Alignment;
1233       if (inAttrGrp) {
1234         Lex.Lex();
1235         if (ParseToken(lltok::equal, "expected '=' here") ||
1236             ParseUInt32(Alignment))
1237           return true;
1238       } else {
1239         if (ParseOptionalAlignment(Alignment))
1240           return true;
1241       }
1242       B.addAlignmentAttr(Alignment);
1243       continue;
1244     }
1245     case lltok::kw_alignstack: {
1246       unsigned Alignment;
1247       if (inAttrGrp) {
1248         Lex.Lex();
1249         if (ParseToken(lltok::equal, "expected '=' here") ||
1250             ParseUInt32(Alignment))
1251           return true;
1252       } else {
1253         if (ParseOptionalStackAlignment(Alignment))
1254           return true;
1255       }
1256       B.addStackAlignmentAttr(Alignment);
1257       continue;
1258     }
1259     case lltok::kw_allocsize: {
1260       unsigned ElemSizeArg;
1261       Optional<unsigned> NumElemsArg;
1262       // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1263       if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1264         return true;
1265       B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1266       continue;
1267     }
1268     case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1269     case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1270     case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1271     case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1272     case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1273     case lltok::kw_inaccessiblememonly:
1274       B.addAttribute(Attribute::InaccessibleMemOnly); break;
1275     case lltok::kw_inaccessiblemem_or_argmemonly:
1276       B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1277     case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1278     case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1279     case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1280     case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1281     case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1282     case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1283     case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break;
1284     case lltok::kw_noimplicitfloat:
1285       B.addAttribute(Attribute::NoImplicitFloat); break;
1286     case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1287     case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1288     case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1289     case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1290     case lltok::kw_nosync: B.addAttribute(Attribute::NoSync); break;
1291     case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break;
1292     case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1293     case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1294     case lltok::kw_optforfuzzing:
1295       B.addAttribute(Attribute::OptForFuzzing); break;
1296     case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1297     case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1298     case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1299     case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1300     case lltok::kw_returns_twice:
1301       B.addAttribute(Attribute::ReturnsTwice); break;
1302     case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break;
1303     case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1304     case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1305     case lltok::kw_sspstrong:
1306       B.addAttribute(Attribute::StackProtectStrong); break;
1307     case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1308     case lltok::kw_shadowcallstack:
1309       B.addAttribute(Attribute::ShadowCallStack); break;
1310     case lltok::kw_sanitize_address:
1311       B.addAttribute(Attribute::SanitizeAddress); break;
1312     case lltok::kw_sanitize_hwaddress:
1313       B.addAttribute(Attribute::SanitizeHWAddress); break;
1314     case lltok::kw_sanitize_memtag:
1315       B.addAttribute(Attribute::SanitizeMemTag); break;
1316     case lltok::kw_sanitize_thread:
1317       B.addAttribute(Attribute::SanitizeThread); break;
1318     case lltok::kw_sanitize_memory:
1319       B.addAttribute(Attribute::SanitizeMemory); break;
1320     case lltok::kw_speculative_load_hardening:
1321       B.addAttribute(Attribute::SpeculativeLoadHardening);
1322       break;
1323     case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break;
1324     case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1325     case lltok::kw_willreturn: B.addAttribute(Attribute::WillReturn); break;
1326     case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1327 
1328     // Error handling.
1329     case lltok::kw_inreg:
1330     case lltok::kw_signext:
1331     case lltok::kw_zeroext:
1332       HaveError |=
1333         Error(Lex.getLoc(),
1334               "invalid use of attribute on a function");
1335       break;
1336     case lltok::kw_byval:
1337     case lltok::kw_dereferenceable:
1338     case lltok::kw_dereferenceable_or_null:
1339     case lltok::kw_inalloca:
1340     case lltok::kw_nest:
1341     case lltok::kw_noalias:
1342     case lltok::kw_nocapture:
1343     case lltok::kw_nonnull:
1344     case lltok::kw_returned:
1345     case lltok::kw_sret:
1346     case lltok::kw_swifterror:
1347     case lltok::kw_swiftself:
1348     case lltok::kw_immarg:
1349       HaveError |=
1350         Error(Lex.getLoc(),
1351               "invalid use of parameter-only attribute on a function");
1352       break;
1353     }
1354 
1355     Lex.Lex();
1356   }
1357 }
1358 
1359 //===----------------------------------------------------------------------===//
1360 // GlobalValue Reference/Resolution Routines.
1361 //===----------------------------------------------------------------------===//
1362 
1363 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1364                                               const std::string &Name) {
1365   if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1366     return Function::Create(FT, GlobalValue::ExternalWeakLinkage,
1367                             PTy->getAddressSpace(), Name, M);
1368   else
1369     return new GlobalVariable(*M, PTy->getElementType(), false,
1370                               GlobalValue::ExternalWeakLinkage, nullptr, Name,
1371                               nullptr, GlobalVariable::NotThreadLocal,
1372                               PTy->getAddressSpace());
1373 }
1374 
1375 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1376                                         Value *Val, bool IsCall) {
1377   if (Val->getType() == Ty)
1378     return Val;
1379   // For calls we also accept variables in the program address space.
1380   Type *SuggestedTy = Ty;
1381   if (IsCall && isa<PointerType>(Ty)) {
1382     Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo(
1383         M->getDataLayout().getProgramAddressSpace());
1384     SuggestedTy = TyInProgAS;
1385     if (Val->getType() == TyInProgAS)
1386       return Val;
1387   }
1388   if (Ty->isLabelTy())
1389     Error(Loc, "'" + Name + "' is not a basic block");
1390   else
1391     Error(Loc, "'" + Name + "' defined with type '" +
1392                    getTypeString(Val->getType()) + "' but expected '" +
1393                    getTypeString(SuggestedTy) + "'");
1394   return nullptr;
1395 }
1396 
1397 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1398 /// forward reference record if needed.  This can return null if the value
1399 /// exists but does not have the right type.
1400 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
1401                                     LocTy Loc, bool IsCall) {
1402   PointerType *PTy = dyn_cast<PointerType>(Ty);
1403   if (!PTy) {
1404     Error(Loc, "global variable reference must have pointer type");
1405     return nullptr;
1406   }
1407 
1408   // Look this name up in the normal function symbol table.
1409   GlobalValue *Val =
1410     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1411 
1412   // If this is a forward reference for the value, see if we already created a
1413   // forward ref record.
1414   if (!Val) {
1415     auto I = ForwardRefVals.find(Name);
1416     if (I != ForwardRefVals.end())
1417       Val = I->second.first;
1418   }
1419 
1420   // If we have the value in the symbol table or fwd-ref table, return it.
1421   if (Val)
1422     return cast_or_null<GlobalValue>(
1423         checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall));
1424 
1425   // Otherwise, create a new forward reference for this value and remember it.
1426   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1427   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1428   return FwdVal;
1429 }
1430 
1431 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc,
1432                                     bool IsCall) {
1433   PointerType *PTy = dyn_cast<PointerType>(Ty);
1434   if (!PTy) {
1435     Error(Loc, "global variable reference must have pointer type");
1436     return nullptr;
1437   }
1438 
1439   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1440 
1441   // If this is a forward reference for the value, see if we already created a
1442   // forward ref record.
1443   if (!Val) {
1444     auto I = ForwardRefValIDs.find(ID);
1445     if (I != ForwardRefValIDs.end())
1446       Val = I->second.first;
1447   }
1448 
1449   // If we have the value in the symbol table or fwd-ref table, return it.
1450   if (Val)
1451     return cast_or_null<GlobalValue>(
1452         checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall));
1453 
1454   // Otherwise, create a new forward reference for this value and remember it.
1455   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1456   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1457   return FwdVal;
1458 }
1459 
1460 //===----------------------------------------------------------------------===//
1461 // Comdat Reference/Resolution Routines.
1462 //===----------------------------------------------------------------------===//
1463 
1464 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1465   // Look this name up in the comdat symbol table.
1466   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1467   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1468   if (I != ComdatSymTab.end())
1469     return &I->second;
1470 
1471   // Otherwise, create a new forward reference for this value and remember it.
1472   Comdat *C = M->getOrInsertComdat(Name);
1473   ForwardRefComdats[Name] = Loc;
1474   return C;
1475 }
1476 
1477 //===----------------------------------------------------------------------===//
1478 // Helper Routines.
1479 //===----------------------------------------------------------------------===//
1480 
1481 /// ParseToken - If the current token has the specified kind, eat it and return
1482 /// success.  Otherwise, emit the specified error and return failure.
1483 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1484   if (Lex.getKind() != T)
1485     return TokError(ErrMsg);
1486   Lex.Lex();
1487   return false;
1488 }
1489 
1490 /// ParseStringConstant
1491 ///   ::= StringConstant
1492 bool LLParser::ParseStringConstant(std::string &Result) {
1493   if (Lex.getKind() != lltok::StringConstant)
1494     return TokError("expected string constant");
1495   Result = Lex.getStrVal();
1496   Lex.Lex();
1497   return false;
1498 }
1499 
1500 /// ParseUInt32
1501 ///   ::= uint32
1502 bool LLParser::ParseUInt32(uint32_t &Val) {
1503   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1504     return TokError("expected integer");
1505   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1506   if (Val64 != unsigned(Val64))
1507     return TokError("expected 32-bit integer (too large)");
1508   Val = Val64;
1509   Lex.Lex();
1510   return false;
1511 }
1512 
1513 /// ParseUInt64
1514 ///   ::= uint64
1515 bool LLParser::ParseUInt64(uint64_t &Val) {
1516   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1517     return TokError("expected integer");
1518   Val = Lex.getAPSIntVal().getLimitedValue();
1519   Lex.Lex();
1520   return false;
1521 }
1522 
1523 /// ParseTLSModel
1524 ///   := 'localdynamic'
1525 ///   := 'initialexec'
1526 ///   := 'localexec'
1527 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1528   switch (Lex.getKind()) {
1529     default:
1530       return TokError("expected localdynamic, initialexec or localexec");
1531     case lltok::kw_localdynamic:
1532       TLM = GlobalVariable::LocalDynamicTLSModel;
1533       break;
1534     case lltok::kw_initialexec:
1535       TLM = GlobalVariable::InitialExecTLSModel;
1536       break;
1537     case lltok::kw_localexec:
1538       TLM = GlobalVariable::LocalExecTLSModel;
1539       break;
1540   }
1541 
1542   Lex.Lex();
1543   return false;
1544 }
1545 
1546 /// ParseOptionalThreadLocal
1547 ///   := /*empty*/
1548 ///   := 'thread_local'
1549 ///   := 'thread_local' '(' tlsmodel ')'
1550 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1551   TLM = GlobalVariable::NotThreadLocal;
1552   if (!EatIfPresent(lltok::kw_thread_local))
1553     return false;
1554 
1555   TLM = GlobalVariable::GeneralDynamicTLSModel;
1556   if (Lex.getKind() == lltok::lparen) {
1557     Lex.Lex();
1558     return ParseTLSModel(TLM) ||
1559       ParseToken(lltok::rparen, "expected ')' after thread local model");
1560   }
1561   return false;
1562 }
1563 
1564 /// ParseOptionalAddrSpace
1565 ///   := /*empty*/
1566 ///   := 'addrspace' '(' uint32 ')'
1567 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1568   AddrSpace = DefaultAS;
1569   if (!EatIfPresent(lltok::kw_addrspace))
1570     return false;
1571   return ParseToken(lltok::lparen, "expected '(' in address space") ||
1572          ParseUInt32(AddrSpace) ||
1573          ParseToken(lltok::rparen, "expected ')' in address space");
1574 }
1575 
1576 /// ParseStringAttribute
1577 ///   := StringConstant
1578 ///   := StringConstant '=' StringConstant
1579 bool LLParser::ParseStringAttribute(AttrBuilder &B) {
1580   std::string Attr = Lex.getStrVal();
1581   Lex.Lex();
1582   std::string Val;
1583   if (EatIfPresent(lltok::equal) && ParseStringConstant(Val))
1584     return true;
1585   B.addAttribute(Attr, Val);
1586   return false;
1587 }
1588 
1589 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1590 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1591   bool HaveError = false;
1592 
1593   B.clear();
1594 
1595   while (true) {
1596     lltok::Kind Token = Lex.getKind();
1597     switch (Token) {
1598     default:  // End of attributes.
1599       return HaveError;
1600     case lltok::StringConstant: {
1601       if (ParseStringAttribute(B))
1602         return true;
1603       continue;
1604     }
1605     case lltok::kw_align: {
1606       unsigned Alignment;
1607       if (ParseOptionalAlignment(Alignment))
1608         return true;
1609       B.addAlignmentAttr(Alignment);
1610       continue;
1611     }
1612     case lltok::kw_byval: {
1613       Type *Ty;
1614       if (ParseByValWithOptionalType(Ty))
1615         return true;
1616       B.addByValAttr(Ty);
1617       continue;
1618     }
1619     case lltok::kw_dereferenceable: {
1620       uint64_t Bytes;
1621       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1622         return true;
1623       B.addDereferenceableAttr(Bytes);
1624       continue;
1625     }
1626     case lltok::kw_dereferenceable_or_null: {
1627       uint64_t Bytes;
1628       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1629         return true;
1630       B.addDereferenceableOrNullAttr(Bytes);
1631       continue;
1632     }
1633     case lltok::kw_inalloca:        B.addAttribute(Attribute::InAlloca); break;
1634     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1635     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1636     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1637     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1638     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1639     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1640     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1641     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1642     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1643     case lltok::kw_sret:            B.addAttribute(Attribute::StructRet); break;
1644     case lltok::kw_swifterror:      B.addAttribute(Attribute::SwiftError); break;
1645     case lltok::kw_swiftself:       B.addAttribute(Attribute::SwiftSelf); break;
1646     case lltok::kw_writeonly:       B.addAttribute(Attribute::WriteOnly); break;
1647     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1648     case lltok::kw_immarg:          B.addAttribute(Attribute::ImmArg); break;
1649 
1650     case lltok::kw_alignstack:
1651     case lltok::kw_alwaysinline:
1652     case lltok::kw_argmemonly:
1653     case lltok::kw_builtin:
1654     case lltok::kw_inlinehint:
1655     case lltok::kw_jumptable:
1656     case lltok::kw_minsize:
1657     case lltok::kw_naked:
1658     case lltok::kw_nobuiltin:
1659     case lltok::kw_noduplicate:
1660     case lltok::kw_noimplicitfloat:
1661     case lltok::kw_noinline:
1662     case lltok::kw_nonlazybind:
1663     case lltok::kw_noredzone:
1664     case lltok::kw_noreturn:
1665     case lltok::kw_nocf_check:
1666     case lltok::kw_nounwind:
1667     case lltok::kw_optforfuzzing:
1668     case lltok::kw_optnone:
1669     case lltok::kw_optsize:
1670     case lltok::kw_returns_twice:
1671     case lltok::kw_sanitize_address:
1672     case lltok::kw_sanitize_hwaddress:
1673     case lltok::kw_sanitize_memtag:
1674     case lltok::kw_sanitize_memory:
1675     case lltok::kw_sanitize_thread:
1676     case lltok::kw_speculative_load_hardening:
1677     case lltok::kw_ssp:
1678     case lltok::kw_sspreq:
1679     case lltok::kw_sspstrong:
1680     case lltok::kw_safestack:
1681     case lltok::kw_shadowcallstack:
1682     case lltok::kw_strictfp:
1683     case lltok::kw_uwtable:
1684       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1685       break;
1686     }
1687 
1688     Lex.Lex();
1689   }
1690 }
1691 
1692 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1693 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1694   bool HaveError = false;
1695 
1696   B.clear();
1697 
1698   while (true) {
1699     lltok::Kind Token = Lex.getKind();
1700     switch (Token) {
1701     default:  // End of attributes.
1702       return HaveError;
1703     case lltok::StringConstant: {
1704       if (ParseStringAttribute(B))
1705         return true;
1706       continue;
1707     }
1708     case lltok::kw_dereferenceable: {
1709       uint64_t Bytes;
1710       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1711         return true;
1712       B.addDereferenceableAttr(Bytes);
1713       continue;
1714     }
1715     case lltok::kw_dereferenceable_or_null: {
1716       uint64_t Bytes;
1717       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1718         return true;
1719       B.addDereferenceableOrNullAttr(Bytes);
1720       continue;
1721     }
1722     case lltok::kw_align: {
1723       unsigned Alignment;
1724       if (ParseOptionalAlignment(Alignment))
1725         return true;
1726       B.addAlignmentAttr(Alignment);
1727       continue;
1728     }
1729     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1730     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1731     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1732     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1733     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1734 
1735     // Error handling.
1736     case lltok::kw_byval:
1737     case lltok::kw_inalloca:
1738     case lltok::kw_nest:
1739     case lltok::kw_nocapture:
1740     case lltok::kw_returned:
1741     case lltok::kw_sret:
1742     case lltok::kw_swifterror:
1743     case lltok::kw_swiftself:
1744     case lltok::kw_immarg:
1745       HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1746       break;
1747 
1748     case lltok::kw_alignstack:
1749     case lltok::kw_alwaysinline:
1750     case lltok::kw_argmemonly:
1751     case lltok::kw_builtin:
1752     case lltok::kw_cold:
1753     case lltok::kw_inlinehint:
1754     case lltok::kw_jumptable:
1755     case lltok::kw_minsize:
1756     case lltok::kw_naked:
1757     case lltok::kw_nobuiltin:
1758     case lltok::kw_noduplicate:
1759     case lltok::kw_noimplicitfloat:
1760     case lltok::kw_noinline:
1761     case lltok::kw_nonlazybind:
1762     case lltok::kw_noredzone:
1763     case lltok::kw_noreturn:
1764     case lltok::kw_nocf_check:
1765     case lltok::kw_nounwind:
1766     case lltok::kw_optforfuzzing:
1767     case lltok::kw_optnone:
1768     case lltok::kw_optsize:
1769     case lltok::kw_returns_twice:
1770     case lltok::kw_sanitize_address:
1771     case lltok::kw_sanitize_hwaddress:
1772     case lltok::kw_sanitize_memtag:
1773     case lltok::kw_sanitize_memory:
1774     case lltok::kw_sanitize_thread:
1775     case lltok::kw_speculative_load_hardening:
1776     case lltok::kw_ssp:
1777     case lltok::kw_sspreq:
1778     case lltok::kw_sspstrong:
1779     case lltok::kw_safestack:
1780     case lltok::kw_shadowcallstack:
1781     case lltok::kw_strictfp:
1782     case lltok::kw_uwtable:
1783       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1784       break;
1785 
1786     case lltok::kw_readnone:
1787     case lltok::kw_readonly:
1788       HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1789     }
1790 
1791     Lex.Lex();
1792   }
1793 }
1794 
1795 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1796   HasLinkage = true;
1797   switch (Kind) {
1798   default:
1799     HasLinkage = false;
1800     return GlobalValue::ExternalLinkage;
1801   case lltok::kw_private:
1802     return GlobalValue::PrivateLinkage;
1803   case lltok::kw_internal:
1804     return GlobalValue::InternalLinkage;
1805   case lltok::kw_weak:
1806     return GlobalValue::WeakAnyLinkage;
1807   case lltok::kw_weak_odr:
1808     return GlobalValue::WeakODRLinkage;
1809   case lltok::kw_linkonce:
1810     return GlobalValue::LinkOnceAnyLinkage;
1811   case lltok::kw_linkonce_odr:
1812     return GlobalValue::LinkOnceODRLinkage;
1813   case lltok::kw_available_externally:
1814     return GlobalValue::AvailableExternallyLinkage;
1815   case lltok::kw_appending:
1816     return GlobalValue::AppendingLinkage;
1817   case lltok::kw_common:
1818     return GlobalValue::CommonLinkage;
1819   case lltok::kw_extern_weak:
1820     return GlobalValue::ExternalWeakLinkage;
1821   case lltok::kw_external:
1822     return GlobalValue::ExternalLinkage;
1823   }
1824 }
1825 
1826 /// ParseOptionalLinkage
1827 ///   ::= /*empty*/
1828 ///   ::= 'private'
1829 ///   ::= 'internal'
1830 ///   ::= 'weak'
1831 ///   ::= 'weak_odr'
1832 ///   ::= 'linkonce'
1833 ///   ::= 'linkonce_odr'
1834 ///   ::= 'available_externally'
1835 ///   ::= 'appending'
1836 ///   ::= 'common'
1837 ///   ::= 'extern_weak'
1838 ///   ::= 'external'
1839 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1840                                     unsigned &Visibility,
1841                                     unsigned &DLLStorageClass,
1842                                     bool &DSOLocal) {
1843   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1844   if (HasLinkage)
1845     Lex.Lex();
1846   ParseOptionalDSOLocal(DSOLocal);
1847   ParseOptionalVisibility(Visibility);
1848   ParseOptionalDLLStorageClass(DLLStorageClass);
1849 
1850   if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
1851     return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
1852   }
1853 
1854   return false;
1855 }
1856 
1857 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) {
1858   switch (Lex.getKind()) {
1859   default:
1860     DSOLocal = false;
1861     break;
1862   case lltok::kw_dso_local:
1863     DSOLocal = true;
1864     Lex.Lex();
1865     break;
1866   case lltok::kw_dso_preemptable:
1867     DSOLocal = false;
1868     Lex.Lex();
1869     break;
1870   }
1871 }
1872 
1873 /// ParseOptionalVisibility
1874 ///   ::= /*empty*/
1875 ///   ::= 'default'
1876 ///   ::= 'hidden'
1877 ///   ::= 'protected'
1878 ///
1879 void LLParser::ParseOptionalVisibility(unsigned &Res) {
1880   switch (Lex.getKind()) {
1881   default:
1882     Res = GlobalValue::DefaultVisibility;
1883     return;
1884   case lltok::kw_default:
1885     Res = GlobalValue::DefaultVisibility;
1886     break;
1887   case lltok::kw_hidden:
1888     Res = GlobalValue::HiddenVisibility;
1889     break;
1890   case lltok::kw_protected:
1891     Res = GlobalValue::ProtectedVisibility;
1892     break;
1893   }
1894   Lex.Lex();
1895 }
1896 
1897 /// ParseOptionalDLLStorageClass
1898 ///   ::= /*empty*/
1899 ///   ::= 'dllimport'
1900 ///   ::= 'dllexport'
1901 ///
1902 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
1903   switch (Lex.getKind()) {
1904   default:
1905     Res = GlobalValue::DefaultStorageClass;
1906     return;
1907   case lltok::kw_dllimport:
1908     Res = GlobalValue::DLLImportStorageClass;
1909     break;
1910   case lltok::kw_dllexport:
1911     Res = GlobalValue::DLLExportStorageClass;
1912     break;
1913   }
1914   Lex.Lex();
1915 }
1916 
1917 /// ParseOptionalCallingConv
1918 ///   ::= /*empty*/
1919 ///   ::= 'ccc'
1920 ///   ::= 'fastcc'
1921 ///   ::= 'intel_ocl_bicc'
1922 ///   ::= 'coldcc'
1923 ///   ::= 'x86_stdcallcc'
1924 ///   ::= 'x86_fastcallcc'
1925 ///   ::= 'x86_thiscallcc'
1926 ///   ::= 'x86_vectorcallcc'
1927 ///   ::= 'arm_apcscc'
1928 ///   ::= 'arm_aapcscc'
1929 ///   ::= 'arm_aapcs_vfpcc'
1930 ///   ::= 'aarch64_vector_pcs'
1931 ///   ::= 'msp430_intrcc'
1932 ///   ::= 'avr_intrcc'
1933 ///   ::= 'avr_signalcc'
1934 ///   ::= 'ptx_kernel'
1935 ///   ::= 'ptx_device'
1936 ///   ::= 'spir_func'
1937 ///   ::= 'spir_kernel'
1938 ///   ::= 'x86_64_sysvcc'
1939 ///   ::= 'win64cc'
1940 ///   ::= 'webkit_jscc'
1941 ///   ::= 'anyregcc'
1942 ///   ::= 'preserve_mostcc'
1943 ///   ::= 'preserve_allcc'
1944 ///   ::= 'ghccc'
1945 ///   ::= 'swiftcc'
1946 ///   ::= 'x86_intrcc'
1947 ///   ::= 'hhvmcc'
1948 ///   ::= 'hhvm_ccc'
1949 ///   ::= 'cxx_fast_tlscc'
1950 ///   ::= 'amdgpu_vs'
1951 ///   ::= 'amdgpu_ls'
1952 ///   ::= 'amdgpu_hs'
1953 ///   ::= 'amdgpu_es'
1954 ///   ::= 'amdgpu_gs'
1955 ///   ::= 'amdgpu_ps'
1956 ///   ::= 'amdgpu_cs'
1957 ///   ::= 'amdgpu_kernel'
1958 ///   ::= 'tailcc'
1959 ///   ::= 'cc' UINT
1960 ///
1961 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
1962   switch (Lex.getKind()) {
1963   default:                       CC = CallingConv::C; return false;
1964   case lltok::kw_ccc:            CC = CallingConv::C; break;
1965   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1966   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1967   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1968   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1969   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
1970   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1971   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
1972   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1973   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1974   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1975   case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
1976   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1977   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
1978   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
1979   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1980   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1981   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
1982   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
1983   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1984   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
1985   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
1986   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
1987   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
1988   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
1989   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
1990   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
1991   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
1992   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
1993   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
1994   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
1995   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
1996   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
1997   case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
1998   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
1999   case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
2000   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
2001   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
2002   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
2003   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
2004   case lltok::kw_tailcc:         CC = CallingConv::Tail; break;
2005   case lltok::kw_cc: {
2006       Lex.Lex();
2007       return ParseUInt32(CC);
2008     }
2009   }
2010 
2011   Lex.Lex();
2012   return false;
2013 }
2014 
2015 /// ParseMetadataAttachment
2016 ///   ::= !dbg !42
2017 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
2018   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
2019 
2020   std::string Name = Lex.getStrVal();
2021   Kind = M->getMDKindID(Name);
2022   Lex.Lex();
2023 
2024   return ParseMDNode(MD);
2025 }
2026 
2027 /// ParseInstructionMetadata
2028 ///   ::= !dbg !42 (',' !dbg !57)*
2029 bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
2030   do {
2031     if (Lex.getKind() != lltok::MetadataVar)
2032       return TokError("expected metadata after comma");
2033 
2034     unsigned MDK;
2035     MDNode *N;
2036     if (ParseMetadataAttachment(MDK, N))
2037       return true;
2038 
2039     Inst.setMetadata(MDK, N);
2040     if (MDK == LLVMContext::MD_tbaa)
2041       InstsWithTBAATag.push_back(&Inst);
2042 
2043     // If this is the end of the list, we're done.
2044   } while (EatIfPresent(lltok::comma));
2045   return false;
2046 }
2047 
2048 /// ParseGlobalObjectMetadataAttachment
2049 ///   ::= !dbg !57
2050 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) {
2051   unsigned MDK;
2052   MDNode *N;
2053   if (ParseMetadataAttachment(MDK, N))
2054     return true;
2055 
2056   GO.addMetadata(MDK, *N);
2057   return false;
2058 }
2059 
2060 /// ParseOptionalFunctionMetadata
2061 ///   ::= (!dbg !57)*
2062 bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
2063   while (Lex.getKind() == lltok::MetadataVar)
2064     if (ParseGlobalObjectMetadataAttachment(F))
2065       return true;
2066   return false;
2067 }
2068 
2069 /// ParseOptionalAlignment
2070 ///   ::= /* empty */
2071 ///   ::= 'align' 4
2072 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
2073   Alignment = 0;
2074   if (!EatIfPresent(lltok::kw_align))
2075     return false;
2076   LocTy AlignLoc = Lex.getLoc();
2077   if (ParseUInt32(Alignment)) return true;
2078   if (!isPowerOf2_32(Alignment))
2079     return Error(AlignLoc, "alignment is not a power of two");
2080   if (Alignment > Value::MaximumAlignment)
2081     return Error(AlignLoc, "huge alignments are not supported yet");
2082   return false;
2083 }
2084 
2085 /// ParseOptionalDerefAttrBytes
2086 ///   ::= /* empty */
2087 ///   ::= AttrKind '(' 4 ')'
2088 ///
2089 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
2090 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2091                                            uint64_t &Bytes) {
2092   assert((AttrKind == lltok::kw_dereferenceable ||
2093           AttrKind == lltok::kw_dereferenceable_or_null) &&
2094          "contract!");
2095 
2096   Bytes = 0;
2097   if (!EatIfPresent(AttrKind))
2098     return false;
2099   LocTy ParenLoc = Lex.getLoc();
2100   if (!EatIfPresent(lltok::lparen))
2101     return Error(ParenLoc, "expected '('");
2102   LocTy DerefLoc = Lex.getLoc();
2103   if (ParseUInt64(Bytes)) return true;
2104   ParenLoc = Lex.getLoc();
2105   if (!EatIfPresent(lltok::rparen))
2106     return Error(ParenLoc, "expected ')'");
2107   if (!Bytes)
2108     return Error(DerefLoc, "dereferenceable bytes must be non-zero");
2109   return false;
2110 }
2111 
2112 /// ParseOptionalCommaAlign
2113 ///   ::=
2114 ///   ::= ',' align 4
2115 ///
2116 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2117 /// end.
2118 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
2119                                        bool &AteExtraComma) {
2120   AteExtraComma = false;
2121   while (EatIfPresent(lltok::comma)) {
2122     // Metadata at the end is an early exit.
2123     if (Lex.getKind() == lltok::MetadataVar) {
2124       AteExtraComma = true;
2125       return false;
2126     }
2127 
2128     if (Lex.getKind() != lltok::kw_align)
2129       return Error(Lex.getLoc(), "expected metadata or 'align'");
2130 
2131     if (ParseOptionalAlignment(Alignment)) return true;
2132   }
2133 
2134   return false;
2135 }
2136 
2137 /// ParseOptionalCommaAddrSpace
2138 ///   ::=
2139 ///   ::= ',' addrspace(1)
2140 ///
2141 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2142 /// end.
2143 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace,
2144                                            LocTy &Loc,
2145                                            bool &AteExtraComma) {
2146   AteExtraComma = false;
2147   while (EatIfPresent(lltok::comma)) {
2148     // Metadata at the end is an early exit.
2149     if (Lex.getKind() == lltok::MetadataVar) {
2150       AteExtraComma = true;
2151       return false;
2152     }
2153 
2154     Loc = Lex.getLoc();
2155     if (Lex.getKind() != lltok::kw_addrspace)
2156       return Error(Lex.getLoc(), "expected metadata or 'addrspace'");
2157 
2158     if (ParseOptionalAddrSpace(AddrSpace))
2159       return true;
2160   }
2161 
2162   return false;
2163 }
2164 
2165 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2166                                        Optional<unsigned> &HowManyArg) {
2167   Lex.Lex();
2168 
2169   auto StartParen = Lex.getLoc();
2170   if (!EatIfPresent(lltok::lparen))
2171     return Error(StartParen, "expected '('");
2172 
2173   if (ParseUInt32(BaseSizeArg))
2174     return true;
2175 
2176   if (EatIfPresent(lltok::comma)) {
2177     auto HowManyAt = Lex.getLoc();
2178     unsigned HowMany;
2179     if (ParseUInt32(HowMany))
2180       return true;
2181     if (HowMany == BaseSizeArg)
2182       return Error(HowManyAt,
2183                    "'allocsize' indices can't refer to the same parameter");
2184     HowManyArg = HowMany;
2185   } else
2186     HowManyArg = None;
2187 
2188   auto EndParen = Lex.getLoc();
2189   if (!EatIfPresent(lltok::rparen))
2190     return Error(EndParen, "expected ')'");
2191   return false;
2192 }
2193 
2194 /// ParseScopeAndOrdering
2195 ///   if isAtomic: ::= SyncScope? AtomicOrdering
2196 ///   else: ::=
2197 ///
2198 /// This sets Scope and Ordering to the parsed values.
2199 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID,
2200                                      AtomicOrdering &Ordering) {
2201   if (!isAtomic)
2202     return false;
2203 
2204   return ParseScope(SSID) || ParseOrdering(Ordering);
2205 }
2206 
2207 /// ParseScope
2208 ///   ::= syncscope("singlethread" | "<target scope>")?
2209 ///
2210 /// This sets synchronization scope ID to the ID of the parsed value.
