1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the parser class for .ll files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/AsmParser/LLParser.h" 14 #include "llvm/ADT/APSInt.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/AsmParser/LLToken.h" 20 #include "llvm/AsmParser/SlotMapping.h" 21 #include "llvm/BinaryFormat/Dwarf.h" 22 #include "llvm/IR/Argument.h" 23 #include "llvm/IR/AutoUpgrade.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallingConv.h" 26 #include "llvm/IR/Comdat.h" 27 #include "llvm/IR/ConstantRange.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DebugInfoMetadata.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/GlobalIFunc.h" 33 #include "llvm/IR/GlobalObject.h" 34 #include "llvm/IR/InlineAsm.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/LLVMContext.h" 38 #include "llvm/IR/Metadata.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/Value.h" 41 #include "llvm/IR/ValueSymbolTable.h" 42 #include "llvm/Support/Casting.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/MathExtras.h" 45 #include "llvm/Support/SaveAndRestore.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include <algorithm> 48 #include <cassert> 49 #include <cstring> 50 #include <iterator> 51 #include <vector> 52 53 using namespace llvm; 54 55 static std::string getTypeString(Type *T) { 56 std::string Result; 57 raw_string_ostream Tmp(Result); 58 Tmp << *T; 59 return Tmp.str(); 60 } 61 62 /// Run: module ::= toplevelentity* 63 bool LLParser::Run(bool UpgradeDebugInfo, 64 DataLayoutCallbackTy DataLayoutCallback) { 65 // Prime the lexer. 66 Lex.Lex(); 67 68 if (Context.shouldDiscardValueNames()) 69 return error( 70 Lex.getLoc(), 71 "Can't read textual IR with a Context that discards named Values"); 72 73 if (M) { 74 if (parseTargetDefinitions()) 75 return true; 76 77 if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple())) 78 M->setDataLayout(*LayoutOverride); 79 } 80 81 return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) || 82 validateEndOfIndex(); 83 } 84 85 bool LLParser::parseStandaloneConstantValue(Constant *&C, 86 const SlotMapping *Slots) { 87 restoreParsingState(Slots); 88 Lex.Lex(); 89 90 Type *Ty = nullptr; 91 if (parseType(Ty) || parseConstantValue(Ty, C)) 92 return true; 93 if (Lex.getKind() != lltok::Eof) 94 return error(Lex.getLoc(), "expected end of string"); 95 return false; 96 } 97 98 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 99 const SlotMapping *Slots) { 100 restoreParsingState(Slots); 101 Lex.Lex(); 102 103 Read = 0; 104 SMLoc Start = Lex.getLoc(); 105 Ty = nullptr; 106 if (parseType(Ty)) 107 return true; 108 SMLoc End = Lex.getLoc(); 109 Read = End.getPointer() - Start.getPointer(); 110 111 return false; 112 } 113 114 void LLParser::restoreParsingState(const SlotMapping *Slots) { 115 if (!Slots) 116 return; 117 NumberedVals = Slots->GlobalValues; 118 NumberedMetadata = Slots->MetadataNodes; 119 for (const auto &I : Slots->NamedTypes) 120 NamedTypes.insert( 121 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 122 for (const auto &I : Slots->Types) 123 NumberedTypes.insert( 124 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 125 } 126 127 /// validateEndOfModule - Do final validity and sanity checks at the end of the 128 /// module. 129 bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) { 130 if (!M) 131 return false; 132 // Handle any function attribute group forward references. 133 for (const auto &RAG : ForwardRefAttrGroups) { 134 Value *V = RAG.first; 135 const std::vector<unsigned> &Attrs = RAG.second; 136 AttrBuilder B; 137 138 for (const auto &Attr : Attrs) 139 B.merge(NumberedAttrBuilders[Attr]); 140 141 if (Function *Fn = dyn_cast<Function>(V)) { 142 AttributeList AS = Fn->getAttributes(); 143 AttrBuilder FnAttrs(AS.getFnAttributes()); 144 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 145 146 FnAttrs.merge(B); 147 148 // If the alignment was parsed as an attribute, move to the alignment 149 // field. 150 if (FnAttrs.hasAlignmentAttr()) { 151 Fn->setAlignment(FnAttrs.getAlignment()); 152 FnAttrs.removeAttribute(Attribute::Alignment); 153 } 154 155 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 156 AttributeSet::get(Context, FnAttrs)); 157 Fn->setAttributes(AS); 158 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 159 AttributeList AS = CI->getAttributes(); 160 AttrBuilder FnAttrs(AS.getFnAttributes()); 161 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 162 FnAttrs.merge(B); 163 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 164 AttributeSet::get(Context, FnAttrs)); 165 CI->setAttributes(AS); 166 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 167 AttributeList AS = II->getAttributes(); 168 AttrBuilder FnAttrs(AS.getFnAttributes()); 169 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 170 FnAttrs.merge(B); 171 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 172 AttributeSet::get(Context, FnAttrs)); 173 II->setAttributes(AS); 174 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) { 175 AttributeList AS = CBI->getAttributes(); 176 AttrBuilder FnAttrs(AS.getFnAttributes()); 177 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 178 FnAttrs.merge(B); 179 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 180 AttributeSet::get(Context, FnAttrs)); 181 CBI->setAttributes(AS); 182 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) { 183 AttrBuilder Attrs(GV->getAttributes()); 184 Attrs.merge(B); 185 GV->setAttributes(AttributeSet::get(Context,Attrs)); 186 } else { 187 llvm_unreachable("invalid object with forward attribute group reference"); 188 } 189 } 190 191 // If there are entries in ForwardRefBlockAddresses at this point, the 192 // function was never defined. 193 if (!ForwardRefBlockAddresses.empty()) 194 return error(ForwardRefBlockAddresses.begin()->first.Loc, 195 "expected function name in blockaddress"); 196 197 for (const auto &NT : NumberedTypes) 198 if (NT.second.second.isValid()) 199 return error(NT.second.second, 200 "use of undefined type '%" + Twine(NT.first) + "'"); 201 202 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 203 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 204 if (I->second.second.isValid()) 205 return error(I->second.second, 206 "use of undefined type named '" + I->getKey() + "'"); 207 208 if (!ForwardRefComdats.empty()) 209 return error(ForwardRefComdats.begin()->second, 210 "use of undefined comdat '$" + 211 ForwardRefComdats.begin()->first + "'"); 212 213 if (!ForwardRefVals.empty()) 214 return error(ForwardRefVals.begin()->second.second, 215 "use of undefined value '@" + ForwardRefVals.begin()->first + 216 "'"); 217 218 if (!ForwardRefValIDs.empty()) 219 return error(ForwardRefValIDs.begin()->second.second, 220 "use of undefined value '@" + 221 Twine(ForwardRefValIDs.begin()->first) + "'"); 222 223 if (!ForwardRefMDNodes.empty()) 224 return error(ForwardRefMDNodes.begin()->second.second, 225 "use of undefined metadata '!" + 226 Twine(ForwardRefMDNodes.begin()->first) + "'"); 227 228 // Resolve metadata cycles. 229 for (auto &N : NumberedMetadata) { 230 if (N.second && !N.second->isResolved()) 231 N.second->resolveCycles(); 232 } 233 234 for (auto *Inst : InstsWithTBAATag) { 235 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); 236 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); 237 auto *UpgradedMD = UpgradeTBAANode(*MD); 238 if (MD != UpgradedMD) 239 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); 240 } 241 242 // Look for intrinsic functions and CallInst that need to be upgraded 243 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 244 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove 245 246 // Some types could be renamed during loading if several modules are 247 // loaded in the same LLVMContext (LTO scenario). In this case we should 248 // remangle intrinsics names as well. 249 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) { 250 Function *F = &*FI++; 251 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) { 252 F->replaceAllUsesWith(Remangled.getValue()); 253 F->eraseFromParent(); 254 } 255 } 256 257 if (UpgradeDebugInfo) 258 llvm::UpgradeDebugInfo(*M); 259 260 UpgradeModuleFlags(*M); 261 UpgradeSectionAttributes(*M); 262 263 if (!Slots) 264 return false; 265 // Initialize the slot mapping. 266 // Because by this point we've parsed and validated everything, we can "steal" 267 // the mapping from LLParser as it doesn't need it anymore. 268 Slots->GlobalValues = std::move(NumberedVals); 269 Slots->MetadataNodes = std::move(NumberedMetadata); 270 for (const auto &I : NamedTypes) 271 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 272 for (const auto &I : NumberedTypes) 273 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 274 275 return false; 276 } 277 278 /// Do final validity and sanity checks at the end of the index. 279 bool LLParser::validateEndOfIndex() { 280 if (!Index) 281 return false; 282 283 if (!ForwardRefValueInfos.empty()) 284 return error(ForwardRefValueInfos.begin()->second.front().second, 285 "use of undefined summary '^" + 286 Twine(ForwardRefValueInfos.begin()->first) + "'"); 287 288 if (!ForwardRefAliasees.empty()) 289 return error(ForwardRefAliasees.begin()->second.front().second, 290 "use of undefined summary '^" + 291 Twine(ForwardRefAliasees.begin()->first) + "'"); 292 293 if (!ForwardRefTypeIds.empty()) 294 return error(ForwardRefTypeIds.begin()->second.front().second, 295 "use of undefined type id summary '^" + 296 Twine(ForwardRefTypeIds.begin()->first) + "'"); 297 298 return false; 299 } 300 301 //===----------------------------------------------------------------------===// 302 // Top-Level Entities 303 //===----------------------------------------------------------------------===// 304 305 bool LLParser::parseTargetDefinitions() { 306 while (true) { 307 switch (Lex.getKind()) { 308 case lltok::kw_target: 309 if (parseTargetDefinition()) 310 return true; 311 break; 312 case lltok::kw_source_filename: 313 if (parseSourceFileName()) 314 return true; 315 break; 316 default: 317 return false; 318 } 319 } 320 } 321 322 bool LLParser::parseTopLevelEntities() { 323 // If there is no Module, then parse just the summary index entries. 324 if (!M) { 325 while (true) { 326 switch (Lex.getKind()) { 327 case lltok::Eof: 328 return false; 329 case lltok::SummaryID: 330 if (parseSummaryEntry()) 331 return true; 332 break; 333 case lltok::kw_source_filename: 334 if (parseSourceFileName()) 335 return true; 336 break; 337 default: 338 // Skip everything else 339 Lex.Lex(); 340 } 341 } 342 } 343 while (true) { 344 switch (Lex.getKind()) { 345 default: 346 return tokError("expected top-level entity"); 347 case lltok::Eof: return false; 348 case lltok::kw_declare: 349 if (parseDeclare()) 350 return true; 351 break; 352 case lltok::kw_define: 353 if (parseDefine()) 354 return true; 355 break; 356 case lltok::kw_module: 357 if (parseModuleAsm()) 358 return true; 359 break; 360 case lltok::LocalVarID: 361 if (parseUnnamedType()) 362 return true; 363 break; 364 case lltok::LocalVar: 365 if (parseNamedType()) 366 return true; 367 break; 368 case lltok::GlobalID: 369 if (parseUnnamedGlobal()) 370 return true; 371 break; 372 case lltok::GlobalVar: 373 if (parseNamedGlobal()) 374 return true; 375 break; 376 case lltok::ComdatVar: if (parseComdat()) return true; break; 377 case lltok::exclaim: 378 if (parseStandaloneMetadata()) 379 return true; 380 break; 381 case lltok::SummaryID: 382 if (parseSummaryEntry()) 383 return true; 384 break; 385 case lltok::MetadataVar: 386 if (parseNamedMetadata()) 387 return true; 388 break; 389 case lltok::kw_attributes: 390 if (parseUnnamedAttrGrp()) 391 return true; 392 break; 393 case lltok::kw_uselistorder: 394 if (parseUseListOrder()) 395 return true; 396 break; 397 case lltok::kw_uselistorder_bb: 398 if (parseUseListOrderBB()) 399 return true; 400 break; 401 } 402 } 403 } 404 405 /// toplevelentity 406 /// ::= 'module' 'asm' STRINGCONSTANT 407 bool LLParser::parseModuleAsm() { 408 assert(Lex.getKind() == lltok::kw_module); 409 Lex.Lex(); 410 411 std::string AsmStr; 412 if (parseToken(lltok::kw_asm, "expected 'module asm'") || 413 parseStringConstant(AsmStr)) 414 return true; 415 416 M->appendModuleInlineAsm(AsmStr); 417 return false; 418 } 419 420 /// toplevelentity 421 /// ::= 'target' 'triple' '=' STRINGCONSTANT 422 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 423 bool LLParser::parseTargetDefinition() { 424 assert(Lex.getKind() == lltok::kw_target); 425 std::string Str; 426 switch (Lex.Lex()) { 427 default: 428 return tokError("unknown target property"); 429 case lltok::kw_triple: 430 Lex.Lex(); 431 if (parseToken(lltok::equal, "expected '=' after target triple") || 432 parseStringConstant(Str)) 433 return true; 434 M->setTargetTriple(Str); 435 return false; 436 case lltok::kw_datalayout: 437 Lex.Lex(); 438 if (parseToken(lltok::equal, "expected '=' after target datalayout") || 439 parseStringConstant(Str)) 440 return true; 441 M->setDataLayout(Str); 442 return false; 443 } 444 } 445 446 /// toplevelentity 447 /// ::= 'source_filename' '=' STRINGCONSTANT 448 bool LLParser::parseSourceFileName() { 449 assert(Lex.getKind() == lltok::kw_source_filename); 450 Lex.Lex(); 451 if (parseToken(lltok::equal, "expected '=' after source_filename") || 452 parseStringConstant(SourceFileName)) 453 return true; 454 if (M) 455 M->setSourceFileName(SourceFileName); 456 return false; 457 } 458 459 /// parseUnnamedType: 460 /// ::= LocalVarID '=' 'type' type 461 bool LLParser::parseUnnamedType() { 462 LocTy TypeLoc = Lex.getLoc(); 463 unsigned TypeID = Lex.getUIntVal(); 464 Lex.Lex(); // eat LocalVarID; 465 466 if (parseToken(lltok::equal, "expected '=' after name") || 467 parseToken(lltok::kw_type, "expected 'type' after '='")) 468 return true; 469 470 Type *Result = nullptr; 471 if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result)) 472 return true; 473 474 if (!isa<StructType>(Result)) { 475 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 476 if (Entry.first) 477 return error(TypeLoc, "non-struct types may not be recursive"); 478 Entry.first = Result; 479 Entry.second = SMLoc(); 480 } 481 482 return false; 483 } 484 485 /// toplevelentity 486 /// ::= LocalVar '=' 'type' type 487 bool LLParser::parseNamedType() { 488 std::string Name = Lex.getStrVal(); 489 LocTy NameLoc = Lex.getLoc(); 490 Lex.Lex(); // eat LocalVar. 491 492 if (parseToken(lltok::equal, "expected '=' after name") || 493 parseToken(lltok::kw_type, "expected 'type' after name")) 494 return true; 495 496 Type *Result = nullptr; 497 if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result)) 498 return true; 499 500 if (!isa<StructType>(Result)) { 501 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 502 if (Entry.first) 503 return error(NameLoc, "non-struct types may not be recursive"); 504 Entry.first = Result; 505 Entry.second = SMLoc(); 506 } 507 508 return false; 509 } 510 511 /// toplevelentity 512 /// ::= 'declare' FunctionHeader 513 bool LLParser::parseDeclare() { 514 assert(Lex.getKind() == lltok::kw_declare); 515 Lex.Lex(); 516 517 std::vector<std::pair<unsigned, MDNode *>> MDs; 518 while (Lex.getKind() == lltok::MetadataVar) { 519 unsigned MDK; 520 MDNode *N; 521 if (parseMetadataAttachment(MDK, N)) 522 return true; 523 MDs.push_back({MDK, N}); 524 } 525 526 Function *F; 527 if (parseFunctionHeader(F, false)) 528 return true; 529 for (auto &MD : MDs) 530 F->addMetadata(MD.first, *MD.second); 531 return false; 532 } 533 534 /// toplevelentity 535 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 536 bool LLParser::parseDefine() { 537 assert(Lex.getKind() == lltok::kw_define); 538 Lex.Lex(); 539 540 Function *F; 541 return parseFunctionHeader(F, true) || parseOptionalFunctionMetadata(*F) || 542 parseFunctionBody(*F); 543 } 544 545 /// parseGlobalType 546 /// ::= 'constant' 547 /// ::= 'global' 548 bool LLParser::parseGlobalType(bool &IsConstant) { 549 if (Lex.getKind() == lltok::kw_constant) 550 IsConstant = true; 551 else if (Lex.getKind() == lltok::kw_global) 552 IsConstant = false; 553 else { 554 IsConstant = false; 555 return tokError("expected 'global' or 'constant'"); 556 } 557 Lex.Lex(); 558 return false; 559 } 560 561 bool LLParser::parseOptionalUnnamedAddr( 562 GlobalVariable::UnnamedAddr &UnnamedAddr) { 563 if (EatIfPresent(lltok::kw_unnamed_addr)) 564 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 565 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 566 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 567 else 568 UnnamedAddr = GlobalValue::UnnamedAddr::None; 569 return false; 570 } 571 572 /// parseUnnamedGlobal: 573 /// OptionalVisibility (ALIAS | IFUNC) ... 574 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 575 /// OptionalDLLStorageClass 576 /// ... -> global variable 577 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 578 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier 579 /// OptionalVisibility 580 /// OptionalDLLStorageClass 581 /// ... -> global variable 582 bool LLParser::parseUnnamedGlobal() { 583 unsigned VarID = NumberedVals.size(); 584 std::string Name; 585 LocTy NameLoc = Lex.getLoc(); 586 587 // Handle the GlobalID form. 588 if (Lex.getKind() == lltok::GlobalID) { 589 if (Lex.getUIntVal() != VarID) 590 return error(Lex.getLoc(), 591 "variable expected to be numbered '%" + Twine(VarID) + "'"); 592 Lex.Lex(); // eat GlobalID; 593 594 if (parseToken(lltok::equal, "expected '=' after name")) 595 return true; 596 } 597 598 bool HasLinkage; 599 unsigned Linkage, Visibility, DLLStorageClass; 600 bool DSOLocal; 601 GlobalVariable::ThreadLocalMode TLM; 602 GlobalVariable::UnnamedAddr UnnamedAddr; 603 if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 604 DSOLocal) || 605 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr)) 606 return true; 607 608 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 609 return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 610 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 611 612 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 613 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 614 } 615 616 /// parseNamedGlobal: 617 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 618 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 619 /// OptionalVisibility OptionalDLLStorageClass 620 /// ... -> global variable 621 bool LLParser::parseNamedGlobal() { 622 assert(Lex.getKind() == lltok::GlobalVar); 623 LocTy NameLoc = Lex.getLoc(); 624 std::string Name = Lex.getStrVal(); 625 Lex.Lex(); 626 627 bool HasLinkage; 628 unsigned Linkage, Visibility, DLLStorageClass; 629 bool DSOLocal; 630 GlobalVariable::ThreadLocalMode TLM; 631 GlobalVariable::UnnamedAddr UnnamedAddr; 632 if (parseToken(lltok::equal, "expected '=' in global variable") || 633 parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 634 DSOLocal) || 635 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr)) 636 return true; 637 638 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 639 return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 640 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 641 642 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 643 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 644 } 645 646 bool LLParser::parseComdat() { 647 assert(Lex.getKind() == lltok::ComdatVar); 648 std::string Name = Lex.getStrVal(); 649 LocTy NameLoc = Lex.getLoc(); 650 Lex.Lex(); 651 652 if (parseToken(lltok::equal, "expected '=' here")) 653 return true; 654 655 if (parseToken(lltok::kw_comdat, "expected comdat keyword")) 656 return tokError("expected comdat type"); 657 658 Comdat::SelectionKind SK; 659 switch (Lex.getKind()) { 660 default: 661 return tokError("unknown selection kind"); 662 case lltok::kw_any: 663 SK = Comdat::Any; 664 break; 665 case lltok::kw_exactmatch: 666 SK = Comdat::ExactMatch; 667 break; 668 case lltok::kw_largest: 669 SK = Comdat::Largest; 670 break; 671 case lltok::kw_noduplicates: 672 SK = Comdat::NoDuplicates; 673 break; 674 case lltok::kw_samesize: 675 SK = Comdat::SameSize; 676 break; 677 } 678 Lex.Lex(); 679 680 // See if the comdat was forward referenced, if so, use the comdat. 681 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 682 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 683 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 684 return error(NameLoc, "redefinition of comdat '$" + Name + "'"); 685 686 Comdat *C; 687 if (I != ComdatSymTab.end()) 688 C = &I->second; 689 else 690 C = M->getOrInsertComdat(Name); 691 C->setSelectionKind(SK); 692 693 return false; 694 } 695 696 // MDString: 697 // ::= '!' STRINGCONSTANT 698 bool LLParser::parseMDString(MDString *&Result) { 699 std::string Str; 700 if (parseStringConstant(Str)) 701 return true; 702 Result = MDString::get(Context, Str); 703 return false; 704 } 705 706 // MDNode: 707 // ::= '!' MDNodeNumber 708 bool LLParser::parseMDNodeID(MDNode *&Result) { 709 // !{ ..., !42, ... } 710 LocTy IDLoc = Lex.getLoc(); 711 unsigned MID = 0; 712 if (parseUInt32(MID)) 713 return true; 714 715 // If not a forward reference, just return it now. 716 if (NumberedMetadata.count(MID)) { 717 Result = NumberedMetadata[MID]; 718 return false; 719 } 720 721 // Otherwise, create MDNode forward reference. 722 auto &FwdRef = ForwardRefMDNodes[MID]; 723 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 724 725 Result = FwdRef.first.get(); 726 NumberedMetadata[MID].reset(Result); 727 return false; 728 } 729 730 /// parseNamedMetadata: 731 /// !foo = !{ !1, !2 } 732 bool LLParser::parseNamedMetadata() { 733 assert(Lex.getKind() == lltok::MetadataVar); 734 std::string Name = Lex.getStrVal(); 735 Lex.Lex(); 736 737 if (parseToken(lltok::equal, "expected '=' here") || 738 parseToken(lltok::exclaim, "Expected '!' here") || 739 parseToken(lltok::lbrace, "Expected '{' here")) 740 return true; 741 742 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 743 if (Lex.getKind() != lltok::rbrace) 744 do { 745 MDNode *N = nullptr; 746 // parse DIExpressions inline as a special case. They are still MDNodes, 747 // so they can still appear in named metadata. Remove this logic if they 748 // become plain Metadata. 749 if (Lex.getKind() == lltok::MetadataVar && 750 Lex.getStrVal() == "DIExpression") { 751 if (parseDIExpression(N, /*IsDistinct=*/false)) 752 return true; 753 // DIArgLists should only appear inline in a function, as they may 754 // contain LocalAsMetadata arguments which require a function context. 755 } else if (Lex.getKind() == lltok::MetadataVar && 756 Lex.getStrVal() == "DIArgList") { 757 return tokError("found DIArgList outside of function"); 758 } else if (parseToken(lltok::exclaim, "Expected '!' here") || 759 parseMDNodeID(N)) { 760 return true; 761 } 762 NMD->addOperand(N); 763 } while (EatIfPresent(lltok::comma)); 764 765 return parseToken(lltok::rbrace, "expected end of metadata node"); 766 } 767 768 /// parseStandaloneMetadata: 769 /// !42 = !{...} 770 bool LLParser::parseStandaloneMetadata() { 771 assert(Lex.getKind() == lltok::exclaim); 772 Lex.Lex(); 773 unsigned MetadataID = 0; 774 775 MDNode *Init; 776 if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here")) 777 return true; 778 779 // Detect common error, from old metadata syntax. 780 if (Lex.getKind() == lltok::Type) 781 return tokError("unexpected type in metadata definition"); 782 783 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 784 if (Lex.getKind() == lltok::MetadataVar) { 785 if (parseSpecializedMDNode(Init, IsDistinct)) 786 return true; 787 } else if (parseToken(lltok::exclaim, "Expected '!' here") || 788 parseMDTuple(Init, IsDistinct)) 789 return true; 790 791 // See if this was forward referenced, if so, handle it. 792 auto FI = ForwardRefMDNodes.find(MetadataID); 793 if (FI != ForwardRefMDNodes.end()) { 794 FI->second.first->replaceAllUsesWith(Init); 795 ForwardRefMDNodes.erase(FI); 796 797 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 798 } else { 799 if (NumberedMetadata.count(MetadataID)) 800 return tokError("Metadata id is already used"); 801 NumberedMetadata[MetadataID].reset(Init); 802 } 803 804 return false; 805 } 806 807 // Skips a single module summary entry. 808 bool LLParser::skipModuleSummaryEntry() { 809 // Each module summary entry consists of a tag for the entry 810 // type, followed by a colon, then the fields which may be surrounded by 811 // nested sets of parentheses. The "tag:" looks like a Label. Once parsing 812 // support is in place we will look for the tokens corresponding to the 813 // expected tags. 814 if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module && 815 Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags && 816 Lex.getKind() != lltok::kw_blockcount) 817 return tokError( 818 "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the " 819 "start of summary entry"); 820 if (Lex.getKind() == lltok::kw_flags) 821 return parseSummaryIndexFlags(); 822 if (Lex.getKind() == lltok::kw_blockcount) 823 return parseBlockCount(); 824 Lex.Lex(); 825 if (parseToken(lltok::colon, "expected ':' at start of summary entry") || 826 parseToken(lltok::lparen, "expected '(' at start of summary entry")) 827 return true; 828 // Now walk through the parenthesized entry, until the number of open 829 // parentheses goes back down to 0 (the first '(' was parsed above). 830 unsigned NumOpenParen = 1; 831 do { 832 switch (Lex.getKind()) { 833 case lltok::lparen: 834 NumOpenParen++; 835 break; 836 case lltok::rparen: 837 NumOpenParen--; 838 break; 839 case lltok::Eof: 840 return tokError("found end of file while parsing summary entry"); 841 default: 842 // Skip everything in between parentheses. 843 break; 844 } 845 Lex.Lex(); 846 } while (NumOpenParen > 0); 847 return false; 848 } 849 850 /// SummaryEntry 851 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry 852 bool LLParser::parseSummaryEntry() { 853 assert(Lex.getKind() == lltok::SummaryID); 854 unsigned SummaryID = Lex.getUIntVal(); 855 856 // For summary entries, colons should be treated as distinct tokens, 857 // not an indication of the end of a label token. 858 Lex.setIgnoreColonInIdentifiers(true); 859 860 Lex.Lex(); 861 if (parseToken(lltok::equal, "expected '=' here")) 862 return true; 863 864 // If we don't have an index object, skip the summary entry. 865 if (!Index) 866 return skipModuleSummaryEntry(); 867 868 bool result = false; 869 switch (Lex.getKind()) { 870 case lltok::kw_gv: 871 result = parseGVEntry(SummaryID); 872 break; 873 case lltok::kw_module: 874 result = parseModuleEntry(SummaryID); 875 break; 876 case lltok::kw_typeid: 877 result = parseTypeIdEntry(SummaryID); 878 break; 879 case lltok::kw_typeidCompatibleVTable: 880 result = parseTypeIdCompatibleVtableEntry(SummaryID); 881 break; 882 case lltok::kw_flags: 883 result = parseSummaryIndexFlags(); 884 break; 885 case lltok::kw_blockcount: 886 result = parseBlockCount(); 887 break; 888 default: 889 result = error(Lex.getLoc(), "unexpected summary kind"); 890 break; 891 } 892 Lex.setIgnoreColonInIdentifiers(false); 893 return result; 894 } 895 896 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 897 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 898 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 899 } 900 901 // If there was an explicit dso_local, update GV. In the absence of an explicit 902 // dso_local we keep the default value. 903 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) { 904 if (DSOLocal) 905 GV.setDSOLocal(true); 906 } 907 908 static std::string typeComparisonErrorMessage(StringRef Message, Type *Ty1, 909 Type *Ty2) { 910 std::string ErrString; 911 raw_string_ostream ErrOS(ErrString); 912 ErrOS << Message << " (" << *Ty1 << " vs " << *Ty2 << ")"; 913 return ErrOS.str(); 914 } 915 916 /// parseIndirectSymbol: 917 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 918 /// OptionalVisibility OptionalDLLStorageClass 919 /// OptionalThreadLocal OptionalUnnamedAddr 920 /// 'alias|ifunc' IndirectSymbol IndirectSymbolAttr* 921 /// 922 /// IndirectSymbol 923 /// ::= TypeAndValue 924 /// 925 /// IndirectSymbolAttr 926 /// ::= ',' 'partition' StringConstant 927 /// 928 /// Everything through OptionalUnnamedAddr has already been parsed. 929 /// 930 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc, 931 unsigned L, unsigned Visibility, 932 unsigned DLLStorageClass, bool DSOLocal, 933 GlobalVariable::ThreadLocalMode TLM, 934 GlobalVariable::UnnamedAddr UnnamedAddr) { 935 bool IsAlias; 936 if (Lex.getKind() == lltok::kw_alias) 937 IsAlias = true; 938 else if (Lex.getKind() == lltok::kw_ifunc) 939 IsAlias = false; 940 else 941 llvm_unreachable("Not an alias or ifunc!"); 942 Lex.Lex(); 943 944 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 945 946 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 947 return error(NameLoc, "invalid linkage type for alias"); 948 949 if (!isValidVisibilityForLinkage(Visibility, L)) 950 return error(NameLoc, 951 "symbol with local linkage must have default visibility"); 952 953 Type *Ty; 954 LocTy ExplicitTypeLoc = Lex.getLoc(); 955 if (parseType(Ty) || 956 parseToken(lltok::comma, "expected comma after alias or ifunc's type")) 957 return true; 958 959 Constant *Aliasee; 960 LocTy AliaseeLoc = Lex.getLoc(); 961 if (Lex.getKind() != lltok::kw_bitcast && 962 Lex.getKind() != lltok::kw_getelementptr && 963 Lex.getKind() != lltok::kw_addrspacecast && 964 Lex.getKind() != lltok::kw_inttoptr) { 965 if (parseGlobalTypeAndValue(Aliasee)) 966 return true; 967 } else { 968 // The bitcast dest type is not present, it is implied by the dest type. 969 ValID ID; 970 if (parseValID(ID)) 971 return true; 972 if (ID.Kind != ValID::t_Constant) 973 return error(AliaseeLoc, "invalid aliasee"); 974 Aliasee = ID.ConstantVal; 975 } 976 977 Type *AliaseeType = Aliasee->getType(); 978 auto *PTy = dyn_cast<PointerType>(AliaseeType); 979 if (!PTy) 980 return error(AliaseeLoc, "An alias or ifunc must have pointer type"); 981 unsigned AddrSpace = PTy->getAddressSpace(); 982 983 if (IsAlias && Ty != PTy->getElementType()) { 984 return error( 985 ExplicitTypeLoc, 986 typeComparisonErrorMessage( 987 "explicit pointee type doesn't match operand's pointee type", Ty, 988 PTy->getElementType())); 989 } 990 991 if (!IsAlias && !PTy->getElementType()->isFunctionTy()) { 992 return error(ExplicitTypeLoc, 993 "explicit pointee type should be a function type"); 994 } 995 996 GlobalValue *GVal = nullptr; 997 998 // See if the alias was forward referenced, if so, prepare to replace the 999 // forward reference. 1000 if (!Name.empty()) { 1001 GVal = M->getNamedValue(Name); 1002 if (GVal) { 1003 if (!ForwardRefVals.erase(Name)) 1004 return error(NameLoc, "redefinition of global '@" + Name + "'"); 1005 } 1006 } else { 1007 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1008 if (I != ForwardRefValIDs.end()) { 1009 GVal = I->second.first; 1010 ForwardRefValIDs.erase(I); 1011 } 1012 } 1013 1014 // Okay, create the alias but do not insert it into the module yet. 1015 std::unique_ptr<GlobalIndirectSymbol> GA; 1016 if (IsAlias) 1017 GA.reset(GlobalAlias::create(Ty, AddrSpace, 1018 (GlobalValue::LinkageTypes)Linkage, Name, 1019 Aliasee, /*Parent*/ nullptr)); 1020 else 1021 GA.reset(GlobalIFunc::create(Ty, AddrSpace, 1022 (GlobalValue::LinkageTypes)Linkage, Name, 1023 Aliasee, /*Parent*/ nullptr)); 1024 GA->setThreadLocalMode(TLM); 1025 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1026 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1027 GA->setUnnamedAddr(UnnamedAddr); 1028 maybeSetDSOLocal(DSOLocal, *GA); 1029 1030 // At this point we've parsed everything except for the IndirectSymbolAttrs. 1031 // Now parse them if there are any. 1032 while (Lex.getKind() == lltok::comma) { 1033 Lex.Lex(); 1034 1035 if (Lex.getKind() == lltok::kw_partition) { 1036 Lex.Lex(); 1037 GA->setPartition(Lex.getStrVal()); 1038 if (parseToken(lltok::StringConstant, "expected partition string")) 1039 return true; 1040 } else { 1041 return tokError("unknown alias or ifunc property!"); 1042 } 1043 } 1044 1045 if (Name.empty()) 1046 NumberedVals.push_back(GA.get()); 1047 1048 if (GVal) { 1049 // Verify that types agree. 1050 if (GVal->getType() != GA->getType()) 1051 return error( 1052 ExplicitTypeLoc, 1053 "forward reference and definition of alias have different types"); 1054 1055 // If they agree, just RAUW the old value with the alias and remove the 1056 // forward ref info. 1057 GVal->replaceAllUsesWith(GA.get()); 1058 GVal->eraseFromParent(); 1059 } 1060 1061 // Insert into the module, we know its name won't collide now. 1062 if (IsAlias) 1063 M->getAliasList().push_back(cast<GlobalAlias>(GA.get())); 1064 else 1065 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get())); 1066 assert(GA->getName() == Name && "Should not be a name conflict!"); 1067 1068 // The module owns this now 1069 GA.release(); 1070 1071 return false; 1072 } 1073 1074 /// parseGlobal 1075 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 1076 /// OptionalVisibility OptionalDLLStorageClass 1077 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 1078 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs 1079 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 1080 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr 1081 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type 1082 /// Const OptionalAttrs 1083 /// 1084 /// Everything up to and including OptionalUnnamedAddr has been parsed 1085 /// already. 1086 /// 1087 bool LLParser::parseGlobal(const std::string &Name, LocTy NameLoc, 1088 unsigned Linkage, bool HasLinkage, 1089 unsigned Visibility, unsigned DLLStorageClass, 1090 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM, 1091 GlobalVariable::UnnamedAddr UnnamedAddr) { 1092 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 1093 return error(NameLoc, 1094 "symbol with local linkage must have default visibility"); 1095 1096 unsigned AddrSpace; 1097 bool IsConstant, IsExternallyInitialized; 1098 LocTy IsExternallyInitializedLoc; 1099 LocTy TyLoc; 1100 1101 Type *Ty = nullptr; 1102 if (parseOptionalAddrSpace(AddrSpace) || 1103 parseOptionalToken(lltok::kw_externally_initialized, 1104 IsExternallyInitialized, 1105 &IsExternallyInitializedLoc) || 1106 parseGlobalType(IsConstant) || parseType(Ty, TyLoc)) 1107 return true; 1108 1109 // If the linkage is specified and is external, then no initializer is 1110 // present. 1111 Constant *Init = nullptr; 1112 if (!HasLinkage || 1113 !GlobalValue::isValidDeclarationLinkage( 1114 (GlobalValue::LinkageTypes)Linkage)) { 1115 if (parseGlobalValue(Ty, Init)) 1116 return true; 1117 } 1118 1119 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 1120 return error(TyLoc, "invalid type for global variable"); 1121 1122 GlobalValue *GVal = nullptr; 1123 1124 // See if the global was forward referenced, if so, use the global. 1125 if (!Name.empty()) { 1126 GVal = M->getNamedValue(Name); 1127 if (GVal) { 1128 if (!ForwardRefVals.erase(Name)) 1129 return error(NameLoc, "redefinition of global '@" + Name + "'"); 1130 } 1131 } else { 1132 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1133 if (I != ForwardRefValIDs.end()) { 1134 GVal = I->second.first; 1135 ForwardRefValIDs.erase(I); 1136 } 1137 } 1138 1139 GlobalVariable *GV; 1140 if (!GVal) { 1141 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, 1142 Name, nullptr, GlobalVariable::NotThreadLocal, 1143 AddrSpace); 1144 } else { 1145 if (GVal->getValueType() != Ty) 1146 return error( 1147 TyLoc, 1148 "forward reference and definition of global have different types"); 1149 1150 GV = cast<GlobalVariable>(GVal); 1151 1152 // Move the forward-reference to the correct spot in the module. 1153 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 1154 } 1155 1156 if (Name.empty()) 1157 NumberedVals.push_back(GV); 1158 1159 // Set the parsed properties on the global. 1160 if (Init) 1161 GV->setInitializer(Init); 1162 GV->setConstant(IsConstant); 1163 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 1164 maybeSetDSOLocal(DSOLocal, *GV); 1165 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1166 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1167 GV->setExternallyInitialized(IsExternallyInitialized); 1168 GV->setThreadLocalMode(TLM); 1169 GV->setUnnamedAddr(UnnamedAddr); 1170 1171 // parse attributes on the global. 1172 while (Lex.getKind() == lltok::comma) { 1173 Lex.Lex(); 1174 1175 if (Lex.getKind() == lltok::kw_section) { 1176 Lex.Lex(); 1177 GV->setSection(Lex.getStrVal()); 1178 if (parseToken(lltok::StringConstant, "expected global section string")) 1179 return true; 1180 } else if (Lex.getKind() == lltok::kw_partition) { 1181 Lex.Lex(); 1182 GV->setPartition(Lex.getStrVal()); 1183 if (parseToken(lltok::StringConstant, "expected partition string")) 1184 return true; 1185 } else if (Lex.getKind() == lltok::kw_align) { 1186 MaybeAlign Alignment; 1187 if (parseOptionalAlignment(Alignment)) 1188 return true; 1189 GV->setAlignment(Alignment); 1190 } else if (Lex.getKind() == lltok::MetadataVar) { 1191 if (parseGlobalObjectMetadataAttachment(*GV)) 1192 return true; 1193 } else { 1194 Comdat *C; 1195 if (parseOptionalComdat(Name, C)) 1196 return true; 1197 if (C) 1198 GV->setComdat(C); 1199 else 1200 return tokError("unknown global variable property!"); 1201 } 1202 } 1203 1204 AttrBuilder Attrs; 1205 LocTy BuiltinLoc; 1206 std::vector<unsigned> FwdRefAttrGrps; 1207 if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc)) 1208 return true; 1209 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) { 1210 GV->setAttributes(AttributeSet::get(Context, Attrs)); 1211 ForwardRefAttrGroups[GV] = FwdRefAttrGrps; 1212 } 1213 1214 return false; 1215 } 1216 1217 /// parseUnnamedAttrGrp 1218 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 1219 bool LLParser::parseUnnamedAttrGrp() { 1220 assert(Lex.getKind() == lltok::kw_attributes); 1221 LocTy AttrGrpLoc = Lex.getLoc(); 1222 Lex.Lex(); 1223 1224 if (Lex.getKind() != lltok::AttrGrpID) 1225 return tokError("expected attribute group id"); 1226 1227 unsigned VarID = Lex.getUIntVal(); 1228 std::vector<unsigned> unused; 1229 LocTy BuiltinLoc; 1230 Lex.Lex(); 1231 1232 if (parseToken(lltok::equal, "expected '=' here") || 1233 parseToken(lltok::lbrace, "expected '{' here") || 1234 parseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 1235 BuiltinLoc) || 1236 parseToken(lltok::rbrace, "expected end of attribute group")) 1237 return true; 1238 1239 if (!NumberedAttrBuilders[VarID].hasAttributes()) 1240 return error(AttrGrpLoc, "attribute group has no attributes"); 1241 1242 return false; 1243 } 1244 1245 /// parseFnAttributeValuePairs 1246 /// ::= <attr> | <attr> '=' <value> 1247 bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B, 1248 std::vector<unsigned> &FwdRefAttrGrps, 1249 bool inAttrGrp, LocTy &BuiltinLoc) { 1250 bool HaveError = false; 1251 1252 B.clear(); 1253 1254 while (true) { 1255 lltok::Kind Token = Lex.getKind(); 1256 if (Token == lltok::kw_builtin) 1257 BuiltinLoc = Lex.getLoc(); 1258 switch (Token) { 1259 default: 1260 if (!inAttrGrp) return HaveError; 1261 return error(Lex.getLoc(), "unterminated attribute group"); 1262 case lltok::rbrace: 1263 // Finished. 1264 return false; 1265 1266 case lltok::AttrGrpID: { 1267 // Allow a function to reference an attribute group: 1268 // 1269 // define void @foo() #1 { ... } 1270 if (inAttrGrp) 1271 HaveError |= error( 1272 Lex.getLoc(), 1273 "cannot have an attribute group reference in an attribute group"); 1274 1275 unsigned AttrGrpNum = Lex.getUIntVal(); 1276 if (inAttrGrp) break; 1277 1278 // Save the reference to the attribute group. We'll fill it in later. 1279 FwdRefAttrGrps.push_back(AttrGrpNum); 1280 break; 1281 } 1282 // Target-dependent attributes: 1283 case lltok::StringConstant: { 1284 if (parseStringAttribute(B)) 1285 return true; 1286 continue; 1287 } 1288 1289 // Target-independent attributes: 1290 case lltok::kw_align: { 1291 // As a hack, we allow function alignment to be initially parsed as an 1292 // attribute on a function declaration/definition or added to an attribute 1293 // group and later moved to the alignment field. 