1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the parser class for .ll files. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LLParser.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/AsmParser/SlotMapping.h" 21 #include "llvm/IR/Argument.h" 22 #include "llvm/IR/AutoUpgrade.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/CallingConv.h" 25 #include "llvm/IR/Comdat.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DebugInfoMetadata.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/GlobalIFunc.h" 31 #include "llvm/IR/GlobalObject.h" 32 #include "llvm/IR/InlineAsm.h" 33 #include "llvm/IR/Instruction.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/IR/Type.h" 41 #include "llvm/IR/Value.h" 42 #include "llvm/IR/ValueSymbolTable.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/Dwarf.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/MathExtras.h" 47 #include "llvm/Support/SaveAndRestore.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include <algorithm> 50 #include <cassert> 51 #include <cstring> 52 #include <iterator> 53 #include <vector> 54 55 using namespace llvm; 56 57 static std::string getTypeString(Type *T) { 58 std::string Result; 59 raw_string_ostream Tmp(Result); 60 Tmp << *T; 61 return Tmp.str(); 62 } 63 64 /// Run: module ::= toplevelentity* 65 bool LLParser::Run() { 66 // Prime the lexer. 67 Lex.Lex(); 68 69 if (Context.shouldDiscardValueNames()) 70 return Error( 71 Lex.getLoc(), 72 "Can't read textual IR with a Context that discards named Values"); 73 74 return ParseTopLevelEntities() || 75 ValidateEndOfModule(); 76 } 77 78 bool LLParser::parseStandaloneConstantValue(Constant *&C, 79 const SlotMapping *Slots) { 80 restoreParsingState(Slots); 81 Lex.Lex(); 82 83 Type *Ty = nullptr; 84 if (ParseType(Ty) || parseConstantValue(Ty, C)) 85 return true; 86 if (Lex.getKind() != lltok::Eof) 87 return Error(Lex.getLoc(), "expected end of string"); 88 return false; 89 } 90 91 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 92 const SlotMapping *Slots) { 93 restoreParsingState(Slots); 94 Lex.Lex(); 95 96 Read = 0; 97 SMLoc Start = Lex.getLoc(); 98 Ty = nullptr; 99 if (ParseType(Ty)) 100 return true; 101 SMLoc End = Lex.getLoc(); 102 Read = End.getPointer() - Start.getPointer(); 103 104 return false; 105 } 106 107 void LLParser::restoreParsingState(const SlotMapping *Slots) { 108 if (!Slots) 109 return; 110 NumberedVals = Slots->GlobalValues; 111 NumberedMetadata = Slots->MetadataNodes; 112 for (const auto &I : Slots->NamedTypes) 113 NamedTypes.insert( 114 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 115 for (const auto &I : Slots->Types) 116 NumberedTypes.insert( 117 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 118 } 119 120 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the 121 /// module. 122 bool LLParser::ValidateEndOfModule() { 123 // Handle any function attribute group forward references. 124 for (std::map<Value*, std::vector<unsigned> >::iterator 125 I = ForwardRefAttrGroups.begin(), E = ForwardRefAttrGroups.end(); 126 I != E; ++I) { 127 Value *V = I->first; 128 std::vector<unsigned> &Vec = I->second; 129 AttrBuilder B; 130 131 for (std::vector<unsigned>::iterator VI = Vec.begin(), VE = Vec.end(); 132 VI != VE; ++VI) 133 B.merge(NumberedAttrBuilders[*VI]); 134 135 if (Function *Fn = dyn_cast<Function>(V)) { 136 AttributeSet AS = Fn->getAttributes(); 137 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex); 138 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex, 139 AS.getFnAttributes()); 140 141 FnAttrs.merge(B); 142 143 // If the alignment was parsed as an attribute, move to the alignment 144 // field. 145 if (FnAttrs.hasAlignmentAttr()) { 146 Fn->setAlignment(FnAttrs.getAlignment()); 147 FnAttrs.removeAttribute(Attribute::Alignment); 148 } 149 150 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex, 151 AttributeSet::get(Context, 152 AttributeSet::FunctionIndex, 153 FnAttrs)); 154 Fn->setAttributes(AS); 155 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 156 AttributeSet AS = CI->getAttributes(); 157 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex); 158 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex, 159 AS.getFnAttributes()); 160 FnAttrs.merge(B); 161 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex, 162 AttributeSet::get(Context, 163 AttributeSet::FunctionIndex, 164 FnAttrs)); 165 CI->setAttributes(AS); 166 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 167 AttributeSet AS = II->getAttributes(); 168 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex); 169 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex, 170 AS.getFnAttributes()); 171 FnAttrs.merge(B); 172 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex, 173 AttributeSet::get(Context, 174 AttributeSet::FunctionIndex, 175 FnAttrs)); 176 II->setAttributes(AS); 177 } else { 178 llvm_unreachable("invalid object with forward attribute group reference"); 179 } 180 } 181 182 // If there are entries in ForwardRefBlockAddresses at this point, the 183 // function was never defined. 184 if (!ForwardRefBlockAddresses.empty()) 185 return Error(ForwardRefBlockAddresses.begin()->first.Loc, 186 "expected function name in blockaddress"); 187 188 for (const auto &NT : NumberedTypes) 189 if (NT.second.second.isValid()) 190 return Error(NT.second.second, 191 "use of undefined type '%" + Twine(NT.first) + "'"); 192 193 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 194 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 195 if (I->second.second.isValid()) 196 return Error(I->second.second, 197 "use of undefined type named '" + I->getKey() + "'"); 198 199 if (!ForwardRefComdats.empty()) 200 return Error(ForwardRefComdats.begin()->second, 201 "use of undefined comdat '$" + 202 ForwardRefComdats.begin()->first + "'"); 203 204 if (!ForwardRefVals.empty()) 205 return Error(ForwardRefVals.begin()->second.second, 206 "use of undefined value '@" + ForwardRefVals.begin()->first + 207 "'"); 208 209 if (!ForwardRefValIDs.empty()) 210 return Error(ForwardRefValIDs.begin()->second.second, 211 "use of undefined value '@" + 212 Twine(ForwardRefValIDs.begin()->first) + "'"); 213 214 if (!ForwardRefMDNodes.empty()) 215 return Error(ForwardRefMDNodes.begin()->second.second, 216 "use of undefined metadata '!" + 217 Twine(ForwardRefMDNodes.begin()->first) + "'"); 218 219 // Resolve metadata cycles. 220 for (auto &N : NumberedMetadata) { 221 if (N.second && !N.second->isResolved()) 222 N.second->resolveCycles(); 223 } 224 225 for (auto *Inst : InstsWithTBAATag) { 226 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); 227 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); 228 auto *UpgradedMD = UpgradeTBAANode(*MD); 229 if (MD != UpgradedMD) 230 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); 231 } 232 233 // Look for intrinsic functions and CallInst that need to be upgraded 234 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 235 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove 236 237 // Some types could be renamed during loading if several modules are 238 // loaded in the same LLVMContext (LTO scenario). In this case we should 239 // remangle intrinsics names as well. 240 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) { 241 Function *F = &*FI++; 242 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) { 243 F->replaceAllUsesWith(Remangled.getValue()); 244 F->eraseFromParent(); 245 } 246 } 247 248 UpgradeDebugInfo(*M); 249 250 UpgradeModuleFlags(*M); 251 252 if (!Slots) 253 return false; 254 // Initialize the slot mapping. 255 // Because by this point we've parsed and validated everything, we can "steal" 256 // the mapping from LLParser as it doesn't need it anymore. 257 Slots->GlobalValues = std::move(NumberedVals); 258 Slots->MetadataNodes = std::move(NumberedMetadata); 259 for (const auto &I : NamedTypes) 260 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 261 for (const auto &I : NumberedTypes) 262 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 263 264 return false; 265 } 266 267 //===----------------------------------------------------------------------===// 268 // Top-Level Entities 269 //===----------------------------------------------------------------------===// 270 271 bool LLParser::ParseTopLevelEntities() { 272 while (true) { 273 switch (Lex.getKind()) { 274 default: return TokError("expected top-level entity"); 275 case lltok::Eof: return false; 276 case lltok::kw_declare: if (ParseDeclare()) return true; break; 277 case lltok::kw_define: if (ParseDefine()) return true; break; 278 case lltok::kw_module: if (ParseModuleAsm()) return true; break; 279 case lltok::kw_target: if (ParseTargetDefinition()) return true; break; 280 case lltok::kw_source_filename: 281 if (ParseSourceFileName()) 282 return true; 283 break; 284 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; 285 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; 286 case lltok::LocalVar: if (ParseNamedType()) return true; break; 287 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; 288 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; 289 case lltok::ComdatVar: if (parseComdat()) return true; break; 290 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break; 291 case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break; 292 case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break; 293 case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break; 294 case lltok::kw_uselistorder_bb: 295 if (ParseUseListOrderBB()) 296 return true; 297 break; 298 } 299 } 300 } 301 302 /// toplevelentity 303 /// ::= 'module' 'asm' STRINGCONSTANT 304 bool LLParser::ParseModuleAsm() { 305 assert(Lex.getKind() == lltok::kw_module); 306 Lex.Lex(); 307 308 std::string AsmStr; 309 if (ParseToken(lltok::kw_asm, "expected 'module asm'") || 310 ParseStringConstant(AsmStr)) return true; 311 312 M->appendModuleInlineAsm(AsmStr); 313 return false; 314 } 315 316 /// toplevelentity 317 /// ::= 'target' 'triple' '=' STRINGCONSTANT 318 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 319 bool LLParser::ParseTargetDefinition() { 320 assert(Lex.getKind() == lltok::kw_target); 321 std::string Str; 322 switch (Lex.Lex()) { 323 default: return TokError("unknown target property"); 324 case lltok::kw_triple: 325 Lex.Lex(); 326 if (ParseToken(lltok::equal, "expected '=' after target triple") || 327 ParseStringConstant(Str)) 328 return true; 329 M->setTargetTriple(Str); 330 return false; 331 case lltok::kw_datalayout: 332 Lex.Lex(); 333 if (ParseToken(lltok::equal, "expected '=' after target datalayout") || 334 ParseStringConstant(Str)) 335 return true; 336 M->setDataLayout(Str); 337 return false; 338 } 339 } 340 341 /// toplevelentity 342 /// ::= 'source_filename' '=' STRINGCONSTANT 343 bool LLParser::ParseSourceFileName() { 344 assert(Lex.getKind() == lltok::kw_source_filename); 345 std::string Str; 346 Lex.Lex(); 347 if (ParseToken(lltok::equal, "expected '=' after source_filename") || 348 ParseStringConstant(Str)) 349 return true; 350 M->setSourceFileName(Str); 351 return false; 352 } 353 354 /// toplevelentity 355 /// ::= 'deplibs' '=' '[' ']' 356 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 357 /// FIXME: Remove in 4.0. Currently parse, but ignore. 358 bool LLParser::ParseDepLibs() { 359 assert(Lex.getKind() == lltok::kw_deplibs); 360 Lex.Lex(); 361 if (ParseToken(lltok::equal, "expected '=' after deplibs") || 362 ParseToken(lltok::lsquare, "expected '=' after deplibs")) 363 return true; 364 365 if (EatIfPresent(lltok::rsquare)) 366 return false; 367 368 do { 369 std::string Str; 370 if (ParseStringConstant(Str)) return true; 371 } while (EatIfPresent(lltok::comma)); 372 373 return ParseToken(lltok::rsquare, "expected ']' at end of list"); 374 } 375 376 /// ParseUnnamedType: 377 /// ::= LocalVarID '=' 'type' type 378 bool LLParser::ParseUnnamedType() { 379 LocTy TypeLoc = Lex.getLoc(); 380 unsigned TypeID = Lex.getUIntVal(); 381 Lex.Lex(); // eat LocalVarID; 382 383 if (ParseToken(lltok::equal, "expected '=' after name") || 384 ParseToken(lltok::kw_type, "expected 'type' after '='")) 385 return true; 386 387 Type *Result = nullptr; 388 if (ParseStructDefinition(TypeLoc, "", 389 NumberedTypes[TypeID], Result)) return true; 390 391 if (!isa<StructType>(Result)) { 392 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 393 if (Entry.first) 394 return Error(TypeLoc, "non-struct types may not be recursive"); 395 Entry.first = Result; 396 Entry.second = SMLoc(); 397 } 398 399 return false; 400 } 401 402 /// toplevelentity 403 /// ::= LocalVar '=' 'type' type 404 bool LLParser::ParseNamedType() { 405 std::string Name = Lex.getStrVal(); 406 LocTy NameLoc = Lex.getLoc(); 407 Lex.Lex(); // eat LocalVar. 408 409 if (ParseToken(lltok::equal, "expected '=' after name") || 410 ParseToken(lltok::kw_type, "expected 'type' after name")) 411 return true; 412 413 Type *Result = nullptr; 414 if (ParseStructDefinition(NameLoc, Name, 415 NamedTypes[Name], Result)) return true; 416 417 if (!isa<StructType>(Result)) { 418 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 419 if (Entry.first) 420 return Error(NameLoc, "non-struct types may not be recursive"); 421 Entry.first = Result; 422 Entry.second = SMLoc(); 423 } 424 425 return false; 426 } 427 428 /// toplevelentity 429 /// ::= 'declare' FunctionHeader 430 bool LLParser::ParseDeclare() { 431 assert(Lex.getKind() == lltok::kw_declare); 432 Lex.Lex(); 433 434 std::vector<std::pair<unsigned, MDNode *>> MDs; 435 while (Lex.getKind() == lltok::MetadataVar) { 436 unsigned MDK; 437 MDNode *N; 438 if (ParseMetadataAttachment(MDK, N)) 439 return true; 440 MDs.push_back({MDK, N}); 441 } 442 443 Function *F; 444 if (ParseFunctionHeader(F, false)) 445 return true; 446 for (auto &MD : MDs) 447 F->addMetadata(MD.first, *MD.second); 448 return false; 449 } 450 451 /// toplevelentity 452 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 453 bool LLParser::ParseDefine() { 454 assert(Lex.getKind() == lltok::kw_define); 455 Lex.Lex(); 456 457 Function *F; 458 return ParseFunctionHeader(F, true) || 459 ParseOptionalFunctionMetadata(*F) || 460 ParseFunctionBody(*F); 461 } 462 463 /// ParseGlobalType 464 /// ::= 'constant' 465 /// ::= 'global' 466 bool LLParser::ParseGlobalType(bool &IsConstant) { 467 if (Lex.getKind() == lltok::kw_constant) 468 IsConstant = true; 469 else if (Lex.getKind() == lltok::kw_global) 470 IsConstant = false; 471 else { 472 IsConstant = false; 473 return TokError("expected 'global' or 'constant'"); 474 } 475 Lex.Lex(); 476 return false; 477 } 478 479 bool LLParser::ParseOptionalUnnamedAddr( 480 GlobalVariable::UnnamedAddr &UnnamedAddr) { 481 if (EatIfPresent(lltok::kw_unnamed_addr)) 482 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 483 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 484 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 485 else 486 UnnamedAddr = GlobalValue::UnnamedAddr::None; 487 return false; 488 } 489 490 /// ParseUnnamedGlobal: 491 /// OptionalVisibility (ALIAS | IFUNC) ... 492 /// OptionalLinkage OptionalVisibility OptionalDLLStorageClass 493 /// ... -> global variable 494 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 495 /// GlobalID '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 496 /// ... -> global variable 497 bool LLParser::ParseUnnamedGlobal() { 498 unsigned VarID = NumberedVals.size(); 499 std::string Name; 500 LocTy NameLoc = Lex.getLoc(); 501 502 // Handle the GlobalID form. 503 if (Lex.getKind() == lltok::GlobalID) { 504 if (Lex.getUIntVal() != VarID) 505 return Error(Lex.getLoc(), "variable expected to be numbered '%" + 506 Twine(VarID) + "'"); 507 Lex.Lex(); // eat GlobalID; 508 509 if (ParseToken(lltok::equal, "expected '=' after name")) 510 return true; 511 } 512 513 bool HasLinkage; 514 unsigned Linkage, Visibility, DLLStorageClass; 515 GlobalVariable::ThreadLocalMode TLM; 516 GlobalVariable::UnnamedAddr UnnamedAddr; 517 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) || 518 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 519 return true; 520 521 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 522 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 523 DLLStorageClass, TLM, UnnamedAddr); 524 525 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 526 DLLStorageClass, TLM, UnnamedAddr); 527 } 528 529 /// ParseNamedGlobal: 530 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 531 /// GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 532 /// ... -> global variable 533 bool LLParser::ParseNamedGlobal() { 534 assert(Lex.getKind() == lltok::GlobalVar); 535 LocTy NameLoc = Lex.getLoc(); 536 std::string Name = Lex.getStrVal(); 537 Lex.Lex(); 538 539 bool HasLinkage; 540 unsigned Linkage, Visibility, DLLStorageClass; 541 GlobalVariable::ThreadLocalMode TLM; 542 GlobalVariable::UnnamedAddr UnnamedAddr; 543 if (ParseToken(lltok::equal, "expected '=' in global variable") || 544 ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) || 545 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 546 return true; 547 548 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 549 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 550 DLLStorageClass, TLM, UnnamedAddr); 551 552 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 553 DLLStorageClass, TLM, UnnamedAddr); 554 } 555 556 bool LLParser::parseComdat() { 557 assert(Lex.getKind() == lltok::ComdatVar); 558 std::string Name = Lex.getStrVal(); 559 LocTy NameLoc = Lex.getLoc(); 560 Lex.Lex(); 561 562 if (ParseToken(lltok::equal, "expected '=' here")) 563 return true; 564 565 if (ParseToken(lltok::kw_comdat, "expected comdat keyword")) 566 return TokError("expected comdat type"); 567 568 Comdat::SelectionKind SK; 569 switch (Lex.getKind()) { 570 default: 571 return TokError("unknown selection kind"); 572 case lltok::kw_any: 573 SK = Comdat::Any; 574 break; 575 case lltok::kw_exactmatch: 576 SK = Comdat::ExactMatch; 577 break; 578 case lltok::kw_largest: 579 SK = Comdat::Largest; 580 break; 581 case lltok::kw_noduplicates: 582 SK = Comdat::NoDuplicates; 583 break; 584 case lltok::kw_samesize: 585 SK = Comdat::SameSize; 586 break; 587 } 588 Lex.Lex(); 589 590 // See if the comdat was forward referenced, if so, use the comdat. 591 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 592 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 593 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 594 return Error(NameLoc, "redefinition of comdat '$" + Name + "'"); 595 596 Comdat *C; 597 if (I != ComdatSymTab.end()) 598 C = &I->second; 599 else 600 C = M->getOrInsertComdat(Name); 601 C->setSelectionKind(SK); 602 603 return false; 604 } 605 606 // MDString: 607 // ::= '!' STRINGCONSTANT 608 bool LLParser::ParseMDString(MDString *&Result) { 609 std::string Str; 610 if (ParseStringConstant(Str)) return true; 611 Result = MDString::get(Context, Str); 612 return false; 613 } 614 615 // MDNode: 616 // ::= '!' MDNodeNumber 617 bool LLParser::ParseMDNodeID(MDNode *&Result) { 618 // !{ ..., !42, ... } 619 LocTy IDLoc = Lex.getLoc(); 620 unsigned MID = 0; 621 if (ParseUInt32(MID)) 622 return true; 623 624 // If not a forward reference, just return it now. 625 if (NumberedMetadata.count(MID)) { 626 Result = NumberedMetadata[MID]; 627 return false; 628 } 629 630 // Otherwise, create MDNode forward reference. 631 auto &FwdRef = ForwardRefMDNodes[MID]; 632 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 633 634 Result = FwdRef.first.get(); 635 NumberedMetadata[MID].reset(Result); 636 return false; 637 } 638 639 /// ParseNamedMetadata: 640 /// !foo = !{ !1, !2 } 641 bool LLParser::ParseNamedMetadata() { 642 assert(Lex.getKind() == lltok::MetadataVar); 643 std::string Name = Lex.getStrVal(); 644 Lex.Lex(); 645 646 if (ParseToken(lltok::equal, "expected '=' here") || 647 ParseToken(lltok::exclaim, "Expected '!' here") || 648 ParseToken(lltok::lbrace, "Expected '{' here")) 649 return true; 650 651 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 652 if (Lex.getKind() != lltok::rbrace) 653 do { 654 if (ParseToken(lltok::exclaim, "Expected '!' here")) 655 return true; 656 657 MDNode *N = nullptr; 658 if (ParseMDNodeID(N)) return true; 659 NMD->addOperand(N); 660 } while (EatIfPresent(lltok::comma)); 661 662 return ParseToken(lltok::rbrace, "expected end of metadata node"); 663 } 664 665 /// ParseStandaloneMetadata: 666 /// !42 = !{...} 667 bool LLParser::ParseStandaloneMetadata() { 668 assert(Lex.getKind() == lltok::exclaim); 669 Lex.Lex(); 670 unsigned MetadataID = 0; 671 672 MDNode *Init; 673 if (ParseUInt32(MetadataID) || 674 ParseToken(lltok::equal, "expected '=' here")) 675 return true; 676 677 // Detect common error, from old metadata syntax. 678 if (Lex.getKind() == lltok::Type) 679 return TokError("unexpected type in metadata definition"); 680 681 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 682 if (Lex.getKind() == lltok::MetadataVar) { 683 if (ParseSpecializedMDNode(Init, IsDistinct)) 684 return true; 685 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 686 ParseMDTuple(Init, IsDistinct)) 687 return true; 688 689 // See if this was forward referenced, if so, handle it. 690 auto FI = ForwardRefMDNodes.find(MetadataID); 691 if (FI != ForwardRefMDNodes.end()) { 692 FI->second.first->replaceAllUsesWith(Init); 693 ForwardRefMDNodes.erase(FI); 694 695 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 696 } else { 697 if (NumberedMetadata.count(MetadataID)) 698 return TokError("Metadata id is already used"); 699 NumberedMetadata[MetadataID].reset(Init); 700 } 701 702 return false; 703 } 704 705 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 706 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 707 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 708 } 709 710 /// parseIndirectSymbol: 711 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility 712 /// OptionalDLLStorageClass OptionalThreadLocal 713 /// OptionalUnnamedAddr 'alias|ifunc' IndirectSymbol 714 /// 715 /// IndirectSymbol 716 /// ::= TypeAndValue 717 /// 718 /// Everything through OptionalUnnamedAddr has already been parsed. 719 /// 720 bool LLParser::parseIndirectSymbol( 721 const std::string &Name, LocTy NameLoc, unsigned L, unsigned Visibility, 722 unsigned DLLStorageClass, GlobalVariable::ThreadLocalMode TLM, 723 GlobalVariable::UnnamedAddr UnnamedAddr) { 724 bool IsAlias; 725 if (Lex.getKind() == lltok::kw_alias) 726 IsAlias = true; 727 else if (Lex.getKind() == lltok::kw_ifunc) 728 IsAlias = false; 729 else 730 llvm_unreachable("Not an alias or ifunc!"); 731 Lex.Lex(); 732 733 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 734 735 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 736 return Error(NameLoc, "invalid linkage type for alias"); 737 738 if (!isValidVisibilityForLinkage(Visibility, L)) 739 return Error(NameLoc, 740 "symbol with local linkage must have default visibility"); 741 742 Type *Ty; 743 LocTy ExplicitTypeLoc = Lex.getLoc(); 744 if (ParseType(Ty) || 745 ParseToken(lltok::comma, "expected comma after alias or ifunc's type")) 746 return true; 747 748 Constant *Aliasee; 749 LocTy AliaseeLoc = Lex.getLoc(); 750 if (Lex.getKind() != lltok::kw_bitcast && 751 Lex.getKind() != lltok::kw_getelementptr && 752 Lex.getKind() != lltok::kw_addrspacecast && 753 Lex.getKind() != lltok::kw_inttoptr) { 754 if (ParseGlobalTypeAndValue(Aliasee)) 755 return true; 756 } else { 757 // The bitcast dest type is not present, it is implied by the dest type. 758 ValID ID; 759 if (ParseValID(ID)) 760 return true; 761 if (ID.Kind != ValID::t_Constant) 762 return Error(AliaseeLoc, "invalid aliasee"); 763 Aliasee = ID.ConstantVal; 764 } 765 766 Type *AliaseeType = Aliasee->getType(); 767 auto *PTy = dyn_cast<PointerType>(AliaseeType); 768 if (!PTy) 769 return Error(AliaseeLoc, "An alias or ifunc must have pointer type"); 770 unsigned AddrSpace = PTy->getAddressSpace(); 771 772 if (IsAlias && Ty != PTy->getElementType()) 773 return Error( 774 ExplicitTypeLoc, 775 "explicit pointee type doesn't match operand's pointee type"); 776 777 if (!IsAlias && !PTy->getElementType()->isFunctionTy()) 778 return Error( 779 ExplicitTypeLoc, 780 "explicit pointee type should be a function type"); 781 782 GlobalValue *GVal = nullptr; 783 784 // See if the alias was forward referenced, if so, prepare to replace the 785 // forward reference. 786 if (!Name.empty()) { 787 GVal = M->getNamedValue(Name); 788 if (GVal) { 789 if (!ForwardRefVals.erase(Name)) 790 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 791 } 792 } else { 793 auto I = ForwardRefValIDs.find(NumberedVals.size()); 794 if (I != ForwardRefValIDs.end()) { 795 GVal = I->second.first; 796 ForwardRefValIDs.erase(I); 797 } 798 } 799 800 // Okay, create the alias but do not insert it into the module yet. 801 std::unique_ptr<GlobalIndirectSymbol> GA; 802 if (IsAlias) 803 GA.reset(GlobalAlias::create(Ty, AddrSpace, 804 (GlobalValue::LinkageTypes)Linkage, Name, 805 Aliasee, /*Parent*/ nullptr)); 806 else 807 GA.reset(GlobalIFunc::create(Ty, AddrSpace, 808 (GlobalValue::LinkageTypes)Linkage, Name, 809 Aliasee, /*Parent*/ nullptr)); 810 GA->setThreadLocalMode(TLM); 811 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 812 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 813 GA->setUnnamedAddr(UnnamedAddr); 814 815 if (Name.empty()) 816 NumberedVals.push_back(GA.get()); 817 818 if (GVal) { 819 // Verify that types agree. 820 if (GVal->getType() != GA->getType()) 821 return Error( 822 ExplicitTypeLoc, 823 "forward reference and definition of alias have different types"); 824 825 // If they agree, just RAUW the old value with the alias and remove the 826 // forward ref info. 827 GVal->replaceAllUsesWith(GA.get()); 828 GVal->eraseFromParent(); 829 } 830 831 // Insert into the module, we know its name won't collide now. 832 if (IsAlias) 833 M->getAliasList().push_back(cast<GlobalAlias>(GA.get())); 834 else 835 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get())); 836 assert(GA->getName() == Name && "Should not be a name conflict!"); 837 838 // The module owns this now 839 GA.release(); 840 841 return false; 842 } 843 844 /// ParseGlobal 845 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 846 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 847 /// OptionalExternallyInitialized GlobalType Type Const 848 /// ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass 849 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 850 /// OptionalExternallyInitialized GlobalType Type Const 851 /// 852 /// Everything up to and including OptionalUnnamedAddr has been parsed 853 /// already. 854 /// 855 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, 856 unsigned Linkage, bool HasLinkage, 857 unsigned Visibility, unsigned DLLStorageClass, 858 GlobalVariable::ThreadLocalMode TLM, 859 GlobalVariable::UnnamedAddr UnnamedAddr) { 860 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 861 return Error(NameLoc, 862 "symbol with local linkage must have default visibility"); 863 864 unsigned AddrSpace; 865 bool IsConstant, IsExternallyInitialized; 866 LocTy IsExternallyInitializedLoc; 867 LocTy TyLoc; 868 869 Type *Ty = nullptr; 870 if (ParseOptionalAddrSpace(AddrSpace) || 871 ParseOptionalToken(lltok::kw_externally_initialized, 872 IsExternallyInitialized, 873 &IsExternallyInitializedLoc) || 874 ParseGlobalType(IsConstant) || 875 ParseType(Ty, TyLoc)) 876 return true; 877 878 // If the linkage is specified and is external, then no initializer is 879 // present. 