2211 bool LLParser::ParseScope(SyncScope::ID &SSID) {
2212   SSID = SyncScope::System;
2213   if (EatIfPresent(lltok::kw_syncscope)) {
2214     auto StartParenAt = Lex.getLoc();
2215     if (!EatIfPresent(lltok::lparen))
2216       return Error(StartParenAt, "Expected '(' in syncscope");
2217 
2218     std::string SSN;
2219     auto SSNAt = Lex.getLoc();
2220     if (ParseStringConstant(SSN))
2221       return Error(SSNAt, "Expected synchronization scope name");
2222 
2223     auto EndParenAt = Lex.getLoc();
2224     if (!EatIfPresent(lltok::rparen))
2225       return Error(EndParenAt, "Expected ')' in syncscope");
2226 
2227     SSID = Context.getOrInsertSyncScopeID(SSN);
2228   }
2229 
2230   return false;
2231 }
2232 
2233 /// ParseOrdering
2234 ///   ::= AtomicOrdering
2235 ///
2236 /// This sets Ordering to the parsed value.
2237 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
2238   switch (Lex.getKind()) {
2239   default: return TokError("Expected ordering on atomic instruction");
2240   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2241   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2242   // Not specified yet:
2243   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2244   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2245   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2246   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2247   case lltok::kw_seq_cst:
2248     Ordering = AtomicOrdering::SequentiallyConsistent;
2249     break;
2250   }
2251   Lex.Lex();
2252   return false;
2253 }
2254 
2255 /// ParseOptionalStackAlignment
2256 ///   ::= /* empty */
2257 ///   ::= 'alignstack' '(' 4 ')'
2258 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
2259   Alignment = 0;
2260   if (!EatIfPresent(lltok::kw_alignstack))
2261     return false;
2262   LocTy ParenLoc = Lex.getLoc();
2263   if (!EatIfPresent(lltok::lparen))
2264     return Error(ParenLoc, "expected '('");
2265   LocTy AlignLoc = Lex.getLoc();
2266   if (ParseUInt32(Alignment)) return true;
2267   ParenLoc = Lex.getLoc();
2268   if (!EatIfPresent(lltok::rparen))
2269     return Error(ParenLoc, "expected ')'");
2270   if (!isPowerOf2_32(Alignment))
2271     return Error(AlignLoc, "stack alignment is not a power of two");
2272   return false;
2273 }
2274 
2275 /// ParseIndexList - This parses the index list for an insert/extractvalue
2276 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2277 /// comma at the end of the line and find that it is followed by metadata.
2278 /// Clients that don't allow metadata can call the version of this function that
2279 /// only takes one argument.
2280 ///
2281 /// ParseIndexList
2282 ///    ::=  (',' uint32)+
2283 ///
2284 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
2285                               bool &AteExtraComma) {
2286   AteExtraComma = false;
2287 
2288   if (Lex.getKind() != lltok::comma)
2289     return TokError("expected ',' as start of index list");
2290 
2291   while (EatIfPresent(lltok::comma)) {
2292     if (Lex.getKind() == lltok::MetadataVar) {
2293       if (Indices.empty()) return TokError("expected index");
2294       AteExtraComma = true;
2295       return false;
2296     }
2297     unsigned Idx = 0;
2298     if (ParseUInt32(Idx)) return true;
2299     Indices.push_back(Idx);
2300   }
2301 
2302   return false;
2303 }
2304 
2305 //===----------------------------------------------------------------------===//
2306 // Type Parsing.
2307 //===----------------------------------------------------------------------===//
2308 
2309 /// ParseType - Parse a type.
2310 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2311   SMLoc TypeLoc = Lex.getLoc();
2312   switch (Lex.getKind()) {
2313   default:
2314     return TokError(Msg);
2315   case lltok::Type:
2316     // Type ::= 'float' | 'void' (etc)
2317     Result = Lex.getTyVal();
2318     Lex.Lex();
2319     break;
2320   case lltok::lbrace:
2321     // Type ::= StructType
2322     if (ParseAnonStructType(Result, false))
2323       return true;
2324     break;
2325   case lltok::lsquare:
2326     // Type ::= '[' ... ']'
2327     Lex.Lex(); // eat the lsquare.
2328     if (ParseArrayVectorType(Result, false))
2329       return true;
2330     break;
2331   case lltok::less: // Either vector or packed struct.
2332     // Type ::= '<' ... '>'
2333     Lex.Lex();
2334     if (Lex.getKind() == lltok::lbrace) {
2335       if (ParseAnonStructType(Result, true) ||
2336           ParseToken(lltok::greater, "expected '>' at end of packed struct"))
2337         return true;
2338     } else if (ParseArrayVectorType(Result, true))
2339       return true;
2340     break;
2341   case lltok::LocalVar: {
2342     // Type ::= %foo
2343     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2344 
2345     // If the type hasn't been defined yet, create a forward definition and
2346     // remember where that forward def'n was seen (in case it never is defined).
2347     if (!Entry.first) {
2348       Entry.first = StructType::create(Context, Lex.getStrVal());
2349       Entry.second = Lex.getLoc();
2350     }
2351     Result = Entry.first;
2352     Lex.Lex();
2353     break;
2354   }
2355 
2356   case lltok::LocalVarID: {
2357     // Type ::= %4
2358     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2359 
2360     // If the type hasn't been defined yet, create a forward definition and
2361     // remember where that forward def'n was seen (in case it never is defined).
2362     if (!Entry.first) {
2363       Entry.first = StructType::create(Context);
2364       Entry.second = Lex.getLoc();
2365     }
2366     Result = Entry.first;
2367     Lex.Lex();
2368     break;
2369   }
2370   }
2371 
2372   // Parse the type suffixes.
2373   while (true) {
2374     switch (Lex.getKind()) {
2375     // End of type.
2376     default:
2377       if (!AllowVoid && Result->isVoidTy())
2378         return Error(TypeLoc, "void type only allowed for function results");
2379       return false;
2380 
2381     // Type ::= Type '*'
2382     case lltok::star:
2383       if (Result->isLabelTy())
2384         return TokError("basic block pointers are invalid");
2385       if (Result->isVoidTy())
2386         return TokError("pointers to void are invalid - use i8* instead");
2387       if (!PointerType::isValidElementType(Result))
2388         return TokError("pointer to this type is invalid");
2389       Result = PointerType::getUnqual(Result);
2390       Lex.Lex();
2391       break;
2392 
2393     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2394     case lltok::kw_addrspace: {
2395       if (Result->isLabelTy())
2396         return TokError("basic block pointers are invalid");
2397       if (Result->isVoidTy())
2398         return TokError("pointers to void are invalid; use i8* instead");
2399       if (!PointerType::isValidElementType(Result))
2400         return TokError("pointer to this type is invalid");
2401       unsigned AddrSpace;
2402       if (ParseOptionalAddrSpace(AddrSpace) ||
2403           ParseToken(lltok::star, "expected '*' in address space"))
2404         return true;
2405 
2406       Result = PointerType::get(Result, AddrSpace);
2407       break;
2408     }
2409 
2410     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2411     case lltok::lparen:
2412       if (ParseFunctionType(Result))
2413         return true;
2414       break;
2415     }
2416   }
2417 }
2418 
2419 /// ParseParameterList
2420 ///    ::= '(' ')'
2421 ///    ::= '(' Arg (',' Arg)* ')'
2422 ///  Arg
2423 ///    ::= Type OptionalAttributes Value OptionalAttributes
2424 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2425                                   PerFunctionState &PFS, bool IsMustTailCall,
2426                                   bool InVarArgsFunc) {
2427   if (ParseToken(lltok::lparen, "expected '(' in call"))
2428     return true;
2429 
2430   while (Lex.getKind() != lltok::rparen) {
2431     // If this isn't the first argument, we need a comma.
2432     if (!ArgList.empty() &&
2433         ParseToken(lltok::comma, "expected ',' in argument list"))
2434       return true;
2435 
2436     // Parse an ellipsis if this is a musttail call in a variadic function.
2437     if (Lex.getKind() == lltok::dotdotdot) {
2438       const char *Msg = "unexpected ellipsis in argument list for ";
2439       if (!IsMustTailCall)
2440         return TokError(Twine(Msg) + "non-musttail call");
2441       if (!InVarArgsFunc)
2442         return TokError(Twine(Msg) + "musttail call in non-varargs function");
2443       Lex.Lex();  // Lex the '...', it is purely for readability.
2444       return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2445     }
2446 
2447     // Parse the argument.
2448     LocTy ArgLoc;
2449     Type *ArgTy = nullptr;
2450     AttrBuilder ArgAttrs;
2451     Value *V;
2452     if (ParseType(ArgTy, ArgLoc))
2453       return true;
2454 
2455     if (ArgTy->isMetadataTy()) {
2456       if (ParseMetadataAsValue(V, PFS))
2457         return true;
2458     } else {
2459       // Otherwise, handle normal operands.
2460       if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
2461         return true;
2462     }
2463     ArgList.push_back(ParamInfo(
2464         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2465   }
2466 
2467   if (IsMustTailCall && InVarArgsFunc)
2468     return TokError("expected '...' at end of argument list for musttail call "
2469                     "in varargs function");
2470 
2471   Lex.Lex();  // Lex the ')'.
2472   return false;
2473 }
2474 
2475 /// ParseByValWithOptionalType
2476 ///   ::= byval
2477 ///   ::= byval(<ty>)
2478 bool LLParser::ParseByValWithOptionalType(Type *&Result) {
2479   Result = nullptr;
2480   if (!EatIfPresent(lltok::kw_byval))
2481     return true;
2482   if (!EatIfPresent(lltok::lparen))
2483     return false;
2484   if (ParseType(Result))
2485     return true;
2486   if (!EatIfPresent(lltok::rparen))
2487     return Error(Lex.getLoc(), "expected ')'");
2488   return false;
2489 }
2490 
2491 /// ParseOptionalOperandBundles
2492 ///    ::= /*empty*/
2493 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2494 ///
2495 /// OperandBundle
2496 ///    ::= bundle-tag '(' ')'
2497 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2498 ///
2499 /// bundle-tag ::= String Constant
2500 bool LLParser::ParseOptionalOperandBundles(
2501     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2502   LocTy BeginLoc = Lex.getLoc();
2503   if (!EatIfPresent(lltok::lsquare))
2504     return false;
2505 
2506   while (Lex.getKind() != lltok::rsquare) {
2507     // If this isn't the first operand bundle, we need a comma.
2508     if (!BundleList.empty() &&
2509         ParseToken(lltok::comma, "expected ',' in input list"))
2510       return true;
2511 
2512     std::string Tag;
2513     if (ParseStringConstant(Tag))
2514       return true;
2515 
2516     if (ParseToken(lltok::lparen, "expected '(' in operand bundle"))
2517       return true;
2518 
2519     std::vector<Value *> Inputs;
2520     while (Lex.getKind() != lltok::rparen) {
2521       // If this isn't the first input, we need a comma.
2522       if (!Inputs.empty() &&
2523           ParseToken(lltok::comma, "expected ',' in input list"))
2524         return true;
2525 
2526       Type *Ty = nullptr;
2527       Value *Input = nullptr;
2528       if (ParseType(Ty) || ParseValue(Ty, Input, PFS))
2529         return true;
2530       Inputs.push_back(Input);
2531     }
2532 
2533     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2534 
2535     Lex.Lex(); // Lex the ')'.
2536   }
2537 
2538   if (BundleList.empty())
2539     return Error(BeginLoc, "operand bundle set must not be empty");
2540 
2541   Lex.Lex(); // Lex the ']'.
2542   return false;
2543 }
2544 
2545 /// ParseArgumentList - Parse the argument list for a function type or function
2546 /// prototype.
2547 ///   ::= '(' ArgTypeListI ')'
2548 /// ArgTypeListI
2549 ///   ::= /*empty*/
2550 ///   ::= '...'
2551 ///   ::= ArgTypeList ',' '...'
2552 ///   ::= ArgType (',' ArgType)*
2553 ///
2554 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2555                                  bool &isVarArg){
2556   unsigned CurValID = 0;
2557   isVarArg = false;
2558   assert(Lex.getKind() == lltok::lparen);
2559   Lex.Lex(); // eat the (.
2560 
2561   if (Lex.getKind() == lltok::rparen) {
2562     // empty
2563   } else if (Lex.getKind() == lltok::dotdotdot) {
2564     isVarArg = true;
2565     Lex.Lex();
2566   } else {
2567     LocTy TypeLoc = Lex.getLoc();
2568     Type *ArgTy = nullptr;
2569     AttrBuilder Attrs;
2570     std::string Name;
2571 
2572     if (ParseType(ArgTy) ||
2573         ParseOptionalParamAttrs(Attrs)) return true;
2574 
2575     if (ArgTy->isVoidTy())
2576       return Error(TypeLoc, "argument can not have void type");
2577 
2578     if (Lex.getKind() == lltok::LocalVar) {
2579       Name = Lex.getStrVal();
2580       Lex.Lex();
2581     } else if (Lex.getKind() == lltok::LocalVarID) {
2582       if (Lex.getUIntVal() != CurValID)
2583         return Error(TypeLoc, "argument expected to be numbered '%" +
2584                                   Twine(CurValID) + "'");
2585       ++CurValID;
2586       Lex.Lex();
2587     }
2588 
2589     if (!FunctionType::isValidArgumentType(ArgTy))
2590       return Error(TypeLoc, "invalid type for function argument");
2591 
2592     ArgList.emplace_back(TypeLoc, ArgTy,
2593                          AttributeSet::get(ArgTy->getContext(), Attrs),
2594                          std::move(Name));
2595 
2596     while (EatIfPresent(lltok::comma)) {
2597       // Handle ... at end of arg list.
2598       if (EatIfPresent(lltok::dotdotdot)) {
2599         isVarArg = true;
2600         break;
2601       }
2602 
2603       // Otherwise must be an argument type.
2604       TypeLoc = Lex.getLoc();
2605       if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
2606 
2607       if (ArgTy->isVoidTy())
2608         return Error(TypeLoc, "argument can not have void type");
2609 
2610       if (Lex.getKind() == lltok::LocalVar) {
2611         Name = Lex.getStrVal();
2612         Lex.Lex();
2613       } else {
2614         if (Lex.getKind() == lltok::LocalVarID) {
2615           if (Lex.getUIntVal() != CurValID)
2616             return Error(TypeLoc, "argument expected to be numbered '%" +
2617                                       Twine(CurValID) + "'");
2618           Lex.Lex();
2619         }
2620         ++CurValID;
2621         Name = "";
2622       }
2623 
2624       if (!ArgTy->isFirstClassType())
2625         return Error(TypeLoc, "invalid type for function argument");
2626 
2627       ArgList.emplace_back(TypeLoc, ArgTy,
2628                            AttributeSet::get(ArgTy->getContext(), Attrs),
2629                            std::move(Name));
2630     }
2631   }
2632 
2633   return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2634 }
2635 
2636 /// ParseFunctionType
2637 ///  ::= Type ArgumentList OptionalAttrs
2638 bool LLParser::ParseFunctionType(Type *&Result) {
2639   assert(Lex.getKind() == lltok::lparen);
2640 
2641   if (!FunctionType::isValidReturnType(Result))
2642     return TokError("invalid function return type");
2643 
2644   SmallVector<ArgInfo, 8> ArgList;
2645   bool isVarArg;
2646   if (ParseArgumentList(ArgList, isVarArg))
2647     return true;
2648 
2649   // Reject names on the arguments lists.
2650   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2651     if (!ArgList[i].Name.empty())
2652       return Error(ArgList[i].Loc, "argument name invalid in function type");
2653     if (ArgList[i].Attrs.hasAttributes())
2654       return Error(ArgList[i].Loc,
2655                    "argument attributes invalid in function type");
2656   }
2657 
2658   SmallVector<Type*, 16> ArgListTy;
2659   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2660     ArgListTy.push_back(ArgList[i].Ty);
2661 
2662   Result = FunctionType::get(Result, ArgListTy, isVarArg);
2663   return false;
2664 }
2665 
2666 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
2667 /// other structs.
2668 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
2669   SmallVector<Type*, 8> Elts;
2670   if (ParseStructBody(Elts)) return true;
2671 
2672   Result = StructType::get(Context, Elts, Packed);
2673   return false;
2674 }
2675 
2676 /// ParseStructDefinition - Parse a struct in a 'type' definition.
2677 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
2678                                      std::pair<Type*, LocTy> &Entry,
2679                                      Type *&ResultTy) {
2680   // If the type was already defined, diagnose the redefinition.
2681   if (Entry.first && !Entry.second.isValid())
2682     return Error(TypeLoc, "redefinition of type");
2683 
2684   // If we have opaque, just return without filling in the definition for the
2685   // struct.  This counts as a definition as far as the .ll file goes.
2686   if (EatIfPresent(lltok::kw_opaque)) {
2687     // This type is being defined, so clear the location to indicate this.
2688     Entry.second = SMLoc();
2689 
2690     // If this type number has never been uttered, create it.
2691     if (!Entry.first)
2692       Entry.first = StructType::create(Context, Name);
2693     ResultTy = Entry.first;
2694     return false;
2695   }
2696 
2697   // If the type starts with '<', then it is either a packed struct or a vector.
2698   bool isPacked = EatIfPresent(lltok::less);
2699 
2700   // If we don't have a struct, then we have a random type alias, which we
2701   // accept for compatibility with old files.  These types are not allowed to be
2702   // forward referenced and not allowed to be recursive.
2703   if (Lex.getKind() != lltok::lbrace) {
2704     if (Entry.first)
2705       return Error(TypeLoc, "forward references to non-struct type");
2706 
2707     ResultTy = nullptr;
2708     if (isPacked)
2709       return ParseArrayVectorType(ResultTy, true);
2710     return ParseType(ResultTy);
2711   }
2712 
2713   // This type is being defined, so clear the location to indicate this.
2714   Entry.second = SMLoc();
2715 
2716   // If this type number has never been uttered, create it.
2717   if (!Entry.first)
2718     Entry.first = StructType::create(Context, Name);
2719 
2720   StructType *STy = cast<StructType>(Entry.first);
2721 
2722   SmallVector<Type*, 8> Body;
2723   if (ParseStructBody(Body) ||
2724       (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
2725     return true;
2726 
2727   STy->setBody(Body, isPacked);
2728   ResultTy = STy;
2729   return false;
2730 }
2731 
2732 /// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2733 ///   StructType
2734 ///     ::= '{' '}'
2735 ///     ::= '{' Type (',' Type)* '}'
2736 ///     ::= '<' '{' '}' '>'
2737 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2738 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
2739   assert(Lex.getKind() == lltok::lbrace);
2740   Lex.Lex(); // Consume the '{'
2741 
2742   // Handle the empty struct.
2743   if (EatIfPresent(lltok::rbrace))
2744     return false;
2745 
2746   LocTy EltTyLoc = Lex.getLoc();
2747   Type *Ty = nullptr;
2748   if (ParseType(Ty)) return true;
2749   Body.push_back(Ty);
2750 
2751   if (!StructType::isValidElementType(Ty))
2752     return Error(EltTyLoc, "invalid element type for struct");
2753 
2754   while (EatIfPresent(lltok::comma)) {
2755     EltTyLoc = Lex.getLoc();
2756     if (ParseType(Ty)) return true;
2757 
2758     if (!StructType::isValidElementType(Ty))
2759       return Error(EltTyLoc, "invalid element type for struct");
2760 
2761     Body.push_back(Ty);
2762   }
2763 
2764   return ParseToken(lltok::rbrace, "expected '}' at end of struct");
2765 }
2766 
2767 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2768 /// token has already been consumed.
2769 ///   Type
2770 ///     ::= '[' APSINTVAL 'x' Types ']'
2771 ///     ::= '<' APSINTVAL 'x' Types '>'
2772 ///     ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>'
2773 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
2774   bool Scalable = false;
2775 
2776   if (isVector && Lex.getKind() == lltok::kw_vscale) {
2777     Lex.Lex(); // consume the 'vscale'
2778     if (ParseToken(lltok::kw_x, "expected 'x' after vscale"))
2779       return true;
2780 
2781     Scalable = true;
2782   }
2783 
2784   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2785       Lex.getAPSIntVal().getBitWidth() > 64)
2786     return TokError("expected number in address space");
2787 
2788   LocTy SizeLoc = Lex.getLoc();
2789   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2790   Lex.Lex();
2791 
2792   if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
2793       return true;
2794 
2795   LocTy TypeLoc = Lex.getLoc();
2796   Type *EltTy = nullptr;
2797   if (ParseType(EltTy)) return true;
2798 
2799   if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
2800                  "expected end of sequential type"))
2801     return true;
2802 
2803   if (isVector) {
2804     if (Size == 0)
2805       return Error(SizeLoc, "zero element vector is illegal");
2806     if ((unsigned)Size != Size)
2807       return Error(SizeLoc, "size too large for vector");
2808     if (!VectorType::isValidElementType(EltTy))
2809       return Error(TypeLoc, "invalid vector element type");
2810     Result = VectorType::get(EltTy, unsigned(Size), Scalable);
2811   } else {
2812     if (!ArrayType::isValidElementType(EltTy))
2813       return Error(TypeLoc, "invalid array element type");
2814     Result = ArrayType::get(EltTy, Size);
2815   }
2816   return false;
2817 }
2818 
2819 //===----------------------------------------------------------------------===//
2820 // Function Semantic Analysis.
2821 //===----------------------------------------------------------------------===//
2822 
2823 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2824                                              int functionNumber)
2825   : P(p), F(f), FunctionNumber(functionNumber) {
2826 
2827   // Insert unnamed arguments into the NumberedVals list.
2828   for (Argument &A : F.args())
2829     if (!A.hasName())
2830       NumberedVals.push_back(&A);
2831 }
2832 
2833 LLParser::PerFunctionState::~PerFunctionState() {
2834   // If there were any forward referenced non-basicblock values, delete them.
2835 
2836   for (const auto &P : ForwardRefVals) {
2837     if (isa<BasicBlock>(P.second.first))
2838       continue;
2839     P.second.first->replaceAllUsesWith(
2840         UndefValue::get(P.second.first->getType()));
2841     P.second.first->deleteValue();
2842   }
2843 
2844   for (const auto &P : ForwardRefValIDs) {
2845     if (isa<BasicBlock>(P.second.first))
2846       continue;
2847     P.second.first->replaceAllUsesWith(
2848         UndefValue::get(P.second.first->getType()));
2849     P.second.first->deleteValue();
2850   }
2851 }
2852 
2853 bool LLParser::PerFunctionState::FinishFunction() {
2854   if (!ForwardRefVals.empty())
2855     return P.Error(ForwardRefVals.begin()->second.second,
2856                    "use of undefined value '%" + ForwardRefVals.begin()->first +
2857                    "'");
2858   if (!ForwardRefValIDs.empty())
2859     return P.Error(ForwardRefValIDs.begin()->second.second,
2860                    "use of undefined value '%" +
2861                    Twine(ForwardRefValIDs.begin()->first) + "'");
2862   return false;
2863 }
2864 
2865 /// GetVal - Get a value with the specified name or ID, creating a
2866 /// forward reference record if needed.  This can return null if the value
2867 /// exists but does not have the right type.
2868 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty,
2869                                           LocTy Loc, bool IsCall) {
2870   // Look this name up in the normal function symbol table.
2871   Value *Val = F.getValueSymbolTable()->lookup(Name);
2872 
2873   // If this is a forward reference for the value, see if we already created a
2874   // forward ref record.
2875   if (!Val) {
2876     auto I = ForwardRefVals.find(Name);
2877     if (I != ForwardRefVals.end())
2878       Val = I->second.first;
2879   }
2880 
2881   // If we have the value in the symbol table or fwd-ref table, return it.
2882   if (Val)
2883     return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall);
2884 
2885   // Don't make placeholders with invalid type.
2886   if (!Ty->isFirstClassType()) {
2887     P.Error(Loc, "invalid use of a non-first-class type");
2888     return nullptr;
2889   }
2890 
2891   // Otherwise, create a new forward reference for this value and remember it.
2892   Value *FwdVal;
2893   if (Ty->isLabelTy()) {
2894     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2895   } else {
2896     FwdVal = new Argument(Ty, Name);
2897   }
2898 
2899   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2900   return FwdVal;
2901 }
2902 
2903 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc,
2904                                           bool IsCall) {
2905   // Look this name up in the normal function symbol table.
2906   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2907 
2908   // If this is a forward reference for the value, see if we already created a
2909   // forward ref record.
2910   if (!Val) {
2911     auto I = ForwardRefValIDs.find(ID);
2912     if (I != ForwardRefValIDs.end())
2913       Val = I->second.first;
2914   }
2915 
2916   // If we have the value in the symbol table or fwd-ref table, return it.
2917   if (Val)
2918     return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall);
2919 
2920   if (!Ty->isFirstClassType()) {
2921     P.Error(Loc, "invalid use of a non-first-class type");
2922     return nullptr;
2923   }
2924 
2925   // Otherwise, create a new forward reference for this value and remember it.
2926   Value *FwdVal;
2927   if (Ty->isLabelTy()) {
2928     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2929   } else {
2930     FwdVal = new Argument(Ty);
2931   }
2932 
2933   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2934   return FwdVal;
2935 }
2936 
2937 /// SetInstName - After an instruction is parsed and inserted into its
2938 /// basic block, this installs its name.
2939 bool LLParser::PerFunctionState::SetInstName(int NameID,
2940                                              const std::string &NameStr,
2941                                              LocTy NameLoc, Instruction *Inst) {
2942   // If this instruction has void type, it cannot have a name or ID specified.
2943   if (Inst->getType()->isVoidTy()) {
2944     if (NameID != -1 || !NameStr.empty())
2945       return P.Error(NameLoc, "instructions returning void cannot have a name");
2946     return false;
2947   }
2948 
2949   // If this was a numbered instruction, verify that the instruction is the
2950   // expected value and resolve any forward references.
2951   if (NameStr.empty()) {
2952     // If neither a name nor an ID was specified, just use the next ID.
2953     if (NameID == -1)
2954       NameID = NumberedVals.size();
2955 
2956     if (unsigned(NameID) != NumberedVals.size())
2957       return P.Error(NameLoc, "instruction expected to be numbered '%" +
2958                      Twine(NumberedVals.size()) + "'");
2959 
2960     auto FI = ForwardRefValIDs.find(NameID);
2961     if (FI != ForwardRefValIDs.end()) {
2962       Value *Sentinel = FI->second.first;
2963       if (Sentinel->getType() != Inst->getType())
2964         return P.Error(NameLoc, "instruction forward referenced with type '" +
2965                        getTypeString(FI->second.first->getType()) + "'");
2966 
2967       Sentinel->replaceAllUsesWith(Inst);
2968       Sentinel->deleteValue();
2969       ForwardRefValIDs.erase(FI);
2970     }
2971 
2972     NumberedVals.push_back(Inst);
2973     return false;
2974   }
2975 
2976   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
2977   auto FI = ForwardRefVals.find(NameStr);
2978   if (FI != ForwardRefVals.end()) {
2979     Value *Sentinel = FI->second.first;
2980     if (Sentinel->getType() != Inst->getType())
2981       return P.Error(NameLoc, "instruction forward referenced with type '" +
2982                      getTypeString(FI->second.first->getType()) + "'");
2983 
2984     Sentinel->replaceAllUsesWith(Inst);
2985     Sentinel->deleteValue();
2986     ForwardRefVals.erase(FI);
2987   }
2988 
2989   // Set the name on the instruction.
2990   Inst->setName(NameStr);
2991 
2992   if (Inst->getName() != NameStr)
2993     return P.Error(NameLoc, "multiple definition of local value named '" +
2994                    NameStr + "'");
2995   return false;
2996 }
2997 
2998 /// GetBB - Get a basic block with the specified name or ID, creating a
2999 /// forward reference record if needed.
3000 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
3001                                               LocTy Loc) {
3002   return dyn_cast_or_null<BasicBlock>(
3003       GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
3004 }
3005 
3006 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
3007   return dyn_cast_or_null<BasicBlock>(
3008       GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
3009 }
3010 
3011 /// DefineBB - Define the specified basic block, which is either named or
3012 /// unnamed.  If there is an error, this returns null otherwise it returns
3013 /// the block being defined.
3014 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
3015                                                  int NameID, LocTy Loc) {
3016   BasicBlock *BB;
3017   if (Name.empty()) {
3018     if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) {
3019       P.Error(Loc, "label expected to be numbered '" +
3020                        Twine(NumberedVals.size()) + "'");
3021       return nullptr;
3022     }
3023     BB = GetBB(NumberedVals.size(), Loc);
3024     if (!BB) {
3025       P.Error(Loc, "unable to create block numbered '" +
3026                        Twine(NumberedVals.size()) + "'");
3027       return nullptr;
3028     }
3029   } else {
3030     BB = GetBB(Name, Loc);
3031     if (!BB) {
3032       P.Error(Loc, "unable to create block named '" + Name + "'");
3033       return nullptr;
3034     }
3035   }
3036 
3037   // Move the block to the end of the function.  Forward ref'd blocks are
3038   // inserted wherever they happen to be referenced.
3039   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
3040 
3041   // Remove the block from forward ref sets.
3042   if (Name.empty()) {
3043     ForwardRefValIDs.erase(NumberedVals.size());
3044     NumberedVals.push_back(BB);
3045   } else {
3046     // BB forward references are already in the function symbol table.
3047     ForwardRefVals.erase(Name);
3048   }
3049 
3050   return BB;
3051 }
3052 
3053 //===----------------------------------------------------------------------===//
3054 // Constants.
3055 //===----------------------------------------------------------------------===//
3056 
3057 /// ParseValID - Parse an abstract value that doesn't necessarily have a
3058 /// type implied.  For example, if we parse "4" we don't know what integer type
3059 /// it has.  The value will later be combined with its type and checked for
3060 /// sanity.  PFS is used to convert function-local operands of metadata (since
3061 /// metadata operands are not just parsed here but also converted to values).
3062 /// PFS can be null when we are not parsing metadata values inside a function.
3063 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
3064   ID.Loc = Lex.getLoc();
3065   switch (Lex.getKind()) {
3066   default: return TokError("expected value token");
3067   case lltok::GlobalID:  // @42
3068     ID.UIntVal = Lex.getUIntVal();
3069     ID.Kind = ValID::t_GlobalID;
3070     break;
3071   case lltok::GlobalVar:  // @foo
3072     ID.StrVal = Lex.getStrVal();
3073     ID.Kind = ValID::t_GlobalName;
3074     break;
3075   case lltok::LocalVarID:  // %42
3076     ID.UIntVal = Lex.getUIntVal();
3077     ID.Kind = ValID::t_LocalID;
3078     break;
3079   case lltok::LocalVar:  // %foo
3080     ID.StrVal = Lex.getStrVal();
3081     ID.Kind = ValID::t_LocalName;
3082     break;
3083   case lltok::APSInt:
3084     ID.APSIntVal = Lex.getAPSIntVal();
3085     ID.Kind = ValID::t_APSInt;
3086     break;
3087   case lltok::APFloat:
3088     ID.APFloatVal = Lex.getAPFloatVal();
3089     ID.Kind = ValID::t_APFloat;
3090     break;
3091   case lltok::kw_true:
3092     ID.ConstantVal = ConstantInt::getTrue(Context);
3093     ID.Kind = ValID::t_Constant;
3094     break;
3095   case lltok::kw_false:
3096     ID.ConstantVal = ConstantInt::getFalse(Context);
3097     ID.Kind = ValID::t_Constant;
3098     break;
3099   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3100   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3101   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3102   case lltok::kw_none: ID.Kind = ValID::t_None; break;
3103 
3104   case lltok::lbrace: {
3105     // ValID ::= '{' ConstVector '}'
3106     Lex.Lex();
3107     SmallVector<Constant*, 16> Elts;
3108     if (ParseGlobalValueVector(Elts) ||
3109         ParseToken(lltok::rbrace, "expected end of struct constant"))
3110       return true;
3111 
3112     ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3113     ID.UIntVal = Elts.size();
3114     memcpy(ID.ConstantStructElts.get(), Elts.data(),
3115            Elts.size() * sizeof(Elts[0]));
3116     ID.Kind = ValID::t_ConstantStruct;
3117     return false;
3118   }
3119   case lltok::less: {
3120     // ValID ::= '<' ConstVector '>'         --> Vector.