1294 MaybeAlign Alignment; 1295 if (inAttrGrp) { 1296 Lex.Lex(); 1297 uint32_t Value = 0; 1298 if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value)) 1299 return true; 1300 Alignment = Align(Value); 1301 } else { 1302 if (parseOptionalAlignment(Alignment)) 1303 return true; 1304 } 1305 B.addAlignmentAttr(Alignment); 1306 continue; 1307 } 1308 case lltok::kw_alignstack: { 1309 unsigned Alignment; 1310 if (inAttrGrp) { 1311 Lex.Lex(); 1312 if (parseToken(lltok::equal, "expected '=' here") || 1313 parseUInt32(Alignment)) 1314 return true; 1315 } else { 1316 if (parseOptionalStackAlignment(Alignment)) 1317 return true; 1318 } 1319 B.addStackAlignmentAttr(Alignment); 1320 continue; 1321 } 1322 case lltok::kw_allocsize: { 1323 unsigned ElemSizeArg; 1324 Optional<unsigned> NumElemsArg; 1325 // inAttrGrp doesn't matter; we only support allocsize(a[, b]) 1326 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1327 return true; 1328 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1329 continue; 1330 } 1331 case lltok::kw_vscale_range: { 1332 unsigned MinValue, MaxValue; 1333 // inAttrGrp doesn't matter; we only support vscale_range(a[, b]) 1334 if (parseVScaleRangeArguments(MinValue, MaxValue)) 1335 return true; 1336 B.addVScaleRangeAttr(MinValue, MaxValue); 1337 continue; 1338 } 1339 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break; 1340 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break; 1341 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break; 1342 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break; 1343 case lltok::kw_hot: B.addAttribute(Attribute::Hot); break; 1344 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break; 1345 case lltok::kw_inaccessiblememonly: 1346 B.addAttribute(Attribute::InaccessibleMemOnly); break; 1347 case lltok::kw_inaccessiblemem_or_argmemonly: 1348 B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break; 1349 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break; 1350 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break; 1351 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break; 1352 case lltok::kw_mustprogress: 1353 B.addAttribute(Attribute::MustProgress); 1354 break; 1355 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break; 1356 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break; 1357 case lltok::kw_nocallback: 1358 B.addAttribute(Attribute::NoCallback); 1359 break; 1360 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break; 1361 case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break; 1362 case lltok::kw_noimplicitfloat: 1363 B.addAttribute(Attribute::NoImplicitFloat); break; 1364 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break; 1365 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break; 1366 case lltok::kw_nomerge: B.addAttribute(Attribute::NoMerge); break; 1367 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break; 1368 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break; 1369 case lltok::kw_nosync: B.addAttribute(Attribute::NoSync); break; 1370 case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break; 1371 case lltok::kw_noprofile: B.addAttribute(Attribute::NoProfile); break; 1372 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break; 1373 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break; 1374 case lltok::kw_nosanitize_coverage: 1375 B.addAttribute(Attribute::NoSanitizeCoverage); 1376 break; 1377 case lltok::kw_null_pointer_is_valid: 1378 B.addAttribute(Attribute::NullPointerIsValid); break; 1379 case lltok::kw_optforfuzzing: 1380 B.addAttribute(Attribute::OptForFuzzing); break; 1381 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break; 1382 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break; 1383 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1384 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1385 case lltok::kw_returns_twice: 1386 B.addAttribute(Attribute::ReturnsTwice); break; 1387 case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break; 1388 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break; 1389 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break; 1390 case lltok::kw_sspstrong: 1391 B.addAttribute(Attribute::StackProtectStrong); break; 1392 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break; 1393 case lltok::kw_shadowcallstack: 1394 B.addAttribute(Attribute::ShadowCallStack); break; 1395 case lltok::kw_sanitize_address: 1396 B.addAttribute(Attribute::SanitizeAddress); break; 1397 case lltok::kw_sanitize_hwaddress: 1398 B.addAttribute(Attribute::SanitizeHWAddress); break; 1399 case lltok::kw_sanitize_memtag: 1400 B.addAttribute(Attribute::SanitizeMemTag); break; 1401 case lltok::kw_sanitize_thread: 1402 B.addAttribute(Attribute::SanitizeThread); break; 1403 case lltok::kw_sanitize_memory: 1404 B.addAttribute(Attribute::SanitizeMemory); break; 1405 case lltok::kw_speculative_load_hardening: 1406 B.addAttribute(Attribute::SpeculativeLoadHardening); 1407 break; 1408 case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break; 1409 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break; 1410 case lltok::kw_willreturn: B.addAttribute(Attribute::WillReturn); break; 1411 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1412 case lltok::kw_preallocated: { 1413 Type *Ty; 1414 if (parsePreallocated(Ty)) 1415 return true; 1416 B.addPreallocatedAttr(Ty); 1417 break; 1418 } 1419 1420 // error handling. 1421 case lltok::kw_inreg: 1422 case lltok::kw_signext: 1423 case lltok::kw_zeroext: 1424 HaveError |= 1425 error(Lex.getLoc(), "invalid use of attribute on a function"); 1426 break; 1427 case lltok::kw_byval: 1428 case lltok::kw_dereferenceable: 1429 case lltok::kw_dereferenceable_or_null: 1430 case lltok::kw_inalloca: 1431 case lltok::kw_nest: 1432 case lltok::kw_noalias: 1433 case lltok::kw_noundef: 1434 case lltok::kw_nocapture: 1435 case lltok::kw_nonnull: 1436 case lltok::kw_returned: 1437 case lltok::kw_sret: 1438 case lltok::kw_swifterror: 1439 case lltok::kw_swiftself: 1440 case lltok::kw_swiftasync: 1441 case lltok::kw_immarg: 1442 case lltok::kw_byref: 1443 HaveError |= 1444 error(Lex.getLoc(), 1445 "invalid use of parameter-only attribute on a function"); 1446 break; 1447 } 1448 1449 // parsePreallocated() consumes token 1450 if (Token != lltok::kw_preallocated) 1451 Lex.Lex(); 1452 } 1453 } 1454 1455 //===----------------------------------------------------------------------===// 1456 // GlobalValue Reference/Resolution Routines. 1457 //===----------------------------------------------------------------------===// 1458 1459 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy, 1460 const std::string &Name) { 1461 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType())) 1462 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, 1463 PTy->getAddressSpace(), Name, M); 1464 else 1465 return new GlobalVariable(*M, PTy->getElementType(), false, 1466 GlobalValue::ExternalWeakLinkage, nullptr, Name, 1467 nullptr, GlobalVariable::NotThreadLocal, 1468 PTy->getAddressSpace()); 1469 } 1470 1471 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty, 1472 Value *Val, bool IsCall) { 1473 Type *ValTy = Val->getType(); 1474 if (ValTy == Ty) 1475 return Val; 1476 // For calls, we also allow opaque pointers. 1477 if (IsCall && ValTy == PointerType::get(Ty->getContext(), 1478 Ty->getPointerAddressSpace())) 1479 return Val; 1480 if (Ty->isLabelTy()) 1481 error(Loc, "'" + Name + "' is not a basic block"); 1482 else 1483 error(Loc, "'" + Name + "' defined with type '" + 1484 getTypeString(Val->getType()) + "' but expected '" + 1485 getTypeString(Ty) + "'"); 1486 return nullptr; 1487 } 1488 1489 /// getGlobalVal - Get a value with the specified name or ID, creating a 1490 /// forward reference record if needed. This can return null if the value 1491 /// exists but does not have the right type. 1492 GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty, 1493 LocTy Loc, bool IsCall) { 1494 PointerType *PTy = dyn_cast<PointerType>(Ty); 1495 if (!PTy) { 1496 error(Loc, "global variable reference must have pointer type"); 1497 return nullptr; 1498 } 1499 1500 // Look this name up in the normal function symbol table. 1501 GlobalValue *Val = 1502 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1503 1504 // If this is a forward reference for the value, see if we already created a 1505 // forward ref record. 1506 if (!Val) { 1507 auto I = ForwardRefVals.find(Name); 1508 if (I != ForwardRefVals.end()) 1509 Val = I->second.first; 1510 } 1511 1512 // If we have the value in the symbol table or fwd-ref table, return it. 1513 if (Val) 1514 return cast_or_null<GlobalValue>( 1515 checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall)); 1516 1517 // Otherwise, create a new forward reference for this value and remember it. 1518 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name); 1519 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1520 return FwdVal; 1521 } 1522 1523 GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc, 1524 bool IsCall) { 1525 PointerType *PTy = dyn_cast<PointerType>(Ty); 1526 if (!PTy) { 1527 error(Loc, "global variable reference must have pointer type"); 1528 return nullptr; 1529 } 1530 1531 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1532 1533 // If this is a forward reference for the value, see if we already created a 1534 // forward ref record. 1535 if (!Val) { 1536 auto I = ForwardRefValIDs.find(ID); 1537 if (I != ForwardRefValIDs.end()) 1538 Val = I->second.first; 1539 } 1540 1541 // If we have the value in the symbol table or fwd-ref table, return it. 1542 if (Val) 1543 return cast_or_null<GlobalValue>( 1544 checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall)); 1545 1546 // Otherwise, create a new forward reference for this value and remember it. 1547 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, ""); 1548 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1549 return FwdVal; 1550 } 1551 1552 //===----------------------------------------------------------------------===// 1553 // Comdat Reference/Resolution Routines. 1554 //===----------------------------------------------------------------------===// 1555 1556 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1557 // Look this name up in the comdat symbol table. 1558 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1559 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1560 if (I != ComdatSymTab.end()) 1561 return &I->second; 1562 1563 // Otherwise, create a new forward reference for this value and remember it. 1564 Comdat *C = M->getOrInsertComdat(Name); 1565 ForwardRefComdats[Name] = Loc; 1566 return C; 1567 } 1568 1569 //===----------------------------------------------------------------------===// 1570 // Helper Routines. 1571 //===----------------------------------------------------------------------===// 1572 1573 /// parseToken - If the current token has the specified kind, eat it and return 1574 /// success. Otherwise, emit the specified error and return failure. 1575 bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) { 1576 if (Lex.getKind() != T) 1577 return tokError(ErrMsg); 1578 Lex.Lex(); 1579 return false; 1580 } 1581 1582 /// parseStringConstant 1583 /// ::= StringConstant 1584 bool LLParser::parseStringConstant(std::string &Result) { 1585 if (Lex.getKind() != lltok::StringConstant) 1586 return tokError("expected string constant"); 1587 Result = Lex.getStrVal(); 1588 Lex.Lex(); 1589 return false; 1590 } 1591 1592 /// parseUInt32 1593 /// ::= uint32 1594 bool LLParser::parseUInt32(uint32_t &Val) { 1595 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1596 return tokError("expected integer"); 1597 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1598 if (Val64 != unsigned(Val64)) 1599 return tokError("expected 32-bit integer (too large)"); 1600 Val = Val64; 1601 Lex.Lex(); 1602 return false; 1603 } 1604 1605 /// parseUInt64 1606 /// ::= uint64 1607 bool LLParser::parseUInt64(uint64_t &Val) { 1608 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1609 return tokError("expected integer"); 1610 Val = Lex.getAPSIntVal().getLimitedValue(); 1611 Lex.Lex(); 1612 return false; 1613 } 1614 1615 /// parseTLSModel 1616 /// := 'localdynamic' 1617 /// := 'initialexec' 1618 /// := 'localexec' 1619 bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1620 switch (Lex.getKind()) { 1621 default: 1622 return tokError("expected localdynamic, initialexec or localexec"); 1623 case lltok::kw_localdynamic: 1624 TLM = GlobalVariable::LocalDynamicTLSModel; 1625 break; 1626 case lltok::kw_initialexec: 1627 TLM = GlobalVariable::InitialExecTLSModel; 1628 break; 1629 case lltok::kw_localexec: 1630 TLM = GlobalVariable::LocalExecTLSModel; 1631 break; 1632 } 1633 1634 Lex.Lex(); 1635 return false; 1636 } 1637 1638 /// parseOptionalThreadLocal 1639 /// := /*empty*/ 1640 /// := 'thread_local' 1641 /// := 'thread_local' '(' tlsmodel ')' 1642 bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1643 TLM = GlobalVariable::NotThreadLocal; 1644 if (!EatIfPresent(lltok::kw_thread_local)) 1645 return false; 1646 1647 TLM = GlobalVariable::GeneralDynamicTLSModel; 1648 if (Lex.getKind() == lltok::lparen) { 1649 Lex.Lex(); 1650 return parseTLSModel(TLM) || 1651 parseToken(lltok::rparen, "expected ')' after thread local model"); 1652 } 1653 return false; 1654 } 1655 1656 /// parseOptionalAddrSpace 1657 /// := /*empty*/ 1658 /// := 'addrspace' '(' uint32 ')' 1659 bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) { 1660 AddrSpace = DefaultAS; 1661 if (!EatIfPresent(lltok::kw_addrspace)) 1662 return false; 1663 return parseToken(lltok::lparen, "expected '(' in address space") || 1664 parseUInt32(AddrSpace) || 1665 parseToken(lltok::rparen, "expected ')' in address space"); 1666 } 1667 1668 /// parseStringAttribute 1669 /// := StringConstant 1670 /// := StringConstant '=' StringConstant 1671 bool LLParser::parseStringAttribute(AttrBuilder &B) { 1672 std::string Attr = Lex.getStrVal(); 1673 Lex.Lex(); 1674 std::string Val; 1675 if (EatIfPresent(lltok::equal) && parseStringConstant(Val)) 1676 return true; 1677 B.addAttribute(Attr, Val); 1678 return false; 1679 } 1680 1681 /// parseOptionalParamAttrs - parse a potentially empty list of parameter 1682 /// attributes. 1683 bool LLParser::parseOptionalParamAttrs(AttrBuilder &B) { 1684 bool HaveError = false; 1685 1686 B.clear(); 1687 1688 while (true) { 1689 lltok::Kind Token = Lex.getKind(); 1690 switch (Token) { 1691 default: // End of attributes. 1692 return HaveError; 1693 case lltok::StringConstant: { 1694 if (parseStringAttribute(B)) 1695 return true; 1696 continue; 1697 } 1698 case lltok::kw_align: { 1699 MaybeAlign Alignment; 1700 if (parseOptionalAlignment(Alignment, true)) 1701 return true; 1702 B.addAlignmentAttr(Alignment); 1703 continue; 1704 } 1705 case lltok::kw_alignstack: { 1706 unsigned Alignment; 1707 if (parseOptionalStackAlignment(Alignment)) 1708 return true; 1709 B.addStackAlignmentAttr(Alignment); 1710 continue; 1711 } 1712 case lltok::kw_byval: { 1713 Type *Ty; 1714 if (parseRequiredTypeAttr(Ty, lltok::kw_byval)) 1715 return true; 1716 B.addByValAttr(Ty); 1717 continue; 1718 } 1719 case lltok::kw_sret: { 1720 Type *Ty; 1721 if (parseRequiredTypeAttr(Ty, lltok::kw_sret)) 1722 return true; 1723 B.addStructRetAttr(Ty); 1724 continue; 1725 } 1726 case lltok::kw_preallocated: { 1727 Type *Ty; 1728 if (parsePreallocated(Ty)) 1729 return true; 1730 B.addPreallocatedAttr(Ty); 1731 continue; 1732 } 1733 case lltok::kw_inalloca: { 1734 Type *Ty; 1735 if (parseInalloca(Ty)) 1736 return true; 1737 B.addInAllocaAttr(Ty); 1738 continue; 1739 } 1740 case lltok::kw_dereferenceable: { 1741 uint64_t Bytes; 1742 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1743 return true; 1744 B.addDereferenceableAttr(Bytes); 1745 continue; 1746 } 1747 case lltok::kw_dereferenceable_or_null: { 1748 uint64_t Bytes; 1749 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1750 return true; 1751 B.addDereferenceableOrNullAttr(Bytes); 1752 continue; 1753 } 1754 case lltok::kw_byref: { 1755 Type *Ty; 1756 if (parseByRef(Ty)) 1757 return true; 1758 B.addByRefAttr(Ty); 1759 continue; 1760 } 1761 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1762 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break; 1763 case lltok::kw_noundef: 1764 B.addAttribute(Attribute::NoUndef); 1765 break; 1766 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1767 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break; 1768 case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break; 1769 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1770 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1771 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1772 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break; 1773 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1774 case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break; 1775 case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break; 1776 case lltok::kw_swiftasync: B.addAttribute(Attribute::SwiftAsync); break; 1777 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1778 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1779 case lltok::kw_immarg: B.addAttribute(Attribute::ImmArg); break; 1780 1781 case lltok::kw_alwaysinline: 1782 case lltok::kw_argmemonly: 1783 case lltok::kw_builtin: 1784 case lltok::kw_inlinehint: 1785 case lltok::kw_jumptable: 1786 case lltok::kw_minsize: 1787 case lltok::kw_mustprogress: 1788 case lltok::kw_naked: 1789 case lltok::kw_nobuiltin: 1790 case lltok::kw_noduplicate: 1791 case lltok::kw_noimplicitfloat: 1792 case lltok::kw_noinline: 1793 case lltok::kw_nonlazybind: 1794 case lltok::kw_nomerge: 1795 case lltok::kw_noprofile: 1796 case lltok::kw_noredzone: 1797 case lltok::kw_noreturn: 1798 case lltok::kw_nocf_check: 1799 case lltok::kw_nounwind: 1800 case lltok::kw_nosanitize_coverage: 1801 case lltok::kw_optforfuzzing: 1802 case lltok::kw_optnone: 1803 case lltok::kw_optsize: 1804 case lltok::kw_returns_twice: 1805 case lltok::kw_sanitize_address: 1806 case lltok::kw_sanitize_hwaddress: 1807 case lltok::kw_sanitize_memtag: 1808 case lltok::kw_sanitize_memory: 1809 case lltok::kw_sanitize_thread: 1810 case lltok::kw_speculative_load_hardening: 1811 case lltok::kw_ssp: 1812 case lltok::kw_sspreq: 1813 case lltok::kw_sspstrong: 1814 case lltok::kw_safestack: 1815 case lltok::kw_shadowcallstack: 1816 case lltok::kw_strictfp: 1817 case lltok::kw_uwtable: 1818 case lltok::kw_vscale_range: 1819 HaveError |= 1820 error(Lex.getLoc(), "invalid use of function-only attribute"); 1821 break; 1822 } 1823 1824 Lex.Lex(); 1825 } 1826 } 1827 1828 /// parseOptionalReturnAttrs - parse a potentially empty list of return 1829 /// attributes. 1830 bool LLParser::parseOptionalReturnAttrs(AttrBuilder &B) { 1831 bool HaveError = false; 1832 1833 B.clear(); 1834 1835 while (true) { 1836 lltok::Kind Token = Lex.getKind(); 1837 switch (Token) { 1838 default: // End of attributes. 1839 return HaveError; 1840 case lltok::StringConstant: { 1841 if (parseStringAttribute(B)) 1842 return true; 1843 continue; 1844 } 1845 case lltok::kw_dereferenceable: { 1846 uint64_t Bytes; 1847 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1848 return true; 1849 B.addDereferenceableAttr(Bytes); 1850 continue; 1851 } 1852 case lltok::kw_dereferenceable_or_null: { 1853 uint64_t Bytes; 1854 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1855 return true; 1856 B.addDereferenceableOrNullAttr(Bytes); 1857 continue; 1858 } 1859 case lltok::kw_align: { 1860 MaybeAlign Alignment; 1861 if (parseOptionalAlignment(Alignment)) 1862 return true; 1863 B.addAlignmentAttr(Alignment); 1864 continue; 1865 } 1866 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1867 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1868 case lltok::kw_noundef: 1869 B.addAttribute(Attribute::NoUndef); 1870 break; 1871 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1872 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1873 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1874 1875 // error handling. 1876 case lltok::kw_byval: 1877 case lltok::kw_inalloca: 1878 case lltok::kw_nest: 1879 case lltok::kw_nocapture: 1880 case lltok::kw_returned: 1881 case lltok::kw_sret: 1882 case lltok::kw_swifterror: 1883 case lltok::kw_swiftself: 1884 case lltok::kw_swiftasync: 1885 case lltok::kw_immarg: 1886 case lltok::kw_byref: 1887 HaveError |= 1888 error(Lex.getLoc(), "invalid use of parameter-only attribute"); 1889 break; 1890 1891 case lltok::kw_alignstack: 1892 case lltok::kw_alwaysinline: 1893 case lltok::kw_argmemonly: 1894 case lltok::kw_builtin: 1895 case lltok::kw_cold: 1896 case lltok::kw_inlinehint: 1897 case lltok::kw_jumptable: 1898 case lltok::kw_minsize: 1899 case lltok::kw_mustprogress: 1900 case lltok::kw_naked: 1901 case lltok::kw_nobuiltin: 1902 case lltok::kw_noduplicate: 1903 case lltok::kw_noimplicitfloat: 1904 case lltok::kw_noinline: 1905 case lltok::kw_nonlazybind: 1906 case lltok::kw_nomerge: 1907 case lltok::kw_noprofile: 1908 case lltok::kw_noredzone: 1909 case lltok::kw_noreturn: 1910 case lltok::kw_nocf_check: 1911 case lltok::kw_nounwind: 1912 case lltok::kw_nosanitize_coverage: 1913 case lltok::kw_optforfuzzing: 1914 case lltok::kw_optnone: 1915 case lltok::kw_optsize: 1916 case lltok::kw_returns_twice: 1917 case lltok::kw_sanitize_address: 1918 case lltok::kw_sanitize_hwaddress: 1919 case lltok::kw_sanitize_memtag: 1920 case lltok::kw_sanitize_memory: 1921 case lltok::kw_sanitize_thread: 1922 case lltok::kw_speculative_load_hardening: 1923 case lltok::kw_ssp: 1924 case lltok::kw_sspreq: 1925 case lltok::kw_sspstrong: 1926 case lltok::kw_safestack: 1927 case lltok::kw_shadowcallstack: 1928 case lltok::kw_strictfp: 1929 case lltok::kw_uwtable: 1930 case lltok::kw_vscale_range: 1931 HaveError |= 1932 error(Lex.getLoc(), "invalid use of function-only attribute"); 1933 break; 1934 case lltok::kw_readnone: 1935 case lltok::kw_readonly: 1936 HaveError |= 1937 error(Lex.getLoc(), "invalid use of attribute on return type"); 1938 break; 1939 case lltok::kw_preallocated: 1940 HaveError |= 1941 error(Lex.getLoc(), 1942 "invalid use of parameter-only/call site-only attribute"); 1943 break; 1944 } 1945 1946 Lex.Lex(); 1947 } 1948 } 1949 1950 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1951 HasLinkage = true; 1952 switch (Kind) { 1953 default: 1954 HasLinkage = false; 1955 return GlobalValue::ExternalLinkage; 1956 case lltok::kw_private: 1957 return GlobalValue::PrivateLinkage; 1958 case lltok::kw_internal: 1959 return GlobalValue::InternalLinkage; 1960 case lltok::kw_weak: 1961 return GlobalValue::WeakAnyLinkage; 1962 case lltok::kw_weak_odr: 1963 return GlobalValue::WeakODRLinkage; 1964 case lltok::kw_linkonce: 1965 return GlobalValue::LinkOnceAnyLinkage; 1966 case lltok::kw_linkonce_odr: 1967 return GlobalValue::LinkOnceODRLinkage; 1968 case lltok::kw_available_externally: 1969 return GlobalValue::AvailableExternallyLinkage; 1970 case lltok::kw_appending: 1971 return GlobalValue::AppendingLinkage; 1972 case lltok::kw_common: 1973 return GlobalValue::CommonLinkage; 1974 case lltok::kw_extern_weak: 1975 return GlobalValue::ExternalWeakLinkage; 1976 case lltok::kw_external: 1977 return GlobalValue::ExternalLinkage; 1978 } 1979 } 1980 1981 /// parseOptionalLinkage 1982 /// ::= /*empty*/ 1983 /// ::= 'private' 1984 /// ::= 'internal' 1985 /// ::= 'weak' 1986 /// ::= 'weak_odr' 1987 /// ::= 'linkonce' 1988 /// ::= 'linkonce_odr' 1989 /// ::= 'available_externally' 1990 /// ::= 'appending' 1991 /// ::= 'common' 1992 /// ::= 'extern_weak' 1993 /// ::= 'external' 1994 bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage, 1995 unsigned &Visibility, 1996 unsigned &DLLStorageClass, bool &DSOLocal) { 1997 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 1998 if (HasLinkage) 1999 Lex.Lex(); 2000 parseOptionalDSOLocal(DSOLocal); 2001 parseOptionalVisibility(Visibility); 2002 parseOptionalDLLStorageClass(DLLStorageClass); 2003 2004 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) { 2005 return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch"); 2006 } 2007 2008 return false; 2009 } 2010 2011 void LLParser::parseOptionalDSOLocal(bool &DSOLocal) { 2012 switch (Lex.getKind()) { 2013 default: 2014 DSOLocal = false; 2015 break; 2016 case lltok::kw_dso_local: 2017 DSOLocal = true; 2018 Lex.Lex(); 2019 break; 2020 case lltok::kw_dso_preemptable: 2021 DSOLocal = false; 2022 Lex.Lex(); 2023 break; 2024 } 2025 } 2026 2027 /// parseOptionalVisibility 2028 /// ::= /*empty*/ 2029 /// ::= 'default' 2030 /// ::= 'hidden' 2031 /// ::= 'protected' 2032 /// 2033 void LLParser::parseOptionalVisibility(unsigned &Res) { 2034 switch (Lex.getKind()) { 2035 default: 2036 Res = GlobalValue::DefaultVisibility; 2037 return; 2038 case lltok::kw_default: 2039 Res = GlobalValue::DefaultVisibility; 2040 break; 2041 case lltok::kw_hidden: 2042 Res = GlobalValue::HiddenVisibility; 2043 break; 2044 case lltok::kw_protected: 2045 Res = GlobalValue::ProtectedVisibility; 2046 break; 2047 } 2048 Lex.Lex(); 2049 } 2050 2051 /// parseOptionalDLLStorageClass 2052 /// ::= /*empty*/ 2053 /// ::= 'dllimport' 2054 /// ::= 'dllexport' 2055 /// 2056 void LLParser::parseOptionalDLLStorageClass(unsigned &Res) { 2057 switch (Lex.getKind()) { 2058 default: 2059 Res = GlobalValue::DefaultStorageClass; 2060 return; 2061 case lltok::kw_dllimport: 2062 Res = GlobalValue::DLLImportStorageClass; 2063 break; 2064 case lltok::kw_dllexport: 2065 Res = GlobalValue::DLLExportStorageClass; 2066 break; 2067 } 2068 Lex.Lex(); 2069 } 2070 2071 /// parseOptionalCallingConv 2072 /// ::= /*empty*/ 2073 /// ::= 'ccc' 2074 /// ::= 'fastcc' 2075 /// ::= 'intel_ocl_bicc' 2076 /// ::= 'coldcc' 2077 /// ::= 'cfguard_checkcc' 2078 /// ::= 'x86_stdcallcc' 2079 /// ::= 'x86_fastcallcc' 2080 /// ::= 'x86_thiscallcc' 2081 /// ::= 'x86_vectorcallcc' 2082 /// ::= 'arm_apcscc' 2083 /// ::= 'arm_aapcscc' 2084 /// ::= 'arm_aapcs_vfpcc' 2085 /// ::= 'aarch64_vector_pcs' 2086 /// ::= 'aarch64_sve_vector_pcs' 2087 /// ::= 'msp430_intrcc' 2088 /// ::= 'avr_intrcc' 2089 /// ::= 'avr_signalcc' 2090 /// ::= 'ptx_kernel' 2091 /// ::= 'ptx_device' 2092 /// ::= 'spir_func' 2093 /// ::= 'spir_kernel' 2094 /// ::= 'x86_64_sysvcc' 2095 /// ::= 'win64cc' 2096 /// ::= 'webkit_jscc' 2097 /// ::= 'anyregcc' 2098 /// ::= 'preserve_mostcc' 2099 /// ::= 'preserve_allcc' 2100 /// ::= 'ghccc' 2101 /// ::= 'swiftcc' 2102 /// ::= 'swifttailcc' 2103 /// ::= 'x86_intrcc' 2104 /// ::= 'hhvmcc' 2105 /// ::= 'hhvm_ccc' 2106 /// ::= 'cxx_fast_tlscc' 2107 /// ::= 'amdgpu_vs' 2108 /// ::= 'amdgpu_ls' 2109 /// ::= 'amdgpu_hs' 2110 /// ::= 'amdgpu_es' 2111 /// ::= 'amdgpu_gs' 2112 /// ::= 'amdgpu_ps' 2113 /// ::= 'amdgpu_cs' 2114 /// ::= 'amdgpu_kernel' 2115 /// ::= 'tailcc' 2116 /// ::= 'cc' UINT 2117 /// 2118 bool LLParser::parseOptionalCallingConv(unsigned &CC) { 2119 switch (Lex.getKind()) { 2120 default: CC = CallingConv::C; return false; 2121 case lltok::kw_ccc: CC = CallingConv::C; break; 2122 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 2123 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 2124 case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break; 2125 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 2126 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 2127 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break; 2128 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 2129 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 2130 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 2131 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 2132 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 2133 case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break; 2134 case lltok::kw_aarch64_sve_vector_pcs: 2135 CC = CallingConv::AArch64_SVE_VectorCall; 2136 break; 2137 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 2138 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 2139 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 2140 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 2141 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 2142 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 2143 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 2144 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 2145 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 2146 case lltok::kw_win64cc: CC = CallingConv::Win64; break; 2147 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 2148 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 2149 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 2150 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 2151 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 2152 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 2153 case lltok::kw_swifttailcc: CC = CallingConv::SwiftTail; break; 2154 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 2155 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 2156 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 2157 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 2158 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 2159 case lltok::kw_amdgpu_gfx: CC = CallingConv::AMDGPU_Gfx; break; 2160 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break; 2161 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break; 2162 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break; 2163 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 2164 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 2165 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 2166 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 2167 case lltok::kw_tailcc: CC = CallingConv::Tail; break; 2168 case lltok::kw_cc: { 2169 Lex.Lex(); 2170 return parseUInt32(CC); 2171 } 2172 } 2173 2174 Lex.Lex(); 2175 return false; 2176 } 2177 2178 /// parseMetadataAttachment 2179 /// ::= !dbg !42 2180 bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 2181 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 2182 2183 std::string Name = Lex.getStrVal(); 2184 Kind = M->getMDKindID(Name); 2185 Lex.Lex(); 2186 2187 return parseMDNode(MD); 2188 } 2189 2190 /// parseInstructionMetadata 2191 /// ::= !dbg !42 (',' !dbg !57)* 2192 bool LLParser::parseInstructionMetadata(Instruction &Inst) { 2193 do { 2194 if (Lex.getKind() != lltok::MetadataVar) 2195 return tokError("expected metadata after comma"); 2196 2197 unsigned MDK; 2198 MDNode *N; 2199 if (parseMetadataAttachment(MDK, N)) 2200 return true; 2201 2202 Inst.setMetadata(MDK, N); 2203 if (MDK == LLVMContext::MD_tbaa) 2204 InstsWithTBAATag.push_back(&Inst); 2205 2206 // If this is the end of the list, we're done. 2207 } while (EatIfPresent(lltok::comma)); 2208 return false; 2209 } 2210 2211 /// parseGlobalObjectMetadataAttachment 2212 /// ::= !dbg !57 2213 bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) { 2214 unsigned MDK; 2215 MDNode *N; 2216 if (parseMetadataAttachment(MDK, N)) 2217 return true; 2218 2219 GO.addMetadata(MDK, *N); 2220 return false; 2221 } 2222 2223 /// parseOptionalFunctionMetadata 2224 /// ::= (!dbg !57)* 2225 bool LLParser::parseOptionalFunctionMetadata(Function &F) { 2226 while (Lex.getKind() == lltok::MetadataVar) 2227 if (parseGlobalObjectMetadataAttachment(F)) 2228 return true; 2229 return false; 2230 } 2231 2232 /// parseOptionalAlignment 2233 /// ::= /* empty */ 2234 /// ::= 'align' 4 2235 bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) { 2236 Alignment = None; 2237 if (!EatIfPresent(lltok::kw_align)) 2238 return false; 2239 LocTy AlignLoc = Lex.getLoc(); 2240 uint32_t Value = 0; 2241 2242 LocTy ParenLoc = Lex.getLoc(); 2243 bool HaveParens = false; 2244 if (AllowParens) { 2245 if (EatIfPresent(lltok::lparen)) 2246 HaveParens = true; 2247 } 2248 2249 if (parseUInt32(Value)) 2250 return true; 2251 2252 if (HaveParens && !EatIfPresent(lltok::rparen)) 2253 return error(ParenLoc, "expected ')'"); 2254 2255 if (!isPowerOf2_32(Value)) 2256 return error(AlignLoc, "alignment is not a power of two"); 2257 if (Value > Value::MaximumAlignment) 2258 return error(AlignLoc, "huge alignments are not supported yet"); 2259 Alignment = Align(Value); 2260 return false; 2261 } 2262 2263 /// parseOptionalDerefAttrBytes 2264 /// ::= /* empty */ 2265 /// ::= AttrKind '(' 4 ')' 2266 /// 2267 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 2268 bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind, 2269 uint64_t &Bytes) { 2270 assert((AttrKind == lltok::kw_dereferenceable || 2271 AttrKind == lltok::kw_dereferenceable_or_null) && 2272 "contract!"); 2273 2274 Bytes = 0; 2275 if (!EatIfPresent(AttrKind)) 2276 return false; 2277 LocTy ParenLoc = Lex.getLoc(); 2278 if (!EatIfPresent(lltok::lparen)) 2279 return error(ParenLoc, "expected '('"); 2280 LocTy DerefLoc = Lex.getLoc(); 2281 if (parseUInt64(Bytes)) 2282 return true; 2283 ParenLoc = Lex.getLoc(); 2284 if (!EatIfPresent(lltok::rparen)) 2285 return error(ParenLoc, "expected ')'"); 2286 if (!Bytes) 2287 return error(DerefLoc, "dereferenceable bytes must be non-zero"); 2288 return false; 2289 } 2290 2291 /// parseOptionalCommaAlign 2292 /// ::= 2293 /// ::= ',' align 4 2294 /// 2295 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2296 /// end. 2297 bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment, 2298 bool &AteExtraComma) { 2299 AteExtraComma = false; 2300 while (EatIfPresent(lltok::comma)) { 2301 // Metadata at the end is an early exit. 2302 if (Lex.getKind() == lltok::MetadataVar) { 2303 AteExtraComma = true; 2304 return false; 2305 } 2306 2307 if (Lex.getKind() != lltok::kw_align) 2308 return error(Lex.getLoc(), "expected metadata or 'align'"); 2309 2310 if (parseOptionalAlignment(Alignment)) 2311 return true; 2312 } 2313 2314 return false; 2315 } 2316 2317 /// parseOptionalCommaAddrSpace 2318 /// ::= 2319 /// ::= ',' addrspace(1) 2320 /// 2321 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2322 /// end. 2323 bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc, 2324 bool &AteExtraComma) { 2325 AteExtraComma = false; 2326 while (EatIfPresent(lltok::comma)) { 2327 // Metadata at the end is an early exit. 2328 if (Lex.getKind() == lltok::MetadataVar) { 2329 AteExtraComma = true; 2330 return false; 2331 } 2332 2333 Loc = Lex.getLoc(); 2334 if (Lex.getKind() != lltok::kw_addrspace) 2335 return error(Lex.getLoc(), "expected metadata or 'addrspace'"); 2336 2337 if (parseOptionalAddrSpace(AddrSpace)) 2338 return true; 2339 } 2340 2341 return false; 2342 } 2343 2344 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 2345 Optional<unsigned> &HowManyArg) { 2346 Lex.Lex(); 2347 2348 auto StartParen = Lex.getLoc(); 2349 if (!EatIfPresent(lltok::lparen)) 2350 return error(StartParen, "expected '('"); 2351 2352 if (parseUInt32(BaseSizeArg)) 2353 return true; 2354 2355 if (EatIfPresent(lltok::comma)) { 2356 auto HowManyAt = Lex.getLoc(); 2357 unsigned HowMany; 2358 if (parseUInt32(HowMany)) 2359 return true; 2360 if (HowMany == BaseSizeArg) 2361 return error(HowManyAt, 2362 "'allocsize' indices can't refer to the same parameter"); 2363 HowManyArg = HowMany; 2364 } else 2365 HowManyArg = None; 2366 2367 auto EndParen = Lex.getLoc(); 2368 if (!EatIfPresent(lltok::rparen)) 2369 return error(EndParen, "expected ')'"); 2370 return false; 2371 } 2372 2373 bool LLParser::parseVScaleRangeArguments(unsigned &MinValue, 2374 unsigned &MaxValue) { 2375 Lex.Lex(); 2376 2377 auto StartParen = Lex.getLoc(); 2378 if (!EatIfPresent(lltok::lparen)) 2379 return error(StartParen, "expected '('"); 2380 2381 if (parseUInt32(MinValue)) 2382 return true; 2383 2384 if (EatIfPresent(lltok::comma)) { 2385 if (parseUInt32(MaxValue)) 2386 return true; 2387 } else 2388 MaxValue = MinValue; 2389 2390 auto EndParen = Lex.getLoc(); 2391 if (!EatIfPresent(lltok::rparen)) 2392 return error(EndParen, "expected ')'"); 2393 return false; 2394 } 2395 2396 /// parseScopeAndOrdering 2397 /// if isAtomic: ::= SyncScope? AtomicOrdering 2398 /// else: ::= 2399 /// 2400 /// This sets Scope and Ordering to the parsed values. 2401 bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID, 2402 AtomicOrdering &Ordering) { 2403 if (!IsAtomic) 2404 return false; 2405 2406 return parseScope(SSID) || parseOrdering(Ordering); 2407 } 2408 2409 /// parseScope 2410 /// ::= syncscope("singlethread" | "<target scope>")? 2411 /// 2412 /// This sets synchronization scope ID to the ID of the parsed value. 2413 bool LLParser::parseScope(SyncScope::ID &SSID) { 2414 SSID = SyncScope::System; 2415 if (EatIfPresent(lltok::kw_syncscope)) { 2416 auto StartParenAt = Lex.getLoc(); 2417 if (!EatIfPresent(lltok::lparen)) 2418 return error(StartParenAt, "Expected '(' in syncscope"); 2419 2420 std::string SSN; 2421 auto SSNAt = Lex.getLoc(); 2422 if (parseStringConstant(SSN)) 2423 return error(SSNAt, "Expected synchronization scope name"); 2424 2425 auto EndParenAt = Lex.getLoc(); 2426 if (!EatIfPresent(lltok::rparen)) 2427 return error(EndParenAt, "Expected ')' in syncscope"); 2428 2429 SSID = Context.getOrInsertSyncScopeID(SSN); 2430 } 2431 2432 return false; 2433 } 2434 2435 /// parseOrdering 2436 /// ::= AtomicOrdering 2437 /// 2438 /// This sets Ordering to the parsed value. 2439 bool LLParser::parseOrdering(AtomicOrdering &Ordering) { 2440 switch (Lex.getKind()) { 2441 default: 2442 return tokError("Expected ordering on atomic instruction"); 2443 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 2444 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 2445 // Not specified yet: 2446 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 2447 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 2448 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 2449 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 2450 case lltok::kw_seq_cst: 2451 Ordering = AtomicOrdering::SequentiallyConsistent; 2452 break; 2453 } 2454 Lex.Lex(); 2455 return false; 2456 } 2457 2458 /// parseOptionalStackAlignment 2459 /// ::= /* empty */ 2460 /// ::= 'alignstack' '(' 4 ')' 2461 bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) { 2462 Alignment = 0; 2463 if (!EatIfPresent(lltok::kw_alignstack)) 2464 return false; 2465 LocTy ParenLoc = Lex.getLoc(); 2466 if (!EatIfPresent(lltok::lparen)) 2467 return error(ParenLoc, "expected '('"); 2468 LocTy AlignLoc = Lex.getLoc(); 2469 if (parseUInt32(Alignment)) 2470 return true; 2471 ParenLoc = Lex.getLoc(); 2472 if (!EatIfPresent(lltok::rparen)) 2473 return error(ParenLoc, "expected ')'"); 2474 if (!isPowerOf2_32(Alignment)) 2475 return error(AlignLoc, "stack alignment is not a power of two"); 2476 return false; 2477 } 2478 2479 /// parseIndexList - This parses the index list for an insert/extractvalue 2480 /// instruction. This sets AteExtraComma in the case where we eat an extra 2481 /// comma at the end of the line and find that it is followed by metadata. 2482 /// Clients that don't allow metadata can call the version of this function that 2483 /// only takes one argument. 2484 /// 2485 /// parseIndexList 2486 /// ::= (',' uint32)+ 2487 /// 2488 bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices, 2489 bool &AteExtraComma) { 2490 AteExtraComma = false; 2491 2492 if (Lex.getKind() != lltok::comma) 2493 return tokError("expected ',' as start of index list"); 2494 2495 while (EatIfPresent(lltok::comma)) { 2496 if (Lex.getKind() == lltok::MetadataVar) { 2497 if (Indices.empty()) 2498 return tokError("expected index"); 2499 AteExtraComma = true; 2500 return false; 2501 } 2502 unsigned Idx = 0; 2503 if (parseUInt32(Idx)) 2504 return true; 2505 Indices.push_back(Idx); 2506 } 2507 2508 return false; 2509 } 2510 2511 //===----------------------------------------------------------------------===// 2512 // Type Parsing. 