880 Constant *Init = nullptr; 881 if (!HasLinkage || 882 !GlobalValue::isValidDeclarationLinkage( 883 (GlobalValue::LinkageTypes)Linkage)) { 884 if (ParseGlobalValue(Ty, Init)) 885 return true; 886 } 887 888 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 889 return Error(TyLoc, "invalid type for global variable"); 890 891 GlobalValue *GVal = nullptr; 892 893 // See if the global was forward referenced, if so, use the global. 894 if (!Name.empty()) { 895 GVal = M->getNamedValue(Name); 896 if (GVal) { 897 if (!ForwardRefVals.erase(Name)) 898 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 899 } 900 } else { 901 auto I = ForwardRefValIDs.find(NumberedVals.size()); 902 if (I != ForwardRefValIDs.end()) { 903 GVal = I->second.first; 904 ForwardRefValIDs.erase(I); 905 } 906 } 907 908 GlobalVariable *GV; 909 if (!GVal) { 910 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, 911 Name, nullptr, GlobalVariable::NotThreadLocal, 912 AddrSpace); 913 } else { 914 if (GVal->getValueType() != Ty) 915 return Error(TyLoc, 916 "forward reference and definition of global have different types"); 917 918 GV = cast<GlobalVariable>(GVal); 919 920 // Move the forward-reference to the correct spot in the module. 921 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 922 } 923 924 if (Name.empty()) 925 NumberedVals.push_back(GV); 926 927 // Set the parsed properties on the global. 928 if (Init) 929 GV->setInitializer(Init); 930 GV->setConstant(IsConstant); 931 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 932 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 933 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 934 GV->setExternallyInitialized(IsExternallyInitialized); 935 GV->setThreadLocalMode(TLM); 936 GV->setUnnamedAddr(UnnamedAddr); 937 938 // Parse attributes on the global. 939 while (Lex.getKind() == lltok::comma) { 940 Lex.Lex(); 941 942 if (Lex.getKind() == lltok::kw_section) { 943 Lex.Lex(); 944 GV->setSection(Lex.getStrVal()); 945 if (ParseToken(lltok::StringConstant, "expected global section string")) 946 return true; 947 } else if (Lex.getKind() == lltok::kw_align) { 948 unsigned Alignment; 949 if (ParseOptionalAlignment(Alignment)) return true; 950 GV->setAlignment(Alignment); 951 } else if (Lex.getKind() == lltok::MetadataVar) { 952 if (ParseGlobalObjectMetadataAttachment(*GV)) 953 return true; 954 } else { 955 Comdat *C; 956 if (parseOptionalComdat(Name, C)) 957 return true; 958 if (C) 959 GV->setComdat(C); 960 else 961 return TokError("unknown global variable property!"); 962 } 963 } 964 965 return false; 966 } 967 968 /// ParseUnnamedAttrGrp 969 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 970 bool LLParser::ParseUnnamedAttrGrp() { 971 assert(Lex.getKind() == lltok::kw_attributes); 972 LocTy AttrGrpLoc = Lex.getLoc(); 973 Lex.Lex(); 974 975 if (Lex.getKind() != lltok::AttrGrpID) 976 return TokError("expected attribute group id"); 977 978 unsigned VarID = Lex.getUIntVal(); 979 std::vector<unsigned> unused; 980 LocTy BuiltinLoc; 981 Lex.Lex(); 982 983 if (ParseToken(lltok::equal, "expected '=' here") || 984 ParseToken(lltok::lbrace, "expected '{' here") || 985 ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 986 BuiltinLoc) || 987 ParseToken(lltok::rbrace, "expected end of attribute group")) 988 return true; 989 990 if (!NumberedAttrBuilders[VarID].hasAttributes()) 991 return Error(AttrGrpLoc, "attribute group has no attributes"); 992 993 return false; 994 } 995 996 /// ParseFnAttributeValuePairs 997 /// ::= <attr> | <attr> '=' <value> 998 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B, 999 std::vector<unsigned> &FwdRefAttrGrps, 1000 bool inAttrGrp, LocTy &BuiltinLoc) { 1001 bool HaveError = false; 1002 1003 B.clear(); 1004 1005 while (true) { 1006 lltok::Kind Token = Lex.getKind(); 1007 if (Token == lltok::kw_builtin) 1008 BuiltinLoc = Lex.getLoc(); 1009 switch (Token) { 1010 default: 1011 if (!inAttrGrp) return HaveError; 1012 return Error(Lex.getLoc(), "unterminated attribute group"); 1013 case lltok::rbrace: 1014 // Finished. 1015 return false; 1016 1017 case lltok::AttrGrpID: { 1018 // Allow a function to reference an attribute group: 1019 // 1020 // define void @foo() #1 { ... } 1021 if (inAttrGrp) 1022 HaveError |= 1023 Error(Lex.getLoc(), 1024 "cannot have an attribute group reference in an attribute group"); 1025 1026 unsigned AttrGrpNum = Lex.getUIntVal(); 1027 if (inAttrGrp) break; 1028 1029 // Save the reference to the attribute group. We'll fill it in later. 1030 FwdRefAttrGrps.push_back(AttrGrpNum); 1031 break; 1032 } 1033 // Target-dependent attributes: 1034 case lltok::StringConstant: { 1035 if (ParseStringAttribute(B)) 1036 return true; 1037 continue; 1038 } 1039 1040 // Target-independent attributes: 1041 case lltok::kw_align: { 1042 // As a hack, we allow function alignment to be initially parsed as an 1043 // attribute on a function declaration/definition or added to an attribute 1044 // group and later moved to the alignment field. 1045 unsigned Alignment; 1046 if (inAttrGrp) { 1047 Lex.Lex(); 1048 if (ParseToken(lltok::equal, "expected '=' here") || 1049 ParseUInt32(Alignment)) 1050 return true; 1051 } else { 1052 if (ParseOptionalAlignment(Alignment)) 1053 return true; 1054 } 1055 B.addAlignmentAttr(Alignment); 1056 continue; 1057 } 1058 case lltok::kw_alignstack: { 1059 unsigned Alignment; 1060 if (inAttrGrp) { 1061 Lex.Lex(); 1062 if (ParseToken(lltok::equal, "expected '=' here") || 1063 ParseUInt32(Alignment)) 1064 return true; 1065 } else { 1066 if (ParseOptionalStackAlignment(Alignment)) 1067 return true; 1068 } 1069 B.addStackAlignmentAttr(Alignment); 1070 continue; 1071 } 1072 case lltok::kw_allocsize: { 1073 unsigned ElemSizeArg; 1074 Optional<unsigned> NumElemsArg; 1075 // inAttrGrp doesn't matter; we only support allocsize(a[, b]) 1076 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1077 return true; 1078 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1079 continue; 1080 } 1081 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break; 1082 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break; 1083 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break; 1084 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break; 1085 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break; 1086 case lltok::kw_inaccessiblememonly: 1087 B.addAttribute(Attribute::InaccessibleMemOnly); break; 1088 case lltok::kw_inaccessiblemem_or_argmemonly: 1089 B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break; 1090 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break; 1091 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break; 1092 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break; 1093 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break; 1094 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break; 1095 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break; 1096 case lltok::kw_noimplicitfloat: 1097 B.addAttribute(Attribute::NoImplicitFloat); break; 1098 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break; 1099 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break; 1100 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break; 1101 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break; 1102 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break; 1103 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break; 1104 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break; 1105 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break; 1106 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1107 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1108 case lltok::kw_returns_twice: 1109 B.addAttribute(Attribute::ReturnsTwice); break; 1110 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break; 1111 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break; 1112 case lltok::kw_sspstrong: 1113 B.addAttribute(Attribute::StackProtectStrong); break; 1114 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break; 1115 case lltok::kw_sanitize_address: 1116 B.addAttribute(Attribute::SanitizeAddress); break; 1117 case lltok::kw_sanitize_thread: 1118 B.addAttribute(Attribute::SanitizeThread); break; 1119 case lltok::kw_sanitize_memory: 1120 B.addAttribute(Attribute::SanitizeMemory); break; 1121 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break; 1122 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1123 1124 // Error handling. 1125 case lltok::kw_inreg: 1126 case lltok::kw_signext: 1127 case lltok::kw_zeroext: 1128 HaveError |= 1129 Error(Lex.getLoc(), 1130 "invalid use of attribute on a function"); 1131 break; 1132 case lltok::kw_byval: 1133 case lltok::kw_dereferenceable: 1134 case lltok::kw_dereferenceable_or_null: 1135 case lltok::kw_inalloca: 1136 case lltok::kw_nest: 1137 case lltok::kw_noalias: 1138 case lltok::kw_nocapture: 1139 case lltok::kw_nonnull: 1140 case lltok::kw_returned: 1141 case lltok::kw_sret: 1142 case lltok::kw_swifterror: 1143 case lltok::kw_swiftself: 1144 HaveError |= 1145 Error(Lex.getLoc(), 1146 "invalid use of parameter-only attribute on a function"); 1147 break; 1148 } 1149 1150 Lex.Lex(); 1151 } 1152 } 1153 1154 //===----------------------------------------------------------------------===// 1155 // GlobalValue Reference/Resolution Routines. 1156 //===----------------------------------------------------------------------===// 1157 1158 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy, 1159 const std::string &Name) { 1160 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType())) 1161 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M); 1162 else 1163 return new GlobalVariable(*M, PTy->getElementType(), false, 1164 GlobalValue::ExternalWeakLinkage, nullptr, Name, 1165 nullptr, GlobalVariable::NotThreadLocal, 1166 PTy->getAddressSpace()); 1167 } 1168 1169 /// GetGlobalVal - Get a value with the specified name or ID, creating a 1170 /// forward reference record if needed. This can return null if the value 1171 /// exists but does not have the right type. 1172 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty, 1173 LocTy Loc) { 1174 PointerType *PTy = dyn_cast<PointerType>(Ty); 1175 if (!PTy) { 1176 Error(Loc, "global variable reference must have pointer type"); 1177 return nullptr; 1178 } 1179 1180 // Look this name up in the normal function symbol table. 1181 GlobalValue *Val = 1182 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1183 1184 // If this is a forward reference for the value, see if we already created a 1185 // forward ref record. 1186 if (!Val) { 1187 auto I = ForwardRefVals.find(Name); 1188 if (I != ForwardRefVals.end()) 1189 Val = I->second.first; 1190 } 1191 1192 // If we have the value in the symbol table or fwd-ref table, return it. 1193 if (Val) { 1194 if (Val->getType() == Ty) return Val; 1195 Error(Loc, "'@" + Name + "' defined with type '" + 1196 getTypeString(Val->getType()) + "'"); 1197 return nullptr; 1198 } 1199 1200 // Otherwise, create a new forward reference for this value and remember it. 1201 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name); 1202 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1203 return FwdVal; 1204 } 1205 1206 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) { 1207 PointerType *PTy = dyn_cast<PointerType>(Ty); 1208 if (!PTy) { 1209 Error(Loc, "global variable reference must have pointer type"); 1210 return nullptr; 1211 } 1212 1213 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1214 1215 // If this is a forward reference for the value, see if we already created a 1216 // forward ref record. 1217 if (!Val) { 1218 auto I = ForwardRefValIDs.find(ID); 1219 if (I != ForwardRefValIDs.end()) 1220 Val = I->second.first; 1221 } 1222 1223 // If we have the value in the symbol table or fwd-ref table, return it. 1224 if (Val) { 1225 if (Val->getType() == Ty) return Val; 1226 Error(Loc, "'@" + Twine(ID) + "' defined with type '" + 1227 getTypeString(Val->getType()) + "'"); 1228 return nullptr; 1229 } 1230 1231 // Otherwise, create a new forward reference for this value and remember it. 1232 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, ""); 1233 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1234 return FwdVal; 1235 } 1236 1237 //===----------------------------------------------------------------------===// 1238 // Comdat Reference/Resolution Routines. 1239 //===----------------------------------------------------------------------===// 1240 1241 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1242 // Look this name up in the comdat symbol table. 1243 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1244 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1245 if (I != ComdatSymTab.end()) 1246 return &I->second; 1247 1248 // Otherwise, create a new forward reference for this value and remember it. 1249 Comdat *C = M->getOrInsertComdat(Name); 1250 ForwardRefComdats[Name] = Loc; 1251 return C; 1252 } 1253 1254 //===----------------------------------------------------------------------===// 1255 // Helper Routines. 1256 //===----------------------------------------------------------------------===// 1257 1258 /// ParseToken - If the current token has the specified kind, eat it and return 1259 /// success. Otherwise, emit the specified error and return failure. 1260 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { 1261 if (Lex.getKind() != T) 1262 return TokError(ErrMsg); 1263 Lex.Lex(); 1264 return false; 1265 } 1266 1267 /// ParseStringConstant 1268 /// ::= StringConstant 1269 bool LLParser::ParseStringConstant(std::string &Result) { 1270 if (Lex.getKind() != lltok::StringConstant) 1271 return TokError("expected string constant"); 1272 Result = Lex.getStrVal(); 1273 Lex.Lex(); 1274 return false; 1275 } 1276 1277 /// ParseUInt32 1278 /// ::= uint32 1279 bool LLParser::ParseUInt32(uint32_t &Val) { 1280 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1281 return TokError("expected integer"); 1282 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1283 if (Val64 != unsigned(Val64)) 1284 return TokError("expected 32-bit integer (too large)"); 1285 Val = Val64; 1286 Lex.Lex(); 1287 return false; 1288 } 1289 1290 /// ParseUInt64 1291 /// ::= uint64 1292 bool LLParser::ParseUInt64(uint64_t &Val) { 1293 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1294 return TokError("expected integer"); 1295 Val = Lex.getAPSIntVal().getLimitedValue(); 1296 Lex.Lex(); 1297 return false; 1298 } 1299 1300 /// ParseTLSModel 1301 /// := 'localdynamic' 1302 /// := 'initialexec' 1303 /// := 'localexec' 1304 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1305 switch (Lex.getKind()) { 1306 default: 1307 return TokError("expected localdynamic, initialexec or localexec"); 1308 case lltok::kw_localdynamic: 1309 TLM = GlobalVariable::LocalDynamicTLSModel; 1310 break; 1311 case lltok::kw_initialexec: 1312 TLM = GlobalVariable::InitialExecTLSModel; 1313 break; 1314 case lltok::kw_localexec: 1315 TLM = GlobalVariable::LocalExecTLSModel; 1316 break; 1317 } 1318 1319 Lex.Lex(); 1320 return false; 1321 } 1322 1323 /// ParseOptionalThreadLocal 1324 /// := /*empty*/ 1325 /// := 'thread_local' 1326 /// := 'thread_local' '(' tlsmodel ')' 1327 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1328 TLM = GlobalVariable::NotThreadLocal; 1329 if (!EatIfPresent(lltok::kw_thread_local)) 1330 return false; 1331 1332 TLM = GlobalVariable::GeneralDynamicTLSModel; 1333 if (Lex.getKind() == lltok::lparen) { 1334 Lex.Lex(); 1335 return ParseTLSModel(TLM) || 1336 ParseToken(lltok::rparen, "expected ')' after thread local model"); 1337 } 1338 return false; 1339 } 1340 1341 /// ParseOptionalAddrSpace 1342 /// := /*empty*/ 1343 /// := 'addrspace' '(' uint32 ')' 1344 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) { 1345 AddrSpace = 0; 1346 if (!EatIfPresent(lltok::kw_addrspace)) 1347 return false; 1348 return ParseToken(lltok::lparen, "expected '(' in address space") || 1349 ParseUInt32(AddrSpace) || 1350 ParseToken(lltok::rparen, "expected ')' in address space"); 1351 } 1352 1353 /// ParseStringAttribute 1354 /// := StringConstant 1355 /// := StringConstant '=' StringConstant 1356 bool LLParser::ParseStringAttribute(AttrBuilder &B) { 1357 std::string Attr = Lex.getStrVal(); 1358 Lex.Lex(); 1359 std::string Val; 1360 if (EatIfPresent(lltok::equal) && ParseStringConstant(Val)) 1361 return true; 1362 B.addAttribute(Attr, Val); 1363 return false; 1364 } 1365 1366 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes. 1367 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) { 1368 bool HaveError = false; 1369 1370 B.clear(); 1371 1372 while (true) { 1373 lltok::Kind Token = Lex.getKind(); 1374 switch (Token) { 1375 default: // End of attributes. 1376 return HaveError; 1377 case lltok::StringConstant: { 1378 if (ParseStringAttribute(B)) 1379 return true; 1380 continue; 1381 } 1382 case lltok::kw_align: { 1383 unsigned Alignment; 1384 if (ParseOptionalAlignment(Alignment)) 1385 return true; 1386 B.addAlignmentAttr(Alignment); 1387 continue; 1388 } 1389 case lltok::kw_byval: B.addAttribute(Attribute::ByVal); break; 1390 case lltok::kw_dereferenceable: { 1391 uint64_t Bytes; 1392 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1393 return true; 1394 B.addDereferenceableAttr(Bytes); 1395 continue; 1396 } 1397 case lltok::kw_dereferenceable_or_null: { 1398 uint64_t Bytes; 1399 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1400 return true; 1401 B.addDereferenceableOrNullAttr(Bytes); 1402 continue; 1403 } 1404 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break; 1405 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1406 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break; 1407 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1408 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break; 1409 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1410 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1411 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1412 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break; 1413 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1414 case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break; 1415 case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break; 1416 case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break; 1417 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1418 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1419 1420 case lltok::kw_alignstack: 1421 case lltok::kw_alwaysinline: 1422 case lltok::kw_argmemonly: 1423 case lltok::kw_builtin: 1424 case lltok::kw_inlinehint: 1425 case lltok::kw_jumptable: 1426 case lltok::kw_minsize: 1427 case lltok::kw_naked: 1428 case lltok::kw_nobuiltin: 1429 case lltok::kw_noduplicate: 1430 case lltok::kw_noimplicitfloat: 1431 case lltok::kw_noinline: 1432 case lltok::kw_nonlazybind: 1433 case lltok::kw_noredzone: 1434 case lltok::kw_noreturn: 1435 case lltok::kw_nounwind: 1436 case lltok::kw_optnone: 1437 case lltok::kw_optsize: 1438 case lltok::kw_returns_twice: 1439 case lltok::kw_sanitize_address: 1440 case lltok::kw_sanitize_memory: 1441 case lltok::kw_sanitize_thread: 1442 case lltok::kw_ssp: 1443 case lltok::kw_sspreq: 1444 case lltok::kw_sspstrong: 1445 case lltok::kw_safestack: 1446 case lltok::kw_uwtable: 1447 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1448 break; 1449 } 1450 1451 Lex.Lex(); 1452 } 1453 } 1454 1455 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes. 1456 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) { 1457 bool HaveError = false; 1458 1459 B.clear(); 1460 1461 while (true) { 1462 lltok::Kind Token = Lex.getKind(); 1463 switch (Token) { 1464 default: // End of attributes. 1465 return HaveError; 1466 case lltok::StringConstant: { 1467 if (ParseStringAttribute(B)) 1468 return true; 1469 continue; 1470 } 1471 case lltok::kw_dereferenceable: { 1472 uint64_t Bytes; 1473 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1474 return true; 1475 B.addDereferenceableAttr(Bytes); 1476 continue; 1477 } 1478 case lltok::kw_dereferenceable_or_null: { 1479 uint64_t Bytes; 1480 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1481 return true; 1482 B.addDereferenceableOrNullAttr(Bytes); 1483 continue; 1484 } 1485 case lltok::kw_align: { 1486 unsigned Alignment; 1487 if (ParseOptionalAlignment(Alignment)) 1488 return true; 1489 B.addAlignmentAttr(Alignment); 1490 continue; 1491 } 1492 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1493 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1494 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1495 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1496 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1497 1498 // Error handling. 1499 case lltok::kw_byval: 1500 case lltok::kw_inalloca: 1501 case lltok::kw_nest: 1502 case lltok::kw_nocapture: 1503 case lltok::kw_returned: 1504 case lltok::kw_sret: 1505 case lltok::kw_swifterror: 1506 case lltok::kw_swiftself: 1507 HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute"); 1508 break; 1509 1510 case lltok::kw_alignstack: 1511 case lltok::kw_alwaysinline: 1512 case lltok::kw_argmemonly: 1513 case lltok::kw_builtin: 1514 case lltok::kw_cold: 1515 case lltok::kw_inlinehint: 1516 case lltok::kw_jumptable: 1517 case lltok::kw_minsize: 1518 case lltok::kw_naked: 1519 case lltok::kw_nobuiltin: 1520 case lltok::kw_noduplicate: 1521 case lltok::kw_noimplicitfloat: 1522 case lltok::kw_noinline: 1523 case lltok::kw_nonlazybind: 1524 case lltok::kw_noredzone: 1525 case lltok::kw_noreturn: 1526 case lltok::kw_nounwind: 1527 case lltok::kw_optnone: 1528 case lltok::kw_optsize: 1529 case lltok::kw_returns_twice: 1530 case lltok::kw_sanitize_address: 1531 case lltok::kw_sanitize_memory: 1532 case lltok::kw_sanitize_thread: 1533 case lltok::kw_ssp: 1534 case lltok::kw_sspreq: 1535 case lltok::kw_sspstrong: 1536 case lltok::kw_safestack: 1537 case lltok::kw_uwtable: 1538 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1539 break; 1540 1541 case lltok::kw_readnone: 1542 case lltok::kw_readonly: 1543 HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type"); 1544 } 1545 1546 Lex.Lex(); 1547 } 1548 } 1549 1550 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1551 HasLinkage = true; 1552 switch (Kind) { 1553 default: 1554 HasLinkage = false; 1555 return GlobalValue::ExternalLinkage; 1556 case lltok::kw_private: 1557 return GlobalValue::PrivateLinkage; 1558 case lltok::kw_internal: 1559 return GlobalValue::InternalLinkage; 1560 case lltok::kw_weak: 1561 return GlobalValue::WeakAnyLinkage; 1562 case lltok::kw_weak_odr: 1563 return GlobalValue::WeakODRLinkage; 1564 case lltok::kw_linkonce: 1565 return GlobalValue::LinkOnceAnyLinkage; 1566 case lltok::kw_linkonce_odr: 1567 return GlobalValue::LinkOnceODRLinkage; 1568 case lltok::kw_available_externally: 1569 return GlobalValue::AvailableExternallyLinkage; 1570 case lltok::kw_appending: 1571 return GlobalValue::AppendingLinkage; 1572 case lltok::kw_common: 1573 return GlobalValue::CommonLinkage; 1574 case lltok::kw_extern_weak: 1575 return GlobalValue::ExternalWeakLinkage; 1576 case lltok::kw_external: 1577 return GlobalValue::ExternalLinkage; 1578 } 1579 } 1580 1581 /// ParseOptionalLinkage 1582 /// ::= /*empty*/ 1583 /// ::= 'private' 1584 /// ::= 'internal' 1585 /// ::= 'weak' 1586 /// ::= 'weak_odr' 1587 /// ::= 'linkonce' 1588 /// ::= 'linkonce_odr' 1589 /// ::= 'available_externally' 1590 /// ::= 'appending' 1591 /// ::= 'common' 1592 /// ::= 'extern_weak' 1593 /// ::= 'external' 1594 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage, 1595 unsigned &Visibility, 1596 unsigned &DLLStorageClass) { 1597 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 1598 if (HasLinkage) 1599 Lex.Lex(); 1600 ParseOptionalVisibility(Visibility); 1601 ParseOptionalDLLStorageClass(DLLStorageClass); 1602 return false; 1603 } 1604 1605 /// ParseOptionalVisibility 1606 /// ::= /*empty*/ 1607 /// ::= 'default' 1608 /// ::= 'hidden' 1609 /// ::= 'protected' 1610 /// 1611 void LLParser::ParseOptionalVisibility(unsigned &Res) { 1612 switch (Lex.getKind()) { 1613 default: 1614 Res = GlobalValue::DefaultVisibility; 1615 return; 1616 case lltok::kw_default: 1617 Res = GlobalValue::DefaultVisibility; 1618 break; 1619 case lltok::kw_hidden: 1620 Res = GlobalValue::HiddenVisibility; 1621 break; 1622 case lltok::kw_protected: 1623 Res = GlobalValue::ProtectedVisibility; 1624 break; 1625 } 1626 Lex.Lex(); 1627 } 1628 1629 /// ParseOptionalDLLStorageClass 1630 /// ::= /*empty*/ 1631 /// ::= 'dllimport' 1632 /// ::= 'dllexport' 1633 /// 1634 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) { 1635 switch (Lex.getKind()) { 1636 default: 1637 Res = GlobalValue::DefaultStorageClass; 1638 return; 1639 case lltok::kw_dllimport: 1640 Res = GlobalValue::DLLImportStorageClass; 1641 break; 1642 case lltok::kw_dllexport: 1643 Res = GlobalValue::DLLExportStorageClass; 1644 break; 1645 } 1646 Lex.Lex(); 1647 } 1648 1649 /// ParseOptionalCallingConv 1650 /// ::= /*empty*/ 1651 /// ::= 'ccc' 1652 /// ::= 'fastcc' 1653 /// ::= 'intel_ocl_bicc' 1654 /// ::= 'coldcc' 1655 /// ::= 'x86_stdcallcc' 1656 /// ::= 'x86_fastcallcc' 1657 /// ::= 'x86_thiscallcc' 1658 /// ::= 'x86_vectorcallcc' 1659 /// ::= 'arm_apcscc' 1660 /// ::= 'arm_aapcscc' 1661 /// ::= 'arm_aapcs_vfpcc' 1662 /// ::= 'msp430_intrcc' 1663 /// ::= 'avr_intrcc' 1664 /// ::= 'avr_signalcc' 1665 /// ::= 'ptx_kernel' 1666 /// ::= 'ptx_device' 1667 /// ::= 'spir_func' 1668 /// ::= 'spir_kernel' 1669 /// ::= 'x86_64_sysvcc' 1670 /// ::= 'x86_64_win64cc' 1671 /// ::= 'webkit_jscc' 1672 /// ::= 'anyregcc' 1673 /// ::= 'preserve_mostcc' 1674 /// ::= 'preserve_allcc' 1675 /// ::= 'ghccc' 1676 /// ::= 'swiftcc' 1677 /// ::= 'x86_intrcc' 1678 /// ::= 'hhvmcc' 1679 /// ::= 'hhvm_ccc' 1680 /// ::= 'cxx_fast_tlscc' 1681 /// ::= 'amdgpu_vs' 1682 /// ::= 'amdgpu_tcs' 1683 /// ::= 'amdgpu_tes' 1684 /// ::= 'amdgpu_gs' 1685 /// ::= 'amdgpu_ps' 1686 /// ::= 'amdgpu_cs' 1687 /// ::= 'amdgpu_kernel' 1688 /// ::= 'cc' UINT 1689 /// 1690 bool LLParser::ParseOptionalCallingConv(unsigned &CC) { 1691 switch (Lex.getKind()) { 1692 default: CC = CallingConv::C; return false; 1693 case lltok::kw_ccc: CC = CallingConv::C; break; 1694 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1695 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1696 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1697 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1698 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break; 1699 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1700 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 1701 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1702 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1703 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1704 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1705 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 1706 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 1707 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1708 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1709 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 1710 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 1711 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 1712 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 1713 case lltok::kw_x86_64_win64cc: CC = CallingConv::X86_64_Win64; break; 1714 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 1715 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 