3121     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3122     Lex.Lex();
3123     bool isPackedStruct = EatIfPresent(lltok::lbrace);
3124 
3125     SmallVector<Constant*, 16> Elts;
3126     LocTy FirstEltLoc = Lex.getLoc();
3127     if (ParseGlobalValueVector(Elts) ||
3128         (isPackedStruct &&
3129          ParseToken(lltok::rbrace, "expected end of packed struct")) ||
3130         ParseToken(lltok::greater, "expected end of constant"))
3131       return true;
3132 
3133     if (isPackedStruct) {
3134       ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3135       memcpy(ID.ConstantStructElts.get(), Elts.data(),
3136              Elts.size() * sizeof(Elts[0]));
3137       ID.UIntVal = Elts.size();
3138       ID.Kind = ValID::t_PackedConstantStruct;
3139       return false;
3140     }
3141 
3142     if (Elts.empty())
3143       return Error(ID.Loc, "constant vector must not be empty");
3144 
3145     if (!Elts[0]->getType()->isIntegerTy() &&
3146         !Elts[0]->getType()->isFloatingPointTy() &&
3147         !Elts[0]->getType()->isPointerTy())
3148       return Error(FirstEltLoc,
3149             "vector elements must have integer, pointer or floating point type");
3150 
3151     // Verify that all the vector elements have the same type.
3152     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3153       if (Elts[i]->getType() != Elts[0]->getType())
3154         return Error(FirstEltLoc,
3155                      "vector element #" + Twine(i) +
3156                     " is not of type '" + getTypeString(Elts[0]->getType()));
3157 
3158     ID.ConstantVal = ConstantVector::get(Elts);
3159     ID.Kind = ValID::t_Constant;
3160     return false;
3161   }
3162   case lltok::lsquare: {   // Array Constant
3163     Lex.Lex();
3164     SmallVector<Constant*, 16> Elts;
3165     LocTy FirstEltLoc = Lex.getLoc();
3166     if (ParseGlobalValueVector(Elts) ||
3167         ParseToken(lltok::rsquare, "expected end of array constant"))
3168       return true;
3169 
3170     // Handle empty element.
3171     if (Elts.empty()) {
3172       // Use undef instead of an array because it's inconvenient to determine
3173       // the element type at this point, there being no elements to examine.
3174       ID.Kind = ValID::t_EmptyArray;
3175       return false;
3176     }
3177 
3178     if (!Elts[0]->getType()->isFirstClassType())
3179       return Error(FirstEltLoc, "invalid array element type: " +
3180                    getTypeString(Elts[0]->getType()));
3181 
3182     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3183 
3184     // Verify all elements are correct type!
3185     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3186       if (Elts[i]->getType() != Elts[0]->getType())
3187         return Error(FirstEltLoc,
3188                      "array element #" + Twine(i) +
3189                      " is not of type '" + getTypeString(Elts[0]->getType()));
3190     }
3191 
3192     ID.ConstantVal = ConstantArray::get(ATy, Elts);
3193     ID.Kind = ValID::t_Constant;
3194     return false;
3195   }
3196   case lltok::kw_c:  // c "foo"
3197     Lex.Lex();
3198     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3199                                                   false);
3200     if (ParseToken(lltok::StringConstant, "expected string")) return true;
3201     ID.Kind = ValID::t_Constant;
3202     return false;
3203 
3204   case lltok::kw_asm: {
3205     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3206     //             STRINGCONSTANT
3207     bool HasSideEffect, AlignStack, AsmDialect;
3208     Lex.Lex();
3209     if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3210         ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3211         ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3212         ParseStringConstant(ID.StrVal) ||
3213         ParseToken(lltok::comma, "expected comma in inline asm expression") ||
3214         ParseToken(lltok::StringConstant, "expected constraint string"))
3215       return true;
3216     ID.StrVal2 = Lex.getStrVal();
3217     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
3218       (unsigned(AsmDialect)<<2);
3219     ID.Kind = ValID::t_InlineAsm;
3220     return false;
3221   }
3222 
3223   case lltok::kw_blockaddress: {
3224     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3225     Lex.Lex();
3226 
3227     ValID Fn, Label;
3228 
3229     if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
3230         ParseValID(Fn) ||
3231         ParseToken(lltok::comma, "expected comma in block address expression")||
3232         ParseValID(Label) ||
3233         ParseToken(lltok::rparen, "expected ')' in block address expression"))
3234       return true;
3235 
3236     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3237       return Error(Fn.Loc, "expected function name in blockaddress");
3238     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3239       return Error(Label.Loc, "expected basic block name in blockaddress");
3240 
3241     // Try to find the function (but skip it if it's forward-referenced).
3242     GlobalValue *GV = nullptr;
3243     if (Fn.Kind == ValID::t_GlobalID) {
3244       if (Fn.UIntVal < NumberedVals.size())
3245         GV = NumberedVals[Fn.UIntVal];
3246     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3247       GV = M->getNamedValue(Fn.StrVal);
3248     }
3249     Function *F = nullptr;
3250     if (GV) {
3251       // Confirm that it's actually a function with a definition.
3252       if (!isa<Function>(GV))
3253         return Error(Fn.Loc, "expected function name in blockaddress");
3254       F = cast<Function>(GV);
3255       if (F->isDeclaration())
3256         return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
3257     }
3258 
3259     if (!F) {
3260       // Make a global variable as a placeholder for this reference.
3261       GlobalValue *&FwdRef =
3262           ForwardRefBlockAddresses.insert(std::make_pair(
3263                                               std::move(Fn),
3264                                               std::map<ValID, GlobalValue *>()))
3265               .first->second.insert(std::make_pair(std::move(Label), nullptr))
3266               .first->second;
3267       if (!FwdRef)
3268         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
3269                                     GlobalValue::InternalLinkage, nullptr, "");
3270       ID.ConstantVal = FwdRef;
3271       ID.Kind = ValID::t_Constant;
3272       return false;
3273     }
3274 
3275     // We found the function; now find the basic block.  Don't use PFS, since we
3276     // might be inside a constant expression.
3277     BasicBlock *BB;
3278     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3279       if (Label.Kind == ValID::t_LocalID)
3280         BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
3281       else
3282         BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
3283       if (!BB)
3284         return Error(Label.Loc, "referenced value is not a basic block");
3285     } else {
3286       if (Label.Kind == ValID::t_LocalID)
3287         return Error(Label.Loc, "cannot take address of numeric label after "
3288                                 "the function is defined");
3289       BB = dyn_cast_or_null<BasicBlock>(
3290           F->getValueSymbolTable()->lookup(Label.StrVal));
3291       if (!BB)
3292         return Error(Label.Loc, "referenced value is not a basic block");
3293     }
3294 
3295     ID.ConstantVal = BlockAddress::get(F, BB);
3296     ID.Kind = ValID::t_Constant;
3297     return false;
3298   }
3299 
3300   case lltok::kw_trunc:
3301   case lltok::kw_zext:
3302   case lltok::kw_sext:
3303   case lltok::kw_fptrunc:
3304   case lltok::kw_fpext:
3305   case lltok::kw_bitcast:
3306   case lltok::kw_addrspacecast:
3307   case lltok::kw_uitofp:
3308   case lltok::kw_sitofp:
3309   case lltok::kw_fptoui:
3310   case lltok::kw_fptosi:
3311   case lltok::kw_inttoptr:
3312   case lltok::kw_ptrtoint: {
3313     unsigned Opc = Lex.getUIntVal();
3314     Type *DestTy = nullptr;
3315     Constant *SrcVal;
3316     Lex.Lex();
3317     if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3318         ParseGlobalTypeAndValue(SrcVal) ||
3319         ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3320         ParseType(DestTy) ||
3321         ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3322       return true;
3323     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3324       return Error(ID.Loc, "invalid cast opcode for cast from '" +
3325                    getTypeString(SrcVal->getType()) + "' to '" +
3326                    getTypeString(DestTy) + "'");
3327     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3328                                                  SrcVal, DestTy);
3329     ID.Kind = ValID::t_Constant;
3330     return false;
3331   }
3332   case lltok::kw_extractvalue: {
3333     Lex.Lex();
3334     Constant *Val;
3335     SmallVector<unsigned, 4> Indices;
3336     if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
3337         ParseGlobalTypeAndValue(Val) ||
3338         ParseIndexList(Indices) ||
3339         ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3340       return true;
3341 
3342     if (!Val->getType()->isAggregateType())
3343       return Error(ID.Loc, "extractvalue operand must be aggregate type");
3344     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3345       return Error(ID.Loc, "invalid indices for extractvalue");
3346     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3347     ID.Kind = ValID::t_Constant;
3348     return false;
3349   }
3350   case lltok::kw_insertvalue: {
3351     Lex.Lex();
3352     Constant *Val0, *Val1;
3353     SmallVector<unsigned, 4> Indices;
3354     if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
3355         ParseGlobalTypeAndValue(Val0) ||
3356         ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
3357         ParseGlobalTypeAndValue(Val1) ||
3358         ParseIndexList(Indices) ||
3359         ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3360       return true;
3361     if (!Val0->getType()->isAggregateType())
3362       return Error(ID.Loc, "insertvalue operand must be aggregate type");
3363     Type *IndexedType =
3364         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3365     if (!IndexedType)
3366       return Error(ID.Loc, "invalid indices for insertvalue");
3367     if (IndexedType != Val1->getType())
3368       return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3369                                getTypeString(Val1->getType()) +
3370                                "' instead of '" + getTypeString(IndexedType) +
3371                                "'");
3372     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3373     ID.Kind = ValID::t_Constant;
3374     return false;
3375   }
3376   case lltok::kw_icmp:
3377   case lltok::kw_fcmp: {
3378     unsigned PredVal, Opc = Lex.getUIntVal();
3379     Constant *Val0, *Val1;
3380     Lex.Lex();
3381     if (ParseCmpPredicate(PredVal, Opc) ||
3382         ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3383         ParseGlobalTypeAndValue(Val0) ||
3384         ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
3385         ParseGlobalTypeAndValue(Val1) ||
3386         ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3387       return true;
3388 
3389     if (Val0->getType() != Val1->getType())
3390       return Error(ID.Loc, "compare operands must have the same type");
3391 
3392     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3393 
3394     if (Opc == Instruction::FCmp) {
3395       if (!Val0->getType()->isFPOrFPVectorTy())
3396         return Error(ID.Loc, "fcmp requires floating point operands");
3397       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3398     } else {
3399       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3400       if (!Val0->getType()->isIntOrIntVectorTy() &&
3401           !Val0->getType()->isPtrOrPtrVectorTy())
3402         return Error(ID.Loc, "icmp requires pointer or integer operands");
3403       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3404     }
3405     ID.Kind = ValID::t_Constant;
3406     return false;
3407   }
3408 
3409   // Unary Operators.
3410   case lltok::kw_fneg: {
3411     unsigned Opc = Lex.getUIntVal();
3412     Constant *Val;
3413     Lex.Lex();
3414     if (ParseToken(lltok::lparen, "expected '(' in unary constantexpr") ||
3415         ParseGlobalTypeAndValue(Val) ||
3416         ParseToken(lltok::rparen, "expected ')' in unary constantexpr"))
3417       return true;
3418 
3419     // Check that the type is valid for the operator.
3420     switch (Opc) {
3421     case Instruction::FNeg:
3422       if (!Val->getType()->isFPOrFPVectorTy())
3423         return Error(ID.Loc, "constexpr requires fp operands");
3424       break;
3425     default: llvm_unreachable("Unknown unary operator!");
3426     }
3427     unsigned Flags = 0;
3428     Constant *C = ConstantExpr::get(Opc, Val, Flags);
3429     ID.ConstantVal = C;
3430     ID.Kind = ValID::t_Constant;
3431     return false;
3432   }
3433   // Binary Operators.
3434   case lltok::kw_add:
3435   case lltok::kw_fadd:
3436   case lltok::kw_sub:
3437   case lltok::kw_fsub:
3438   case lltok::kw_mul:
3439   case lltok::kw_fmul:
3440   case lltok::kw_udiv:
3441   case lltok::kw_sdiv:
3442   case lltok::kw_fdiv:
3443   case lltok::kw_urem:
3444   case lltok::kw_srem:
3445   case lltok::kw_frem:
3446   case lltok::kw_shl:
3447   case lltok::kw_lshr:
3448   case lltok::kw_ashr: {
3449     bool NUW = false;
3450     bool NSW = false;
3451     bool Exact = false;
3452     unsigned Opc = Lex.getUIntVal();
3453     Constant *Val0, *Val1;
3454     Lex.Lex();
3455     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3456         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3457       if (EatIfPresent(lltok::kw_nuw))
3458         NUW = true;
3459       if (EatIfPresent(lltok::kw_nsw)) {
3460         NSW = true;
3461         if (EatIfPresent(lltok::kw_nuw))
3462           NUW = true;
3463       }
3464     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3465                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3466       if (EatIfPresent(lltok::kw_exact))
3467         Exact = true;
3468     }
3469     if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3470         ParseGlobalTypeAndValue(Val0) ||
3471         ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
3472         ParseGlobalTypeAndValue(Val1) ||
3473         ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3474       return true;
3475     if (Val0->getType() != Val1->getType())
3476       return Error(ID.Loc, "operands of constexpr must have same type");
3477     // Check that the type is valid for the operator.
3478     switch (Opc) {
3479     case Instruction::Add:
3480     case Instruction::Sub:
3481     case Instruction::Mul:
3482     case Instruction::UDiv:
3483     case Instruction::SDiv:
3484     case Instruction::URem:
3485     case Instruction::SRem:
3486     case Instruction::Shl:
3487     case Instruction::AShr:
3488     case Instruction::LShr:
3489       if (!Val0->getType()->isIntOrIntVectorTy())
3490         return Error(ID.Loc, "constexpr requires integer operands");
3491       break;
3492     case Instruction::FAdd:
3493     case Instruction::FSub:
3494     case Instruction::FMul:
3495     case Instruction::FDiv:
3496     case Instruction::FRem:
3497       if (!Val0->getType()->isFPOrFPVectorTy())
3498         return Error(ID.Loc, "constexpr requires fp operands");
3499       break;
3500     default: llvm_unreachable("Unknown binary operator!");
3501     }
3502     unsigned Flags = 0;
3503     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3504     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3505     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3506     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3507     ID.ConstantVal = C;
3508     ID.Kind = ValID::t_Constant;
3509     return false;
3510   }
3511 
3512   // Logical Operations
3513   case lltok::kw_and:
3514   case lltok::kw_or:
3515   case lltok::kw_xor: {
3516     unsigned Opc = Lex.getUIntVal();
3517     Constant *Val0, *Val1;
3518     Lex.Lex();
3519     if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3520         ParseGlobalTypeAndValue(Val0) ||
3521         ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
3522         ParseGlobalTypeAndValue(Val1) ||
3523         ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3524       return true;
3525     if (Val0->getType() != Val1->getType())
3526       return Error(ID.Loc, "operands of constexpr must have same type");
3527     if (!Val0->getType()->isIntOrIntVectorTy())
3528       return Error(ID.Loc,
3529                    "constexpr requires integer or integer vector operands");
3530     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3531     ID.Kind = ValID::t_Constant;
3532     return false;
3533   }
3534 
3535   case lltok::kw_getelementptr:
3536   case lltok::kw_shufflevector:
3537   case lltok::kw_insertelement:
3538   case lltok::kw_extractelement:
3539   case lltok::kw_select: {
3540     unsigned Opc = Lex.getUIntVal();
3541     SmallVector<Constant*, 16> Elts;
3542     bool InBounds = false;
3543     Type *Ty;
3544     Lex.Lex();
3545 
3546     if (Opc == Instruction::GetElementPtr)
3547       InBounds = EatIfPresent(lltok::kw_inbounds);
3548 
3549     if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
3550       return true;
3551 
3552     LocTy ExplicitTypeLoc = Lex.getLoc();
3553     if (Opc == Instruction::GetElementPtr) {
3554       if (ParseType(Ty) ||
3555           ParseToken(lltok::comma, "expected comma after getelementptr's type"))
3556         return true;
3557     }
3558 
3559     Optional<unsigned> InRangeOp;
3560     if (ParseGlobalValueVector(
3561             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3562         ParseToken(lltok::rparen, "expected ')' in constantexpr"))
3563       return true;
3564 
3565     if (Opc == Instruction::GetElementPtr) {
3566       if (Elts.size() == 0 ||
3567           !Elts[0]->getType()->isPtrOrPtrVectorTy())
3568         return Error(ID.Loc, "base of getelementptr must be a pointer");
3569 
3570       Type *BaseType = Elts[0]->getType();
3571       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3572       if (Ty != BasePointerType->getElementType())
3573         return Error(
3574             ExplicitTypeLoc,
3575             "explicit pointee type doesn't match operand's pointee type");
3576 
3577       unsigned GEPWidth =
3578           BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0;
3579 
3580       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3581       for (Constant *Val : Indices) {
3582         Type *ValTy = Val->getType();
3583         if (!ValTy->isIntOrIntVectorTy())
3584           return Error(ID.Loc, "getelementptr index must be an integer");
3585         if (ValTy->isVectorTy()) {
3586           unsigned ValNumEl = ValTy->getVectorNumElements();
3587           if (GEPWidth && (ValNumEl != GEPWidth))
3588             return Error(
3589                 ID.Loc,
3590                 "getelementptr vector index has a wrong number of elements");
3591           // GEPWidth may have been unknown because the base is a scalar,
3592           // but it is known now.
3593           GEPWidth = ValNumEl;
3594         }
3595       }
3596 
3597       SmallPtrSet<Type*, 4> Visited;
3598       if (!Indices.empty() && !Ty->isSized(&Visited))
3599         return Error(ID.Loc, "base element of getelementptr must be sized");
3600 
3601       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3602         return Error(ID.Loc, "invalid getelementptr indices");
3603 
3604       if (InRangeOp) {
3605         if (*InRangeOp == 0)
3606           return Error(ID.Loc,
3607                        "inrange keyword may not appear on pointer operand");
3608         --*InRangeOp;
3609       }
3610 
3611       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3612                                                       InBounds, InRangeOp);
3613     } else if (Opc == Instruction::Select) {
3614       if (Elts.size() != 3)
3615         return Error(ID.Loc, "expected three operands to select");
3616       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3617                                                               Elts[2]))
3618         return Error(ID.Loc, Reason);
3619       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3620     } else if (Opc == Instruction::ShuffleVector) {
3621       if (Elts.size() != 3)
3622         return Error(ID.Loc, "expected three operands to shufflevector");
3623       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3624         return Error(ID.Loc, "invalid operands to shufflevector");
3625       ID.ConstantVal =
3626                  ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
3627     } else if (Opc == Instruction::ExtractElement) {
3628       if (Elts.size() != 2)
3629         return Error(ID.Loc, "expected two operands to extractelement");
3630       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3631         return Error(ID.Loc, "invalid extractelement operands");
3632       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3633     } else {
3634       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3635       if (Elts.size() != 3)
3636       return Error(ID.Loc, "expected three operands to insertelement");
3637       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3638         return Error(ID.Loc, "invalid insertelement operands");
3639       ID.ConstantVal =
3640                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3641     }
3642 
3643     ID.Kind = ValID::t_Constant;
3644     return false;
3645   }
3646   }
3647 
3648   Lex.Lex();
3649   return false;
3650 }
3651 
3652 /// ParseGlobalValue - Parse a global value with the specified type.
3653 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
3654   C = nullptr;
3655   ValID ID;
3656   Value *V = nullptr;
3657   bool Parsed = ParseValID(ID) ||
3658                 ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false);
3659   if (V && !(C = dyn_cast<Constant>(V)))
3660     return Error(ID.Loc, "global values must be constants");
3661   return Parsed;
3662 }
3663 
3664 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
3665   Type *Ty = nullptr;
3666   return ParseType(Ty) ||
3667          ParseGlobalValue(Ty, V);
3668 }
3669 
3670 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3671   C = nullptr;
3672 
3673   LocTy KwLoc = Lex.getLoc();
3674   if (!EatIfPresent(lltok::kw_comdat))
3675     return false;
3676 
3677   if (EatIfPresent(lltok::lparen)) {
3678     if (Lex.getKind() != lltok::ComdatVar)
3679       return TokError("expected comdat variable");
3680     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3681     Lex.Lex();
3682     if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
3683       return true;
3684   } else {
3685     if (GlobalName.empty())
3686       return TokError("comdat cannot be unnamed");
3687     C = getComdat(GlobalName, KwLoc);
3688   }
3689 
3690   return false;
3691 }
3692 
3693 /// ParseGlobalValueVector
3694 ///   ::= /*empty*/
3695 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3696 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3697                                       Optional<unsigned> *InRangeOp) {
3698   // Empty list.
3699   if (Lex.getKind() == lltok::rbrace ||
3700       Lex.getKind() == lltok::rsquare ||
3701       Lex.getKind() == lltok::greater ||
3702       Lex.getKind() == lltok::rparen)
3703     return false;
3704 
3705   do {
3706     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3707       *InRangeOp = Elts.size();
3708 
3709     Constant *C;
3710     if (ParseGlobalTypeAndValue(C)) return true;
3711     Elts.push_back(C);
3712   } while (EatIfPresent(lltok::comma));
3713 
3714   return false;
3715 }
3716 
3717 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
3718   SmallVector<Metadata *, 16> Elts;
3719   if (ParseMDNodeVector(Elts))
3720     return true;
3721 
3722   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3723   return false;
3724 }
3725 
3726 /// MDNode:
3727 ///  ::= !{ ... }
3728 ///  ::= !7
3729 ///  ::= !DILocation(...)
3730 bool LLParser::ParseMDNode(MDNode *&N) {
3731   if (Lex.getKind() == lltok::MetadataVar)
3732     return ParseSpecializedMDNode(N);
3733 
3734   return ParseToken(lltok::exclaim, "expected '!' here") ||
3735          ParseMDNodeTail(N);
3736 }
3737 
3738 bool LLParser::ParseMDNodeTail(MDNode *&N) {
3739   // !{ ... }
3740   if (Lex.getKind() == lltok::lbrace)
3741     return ParseMDTuple(N);
3742 
3743   // !42
3744   return ParseMDNodeID(N);
3745 }
3746 
3747 namespace {
3748 
3749 /// Structure to represent an optional metadata field.
3750 template <class FieldTy> struct MDFieldImpl {
3751   typedef MDFieldImpl ImplTy;
3752   FieldTy Val;
3753   bool Seen;
3754 
3755   void assign(FieldTy Val) {
3756     Seen = true;
3757     this->Val = std::move(Val);
3758   }
3759 
3760   explicit MDFieldImpl(FieldTy Default)
3761       : Val(std::move(Default)), Seen(false) {}
3762 };
3763 
3764 /// Structure to represent an optional metadata field that
3765 /// can be of either type (A or B) and encapsulates the
3766 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
3767 /// to reimplement the specifics for representing each Field.
3768 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
3769   typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
3770   FieldTypeA A;
3771   FieldTypeB B;
3772   bool Seen;
3773 
3774   enum {
3775     IsInvalid = 0,
3776     IsTypeA = 1,
3777     IsTypeB = 2
3778   } WhatIs;
3779 
3780   void assign(FieldTypeA A) {
3781     Seen = true;
3782     this->A = std::move(A);
3783     WhatIs = IsTypeA;
3784   }
3785 
3786   void assign(FieldTypeB B) {
3787     Seen = true;
3788     this->B = std::move(B);
3789     WhatIs = IsTypeB;
3790   }
3791 
3792   explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
3793       : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
3794         WhatIs(IsInvalid) {}
3795 };
3796 
3797 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3798   uint64_t Max;
3799 
3800   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3801       : ImplTy(Default), Max(Max) {}
3802 };
3803 
3804 struct LineField : public MDUnsignedField {
3805   LineField() : MDUnsignedField(0, UINT32_MAX) {}
3806 };
3807 
3808 struct ColumnField : public MDUnsignedField {
3809   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3810 };
3811 
3812 struct DwarfTagField : public MDUnsignedField {
3813   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3814   DwarfTagField(dwarf::Tag DefaultTag)
3815       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3816 };
3817 
3818 struct DwarfMacinfoTypeField : public MDUnsignedField {
3819   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3820   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3821     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3822 };
3823 
3824 struct DwarfAttEncodingField : public MDUnsignedField {
3825   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3826 };
3827 
3828 struct DwarfVirtualityField : public MDUnsignedField {
3829   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3830 };
3831 
3832 struct DwarfLangField : public MDUnsignedField {
3833   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3834 };
3835 
3836 struct DwarfCCField : public MDUnsignedField {
3837   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3838 };
3839 
3840 struct EmissionKindField : public MDUnsignedField {
3841   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3842 };
3843 
3844 struct NameTableKindField : public MDUnsignedField {
3845   NameTableKindField()
3846       : MDUnsignedField(
3847             0, (unsigned)
3848                    DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
3849 };
3850 
3851 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
3852   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3853 };
3854 
3855 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
3856   DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
3857 };
3858 
3859 struct MDSignedField : public MDFieldImpl<int64_t> {
3860   int64_t Min;
3861   int64_t Max;
3862 
3863   MDSignedField(int64_t Default = 0)
3864       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3865   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3866       : ImplTy(Default), Min(Min), Max(Max) {}
3867 };
3868 
3869 struct MDBoolField : public MDFieldImpl<bool> {
3870   MDBoolField(bool Default = false) : ImplTy(Default) {}
3871 };
3872 
3873 struct MDField : public MDFieldImpl<Metadata *> {
3874   bool AllowNull;
3875 
3876   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3877 };
3878 
3879 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
3880   MDConstant() : ImplTy(nullptr) {}
3881 };
3882 
3883 struct MDStringField : public MDFieldImpl<MDString *> {
3884   bool AllowEmpty;
3885   MDStringField(bool AllowEmpty = true)
3886       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3887 };
3888 
3889 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3890   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3891 };
3892 
3893 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
3894   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
3895 };
3896 
3897 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
3898   MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
3899       : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
3900 
3901   MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
3902                     bool AllowNull = true)
3903       : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
3904 
3905   bool isMDSignedField() const { return WhatIs == IsTypeA; }
3906   bool isMDField() const { return WhatIs == IsTypeB; }
3907   int64_t getMDSignedValue() const {
3908     assert(isMDSignedField() && "Wrong field type");
3909     return A.Val;
3910   }
3911   Metadata *getMDFieldValue() const {
3912     assert(isMDField() && "Wrong field type");
3913     return B.Val;
3914   }
3915 };
3916 
3917 struct MDSignedOrUnsignedField
3918     : MDEitherFieldImpl<MDSignedField, MDUnsignedField> {
3919   MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {}
3920 
3921   bool isMDSignedField() const { return WhatIs == IsTypeA; }
3922   bool isMDUnsignedField() const { return WhatIs == IsTypeB; }
3923   int64_t getMDSignedValue() const {
3924     assert(isMDSignedField() && "Wrong field type");
3925     return A.Val;
3926   }
3927   uint64_t getMDUnsignedValue() const {
3928     assert(isMDUnsignedField() && "Wrong field type");
3929     return B.Val;
3930   }
3931 };
3932 
3933 } // end anonymous namespace
3934 
3935 namespace llvm {
3936 
3937 template <>
3938 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3939                             MDUnsignedField &Result) {
3940   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3941     return TokError("expected unsigned integer");
3942 
3943   auto &U = Lex.getAPSIntVal();
3944   if (U.ugt(Result.Max))
3945     return TokError("value for '" + Name + "' too large, limit is " +
3946                     Twine(Result.Max));
3947   Result.assign(U.getZExtValue());
3948   assert(Result.Val <= Result.Max && "Expected value in range");
3949   Lex.Lex();
3950   return false;
3951 }
3952 
3953 template <>
3954 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
3955   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3956 }
3957 template <>
3958 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
3959   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3960 }
3961 
3962 template <>
3963 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
3964   if (Lex.getKind() == lltok::APSInt)
3965     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3966 
3967   if (Lex.getKind() != lltok::DwarfTag)
3968     return TokError("expected DWARF tag");
3969 
3970   unsigned Tag = dwarf::getTag(Lex.getStrVal());
3971   if (Tag == dwarf::DW_TAG_invalid)
3972     return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
3973   assert(Tag <= Result.Max && "Expected valid DWARF tag");
3974 
3975   Result.assign(Tag);
3976   Lex.Lex();
3977   return false;
3978 }
3979 
3980 template <>
3981 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3982                             DwarfMacinfoTypeField &Result) {
3983   if (Lex.getKind() == lltok::APSInt)
3984     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3985 
3986   if (Lex.getKind() != lltok::DwarfMacinfo)
3987     return TokError("expected DWARF macinfo type");
3988 
3989   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
3990   if (Macinfo == dwarf::DW_MACINFO_invalid)
3991     return TokError(
3992         "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'");
3993   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
3994 
3995   Result.assign(Macinfo);
3996   Lex.Lex();
3997   return false;
3998 }
3999 
4000 template <>
4001 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4002                             DwarfVirtualityField &Result) {
4003   if (Lex.getKind() == lltok::APSInt)
4004     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4005 
4006   if (Lex.getKind() != lltok::DwarfVirtuality)
4007     return TokError("expected DWARF virtuality code");
4008 
4009   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
4010   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
4011     return TokError("invalid DWARF virtuality code" + Twine(" '") +
4012                     Lex.getStrVal() + "'");
4013   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
4014   Result.assign(Virtuality);
4015   Lex.Lex();
4016   return false;
4017 }
4018 
4019 template <>
4020 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
4021   if (Lex.getKind() == lltok::APSInt)
4022     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4023 
4024   if (Lex.getKind() != lltok::DwarfLang)
4025     return TokError("expected DWARF language");
4026 
4027   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
4028   if (!Lang)
4029     return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
4030                     "'");
4031   assert(Lang <= Result.Max && "Expected valid DWARF language");
4032   Result.assign(Lang);
4033   Lex.Lex();
4034   return false;
4035 }
4036 
4037 template <>
4038 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
4039   if (Lex.getKind() == lltok::APSInt)
4040     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4041 
4042   if (Lex.getKind() != lltok::DwarfCC)
4043     return TokError("expected DWARF calling convention");
4044 
4045   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
4046   if (!CC)
4047     return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() +
4048                     "'");
4049   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
4050   Result.assign(CC);
4051   Lex.Lex();
4052   return false;
4053 }
4054 
4055 template <>
4056 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) {
4057   if (Lex.getKind() == lltok::APSInt)
4058     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4059 
4060   if (Lex.getKind() != lltok::EmissionKind)
4061     return TokError("expected emission kind");
4062 
4063   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
4064   if (!Kind)
4065     return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
4066                     "'");
4067   assert(*Kind <= Result.Max && "Expected valid emission kind");
4068   Result.assign(*Kind);
4069   Lex.Lex();
4070   return false;
4071 }
4072 
4073 template <>
4074 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4075                             NameTableKindField &Result) {
4076   if (Lex.getKind() == lltok::APSInt)
4077     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4078 
4079   if (Lex.getKind() != lltok::NameTableKind)
4080     return TokError("expected nameTable kind");
4081 
4082   auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
4083   if (!Kind)
4084     return TokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
4085                     "'");
4086   assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
4087   Result.assign((unsigned)*Kind);
4088   Lex.Lex();
4089   return false;
4090 }
4091 
4092 template <>
4093 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4094                             DwarfAttEncodingField &Result) {
4095   if (Lex.getKind() == lltok::APSInt)
4096     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4097 
4098   if (Lex.getKind() != lltok::DwarfAttEncoding)
4099     return TokError("expected DWARF type attribute encoding");
4100 
4101   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4102   if (!Encoding)
4103     return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
4104                     Lex.getStrVal() + "'");
4105   assert(Encoding <= Result.Max && "Expected valid DWARF language");
4106   Result.assign(Encoding);
4107   Lex.Lex();
4108   return false;
4109 }
4110 
4111 /// DIFlagField
4112 ///  ::= uint32
4113 ///  ::= DIFlagVector
4114 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4115 template <>
4116 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4117 
4118   // Parser for a single flag.
4119   auto parseFlag = [&](DINode::DIFlags &Val) {
4120     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4121       uint32_t TempVal = static_cast<uint32_t>(Val);
4122       bool Res = ParseUInt32(TempVal);
4123       Val = static_cast<DINode::DIFlags>(TempVal);
4124       return Res;
4125     }
4126 
4127     if (Lex.getKind() != lltok::DIFlag)
4128       return TokError("expected debug info flag");
4129 
4130     Val = DINode::getFlag(Lex.getStrVal());
4131     if (!Val)
4132       return TokError(Twine("invalid debug info flag flag '") +
4133                       Lex.getStrVal() + "'");
4134     Lex.Lex();
4135     return false;
4136   };
4137 
4138   // Parse the flags and combine them together.
4139   DINode::DIFlags Combined = DINode::FlagZero;
4140   do {
4141     DINode::DIFlags Val;
4142     if (parseFlag(Val))
4143       return true;
4144     Combined |= Val;
4145   } while (EatIfPresent(lltok::bar));
4146 
4147   Result.assign(Combined);
4148   return false;
4149 }
4150 
4151 /// DISPFlagField
4152 ///  ::= uint32
4153 ///  ::= DISPFlagVector
4154 ///  ::= DISPFlagVector '|' DISPFlag* '|' uint32
4155 template <>
4156 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4157 
4158   // Parser for a single flag.