2513 //===----------------------------------------------------------------------===// 2514 2515 /// parseType - parse a type. 2516 bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 2517 SMLoc TypeLoc = Lex.getLoc(); 2518 switch (Lex.getKind()) { 2519 default: 2520 return tokError(Msg); 2521 case lltok::Type: 2522 // Type ::= 'float' | 'void' (etc) 2523 Result = Lex.getTyVal(); 2524 Lex.Lex(); 2525 break; 2526 case lltok::lbrace: 2527 // Type ::= StructType 2528 if (parseAnonStructType(Result, false)) 2529 return true; 2530 break; 2531 case lltok::lsquare: 2532 // Type ::= '[' ... ']' 2533 Lex.Lex(); // eat the lsquare. 2534 if (parseArrayVectorType(Result, false)) 2535 return true; 2536 break; 2537 case lltok::less: // Either vector or packed struct. 2538 // Type ::= '<' ... '>' 2539 Lex.Lex(); 2540 if (Lex.getKind() == lltok::lbrace) { 2541 if (parseAnonStructType(Result, true) || 2542 parseToken(lltok::greater, "expected '>' at end of packed struct")) 2543 return true; 2544 } else if (parseArrayVectorType(Result, true)) 2545 return true; 2546 break; 2547 case lltok::LocalVar: { 2548 // Type ::= %foo 2549 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2550 2551 // If the type hasn't been defined yet, create a forward definition and 2552 // remember where that forward def'n was seen (in case it never is defined). 2553 if (!Entry.first) { 2554 Entry.first = StructType::create(Context, Lex.getStrVal()); 2555 Entry.second = Lex.getLoc(); 2556 } 2557 Result = Entry.first; 2558 Lex.Lex(); 2559 break; 2560 } 2561 2562 case lltok::LocalVarID: { 2563 // Type ::= %4 2564 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2565 2566 // If the type hasn't been defined yet, create a forward definition and 2567 // remember where that forward def'n was seen (in case it never is defined). 2568 if (!Entry.first) { 2569 Entry.first = StructType::create(Context); 2570 Entry.second = Lex.getLoc(); 2571 } 2572 Result = Entry.first; 2573 Lex.Lex(); 2574 break; 2575 } 2576 } 2577 2578 if (Result->isPointerTy() && cast<PointerType>(Result)->isOpaque()) { 2579 unsigned AddrSpace; 2580 if (parseOptionalAddrSpace(AddrSpace)) 2581 return true; 2582 Result = PointerType::get(getContext(), AddrSpace); 2583 } 2584 2585 // parse the type suffixes. 2586 while (true) { 2587 switch (Lex.getKind()) { 2588 // End of type. 2589 default: 2590 if (!AllowVoid && Result->isVoidTy()) 2591 return error(TypeLoc, "void type only allowed for function results"); 2592 return false; 2593 2594 // Type ::= Type '*' 2595 case lltok::star: 2596 if (Result->isLabelTy()) 2597 return tokError("basic block pointers are invalid"); 2598 if (Result->isVoidTy()) 2599 return tokError("pointers to void are invalid - use i8* instead"); 2600 if (!PointerType::isValidElementType(Result)) 2601 return tokError("pointer to this type is invalid"); 2602 Result = PointerType::getUnqual(Result); 2603 Lex.Lex(); 2604 break; 2605 2606 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2607 case lltok::kw_addrspace: { 2608 if (Result->isLabelTy()) 2609 return tokError("basic block pointers are invalid"); 2610 if (Result->isVoidTy()) 2611 return tokError("pointers to void are invalid; use i8* instead"); 2612 if (!PointerType::isValidElementType(Result)) 2613 return tokError("pointer to this type is invalid"); 2614 unsigned AddrSpace; 2615 if (parseOptionalAddrSpace(AddrSpace) || 2616 parseToken(lltok::star, "expected '*' in address space")) 2617 return true; 2618 2619 Result = PointerType::get(Result, AddrSpace); 2620 break; 2621 } 2622 2623 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2624 case lltok::lparen: 2625 if (parseFunctionType(Result)) 2626 return true; 2627 break; 2628 } 2629 } 2630 } 2631 2632 /// parseParameterList 2633 /// ::= '(' ')' 2634 /// ::= '(' Arg (',' Arg)* ')' 2635 /// Arg 2636 /// ::= Type OptionalAttributes Value OptionalAttributes 2637 bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2638 PerFunctionState &PFS, bool IsMustTailCall, 2639 bool InVarArgsFunc) { 2640 if (parseToken(lltok::lparen, "expected '(' in call")) 2641 return true; 2642 2643 while (Lex.getKind() != lltok::rparen) { 2644 // If this isn't the first argument, we need a comma. 2645 if (!ArgList.empty() && 2646 parseToken(lltok::comma, "expected ',' in argument list")) 2647 return true; 2648 2649 // parse an ellipsis if this is a musttail call in a variadic function. 2650 if (Lex.getKind() == lltok::dotdotdot) { 2651 const char *Msg = "unexpected ellipsis in argument list for "; 2652 if (!IsMustTailCall) 2653 return tokError(Twine(Msg) + "non-musttail call"); 2654 if (!InVarArgsFunc) 2655 return tokError(Twine(Msg) + "musttail call in non-varargs function"); 2656 Lex.Lex(); // Lex the '...', it is purely for readability. 2657 return parseToken(lltok::rparen, "expected ')' at end of argument list"); 2658 } 2659 2660 // parse the argument. 2661 LocTy ArgLoc; 2662 Type *ArgTy = nullptr; 2663 AttrBuilder ArgAttrs; 2664 Value *V; 2665 if (parseType(ArgTy, ArgLoc)) 2666 return true; 2667 2668 if (ArgTy->isMetadataTy()) { 2669 if (parseMetadataAsValue(V, PFS)) 2670 return true; 2671 } else { 2672 // Otherwise, handle normal operands. 2673 if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS)) 2674 return true; 2675 } 2676 ArgList.push_back(ParamInfo( 2677 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs))); 2678 } 2679 2680 if (IsMustTailCall && InVarArgsFunc) 2681 return tokError("expected '...' at end of argument list for musttail call " 2682 "in varargs function"); 2683 2684 Lex.Lex(); // Lex the ')'. 2685 return false; 2686 } 2687 2688 /// parseRequiredTypeAttr 2689 /// ::= attrname(<ty>) 2690 bool LLParser::parseRequiredTypeAttr(Type *&Result, lltok::Kind AttrName) { 2691 Result = nullptr; 2692 if (!EatIfPresent(AttrName)) 2693 return true; 2694 if (!EatIfPresent(lltok::lparen)) 2695 return error(Lex.getLoc(), "expected '('"); 2696 if (parseType(Result)) 2697 return true; 2698 if (!EatIfPresent(lltok::rparen)) 2699 return error(Lex.getLoc(), "expected ')'"); 2700 return false; 2701 } 2702 2703 /// parsePreallocated 2704 /// ::= preallocated(<ty>) 2705 bool LLParser::parsePreallocated(Type *&Result) { 2706 return parseRequiredTypeAttr(Result, lltok::kw_preallocated); 2707 } 2708 2709 /// parseInalloca 2710 /// ::= inalloca(<ty>) 2711 bool LLParser::parseInalloca(Type *&Result) { 2712 return parseRequiredTypeAttr(Result, lltok::kw_inalloca); 2713 } 2714 2715 /// parseByRef 2716 /// ::= byref(<type>) 2717 bool LLParser::parseByRef(Type *&Result) { 2718 return parseRequiredTypeAttr(Result, lltok::kw_byref); 2719 } 2720 2721 /// parseOptionalOperandBundles 2722 /// ::= /*empty*/ 2723 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2724 /// 2725 /// OperandBundle 2726 /// ::= bundle-tag '(' ')' 2727 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2728 /// 2729 /// bundle-tag ::= String Constant 2730 bool LLParser::parseOptionalOperandBundles( 2731 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2732 LocTy BeginLoc = Lex.getLoc(); 2733 if (!EatIfPresent(lltok::lsquare)) 2734 return false; 2735 2736 while (Lex.getKind() != lltok::rsquare) { 2737 // If this isn't the first operand bundle, we need a comma. 2738 if (!BundleList.empty() && 2739 parseToken(lltok::comma, "expected ',' in input list")) 2740 return true; 2741 2742 std::string Tag; 2743 if (parseStringConstant(Tag)) 2744 return true; 2745 2746 if (parseToken(lltok::lparen, "expected '(' in operand bundle")) 2747 return true; 2748 2749 std::vector<Value *> Inputs; 2750 while (Lex.getKind() != lltok::rparen) { 2751 // If this isn't the first input, we need a comma. 2752 if (!Inputs.empty() && 2753 parseToken(lltok::comma, "expected ',' in input list")) 2754 return true; 2755 2756 Type *Ty = nullptr; 2757 Value *Input = nullptr; 2758 if (parseType(Ty) || parseValue(Ty, Input, PFS)) 2759 return true; 2760 Inputs.push_back(Input); 2761 } 2762 2763 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2764 2765 Lex.Lex(); // Lex the ')'. 2766 } 2767 2768 if (BundleList.empty()) 2769 return error(BeginLoc, "operand bundle set must not be empty"); 2770 2771 Lex.Lex(); // Lex the ']'. 2772 return false; 2773 } 2774 2775 /// parseArgumentList - parse the argument list for a function type or function 2776 /// prototype. 2777 /// ::= '(' ArgTypeListI ')' 2778 /// ArgTypeListI 2779 /// ::= /*empty*/ 2780 /// ::= '...' 2781 /// ::= ArgTypeList ',' '...' 2782 /// ::= ArgType (',' ArgType)* 2783 /// 2784 bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2785 bool &IsVarArg) { 2786 unsigned CurValID = 0; 2787 IsVarArg = false; 2788 assert(Lex.getKind() == lltok::lparen); 2789 Lex.Lex(); // eat the (. 2790 2791 if (Lex.getKind() == lltok::rparen) { 2792 // empty 2793 } else if (Lex.getKind() == lltok::dotdotdot) { 2794 IsVarArg = true; 2795 Lex.Lex(); 2796 } else { 2797 LocTy TypeLoc = Lex.getLoc(); 2798 Type *ArgTy = nullptr; 2799 AttrBuilder Attrs; 2800 std::string Name; 2801 2802 if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs)) 2803 return true; 2804 2805 if (ArgTy->isVoidTy()) 2806 return error(TypeLoc, "argument can not have void type"); 2807 2808 if (Lex.getKind() == lltok::LocalVar) { 2809 Name = Lex.getStrVal(); 2810 Lex.Lex(); 2811 } else if (Lex.getKind() == lltok::LocalVarID) { 2812 if (Lex.getUIntVal() != CurValID) 2813 return error(TypeLoc, "argument expected to be numbered '%" + 2814 Twine(CurValID) + "'"); 2815 ++CurValID; 2816 Lex.Lex(); 2817 } 2818 2819 if (!FunctionType::isValidArgumentType(ArgTy)) 2820 return error(TypeLoc, "invalid type for function argument"); 2821 2822 ArgList.emplace_back(TypeLoc, ArgTy, 2823 AttributeSet::get(ArgTy->getContext(), Attrs), 2824 std::move(Name)); 2825 2826 while (EatIfPresent(lltok::comma)) { 2827 // Handle ... at end of arg list. 2828 if (EatIfPresent(lltok::dotdotdot)) { 2829 IsVarArg = true; 2830 break; 2831 } 2832 2833 // Otherwise must be an argument type. 2834 TypeLoc = Lex.getLoc(); 2835 if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs)) 2836 return true; 2837 2838 if (ArgTy->isVoidTy()) 2839 return error(TypeLoc, "argument can not have void type"); 2840 2841 if (Lex.getKind() == lltok::LocalVar) { 2842 Name = Lex.getStrVal(); 2843 Lex.Lex(); 2844 } else { 2845 if (Lex.getKind() == lltok::LocalVarID) { 2846 if (Lex.getUIntVal() != CurValID) 2847 return error(TypeLoc, "argument expected to be numbered '%" + 2848 Twine(CurValID) + "'"); 2849 Lex.Lex(); 2850 } 2851 ++CurValID; 2852 Name = ""; 2853 } 2854 2855 if (!ArgTy->isFirstClassType()) 2856 return error(TypeLoc, "invalid type for function argument"); 2857 2858 ArgList.emplace_back(TypeLoc, ArgTy, 2859 AttributeSet::get(ArgTy->getContext(), Attrs), 2860 std::move(Name)); 2861 } 2862 } 2863 2864 return parseToken(lltok::rparen, "expected ')' at end of argument list"); 2865 } 2866 2867 /// parseFunctionType 2868 /// ::= Type ArgumentList OptionalAttrs 2869 bool LLParser::parseFunctionType(Type *&Result) { 2870 assert(Lex.getKind() == lltok::lparen); 2871 2872 if (!FunctionType::isValidReturnType(Result)) 2873 return tokError("invalid function return type"); 2874 2875 SmallVector<ArgInfo, 8> ArgList; 2876 bool IsVarArg; 2877 if (parseArgumentList(ArgList, IsVarArg)) 2878 return true; 2879 2880 // Reject names on the arguments lists. 2881 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2882 if (!ArgList[i].Name.empty()) 2883 return error(ArgList[i].Loc, "argument name invalid in function type"); 2884 if (ArgList[i].Attrs.hasAttributes()) 2885 return error(ArgList[i].Loc, 2886 "argument attributes invalid in function type"); 2887 } 2888 2889 SmallVector<Type*, 16> ArgListTy; 2890 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2891 ArgListTy.push_back(ArgList[i].Ty); 2892 2893 Result = FunctionType::get(Result, ArgListTy, IsVarArg); 2894 return false; 2895 } 2896 2897 /// parseAnonStructType - parse an anonymous struct type, which is inlined into 2898 /// other structs. 2899 bool LLParser::parseAnonStructType(Type *&Result, bool Packed) { 2900 SmallVector<Type*, 8> Elts; 2901 if (parseStructBody(Elts)) 2902 return true; 2903 2904 Result = StructType::get(Context, Elts, Packed); 2905 return false; 2906 } 2907 2908 /// parseStructDefinition - parse a struct in a 'type' definition. 2909 bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name, 2910 std::pair<Type *, LocTy> &Entry, 2911 Type *&ResultTy) { 2912 // If the type was already defined, diagnose the redefinition. 2913 if (Entry.first && !Entry.second.isValid()) 2914 return error(TypeLoc, "redefinition of type"); 2915 2916 // If we have opaque, just return without filling in the definition for the 2917 // struct. This counts as a definition as far as the .ll file goes. 2918 if (EatIfPresent(lltok::kw_opaque)) { 2919 // This type is being defined, so clear the location to indicate this. 2920 Entry.second = SMLoc(); 2921 2922 // If this type number has never been uttered, create it. 2923 if (!Entry.first) 2924 Entry.first = StructType::create(Context, Name); 2925 ResultTy = Entry.first; 2926 return false; 2927 } 2928 2929 // If the type starts with '<', then it is either a packed struct or a vector. 2930 bool isPacked = EatIfPresent(lltok::less); 2931 2932 // If we don't have a struct, then we have a random type alias, which we 2933 // accept for compatibility with old files. These types are not allowed to be 2934 // forward referenced and not allowed to be recursive. 2935 if (Lex.getKind() != lltok::lbrace) { 2936 if (Entry.first) 2937 return error(TypeLoc, "forward references to non-struct type"); 2938 2939 ResultTy = nullptr; 2940 if (isPacked) 2941 return parseArrayVectorType(ResultTy, true); 2942 return parseType(ResultTy); 2943 } 2944 2945 // This type is being defined, so clear the location to indicate this. 2946 Entry.second = SMLoc(); 2947 2948 // If this type number has never been uttered, create it. 2949 if (!Entry.first) 2950 Entry.first = StructType::create(Context, Name); 2951 2952 StructType *STy = cast<StructType>(Entry.first); 2953 2954 SmallVector<Type*, 8> Body; 2955 if (parseStructBody(Body) || 2956 (isPacked && parseToken(lltok::greater, "expected '>' in packed struct"))) 2957 return true; 2958 2959 STy->setBody(Body, isPacked); 2960 ResultTy = STy; 2961 return false; 2962 } 2963 2964 /// parseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2965 /// StructType 2966 /// ::= '{' '}' 2967 /// ::= '{' Type (',' Type)* '}' 2968 /// ::= '<' '{' '}' '>' 2969 /// ::= '<' '{' Type (',' Type)* '}' '>' 2970 bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) { 2971 assert(Lex.getKind() == lltok::lbrace); 2972 Lex.Lex(); // Consume the '{' 2973 2974 // Handle the empty struct. 2975 if (EatIfPresent(lltok::rbrace)) 2976 return false; 2977 2978 LocTy EltTyLoc = Lex.getLoc(); 2979 Type *Ty = nullptr; 2980 if (parseType(Ty)) 2981 return true; 2982 Body.push_back(Ty); 2983 2984 if (!StructType::isValidElementType(Ty)) 2985 return error(EltTyLoc, "invalid element type for struct"); 2986 2987 while (EatIfPresent(lltok::comma)) { 2988 EltTyLoc = Lex.getLoc(); 2989 if (parseType(Ty)) 2990 return true; 2991 2992 if (!StructType::isValidElementType(Ty)) 2993 return error(EltTyLoc, "invalid element type for struct"); 2994 2995 Body.push_back(Ty); 2996 } 2997 2998 return parseToken(lltok::rbrace, "expected '}' at end of struct"); 2999 } 3000 3001 /// parseArrayVectorType - parse an array or vector type, assuming the first 3002 /// token has already been consumed. 3003 /// Type 3004 /// ::= '[' APSINTVAL 'x' Types ']' 3005 /// ::= '<' APSINTVAL 'x' Types '>' 3006 /// ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>' 3007 bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) { 3008 bool Scalable = false; 3009 3010 if (IsVector && Lex.getKind() == lltok::kw_vscale) { 3011 Lex.Lex(); // consume the 'vscale' 3012 if (parseToken(lltok::kw_x, "expected 'x' after vscale")) 3013 return true; 3014 3015 Scalable = true; 3016 } 3017 3018 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 3019 Lex.getAPSIntVal().getBitWidth() > 64) 3020 return tokError("expected number in address space"); 3021 3022 LocTy SizeLoc = Lex.getLoc(); 3023 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 3024 Lex.Lex(); 3025 3026 if (parseToken(lltok::kw_x, "expected 'x' after element count")) 3027 return true; 3028 3029 LocTy TypeLoc = Lex.getLoc(); 3030 Type *EltTy = nullptr; 3031 if (parseType(EltTy)) 3032 return true; 3033 3034 if (parseToken(IsVector ? lltok::greater : lltok::rsquare, 3035 "expected end of sequential type")) 3036 return true; 3037 3038 if (IsVector) { 3039 if (Size == 0) 3040 return error(SizeLoc, "zero element vector is illegal"); 3041 if ((unsigned)Size != Size) 3042 return error(SizeLoc, "size too large for vector"); 3043 if (!VectorType::isValidElementType(EltTy)) 3044 return error(TypeLoc, "invalid vector element type"); 3045 Result = VectorType::get(EltTy, unsigned(Size), Scalable); 3046 } else { 3047 if (!ArrayType::isValidElementType(EltTy)) 3048 return error(TypeLoc, "invalid array element type"); 3049 Result = ArrayType::get(EltTy, Size); 3050 } 3051 return false; 3052 } 3053 3054 //===----------------------------------------------------------------------===// 3055 // Function Semantic Analysis. 3056 //===----------------------------------------------------------------------===// 3057 3058 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 3059 int functionNumber) 3060 : P(p), F(f), FunctionNumber(functionNumber) { 3061 3062 // Insert unnamed arguments into the NumberedVals list. 3063 for (Argument &A : F.args()) 3064 if (!A.hasName()) 3065 NumberedVals.push_back(&A); 3066 } 3067 3068 LLParser::PerFunctionState::~PerFunctionState() { 3069 // If there were any forward referenced non-basicblock values, delete them. 3070 3071 for (const auto &P : ForwardRefVals) { 3072 if (isa<BasicBlock>(P.second.first)) 3073 continue; 3074 P.second.first->replaceAllUsesWith( 3075 UndefValue::get(P.second.first->getType())); 3076 P.second.first->deleteValue(); 3077 } 3078 3079 for (const auto &P : ForwardRefValIDs) { 3080 if (isa<BasicBlock>(P.second.first)) 3081 continue; 3082 P.second.first->replaceAllUsesWith( 3083 UndefValue::get(P.second.first->getType())); 3084 P.second.first->deleteValue(); 3085 } 3086 } 3087 3088 bool LLParser::PerFunctionState::finishFunction() { 3089 if (!ForwardRefVals.empty()) 3090 return P.error(ForwardRefVals.begin()->second.second, 3091 "use of undefined value '%" + ForwardRefVals.begin()->first + 3092 "'"); 3093 if (!ForwardRefValIDs.empty()) 3094 return P.error(ForwardRefValIDs.begin()->second.second, 3095 "use of undefined value '%" + 3096 Twine(ForwardRefValIDs.begin()->first) + "'"); 3097 return false; 3098 } 3099 3100 /// getVal - Get a value with the specified name or ID, creating a 3101 /// forward reference record if needed. This can return null if the value 3102 /// exists but does not have the right type. 3103 Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty, 3104 LocTy Loc, bool IsCall) { 3105 // Look this name up in the normal function symbol table. 3106 Value *Val = F.getValueSymbolTable()->lookup(Name); 3107 3108 // If this is a forward reference for the value, see if we already created a 3109 // forward ref record. 3110 if (!Val) { 3111 auto I = ForwardRefVals.find(Name); 3112 if (I != ForwardRefVals.end()) 3113 Val = I->second.first; 3114 } 3115 3116 // If we have the value in the symbol table or fwd-ref table, return it. 3117 if (Val) 3118 return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall); 3119 3120 // Don't make placeholders with invalid type. 3121 if (!Ty->isFirstClassType()) { 3122 P.error(Loc, "invalid use of a non-first-class type"); 3123 return nullptr; 3124 } 3125 3126 // Otherwise, create a new forward reference for this value and remember it. 3127 Value *FwdVal; 3128 if (Ty->isLabelTy()) { 3129 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 3130 } else { 3131 FwdVal = new Argument(Ty, Name); 3132 } 3133 3134 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 3135 return FwdVal; 3136 } 3137 3138 Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc, 3139 bool IsCall) { 3140 // Look this name up in the normal function symbol table. 3141 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 3142 3143 // If this is a forward reference for the value, see if we already created a 3144 // forward ref record. 3145 if (!Val) { 3146 auto I = ForwardRefValIDs.find(ID); 3147 if (I != ForwardRefValIDs.end()) 3148 Val = I->second.first; 3149 } 3150 3151 // If we have the value in the symbol table or fwd-ref table, return it. 3152 if (Val) 3153 return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall); 3154 3155 if (!Ty->isFirstClassType()) { 3156 P.error(Loc, "invalid use of a non-first-class type"); 3157 return nullptr; 3158 } 3159 3160 // Otherwise, create a new forward reference for this value and remember it. 3161 Value *FwdVal; 3162 if (Ty->isLabelTy()) { 3163 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 3164 } else { 3165 FwdVal = new Argument(Ty); 3166 } 3167 3168 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 3169 return FwdVal; 3170 } 3171 3172 /// setInstName - After an instruction is parsed and inserted into its 3173 /// basic block, this installs its name. 3174 bool LLParser::PerFunctionState::setInstName(int NameID, 3175 const std::string &NameStr, 3176 LocTy NameLoc, Instruction *Inst) { 3177 // If this instruction has void type, it cannot have a name or ID specified. 3178 if (Inst->getType()->isVoidTy()) { 3179 if (NameID != -1 || !NameStr.empty()) 3180 return P.error(NameLoc, "instructions returning void cannot have a name"); 3181 return false; 3182 } 3183 3184 // If this was a numbered instruction, verify that the instruction is the 3185 // expected value and resolve any forward references. 3186 if (NameStr.empty()) { 3187 // If neither a name nor an ID was specified, just use the next ID. 3188 if (NameID == -1) 3189 NameID = NumberedVals.size(); 3190 3191 if (unsigned(NameID) != NumberedVals.size()) 3192 return P.error(NameLoc, "instruction expected to be numbered '%" + 3193 Twine(NumberedVals.size()) + "'"); 3194 3195 auto FI = ForwardRefValIDs.find(NameID); 3196 if (FI != ForwardRefValIDs.end()) { 3197 Value *Sentinel = FI->second.first; 3198 if (Sentinel->getType() != Inst->getType()) 3199 return P.error(NameLoc, "instruction forward referenced with type '" + 3200 getTypeString(FI->second.first->getType()) + 3201 "'"); 3202 3203 Sentinel->replaceAllUsesWith(Inst); 3204 Sentinel->deleteValue(); 3205 ForwardRefValIDs.erase(FI); 3206 } 3207 3208 NumberedVals.push_back(Inst); 3209 return false; 3210 } 3211 3212 // Otherwise, the instruction had a name. Resolve forward refs and set it. 3213 auto FI = ForwardRefVals.find(NameStr); 3214 if (FI != ForwardRefVals.end()) { 3215 Value *Sentinel = FI->second.first; 3216 if (Sentinel->getType() != Inst->getType()) 3217 return P.error(NameLoc, "instruction forward referenced with type '" + 3218 getTypeString(FI->second.first->getType()) + 3219 "'"); 3220 3221 Sentinel->replaceAllUsesWith(Inst); 3222 Sentinel->deleteValue(); 3223 ForwardRefVals.erase(FI); 3224 } 3225 3226 // Set the name on the instruction. 3227 Inst->setName(NameStr); 3228 3229 if (Inst->getName() != NameStr) 3230 return P.error(NameLoc, "multiple definition of local value named '" + 3231 NameStr + "'"); 3232 return false; 3233 } 3234 3235 /// getBB - Get a basic block with the specified name or ID, creating a 3236 /// forward reference record if needed. 3237 BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name, 3238 LocTy Loc) { 3239 return dyn_cast_or_null<BasicBlock>( 3240 getVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 3241 } 3242 3243 BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) { 3244 return dyn_cast_or_null<BasicBlock>( 3245 getVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 3246 } 3247 3248 /// defineBB - Define the specified basic block, which is either named or 3249 /// unnamed. If there is an error, this returns null otherwise it returns 3250 /// the block being defined. 3251 BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name, 3252 int NameID, LocTy Loc) { 3253 BasicBlock *BB; 3254 if (Name.empty()) { 3255 if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) { 3256 P.error(Loc, "label expected to be numbered '" + 3257 Twine(NumberedVals.size()) + "'"); 3258 return nullptr; 3259 } 3260 BB = getBB(NumberedVals.size(), Loc); 3261 if (!BB) { 3262 P.error(Loc, "unable to create block numbered '" + 3263 Twine(NumberedVals.size()) + "'"); 3264 return nullptr; 3265 } 3266 } else { 3267 BB = getBB(Name, Loc); 3268 if (!BB) { 3269 P.error(Loc, "unable to create block named '" + Name + "'"); 3270 return nullptr; 3271 } 3272 } 3273 3274 // Move the block to the end of the function. Forward ref'd blocks are 3275 // inserted wherever they happen to be referenced. 3276 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 3277 3278 // Remove the block from forward ref sets. 3279 if (Name.empty()) { 3280 ForwardRefValIDs.erase(NumberedVals.size()); 3281 NumberedVals.push_back(BB); 3282 } else { 3283 // BB forward references are already in the function symbol table. 3284 ForwardRefVals.erase(Name); 3285 } 3286 3287 return BB; 3288 } 3289 3290 //===----------------------------------------------------------------------===// 3291 // Constants. 3292 //===----------------------------------------------------------------------===// 3293 3294 /// parseValID - parse an abstract value that doesn't necessarily have a 3295 /// type implied. For example, if we parse "4" we don't know what integer type 3296 /// it has. The value will later be combined with its type and checked for 3297 /// sanity. PFS is used to convert function-local operands of metadata (since 3298 /// metadata operands are not just parsed here but also converted to values). 3299 /// PFS can be null when we are not parsing metadata values inside a function. 3300 bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS) { 3301 ID.Loc = Lex.getLoc(); 3302 switch (Lex.getKind()) { 3303 default: 3304 return tokError("expected value token"); 3305 case lltok::GlobalID: // @42 3306 ID.UIntVal = Lex.getUIntVal(); 3307 ID.Kind = ValID::t_GlobalID; 3308 break; 3309 case lltok::GlobalVar: // @foo 3310 ID.StrVal = Lex.getStrVal(); 3311 ID.Kind = ValID::t_GlobalName; 3312 break; 3313 case lltok::LocalVarID: // %42 3314 ID.UIntVal = Lex.getUIntVal(); 3315 ID.Kind = ValID::t_LocalID; 3316 break; 3317 case lltok::LocalVar: // %foo 3318 ID.StrVal = Lex.getStrVal(); 3319 ID.Kind = ValID::t_LocalName; 3320 break; 3321 case lltok::APSInt: 3322 ID.APSIntVal = Lex.getAPSIntVal(); 3323 ID.Kind = ValID::t_APSInt; 3324 break; 3325 case lltok::APFloat: 3326 ID.APFloatVal = Lex.getAPFloatVal(); 3327 ID.Kind = ValID::t_APFloat; 3328 break; 3329 case lltok::kw_true: 3330 ID.ConstantVal = ConstantInt::getTrue(Context); 3331 ID.Kind = ValID::t_Constant; 3332 break; 3333 case lltok::kw_false: 3334 ID.ConstantVal = ConstantInt::getFalse(Context); 3335 ID.Kind = ValID::t_Constant; 3336 break; 3337 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 3338 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 3339 case lltok::kw_poison: ID.Kind = ValID::t_Poison; break; 3340 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 3341 case lltok::kw_none: ID.Kind = ValID::t_None; break; 3342 3343 case lltok::lbrace: { 3344 // ValID ::= '{' ConstVector '}' 3345 Lex.Lex(); 3346 SmallVector<Constant*, 16> Elts; 3347 if (parseGlobalValueVector(Elts) || 3348 parseToken(lltok::rbrace, "expected end of struct constant")) 3349 return true; 3350 3351 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3352 ID.UIntVal = Elts.size(); 3353 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3354 Elts.size() * sizeof(Elts[0])); 3355 ID.Kind = ValID::t_ConstantStruct; 3356 return false; 3357 } 3358 case lltok::less: { 3359 // ValID ::= '<' ConstVector '>' --> Vector. 3360 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 3361 Lex.Lex(); 3362 bool isPackedStruct = EatIfPresent(lltok::lbrace); 3363 3364 SmallVector<Constant*, 16> Elts; 3365 LocTy FirstEltLoc = Lex.getLoc(); 3366 if (parseGlobalValueVector(Elts) || 3367 (isPackedStruct && 3368 parseToken(lltok::rbrace, "expected end of packed struct")) || 3369 parseToken(lltok::greater, "expected end of constant")) 3370 return true; 3371 3372 if (isPackedStruct) { 3373 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3374 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3375 Elts.size() * sizeof(Elts[0])); 3376 ID.UIntVal = Elts.size(); 3377 ID.Kind = ValID::t_PackedConstantStruct; 3378 return false; 3379 } 3380 3381 if (Elts.empty()) 3382 return error(ID.Loc, "constant vector must not be empty"); 3383 3384 if (!Elts[0]->getType()->isIntegerTy() && 3385 !Elts[0]->getType()->isFloatingPointTy() && 3386 !Elts[0]->getType()->isPointerTy()) 3387 return error( 3388 FirstEltLoc, 3389 "vector elements must have integer, pointer or floating point type"); 3390 3391 // Verify that all the vector elements have the same type. 3392 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 3393 if (Elts[i]->getType() != Elts[0]->getType()) 3394 return error(FirstEltLoc, "vector element #" + Twine(i) + 3395 " is not of type '" + 3396 getTypeString(Elts[0]->getType())); 3397 3398 ID.ConstantVal = ConstantVector::get(Elts); 3399 ID.Kind = ValID::t_Constant; 3400 return false; 3401 } 3402 case lltok::lsquare: { // Array Constant 3403 Lex.Lex(); 3404 SmallVector<Constant*, 16> Elts; 3405 LocTy FirstEltLoc = Lex.getLoc(); 3406 if (parseGlobalValueVector(Elts) || 3407 parseToken(lltok::rsquare, "expected end of array constant")) 3408 return true; 3409 3410 // Handle empty element. 3411 if (Elts.empty()) { 3412 // Use undef instead of an array because it's inconvenient to determine 3413 // the element type at this point, there being no elements to examine. 3414 ID.Kind = ValID::t_EmptyArray; 3415 return false; 3416 } 3417 3418 if (!Elts[0]->getType()->isFirstClassType()) 3419 return error(FirstEltLoc, "invalid array element type: " + 3420 getTypeString(Elts[0]->getType())); 3421 3422 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 3423 3424 // Verify all elements are correct type! 3425 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 3426 if (Elts[i]->getType() != Elts[0]->getType()) 3427 return error(FirstEltLoc, "array element #" + Twine(i) + 3428 " is not of type '" + 3429 getTypeString(Elts[0]->getType())); 3430 } 3431 3432 ID.ConstantVal = ConstantArray::get(ATy, Elts); 3433 ID.Kind = ValID::t_Constant; 3434 return false; 3435 } 3436 case lltok::kw_c: // c "foo" 3437 Lex.Lex(); 3438 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 3439 false); 3440 if (parseToken(lltok::StringConstant, "expected string")) 3441 return true; 3442 ID.Kind = ValID::t_Constant; 3443 return false; 3444 3445 case lltok::kw_asm: { 3446 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 3447 // STRINGCONSTANT 3448 bool HasSideEffect, AlignStack, AsmDialect, CanThrow; 3449 Lex.Lex(); 3450 if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 3451 parseOptionalToken(lltok::kw_alignstack, AlignStack) || 3452 parseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 3453 parseOptionalToken(lltok::kw_unwind, CanThrow) || 3454 parseStringConstant(ID.StrVal) || 3455 parseToken(lltok::comma, "expected comma in inline asm expression") || 3456 parseToken(lltok::StringConstant, "expected constraint string")) 3457 return true; 3458 ID.StrVal2 = Lex.getStrVal(); 3459 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack) << 1) | 3460 (unsigned(AsmDialect) << 2) | (unsigned(CanThrow) << 3); 3461 ID.Kind = ValID::t_InlineAsm; 3462 return false; 3463 } 3464 3465 case lltok::kw_blockaddress: { 3466 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 3467 Lex.Lex(); 3468 3469 ValID Fn, Label; 3470 3471 if (parseToken(lltok::lparen, "expected '(' in block address expression") || 3472 parseValID(Fn) || 3473 parseToken(lltok::comma, 3474 "expected comma in block address expression") || 3475 parseValID(Label) || 3476 parseToken(lltok::rparen, "expected ')' in block address expression")) 3477 return true; 3478 3479 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3480 return error(Fn.Loc, "expected function name in blockaddress"); 3481 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 3482 return error(Label.Loc, "expected basic block name in blockaddress"); 3483 3484 // Try to find the function (but skip it if it's forward-referenced). 3485 GlobalValue *GV = nullptr; 3486 if (Fn.Kind == ValID::t_GlobalID) { 3487 if (Fn.UIntVal < NumberedVals.size()) 3488 GV = NumberedVals[Fn.UIntVal]; 3489 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3490 GV = M->getNamedValue(Fn.StrVal); 3491 } 3492 Function *F = nullptr; 3493 if (GV) { 3494 // Confirm that it's actually a function with a definition. 3495 if (!isa<Function>(GV)) 3496 return error(Fn.Loc, "expected function name in blockaddress"); 3497 F = cast<Function>(GV); 3498 if (F->isDeclaration()) 3499 return error(Fn.Loc, "cannot take blockaddress inside a declaration"); 3500 } 3501 3502 if (!F) { 3503 // Make a global variable as a placeholder for this reference. 3504 GlobalValue *&FwdRef = 3505 ForwardRefBlockAddresses.insert(std::make_pair( 3506 std::move(Fn), 3507 std::map<ValID, GlobalValue *>())) 3508 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 3509 .first->second; 3510 if (!FwdRef) 3511 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 3512 GlobalValue::InternalLinkage, nullptr, ""); 3513 ID.ConstantVal = FwdRef; 3514 ID.Kind = ValID::t_Constant; 3515 return false; 3516 } 3517 3518 // We found the function; now find the basic block. Don't use PFS, since we 3519 // might be inside a constant expression. 3520 BasicBlock *BB; 3521 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 3522 if (Label.Kind == ValID::t_LocalID) 3523 BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc); 3524 else 3525 BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc); 3526 if (!BB) 3527 return error(Label.Loc, "referenced value is not a basic block"); 3528 } else { 3529 if (Label.Kind == ValID::t_LocalID) 3530 return error(Label.Loc, "cannot take address of numeric label after " 3531 "the function is defined"); 3532 BB = dyn_cast_or_null<BasicBlock>( 3533 F->getValueSymbolTable()->lookup(Label.StrVal)); 3534 if (!BB) 3535 return error(Label.Loc, "referenced value is not a basic block"); 3536 } 3537 3538 ID.ConstantVal = BlockAddress::get(F, BB); 3539 ID.Kind = ValID::t_Constant; 3540 return false; 3541 } 3542 3543 case lltok::kw_dso_local_equivalent: { 3544 // ValID ::= 'dso_local_equivalent' @foo 3545 Lex.Lex(); 3546 3547 ValID Fn; 3548 3549 if (parseValID(Fn)) 3550 return true; 3551 3552 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3553 return error(Fn.Loc, 3554 "expected global value name in dso_local_equivalent"); 3555 3556 // Try to find the function (but skip it if it's forward-referenced). 3557 GlobalValue *GV = nullptr; 3558 if (Fn.Kind == ValID::t_GlobalID) { 3559 if (Fn.UIntVal < NumberedVals.size()) 3560 GV = NumberedVals[Fn.UIntVal]; 3561 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3562 GV = M->getNamedValue(Fn.StrVal); 3563 } 3564 3565 assert(GV && "Could not find a corresponding global variable"); 3566 3567 if (!GV->getValueType()->isFunctionTy()) 3568 return error(Fn.Loc, "expected a function, alias to function, or ifunc " 3569 "in dso_local_equivalent"); 3570 3571 ID.ConstantVal = DSOLocalEquivalent::get(GV); 3572 ID.Kind = ValID::t_Constant; 3573 return false; 3574 } 3575 3576 case lltok::kw_trunc: 3577 case lltok::kw_zext: 3578 case lltok::kw_sext: 3579 case lltok::kw_fptrunc: 3580 case lltok::kw_fpext: 3581 case lltok::kw_bitcast: 3582 case lltok::kw_addrspacecast: 3583 case lltok::kw_uitofp: 3584 case lltok::kw_sitofp: 3585 case lltok::kw_fptoui: 3586 case lltok::kw_fptosi: 3587 case lltok::kw_inttoptr: 3588 case lltok::kw_ptrtoint: { 3589 unsigned Opc = Lex.getUIntVal(); 3590 Type *DestTy = nullptr; 3591 Constant *SrcVal; 3592 Lex.Lex(); 3593 if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") || 3594 parseGlobalTypeAndValue(SrcVal) || 3595 parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 3596 parseType(DestTy) || 3597 parseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 3598 return true; 3599 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 3600 return error(ID.Loc, "invalid cast opcode for cast from '" + 3601 getTypeString(SrcVal->getType()) + "' to '" + 3602 getTypeString(DestTy) + "'"); 3603 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 3604 SrcVal, DestTy); 3605 ID.Kind = ValID::t_Constant; 3606 return false; 3607 } 3608 case lltok::kw_extractvalue: { 3609 Lex.Lex(); 3610 Constant *Val; 3611 SmallVector<unsigned, 4> Indices; 3612 if (parseToken(lltok::lparen, 3613 "expected '(' in extractvalue constantexpr") || 3614 parseGlobalTypeAndValue(Val) || parseIndexList(Indices) || 3615 parseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 3616 return true; 3617 3618 if (!Val->getType()->isAggregateType()) 3619 return error(ID.Loc, "extractvalue operand must be aggregate type"); 3620 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 3621 return error(ID.Loc, "invalid indices for extractvalue"); 3622 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 3623 ID.Kind = ValID::t_Constant; 3624 return false; 3625 } 3626 case lltok::kw_insertvalue: { 3627 Lex.Lex(); 3628 Constant *Val0, *Val1; 3629 SmallVector<unsigned, 4> Indices; 3630 if (parseToken(lltok::lparen, "expected '(' in insertvalue constantexpr") || 3631 parseGlobalTypeAndValue(Val0) || 3632 parseToken(lltok::comma, 3633 "expected comma in insertvalue constantexpr") || 3634 parseGlobalTypeAndValue(Val1) || parseIndexList(Indices) || 3635 parseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 3636 return true; 3637 if (!Val0->getType()->isAggregateType()) 3638 return error(ID.Loc, "insertvalue operand must be aggregate type"); 3639 Type *IndexedType = 3640 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 3641 if (!IndexedType) 3642 return error(ID.Loc, "invalid indices for insertvalue"); 3643 if (IndexedType != Val1->getType()) 3644 return error(ID.Loc, "insertvalue operand and field disagree in type: '" + 3645 getTypeString(Val1->getType()) + 3646 "' instead of '" + getTypeString(IndexedType) + 3647 "'"); 3648 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 3649 ID.Kind = ValID::t_Constant; 3650 return false; 3651 } 3652 case lltok::kw_icmp: 3653 case lltok::kw_fcmp: { 3654 unsigned PredVal, Opc = Lex.getUIntVal(); 3655 Constant *Val0, *Val1; 3656 Lex.Lex(); 3657 if (parseCmpPredicate(PredVal, Opc) || 3658 parseToken(lltok::lparen, "expected '(' in compare constantexpr") || 3659 parseGlobalTypeAndValue(Val0) || 3660 parseToken(lltok::comma, "expected comma in compare constantexpr") || 3661 parseGlobalTypeAndValue(Val1) || 3662 parseToken(lltok::rparen, "expected ')' in compare constantexpr")) 3663 return true; 3664 3665 if (Val0->getType() != Val1->getType()) 3666 return error(ID.Loc, "compare operands must have the same type"); 3667 3668 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 3669 3670 if (Opc == Instruction::FCmp) { 3671 if (!Val0->getType()->isFPOrFPVectorTy()) 3672 return error(ID.Loc, "fcmp requires floating point operands"); 3673 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3674 } else { 3675 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3676 if (!Val0->getType()->isIntOrIntVectorTy() && 3677 !Val0->getType()->isPtrOrPtrVectorTy()) 3678 return error(ID.Loc, "icmp requires pointer or integer operands"); 3679 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3680 } 3681 ID.Kind = ValID::t_Constant; 3682 return false; 3683 } 3684 3685 // Unary Operators. 3686 case lltok::kw_fneg: { 3687 unsigned Opc = Lex.getUIntVal(); 3688 Constant *Val; 3689 Lex.Lex(); 3690 if (parseToken(lltok::lparen, "expected '(' in unary constantexpr") || 3691 parseGlobalTypeAndValue(Val) || 3692 parseToken(lltok::rparen, "expected ')' in unary constantexpr")) 3693 return true; 3694 3695 // Check that the type is valid for the operator. 