1716 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 1717 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 1718 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 1719 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 1720 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 1721 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 1722 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 1723 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 1724 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 1725 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 1726 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 1727 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 1728 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 1729 case lltok::kw_cc: { 1730 Lex.Lex(); 1731 return ParseUInt32(CC); 1732 } 1733 } 1734 1735 Lex.Lex(); 1736 return false; 1737 } 1738 1739 /// ParseMetadataAttachment 1740 /// ::= !dbg !42 1741 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 1742 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 1743 1744 std::string Name = Lex.getStrVal(); 1745 Kind = M->getMDKindID(Name); 1746 Lex.Lex(); 1747 1748 return ParseMDNode(MD); 1749 } 1750 1751 /// ParseInstructionMetadata 1752 /// ::= !dbg !42 (',' !dbg !57)* 1753 bool LLParser::ParseInstructionMetadata(Instruction &Inst) { 1754 do { 1755 if (Lex.getKind() != lltok::MetadataVar) 1756 return TokError("expected metadata after comma"); 1757 1758 unsigned MDK; 1759 MDNode *N; 1760 if (ParseMetadataAttachment(MDK, N)) 1761 return true; 1762 1763 Inst.setMetadata(MDK, N); 1764 if (MDK == LLVMContext::MD_tbaa) 1765 InstsWithTBAATag.push_back(&Inst); 1766 1767 // If this is the end of the list, we're done. 1768 } while (EatIfPresent(lltok::comma)); 1769 return false; 1770 } 1771 1772 /// ParseGlobalObjectMetadataAttachment 1773 /// ::= !dbg !57 1774 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) { 1775 unsigned MDK; 1776 MDNode *N; 1777 if (ParseMetadataAttachment(MDK, N)) 1778 return true; 1779 1780 GO.addMetadata(MDK, *N); 1781 return false; 1782 } 1783 1784 /// ParseOptionalFunctionMetadata 1785 /// ::= (!dbg !57)* 1786 bool LLParser::ParseOptionalFunctionMetadata(Function &F) { 1787 while (Lex.getKind() == lltok::MetadataVar) 1788 if (ParseGlobalObjectMetadataAttachment(F)) 1789 return true; 1790 return false; 1791 } 1792 1793 /// ParseOptionalAlignment 1794 /// ::= /* empty */ 1795 /// ::= 'align' 4 1796 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) { 1797 Alignment = 0; 1798 if (!EatIfPresent(lltok::kw_align)) 1799 return false; 1800 LocTy AlignLoc = Lex.getLoc(); 1801 if (ParseUInt32(Alignment)) return true; 1802 if (!isPowerOf2_32(Alignment)) 1803 return Error(AlignLoc, "alignment is not a power of two"); 1804 if (Alignment > Value::MaximumAlignment) 1805 return Error(AlignLoc, "huge alignments are not supported yet"); 1806 return false; 1807 } 1808 1809 /// ParseOptionalDerefAttrBytes 1810 /// ::= /* empty */ 1811 /// ::= AttrKind '(' 4 ')' 1812 /// 1813 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 1814 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind, 1815 uint64_t &Bytes) { 1816 assert((AttrKind == lltok::kw_dereferenceable || 1817 AttrKind == lltok::kw_dereferenceable_or_null) && 1818 "contract!"); 1819 1820 Bytes = 0; 1821 if (!EatIfPresent(AttrKind)) 1822 return false; 1823 LocTy ParenLoc = Lex.getLoc(); 1824 if (!EatIfPresent(lltok::lparen)) 1825 return Error(ParenLoc, "expected '('"); 1826 LocTy DerefLoc = Lex.getLoc(); 1827 if (ParseUInt64(Bytes)) return true; 1828 ParenLoc = Lex.getLoc(); 1829 if (!EatIfPresent(lltok::rparen)) 1830 return Error(ParenLoc, "expected ')'"); 1831 if (!Bytes) 1832 return Error(DerefLoc, "dereferenceable bytes must be non-zero"); 1833 return false; 1834 } 1835 1836 /// ParseOptionalCommaAlign 1837 /// ::= 1838 /// ::= ',' align 4 1839 /// 1840 /// This returns with AteExtraComma set to true if it ate an excess comma at the 1841 /// end. 1842 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment, 1843 bool &AteExtraComma) { 1844 AteExtraComma = false; 1845 while (EatIfPresent(lltok::comma)) { 1846 // Metadata at the end is an early exit. 1847 if (Lex.getKind() == lltok::MetadataVar) { 1848 AteExtraComma = true; 1849 return false; 1850 } 1851 1852 if (Lex.getKind() != lltok::kw_align) 1853 return Error(Lex.getLoc(), "expected metadata or 'align'"); 1854 1855 if (ParseOptionalAlignment(Alignment)) return true; 1856 } 1857 1858 return false; 1859 } 1860 1861 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 1862 Optional<unsigned> &HowManyArg) { 1863 Lex.Lex(); 1864 1865 auto StartParen = Lex.getLoc(); 1866 if (!EatIfPresent(lltok::lparen)) 1867 return Error(StartParen, "expected '('"); 1868 1869 if (ParseUInt32(BaseSizeArg)) 1870 return true; 1871 1872 if (EatIfPresent(lltok::comma)) { 1873 auto HowManyAt = Lex.getLoc(); 1874 unsigned HowMany; 1875 if (ParseUInt32(HowMany)) 1876 return true; 1877 if (HowMany == BaseSizeArg) 1878 return Error(HowManyAt, 1879 "'allocsize' indices can't refer to the same parameter"); 1880 HowManyArg = HowMany; 1881 } else 1882 HowManyArg = None; 1883 1884 auto EndParen = Lex.getLoc(); 1885 if (!EatIfPresent(lltok::rparen)) 1886 return Error(EndParen, "expected ')'"); 1887 return false; 1888 } 1889 1890 /// ParseScopeAndOrdering 1891 /// if isAtomic: ::= 'singlethread'? AtomicOrdering 1892 /// else: ::= 1893 /// 1894 /// This sets Scope and Ordering to the parsed values. 1895 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope, 1896 AtomicOrdering &Ordering) { 1897 if (!isAtomic) 1898 return false; 1899 1900 Scope = CrossThread; 1901 if (EatIfPresent(lltok::kw_singlethread)) 1902 Scope = SingleThread; 1903 1904 return ParseOrdering(Ordering); 1905 } 1906 1907 /// ParseOrdering 1908 /// ::= AtomicOrdering 1909 /// 1910 /// This sets Ordering to the parsed value. 1911 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) { 1912 switch (Lex.getKind()) { 1913 default: return TokError("Expected ordering on atomic instruction"); 1914 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 1915 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 1916 // Not specified yet: 1917 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 1918 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 1919 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 1920 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 1921 case lltok::kw_seq_cst: 1922 Ordering = AtomicOrdering::SequentiallyConsistent; 1923 break; 1924 } 1925 Lex.Lex(); 1926 return false; 1927 } 1928 1929 /// ParseOptionalStackAlignment 1930 /// ::= /* empty */ 1931 /// ::= 'alignstack' '(' 4 ')' 1932 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { 1933 Alignment = 0; 1934 if (!EatIfPresent(lltok::kw_alignstack)) 1935 return false; 1936 LocTy ParenLoc = Lex.getLoc(); 1937 if (!EatIfPresent(lltok::lparen)) 1938 return Error(ParenLoc, "expected '('"); 1939 LocTy AlignLoc = Lex.getLoc(); 1940 if (ParseUInt32(Alignment)) return true; 1941 ParenLoc = Lex.getLoc(); 1942 if (!EatIfPresent(lltok::rparen)) 1943 return Error(ParenLoc, "expected ')'"); 1944 if (!isPowerOf2_32(Alignment)) 1945 return Error(AlignLoc, "stack alignment is not a power of two"); 1946 return false; 1947 } 1948 1949 /// ParseIndexList - This parses the index list for an insert/extractvalue 1950 /// instruction. This sets AteExtraComma in the case where we eat an extra 1951 /// comma at the end of the line and find that it is followed by metadata. 1952 /// Clients that don't allow metadata can call the version of this function that 1953 /// only takes one argument. 1954 /// 1955 /// ParseIndexList 1956 /// ::= (',' uint32)+ 1957 /// 1958 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, 1959 bool &AteExtraComma) { 1960 AteExtraComma = false; 1961 1962 if (Lex.getKind() != lltok::comma) 1963 return TokError("expected ',' as start of index list"); 1964 1965 while (EatIfPresent(lltok::comma)) { 1966 if (Lex.getKind() == lltok::MetadataVar) { 1967 if (Indices.empty()) return TokError("expected index"); 1968 AteExtraComma = true; 1969 return false; 1970 } 1971 unsigned Idx = 0; 1972 if (ParseUInt32(Idx)) return true; 1973 Indices.push_back(Idx); 1974 } 1975 1976 return false; 1977 } 1978 1979 //===----------------------------------------------------------------------===// 1980 // Type Parsing. 1981 //===----------------------------------------------------------------------===// 1982 1983 /// ParseType - Parse a type. 1984 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 1985 SMLoc TypeLoc = Lex.getLoc(); 1986 switch (Lex.getKind()) { 1987 default: 1988 return TokError(Msg); 1989 case lltok::Type: 1990 // Type ::= 'float' | 'void' (etc) 1991 Result = Lex.getTyVal(); 1992 Lex.Lex(); 1993 break; 1994 case lltok::lbrace: 1995 // Type ::= StructType 1996 if (ParseAnonStructType(Result, false)) 1997 return true; 1998 break; 1999 case lltok::lsquare: 2000 // Type ::= '[' ... ']' 2001 Lex.Lex(); // eat the lsquare. 2002 if (ParseArrayVectorType(Result, false)) 2003 return true; 2004 break; 2005 case lltok::less: // Either vector or packed struct. 2006 // Type ::= '<' ... '>' 2007 Lex.Lex(); 2008 if (Lex.getKind() == lltok::lbrace) { 2009 if (ParseAnonStructType(Result, true) || 2010 ParseToken(lltok::greater, "expected '>' at end of packed struct")) 2011 return true; 2012 } else if (ParseArrayVectorType(Result, true)) 2013 return true; 2014 break; 2015 case lltok::LocalVar: { 2016 // Type ::= %foo 2017 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2018 2019 // If the type hasn't been defined yet, create a forward definition and 2020 // remember where that forward def'n was seen (in case it never is defined). 2021 if (!Entry.first) { 2022 Entry.first = StructType::create(Context, Lex.getStrVal()); 2023 Entry.second = Lex.getLoc(); 2024 } 2025 Result = Entry.first; 2026 Lex.Lex(); 2027 break; 2028 } 2029 2030 case lltok::LocalVarID: { 2031 // Type ::= %4 2032 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2033 2034 // If the type hasn't been defined yet, create a forward definition and 2035 // remember where that forward def'n was seen (in case it never is defined). 2036 if (!Entry.first) { 2037 Entry.first = StructType::create(Context); 2038 Entry.second = Lex.getLoc(); 2039 } 2040 Result = Entry.first; 2041 Lex.Lex(); 2042 break; 2043 } 2044 } 2045 2046 // Parse the type suffixes. 2047 while (true) { 2048 switch (Lex.getKind()) { 2049 // End of type. 2050 default: 2051 if (!AllowVoid && Result->isVoidTy()) 2052 return Error(TypeLoc, "void type only allowed for function results"); 2053 return false; 2054 2055 // Type ::= Type '*' 2056 case lltok::star: 2057 if (Result->isLabelTy()) 2058 return TokError("basic block pointers are invalid"); 2059 if (Result->isVoidTy()) 2060 return TokError("pointers to void are invalid - use i8* instead"); 2061 if (!PointerType::isValidElementType(Result)) 2062 return TokError("pointer to this type is invalid"); 2063 Result = PointerType::getUnqual(Result); 2064 Lex.Lex(); 2065 break; 2066 2067 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2068 case lltok::kw_addrspace: { 2069 if (Result->isLabelTy()) 2070 return TokError("basic block pointers are invalid"); 2071 if (Result->isVoidTy()) 2072 return TokError("pointers to void are invalid; use i8* instead"); 2073 if (!PointerType::isValidElementType(Result)) 2074 return TokError("pointer to this type is invalid"); 2075 unsigned AddrSpace; 2076 if (ParseOptionalAddrSpace(AddrSpace) || 2077 ParseToken(lltok::star, "expected '*' in address space")) 2078 return true; 2079 2080 Result = PointerType::get(Result, AddrSpace); 2081 break; 2082 } 2083 2084 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2085 case lltok::lparen: 2086 if (ParseFunctionType(Result)) 2087 return true; 2088 break; 2089 } 2090 } 2091 } 2092 2093 /// ParseParameterList 2094 /// ::= '(' ')' 2095 /// ::= '(' Arg (',' Arg)* ')' 2096 /// Arg 2097 /// ::= Type OptionalAttributes Value OptionalAttributes 2098 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2099 PerFunctionState &PFS, bool IsMustTailCall, 2100 bool InVarArgsFunc) { 2101 if (ParseToken(lltok::lparen, "expected '(' in call")) 2102 return true; 2103 2104 unsigned AttrIndex = 1; 2105 while (Lex.getKind() != lltok::rparen) { 2106 // If this isn't the first argument, we need a comma. 2107 if (!ArgList.empty() && 2108 ParseToken(lltok::comma, "expected ',' in argument list")) 2109 return true; 2110 2111 // Parse an ellipsis if this is a musttail call in a variadic function. 2112 if (Lex.getKind() == lltok::dotdotdot) { 2113 const char *Msg = "unexpected ellipsis in argument list for "; 2114 if (!IsMustTailCall) 2115 return TokError(Twine(Msg) + "non-musttail call"); 2116 if (!InVarArgsFunc) 2117 return TokError(Twine(Msg) + "musttail call in non-varargs function"); 2118 Lex.Lex(); // Lex the '...', it is purely for readability. 2119 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2120 } 2121 2122 // Parse the argument. 2123 LocTy ArgLoc; 2124 Type *ArgTy = nullptr; 2125 AttrBuilder ArgAttrs; 2126 Value *V; 2127 if (ParseType(ArgTy, ArgLoc)) 2128 return true; 2129 2130 if (ArgTy->isMetadataTy()) { 2131 if (ParseMetadataAsValue(V, PFS)) 2132 return true; 2133 } else { 2134 // Otherwise, handle normal operands. 2135 if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS)) 2136 return true; 2137 } 2138 ArgList.push_back(ParamInfo(ArgLoc, V, AttributeSet::get(V->getContext(), 2139 AttrIndex++, 2140 ArgAttrs))); 2141 } 2142 2143 if (IsMustTailCall && InVarArgsFunc) 2144 return TokError("expected '...' at end of argument list for musttail call " 2145 "in varargs function"); 2146 2147 Lex.Lex(); // Lex the ')'. 2148 return false; 2149 } 2150 2151 /// ParseOptionalOperandBundles 2152 /// ::= /*empty*/ 2153 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2154 /// 2155 /// OperandBundle 2156 /// ::= bundle-tag '(' ')' 2157 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2158 /// 2159 /// bundle-tag ::= String Constant 2160 bool LLParser::ParseOptionalOperandBundles( 2161 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2162 LocTy BeginLoc = Lex.getLoc(); 2163 if (!EatIfPresent(lltok::lsquare)) 2164 return false; 2165 2166 while (Lex.getKind() != lltok::rsquare) { 2167 // If this isn't the first operand bundle, we need a comma. 2168 if (!BundleList.empty() && 2169 ParseToken(lltok::comma, "expected ',' in input list")) 2170 return true; 2171 2172 std::string Tag; 2173 if (ParseStringConstant(Tag)) 2174 return true; 2175 2176 if (ParseToken(lltok::lparen, "expected '(' in operand bundle")) 2177 return true; 2178 2179 std::vector<Value *> Inputs; 2180 while (Lex.getKind() != lltok::rparen) { 2181 // If this isn't the first input, we need a comma. 2182 if (!Inputs.empty() && 2183 ParseToken(lltok::comma, "expected ',' in input list")) 2184 return true; 2185 2186 Type *Ty = nullptr; 2187 Value *Input = nullptr; 2188 if (ParseType(Ty) || ParseValue(Ty, Input, PFS)) 2189 return true; 2190 Inputs.push_back(Input); 2191 } 2192 2193 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2194 2195 Lex.Lex(); // Lex the ')'. 2196 } 2197 2198 if (BundleList.empty()) 2199 return Error(BeginLoc, "operand bundle set must not be empty"); 2200 2201 Lex.Lex(); // Lex the ']'. 2202 return false; 2203 } 2204 2205 /// ParseArgumentList - Parse the argument list for a function type or function 2206 /// prototype. 2207 /// ::= '(' ArgTypeListI ')' 2208 /// ArgTypeListI 2209 /// ::= /*empty*/ 2210 /// ::= '...' 2211 /// ::= ArgTypeList ',' '...' 2212 /// ::= ArgType (',' ArgType)* 2213 /// 2214 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2215 bool &isVarArg){ 2216 isVarArg = false; 2217 assert(Lex.getKind() == lltok::lparen); 2218 Lex.Lex(); // eat the (. 2219 2220 if (Lex.getKind() == lltok::rparen) { 2221 // empty 2222 } else if (Lex.getKind() == lltok::dotdotdot) { 2223 isVarArg = true; 2224 Lex.Lex(); 2225 } else { 2226 LocTy TypeLoc = Lex.getLoc(); 2227 Type *ArgTy = nullptr; 2228 AttrBuilder Attrs; 2229 std::string Name; 2230 2231 if (ParseType(ArgTy) || 2232 ParseOptionalParamAttrs(Attrs)) return true; 2233 2234 if (ArgTy->isVoidTy()) 2235 return Error(TypeLoc, "argument can not have void type"); 2236 2237 if (Lex.getKind() == lltok::LocalVar) { 2238 Name = Lex.getStrVal(); 2239 Lex.Lex(); 2240 } 2241 2242 if (!FunctionType::isValidArgumentType(ArgTy)) 2243 return Error(TypeLoc, "invalid type for function argument"); 2244 2245 unsigned AttrIndex = 1; 2246 ArgList.emplace_back(TypeLoc, ArgTy, AttributeSet::get(ArgTy->getContext(), 2247 AttrIndex++, Attrs), 2248 std::move(Name)); 2249 2250 while (EatIfPresent(lltok::comma)) { 2251 // Handle ... at end of arg list. 2252 if (EatIfPresent(lltok::dotdotdot)) { 2253 isVarArg = true; 2254 break; 2255 } 2256 2257 // Otherwise must be an argument type. 2258 TypeLoc = Lex.getLoc(); 2259 if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true; 2260 2261 if (ArgTy->isVoidTy()) 2262 return Error(TypeLoc, "argument can not have void type"); 2263 2264 if (Lex.getKind() == lltok::LocalVar) { 2265 Name = Lex.getStrVal(); 2266 Lex.Lex(); 2267 } else { 2268 Name = ""; 2269 } 2270 2271 if (!ArgTy->isFirstClassType()) 2272 return Error(TypeLoc, "invalid type for function argument"); 2273 2274 ArgList.emplace_back( 2275 TypeLoc, ArgTy, 2276 AttributeSet::get(ArgTy->getContext(), AttrIndex++, Attrs), 2277 std::move(Name)); 2278 } 2279 } 2280 2281 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2282 } 2283 2284 /// ParseFunctionType 2285 /// ::= Type ArgumentList OptionalAttrs 2286 bool LLParser::ParseFunctionType(Type *&Result) { 2287 assert(Lex.getKind() == lltok::lparen); 2288 2289 if (!FunctionType::isValidReturnType(Result)) 2290 return TokError("invalid function return type"); 2291 2292 SmallVector<ArgInfo, 8> ArgList; 2293 bool isVarArg; 2294 if (ParseArgumentList(ArgList, isVarArg)) 2295 return true; 2296 2297 // Reject names on the arguments lists. 2298 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2299 if (!ArgList[i].Name.empty()) 2300 return Error(ArgList[i].Loc, "argument name invalid in function type"); 2301 if (ArgList[i].Attrs.hasAttributes(i + 1)) 2302 return Error(ArgList[i].Loc, 2303 "argument attributes invalid in function type"); 2304 } 2305 2306 SmallVector<Type*, 16> ArgListTy; 2307 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2308 ArgListTy.push_back(ArgList[i].Ty); 2309 2310 Result = FunctionType::get(Result, ArgListTy, isVarArg); 2311 return false; 2312 } 2313 2314 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into 2315 /// other structs. 2316 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) { 2317 SmallVector<Type*, 8> Elts; 2318 if (ParseStructBody(Elts)) return true; 2319 2320 Result = StructType::get(Context, Elts, Packed); 2321 return false; 2322 } 2323 2324 /// ParseStructDefinition - Parse a struct in a 'type' definition. 2325 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name, 2326 std::pair<Type*, LocTy> &Entry, 2327 Type *&ResultTy) { 2328 // If the type was already defined, diagnose the redefinition. 2329 if (Entry.first && !Entry.second.isValid()) 2330 return Error(TypeLoc, "redefinition of type"); 2331 2332 // If we have opaque, just return without filling in the definition for the 2333 // struct. This counts as a definition as far as the .ll file goes. 2334 if (EatIfPresent(lltok::kw_opaque)) { 2335 // This type is being defined, so clear the location to indicate this. 2336 Entry.second = SMLoc(); 2337 2338 // If this type number has never been uttered, create it. 2339 if (!Entry.first) 2340 Entry.first = StructType::create(Context, Name); 2341 ResultTy = Entry.first; 2342 return false; 2343 } 2344 2345 // If the type starts with '<', then it is either a packed struct or a vector. 2346 bool isPacked = EatIfPresent(lltok::less); 2347 2348 // If we don't have a struct, then we have a random type alias, which we 2349 // accept for compatibility with old files. These types are not allowed to be 2350 // forward referenced and not allowed to be recursive. 2351 if (Lex.getKind() != lltok::lbrace) { 2352 if (Entry.first) 2353 return Error(TypeLoc, "forward references to non-struct type"); 2354 2355 ResultTy = nullptr; 2356 if (isPacked) 2357 return ParseArrayVectorType(ResultTy, true); 2358 return ParseType(ResultTy); 2359 } 2360 2361 // This type is being defined, so clear the location to indicate this. 2362 Entry.second = SMLoc(); 2363 2364 // If this type number has never been uttered, create it. 2365 if (!Entry.first) 2366 Entry.first = StructType::create(Context, Name); 2367 2368 StructType *STy = cast<StructType>(Entry.first); 2369 2370 SmallVector<Type*, 8> Body; 2371 if (ParseStructBody(Body) || 2372 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct"))) 2373 return true; 2374 2375 STy->setBody(Body, isPacked); 2376 ResultTy = STy; 2377 return false; 2378 } 2379 2380 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2381 /// StructType 2382 /// ::= '{' '}' 2383 /// ::= '{' Type (',' Type)* '}' 2384 /// ::= '<' '{' '}' '>' 2385 /// ::= '<' '{' Type (',' Type)* '}' '>' 2386 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) { 2387 assert(Lex.getKind() == lltok::lbrace); 2388 Lex.Lex(); // Consume the '{' 2389 2390 // Handle the empty struct. 2391 if (EatIfPresent(lltok::rbrace)) 2392 return false; 2393 2394 LocTy EltTyLoc = Lex.getLoc(); 2395 Type *Ty = nullptr; 2396 if (ParseType(Ty)) return true; 2397 Body.push_back(Ty); 2398 2399 if (!StructType::isValidElementType(Ty)) 2400 return Error(EltTyLoc, "invalid element type for struct"); 2401 2402 while (EatIfPresent(lltok::comma)) { 2403 EltTyLoc = Lex.getLoc(); 2404 if (ParseType(Ty)) return true; 2405 2406 if (!StructType::isValidElementType(Ty)) 2407 return Error(EltTyLoc, "invalid element type for struct"); 2408 2409 Body.push_back(Ty); 2410 } 2411 2412 return ParseToken(lltok::rbrace, "expected '}' at end of struct"); 2413 } 2414 2415 /// ParseArrayVectorType - Parse an array or vector type, assuming the first 2416 /// token has already been consumed. 2417 /// Type 2418 /// ::= '[' APSINTVAL 'x' Types ']' 2419 /// ::= '<' APSINTVAL 'x' Types '>' 2420 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) { 2421 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2422 Lex.getAPSIntVal().getBitWidth() > 64) 2423 return TokError("expected number in address space"); 2424 2425 LocTy SizeLoc = Lex.getLoc(); 2426 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2427 Lex.Lex(); 2428 2429 if (ParseToken(lltok::kw_x, "expected 'x' after element count")) 2430 return true; 2431 2432 LocTy TypeLoc = Lex.getLoc(); 2433 Type *EltTy = nullptr; 2434 if (ParseType(EltTy)) return true; 2435 2436 if (ParseToken(isVector ? lltok::greater : lltok::rsquare, 2437 "expected end of sequential type")) 2438 return true; 2439 2440 if (isVector) { 2441 if (Size == 0) 2442 return Error(SizeLoc, "zero element vector is illegal"); 2443 if ((unsigned)Size != Size) 2444 return Error(SizeLoc, "size too large for vector"); 2445 if (!VectorType::isValidElementType(EltTy)) 2446 return Error(TypeLoc, "invalid vector element type"); 2447 Result = VectorType::get(EltTy, unsigned(Size)); 2448 } else { 2449 if (!ArrayType::isValidElementType(EltTy)) 2450 return Error(TypeLoc, "invalid array element type"); 2451 Result = ArrayType::get(EltTy, Size); 2452 } 2453 return false; 2454 } 2455 2456 //===----------------------------------------------------------------------===// 2457 // Function Semantic Analysis. 2458 //===----------------------------------------------------------------------===// 2459 2460 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 2461 int functionNumber) 2462 : P(p), F(f), FunctionNumber(functionNumber) { 2463 2464 // Insert unnamed arguments into the NumberedVals list. 2465 for (Argument &A : F.args()) 2466 if (!A.hasName()) 2467 NumberedVals.push_back(&A); 2468 } 2469 2470 LLParser::PerFunctionState::~PerFunctionState() { 2471 // If there were any forward referenced non-basicblock values, delete them. 2472 2473 for (const auto &P : ForwardRefVals) { 2474 if (isa<BasicBlock>(P.second.first)) 2475 continue; 2476 P.second.first->replaceAllUsesWith( 2477 UndefValue::get(P.second.first->getType())); 2478 delete P.second.first; 2479 } 2480 2481 for (const auto &P : ForwardRefValIDs) { 2482 if (isa<BasicBlock>(P.second.first)) 2483 continue; 2484 P.second.first->replaceAllUsesWith( 2485 UndefValue::get(P.second.first->getType())); 2486 delete P.second.first; 2487 } 2488 } 2489 2490 bool LLParser::PerFunctionState::FinishFunction() { 2491 if (!ForwardRefVals.empty()) 2492 return P.Error(ForwardRefVals.begin()->second.second, 2493 "use of undefined value '%" + ForwardRefVals.begin()->first + 2494 "'"); 2495 if (!ForwardRefValIDs.empty()) 2496 return P.Error(ForwardRefValIDs.begin()->second.second, 2497 "use of undefined value '%" + 2498 Twine(ForwardRefValIDs.begin()->first) + "'"); 2499 return false; 2500 } 2501 2502 /// GetVal - Get a value with the specified name or ID, creating a 2503 /// forward reference record if needed. This can return null if the value 2504 /// exists but does not have the right type. 2505 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty, 2506 LocTy Loc) { 2507 // Look this name up in the normal function symbol table. 2508 Value *Val = F.getValueSymbolTable()->lookup(Name); 2509 2510 // If this is a forward reference for the value, see if we already created a 2511 // forward ref record. 2512 if (!Val) { 2513 auto I = ForwardRefVals.find(Name); 2514 if (I != ForwardRefVals.end()) 2515 Val = I->second.first; 2516 } 2517 2518 // If we have the value in the symbol table or fwd-ref table, return it. 2519 if (Val) { 2520 if (Val->getType() == Ty) return Val; 2521 if (Ty->isLabelTy()) 2522 P.Error(Loc, "'%" + Name + "' is not a basic block"); 2523 else 2524 P.Error(Loc, "'%" + Name + "' defined with type '" + 2525 getTypeString(Val->getType()) + "'"); 2526 return nullptr; 2527 } 2528 2529 // Don't make placeholders with invalid type. 2530 if (!Ty->isFirstClassType()) { 2531 P.Error(Loc, "invalid use of a non-first-class type"); 2532 return nullptr; 2533 } 2534 2535 // Otherwise, create a new forward reference for this value and remember it. 2536 Value *FwdVal; 2537 if (Ty->isLabelTy()) { 2538 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 2539 } else { 2540 FwdVal = new Argument(Ty, Name); 2541 } 2542 2543 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 2544 return FwdVal; 2545 } 2546 2547 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc) { 2548 // Look this name up in the normal function symbol table. 2549 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 2550 2551 // If this is a forward reference for the value, see if we already created a 2552 // forward ref record. 