4159   auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4160     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4161       uint32_t TempVal = static_cast<uint32_t>(Val);
4162       bool Res = ParseUInt32(TempVal);
4163       Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4164       return Res;
4165     }
4166 
4167     if (Lex.getKind() != lltok::DISPFlag)
4168       return TokError("expected debug info flag");
4169 
4170     Val = DISubprogram::getFlag(Lex.getStrVal());
4171     if (!Val)
4172       return TokError(Twine("invalid subprogram debug info flag '") +
4173                       Lex.getStrVal() + "'");
4174     Lex.Lex();
4175     return false;
4176   };
4177 
4178   // Parse the flags and combine them together.
4179   DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4180   do {
4181     DISubprogram::DISPFlags Val;
4182     if (parseFlag(Val))
4183       return true;
4184     Combined |= Val;
4185   } while (EatIfPresent(lltok::bar));
4186 
4187   Result.assign(Combined);
4188   return false;
4189 }
4190 
4191 template <>
4192 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4193                             MDSignedField &Result) {
4194   if (Lex.getKind() != lltok::APSInt)
4195     return TokError("expected signed integer");
4196 
4197   auto &S = Lex.getAPSIntVal();
4198   if (S < Result.Min)
4199     return TokError("value for '" + Name + "' too small, limit is " +
4200                     Twine(Result.Min));
4201   if (S > Result.Max)
4202     return TokError("value for '" + Name + "' too large, limit is " +
4203                     Twine(Result.Max));
4204   Result.assign(S.getExtValue());
4205   assert(Result.Val >= Result.Min && "Expected value in range");
4206   assert(Result.Val <= Result.Max && "Expected value in range");
4207   Lex.Lex();
4208   return false;
4209 }
4210 
4211 template <>
4212 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4213   switch (Lex.getKind()) {
4214   default:
4215     return TokError("expected 'true' or 'false'");
4216   case lltok::kw_true:
4217     Result.assign(true);
4218     break;
4219   case lltok::kw_false:
4220     Result.assign(false);
4221     break;
4222   }
4223   Lex.Lex();
4224   return false;
4225 }
4226 
4227 template <>
4228 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4229   if (Lex.getKind() == lltok::kw_null) {
4230     if (!Result.AllowNull)
4231       return TokError("'" + Name + "' cannot be null");
4232     Lex.Lex();
4233     Result.assign(nullptr);
4234     return false;
4235   }
4236 
4237   Metadata *MD;
4238   if (ParseMetadata(MD, nullptr))
4239     return true;
4240 
4241   Result.assign(MD);
4242   return false;
4243 }
4244 
4245 template <>
4246 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4247                             MDSignedOrMDField &Result) {
4248   // Try to parse a signed int.
4249   if (Lex.getKind() == lltok::APSInt) {
4250     MDSignedField Res = Result.A;
4251     if (!ParseMDField(Loc, Name, Res)) {
4252       Result.assign(Res);
4253       return false;
4254     }
4255     return true;
4256   }
4257 
4258   // Otherwise, try to parse as an MDField.
4259   MDField Res = Result.B;
4260   if (!ParseMDField(Loc, Name, Res)) {
4261     Result.assign(Res);
4262     return false;
4263   }
4264 
4265   return true;
4266 }
4267 
4268 template <>
4269 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4270                             MDSignedOrUnsignedField &Result) {
4271   if (Lex.getKind() != lltok::APSInt)
4272     return false;
4273 
4274   if (Lex.getAPSIntVal().isSigned()) {
4275     MDSignedField Res = Result.A;
4276     if (ParseMDField(Loc, Name, Res))
4277       return true;
4278     Result.assign(Res);
4279     return false;
4280   }
4281 
4282   MDUnsignedField Res = Result.B;
4283   if (ParseMDField(Loc, Name, Res))
4284     return true;
4285   Result.assign(Res);
4286   return false;
4287 }
4288 
4289 template <>
4290 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4291   LocTy ValueLoc = Lex.getLoc();
4292   std::string S;
4293   if (ParseStringConstant(S))
4294     return true;
4295 
4296   if (!Result.AllowEmpty && S.empty())
4297     return Error(ValueLoc, "'" + Name + "' cannot be empty");
4298 
4299   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4300   return false;
4301 }
4302 
4303 template <>
4304 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4305   SmallVector<Metadata *, 4> MDs;
4306   if (ParseMDNodeVector(MDs))
4307     return true;
4308 
4309   Result.assign(std::move(MDs));
4310   return false;
4311 }
4312 
4313 template <>
4314 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4315                             ChecksumKindField &Result) {
4316   Optional<DIFile::ChecksumKind> CSKind =
4317       DIFile::getChecksumKind(Lex.getStrVal());
4318 
4319   if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4320     return TokError(
4321         "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'");
4322 
4323   Result.assign(*CSKind);
4324   Lex.Lex();
4325   return false;
4326 }
4327 
4328 } // end namespace llvm
4329 
4330 template <class ParserTy>
4331 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
4332   do {
4333     if (Lex.getKind() != lltok::LabelStr)
4334       return TokError("expected field label here");
4335 
4336     if (parseField())
4337       return true;
4338   } while (EatIfPresent(lltok::comma));
4339 
4340   return false;
4341 }
4342 
4343 template <class ParserTy>
4344 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
4345   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4346   Lex.Lex();
4347 
4348   if (ParseToken(lltok::lparen, "expected '(' here"))
4349     return true;
4350   if (Lex.getKind() != lltok::rparen)
4351     if (ParseMDFieldsImplBody(parseField))
4352       return true;
4353 
4354   ClosingLoc = Lex.getLoc();
4355   return ParseToken(lltok::rparen, "expected ')' here");
4356 }
4357 
4358 template <class FieldTy>
4359 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
4360   if (Result.Seen)
4361     return TokError("field '" + Name + "' cannot be specified more than once");
4362 
4363   LocTy Loc = Lex.getLoc();
4364   Lex.Lex();
4365   return ParseMDField(Loc, Name, Result);
4366 }
4367 
4368 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4369   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4370 
4371 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
4372   if (Lex.getStrVal() == #CLASS)                                               \
4373     return Parse##CLASS(N, IsDistinct);
4374 #include "llvm/IR/Metadata.def"
4375 
4376   return TokError("expected metadata type");
4377 }
4378 
4379 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4380 #define NOP_FIELD(NAME, TYPE, INIT)
4381 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
4382   if (!NAME.Seen)                                                              \
4383     return Error(ClosingLoc, "missing required field '" #NAME "'");
4384 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
4385   if (Lex.getStrVal() == #NAME)                                                \
4386     return ParseMDField(#NAME, NAME);
4387 #define PARSE_MD_FIELDS()                                                      \
4388   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
4389   do {                                                                         \
4390     LocTy ClosingLoc;                                                          \
4391     if (ParseMDFieldsImpl([&]() -> bool {                                      \
4392       VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                          \
4393       return TokError(Twine("invalid field '") + Lex.getStrVal() + "'");       \
4394     }, ClosingLoc))                                                            \
4395       return true;                                                             \
4396     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
4397   } while (false)
4398 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
4399   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4400 
4401 /// ParseDILocationFields:
4402 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4403 ///   isImplicitCode: true)
4404 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
4405 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4406   OPTIONAL(line, LineField, );                                                 \
4407   OPTIONAL(column, ColumnField, );                                             \
4408   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4409   OPTIONAL(inlinedAt, MDField, );                                              \
4410   OPTIONAL(isImplicitCode, MDBoolField, (false));
4411   PARSE_MD_FIELDS();
4412 #undef VISIT_MD_FIELDS
4413 
4414   Result =
4415       GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4416                                    inlinedAt.Val, isImplicitCode.Val));
4417   return false;
4418 }
4419 
4420 /// ParseGenericDINode:
4421 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4422 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
4423 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4424   REQUIRED(tag, DwarfTagField, );                                              \
4425   OPTIONAL(header, MDStringField, );                                           \
4426   OPTIONAL(operands, MDFieldList, );
4427   PARSE_MD_FIELDS();
4428 #undef VISIT_MD_FIELDS
4429 
4430   Result = GET_OR_DISTINCT(GenericDINode,
4431                            (Context, tag.Val, header.Val, operands.Val));
4432   return false;
4433 }
4434 
4435 /// ParseDISubrange:
4436 ///   ::= !DISubrange(count: 30, lowerBound: 2)
4437 ///   ::= !DISubrange(count: !node, lowerBound: 2)
4438 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
4439 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4440   REQUIRED(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false));              \
4441   OPTIONAL(lowerBound, MDSignedField, );
4442   PARSE_MD_FIELDS();
4443 #undef VISIT_MD_FIELDS
4444 
4445   if (count.isMDSignedField())
4446     Result = GET_OR_DISTINCT(
4447         DISubrange, (Context, count.getMDSignedValue(), lowerBound.Val));
4448   else if (count.isMDField())
4449     Result = GET_OR_DISTINCT(
4450         DISubrange, (Context, count.getMDFieldValue(), lowerBound.Val));
4451   else
4452     return true;
4453 
4454   return false;
4455 }
4456 
4457 /// ParseDIEnumerator:
4458 ///   ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4459 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4460 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4461   REQUIRED(name, MDStringField, );                                             \
4462   REQUIRED(value, MDSignedOrUnsignedField, );                                  \
4463   OPTIONAL(isUnsigned, MDBoolField, (false));
4464   PARSE_MD_FIELDS();
4465 #undef VISIT_MD_FIELDS
4466 
4467   if (isUnsigned.Val && value.isMDSignedField())
4468     return TokError("unsigned enumerator with negative value");
4469 
4470   int64_t Value = value.isMDSignedField()
4471                       ? value.getMDSignedValue()
4472                       : static_cast<int64_t>(value.getMDUnsignedValue());
4473   Result =
4474       GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4475 
4476   return false;
4477 }
4478 
4479 /// ParseDIBasicType:
4480 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4481 ///                    encoding: DW_ATE_encoding, flags: 0)
4482 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
4483 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4484   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
4485   OPTIONAL(name, MDStringField, );                                             \
4486   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4487   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4488   OPTIONAL(encoding, DwarfAttEncodingField, );                                 \
4489   OPTIONAL(flags, DIFlagField, );
4490   PARSE_MD_FIELDS();
4491 #undef VISIT_MD_FIELDS
4492 
4493   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4494                                          align.Val, encoding.Val, flags.Val));
4495   return false;
4496 }
4497 
4498 /// ParseDIDerivedType:
4499 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4500 ///                      line: 7, scope: !1, baseType: !2, size: 32,
4501 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
4502 ///                      dwarfAddressSpace: 3)
4503 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4504 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4505   REQUIRED(tag, DwarfTagField, );                                              \
4506   OPTIONAL(name, MDStringField, );                                             \
4507   OPTIONAL(file, MDField, );                                                   \
4508   OPTIONAL(line, LineField, );                                                 \
4509   OPTIONAL(scope, MDField, );                                                  \
4510   REQUIRED(baseType, MDField, );                                               \
4511   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4512   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4513   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4514   OPTIONAL(flags, DIFlagField, );                                              \
4515   OPTIONAL(extraData, MDField, );                                              \
4516   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
4517   PARSE_MD_FIELDS();
4518 #undef VISIT_MD_FIELDS
4519 
4520   Optional<unsigned> DWARFAddressSpace;
4521   if (dwarfAddressSpace.Val != UINT32_MAX)
4522     DWARFAddressSpace = dwarfAddressSpace.Val;
4523 
4524   Result = GET_OR_DISTINCT(DIDerivedType,
4525                            (Context, tag.Val, name.Val, file.Val, line.Val,
4526                             scope.Val, baseType.Val, size.Val, align.Val,
4527                             offset.Val, DWARFAddressSpace, flags.Val,
4528                             extraData.Val));
4529   return false;
4530 }
4531 
4532 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
4533 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4534   REQUIRED(tag, DwarfTagField, );                                              \
4535   OPTIONAL(name, MDStringField, );                                             \
4536   OPTIONAL(file, MDField, );                                                   \
4537   OPTIONAL(line, LineField, );                                                 \
4538   OPTIONAL(scope, MDField, );                                                  \
4539   OPTIONAL(baseType, MDField, );                                               \
4540   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4541   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4542   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4543   OPTIONAL(flags, DIFlagField, );                                              \
4544   OPTIONAL(elements, MDField, );                                               \
4545   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
4546   OPTIONAL(vtableHolder, MDField, );                                           \
4547   OPTIONAL(templateParams, MDField, );                                         \
4548   OPTIONAL(identifier, MDStringField, );                                       \
4549   OPTIONAL(discriminator, MDField, );
4550   PARSE_MD_FIELDS();
4551 #undef VISIT_MD_FIELDS
4552 
4553   // If this has an identifier try to build an ODR type.
4554   if (identifier.Val)
4555     if (auto *CT = DICompositeType::buildODRType(
4556             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4557             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4558             elements.Val, runtimeLang.Val, vtableHolder.Val,
4559             templateParams.Val, discriminator.Val)) {
4560       Result = CT;
4561       return false;
4562     }
4563 
4564   // Create a new node, and save it in the context if it belongs in the type
4565   // map.
4566   Result = GET_OR_DISTINCT(
4567       DICompositeType,
4568       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4569        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4570        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4571        discriminator.Val));
4572   return false;
4573 }
4574 
4575 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4576 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4577   OPTIONAL(flags, DIFlagField, );                                              \
4578   OPTIONAL(cc, DwarfCCField, );                                                \
4579   REQUIRED(types, MDField, );
4580   PARSE_MD_FIELDS();
4581 #undef VISIT_MD_FIELDS
4582 
4583   Result = GET_OR_DISTINCT(DISubroutineType,
4584                            (Context, flags.Val, cc.Val, types.Val));
4585   return false;
4586 }
4587 
4588 /// ParseDIFileType:
4589 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4590 ///                   checksumkind: CSK_MD5,
4591 ///                   checksum: "000102030405060708090a0b0c0d0e0f",
4592 ///                   source: "source file contents")
4593 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
4594   // The default constructed value for checksumkind is required, but will never
4595   // be used, as the parser checks if the field was actually Seen before using
4596   // the Val.
4597 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4598   REQUIRED(filename, MDStringField, );                                         \
4599   REQUIRED(directory, MDStringField, );                                        \
4600   OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5));                \
4601   OPTIONAL(checksum, MDStringField, );                                         \
4602   OPTIONAL(source, MDStringField, );
4603   PARSE_MD_FIELDS();
4604 #undef VISIT_MD_FIELDS
4605 
4606   Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
4607   if (checksumkind.Seen && checksum.Seen)
4608     OptChecksum.emplace(checksumkind.Val, checksum.Val);
4609   else if (checksumkind.Seen || checksum.Seen)
4610     return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4611 
4612   Optional<MDString *> OptSource;
4613   if (source.Seen)
4614     OptSource = source.Val;
4615   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4616                                     OptChecksum, OptSource));
4617   return false;
4618 }
4619 
4620 /// ParseDICompileUnit:
4621 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4622 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
4623 ///                      splitDebugFilename: "abc.debug",
4624 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4625 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd)
4626 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4627   if (!IsDistinct)
4628     return Lex.Error("missing 'distinct', required for !DICompileUnit");
4629 
4630 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4631   REQUIRED(language, DwarfLangField, );                                        \
4632   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
4633   OPTIONAL(producer, MDStringField, );                                         \
4634   OPTIONAL(isOptimized, MDBoolField, );                                        \
4635   OPTIONAL(flags, MDStringField, );                                            \
4636   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
4637   OPTIONAL(splitDebugFilename, MDStringField, );                               \
4638   OPTIONAL(emissionKind, EmissionKindField, );                                 \
4639   OPTIONAL(enums, MDField, );                                                  \
4640   OPTIONAL(retainedTypes, MDField, );                                          \
4641   OPTIONAL(globals, MDField, );                                                \
4642   OPTIONAL(imports, MDField, );                                                \
4643   OPTIONAL(macros, MDField, );                                                 \
4644   OPTIONAL(dwoId, MDUnsignedField, );                                          \
4645   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
4646   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
4647   OPTIONAL(nameTableKind, NameTableKindField, );                               \
4648   OPTIONAL(debugBaseAddress, MDBoolField, = false);
4649   PARSE_MD_FIELDS();
4650 #undef VISIT_MD_FIELDS
4651 
4652   Result = DICompileUnit::getDistinct(
4653       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4654       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4655       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4656       splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
4657       debugBaseAddress.Val);
4658   return false;
4659 }
4660 
4661 /// ParseDISubprogram:
4662 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4663 ///                     file: !1, line: 7, type: !2, isLocal: false,
4664 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
4665 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
4666 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
4667 ///                     spFlags: 10, isOptimized: false, templateParams: !4,
4668 ///                     declaration: !5, retainedNodes: !6, thrownTypes: !7)
4669 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
4670   auto Loc = Lex.getLoc();
4671 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4672   OPTIONAL(scope, MDField, );                                                  \
4673   OPTIONAL(name, MDStringField, );                                             \
4674   OPTIONAL(linkageName, MDStringField, );                                      \
4675   OPTIONAL(file, MDField, );                                                   \
4676   OPTIONAL(line, LineField, );                                                 \
4677   OPTIONAL(type, MDField, );                                                   \
4678   OPTIONAL(isLocal, MDBoolField, );                                            \
4679   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4680   OPTIONAL(scopeLine, LineField, );                                            \
4681   OPTIONAL(containingType, MDField, );                                         \
4682   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
4683   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
4684   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
4685   OPTIONAL(flags, DIFlagField, );                                              \
4686   OPTIONAL(spFlags, DISPFlagField, );                                          \
4687   OPTIONAL(isOptimized, MDBoolField, );                                        \
4688   OPTIONAL(unit, MDField, );                                                   \
4689   OPTIONAL(templateParams, MDField, );                                         \
4690   OPTIONAL(declaration, MDField, );                                            \
4691   OPTIONAL(retainedNodes, MDField, );                                          \
4692   OPTIONAL(thrownTypes, MDField, );
4693   PARSE_MD_FIELDS();
4694 #undef VISIT_MD_FIELDS
4695 
4696   // An explicit spFlags field takes precedence over individual fields in
4697   // older IR versions.
4698   DISubprogram::DISPFlags SPFlags =
4699       spFlags.Seen ? spFlags.Val
4700                    : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
4701                                              isOptimized.Val, virtuality.Val);
4702   if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
4703     return Lex.Error(
4704         Loc,
4705         "missing 'distinct', required for !DISubprogram that is a Definition");
4706   Result = GET_OR_DISTINCT(
4707       DISubprogram,
4708       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
4709        type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
4710        thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
4711        declaration.Val, retainedNodes.Val, thrownTypes.Val));
4712   return false;
4713 }
4714 
4715 /// ParseDILexicalBlock:
4716 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4717 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4718 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4719   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4720   OPTIONAL(file, MDField, );                                                   \
4721   OPTIONAL(line, LineField, );                                                 \
4722   OPTIONAL(column, ColumnField, );
4723   PARSE_MD_FIELDS();
4724 #undef VISIT_MD_FIELDS
4725 
4726   Result = GET_OR_DISTINCT(
4727       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4728   return false;
4729 }
4730 
4731 /// ParseDILexicalBlockFile:
4732 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4733 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4734 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4735   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4736   OPTIONAL(file, MDField, );                                                   \
4737   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4738   PARSE_MD_FIELDS();
4739 #undef VISIT_MD_FIELDS
4740 
4741   Result = GET_OR_DISTINCT(DILexicalBlockFile,
4742                            (Context, scope.Val, file.Val, discriminator.Val));
4743   return false;
4744 }
4745 
4746 /// ParseDICommonBlock:
4747 ///   ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9)
4748 bool LLParser::ParseDICommonBlock(MDNode *&Result, bool IsDistinct) {
4749 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4750   REQUIRED(scope, MDField, );                                                  \
4751   OPTIONAL(declaration, MDField, );                                            \
4752   OPTIONAL(name, MDStringField, );                                             \
4753   OPTIONAL(file, MDField, );                                                   \
4754   OPTIONAL(line, LineField, );
4755   PARSE_MD_FIELDS();
4756 #undef VISIT_MD_FIELDS
4757 
4758   Result = GET_OR_DISTINCT(DICommonBlock,
4759                            (Context, scope.Val, declaration.Val, name.Val,
4760                             file.Val, line.Val));
4761   return false;
4762 }
4763 
4764 /// ParseDINamespace:
4765 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4766 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
4767 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4768   REQUIRED(scope, MDField, );                                                  \
4769   OPTIONAL(name, MDStringField, );                                             \
4770   OPTIONAL(exportSymbols, MDBoolField, );
4771   PARSE_MD_FIELDS();
4772 #undef VISIT_MD_FIELDS
4773 
4774   Result = GET_OR_DISTINCT(DINamespace,
4775                            (Context, scope.Val, name.Val, exportSymbols.Val));
4776   return false;
4777 }
4778 
4779 /// ParseDIMacro:
4780 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
4781 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) {
4782 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4783   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
4784   OPTIONAL(line, LineField, );                                                 \
4785   REQUIRED(name, MDStringField, );                                             \
4786   OPTIONAL(value, MDStringField, );
4787   PARSE_MD_FIELDS();
4788 #undef VISIT_MD_FIELDS
4789 
4790   Result = GET_OR_DISTINCT(DIMacro,
4791                            (Context, type.Val, line.Val, name.Val, value.Val));
4792   return false;
4793 }
4794 
4795 /// ParseDIMacroFile:
4796 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4797 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4798 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4799   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
4800   OPTIONAL(line, LineField, );                                                 \
4801   REQUIRED(file, MDField, );                                                   \
4802   OPTIONAL(nodes, MDField, );
4803   PARSE_MD_FIELDS();
4804 #undef VISIT_MD_FIELDS
4805 
4806   Result = GET_OR_DISTINCT(DIMacroFile,
4807                            (Context, type.Val, line.Val, file.Val, nodes.Val));
4808   return false;
4809 }
4810 
4811 /// ParseDIModule:
4812 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG",
4813 ///                 includePath: "/usr/include", isysroot: "/")
4814 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
4815 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4816   REQUIRED(scope, MDField, );                                                  \
4817   REQUIRED(name, MDStringField, );                                             \
4818   OPTIONAL(configMacros, MDStringField, );                                     \
4819   OPTIONAL(includePath, MDStringField, );                                      \
4820   OPTIONAL(isysroot, MDStringField, );
4821   PARSE_MD_FIELDS();
4822 #undef VISIT_MD_FIELDS
4823 
4824   Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val,
4825                            configMacros.Val, includePath.Val, isysroot.Val));
4826   return false;
4827 }
4828 
4829 /// ParseDITemplateTypeParameter:
4830 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1)
4831 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4832 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4833   OPTIONAL(name, MDStringField, );                                             \
4834   REQUIRED(type, MDField, );
4835   PARSE_MD_FIELDS();
4836 #undef VISIT_MD_FIELDS
4837 
4838   Result =
4839       GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val));
4840   return false;
4841 }
4842 
4843 /// ParseDITemplateValueParameter:
4844 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4845 ///                                 name: "V", type: !1, value: i32 7)
4846 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4847 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4848   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
4849   OPTIONAL(name, MDStringField, );                                             \
4850   OPTIONAL(type, MDField, );                                                   \
4851   REQUIRED(value, MDField, );
4852   PARSE_MD_FIELDS();
4853 #undef VISIT_MD_FIELDS
4854 
4855   Result = GET_OR_DISTINCT(DITemplateValueParameter,
4856                            (Context, tag.Val, name.Val, type.Val, value.Val));
4857   return false;
4858 }
4859 
4860 /// ParseDIGlobalVariable:
4861 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
4862 ///                         file: !1, line: 7, type: !2, isLocal: false,
4863 ///                         isDefinition: true, templateParams: !3,
4864 ///                         declaration: !4, align: 8)
4865 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
4866 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4867   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
4868   OPTIONAL(scope, MDField, );                                                  \
4869   OPTIONAL(linkageName, MDStringField, );                                      \
4870   OPTIONAL(file, MDField, );                                                   \
4871   OPTIONAL(line, LineField, );                                                 \
4872   OPTIONAL(type, MDField, );                                                   \
4873   OPTIONAL(isLocal, MDBoolField, );                                            \
4874   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4875   OPTIONAL(templateParams, MDField, );                                         \
4876   OPTIONAL(declaration, MDField, );                                            \
4877   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4878   PARSE_MD_FIELDS();
4879 #undef VISIT_MD_FIELDS
4880 
4881   Result =
4882       GET_OR_DISTINCT(DIGlobalVariable,
4883                       (Context, scope.Val, name.Val, linkageName.Val, file.Val,
4884                        line.Val, type.Val, isLocal.Val, isDefinition.Val,
4885                        declaration.Val, templateParams.Val, align.Val));
4886   return false;
4887 }
4888 
4889 /// ParseDILocalVariable:
4890 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
4891 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4892 ///                        align: 8)
4893 ///   ::= !DILocalVariable(scope: !0, name: "foo",
4894 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4895 ///                        align: 8)
4896 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
4897 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4898   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4899   OPTIONAL(name, MDStringField, );                                             \
4900   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
4901   OPTIONAL(file, MDField, );                                                   \
4902   OPTIONAL(line, LineField, );                                                 \
4903   OPTIONAL(type, MDField, );                                                   \
4904   OPTIONAL(flags, DIFlagField, );                                              \
4905   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4906   PARSE_MD_FIELDS();
4907 #undef VISIT_MD_FIELDS
4908 
4909   Result = GET_OR_DISTINCT(DILocalVariable,
4910                            (Context, scope.Val, name.Val, file.Val, line.Val,
4911                             type.Val, arg.Val, flags.Val, align.Val));
4912   return false;
4913 }
4914 
4915 /// ParseDILabel:
4916 ///   ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
4917 bool LLParser::ParseDILabel(MDNode *&Result, bool IsDistinct) {
4918 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4919   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4920   REQUIRED(name, MDStringField, );                                             \
4921   REQUIRED(file, MDField, );                                                   \
4922   REQUIRED(line, LineField, );
4923   PARSE_MD_FIELDS();
4924 #undef VISIT_MD_FIELDS
4925 
4926   Result = GET_OR_DISTINCT(DILabel,
4927                            (Context, scope.Val, name.Val, file.Val, line.Val));
4928   return false;
4929 }
4930 
4931 /// ParseDIExpression:
4932 ///   ::= !DIExpression(0, 7, -1)
4933 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
4934   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4935   Lex.Lex();
4936 
4937   if (ParseToken(lltok::lparen, "expected '(' here"))
4938     return true;
4939 
4940   SmallVector<uint64_t, 8> Elements;
4941   if (Lex.getKind() != lltok::rparen)
4942     do {
4943       if (Lex.getKind() == lltok::DwarfOp) {
4944         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
4945           Lex.Lex();
4946           Elements.push_back(Op);
4947           continue;
4948         }
4949         return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
4950       }
4951 
4952       if (Lex.getKind() == lltok::DwarfAttEncoding) {
4953         if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) {
4954           Lex.Lex();
4955           Elements.push_back(Op);
4956           continue;
4957         }
4958         return TokError(Twine("invalid DWARF attribute encoding '") + Lex.getStrVal() + "'");
4959       }
4960 
4961       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4962         return TokError("expected unsigned integer");
4963 
4964       auto &U = Lex.getAPSIntVal();
4965       if (U.ugt(UINT64_MAX))
4966         return TokError("element too large, limit is " + Twine(UINT64_MAX));
4967       Elements.push_back(U.getZExtValue());
4968       Lex.Lex();
4969     } while (EatIfPresent(lltok::comma));
4970 
4971   if (ParseToken(lltok::rparen, "expected ')' here"))
4972     return true;
4973 
4974   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
4975   return false;
4976 }
4977 
4978 /// ParseDIGlobalVariableExpression:
4979 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
4980 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result,
4981                                                bool IsDistinct) {
4982 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4983   REQUIRED(var, MDField, );                                                    \
4984   REQUIRED(expr, MDField, );
4985   PARSE_MD_FIELDS();
4986 #undef VISIT_MD_FIELDS
4987 
4988   Result =
4989       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
4990   return false;
4991 }
4992 
4993 /// ParseDIObjCProperty:
4994 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
4995 ///                       getter: "getFoo", attributes: 7, type: !2)
4996 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
4997 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4998   OPTIONAL(name, MDStringField, );                                             \
4999   OPTIONAL(file, MDField, );                                                   \
5000   OPTIONAL(line, LineField, );                                                 \
5001   OPTIONAL(setter, MDStringField, );                                           \
5002   OPTIONAL(getter, MDStringField, );                                           \
5003   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
5004   OPTIONAL(type, MDField, );
5005   PARSE_MD_FIELDS();
5006 #undef VISIT_MD_FIELDS
5007 
5008   Result = GET_OR_DISTINCT(DIObjCProperty,
5009                            (Context, name.Val, file.Val, line.Val, setter.Val,
5010                             getter.Val, attributes.Val, type.Val));
5011   return false;
5012 }
5013 
5014 /// ParseDIImportedEntity:
5015 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
5016 ///                         line: 7, name: "foo")
5017 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
5018 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5019   REQUIRED(tag, DwarfTagField, );                                              \
5020   REQUIRED(scope, MDField, );                                                  \
5021   OPTIONAL(entity, MDField, );                                                 \
5022   OPTIONAL(file, MDField, );                                                   \
5023   OPTIONAL(line, LineField, );                                                 \
5024   OPTIONAL(name, MDStringField, );
5025   PARSE_MD_FIELDS();
5026 #undef VISIT_MD_FIELDS
5027 
5028   Result = GET_OR_DISTINCT(
5029       DIImportedEntity,
5030       (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
5031   return false;
5032 }
5033 
5034 #undef PARSE_MD_FIELD
5035 #undef NOP_FIELD
5036 #undef REQUIRE_FIELD
5037 #undef DECLARE_FIELD
5038 
5039 /// ParseMetadataAsValue
5040 ///  ::= metadata i32 %local
5041 ///  ::= metadata i32 @global
5042 ///  ::= metadata i32 7
5043 ///  ::= metadata !0
5044 ///  ::= metadata !{...}
5045 ///  ::= metadata !"string"
5046 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
5047   // Note: the type 'metadata' has already been parsed.
5048   Metadata *MD;
5049   if (ParseMetadata(MD, &PFS))
5050     return true;
5051 
5052   V = MetadataAsValue::get(Context, MD);
5053   return false;
5054 }
5055 
5056 /// ParseValueAsMetadata
5057 ///  ::= i32 %local
5058 ///  ::= i32 @global
5059 ///  ::= i32 7
5060 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
5061                                     PerFunctionState *PFS) {
5062   Type *Ty;
5063   LocTy Loc;
5064   if (ParseType(Ty, TypeMsg, Loc))
5065     return true;
5066   if (Ty->isMetadataTy())
5067     return Error(Loc, "invalid metadata-value-metadata roundtrip");
5068 
5069   Value *V;
5070   if (ParseValue(Ty, V, PFS))
5071     return true;
5072 
5073   MD = ValueAsMetadata::get(V);
5074   return false;
5075 }
5076 
5077 /// ParseMetadata
5078 ///  ::= i32 %local
5079 ///  ::= i32 @global
5080 ///  ::= i32 7
5081 ///  ::= !42
5082 ///  ::= !{...}
5083 ///  ::= !"string"
5084 ///  ::= !DILocation(...)
5085 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
5086   if (Lex.getKind() == lltok::MetadataVar) {
5087     MDNode *N;
5088     if (ParseSpecializedMDNode(N))
5089       return true;
5090     MD = N;
5091     return false;
5092   }
5093 
5094   // ValueAsMetadata:
5095   // <type> <value>
5096   if (Lex.getKind() != lltok::exclaim)
5097     return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
5098 
5099   // '!'.
5100   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
5101   Lex.Lex();
5102 
5103   // MDString:
5104   //   ::= '!' STRINGCONSTANT
5105   if (Lex.getKind() == lltok::StringConstant) {
5106     MDString *S;
5107     if (ParseMDString(S))
5108       return true;
5109     MD = S;
5110     return false;
5111   }
5112 
5113   // MDNode:
5114   // !{ ... }
5115   // !7
5116   MDNode *N;
5117   if (ParseMDNodeTail(N))
5118     return true;
5119   MD = N;
5120   return false;
5121 }
5122 
5123 //===----------------------------------------------------------------------===//
5124 // Function Parsing.