3696 switch (Opc) { 3697 case Instruction::FNeg: 3698 if (!Val->getType()->isFPOrFPVectorTy()) 3699 return error(ID.Loc, "constexpr requires fp operands"); 3700 break; 3701 default: llvm_unreachable("Unknown unary operator!"); 3702 } 3703 unsigned Flags = 0; 3704 Constant *C = ConstantExpr::get(Opc, Val, Flags); 3705 ID.ConstantVal = C; 3706 ID.Kind = ValID::t_Constant; 3707 return false; 3708 } 3709 // Binary Operators. 3710 case lltok::kw_add: 3711 case lltok::kw_fadd: 3712 case lltok::kw_sub: 3713 case lltok::kw_fsub: 3714 case lltok::kw_mul: 3715 case lltok::kw_fmul: 3716 case lltok::kw_udiv: 3717 case lltok::kw_sdiv: 3718 case lltok::kw_fdiv: 3719 case lltok::kw_urem: 3720 case lltok::kw_srem: 3721 case lltok::kw_frem: 3722 case lltok::kw_shl: 3723 case lltok::kw_lshr: 3724 case lltok::kw_ashr: { 3725 bool NUW = false; 3726 bool NSW = false; 3727 bool Exact = false; 3728 unsigned Opc = Lex.getUIntVal(); 3729 Constant *Val0, *Val1; 3730 Lex.Lex(); 3731 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3732 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3733 if (EatIfPresent(lltok::kw_nuw)) 3734 NUW = true; 3735 if (EatIfPresent(lltok::kw_nsw)) { 3736 NSW = true; 3737 if (EatIfPresent(lltok::kw_nuw)) 3738 NUW = true; 3739 } 3740 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3741 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3742 if (EatIfPresent(lltok::kw_exact)) 3743 Exact = true; 3744 } 3745 if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3746 parseGlobalTypeAndValue(Val0) || 3747 parseToken(lltok::comma, "expected comma in binary constantexpr") || 3748 parseGlobalTypeAndValue(Val1) || 3749 parseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3750 return true; 3751 if (Val0->getType() != Val1->getType()) 3752 return error(ID.Loc, "operands of constexpr must have same type"); 3753 // Check that the type is valid for the operator. 3754 switch (Opc) { 3755 case Instruction::Add: 3756 case Instruction::Sub: 3757 case Instruction::Mul: 3758 case Instruction::UDiv: 3759 case Instruction::SDiv: 3760 case Instruction::URem: 3761 case Instruction::SRem: 3762 case Instruction::Shl: 3763 case Instruction::AShr: 3764 case Instruction::LShr: 3765 if (!Val0->getType()->isIntOrIntVectorTy()) 3766 return error(ID.Loc, "constexpr requires integer operands"); 3767 break; 3768 case Instruction::FAdd: 3769 case Instruction::FSub: 3770 case Instruction::FMul: 3771 case Instruction::FDiv: 3772 case Instruction::FRem: 3773 if (!Val0->getType()->isFPOrFPVectorTy()) 3774 return error(ID.Loc, "constexpr requires fp operands"); 3775 break; 3776 default: llvm_unreachable("Unknown binary operator!"); 3777 } 3778 unsigned Flags = 0; 3779 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3780 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3781 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3782 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3783 ID.ConstantVal = C; 3784 ID.Kind = ValID::t_Constant; 3785 return false; 3786 } 3787 3788 // Logical Operations 3789 case lltok::kw_and: 3790 case lltok::kw_or: 3791 case lltok::kw_xor: { 3792 unsigned Opc = Lex.getUIntVal(); 3793 Constant *Val0, *Val1; 3794 Lex.Lex(); 3795 if (parseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3796 parseGlobalTypeAndValue(Val0) || 3797 parseToken(lltok::comma, "expected comma in logical constantexpr") || 3798 parseGlobalTypeAndValue(Val1) || 3799 parseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3800 return true; 3801 if (Val0->getType() != Val1->getType()) 3802 return error(ID.Loc, "operands of constexpr must have same type"); 3803 if (!Val0->getType()->isIntOrIntVectorTy()) 3804 return error(ID.Loc, 3805 "constexpr requires integer or integer vector operands"); 3806 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3807 ID.Kind = ValID::t_Constant; 3808 return false; 3809 } 3810 3811 case lltok::kw_getelementptr: 3812 case lltok::kw_shufflevector: 3813 case lltok::kw_insertelement: 3814 case lltok::kw_extractelement: 3815 case lltok::kw_select: { 3816 unsigned Opc = Lex.getUIntVal(); 3817 SmallVector<Constant*, 16> Elts; 3818 bool InBounds = false; 3819 Type *Ty; 3820 Lex.Lex(); 3821 3822 if (Opc == Instruction::GetElementPtr) 3823 InBounds = EatIfPresent(lltok::kw_inbounds); 3824 3825 if (parseToken(lltok::lparen, "expected '(' in constantexpr")) 3826 return true; 3827 3828 LocTy ExplicitTypeLoc = Lex.getLoc(); 3829 if (Opc == Instruction::GetElementPtr) { 3830 if (parseType(Ty) || 3831 parseToken(lltok::comma, "expected comma after getelementptr's type")) 3832 return true; 3833 } 3834 3835 Optional<unsigned> InRangeOp; 3836 if (parseGlobalValueVector( 3837 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) || 3838 parseToken(lltok::rparen, "expected ')' in constantexpr")) 3839 return true; 3840 3841 if (Opc == Instruction::GetElementPtr) { 3842 if (Elts.size() == 0 || 3843 !Elts[0]->getType()->isPtrOrPtrVectorTy()) 3844 return error(ID.Loc, "base of getelementptr must be a pointer"); 3845 3846 Type *BaseType = Elts[0]->getType(); 3847 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3848 if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) { 3849 return error( 3850 ExplicitTypeLoc, 3851 typeComparisonErrorMessage( 3852 "explicit pointee type doesn't match operand's pointee type", 3853 Ty, BasePointerType->getElementType())); 3854 } 3855 3856 unsigned GEPWidth = 3857 BaseType->isVectorTy() 3858 ? cast<FixedVectorType>(BaseType)->getNumElements() 3859 : 0; 3860 3861 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3862 for (Constant *Val : Indices) { 3863 Type *ValTy = Val->getType(); 3864 if (!ValTy->isIntOrIntVectorTy()) 3865 return error(ID.Loc, "getelementptr index must be an integer"); 3866 if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) { 3867 unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements(); 3868 if (GEPWidth && (ValNumEl != GEPWidth)) 3869 return error( 3870 ID.Loc, 3871 "getelementptr vector index has a wrong number of elements"); 3872 // GEPWidth may have been unknown because the base is a scalar, 3873 // but it is known now. 3874 GEPWidth = ValNumEl; 3875 } 3876 } 3877 3878 SmallPtrSet<Type*, 4> Visited; 3879 if (!Indices.empty() && !Ty->isSized(&Visited)) 3880 return error(ID.Loc, "base element of getelementptr must be sized"); 3881 3882 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3883 return error(ID.Loc, "invalid getelementptr indices"); 3884 3885 if (InRangeOp) { 3886 if (*InRangeOp == 0) 3887 return error(ID.Loc, 3888 "inrange keyword may not appear on pointer operand"); 3889 --*InRangeOp; 3890 } 3891 3892 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, 3893 InBounds, InRangeOp); 3894 } else if (Opc == Instruction::Select) { 3895 if (Elts.size() != 3) 3896 return error(ID.Loc, "expected three operands to select"); 3897 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3898 Elts[2])) 3899 return error(ID.Loc, Reason); 3900 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3901 } else if (Opc == Instruction::ShuffleVector) { 3902 if (Elts.size() != 3) 3903 return error(ID.Loc, "expected three operands to shufflevector"); 3904 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3905 return error(ID.Loc, "invalid operands to shufflevector"); 3906 SmallVector<int, 16> Mask; 3907 ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask); 3908 ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask); 3909 } else if (Opc == Instruction::ExtractElement) { 3910 if (Elts.size() != 2) 3911 return error(ID.Loc, "expected two operands to extractelement"); 3912 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3913 return error(ID.Loc, "invalid extractelement operands"); 3914 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3915 } else { 3916 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3917 if (Elts.size() != 3) 3918 return error(ID.Loc, "expected three operands to insertelement"); 3919 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3920 return error(ID.Loc, "invalid insertelement operands"); 3921 ID.ConstantVal = 3922 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3923 } 3924 3925 ID.Kind = ValID::t_Constant; 3926 return false; 3927 } 3928 } 3929 3930 Lex.Lex(); 3931 return false; 3932 } 3933 3934 /// parseGlobalValue - parse a global value with the specified type. 3935 bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) { 3936 C = nullptr; 3937 ValID ID; 3938 Value *V = nullptr; 3939 bool Parsed = parseValID(ID) || 3940 convertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false); 3941 if (V && !(C = dyn_cast<Constant>(V))) 3942 return error(ID.Loc, "global values must be constants"); 3943 return Parsed; 3944 } 3945 3946 bool LLParser::parseGlobalTypeAndValue(Constant *&V) { 3947 Type *Ty = nullptr; 3948 return parseType(Ty) || parseGlobalValue(Ty, V); 3949 } 3950 3951 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3952 C = nullptr; 3953 3954 LocTy KwLoc = Lex.getLoc(); 3955 if (!EatIfPresent(lltok::kw_comdat)) 3956 return false; 3957 3958 if (EatIfPresent(lltok::lparen)) { 3959 if (Lex.getKind() != lltok::ComdatVar) 3960 return tokError("expected comdat variable"); 3961 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3962 Lex.Lex(); 3963 if (parseToken(lltok::rparen, "expected ')' after comdat var")) 3964 return true; 3965 } else { 3966 if (GlobalName.empty()) 3967 return tokError("comdat cannot be unnamed"); 3968 C = getComdat(std::string(GlobalName), KwLoc); 3969 } 3970 3971 return false; 3972 } 3973 3974 /// parseGlobalValueVector 3975 /// ::= /*empty*/ 3976 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)* 3977 bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts, 3978 Optional<unsigned> *InRangeOp) { 3979 // Empty list. 3980 if (Lex.getKind() == lltok::rbrace || 3981 Lex.getKind() == lltok::rsquare || 3982 Lex.getKind() == lltok::greater || 3983 Lex.getKind() == lltok::rparen) 3984 return false; 3985 3986 do { 3987 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange)) 3988 *InRangeOp = Elts.size(); 3989 3990 Constant *C; 3991 if (parseGlobalTypeAndValue(C)) 3992 return true; 3993 Elts.push_back(C); 3994 } while (EatIfPresent(lltok::comma)); 3995 3996 return false; 3997 } 3998 3999 bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) { 4000 SmallVector<Metadata *, 16> Elts; 4001 if (parseMDNodeVector(Elts)) 4002 return true; 4003 4004 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 4005 return false; 4006 } 4007 4008 /// MDNode: 4009 /// ::= !{ ... } 4010 /// ::= !7 4011 /// ::= !DILocation(...) 4012 bool LLParser::parseMDNode(MDNode *&N) { 4013 if (Lex.getKind() == lltok::MetadataVar) 4014 return parseSpecializedMDNode(N); 4015 4016 return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N); 4017 } 4018 4019 bool LLParser::parseMDNodeTail(MDNode *&N) { 4020 // !{ ... } 4021 if (Lex.getKind() == lltok::lbrace) 4022 return parseMDTuple(N); 4023 4024 // !42 4025 return parseMDNodeID(N); 4026 } 4027 4028 namespace { 4029 4030 /// Structure to represent an optional metadata field. 4031 template <class FieldTy> struct MDFieldImpl { 4032 typedef MDFieldImpl ImplTy; 4033 FieldTy Val; 4034 bool Seen; 4035 4036 void assign(FieldTy Val) { 4037 Seen = true; 4038 this->Val = std::move(Val); 4039 } 4040 4041 explicit MDFieldImpl(FieldTy Default) 4042 : Val(std::move(Default)), Seen(false) {} 4043 }; 4044 4045 /// Structure to represent an optional metadata field that 4046 /// can be of either type (A or B) and encapsulates the 4047 /// MD<typeofA>Field and MD<typeofB>Field structs, so not 4048 /// to reimplement the specifics for representing each Field. 4049 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl { 4050 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy; 4051 FieldTypeA A; 4052 FieldTypeB B; 4053 bool Seen; 4054 4055 enum { 4056 IsInvalid = 0, 4057 IsTypeA = 1, 4058 IsTypeB = 2 4059 } WhatIs; 4060 4061 void assign(FieldTypeA A) { 4062 Seen = true; 4063 this->A = std::move(A); 4064 WhatIs = IsTypeA; 4065 } 4066 4067 void assign(FieldTypeB B) { 4068 Seen = true; 4069 this->B = std::move(B); 4070 WhatIs = IsTypeB; 4071 } 4072 4073 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB) 4074 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false), 4075 WhatIs(IsInvalid) {} 4076 }; 4077 4078 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 4079 uint64_t Max; 4080 4081 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 4082 : ImplTy(Default), Max(Max) {} 4083 }; 4084 4085 struct LineField : public MDUnsignedField { 4086 LineField() : MDUnsignedField(0, UINT32_MAX) {} 4087 }; 4088 4089 struct ColumnField : public MDUnsignedField { 4090 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 4091 }; 4092 4093 struct DwarfTagField : public MDUnsignedField { 4094 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 4095 DwarfTagField(dwarf::Tag DefaultTag) 4096 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 4097 }; 4098 4099 struct DwarfMacinfoTypeField : public MDUnsignedField { 4100 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 4101 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 4102 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 4103 }; 4104 4105 struct DwarfAttEncodingField : public MDUnsignedField { 4106 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 4107 }; 4108 4109 struct DwarfVirtualityField : public MDUnsignedField { 4110 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 4111 }; 4112 4113 struct DwarfLangField : public MDUnsignedField { 4114 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 4115 }; 4116 4117 struct DwarfCCField : public MDUnsignedField { 4118 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 4119 }; 4120 4121 struct EmissionKindField : public MDUnsignedField { 4122 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 4123 }; 4124 4125 struct NameTableKindField : public MDUnsignedField { 4126 NameTableKindField() 4127 : MDUnsignedField( 4128 0, (unsigned) 4129 DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {} 4130 }; 4131 4132 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 4133 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 4134 }; 4135 4136 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> { 4137 DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {} 4138 }; 4139 4140 struct MDAPSIntField : public MDFieldImpl<APSInt> { 4141 MDAPSIntField() : ImplTy(APSInt()) {} 4142 }; 4143 4144 struct MDSignedField : public MDFieldImpl<int64_t> { 4145 int64_t Min; 4146 int64_t Max; 4147 4148 MDSignedField(int64_t Default = 0) 4149 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 4150 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 4151 : ImplTy(Default), Min(Min), Max(Max) {} 4152 }; 4153 4154 struct MDBoolField : public MDFieldImpl<bool> { 4155 MDBoolField(bool Default = false) : ImplTy(Default) {} 4156 }; 4157 4158 struct MDField : public MDFieldImpl<Metadata *> { 4159 bool AllowNull; 4160 4161 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 4162 }; 4163 4164 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> { 4165 MDConstant() : ImplTy(nullptr) {} 4166 }; 4167 4168 struct MDStringField : public MDFieldImpl<MDString *> { 4169 bool AllowEmpty; 4170 MDStringField(bool AllowEmpty = true) 4171 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 4172 }; 4173 4174 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 4175 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 4176 }; 4177 4178 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> { 4179 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {} 4180 }; 4181 4182 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> { 4183 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true) 4184 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {} 4185 4186 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max, 4187 bool AllowNull = true) 4188 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {} 4189 4190 bool isMDSignedField() const { return WhatIs == IsTypeA; } 4191 bool isMDField() const { return WhatIs == IsTypeB; } 4192 int64_t getMDSignedValue() const { 4193 assert(isMDSignedField() && "Wrong field type"); 4194 return A.Val; 4195 } 4196 Metadata *getMDFieldValue() const { 4197 assert(isMDField() && "Wrong field type"); 4198 return B.Val; 4199 } 4200 }; 4201 4202 struct MDSignedOrUnsignedField 4203 : MDEitherFieldImpl<MDSignedField, MDUnsignedField> { 4204 MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {} 4205 4206 bool isMDSignedField() const { return WhatIs == IsTypeA; } 4207 bool isMDUnsignedField() const { return WhatIs == IsTypeB; } 4208 int64_t getMDSignedValue() const { 4209 assert(isMDSignedField() && "Wrong field type"); 4210 return A.Val; 4211 } 4212 uint64_t getMDUnsignedValue() const { 4213 assert(isMDUnsignedField() && "Wrong field type"); 4214 return B.Val; 4215 } 4216 }; 4217 4218 } // end anonymous namespace 4219 4220 namespace llvm { 4221 4222 template <> 4223 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) { 4224 if (Lex.getKind() != lltok::APSInt) 4225 return tokError("expected integer"); 4226 4227 Result.assign(Lex.getAPSIntVal()); 4228 Lex.Lex(); 4229 return false; 4230 } 4231 4232 template <> 4233 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4234 MDUnsignedField &Result) { 4235 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4236 return tokError("expected unsigned integer"); 4237 4238 auto &U = Lex.getAPSIntVal(); 4239 if (U.ugt(Result.Max)) 4240 return tokError("value for '" + Name + "' too large, limit is " + 4241 Twine(Result.Max)); 4242 Result.assign(U.getZExtValue()); 4243 assert(Result.Val <= Result.Max && "Expected value in range"); 4244 Lex.Lex(); 4245 return false; 4246 } 4247 4248 template <> 4249 bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) { 4250 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4251 } 4252 template <> 4253 bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 4254 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4255 } 4256 4257 template <> 4258 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 4259 if (Lex.getKind() == lltok::APSInt) 4260 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4261 4262 if (Lex.getKind() != lltok::DwarfTag) 4263 return tokError("expected DWARF tag"); 4264 4265 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 4266 if (Tag == dwarf::DW_TAG_invalid) 4267 return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 4268 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 4269 4270 Result.assign(Tag); 4271 Lex.Lex(); 4272 return false; 4273 } 4274 4275 template <> 4276 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4277 DwarfMacinfoTypeField &Result) { 4278 if (Lex.getKind() == lltok::APSInt) 4279 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4280 4281 if (Lex.getKind() != lltok::DwarfMacinfo) 4282 return tokError("expected DWARF macinfo type"); 4283 4284 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 4285 if (Macinfo == dwarf::DW_MACINFO_invalid) 4286 return tokError("invalid DWARF macinfo type" + Twine(" '") + 4287 Lex.getStrVal() + "'"); 4288 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 4289 4290 Result.assign(Macinfo); 4291 Lex.Lex(); 4292 return false; 4293 } 4294 4295 template <> 4296 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4297 DwarfVirtualityField &Result) { 4298 if (Lex.getKind() == lltok::APSInt) 4299 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4300 4301 if (Lex.getKind() != lltok::DwarfVirtuality) 4302 return tokError("expected DWARF virtuality code"); 4303 4304 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 4305 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 4306 return tokError("invalid DWARF virtuality code" + Twine(" '") + 4307 Lex.getStrVal() + "'"); 4308 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 4309 Result.assign(Virtuality); 4310 Lex.Lex(); 4311 return false; 4312 } 4313 4314 template <> 4315 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 4316 if (Lex.getKind() == lltok::APSInt) 4317 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4318 4319 if (Lex.getKind() != lltok::DwarfLang) 4320 return tokError("expected DWARF language"); 4321 4322 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 4323 if (!Lang) 4324 return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 4325 "'"); 4326 assert(Lang <= Result.Max && "Expected valid DWARF language"); 4327 Result.assign(Lang); 4328 Lex.Lex(); 4329 return false; 4330 } 4331 4332 template <> 4333 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 4334 if (Lex.getKind() == lltok::APSInt) 4335 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4336 4337 if (Lex.getKind() != lltok::DwarfCC) 4338 return tokError("expected DWARF calling convention"); 4339 4340 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 4341 if (!CC) 4342 return tokError("invalid DWARF calling convention" + Twine(" '") + 4343 Lex.getStrVal() + "'"); 4344 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 4345 Result.assign(CC); 4346 Lex.Lex(); 4347 return false; 4348 } 4349 4350 template <> 4351 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4352 EmissionKindField &Result) { 4353 if (Lex.getKind() == lltok::APSInt) 4354 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4355 4356 if (Lex.getKind() != lltok::EmissionKind) 4357 return tokError("expected emission kind"); 4358 4359 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 4360 if (!Kind) 4361 return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 4362 "'"); 4363 assert(*Kind <= Result.Max && "Expected valid emission kind"); 4364 Result.assign(*Kind); 4365 Lex.Lex(); 4366 return false; 4367 } 4368 4369 template <> 4370 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4371 NameTableKindField &Result) { 4372 if (Lex.getKind() == lltok::APSInt) 4373 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4374 4375 if (Lex.getKind() != lltok::NameTableKind) 4376 return tokError("expected nameTable kind"); 4377 4378 auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal()); 4379 if (!Kind) 4380 return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() + 4381 "'"); 4382 assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind"); 4383 Result.assign((unsigned)*Kind); 4384 Lex.Lex(); 4385 return false; 4386 } 4387 4388 template <> 4389 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4390 DwarfAttEncodingField &Result) { 4391 if (Lex.getKind() == lltok::APSInt) 4392 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4393 4394 if (Lex.getKind() != lltok::DwarfAttEncoding) 4395 return tokError("expected DWARF type attribute encoding"); 4396 4397 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 4398 if (!Encoding) 4399 return tokError("invalid DWARF type attribute encoding" + Twine(" '") + 4400 Lex.getStrVal() + "'"); 4401 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 4402 Result.assign(Encoding); 4403 Lex.Lex(); 4404 return false; 4405 } 4406 4407 /// DIFlagField 4408 /// ::= uint32 4409 /// ::= DIFlagVector 4410 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 4411 template <> 4412 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 4413 4414 // parser for a single flag. 4415 auto parseFlag = [&](DINode::DIFlags &Val) { 4416 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4417 uint32_t TempVal = static_cast<uint32_t>(Val); 4418 bool Res = parseUInt32(TempVal); 4419 Val = static_cast<DINode::DIFlags>(TempVal); 4420 return Res; 4421 } 4422 4423 if (Lex.getKind() != lltok::DIFlag) 4424 return tokError("expected debug info flag"); 4425 4426 Val = DINode::getFlag(Lex.getStrVal()); 4427 if (!Val) 4428 return tokError(Twine("invalid debug info flag flag '") + 4429 Lex.getStrVal() + "'"); 4430 Lex.Lex(); 4431 return false; 4432 }; 4433 4434 // parse the flags and combine them together. 4435 DINode::DIFlags Combined = DINode::FlagZero; 4436 do { 4437 DINode::DIFlags Val; 4438 if (parseFlag(Val)) 4439 return true; 4440 Combined |= Val; 4441 } while (EatIfPresent(lltok::bar)); 4442 4443 Result.assign(Combined); 4444 return false; 4445 } 4446 4447 /// DISPFlagField 4448 /// ::= uint32 4449 /// ::= DISPFlagVector 4450 /// ::= DISPFlagVector '|' DISPFlag* '|' uint32 4451 template <> 4452 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) { 4453 4454 // parser for a single flag. 4455 auto parseFlag = [&](DISubprogram::DISPFlags &Val) { 4456 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4457 uint32_t TempVal = static_cast<uint32_t>(Val); 4458 bool Res = parseUInt32(TempVal); 4459 Val = static_cast<DISubprogram::DISPFlags>(TempVal); 4460 return Res; 4461 } 4462 4463 if (Lex.getKind() != lltok::DISPFlag) 4464 return tokError("expected debug info flag"); 4465 4466 Val = DISubprogram::getFlag(Lex.getStrVal()); 4467 if (!Val) 4468 return tokError(Twine("invalid subprogram debug info flag '") + 4469 Lex.getStrVal() + "'"); 4470 Lex.Lex(); 4471 return false; 4472 }; 4473 4474 // parse the flags and combine them together. 4475 DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero; 4476 do { 4477 DISubprogram::DISPFlags Val; 4478 if (parseFlag(Val)) 4479 return true; 4480 Combined |= Val; 4481 } while (EatIfPresent(lltok::bar)); 4482 4483 Result.assign(Combined); 4484 return false; 4485 } 4486 4487 template <> 4488 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) { 4489 if (Lex.getKind() != lltok::APSInt) 4490 return tokError("expected signed integer"); 4491 4492 auto &S = Lex.getAPSIntVal(); 4493 if (S < Result.Min) 4494 return tokError("value for '" + Name + "' too small, limit is " + 4495 Twine(Result.Min)); 4496 if (S > Result.Max) 4497 return tokError("value for '" + Name + "' too large, limit is " + 4498 Twine(Result.Max)); 4499 Result.assign(S.getExtValue()); 4500 assert(Result.Val >= Result.Min && "Expected value in range"); 4501 assert(Result.Val <= Result.Max && "Expected value in range"); 4502 Lex.Lex(); 4503 return false; 4504 } 4505 4506 template <> 4507 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 4508 switch (Lex.getKind()) { 4509 default: 4510 return tokError("expected 'true' or 'false'"); 4511 case lltok::kw_true: 4512 Result.assign(true); 4513 break; 4514 case lltok::kw_false: 4515 Result.assign(false); 4516 break; 4517 } 4518 Lex.Lex(); 4519 return false; 4520 } 4521 4522 template <> 4523 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) { 4524 if (Lex.getKind() == lltok::kw_null) { 4525 if (!Result.AllowNull) 4526 return tokError("'" + Name + "' cannot be null"); 4527 Lex.Lex(); 4528 Result.assign(nullptr); 4529 return false; 4530 } 4531 4532 Metadata *MD; 4533 if (parseMetadata(MD, nullptr)) 4534 return true; 4535 4536 Result.assign(MD); 4537 return false; 4538 } 4539 4540 template <> 4541 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4542 MDSignedOrMDField &Result) { 4543 // Try to parse a signed int. 4544 if (Lex.getKind() == lltok::APSInt) { 4545 MDSignedField Res = Result.A; 4546 if (!parseMDField(Loc, Name, Res)) { 4547 Result.assign(Res); 4548 return false; 4549 } 4550 return true; 4551 } 4552 4553 // Otherwise, try to parse as an MDField. 4554 MDField Res = Result.B; 4555 if (!parseMDField(Loc, Name, Res)) { 4556 Result.assign(Res); 4557 return false; 4558 } 4559 4560 return true; 4561 } 4562 4563 template <> 4564 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 4565 LocTy ValueLoc = Lex.getLoc(); 4566 std::string S; 4567 if (parseStringConstant(S)) 4568 return true; 4569 4570 if (!Result.AllowEmpty && S.empty()) 4571 return error(ValueLoc, "'" + Name + "' cannot be empty"); 4572 4573 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 4574 return false; 4575 } 4576 4577 template <> 4578 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 4579 SmallVector<Metadata *, 4> MDs; 4580 if (parseMDNodeVector(MDs)) 4581 return true; 4582 4583 Result.assign(std::move(MDs)); 4584 return false; 4585 } 4586 4587 template <> 4588 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4589 ChecksumKindField &Result) { 4590 Optional<DIFile::ChecksumKind> CSKind = 4591 DIFile::getChecksumKind(Lex.getStrVal()); 4592 4593 if (Lex.getKind() != lltok::ChecksumKind || !CSKind) 4594 return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() + 4595 "'"); 4596 4597 Result.assign(*CSKind); 4598 Lex.Lex(); 4599 return false; 4600 } 4601 4602 } // end namespace llvm 4603 4604 template <class ParserTy> 4605 bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) { 4606 do { 4607 if (Lex.getKind() != lltok::LabelStr) 4608 return tokError("expected field label here"); 4609 4610 if (ParseField()) 4611 return true; 4612 } while (EatIfPresent(lltok::comma)); 4613 4614 return false; 4615 } 4616 4617 template <class ParserTy> 4618 bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) { 4619 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4620 Lex.Lex(); 4621 4622 if (parseToken(lltok::lparen, "expected '(' here")) 4623 return true; 4624 if (Lex.getKind() != lltok::rparen) 4625 if (parseMDFieldsImplBody(ParseField)) 4626 return true; 4627 4628 ClosingLoc = Lex.getLoc(); 4629 return parseToken(lltok::rparen, "expected ')' here"); 4630 } 4631 4632 template <class FieldTy> 4633 bool LLParser::parseMDField(StringRef Name, FieldTy &Result) { 4634 if (Result.Seen) 4635 return tokError("field '" + Name + "' cannot be specified more than once"); 4636 4637 LocTy Loc = Lex.getLoc(); 4638 Lex.Lex(); 4639 return parseMDField(Loc, Name, Result); 4640 } 4641 4642 bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 4643 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4644 4645 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 4646 if (Lex.getStrVal() == #CLASS) \ 4647 return parse##CLASS(N, IsDistinct); 4648 #include "llvm/IR/Metadata.def" 4649 4650 return tokError("expected metadata type"); 4651 } 4652 4653 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 4654 #define NOP_FIELD(NAME, TYPE, INIT) 4655 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 4656 if (!NAME.Seen) \ 4657 return error(ClosingLoc, "missing required field '" #NAME "'"); 4658 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 4659 if (Lex.getStrVal() == #NAME) \ 4660 return parseMDField(#NAME, NAME); 4661 #define PARSE_MD_FIELDS() \ 4662 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 4663 do { \ 4664 LocTy ClosingLoc; \ 4665 if (parseMDFieldsImpl( \ 4666 [&]() -> bool { \ 4667 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 4668 return tokError(Twine("invalid field '") + Lex.getStrVal() + \ 4669 "'"); \ 4670 }, \ 4671 ClosingLoc)) \ 4672 return true; \ 4673 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 4674 } while (false) 4675 #define GET_OR_DISTINCT(CLASS, ARGS) \ 4676 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 4677 4678 /// parseDILocationFields: 4679 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6, 4680 /// isImplicitCode: true) 4681 bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) { 4682 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4683 OPTIONAL(line, LineField, ); \ 4684 OPTIONAL(column, ColumnField, ); \ 4685 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4686 OPTIONAL(inlinedAt, MDField, ); \ 4687 OPTIONAL(isImplicitCode, MDBoolField, (false)); 4688 PARSE_MD_FIELDS(); 4689 #undef VISIT_MD_FIELDS 4690 4691 Result = 4692 GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val, 4693 inlinedAt.Val, isImplicitCode.Val)); 4694 return false; 4695 } 4696 4697 /// parseGenericDINode: 4698 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 4699 bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) { 4700 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4701 REQUIRED(tag, DwarfTagField, ); \ 4702 OPTIONAL(header, MDStringField, ); \ 4703 OPTIONAL(operands, MDFieldList, ); 4704 PARSE_MD_FIELDS(); 4705 #undef VISIT_MD_FIELDS 4706 4707 Result = GET_OR_DISTINCT(GenericDINode, 4708 (Context, tag.Val, header.Val, operands.Val)); 4709 return false; 4710 } 4711 4712 /// parseDISubrange: 4713 /// ::= !DISubrange(count: 30, lowerBound: 2) 4714 /// ::= !DISubrange(count: !node, lowerBound: 2) 4715 /// ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3) 4716 bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) { 4717 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4718 OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \ 4719 OPTIONAL(lowerBound, MDSignedOrMDField, ); \ 4720 OPTIONAL(upperBound, MDSignedOrMDField, ); \ 4721 OPTIONAL(stride, MDSignedOrMDField, ); 4722 PARSE_MD_FIELDS(); 4723 #undef VISIT_MD_FIELDS 4724 4725 Metadata *Count = nullptr; 4726 Metadata *LowerBound = nullptr; 4727 Metadata *UpperBound = nullptr; 4728 Metadata *Stride = nullptr; 4729 4730 auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * { 4731 if (Bound.isMDSignedField()) 4732 return ConstantAsMetadata::get(ConstantInt::getSigned( 4733 Type::getInt64Ty(Context), Bound.getMDSignedValue())); 4734 if (Bound.isMDField()) 4735 return Bound.getMDFieldValue(); 4736 return nullptr; 4737 }; 4738 4739 Count = convToMetadata(count); 4740 LowerBound = convToMetadata(lowerBound); 4741 UpperBound = convToMetadata(upperBound); 4742 Stride = convToMetadata(stride); 4743 4744 Result = GET_OR_DISTINCT(DISubrange, 4745 (Context, Count, LowerBound, UpperBound, Stride)); 4746 4747 return false; 4748 } 4749 4750 /// parseDIGenericSubrange: 4751 /// ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride: 4752 /// !node3) 4753 bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) { 4754 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4755 OPTIONAL(count, MDSignedOrMDField, ); \ 4756 OPTIONAL(lowerBound, MDSignedOrMDField, ); \ 4757 OPTIONAL(upperBound, MDSignedOrMDField, ); \ 4758 OPTIONAL(stride, MDSignedOrMDField, ); 4759 PARSE_MD_FIELDS(); 4760 #undef VISIT_MD_FIELDS 4761 4762 auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * { 4763 if (Bound.isMDSignedField()) 4764 return DIExpression::get( 4765 Context, {dwarf::DW_OP_consts, 4766 static_cast<uint64_t>(Bound.getMDSignedValue())}); 4767 if (Bound.isMDField()) 4768 return Bound.getMDFieldValue(); 4769 return nullptr; 4770 }; 4771 4772 Metadata *Count = ConvToMetadata(count); 4773 Metadata *LowerBound = ConvToMetadata(lowerBound); 4774 Metadata *UpperBound = ConvToMetadata(upperBound); 4775 Metadata *Stride = ConvToMetadata(stride); 4776 4777 Result = GET_OR_DISTINCT(DIGenericSubrange, 4778 (Context, Count, LowerBound, UpperBound, Stride)); 4779 4780 return false; 4781 } 4782 4783 /// parseDIEnumerator: 4784 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind") 4785 bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) { 4786 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4787 REQUIRED(name, MDStringField, ); \ 4788 REQUIRED(value, MDAPSIntField, ); \ 4789 OPTIONAL(isUnsigned, MDBoolField, (false)); 4790 PARSE_MD_FIELDS(); 4791 #undef VISIT_MD_FIELDS 4792 4793 if (isUnsigned.Val && value.Val.isNegative()) 4794 return tokError("unsigned enumerator with negative value"); 4795 4796 APSInt Value(value.Val); 4797 // Add a leading zero so that unsigned values with the msb set are not 4798 // mistaken for negative values when used for signed enumerators. 