2553 if (!Val) { 2554 auto I = ForwardRefValIDs.find(ID); 2555 if (I != ForwardRefValIDs.end()) 2556 Val = I->second.first; 2557 } 2558 2559 // If we have the value in the symbol table or fwd-ref table, return it. 2560 if (Val) { 2561 if (Val->getType() == Ty) return Val; 2562 if (Ty->isLabelTy()) 2563 P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block"); 2564 else 2565 P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" + 2566 getTypeString(Val->getType()) + "'"); 2567 return nullptr; 2568 } 2569 2570 if (!Ty->isFirstClassType()) { 2571 P.Error(Loc, "invalid use of a non-first-class type"); 2572 return nullptr; 2573 } 2574 2575 // Otherwise, create a new forward reference for this value and remember it. 2576 Value *FwdVal; 2577 if (Ty->isLabelTy()) { 2578 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 2579 } else { 2580 FwdVal = new Argument(Ty); 2581 } 2582 2583 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 2584 return FwdVal; 2585 } 2586 2587 /// SetInstName - After an instruction is parsed and inserted into its 2588 /// basic block, this installs its name. 2589 bool LLParser::PerFunctionState::SetInstName(int NameID, 2590 const std::string &NameStr, 2591 LocTy NameLoc, Instruction *Inst) { 2592 // If this instruction has void type, it cannot have a name or ID specified. 2593 if (Inst->getType()->isVoidTy()) { 2594 if (NameID != -1 || !NameStr.empty()) 2595 return P.Error(NameLoc, "instructions returning void cannot have a name"); 2596 return false; 2597 } 2598 2599 // If this was a numbered instruction, verify that the instruction is the 2600 // expected value and resolve any forward references. 2601 if (NameStr.empty()) { 2602 // If neither a name nor an ID was specified, just use the next ID. 2603 if (NameID == -1) 2604 NameID = NumberedVals.size(); 2605 2606 if (unsigned(NameID) != NumberedVals.size()) 2607 return P.Error(NameLoc, "instruction expected to be numbered '%" + 2608 Twine(NumberedVals.size()) + "'"); 2609 2610 auto FI = ForwardRefValIDs.find(NameID); 2611 if (FI != ForwardRefValIDs.end()) { 2612 Value *Sentinel = FI->second.first; 2613 if (Sentinel->getType() != Inst->getType()) 2614 return P.Error(NameLoc, "instruction forward referenced with type '" + 2615 getTypeString(FI->second.first->getType()) + "'"); 2616 2617 Sentinel->replaceAllUsesWith(Inst); 2618 delete Sentinel; 2619 ForwardRefValIDs.erase(FI); 2620 } 2621 2622 NumberedVals.push_back(Inst); 2623 return false; 2624 } 2625 2626 // Otherwise, the instruction had a name. Resolve forward refs and set it. 2627 auto FI = ForwardRefVals.find(NameStr); 2628 if (FI != ForwardRefVals.end()) { 2629 Value *Sentinel = FI->second.first; 2630 if (Sentinel->getType() != Inst->getType()) 2631 return P.Error(NameLoc, "instruction forward referenced with type '" + 2632 getTypeString(FI->second.first->getType()) + "'"); 2633 2634 Sentinel->replaceAllUsesWith(Inst); 2635 delete Sentinel; 2636 ForwardRefVals.erase(FI); 2637 } 2638 2639 // Set the name on the instruction. 2640 Inst->setName(NameStr); 2641 2642 if (Inst->getName() != NameStr) 2643 return P.Error(NameLoc, "multiple definition of local value named '" + 2644 NameStr + "'"); 2645 return false; 2646 } 2647 2648 /// GetBB - Get a basic block with the specified name or ID, creating a 2649 /// forward reference record if needed. 2650 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, 2651 LocTy Loc) { 2652 return dyn_cast_or_null<BasicBlock>(GetVal(Name, 2653 Type::getLabelTy(F.getContext()), Loc)); 2654 } 2655 2656 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { 2657 return dyn_cast_or_null<BasicBlock>(GetVal(ID, 2658 Type::getLabelTy(F.getContext()), Loc)); 2659 } 2660 2661 /// DefineBB - Define the specified basic block, which is either named or 2662 /// unnamed. If there is an error, this returns null otherwise it returns 2663 /// the block being defined. 2664 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, 2665 LocTy Loc) { 2666 BasicBlock *BB; 2667 if (Name.empty()) 2668 BB = GetBB(NumberedVals.size(), Loc); 2669 else 2670 BB = GetBB(Name, Loc); 2671 if (!BB) return nullptr; // Already diagnosed error. 2672 2673 // Move the block to the end of the function. Forward ref'd blocks are 2674 // inserted wherever they happen to be referenced. 2675 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 2676 2677 // Remove the block from forward ref sets. 2678 if (Name.empty()) { 2679 ForwardRefValIDs.erase(NumberedVals.size()); 2680 NumberedVals.push_back(BB); 2681 } else { 2682 // BB forward references are already in the function symbol table. 2683 ForwardRefVals.erase(Name); 2684 } 2685 2686 return BB; 2687 } 2688 2689 //===----------------------------------------------------------------------===// 2690 // Constants. 2691 //===----------------------------------------------------------------------===// 2692 2693 /// ParseValID - Parse an abstract value that doesn't necessarily have a 2694 /// type implied. For example, if we parse "4" we don't know what integer type 2695 /// it has. The value will later be combined with its type and checked for 2696 /// sanity. PFS is used to convert function-local operands of metadata (since 2697 /// metadata operands are not just parsed here but also converted to values). 2698 /// PFS can be null when we are not parsing metadata values inside a function. 2699 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { 2700 ID.Loc = Lex.getLoc(); 2701 switch (Lex.getKind()) { 2702 default: return TokError("expected value token"); 2703 case lltok::GlobalID: // @42 2704 ID.UIntVal = Lex.getUIntVal(); 2705 ID.Kind = ValID::t_GlobalID; 2706 break; 2707 case lltok::GlobalVar: // @foo 2708 ID.StrVal = Lex.getStrVal(); 2709 ID.Kind = ValID::t_GlobalName; 2710 break; 2711 case lltok::LocalVarID: // %42 2712 ID.UIntVal = Lex.getUIntVal(); 2713 ID.Kind = ValID::t_LocalID; 2714 break; 2715 case lltok::LocalVar: // %foo 2716 ID.StrVal = Lex.getStrVal(); 2717 ID.Kind = ValID::t_LocalName; 2718 break; 2719 case lltok::APSInt: 2720 ID.APSIntVal = Lex.getAPSIntVal(); 2721 ID.Kind = ValID::t_APSInt; 2722 break; 2723 case lltok::APFloat: 2724 ID.APFloatVal = Lex.getAPFloatVal(); 2725 ID.Kind = ValID::t_APFloat; 2726 break; 2727 case lltok::kw_true: 2728 ID.ConstantVal = ConstantInt::getTrue(Context); 2729 ID.Kind = ValID::t_Constant; 2730 break; 2731 case lltok::kw_false: 2732 ID.ConstantVal = ConstantInt::getFalse(Context); 2733 ID.Kind = ValID::t_Constant; 2734 break; 2735 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 2736 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 2737 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 2738 case lltok::kw_none: ID.Kind = ValID::t_None; break; 2739 2740 case lltok::lbrace: { 2741 // ValID ::= '{' ConstVector '}' 2742 Lex.Lex(); 2743 SmallVector<Constant*, 16> Elts; 2744 if (ParseGlobalValueVector(Elts) || 2745 ParseToken(lltok::rbrace, "expected end of struct constant")) 2746 return true; 2747 2748 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 2749 ID.UIntVal = Elts.size(); 2750 memcpy(ID.ConstantStructElts.get(), Elts.data(), 2751 Elts.size() * sizeof(Elts[0])); 2752 ID.Kind = ValID::t_ConstantStruct; 2753 return false; 2754 } 2755 case lltok::less: { 2756 // ValID ::= '<' ConstVector '>' --> Vector. 2757 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 2758 Lex.Lex(); 2759 bool isPackedStruct = EatIfPresent(lltok::lbrace); 2760 2761 SmallVector<Constant*, 16> Elts; 2762 LocTy FirstEltLoc = Lex.getLoc(); 2763 if (ParseGlobalValueVector(Elts) || 2764 (isPackedStruct && 2765 ParseToken(lltok::rbrace, "expected end of packed struct")) || 2766 ParseToken(lltok::greater, "expected end of constant")) 2767 return true; 2768 2769 if (isPackedStruct) { 2770 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 2771 memcpy(ID.ConstantStructElts.get(), Elts.data(), 2772 Elts.size() * sizeof(Elts[0])); 2773 ID.UIntVal = Elts.size(); 2774 ID.Kind = ValID::t_PackedConstantStruct; 2775 return false; 2776 } 2777 2778 if (Elts.empty()) 2779 return Error(ID.Loc, "constant vector must not be empty"); 2780 2781 if (!Elts[0]->getType()->isIntegerTy() && 2782 !Elts[0]->getType()->isFloatingPointTy() && 2783 !Elts[0]->getType()->isPointerTy()) 2784 return Error(FirstEltLoc, 2785 "vector elements must have integer, pointer or floating point type"); 2786 2787 // Verify that all the vector elements have the same type. 2788 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 2789 if (Elts[i]->getType() != Elts[0]->getType()) 2790 return Error(FirstEltLoc, 2791 "vector element #" + Twine(i) + 2792 " is not of type '" + getTypeString(Elts[0]->getType())); 2793 2794 ID.ConstantVal = ConstantVector::get(Elts); 2795 ID.Kind = ValID::t_Constant; 2796 return false; 2797 } 2798 case lltok::lsquare: { // Array Constant 2799 Lex.Lex(); 2800 SmallVector<Constant*, 16> Elts; 2801 LocTy FirstEltLoc = Lex.getLoc(); 2802 if (ParseGlobalValueVector(Elts) || 2803 ParseToken(lltok::rsquare, "expected end of array constant")) 2804 return true; 2805 2806 // Handle empty element. 2807 if (Elts.empty()) { 2808 // Use undef instead of an array because it's inconvenient to determine 2809 // the element type at this point, there being no elements to examine. 2810 ID.Kind = ValID::t_EmptyArray; 2811 return false; 2812 } 2813 2814 if (!Elts[0]->getType()->isFirstClassType()) 2815 return Error(FirstEltLoc, "invalid array element type: " + 2816 getTypeString(Elts[0]->getType())); 2817 2818 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 2819 2820 // Verify all elements are correct type! 2821 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 2822 if (Elts[i]->getType() != Elts[0]->getType()) 2823 return Error(FirstEltLoc, 2824 "array element #" + Twine(i) + 2825 " is not of type '" + getTypeString(Elts[0]->getType())); 2826 } 2827 2828 ID.ConstantVal = ConstantArray::get(ATy, Elts); 2829 ID.Kind = ValID::t_Constant; 2830 return false; 2831 } 2832 case lltok::kw_c: // c "foo" 2833 Lex.Lex(); 2834 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 2835 false); 2836 if (ParseToken(lltok::StringConstant, "expected string")) return true; 2837 ID.Kind = ValID::t_Constant; 2838 return false; 2839 2840 case lltok::kw_asm: { 2841 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 2842 // STRINGCONSTANT 2843 bool HasSideEffect, AlignStack, AsmDialect; 2844 Lex.Lex(); 2845 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 2846 ParseOptionalToken(lltok::kw_alignstack, AlignStack) || 2847 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 2848 ParseStringConstant(ID.StrVal) || 2849 ParseToken(lltok::comma, "expected comma in inline asm expression") || 2850 ParseToken(lltok::StringConstant, "expected constraint string")) 2851 return true; 2852 ID.StrVal2 = Lex.getStrVal(); 2853 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) | 2854 (unsigned(AsmDialect)<<2); 2855 ID.Kind = ValID::t_InlineAsm; 2856 return false; 2857 } 2858 2859 case lltok::kw_blockaddress: { 2860 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 2861 Lex.Lex(); 2862 2863 ValID Fn, Label; 2864 2865 if (ParseToken(lltok::lparen, "expected '(' in block address expression") || 2866 ParseValID(Fn) || 2867 ParseToken(lltok::comma, "expected comma in block address expression")|| 2868 ParseValID(Label) || 2869 ParseToken(lltok::rparen, "expected ')' in block address expression")) 2870 return true; 2871 2872 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 2873 return Error(Fn.Loc, "expected function name in blockaddress"); 2874 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 2875 return Error(Label.Loc, "expected basic block name in blockaddress"); 2876 2877 // Try to find the function (but skip it if it's forward-referenced). 2878 GlobalValue *GV = nullptr; 2879 if (Fn.Kind == ValID::t_GlobalID) { 2880 if (Fn.UIntVal < NumberedVals.size()) 2881 GV = NumberedVals[Fn.UIntVal]; 2882 } else if (!ForwardRefVals.count(Fn.StrVal)) { 2883 GV = M->getNamedValue(Fn.StrVal); 2884 } 2885 Function *F = nullptr; 2886 if (GV) { 2887 // Confirm that it's actually a function with a definition. 2888 if (!isa<Function>(GV)) 2889 return Error(Fn.Loc, "expected function name in blockaddress"); 2890 F = cast<Function>(GV); 2891 if (F->isDeclaration()) 2892 return Error(Fn.Loc, "cannot take blockaddress inside a declaration"); 2893 } 2894 2895 if (!F) { 2896 // Make a global variable as a placeholder for this reference. 2897 GlobalValue *&FwdRef = 2898 ForwardRefBlockAddresses.insert(std::make_pair( 2899 std::move(Fn), 2900 std::map<ValID, GlobalValue *>())) 2901 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 2902 .first->second; 2903 if (!FwdRef) 2904 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 2905 GlobalValue::InternalLinkage, nullptr, ""); 2906 ID.ConstantVal = FwdRef; 2907 ID.Kind = ValID::t_Constant; 2908 return false; 2909 } 2910 2911 // We found the function; now find the basic block. Don't use PFS, since we 2912 // might be inside a constant expression. 2913 BasicBlock *BB; 2914 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 2915 if (Label.Kind == ValID::t_LocalID) 2916 BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc); 2917 else 2918 BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc); 2919 if (!BB) 2920 return Error(Label.Loc, "referenced value is not a basic block"); 2921 } else { 2922 if (Label.Kind == ValID::t_LocalID) 2923 return Error(Label.Loc, "cannot take address of numeric label after " 2924 "the function is defined"); 2925 BB = dyn_cast_or_null<BasicBlock>( 2926 F->getValueSymbolTable()->lookup(Label.StrVal)); 2927 if (!BB) 2928 return Error(Label.Loc, "referenced value is not a basic block"); 2929 } 2930 2931 ID.ConstantVal = BlockAddress::get(F, BB); 2932 ID.Kind = ValID::t_Constant; 2933 return false; 2934 } 2935 2936 case lltok::kw_trunc: 2937 case lltok::kw_zext: 2938 case lltok::kw_sext: 2939 case lltok::kw_fptrunc: 2940 case lltok::kw_fpext: 2941 case lltok::kw_bitcast: 2942 case lltok::kw_addrspacecast: 2943 case lltok::kw_uitofp: 2944 case lltok::kw_sitofp: 2945 case lltok::kw_fptoui: 2946 case lltok::kw_fptosi: 2947 case lltok::kw_inttoptr: 2948 case lltok::kw_ptrtoint: { 2949 unsigned Opc = Lex.getUIntVal(); 2950 Type *DestTy = nullptr; 2951 Constant *SrcVal; 2952 Lex.Lex(); 2953 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || 2954 ParseGlobalTypeAndValue(SrcVal) || 2955 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 2956 ParseType(DestTy) || 2957 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 2958 return true; 2959 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 2960 return Error(ID.Loc, "invalid cast opcode for cast from '" + 2961 getTypeString(SrcVal->getType()) + "' to '" + 2962 getTypeString(DestTy) + "'"); 2963 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 2964 SrcVal, DestTy); 2965 ID.Kind = ValID::t_Constant; 2966 return false; 2967 } 2968 case lltok::kw_extractvalue: { 2969 Lex.Lex(); 2970 Constant *Val; 2971 SmallVector<unsigned, 4> Indices; 2972 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| 2973 ParseGlobalTypeAndValue(Val) || 2974 ParseIndexList(Indices) || 2975 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 2976 return true; 2977 2978 if (!Val->getType()->isAggregateType()) 2979 return Error(ID.Loc, "extractvalue operand must be aggregate type"); 2980 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 2981 return Error(ID.Loc, "invalid indices for extractvalue"); 2982 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 2983 ID.Kind = ValID::t_Constant; 2984 return false; 2985 } 2986 case lltok::kw_insertvalue: { 2987 Lex.Lex(); 2988 Constant *Val0, *Val1; 2989 SmallVector<unsigned, 4> Indices; 2990 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| 2991 ParseGlobalTypeAndValue(Val0) || 2992 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| 2993 ParseGlobalTypeAndValue(Val1) || 2994 ParseIndexList(Indices) || 2995 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 2996 return true; 2997 if (!Val0->getType()->isAggregateType()) 2998 return Error(ID.Loc, "insertvalue operand must be aggregate type"); 2999 Type *IndexedType = 3000 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 3001 if (!IndexedType) 3002 return Error(ID.Loc, "invalid indices for insertvalue"); 3003 if (IndexedType != Val1->getType()) 3004 return Error(ID.Loc, "insertvalue operand and field disagree in type: '" + 3005 getTypeString(Val1->getType()) + 3006 "' instead of '" + getTypeString(IndexedType) + 3007 "'"); 3008 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 3009 ID.Kind = ValID::t_Constant; 3010 return false; 3011 } 3012 case lltok::kw_icmp: 3013 case lltok::kw_fcmp: { 3014 unsigned PredVal, Opc = Lex.getUIntVal(); 3015 Constant *Val0, *Val1; 3016 Lex.Lex(); 3017 if (ParseCmpPredicate(PredVal, Opc) || 3018 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || 3019 ParseGlobalTypeAndValue(Val0) || 3020 ParseToken(lltok::comma, "expected comma in compare constantexpr") || 3021 ParseGlobalTypeAndValue(Val1) || 3022 ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) 3023 return true; 3024 3025 if (Val0->getType() != Val1->getType()) 3026 return Error(ID.Loc, "compare operands must have the same type"); 3027 3028 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 3029 3030 if (Opc == Instruction::FCmp) { 3031 if (!Val0->getType()->isFPOrFPVectorTy()) 3032 return Error(ID.Loc, "fcmp requires floating point operands"); 3033 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3034 } else { 3035 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3036 if (!Val0->getType()->isIntOrIntVectorTy() && 3037 !Val0->getType()->getScalarType()->isPointerTy()) 3038 return Error(ID.Loc, "icmp requires pointer or integer operands"); 3039 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3040 } 3041 ID.Kind = ValID::t_Constant; 3042 return false; 3043 } 3044 3045 // Binary Operators. 3046 case lltok::kw_add: 3047 case lltok::kw_fadd: 3048 case lltok::kw_sub: 3049 case lltok::kw_fsub: 3050 case lltok::kw_mul: 3051 case lltok::kw_fmul: 3052 case lltok::kw_udiv: 3053 case lltok::kw_sdiv: 3054 case lltok::kw_fdiv: 3055 case lltok::kw_urem: 3056 case lltok::kw_srem: 3057 case lltok::kw_frem: 3058 case lltok::kw_shl: 3059 case lltok::kw_lshr: 3060 case lltok::kw_ashr: { 3061 bool NUW = false; 3062 bool NSW = false; 3063 bool Exact = false; 3064 unsigned Opc = Lex.getUIntVal(); 3065 Constant *Val0, *Val1; 3066 Lex.Lex(); 3067 LocTy ModifierLoc = Lex.getLoc(); 3068 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3069 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3070 if (EatIfPresent(lltok::kw_nuw)) 3071 NUW = true; 3072 if (EatIfPresent(lltok::kw_nsw)) { 3073 NSW = true; 3074 if (EatIfPresent(lltok::kw_nuw)) 3075 NUW = true; 3076 } 3077 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3078 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3079 if (EatIfPresent(lltok::kw_exact)) 3080 Exact = true; 3081 } 3082 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3083 ParseGlobalTypeAndValue(Val0) || 3084 ParseToken(lltok::comma, "expected comma in binary constantexpr") || 3085 ParseGlobalTypeAndValue(Val1) || 3086 ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3087 return true; 3088 if (Val0->getType() != Val1->getType()) 3089 return Error(ID.Loc, "operands of constexpr must have same type"); 3090 if (!Val0->getType()->isIntOrIntVectorTy()) { 3091 if (NUW) 3092 return Error(ModifierLoc, "nuw only applies to integer operations"); 3093 if (NSW) 3094 return Error(ModifierLoc, "nsw only applies to integer operations"); 3095 } 3096 // Check that the type is valid for the operator. 3097 switch (Opc) { 3098 case Instruction::Add: 3099 case Instruction::Sub: 3100 case Instruction::Mul: 3101 case Instruction::UDiv: 3102 case Instruction::SDiv: 3103 case Instruction::URem: 3104 case Instruction::SRem: 3105 case Instruction::Shl: 3106 case Instruction::AShr: 3107 case Instruction::LShr: 3108 if (!Val0->getType()->isIntOrIntVectorTy()) 3109 return Error(ID.Loc, "constexpr requires integer operands"); 3110 break; 3111 case Instruction::FAdd: 3112 case Instruction::FSub: 3113 case Instruction::FMul: 3114 case Instruction::FDiv: 3115 case Instruction::FRem: 3116 if (!Val0->getType()->isFPOrFPVectorTy()) 3117 return Error(ID.Loc, "constexpr requires fp operands"); 3118 break; 3119 default: llvm_unreachable("Unknown binary operator!"); 3120 } 3121 unsigned Flags = 0; 3122 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3123 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3124 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3125 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3126 ID.ConstantVal = C; 3127 ID.Kind = ValID::t_Constant; 3128 return false; 3129 } 3130 3131 // Logical Operations 3132 case lltok::kw_and: 3133 case lltok::kw_or: 3134 case lltok::kw_xor: { 3135 unsigned Opc = Lex.getUIntVal(); 3136 Constant *Val0, *Val1; 3137 Lex.Lex(); 3138 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3139 ParseGlobalTypeAndValue(Val0) || 3140 ParseToken(lltok::comma, "expected comma in logical constantexpr") || 3141 ParseGlobalTypeAndValue(Val1) || 3142 ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3143 return true; 3144 if (Val0->getType() != Val1->getType()) 3145 return Error(ID.Loc, "operands of constexpr must have same type"); 3146 if (!Val0->getType()->isIntOrIntVectorTy()) 3147 return Error(ID.Loc, 3148 "constexpr requires integer or integer vector operands"); 3149 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3150 ID.Kind = ValID::t_Constant; 3151 return false; 3152 } 3153 3154 case lltok::kw_getelementptr: 3155 case lltok::kw_shufflevector: 3156 case lltok::kw_insertelement: 3157 case lltok::kw_extractelement: 3158 case lltok::kw_select: { 3159 unsigned Opc = Lex.getUIntVal(); 3160 SmallVector<Constant*, 16> Elts; 3161 bool InBounds = false; 3162 Type *Ty; 3163 Lex.Lex(); 3164 3165 if (Opc == Instruction::GetElementPtr) 3166 InBounds = EatIfPresent(lltok::kw_inbounds); 3167 3168 if (ParseToken(lltok::lparen, "expected '(' in constantexpr")) 3169 return true; 3170 3171 LocTy ExplicitTypeLoc = Lex.getLoc(); 3172 if (Opc == Instruction::GetElementPtr) { 3173 if (ParseType(Ty) || 3174 ParseToken(lltok::comma, "expected comma after getelementptr's type")) 3175 return true; 3176 } 3177 3178 Optional<unsigned> InRangeOp; 3179 if (ParseGlobalValueVector( 3180 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) || 3181 ParseToken(lltok::rparen, "expected ')' in constantexpr")) 3182 return true; 3183 3184 if (Opc == Instruction::GetElementPtr) { 3185 if (Elts.size() == 0 || 3186 !Elts[0]->getType()->getScalarType()->isPointerTy()) 3187 return Error(ID.Loc, "base of getelementptr must be a pointer"); 3188 3189 Type *BaseType = Elts[0]->getType(); 3190 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3191 if (Ty != BasePointerType->getElementType()) 3192 return Error( 3193 ExplicitTypeLoc, 3194 "explicit pointee type doesn't match operand's pointee type"); 3195 3196 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3197 for (Constant *Val : Indices) { 3198 Type *ValTy = Val->getType(); 3199 if (!ValTy->getScalarType()->isIntegerTy()) 3200 return Error(ID.Loc, "getelementptr index must be an integer"); 3201 if (ValTy->isVectorTy() != BaseType->isVectorTy()) 3202 return Error(ID.Loc, "getelementptr index type missmatch"); 3203 if (ValTy->isVectorTy()) { 3204 unsigned ValNumEl = ValTy->getVectorNumElements(); 3205 unsigned PtrNumEl = BaseType->getVectorNumElements(); 3206 if (ValNumEl != PtrNumEl) 3207 return Error( 3208 ID.Loc, 3209 "getelementptr vector index has a wrong number of elements"); 3210 } 3211 } 3212 3213 SmallPtrSet<Type*, 4> Visited; 3214 if (!Indices.empty() && !Ty->isSized(&Visited)) 3215 return Error(ID.Loc, "base element of getelementptr must be sized"); 3216 3217 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3218 return Error(ID.Loc, "invalid getelementptr indices"); 3219 3220 if (InRangeOp) { 3221 if (*InRangeOp == 0) 3222 return Error(ID.Loc, 3223 "inrange keyword may not appear on pointer operand"); 3224 --*InRangeOp; 3225 } 3226 3227 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, 3228 InBounds, InRangeOp); 3229 } else if (Opc == Instruction::Select) { 3230 if (Elts.size() != 3) 3231 return Error(ID.Loc, "expected three operands to select"); 3232 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3233 Elts[2])) 3234 return Error(ID.Loc, Reason); 3235 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3236 } else if (Opc == Instruction::ShuffleVector) { 3237 if (Elts.size() != 3) 3238 return Error(ID.Loc, "expected three operands to shufflevector"); 3239 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3240 return Error(ID.Loc, "invalid operands to shufflevector"); 3241 ID.ConstantVal = 3242 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); 3243 } else if (Opc == Instruction::ExtractElement) { 3244 if (Elts.size() != 2) 3245 return Error(ID.Loc, "expected two operands to extractelement"); 3246 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3247 return Error(ID.Loc, "invalid extractelement operands"); 3248 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3249 } else { 3250 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3251 if (Elts.size() != 3) 3252 return Error(ID.Loc, "expected three operands to insertelement"); 3253 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3254 return Error(ID.Loc, "invalid insertelement operands"); 3255 ID.ConstantVal = 3256 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3257 } 3258 3259 ID.Kind = ValID::t_Constant; 3260 return false; 3261 } 3262 } 3263 3264 Lex.Lex(); 3265 return false; 3266 } 3267 3268 /// ParseGlobalValue - Parse a global value with the specified type. 3269 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) { 3270 C = nullptr; 3271 ValID ID; 3272 Value *V = nullptr; 3273 bool Parsed = ParseValID(ID) || 3274 ConvertValIDToValue(Ty, ID, V, nullptr); 3275 if (V && !(C = dyn_cast<Constant>(V))) 3276 return Error(ID.Loc, "global values must be constants"); 3277 return Parsed; 3278 } 3279 3280 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { 3281 Type *Ty = nullptr; 3282 return ParseType(Ty) || 3283 ParseGlobalValue(Ty, V); 3284 } 3285 3286 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3287 C = nullptr; 3288 3289 LocTy KwLoc = Lex.getLoc(); 3290 if (!EatIfPresent(lltok::kw_comdat)) 3291 return false; 3292 3293 if (EatIfPresent(lltok::lparen)) { 3294 if (Lex.getKind() != lltok::ComdatVar) 3295 return TokError("expected comdat variable"); 3296 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3297 Lex.Lex(); 3298 if (ParseToken(lltok::rparen, "expected ')' after comdat var")) 3299 return true; 3300 } else { 3301 if (GlobalName.empty()) 3302 return TokError("comdat cannot be unnamed"); 3303 C = getComdat(GlobalName, KwLoc); 3304 } 3305 3306 return false; 3307 } 3308 3309 /// ParseGlobalValueVector 3310 /// ::= /*empty*/ 3311 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)* 3312 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts, 3313 Optional<unsigned> *InRangeOp) { 3314 // Empty list. 3315 if (Lex.getKind() == lltok::rbrace || 3316 Lex.getKind() == lltok::rsquare || 3317 Lex.getKind() == lltok::greater || 3318 Lex.getKind() == lltok::rparen) 3319 return false; 3320 3321 do { 3322 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange)) 3323 *InRangeOp = Elts.size(); 3324 3325 Constant *C; 3326 if (ParseGlobalTypeAndValue(C)) return true; 3327 Elts.push_back(C); 3328 } while (EatIfPresent(lltok::comma)); 3329 3330 return false; 3331 } 3332 3333 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) { 3334 SmallVector<Metadata *, 16> Elts; 3335 if (ParseMDNodeVector(Elts)) 3336 return true; 3337 3338 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3339 return false; 3340 } 3341 3342 /// MDNode: 3343 /// ::= !{ ... } 3344 /// ::= !7 3345 /// ::= !DILocation(...) 3346 bool LLParser::ParseMDNode(MDNode *&N) { 3347 if (Lex.getKind() == lltok::MetadataVar) 3348 return ParseSpecializedMDNode(N); 3349 3350 return ParseToken(lltok::exclaim, "expected '!' here") || 3351 ParseMDNodeTail(N); 3352 } 3353 3354 bool LLParser::ParseMDNodeTail(MDNode *&N) { 3355 // !