5125 //===----------------------------------------------------------------------===//
5126 
5127 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
5128                                    PerFunctionState *PFS, bool IsCall) {
5129   if (Ty->isFunctionTy())
5130     return Error(ID.Loc, "functions are not values, refer to them as pointers");
5131 
5132   switch (ID.Kind) {
5133   case ValID::t_LocalID:
5134     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5135     V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5136     return V == nullptr;
5137   case ValID::t_LocalName:
5138     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5139     V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall);
5140     return V == nullptr;
5141   case ValID::t_InlineAsm: {
5142     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
5143       return Error(ID.Loc, "invalid type for inline asm constraint string");
5144     V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
5145                        (ID.UIntVal >> 1) & 1,
5146                        (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
5147     return false;
5148   }
5149   case ValID::t_GlobalName:
5150     V = GetGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall);
5151     return V == nullptr;
5152   case ValID::t_GlobalID:
5153     V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5154     return V == nullptr;
5155   case ValID::t_APSInt:
5156     if (!Ty->isIntegerTy())
5157       return Error(ID.Loc, "integer constant must have integer type");
5158     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
5159     V = ConstantInt::get(Context, ID.APSIntVal);
5160     return false;
5161   case ValID::t_APFloat:
5162     if (!Ty->isFloatingPointTy() ||
5163         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
5164       return Error(ID.Loc, "floating point constant invalid for type");
5165 
5166     // The lexer has no type info, so builds all half, float, and double FP
5167     // constants as double.  Fix this here.  Long double does not need this.
5168     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
5169       bool Ignored;
5170       if (Ty->isHalfTy())
5171         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
5172                               &Ignored);
5173       else if (Ty->isFloatTy())
5174         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
5175                               &Ignored);
5176     }
5177     V = ConstantFP::get(Context, ID.APFloatVal);
5178 
5179     if (V->getType() != Ty)
5180       return Error(ID.Loc, "floating point constant does not have type '" +
5181                    getTypeString(Ty) + "'");
5182 
5183     return false;
5184   case ValID::t_Null:
5185     if (!Ty->isPointerTy())
5186       return Error(ID.Loc, "null must be a pointer type");
5187     V = ConstantPointerNull::get(cast<PointerType>(Ty));
5188     return false;
5189   case ValID::t_Undef:
5190     // FIXME: LabelTy should not be a first-class type.
5191     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5192       return Error(ID.Loc, "invalid type for undef constant");
5193     V = UndefValue::get(Ty);
5194     return false;
5195   case ValID::t_EmptyArray:
5196     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
5197       return Error(ID.Loc, "invalid empty array initializer");
5198     V = UndefValue::get(Ty);
5199     return false;
5200   case ValID::t_Zero:
5201     // FIXME: LabelTy should not be a first-class type.
5202     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5203       return Error(ID.Loc, "invalid type for null constant");
5204     V = Constant::getNullValue(Ty);
5205     return false;
5206   case ValID::t_None:
5207     if (!Ty->isTokenTy())
5208       return Error(ID.Loc, "invalid type for none constant");
5209     V = Constant::getNullValue(Ty);
5210     return false;
5211   case ValID::t_Constant:
5212     if (ID.ConstantVal->getType() != Ty)
5213       return Error(ID.Loc, "constant expression type mismatch");
5214 
5215     V = ID.ConstantVal;
5216     return false;
5217   case ValID::t_ConstantStruct:
5218   case ValID::t_PackedConstantStruct:
5219     if (StructType *ST = dyn_cast<StructType>(Ty)) {
5220       if (ST->getNumElements() != ID.UIntVal)
5221         return Error(ID.Loc,
5222                      "initializer with struct type has wrong # elements");
5223       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5224         return Error(ID.Loc, "packed'ness of initializer and type don't match");
5225 
5226       // Verify that the elements are compatible with the structtype.
5227       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5228         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5229           return Error(ID.Loc, "element " + Twine(i) +
5230                     " of struct initializer doesn't match struct element type");
5231 
5232       V = ConstantStruct::get(
5233           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5234     } else
5235       return Error(ID.Loc, "constant expression type mismatch");
5236     return false;
5237   }
5238   llvm_unreachable("Invalid ValID");
5239 }
5240 
5241 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5242   C = nullptr;
5243   ValID ID;
5244   auto Loc = Lex.getLoc();
5245   if (ParseValID(ID, /*PFS=*/nullptr))
5246     return true;
5247   switch (ID.Kind) {
5248   case ValID::t_APSInt:
5249   case ValID::t_APFloat:
5250   case ValID::t_Undef:
5251   case ValID::t_Constant:
5252   case ValID::t_ConstantStruct:
5253   case ValID::t_PackedConstantStruct: {
5254     Value *V;
5255     if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false))
5256       return true;
5257     assert(isa<Constant>(V) && "Expected a constant value");
5258     C = cast<Constant>(V);
5259     return false;
5260   }
5261   case ValID::t_Null:
5262     C = Constant::getNullValue(Ty);
5263     return false;
5264   default:
5265     return Error(Loc, "expected a constant value");
5266   }
5267 }
5268 
5269 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5270   V = nullptr;
5271   ValID ID;
5272   return ParseValID(ID, PFS) ||
5273          ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false);
5274 }
5275 
5276 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5277   Type *Ty = nullptr;
5278   return ParseType(Ty) ||
5279          ParseValue(Ty, V, PFS);
5280 }
5281 
5282 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5283                                       PerFunctionState &PFS) {
5284   Value *V;
5285   Loc = Lex.getLoc();
5286   if (ParseTypeAndValue(V, PFS)) return true;
5287   if (!isa<BasicBlock>(V))
5288     return Error(Loc, "expected a basic block");
5289   BB = cast<BasicBlock>(V);
5290   return false;
5291 }
5292 
5293 /// FunctionHeader
5294 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5295 ///       OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5296 ///       '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5297 ///       OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
5298 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
5299   // Parse the linkage.
5300   LocTy LinkageLoc = Lex.getLoc();
5301   unsigned Linkage;
5302   unsigned Visibility;
5303   unsigned DLLStorageClass;
5304   bool DSOLocal;
5305   AttrBuilder RetAttrs;
5306   unsigned CC;
5307   bool HasLinkage;
5308   Type *RetType = nullptr;
5309   LocTy RetTypeLoc = Lex.getLoc();
5310   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5311                            DSOLocal) ||
5312       ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5313       ParseType(RetType, RetTypeLoc, true /*void allowed*/))
5314     return true;
5315 
5316   // Verify that the linkage is ok.
5317   switch ((GlobalValue::LinkageTypes)Linkage) {
5318   case GlobalValue::ExternalLinkage:
5319     break; // always ok.
5320   case GlobalValue::ExternalWeakLinkage:
5321     if (isDefine)
5322       return Error(LinkageLoc, "invalid linkage for function definition");
5323     break;
5324   case GlobalValue::PrivateLinkage:
5325   case GlobalValue::InternalLinkage:
5326   case GlobalValue::AvailableExternallyLinkage:
5327   case GlobalValue::LinkOnceAnyLinkage:
5328   case GlobalValue::LinkOnceODRLinkage:
5329   case GlobalValue::WeakAnyLinkage:
5330   case GlobalValue::WeakODRLinkage:
5331     if (!isDefine)
5332       return Error(LinkageLoc, "invalid linkage for function declaration");
5333     break;
5334   case GlobalValue::AppendingLinkage:
5335   case GlobalValue::CommonLinkage:
5336     return Error(LinkageLoc, "invalid function linkage type");
5337   }
5338 
5339   if (!isValidVisibilityForLinkage(Visibility, Linkage))
5340     return Error(LinkageLoc,
5341                  "symbol with local linkage must have default visibility");
5342 
5343   if (!FunctionType::isValidReturnType(RetType))
5344     return Error(RetTypeLoc, "invalid function return type");
5345 
5346   LocTy NameLoc = Lex.getLoc();
5347 
5348   std::string FunctionName;
5349   if (Lex.getKind() == lltok::GlobalVar) {
5350     FunctionName = Lex.getStrVal();
5351   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
5352     unsigned NameID = Lex.getUIntVal();
5353 
5354     if (NameID != NumberedVals.size())
5355       return TokError("function expected to be numbered '%" +
5356                       Twine(NumberedVals.size()) + "'");
5357   } else {
5358     return TokError("expected function name");
5359   }
5360 
5361   Lex.Lex();
5362 
5363   if (Lex.getKind() != lltok::lparen)
5364     return TokError("expected '(' in function argument list");
5365 
5366   SmallVector<ArgInfo, 8> ArgList;
5367   bool isVarArg;
5368   AttrBuilder FuncAttrs;
5369   std::vector<unsigned> FwdRefAttrGrps;
5370   LocTy BuiltinLoc;
5371   std::string Section;
5372   std::string Partition;
5373   unsigned Alignment;
5374   std::string GC;
5375   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
5376   unsigned AddrSpace = 0;
5377   Constant *Prefix = nullptr;
5378   Constant *Prologue = nullptr;
5379   Constant *PersonalityFn = nullptr;
5380   Comdat *C;
5381 
5382   if (ParseArgumentList(ArgList, isVarArg) ||
5383       ParseOptionalUnnamedAddr(UnnamedAddr) ||
5384       ParseOptionalProgramAddrSpace(AddrSpace) ||
5385       ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5386                                  BuiltinLoc) ||
5387       (EatIfPresent(lltok::kw_section) &&
5388        ParseStringConstant(Section)) ||
5389       (EatIfPresent(lltok::kw_partition) &&
5390        ParseStringConstant(Partition)) ||
5391       parseOptionalComdat(FunctionName, C) ||
5392       ParseOptionalAlignment(Alignment) ||
5393       (EatIfPresent(lltok::kw_gc) &&
5394        ParseStringConstant(GC)) ||
5395       (EatIfPresent(lltok::kw_prefix) &&
5396        ParseGlobalTypeAndValue(Prefix)) ||
5397       (EatIfPresent(lltok::kw_prologue) &&
5398        ParseGlobalTypeAndValue(Prologue)) ||
5399       (EatIfPresent(lltok::kw_personality) &&
5400        ParseGlobalTypeAndValue(PersonalityFn)))
5401     return true;
5402 
5403   if (FuncAttrs.contains(Attribute::Builtin))
5404     return Error(BuiltinLoc, "'builtin' attribute not valid on function");
5405 
5406   // If the alignment was parsed as an attribute, move to the alignment field.
5407   if (FuncAttrs.hasAlignmentAttr()) {
5408     Alignment = FuncAttrs.getAlignment();
5409     FuncAttrs.removeAttribute(Attribute::Alignment);
5410   }
5411 
5412   // Okay, if we got here, the function is syntactically valid.  Convert types
5413   // and do semantic checks.
5414   std::vector<Type*> ParamTypeList;
5415   SmallVector<AttributeSet, 8> Attrs;
5416 
5417   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5418     ParamTypeList.push_back(ArgList[i].Ty);
5419     Attrs.push_back(ArgList[i].Attrs);
5420   }
5421 
5422   AttributeList PAL =
5423       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5424                          AttributeSet::get(Context, RetAttrs), Attrs);
5425 
5426   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
5427     return Error(RetTypeLoc, "functions with 'sret' argument must return void");
5428 
5429   FunctionType *FT =
5430     FunctionType::get(RetType, ParamTypeList, isVarArg);
5431   PointerType *PFT = PointerType::get(FT, AddrSpace);
5432 
5433   Fn = nullptr;
5434   if (!FunctionName.empty()) {
5435     // If this was a definition of a forward reference, remove the definition
5436     // from the forward reference table and fill in the forward ref.
5437     auto FRVI = ForwardRefVals.find(FunctionName);
5438     if (FRVI != ForwardRefVals.end()) {
5439       Fn = M->getFunction(FunctionName);
5440       if (!Fn)
5441         return Error(FRVI->second.second, "invalid forward reference to "
5442                      "function as global value!");
5443       if (Fn->getType() != PFT)
5444         return Error(FRVI->second.second, "invalid forward reference to "
5445                      "function '" + FunctionName + "' with wrong type: "
5446                      "expected '" + getTypeString(PFT) + "' but was '" +
5447                      getTypeString(Fn->getType()) + "'");
5448       ForwardRefVals.erase(FRVI);
5449     } else if ((Fn = M->getFunction(FunctionName))) {
5450       // Reject redefinitions.
5451       return Error(NameLoc, "invalid redefinition of function '" +
5452                    FunctionName + "'");
5453     } else if (M->getNamedValue(FunctionName)) {
5454       return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5455     }
5456 
5457   } else {
5458     // If this is a definition of a forward referenced function, make sure the
5459     // types agree.
5460     auto I = ForwardRefValIDs.find(NumberedVals.size());
5461     if (I != ForwardRefValIDs.end()) {
5462       Fn = cast<Function>(I->second.first);
5463       if (Fn->getType() != PFT)
5464         return Error(NameLoc, "type of definition and forward reference of '@" +
5465                      Twine(NumberedVals.size()) + "' disagree: "
5466                      "expected '" + getTypeString(PFT) + "' but was '" +
5467                      getTypeString(Fn->getType()) + "'");
5468       ForwardRefValIDs.erase(I);
5469     }
5470   }
5471 
5472   if (!Fn)
5473     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
5474                           FunctionName, M);
5475   else // Move the forward-reference to the correct spot in the module.
5476     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
5477 
5478   assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
5479 
5480   if (FunctionName.empty())
5481     NumberedVals.push_back(Fn);
5482 
5483   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5484   maybeSetDSOLocal(DSOLocal, *Fn);
5485   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5486   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5487   Fn->setCallingConv(CC);
5488   Fn->setAttributes(PAL);
5489   Fn->setUnnamedAddr(UnnamedAddr);
5490   Fn->setAlignment(MaybeAlign(Alignment));
5491   Fn->setSection(Section);
5492   Fn->setPartition(Partition);
5493   Fn->setComdat(C);
5494   Fn->setPersonalityFn(PersonalityFn);
5495   if (!GC.empty()) Fn->setGC(GC);
5496   Fn->setPrefixData(Prefix);
5497   Fn->setPrologueData(Prologue);
5498   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5499 
5500   // Add all of the arguments we parsed to the function.
5501   Function::arg_iterator ArgIt = Fn->arg_begin();
5502   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5503     // If the argument has a name, insert it into the argument symbol table.
5504     if (ArgList[i].Name.empty()) continue;
5505 
5506     // Set the name, if it conflicted, it will be auto-renamed.
5507     ArgIt->setName(ArgList[i].Name);
5508 
5509     if (ArgIt->getName() != ArgList[i].Name)
5510       return Error(ArgList[i].Loc, "redefinition of argument '%" +
5511                    ArgList[i].Name + "'");
5512   }
5513 
5514   if (isDefine)
5515     return false;
5516 
5517   // Check the declaration has no block address forward references.
5518   ValID ID;
5519   if (FunctionName.empty()) {
5520     ID.Kind = ValID::t_GlobalID;
5521     ID.UIntVal = NumberedVals.size() - 1;
5522   } else {
5523     ID.Kind = ValID::t_GlobalName;
5524     ID.StrVal = FunctionName;
5525   }
5526   auto Blocks = ForwardRefBlockAddresses.find(ID);
5527   if (Blocks != ForwardRefBlockAddresses.end())
5528     return Error(Blocks->first.Loc,
5529                  "cannot take blockaddress inside a declaration");
5530   return false;
5531 }
5532 
5533 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5534   ValID ID;
5535   if (FunctionNumber == -1) {
5536     ID.Kind = ValID::t_GlobalName;
5537     ID.StrVal = F.getName();
5538   } else {
5539     ID.Kind = ValID::t_GlobalID;
5540     ID.UIntVal = FunctionNumber;
5541   }
5542 
5543   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
5544   if (Blocks == P.ForwardRefBlockAddresses.end())
5545     return false;
5546 
5547   for (const auto &I : Blocks->second) {
5548     const ValID &BBID = I.first;
5549     GlobalValue *GV = I.second;
5550 
5551     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
5552            "Expected local id or name");
5553     BasicBlock *BB;
5554     if (BBID.Kind == ValID::t_LocalName)
5555       BB = GetBB(BBID.StrVal, BBID.Loc);
5556     else
5557       BB = GetBB(BBID.UIntVal, BBID.Loc);
5558     if (!BB)
5559       return P.Error(BBID.Loc, "referenced value is not a basic block");
5560 
5561     GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
5562     GV->eraseFromParent();
5563   }
5564 
5565   P.ForwardRefBlockAddresses.erase(Blocks);
5566   return false;
5567 }
5568 
5569 /// ParseFunctionBody
5570 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
5571 bool LLParser::ParseFunctionBody(Function &Fn) {
5572   if (Lex.getKind() != lltok::lbrace)
5573     return TokError("expected '{' in function body");
5574   Lex.Lex();  // eat the {.
5575 
5576   int FunctionNumber = -1;
5577   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
5578 
5579   PerFunctionState PFS(*this, Fn, FunctionNumber);
5580 
5581   // Resolve block addresses and allow basic blocks to be forward-declared
5582   // within this function.
5583   if (PFS.resolveForwardRefBlockAddresses())
5584     return true;
5585   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
5586 
5587   // We need at least one basic block.
5588   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
5589     return TokError("function body requires at least one basic block");
5590 
5591   while (Lex.getKind() != lltok::rbrace &&
5592          Lex.getKind() != lltok::kw_uselistorder)
5593     if (ParseBasicBlock(PFS)) return true;
5594 
5595   while (Lex.getKind() != lltok::rbrace)
5596     if (ParseUseListOrder(&PFS))
5597       return true;
5598 
5599   // Eat the }.
5600   Lex.Lex();
5601 
5602   // Verify function is ok.
5603   return PFS.FinishFunction();
5604 }
5605 
5606 /// ParseBasicBlock
5607 ///   ::= (LabelStr|LabelID)? Instruction*
5608 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
5609   // If this basic block starts out with a name, remember it.
5610   std::string Name;
5611   int NameID = -1;
5612   LocTy NameLoc = Lex.getLoc();
5613   if (Lex.getKind() == lltok::LabelStr) {
5614     Name = Lex.getStrVal();
5615     Lex.Lex();
5616   } else if (Lex.getKind() == lltok::LabelID) {
5617     NameID = Lex.getUIntVal();
5618     Lex.Lex();
5619   }
5620 
5621   BasicBlock *BB = PFS.DefineBB(Name, NameID, NameLoc);
5622   if (!BB)
5623     return true;
5624 
5625   std::string NameStr;
5626 
5627   // Parse the instructions in this block until we get a terminator.
5628   Instruction *Inst;
5629   do {
5630     // This instruction may have three possibilities for a name: a) none
5631     // specified, b) name specified "%foo =", c) number specified: "%4 =".
5632     LocTy NameLoc = Lex.getLoc();
5633     int NameID = -1;
5634     NameStr = "";
5635 
5636     if (Lex.getKind() == lltok::LocalVarID) {
5637       NameID = Lex.getUIntVal();
5638       Lex.Lex();
5639       if (ParseToken(lltok::equal, "expected '=' after instruction id"))
5640         return true;
5641     } else if (Lex.getKind() == lltok::LocalVar) {
5642       NameStr = Lex.getStrVal();
5643       Lex.Lex();
5644       if (ParseToken(lltok::equal, "expected '=' after instruction name"))
5645         return true;
5646     }
5647 
5648     switch (ParseInstruction(Inst, BB, PFS)) {
5649     default: llvm_unreachable("Unknown ParseInstruction result!");
5650     case InstError: return true;
5651     case InstNormal:
5652       BB->getInstList().push_back(Inst);
5653 
5654       // With a normal result, we check to see if the instruction is followed by
5655       // a comma and metadata.
5656       if (EatIfPresent(lltok::comma))
5657         if (ParseInstructionMetadata(*Inst))
5658           return true;
5659       break;
5660     case InstExtraComma:
5661       BB->getInstList().push_back(Inst);
5662 
5663       // If the instruction parser ate an extra comma at the end of it, it
5664       // *must* be followed by metadata.
5665       if (ParseInstructionMetadata(*Inst))
5666         return true;
5667       break;
5668     }
5669 
5670     // Set the name on the instruction.
5671     if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
5672   } while (!Inst->isTerminator());
5673 
5674   return false;
5675 }
5676 
5677 //===----------------------------------------------------------------------===//
5678 // Instruction Parsing.
5679 //===----------------------------------------------------------------------===//
5680 
5681 /// ParseInstruction - Parse one of the many different instructions.
5682 ///
5683 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
5684                                PerFunctionState &PFS) {
5685   lltok::Kind Token = Lex.getKind();
5686   if (Token == lltok::Eof)
5687     return TokError("found end of file when expecting more instructions");
5688   LocTy Loc = Lex.getLoc();
5689   unsigned KeywordVal = Lex.getUIntVal();
5690   Lex.Lex();  // Eat the keyword.
5691 
5692   switch (Token) {
5693   default:                    return Error(Loc, "expected instruction opcode");
5694   // Terminator Instructions.
5695   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
5696   case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
5697   case lltok::kw_br:          return ParseBr(Inst, PFS);
5698   case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
5699   case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
5700   case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
5701   case lltok::kw_resume:      return ParseResume(Inst, PFS);
5702   case lltok::kw_cleanupret:  return ParseCleanupRet(Inst, PFS);
5703   case lltok::kw_catchret:    return ParseCatchRet(Inst, PFS);
5704   case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS);
5705   case lltok::kw_catchpad:    return ParseCatchPad(Inst, PFS);
5706   case lltok::kw_cleanuppad:  return ParseCleanupPad(Inst, PFS);
5707   case lltok::kw_callbr:      return ParseCallBr(Inst, PFS);
5708   // Unary Operators.
5709   case lltok::kw_fneg: {
5710     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5711     int Res = ParseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/true);
5712     if (Res != 0)
5713       return Res;
5714     if (FMF.any())
5715       Inst->setFastMathFlags(FMF);
5716     return false;
5717   }
5718   // Binary Operators.
5719   case lltok::kw_add:
5720   case lltok::kw_sub:
5721   case lltok::kw_mul:
5722   case lltok::kw_shl: {
5723     bool NUW = EatIfPresent(lltok::kw_nuw);
5724     bool NSW = EatIfPresent(lltok::kw_nsw);
5725     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
5726 
5727     if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true;
5728 
5729     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
5730     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
5731     return false;
5732   }
5733   case lltok::kw_fadd:
5734   case lltok::kw_fsub:
5735   case lltok::kw_fmul:
5736   case lltok::kw_fdiv:
5737   case lltok::kw_frem: {
5738     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5739     int Res = ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/true);
5740     if (Res != 0)
5741       return Res;
5742     if (FMF.any())
5743       Inst->setFastMathFlags(FMF);
5744     return 0;
5745   }
5746 
5747   case lltok::kw_sdiv:
5748   case lltok::kw_udiv:
5749   case lltok::kw_lshr:
5750   case lltok::kw_ashr: {
5751     bool Exact = EatIfPresent(lltok::kw_exact);
5752 
5753     if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true;
5754     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
5755     return false;
5756   }
5757 
5758   case lltok::kw_urem:
5759   case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal,
5760                                                 /*IsFP*/false);
5761   case lltok::kw_and:
5762   case lltok::kw_or:
5763   case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
5764   case lltok::kw_icmp:   return ParseCompare(Inst, PFS, KeywordVal);
5765   case lltok::kw_fcmp: {
5766     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5767     int Res = ParseCompare(Inst, PFS, KeywordVal);
5768     if (Res != 0)
5769       return Res;
5770     if (FMF.any())
5771       Inst->setFastMathFlags(FMF);
5772     return 0;
5773   }
5774 
5775   // Casts.
5776   case lltok::kw_trunc:
5777   case lltok::kw_zext:
5778   case lltok::kw_sext:
5779   case lltok::kw_fptrunc:
5780   case lltok::kw_fpext:
5781   case lltok::kw_bitcast:
5782   case lltok::kw_addrspacecast:
5783   case lltok::kw_uitofp:
5784   case lltok::kw_sitofp:
5785   case lltok::kw_fptoui:
5786   case lltok::kw_fptosi:
5787   case lltok::kw_inttoptr:
5788   case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
5789   // Other.
5790   case lltok::kw_select: {
5791     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5792     int Res = ParseSelect(Inst, PFS);
5793     if (Res != 0)
5794       return Res;
5795     if (FMF.any()) {
5796       if (!Inst->getType()->isFPOrFPVectorTy())
5797         return Error(Loc, "fast-math-flags specified for select without "
5798                           "floating-point scalar or vector return type");
5799       Inst->setFastMathFlags(FMF);
5800     }
5801     return 0;
5802   }
5803   case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
5804   case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
5805   case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
5806   case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
5807   case lltok::kw_phi: {
5808     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5809     int Res = ParsePHI(Inst, PFS);
5810     if (Res != 0)
5811       return Res;
5812     if (FMF.any()) {
5813       if (!Inst->getType()->isFPOrFPVectorTy())
5814         return Error(Loc, "fast-math-flags specified for phi without "
5815                           "floating-point scalar or vector return type");
5816       Inst->setFastMathFlags(FMF);
5817     }
5818     return 0;
5819   }
5820   case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
5821   // Call.
5822   case lltok::kw_call:     return ParseCall(Inst, PFS, CallInst::TCK_None);
5823   case lltok::kw_tail:     return ParseCall(Inst, PFS, CallInst::TCK_Tail);
5824   case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail);
5825   case lltok::kw_notail:   return ParseCall(Inst, PFS, CallInst::TCK_NoTail);
5826   // Memory.
5827   case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
5828   case lltok::kw_load:           return ParseLoad(Inst, PFS);
5829   case lltok::kw_store:          return ParseStore(Inst, PFS);
5830   case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
5831   case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
5832   case lltok::kw_fence:          return ParseFence(Inst, PFS);
5833   case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
5834   case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
5835   case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
5836   }
5837 }
5838 
5839 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
5840 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
5841   if (Opc == Instruction::FCmp) {
5842     switch (Lex.getKind()) {
5843     default: return TokError("expected fcmp predicate (e.g. 'oeq')");
5844     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
5845     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
5846     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
5847     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
5848     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
5849     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
5850     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
5851     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
5852     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
5853     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
5854     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
5855     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
5856     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
5857     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
5858     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
5859     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
5860     }
5861   } else {
5862     switch (Lex.getKind()) {
5863     default: return TokError("expected icmp predicate (e.g. 'eq')");
5864     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
5865     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
5866     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
5867     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
5868     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
5869     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
5870     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
5871     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
5872     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
5873     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
5874     }
5875   }
5876   Lex.Lex();
5877   return false;
5878 }
5879 
5880 //===----------------------------------------------------------------------===//
5881 // Terminator Instructions.
5882 //===----------------------------------------------------------------------===//
5883 
5884 /// ParseRet - Parse a return instruction.
5885 ///   ::= 'ret' void (',' !dbg, !1)*
5886 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
5887 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
5888                         PerFunctionState &PFS) {
5889   SMLoc TypeLoc = Lex.getLoc();
5890   Type *Ty = nullptr;
5891   if (ParseType(Ty, true /*void allowed*/)) return true;
5892 
5893   Type *ResType = PFS.getFunction().getReturnType();
5894 
5895   if (Ty->isVoidTy()) {
5896     if (!ResType->isVoidTy())
5897       return Error(TypeLoc, "value doesn't match function result type '" +
5898                    getTypeString(ResType) + "'");
5899 
5900     Inst = ReturnInst::Create(Context);
5901     return false;
5902   }
5903 
5904   Value *RV;
5905   if (ParseValue(Ty, RV, PFS)) return true;
5906 
5907   if (ResType != RV->getType())
5908     return Error(TypeLoc, "value doesn't match function result type '" +
5909                  getTypeString(ResType) + "'");
5910 
5911   Inst = ReturnInst::Create(Context, RV);
5912   return false;
5913 }
5914 
5915 /// ParseBr
5916 ///   ::= 'br' TypeAndValue
5917 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5918 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
5919   LocTy Loc, Loc2;
5920   Value *Op0;
5921   BasicBlock *Op1, *Op2;
5922   if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
5923 
5924   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
5925     Inst = BranchInst::Create(BB);
5926     return false;
5927   }
5928 
5929   if (Op0->getType() != Type::getInt1Ty(Context))
5930     return Error(Loc, "branch condition must have 'i1' type");
5931 
5932   if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
5933       ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
5934       ParseToken(lltok::comma, "expected ',' after true destination") ||
5935       ParseTypeAndBasicBlock(Op2, Loc2, PFS))
5936     return true;
5937 
5938   Inst = BranchInst::Create(Op1, Op2, Op0);
5939   return false;
5940 }
5941 
5942 /// ParseSwitch
5943 ///  Instruction
5944 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
5945 ///  JumpTable
5946 ///    ::= (TypeAndValue ',' TypeAndValue)*
5947 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5948   LocTy CondLoc, BBLoc;
5949   Value *Cond;
5950   BasicBlock *DefaultBB;
5951   if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
5952       ParseToken(lltok::comma, "expected ',' after switch condition") ||
5953       ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
5954       ParseToken(lltok::lsquare, "expected '[' with switch table"))
5955     return true;
5956 
5957   if (!Cond->getType()->isIntegerTy())
5958     return Error(CondLoc, "switch condition must have integer type");
5959 
5960   // Parse the jump table pairs.
5961   SmallPtrSet<Value*, 32> SeenCases;
5962   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
5963   while (Lex.getKind() != lltok::rsquare) {
5964     Value *Constant;
5965     BasicBlock *DestBB;
5966 
5967     if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
5968         ParseToken(lltok::comma, "expected ',' after case value") ||
5969         ParseTypeAndBasicBlock(DestBB, PFS))
5970       return true;
5971 
5972     if (!SeenCases.insert(Constant).second)
5973       return Error(CondLoc, "duplicate case value in switch");
5974     if (!isa<ConstantInt>(Constant))
5975       return Error(CondLoc, "case value is not a constant integer");
5976 
5977     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
5978   }
5979 
5980   Lex.Lex();  // Eat the ']'.
5981 
5982   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
5983   for (unsigned i = 0, e = Table.size(); i != e; ++i)
5984     SI->addCase(Table[i].first, Table[i].second);
5985   Inst = SI;
5986   return false;
5987 }
5988 
5989 /// ParseIndirectBr
5990 ///  Instruction
5991 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
5992 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
5993   LocTy AddrLoc;
5994   Value *Address;
5995   if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
5996       ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
5997       ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
5998     return true;
5999 
6000   if (!Address->getType()->isPointerTy())
6001     return Error(AddrLoc, "indirectbr address must have pointer type");
6002 
6003   // Parse the destination list.
6004   SmallVector<BasicBlock*, 16> DestList;
6005 
6006   if (Lex.getKind() != lltok::rsquare) {
6007     BasicBlock *DestBB;
6008     if (ParseTypeAndBasicBlock(DestBB, PFS))
6009       return true;
6010     DestList.push_back(DestBB);
6011 
6012     while (EatIfPresent(lltok::comma)) {
6013       if (ParseTypeAndBasicBlock(DestBB, PFS))
6014         return true;
6015       DestList.push_back(DestBB);
6016     }
6017   }
6018 
6019   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
6020     return true;
6021 
6022   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
6023   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
6024     IBI->addDestination(DestList[i]);
6025   Inst = IBI;
6026   return false;
6027 }
6028 
6029 /// ParseInvoke
6030 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
6031 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
6032 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
6033   LocTy CallLoc = Lex.getLoc();
6034   AttrBuilder RetAttrs, FnAttrs;
6035   std::vector<unsigned> FwdRefAttrGrps;
6036   LocTy NoBuiltinLoc;
6037   unsigned CC;
6038   unsigned InvokeAddrSpace;
6039   Type *RetType = nullptr;
6040   LocTy RetTypeLoc;
6041   ValID CalleeID;
6042   SmallVector<ParamInfo, 16> ArgList;
6043   SmallVector<OperandBundleDef, 2> BundleList;
6044 
6045   BasicBlock *NormalBB, *UnwindBB;
6046   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6047       ParseOptionalProgramAddrSpace(InvokeAddrSpace) ||
6048       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6049       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
6050       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6051                                  NoBuiltinLoc) ||
6052       ParseOptionalOperandBundles(BundleList, PFS) ||
6053       ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
6054       ParseTypeAndBasicBlock(NormalBB, PFS) ||
6055       ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
6056       ParseTypeAndBasicBlock(UnwindBB, PFS))
6057     return true;
6058 
6059   // If RetType is a non-function pointer type, then this is the short syntax
6060   // for the call, which means that RetType is just the return type.  Infer the
6061   // rest of the function argument types from the arguments that are present.
6062   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6063   if (!Ty) {
6064     // Pull out the types of all of the arguments...