4799 if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet()) 4800 Value = Value.zext(Value.getBitWidth() + 1); 4801 4802 Result = 4803 GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val)); 4804 4805 return false; 4806 } 4807 4808 /// parseDIBasicType: 4809 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32, 4810 /// encoding: DW_ATE_encoding, flags: 0) 4811 bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) { 4812 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4813 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 4814 OPTIONAL(name, MDStringField, ); \ 4815 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4816 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4817 OPTIONAL(encoding, DwarfAttEncodingField, ); \ 4818 OPTIONAL(flags, DIFlagField, ); 4819 PARSE_MD_FIELDS(); 4820 #undef VISIT_MD_FIELDS 4821 4822 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 4823 align.Val, encoding.Val, flags.Val)); 4824 return false; 4825 } 4826 4827 /// parseDIStringType: 4828 /// ::= !DIStringType(name: "character(4)", size: 32, align: 32) 4829 bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) { 4830 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4831 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type)); \ 4832 OPTIONAL(name, MDStringField, ); \ 4833 OPTIONAL(stringLength, MDField, ); \ 4834 OPTIONAL(stringLengthExpression, MDField, ); \ 4835 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4836 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4837 OPTIONAL(encoding, DwarfAttEncodingField, ); 4838 PARSE_MD_FIELDS(); 4839 #undef VISIT_MD_FIELDS 4840 4841 Result = GET_OR_DISTINCT(DIStringType, 4842 (Context, tag.Val, name.Val, stringLength.Val, 4843 stringLengthExpression.Val, size.Val, align.Val, 4844 encoding.Val)); 4845 return false; 4846 } 4847 4848 /// parseDIDerivedType: 4849 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 4850 /// line: 7, scope: !1, baseType: !2, size: 32, 4851 /// align: 32, offset: 0, flags: 0, extraData: !3, 4852 /// dwarfAddressSpace: 3) 4853 bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) { 4854 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4855 REQUIRED(tag, DwarfTagField, ); \ 4856 OPTIONAL(name, MDStringField, ); \ 4857 OPTIONAL(file, MDField, ); \ 4858 OPTIONAL(line, LineField, ); \ 4859 OPTIONAL(scope, MDField, ); \ 4860 REQUIRED(baseType, MDField, ); \ 4861 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4862 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4863 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4864 OPTIONAL(flags, DIFlagField, ); \ 4865 OPTIONAL(extraData, MDField, ); \ 4866 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); 4867 PARSE_MD_FIELDS(); 4868 #undef VISIT_MD_FIELDS 4869 4870 Optional<unsigned> DWARFAddressSpace; 4871 if (dwarfAddressSpace.Val != UINT32_MAX) 4872 DWARFAddressSpace = dwarfAddressSpace.Val; 4873 4874 Result = GET_OR_DISTINCT(DIDerivedType, 4875 (Context, tag.Val, name.Val, file.Val, line.Val, 4876 scope.Val, baseType.Val, size.Val, align.Val, 4877 offset.Val, DWARFAddressSpace, flags.Val, 4878 extraData.Val)); 4879 return false; 4880 } 4881 4882 bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) { 4883 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4884 REQUIRED(tag, DwarfTagField, ); \ 4885 OPTIONAL(name, MDStringField, ); \ 4886 OPTIONAL(file, MDField, ); \ 4887 OPTIONAL(line, LineField, ); \ 4888 OPTIONAL(scope, MDField, ); \ 4889 OPTIONAL(baseType, MDField, ); \ 4890 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4891 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4892 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4893 OPTIONAL(flags, DIFlagField, ); \ 4894 OPTIONAL(elements, MDField, ); \ 4895 OPTIONAL(runtimeLang, DwarfLangField, ); \ 4896 OPTIONAL(vtableHolder, MDField, ); \ 4897 OPTIONAL(templateParams, MDField, ); \ 4898 OPTIONAL(identifier, MDStringField, ); \ 4899 OPTIONAL(discriminator, MDField, ); \ 4900 OPTIONAL(dataLocation, MDField, ); \ 4901 OPTIONAL(associated, MDField, ); \ 4902 OPTIONAL(allocated, MDField, ); \ 4903 OPTIONAL(rank, MDSignedOrMDField, ); 4904 PARSE_MD_FIELDS(); 4905 #undef VISIT_MD_FIELDS 4906 4907 Metadata *Rank = nullptr; 4908 if (rank.isMDSignedField()) 4909 Rank = ConstantAsMetadata::get(ConstantInt::getSigned( 4910 Type::getInt64Ty(Context), rank.getMDSignedValue())); 4911 else if (rank.isMDField()) 4912 Rank = rank.getMDFieldValue(); 4913 4914 // If this has an identifier try to build an ODR type. 4915 if (identifier.Val) 4916 if (auto *CT = DICompositeType::buildODRType( 4917 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 4918 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 4919 elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val, 4920 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, 4921 Rank)) { 4922 Result = CT; 4923 return false; 4924 } 4925 4926 // Create a new node, and save it in the context if it belongs in the type 4927 // map. 4928 Result = GET_OR_DISTINCT( 4929 DICompositeType, 4930 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 4931 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 4932 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val, 4933 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, 4934 Rank)); 4935 return false; 4936 } 4937 4938 bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) { 4939 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4940 OPTIONAL(flags, DIFlagField, ); \ 4941 OPTIONAL(cc, DwarfCCField, ); \ 4942 REQUIRED(types, MDField, ); 4943 PARSE_MD_FIELDS(); 4944 #undef VISIT_MD_FIELDS 4945 4946 Result = GET_OR_DISTINCT(DISubroutineType, 4947 (Context, flags.Val, cc.Val, types.Val)); 4948 return false; 4949 } 4950 4951 /// parseDIFileType: 4952 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir", 4953 /// checksumkind: CSK_MD5, 4954 /// checksum: "000102030405060708090a0b0c0d0e0f", 4955 /// source: "source file contents") 4956 bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) { 4957 // The default constructed value for checksumkind is required, but will never 4958 // be used, as the parser checks if the field was actually Seen before using 4959 // the Val. 4960 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4961 REQUIRED(filename, MDStringField, ); \ 4962 REQUIRED(directory, MDStringField, ); \ 4963 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \ 4964 OPTIONAL(checksum, MDStringField, ); \ 4965 OPTIONAL(source, MDStringField, ); 4966 PARSE_MD_FIELDS(); 4967 #undef VISIT_MD_FIELDS 4968 4969 Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum; 4970 if (checksumkind.Seen && checksum.Seen) 4971 OptChecksum.emplace(checksumkind.Val, checksum.Val); 4972 else if (checksumkind.Seen || checksum.Seen) 4973 return Lex.Error("'checksumkind' and 'checksum' must be provided together"); 4974 4975 Optional<MDString *> OptSource; 4976 if (source.Seen) 4977 OptSource = source.Val; 4978 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val, 4979 OptChecksum, OptSource)); 4980 return false; 4981 } 4982 4983 /// parseDICompileUnit: 4984 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 4985 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 4986 /// splitDebugFilename: "abc.debug", 4987 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 4988 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd, 4989 /// sysroot: "/", sdk: "MacOSX.sdk") 4990 bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) { 4991 if (!IsDistinct) 4992 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 4993 4994 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4995 REQUIRED(language, DwarfLangField, ); \ 4996 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 4997 OPTIONAL(producer, MDStringField, ); \ 4998 OPTIONAL(isOptimized, MDBoolField, ); \ 4999 OPTIONAL(flags, MDStringField, ); \ 5000 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 5001 OPTIONAL(splitDebugFilename, MDStringField, ); \ 5002 OPTIONAL(emissionKind, EmissionKindField, ); \ 5003 OPTIONAL(enums, MDField, ); \ 5004 OPTIONAL(retainedTypes, MDField, ); \ 5005 OPTIONAL(globals, MDField, ); \ 5006 OPTIONAL(imports, MDField, ); \ 5007 OPTIONAL(macros, MDField, ); \ 5008 OPTIONAL(dwoId, MDUnsignedField, ); \ 5009 OPTIONAL(splitDebugInlining, MDBoolField, = true); \ 5010 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \ 5011 OPTIONAL(nameTableKind, NameTableKindField, ); \ 5012 OPTIONAL(rangesBaseAddress, MDBoolField, = false); \ 5013 OPTIONAL(sysroot, MDStringField, ); \ 5014 OPTIONAL(sdk, MDStringField, ); 5015 PARSE_MD_FIELDS(); 5016 #undef VISIT_MD_FIELDS 5017 5018 Result = DICompileUnit::getDistinct( 5019 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 5020 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 5021 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 5022 splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val, 5023 rangesBaseAddress.Val, sysroot.Val, sdk.Val); 5024 return false; 5025 } 5026 5027 /// parseDISubprogram: 5028 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 5029 /// file: !1, line: 7, type: !2, isLocal: false, 5030 /// isDefinition: true, scopeLine: 8, containingType: !3, 5031 /// virtuality: DW_VIRTUALTIY_pure_virtual, 5032 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 5033 /// spFlags: 10, isOptimized: false, templateParams: !4, 5034 /// declaration: !5, retainedNodes: !6, thrownTypes: !7) 5035 bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) { 5036 auto Loc = Lex.getLoc(); 5037 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5038 OPTIONAL(scope, MDField, ); \ 5039 OPTIONAL(name, MDStringField, ); \ 5040 OPTIONAL(linkageName, MDStringField, ); \ 5041 OPTIONAL(file, MDField, ); \ 5042 OPTIONAL(line, LineField, ); \ 5043 OPTIONAL(type, MDField, ); \ 5044 OPTIONAL(isLocal, MDBoolField, ); \ 5045 OPTIONAL(isDefinition, MDBoolField, (true)); \ 5046 OPTIONAL(scopeLine, LineField, ); \ 5047 OPTIONAL(containingType, MDField, ); \ 5048 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 5049 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 5050 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 5051 OPTIONAL(flags, DIFlagField, ); \ 5052 OPTIONAL(spFlags, DISPFlagField, ); \ 5053 OPTIONAL(isOptimized, MDBoolField, ); \ 5054 OPTIONAL(unit, MDField, ); \ 5055 OPTIONAL(templateParams, MDField, ); \ 5056 OPTIONAL(declaration, MDField, ); \ 5057 OPTIONAL(retainedNodes, MDField, ); \ 5058 OPTIONAL(thrownTypes, MDField, ); 5059 PARSE_MD_FIELDS(); 5060 #undef VISIT_MD_FIELDS 5061 5062 // An explicit spFlags field takes precedence over individual fields in 5063 // older IR versions. 5064 DISubprogram::DISPFlags SPFlags = 5065 spFlags.Seen ? spFlags.Val 5066 : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val, 5067 isOptimized.Val, virtuality.Val); 5068 if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct) 5069 return Lex.Error( 5070 Loc, 5071 "missing 'distinct', required for !DISubprogram that is a Definition"); 5072 Result = GET_OR_DISTINCT( 5073 DISubprogram, 5074 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 5075 type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val, 5076 thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val, 5077 declaration.Val, retainedNodes.Val, thrownTypes.Val)); 5078 return false; 5079 } 5080 5081 /// parseDILexicalBlock: 5082 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 5083 bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 5084 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5085 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5086 OPTIONAL(file, MDField, ); \ 5087 OPTIONAL(line, LineField, ); \ 5088 OPTIONAL(column, ColumnField, ); 5089 PARSE_MD_FIELDS(); 5090 #undef VISIT_MD_FIELDS 5091 5092 Result = GET_OR_DISTINCT( 5093 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 5094 return false; 5095 } 5096 5097 /// parseDILexicalBlockFile: 5098 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 5099 bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 5100 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5101 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5102 OPTIONAL(file, MDField, ); \ 5103 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 5104 PARSE_MD_FIELDS(); 5105 #undef VISIT_MD_FIELDS 5106 5107 Result = GET_OR_DISTINCT(DILexicalBlockFile, 5108 (Context, scope.Val, file.Val, discriminator.Val)); 5109 return false; 5110 } 5111 5112 /// parseDICommonBlock: 5113 /// ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9) 5114 bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) { 5115 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5116 REQUIRED(scope, MDField, ); \ 5117 OPTIONAL(declaration, MDField, ); \ 5118 OPTIONAL(name, MDStringField, ); \ 5119 OPTIONAL(file, MDField, ); \ 5120 OPTIONAL(line, LineField, ); 5121 PARSE_MD_FIELDS(); 5122 #undef VISIT_MD_FIELDS 5123 5124 Result = GET_OR_DISTINCT(DICommonBlock, 5125 (Context, scope.Val, declaration.Val, name.Val, 5126 file.Val, line.Val)); 5127 return false; 5128 } 5129 5130 /// parseDINamespace: 5131 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 5132 bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) { 5133 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5134 REQUIRED(scope, MDField, ); \ 5135 OPTIONAL(name, MDStringField, ); \ 5136 OPTIONAL(exportSymbols, MDBoolField, ); 5137 PARSE_MD_FIELDS(); 5138 #undef VISIT_MD_FIELDS 5139 5140 Result = GET_OR_DISTINCT(DINamespace, 5141 (Context, scope.Val, name.Val, exportSymbols.Val)); 5142 return false; 5143 } 5144 5145 /// parseDIMacro: 5146 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: 5147 /// "SomeValue") 5148 bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) { 5149 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5150 REQUIRED(type, DwarfMacinfoTypeField, ); \ 5151 OPTIONAL(line, LineField, ); \ 5152 REQUIRED(name, MDStringField, ); \ 5153 OPTIONAL(value, MDStringField, ); 5154 PARSE_MD_FIELDS(); 5155 #undef VISIT_MD_FIELDS 5156 5157 Result = GET_OR_DISTINCT(DIMacro, 5158 (Context, type.Val, line.Val, name.Val, value.Val)); 5159 return false; 5160 } 5161 5162 /// parseDIMacroFile: 5163 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 5164 bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) { 5165 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5166 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 5167 OPTIONAL(line, LineField, ); \ 5168 REQUIRED(file, MDField, ); \ 5169 OPTIONAL(nodes, MDField, ); 5170 PARSE_MD_FIELDS(); 5171 #undef VISIT_MD_FIELDS 5172 5173 Result = GET_OR_DISTINCT(DIMacroFile, 5174 (Context, type.Val, line.Val, file.Val, nodes.Val)); 5175 return false; 5176 } 5177 5178 /// parseDIModule: 5179 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: 5180 /// "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes", 5181 /// file: !1, line: 4, isDecl: false) 5182 bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) { 5183 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5184 REQUIRED(scope, MDField, ); \ 5185 REQUIRED(name, MDStringField, ); \ 5186 OPTIONAL(configMacros, MDStringField, ); \ 5187 OPTIONAL(includePath, MDStringField, ); \ 5188 OPTIONAL(apinotes, MDStringField, ); \ 5189 OPTIONAL(file, MDField, ); \ 5190 OPTIONAL(line, LineField, ); \ 5191 OPTIONAL(isDecl, MDBoolField, ); 5192 PARSE_MD_FIELDS(); 5193 #undef VISIT_MD_FIELDS 5194 5195 Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val, 5196 configMacros.Val, includePath.Val, 5197 apinotes.Val, line.Val, isDecl.Val)); 5198 return false; 5199 } 5200 5201 /// parseDITemplateTypeParameter: 5202 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false) 5203 bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 5204 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5205 OPTIONAL(name, MDStringField, ); \ 5206 REQUIRED(type, MDField, ); \ 5207 OPTIONAL(defaulted, MDBoolField, ); 5208 PARSE_MD_FIELDS(); 5209 #undef VISIT_MD_FIELDS 5210 5211 Result = GET_OR_DISTINCT(DITemplateTypeParameter, 5212 (Context, name.Val, type.Val, defaulted.Val)); 5213 return false; 5214 } 5215 5216 /// parseDITemplateValueParameter: 5217 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 5218 /// name: "V", type: !1, defaulted: false, 5219 /// value: i32 7) 5220 bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 5221 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5222 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 5223 OPTIONAL(name, MDStringField, ); \ 5224 OPTIONAL(type, MDField, ); \ 5225 OPTIONAL(defaulted, MDBoolField, ); \ 5226 REQUIRED(value, MDField, ); 5227 5228 PARSE_MD_FIELDS(); 5229 #undef VISIT_MD_FIELDS 5230 5231 Result = GET_OR_DISTINCT( 5232 DITemplateValueParameter, 5233 (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val)); 5234 return false; 5235 } 5236 5237 /// parseDIGlobalVariable: 5238 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 5239 /// file: !1, line: 7, type: !2, isLocal: false, 5240 /// isDefinition: true, templateParams: !3, 5241 /// declaration: !4, align: 8) 5242 bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 5243 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5244 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 5245 OPTIONAL(scope, MDField, ); \ 5246 OPTIONAL(linkageName, MDStringField, ); \ 5247 OPTIONAL(file, MDField, ); \ 5248 OPTIONAL(line, LineField, ); \ 5249 OPTIONAL(type, MDField, ); \ 5250 OPTIONAL(isLocal, MDBoolField, ); \ 5251 OPTIONAL(isDefinition, MDBoolField, (true)); \ 5252 OPTIONAL(templateParams, MDField, ); \ 5253 OPTIONAL(declaration, MDField, ); \ 5254 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 5255 PARSE_MD_FIELDS(); 5256 #undef VISIT_MD_FIELDS 5257 5258 Result = 5259 GET_OR_DISTINCT(DIGlobalVariable, 5260 (Context, scope.Val, name.Val, linkageName.Val, file.Val, 5261 line.Val, type.Val, isLocal.Val, isDefinition.Val, 5262 declaration.Val, templateParams.Val, align.Val)); 5263 return false; 5264 } 5265 5266 /// parseDILocalVariable: 5267 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 5268 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 5269 /// align: 8) 5270 /// ::= !DILocalVariable(scope: !0, name: "foo", 5271 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 5272 /// align: 8) 5273 bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) { 5274 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5275 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5276 OPTIONAL(name, MDStringField, ); \ 5277 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 5278 OPTIONAL(file, MDField, ); \ 5279 OPTIONAL(line, LineField, ); \ 5280 OPTIONAL(type, MDField, ); \ 5281 OPTIONAL(flags, DIFlagField, ); \ 5282 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 5283 PARSE_MD_FIELDS(); 5284 #undef VISIT_MD_FIELDS 5285 5286 Result = GET_OR_DISTINCT(DILocalVariable, 5287 (Context, scope.Val, name.Val, file.Val, line.Val, 5288 type.Val, arg.Val, flags.Val, align.Val)); 5289 return false; 5290 } 5291 5292 /// parseDILabel: 5293 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7) 5294 bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) { 5295 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5296 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5297 REQUIRED(name, MDStringField, ); \ 5298 REQUIRED(file, MDField, ); \ 5299 REQUIRED(line, LineField, ); 5300 PARSE_MD_FIELDS(); 5301 #undef VISIT_MD_FIELDS 5302 5303 Result = GET_OR_DISTINCT(DILabel, 5304 (Context, scope.Val, name.Val, file.Val, line.Val)); 5305 return false; 5306 } 5307 5308 /// parseDIExpression: 5309 /// ::= !DIExpression(0, 7, -1) 5310 bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) { 5311 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 5312 Lex.Lex(); 5313 5314 if (parseToken(lltok::lparen, "expected '(' here")) 5315 return true; 5316 5317 SmallVector<uint64_t, 8> Elements; 5318 if (Lex.getKind() != lltok::rparen) 5319 do { 5320 if (Lex.getKind() == lltok::DwarfOp) { 5321 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 5322 Lex.Lex(); 5323 Elements.push_back(Op); 5324 continue; 5325 } 5326 return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 5327 } 5328 5329 if (Lex.getKind() == lltok::DwarfAttEncoding) { 5330 if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) { 5331 Lex.Lex(); 5332 Elements.push_back(Op); 5333 continue; 5334 } 5335 return tokError(Twine("invalid DWARF attribute encoding '") + 5336 Lex.getStrVal() + "'"); 5337 } 5338 5339 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 5340 return tokError("expected unsigned integer"); 5341 5342 auto &U = Lex.getAPSIntVal(); 5343 if (U.ugt(UINT64_MAX)) 5344 return tokError("element too large, limit is " + Twine(UINT64_MAX)); 5345 Elements.push_back(U.getZExtValue()); 5346 Lex.Lex(); 5347 } while (EatIfPresent(lltok::comma)); 5348 5349 if (parseToken(lltok::rparen, "expected ')' here")) 5350 return true; 5351 5352 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 5353 return false; 5354 } 5355 5356 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct) { 5357 return parseDIArgList(Result, IsDistinct, nullptr); 5358 } 5359 /// ParseDIArgList: 5360 /// ::= !DIArgList(i32 7, i64 %0) 5361 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct, 5362 PerFunctionState *PFS) { 5363 assert(PFS && "Expected valid function state"); 5364 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 5365 Lex.Lex(); 5366 5367 if (parseToken(lltok::lparen, "expected '(' here")) 5368 return true; 5369 5370 SmallVector<ValueAsMetadata *, 4> Args; 5371 if (Lex.getKind() != lltok::rparen) 5372 do { 5373 Metadata *MD; 5374 if (parseValueAsMetadata(MD, "expected value-as-metadata operand", PFS)) 5375 return true; 5376 Args.push_back(dyn_cast<ValueAsMetadata>(MD)); 5377 } while (EatIfPresent(lltok::comma)); 5378 5379 if (parseToken(lltok::rparen, "expected ')' here")) 5380 return true; 5381 5382 Result = GET_OR_DISTINCT(DIArgList, (Context, Args)); 5383 return false; 5384 } 5385 5386 /// parseDIGlobalVariableExpression: 5387 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1) 5388 bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result, 5389 bool IsDistinct) { 5390 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5391 REQUIRED(var, MDField, ); \ 5392 REQUIRED(expr, MDField, ); 5393 PARSE_MD_FIELDS(); 5394 #undef VISIT_MD_FIELDS 5395 5396 Result = 5397 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val)); 5398 return false; 5399 } 5400 5401 /// parseDIObjCProperty: 5402 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 5403 /// getter: "getFoo", attributes: 7, type: !2) 5404 bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 5405 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5406 OPTIONAL(name, MDStringField, ); \ 5407 OPTIONAL(file, MDField, ); \ 5408 OPTIONAL(line, LineField, ); \ 5409 OPTIONAL(setter, MDStringField, ); \ 5410 OPTIONAL(getter, MDStringField, ); \ 5411 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 5412 OPTIONAL(type, MDField, ); 5413 PARSE_MD_FIELDS(); 5414 #undef VISIT_MD_FIELDS 5415 5416 Result = GET_OR_DISTINCT(DIObjCProperty, 5417 (Context, name.Val, file.Val, line.Val, setter.Val, 5418 getter.Val, attributes.Val, type.Val)); 5419 return false; 5420 } 5421 5422 /// parseDIImportedEntity: 5423 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 5424 /// line: 7, name: "foo") 5425 bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 5426 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5427 REQUIRED(tag, DwarfTagField, ); \ 5428 REQUIRED(scope, MDField, ); \ 5429 OPTIONAL(entity, MDField, ); \ 5430 OPTIONAL(file, MDField, ); \ 5431 OPTIONAL(line, LineField, ); \ 5432 OPTIONAL(name, MDStringField, ); 5433 PARSE_MD_FIELDS(); 5434 #undef VISIT_MD_FIELDS 5435 5436 Result = GET_OR_DISTINCT( 5437 DIImportedEntity, 5438 (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val)); 5439 return false; 5440 } 5441 5442 #undef PARSE_MD_FIELD 5443 #undef NOP_FIELD 5444 #undef REQUIRE_FIELD 5445 #undef DECLARE_FIELD 5446 5447 /// parseMetadataAsValue 5448 /// ::= metadata i32 %local 5449 /// ::= metadata i32 @global 5450 /// ::= metadata i32 7 5451 /// ::= metadata !0 5452 /// ::= metadata !{...} 5453 /// ::= metadata !"string" 5454 bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 5455 // Note: the type 'metadata' has already been parsed. 5456 Metadata *MD; 5457 if (parseMetadata(MD, &PFS)) 5458 return true; 5459 5460 V = MetadataAsValue::get(Context, MD); 5461 return false; 5462 } 5463 5464 /// parseValueAsMetadata 5465 /// ::= i32 %local 5466 /// ::= i32 @global 5467 /// ::= i32 7 5468 bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 5469 PerFunctionState *PFS) { 5470 Type *Ty; 5471 LocTy Loc; 5472 if (parseType(Ty, TypeMsg, Loc)) 5473 return true; 5474 if (Ty->isMetadataTy()) 5475 return error(Loc, "invalid metadata-value-metadata roundtrip"); 5476 5477 Value *V; 5478 if (parseValue(Ty, V, PFS)) 5479 return true; 5480 5481 MD = ValueAsMetadata::get(V); 5482 return false; 5483 } 5484 5485 /// parseMetadata 5486 /// ::= i32 %local 5487 /// ::= i32 @global 5488 /// ::= i32 7 5489 /// ::= !42 5490 /// ::= !{...} 5491 /// ::= !"string" 5492 /// ::= !DILocation(...) 5493 bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) { 5494 if (Lex.getKind() == lltok::MetadataVar) { 5495 MDNode *N; 5496 // DIArgLists are a special case, as they are a list of ValueAsMetadata and 5497 // so parsing this requires a Function State. 5498 if (Lex.getStrVal() == "DIArgList") { 5499 if (parseDIArgList(N, false, PFS)) 5500 return true; 5501 } else if (parseSpecializedMDNode(N)) { 5502 return true; 5503 } 5504 MD = N; 5505 return false; 5506 } 5507 5508 // ValueAsMetadata: 5509 // <type> <value> 5510 if (Lex.getKind() != lltok::exclaim) 5511 return parseValueAsMetadata(MD, "expected metadata operand", PFS); 5512 5513 // '!'. 5514 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 5515 Lex.Lex(); 5516 5517 // MDString: 5518 // ::= '!' STRINGCONSTANT 5519 if (Lex.getKind() == lltok::StringConstant) { 5520 MDString *S; 5521 if (parseMDString(S)) 5522 return true; 5523 MD = S; 5524 return false; 5525 } 5526 5527 // MDNode: 5528 // !{ ... } 5529 // !7 5530 MDNode *N; 5531 if (parseMDNodeTail(N)) 5532 return true; 5533 MD = N; 5534 return false; 5535 } 5536 5537 //===----------------------------------------------------------------------===// 5538 // Function Parsing. 5539 //===----------------------------------------------------------------------===// 5540 5541 bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V, 5542 PerFunctionState *PFS, bool IsCall) { 5543 if (Ty->isFunctionTy()) 5544 return error(ID.Loc, "functions are not values, refer to them as pointers"); 5545 5546 switch (ID.Kind) { 5547 case ValID::t_LocalID: 5548 if (!PFS) 5549 return error(ID.Loc, "invalid use of function-local name"); 5550 V = PFS->getVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5551 return V == nullptr; 5552 case ValID::t_LocalName: 5553 if (!PFS) 5554 return error(ID.Loc, "invalid use of function-local name"); 5555 V = PFS->getVal(ID.StrVal, Ty, ID.Loc, IsCall); 5556 return V == nullptr; 5557 case ValID::t_InlineAsm: { 5558 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 5559 return error(ID.Loc, "invalid type for inline asm constraint string"); 5560 V = InlineAsm::get( 5561 ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, (ID.UIntVal >> 1) & 1, 5562 InlineAsm::AsmDialect((ID.UIntVal >> 2) & 1), (ID.UIntVal >> 3) & 1); 5563 return false; 5564 } 5565 case ValID::t_GlobalName: 5566 V = getGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall); 5567 return V == nullptr; 5568 case ValID::t_GlobalID: 5569 V = getGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5570 return V == nullptr; 5571 case ValID::t_APSInt: 5572 if (!Ty->isIntegerTy()) 5573 return error(ID.Loc, "integer constant must have integer type"); 5574 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 5575 V = ConstantInt::get(Context, ID.APSIntVal); 5576 return false; 5577 case ValID::t_APFloat: 5578 if (!Ty->isFloatingPointTy() || 5579 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 5580 return error(ID.Loc, "floating point constant invalid for type"); 5581 5582 // The lexer has no type info, so builds all half, bfloat, float, and double 5583 // FP constants as double. Fix this here. Long double does not need this. 5584 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) { 5585 // Check for signaling before potentially converting and losing that info. 5586 bool IsSNAN = ID.APFloatVal.isSignaling(); 5587 bool Ignored; 5588 if (Ty->isHalfTy()) 5589 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, 5590 &Ignored); 5591 else if (Ty->isBFloatTy()) 5592 ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven, 5593 &Ignored); 5594 else if (Ty->isFloatTy()) 5595 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 5596 &Ignored); 5597 if (IsSNAN) { 5598 // The convert call above may quiet an SNaN, so manufacture another 5599 // SNaN. The bitcast works because the payload (significand) parameter 5600 // is truncated to fit. 5601 APInt Payload = ID.APFloatVal.bitcastToAPInt(); 5602 ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(), 5603 ID.APFloatVal.isNegative(), &Payload); 5604 } 5605 } 5606 V = ConstantFP::get(Context, ID.APFloatVal); 5607 5608 if (V->getType() != Ty) 5609 return error(ID.Loc, "floating point constant does not have type '" + 5610 getTypeString(Ty) + "'"); 5611 5612 return false; 5613 case ValID::t_Null: 5614 if (!Ty->isPointerTy()) 5615 return error(ID.Loc, "null must be a pointer type"); 5616 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 5617 return false; 5618 case ValID::t_Undef: 5619 // FIXME: LabelTy should not be a first-class type. 5620 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5621 return error(ID.Loc, "invalid type for undef constant"); 5622 V = UndefValue::get(Ty); 5623 return false; 5624 case ValID::t_EmptyArray: 5625 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 5626 return error(ID.Loc, "invalid empty array initializer"); 5627 V = UndefValue::get(Ty); 5628 return false; 5629 case ValID::t_Zero: 5630 // FIXME: LabelTy should not be a first-class type. 5631 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5632 return error(ID.Loc, "invalid type for null constant"); 5633 V = Constant::getNullValue(Ty); 5634 return false; 5635 case ValID::t_None: 5636 if (!Ty->isTokenTy()) 5637 return error(ID.Loc, "invalid type for none constant"); 5638 V = Constant::getNullValue(Ty); 5639 return false; 5640 case ValID::t_Poison: 5641 // FIXME: LabelTy should not be a first-class type. 5642 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5643 return error(ID.Loc, "invalid type for poison constant"); 5644 V = PoisonValue::get(Ty); 5645 return false; 5646 case ValID::t_Constant: 5647 if (ID.ConstantVal->getType() != Ty) 5648 return error(ID.Loc, "constant expression type mismatch"); 5649 V = ID.ConstantVal; 5650 return false; 5651 case ValID::t_ConstantStruct: 5652 case ValID::t_PackedConstantStruct: 5653 if (StructType *ST = dyn_cast<StructType>(Ty)) { 5654 if (ST->getNumElements() != ID.UIntVal) 5655 return error(ID.Loc, 5656 "initializer with struct type has wrong # elements"); 5657 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 5658 return error(ID.Loc, "packed'ness of initializer and type don't match"); 5659 5660 // Verify that the elements are compatible with the structtype. 5661 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 5662 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 5663 return error( 5664 ID.Loc, 5665 "element " + Twine(i) + 5666 " of struct initializer doesn't match struct element type"); 5667 5668 V = ConstantStruct::get( 5669 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 5670 } else 5671 return error(ID.Loc, "constant expression type mismatch"); 5672 return false; 5673 } 5674 llvm_unreachable("Invalid ValID"); 5675 } 5676 5677 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 5678 C = nullptr; 5679 ValID ID; 5680 auto Loc = Lex.getLoc(); 5681 if (parseValID(ID, /*PFS=*/nullptr)) 5682 return true; 5683 switch (ID.Kind) { 5684 case ValID::t_APSInt: 5685 case ValID::t_APFloat: 5686 case ValID::t_Undef: 5687 case ValID::t_Constant: 5688 case ValID::t_ConstantStruct: 5689 case ValID::t_PackedConstantStruct: { 5690 Value *V; 5691 if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false)) 5692 return true; 5693 assert(isa<Constant>(V) && "Expected a constant value"); 5694 C = cast<Constant>(V); 5695 return false; 5696 } 5697 case ValID::t_Null: 5698 C = Constant::getNullValue(Ty); 5699 return false; 5700 default: 5701 return error(Loc, "expected a constant value"); 5702 } 5703 } 5704 5705 bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 5706 V = nullptr; 5707 ValID ID; 5708 return parseValID(ID, PFS) || 5709 convertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false); 5710 } 5711 5712 bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) { 5713 Type *Ty = nullptr; 5714 return parseType(Ty) || parseValue(Ty, V, PFS); 5715 } 5716 5717 bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 5718 PerFunctionState &PFS) { 5719 Value *V; 5720 Loc = Lex.getLoc(); 5721 if (parseTypeAndValue(V, PFS)) 5722 return true; 5723 if (!isa<BasicBlock>(V)) 5724 return error(Loc, "expected a basic block"); 5725 BB = cast<BasicBlock>(V); 5726 return false; 5727 } 5728 5729 /// FunctionHeader 5730 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 5731 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName 5732 /// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign 5733 /// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 5734 bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine) { 5735 // parse the linkage. 5736 LocTy LinkageLoc = Lex.getLoc(); 5737 unsigned Linkage; 5738 unsigned Visibility; 5739 unsigned DLLStorageClass; 5740 bool DSOLocal; 5741 AttrBuilder RetAttrs; 5742 unsigned CC; 5743 bool HasLinkage; 5744 Type *RetType = nullptr; 5745 LocTy RetTypeLoc = Lex.getLoc(); 5746 if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 5747 DSOLocal) || 5748 parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 5749 parseType(RetType, RetTypeLoc, true /*void allowed*/)) 5750 return true; 5751 5752 // Verify that the linkage is ok. 5753 switch ((GlobalValue::LinkageTypes)Linkage) { 5754 case GlobalValue::ExternalLinkage: 5755 break; // always ok. 5756 case GlobalValue::ExternalWeakLinkage: 5757 if (IsDefine) 5758 return error(LinkageLoc, "invalid linkage for function definition"); 5759 break; 5760 case GlobalValue::PrivateLinkage: 5761 case GlobalValue::InternalLinkage: 5762 case GlobalValue::AvailableExternallyLinkage: 5763 case GlobalValue::LinkOnceAnyLinkage: 5764 case GlobalValue::LinkOnceODRLinkage: 5765 case GlobalValue::WeakAnyLinkage: 5766 case GlobalValue::WeakODRLinkage: 5767 if (!IsDefine) 5768 return error(LinkageLoc, "invalid linkage for function declaration"); 5769 break; 5770 case GlobalValue::AppendingLinkage: 5771 case GlobalValue::CommonLinkage: 5772 return error(LinkageLoc, "invalid function linkage type"); 5773 } 5774 5775 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 5776 return error(LinkageLoc, 5777 "symbol with local linkage must have default visibility"); 5778 5779 if (!FunctionType::isValidReturnType(RetType)) 5780 return error(RetTypeLoc, "invalid function return type"); 5781 5782 LocTy NameLoc = Lex.getLoc(); 5783 5784 std::string FunctionName; 5785 if (Lex.getKind() == lltok::GlobalVar) { 5786 FunctionName = Lex.getStrVal(); 5787 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 5788 unsigned NameID = Lex.getUIntVal(); 5789 5790 if (NameID != NumberedVals.size()) 5791 return tokError("function expected to be numbered '%" + 5792 Twine(NumberedVals.size()) + "'"); 5793 } else { 5794 return tokError("expected function name"); 5795 } 5796 5797 Lex.Lex(); 5798 5799 if (Lex.getKind() != lltok::lparen) 5800 return tokError("expected '(' in function argument list"); 5801 5802 SmallVector<ArgInfo, 8> ArgList; 5803 bool IsVarArg; 5804 AttrBuilder FuncAttrs; 5805 std::vector<unsigned> FwdRefAttrGrps; 5806 LocTy BuiltinLoc; 5807 std::string Section; 5808 std::string Partition; 5809 MaybeAlign Alignment; 5810 std::string GC; 5811 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 5812 unsigned AddrSpace = 0; 5813 Constant *Prefix = nullptr; 5814 Constant *Prologue = nullptr; 5815 Constant *PersonalityFn = nullptr; 5816 Comdat *C; 5817 5818 if (parseArgumentList(ArgList, IsVarArg) || 5819 parseOptionalUnnamedAddr(UnnamedAddr) || 5820 parseOptionalProgramAddrSpace(AddrSpace) || 5821 parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 5822 BuiltinLoc) || 5823 (EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) || 5824 (EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) || 5825 parseOptionalComdat(FunctionName, C) || 5826 parseOptionalAlignment(Alignment) || 5827 (EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) || 5828 (EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) || 5829 (EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) || 5830 (EatIfPresent(lltok::kw_personality) && 5831 parseGlobalTypeAndValue(PersonalityFn))) 5832 return true; 5833 5834 if (FuncAttrs.contains(Attribute::Builtin)) 5835 return error(BuiltinLoc, "'builtin' attribute not valid on function"); 5836 5837 // If the alignment was parsed as an attribute, move to the alignment field. 5838 if (FuncAttrs.hasAlignmentAttr()) { 5839 Alignment = FuncAttrs.getAlignment(); 5840 FuncAttrs.removeAttribute(Attribute::Alignment); 5841 } 5842 5843 // Okay, if we got here, the function is syntactically valid. Convert types 5844 // and do semantic checks. 5845 std::vector<Type*> ParamTypeList; 5846 SmallVector<AttributeSet, 8> Attrs; 5847 5848 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5849 ParamTypeList.push_back(ArgList[i].Ty); 5850 Attrs.push_back(ArgList[i].Attrs); 5851 } 5852 5853 AttributeList PAL = 5854 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs), 5855 AttributeSet::get(Context, RetAttrs), Attrs); 5856 5857 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy()) 5858 return error(RetTypeLoc, "functions with 'sret' argument must return void"); 5859 5860 FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg); 5861 PointerType *PFT = PointerType::get(FT, AddrSpace); 5862 5863 Fn = nullptr; 5864 if (!FunctionName.empty()) { 5865 // If this was a definition of a forward reference, remove the definition 5866 // from the forward reference table and fill in the forward ref. 5867 auto FRVI = ForwardRefVals.find(FunctionName); 5868 if (FRVI != ForwardRefVals.end()) { 5869 Fn = M->getFunction(FunctionName); 5870 if (!Fn) 5871 return error(FRVI->second.second, "invalid forward reference to " 5872 "function as global value!"); 5873 if (Fn->getType() != PFT) 5874 return error(FRVI->second.second, 5875 "invalid forward reference to " 5876 "function '" + 5877 FunctionName + 5878 "' with wrong type: " 5879 "expected '" + 5880 getTypeString(PFT) + "' but was '" + 5881 getTypeString(Fn->getType()) + "'"); 5882 ForwardRefVals.erase(FRVI); 5883 } else if ((Fn = M->getFunction(FunctionName))) { 5884 // Reject redefinitions. 5885 return error(NameLoc, 5886 "invalid redefinition of function '" + FunctionName + "'"); 5887 } else if (M->getNamedValue(FunctionName)) { 5888 return error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 5889 } 5890 5891 } else { 5892 // If this is a definition of a forward referenced function, make sure the 5893 // types agree. 5894 auto I = ForwardRefValIDs.find(NumberedVals.size()); 5895 if (I != ForwardRefValIDs.end()) { 5896 Fn = cast<Function>(I->second.first); 5897 if (Fn->getType() != PFT) 5898 return error(NameLoc, "type of definition and forward reference of '@" + 5899 Twine(NumberedVals.size()) + 5900 "' disagree: " 5901 "expected '" + 5902 getTypeString(PFT) + "' but was '" + 5903 getTypeString(Fn->getType()) + "'"); 5904 ForwardRefValIDs.erase(I); 5905 } 5906 } 5907 5908 if (!Fn) 5909 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace, 5910 FunctionName, M); 5911 else // Move the forward-reference to the correct spot in the module. 5912 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 5913 5914 assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS"); 5915 5916 if (FunctionName.empty()) 5917 NumberedVals.push_back(Fn); 5918 5919 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 5920 maybeSetDSOLocal(DSOLocal, *Fn); 5921 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 5922 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 5923 Fn->setCallingConv(CC); 5924 Fn->setAttributes(PAL); 5925 Fn->setUnnamedAddr(UnnamedAddr); 5926 Fn->setAlignment(MaybeAlign(Alignment)); 5927 Fn->setSection(Section); 5928 Fn->setPartition(Partition); 5929 Fn->setComdat(C); 5930 Fn->setPersonalityFn(PersonalityFn); 5931 if (!GC.empty()) Fn->setGC(GC); 5932 Fn->setPrefixData(Prefix); 5933 Fn->setPrologueData(Prologue); 5934 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 5935 5936 // Add all of the arguments we parsed to the function. 5937 Function::arg_iterator ArgIt = Fn->arg_begin(); 5938 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 5939 // If the argument has a name, insert it into the argument symbol table. 5940 if (ArgList[i].Name.empty()) continue; 5941 5942 // Set the name, if it conflicted, it will be auto-renamed. 5943 ArgIt->setName(ArgList[i].Name); 5944 5945 if (ArgIt->getName() != ArgList[i].Name) 5946 return error(ArgList[i].Loc, 5947 "redefinition of argument '%" + ArgList[i].Name + "'"); 5948 } 5949 5950 if (IsDefine) 5951 return false; 5952 5953 // Check the declaration has no block address forward references. 5954 ValID ID; 5955 if (FunctionName.empty()) { 5956 ID.Kind = ValID::t_GlobalID; 5957 ID.UIntVal = NumberedVals.size() - 1; 5958 } else { 5959 ID.Kind = ValID::t_GlobalName; 5960 ID.StrVal = FunctionName; 5961 } 5962 auto Blocks = ForwardRefBlockAddresses.find(ID); 5963 if (Blocks != ForwardRefBlockAddresses.end()) 5964 return error(Blocks->first.Loc, 5965 "cannot take blockaddress inside a declaration"); 5966 return false; 5967 } 5968 5969 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 5970 ValID ID; 5971 if (FunctionNumber == -1) { 5972 ID.Kind = ValID::t_GlobalName; 5973 ID.StrVal = std::string(F.getName()); 5974 } else { 5975 ID.Kind = ValID::t_GlobalID; 5976 ID.UIntVal = FunctionNumber; 5977 } 5978 5979 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 5980 if (Blocks == P.ForwardRefBlockAddresses.end()) 5981 return false; 5982 5983 for (const auto &I : Blocks->second) { 5984 const ValID &BBID = I.first; 5985 GlobalValue *GV = I.second; 5986 5987 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 5988 "Expected local id or name"); 5989 BasicBlock *BB; 5990 if (BBID.Kind == ValID::t_LocalName) 5991 BB = getBB(BBID.StrVal, BBID.Loc); 5992 else 5993 BB = getBB(BBID.UIntVal, BBID.Loc); 5994 if (!BB) 5995 return P.error(BBID.Loc, "referenced value is not a basic block"); 5996 5997 GV->replaceAllUsesWith(BlockAddress::get(&F, BB)); 5998 GV->eraseFromParent(); 5999 } 6000 6001 P.ForwardRefBlockAddresses.erase(Blocks); 6002 return false; 6003 } 6004 6005 /// parseFunctionBody 6006 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 6007 bool LLParser::parseFunctionBody(Function &Fn) { 6008 if (Lex.getKind() != lltok::lbrace) 6009 return tokError("expected '{' in function body"); 6010 Lex.Lex(); // eat the {. 6011 6012 int FunctionNumber = -1; 6013 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 6014 6015 PerFunctionState PFS(*this, Fn, FunctionNumber); 6016 6017 // Resolve block addresses and allow basic blocks to be forward-declared 6018 // within this function. 6019 if (PFS.resolveForwardRefBlockAddresses()) 6020 return true; 6021 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 6022 6023 // We need at least one basic block. 6024 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 6025 return tokError("function body requires at least one basic block"); 6026 6027 while (Lex.getKind() != lltok::rbrace && 6028 Lex.getKind() != lltok::kw_uselistorder) 6029 if (parseBasicBlock(PFS)) 6030 return true; 6031 6032 while (Lex.getKind() != lltok::rbrace) 6033 if (parseUseListOrder(&PFS)) 6034 return true; 6035 6036 // Eat the }. 6037 Lex.Lex(); 6038 6039 // Verify function is ok. 6040 return PFS.finishFunction(); 6041 } 6042 6043 /// parseBasicBlock 6044 /// ::= (LabelStr|LabelID)? Instruction* 6045 bool LLParser::parseBasicBlock(PerFunctionState &PFS) { 6046 // If this basic block starts out with a name, remember it. 6047 std::string Name; 6048 int NameID = -1; 6049 LocTy NameLoc = Lex.getLoc(); 6050 if (Lex.getKind() == lltok::LabelStr) { 6051 Name = Lex.getStrVal(); 6052 Lex.Lex(); 6053 } else if (Lex.getKind() == lltok::LabelID) { 6054 NameID = Lex.getUIntVal(); 6055 Lex.Lex(); 6056 } 6057 6058 BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc); 6059 if (!BB) 6060 return true; 6061 6062 std::string NameStr; 6063 6064 // parse the instructions in this block until we get a terminator. 6065 Instruction *Inst; 6066 do { 6067 // This instruction may have three possibilities for a name: a) none 6068 // specified, b) name specified "%foo =", c) number specified: "%4 =". 