{ ... } 3356 if (Lex.getKind() == lltok::lbrace) 3357 return ParseMDTuple(N); 3358 3359 // !42 3360 return ParseMDNodeID(N); 3361 } 3362 3363 namespace { 3364 3365 /// Structure to represent an optional metadata field. 3366 template <class FieldTy> struct MDFieldImpl { 3367 typedef MDFieldImpl ImplTy; 3368 FieldTy Val; 3369 bool Seen; 3370 3371 void assign(FieldTy Val) { 3372 Seen = true; 3373 this->Val = std::move(Val); 3374 } 3375 3376 explicit MDFieldImpl(FieldTy Default) 3377 : Val(std::move(Default)), Seen(false) {} 3378 }; 3379 3380 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 3381 uint64_t Max; 3382 3383 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 3384 : ImplTy(Default), Max(Max) {} 3385 }; 3386 3387 struct LineField : public MDUnsignedField { 3388 LineField() : MDUnsignedField(0, UINT32_MAX) {} 3389 }; 3390 3391 struct ColumnField : public MDUnsignedField { 3392 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 3393 }; 3394 3395 struct DwarfTagField : public MDUnsignedField { 3396 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 3397 DwarfTagField(dwarf::Tag DefaultTag) 3398 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 3399 }; 3400 3401 struct DwarfMacinfoTypeField : public MDUnsignedField { 3402 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 3403 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 3404 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 3405 }; 3406 3407 struct DwarfAttEncodingField : public MDUnsignedField { 3408 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 3409 }; 3410 3411 struct DwarfVirtualityField : public MDUnsignedField { 3412 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 3413 }; 3414 3415 struct DwarfLangField : public MDUnsignedField { 3416 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 3417 }; 3418 3419 struct DwarfCCField : public MDUnsignedField { 3420 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 3421 }; 3422 3423 struct EmissionKindField : public MDUnsignedField { 3424 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 3425 }; 3426 3427 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 3428 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 3429 }; 3430 3431 struct MDSignedField : public MDFieldImpl<int64_t> { 3432 int64_t Min; 3433 int64_t Max; 3434 3435 MDSignedField(int64_t Default = 0) 3436 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 3437 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 3438 : ImplTy(Default), Min(Min), Max(Max) {} 3439 }; 3440 3441 struct MDBoolField : public MDFieldImpl<bool> { 3442 MDBoolField(bool Default = false) : ImplTy(Default) {} 3443 }; 3444 3445 struct MDField : public MDFieldImpl<Metadata *> { 3446 bool AllowNull; 3447 3448 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 3449 }; 3450 3451 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> { 3452 MDConstant() : ImplTy(nullptr) {} 3453 }; 3454 3455 struct MDStringField : public MDFieldImpl<MDString *> { 3456 bool AllowEmpty; 3457 MDStringField(bool AllowEmpty = true) 3458 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 3459 }; 3460 3461 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 3462 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 3463 }; 3464 3465 } // end anonymous namespace 3466 3467 namespace llvm { 3468 3469 template <> 3470 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3471 MDUnsignedField &Result) { 3472 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 3473 return TokError("expected unsigned integer"); 3474 3475 auto &U = Lex.getAPSIntVal(); 3476 if (U.ugt(Result.Max)) 3477 return TokError("value for '" + Name + "' too large, limit is " + 3478 Twine(Result.Max)); 3479 Result.assign(U.getZExtValue()); 3480 assert(Result.Val <= Result.Max && "Expected value in range"); 3481 Lex.Lex(); 3482 return false; 3483 } 3484 3485 template <> 3486 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) { 3487 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3488 } 3489 template <> 3490 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 3491 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3492 } 3493 3494 template <> 3495 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 3496 if (Lex.getKind() == lltok::APSInt) 3497 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3498 3499 if (Lex.getKind() != lltok::DwarfTag) 3500 return TokError("expected DWARF tag"); 3501 3502 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 3503 if (Tag == dwarf::DW_TAG_invalid) 3504 return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 3505 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 3506 3507 Result.assign(Tag); 3508 Lex.Lex(); 3509 return false; 3510 } 3511 3512 template <> 3513 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3514 DwarfMacinfoTypeField &Result) { 3515 if (Lex.getKind() == lltok::APSInt) 3516 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3517 3518 if (Lex.getKind() != lltok::DwarfMacinfo) 3519 return TokError("expected DWARF macinfo type"); 3520 3521 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 3522 if (Macinfo == dwarf::DW_MACINFO_invalid) 3523 return TokError( 3524 "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'"); 3525 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 3526 3527 Result.assign(Macinfo); 3528 Lex.Lex(); 3529 return false; 3530 } 3531 3532 template <> 3533 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3534 DwarfVirtualityField &Result) { 3535 if (Lex.getKind() == lltok::APSInt) 3536 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3537 3538 if (Lex.getKind() != lltok::DwarfVirtuality) 3539 return TokError("expected DWARF virtuality code"); 3540 3541 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 3542 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 3543 return TokError("invalid DWARF virtuality code" + Twine(" '") + 3544 Lex.getStrVal() + "'"); 3545 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 3546 Result.assign(Virtuality); 3547 Lex.Lex(); 3548 return false; 3549 } 3550 3551 template <> 3552 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 3553 if (Lex.getKind() == lltok::APSInt) 3554 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3555 3556 if (Lex.getKind() != lltok::DwarfLang) 3557 return TokError("expected DWARF language"); 3558 3559 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 3560 if (!Lang) 3561 return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 3562 "'"); 3563 assert(Lang <= Result.Max && "Expected valid DWARF language"); 3564 Result.assign(Lang); 3565 Lex.Lex(); 3566 return false; 3567 } 3568 3569 template <> 3570 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 3571 if (Lex.getKind() == lltok::APSInt) 3572 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3573 3574 if (Lex.getKind() != lltok::DwarfCC) 3575 return TokError("expected DWARF calling convention"); 3576 3577 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 3578 if (!CC) 3579 return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() + 3580 "'"); 3581 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 3582 Result.assign(CC); 3583 Lex.Lex(); 3584 return false; 3585 } 3586 3587 template <> 3588 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) { 3589 if (Lex.getKind() == lltok::APSInt) 3590 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3591 3592 if (Lex.getKind() != lltok::EmissionKind) 3593 return TokError("expected emission kind"); 3594 3595 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 3596 if (!Kind) 3597 return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 3598 "'"); 3599 assert(*Kind <= Result.Max && "Expected valid emission kind"); 3600 Result.assign(*Kind); 3601 Lex.Lex(); 3602 return false; 3603 } 3604 3605 template <> 3606 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3607 DwarfAttEncodingField &Result) { 3608 if (Lex.getKind() == lltok::APSInt) 3609 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3610 3611 if (Lex.getKind() != lltok::DwarfAttEncoding) 3612 return TokError("expected DWARF type attribute encoding"); 3613 3614 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 3615 if (!Encoding) 3616 return TokError("invalid DWARF type attribute encoding" + Twine(" '") + 3617 Lex.getStrVal() + "'"); 3618 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 3619 Result.assign(Encoding); 3620 Lex.Lex(); 3621 return false; 3622 } 3623 3624 /// DIFlagField 3625 /// ::= uint32 3626 /// ::= DIFlagVector 3627 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 3628 template <> 3629 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 3630 3631 // Parser for a single flag. 3632 auto parseFlag = [&](DINode::DIFlags &Val) { 3633 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 3634 uint32_t TempVal = static_cast<uint32_t>(Val); 3635 bool Res = ParseUInt32(TempVal); 3636 Val = static_cast<DINode::DIFlags>(TempVal); 3637 return Res; 3638 } 3639 3640 if (Lex.getKind() != lltok::DIFlag) 3641 return TokError("expected debug info flag"); 3642 3643 Val = DINode::getFlag(Lex.getStrVal()); 3644 if (!Val) 3645 return TokError(Twine("invalid debug info flag flag '") + 3646 Lex.getStrVal() + "'"); 3647 Lex.Lex(); 3648 return false; 3649 }; 3650 3651 // Parse the flags and combine them together. 3652 DINode::DIFlags Combined = DINode::FlagZero; 3653 do { 3654 DINode::DIFlags Val; 3655 if (parseFlag(Val)) 3656 return true; 3657 Combined |= Val; 3658 } while (EatIfPresent(lltok::bar)); 3659 3660 Result.assign(Combined); 3661 return false; 3662 } 3663 3664 template <> 3665 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3666 MDSignedField &Result) { 3667 if (Lex.getKind() != lltok::APSInt) 3668 return TokError("expected signed integer"); 3669 3670 auto &S = Lex.getAPSIntVal(); 3671 if (S < Result.Min) 3672 return TokError("value for '" + Name + "' too small, limit is " + 3673 Twine(Result.Min)); 3674 if (S > Result.Max) 3675 return TokError("value for '" + Name + "' too large, limit is " + 3676 Twine(Result.Max)); 3677 Result.assign(S.getExtValue()); 3678 assert(Result.Val >= Result.Min && "Expected value in range"); 3679 assert(Result.Val <= Result.Max && "Expected value in range"); 3680 Lex.Lex(); 3681 return false; 3682 } 3683 3684 template <> 3685 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 3686 switch (Lex.getKind()) { 3687 default: 3688 return TokError("expected 'true' or 'false'"); 3689 case lltok::kw_true: 3690 Result.assign(true); 3691 break; 3692 case lltok::kw_false: 3693 Result.assign(false); 3694 break; 3695 } 3696 Lex.Lex(); 3697 return false; 3698 } 3699 3700 template <> 3701 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) { 3702 if (Lex.getKind() == lltok::kw_null) { 3703 if (!Result.AllowNull) 3704 return TokError("'" + Name + "' cannot be null"); 3705 Lex.Lex(); 3706 Result.assign(nullptr); 3707 return false; 3708 } 3709 3710 Metadata *MD; 3711 if (ParseMetadata(MD, nullptr)) 3712 return true; 3713 3714 Result.assign(MD); 3715 return false; 3716 } 3717 3718 template <> 3719 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 3720 LocTy ValueLoc = Lex.getLoc(); 3721 std::string S; 3722 if (ParseStringConstant(S)) 3723 return true; 3724 3725 if (!Result.AllowEmpty && S.empty()) 3726 return Error(ValueLoc, "'" + Name + "' cannot be empty"); 3727 3728 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 3729 return false; 3730 } 3731 3732 template <> 3733 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 3734 SmallVector<Metadata *, 4> MDs; 3735 if (ParseMDNodeVector(MDs)) 3736 return true; 3737 3738 Result.assign(std::move(MDs)); 3739 return false; 3740 } 3741 3742 } // end namespace llvm 3743 3744 template <class ParserTy> 3745 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) { 3746 do { 3747 if (Lex.getKind() != lltok::LabelStr) 3748 return TokError("expected field label here"); 3749 3750 if (parseField()) 3751 return true; 3752 } while (EatIfPresent(lltok::comma)); 3753 3754 return false; 3755 } 3756 3757 template <class ParserTy> 3758 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) { 3759 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 3760 Lex.Lex(); 3761 3762 if (ParseToken(lltok::lparen, "expected '(' here")) 3763 return true; 3764 if (Lex.getKind() != lltok::rparen) 3765 if (ParseMDFieldsImplBody(parseField)) 3766 return true; 3767 3768 ClosingLoc = Lex.getLoc(); 3769 return ParseToken(lltok::rparen, "expected ')' here"); 3770 } 3771 3772 template <class FieldTy> 3773 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) { 3774 if (Result.Seen) 3775 return TokError("field '" + Name + "' cannot be specified more than once"); 3776 3777 LocTy Loc = Lex.getLoc(); 3778 Lex.Lex(); 3779 return ParseMDField(Loc, Name, Result); 3780 } 3781 3782 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 3783 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 3784 3785 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 3786 if (Lex.getStrVal() == #CLASS) \ 3787 return Parse##CLASS(N, IsDistinct); 3788 #include "llvm/IR/Metadata.def" 3789 3790 return TokError("expected metadata type"); 3791 } 3792 3793 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 3794 #define NOP_FIELD(NAME, TYPE, INIT) 3795 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 3796 if (!NAME.Seen) \ 3797 return Error(ClosingLoc, "missing required field '" #NAME "'"); 3798 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 3799 if (Lex.getStrVal() == #NAME) \ 3800 return ParseMDField(#NAME, NAME); 3801 #define PARSE_MD_FIELDS() \ 3802 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 3803 do { \ 3804 LocTy ClosingLoc; \ 3805 if (ParseMDFieldsImpl([&]() -> bool { \ 3806 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 3807 return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \ 3808 }, ClosingLoc)) \ 3809 return true; \ 3810 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 3811 } while (false) 3812 #define GET_OR_DISTINCT(CLASS, ARGS) \ 3813 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 3814 3815 /// ParseDILocationFields: 3816 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6) 3817 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) { 3818 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3819 OPTIONAL(line, LineField, ); \ 3820 OPTIONAL(column, ColumnField, ); \ 3821 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 3822 OPTIONAL(inlinedAt, MDField, ); 3823 PARSE_MD_FIELDS(); 3824 #undef VISIT_MD_FIELDS 3825 3826 Result = GET_OR_DISTINCT( 3827 DILocation, (Context, line.Val, column.Val, scope.Val, inlinedAt.Val)); 3828 return false; 3829 } 3830 3831 /// ParseGenericDINode: 3832 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 3833 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) { 3834 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3835 REQUIRED(tag, DwarfTagField, ); \ 3836 OPTIONAL(header, MDStringField, ); \ 3837 OPTIONAL(operands, MDFieldList, ); 3838 PARSE_MD_FIELDS(); 3839 #undef VISIT_MD_FIELDS 3840 3841 Result = GET_OR_DISTINCT(GenericDINode, 3842 (Context, tag.Val, header.Val, operands.Val)); 3843 return false; 3844 } 3845 3846 /// ParseDISubrange: 3847 /// ::= !DISubrange(count: 30, lowerBound: 2) 3848 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) { 3849 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3850 REQUIRED(count, MDSignedField, (-1, -1, INT64_MAX)); \ 3851 OPTIONAL(lowerBound, MDSignedField, ); 3852 PARSE_MD_FIELDS(); 3853 #undef VISIT_MD_FIELDS 3854 3855 Result = GET_OR_DISTINCT(DISubrange, (Context, count.Val, lowerBound.Val)); 3856 return false; 3857 } 3858 3859 /// ParseDIEnumerator: 3860 /// ::= !DIEnumerator(value: 30, name: "SomeKind") 3861 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) { 3862 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3863 REQUIRED(name, MDStringField, ); \ 3864 REQUIRED(value, MDSignedField, ); 3865 PARSE_MD_FIELDS(); 3866 #undef VISIT_MD_FIELDS 3867 3868 Result = GET_OR_DISTINCT(DIEnumerator, (Context, value.Val, name.Val)); 3869 return false; 3870 } 3871 3872 /// ParseDIBasicType: 3873 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32) 3874 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) { 3875 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3876 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 3877 OPTIONAL(name, MDStringField, ); \ 3878 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 3879 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 3880 OPTIONAL(encoding, DwarfAttEncodingField, ); 3881 PARSE_MD_FIELDS(); 3882 #undef VISIT_MD_FIELDS 3883 3884 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 3885 align.Val, encoding.Val)); 3886 return false; 3887 } 3888 3889 /// ParseDIDerivedType: 3890 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 3891 /// line: 7, scope: !1, baseType: !2, size: 32, 3892 /// align: 32, offset: 0, flags: 0, extraData: !3) 3893 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) { 3894 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3895 REQUIRED(tag, DwarfTagField, ); \ 3896 OPTIONAL(name, MDStringField, ); \ 3897 OPTIONAL(file, MDField, ); \ 3898 OPTIONAL(line, LineField, ); \ 3899 OPTIONAL(scope, MDField, ); \ 3900 REQUIRED(baseType, MDField, ); \ 3901 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 3902 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 3903 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 3904 OPTIONAL(flags, DIFlagField, ); \ 3905 OPTIONAL(extraData, MDField, ); 3906 PARSE_MD_FIELDS(); 3907 #undef VISIT_MD_FIELDS 3908 3909 Result = GET_OR_DISTINCT(DIDerivedType, 3910 (Context, tag.Val, name.Val, file.Val, line.Val, 3911 scope.Val, baseType.Val, size.Val, align.Val, 3912 offset.Val, flags.Val, extraData.Val)); 3913 return false; 3914 } 3915 3916 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) { 3917 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3918 REQUIRED(tag, DwarfTagField, ); \ 3919 OPTIONAL(name, MDStringField, ); \ 3920 OPTIONAL(file, MDField, ); \ 3921 OPTIONAL(line, LineField, ); \ 3922 OPTIONAL(scope, MDField, ); \ 3923 OPTIONAL(baseType, MDField, ); \ 3924 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 3925 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 3926 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 3927 OPTIONAL(flags, DIFlagField, ); \ 3928 OPTIONAL(elements, MDField, ); \ 3929 OPTIONAL(runtimeLang, DwarfLangField, ); \ 3930 OPTIONAL(vtableHolder, MDField, ); \ 3931 OPTIONAL(templateParams, MDField, ); \ 3932 OPTIONAL(identifier, MDStringField, ); 3933 PARSE_MD_FIELDS(); 3934 #undef VISIT_MD_FIELDS 3935 3936 // If this has an identifier try to build an ODR type. 3937 if (identifier.Val) 3938 if (auto *CT = DICompositeType::buildODRType( 3939 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 3940 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 3941 elements.Val, runtimeLang.Val, vtableHolder.Val, 3942 templateParams.Val)) { 3943 Result = CT; 3944 return false; 3945 } 3946 3947 // Create a new node, and save it in the context if it belongs in the type 3948 // map. 3949 Result = GET_OR_DISTINCT( 3950 DICompositeType, 3951 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 3952 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 3953 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val)); 3954 return false; 3955 } 3956 3957 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) { 3958 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3959 OPTIONAL(flags, DIFlagField, ); \ 3960 OPTIONAL(cc, DwarfCCField, ); \ 3961 REQUIRED(types, MDField, ); 3962 PARSE_MD_FIELDS(); 3963 #undef VISIT_MD_FIELDS 3964 3965 Result = GET_OR_DISTINCT(DISubroutineType, 3966 (Context, flags.Val, cc.Val, types.Val)); 3967 return false; 3968 } 3969 3970 /// ParseDIFileType: 3971 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir") 3972 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) { 3973 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3974 REQUIRED(filename, MDStringField, ); \ 3975 REQUIRED(directory, MDStringField, ); 3976 PARSE_MD_FIELDS(); 3977 #undef VISIT_MD_FIELDS 3978 3979 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val)); 3980 return false; 3981 } 3982 3983 /// ParseDICompileUnit: 3984 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 3985 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 3986 /// splitDebugFilename: "abc.debug", 3987 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 3988 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd) 3989 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) { 3990 if (!IsDistinct) 3991 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 3992 3993 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3994 REQUIRED(language, DwarfLangField, ); \ 3995 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 3996 OPTIONAL(producer, MDStringField, ); \ 3997 OPTIONAL(isOptimized, MDBoolField, ); \ 3998 OPTIONAL(flags, MDStringField, ); \ 3999 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 4000 OPTIONAL(splitDebugFilename, MDStringField, ); \ 4001 OPTIONAL(emissionKind, EmissionKindField, ); \ 4002 OPTIONAL(enums, MDField, ); \ 4003 OPTIONAL(retainedTypes, MDField, ); \ 4004 OPTIONAL(globals, MDField, ); \ 4005 OPTIONAL(imports, MDField, ); \ 4006 OPTIONAL(macros, MDField, ); \ 4007 OPTIONAL(dwoId, MDUnsignedField, ); \ 4008 OPTIONAL(splitDebugInlining, MDBoolField, = true); 4009 PARSE_MD_FIELDS(); 4010 #undef VISIT_MD_FIELDS 4011 4012 Result = DICompileUnit::getDistinct( 4013 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 4014 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 4015 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 4016 splitDebugInlining.Val); 4017 return false; 4018 } 4019 4020 /// ParseDISubprogram: 4021 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 4022 /// file: !1, line: 7, type: !2, isLocal: false, 4023 /// isDefinition: true, scopeLine: 8, containingType: !3, 4024 /// virtuality: DW_VIRTUALTIY_pure_virtual, 4025 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 4026 /// isOptimized: false, templateParams: !4, declaration: !5, 4027 /// variables: !6) 4028 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) { 4029 auto Loc = Lex.getLoc(); 4030 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4031 OPTIONAL(scope, MDField, ); \ 4032 OPTIONAL(name, MDStringField, ); \ 4033 OPTIONAL(linkageName, MDStringField, ); \ 4034 OPTIONAL(file, MDField, ); \ 4035 OPTIONAL(line, LineField, ); \ 4036 OPTIONAL(type, MDField, ); \ 4037 OPTIONAL(isLocal, MDBoolField, ); \ 4038 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4039 OPTIONAL(scopeLine, LineField, ); \ 4040 OPTIONAL(containingType, MDField, ); \ 4041 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 4042 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 4043 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 4044 OPTIONAL(flags, DIFlagField, ); \ 4045 OPTIONAL(isOptimized, MDBoolField, ); \ 4046 OPTIONAL(unit, MDField, ); \ 4047 OPTIONAL(templateParams, MDField, ); \ 4048 OPTIONAL(declaration, MDField, ); \ 4049 OPTIONAL(variables, MDField, ); 4050 PARSE_MD_FIELDS(); 4051 #undef VISIT_MD_FIELDS 4052 4053 if (isDefinition.Val && !IsDistinct) 4054 return Lex.Error( 4055 Loc, 4056 "missing 'distinct', required for !DISubprogram when 'isDefinition'"); 4057 4058 Result = GET_OR_DISTINCT( 4059 DISubprogram, (Context, scope.Val, name.Val, linkageName.Val, file.Val, 4060 line.Val, type.Val, isLocal.Val, isDefinition.Val, 4061 scopeLine.Val, containingType.Val, virtuality.Val, 4062 virtualIndex.Val, thisAdjustment.Val, flags.Val, 4063 isOptimized.Val, unit.Val, templateParams.Val, 4064 declaration.Val, variables.Val)); 4065 return false; 4066 } 4067 4068 /// ParseDILexicalBlock: 4069 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 4070 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 4071 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4072 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4073 OPTIONAL(file, MDField, ); \ 4074 OPTIONAL(line, LineField, ); \ 4075 OPTIONAL(column, ColumnField, ); 4076 PARSE_MD_FIELDS(); 4077 #undef VISIT_MD_FIELDS 4078 4079 Result = GET_OR_DISTINCT( 4080 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 4081 return false; 4082 } 4083 4084 /// ParseDILexicalBlockFile: 4085 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 4086 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 4087 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4088 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4089 OPTIONAL(file, MDField, ); \ 4090 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 4091 PARSE_MD_FIELDS(); 4092 #undef VISIT_MD_FIELDS 4093 4094 Result = GET_OR_DISTINCT(DILexicalBlockFile, 4095 (Context, scope.Val, file.Val, discriminator.Val)); 4096 return false; 4097 } 4098 4099 /// ParseDINamespace: 4100 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 4101 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) { 4102 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4103 REQUIRED(scope, MDField, ); \ 4104 OPTIONAL(file, MDField, ); \ 4105 OPTIONAL(name, MDStringField, ); \ 4106 OPTIONAL(line, LineField, ); \ 4107 OPTIONAL(exportSymbols, MDBoolField, ); 4108 PARSE_MD_FIELDS(); 4109 #undef VISIT_MD_FIELDS 4110 4111 Result = GET_OR_DISTINCT(DINamespace, 4112 (Context, scope.Val, file.Val, name.Val, line.Val, exportSymbols.Val)); 4113 return false; 4114 } 4115 4116 /// ParseDIMacro: 4117 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue") 4118 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) { 4119 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4120 REQUIRED(type, DwarfMacinfoTypeField, ); \ 4121 REQUIRED(line, LineField, ); \ 4122 REQUIRED(name, MDStringField, ); \ 4123 OPTIONAL(value, MDStringField, ); 4124 PARSE_MD_FIELDS(); 4125 #undef VISIT_MD_FIELDS 4126 4127 Result = GET_OR_DISTINCT(DIMacro, 4128 (Context, type.Val, line.Val, name.Val, value.Val)); 4129 return false; 4130 } 4131 4132 /// ParseDIMacroFile: 4133 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 4134 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) { 4135 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4136 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 4137 REQUIRED(line, LineField, ); \ 4138 REQUIRED(file, MDField, ); \ 4139 OPTIONAL(nodes, MDField, ); 4140 PARSE_MD_FIELDS(); 4141 #undef VISIT_MD_FIELDS 4142 4143 Result = GET_OR_DISTINCT(DIMacroFile, 4144 (Context, type.Val, line.Val, file.Val, nodes.Val)); 4145 return false; 4146 } 4147 4148 /// ParseDIModule: 4149 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG", 4150 /// includePath: "/usr/include", isysroot: "/") 4151 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) { 4152 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4153 REQUIRED(scope, MDField, ); \ 4154 REQUIRED(name, MDStringField, ); \ 4155 OPTIONAL(configMacros, MDStringField, ); \ 4156 OPTIONAL(includePath, MDStringField, ); \ 4157 OPTIONAL(isysroot, MDStringField, ); 4158 PARSE_MD_FIELDS(); 4159 #undef VISIT_MD_FIELDS 4160 4161 Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val, 4162 configMacros.Val, includePath.Val, isysroot.Val)); 4163 return false; 4164 } 4165 4166 /// ParseDITemplateTypeParameter: 4167 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1) 4168 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 4169 