6065     std::vector<Type*> ParamTypes;
6066     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6067       ParamTypes.push_back(ArgList[i].V->getType());
6068 
6069     if (!FunctionType::isValidReturnType(RetType))
6070       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6071 
6072     Ty = FunctionType::get(RetType, ParamTypes, false);
6073   }
6074 
6075   CalleeID.FTy = Ty;
6076 
6077   // Look up the callee.
6078   Value *Callee;
6079   if (ConvertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
6080                           Callee, &PFS, /*IsCall=*/true))
6081     return true;
6082 
6083   // Set up the Attribute for the function.
6084   SmallVector<Value *, 8> Args;
6085   SmallVector<AttributeSet, 8> ArgAttrs;
6086 
6087   // Loop through FunctionType's arguments and ensure they are specified
6088   // correctly.  Also, gather any parameter attributes.
6089   FunctionType::param_iterator I = Ty->param_begin();
6090   FunctionType::param_iterator E = Ty->param_end();
6091   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6092     Type *ExpectedTy = nullptr;
6093     if (I != E) {
6094       ExpectedTy = *I++;
6095     } else if (!Ty->isVarArg()) {
6096       return Error(ArgList[i].Loc, "too many arguments specified");
6097     }
6098 
6099     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6100       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6101                    getTypeString(ExpectedTy) + "'");
6102     Args.push_back(ArgList[i].V);
6103     ArgAttrs.push_back(ArgList[i].Attrs);
6104   }
6105 
6106   if (I != E)
6107     return Error(CallLoc, "not enough parameters specified for call");
6108 
6109   if (FnAttrs.hasAlignmentAttr())
6110     return Error(CallLoc, "invoke instructions may not have an alignment");
6111 
6112   // Finish off the Attribute and check them
6113   AttributeList PAL =
6114       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6115                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6116 
6117   InvokeInst *II =
6118       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
6119   II->setCallingConv(CC);
6120   II->setAttributes(PAL);
6121   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
6122   Inst = II;
6123   return false;
6124 }
6125 
6126 /// ParseResume
6127 ///   ::= 'resume' TypeAndValue
6128 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
6129   Value *Exn; LocTy ExnLoc;
6130   if (ParseTypeAndValue(Exn, ExnLoc, PFS))
6131     return true;
6132 
6133   ResumeInst *RI = ResumeInst::Create(Exn);
6134   Inst = RI;
6135   return false;
6136 }
6137 
6138 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args,
6139                                   PerFunctionState &PFS) {
6140   if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
6141     return true;
6142 
6143   while (Lex.getKind() != lltok::rsquare) {
6144     // If this isn't the first argument, we need a comma.
6145     if (!Args.empty() &&
6146         ParseToken(lltok::comma, "expected ',' in argument list"))
6147       return true;
6148 
6149     // Parse the argument.
6150     LocTy ArgLoc;
6151     Type *ArgTy = nullptr;
6152     if (ParseType(ArgTy, ArgLoc))
6153       return true;
6154 
6155     Value *V;
6156     if (ArgTy->isMetadataTy()) {
6157       if (ParseMetadataAsValue(V, PFS))
6158         return true;
6159     } else {
6160       if (ParseValue(ArgTy, V, PFS))
6161         return true;
6162     }
6163     Args.push_back(V);
6164   }
6165 
6166   Lex.Lex();  // Lex the ']'.
6167   return false;
6168 }
6169 
6170 /// ParseCleanupRet
6171 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
6172 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
6173   Value *CleanupPad = nullptr;
6174 
6175   if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret"))
6176     return true;
6177 
6178   if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS))
6179     return true;
6180 
6181   if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
6182     return true;
6183 
6184   BasicBlock *UnwindBB = nullptr;
6185   if (Lex.getKind() == lltok::kw_to) {
6186     Lex.Lex();
6187     if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
6188       return true;
6189   } else {
6190     if (ParseTypeAndBasicBlock(UnwindBB, PFS)) {
6191       return true;
6192     }
6193   }
6194 
6195   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
6196   return false;
6197 }
6198 
6199 /// ParseCatchRet
6200 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
6201 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
6202   Value *CatchPad = nullptr;
6203 
6204   if (ParseToken(lltok::kw_from, "expected 'from' after catchret"))
6205     return true;
6206 
6207   if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS))
6208     return true;
6209 
6210   BasicBlock *BB;
6211   if (ParseToken(lltok::kw_to, "expected 'to' in catchret") ||
6212       ParseTypeAndBasicBlock(BB, PFS))
6213       return true;
6214 
6215   Inst = CatchReturnInst::Create(CatchPad, BB);
6216   return false;
6217 }
6218 
6219 /// ParseCatchSwitch
6220 ///   ::= 'catchswitch' within Parent
6221 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6222   Value *ParentPad;
6223 
6224   if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch"))
6225     return true;
6226 
6227   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6228       Lex.getKind() != lltok::LocalVarID)
6229     return TokError("expected scope value for catchswitch");
6230 
6231   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
6232     return true;
6233 
6234   if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
6235     return true;
6236 
6237   SmallVector<BasicBlock *, 32> Table;
6238   do {
6239     BasicBlock *DestBB;
6240     if (ParseTypeAndBasicBlock(DestBB, PFS))
6241       return true;
6242     Table.push_back(DestBB);
6243   } while (EatIfPresent(lltok::comma));
6244 
6245   if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
6246     return true;
6247 
6248   if (ParseToken(lltok::kw_unwind,
6249                  "expected 'unwind' after catchswitch scope"))
6250     return true;
6251 
6252   BasicBlock *UnwindBB = nullptr;
6253   if (EatIfPresent(lltok::kw_to)) {
6254     if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
6255       return true;
6256   } else {
6257     if (ParseTypeAndBasicBlock(UnwindBB, PFS))
6258       return true;
6259   }
6260 
6261   auto *CatchSwitch =
6262       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
6263   for (BasicBlock *DestBB : Table)
6264     CatchSwitch->addHandler(DestBB);
6265   Inst = CatchSwitch;
6266   return false;
6267 }
6268 
6269 /// ParseCatchPad
6270 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
6271 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
6272   Value *CatchSwitch = nullptr;
6273 
6274   if (ParseToken(lltok::kw_within, "expected 'within' after catchpad"))
6275     return true;
6276 
6277   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
6278     return TokError("expected scope value for catchpad");
6279 
6280   if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
6281     return true;
6282 
6283   SmallVector<Value *, 8> Args;
6284   if (ParseExceptionArgs(Args, PFS))
6285     return true;
6286 
6287   Inst = CatchPadInst::Create(CatchSwitch, Args);
6288   return false;
6289 }
6290 
6291 /// ParseCleanupPad
6292 ///   ::= 'cleanuppad' within Parent ParamList
6293 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
6294   Value *ParentPad = nullptr;
6295 
6296   if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
6297     return true;
6298 
6299   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6300       Lex.getKind() != lltok::LocalVarID)
6301     return TokError("expected scope value for cleanuppad");
6302 
6303   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
6304     return true;
6305 
6306   SmallVector<Value *, 8> Args;
6307   if (ParseExceptionArgs(Args, PFS))
6308     return true;
6309 
6310   Inst = CleanupPadInst::Create(ParentPad, Args);
6311   return false;
6312 }
6313 
6314 //===----------------------------------------------------------------------===//
6315 // Unary Operators.
6316 //===----------------------------------------------------------------------===//
6317 
6318 /// ParseUnaryOp
6319 ///  ::= UnaryOp TypeAndValue ',' Value
6320 ///
6321 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6322 /// operand is allowed.
6323 bool LLParser::ParseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
6324                             unsigned Opc, bool IsFP) {
6325   LocTy Loc; Value *LHS;
6326   if (ParseTypeAndValue(LHS, Loc, PFS))
6327     return true;
6328 
6329   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6330                     : LHS->getType()->isIntOrIntVectorTy();
6331 
6332   if (!Valid)
6333     return Error(Loc, "invalid operand type for instruction");
6334 
6335   Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
6336   return false;
6337 }
6338 
6339 /// ParseCallBr
6340 ///   ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
6341 ///       OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
6342 ///       '[' LabelList ']'
6343 bool LLParser::ParseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
6344   LocTy CallLoc = Lex.getLoc();
6345   AttrBuilder RetAttrs, FnAttrs;
6346   std::vector<unsigned> FwdRefAttrGrps;
6347   LocTy NoBuiltinLoc;
6348   unsigned CC;
6349   Type *RetType = nullptr;
6350   LocTy RetTypeLoc;
6351   ValID CalleeID;
6352   SmallVector<ParamInfo, 16> ArgList;
6353   SmallVector<OperandBundleDef, 2> BundleList;
6354 
6355   BasicBlock *DefaultDest;
6356   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6357       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6358       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
6359       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6360                                  NoBuiltinLoc) ||
6361       ParseOptionalOperandBundles(BundleList, PFS) ||
6362       ParseToken(lltok::kw_to, "expected 'to' in callbr") ||
6363       ParseTypeAndBasicBlock(DefaultDest, PFS) ||
6364       ParseToken(lltok::lsquare, "expected '[' in callbr"))
6365     return true;
6366 
6367   // Parse the destination list.
6368   SmallVector<BasicBlock *, 16> IndirectDests;
6369 
6370   if (Lex.getKind() != lltok::rsquare) {
6371     BasicBlock *DestBB;
6372     if (ParseTypeAndBasicBlock(DestBB, PFS))
6373       return true;
6374     IndirectDests.push_back(DestBB);
6375 
6376     while (EatIfPresent(lltok::comma)) {
6377       if (ParseTypeAndBasicBlock(DestBB, PFS))
6378         return true;
6379       IndirectDests.push_back(DestBB);
6380     }
6381   }
6382 
6383   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
6384     return true;
6385 
6386   // If RetType is a non-function pointer type, then this is the short syntax
6387   // for the call, which means that RetType is just the return type.  Infer the
6388   // rest of the function argument types from the arguments that are present.
6389   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6390   if (!Ty) {
6391     // Pull out the types of all of the arguments...
6392     std::vector<Type *> ParamTypes;
6393     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6394       ParamTypes.push_back(ArgList[i].V->getType());
6395 
6396     if (!FunctionType::isValidReturnType(RetType))
6397       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6398 
6399     Ty = FunctionType::get(RetType, ParamTypes, false);
6400   }
6401 
6402   CalleeID.FTy = Ty;
6403 
6404   // Look up the callee.
6405   Value *Callee;
6406   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS,
6407                           /*IsCall=*/true))
6408     return true;
6409 
6410   if (isa<InlineAsm>(Callee) && !Ty->getReturnType()->isVoidTy())
6411     return Error(RetTypeLoc, "asm-goto outputs not supported");
6412 
6413   // Set up the Attribute for the function.
6414   SmallVector<Value *, 8> Args;
6415   SmallVector<AttributeSet, 8> ArgAttrs;
6416 
6417   // Loop through FunctionType's arguments and ensure they are specified
6418   // correctly.  Also, gather any parameter attributes.
6419   FunctionType::param_iterator I = Ty->param_begin();
6420   FunctionType::param_iterator E = Ty->param_end();
6421   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6422     Type *ExpectedTy = nullptr;
6423     if (I != E) {
6424       ExpectedTy = *I++;
6425     } else if (!Ty->isVarArg()) {
6426       return Error(ArgList[i].Loc, "too many arguments specified");
6427     }
6428 
6429     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6430       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6431                                        getTypeString(ExpectedTy) + "'");
6432     Args.push_back(ArgList[i].V);
6433     ArgAttrs.push_back(ArgList[i].Attrs);
6434   }
6435 
6436   if (I != E)
6437     return Error(CallLoc, "not enough parameters specified for call");
6438 
6439   if (FnAttrs.hasAlignmentAttr())
6440     return Error(CallLoc, "callbr instructions may not have an alignment");
6441 
6442   // Finish off the Attribute and check them
6443   AttributeList PAL =
6444       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6445                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6446 
6447   CallBrInst *CBI =
6448       CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
6449                          BundleList);
6450   CBI->setCallingConv(CC);
6451   CBI->setAttributes(PAL);
6452   ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
6453   Inst = CBI;
6454   return false;
6455 }
6456 
6457 //===----------------------------------------------------------------------===//
6458 // Binary Operators.
6459 //===----------------------------------------------------------------------===//
6460 
6461 /// ParseArithmetic
6462 ///  ::= ArithmeticOps TypeAndValue ',' Value
6463 ///
6464 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6465 /// operand is allowed.
6466 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
6467                                unsigned Opc, bool IsFP) {
6468   LocTy Loc; Value *LHS, *RHS;
6469   if (ParseTypeAndValue(LHS, Loc, PFS) ||
6470       ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
6471       ParseValue(LHS->getType(), RHS, PFS))
6472     return true;
6473 
6474   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6475                     : LHS->getType()->isIntOrIntVectorTy();
6476 
6477   if (!Valid)
6478     return Error(Loc, "invalid operand type for instruction");
6479 
6480   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6481   return false;
6482 }
6483 
6484 /// ParseLogical
6485 ///  ::= ArithmeticOps TypeAndValue ',' Value {
6486 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
6487                             unsigned Opc) {
6488   LocTy Loc; Value *LHS, *RHS;
6489   if (ParseTypeAndValue(LHS, Loc, PFS) ||
6490       ParseToken(lltok::comma, "expected ',' in logical operation") ||
6491       ParseValue(LHS->getType(), RHS, PFS))
6492     return true;
6493 
6494   if (!LHS->getType()->isIntOrIntVectorTy())
6495     return Error(Loc,"instruction requires integer or integer vector operands");
6496 
6497   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6498   return false;
6499 }
6500 
6501 /// ParseCompare
6502 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
6503 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
6504 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
6505                             unsigned Opc) {
6506   // Parse the integer/fp comparison predicate.
6507   LocTy Loc;
6508   unsigned Pred;
6509   Value *LHS, *RHS;
6510   if (ParseCmpPredicate(Pred, Opc) ||
6511       ParseTypeAndValue(LHS, Loc, PFS) ||
6512       ParseToken(lltok::comma, "expected ',' after compare value") ||
6513       ParseValue(LHS->getType(), RHS, PFS))
6514     return true;
6515 
6516   if (Opc == Instruction::FCmp) {
6517     if (!LHS->getType()->isFPOrFPVectorTy())
6518       return Error(Loc, "fcmp requires floating point operands");
6519     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6520   } else {
6521     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
6522     if (!LHS->getType()->isIntOrIntVectorTy() &&
6523         !LHS->getType()->isPtrOrPtrVectorTy())
6524       return Error(Loc, "icmp requires integer operands");
6525     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6526   }
6527   return false;
6528 }
6529 
6530 //===----------------------------------------------------------------------===//
6531 // Other Instructions.
6532 //===----------------------------------------------------------------------===//
6533 
6534 
6535 /// ParseCast
6536 ///   ::= CastOpc TypeAndValue 'to' Type
6537 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
6538                          unsigned Opc) {
6539   LocTy Loc;
6540   Value *Op;
6541   Type *DestTy = nullptr;
6542   if (ParseTypeAndValue(Op, Loc, PFS) ||
6543       ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
6544       ParseType(DestTy))
6545     return true;
6546 
6547   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
6548     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
6549     return Error(Loc, "invalid cast opcode for cast from '" +
6550                  getTypeString(Op->getType()) + "' to '" +
6551                  getTypeString(DestTy) + "'");
6552   }
6553   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
6554   return false;
6555 }
6556 
6557 /// ParseSelect
6558 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6559 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
6560   LocTy Loc;
6561   Value *Op0, *Op1, *Op2;
6562   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6563       ParseToken(lltok::comma, "expected ',' after select condition") ||
6564       ParseTypeAndValue(Op1, PFS) ||
6565       ParseToken(lltok::comma, "expected ',' after select value") ||
6566       ParseTypeAndValue(Op2, PFS))
6567     return true;
6568 
6569   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
6570     return Error(Loc, Reason);
6571 
6572   Inst = SelectInst::Create(Op0, Op1, Op2);
6573   return false;
6574 }
6575 
6576 /// ParseVA_Arg
6577 ///   ::= 'va_arg' TypeAndValue ',' Type
6578 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
6579   Value *Op;
6580   Type *EltTy = nullptr;
6581   LocTy TypeLoc;
6582   if (ParseTypeAndValue(Op, PFS) ||
6583       ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
6584       ParseType(EltTy, TypeLoc))
6585     return true;
6586 
6587   if (!EltTy->isFirstClassType())
6588     return Error(TypeLoc, "va_arg requires operand with first class type");
6589 
6590   Inst = new VAArgInst(Op, EltTy);
6591   return false;
6592 }
6593 
6594 /// ParseExtractElement
6595 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
6596 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
6597   LocTy Loc;
6598   Value *Op0, *Op1;
6599   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6600       ParseToken(lltok::comma, "expected ',' after extract value") ||
6601       ParseTypeAndValue(Op1, PFS))
6602     return true;
6603 
6604   if (!ExtractElementInst::isValidOperands(Op0, Op1))
6605     return Error(Loc, "invalid extractelement operands");
6606 
6607   Inst = ExtractElementInst::Create(Op0, Op1);
6608   return false;
6609 }
6610 
6611 /// ParseInsertElement
6612 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6613 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
6614   LocTy Loc;
6615   Value *Op0, *Op1, *Op2;
6616   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6617       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6618       ParseTypeAndValue(Op1, PFS) ||
6619       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6620       ParseTypeAndValue(Op2, PFS))
6621     return true;
6622 
6623   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
6624     return Error(Loc, "invalid insertelement operands");
6625 
6626   Inst = InsertElementInst::Create(Op0, Op1, Op2);
6627   return false;
6628 }
6629 
6630 /// ParseShuffleVector
6631 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6632 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
6633   LocTy Loc;
6634   Value *Op0, *Op1, *Op2;
6635   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6636       ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
6637       ParseTypeAndValue(Op1, PFS) ||
6638       ParseToken(lltok::comma, "expected ',' after shuffle value") ||
6639       ParseTypeAndValue(Op2, PFS))
6640     return true;
6641 
6642   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
6643     return Error(Loc, "invalid shufflevector operands");
6644 
6645   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
6646   return false;
6647 }
6648 
6649 /// ParsePHI
6650 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
6651 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
6652   Type *Ty = nullptr;  LocTy TypeLoc;
6653   Value *Op0, *Op1;
6654 
6655   if (ParseType(Ty, TypeLoc) ||
6656       ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6657       ParseValue(Ty, Op0, PFS) ||
6658       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6659       ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6660       ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6661     return true;
6662 
6663   bool AteExtraComma = false;
6664   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
6665 
6666   while (true) {
6667     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
6668 
6669     if (!EatIfPresent(lltok::comma))
6670       break;
6671 
6672     if (Lex.getKind() == lltok::MetadataVar) {
6673       AteExtraComma = true;
6674       break;
6675     }
6676 
6677     if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6678         ParseValue(Ty, Op0, PFS) ||
6679         ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6680         ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6681         ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6682       return true;
6683   }
6684 
6685   if (!Ty->isFirstClassType())
6686     return Error(TypeLoc, "phi node must have first class type");
6687 
6688   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
6689   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
6690     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
6691   Inst = PN;
6692   return AteExtraComma ? InstExtraComma : InstNormal;
6693 }
6694 
6695 /// ParseLandingPad
6696 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
6697 /// Clause
6698 ///   ::= 'catch' TypeAndValue
6699 ///   ::= 'filter'
6700 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
6701 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
6702   Type *Ty = nullptr; LocTy TyLoc;
6703 
6704   if (ParseType(Ty, TyLoc))
6705     return true;
6706 
6707   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
6708   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
6709 
6710   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
6711     LandingPadInst::ClauseType CT;
6712     if (EatIfPresent(lltok::kw_catch))
6713       CT = LandingPadInst::Catch;
6714     else if (EatIfPresent(lltok::kw_filter))
6715       CT = LandingPadInst::Filter;
6716     else
6717       return TokError("expected 'catch' or 'filter' clause type");
6718 
6719     Value *V;
6720     LocTy VLoc;
6721     if (ParseTypeAndValue(V, VLoc, PFS))
6722       return true;
6723 
6724     // A 'catch' type expects a non-array constant. A filter clause expects an
6725     // array constant.
6726     if (CT == LandingPadInst::Catch) {
6727       if (isa<ArrayType>(V->getType()))
6728         Error(VLoc, "'catch' clause has an invalid type");
6729     } else {
6730       if (!isa<ArrayType>(V->getType()))
6731         Error(VLoc, "'filter' clause has an invalid type");
6732     }
6733 
6734     Constant *CV = dyn_cast<Constant>(V);
6735     if (!CV)
6736       return Error(VLoc, "clause argument must be a constant");
6737     LP->addClause(CV);
6738   }
6739 
6740   Inst = LP.release();
6741   return false;
6742 }
6743 
6744 /// ParseCall
6745 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
6746 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6747 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
6748 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6749 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
6750 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6751 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
6752 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6753 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
6754                          CallInst::TailCallKind TCK) {
6755   AttrBuilder RetAttrs, FnAttrs;
6756   std::vector<unsigned> FwdRefAttrGrps;
6757   LocTy BuiltinLoc;
6758   unsigned CallAddrSpace;
6759   unsigned CC;
6760   Type *RetType = nullptr;
6761   LocTy RetTypeLoc;
6762   ValID CalleeID;
6763   SmallVector<ParamInfo, 16> ArgList;
6764   SmallVector<OperandBundleDef, 2> BundleList;
6765   LocTy CallLoc = Lex.getLoc();
6766 
6767   if (TCK != CallInst::TCK_None &&
6768       ParseToken(lltok::kw_call,
6769                  "expected 'tail call', 'musttail call', or 'notail call'"))
6770     return true;
6771 
6772   FastMathFlags FMF = EatFastMathFlagsIfPresent();
6773 
6774   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6775       ParseOptionalProgramAddrSpace(CallAddrSpace) ||
6776       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6777       ParseValID(CalleeID) ||
6778       ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
6779                          PFS.getFunction().isVarArg()) ||
6780       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
6781       ParseOptionalOperandBundles(BundleList, PFS))
6782     return true;
6783 
6784   if (FMF.any() && !RetType->isFPOrFPVectorTy())
6785     return Error(CallLoc, "fast-math-flags specified for call without "
6786                           "floating-point scalar or vector return type");
6787 
6788   // If RetType is a non-function pointer type, then this is the short syntax
6789   // for the call, which means that RetType is just the return type.  Infer the
6790   // rest of the function argument types from the arguments that are present.
6791   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6792   if (!Ty) {
6793     // Pull out the types of all of the arguments...
6794     std::vector<Type*> ParamTypes;
6795     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6796       ParamTypes.push_back(ArgList[i].V->getType());
6797 
6798     if (!FunctionType::isValidReturnType(RetType))
6799       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6800 
6801     Ty = FunctionType::get(RetType, ParamTypes, false);
6802   }
6803 
6804   CalleeID.FTy = Ty;
6805 
6806   // Look up the callee.
6807   Value *Callee;
6808   if (ConvertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
6809                           &PFS, /*IsCall=*/true))
6810     return true;
6811 
6812   // Set up the Attribute for the function.
6813   SmallVector<AttributeSet, 8> Attrs;
6814 
6815   SmallVector<Value*, 8> Args;
6816 
6817   // Loop through FunctionType's arguments and ensure they are specified
6818   // correctly.  Also, gather any parameter attributes.
6819   FunctionType::param_iterator I = Ty->param_begin();
6820   FunctionType::param_iterator E = Ty->param_end();
6821   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6822     Type *ExpectedTy = nullptr;
6823     if (I != E) {
6824       ExpectedTy = *I++;
6825     } else if (!Ty->isVarArg()) {
6826       return Error(ArgList[i].Loc, "too many arguments specified");
6827     }
6828 
6829     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6830       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6831                    getTypeString(ExpectedTy) + "'");
6832     Args.push_back(ArgList[i].V);
6833     Attrs.push_back(ArgList[i].Attrs);
6834   }
6835 
6836   if (I != E)
6837     return Error(CallLoc, "not enough parameters specified for call");
6838 
6839   if (FnAttrs.hasAlignmentAttr())
6840     return Error(CallLoc, "call instructions may not have an alignment");
6841 
6842   // Finish off the Attribute and check them
6843   AttributeList PAL =
6844       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6845                          AttributeSet::get(Context, RetAttrs), Attrs);
6846 
6847   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
6848   CI->setTailCallKind(TCK);
6849   CI->setCallingConv(CC);
6850   if (FMF.any())
6851     CI->setFastMathFlags(FMF);
6852   CI->setAttributes(PAL);
6853   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
6854   Inst = CI;
6855   return false;
6856 }
6857 
6858 //===----------------------------------------------------------------------===//
6859 // Memory Instructions.
6860 //===----------------------------------------------------------------------===//
6861 
6862 /// ParseAlloc
6863 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
6864 ///       (',' 'align' i32)? (',', 'addrspace(n))?
6865 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
6866   Value *Size = nullptr;
6867   LocTy SizeLoc, TyLoc, ASLoc;
6868   unsigned Alignment = 0;
6869   unsigned AddrSpace = 0;
6870   Type *Ty = nullptr;
6871 
6872   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
6873   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
6874 
6875   if (ParseType(Ty, TyLoc)) return true;
6876 
6877   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
6878     return Error(TyLoc, "invalid type for alloca");
6879 
6880   bool AteExtraComma = false;
6881   if (EatIfPresent(lltok::comma)) {
6882     if (Lex.getKind() == lltok::kw_align) {
6883       if (ParseOptionalAlignment(Alignment))
6884         return true;
6885       if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6886         return true;
6887     } else if (Lex.getKind() == lltok::kw_addrspace) {
6888       ASLoc = Lex.getLoc();
6889       if (ParseOptionalAddrSpace(AddrSpace))
6890         return true;
6891     } else if (Lex.getKind() == lltok::MetadataVar) {
6892       AteExtraComma = true;
6893     } else {
6894       if (ParseTypeAndValue(Size, SizeLoc, PFS))
6895         return true;
6896       if (EatIfPresent(lltok::comma)) {
6897         if (Lex.getKind() == lltok::kw_align) {
6898           if (ParseOptionalAlignment(Alignment))
6899             return true;
6900           if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6901             return true;
6902         } else if (Lex.getKind() == lltok::kw_addrspace) {
6903           ASLoc = Lex.getLoc();
6904           if (ParseOptionalAddrSpace(AddrSpace))
6905             return true;
6906         } else if (Lex.getKind() == lltok::MetadataVar) {
6907           AteExtraComma = true;
6908         }
6909       }
6910     }
6911   }
6912 
6913   if (Size && !Size->getType()->isIntegerTy())
6914     return Error(SizeLoc, "element count must have integer type");
6915 
6916   AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, Alignment);
6917   AI->setUsedWithInAlloca(IsInAlloca);
6918   AI->setSwiftError(IsSwiftError);
6919   Inst = AI;
6920   return AteExtraComma ? InstExtraComma : InstNormal;
6921 }
6922 
6923 /// ParseLoad
6924 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
6925 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
6926 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
6927 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
6928   Value *Val; LocTy Loc;
6929   unsigned Alignment = 0;
6930   bool AteExtraComma = false;
6931   bool isAtomic = false;
6932   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6933   SyncScope::ID SSID = SyncScope::System;
6934 
6935   if (Lex.getKind() == lltok::kw_atomic) {
6936     isAtomic = true;
6937     Lex.Lex();
6938   }
6939 
6940   bool isVolatile = false;
6941   if (Lex.getKind() == lltok::kw_volatile) {
6942     isVolatile = true;
6943     Lex.Lex();
6944   }
6945 
6946   Type *Ty;
6947   LocTy ExplicitTypeLoc = Lex.getLoc();
6948   if (ParseType(Ty) ||
6949       ParseToken(lltok::comma, "expected comma after load's type") ||
6950       ParseTypeAndValue(Val, Loc, PFS) ||
6951       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
6952       ParseOptionalCommaAlign(Alignment, AteExtraComma))
6953     return true;
6954 
6955   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
6956     return Error(Loc, "load operand must be a pointer to a first class type");
6957   if (isAtomic && !Alignment)
6958     return Error(Loc, "atomic load must have explicit non-zero alignment");
6959   if (Ordering == AtomicOrdering::Release ||
6960       Ordering == AtomicOrdering::AcquireRelease)
6961     return Error(Loc, "atomic load cannot use Release ordering");
6962 
6963   if (Ty != cast<PointerType>(Val->getType())->getElementType())
6964     return Error(ExplicitTypeLoc,
6965                  "explicit pointee type doesn't match operand's pointee type");
6966 
6967   Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, SSID);
6968   return AteExtraComma ? InstExtraComma : InstNormal;
6969 }
6970 
6971 /// ParseStore
6972 
6973 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
6974 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
6975 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
6976 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
6977   Value *Val, *Ptr; LocTy Loc, PtrLoc;
6978   unsigned Alignment = 0;
6979   bool AteExtraComma = false;
6980   bool isAtomic = false;
6981   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6982   SyncScope::ID SSID = SyncScope::System;
6983 
6984   if (Lex.getKind() == lltok::kw_atomic) {
6985     isAtomic = true;
6986     Lex.Lex();
6987   }
6988 
6989   bool isVolatile = false;
6990   if (Lex.getKind() == lltok::kw_volatile) {
6991     isVolatile = true;
6992     Lex.Lex();
6993   }
6994 
6995   if (ParseTypeAndValue(Val, Loc, PFS) ||
6996       ParseToken(lltok::comma, "expected ',' after store operand") ||
6997       ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6998       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
6999       ParseOptionalCommaAlign(Alignment, AteExtraComma))
7000     return true;
7001 
7002   if (!Ptr->getType()->isPointerTy())
7003     return Error(PtrLoc, "store operand must be a pointer");
7004   if (!Val->getType()->isFirstClassType())
7005     return Error(Loc, "store operand must be a first class value");
7006   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
7007     return Error(Loc, "stored value and pointer type do not match");
7008   if (isAtomic && !Alignment)
7009     return Error(Loc, "atomic store must have explicit non-zero alignment");
7010   if (Ordering == AtomicOrdering::Acquire ||
7011       Ordering == AtomicOrdering::AcquireRelease)
7012     return Error(Loc, "atomic store cannot use Acquire ordering");
7013 
7014   Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, SSID);
7015   return AteExtraComma ? InstExtraComma : InstNormal;
7016 }
7017 
7018 /// ParseCmpXchg
7019 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
7020 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
7021 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
7022   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
7023   bool AteExtraComma = false;
7024   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
7025   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
7026   SyncScope::ID SSID = SyncScope::System;
7027   bool isVolatile = false;
7028   bool isWeak = false;
7029 
7030   if (EatIfPresent(lltok::kw_weak))
7031     isWeak = true;
7032 
7033   if (EatIfPresent(lltok::kw_volatile))
7034     isVolatile = true;
7035 
7036   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
7037       ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
7038       ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
7039       ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
7040       ParseTypeAndValue(New, NewLoc, PFS) ||
7041       ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
7042       ParseOrdering(FailureOrdering))
7043     return true;
7044 
7045   if (SuccessOrdering == AtomicOrdering::Unordered ||
7046       FailureOrdering == AtomicOrdering::Unordered)
7047     return TokError("cmpxchg cannot be unordered");
7048   if (isStrongerThan(FailureOrdering, SuccessOrdering))
7049     return TokError("cmpxchg failure argument shall be no stronger than the "
7050                     "success argument");
7051   if (FailureOrdering == AtomicOrdering::Release ||
7052       FailureOrdering == AtomicOrdering::AcquireRelease)
7053     return TokError(
7054         "cmpxchg failure ordering cannot include release semantics");
7055   if (!Ptr->getType()->isPointerTy())
7056     return Error(PtrLoc, "cmpxchg operand must be a pointer");
7057   if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
7058     return Error(CmpLoc, "compare value and pointer type do not match");
7059   if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
7060     return Error(NewLoc, "new value and pointer type do not match");
7061   if (!New->getType()->isFirstClassType())
7062     return Error(NewLoc, "cmpxchg operand must be a first class value");
7063   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
7064       Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID);
7065   CXI->setVolatile(isVolatile);
7066   CXI->setWeak(isWeak);
7067   Inst = CXI;
7068   return AteExtraComma ? InstExtraComma : InstNormal;
7069 }
7070 
7071 /// ParseAtomicRMW
7072 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
7073 ///       'singlethread'? AtomicOrdering
7074 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
7075   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
7076   bool AteExtraComma = false;
7077   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7078   SyncScope::ID SSID = SyncScope::System;
7079   bool isVolatile = false;
7080   bool IsFP = false;
7081   AtomicRMWInst::BinOp Operation;
7082 
7083   if (EatIfPresent(lltok::kw_volatile))
7084     isVolatile = true;
7085 
7086   switch (Lex.getKind()) {
7087   default: return TokError("expected binary operation in atomicrmw");
7088   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
7089   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
7090   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
7091   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
7092   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
7093   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
7094   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
7095   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
7096   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
7097   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
7098   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
7099   case lltok::kw_fadd:
7100     Operation = AtomicRMWInst::FAdd;
7101     IsFP = true;
7102     break;
7103   case lltok::kw_fsub:
7104     Operation = AtomicRMWInst::FSub;
7105     IsFP = true;
7106     break;
7107   }
7108   Lex.Lex();  // Eat the operation.
7109 
7110   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
7111       ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
7112       ParseTypeAndValue(Val, ValLoc, PFS) ||
7113       ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7114     return true;
7115 
7116   if (Ordering == AtomicOrdering::Unordered)
7117     return TokError("atomicrmw cannot be unordered");
7118   if (!Ptr->getType()->isPointerTy())
7119     return Error(PtrLoc, "atomicrmw operand must be a pointer");
7120   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
7121     return Error(ValLoc, "atomicrmw value and pointer type do not match");
7122 
7123   if (Operation == AtomicRMWInst::Xchg) {
7124     if (!Val->getType()->isIntegerTy() &&
7125         !Val->getType()->isFloatingPointTy()) {
7126       return Error(ValLoc, "atomicrmw " +
7127                    AtomicRMWInst::getOperationName(Operation) +
7128                    " operand must be an integer or floating point type");
7129     }
7130   } else if (IsFP) {
7131     if (!Val->getType()->isFloatingPointTy()) {
7132       return Error(ValLoc, "atomicrmw " +
7133                    AtomicRMWInst::getOperationName(Operation) +
7134                    " operand must be a floating point type");
7135     }
7136   } else {
7137     if (!Val->getType()->isIntegerTy()) {
7138       return Error(ValLoc, "atomicrmw " +
7139                    AtomicRMWInst::getOperationName(Operation) +
7140                    " operand must be an integer");
7141     }
7142   }
7143 
7144   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
7145   if (Size < 8 || (Size & (Size - 1)))
7146     return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
7147                          " integer");
7148 
7149   AtomicRMWInst *RMWI =
7150     new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
7151   RMWI->setVolatile(isVolatile);
7152   Inst = RMWI;
7153   return AteExtraComma ? InstExtraComma : InstNormal;
7154 }
7155 
7156 /// ParseFence
7157 ///   ::= 'fence' 'singlethread'? AtomicOrdering
7158 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
7159   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7160   SyncScope::ID SSID = SyncScope::System;
7161   if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7162     return true;
7163 
7164   if (Ordering == AtomicOrdering::Unordered)
7165     return TokError("fence cannot be unordered");
7166   if (Ordering == AtomicOrdering::Monotonic)
7167     return TokError("fence cannot be monotonic");
7168 
7169   Inst = new FenceInst(Context, Ordering, SSID);
7170   return InstNormal;
7171 }
7172 
7173 /// ParseGetElementPtr
7174 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
7175 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
7176   Value *Ptr = nullptr;
7177   Value *Val = nullptr;
7178   LocTy Loc, EltLoc;
7179 
7180   bool InBounds = EatIfPresent(lltok::kw_inbounds);
7181 
7182   Type *Ty = nullptr;
7183   LocTy ExplicitTypeLoc = Lex.getLoc();
7184   if (ParseType(Ty) ||
7185       ParseToken(lltok::comma, "expected comma after getelementptr's type") ||
7186       ParseTypeAndValue(Ptr, Loc, PFS))
7187     return true;
7188 
7189   Type *BaseType = Ptr->getType();
7190   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
7191   if (!BasePointerType)
7192     return Error(Loc, "base of getelementptr must be a pointer");
7193 
7194   if (Ty != BasePointerType->getElementType())
7195     return Error(ExplicitTypeLoc,
7196                  "explicit pointee type doesn't match operand's pointee type");
7197 
7198   SmallVector<Value*, 16> Indices;
7199   bool AteExtraComma = false;
7200   // GEP returns a vector of pointers if at least one of parameters is a vector.