6069 LocTy NameLoc = Lex.getLoc(); 6070 int NameID = -1; 6071 NameStr = ""; 6072 6073 if (Lex.getKind() == lltok::LocalVarID) { 6074 NameID = Lex.getUIntVal(); 6075 Lex.Lex(); 6076 if (parseToken(lltok::equal, "expected '=' after instruction id")) 6077 return true; 6078 } else if (Lex.getKind() == lltok::LocalVar) { 6079 NameStr = Lex.getStrVal(); 6080 Lex.Lex(); 6081 if (parseToken(lltok::equal, "expected '=' after instruction name")) 6082 return true; 6083 } 6084 6085 switch (parseInstruction(Inst, BB, PFS)) { 6086 default: 6087 llvm_unreachable("Unknown parseInstruction result!"); 6088 case InstError: return true; 6089 case InstNormal: 6090 BB->getInstList().push_back(Inst); 6091 6092 // With a normal result, we check to see if the instruction is followed by 6093 // a comma and metadata. 6094 if (EatIfPresent(lltok::comma)) 6095 if (parseInstructionMetadata(*Inst)) 6096 return true; 6097 break; 6098 case InstExtraComma: 6099 BB->getInstList().push_back(Inst); 6100 6101 // If the instruction parser ate an extra comma at the end of it, it 6102 // *must* be followed by metadata. 6103 if (parseInstructionMetadata(*Inst)) 6104 return true; 6105 break; 6106 } 6107 6108 // Set the name on the instruction. 6109 if (PFS.setInstName(NameID, NameStr, NameLoc, Inst)) 6110 return true; 6111 } while (!Inst->isTerminator()); 6112 6113 return false; 6114 } 6115 6116 //===----------------------------------------------------------------------===// 6117 // Instruction Parsing. 6118 //===----------------------------------------------------------------------===// 6119 6120 /// parseInstruction - parse one of the many different instructions. 6121 /// 6122 int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB, 6123 PerFunctionState &PFS) { 6124 lltok::Kind Token = Lex.getKind(); 6125 if (Token == lltok::Eof) 6126 return tokError("found end of file when expecting more instructions"); 6127 LocTy Loc = Lex.getLoc(); 6128 unsigned KeywordVal = Lex.getUIntVal(); 6129 Lex.Lex(); // Eat the keyword. 6130 6131 switch (Token) { 6132 default: 6133 return error(Loc, "expected instruction opcode"); 6134 // Terminator Instructions. 6135 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 6136 case lltok::kw_ret: 6137 return parseRet(Inst, BB, PFS); 6138 case lltok::kw_br: 6139 return parseBr(Inst, PFS); 6140 case lltok::kw_switch: 6141 return parseSwitch(Inst, PFS); 6142 case lltok::kw_indirectbr: 6143 return parseIndirectBr(Inst, PFS); 6144 case lltok::kw_invoke: 6145 return parseInvoke(Inst, PFS); 6146 case lltok::kw_resume: 6147 return parseResume(Inst, PFS); 6148 case lltok::kw_cleanupret: 6149 return parseCleanupRet(Inst, PFS); 6150 case lltok::kw_catchret: 6151 return parseCatchRet(Inst, PFS); 6152 case lltok::kw_catchswitch: 6153 return parseCatchSwitch(Inst, PFS); 6154 case lltok::kw_catchpad: 6155 return parseCatchPad(Inst, PFS); 6156 case lltok::kw_cleanuppad: 6157 return parseCleanupPad(Inst, PFS); 6158 case lltok::kw_callbr: 6159 return parseCallBr(Inst, PFS); 6160 // Unary Operators. 6161 case lltok::kw_fneg: { 6162 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6163 int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true); 6164 if (Res != 0) 6165 return Res; 6166 if (FMF.any()) 6167 Inst->setFastMathFlags(FMF); 6168 return false; 6169 } 6170 // Binary Operators. 6171 case lltok::kw_add: 6172 case lltok::kw_sub: 6173 case lltok::kw_mul: 6174 case lltok::kw_shl: { 6175 bool NUW = EatIfPresent(lltok::kw_nuw); 6176 bool NSW = EatIfPresent(lltok::kw_nsw); 6177 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 6178 6179 if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false)) 6180 return true; 6181 6182 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 6183 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 6184 return false; 6185 } 6186 case lltok::kw_fadd: 6187 case lltok::kw_fsub: 6188 case lltok::kw_fmul: 6189 case lltok::kw_fdiv: 6190 case lltok::kw_frem: { 6191 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6192 int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true); 6193 if (Res != 0) 6194 return Res; 6195 if (FMF.any()) 6196 Inst->setFastMathFlags(FMF); 6197 return 0; 6198 } 6199 6200 case lltok::kw_sdiv: 6201 case lltok::kw_udiv: 6202 case lltok::kw_lshr: 6203 case lltok::kw_ashr: { 6204 bool Exact = EatIfPresent(lltok::kw_exact); 6205 6206 if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false)) 6207 return true; 6208 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 6209 return false; 6210 } 6211 6212 case lltok::kw_urem: 6213 case lltok::kw_srem: 6214 return parseArithmetic(Inst, PFS, KeywordVal, 6215 /*IsFP*/ false); 6216 case lltok::kw_and: 6217 case lltok::kw_or: 6218 case lltok::kw_xor: 6219 return parseLogical(Inst, PFS, KeywordVal); 6220 case lltok::kw_icmp: 6221 return parseCompare(Inst, PFS, KeywordVal); 6222 case lltok::kw_fcmp: { 6223 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6224 int Res = parseCompare(Inst, PFS, KeywordVal); 6225 if (Res != 0) 6226 return Res; 6227 if (FMF.any()) 6228 Inst->setFastMathFlags(FMF); 6229 return 0; 6230 } 6231 6232 // Casts. 6233 case lltok::kw_trunc: 6234 case lltok::kw_zext: 6235 case lltok::kw_sext: 6236 case lltok::kw_fptrunc: 6237 case lltok::kw_fpext: 6238 case lltok::kw_bitcast: 6239 case lltok::kw_addrspacecast: 6240 case lltok::kw_uitofp: 6241 case lltok::kw_sitofp: 6242 case lltok::kw_fptoui: 6243 case lltok::kw_fptosi: 6244 case lltok::kw_inttoptr: 6245 case lltok::kw_ptrtoint: 6246 return parseCast(Inst, PFS, KeywordVal); 6247 // Other. 6248 case lltok::kw_select: { 6249 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6250 int Res = parseSelect(Inst, PFS); 6251 if (Res != 0) 6252 return Res; 6253 if (FMF.any()) { 6254 if (!isa<FPMathOperator>(Inst)) 6255 return error(Loc, "fast-math-flags specified for select without " 6256 "floating-point scalar or vector return type"); 6257 Inst->setFastMathFlags(FMF); 6258 } 6259 return 0; 6260 } 6261 case lltok::kw_va_arg: 6262 return parseVAArg(Inst, PFS); 6263 case lltok::kw_extractelement: 6264 return parseExtractElement(Inst, PFS); 6265 case lltok::kw_insertelement: 6266 return parseInsertElement(Inst, PFS); 6267 case lltok::kw_shufflevector: 6268 return parseShuffleVector(Inst, PFS); 6269 case lltok::kw_phi: { 6270 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6271 int Res = parsePHI(Inst, PFS); 6272 if (Res != 0) 6273 return Res; 6274 if (FMF.any()) { 6275 if (!isa<FPMathOperator>(Inst)) 6276 return error(Loc, "fast-math-flags specified for phi without " 6277 "floating-point scalar or vector return type"); 6278 Inst->setFastMathFlags(FMF); 6279 } 6280 return 0; 6281 } 6282 case lltok::kw_landingpad: 6283 return parseLandingPad(Inst, PFS); 6284 case lltok::kw_freeze: 6285 return parseFreeze(Inst, PFS); 6286 // Call. 6287 case lltok::kw_call: 6288 return parseCall(Inst, PFS, CallInst::TCK_None); 6289 case lltok::kw_tail: 6290 return parseCall(Inst, PFS, CallInst::TCK_Tail); 6291 case lltok::kw_musttail: 6292 return parseCall(Inst, PFS, CallInst::TCK_MustTail); 6293 case lltok::kw_notail: 6294 return parseCall(Inst, PFS, CallInst::TCK_NoTail); 6295 // Memory. 6296 case lltok::kw_alloca: 6297 return parseAlloc(Inst, PFS); 6298 case lltok::kw_load: 6299 return parseLoad(Inst, PFS); 6300 case lltok::kw_store: 6301 return parseStore(Inst, PFS); 6302 case lltok::kw_cmpxchg: 6303 return parseCmpXchg(Inst, PFS); 6304 case lltok::kw_atomicrmw: 6305 return parseAtomicRMW(Inst, PFS); 6306 case lltok::kw_fence: 6307 return parseFence(Inst, PFS); 6308 case lltok::kw_getelementptr: 6309 return parseGetElementPtr(Inst, PFS); 6310 case lltok::kw_extractvalue: 6311 return parseExtractValue(Inst, PFS); 6312 case lltok::kw_insertvalue: 6313 return parseInsertValue(Inst, PFS); 6314 } 6315 } 6316 6317 /// parseCmpPredicate - parse an integer or fp predicate, based on Kind. 6318 bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) { 6319 if (Opc == Instruction::FCmp) { 6320 switch (Lex.getKind()) { 6321 default: 6322 return tokError("expected fcmp predicate (e.g. 'oeq')"); 6323 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 6324 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 6325 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 6326 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 6327 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 6328 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 6329 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 6330 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 6331 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 6332 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 6333 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 6334 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 6335 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 6336 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 6337 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 6338 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 6339 } 6340 } else { 6341 switch (Lex.getKind()) { 6342 default: 6343 return tokError("expected icmp predicate (e.g. 'eq')"); 6344 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 6345 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 6346 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 6347 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 6348 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 6349 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 6350 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 6351 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 6352 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 6353 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 6354 } 6355 } 6356 Lex.Lex(); 6357 return false; 6358 } 6359 6360 //===----------------------------------------------------------------------===// 6361 // Terminator Instructions. 6362 //===----------------------------------------------------------------------===// 6363 6364 /// parseRet - parse a return instruction. 6365 /// ::= 'ret' void (',' !dbg, !1)* 6366 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 6367 bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB, 6368 PerFunctionState &PFS) { 6369 SMLoc TypeLoc = Lex.getLoc(); 6370 Type *Ty = nullptr; 6371 if (parseType(Ty, true /*void allowed*/)) 6372 return true; 6373 6374 Type *ResType = PFS.getFunction().getReturnType(); 6375 6376 if (Ty->isVoidTy()) { 6377 if (!ResType->isVoidTy()) 6378 return error(TypeLoc, "value doesn't match function result type '" + 6379 getTypeString(ResType) + "'"); 6380 6381 Inst = ReturnInst::Create(Context); 6382 return false; 6383 } 6384 6385 Value *RV; 6386 if (parseValue(Ty, RV, PFS)) 6387 return true; 6388 6389 if (ResType != RV->getType()) 6390 return error(TypeLoc, "value doesn't match function result type '" + 6391 getTypeString(ResType) + "'"); 6392 6393 Inst = ReturnInst::Create(Context, RV); 6394 return false; 6395 } 6396 6397 /// parseBr 6398 /// ::= 'br' TypeAndValue 6399 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6400 bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) { 6401 LocTy Loc, Loc2; 6402 Value *Op0; 6403 BasicBlock *Op1, *Op2; 6404 if (parseTypeAndValue(Op0, Loc, PFS)) 6405 return true; 6406 6407 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 6408 Inst = BranchInst::Create(BB); 6409 return false; 6410 } 6411 6412 if (Op0->getType() != Type::getInt1Ty(Context)) 6413 return error(Loc, "branch condition must have 'i1' type"); 6414 6415 if (parseToken(lltok::comma, "expected ',' after branch condition") || 6416 parseTypeAndBasicBlock(Op1, Loc, PFS) || 6417 parseToken(lltok::comma, "expected ',' after true destination") || 6418 parseTypeAndBasicBlock(Op2, Loc2, PFS)) 6419 return true; 6420 6421 Inst = BranchInst::Create(Op1, Op2, Op0); 6422 return false; 6423 } 6424 6425 /// parseSwitch 6426 /// Instruction 6427 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 6428 /// JumpTable 6429 /// ::= (TypeAndValue ',' TypeAndValue)* 6430 bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6431 LocTy CondLoc, BBLoc; 6432 Value *Cond; 6433 BasicBlock *DefaultBB; 6434 if (parseTypeAndValue(Cond, CondLoc, PFS) || 6435 parseToken(lltok::comma, "expected ',' after switch condition") || 6436 parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 6437 parseToken(lltok::lsquare, "expected '[' with switch table")) 6438 return true; 6439 6440 if (!Cond->getType()->isIntegerTy()) 6441 return error(CondLoc, "switch condition must have integer type"); 6442 6443 // parse the jump table pairs. 6444 SmallPtrSet<Value*, 32> SeenCases; 6445 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 6446 while (Lex.getKind() != lltok::rsquare) { 6447 Value *Constant; 6448 BasicBlock *DestBB; 6449 6450 if (parseTypeAndValue(Constant, CondLoc, PFS) || 6451 parseToken(lltok::comma, "expected ',' after case value") || 6452 parseTypeAndBasicBlock(DestBB, PFS)) 6453 return true; 6454 6455 if (!SeenCases.insert(Constant).second) 6456 return error(CondLoc, "duplicate case value in switch"); 6457 if (!isa<ConstantInt>(Constant)) 6458 return error(CondLoc, "case value is not a constant integer"); 6459 6460 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 6461 } 6462 6463 Lex.Lex(); // Eat the ']'. 6464 6465 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 6466 for (unsigned i = 0, e = Table.size(); i != e; ++i) 6467 SI->addCase(Table[i].first, Table[i].second); 6468 Inst = SI; 6469 return false; 6470 } 6471 6472 /// parseIndirectBr 6473 /// Instruction 6474 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 6475 bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 6476 LocTy AddrLoc; 6477 Value *Address; 6478 if (parseTypeAndValue(Address, AddrLoc, PFS) || 6479 parseToken(lltok::comma, "expected ',' after indirectbr address") || 6480 parseToken(lltok::lsquare, "expected '[' with indirectbr")) 6481 return true; 6482 6483 if (!Address->getType()->isPointerTy()) 6484 return error(AddrLoc, "indirectbr address must have pointer type"); 6485 6486 // parse the destination list. 6487 SmallVector<BasicBlock*, 16> DestList; 6488 6489 if (Lex.getKind() != lltok::rsquare) { 6490 BasicBlock *DestBB; 6491 if (parseTypeAndBasicBlock(DestBB, PFS)) 6492 return true; 6493 DestList.push_back(DestBB); 6494 6495 while (EatIfPresent(lltok::comma)) { 6496 if (parseTypeAndBasicBlock(DestBB, PFS)) 6497 return true; 6498 DestList.push_back(DestBB); 6499 } 6500 } 6501 6502 if (parseToken(lltok::rsquare, "expected ']' at end of block list")) 6503 return true; 6504 6505 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 6506 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 6507 IBI->addDestination(DestList[i]); 6508 Inst = IBI; 6509 return false; 6510 } 6511 6512 /// parseInvoke 6513 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 6514 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 6515 bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 6516 LocTy CallLoc = Lex.getLoc(); 6517 AttrBuilder RetAttrs, FnAttrs; 6518 std::vector<unsigned> FwdRefAttrGrps; 6519 LocTy NoBuiltinLoc; 6520 unsigned CC; 6521 unsigned InvokeAddrSpace; 6522 Type *RetType = nullptr; 6523 LocTy RetTypeLoc; 6524 ValID CalleeID; 6525 SmallVector<ParamInfo, 16> ArgList; 6526 SmallVector<OperandBundleDef, 2> BundleList; 6527 6528 BasicBlock *NormalBB, *UnwindBB; 6529 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 6530 parseOptionalProgramAddrSpace(InvokeAddrSpace) || 6531 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 6532 parseValID(CalleeID) || parseParameterList(ArgList, PFS) || 6533 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6534 NoBuiltinLoc) || 6535 parseOptionalOperandBundles(BundleList, PFS) || 6536 parseToken(lltok::kw_to, "expected 'to' in invoke") || 6537 parseTypeAndBasicBlock(NormalBB, PFS) || 6538 parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 6539 parseTypeAndBasicBlock(UnwindBB, PFS)) 6540 return true; 6541 6542 // If RetType is a non-function pointer type, then this is the short syntax 6543 // for the call, which means that RetType is just the return type. Infer the 6544 // rest of the function argument types from the arguments that are present. 6545 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6546 if (!Ty) { 6547 // Pull out the types of all of the arguments... 6548 std::vector<Type*> ParamTypes; 6549 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6550 ParamTypes.push_back(ArgList[i].V->getType()); 6551 6552 if (!FunctionType::isValidReturnType(RetType)) 6553 return error(RetTypeLoc, "Invalid result type for LLVM function"); 6554 6555 Ty = FunctionType::get(RetType, ParamTypes, false); 6556 } 6557 6558 CalleeID.FTy = Ty; 6559 6560 // Look up the callee. 6561 Value *Callee; 6562 if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID, 6563 Callee, &PFS, /*IsCall=*/true)) 6564 return true; 6565 6566 // Set up the Attribute for the function. 6567 SmallVector<Value *, 8> Args; 6568 SmallVector<AttributeSet, 8> ArgAttrs; 6569 6570 // Loop through FunctionType's arguments and ensure they are specified 6571 // correctly. Also, gather any parameter attributes. 6572 FunctionType::param_iterator I = Ty->param_begin(); 6573 FunctionType::param_iterator E = Ty->param_end(); 6574 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6575 Type *ExpectedTy = nullptr; 6576 if (I != E) { 6577 ExpectedTy = *I++; 6578 } else if (!Ty->isVarArg()) { 6579 return error(ArgList[i].Loc, "too many arguments specified"); 6580 } 6581 6582 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6583 return error(ArgList[i].Loc, "argument is not of expected type '" + 6584 getTypeString(ExpectedTy) + "'"); 6585 Args.push_back(ArgList[i].V); 6586 ArgAttrs.push_back(ArgList[i].Attrs); 6587 } 6588 6589 if (I != E) 6590 return error(CallLoc, "not enough parameters specified for call"); 6591 6592 if (FnAttrs.hasAlignmentAttr()) 6593 return error(CallLoc, "invoke instructions may not have an alignment"); 6594 6595 // Finish off the Attribute and check them 6596 AttributeList PAL = 6597 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6598 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6599 6600 InvokeInst *II = 6601 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 6602 II->setCallingConv(CC); 6603 II->setAttributes(PAL); 6604 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 6605 Inst = II; 6606 return false; 6607 } 6608 6609 /// parseResume 6610 /// ::= 'resume' TypeAndValue 6611 bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) { 6612 Value *Exn; LocTy ExnLoc; 6613 if (parseTypeAndValue(Exn, ExnLoc, PFS)) 6614 return true; 6615 6616 ResumeInst *RI = ResumeInst::Create(Exn); 6617 Inst = RI; 6618 return false; 6619 } 6620 6621 bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args, 6622 PerFunctionState &PFS) { 6623 if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 6624 return true; 6625 6626 while (Lex.getKind() != lltok::rsquare) { 6627 // If this isn't the first argument, we need a comma. 6628 if (!Args.empty() && 6629 parseToken(lltok::comma, "expected ',' in argument list")) 6630 return true; 6631 6632 // parse the argument. 6633 LocTy ArgLoc; 6634 Type *ArgTy = nullptr; 6635 if (parseType(ArgTy, ArgLoc)) 6636 return true; 6637 6638 Value *V; 6639 if (ArgTy->isMetadataTy()) { 6640 if (parseMetadataAsValue(V, PFS)) 6641 return true; 6642 } else { 6643 if (parseValue(ArgTy, V, PFS)) 6644 return true; 6645 } 6646 Args.push_back(V); 6647 } 6648 6649 Lex.Lex(); // Lex the ']'. 6650 return false; 6651 } 6652 6653 /// parseCleanupRet 6654 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 6655 bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 6656 Value *CleanupPad = nullptr; 6657 6658 if (parseToken(lltok::kw_from, "expected 'from' after cleanupret")) 6659 return true; 6660 6661 if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 6662 return true; 6663 6664 if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 6665 return true; 6666 6667 BasicBlock *UnwindBB = nullptr; 6668 if (Lex.getKind() == lltok::kw_to) { 6669 Lex.Lex(); 6670 if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 6671 return true; 6672 } else { 6673 if (parseTypeAndBasicBlock(UnwindBB, PFS)) { 6674 return true; 6675 } 6676 } 6677 6678 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 6679 return false; 6680 } 6681 6682 /// parseCatchRet 6683 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 6684 bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 6685 Value *CatchPad = nullptr; 6686 6687 if (parseToken(lltok::kw_from, "expected 'from' after catchret")) 6688 return true; 6689 6690 if (parseValue(Type::getTokenTy(Context), CatchPad, PFS)) 6691 return true; 6692 6693 BasicBlock *BB; 6694 if (parseToken(lltok::kw_to, "expected 'to' in catchret") || 6695 parseTypeAndBasicBlock(BB, PFS)) 6696 return true; 6697 6698 Inst = CatchReturnInst::Create(CatchPad, BB); 6699 return false; 6700 } 6701 6702 /// parseCatchSwitch 6703 /// ::= 'catchswitch' within Parent 6704 bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6705 Value *ParentPad; 6706 6707 if (parseToken(lltok::kw_within, "expected 'within' after catchswitch")) 6708 return true; 6709 6710 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6711 Lex.getKind() != lltok::LocalVarID) 6712 return tokError("expected scope value for catchswitch"); 6713 6714 if (parseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6715 return true; 6716 6717 if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 6718 return true; 6719 6720 SmallVector<BasicBlock *, 32> Table; 6721 do { 6722 BasicBlock *DestBB; 6723 if (parseTypeAndBasicBlock(DestBB, PFS)) 6724 return true; 6725 Table.push_back(DestBB); 6726 } while (EatIfPresent(lltok::comma)); 6727 6728 if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 6729 return true; 6730 6731 if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope")) 6732 return true; 6733 6734 BasicBlock *UnwindBB = nullptr; 6735 if (EatIfPresent(lltok::kw_to)) { 6736 if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 6737 return true; 6738 } else { 6739 if (parseTypeAndBasicBlock(UnwindBB, PFS)) 6740 return true; 6741 } 6742 6743 auto *CatchSwitch = 6744 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 6745 for (BasicBlock *DestBB : Table) 6746 CatchSwitch->addHandler(DestBB); 6747 Inst = CatchSwitch; 6748 return false; 6749 } 6750 6751 /// parseCatchPad 6752 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 6753 bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 6754 Value *CatchSwitch = nullptr; 6755 6756 if (parseToken(lltok::kw_within, "expected 'within' after catchpad")) 6757 return true; 6758 6759 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 6760 return tokError("expected scope value for catchpad"); 6761 6762 if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 6763 return true; 6764 6765 SmallVector<Value *, 8> Args; 6766 if (parseExceptionArgs(Args, PFS)) 6767 return true; 6768 6769 Inst = CatchPadInst::Create(CatchSwitch, Args); 6770 return false; 6771 } 6772 6773 /// parseCleanupPad 6774 /// ::= 'cleanuppad' within Parent ParamList 6775 bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 6776 Value *ParentPad = nullptr; 6777 6778 if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 6779 return true; 6780 6781 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6782 Lex.getKind() != lltok::LocalVarID) 6783 return tokError("expected scope value for cleanuppad"); 6784 6785 if (parseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6786 return true; 6787 6788 SmallVector<Value *, 8> Args; 6789 if (parseExceptionArgs(Args, PFS)) 6790 return true; 6791 6792 Inst = CleanupPadInst::Create(ParentPad, Args); 6793 return false; 6794 } 6795 6796 //===----------------------------------------------------------------------===// 6797 // Unary Operators. 6798 //===----------------------------------------------------------------------===// 6799 6800 /// parseUnaryOp 6801 /// ::= UnaryOp TypeAndValue ',' Value 6802 /// 6803 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6804 /// operand is allowed. 6805 bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS, 6806 unsigned Opc, bool IsFP) { 6807 LocTy Loc; Value *LHS; 6808 if (parseTypeAndValue(LHS, Loc, PFS)) 6809 return true; 6810 6811 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6812 : LHS->getType()->isIntOrIntVectorTy(); 6813 6814 if (!Valid) 6815 return error(Loc, "invalid operand type for instruction"); 6816 6817 Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 6818 return false; 6819 } 6820 6821 /// parseCallBr 6822 /// ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList 6823 /// OptionalAttrs OptionalOperandBundles 'to' TypeAndValue 6824 /// '[' LabelList ']' 6825 bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) { 6826 LocTy CallLoc = Lex.getLoc(); 6827 AttrBuilder RetAttrs, FnAttrs; 6828 std::vector<unsigned> FwdRefAttrGrps; 6829 LocTy NoBuiltinLoc; 6830 unsigned CC; 6831 Type *RetType = nullptr; 6832 LocTy RetTypeLoc; 6833 ValID CalleeID; 6834 SmallVector<ParamInfo, 16> ArgList; 6835 SmallVector<OperandBundleDef, 2> BundleList; 6836 6837 BasicBlock *DefaultDest; 6838 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 6839 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 6840 parseValID(CalleeID) || parseParameterList(ArgList, PFS) || 6841 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6842 NoBuiltinLoc) || 6843 parseOptionalOperandBundles(BundleList, PFS) || 6844 parseToken(lltok::kw_to, "expected 'to' in callbr") || 6845 parseTypeAndBasicBlock(DefaultDest, PFS) || 6846 parseToken(lltok::lsquare, "expected '[' in callbr")) 6847 return true; 6848 6849 // parse the destination list. 6850 SmallVector<BasicBlock *, 16> IndirectDests; 6851 6852 if (Lex.getKind() != lltok::rsquare) { 6853 BasicBlock *DestBB; 6854 if (parseTypeAndBasicBlock(DestBB, PFS)) 6855 return true; 6856 IndirectDests.push_back(DestBB); 6857 6858 while (EatIfPresent(lltok::comma)) { 6859 if (parseTypeAndBasicBlock(DestBB, PFS)) 6860 return true; 6861 IndirectDests.push_back(DestBB); 6862 } 6863 } 6864 6865 if (parseToken(lltok::rsquare, "expected ']' at end of block list")) 6866 return true; 6867 6868 // If RetType is a non-function pointer type, then this is the short syntax 6869 // for the call, which means that RetType is just the return type. Infer the 6870 // rest of the function argument types from the arguments that are present. 6871 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6872 if (!Ty) { 6873 // Pull out the types of all of the arguments... 6874 std::vector<Type *> ParamTypes; 6875 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6876 ParamTypes.push_back(ArgList[i].V->getType()); 6877 6878 if (!FunctionType::isValidReturnType(RetType)) 6879 return error(RetTypeLoc, "Invalid result type for LLVM function"); 6880 6881 Ty = FunctionType::get(RetType, ParamTypes, false); 6882 } 6883 6884 CalleeID.FTy = Ty; 6885 6886 // Look up the callee. 6887 Value *Callee; 6888 if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS, 6889 /*IsCall=*/true)) 6890 return true; 6891 6892 // Set up the Attribute for the function. 6893 SmallVector<Value *, 8> Args; 6894 SmallVector<AttributeSet, 8> ArgAttrs; 6895 6896 // Loop through FunctionType's arguments and ensure they are specified 6897 // correctly. Also, gather any parameter attributes. 6898 FunctionType::param_iterator I = Ty->param_begin(); 6899 FunctionType::param_iterator E = Ty->param_end(); 6900 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6901 Type *ExpectedTy = nullptr; 6902 if (I != E) { 6903 ExpectedTy = *I++; 6904 } else if (!Ty->isVarArg()) { 6905 return error(ArgList[i].Loc, "too many arguments specified"); 6906 } 6907 6908 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6909 return error(ArgList[i].Loc, "argument is not of expected type '" + 6910 getTypeString(ExpectedTy) + "'"); 6911 Args.push_back(ArgList[i].V); 6912 ArgAttrs.push_back(ArgList[i].Attrs); 6913 } 6914 6915 if (I != E) 6916 return error(CallLoc, "not enough parameters specified for call"); 6917 6918 if (FnAttrs.hasAlignmentAttr()) 6919 return error(CallLoc, "callbr instructions may not have an alignment"); 6920 6921 // Finish off the Attribute and check them 6922 AttributeList PAL = 6923 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6924 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6925 6926 CallBrInst *CBI = 6927 CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args, 6928 BundleList); 6929 CBI->setCallingConv(CC); 6930 CBI->setAttributes(PAL); 6931 ForwardRefAttrGroups[CBI] = FwdRefAttrGrps; 6932 Inst = CBI; 6933 return false; 6934 } 6935 6936 //===----------------------------------------------------------------------===// 6937 // Binary Operators. 6938 //===----------------------------------------------------------------------===// 6939 6940 /// parseArithmetic 6941 /// ::= ArithmeticOps TypeAndValue ',' Value 6942 /// 6943 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6944 /// operand is allowed. 6945 bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 6946 unsigned Opc, bool IsFP) { 6947 LocTy Loc; Value *LHS, *RHS; 6948 if (parseTypeAndValue(LHS, Loc, PFS) || 6949 parseToken(lltok::comma, "expected ',' in arithmetic operation") || 6950 parseValue(LHS->getType(), RHS, PFS)) 6951 return true; 6952 6953 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6954 : LHS->getType()->isIntOrIntVectorTy(); 6955 6956 if (!Valid) 6957 return error(Loc, "invalid operand type for instruction"); 6958 6959 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6960 return false; 6961 } 6962 6963 /// parseLogical 6964 /// ::= ArithmeticOps TypeAndValue ',' Value { 6965 bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS, 6966 unsigned Opc) { 6967 LocTy Loc; Value *LHS, *RHS; 6968 if (parseTypeAndValue(LHS, Loc, PFS) || 6969 parseToken(lltok::comma, "expected ',' in logical operation") || 6970 parseValue(LHS->getType(), RHS, PFS)) 6971 return true; 6972 6973 if (!LHS->getType()->isIntOrIntVectorTy()) 6974 return error(Loc, 6975 "instruction requires integer or integer vector operands"); 6976 6977 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6978 return false; 6979 } 6980 6981 /// parseCompare 6982 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 6983 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 6984 bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS, 6985 unsigned Opc) { 6986 // parse the integer/fp comparison predicate. 6987 LocTy Loc; 6988 unsigned Pred; 6989 Value *LHS, *RHS; 6990 if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) || 6991 parseToken(lltok::comma, "expected ',' after compare value") || 6992 parseValue(LHS->getType(), RHS, PFS)) 6993 return true; 6994 6995 if (Opc == Instruction::FCmp) { 6996 if (!LHS->getType()->isFPOrFPVectorTy()) 6997 return error(Loc, "fcmp requires floating point operands"); 6998 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6999 } else { 7000 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 7001 if (!LHS->getType()->isIntOrIntVectorTy() && 7002 !LHS->getType()->isPtrOrPtrVectorTy()) 7003 return error(Loc, "icmp requires integer operands"); 7004 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 7005 } 7006 return false; 7007 } 7008 7009 //===----------------------------------------------------------------------===// 7010 // Other Instructions. 7011 //===----------------------------------------------------------------------===// 7012 7013 /// parseCast 7014 /// ::= CastOpc TypeAndValue 'to' Type 7015 bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS, 7016 unsigned Opc) { 7017 LocTy Loc; 7018 Value *Op; 7019 Type *DestTy = nullptr; 7020 if (parseTypeAndValue(Op, Loc, PFS) || 7021 parseToken(lltok::kw_to, "expected 'to' after cast value") || 7022 parseType(DestTy)) 7023 return true; 7024 7025 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 7026 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 7027 return error(Loc, "invalid cast opcode for cast from '" + 7028 getTypeString(Op->getType()) + "' to '" + 7029 getTypeString(DestTy) + "'"); 7030 } 7031 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 7032 return false; 7033 } 7034 7035 /// parseSelect 7036 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 7037 bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) { 7038 LocTy Loc; 7039 Value *Op0, *Op1, *Op2; 7040 if (parseTypeAndValue(Op0, Loc, PFS) || 7041 parseToken(lltok::comma, "expected ',' after select condition") || 7042 parseTypeAndValue(Op1, PFS) || 7043 parseToken(lltok::comma, "expected ',' after select value") || 7044 parseTypeAndValue(Op2, PFS)) 7045 return true; 7046 7047 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 7048 return error(Loc, Reason); 7049 7050 Inst = SelectInst::Create(Op0, Op1, Op2); 7051 return false; 7052 } 7053 7054 /// parseVAArg 7055 /// ::= 'va_arg' TypeAndValue ',' Type 7056 bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) { 7057 Value *Op; 7058 Type *EltTy = nullptr; 7059 LocTy TypeLoc; 7060 if (parseTypeAndValue(Op, PFS) || 7061 parseToken(lltok::comma, "expected ',' after vaarg operand") || 7062 parseType(EltTy, TypeLoc)) 7063 return true; 7064 7065 if (!EltTy->isFirstClassType()) 7066 return error(TypeLoc, "va_arg requires operand with first class type"); 7067 7068 Inst = new VAArgInst(Op, EltTy); 7069 return false; 7070 } 7071 7072 /// parseExtractElement 7073 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 7074 bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 7075 LocTy Loc; 7076 Value *Op0, *Op1; 7077 if (parseTypeAndValue(Op0, Loc, PFS) || 7078 parseToken(lltok::comma, "expected ',' after extract value") || 7079 parseTypeAndValue(Op1, PFS)) 7080 return true; 7081 7082 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 7083 return error(Loc, "invalid extractelement operands"); 7084 7085 Inst = ExtractElementInst::Create(Op0, Op1); 7086 return false; 7087 } 7088 7089 /// parseInsertElement 7090 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 7091 bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 7092 LocTy Loc; 7093 Value *Op0, *Op1, *Op2; 7094 if (parseTypeAndValue(Op0, Loc, PFS) || 7095 parseToken(lltok::comma, "expected ',' after insertelement value") || 7096 parseTypeAndValue(Op1, PFS) || 7097 parseToken(lltok::comma, "expected ',' after insertelement value") || 7098 parseTypeAndValue(Op2, PFS)) 7099 return true; 7100 7101 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 7102 return error(Loc, "invalid insertelement operands"); 7103 7104 Inst = InsertElementInst::Create(Op0, Op1, Op2); 7105 return false; 7106 } 7107 7108 /// parseShuffleVector 7109 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 7110 bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 7111 LocTy Loc; 7112 Value *Op0, *Op1, *Op2; 7113 if (parseTypeAndValue(Op0, Loc, PFS) || 7114 parseToken(lltok::comma, "expected ',' after shuffle mask") || 7115 parseTypeAndValue(Op1, PFS) || 7116 parseToken(lltok::comma, "expected ',' after shuffle value") || 7117 parseTypeAndValue(Op2, PFS)) 7118 return true; 7119 7120 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 7121 return error(Loc, "invalid shufflevector operands"); 7122 7123 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 7124 return false; 7125 } 7126 7127 /// parsePHI 7128 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 7129 int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) { 7130 Type *Ty = nullptr; LocTy TypeLoc; 7131 Value *Op0, *Op1; 7132 7133 if (parseType(Ty, TypeLoc) || 7134 parseToken(lltok::lsquare, "expected '[' in phi value list") || 7135 parseValue(Ty, Op0, PFS) || 7136 parseToken(lltok::comma, "expected ',' after insertelement value") || 7137 parseValue(Type::getLabelTy(Context), Op1, PFS) || 7138 parseToken(lltok::rsquare, "expected ']' in phi value list")) 7139 return true; 7140 7141 bool AteExtraComma = false; 7142 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 7143 7144 while (true) { 7145 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 7146 7147 if (!EatIfPresent(lltok::comma)) 7148 break; 7149 7150 if (Lex.getKind() == lltok::MetadataVar) { 7151 AteExtraComma = true; 7152 break; 7153 } 7154 7155 if (parseToken(lltok::lsquare, "expected '[' in phi value list") || 7156 parseValue(Ty, Op0, PFS) || 7157 parseToken(lltok::comma, "expected ',' after insertelement value") || 7158 parseValue(Type::getLabelTy(Context), Op1, PFS) || 7159 parseToken(lltok::rsquare, "expected ']' in phi value list")) 7160 return true; 7161 } 7162 7163 if (!Ty->isFirstClassType()) 7164 return error(TypeLoc, "phi node must have first class type"); 7165 7166 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 7167 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 7168 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 7169 Inst = PN; 7170 return AteExtraComma ? InstExtraComma : InstNormal; 7171 } 7172 7173 /// parseLandingPad 7174 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 7175 /// Clause 7176 /// ::= 'catch' TypeAndValue 7177 /// ::= 'filter' 7178 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 7179 bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 7180 Type *Ty = nullptr; LocTy TyLoc; 7181 7182 if (parseType(Ty, TyLoc)) 7183 return true; 7184 7185 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 7186 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 7187 7188 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 7189 LandingPadInst::ClauseType CT; 7190 if (EatIfPresent(lltok::kw_catch)) 7191 CT = LandingPadInst::Catch; 7192 else if (EatIfPresent(lltok::kw_filter)) 7193 CT = LandingPadInst::Filter; 7194 else 7195 return tokError("expected 'catch' or 'filter' clause type"); 7196 7197 Value *V; 7198 LocTy VLoc; 7199 if (parseTypeAndValue(V, VLoc, PFS)) 7200 return true; 7201 7202 // A 'catch' type expects a non-array constant. A filter clause expects an 7203 // array constant. 7204 if (CT == LandingPadInst::Catch) { 7205 if (isa<ArrayType>(V->getType())) 7206 error(VLoc, "'catch' clause has an invalid type"); 7207 } else { 7208 if (!isa<ArrayType>(V->getType())) 7209 error(VLoc, "'filter' clause has an invalid type"); 7210 } 7211 7212 Constant *CV = dyn_cast<Constant>(V); 7213 if (!CV) 7214 return error(VLoc, "clause argument must be a constant"); 7215 LP->addClause(CV); 7216 } 7217 7218 Inst = LP.release(); 7219 return false; 7220 } 7221 7222 /// parseFreeze 7223 /// ::= 'freeze' Type Value 7224 bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) { 7225 LocTy Loc; 7226 Value *Op; 7227 if (parseTypeAndValue(Op, Loc, PFS)) 7228 return true; 7229 7230 Inst = new FreezeInst(Op); 7231 return false; 7232 } 7233 7234 /// parseCall 7235 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 7236 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7237 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 7238 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7239 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 7240 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7241 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 7242 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7243 bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS, 7244 CallInst::TailCallKind TCK) { 7245 AttrBuilder RetAttrs, FnAttrs; 7246 std::vector<unsigned> FwdRefAttrGrps; 7247 LocTy BuiltinLoc; 7248 unsigned CallAddrSpace; 7249 unsigned CC; 7250 Type *RetType = nullptr; 7251 LocTy RetTypeLoc; 7252 ValID CalleeID; 7253 SmallVector<ParamInfo, 16> ArgList; 7254 SmallVector<OperandBundleDef, 2> BundleList; 7255 LocTy CallLoc = Lex.getLoc(); 7256 7257 if (TCK != CallInst::TCK_None && 7258 parseToken(lltok::kw_call, 7259 "expected 'tail call', 'musttail call', or 'notail call'")) 7260 return true; 7261 7262 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 7263 7264 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 7265 parseOptionalProgramAddrSpace(CallAddrSpace) || 7266 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 7267 parseValID(CalleeID) || 7268 parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 7269 PFS.getFunction().isVarArg()) || 7270 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 7271 parseOptionalOperandBundles(BundleList, PFS)) 7272 return true; 7273 7274 // If RetType is a non-function pointer type, then this is the short syntax 7275 // for the call, which means that RetType is just the return type. Infer the 7276 // rest of the function argument types from the arguments that are present. 