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4170 OPTIONAL(name, MDStringField, ); \ 4171 REQUIRED(type, MDField, ); 4172 PARSE_MD_FIELDS(); 4173 #undef VISIT_MD_FIELDS 4174 4175 Result = 4176 GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val)); 4177 return false; 4178 } 4179 4180 /// ParseDITemplateValueParameter: 4181 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 4182 /// name: "V", type: !1, value: i32 7) 4183 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 4184 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4185 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 4186 OPTIONAL(name, MDStringField, ); \ 4187 OPTIONAL(type, MDField, ); \ 4188 REQUIRED(value, MDField, ); 4189 PARSE_MD_FIELDS(); 4190 #undef VISIT_MD_FIELDS 4191 4192 Result = GET_OR_DISTINCT(DITemplateValueParameter, 4193 (Context, tag.Val, name.Val, type.Val, value.Val)); 4194 return false; 4195 } 4196 4197 /// ParseDIGlobalVariable: 4198 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 4199 /// file: !1, line: 7, type: !2, isLocal: false, 4200 /// isDefinition: true, variable: i32* @foo, 4201 /// declaration: !3, align: 8) 4202 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 4203 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4204 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 4205 OPTIONAL(scope, MDField, ); \ 4206 OPTIONAL(linkageName, MDStringField, ); \ 4207 OPTIONAL(file, MDField, ); \ 4208 OPTIONAL(line, LineField, ); \ 4209 OPTIONAL(type, MDField, ); \ 4210 OPTIONAL(isLocal, MDBoolField, ); \ 4211 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4212 OPTIONAL(expr, MDField, ); \ 4213 OPTIONAL(declaration, MDField, ); \ 4214 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4215 PARSE_MD_FIELDS(); 4216 #undef VISIT_MD_FIELDS 4217 4218 Result = GET_OR_DISTINCT(DIGlobalVariable, 4219 (Context, scope.Val, name.Val, linkageName.Val, 4220 file.Val, line.Val, type.Val, isLocal.Val, 4221 isDefinition.Val, expr.Val, declaration.Val, 4222 align.Val)); 4223 return false; 4224 } 4225 4226 /// ParseDILocalVariable: 4227 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 4228 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4229 /// align: 8) 4230 /// ::= !DILocalVariable(scope: !0, name: "foo", 4231 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4232 /// align: 8) 4233 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) { 4234 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4235 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4236 OPTIONAL(name, MDStringField, ); \ 4237 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 4238 OPTIONAL(file, MDField, ); \ 4239 OPTIONAL(line, LineField, ); \ 4240 OPTIONAL(type, MDField, ); \ 4241 OPTIONAL(flags, DIFlagField, ); \ 4242 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4243 PARSE_MD_FIELDS(); 4244 #undef VISIT_MD_FIELDS 4245 4246 Result = GET_OR_DISTINCT(DILocalVariable, 4247 (Context, scope.Val, name.Val, file.Val, line.Val, 4248 type.Val, arg.Val, flags.Val, align.Val)); 4249 return false; 4250 } 4251 4252 /// ParseDIExpression: 4253 /// ::= !DIExpression(0, 7, -1) 4254 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) { 4255 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4256 Lex.Lex(); 4257 4258 if (ParseToken(lltok::lparen, "expected '(' here")) 4259 return true; 4260 4261 SmallVector<uint64_t, 8> Elements; 4262 if (Lex.getKind() != lltok::rparen) 4263 do { 4264 if (Lex.getKind() == lltok::DwarfOp) { 4265 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 4266 Lex.Lex(); 4267 Elements.push_back(Op); 4268 continue; 4269 } 4270 return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 4271 } 4272 4273 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4274 return TokError("expected unsigned integer"); 4275 4276 auto &U = Lex.getAPSIntVal(); 4277 if (U.ugt(UINT64_MAX)) 4278 return TokError("element too large, limit is " + Twine(UINT64_MAX)); 4279 Elements.push_back(U.getZExtValue()); 4280 Lex.Lex(); 4281 } while (EatIfPresent(lltok::comma)); 4282 4283 if (ParseToken(lltok::rparen, "expected ')' here")) 4284 return true; 4285 4286 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 4287 return false; 4288 } 4289 4290 /// ParseDIObjCProperty: 4291 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 4292 /// getter: "getFoo", attributes: 7, type: !2) 4293 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 4294 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4295 OPTIONAL(name, MDStringField, ); \ 4296 OPTIONAL(file, MDField, ); \ 4297 OPTIONAL(line, LineField, ); \ 4298 OPTIONAL(setter, MDStringField, ); \ 4299 OPTIONAL(getter, MDStringField, ); \ 4300 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 4301 OPTIONAL(type, MDField, ); 4302 PARSE_MD_FIELDS(); 4303 #undef VISIT_MD_FIELDS 4304 4305 Result = GET_OR_DISTINCT(DIObjCProperty, 4306 (Context, name.Val, file.Val, line.Val, setter.Val, 4307 getter.Val, attributes.Val, type.Val)); 4308 return false; 4309 } 4310 4311 /// ParseDIImportedEntity: 4312 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 4313 /// line: 7, name: "foo") 4314 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 4315 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4316 REQUIRED(tag, DwarfTagField, ); \ 4317 REQUIRED(scope, MDField, ); \ 4318 OPTIONAL(entity, MDField, ); \ 4319 OPTIONAL(line, LineField, ); \ 4320 OPTIONAL(name, MDStringField, ); 4321 PARSE_MD_FIELDS(); 4322 #undef VISIT_MD_FIELDS 4323 4324 Result = GET_OR_DISTINCT(DIImportedEntity, (Context, tag.Val, scope.Val, 4325 entity.Val, line.Val, name.Val)); 4326 return false; 4327 } 4328 4329 #undef PARSE_MD_FIELD 4330 #undef NOP_FIELD 4331 #undef REQUIRE_FIELD 4332 #undef DECLARE_FIELD 4333 4334 /// ParseMetadataAsValue 4335 /// ::= metadata i32 %local 4336 /// ::= metadata i32 @global 4337 /// ::= metadata i32 7 4338 /// ::= metadata !0 4339 /// ::= metadata !{...} 4340 /// ::= metadata !"string" 4341 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 4342 // Note: the type 'metadata' has already been parsed. 4343 Metadata *MD; 4344 if (ParseMetadata(MD, &PFS)) 4345 return true; 4346 4347 V = MetadataAsValue::get(Context, MD); 4348 return false; 4349 } 4350 4351 /// ParseValueAsMetadata 4352 /// ::= i32 %local 4353 /// ::= i32 @global 4354 /// ::= i32 7 4355 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 4356 PerFunctionState *PFS) { 4357 Type *Ty; 4358 LocTy Loc; 4359 if (ParseType(Ty, TypeMsg, Loc)) 4360 return true; 4361 if (Ty->isMetadataTy()) 4362 return Error(Loc, "invalid metadata-value-metadata roundtrip"); 4363 4364 Value *V; 4365 if (ParseValue(Ty, V, PFS)) 4366 return true; 4367 4368 MD = ValueAsMetadata::get(V); 4369 return false; 4370 } 4371 4372 /// ParseMetadata 4373 /// ::= i32 %local 4374 /// ::= i32 @global 4375 /// ::= i32 7 4376 /// ::= !42 4377 /// ::= !{...} 4378 /// ::= !"string" 4379 /// ::= !DILocation(...) 4380 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) { 4381 if (Lex.getKind() == lltok::MetadataVar) { 4382 MDNode *N; 4383 if (ParseSpecializedMDNode(N)) 4384 return true; 4385 MD = N; 4386 return false; 4387 } 4388 4389 // ValueAsMetadata: 4390 // <type> <value> 4391 if (Lex.getKind() != lltok::exclaim) 4392 return ParseValueAsMetadata(MD, "expected metadata operand", PFS); 4393 4394 // '!'. 4395 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 4396 Lex.Lex(); 4397 4398 // MDString: 4399 // ::= '!' STRINGCONSTANT 4400 if (Lex.getKind() == lltok::StringConstant) { 4401 MDString *S; 4402 if (ParseMDString(S)) 4403 return true; 4404 MD = S; 4405 return false; 4406 } 4407 4408 // MDNode: 4409 // !{ ... } 4410 // !7 4411 MDNode *N; 4412 if (ParseMDNodeTail(N)) 4413 return true; 4414 MD = N; 4415 return false; 4416 } 4417 4418 //===----------------------------------------------------------------------===// 4419 // Function Parsing. 4420 //===----------------------------------------------------------------------===// 4421 4422 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, 4423 PerFunctionState *PFS) { 4424 if (Ty->isFunctionTy()) 4425 return Error(ID.Loc, "functions are not values, refer to them as pointers"); 4426 4427 switch (ID.Kind) { 4428 case ValID::t_LocalID: 4429 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 4430 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc); 4431 return V == nullptr; 4432 case ValID::t_LocalName: 4433 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 4434 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc); 4435 return V == nullptr; 4436 case ValID::t_InlineAsm: { 4437 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 4438 return Error(ID.Loc, "invalid type for inline asm constraint string"); 4439 V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, 4440 (ID.UIntVal >> 1) & 1, 4441 (InlineAsm::AsmDialect(ID.UIntVal >> 2))); 4442 return false; 4443 } 4444 case ValID::t_GlobalName: 4445 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc); 4446 return V == nullptr; 4447 case ValID::t_GlobalID: 4448 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc); 4449 return V == nullptr; 4450 case ValID::t_APSInt: 4451 if (!Ty->isIntegerTy()) 4452 return Error(ID.Loc, "integer constant must have integer type"); 4453 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 4454 V = ConstantInt::get(Context, ID.APSIntVal); 4455 return false; 4456 case ValID::t_APFloat: 4457 if (!Ty->isFloatingPointTy() || 4458 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 4459 return Error(ID.Loc, "floating point constant invalid for type"); 4460 4461 // The lexer has no type info, so builds all half, float, and double FP 4462 // constants as double. Fix this here. Long double does not need this. 4463 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) { 4464 bool Ignored; 4465 if (Ty->isHalfTy()) 4466 ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, 4467 &Ignored); 4468 else if (Ty->isFloatTy()) 4469 ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, 4470 &Ignored); 4471 } 4472 V = ConstantFP::get(Context, ID.APFloatVal); 4473 4474 if (V->getType() != Ty) 4475 return Error(ID.Loc, "floating point constant does not have type '" + 4476 getTypeString(Ty) + "'"); 4477 4478 return false; 4479 case ValID::t_Null: 4480 if (!Ty->isPointerTy()) 4481 return Error(ID.Loc, "null must be a pointer type"); 4482 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 4483 return false; 4484 case ValID::t_Undef: 4485 // FIXME: LabelTy should not be a first-class type. 4486 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 4487 return Error(ID.Loc, "invalid type for undef constant"); 4488 V = UndefValue::get(Ty); 4489 return false; 4490 case ValID::t_EmptyArray: 4491 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 4492 return Error(ID.Loc, "invalid empty array initializer"); 4493 V = UndefValue::get(Ty); 4494 return false; 4495 case ValID::t_Zero: 4496 // FIXME: LabelTy should not be a first-class type. 4497 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 4498 return Error(ID.Loc, "invalid type for null constant"); 4499 V = Constant::getNullValue(Ty); 4500 return false; 4501 case ValID::t_None: 4502 if (!Ty->isTokenTy()) 4503 return Error(ID.Loc, "invalid type for none constant"); 4504 V = Constant::getNullValue(Ty); 4505 return false; 4506 case ValID::t_Constant: 4507 if (ID.ConstantVal->getType() != Ty) 4508 return Error(ID.Loc, "constant expression type mismatch"); 4509 4510 V = ID.ConstantVal; 4511 return false; 4512 case ValID::t_ConstantStruct: 4513 case ValID::t_PackedConstantStruct: 4514 if (StructType *ST = dyn_cast<StructType>(Ty)) { 4515 if (ST->getNumElements() != ID.UIntVal) 4516 return Error(ID.Loc, 4517 "initializer with struct type has wrong # elements"); 4518 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 4519 return Error(ID.Loc, "packed'ness of initializer and type don't match"); 4520 4521 // Verify that the elements are compatible with the structtype. 4522 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 4523 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 4524 return Error(ID.Loc, "element " + Twine(i) + 4525 " of struct initializer doesn't match struct element type"); 4526 4527 V = ConstantStruct::get( 4528 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 4529 } else 4530 return Error(ID.Loc, "constant expression type mismatch"); 4531 return false; 4532 } 4533 llvm_unreachable("Invalid ValID"); 4534 } 4535 4536 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 4537 C = nullptr; 4538 ValID ID; 4539 auto Loc = Lex.getLoc(); 4540 if (ParseValID(ID, /*PFS=*/nullptr)) 4541 return true; 4542 switch (ID.Kind) { 4543 case ValID::t_APSInt: 4544 case ValID::t_APFloat: 4545 case ValID::t_Undef: 4546 case ValID::t_Constant: 4547 case ValID::t_ConstantStruct: 4548 case ValID::t_PackedConstantStruct: { 4549 Value *V; 4550 if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr)) 4551 return true; 4552 assert(isa<Constant>(V) && "Expected a constant value"); 4553 C = cast<Constant>(V); 4554 return false; 4555 } 4556 default: 4557 return Error(Loc, "expected a constant value"); 4558 } 4559 } 4560 4561 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 4562 V = nullptr; 4563 ValID ID; 4564 return ParseValID(ID, PFS) || ConvertValIDToValue(Ty, ID, V, PFS); 4565 } 4566 4567 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) { 4568 Type *Ty = nullptr; 4569 return ParseType(Ty) || 4570 ParseValue(Ty, V, PFS); 4571 } 4572 4573 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 4574 PerFunctionState &PFS) { 4575 Value *V; 4576 Loc = Lex.getLoc(); 4577 if (ParseTypeAndValue(V, PFS)) return true; 4578 if (!isa<BasicBlock>(V)) 4579 return Error(Loc, "expected a basic block"); 4580 BB = cast<BasicBlock>(V); 4581 return false; 4582 } 4583 4584 /// FunctionHeader 4585 /// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs 4586 /// OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection 4587 /// OptionalAlign OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 4588 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { 4589 // Parse the linkage. 4590 LocTy LinkageLoc = Lex.getLoc(); 4591 unsigned Linkage; 4592 4593 unsigned Visibility; 4594 unsigned DLLStorageClass; 4595 AttrBuilder RetAttrs; 4596 unsigned CC; 4597 bool HasLinkage; 4598 Type *RetType = nullptr; 4599 LocTy RetTypeLoc = Lex.getLoc(); 4600 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) || 4601 ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 4602 ParseType(RetType, RetTypeLoc, true /*void allowed*/)) 4603 return true; 4604 4605 // Verify that the linkage is ok. 4606 switch ((GlobalValue::LinkageTypes)Linkage) { 4607 case GlobalValue::ExternalLinkage: 4608 break; // always ok. 4609 case GlobalValue::ExternalWeakLinkage: 4610 if (isDefine) 4611 return Error(LinkageLoc, "invalid linkage for function definition"); 4612 break; 4613 case GlobalValue::PrivateLinkage: 4614 case GlobalValue::InternalLinkage: 4615 case GlobalValue::AvailableExternallyLinkage: 4616 case GlobalValue::LinkOnceAnyLinkage: 4617 case GlobalValue::LinkOnceODRLinkage: 4618 case GlobalValue::WeakAnyLinkage: 4619 case GlobalValue::WeakODRLinkage: 4620 if (!isDefine) 4621 return Error(LinkageLoc, "invalid linkage for function declaration"); 4622 break; 4623 case GlobalValue::AppendingLinkage: 4624 case GlobalValue::CommonLinkage: 4625 return Error(LinkageLoc, "invalid function linkage type"); 4626 } 4627 4628 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 4629 return Error(LinkageLoc, 4630 "symbol with local linkage must have default visibility"); 4631 4632 if (!FunctionType::isValidReturnType(RetType)) 4633 return Error(RetTypeLoc, "invalid function return type"); 4634 4635 LocTy NameLoc = Lex.getLoc(); 4636 4637 std::string FunctionName; 4638 if (Lex.getKind() == lltok::GlobalVar) { 4639 FunctionName = Lex.getStrVal(); 4640 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 4641 unsigned NameID = Lex.getUIntVal(); 4642 4643 if (NameID != NumberedVals.size()) 4644 return TokError("function expected to be numbered '%" + 4645 Twine(NumberedVals.size()) + "'"); 4646 } else { 4647 return TokError("expected function name"); 4648 } 4649 4650 Lex.Lex(); 4651 4652 if (Lex.getKind() != lltok::lparen) 4653 return TokError("expected '(' in function argument list"); 4654 4655 SmallVector<ArgInfo, 8> ArgList; 4656 bool isVarArg; 4657 AttrBuilder FuncAttrs; 4658 std::vector<unsigned> FwdRefAttrGrps; 4659 LocTy BuiltinLoc; 4660 std::string Section; 4661 unsigned Alignment; 4662 std::string GC; 4663 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4664 LocTy UnnamedAddrLoc; 4665 Constant *Prefix = nullptr; 4666 Constant *Prologue = nullptr; 4667 Constant *PersonalityFn = nullptr; 4668 Comdat *C; 4669 4670 if (ParseArgumentList(ArgList, isVarArg) || 4671 ParseOptionalUnnamedAddr(UnnamedAddr) || 4672 ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 4673 BuiltinLoc) || 4674 (EatIfPresent(lltok::kw_section) && 4675 ParseStringConstant(Section)) || 4676 parseOptionalComdat(FunctionName, C) || 4677 ParseOptionalAlignment(Alignment) || 4678 (EatIfPresent(lltok::kw_gc) && 4679 ParseStringConstant(GC)) || 4680 (EatIfPresent(lltok::kw_prefix) && 4681 ParseGlobalTypeAndValue(Prefix)) || 4682 (EatIfPresent(lltok::kw_prologue) && 4683 ParseGlobalTypeAndValue(Prologue)) || 4684 (EatIfPresent(lltok::kw_personality) && 4685 ParseGlobalTypeAndValue(PersonalityFn))) 4686 return true; 4687 4688 if (FuncAttrs.contains(Attribute::Builtin)) 4689 return Error(BuiltinLoc, "'builtin' attribute not valid on function"); 4690 4691 // If the alignment was parsed as an attribute, move to the alignment field. 4692 if (FuncAttrs.hasAlignmentAttr()) { 4693 Alignment = FuncAttrs.getAlignment(); 4694 FuncAttrs.removeAttribute(Attribute::Alignment); 4695 } 4696 4697 // Okay, if we got here, the function is syntactically valid. Convert types 4698 // and do semantic checks. 4699 std::vector<Type*> ParamTypeList; 4700 SmallVector<AttributeSet, 8> Attrs; 4701 4702 if (RetAttrs.hasAttributes()) 4703 Attrs.push_back(AttributeSet::get(RetType->getContext(), 4704 AttributeSet::ReturnIndex, 4705 RetAttrs)); 4706 4707 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 4708 ParamTypeList.push_back(ArgList[i].Ty); 4709 if (ArgList[i].Attrs.hasAttributes(i + 1)) { 4710 AttrBuilder B(ArgList[i].Attrs, i + 1); 4711 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B)); 4712 } 4713 } 4714 4715 if (FuncAttrs.hasAttributes()) 4716 Attrs.push_back(AttributeSet::get(RetType->getContext(), 4717 AttributeSet::FunctionIndex, 4718 FuncAttrs)); 4719 4720 AttributeSet PAL = AttributeSet::get(Context, Attrs); 4721 4722 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy()) 4723 return Error(RetTypeLoc, "functions with 'sret' argument must return void"); 4724 4725 FunctionType *FT = 4726 FunctionType::get(RetType, ParamTypeList, isVarArg); 4727 PointerType *PFT = PointerType::getUnqual(FT); 4728 4729 Fn = nullptr; 4730 if (!FunctionName.empty()) { 4731 // If this was a definition of a forward reference, remove the definition 4732 // from the forward reference table and fill in the forward ref. 4733 auto FRVI = ForwardRefVals.find(FunctionName); 4734 if (FRVI != ForwardRefVals.end()) { 4735 Fn = M->getFunction(FunctionName); 4736 if (!Fn) 4737 return Error(FRVI->second.second, "invalid forward reference to " 4738 "function as global value!"); 4739 if (Fn->getType() != PFT) 4740 return Error(FRVI->second.second, "invalid forward reference to " 4741 "function '" + FunctionName + "' with wrong type!"); 4742 4743 ForwardRefVals.erase(FRVI); 4744 } else if ((Fn = M->getFunction(FunctionName))) { 4745 // Reject redefinitions. 4746 return Error(NameLoc, "invalid redefinition of function '" + 4747 FunctionName + "'"); 4748 } else if (M->getNamedValue(FunctionName)) { 4749 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 4750 } 4751 4752 } else { 4753 // If this is a definition of a forward referenced function, make sure the 4754 // types agree. 4755 auto I = ForwardRefValIDs.find(NumberedVals.size()); 4756 if (I != ForwardRefValIDs.end()) { 4757 Fn = cast<Function>(I->second.first); 4758 if (Fn->getType() != PFT) 4759 return Error(NameLoc, "type of definition and forward reference of '@" + 4760 Twine(NumberedVals.size()) + "' disagree"); 4761 ForwardRefValIDs.erase(I); 4762 } 4763 } 4764 4765 if (!Fn) 4766 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M); 4767 else // Move the forward-reference to the correct spot in the module. 4768 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 4769 4770 if (FunctionName.empty()) 4771 NumberedVals.push_back(Fn); 4772 4773 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 4774 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 4775 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 4776 Fn->setCallingConv(CC); 4777 Fn->setAttributes(PAL); 4778 Fn->setUnnamedAddr(UnnamedAddr); 4779 Fn->setAlignment(Alignment); 4780 Fn->setSection(Section); 4781 Fn->setComdat(C); 4782 Fn->setPersonalityFn(PersonalityFn); 4783 if (!GC.empty()) Fn->setGC(GC); 4784 Fn->setPrefixData(Prefix); 4785 Fn->setPrologueData(Prologue); 4786 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 4787 4788 // Add all of the arguments we parsed to the function. 4789 Function::arg_iterator ArgIt = Fn->arg_begin(); 4790 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 4791 // If the argument has a name, insert it into the argument symbol table. 4792 if (ArgList[i].Name.empty()) continue; 4793 4794 // Set the name, if it conflicted, it will be auto-renamed. 4795 ArgIt->setName(ArgList[i].Name); 4796 4797 if (ArgIt->getName() != ArgList[i].Name) 4798 return Error(ArgList[i].Loc, "redefinition of argument '%" + 4799 ArgList[i].Name + "'"); 4800 } 4801 4802 if (isDefine) 4803 return false; 4804 4805 // Check the declaration has no block address forward references. 4806 ValID ID; 4807 if (FunctionName.empty()) { 4808 ID.Kind = ValID::t_GlobalID; 4809 ID.UIntVal = NumberedVals.size() - 1; 4810 } else { 4811 ID.Kind = ValID::t_GlobalName; 4812 ID.StrVal = FunctionName; 4813 } 4814 auto Blocks = ForwardRefBlockAddresses.find(ID); 4815 if (Blocks != ForwardRefBlockAddresses.end()) 4816 return Error(Blocks->first.Loc, 4817 "cannot take blockaddress inside a declaration"); 4818 return false; 4819 } 4820 4821 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 4822 ValID ID; 4823 if (FunctionNumber == -1) { 4824 ID.Kind = ValID::t_GlobalName; 4825 ID.StrVal = F.getName(); 4826 } else { 4827 ID.Kind = ValID::t_GlobalID; 4828 ID.UIntVal = FunctionNumber; 4829 } 4830 4831 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 4832 if (Blocks == P.ForwardRefBlockAddresses.end()) 4833 return false; 4834 4835 for (const auto &I : Blocks->second) { 4836 const ValID &BBID = I.first; 4837 GlobalValue *GV = I.second; 4838 4839 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 4840 "Expected local id or name"); 4841 BasicBlock *BB; 4842 if (BBID.Kind == ValID::t_LocalName) 4843 BB = GetBB(BBID.StrVal, BBID.Loc); 4844 else 4845 BB = GetBB(BBID.UIntVal, BBID.Loc); 4846 if (!BB) 4847 return P.Error(BBID.Loc, "referenced value is not a basic block"); 4848 4849 GV->replaceAllUsesWith(BlockAddress::get(&F, BB)); 4850 GV->eraseFromParent(); 4851 } 4852 4853 P.ForwardRefBlockAddresses.erase(Blocks); 4854 return false; 4855 } 4856 4857 /// ParseFunctionBody 4858 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 4859 bool LLParser::ParseFunctionBody(Function &Fn) { 4860 if (Lex.getKind() != lltok::lbrace) 4861 return TokError("expected '{' in function body"); 4862 Lex.Lex(); // eat the {. 4863 4864 int FunctionNumber = -1; 4865 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 4866 4867 PerFunctionState PFS(*this, Fn, FunctionNumber); 4868 4869 // Resolve block addresses and allow basic blocks to be forward-declared 4870 // within this function. 4871 if (PFS.resolveForwardRefBlockAddresses()) 4872 return true; 4873 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 4874 4875 // We need at least one basic block. 4876 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 4877 return TokError("function body requires at least one basic block"); 4878 4879 while (Lex.getKind() != lltok::rbrace && 4880 Lex.getKind() != lltok::kw_uselistorder) 4881 if (ParseBasicBlock(PFS)) return true; 4882 4883 while (Lex.getKind() != lltok::rbrace) 4884 if (ParseUseListOrder(&PFS)) 4885 return true; 4886 4887 // Eat the }. 4888 Lex.Lex(); 4889 4890 // Verify function is ok. 4891 return PFS.FinishFunction(); 4892 } 4893 4894 /// ParseBasicBlock 4895 /// ::= LabelStr? Instruction* 4896 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { 4897 // If this basic block starts out with a name, remember it. 4898 std::string Name; 4899 LocTy NameLoc = Lex.getLoc(); 4900 if (Lex.getKind() == lltok::LabelStr) { 4901 Name = Lex.getStrVal(); 4902 Lex.Lex(); 4903 } 4904 4905 BasicBlock *BB = PFS.DefineBB(Name, NameLoc); 4906 if (!BB) 4907 return Error(NameLoc, 4908 "unable to create block named '" + Name + "'"); 4909 4910 std::string NameStr; 4911 4912 // Parse the instructions in this block until we get a terminator. 4913 Instruction *Inst; 4914 do { 4915 // This instruction may have three possibilities for a name: a) none 4916 // specified, b) name specified "%foo =", c) number specified: "%4 =". 4917 LocTy NameLoc = Lex.getLoc(); 4918 int NameID = -1; 4919 NameStr = ""; 4920 4921 if (Lex.getKind() == lltok::LocalVarID) { 4922 NameID = Lex.getUIntVal(); 4923 Lex.Lex(); 4924 if (ParseToken(lltok::equal, "expected '=' after instruction id")) 4925 return true; 4926 } else if (Lex.getKind() == lltok::LocalVar) { 4927 NameStr = Lex.getStrVal(); 4928 Lex.Lex(); 4929 if (ParseToken(lltok::equal, "expected '=' after instruction name")) 4930 return true; 4931 } 4932 4933 switch (ParseInstruction(Inst, BB, PFS)) { 4934 default: llvm_unreachable("Unknown ParseInstruction result!"); 4935 case InstError: return true; 4936 case InstNormal: 4937 BB->getInstList().push_back(Inst); 4938 4939 // With a normal result, we check to see if the instruction is followed by 4940 // a comma and metadata. 4941 if (EatIfPresent(lltok::comma)) 4942 if (ParseInstructionMetadata(*Inst)) 4943 return true; 4944 break; 4945 case InstExtraComma: 4946 BB->getInstList().push_back(Inst); 4947 4948 // If the instruction parser ate an extra comma at the end of it, it 4949 // *must* be followed by metadata. 4950 if (ParseInstructionMetadata(*Inst)) 4951 return true; 4952 break; 4953 } 4954 4955 // Set the name on the instruction. 4956 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; 4957 } while (!isa<TerminatorInst>(Inst)); 4958 4959 return false; 4960 } 4961 4962 //===----------------------------------------------------------------------===// 4963 // Instruction Parsing. 4964 //===----------------------------------------------------------------------===// 4965 4966 /// ParseInstruction - Parse one of the many different instructions. 4967 /// 4968 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, 4969 PerFunctionState &PFS) { 4970 lltok::Kind Token = Lex.getKind(); 4971 if (Token == lltok::Eof) 4972 return TokError("found end of file when expecting more instructions"); 4973 LocTy Loc = Lex.getLoc(); 4974 unsigned KeywordVal = Lex.getUIntVal(); 4975 Lex.Lex(); // Eat the keyword. 4976 4977 switch (Token) { 4978 default: return Error(Loc, "expected instruction opcode"); 4979 // Terminator Instructions. 