7201   // All vector parameters should have the same vector width.
7202   unsigned GEPWidth = BaseType->isVectorTy() ?
7203     BaseType->getVectorNumElements() : 0;
7204 
7205   while (EatIfPresent(lltok::comma)) {
7206     if (Lex.getKind() == lltok::MetadataVar) {
7207       AteExtraComma = true;
7208       break;
7209     }
7210     if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
7211     if (!Val->getType()->isIntOrIntVectorTy())
7212       return Error(EltLoc, "getelementptr index must be an integer");
7213 
7214     if (Val->getType()->isVectorTy()) {
7215       unsigned ValNumEl = Val->getType()->getVectorNumElements();
7216       if (GEPWidth && GEPWidth != ValNumEl)
7217         return Error(EltLoc,
7218           "getelementptr vector index has a wrong number of elements");
7219       GEPWidth = ValNumEl;
7220     }
7221     Indices.push_back(Val);
7222   }
7223 
7224   SmallPtrSet<Type*, 4> Visited;
7225   if (!Indices.empty() && !Ty->isSized(&Visited))
7226     return Error(Loc, "base element of getelementptr must be sized");
7227 
7228   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
7229     return Error(Loc, "invalid getelementptr indices");
7230   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
7231   if (InBounds)
7232     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
7233   return AteExtraComma ? InstExtraComma : InstNormal;
7234 }
7235 
7236 /// ParseExtractValue
7237 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
7238 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
7239   Value *Val; LocTy Loc;
7240   SmallVector<unsigned, 4> Indices;
7241   bool AteExtraComma;
7242   if (ParseTypeAndValue(Val, Loc, PFS) ||
7243       ParseIndexList(Indices, AteExtraComma))
7244     return true;
7245 
7246   if (!Val->getType()->isAggregateType())
7247     return Error(Loc, "extractvalue operand must be aggregate type");
7248 
7249   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
7250     return Error(Loc, "invalid indices for extractvalue");
7251   Inst = ExtractValueInst::Create(Val, Indices);
7252   return AteExtraComma ? InstExtraComma : InstNormal;
7253 }
7254 
7255 /// ParseInsertValue
7256 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
7257 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
7258   Value *Val0, *Val1; LocTy Loc0, Loc1;
7259   SmallVector<unsigned, 4> Indices;
7260   bool AteExtraComma;
7261   if (ParseTypeAndValue(Val0, Loc0, PFS) ||
7262       ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
7263       ParseTypeAndValue(Val1, Loc1, PFS) ||
7264       ParseIndexList(Indices, AteExtraComma))
7265     return true;
7266 
7267   if (!Val0->getType()->isAggregateType())
7268     return Error(Loc0, "insertvalue operand must be aggregate type");
7269 
7270   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
7271   if (!IndexedType)
7272     return Error(Loc0, "invalid indices for insertvalue");
7273   if (IndexedType != Val1->getType())
7274     return Error(Loc1, "insertvalue operand and field disagree in type: '" +
7275                            getTypeString(Val1->getType()) + "' instead of '" +
7276                            getTypeString(IndexedType) + "'");
7277   Inst = InsertValueInst::Create(Val0, Val1, Indices);
7278   return AteExtraComma ? InstExtraComma : InstNormal;
7279 }
7280 
7281 //===----------------------------------------------------------------------===//
7282 // Embedded metadata.
7283 //===----------------------------------------------------------------------===//
7284 
7285 /// ParseMDNodeVector
7286 ///   ::= { Element (',' Element)* }
7287 /// Element
7288 ///   ::= 'null' | TypeAndValue
7289 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
7290   if (ParseToken(lltok::lbrace, "expected '{' here"))
7291     return true;
7292 
7293   // Check for an empty list.
7294   if (EatIfPresent(lltok::rbrace))
7295     return false;
7296 
7297   do {
7298     // Null is a special case since it is typeless.
7299     if (EatIfPresent(lltok::kw_null)) {
7300       Elts.push_back(nullptr);
7301       continue;
7302     }
7303 
7304     Metadata *MD;
7305     if (ParseMetadata(MD, nullptr))
7306       return true;
7307     Elts.push_back(MD);
7308   } while (EatIfPresent(lltok::comma));
7309 
7310   return ParseToken(lltok::rbrace, "expected end of metadata node");
7311 }
7312 
7313 //===----------------------------------------------------------------------===//
7314 // Use-list order directives.
7315 //===----------------------------------------------------------------------===//
7316 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
7317                                 SMLoc Loc) {
7318   if (V->use_empty())
7319     return Error(Loc, "value has no uses");
7320 
7321   unsigned NumUses = 0;
7322   SmallDenseMap<const Use *, unsigned, 16> Order;
7323   for (const Use &U : V->uses()) {
7324     if (++NumUses > Indexes.size())
7325       break;
7326     Order[&U] = Indexes[NumUses - 1];
7327   }
7328   if (NumUses < 2)
7329     return Error(Loc, "value only has one use");
7330   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
7331     return Error(Loc,
7332                  "wrong number of indexes, expected " + Twine(V->getNumUses()));
7333 
7334   V->sortUseList([&](const Use &L, const Use &R) {
7335     return Order.lookup(&L) < Order.lookup(&R);
7336   });
7337   return false;
7338 }
7339 
7340 /// ParseUseListOrderIndexes
7341 ///   ::= '{' uint32 (',' uint32)+ '}'
7342 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
7343   SMLoc Loc = Lex.getLoc();
7344   if (ParseToken(lltok::lbrace, "expected '{' here"))
7345     return true;
7346   if (Lex.getKind() == lltok::rbrace)
7347     return Lex.Error("expected non-empty list of uselistorder indexes");
7348 
7349   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
7350   // indexes should be distinct numbers in the range [0, size-1], and should
7351   // not be in order.
7352   unsigned Offset = 0;
7353   unsigned Max = 0;
7354   bool IsOrdered = true;
7355   assert(Indexes.empty() && "Expected empty order vector");
7356   do {
7357     unsigned Index;
7358     if (ParseUInt32(Index))
7359       return true;
7360 
7361     // Update consistency checks.
7362     Offset += Index - Indexes.size();
7363     Max = std::max(Max, Index);
7364     IsOrdered &= Index == Indexes.size();
7365 
7366     Indexes.push_back(Index);
7367   } while (EatIfPresent(lltok::comma));
7368 
7369   if (ParseToken(lltok::rbrace, "expected '}' here"))
7370     return true;
7371 
7372   if (Indexes.size() < 2)
7373     return Error(Loc, "expected >= 2 uselistorder indexes");
7374   if (Offset != 0 || Max >= Indexes.size())
7375     return Error(Loc, "expected distinct uselistorder indexes in range [0, size)");
7376   if (IsOrdered)
7377     return Error(Loc, "expected uselistorder indexes to change the order");
7378 
7379   return false;
7380 }
7381 
7382 /// ParseUseListOrder
7383 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
7384 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) {
7385   SMLoc Loc = Lex.getLoc();
7386   if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
7387     return true;
7388 
7389   Value *V;
7390   SmallVector<unsigned, 16> Indexes;
7391   if (ParseTypeAndValue(V, PFS) ||
7392       ParseToken(lltok::comma, "expected comma in uselistorder directive") ||
7393       ParseUseListOrderIndexes(Indexes))
7394     return true;
7395 
7396   return sortUseListOrder(V, Indexes, Loc);
7397 }
7398 
7399 /// ParseUseListOrderBB
7400 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
7401 bool LLParser::ParseUseListOrderBB() {
7402   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
7403   SMLoc Loc = Lex.getLoc();
7404   Lex.Lex();
7405 
7406   ValID Fn, Label;
7407   SmallVector<unsigned, 16> Indexes;
7408   if (ParseValID(Fn) ||
7409       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7410       ParseValID(Label) ||
7411       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7412       ParseUseListOrderIndexes(Indexes))
7413     return true;
7414 
7415   // Check the function.
7416   GlobalValue *GV;
7417   if (Fn.Kind == ValID::t_GlobalName)
7418     GV = M->getNamedValue(Fn.StrVal);
7419   else if (Fn.Kind == ValID::t_GlobalID)
7420     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
7421   else
7422     return Error(Fn.Loc, "expected function name in uselistorder_bb");
7423   if (!GV)
7424     return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb");
7425   auto *F = dyn_cast<Function>(GV);
7426   if (!F)
7427     return Error(Fn.Loc, "expected function name in uselistorder_bb");
7428   if (F->isDeclaration())
7429     return Error(Fn.Loc, "invalid declaration in uselistorder_bb");
7430 
7431   // Check the basic block.
7432   if (Label.Kind == ValID::t_LocalID)
7433     return Error(Label.Loc, "invalid numeric label in uselistorder_bb");
7434   if (Label.Kind != ValID::t_LocalName)
7435     return Error(Label.Loc, "expected basic block name in uselistorder_bb");
7436   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
7437   if (!V)
7438     return Error(Label.Loc, "invalid basic block in uselistorder_bb");
7439   if (!isa<BasicBlock>(V))
7440     return Error(Label.Loc, "expected basic block in uselistorder_bb");
7441 
7442   return sortUseListOrder(V, Indexes, Loc);
7443 }
7444 
7445 /// ModuleEntry
7446 ///   ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
7447 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
7448 bool LLParser::ParseModuleEntry(unsigned ID) {
7449   assert(Lex.getKind() == lltok::kw_module);
7450   Lex.Lex();
7451 
7452   std::string Path;
7453   if (ParseToken(lltok::colon, "expected ':' here") ||
7454       ParseToken(lltok::lparen, "expected '(' here") ||
7455       ParseToken(lltok::kw_path, "expected 'path' here") ||
7456       ParseToken(lltok::colon, "expected ':' here") ||
7457       ParseStringConstant(Path) ||
7458       ParseToken(lltok::comma, "expected ',' here") ||
7459       ParseToken(lltok::kw_hash, "expected 'hash' here") ||
7460       ParseToken(lltok::colon, "expected ':' here") ||
7461       ParseToken(lltok::lparen, "expected '(' here"))
7462     return true;
7463 
7464   ModuleHash Hash;
7465   if (ParseUInt32(Hash[0]) || ParseToken(lltok::comma, "expected ',' here") ||
7466       ParseUInt32(Hash[1]) || ParseToken(lltok::comma, "expected ',' here") ||
7467       ParseUInt32(Hash[2]) || ParseToken(lltok::comma, "expected ',' here") ||
7468       ParseUInt32(Hash[3]) || ParseToken(lltok::comma, "expected ',' here") ||
7469       ParseUInt32(Hash[4]))
7470     return true;
7471 
7472   if (ParseToken(lltok::rparen, "expected ')' here") ||
7473       ParseToken(lltok::rparen, "expected ')' here"))
7474     return true;
7475 
7476   auto ModuleEntry = Index->addModule(Path, ID, Hash);
7477   ModuleIdMap[ID] = ModuleEntry->first();
7478 
7479   return false;
7480 }
7481 
7482 /// TypeIdEntry
7483 ///   ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
7484 bool LLParser::ParseTypeIdEntry(unsigned ID) {
7485   assert(Lex.getKind() == lltok::kw_typeid);
7486   Lex.Lex();
7487 
7488   std::string Name;
7489   if (ParseToken(lltok::colon, "expected ':' here") ||
7490       ParseToken(lltok::lparen, "expected '(' here") ||
7491       ParseToken(lltok::kw_name, "expected 'name' here") ||
7492       ParseToken(lltok::colon, "expected ':' here") ||
7493       ParseStringConstant(Name))
7494     return true;
7495 
7496   TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
7497   if (ParseToken(lltok::comma, "expected ',' here") ||
7498       ParseTypeIdSummary(TIS) || ParseToken(lltok::rparen, "expected ')' here"))
7499     return true;
7500 
7501   // Check if this ID was forward referenced, and if so, update the
7502   // corresponding GUIDs.
7503   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7504   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7505     for (auto TIDRef : FwdRefTIDs->second) {
7506       assert(!*TIDRef.first &&
7507              "Forward referenced type id GUID expected to be 0");
7508       *TIDRef.first = GlobalValue::getGUID(Name);
7509     }
7510     ForwardRefTypeIds.erase(FwdRefTIDs);
7511   }
7512 
7513   return false;
7514 }
7515 
7516 /// TypeIdSummary
7517 ///   ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
7518 bool LLParser::ParseTypeIdSummary(TypeIdSummary &TIS) {
7519   if (ParseToken(lltok::kw_summary, "expected 'summary' here") ||
7520       ParseToken(lltok::colon, "expected ':' here") ||
7521       ParseToken(lltok::lparen, "expected '(' here") ||
7522       ParseTypeTestResolution(TIS.TTRes))
7523     return true;
7524 
7525   if (EatIfPresent(lltok::comma)) {
7526     // Expect optional wpdResolutions field
7527     if (ParseOptionalWpdResolutions(TIS.WPDRes))
7528       return true;
7529   }
7530 
7531   if (ParseToken(lltok::rparen, "expected ')' here"))
7532     return true;
7533 
7534   return false;
7535 }
7536 
7537 static ValueInfo EmptyVI =
7538     ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
7539 
7540 /// TypeIdCompatibleVtableEntry
7541 ///   ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ','
7542 ///   TypeIdCompatibleVtableInfo
7543 ///   ')'
7544 bool LLParser::ParseTypeIdCompatibleVtableEntry(unsigned ID) {
7545   assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable);
7546   Lex.Lex();
7547 
7548   std::string Name;
7549   if (ParseToken(lltok::colon, "expected ':' here") ||
7550       ParseToken(lltok::lparen, "expected '(' here") ||
7551       ParseToken(lltok::kw_name, "expected 'name' here") ||
7552       ParseToken(lltok::colon, "expected ':' here") ||
7553       ParseStringConstant(Name))
7554     return true;
7555 
7556   TypeIdCompatibleVtableInfo &TI =
7557       Index->getOrInsertTypeIdCompatibleVtableSummary(Name);
7558   if (ParseToken(lltok::comma, "expected ',' here") ||
7559       ParseToken(lltok::kw_summary, "expected 'summary' here") ||
7560       ParseToken(lltok::colon, "expected ':' here") ||
7561       ParseToken(lltok::lparen, "expected '(' here"))
7562     return true;
7563 
7564   IdToIndexMapType IdToIndexMap;
7565   // Parse each call edge
7566   do {
7567     uint64_t Offset;
7568     if (ParseToken(lltok::lparen, "expected '(' here") ||
7569         ParseToken(lltok::kw_offset, "expected 'offset' here") ||
7570         ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) ||
7571         ParseToken(lltok::comma, "expected ',' here"))
7572       return true;
7573 
7574     LocTy Loc = Lex.getLoc();
7575     unsigned GVId;
7576     ValueInfo VI;
7577     if (ParseGVReference(VI, GVId))
7578       return true;
7579 
7580     // Keep track of the TypeIdCompatibleVtableInfo array index needing a
7581     // forward reference. We will save the location of the ValueInfo needing an
7582     // update, but can only do so once the std::vector is finalized.
7583     if (VI == EmptyVI)
7584       IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc));
7585     TI.push_back({Offset, VI});
7586 
7587     if (ParseToken(lltok::rparen, "expected ')' in call"))
7588       return true;
7589   } while (EatIfPresent(lltok::comma));
7590 
7591   // Now that the TI vector is finalized, it is safe to save the locations
7592   // of any forward GV references that need updating later.
7593   for (auto I : IdToIndexMap) {
7594     for (auto P : I.second) {
7595       assert(TI[P.first].VTableVI == EmptyVI &&
7596              "Forward referenced ValueInfo expected to be empty");
7597       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
7598           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
7599       FwdRef.first->second.push_back(
7600           std::make_pair(&TI[P.first].VTableVI, P.second));
7601     }
7602   }
7603 
7604   if (ParseToken(lltok::rparen, "expected ')' here") ||
7605       ParseToken(lltok::rparen, "expected ')' here"))
7606     return true;
7607 
7608   // Check if this ID was forward referenced, and if so, update the
7609   // corresponding GUIDs.
7610   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7611   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7612     for (auto TIDRef : FwdRefTIDs->second) {
7613       assert(!*TIDRef.first &&
7614              "Forward referenced type id GUID expected to be 0");
7615       *TIDRef.first = GlobalValue::getGUID(Name);
7616     }
7617     ForwardRefTypeIds.erase(FwdRefTIDs);
7618   }
7619 
7620   return false;
7621 }
7622 
7623 /// TypeTestResolution
7624 ///   ::= 'typeTestRes' ':' '(' 'kind' ':'
7625 ///         ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
7626 ///         'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
7627 ///         [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
7628 ///         [',' 'inlinesBits' ':' UInt64]? ')'
7629 bool LLParser::ParseTypeTestResolution(TypeTestResolution &TTRes) {
7630   if (ParseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
7631       ParseToken(lltok::colon, "expected ':' here") ||
7632       ParseToken(lltok::lparen, "expected '(' here") ||
7633       ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7634       ParseToken(lltok::colon, "expected ':' here"))
7635     return true;
7636 
7637   switch (Lex.getKind()) {
7638   case lltok::kw_unsat:
7639     TTRes.TheKind = TypeTestResolution::Unsat;
7640     break;
7641   case lltok::kw_byteArray:
7642     TTRes.TheKind = TypeTestResolution::ByteArray;
7643     break;
7644   case lltok::kw_inline:
7645     TTRes.TheKind = TypeTestResolution::Inline;
7646     break;
7647   case lltok::kw_single:
7648     TTRes.TheKind = TypeTestResolution::Single;
7649     break;
7650   case lltok::kw_allOnes:
7651     TTRes.TheKind = TypeTestResolution::AllOnes;
7652     break;
7653   default:
7654     return Error(Lex.getLoc(), "unexpected TypeTestResolution kind");
7655   }
7656   Lex.Lex();
7657 
7658   if (ParseToken(lltok::comma, "expected ',' here") ||
7659       ParseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
7660       ParseToken(lltok::colon, "expected ':' here") ||
7661       ParseUInt32(TTRes.SizeM1BitWidth))
7662     return true;
7663 
7664   // Parse optional fields
7665   while (EatIfPresent(lltok::comma)) {
7666     switch (Lex.getKind()) {
7667     case lltok::kw_alignLog2:
7668       Lex.Lex();
7669       if (ParseToken(lltok::colon, "expected ':'") ||
7670           ParseUInt64(TTRes.AlignLog2))
7671         return true;
7672       break;
7673     case lltok::kw_sizeM1:
7674       Lex.Lex();
7675       if (ParseToken(lltok::colon, "expected ':'") || ParseUInt64(TTRes.SizeM1))
7676         return true;
7677       break;
7678     case lltok::kw_bitMask: {
7679       unsigned Val;
7680       Lex.Lex();
7681       if (ParseToken(lltok::colon, "expected ':'") || ParseUInt32(Val))
7682         return true;
7683       assert(Val <= 0xff);
7684       TTRes.BitMask = (uint8_t)Val;
7685       break;
7686     }
7687     case lltok::kw_inlineBits:
7688       Lex.Lex();
7689       if (ParseToken(lltok::colon, "expected ':'") ||
7690           ParseUInt64(TTRes.InlineBits))
7691         return true;
7692       break;
7693     default:
7694       return Error(Lex.getLoc(), "expected optional TypeTestResolution field");
7695     }
7696   }
7697 
7698   if (ParseToken(lltok::rparen, "expected ')' here"))
7699     return true;
7700 
7701   return false;
7702 }
7703 
7704 /// OptionalWpdResolutions
7705 ///   ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
7706 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
7707 bool LLParser::ParseOptionalWpdResolutions(
7708     std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
7709   if (ParseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
7710       ParseToken(lltok::colon, "expected ':' here") ||
7711       ParseToken(lltok::lparen, "expected '(' here"))
7712     return true;
7713 
7714   do {
7715     uint64_t Offset;
7716     WholeProgramDevirtResolution WPDRes;
7717     if (ParseToken(lltok::lparen, "expected '(' here") ||
7718         ParseToken(lltok::kw_offset, "expected 'offset' here") ||
7719         ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) ||
7720         ParseToken(lltok::comma, "expected ',' here") || ParseWpdRes(WPDRes) ||
7721         ParseToken(lltok::rparen, "expected ')' here"))
7722       return true;
7723     WPDResMap[Offset] = WPDRes;
7724   } while (EatIfPresent(lltok::comma));
7725 
7726   if (ParseToken(lltok::rparen, "expected ')' here"))
7727     return true;
7728 
7729   return false;
7730 }
7731 
7732 /// WpdRes
7733 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
7734 ///         [',' OptionalResByArg]? ')'
7735 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
7736 ///         ',' 'singleImplName' ':' STRINGCONSTANT ','
7737 ///         [',' OptionalResByArg]? ')'
7738 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
7739 ///         [',' OptionalResByArg]? ')'
7740 bool LLParser::ParseWpdRes(WholeProgramDevirtResolution &WPDRes) {
7741   if (ParseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
7742       ParseToken(lltok::colon, "expected ':' here") ||
7743       ParseToken(lltok::lparen, "expected '(' here") ||
7744       ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7745       ParseToken(lltok::colon, "expected ':' here"))
7746     return true;
7747 
7748   switch (Lex.getKind()) {
7749   case lltok::kw_indir:
7750     WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
7751     break;
7752   case lltok::kw_singleImpl:
7753     WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
7754     break;
7755   case lltok::kw_branchFunnel:
7756     WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
7757     break;
7758   default:
7759     return Error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
7760   }
7761   Lex.Lex();
7762 
7763   // Parse optional fields
7764   while (EatIfPresent(lltok::comma)) {
7765     switch (Lex.getKind()) {
7766     case lltok::kw_singleImplName:
7767       Lex.Lex();
7768       if (ParseToken(lltok::colon, "expected ':' here") ||
7769           ParseStringConstant(WPDRes.SingleImplName))
7770         return true;
7771       break;
7772     case lltok::kw_resByArg:
7773       if (ParseOptionalResByArg(WPDRes.ResByArg))
7774         return true;
7775       break;
7776     default:
7777       return Error(Lex.getLoc(),
7778                    "expected optional WholeProgramDevirtResolution field");
7779     }
7780   }
7781 
7782   if (ParseToken(lltok::rparen, "expected ')' here"))
7783     return true;
7784 
7785   return false;
7786 }
7787 
7788 /// OptionalResByArg
7789 ///   ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
7790 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
7791 ///                ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
7792 ///                  'virtualConstProp' )
7793 ///                [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
7794 ///                [',' 'bit' ':' UInt32]? ')'
7795 bool LLParser::ParseOptionalResByArg(
7796     std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
7797         &ResByArg) {
7798   if (ParseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
7799       ParseToken(lltok::colon, "expected ':' here") ||
7800       ParseToken(lltok::lparen, "expected '(' here"))
7801     return true;
7802 
7803   do {
7804     std::vector<uint64_t> Args;
7805     if (ParseArgs(Args) || ParseToken(lltok::comma, "expected ',' here") ||
7806         ParseToken(lltok::kw_byArg, "expected 'byArg here") ||
7807         ParseToken(lltok::colon, "expected ':' here") ||
7808         ParseToken(lltok::lparen, "expected '(' here") ||
7809         ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7810         ParseToken(lltok::colon, "expected ':' here"))
7811       return true;
7812 
7813     WholeProgramDevirtResolution::ByArg ByArg;
7814     switch (Lex.getKind()) {
7815     case lltok::kw_indir:
7816       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
7817       break;
7818     case lltok::kw_uniformRetVal:
7819       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
7820       break;
7821     case lltok::kw_uniqueRetVal:
7822       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
7823       break;
7824     case lltok::kw_virtualConstProp:
7825       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
7826       break;
7827     default:
7828       return Error(Lex.getLoc(),
7829                    "unexpected WholeProgramDevirtResolution::ByArg kind");
7830     }
7831     Lex.Lex();
7832 
7833     // Parse optional fields
7834     while (EatIfPresent(lltok::comma)) {
7835       switch (Lex.getKind()) {
7836       case lltok::kw_info:
7837         Lex.Lex();
7838         if (ParseToken(lltok::colon, "expected ':' here") ||
7839             ParseUInt64(ByArg.Info))
7840           return true;
7841         break;
7842       case lltok::kw_byte:
7843         Lex.Lex();
7844         if (ParseToken(lltok::colon, "expected ':' here") ||
7845             ParseUInt32(ByArg.Byte))
7846           return true;
7847         break;
7848       case lltok::kw_bit:
7849         Lex.Lex();
7850         if (ParseToken(lltok::colon, "expected ':' here") ||
7851             ParseUInt32(ByArg.Bit))
7852           return true;
7853         break;
7854       default:
7855         return Error(Lex.getLoc(),
7856                      "expected optional whole program devirt field");
7857       }
7858     }
7859 
7860     if (ParseToken(lltok::rparen, "expected ')' here"))
7861       return true;
7862 
7863     ResByArg[Args] = ByArg;
7864   } while (EatIfPresent(lltok::comma));
7865 
7866   if (ParseToken(lltok::rparen, "expected ')' here"))
7867     return true;
7868 
7869   return false;
7870 }
7871 
7872 /// OptionalResByArg
7873 ///   ::= 'args' ':' '(' UInt64[, UInt64]* ')'
7874 bool LLParser::ParseArgs(std::vector<uint64_t> &Args) {
7875   if (ParseToken(lltok::kw_args, "expected 'args' here") ||
7876       ParseToken(lltok::colon, "expected ':' here") ||
7877       ParseToken(lltok::lparen, "expected '(' here"))
7878     return true;
7879 
7880   do {
7881     uint64_t Val;
7882     if (ParseUInt64(Val))
7883       return true;
7884     Args.push_back(Val);
7885   } while (EatIfPresent(lltok::comma));
7886 
7887   if (ParseToken(lltok::rparen, "expected ')' here"))
7888     return true;
7889 
7890   return false;
7891 }
7892 
7893 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
7894 
7895 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
7896   bool ReadOnly = Fwd->isReadOnly();
7897   bool WriteOnly = Fwd->isWriteOnly();
7898   assert(!(ReadOnly && WriteOnly));
7899   *Fwd = Resolved;
7900   if (ReadOnly)
7901     Fwd->setReadOnly();
7902   if (WriteOnly)
7903     Fwd->setWriteOnly();
7904 }
7905 
7906 /// Stores the given Name/GUID and associated summary into the Index.
7907 /// Also updates any forward references to the associated entry ID.
7908 void LLParser::AddGlobalValueToIndex(
7909     std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
7910     unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) {
7911   // First create the ValueInfo utilizing the Name or GUID.
7912   ValueInfo VI;
7913   if (GUID != 0) {
7914     assert(Name.empty());
7915     VI = Index->getOrInsertValueInfo(GUID);
7916   } else {
7917     assert(!Name.empty());
7918     if (M) {
7919       auto *GV = M->getNamedValue(Name);
7920       assert(GV);
7921       VI = Index->getOrInsertValueInfo(GV);
7922     } else {
7923       assert(
7924           (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
7925           "Need a source_filename to compute GUID for local");
7926       GUID = GlobalValue::getGUID(
7927           GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
7928       VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
7929     }
7930   }
7931 
7932   // Resolve forward references from calls/refs
7933   auto FwdRefVIs = ForwardRefValueInfos.find(ID);
7934   if (FwdRefVIs != ForwardRefValueInfos.end()) {
7935     for (auto VIRef : FwdRefVIs->second) {
7936       assert(VIRef.first->getRef() == FwdVIRef &&
7937              "Forward referenced ValueInfo expected to be empty");
7938       resolveFwdRef(VIRef.first, VI);
7939     }
7940     ForwardRefValueInfos.erase(FwdRefVIs);
7941   }
7942 
7943   // Resolve forward references from aliases
7944   auto FwdRefAliasees = ForwardRefAliasees.find(ID);
7945   if (FwdRefAliasees != ForwardRefAliasees.end()) {
7946     for (auto AliaseeRef : FwdRefAliasees->second) {
7947       assert(!AliaseeRef.first->hasAliasee() &&
7948              "Forward referencing alias already has aliasee");
7949       assert(Summary && "Aliasee must be a definition");
7950       AliaseeRef.first->setAliasee(VI, Summary.get());
7951     }
7952     ForwardRefAliasees.erase(FwdRefAliasees);
7953   }
7954 
7955   // Add the summary if one was provided.
7956   if (Summary)
7957     Index->addGlobalValueSummary(VI, std::move(Summary));
7958 
7959   // Save the associated ValueInfo for use in later references by ID.
7960   if (ID == NumberedValueInfos.size())
7961     NumberedValueInfos.push_back(VI);
7962   else {
7963     // Handle non-continuous numbers (to make test simplification easier).