7277 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 7278 if (!Ty) { 7279 // Pull out the types of all of the arguments... 7280 std::vector<Type*> ParamTypes; 7281 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 7282 ParamTypes.push_back(ArgList[i].V->getType()); 7283 7284 if (!FunctionType::isValidReturnType(RetType)) 7285 return error(RetTypeLoc, "Invalid result type for LLVM function"); 7286 7287 Ty = FunctionType::get(RetType, ParamTypes, false); 7288 } 7289 7290 CalleeID.FTy = Ty; 7291 7292 // Look up the callee. 7293 Value *Callee; 7294 if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee, 7295 &PFS, /*IsCall=*/true)) 7296 return true; 7297 7298 // Set up the Attribute for the function. 7299 SmallVector<AttributeSet, 8> Attrs; 7300 7301 SmallVector<Value*, 8> Args; 7302 7303 // Loop through FunctionType's arguments and ensure they are specified 7304 // correctly. Also, gather any parameter attributes. 7305 FunctionType::param_iterator I = Ty->param_begin(); 7306 FunctionType::param_iterator E = Ty->param_end(); 7307 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 7308 Type *ExpectedTy = nullptr; 7309 if (I != E) { 7310 ExpectedTy = *I++; 7311 } else if (!Ty->isVarArg()) { 7312 return error(ArgList[i].Loc, "too many arguments specified"); 7313 } 7314 7315 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 7316 return error(ArgList[i].Loc, "argument is not of expected type '" + 7317 getTypeString(ExpectedTy) + "'"); 7318 Args.push_back(ArgList[i].V); 7319 Attrs.push_back(ArgList[i].Attrs); 7320 } 7321 7322 if (I != E) 7323 return error(CallLoc, "not enough parameters specified for call"); 7324 7325 if (FnAttrs.hasAlignmentAttr()) 7326 return error(CallLoc, "call instructions may not have an alignment"); 7327 7328 // Finish off the Attribute and check them 7329 AttributeList PAL = 7330 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 7331 AttributeSet::get(Context, RetAttrs), Attrs); 7332 7333 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 7334 CI->setTailCallKind(TCK); 7335 CI->setCallingConv(CC); 7336 if (FMF.any()) { 7337 if (!isa<FPMathOperator>(CI)) { 7338 CI->deleteValue(); 7339 return error(CallLoc, "fast-math-flags specified for call without " 7340 "floating-point scalar or vector return type"); 7341 } 7342 CI->setFastMathFlags(FMF); 7343 } 7344 CI->setAttributes(PAL); 7345 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 7346 Inst = CI; 7347 return false; 7348 } 7349 7350 //===----------------------------------------------------------------------===// 7351 // Memory Instructions. 7352 //===----------------------------------------------------------------------===// 7353 7354 /// parseAlloc 7355 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 7356 /// (',' 'align' i32)? (',', 'addrspace(n))? 7357 int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 7358 Value *Size = nullptr; 7359 LocTy SizeLoc, TyLoc, ASLoc; 7360 MaybeAlign Alignment; 7361 unsigned AddrSpace = 0; 7362 Type *Ty = nullptr; 7363 7364 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 7365 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 7366 7367 if (parseType(Ty, TyLoc)) 7368 return true; 7369 7370 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 7371 return error(TyLoc, "invalid type for alloca"); 7372 7373 bool AteExtraComma = false; 7374 if (EatIfPresent(lltok::comma)) { 7375 if (Lex.getKind() == lltok::kw_align) { 7376 if (parseOptionalAlignment(Alignment)) 7377 return true; 7378 if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 7379 return true; 7380 } else if (Lex.getKind() == lltok::kw_addrspace) { 7381 ASLoc = Lex.getLoc(); 7382 if (parseOptionalAddrSpace(AddrSpace)) 7383 return true; 7384 } else if (Lex.getKind() == lltok::MetadataVar) { 7385 AteExtraComma = true; 7386 } else { 7387 if (parseTypeAndValue(Size, SizeLoc, PFS)) 7388 return true; 7389 if (EatIfPresent(lltok::comma)) { 7390 if (Lex.getKind() == lltok::kw_align) { 7391 if (parseOptionalAlignment(Alignment)) 7392 return true; 7393 if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 7394 return true; 7395 } else if (Lex.getKind() == lltok::kw_addrspace) { 7396 ASLoc = Lex.getLoc(); 7397 if (parseOptionalAddrSpace(AddrSpace)) 7398 return true; 7399 } else if (Lex.getKind() == lltok::MetadataVar) { 7400 AteExtraComma = true; 7401 } 7402 } 7403 } 7404 } 7405 7406 if (Size && !Size->getType()->isIntegerTy()) 7407 return error(SizeLoc, "element count must have integer type"); 7408 7409 SmallPtrSet<Type *, 4> Visited; 7410 if (!Alignment && !Ty->isSized(&Visited)) 7411 return error(TyLoc, "Cannot allocate unsized type"); 7412 if (!Alignment) 7413 Alignment = M->getDataLayout().getPrefTypeAlign(Ty); 7414 AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment); 7415 AI->setUsedWithInAlloca(IsInAlloca); 7416 AI->setSwiftError(IsSwiftError); 7417 Inst = AI; 7418 return AteExtraComma ? InstExtraComma : InstNormal; 7419 } 7420 7421 /// parseLoad 7422 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 7423 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 7424 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 7425 int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) { 7426 Value *Val; LocTy Loc; 7427 MaybeAlign Alignment; 7428 bool AteExtraComma = false; 7429 bool isAtomic = false; 7430 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7431 SyncScope::ID SSID = SyncScope::System; 7432 7433 if (Lex.getKind() == lltok::kw_atomic) { 7434 isAtomic = true; 7435 Lex.Lex(); 7436 } 7437 7438 bool isVolatile = false; 7439 if (Lex.getKind() == lltok::kw_volatile) { 7440 isVolatile = true; 7441 Lex.Lex(); 7442 } 7443 7444 Type *Ty; 7445 LocTy ExplicitTypeLoc = Lex.getLoc(); 7446 if (parseType(Ty) || 7447 parseToken(lltok::comma, "expected comma after load's type") || 7448 parseTypeAndValue(Val, Loc, PFS) || 7449 parseScopeAndOrdering(isAtomic, SSID, Ordering) || 7450 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7451 return true; 7452 7453 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 7454 return error(Loc, "load operand must be a pointer to a first class type"); 7455 if (isAtomic && !Alignment) 7456 return error(Loc, "atomic load must have explicit non-zero alignment"); 7457 if (Ordering == AtomicOrdering::Release || 7458 Ordering == AtomicOrdering::AcquireRelease) 7459 return error(Loc, "atomic load cannot use Release ordering"); 7460 7461 if (!cast<PointerType>(Val->getType())->isOpaqueOrPointeeTypeMatches(Ty)) { 7462 return error( 7463 ExplicitTypeLoc, 7464 typeComparisonErrorMessage( 7465 "explicit pointee type doesn't match operand's pointee type", Ty, 7466 cast<PointerType>(Val->getType())->getElementType())); 7467 } 7468 SmallPtrSet<Type *, 4> Visited; 7469 if (!Alignment && !Ty->isSized(&Visited)) 7470 return error(ExplicitTypeLoc, "loading unsized types is not allowed"); 7471 if (!Alignment) 7472 Alignment = M->getDataLayout().getABITypeAlign(Ty); 7473 Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID); 7474 return AteExtraComma ? InstExtraComma : InstNormal; 7475 } 7476 7477 /// parseStore 7478 7479 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 7480 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 7481 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 7482 int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) { 7483 Value *Val, *Ptr; LocTy Loc, PtrLoc; 7484 MaybeAlign Alignment; 7485 bool AteExtraComma = false; 7486 bool isAtomic = false; 7487 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7488 SyncScope::ID SSID = SyncScope::System; 7489 7490 if (Lex.getKind() == lltok::kw_atomic) { 7491 isAtomic = true; 7492 Lex.Lex(); 7493 } 7494 7495 bool isVolatile = false; 7496 if (Lex.getKind() == lltok::kw_volatile) { 7497 isVolatile = true; 7498 Lex.Lex(); 7499 } 7500 7501 if (parseTypeAndValue(Val, Loc, PFS) || 7502 parseToken(lltok::comma, "expected ',' after store operand") || 7503 parseTypeAndValue(Ptr, PtrLoc, PFS) || 7504 parseScopeAndOrdering(isAtomic, SSID, Ordering) || 7505 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7506 return true; 7507 7508 if (!Ptr->getType()->isPointerTy()) 7509 return error(PtrLoc, "store operand must be a pointer"); 7510 if (!Val->getType()->isFirstClassType()) 7511 return error(Loc, "store operand must be a first class value"); 7512 if (!cast<PointerType>(Ptr->getType()) 7513 ->isOpaqueOrPointeeTypeMatches(Val->getType())) 7514 return error(Loc, "stored value and pointer type do not match"); 7515 if (isAtomic && !Alignment) 7516 return error(Loc, "atomic store must have explicit non-zero alignment"); 7517 if (Ordering == AtomicOrdering::Acquire || 7518 Ordering == AtomicOrdering::AcquireRelease) 7519 return error(Loc, "atomic store cannot use Acquire ordering"); 7520 SmallPtrSet<Type *, 4> Visited; 7521 if (!Alignment && !Val->getType()->isSized(&Visited)) 7522 return error(Loc, "storing unsized types is not allowed"); 7523 if (!Alignment) 7524 Alignment = M->getDataLayout().getABITypeAlign(Val->getType()); 7525 7526 Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID); 7527 return AteExtraComma ? InstExtraComma : InstNormal; 7528 } 7529 7530 /// parseCmpXchg 7531 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 7532 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering ',' 7533 /// 'Align'? 7534 int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 7535 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 7536 bool AteExtraComma = false; 7537 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 7538 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 7539 SyncScope::ID SSID = SyncScope::System; 7540 bool isVolatile = false; 7541 bool isWeak = false; 7542 MaybeAlign Alignment; 7543 7544 if (EatIfPresent(lltok::kw_weak)) 7545 isWeak = true; 7546 7547 if (EatIfPresent(lltok::kw_volatile)) 7548 isVolatile = true; 7549 7550 if (parseTypeAndValue(Ptr, PtrLoc, PFS) || 7551 parseToken(lltok::comma, "expected ',' after cmpxchg address") || 7552 parseTypeAndValue(Cmp, CmpLoc, PFS) || 7553 parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 7554 parseTypeAndValue(New, NewLoc, PFS) || 7555 parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) || 7556 parseOrdering(FailureOrdering) || 7557 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7558 return true; 7559 7560 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 7561 return tokError("invalid cmpxchg success ordering"); 7562 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 7563 return tokError("invalid cmpxchg failure ordering"); 7564 if (!Ptr->getType()->isPointerTy()) 7565 return error(PtrLoc, "cmpxchg operand must be a pointer"); 7566 if (!cast<PointerType>(Ptr->getType()) 7567 ->isOpaqueOrPointeeTypeMatches(Cmp->getType())) 7568 return error(CmpLoc, "compare value and pointer type do not match"); 7569 if (!cast<PointerType>(Ptr->getType()) 7570 ->isOpaqueOrPointeeTypeMatches(New->getType())) 7571 return error(NewLoc, "new value and pointer type do not match"); 7572 if (Cmp->getType() != New->getType()) 7573 return error(NewLoc, "compare value and new value type do not match"); 7574 if (!New->getType()->isFirstClassType()) 7575 return error(NewLoc, "cmpxchg operand must be a first class value"); 7576 7577 const Align DefaultAlignment( 7578 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize( 7579 Cmp->getType())); 7580 7581 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 7582 Ptr, Cmp, New, Alignment.getValueOr(DefaultAlignment), SuccessOrdering, 7583 FailureOrdering, SSID); 7584 CXI->setVolatile(isVolatile); 7585 CXI->setWeak(isWeak); 7586 7587 Inst = CXI; 7588 return AteExtraComma ? InstExtraComma : InstNormal; 7589 } 7590 7591 /// parseAtomicRMW 7592 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 7593 /// 'singlethread'? AtomicOrdering 7594 int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 7595 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 7596 bool AteExtraComma = false; 7597 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7598 SyncScope::ID SSID = SyncScope::System; 7599 bool isVolatile = false; 7600 bool IsFP = false; 7601 AtomicRMWInst::BinOp Operation; 7602 MaybeAlign Alignment; 7603 7604 if (EatIfPresent(lltok::kw_volatile)) 7605 isVolatile = true; 7606 7607 switch (Lex.getKind()) { 7608 default: 7609 return tokError("expected binary operation in atomicrmw"); 7610 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 7611 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 7612 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 7613 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 7614 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 7615 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 7616 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 7617 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 7618 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 7619 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 7620 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 7621 case lltok::kw_fadd: 7622 Operation = AtomicRMWInst::FAdd; 7623 IsFP = true; 7624 break; 7625 case lltok::kw_fsub: 7626 Operation = AtomicRMWInst::FSub; 7627 IsFP = true; 7628 break; 7629 } 7630 Lex.Lex(); // Eat the operation. 7631 7632 if (parseTypeAndValue(Ptr, PtrLoc, PFS) || 7633 parseToken(lltok::comma, "expected ',' after atomicrmw address") || 7634 parseTypeAndValue(Val, ValLoc, PFS) || 7635 parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering) || 7636 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7637 return true; 7638 7639 if (Ordering == AtomicOrdering::Unordered) 7640 return tokError("atomicrmw cannot be unordered"); 7641 if (!Ptr->getType()->isPointerTy()) 7642 return error(PtrLoc, "atomicrmw operand must be a pointer"); 7643 if (!cast<PointerType>(Ptr->getType()) 7644 ->isOpaqueOrPointeeTypeMatches(Val->getType())) 7645 return error(ValLoc, "atomicrmw value and pointer type do not match"); 7646 7647 if (Operation == AtomicRMWInst::Xchg) { 7648 if (!Val->getType()->isIntegerTy() && 7649 !Val->getType()->isFloatingPointTy()) { 7650 return error(ValLoc, 7651 "atomicrmw " + AtomicRMWInst::getOperationName(Operation) + 7652 " operand must be an integer or floating point type"); 7653 } 7654 } else if (IsFP) { 7655 if (!Val->getType()->isFloatingPointTy()) { 7656 return error(ValLoc, "atomicrmw " + 7657 AtomicRMWInst::getOperationName(Operation) + 7658 " operand must be a floating point type"); 7659 } 7660 } else { 7661 if (!Val->getType()->isIntegerTy()) { 7662 return error(ValLoc, "atomicrmw " + 7663 AtomicRMWInst::getOperationName(Operation) + 7664 " operand must be an integer"); 7665 } 7666 } 7667 7668 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 7669 if (Size < 8 || (Size & (Size - 1))) 7670 return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 7671 " integer"); 7672 const Align DefaultAlignment( 7673 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize( 7674 Val->getType())); 7675 AtomicRMWInst *RMWI = 7676 new AtomicRMWInst(Operation, Ptr, Val, 7677 Alignment.getValueOr(DefaultAlignment), Ordering, SSID); 7678 RMWI->setVolatile(isVolatile); 7679 Inst = RMWI; 7680 return AteExtraComma ? InstExtraComma : InstNormal; 7681 } 7682 7683 /// parseFence 7684 /// ::= 'fence' 'singlethread'? AtomicOrdering 7685 int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) { 7686 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7687 SyncScope::ID SSID = SyncScope::System; 7688 if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 7689 return true; 7690 7691 if (Ordering == AtomicOrdering::Unordered) 7692 return tokError("fence cannot be unordered"); 7693 if (Ordering == AtomicOrdering::Monotonic) 7694 return tokError("fence cannot be monotonic"); 7695 7696 Inst = new FenceInst(Context, Ordering, SSID); 7697 return InstNormal; 7698 } 7699 7700 /// parseGetElementPtr 7701 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 7702 int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 7703 Value *Ptr = nullptr; 7704 Value *Val = nullptr; 7705 LocTy Loc, EltLoc; 7706 7707 bool InBounds = EatIfPresent(lltok::kw_inbounds); 7708 7709 Type *Ty = nullptr; 7710 LocTy ExplicitTypeLoc = Lex.getLoc(); 7711 if (parseType(Ty) || 7712 parseToken(lltok::comma, "expected comma after getelementptr's type") || 7713 parseTypeAndValue(Ptr, Loc, PFS)) 7714 return true; 7715 7716 Type *BaseType = Ptr->getType(); 7717 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 7718 if (!BasePointerType) 7719 return error(Loc, "base of getelementptr must be a pointer"); 7720 7721 if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) { 7722 return error( 7723 ExplicitTypeLoc, 7724 typeComparisonErrorMessage( 7725 "explicit pointee type doesn't match operand's pointee type", Ty, 7726 BasePointerType->getElementType())); 7727 } 7728 7729 SmallVector<Value*, 16> Indices; 7730 bool AteExtraComma = false; 7731 // GEP returns a vector of pointers if at least one of parameters is a vector. 7732 // All vector parameters should have the same vector width. 7733 ElementCount GEPWidth = BaseType->isVectorTy() 7734 ? cast<VectorType>(BaseType)->getElementCount() 7735 : ElementCount::getFixed(0); 7736 7737 while (EatIfPresent(lltok::comma)) { 7738 if (Lex.getKind() == lltok::MetadataVar) { 7739 AteExtraComma = true; 7740 break; 7741 } 7742 if (parseTypeAndValue(Val, EltLoc, PFS)) 7743 return true; 7744 if (!Val->getType()->isIntOrIntVectorTy()) 7745 return error(EltLoc, "getelementptr index must be an integer"); 7746 7747 if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) { 7748 ElementCount ValNumEl = ValVTy->getElementCount(); 7749 if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl) 7750 return error( 7751 EltLoc, 7752 "getelementptr vector index has a wrong number of elements"); 7753 GEPWidth = ValNumEl; 7754 } 7755 Indices.push_back(Val); 7756 } 7757 7758 SmallPtrSet<Type*, 4> Visited; 7759 if (!Indices.empty() && !Ty->isSized(&Visited)) 7760 return error(Loc, "base element of getelementptr must be sized"); 7761 7762 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 7763 return error(Loc, "invalid getelementptr indices"); 7764 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 7765 if (InBounds) 7766 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 7767 return AteExtraComma ? InstExtraComma : InstNormal; 7768 } 7769 7770 /// parseExtractValue 7771 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 7772 int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 7773 Value *Val; LocTy Loc; 7774 SmallVector<unsigned, 4> Indices; 7775 bool AteExtraComma; 7776 if (parseTypeAndValue(Val, Loc, PFS) || 7777 parseIndexList(Indices, AteExtraComma)) 7778 return true; 7779 7780 if (!Val->getType()->isAggregateType()) 7781 return error(Loc, "extractvalue operand must be aggregate type"); 7782 7783 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 7784 return error(Loc, "invalid indices for extractvalue"); 7785 Inst = ExtractValueInst::Create(Val, Indices); 7786 return AteExtraComma ? InstExtraComma : InstNormal; 7787 } 7788 7789 /// parseInsertValue 7790 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 7791 int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 7792 Value *Val0, *Val1; LocTy Loc0, Loc1; 7793 SmallVector<unsigned, 4> Indices; 7794 bool AteExtraComma; 7795 if (parseTypeAndValue(Val0, Loc0, PFS) || 7796 parseToken(lltok::comma, "expected comma after insertvalue operand") || 7797 parseTypeAndValue(Val1, Loc1, PFS) || 7798 parseIndexList(Indices, AteExtraComma)) 7799 return true; 7800 7801 if (!Val0->getType()->isAggregateType()) 7802 return error(Loc0, "insertvalue operand must be aggregate type"); 7803 7804 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 7805 if (!IndexedType) 7806 return error(Loc0, "invalid indices for insertvalue"); 7807 if (IndexedType != Val1->getType()) 7808 return error(Loc1, "insertvalue operand and field disagree in type: '" + 7809 getTypeString(Val1->getType()) + "' instead of '" + 7810 getTypeString(IndexedType) + "'"); 7811 Inst = InsertValueInst::Create(Val0, Val1, Indices); 7812 return AteExtraComma ? InstExtraComma : InstNormal; 7813 } 7814 7815 //===----------------------------------------------------------------------===// 7816 // Embedded metadata. 7817 //===----------------------------------------------------------------------===// 7818 7819 /// parseMDNodeVector 7820 /// ::= { Element (',' Element)* } 7821 /// Element 7822 /// ::= 'null' | TypeAndValue 7823 bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 7824 if (parseToken(lltok::lbrace, "expected '{' here")) 7825 return true; 7826 7827 // Check for an empty list. 7828 if (EatIfPresent(lltok::rbrace)) 7829 return false; 7830 7831 do { 7832 // Null is a special case since it is typeless. 7833 if (EatIfPresent(lltok::kw_null)) { 7834 Elts.push_back(nullptr); 7835 continue; 7836 } 7837 7838 Metadata *MD; 7839 if (parseMetadata(MD, nullptr)) 7840 return true; 7841 Elts.push_back(MD); 7842 } while (EatIfPresent(lltok::comma)); 7843 7844 return parseToken(lltok::rbrace, "expected end of metadata node"); 7845 } 7846 7847 //===----------------------------------------------------------------------===// 7848 // Use-list order directives. 7849 //===----------------------------------------------------------------------===// 7850 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 7851 SMLoc Loc) { 7852 if (V->use_empty()) 7853 return error(Loc, "value has no uses"); 7854 7855 unsigned NumUses = 0; 7856 SmallDenseMap<const Use *, unsigned, 16> Order; 7857 for (const Use &U : V->uses()) { 7858 if (++NumUses > Indexes.size()) 7859 break; 7860 Order[&U] = Indexes[NumUses - 1]; 7861 } 7862 if (NumUses < 2) 7863 return error(Loc, "value only has one use"); 7864 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 7865 return error(Loc, 7866 "wrong number of indexes, expected " + Twine(V->getNumUses())); 7867 7868 V->sortUseList([&](const Use &L, const Use &R) { 7869 return Order.lookup(&L) < Order.lookup(&R); 7870 }); 7871 return false; 7872 } 7873 7874 /// parseUseListOrderIndexes 7875 /// ::= '{' uint32 (',' uint32)+ '}' 7876 bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 7877 SMLoc Loc = Lex.getLoc(); 7878 if (parseToken(lltok::lbrace, "expected '{' here")) 7879 return true; 7880 if (Lex.getKind() == lltok::rbrace) 7881 return Lex.Error("expected non-empty list of uselistorder indexes"); 7882 7883 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 7884 // indexes should be distinct numbers in the range [0, size-1], and should 7885 // not be in order. 7886 unsigned Offset = 0; 7887 unsigned Max = 0; 7888 bool IsOrdered = true; 7889 assert(Indexes.empty() && "Expected empty order vector"); 7890 do { 7891 unsigned Index; 7892 if (parseUInt32(Index)) 7893 return true; 7894 7895 // Update consistency checks. 7896 Offset += Index - Indexes.size(); 7897 Max = std::max(Max, Index); 7898 IsOrdered &= Index == Indexes.size(); 7899 7900 Indexes.push_back(Index); 7901 } while (EatIfPresent(lltok::comma)); 7902 7903 if (parseToken(lltok::rbrace, "expected '}' here")) 7904 return true; 7905 7906 if (Indexes.size() < 2) 7907 return error(Loc, "expected >= 2 uselistorder indexes"); 7908 if (Offset != 0 || Max >= Indexes.size()) 7909 return error(Loc, 7910 "expected distinct uselistorder indexes in range [0, size)"); 7911 if (IsOrdered) 7912 return error(Loc, "expected uselistorder indexes to change the order"); 7913 7914 return false; 7915 } 7916 7917 /// parseUseListOrder 7918 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 7919 bool LLParser::parseUseListOrder(PerFunctionState *PFS) { 7920 SMLoc Loc = Lex.getLoc(); 7921 if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 7922 return true; 7923 7924 Value *V; 7925 SmallVector<unsigned, 16> Indexes; 7926 if (parseTypeAndValue(V, PFS) || 7927 parseToken(lltok::comma, "expected comma in uselistorder directive") || 7928 parseUseListOrderIndexes(Indexes)) 7929 return true; 7930 7931 return sortUseListOrder(V, Indexes, Loc); 7932 } 7933 7934 /// parseUseListOrderBB 7935 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 7936 bool LLParser::parseUseListOrderBB() { 7937 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 7938 SMLoc Loc = Lex.getLoc(); 7939 Lex.Lex(); 7940 7941 ValID Fn, Label; 7942 SmallVector<unsigned, 16> Indexes; 7943 if (parseValID(Fn) || 7944 parseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7945 parseValID(Label) || 7946 parseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7947 parseUseListOrderIndexes(Indexes)) 7948 return true; 7949 7950 // Check the function. 7951 GlobalValue *GV; 7952 if (Fn.Kind == ValID::t_GlobalName) 7953 GV = M->getNamedValue(Fn.StrVal); 7954 else if (Fn.Kind == ValID::t_GlobalID) 7955 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 7956 else 7957 return error(Fn.Loc, "expected function name in uselistorder_bb"); 7958 if (!GV) 7959 return error(Fn.Loc, 7960 "invalid function forward reference in uselistorder_bb"); 7961 auto *F = dyn_cast<Function>(GV); 7962 if (!F) 7963 return error(Fn.Loc, "expected function name in uselistorder_bb"); 7964 if (F->isDeclaration()) 7965 return error(Fn.Loc, "invalid declaration in uselistorder_bb"); 7966 7967 // Check the basic block. 7968 if (Label.Kind == ValID::t_LocalID) 7969 return error(Label.Loc, "invalid numeric label in uselistorder_bb"); 7970 if (Label.Kind != ValID::t_LocalName) 7971 return error(Label.Loc, "expected basic block name in uselistorder_bb"); 7972 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); 7973 if (!V) 7974 return error(Label.Loc, "invalid basic block in uselistorder_bb"); 7975 if (!isa<BasicBlock>(V)) 7976 return error(Label.Loc, "expected basic block in uselistorder_bb"); 7977 7978 return sortUseListOrder(V, Indexes, Loc); 7979 } 7980 7981 /// ModuleEntry 7982 /// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')' 7983 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')' 7984 bool LLParser::parseModuleEntry(unsigned ID) { 7985 assert(Lex.getKind() == lltok::kw_module); 7986 Lex.Lex(); 7987 7988 std::string Path; 7989 if (parseToken(lltok::colon, "expected ':' here") || 7990 parseToken(lltok::lparen, "expected '(' here") || 7991 parseToken(lltok::kw_path, "expected 'path' here") || 7992 parseToken(lltok::colon, "expected ':' here") || 7993 parseStringConstant(Path) || 7994 parseToken(lltok::comma, "expected ',' here") || 7995 parseToken(lltok::kw_hash, "expected 'hash' here") || 7996 parseToken(lltok::colon, "expected ':' here") || 7997 parseToken(lltok::lparen, "expected '(' here")) 7998 return true; 7999 8000 ModuleHash Hash; 8001 if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") || 8002 parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") || 8003 parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") || 8004 parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") || 8005 parseUInt32(Hash[4])) 8006 return true; 8007 8008 if (parseToken(lltok::rparen, "expected ')' here") || 8009 parseToken(lltok::rparen, "expected ')' here")) 8010 return true; 8011 8012 auto ModuleEntry = Index->addModule(Path, ID, Hash); 8013 ModuleIdMap[ID] = ModuleEntry->first(); 8014 8015 return false; 8016 } 8017 8018 /// TypeIdEntry 8019 /// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')' 8020 bool LLParser::parseTypeIdEntry(unsigned ID) { 8021 assert(Lex.getKind() == lltok::kw_typeid); 8022 Lex.Lex(); 8023 8024 std::string Name; 8025 if (parseToken(lltok::colon, "expected ':' here") || 8026 parseToken(lltok::lparen, "expected '(' here") || 8027 parseToken(lltok::kw_name, "expected 'name' here") || 8028 parseToken(lltok::colon, "expected ':' here") || 8029 parseStringConstant(Name)) 8030 return true; 8031 8032 TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name); 8033 if (parseToken(lltok::comma, "expected ',' here") || 8034 parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here")) 8035 return true; 8036 8037 // Check if this ID was forward referenced, and if so, update the 8038 // corresponding GUIDs. 8039 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 8040 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 8041 for (auto TIDRef : FwdRefTIDs->second) { 8042 assert(!*TIDRef.first && 8043 "Forward referenced type id GUID expected to be 0"); 8044 *TIDRef.first = GlobalValue::getGUID(Name); 8045 } 8046 ForwardRefTypeIds.erase(FwdRefTIDs); 8047 } 8048 8049 return false; 8050 } 8051 8052 /// TypeIdSummary 8053 /// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')' 8054 bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) { 8055 if (parseToken(lltok::kw_summary, "expected 'summary' here") || 8056 parseToken(lltok::colon, "expected ':' here") || 8057 parseToken(lltok::lparen, "expected '(' here") || 8058 parseTypeTestResolution(TIS.TTRes)) 8059 return true; 8060 8061 if (EatIfPresent(lltok::comma)) { 8062 // Expect optional wpdResolutions field 8063 if (parseOptionalWpdResolutions(TIS.WPDRes)) 8064 return true; 8065 } 8066 8067 if (parseToken(lltok::rparen, "expected ')' here")) 8068 return true; 8069 8070 return false; 8071 } 8072 8073 static ValueInfo EmptyVI = 8074 ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8); 8075 8076 /// TypeIdCompatibleVtableEntry 8077 /// ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ',' 8078 /// TypeIdCompatibleVtableInfo 8079 /// ')' 8080 bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) { 8081 assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable); 8082 Lex.Lex(); 8083 8084 std::string Name; 8085 if (parseToken(lltok::colon, "expected ':' here") || 8086 parseToken(lltok::lparen, "expected '(' here") || 8087 parseToken(lltok::kw_name, "expected 'name' here") || 8088 parseToken(lltok::colon, "expected ':' here") || 8089 parseStringConstant(Name)) 8090 return true; 8091 8092 TypeIdCompatibleVtableInfo &TI = 8093 Index->getOrInsertTypeIdCompatibleVtableSummary(Name); 8094 if (parseToken(lltok::comma, "expected ',' here") || 8095 parseToken(lltok::kw_summary, "expected 'summary' here") || 8096 parseToken(lltok::colon, "expected ':' here") || 8097 parseToken(lltok::lparen, "expected '(' here")) 8098 return true; 8099 8100 IdToIndexMapType IdToIndexMap; 8101 // parse each call edge 8102 do { 8103 uint64_t Offset; 8104 if (parseToken(lltok::lparen, "expected '(' here") || 8105 parseToken(lltok::kw_offset, "expected 'offset' here") || 8106 parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) || 8107 parseToken(lltok::comma, "expected ',' here")) 8108 return true; 8109 8110 LocTy Loc = Lex.getLoc(); 8111 unsigned GVId; 8112 ValueInfo VI; 8113 if (parseGVReference(VI, GVId)) 8114 return true; 8115 8116 // Keep track of the TypeIdCompatibleVtableInfo array index needing a 8117 // forward reference. We will save the location of the ValueInfo needing an 8118 // update, but can only do so once the std::vector is finalized. 8119 if (VI == EmptyVI) 8120 IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc)); 8121 TI.push_back({Offset, VI}); 8122 8123 if (parseToken(lltok::rparen, "expected ')' in call")) 8124 return true; 8125 } while (EatIfPresent(lltok::comma)); 8126 8127 // Now that the TI vector is finalized, it is safe to save the locations 8128 // of any forward GV references that need updating later. 8129 for (auto I : IdToIndexMap) { 8130 auto &Infos = ForwardRefValueInfos[I.first]; 8131 for (auto P : I.second) { 8132 assert(TI[P.first].VTableVI == EmptyVI && 8133 "Forward referenced ValueInfo expected to be empty"); 8134 Infos.emplace_back(&TI[P.first].VTableVI, P.second); 8135 } 8136 } 8137 8138 if (parseToken(lltok::rparen, "expected ')' here") || 8139 parseToken(lltok::rparen, "expected ')' here")) 8140 return true; 8141 8142 // Check if this ID was forward referenced, and if so, update the 8143 // corresponding GUIDs. 8144 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 8145 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 8146 for (auto TIDRef : FwdRefTIDs->second) { 8147 assert(!*TIDRef.first && 8148 "Forward referenced type id GUID expected to be 0"); 8149 *TIDRef.first = GlobalValue::getGUID(Name); 8150 } 8151 ForwardRefTypeIds.erase(FwdRefTIDs); 8152 } 8153 8154 return false; 8155 } 8156 8157 /// TypeTestResolution 8158 /// ::= 'typeTestRes' ':' '(' 'kind' ':' 8159 /// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ',' 8160 /// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]? 8161 /// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]? 8162 /// [',' 'inlinesBits' ':' UInt64]? ')' 8163 bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) { 8164 if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") || 8165 parseToken(lltok::colon, "expected ':' here") || 8166 parseToken(lltok::lparen, "expected '(' here") || 8167 parseToken(lltok::kw_kind, "expected 'kind' here") || 8168 parseToken(lltok::colon, "expected ':' here")) 8169 return true; 8170 8171 switch (Lex.getKind()) { 8172 case lltok::kw_unknown: 8173 TTRes.TheKind = TypeTestResolution::Unknown; 8174 break; 8175 case lltok::kw_unsat: 8176 TTRes.TheKind = TypeTestResolution::Unsat; 8177 break; 8178 case lltok::kw_byteArray: 8179 TTRes.TheKind = TypeTestResolution::ByteArray; 8180 break; 8181 case lltok::kw_inline: 8182 TTRes.TheKind = TypeTestResolution::Inline; 8183 break; 8184 case lltok::kw_single: 8185 TTRes.TheKind = TypeTestResolution::Single; 8186 break; 8187 case lltok::kw_allOnes: 8188 TTRes.TheKind = TypeTestResolution::AllOnes; 8189 break; 8190 default: 8191 return error(Lex.getLoc(), "unexpected TypeTestResolution kind"); 8192 } 8193 Lex.Lex(); 8194 8195 if (parseToken(lltok::comma, "expected ',' here") || 8196 parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") || 8197 parseToken(lltok::colon, "expected ':' here") || 8198 parseUInt32(TTRes.SizeM1BitWidth)) 8199 return true; 8200 8201 // parse optional fields 8202 while (EatIfPresent(lltok::comma)) { 8203 switch (Lex.getKind()) { 8204 case lltok::kw_alignLog2: 8205 Lex.Lex(); 8206 if (parseToken(lltok::colon, "expected ':'") || 8207 parseUInt64(TTRes.AlignLog2)) 8208 return true; 8209 break; 8210 case lltok::kw_sizeM1: 8211 Lex.Lex(); 8212 if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1)) 8213 return true; 8214 break; 8215 case lltok::kw_bitMask: { 8216 unsigned Val; 8217 Lex.Lex(); 8218 if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val)) 8219 return true; 8220 assert(Val <= 0xff); 8221 TTRes.BitMask = (uint8_t)Val; 8222 break; 8223 } 8224 case lltok::kw_inlineBits: 8225 Lex.Lex(); 8226 if (parseToken(lltok::colon, "expected ':'") || 8227 parseUInt64(TTRes.InlineBits)) 8228 return true; 8229 break; 8230 default: 8231 return error(Lex.getLoc(), "expected optional TypeTestResolution field"); 8232 } 8233 } 8234 8235 if (parseToken(lltok::rparen, "expected ')' here")) 8236 return true; 8237 8238 return false; 8239 } 8240 8241 /// OptionalWpdResolutions 8242 /// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')' 8243 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')' 8244 bool LLParser::parseOptionalWpdResolutions( 8245 std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) { 8246 if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") || 8247 parseToken(lltok::colon, "expected ':' here") || 8248 parseToken(lltok::lparen, "expected '(' here")) 8249 return true; 8250 8251 do { 8252 uint64_t Offset; 8253 WholeProgramDevirtResolution WPDRes; 8254 if (parseToken(lltok::lparen, "expected '(' here") || 8255 parseToken(lltok::kw_offset, "expected 'offset' here") || 8256 parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) || 8257 parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) || 8258 parseToken(lltok::rparen, "expected ')' here")) 8259 return true; 8260 WPDResMap[Offset] = WPDRes; 8261 } while (EatIfPresent(lltok::comma)); 8262 8263 if (parseToken(lltok::rparen, "expected ')' here")) 8264 return true; 8265 8266 return false; 8267 } 8268 8269 /// WpdRes 8270 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir' 8271 /// [',' OptionalResByArg]? ')' 8272 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl' 8273 /// ',' 'singleImplName' ':' STRINGCONSTANT ',' 8274 /// [',' OptionalResByArg]? ')' 8275 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel' 8276 /// [',' OptionalResByArg]? ')' 8277 bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) { 8278 if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") || 8279 parseToken(lltok::colon, "expected ':' here") || 8280 parseToken(lltok::lparen, "expected '(' here") || 8281 parseToken(lltok::kw_kind, "expected 'kind' here") || 8282 parseToken(lltok::colon, "expected ':' here")) 8283 return true; 8284 8285 switch (Lex.getKind()) { 8286 case lltok::kw_indir: 8287 WPDRes.TheKind = WholeProgramDevirtResolution::Indir; 8288 break; 8289 case lltok::kw_singleImpl: 8290 WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl; 8291 break; 8292 case lltok::kw_branchFunnel: 8293 WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel; 8294 break; 8295 default: 8296 return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind"); 8297 } 8298 Lex.Lex(); 8299 8300 // parse optional fields 8301 while (EatIfPresent(lltok::comma)) { 8302 switch (Lex.getKind()) { 8303 case lltok::kw_singleImplName: 8304 Lex.Lex(); 8305 if (parseToken(lltok::colon, "expected ':' here") || 8306 parseStringConstant(WPDRes.SingleImplName)) 8307 return true; 8308 break; 8309 case lltok::kw_resByArg: 8310 if (parseOptionalResByArg(WPDRes.ResByArg)) 8311 return true; 8312 break; 8313 default: 8314 return error(Lex.getLoc(), 8315 "expected optional WholeProgramDevirtResolution field"); 8316 } 8317 } 8318 8319 if (parseToken(lltok::rparen, "expected ')' here")) 8320 return true; 8321 8322 return false; 8323 } 8324 8325 /// OptionalResByArg 8326 /// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')' 8327 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':' 8328 /// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' | 8329 /// 'virtualConstProp' ) 8330 /// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]? 