4980 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 4981 case lltok::kw_ret: return ParseRet(Inst, BB, PFS); 4982 case lltok::kw_br: return ParseBr(Inst, PFS); 4983 case lltok::kw_switch: return ParseSwitch(Inst, PFS); 4984 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS); 4985 case lltok::kw_invoke: return ParseInvoke(Inst, PFS); 4986 case lltok::kw_resume: return ParseResume(Inst, PFS); 4987 case lltok::kw_cleanupret: return ParseCleanupRet(Inst, PFS); 4988 case lltok::kw_catchret: return ParseCatchRet(Inst, PFS); 4989 case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS); 4990 case lltok::kw_catchpad: return ParseCatchPad(Inst, PFS); 4991 case lltok::kw_cleanuppad: return ParseCleanupPad(Inst, PFS); 4992 // Binary Operators. 4993 case lltok::kw_add: 4994 case lltok::kw_sub: 4995 case lltok::kw_mul: 4996 case lltok::kw_shl: { 4997 bool NUW = EatIfPresent(lltok::kw_nuw); 4998 bool NSW = EatIfPresent(lltok::kw_nsw); 4999 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 5000 5001 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 5002 5003 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 5004 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 5005 return false; 5006 } 5007 case lltok::kw_fadd: 5008 case lltok::kw_fsub: 5009 case lltok::kw_fmul: 5010 case lltok::kw_fdiv: 5011 case lltok::kw_frem: { 5012 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5013 int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2); 5014 if (Res != 0) 5015 return Res; 5016 if (FMF.any()) 5017 Inst->setFastMathFlags(FMF); 5018 return 0; 5019 } 5020 5021 case lltok::kw_sdiv: 5022 case lltok::kw_udiv: 5023 case lltok::kw_lshr: 5024 case lltok::kw_ashr: { 5025 bool Exact = EatIfPresent(lltok::kw_exact); 5026 5027 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 5028 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 5029 return false; 5030 } 5031 5032 case lltok::kw_urem: 5033 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1); 5034 case lltok::kw_and: 5035 case lltok::kw_or: 5036 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); 5037 case lltok::kw_icmp: return ParseCompare(Inst, PFS, KeywordVal); 5038 case lltok::kw_fcmp: { 5039 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5040 int Res = ParseCompare(Inst, PFS, KeywordVal); 5041 if (Res != 0) 5042 return Res; 5043 if (FMF.any()) 5044 Inst->setFastMathFlags(FMF); 5045 return 0; 5046 } 5047 5048 // Casts. 5049 case lltok::kw_trunc: 5050 case lltok::kw_zext: 5051 case lltok::kw_sext: 5052 case lltok::kw_fptrunc: 5053 case lltok::kw_fpext: 5054 case lltok::kw_bitcast: 5055 case lltok::kw_addrspacecast: 5056 case lltok::kw_uitofp: 5057 case lltok::kw_sitofp: 5058 case lltok::kw_fptoui: 5059 case lltok::kw_fptosi: 5060 case lltok::kw_inttoptr: 5061 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); 5062 // Other. 5063 case lltok::kw_select: return ParseSelect(Inst, PFS); 5064 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); 5065 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); 5066 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); 5067 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); 5068 case lltok::kw_phi: return ParsePHI(Inst, PFS); 5069 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS); 5070 // Call. 5071 case lltok::kw_call: return ParseCall(Inst, PFS, CallInst::TCK_None); 5072 case lltok::kw_tail: return ParseCall(Inst, PFS, CallInst::TCK_Tail); 5073 case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail); 5074 case lltok::kw_notail: return ParseCall(Inst, PFS, CallInst::TCK_NoTail); 5075 // Memory. 5076 case lltok::kw_alloca: return ParseAlloc(Inst, PFS); 5077 case lltok::kw_load: return ParseLoad(Inst, PFS); 5078 case lltok::kw_store: return ParseStore(Inst, PFS); 5079 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS); 5080 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS); 5081 case lltok::kw_fence: return ParseFence(Inst, PFS); 5082 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); 5083 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); 5084 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); 5085 } 5086 } 5087 5088 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. 5089 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { 5090 if (Opc == Instruction::FCmp) { 5091 switch (Lex.getKind()) { 5092 default: return TokError("expected fcmp predicate (e.g. 'oeq')"); 5093 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 5094 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 5095 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 5096 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 5097 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 5098 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 5099 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 5100 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 5101 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 5102 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 5103 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 5104 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 5105 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 5106 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 5107 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 5108 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 5109 } 5110 } else { 5111 switch (Lex.getKind()) { 5112 default: return TokError("expected icmp predicate (e.g. 'eq')"); 5113 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 5114 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 5115 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 5116 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 5117 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 5118 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 5119 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 5120 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 5121 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 5122 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 5123 } 5124 } 5125 Lex.Lex(); 5126 return false; 5127 } 5128 5129 //===----------------------------------------------------------------------===// 5130 // Terminator Instructions. 5131 //===----------------------------------------------------------------------===// 5132 5133 /// ParseRet - Parse a return instruction. 5134 /// ::= 'ret' void (',' !dbg, !1)* 5135 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 5136 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, 5137 PerFunctionState &PFS) { 5138 SMLoc TypeLoc = Lex.getLoc(); 5139 Type *Ty = nullptr; 5140 if (ParseType(Ty, true /*void allowed*/)) return true; 5141 5142 Type *ResType = PFS.getFunction().getReturnType(); 5143 5144 if (Ty->isVoidTy()) { 5145 if (!ResType->isVoidTy()) 5146 return Error(TypeLoc, "value doesn't match function result type '" + 5147 getTypeString(ResType) + "'"); 5148 5149 Inst = ReturnInst::Create(Context); 5150 return false; 5151 } 5152 5153 Value *RV; 5154 if (ParseValue(Ty, RV, PFS)) return true; 5155 5156 if (ResType != RV->getType()) 5157 return Error(TypeLoc, "value doesn't match function result type '" + 5158 getTypeString(ResType) + "'"); 5159 5160 Inst = ReturnInst::Create(Context, RV); 5161 return false; 5162 } 5163 5164 /// ParseBr 5165 /// ::= 'br' TypeAndValue 5166 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5167 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { 5168 LocTy Loc, Loc2; 5169 Value *Op0; 5170 BasicBlock *Op1, *Op2; 5171 if (ParseTypeAndValue(Op0, Loc, PFS)) return true; 5172 5173 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 5174 Inst = BranchInst::Create(BB); 5175 return false; 5176 } 5177 5178 if (Op0->getType() != Type::getInt1Ty(Context)) 5179 return Error(Loc, "branch condition must have 'i1' type"); 5180 5181 if (ParseToken(lltok::comma, "expected ',' after branch condition") || 5182 ParseTypeAndBasicBlock(Op1, Loc, PFS) || 5183 ParseToken(lltok::comma, "expected ',' after true destination") || 5184 ParseTypeAndBasicBlock(Op2, Loc2, PFS)) 5185 return true; 5186 5187 Inst = BranchInst::Create(Op1, Op2, Op0); 5188 return false; 5189 } 5190 5191 /// ParseSwitch 5192 /// Instruction 5193 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 5194 /// JumpTable 5195 /// ::= (TypeAndValue ',' TypeAndValue)* 5196 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 5197 LocTy CondLoc, BBLoc; 5198 Value *Cond; 5199 BasicBlock *DefaultBB; 5200 if (ParseTypeAndValue(Cond, CondLoc, PFS) || 5201 ParseToken(lltok::comma, "expected ',' after switch condition") || 5202 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 5203 ParseToken(lltok::lsquare, "expected '[' with switch table")) 5204 return true; 5205 5206 if (!Cond->getType()->isIntegerTy()) 5207 return Error(CondLoc, "switch condition must have integer type"); 5208 5209 // Parse the jump table pairs. 5210 SmallPtrSet<Value*, 32> SeenCases; 5211 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 5212 while (Lex.getKind() != lltok::rsquare) { 5213 Value *Constant; 5214 BasicBlock *DestBB; 5215 5216 if (ParseTypeAndValue(Constant, CondLoc, PFS) || 5217 ParseToken(lltok::comma, "expected ',' after case value") || 5218 ParseTypeAndBasicBlock(DestBB, PFS)) 5219 return true; 5220 5221 if (!SeenCases.insert(Constant).second) 5222 return Error(CondLoc, "duplicate case value in switch"); 5223 if (!isa<ConstantInt>(Constant)) 5224 return Error(CondLoc, "case value is not a constant integer"); 5225 5226 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 5227 } 5228 5229 Lex.Lex(); // Eat the ']'. 5230 5231 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 5232 for (unsigned i = 0, e = Table.size(); i != e; ++i) 5233 SI->addCase(Table[i].first, Table[i].second); 5234 Inst = SI; 5235 return false; 5236 } 5237 5238 /// ParseIndirectBr 5239 /// Instruction 5240 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 5241 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 5242 LocTy AddrLoc; 5243 Value *Address; 5244 if (ParseTypeAndValue(Address, AddrLoc, PFS) || 5245 ParseToken(lltok::comma, "expected ',' after indirectbr address") || 5246 ParseToken(lltok::lsquare, "expected '[' with indirectbr")) 5247 return true; 5248 5249 if (!Address->getType()->isPointerTy()) 5250 return Error(AddrLoc, "indirectbr address must have pointer type"); 5251 5252 // Parse the destination list. 5253 SmallVector<BasicBlock*, 16> DestList; 5254 5255 if (Lex.getKind() != lltok::rsquare) { 5256 BasicBlock *DestBB; 5257 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5258 return true; 5259 DestList.push_back(DestBB); 5260 5261 while (EatIfPresent(lltok::comma)) { 5262 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5263 return true; 5264 DestList.push_back(DestBB); 5265 } 5266 } 5267 5268 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 5269 return true; 5270 5271 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 5272 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 5273 IBI->addDestination(DestList[i]); 5274 Inst = IBI; 5275 return false; 5276 } 5277 5278 /// ParseInvoke 5279 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 5280 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 5281 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 5282 LocTy CallLoc = Lex.getLoc(); 5283 AttrBuilder RetAttrs, FnAttrs; 5284 std::vector<unsigned> FwdRefAttrGrps; 5285 LocTy NoBuiltinLoc; 5286 unsigned CC; 5287 Type *RetType = nullptr; 5288 LocTy RetTypeLoc; 5289 ValID CalleeID; 5290 SmallVector<ParamInfo, 16> ArgList; 5291 SmallVector<OperandBundleDef, 2> BundleList; 5292 5293 BasicBlock *NormalBB, *UnwindBB; 5294 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5295 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 5296 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || 5297 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 5298 NoBuiltinLoc) || 5299 ParseOptionalOperandBundles(BundleList, PFS) || 5300 ParseToken(lltok::kw_to, "expected 'to' in invoke") || 5301 ParseTypeAndBasicBlock(NormalBB, PFS) || 5302 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 5303 ParseTypeAndBasicBlock(UnwindBB, PFS)) 5304 return true; 5305 5306 // If RetType is a non-function pointer type, then this is the short syntax 5307 // for the call, which means that RetType is just the return type. Infer the 5308 // rest of the function argument types from the arguments that are present. 5309 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 5310 if (!Ty) { 5311 // Pull out the types of all of the arguments... 5312 std::vector<Type*> ParamTypes; 5313 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 5314 ParamTypes.push_back(ArgList[i].V->getType()); 5315 5316 if (!FunctionType::isValidReturnType(RetType)) 5317 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 5318 5319 Ty = FunctionType::get(RetType, ParamTypes, false); 5320 } 5321 5322 CalleeID.FTy = Ty; 5323 5324 // Look up the callee. 5325 Value *Callee; 5326 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS)) 5327 return true; 5328 5329 // Set up the Attribute for the function. 5330 SmallVector<AttributeSet, 8> Attrs; 5331 if (RetAttrs.hasAttributes()) 5332 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5333 AttributeSet::ReturnIndex, 5334 RetAttrs)); 5335 5336 SmallVector<Value*, 8> Args; 5337 5338 // Loop through FunctionType's arguments and ensure they are specified 5339 // correctly. Also, gather any parameter attributes. 5340 FunctionType::param_iterator I = Ty->param_begin(); 5341 FunctionType::param_iterator E = Ty->param_end(); 5342 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5343 Type *ExpectedTy = nullptr; 5344 if (I != E) { 5345 ExpectedTy = *I++; 5346 } else if (!Ty->isVarArg()) { 5347 return Error(ArgList[i].Loc, "too many arguments specified"); 5348 } 5349 5350 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 5351 return Error(ArgList[i].Loc, "argument is not of expected type '" + 5352 getTypeString(ExpectedTy) + "'"); 5353 Args.push_back(ArgList[i].V); 5354 if (ArgList[i].Attrs.hasAttributes(i + 1)) { 5355 AttrBuilder B(ArgList[i].Attrs, i + 1); 5356 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B)); 5357 } 5358 } 5359 5360 if (I != E) 5361 return Error(CallLoc, "not enough parameters specified for call"); 5362 5363 if (FnAttrs.hasAttributes()) { 5364 if (FnAttrs.hasAlignmentAttr()) 5365 return Error(CallLoc, "invoke instructions may not have an alignment"); 5366 5367 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5368 AttributeSet::FunctionIndex, 5369 FnAttrs)); 5370 } 5371 5372 // Finish off the Attribute and check them 5373 AttributeSet PAL = AttributeSet::get(Context, Attrs); 5374 5375 InvokeInst *II = 5376 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 5377 II->setCallingConv(CC); 5378 II->setAttributes(PAL); 5379 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 5380 Inst = II; 5381 return false; 5382 } 5383 5384 /// ParseResume 5385 /// ::= 'resume' TypeAndValue 5386 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) { 5387 Value *Exn; LocTy ExnLoc; 5388 if (ParseTypeAndValue(Exn, ExnLoc, PFS)) 5389 return true; 5390 5391 ResumeInst *RI = ResumeInst::Create(Exn); 5392 Inst = RI; 5393 return false; 5394 } 5395 5396 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args, 5397 PerFunctionState &PFS) { 5398 if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 5399 return true; 5400 5401 while (Lex.getKind() != lltok::rsquare) { 5402 // If this isn't the first argument, we need a comma. 5403 if (!Args.empty() && 5404 ParseToken(lltok::comma, "expected ',' in argument list")) 5405 return true; 5406 5407 // Parse the argument. 5408 LocTy ArgLoc; 5409 Type *ArgTy = nullptr; 5410 if (ParseType(ArgTy, ArgLoc)) 5411 return true; 5412 5413 Value *V; 5414 if (ArgTy->isMetadataTy()) { 5415 if (ParseMetadataAsValue(V, PFS)) 5416 return true; 5417 } else { 5418 if (ParseValue(ArgTy, V, PFS)) 5419 return true; 5420 } 5421 Args.push_back(V); 5422 } 5423 5424 Lex.Lex(); // Lex the ']'. 5425 return false; 5426 } 5427 5428 /// ParseCleanupRet 5429 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 5430 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 5431 Value *CleanupPad = nullptr; 5432 5433 if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret")) 5434 return true; 5435 5436 if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 5437 return true; 5438 5439 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 5440 return true; 5441 5442 BasicBlock *UnwindBB = nullptr; 5443 if (Lex.getKind() == lltok::kw_to) { 5444 Lex.Lex(); 5445 if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 5446 return true; 5447 } else { 5448 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 5449 return true; 5450 } 5451 } 5452 5453 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 5454 return false; 5455 } 5456 5457 /// ParseCatchRet 5458 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 5459 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 5460 Value *CatchPad = nullptr; 5461 5462 if (ParseToken(lltok::kw_from, "expected 'from' after catchret")) 5463 return true; 5464 5465 if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS)) 5466 return true; 5467 5468 BasicBlock *BB; 5469 if (ParseToken(lltok::kw_to, "expected 'to' in catchret") || 5470 ParseTypeAndBasicBlock(BB, PFS)) 5471 return true; 5472 5473 Inst = CatchReturnInst::Create(CatchPad, BB); 5474 return false; 5475 } 5476 5477 /// ParseCatchSwitch 5478 /// ::= 'catchswitch' within Parent 5479 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 5480 Value *ParentPad; 5481 LocTy BBLoc; 5482 5483 if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch")) 5484 return true; 5485 5486 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 5487 Lex.getKind() != lltok::LocalVarID) 5488 return TokError("expected scope value for catchswitch"); 5489 5490 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 5491 return true; 5492 5493 if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 5494 return true; 5495 5496 SmallVector<BasicBlock *, 32> Table; 5497 do { 5498 BasicBlock *DestBB; 5499 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5500 return true; 5501 Table.push_back(DestBB); 5502 } while (EatIfPresent(lltok::comma)); 5503 5504 if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 5505 return true; 5506 5507 if (ParseToken(lltok::kw_unwind, 5508 "expected 'unwind' after catchswitch scope")) 5509 return true; 5510 5511 BasicBlock *UnwindBB = nullptr; 5512 if (EatIfPresent(lltok::kw_to)) { 5513 if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 5514 return true; 5515 } else { 5516 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) 5517 return true; 5518 } 5519 5520 auto *CatchSwitch = 5521 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 5522 for (BasicBlock *DestBB : Table) 5523 CatchSwitch->addHandler(DestBB); 5524 Inst = CatchSwitch; 5525 return false; 5526 } 5527 5528 /// ParseCatchPad 5529 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 5530 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 5531 Value *CatchSwitch = nullptr; 5532 5533 if (ParseToken(lltok::kw_within, "expected 'within' after catchpad")) 5534 return true; 5535 5536 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 5537 return TokError("expected scope value for catchpad"); 5538 5539 if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 5540 return true; 5541 5542 SmallVector<Value *, 8> Args; 5543 if (ParseExceptionArgs(Args, PFS)) 5544 return true; 5545 5546 Inst = CatchPadInst::Create(CatchSwitch, Args); 5547 return false; 5548 } 5549 5550 /// ParseCleanupPad 5551 /// ::= 'cleanuppad' within Parent ParamList 5552 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 5553 Value *ParentPad = nullptr; 5554 5555 if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 5556 return true; 5557 5558 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 5559 Lex.getKind() != lltok::LocalVarID) 5560 return TokError("expected scope value for cleanuppad"); 5561 5562 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 5563 return true; 5564 5565 SmallVector<Value *, 8> Args; 5566 if (ParseExceptionArgs(Args, PFS)) 5567 return true; 5568 5569 Inst = CleanupPadInst::Create(ParentPad, Args); 5570 return false; 5571 } 5572 5573 //===----------------------------------------------------------------------===// 5574 // Binary Operators. 5575 //===----------------------------------------------------------------------===// 5576 5577 /// ParseArithmetic 5578 /// ::= ArithmeticOps TypeAndValue ',' Value 5579 /// 5580 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1, 5581 /// then any integer operand is allowed, if it is 2, any fp operand is allowed. 5582 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 5583 unsigned Opc, unsigned OperandType) { 5584 LocTy Loc; Value *LHS, *RHS; 5585 if (ParseTypeAndValue(LHS, Loc, PFS) || 5586 ParseToken(lltok::comma, "expected ',' in arithmetic operation") || 5587 ParseValue(LHS->getType(), RHS, PFS)) 5588 return true; 5589 5590 bool Valid; 5591 switch (OperandType) { 5592 default: llvm_unreachable("Unknown operand type!"); 5593 case 0: // int or FP. 5594 Valid = LHS->getType()->isIntOrIntVectorTy() || 5595 LHS->getType()->isFPOrFPVectorTy(); 5596 break; 5597 case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break; 5598 case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break; 5599 } 5600 5601 if (!Valid) 5602 return Error(Loc, "invalid operand type for instruction"); 5603 5604 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 5605 return false; 5606 } 5607 5608 /// ParseLogical 5609 /// ::= ArithmeticOps TypeAndValue ',' Value { 5610 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, 5611 unsigned Opc) { 5612 LocTy Loc; Value *LHS, *RHS; 5613 if (ParseTypeAndValue(LHS, Loc, PFS) || 5614 ParseToken(lltok::comma, "expected ',' in logical operation") || 5615 ParseValue(LHS->getType(), RHS, PFS)) 5616 return true; 5617 5618 if (!LHS->getType()->isIntOrIntVectorTy()) 5619 return Error(Loc,"instruction requires integer or integer vector operands"); 5620 5621 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 5622 return false; 5623 } 5624 5625 /// ParseCompare 5626 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 5627 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 5628 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, 5629 unsigned Opc) { 5630 // Parse the integer/fp comparison predicate. 5631 LocTy Loc; 5632 unsigned Pred; 5633 Value *LHS, *RHS; 5634 if (ParseCmpPredicate(Pred, Opc) || 5635 ParseTypeAndValue(LHS, Loc, PFS) || 5636 ParseToken(lltok::comma, "expected ',' after compare value") || 5637 ParseValue(LHS->getType(), RHS, PFS)) 5638 return true; 5639 5640 if (Opc == Instruction::FCmp) { 5641 if (!LHS->getType()->isFPOrFPVectorTy()) 5642 return Error(Loc, "fcmp requires floating point operands"); 5643 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 5644 } else { 5645 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 5646 if (!LHS->getType()->isIntOrIntVectorTy() && 5647 !LHS->getType()->getScalarType()->isPointerTy()) 5648 return Error(Loc, "icmp requires integer operands"); 5649 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 5650 } 5651 return false; 5652 } 5653 5654 //===----------------------------------------------------------------------===// 5655 // Other Instructions. 5656 //===----------------------------------------------------------------------===// 5657 5658 5659 /// ParseCast 5660 /// ::= CastOpc TypeAndValue 'to' Type 5661 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, 5662 unsigned Opc) { 5663 LocTy Loc; 5664 Value *Op; 5665 Type *DestTy = nullptr; 5666 if (ParseTypeAndValue(Op, Loc, PFS) || 5667 ParseToken(lltok::kw_to, "expected 'to' after cast value") || 5668 ParseType(DestTy)) 5669 return true; 5670 5671 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 5672 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 5673 return Error(Loc, "invalid cast opcode for cast from '" + 5674 getTypeString(Op->getType()) + "' to '" + 5675 getTypeString(DestTy) + "'"); 5676 } 5677 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 5678 return false; 5679 } 5680 5681 /// ParseSelect 5682 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5683 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { 5684 LocTy Loc; 5685 Value *Op0, *Op1, *Op2; 5686 if (ParseTypeAndValue(Op0, Loc, PFS) || 5687 ParseToken(lltok::comma, "expected ',' after select condition") || 5688 ParseTypeAndValue(Op1, PFS) || 5689 ParseToken(lltok::comma, "expected ',' after select value") || 5690 ParseTypeAndValue(Op2, PFS)) 5691 return true; 5692 5693 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 5694 return Error(Loc, Reason); 5695 5696 Inst = SelectInst::Create(Op0, Op1, Op2); 5697 return false; 5698 } 5699 5700 /// ParseVA_Arg 5701 /// ::= 'va_arg' TypeAndValue ',' Type 5702 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { 5703 Value *Op; 5704 Type *EltTy = nullptr; 5705 LocTy TypeLoc; 5706 if (ParseTypeAndValue(Op, PFS) || 5707 ParseToken(lltok::comma, "expected ',' after vaarg operand") || 5708 ParseType(EltTy, TypeLoc)) 5709 return true; 5710 5711 if (!EltTy->isFirstClassType()) 5712 return Error(TypeLoc, "va_arg requires operand with first class type"); 5713 5714 Inst = new VAArgInst(Op, EltTy); 5715 return false; 5716 } 5717 5718 /// ParseExtractElement 5719 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 5720 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 5721 LocTy Loc; 5722 Value *Op0, *Op1; 5723 if (ParseTypeAndValue(Op0, Loc, PFS) || 5724 ParseToken(lltok::comma, "expected ',' after extract value") || 5725 ParseTypeAndValue(Op1, PFS)) 5726 return true; 5727 5728 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 5729 return Error(Loc, "invalid extractelement operands"); 5730 5731 Inst = ExtractElementInst::Create(Op0, Op1); 5732 return false; 5733 } 5734 5735 /// ParseInsertElement 5736 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5737 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 5738 LocTy Loc; 5739 Value *Op0, *Op1, *Op2; 5740 if (ParseTypeAndValue(Op0, Loc, PFS) || 5741 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5742 ParseTypeAndValue(Op1, PFS) || 5743 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5744 ParseTypeAndValue(Op2, PFS)) 5745 return true; 5746 5747 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 5748 return Error(Loc, "invalid insertelement operands"); 5749 5750 Inst = InsertElementInst::Create(Op0, Op1, Op2); 5751 return false; 5752 } 5753 5754 /// ParseShuffleVector 5755 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5756 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 5757 LocTy Loc; 5758 Value *Op0, *Op1, *Op2; 5759 if (ParseTypeAndValue(Op0, Loc, PFS) || 5760 ParseToken(lltok::comma, "expected ',' after shuffle mask") || 5761 ParseTypeAndValue(Op1, PFS) || 5762 ParseToken(lltok::comma, "expected ',' after shuffle value") || 5763 ParseTypeAndValue(Op2, PFS)) 5764 return true; 5765 5766 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 5767 return Error(Loc, "invalid shufflevector operands"); 5768 5769 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 5770 return false; 5771 } 5772 5773 /// ParsePHI 5774 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 5775 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { 5776 Type *Ty = nullptr; LocTy TypeLoc; 5777 Value *Op0, *Op1; 5778 5779 if (ParseType(Ty, TypeLoc) || 5780 ParseToken(lltok::lsquare, "expected '[' in phi value list") || 5781 ParseValue(Ty, Op0, PFS) || 5782 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5783 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 5784 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 5785 return true; 5786 5787 bool AteExtraComma = false; 5788 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 5789 5790 while (true) { 5791 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 5792 5793 if (!EatIfPresent(lltok::comma)) 5794 break; 5795 5796 if (Lex.getKind() == lltok::MetadataVar) { 5797 AteExtraComma = true; 5798 break; 5799 } 5800 5801 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || 5802 ParseValue(Ty, Op0, PFS) || 5803 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5804 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 5805 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 5806 return true; 5807 } 5808 5809 if (!Ty->isFirstClassType()) 5810 return Error(TypeLoc, "phi node must have first class type"); 5811 5812 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 5813 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 5814 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 5815 Inst = PN; 5816 return AteExtraComma ? InstExtraComma : InstNormal; 5817 } 5818 5819 /// ParseLandingPad 5820 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 5821 /// Clause 5822 /// ::= 'catch' TypeAndValue 5823 /// ::= 'filter' 5824 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 5825 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 5826 Type *Ty = nullptr; LocTy TyLoc; 5827 5828 if (ParseType(Ty, TyLoc)) 5829 return true; 5830 5831 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 5832 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 5833 5834 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 5835 LandingPadInst::ClauseType CT; 5836 if (EatIfPresent(lltok::kw_catch)) 5837 CT = LandingPadInst::Catch; 5838 else if (EatIfPresent(lltok::kw_filter)) 5839 CT = LandingPadInst::Filter; 5840 else 5841 return TokError("expected 'catch' or 'filter' clause type"); 5842 5843 Value *V; 5844 LocTy VLoc; 5845 if (ParseTypeAndValue(V, VLoc, PFS)) 5846 return true; 5847 5848 // A 'catch' type expects a non-array constant. A filter clause expects an 5849 // array constant. 