7964     if (ID > NumberedValueInfos.size())
7965       NumberedValueInfos.resize(ID + 1);
7966     NumberedValueInfos[ID] = VI;
7967   }
7968 }
7969 
7970 /// ParseGVEntry
7971 ///   ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
7972 ///         [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
7973 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
7974 bool LLParser::ParseGVEntry(unsigned ID) {
7975   assert(Lex.getKind() == lltok::kw_gv);
7976   Lex.Lex();
7977 
7978   if (ParseToken(lltok::colon, "expected ':' here") ||
7979       ParseToken(lltok::lparen, "expected '(' here"))
7980     return true;
7981 
7982   std::string Name;
7983   GlobalValue::GUID GUID = 0;
7984   switch (Lex.getKind()) {
7985   case lltok::kw_name:
7986     Lex.Lex();
7987     if (ParseToken(lltok::colon, "expected ':' here") ||
7988         ParseStringConstant(Name))
7989       return true;
7990     // Can't create GUID/ValueInfo until we have the linkage.
7991     break;
7992   case lltok::kw_guid:
7993     Lex.Lex();
7994     if (ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(GUID))
7995       return true;
7996     break;
7997   default:
7998     return Error(Lex.getLoc(), "expected name or guid tag");
7999   }
8000 
8001   if (!EatIfPresent(lltok::comma)) {
8002     // No summaries. Wrap up.
8003     if (ParseToken(lltok::rparen, "expected ')' here"))
8004       return true;
8005     // This was created for a call to an external or indirect target.
8006     // A GUID with no summary came from a VALUE_GUID record, dummy GUID
8007     // created for indirect calls with VP. A Name with no GUID came from
8008     // an external definition. We pass ExternalLinkage since that is only
8009     // used when the GUID must be computed from Name, and in that case
8010     // the symbol must have external linkage.
8011     AddGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
8012                           nullptr);
8013     return false;
8014   }
8015 
8016   // Have a list of summaries
8017   if (ParseToken(lltok::kw_summaries, "expected 'summaries' here") ||
8018       ParseToken(lltok::colon, "expected ':' here"))
8019     return true;
8020 
8021   do {
8022     if (ParseToken(lltok::lparen, "expected '(' here"))
8023       return true;
8024     switch (Lex.getKind()) {
8025     case lltok::kw_function:
8026       if (ParseFunctionSummary(Name, GUID, ID))
8027         return true;
8028       break;
8029     case lltok::kw_variable:
8030       if (ParseVariableSummary(Name, GUID, ID))
8031         return true;
8032       break;
8033     case lltok::kw_alias:
8034       if (ParseAliasSummary(Name, GUID, ID))
8035         return true;
8036       break;
8037     default:
8038       return Error(Lex.getLoc(), "expected summary type");
8039     }
8040     if (ParseToken(lltok::rparen, "expected ')' here"))
8041       return true;
8042   } while (EatIfPresent(lltok::comma));
8043 
8044   if (ParseToken(lltok::rparen, "expected ')' here"))
8045     return true;
8046 
8047   return false;
8048 }
8049 
8050 /// FunctionSummary
8051 ///   ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8052 ///         ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
8053 ///         [',' OptionalTypeIdInfo]? [',' OptionalRefs]? ')'
8054 bool LLParser::ParseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
8055                                     unsigned ID) {
8056   assert(Lex.getKind() == lltok::kw_function);
8057   Lex.Lex();
8058 
8059   StringRef ModulePath;
8060   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8061       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8062       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8063   unsigned InstCount;
8064   std::vector<FunctionSummary::EdgeTy> Calls;
8065   FunctionSummary::TypeIdInfo TypeIdInfo;
8066   std::vector<ValueInfo> Refs;
8067   // Default is all-zeros (conservative values).
8068   FunctionSummary::FFlags FFlags = {};
8069   if (ParseToken(lltok::colon, "expected ':' here") ||
8070       ParseToken(lltok::lparen, "expected '(' here") ||
8071       ParseModuleReference(ModulePath) ||
8072       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
8073       ParseToken(lltok::comma, "expected ',' here") ||
8074       ParseToken(lltok::kw_insts, "expected 'insts' here") ||
8075       ParseToken(lltok::colon, "expected ':' here") || ParseUInt32(InstCount))
8076     return true;
8077 
8078   // Parse optional fields
8079   while (EatIfPresent(lltok::comma)) {
8080     switch (Lex.getKind()) {
8081     case lltok::kw_funcFlags:
8082       if (ParseOptionalFFlags(FFlags))
8083         return true;
8084       break;
8085     case lltok::kw_calls:
8086       if (ParseOptionalCalls(Calls))
8087         return true;
8088       break;
8089     case lltok::kw_typeIdInfo:
8090       if (ParseOptionalTypeIdInfo(TypeIdInfo))
8091         return true;
8092       break;
8093     case lltok::kw_refs:
8094       if (ParseOptionalRefs(Refs))
8095         return true;
8096       break;
8097     default:
8098       return Error(Lex.getLoc(), "expected optional function summary field");
8099     }
8100   }
8101 
8102   if (ParseToken(lltok::rparen, "expected ')' here"))
8103     return true;
8104 
8105   auto FS = std::make_unique<FunctionSummary>(
8106       GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
8107       std::move(Calls), std::move(TypeIdInfo.TypeTests),
8108       std::move(TypeIdInfo.TypeTestAssumeVCalls),
8109       std::move(TypeIdInfo.TypeCheckedLoadVCalls),
8110       std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
8111       std::move(TypeIdInfo.TypeCheckedLoadConstVCalls));
8112 
8113   FS->setModulePath(ModulePath);
8114 
8115   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8116                         ID, std::move(FS));
8117 
8118   return false;
8119 }
8120 
8121 /// VariableSummary
8122 ///   ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8123 ///         [',' OptionalRefs]? ')'
8124 bool LLParser::ParseVariableSummary(std::string Name, GlobalValue::GUID GUID,
8125                                     unsigned ID) {
8126   assert(Lex.getKind() == lltok::kw_variable);
8127   Lex.Lex();
8128 
8129   StringRef ModulePath;
8130   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8131       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8132       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8133   GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false,
8134                                         /* WriteOnly */ false);
8135   std::vector<ValueInfo> Refs;
8136   VTableFuncList VTableFuncs;
8137   if (ParseToken(lltok::colon, "expected ':' here") ||
8138       ParseToken(lltok::lparen, "expected '(' here") ||
8139       ParseModuleReference(ModulePath) ||
8140       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
8141       ParseToken(lltok::comma, "expected ',' here") ||
8142       ParseGVarFlags(GVarFlags))
8143     return true;
8144 
8145   // Parse optional fields
8146   while (EatIfPresent(lltok::comma)) {
8147     switch (Lex.getKind()) {
8148     case lltok::kw_vTableFuncs:
8149       if (ParseOptionalVTableFuncs(VTableFuncs))
8150         return true;
8151       break;
8152     case lltok::kw_refs:
8153       if (ParseOptionalRefs(Refs))
8154         return true;
8155       break;
8156     default:
8157       return Error(Lex.getLoc(), "expected optional variable summary field");
8158     }
8159   }
8160 
8161   if (ParseToken(lltok::rparen, "expected ')' here"))
8162     return true;
8163 
8164   auto GS =
8165       std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
8166 
8167   GS->setModulePath(ModulePath);
8168   GS->setVTableFuncs(std::move(VTableFuncs));
8169 
8170   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8171                         ID, std::move(GS));
8172 
8173   return false;
8174 }
8175 
8176 /// AliasSummary
8177 ///   ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
8178 ///         'aliasee' ':' GVReference ')'
8179 bool LLParser::ParseAliasSummary(std::string Name, GlobalValue::GUID GUID,
8180                                  unsigned ID) {
8181   assert(Lex.getKind() == lltok::kw_alias);
8182   LocTy Loc = Lex.getLoc();
8183   Lex.Lex();
8184 
8185   StringRef ModulePath;
8186   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8187       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8188       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8189   if (ParseToken(lltok::colon, "expected ':' here") ||
8190       ParseToken(lltok::lparen, "expected '(' here") ||
8191       ParseModuleReference(ModulePath) ||
8192       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
8193       ParseToken(lltok::comma, "expected ',' here") ||
8194       ParseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
8195       ParseToken(lltok::colon, "expected ':' here"))
8196     return true;
8197 
8198   ValueInfo AliaseeVI;
8199   unsigned GVId;
8200   if (ParseGVReference(AliaseeVI, GVId))
8201     return true;
8202 
8203   if (ParseToken(lltok::rparen, "expected ')' here"))
8204     return true;
8205 
8206   auto AS = std::make_unique<AliasSummary>(GVFlags);
8207 
8208   AS->setModulePath(ModulePath);
8209 
8210   // Record forward reference if the aliasee is not parsed yet.
8211   if (AliaseeVI.getRef() == FwdVIRef) {
8212     auto FwdRef = ForwardRefAliasees.insert(
8213         std::make_pair(GVId, std::vector<std::pair<AliasSummary *, LocTy>>()));
8214     FwdRef.first->second.push_back(std::make_pair(AS.get(), Loc));
8215   } else {
8216     auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath);
8217     assert(Summary && "Aliasee must be a definition");
8218     AS->setAliasee(AliaseeVI, Summary);
8219   }
8220 
8221   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8222                         ID, std::move(AS));
8223 
8224   return false;
8225 }
8226 
8227 /// Flag
8228 ///   ::= [0|1]
8229 bool LLParser::ParseFlag(unsigned &Val) {
8230   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
8231     return TokError("expected integer");
8232   Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
8233   Lex.Lex();
8234   return false;
8235 }
8236 
8237 /// OptionalFFlags
8238 ///   := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
8239 ///        [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
8240 ///        [',' 'returnDoesNotAlias' ':' Flag]? ')'
8241 ///        [',' 'noInline' ':' Flag]? ')'
8242 bool LLParser::ParseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
8243   assert(Lex.getKind() == lltok::kw_funcFlags);
8244   Lex.Lex();
8245 
8246   if (ParseToken(lltok::colon, "expected ':' in funcFlags") |
8247       ParseToken(lltok::lparen, "expected '(' in funcFlags"))
8248     return true;
8249 
8250   do {
8251     unsigned Val = 0;
8252     switch (Lex.getKind()) {
8253     case lltok::kw_readNone:
8254       Lex.Lex();
8255       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8256         return true;
8257       FFlags.ReadNone = Val;
8258       break;
8259     case lltok::kw_readOnly:
8260       Lex.Lex();
8261       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8262         return true;
8263       FFlags.ReadOnly = Val;
8264       break;
8265     case lltok::kw_noRecurse:
8266       Lex.Lex();
8267       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8268         return true;
8269       FFlags.NoRecurse = Val;
8270       break;
8271     case lltok::kw_returnDoesNotAlias:
8272       Lex.Lex();
8273       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8274         return true;
8275       FFlags.ReturnDoesNotAlias = Val;
8276       break;
8277     case lltok::kw_noInline:
8278       Lex.Lex();
8279       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8280         return true;
8281       FFlags.NoInline = Val;
8282       break;
8283     default:
8284       return Error(Lex.getLoc(), "expected function flag type");
8285     }
8286   } while (EatIfPresent(lltok::comma));
8287 
8288   if (ParseToken(lltok::rparen, "expected ')' in funcFlags"))
8289     return true;
8290 
8291   return false;
8292 }
8293 
8294 /// OptionalCalls
8295 ///   := 'calls' ':' '(' Call [',' Call]* ')'
8296 /// Call ::= '(' 'callee' ':' GVReference
8297 ///            [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
8298 bool LLParser::ParseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
8299   assert(Lex.getKind() == lltok::kw_calls);
8300   Lex.Lex();
8301 
8302   if (ParseToken(lltok::colon, "expected ':' in calls") |
8303       ParseToken(lltok::lparen, "expected '(' in calls"))
8304     return true;
8305 
8306   IdToIndexMapType IdToIndexMap;
8307   // Parse each call edge
8308   do {
8309     ValueInfo VI;
8310     if (ParseToken(lltok::lparen, "expected '(' in call") ||
8311         ParseToken(lltok::kw_callee, "expected 'callee' in call") ||
8312         ParseToken(lltok::colon, "expected ':'"))
8313       return true;
8314 
8315     LocTy Loc = Lex.getLoc();
8316     unsigned GVId;
8317     if (ParseGVReference(VI, GVId))
8318       return true;
8319 
8320     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
8321     unsigned RelBF = 0;
8322     if (EatIfPresent(lltok::comma)) {
8323       // Expect either hotness or relbf
8324       if (EatIfPresent(lltok::kw_hotness)) {
8325         if (ParseToken(lltok::colon, "expected ':'") || ParseHotness(Hotness))
8326           return true;
8327       } else {
8328         if (ParseToken(lltok::kw_relbf, "expected relbf") ||
8329             ParseToken(lltok::colon, "expected ':'") || ParseUInt32(RelBF))
8330           return true;
8331       }
8332     }
8333     // Keep track of the Call array index needing a forward reference.
8334     // We will save the location of the ValueInfo needing an update, but
8335     // can only do so once the std::vector is finalized.
8336     if (VI.getRef() == FwdVIRef)
8337       IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
8338     Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)});
8339 
8340     if (ParseToken(lltok::rparen, "expected ')' in call"))
8341       return true;
8342   } while (EatIfPresent(lltok::comma));
8343 
8344   // Now that the Calls vector is finalized, it is safe to save the locations
8345   // of any forward GV references that need updating later.
8346   for (auto I : IdToIndexMap) {
8347     for (auto P : I.second) {
8348       assert(Calls[P.first].first.getRef() == FwdVIRef &&
8349              "Forward referenced ValueInfo expected to be empty");
8350       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8351           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8352       FwdRef.first->second.push_back(
8353           std::make_pair(&Calls[P.first].first, P.second));
8354     }
8355   }
8356 
8357   if (ParseToken(lltok::rparen, "expected ')' in calls"))
8358     return true;
8359 
8360   return false;
8361 }
8362 
8363 /// Hotness
8364 ///   := ('unknown'|'cold'|'none'|'hot'|'critical')
8365 bool LLParser::ParseHotness(CalleeInfo::HotnessType &Hotness) {
8366   switch (Lex.getKind()) {
8367   case lltok::kw_unknown:
8368     Hotness = CalleeInfo::HotnessType::Unknown;
8369     break;
8370   case lltok::kw_cold:
8371     Hotness = CalleeInfo::HotnessType::Cold;
8372     break;
8373   case lltok::kw_none:
8374     Hotness = CalleeInfo::HotnessType::None;
8375     break;
8376   case lltok::kw_hot:
8377     Hotness = CalleeInfo::HotnessType::Hot;
8378     break;
8379   case lltok::kw_critical:
8380     Hotness = CalleeInfo::HotnessType::Critical;
8381     break;
8382   default:
8383     return Error(Lex.getLoc(), "invalid call edge hotness");
8384   }
8385   Lex.Lex();
8386   return false;
8387 }
8388 
8389 /// OptionalVTableFuncs
8390 ///   := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')'
8391 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')'
8392 bool LLParser::ParseOptionalVTableFuncs(VTableFuncList &VTableFuncs) {
8393   assert(Lex.getKind() == lltok::kw_vTableFuncs);
8394   Lex.Lex();
8395 
8396   if (ParseToken(lltok::colon, "expected ':' in vTableFuncs") |
8397       ParseToken(lltok::lparen, "expected '(' in vTableFuncs"))
8398     return true;
8399 
8400   IdToIndexMapType IdToIndexMap;
8401   // Parse each virtual function pair
8402   do {
8403     ValueInfo VI;
8404     if (ParseToken(lltok::lparen, "expected '(' in vTableFunc") ||
8405         ParseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") ||
8406         ParseToken(lltok::colon, "expected ':'"))
8407       return true;
8408 
8409     LocTy Loc = Lex.getLoc();
8410     unsigned GVId;
8411     if (ParseGVReference(VI, GVId))
8412       return true;
8413 
8414     uint64_t Offset;
8415     if (ParseToken(lltok::comma, "expected comma") ||
8416         ParseToken(lltok::kw_offset, "expected offset") ||
8417         ParseToken(lltok::colon, "expected ':'") || ParseUInt64(Offset))
8418       return true;
8419 
8420     // Keep track of the VTableFuncs array index needing a forward reference.
8421     // We will save the location of the ValueInfo needing an update, but
8422     // can only do so once the std::vector is finalized.
8423     if (VI == EmptyVI)
8424       IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc));
8425     VTableFuncs.push_back({VI, Offset});
8426 
8427     if (ParseToken(lltok::rparen, "expected ')' in vTableFunc"))
8428       return true;
8429   } while (EatIfPresent(lltok::comma));
8430 
8431   // Now that the VTableFuncs vector is finalized, it is safe to save the
8432   // locations of any forward GV references that need updating later.
8433   for (auto I : IdToIndexMap) {
8434     for (auto P : I.second) {
8435       assert(VTableFuncs[P.first].FuncVI == EmptyVI &&
8436              "Forward referenced ValueInfo expected to be empty");
8437       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8438           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8439       FwdRef.first->second.push_back(
8440           std::make_pair(&VTableFuncs[P.first].FuncVI, P.second));
8441     }
8442   }
8443 
8444   if (ParseToken(lltok::rparen, "expected ')' in vTableFuncs"))
8445     return true;
8446 
8447   return false;
8448 }
8449 
8450 /// OptionalRefs
8451 ///   := 'refs' ':' '(' GVReference [',' GVReference]* ')'
8452 bool LLParser::ParseOptionalRefs(std::vector<ValueInfo> &Refs) {
8453   assert(Lex.getKind() == lltok::kw_refs);
8454   Lex.Lex();
8455 
8456   if (ParseToken(lltok::colon, "expected ':' in refs") |
8457       ParseToken(lltok::lparen, "expected '(' in refs"))
8458     return true;
8459 
8460   struct ValueContext {
8461     ValueInfo VI;
8462     unsigned GVId;
8463     LocTy Loc;
8464   };
8465   std::vector<ValueContext> VContexts;
8466   // Parse each ref edge
8467   do {
8468     ValueContext VC;
8469     VC.Loc = Lex.getLoc();
8470     if (ParseGVReference(VC.VI, VC.GVId))
8471       return true;
8472     VContexts.push_back(VC);
8473   } while (EatIfPresent(lltok::comma));
8474 
8475   // Sort value contexts so that ones with writeonly
8476   // and readonly ValueInfo  are at the end of VContexts vector.
8477   // See FunctionSummary::specialRefCounts()
8478   llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
8479     return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier();
8480   });
8481 
8482   IdToIndexMapType IdToIndexMap;
8483   for (auto &VC : VContexts) {
8484     // Keep track of the Refs array index needing a forward reference.
8485     // We will save the location of the ValueInfo needing an update, but
8486     // can only do so once the std::vector is finalized.
8487     if (VC.VI.getRef() == FwdVIRef)
8488       IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
8489     Refs.push_back(VC.VI);
8490   }
8491 
8492   // Now that the Refs vector is finalized, it is safe to save the locations
8493   // of any forward GV references that need updating later.
8494   for (auto I : IdToIndexMap) {
8495     for (auto P : I.second) {
8496       assert(Refs[P.first].getRef() == FwdVIRef &&
8497              "Forward referenced ValueInfo expected to be empty");
8498       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8499           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8500       FwdRef.first->second.push_back(std::make_pair(&Refs[P.first], P.second));
8501     }
8502   }
8503 
8504   if (ParseToken(lltok::rparen, "expected ')' in refs"))
8505     return true;
8506 
8507   return false;
8508 }
8509 
8510 /// OptionalTypeIdInfo
8511 ///   := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
8512 ///         [',' TypeCheckedLoadVCalls]?  [',' TypeTestAssumeConstVCalls]?
8513 ///         [',' TypeCheckedLoadConstVCalls]? ')'
8514 bool LLParser::ParseOptionalTypeIdInfo(
8515     FunctionSummary::TypeIdInfo &TypeIdInfo) {
8516   assert(Lex.getKind() == lltok::kw_typeIdInfo);
8517   Lex.Lex();
8518 
8519   if (ParseToken(lltok::colon, "expected ':' here") ||
8520       ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8521     return true;
8522 
8523   do {
8524     switch (Lex.getKind()) {
8525     case lltok::kw_typeTests:
8526       if (ParseTypeTests(TypeIdInfo.TypeTests))
8527         return true;
8528       break;
8529     case lltok::kw_typeTestAssumeVCalls:
8530       if (ParseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
8531                            TypeIdInfo.TypeTestAssumeVCalls))
8532         return true;
8533       break;
8534     case lltok::kw_typeCheckedLoadVCalls:
8535       if (ParseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
8536                            TypeIdInfo.TypeCheckedLoadVCalls))
8537         return true;
8538       break;
8539     case lltok::kw_typeTestAssumeConstVCalls:
8540       if (ParseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
8541                               TypeIdInfo.TypeTestAssumeConstVCalls))
8542         return true;
8543       break;
8544     case lltok::kw_typeCheckedLoadConstVCalls:
8545       if (ParseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
8546                               TypeIdInfo.TypeCheckedLoadConstVCalls))
8547         return true;
8548       break;
8549     default:
8550       return Error(Lex.getLoc(), "invalid typeIdInfo list type");
8551     }
8552   } while (EatIfPresent(lltok::comma));
8553 
8554   if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8555     return true;
8556 
8557   return false;
8558 }
8559 
8560 /// TypeTests
8561 ///   ::= 'typeTests' ':' '(' (SummaryID | UInt64)
8562 ///         [',' (SummaryID | UInt64)]* ')'
8563 bool LLParser::ParseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
8564   assert(Lex.getKind() == lltok::kw_typeTests);
8565   Lex.Lex();
8566 
8567   if (ParseToken(lltok::colon, "expected ':' here") ||
8568       ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8569     return true;
8570 
8571   IdToIndexMapType IdToIndexMap;
8572   do {
8573     GlobalValue::GUID GUID = 0;
8574     if (Lex.getKind() == lltok::SummaryID) {
8575       unsigned ID = Lex.getUIntVal();
8576       LocTy Loc = Lex.getLoc();
8577       // Keep track of the TypeTests array index needing a forward reference.
8578       // We will save the location of the GUID needing an update, but
8579       // can only do so once the std::vector is finalized.
8580       IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
8581       Lex.Lex();
8582     } else if (ParseUInt64(GUID))
8583       return true;
8584     TypeTests.push_back(GUID);
8585   } while (EatIfPresent(lltok::comma));
8586 
8587   // Now that the TypeTests vector is finalized, it is safe to save the
8588   // locations of any forward GV references that need updating later.
8589   for (auto I : IdToIndexMap) {
8590     for (auto P : I.second) {
8591       assert(TypeTests[P.first] == 0 &&
8592              "Forward referenced type id GUID expected to be 0");
8593       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8594           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8595       FwdRef.first->second.push_back(
8596           std::make_pair(&TypeTests[P.first], P.second));
8597     }
8598   }
8599 
8600   if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8601     return true;
8602 
8603   return false;
8604 }
8605 
8606 /// VFuncIdList
8607 ///   ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
8608 bool LLParser::ParseVFuncIdList(
8609     lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
8610   assert(Lex.getKind() == Kind);
8611   Lex.Lex();
8612 
8613   if (ParseToken(lltok::colon, "expected ':' here") ||
8614       ParseToken(lltok::lparen, "expected '(' here"))
8615     return true;
8616 
8617   IdToIndexMapType IdToIndexMap;
8618   do {
8619     FunctionSummary::VFuncId VFuncId;
8620     if (ParseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
8621       return true;
8622     VFuncIdList.push_back(VFuncId);
8623   } while (EatIfPresent(lltok::comma));
8624 
8625   if (ParseToken(lltok::rparen, "expected ')' here"))
8626     return true;
8627 
8628   // Now that the VFuncIdList vector is finalized, it is safe to save the
8629   // locations of any forward GV references that need updating later.
8630   for (auto I : IdToIndexMap) {
8631     for (auto P : I.second) {
8632       assert(VFuncIdList[P.first].GUID == 0 &&
8633              "Forward referenced type id GUID expected to be 0");
8634       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8635           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8636       FwdRef.first->second.push_back(
8637           std::make_pair(&VFuncIdList[P.first].GUID, P.second));
8638     }
8639   }
8640 
8641   return false;
8642 }
8643 
8644 /// ConstVCallList
8645 ///   ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
8646 bool LLParser::ParseConstVCallList(
8647     lltok::Kind Kind,
8648     std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
8649   assert(Lex.getKind() == Kind);
8650   Lex.Lex();
8651 
8652   if (ParseToken(lltok::colon, "expected ':' here") ||
8653       ParseToken(lltok::lparen, "expected '(' here"))
8654     return true;
8655 
8656   IdToIndexMapType IdToIndexMap;
8657   do {
8658     FunctionSummary::ConstVCall ConstVCall;
8659     if (ParseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
8660       return true;
8661     ConstVCallList.push_back(ConstVCall);
8662   } while (EatIfPresent(lltok::comma));
8663 
8664   if (ParseToken(lltok::rparen, "expected ')' here"))
8665     return true;
8666 
8667   // Now that the ConstVCallList vector is finalized, it is safe to save the
8668   // locations of any forward GV references that need updating later.
8669   for (auto I : IdToIndexMap) {
8670     for (auto P : I.second) {
8671       assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
8672              "Forward referenced type id GUID expected to be 0");
8673       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8674           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8675       FwdRef.first->second.push_back(
8676           std::make_pair(&ConstVCallList[P.first].VFunc.GUID, P.second));
8677     }
8678   }
8679 
8680   return false;
8681 }
8682 
8683 /// ConstVCall
8684 ///   ::= '(' VFuncId ',' Args ')'
8685 bool LLParser::ParseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
8686                                IdToIndexMapType &IdToIndexMap, unsigned Index) {
8687   if (ParseToken(lltok::lparen, "expected '(' here") ||
8688       ParseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
8689     return true;
8690 
8691   if (EatIfPresent(lltok::comma))
8692     if (ParseArgs(ConstVCall.Args))
8693       return true;
8694 
8695   if (ParseToken(lltok::rparen, "expected ')' here"))
8696     return true;
8697 
8698   return false;
8699 }
8700 
8701 /// VFuncId
8702 ///   ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
8703 ///         'offset' ':' UInt64 ')'
8704 bool LLParser::ParseVFuncId(FunctionSummary::VFuncId &VFuncId,
8705                             IdToIndexMapType &IdToIndexMap, unsigned Index) {
8706   assert(Lex.getKind() == lltok::kw_vFuncId);
8707   Lex.Lex();
8708 
8709   if (ParseToken(lltok::colon, "expected ':' here") ||
8710       ParseToken(lltok::lparen, "expected '(' here"))
8711     return true;
8712 
8713   if (Lex.getKind() == lltok::SummaryID) {
8714     VFuncId.GUID = 0;
8715     unsigned ID = Lex.getUIntVal();
8716     LocTy Loc = Lex.getLoc();
8717     // Keep track of the array index needing a forward reference.
8718     // We will save the location of the GUID needing an update, but
8719     // can only do so once the caller's std::vector is finalized.
8720     IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
8721     Lex.Lex();
8722   } else if (ParseToken(lltok::kw_guid, "expected 'guid' here") ||
8723              ParseToken(lltok::colon, "expected ':' here") ||
8724              ParseUInt64(VFuncId.GUID))
8725     return true;
8726 
8727   if (ParseToken(lltok::comma, "expected ',' here") ||
8728       ParseToken(lltok::kw_offset, "expected 'offset' here") ||
8729       ParseToken(lltok::colon, "expected ':' here") ||
8730       ParseUInt64(VFuncId.Offset) ||
8731       ParseToken(lltok::rparen, "expected ')' here"))
8732     return true;
8733 
8734   return false;
8735 }
8736 
8737 /// GVFlags
8738 ///   ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
8739 ///         'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ','
8740 ///         'dsoLocal' ':' Flag ',' 'canAutoHide' ':' Flag ')'
8741 bool LLParser::ParseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
8742   assert(Lex.getKind() == lltok::kw_flags);
8743   Lex.Lex();
8744 
8745   if (ParseToken(lltok::colon, "expected ':' here") ||
8746       ParseToken(lltok::lparen, "expected '(' here"))
8747     return true;
8748 
8749   do {
8750     unsigned Flag = 0;
8751     switch (Lex.getKind()) {
8752     case lltok::kw_linkage:
8753       Lex.Lex();
8754       if (ParseToken(lltok::colon, "expected ':'"))
8755         return true;
8756       bool HasLinkage;
8757       GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
8758       assert(HasLinkage && "Linkage not optional in summary entry");
8759       Lex.Lex();
8760       break;
8761     case lltok::kw_notEligibleToImport:
8762       Lex.Lex();
8763       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8764         return true;
8765       GVFlags.NotEligibleToImport = Flag;
8766       break;
8767     case lltok::kw_live:
8768       Lex.Lex();
8769       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8770         return true;
8771       GVFlags.Live = Flag;
8772       break;
8773     case lltok::kw_dsoLocal:
8774       Lex.Lex();
8775       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8776         return true;
8777       GVFlags.DSOLocal = Flag;
8778       break;
8779     case lltok::kw_canAutoHide:
8780       Lex.Lex();
8781       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8782         return true;
8783       GVFlags.CanAutoHide = Flag;
8784       break;
8785     default:
8786       return Error(Lex.getLoc(), "expected gv flag type");
8787     }
8788   } while (EatIfPresent(lltok::comma));
8789 
8790   if (ParseToken(lltok::rparen, "expected ')' here"))
8791     return true;
8792 
8793   return false;
8794 }
8795 
8796 /// GVarFlags
8797 ///   ::= 'varFlags' ':' '(' 'readonly' ':' Flag
8798 ///                      ',' 'writeonly' ':' Flag ')'
8799 bool LLParser::ParseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
8800   assert(Lex.getKind() == lltok::kw_varFlags);
8801   Lex.Lex();
8802 
8803   if (ParseToken(lltok::colon, "expected ':' here") ||
8804       ParseToken(lltok::lparen, "expected '(' here"))
8805     return true;
8806 
8807   auto ParseRest = [this](unsigned int &Val) {
8808     Lex.Lex();
8809     if (ParseToken(lltok::colon, "expected ':'"))
8810       return true;
8811     return ParseFlag(Val);
8812   };
8813 
8814   do {
8815     unsigned Flag = 0;
8816     switch (Lex.getKind()) {
8817     case lltok::kw_readonly:
8818       if (ParseRest(Flag))
8819         return true;
8820       GVarFlags.MaybeReadOnly = Flag;
8821       break;
8822     case lltok::kw_writeonly:
8823       if (ParseRest(Flag))
8824         return true;
8825       GVarFlags.MaybeWriteOnly = Flag;
8826       break;
8827     default:
8828       return Error(Lex.getLoc(), "expected gvar flag type");
8829     }
8830   } while (EatIfPresent(lltok::comma));
8831   return ParseToken(lltok::rparen, "expected ')' here");
8832 }
8833 
8834 /// ModuleReference
8835 ///   ::= 'module' ':' UInt
8836 bool LLParser::ParseModuleReference(StringRef &ModulePath) {
8837   // Parse module id.
8838   if (ParseToken(lltok::kw_module, "expected 'module' here") ||
8839       ParseToken(lltok::colon, "expected ':' here") ||
8840       ParseToken(lltok::SummaryID, "expected module ID"))
8841     return true;
8842 
8843   unsigned ModuleID = Lex.getUIntVal();
8844   auto I = ModuleIdMap.find(ModuleID);
8845   // We should have already parsed all module IDs
8846   assert(I != ModuleIdMap.end());
8847   ModulePath = I->second;
8848   return false;
8849 }
8850 
8851 /// GVReference
8852 ///   ::= SummaryID
8853 bool LLParser::ParseGVReference(ValueInfo &VI, unsigned &GVId) {
8854   bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly);
8855   if (!ReadOnly)
8856     WriteOnly = EatIfPresent(lltok::kw_writeonly);
8857   if (ParseToken(lltok::SummaryID, "expected GV ID"))
8858     return true;
8859 
8860   GVId = Lex.getUIntVal();
8861   // Check if we already have a VI for this GV
8862   if (GVId < NumberedValueInfos.size()) {
8863     assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
8864     VI = NumberedValueInfos[GVId];
8865   } else
8866     // We will create a forward reference to the stored location.
8867     VI = ValueInfo(false, FwdVIRef);
8868 
8869   if (ReadOnly)
8870     VI.setReadOnly();
8871   if (WriteOnly)
8872     VI.setWriteOnly();
8873   return false;
8874 }
8875