8331 /// [',' 'bit' ':' UInt32]? ')' 8332 bool LLParser::parseOptionalResByArg( 8333 std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg> 8334 &ResByArg) { 8335 if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") || 8336 parseToken(lltok::colon, "expected ':' here") || 8337 parseToken(lltok::lparen, "expected '(' here")) 8338 return true; 8339 8340 do { 8341 std::vector<uint64_t> Args; 8342 if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") || 8343 parseToken(lltok::kw_byArg, "expected 'byArg here") || 8344 parseToken(lltok::colon, "expected ':' here") || 8345 parseToken(lltok::lparen, "expected '(' here") || 8346 parseToken(lltok::kw_kind, "expected 'kind' here") || 8347 parseToken(lltok::colon, "expected ':' here")) 8348 return true; 8349 8350 WholeProgramDevirtResolution::ByArg ByArg; 8351 switch (Lex.getKind()) { 8352 case lltok::kw_indir: 8353 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir; 8354 break; 8355 case lltok::kw_uniformRetVal: 8356 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 8357 break; 8358 case lltok::kw_uniqueRetVal: 8359 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 8360 break; 8361 case lltok::kw_virtualConstProp: 8362 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 8363 break; 8364 default: 8365 return error(Lex.getLoc(), 8366 "unexpected WholeProgramDevirtResolution::ByArg kind"); 8367 } 8368 Lex.Lex(); 8369 8370 // parse optional fields 8371 while (EatIfPresent(lltok::comma)) { 8372 switch (Lex.getKind()) { 8373 case lltok::kw_info: 8374 Lex.Lex(); 8375 if (parseToken(lltok::colon, "expected ':' here") || 8376 parseUInt64(ByArg.Info)) 8377 return true; 8378 break; 8379 case lltok::kw_byte: 8380 Lex.Lex(); 8381 if (parseToken(lltok::colon, "expected ':' here") || 8382 parseUInt32(ByArg.Byte)) 8383 return true; 8384 break; 8385 case lltok::kw_bit: 8386 Lex.Lex(); 8387 if (parseToken(lltok::colon, "expected ':' here") || 8388 parseUInt32(ByArg.Bit)) 8389 return true; 8390 break; 8391 default: 8392 return error(Lex.getLoc(), 8393 "expected optional whole program devirt field"); 8394 } 8395 } 8396 8397 if (parseToken(lltok::rparen, "expected ')' here")) 8398 return true; 8399 8400 ResByArg[Args] = ByArg; 8401 } while (EatIfPresent(lltok::comma)); 8402 8403 if (parseToken(lltok::rparen, "expected ')' here")) 8404 return true; 8405 8406 return false; 8407 } 8408 8409 /// OptionalResByArg 8410 /// ::= 'args' ':' '(' UInt64[, UInt64]* ')' 8411 bool LLParser::parseArgs(std::vector<uint64_t> &Args) { 8412 if (parseToken(lltok::kw_args, "expected 'args' here") || 8413 parseToken(lltok::colon, "expected ':' here") || 8414 parseToken(lltok::lparen, "expected '(' here")) 8415 return true; 8416 8417 do { 8418 uint64_t Val; 8419 if (parseUInt64(Val)) 8420 return true; 8421 Args.push_back(Val); 8422 } while (EatIfPresent(lltok::comma)); 8423 8424 if (parseToken(lltok::rparen, "expected ')' here")) 8425 return true; 8426 8427 return false; 8428 } 8429 8430 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8; 8431 8432 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) { 8433 bool ReadOnly = Fwd->isReadOnly(); 8434 bool WriteOnly = Fwd->isWriteOnly(); 8435 assert(!(ReadOnly && WriteOnly)); 8436 *Fwd = Resolved; 8437 if (ReadOnly) 8438 Fwd->setReadOnly(); 8439 if (WriteOnly) 8440 Fwd->setWriteOnly(); 8441 } 8442 8443 /// Stores the given Name/GUID and associated summary into the Index. 8444 /// Also updates any forward references to the associated entry ID. 8445 void LLParser::addGlobalValueToIndex( 8446 std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage, 8447 unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) { 8448 // First create the ValueInfo utilizing the Name or GUID. 8449 ValueInfo VI; 8450 if (GUID != 0) { 8451 assert(Name.empty()); 8452 VI = Index->getOrInsertValueInfo(GUID); 8453 } else { 8454 assert(!Name.empty()); 8455 if (M) { 8456 auto *GV = M->getNamedValue(Name); 8457 assert(GV); 8458 VI = Index->getOrInsertValueInfo(GV); 8459 } else { 8460 assert( 8461 (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) && 8462 "Need a source_filename to compute GUID for local"); 8463 GUID = GlobalValue::getGUID( 8464 GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName)); 8465 VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name)); 8466 } 8467 } 8468 8469 // Resolve forward references from calls/refs 8470 auto FwdRefVIs = ForwardRefValueInfos.find(ID); 8471 if (FwdRefVIs != ForwardRefValueInfos.end()) { 8472 for (auto VIRef : FwdRefVIs->second) { 8473 assert(VIRef.first->getRef() == FwdVIRef && 8474 "Forward referenced ValueInfo expected to be empty"); 8475 resolveFwdRef(VIRef.first, VI); 8476 } 8477 ForwardRefValueInfos.erase(FwdRefVIs); 8478 } 8479 8480 // Resolve forward references from aliases 8481 auto FwdRefAliasees = ForwardRefAliasees.find(ID); 8482 if (FwdRefAliasees != ForwardRefAliasees.end()) { 8483 for (auto AliaseeRef : FwdRefAliasees->second) { 8484 assert(!AliaseeRef.first->hasAliasee() && 8485 "Forward referencing alias already has aliasee"); 8486 assert(Summary && "Aliasee must be a definition"); 8487 AliaseeRef.first->setAliasee(VI, Summary.get()); 8488 } 8489 ForwardRefAliasees.erase(FwdRefAliasees); 8490 } 8491 8492 // Add the summary if one was provided. 8493 if (Summary) 8494 Index->addGlobalValueSummary(VI, std::move(Summary)); 8495 8496 // Save the associated ValueInfo for use in later references by ID. 8497 if (ID == NumberedValueInfos.size()) 8498 NumberedValueInfos.push_back(VI); 8499 else { 8500 // Handle non-continuous numbers (to make test simplification easier). 8501 if (ID > NumberedValueInfos.size()) 8502 NumberedValueInfos.resize(ID + 1); 8503 NumberedValueInfos[ID] = VI; 8504 } 8505 } 8506 8507 /// parseSummaryIndexFlags 8508 /// ::= 'flags' ':' UInt64 8509 bool LLParser::parseSummaryIndexFlags() { 8510 assert(Lex.getKind() == lltok::kw_flags); 8511 Lex.Lex(); 8512 8513 if (parseToken(lltok::colon, "expected ':' here")) 8514 return true; 8515 uint64_t Flags; 8516 if (parseUInt64(Flags)) 8517 return true; 8518 if (Index) 8519 Index->setFlags(Flags); 8520 return false; 8521 } 8522 8523 /// parseBlockCount 8524 /// ::= 'blockcount' ':' UInt64 8525 bool LLParser::parseBlockCount() { 8526 assert(Lex.getKind() == lltok::kw_blockcount); 8527 Lex.Lex(); 8528 8529 if (parseToken(lltok::colon, "expected ':' here")) 8530 return true; 8531 uint64_t BlockCount; 8532 if (parseUInt64(BlockCount)) 8533 return true; 8534 if (Index) 8535 Index->setBlockCount(BlockCount); 8536 return false; 8537 } 8538 8539 /// parseGVEntry 8540 /// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64) 8541 /// [',' 'summaries' ':' Summary[',' Summary]* ]? ')' 8542 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')' 8543 bool LLParser::parseGVEntry(unsigned ID) { 8544 assert(Lex.getKind() == lltok::kw_gv); 8545 Lex.Lex(); 8546 8547 if (parseToken(lltok::colon, "expected ':' here") || 8548 parseToken(lltok::lparen, "expected '(' here")) 8549 return true; 8550 8551 std::string Name; 8552 GlobalValue::GUID GUID = 0; 8553 switch (Lex.getKind()) { 8554 case lltok::kw_name: 8555 Lex.Lex(); 8556 if (parseToken(lltok::colon, "expected ':' here") || 8557 parseStringConstant(Name)) 8558 return true; 8559 // Can't create GUID/ValueInfo until we have the linkage. 8560 break; 8561 case lltok::kw_guid: 8562 Lex.Lex(); 8563 if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID)) 8564 return true; 8565 break; 8566 default: 8567 return error(Lex.getLoc(), "expected name or guid tag"); 8568 } 8569 8570 if (!EatIfPresent(lltok::comma)) { 8571 // No summaries. Wrap up. 8572 if (parseToken(lltok::rparen, "expected ')' here")) 8573 return true; 8574 // This was created for a call to an external or indirect target. 8575 // A GUID with no summary came from a VALUE_GUID record, dummy GUID 8576 // created for indirect calls with VP. A Name with no GUID came from 8577 // an external definition. We pass ExternalLinkage since that is only 8578 // used when the GUID must be computed from Name, and in that case 8579 // the symbol must have external linkage. 8580 addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID, 8581 nullptr); 8582 return false; 8583 } 8584 8585 // Have a list of summaries 8586 if (parseToken(lltok::kw_summaries, "expected 'summaries' here") || 8587 parseToken(lltok::colon, "expected ':' here") || 8588 parseToken(lltok::lparen, "expected '(' here")) 8589 return true; 8590 do { 8591 switch (Lex.getKind()) { 8592 case lltok::kw_function: 8593 if (parseFunctionSummary(Name, GUID, ID)) 8594 return true; 8595 break; 8596 case lltok::kw_variable: 8597 if (parseVariableSummary(Name, GUID, ID)) 8598 return true; 8599 break; 8600 case lltok::kw_alias: 8601 if (parseAliasSummary(Name, GUID, ID)) 8602 return true; 8603 break; 8604 default: 8605 return error(Lex.getLoc(), "expected summary type"); 8606 } 8607 } while (EatIfPresent(lltok::comma)); 8608 8609 if (parseToken(lltok::rparen, "expected ')' here") || 8610 parseToken(lltok::rparen, "expected ')' here")) 8611 return true; 8612 8613 return false; 8614 } 8615 8616 /// FunctionSummary 8617 /// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8618 /// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]? 8619 /// [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]? 8620 /// [',' OptionalRefs]? ')' 8621 bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID, 8622 unsigned ID) { 8623 assert(Lex.getKind() == lltok::kw_function); 8624 Lex.Lex(); 8625 8626 StringRef ModulePath; 8627 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8628 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8629 /*NotEligibleToImport=*/false, 8630 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8631 unsigned InstCount; 8632 std::vector<FunctionSummary::EdgeTy> Calls; 8633 FunctionSummary::TypeIdInfo TypeIdInfo; 8634 std::vector<FunctionSummary::ParamAccess> ParamAccesses; 8635 std::vector<ValueInfo> Refs; 8636 // Default is all-zeros (conservative values). 8637 FunctionSummary::FFlags FFlags = {}; 8638 if (parseToken(lltok::colon, "expected ':' here") || 8639 parseToken(lltok::lparen, "expected '(' here") || 8640 parseModuleReference(ModulePath) || 8641 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8642 parseToken(lltok::comma, "expected ',' here") || 8643 parseToken(lltok::kw_insts, "expected 'insts' here") || 8644 parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount)) 8645 return true; 8646 8647 // parse optional fields 8648 while (EatIfPresent(lltok::comma)) { 8649 switch (Lex.getKind()) { 8650 case lltok::kw_funcFlags: 8651 if (parseOptionalFFlags(FFlags)) 8652 return true; 8653 break; 8654 case lltok::kw_calls: 8655 if (parseOptionalCalls(Calls)) 8656 return true; 8657 break; 8658 case lltok::kw_typeIdInfo: 8659 if (parseOptionalTypeIdInfo(TypeIdInfo)) 8660 return true; 8661 break; 8662 case lltok::kw_refs: 8663 if (parseOptionalRefs(Refs)) 8664 return true; 8665 break; 8666 case lltok::kw_params: 8667 if (parseOptionalParamAccesses(ParamAccesses)) 8668 return true; 8669 break; 8670 default: 8671 return error(Lex.getLoc(), "expected optional function summary field"); 8672 } 8673 } 8674 8675 if (parseToken(lltok::rparen, "expected ')' here")) 8676 return true; 8677 8678 auto FS = std::make_unique<FunctionSummary>( 8679 GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs), 8680 std::move(Calls), std::move(TypeIdInfo.TypeTests), 8681 std::move(TypeIdInfo.TypeTestAssumeVCalls), 8682 std::move(TypeIdInfo.TypeCheckedLoadVCalls), 8683 std::move(TypeIdInfo.TypeTestAssumeConstVCalls), 8684 std::move(TypeIdInfo.TypeCheckedLoadConstVCalls), 8685 std::move(ParamAccesses)); 8686 8687 FS->setModulePath(ModulePath); 8688 8689 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8690 ID, std::move(FS)); 8691 8692 return false; 8693 } 8694 8695 /// VariableSummary 8696 /// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8697 /// [',' OptionalRefs]? ')' 8698 bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID, 8699 unsigned ID) { 8700 assert(Lex.getKind() == lltok::kw_variable); 8701 Lex.Lex(); 8702 8703 StringRef ModulePath; 8704 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8705 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8706 /*NotEligibleToImport=*/false, 8707 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8708 GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false, 8709 /* WriteOnly */ false, 8710 /* Constant */ false, 8711 GlobalObject::VCallVisibilityPublic); 8712 std::vector<ValueInfo> Refs; 8713 VTableFuncList VTableFuncs; 8714 if (parseToken(lltok::colon, "expected ':' here") || 8715 parseToken(lltok::lparen, "expected '(' here") || 8716 parseModuleReference(ModulePath) || 8717 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8718 parseToken(lltok::comma, "expected ',' here") || 8719 parseGVarFlags(GVarFlags)) 8720 return true; 8721 8722 // parse optional fields 8723 while (EatIfPresent(lltok::comma)) { 8724 switch (Lex.getKind()) { 8725 case lltok::kw_vTableFuncs: 8726 if (parseOptionalVTableFuncs(VTableFuncs)) 8727 return true; 8728 break; 8729 case lltok::kw_refs: 8730 if (parseOptionalRefs(Refs)) 8731 return true; 8732 break; 8733 default: 8734 return error(Lex.getLoc(), "expected optional variable summary field"); 8735 } 8736 } 8737 8738 if (parseToken(lltok::rparen, "expected ')' here")) 8739 return true; 8740 8741 auto GS = 8742 std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs)); 8743 8744 GS->setModulePath(ModulePath); 8745 GS->setVTableFuncs(std::move(VTableFuncs)); 8746 8747 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8748 ID, std::move(GS)); 8749 8750 return false; 8751 } 8752 8753 /// AliasSummary 8754 /// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ',' 8755 /// 'aliasee' ':' GVReference ')' 8756 bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID, 8757 unsigned ID) { 8758 assert(Lex.getKind() == lltok::kw_alias); 8759 LocTy Loc = Lex.getLoc(); 8760 Lex.Lex(); 8761 8762 StringRef ModulePath; 8763 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8764 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8765 /*NotEligibleToImport=*/false, 8766 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8767 if (parseToken(lltok::colon, "expected ':' here") || 8768 parseToken(lltok::lparen, "expected '(' here") || 8769 parseModuleReference(ModulePath) || 8770 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8771 parseToken(lltok::comma, "expected ',' here") || 8772 parseToken(lltok::kw_aliasee, "expected 'aliasee' here") || 8773 parseToken(lltok::colon, "expected ':' here")) 8774 return true; 8775 8776 ValueInfo AliaseeVI; 8777 unsigned GVId; 8778 if (parseGVReference(AliaseeVI, GVId)) 8779 return true; 8780 8781 if (parseToken(lltok::rparen, "expected ')' here")) 8782 return true; 8783 8784 auto AS = std::make_unique<AliasSummary>(GVFlags); 8785 8786 AS->setModulePath(ModulePath); 8787 8788 // Record forward reference if the aliasee is not parsed yet. 8789 if (AliaseeVI.getRef() == FwdVIRef) { 8790 ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc); 8791 } else { 8792 auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath); 8793 assert(Summary && "Aliasee must be a definition"); 8794 AS->setAliasee(AliaseeVI, Summary); 8795 } 8796 8797 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8798 ID, std::move(AS)); 8799 8800 return false; 8801 } 8802 8803 /// Flag 8804 /// ::= [0|1] 8805 bool LLParser::parseFlag(unsigned &Val) { 8806 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 8807 return tokError("expected integer"); 8808 Val = (unsigned)Lex.getAPSIntVal().getBoolValue(); 8809 Lex.Lex(); 8810 return false; 8811 } 8812 8813 /// OptionalFFlags 8814 /// := 'funcFlags' ':' '(' ['readNone' ':' Flag]? 8815 /// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]? 8816 /// [',' 'returnDoesNotAlias' ':' Flag]? ')' 8817 /// [',' 'noInline' ':' Flag]? ')' 8818 /// [',' 'alwaysInline' ':' Flag]? ')' 8819 8820 bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) { 8821 assert(Lex.getKind() == lltok::kw_funcFlags); 8822 Lex.Lex(); 8823 8824 if (parseToken(lltok::colon, "expected ':' in funcFlags") | 8825 parseToken(lltok::lparen, "expected '(' in funcFlags")) 8826 return true; 8827 8828 do { 8829 unsigned Val = 0; 8830 switch (Lex.getKind()) { 8831 case lltok::kw_readNone: 8832 Lex.Lex(); 8833 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8834 return true; 8835 FFlags.ReadNone = Val; 8836 break; 8837 case lltok::kw_readOnly: 8838 Lex.Lex(); 8839 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8840 return true; 8841 FFlags.ReadOnly = Val; 8842 break; 8843 case lltok::kw_noRecurse: 8844 Lex.Lex(); 8845 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8846 return true; 8847 FFlags.NoRecurse = Val; 8848 break; 8849 case lltok::kw_returnDoesNotAlias: 8850 Lex.Lex(); 8851 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8852 return true; 8853 FFlags.ReturnDoesNotAlias = Val; 8854 break; 8855 case lltok::kw_noInline: 8856 Lex.Lex(); 8857 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8858 return true; 8859 FFlags.NoInline = Val; 8860 break; 8861 case lltok::kw_alwaysInline: 8862 Lex.Lex(); 8863 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8864 return true; 8865 FFlags.AlwaysInline = Val; 8866 break; 8867 default: 8868 return error(Lex.getLoc(), "expected function flag type"); 8869 } 8870 } while (EatIfPresent(lltok::comma)); 8871 8872 if (parseToken(lltok::rparen, "expected ')' in funcFlags")) 8873 return true; 8874 8875 return false; 8876 } 8877 8878 /// OptionalCalls 8879 /// := 'calls' ':' '(' Call [',' Call]* ')' 8880 /// Call ::= '(' 'callee' ':' GVReference 8881 /// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')' 8882 bool LLParser::parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) { 8883 assert(Lex.getKind() == lltok::kw_calls); 8884 Lex.Lex(); 8885 8886 if (parseToken(lltok::colon, "expected ':' in calls") | 8887 parseToken(lltok::lparen, "expected '(' in calls")) 8888 return true; 8889 8890 IdToIndexMapType IdToIndexMap; 8891 // parse each call edge 8892 do { 8893 ValueInfo VI; 8894 if (parseToken(lltok::lparen, "expected '(' in call") || 8895 parseToken(lltok::kw_callee, "expected 'callee' in call") || 8896 parseToken(lltok::colon, "expected ':'")) 8897 return true; 8898 8899 LocTy Loc = Lex.getLoc(); 8900 unsigned GVId; 8901 if (parseGVReference(VI, GVId)) 8902 return true; 8903 8904 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 8905 unsigned RelBF = 0; 8906 if (EatIfPresent(lltok::comma)) { 8907 // Expect either hotness or relbf 8908 if (EatIfPresent(lltok::kw_hotness)) { 8909 if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness)) 8910 return true; 8911 } else { 8912 if (parseToken(lltok::kw_relbf, "expected relbf") || 8913 parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF)) 8914 return true; 8915 } 8916 } 8917 // Keep track of the Call array index needing a forward reference. 8918 // We will save the location of the ValueInfo needing an update, but 8919 // can only do so once the std::vector is finalized. 8920 if (VI.getRef() == FwdVIRef) 8921 IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc)); 8922 Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)}); 8923 8924 if (parseToken(lltok::rparen, "expected ')' in call")) 8925 return true; 8926 } while (EatIfPresent(lltok::comma)); 8927 8928 // Now that the Calls vector is finalized, it is safe to save the locations 8929 // of any forward GV references that need updating later. 8930 for (auto I : IdToIndexMap) { 8931 auto &Infos = ForwardRefValueInfos[I.first]; 8932 for (auto P : I.second) { 8933 assert(Calls[P.first].first.getRef() == FwdVIRef && 8934 "Forward referenced ValueInfo expected to be empty"); 8935 Infos.emplace_back(&Calls[P.first].first, P.second); 8936 } 8937 } 8938 8939 if (parseToken(lltok::rparen, "expected ')' in calls")) 8940 return true; 8941 8942 return false; 8943 } 8944 8945 /// Hotness 8946 /// := ('unknown'|'cold'|'none'|'hot'|'critical') 8947 bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) { 8948 switch (Lex.getKind()) { 8949 case lltok::kw_unknown: 8950 Hotness = CalleeInfo::HotnessType::Unknown; 8951 break; 8952 case lltok::kw_cold: 8953 Hotness = CalleeInfo::HotnessType::Cold; 8954 break; 8955 case lltok::kw_none: 8956 Hotness = CalleeInfo::HotnessType::None; 8957 break; 8958 case lltok::kw_hot: 8959 Hotness = CalleeInfo::HotnessType::Hot; 8960 break; 8961 case lltok::kw_critical: 8962 Hotness = CalleeInfo::HotnessType::Critical; 8963 break; 8964 default: 8965 return error(Lex.getLoc(), "invalid call edge hotness"); 8966 } 8967 Lex.Lex(); 8968 return false; 8969 } 8970 8971 /// OptionalVTableFuncs 8972 /// := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')' 8973 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')' 8974 bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) { 8975 assert(Lex.getKind() == lltok::kw_vTableFuncs); 8976 Lex.Lex(); 8977 8978 if (parseToken(lltok::colon, "expected ':' in vTableFuncs") | 8979 parseToken(lltok::lparen, "expected '(' in vTableFuncs")) 8980 return true; 8981 8982 IdToIndexMapType IdToIndexMap; 8983 // parse each virtual function pair 8984 do { 8985 ValueInfo VI; 8986 if (parseToken(lltok::lparen, "expected '(' in vTableFunc") || 8987 parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") || 8988 parseToken(lltok::colon, "expected ':'")) 8989 return true; 8990 8991 LocTy Loc = Lex.getLoc(); 8992 unsigned GVId; 8993 if (parseGVReference(VI, GVId)) 8994 return true; 8995 8996 uint64_t Offset; 8997 if (parseToken(lltok::comma, "expected comma") || 8998 parseToken(lltok::kw_offset, "expected offset") || 8999 parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset)) 9000 return true; 9001 9002 // Keep track of the VTableFuncs array index needing a forward reference. 9003 // We will save the location of the ValueInfo needing an update, but 9004 // can only do so once the std::vector is finalized. 9005 if (VI == EmptyVI) 9006 IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc)); 9007 VTableFuncs.push_back({VI, Offset}); 9008 9009 if (parseToken(lltok::rparen, "expected ')' in vTableFunc")) 9010 return true; 9011 } while (EatIfPresent(lltok::comma)); 9012 9013 // Now that the VTableFuncs vector is finalized, it is safe to save the 9014 // locations of any forward GV references that need updating later. 9015 for (auto I : IdToIndexMap) { 9016 auto &Infos = ForwardRefValueInfos[I.first]; 9017 for (auto P : I.second) { 9018 assert(VTableFuncs[P.first].FuncVI == EmptyVI && 9019 "Forward referenced ValueInfo expected to be empty"); 9020 Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second); 9021 } 9022 } 9023 9024 if (parseToken(lltok::rparen, "expected ')' in vTableFuncs")) 9025 return true; 9026 9027 return false; 9028 } 9029 9030 /// ParamNo := 'param' ':' UInt64 9031 bool LLParser::parseParamNo(uint64_t &ParamNo) { 9032 if (parseToken(lltok::kw_param, "expected 'param' here") || 9033 parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo)) 9034 return true; 9035 return false; 9036 } 9037 9038 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']' 9039 bool LLParser::parseParamAccessOffset(ConstantRange &Range) { 9040 APSInt Lower; 9041 APSInt Upper; 9042 auto ParseAPSInt = [&](APSInt &Val) { 9043 if (Lex.getKind() != lltok::APSInt) 9044 return tokError("expected integer"); 9045 Val = Lex.getAPSIntVal(); 9046 Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 9047 Val.setIsSigned(true); 9048 Lex.Lex(); 9049 return false; 9050 }; 9051 if (parseToken(lltok::kw_offset, "expected 'offset' here") || 9052 parseToken(lltok::colon, "expected ':' here") || 9053 parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) || 9054 parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) || 9055 parseToken(lltok::rsquare, "expected ']' here")) 9056 return true; 9057 9058 ++Upper; 9059 Range = 9060 (Lower == Upper && !Lower.isMaxValue()) 9061 ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth) 9062 : ConstantRange(Lower, Upper); 9063 9064 return false; 9065 } 9066 9067 /// ParamAccessCall 9068 /// := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')' 9069 bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call, 9070 IdLocListType &IdLocList) { 9071 if (parseToken(lltok::lparen, "expected '(' here") || 9072 parseToken(lltok::kw_callee, "expected 'callee' here") || 9073 parseToken(lltok::colon, "expected ':' here")) 9074 return true; 9075 9076 unsigned GVId; 9077 ValueInfo VI; 9078 LocTy Loc = Lex.getLoc(); 9079 if (parseGVReference(VI, GVId)) 9080 return true; 9081 9082 Call.Callee = VI; 9083 IdLocList.emplace_back(GVId, Loc); 9084 9085 if (parseToken(lltok::comma, "expected ',' here") || 9086 parseParamNo(Call.ParamNo) || 9087 parseToken(lltok::comma, "expected ',' here") || 9088 parseParamAccessOffset(Call.Offsets)) 9089 return true; 9090 9091 if (parseToken(lltok::rparen, "expected ')' here")) 9092 return true; 9093 9094 return false; 9095 } 9096 9097 /// ParamAccess 9098 /// := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')' 9099 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')' 9100 bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param, 9101 IdLocListType &IdLocList) { 9102 if (parseToken(lltok::lparen, "expected '(' here") || 9103 parseParamNo(Param.ParamNo) || 9104 parseToken(lltok::comma, "expected ',' here") || 9105 parseParamAccessOffset(Param.Use)) 9106 return true; 9107 9108 if (EatIfPresent(lltok::comma)) { 9109 if (parseToken(lltok::kw_calls, "expected 'calls' here") || 9110 parseToken(lltok::colon, "expected ':' here") || 9111 parseToken(lltok::lparen, "expected '(' here")) 9112 return true; 9113 do { 9114 FunctionSummary::ParamAccess::Call Call; 9115 if (parseParamAccessCall(Call, IdLocList)) 9116 return true; 9117 Param.Calls.push_back(Call); 9118 } while (EatIfPresent(lltok::comma)); 9119 9120 if (parseToken(lltok::rparen, "expected ')' here")) 9121 return true; 9122 } 9123 9124 if (parseToken(lltok::rparen, "expected ')' here")) 9125 return true; 9126 9127 return false; 9128 } 9129 9130 /// OptionalParamAccesses 9131 /// := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')' 9132 bool LLParser::parseOptionalParamAccesses( 9133 std::vector<FunctionSummary::ParamAccess> &Params) { 9134 assert(Lex.getKind() == lltok::kw_params); 9135 Lex.Lex(); 9136 9137 if (parseToken(lltok::colon, "expected ':' here") || 9138 parseToken(lltok::lparen, "expected '(' here")) 9139 return true; 9140 9141 IdLocListType VContexts; 9142 size_t CallsNum = 0; 9143 do { 9144 FunctionSummary::ParamAccess ParamAccess; 9145 if (parseParamAccess(ParamAccess, VContexts)) 9146 return true; 9147 CallsNum += ParamAccess.Calls.size(); 9148 assert(VContexts.size() == CallsNum); 9149 (void)CallsNum; 9150 Params.emplace_back(std::move(ParamAccess)); 9151 } while (EatIfPresent(lltok::comma)); 9152 9153 if (parseToken(lltok::rparen, "expected ')' here")) 9154 return true; 9155 9156 // Now that the Params is finalized, it is safe to save the locations 9157 // of any forward GV references that need updating later. 9158 IdLocListType::const_iterator ItContext = VContexts.begin(); 9159 for (auto &PA : Params) { 9160 for (auto &C : PA.Calls) { 9161 if (C.Callee.getRef() == FwdVIRef) 9162 ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee, 9163 ItContext->second); 9164 ++ItContext; 9165 } 9166 } 9167 assert(ItContext == VContexts.end()); 9168 9169 return false; 9170 } 9171 9172 /// OptionalRefs 9173 /// := 'refs' ':' '(' GVReference [',' GVReference]* ')' 9174 bool LLParser::parseOptionalRefs(std::vector<ValueInfo> &Refs) { 9175 assert(Lex.getKind() == lltok::kw_refs); 9176 Lex.Lex(); 9177 9178 if (parseToken(lltok::colon, "expected ':' in refs") || 9179 parseToken(lltok::lparen, "expected '(' in refs")) 9180 return true; 9181 9182 struct ValueContext { 9183 ValueInfo VI; 9184 unsigned GVId; 9185 LocTy Loc; 9186 }; 9187 std::vector<ValueContext> VContexts; 9188 // parse each ref edge 9189 do { 9190 ValueContext VC; 9191 VC.Loc = Lex.getLoc(); 9192 if (parseGVReference(VC.VI, VC.GVId)) 9193 return true; 9194 VContexts.push_back(VC); 9195 } while (EatIfPresent(lltok::comma)); 9196 9197 // Sort value contexts so that ones with writeonly 9198 // and readonly ValueInfo are at the end of VContexts vector. 9199 // See FunctionSummary::specialRefCounts() 9200 llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) { 9201 return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier(); 9202 }); 9203 9204 IdToIndexMapType IdToIndexMap; 9205 for (auto &VC : VContexts) { 9206 // Keep track of the Refs array index needing a forward reference. 9207 // We will save the location of the ValueInfo needing an update, but 9208 // can only do so once the std::vector is finalized. 9209 if (VC.VI.getRef() == FwdVIRef) 9210 IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc)); 9211 Refs.push_back(VC.VI); 9212 } 9213 9214 // Now that the Refs vector is finalized, it is safe to save the locations 9215 // of any forward GV references that need updating later. 9216 for (auto I : IdToIndexMap) { 9217 auto &Infos = ForwardRefValueInfos[I.first]; 9218 for (auto P : I.second) { 9219 assert(Refs[P.first].getRef() == FwdVIRef && 9220 "Forward referenced ValueInfo expected to be empty"); 9221 Infos.emplace_back(&Refs[P.first], P.second); 9222 } 9223 } 9224 9225 if (parseToken(lltok::rparen, "expected ')' in refs")) 9226 return true; 9227 9228 return false; 9229 } 9230 9231 /// OptionalTypeIdInfo 9232 /// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]? 9233 /// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]? 9234 /// [',' TypeCheckedLoadConstVCalls]? ')' 9235 bool LLParser::parseOptionalTypeIdInfo( 9236 FunctionSummary::TypeIdInfo &TypeIdInfo) { 9237 assert(Lex.getKind() == lltok::kw_typeIdInfo); 9238 Lex.Lex(); 9239 9240 if (parseToken(lltok::colon, "expected ':' here") || 9241 parseToken(lltok::lparen, "expected '(' in typeIdInfo")) 9242 return true; 9243 9244 do { 9245 switch (Lex.getKind()) { 9246 case lltok::kw_typeTests: 9247 if (parseTypeTests(TypeIdInfo.TypeTests)) 9248 return true; 9249 break; 9250 case lltok::kw_typeTestAssumeVCalls: 9251 if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls, 9252 TypeIdInfo.TypeTestAssumeVCalls)) 9253 return true; 9254 break; 9255 case lltok::kw_typeCheckedLoadVCalls: 9256 if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls, 9257 TypeIdInfo.TypeCheckedLoadVCalls)) 9258 return true; 9259 break; 9260 case lltok::kw_typeTestAssumeConstVCalls: 9261 if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls, 9262 TypeIdInfo.TypeTestAssumeConstVCalls)) 9263 return true; 9264 break; 9265 case lltok::kw_typeCheckedLoadConstVCalls: 9266 if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls, 9267 TypeIdInfo.TypeCheckedLoadConstVCalls)) 9268 return true; 9269 break; 9270 default: 9271 return error(Lex.getLoc(), "invalid typeIdInfo list type"); 9272 } 9273 } while (EatIfPresent(lltok::comma)); 9274 9275 if (parseToken(lltok::rparen, "expected ')' in typeIdInfo")) 9276 return true; 9277 9278 return false; 9279 } 9280 9281 /// TypeTests 9282 /// ::= 'typeTests' ':' '(' (SummaryID | UInt64) 9283 /// [',' (SummaryID | UInt64)]* ')' 9284 bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) { 9285 assert(Lex.getKind() == lltok::kw_typeTests); 9286 Lex.Lex(); 9287 9288 if (parseToken(lltok::colon, "expected ':' here") || 9289 parseToken(lltok::lparen, "expected '(' in typeIdInfo")) 9290 return true; 9291 9292 IdToIndexMapType IdToIndexMap; 9293 do { 9294 GlobalValue::GUID GUID = 0; 9295 if (Lex.getKind() == lltok::SummaryID) { 9296 unsigned ID = Lex.getUIntVal(); 9297 LocTy Loc = Lex.getLoc(); 9298 // Keep track of the TypeTests array index needing a forward reference. 9299 // We will save the location of the GUID needing an update, but 9300 // can only do so once the std::vector is finalized. 9301 IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc)); 9302 Lex.Lex(); 9303 } else if (parseUInt64(GUID)) 9304 return true; 9305 TypeTests.push_back(GUID); 9306 } while (EatIfPresent(lltok::comma)); 9307 9308 // Now that the TypeTests vector is finalized, it is safe to save the 9309 // locations of any forward GV references that need updating later. 9310 for (auto I : IdToIndexMap) { 9311 auto &Ids = ForwardRefTypeIds[I.first]; 9312 for (auto P : I.second) { 9313 assert(TypeTests[P.first] == 0 && 9314 "Forward referenced type id GUID expected to be 0"); 9315 Ids.emplace_back(&TypeTests[P.first], P.second); 9316 } 9317 } 9318 9319 if (parseToken(lltok::rparen, "expected ')' in typeIdInfo")) 9320 return true; 9321 9322 return false; 9323 } 9324 9325 /// VFuncIdList 9326 /// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')' 9327 bool LLParser::parseVFuncIdList( 9328 lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) { 9329 assert(Lex.getKind() == Kind); 9330 Lex.Lex(); 9331 9332 if (parseToken(lltok::colon, "expected ':' here") || 9333 parseToken(lltok::lparen, "expected '(' here")) 9334 return true; 9335 9336 IdToIndexMapType IdToIndexMap; 9337 do { 9338 FunctionSummary::VFuncId VFuncId; 9339 if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size())) 9340 return true; 9341 VFuncIdList.push_back(VFuncId); 9342 } while (EatIfPresent(lltok::comma)); 9343 9344 if (parseToken(lltok::rparen, "expected ')' here")) 9345 return true; 9346 9347 // Now that the VFuncIdList vector is finalized, it is safe to save the 9348 // locations of any forward GV references that need updating later. 9349 for (auto I : IdToIndexMap) { 9350 auto &Ids = ForwardRefTypeIds[I.first]; 9351 for (auto P : I.second) { 9352 assert(VFuncIdList[P.first].GUID == 0 && 9353 "Forward referenced type id GUID expected to be 0"); 9354 Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second); 9355 } 9356 } 9357 9358 return false; 9359 } 9360 9361 /// ConstVCallList 9362 /// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')' 9363 bool LLParser::parseConstVCallList( 9364 lltok::Kind Kind, 9365 std::vector<FunctionSummary::ConstVCall> &ConstVCallList) { 9366 assert(Lex.getKind() == Kind); 9367 Lex.Lex(); 9368 9369 if (parseToken(lltok::colon, "expected ':' here") || 9370 parseToken(lltok::lparen, "expected '(' here")) 9371 return true; 9372 9373 IdToIndexMapType IdToIndexMap; 9374 do { 9375 FunctionSummary::ConstVCall ConstVCall; 9376 if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size())) 9377 return true; 9378 ConstVCallList.push_back(ConstVCall); 9379 } while (EatIfPresent(lltok::comma)); 9380 9381 if (parseToken(lltok::rparen, "expected ')' here")) 9382 return true; 9383 9384 // Now that the ConstVCallList vector is finalized, it is safe to save the 9385 // locations of any forward GV references that need updating later. 9386 for (auto I : IdToIndexMap) { 9387 auto &Ids = ForwardRefTypeIds[I.first]; 9388 for (auto P : I.second) { 9389 assert(ConstVCallList[P.first].VFunc.GUID == 0 && 9390 "Forward referenced type id GUID expected to be 0"); 9391 Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second); 9392 } 9393 } 9394 9395 return false; 9396 } 9397 9398 /// ConstVCall 9399 /// ::= '(' VFuncId ',' Args ')' 9400 bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall, 9401 IdToIndexMapType &IdToIndexMap, unsigned Index) { 9402 if (parseToken(lltok::lparen, "expected '(' here") || 9403 parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index)) 9404 return true; 9405 9406 if (EatIfPresent(lltok::comma)) 9407 if (parseArgs(ConstVCall.Args)) 9408 return true; 9409 9410 if (parseToken(lltok::rparen, "expected ')' here")) 9411 return true; 9412 9413 return false; 9414 } 9415 9416 /// VFuncId 9417 /// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ',' 9418 /// 'offset' ':' UInt64 ')' 9419 bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId, 9420 IdToIndexMapType &IdToIndexMap, unsigned Index) { 9421 assert(Lex.getKind() == lltok::kw_vFuncId); 9422 Lex.Lex(); 9423 9424 if (parseToken(lltok::colon, "expected ':' here") || 9425 parseToken(lltok::lparen, "expected '(' here")) 9426 return true; 9427 9428 if (Lex.getKind() == lltok::SummaryID) { 9429 VFuncId.GUID = 0; 9430 unsigned ID = Lex.getUIntVal(); 9431 LocTy Loc = Lex.getLoc(); 9432 // Keep track of the array index needing a forward reference. 9433 // We will save the location of the GUID needing an update, but 9434 // can only do so once the caller's std::vector is finalized. 9435 IdToIndexMap[ID].push_back(std::make_pair(Index, Loc)); 9436 Lex.Lex(); 9437 } else if (parseToken(lltok::kw_guid, "expected 'guid' here") || 9438 parseToken(lltok::colon, "expected ':' here") || 9439 parseUInt64(VFuncId.GUID)) 9440 return true; 9441 9442 if (parseToken(lltok::comma, "expected ',' here") || 9443 parseToken(lltok::kw_offset, "expected 'offset' here") || 9444 parseToken(lltok::colon, "expected ':' here") || 9445 parseUInt64(VFuncId.Offset) || 9446 parseToken(lltok::rparen, "expected ')' here")) 9447 return true; 9448 9449 return false; 9450 } 9451 9452 /// GVFlags 9453 /// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ',' 9454 /// 'visibility' ':' Flag 'notEligibleToImport' ':' Flag ',' 9455 /// 'live' ':' Flag ',' 'dsoLocal' ':' Flag ',' 9456 /// 'canAutoHide' ':' Flag ',' ')' 9457 bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) { 9458 assert(Lex.getKind() == lltok::kw_flags); 9459 Lex.Lex(); 9460 9461 if (parseToken(lltok::colon, "expected ':' here") || 9462 parseToken(lltok::lparen, "expected '(' here")) 9463 return true; 9464 9465 do { 9466 unsigned Flag = 0; 9467 switch (Lex.getKind()) { 9468 case lltok::kw_linkage: 9469 Lex.Lex(); 9470 if (parseToken(lltok::colon, "expected ':'")) 9471 return true; 9472 bool HasLinkage; 9473 GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 9474 assert(HasLinkage && "Linkage not optional in summary entry"); 9475 Lex.Lex(); 9476 break; 9477 case lltok::kw_visibility: 9478 Lex.Lex(); 9479 if (parseToken(lltok::colon, "expected ':'")) 9480 return true; 9481 parseOptionalVisibility(Flag); 9482 GVFlags.Visibility = Flag; 9483 break; 9484 case lltok::kw_notEligibleToImport: 9485 Lex.Lex(); 9486 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9487 return true; 9488 GVFlags.NotEligibleToImport = Flag; 9489 break; 9490 case lltok::kw_live: 9491 Lex.Lex(); 9492 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9493 return true; 9494 GVFlags.Live = Flag; 9495 break; 9496 case lltok::kw_dsoLocal: 9497 Lex.Lex(); 9498 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9499 return true; 9500 GVFlags.DSOLocal = Flag; 9501 break; 9502 case lltok::kw_canAutoHide: 9503 Lex.Lex(); 9504 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9505 return true; 9506 GVFlags.CanAutoHide = Flag; 9507 break; 9508 default: 9509 return error(Lex.getLoc(), "expected gv flag type"); 9510 } 9511 } while (EatIfPresent(lltok::comma)); 9512 9513 if (parseToken(lltok::rparen, "expected ')' here")) 9514 return true; 9515 9516 return false; 9517 } 9518 9519 /// GVarFlags 9520 /// ::= 'varFlags' ':' '(' 'readonly' ':' Flag 9521 /// ',' 'writeonly' ':' Flag 9522 /// ',' 'constant' ':' Flag ')' 9523 bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) { 9524 assert(Lex.getKind() == lltok::kw_varFlags); 9525 Lex.Lex(); 9526 9527 if (parseToken(lltok::colon, "expected ':' here") || 9528 parseToken(lltok::lparen, "expected '(' here")) 9529 return true; 9530 9531 auto ParseRest = [this](unsigned int &Val) { 9532 Lex.Lex(); 9533 if (parseToken(lltok::colon, "expected ':'")) 9534 return true; 9535 return parseFlag(Val); 9536 }; 9537 9538 do { 9539 unsigned Flag = 0; 9540 switch (Lex.getKind()) { 9541 case lltok::kw_readonly: 9542 if (ParseRest(Flag)) 9543 return true; 9544 GVarFlags.MaybeReadOnly = Flag; 9545 break; 9546 case lltok::kw_writeonly: 9547 if (ParseRest(Flag)) 9548 return true; 9549 GVarFlags.MaybeWriteOnly = Flag; 9550 break; 9551 case lltok::kw_constant: 9552 if (ParseRest(Flag)) 9553 return true; 9554 GVarFlags.Constant = Flag; 9555 break; 9556 case lltok::kw_vcall_visibility: 9557 if (ParseRest(Flag)) 9558 return true; 9559 GVarFlags.VCallVisibility = Flag; 9560 break; 9561 default: 9562 return error(Lex.getLoc(), "expected gvar flag type"); 9563 } 9564 } while (EatIfPresent(lltok::comma)); 9565 return parseToken(lltok::rparen, "expected ')' here"); 9566 } 9567 9568 /// ModuleReference 9569 /// ::= 'module' ':' UInt 9570 bool LLParser::parseModuleReference(StringRef &ModulePath) { 9571 // parse module id. 9572 if (parseToken(lltok::kw_module, "expected 'module' here") || 9573 parseToken(lltok::colon, "expected ':' here") || 9574 parseToken(lltok::SummaryID, "expected module ID")) 9575 return true; 9576 9577 unsigned ModuleID = Lex.getUIntVal(); 9578 auto I = ModuleIdMap.find(ModuleID); 9579 // We should have already parsed all module IDs 9580 assert(I != ModuleIdMap.end()); 9581 ModulePath = I->second; 9582 return false; 9583 } 9584 9585 /// GVReference 9586 /// ::= SummaryID 9587 bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) { 9588 bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly); 9589 if (!ReadOnly) 9590 WriteOnly = EatIfPresent(lltok::kw_writeonly); 9591 if (parseToken(lltok::SummaryID, "expected GV ID")) 9592 return true; 9593 9594 GVId = Lex.getUIntVal(); 9595 // Check if we already have a VI for this GV 9596 if (GVId < NumberedValueInfos.size()) { 9597 assert(NumberedValueInfos[GVId].getRef() != FwdVIRef); 9598 VI = NumberedValueInfos[GVId]; 9599 } else 9600 // We will create a forward reference to the stored location. 9601 VI = ValueInfo(false, FwdVIRef); 9602 9603 if (ReadOnly) 9604 VI.setReadOnly(); 9605 if (WriteOnly) 9606 VI.setWriteOnly(); 9607 return false; 9608 } 9609