5850 if (CT == LandingPadInst::Catch) { 5851 if (isa<ArrayType>(V->getType())) 5852 Error(VLoc, "'catch' clause has an invalid type"); 5853 } else { 5854 if (!isa<ArrayType>(V->getType())) 5855 Error(VLoc, "'filter' clause has an invalid type"); 5856 } 5857 5858 Constant *CV = dyn_cast<Constant>(V); 5859 if (!CV) 5860 return Error(VLoc, "clause argument must be a constant"); 5861 LP->addClause(CV); 5862 } 5863 5864 Inst = LP.release(); 5865 return false; 5866 } 5867 5868 /// ParseCall 5869 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 5870 /// OptionalAttrs Type Value ParameterList OptionalAttrs 5871 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 5872 /// OptionalAttrs Type Value ParameterList OptionalAttrs 5873 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 5874 /// OptionalAttrs Type Value ParameterList OptionalAttrs 5875 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 5876 /// OptionalAttrs Type Value ParameterList OptionalAttrs 5877 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, 5878 CallInst::TailCallKind TCK) { 5879 AttrBuilder RetAttrs, FnAttrs; 5880 std::vector<unsigned> FwdRefAttrGrps; 5881 LocTy BuiltinLoc; 5882 unsigned CC; 5883 Type *RetType = nullptr; 5884 LocTy RetTypeLoc; 5885 ValID CalleeID; 5886 SmallVector<ParamInfo, 16> ArgList; 5887 SmallVector<OperandBundleDef, 2> BundleList; 5888 LocTy CallLoc = Lex.getLoc(); 5889 5890 if (TCK != CallInst::TCK_None && 5891 ParseToken(lltok::kw_call, 5892 "expected 'tail call', 'musttail call', or 'notail call'")) 5893 return true; 5894 5895 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5896 5897 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5898 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 5899 ParseValID(CalleeID) || 5900 ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 5901 PFS.getFunction().isVarArg()) || 5902 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 5903 ParseOptionalOperandBundles(BundleList, PFS)) 5904 return true; 5905 5906 if (FMF.any() && !RetType->isFPOrFPVectorTy()) 5907 return Error(CallLoc, "fast-math-flags specified for call without " 5908 "floating-point scalar or vector return type"); 5909 5910 // If RetType is a non-function pointer type, then this is the short syntax 5911 // for the call, which means that RetType is just the return type. Infer the 5912 // rest of the function argument types from the arguments that are present. 5913 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 5914 if (!Ty) { 5915 // Pull out the types of all of the arguments... 5916 std::vector<Type*> ParamTypes; 5917 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 5918 ParamTypes.push_back(ArgList[i].V->getType()); 5919 5920 if (!FunctionType::isValidReturnType(RetType)) 5921 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 5922 5923 Ty = FunctionType::get(RetType, ParamTypes, false); 5924 } 5925 5926 CalleeID.FTy = Ty; 5927 5928 // Look up the callee. 5929 Value *Callee; 5930 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS)) 5931 return true; 5932 5933 // Set up the Attribute for the function. 5934 SmallVector<AttributeSet, 8> Attrs; 5935 if (RetAttrs.hasAttributes()) 5936 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5937 AttributeSet::ReturnIndex, 5938 RetAttrs)); 5939 5940 SmallVector<Value*, 8> Args; 5941 5942 // Loop through FunctionType's arguments and ensure they are specified 5943 // correctly. Also, gather any parameter attributes. 5944 FunctionType::param_iterator I = Ty->param_begin(); 5945 FunctionType::param_iterator E = Ty->param_end(); 5946 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5947 Type *ExpectedTy = nullptr; 5948 if (I != E) { 5949 ExpectedTy = *I++; 5950 } else if (!Ty->isVarArg()) { 5951 return Error(ArgList[i].Loc, "too many arguments specified"); 5952 } 5953 5954 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 5955 return Error(ArgList[i].Loc, "argument is not of expected type '" + 5956 getTypeString(ExpectedTy) + "'"); 5957 Args.push_back(ArgList[i].V); 5958 if (ArgList[i].Attrs.hasAttributes(i + 1)) { 5959 AttrBuilder B(ArgList[i].Attrs, i + 1); 5960 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B)); 5961 } 5962 } 5963 5964 if (I != E) 5965 return Error(CallLoc, "not enough parameters specified for call"); 5966 5967 if (FnAttrs.hasAttributes()) { 5968 if (FnAttrs.hasAlignmentAttr()) 5969 return Error(CallLoc, "call instructions may not have an alignment"); 5970 5971 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5972 AttributeSet::FunctionIndex, 5973 FnAttrs)); 5974 } 5975 5976 // Finish off the Attribute and check them 5977 AttributeSet PAL = AttributeSet::get(Context, Attrs); 5978 5979 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 5980 CI->setTailCallKind(TCK); 5981 CI->setCallingConv(CC); 5982 if (FMF.any()) 5983 CI->setFastMathFlags(FMF); 5984 CI->setAttributes(PAL); 5985 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 5986 Inst = CI; 5987 return false; 5988 } 5989 5990 //===----------------------------------------------------------------------===// 5991 // Memory Instructions. 5992 //===----------------------------------------------------------------------===// 5993 5994 /// ParseAlloc 5995 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 5996 /// (',' 'align' i32)? 5997 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 5998 Value *Size = nullptr; 5999 LocTy SizeLoc, TyLoc; 6000 unsigned Alignment = 0; 6001 Type *Ty = nullptr; 6002 6003 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 6004 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 6005 6006 if (ParseType(Ty, TyLoc)) return true; 6007 6008 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 6009 return Error(TyLoc, "invalid type for alloca"); 6010 6011 bool AteExtraComma = false; 6012 if (EatIfPresent(lltok::comma)) { 6013 if (Lex.getKind() == lltok::kw_align) { 6014 if (ParseOptionalAlignment(Alignment)) return true; 6015 } else if (Lex.getKind() == lltok::MetadataVar) { 6016 AteExtraComma = true; 6017 } else { 6018 if (ParseTypeAndValue(Size, SizeLoc, PFS) || 6019 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6020 return true; 6021 } 6022 } 6023 6024 if (Size && !Size->getType()->isIntegerTy()) 6025 return Error(SizeLoc, "element count must have integer type"); 6026 6027 AllocaInst *AI = new AllocaInst(Ty, Size, Alignment); 6028 AI->setUsedWithInAlloca(IsInAlloca); 6029 AI->setSwiftError(IsSwiftError); 6030 Inst = AI; 6031 return AteExtraComma ? InstExtraComma : InstNormal; 6032 } 6033 6034 /// ParseLoad 6035 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 6036 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 6037 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6038 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) { 6039 Value *Val; LocTy Loc; 6040 unsigned Alignment = 0; 6041 bool AteExtraComma = false; 6042 bool isAtomic = false; 6043 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6044 SynchronizationScope Scope = CrossThread; 6045 6046 if (Lex.getKind() == lltok::kw_atomic) { 6047 isAtomic = true; 6048 Lex.Lex(); 6049 } 6050 6051 bool isVolatile = false; 6052 if (Lex.getKind() == lltok::kw_volatile) { 6053 isVolatile = true; 6054 Lex.Lex(); 6055 } 6056 6057 Type *Ty; 6058 LocTy ExplicitTypeLoc = Lex.getLoc(); 6059 if (ParseType(Ty) || 6060 ParseToken(lltok::comma, "expected comma after load's type") || 6061 ParseTypeAndValue(Val, Loc, PFS) || 6062 ParseScopeAndOrdering(isAtomic, Scope, Ordering) || 6063 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6064 return true; 6065 6066 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 6067 return Error(Loc, "load operand must be a pointer to a first class type"); 6068 if (isAtomic && !Alignment) 6069 return Error(Loc, "atomic load must have explicit non-zero alignment"); 6070 if (Ordering == AtomicOrdering::Release || 6071 Ordering == AtomicOrdering::AcquireRelease) 6072 return Error(Loc, "atomic load cannot use Release ordering"); 6073 6074 if (Ty != cast<PointerType>(Val->getType())->getElementType()) 6075 return Error(ExplicitTypeLoc, 6076 "explicit pointee type doesn't match operand's pointee type"); 6077 6078 Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, Scope); 6079 return AteExtraComma ? InstExtraComma : InstNormal; 6080 } 6081 6082 /// ParseStore 6083 6084 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 6085 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 6086 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6087 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) { 6088 Value *Val, *Ptr; LocTy Loc, PtrLoc; 6089 unsigned Alignment = 0; 6090 bool AteExtraComma = false; 6091 bool isAtomic = false; 6092 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6093 SynchronizationScope Scope = CrossThread; 6094 6095 if (Lex.getKind() == lltok::kw_atomic) { 6096 isAtomic = true; 6097 Lex.Lex(); 6098 } 6099 6100 bool isVolatile = false; 6101 if (Lex.getKind() == lltok::kw_volatile) { 6102 isVolatile = true; 6103 Lex.Lex(); 6104 } 6105 6106 if (ParseTypeAndValue(Val, Loc, PFS) || 6107 ParseToken(lltok::comma, "expected ',' after store operand") || 6108 ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6109 ParseScopeAndOrdering(isAtomic, Scope, Ordering) || 6110 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6111 return true; 6112 6113 if (!Ptr->getType()->isPointerTy()) 6114 return Error(PtrLoc, "store operand must be a pointer"); 6115 if (!Val->getType()->isFirstClassType()) 6116 return Error(Loc, "store operand must be a first class value"); 6117 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 6118 return Error(Loc, "stored value and pointer type do not match"); 6119 if (isAtomic && !Alignment) 6120 return Error(Loc, "atomic store must have explicit non-zero alignment"); 6121 if (Ordering == AtomicOrdering::Acquire || 6122 Ordering == AtomicOrdering::AcquireRelease) 6123 return Error(Loc, "atomic store cannot use Acquire ordering"); 6124 6125 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope); 6126 return AteExtraComma ? InstExtraComma : InstNormal; 6127 } 6128 6129 /// ParseCmpXchg 6130 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 6131 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering 6132 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 6133 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 6134 bool AteExtraComma = false; 6135 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 6136 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 6137 SynchronizationScope Scope = CrossThread; 6138 bool isVolatile = false; 6139 bool isWeak = false; 6140 6141 if (EatIfPresent(lltok::kw_weak)) 6142 isWeak = true; 6143 6144 if (EatIfPresent(lltok::kw_volatile)) 6145 isVolatile = true; 6146 6147 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6148 ParseToken(lltok::comma, "expected ',' after cmpxchg address") || 6149 ParseTypeAndValue(Cmp, CmpLoc, PFS) || 6150 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 6151 ParseTypeAndValue(New, NewLoc, PFS) || 6152 ParseScopeAndOrdering(true /*Always atomic*/, Scope, SuccessOrdering) || 6153 ParseOrdering(FailureOrdering)) 6154 return true; 6155 6156 if (SuccessOrdering == AtomicOrdering::Unordered || 6157 FailureOrdering == AtomicOrdering::Unordered) 6158 return TokError("cmpxchg cannot be unordered"); 6159 if (isStrongerThan(FailureOrdering, SuccessOrdering)) 6160 return TokError("cmpxchg failure argument shall be no stronger than the " 6161 "success argument"); 6162 if (FailureOrdering == AtomicOrdering::Release || 6163 FailureOrdering == AtomicOrdering::AcquireRelease) 6164 return TokError( 6165 "cmpxchg failure ordering cannot include release semantics"); 6166 if (!Ptr->getType()->isPointerTy()) 6167 return Error(PtrLoc, "cmpxchg operand must be a pointer"); 6168 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 6169 return Error(CmpLoc, "compare value and pointer type do not match"); 6170 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 6171 return Error(NewLoc, "new value and pointer type do not match"); 6172 if (!New->getType()->isFirstClassType()) 6173 return Error(NewLoc, "cmpxchg operand must be a first class value"); 6174 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 6175 Ptr, Cmp, New, SuccessOrdering, FailureOrdering, Scope); 6176 CXI->setVolatile(isVolatile); 6177 CXI->setWeak(isWeak); 6178 Inst = CXI; 6179 return AteExtraComma ? InstExtraComma : InstNormal; 6180 } 6181 6182 /// ParseAtomicRMW 6183 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 6184 /// 'singlethread'? AtomicOrdering 6185 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 6186 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 6187 bool AteExtraComma = false; 6188 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6189 SynchronizationScope Scope = CrossThread; 6190 bool isVolatile = false; 6191 AtomicRMWInst::BinOp Operation; 6192 6193 if (EatIfPresent(lltok::kw_volatile)) 6194 isVolatile = true; 6195 6196 switch (Lex.getKind()) { 6197 default: return TokError("expected binary operation in atomicrmw"); 6198 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 6199 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 6200 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 6201 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 6202 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 6203 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 6204 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 6205 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 6206 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 6207 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 6208 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 6209 } 6210 Lex.Lex(); // Eat the operation. 6211 6212 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6213 ParseToken(lltok::comma, "expected ',' after atomicrmw address") || 6214 ParseTypeAndValue(Val, ValLoc, PFS) || 6215 ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 6216 return true; 6217 6218 if (Ordering == AtomicOrdering::Unordered) 6219 return TokError("atomicrmw cannot be unordered"); 6220 if (!Ptr->getType()->isPointerTy()) 6221 return Error(PtrLoc, "atomicrmw operand must be a pointer"); 6222 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 6223 return Error(ValLoc, "atomicrmw value and pointer type do not match"); 6224 if (!Val->getType()->isIntegerTy()) 6225 return Error(ValLoc, "atomicrmw operand must be an integer"); 6226 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 6227 if (Size < 8 || (Size & (Size - 1))) 6228 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 6229 " integer"); 6230 6231 AtomicRMWInst *RMWI = 6232 new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope); 6233 RMWI->setVolatile(isVolatile); 6234 Inst = RMWI; 6235 return AteExtraComma ? InstExtraComma : InstNormal; 6236 } 6237 6238 /// ParseFence 6239 /// ::= 'fence' 'singlethread'? AtomicOrdering 6240 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) { 6241 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6242 SynchronizationScope Scope = CrossThread; 6243 if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 6244 return true; 6245 6246 if (Ordering == AtomicOrdering::Unordered) 6247 return TokError("fence cannot be unordered"); 6248 if (Ordering == AtomicOrdering::Monotonic) 6249 return TokError("fence cannot be monotonic"); 6250 6251 Inst = new FenceInst(Context, Ordering, Scope); 6252 return InstNormal; 6253 } 6254 6255 /// ParseGetElementPtr 6256 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 6257 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 6258 Value *Ptr = nullptr; 6259 Value *Val = nullptr; 6260 LocTy Loc, EltLoc; 6261 6262 bool InBounds = EatIfPresent(lltok::kw_inbounds); 6263 6264 Type *Ty = nullptr; 6265 LocTy ExplicitTypeLoc = Lex.getLoc(); 6266 if (ParseType(Ty) || 6267 ParseToken(lltok::comma, "expected comma after getelementptr's type") || 6268 ParseTypeAndValue(Ptr, Loc, PFS)) 6269 return true; 6270 6271 Type *BaseType = Ptr->getType(); 6272 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 6273 if (!BasePointerType) 6274 return Error(Loc, "base of getelementptr must be a pointer"); 6275 6276 if (Ty != BasePointerType->getElementType()) 6277 return Error(ExplicitTypeLoc, 6278 "explicit pointee type doesn't match operand's pointee type"); 6279 6280 SmallVector<Value*, 16> Indices; 6281 bool AteExtraComma = false; 6282 // GEP returns a vector of pointers if at least one of parameters is a vector. 6283 // All vector parameters should have the same vector width. 6284 unsigned GEPWidth = BaseType->isVectorTy() ? 6285 BaseType->getVectorNumElements() : 0; 6286 6287 while (EatIfPresent(lltok::comma)) { 6288 if (Lex.getKind() == lltok::MetadataVar) { 6289 AteExtraComma = true; 6290 break; 6291 } 6292 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; 6293 if (!Val->getType()->getScalarType()->isIntegerTy()) 6294 return Error(EltLoc, "getelementptr index must be an integer"); 6295 6296 if (Val->getType()->isVectorTy()) { 6297 unsigned ValNumEl = Val->getType()->getVectorNumElements(); 6298 if (GEPWidth && GEPWidth != ValNumEl) 6299 return Error(EltLoc, 6300 "getelementptr vector index has a wrong number of elements"); 6301 GEPWidth = ValNumEl; 6302 } 6303 Indices.push_back(Val); 6304 } 6305 6306 SmallPtrSet<Type*, 4> Visited; 6307 if (!Indices.empty() && !Ty->isSized(&Visited)) 6308 return Error(Loc, "base element of getelementptr must be sized"); 6309 6310 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 6311 return Error(Loc, "invalid getelementptr indices"); 6312 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 6313 if (InBounds) 6314 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 6315 return AteExtraComma ? InstExtraComma : InstNormal; 6316 } 6317 6318 /// ParseExtractValue 6319 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 6320 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 6321 Value *Val; LocTy Loc; 6322 SmallVector<unsigned, 4> Indices; 6323 bool AteExtraComma; 6324 if (ParseTypeAndValue(Val, Loc, PFS) || 6325 ParseIndexList(Indices, AteExtraComma)) 6326 return true; 6327 6328 if (!Val->getType()->isAggregateType()) 6329 return Error(Loc, "extractvalue operand must be aggregate type"); 6330 6331 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 6332 return Error(Loc, "invalid indices for extractvalue"); 6333 Inst = ExtractValueInst::Create(Val, Indices); 6334 return AteExtraComma ? InstExtraComma : InstNormal; 6335 } 6336 6337 /// ParseInsertValue 6338 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 6339 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 6340 Value *Val0, *Val1; LocTy Loc0, Loc1; 6341 SmallVector<unsigned, 4> Indices; 6342 bool AteExtraComma; 6343 if (ParseTypeAndValue(Val0, Loc0, PFS) || 6344 ParseToken(lltok::comma, "expected comma after insertvalue operand") || 6345 ParseTypeAndValue(Val1, Loc1, PFS) || 6346 ParseIndexList(Indices, AteExtraComma)) 6347 return true; 6348 6349 if (!Val0->getType()->isAggregateType()) 6350 return Error(Loc0, "insertvalue operand must be aggregate type"); 6351 6352 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 6353 if (!IndexedType) 6354 return Error(Loc0, "invalid indices for insertvalue"); 6355 if (IndexedType != Val1->getType()) 6356 return Error(Loc1, "insertvalue operand and field disagree in type: '" + 6357 getTypeString(Val1->getType()) + "' instead of '" + 6358 getTypeString(IndexedType) + "'"); 6359 Inst = InsertValueInst::Create(Val0, Val1, Indices); 6360 return AteExtraComma ? InstExtraComma : InstNormal; 6361 } 6362 6363 //===----------------------------------------------------------------------===// 6364 // Embedded metadata. 6365 //===----------------------------------------------------------------------===// 6366 6367 /// ParseMDNodeVector 6368 /// ::= { Element (',' Element)* } 6369 /// Element 6370 /// ::= 'null' | TypeAndValue 6371 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 6372 if (ParseToken(lltok::lbrace, "expected '{' here")) 6373 return true; 6374 6375 // Check for an empty list. 6376 if (EatIfPresent(lltok::rbrace)) 6377 return false; 6378 6379 do { 6380 // Null is a special case since it is typeless. 6381 if (EatIfPresent(lltok::kw_null)) { 6382 Elts.push_back(nullptr); 6383 continue; 6384 } 6385 6386 Metadata *MD; 6387 if (ParseMetadata(MD, nullptr)) 6388 return true; 6389 Elts.push_back(MD); 6390 } while (EatIfPresent(lltok::comma)); 6391 6392 return ParseToken(lltok::rbrace, "expected end of metadata node"); 6393 } 6394 6395 //===----------------------------------------------------------------------===// 6396 // Use-list order directives. 6397 //===----------------------------------------------------------------------===// 6398 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 6399 SMLoc Loc) { 6400 if (V->use_empty()) 6401 return Error(Loc, "value has no uses"); 6402 6403 unsigned NumUses = 0; 6404 SmallDenseMap<const Use *, unsigned, 16> Order; 6405 for (const Use &U : V->uses()) { 6406 if (++NumUses > Indexes.size()) 6407 break; 6408 Order[&U] = Indexes[NumUses - 1]; 6409 } 6410 if (NumUses < 2) 6411 return Error(Loc, "value only has one use"); 6412 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 6413 return Error(Loc, "wrong number of indexes, expected " + 6414 Twine(std::distance(V->use_begin(), V->use_end()))); 6415 6416 V->sortUseList([&](const Use &L, const Use &R) { 6417 return Order.lookup(&L) < Order.lookup(&R); 6418 }); 6419 return false; 6420 } 6421 6422 /// ParseUseListOrderIndexes 6423 /// ::= '{' uint32 (',' uint32)+ '}' 6424 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 6425 SMLoc Loc = Lex.getLoc(); 6426 if (ParseToken(lltok::lbrace, "expected '{' here")) 6427 return true; 6428 if (Lex.getKind() == lltok::rbrace) 6429 return Lex.Error("expected non-empty list of uselistorder indexes"); 6430 6431 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 6432 // indexes should be distinct numbers in the range [0, size-1], and should 6433 // not be in order. 6434 unsigned Offset = 0; 6435 unsigned Max = 0; 6436 bool IsOrdered = true; 6437 assert(Indexes.empty() && "Expected empty order vector"); 6438 do { 6439 unsigned Index; 6440 if (ParseUInt32(Index)) 6441 return true; 6442 6443 // Update consistency checks. 6444 Offset += Index - Indexes.size(); 6445 Max = std::max(Max, Index); 6446 IsOrdered &= Index == Indexes.size(); 6447 6448 Indexes.push_back(Index); 6449 } while (EatIfPresent(lltok::comma)); 6450 6451 if (ParseToken(lltok::rbrace, "expected '}' here")) 6452 return true; 6453 6454 if (Indexes.size() < 2) 6455 return Error(Loc, "expected >= 2 uselistorder indexes"); 6456 if (Offset != 0 || Max >= Indexes.size()) 6457 return Error(Loc, "expected distinct uselistorder indexes in range [0, size)"); 6458 if (IsOrdered) 6459 return Error(Loc, "expected uselistorder indexes to change the order"); 6460 6461 return false; 6462 } 6463 6464 /// ParseUseListOrder 6465 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 6466 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) { 6467 SMLoc Loc = Lex.getLoc(); 6468 if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 6469 return true; 6470 6471 Value *V; 6472 SmallVector<unsigned, 16> Indexes; 6473 if (ParseTypeAndValue(V, PFS) || 6474 ParseToken(lltok::comma, "expected comma in uselistorder directive") || 6475 ParseUseListOrderIndexes(Indexes)) 6476 return true; 6477 6478 return sortUseListOrder(V, Indexes, Loc); 6479 } 6480 6481 /// ParseUseListOrderBB 6482 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 6483 bool LLParser::ParseUseListOrderBB() { 6484 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 6485 SMLoc Loc = Lex.getLoc(); 6486 Lex.Lex(); 6487 6488 ValID Fn, Label; 6489 SmallVector<unsigned, 16> Indexes; 6490 if (ParseValID(Fn) || 6491 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 6492 ParseValID(Label) || 6493 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 6494 ParseUseListOrderIndexes(Indexes)) 6495 return true; 6496 6497 // Check the function. 6498 GlobalValue *GV; 6499 if (Fn.Kind == ValID::t_GlobalName) 6500 GV = M->getNamedValue(Fn.StrVal); 6501 else if (Fn.Kind == ValID::t_GlobalID) 6502 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 6503 else 6504 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 6505 if (!GV) 6506 return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb"); 6507 auto *F = dyn_cast<Function>(GV); 6508 if (!F) 6509 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 6510 if (F->isDeclaration()) 6511 return Error(Fn.Loc, "invalid declaration in uselistorder_bb"); 6512 6513 // Check the basic block. 6514 if (Label.Kind == ValID::t_LocalID) 6515 return Error(Label.Loc, "invalid numeric label in uselistorder_bb"); 6516 if (Label.Kind != ValID::t_LocalName) 6517 return Error(Label.Loc, "expected basic block name in uselistorder_bb"); 6518 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); 6519 if (!V) 6520 return Error(Label.Loc, "invalid basic block in uselistorder_bb"); 6521 if (!isa<BasicBlock>(V)) 6522 return Error(Label.Loc, "expected basic block in uselistorder_bb"); 6523 6524 return sortUseListOrder(V, Indexes, Loc); 6525 } 6526