1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines the parser class for .ll files.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "LLParser.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/AsmParser/SlotMapping.h"
21 #include "llvm/IR/Argument.h"
22 #include "llvm/IR/AutoUpgrade.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/CallingConv.h"
25 #include "llvm/IR/Comdat.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugInfoMetadata.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalIFunc.h"
31 #include "llvm/IR/GlobalObject.h"
32 #include "llvm/IR/InlineAsm.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/IR/Type.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/IR/ValueSymbolTable.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/Dwarf.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/MathExtras.h"
47 #include "llvm/Support/SaveAndRestore.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <cstring>
52 #include <iterator>
53 #include <vector>
54 
55 using namespace llvm;
56 
57 static std::string getTypeString(Type *T) {
58   std::string Result;
59   raw_string_ostream Tmp(Result);
60   Tmp << *T;
61   return Tmp.str();
62 }
63 
64 /// Run: module ::= toplevelentity*
65 bool LLParser::Run() {
66   // Prime the lexer.
67   Lex.Lex();
68 
69   if (Context.shouldDiscardValueNames())
70     return Error(
71         Lex.getLoc(),
72         "Can't read textual IR with a Context that discards named Values");
73 
74   return ParseTopLevelEntities() ||
75          ValidateEndOfModule();
76 }
77 
78 bool LLParser::parseStandaloneConstantValue(Constant *&C,
79                                             const SlotMapping *Slots) {
80   restoreParsingState(Slots);
81   Lex.Lex();
82 
83   Type *Ty = nullptr;
84   if (ParseType(Ty) || parseConstantValue(Ty, C))
85     return true;
86   if (Lex.getKind() != lltok::Eof)
87     return Error(Lex.getLoc(), "expected end of string");
88   return false;
89 }
90 
91 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
92                                     const SlotMapping *Slots) {
93   restoreParsingState(Slots);
94   Lex.Lex();
95 
96   Read = 0;
97   SMLoc Start = Lex.getLoc();
98   Ty = nullptr;
99   if (ParseType(Ty))
100     return true;
101   SMLoc End = Lex.getLoc();
102   Read = End.getPointer() - Start.getPointer();
103 
104   return false;
105 }
106 
107 void LLParser::restoreParsingState(const SlotMapping *Slots) {
108   if (!Slots)
109     return;
110   NumberedVals = Slots->GlobalValues;
111   NumberedMetadata = Slots->MetadataNodes;
112   for (const auto &I : Slots->NamedTypes)
113     NamedTypes.insert(
114         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
115   for (const auto &I : Slots->Types)
116     NumberedTypes.insert(
117         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
118 }
119 
120 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
121 /// module.
122 bool LLParser::ValidateEndOfModule() {
123   // Handle any function attribute group forward references.
124   for (std::map<Value*, std::vector<unsigned> >::iterator
125          I = ForwardRefAttrGroups.begin(), E = ForwardRefAttrGroups.end();
126          I != E; ++I) {
127     Value *V = I->first;
128     std::vector<unsigned> &Vec = I->second;
129     AttrBuilder B;
130 
131     for (std::vector<unsigned>::iterator VI = Vec.begin(), VE = Vec.end();
132          VI != VE; ++VI)
133       B.merge(NumberedAttrBuilders[*VI]);
134 
135     if (Function *Fn = dyn_cast<Function>(V)) {
136       AttributeSet AS = Fn->getAttributes();
137       AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
138       AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
139                                AS.getFnAttributes());
140 
141       FnAttrs.merge(B);
142 
143       // If the alignment was parsed as an attribute, move to the alignment
144       // field.
145       if (FnAttrs.hasAlignmentAttr()) {
146         Fn->setAlignment(FnAttrs.getAlignment());
147         FnAttrs.removeAttribute(Attribute::Alignment);
148       }
149 
150       AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
151                             AttributeSet::get(Context,
152                                               AttributeSet::FunctionIndex,
153                                               FnAttrs));
154       Fn->setAttributes(AS);
155     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
156       AttributeSet AS = CI->getAttributes();
157       AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
158       AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
159                                AS.getFnAttributes());
160       FnAttrs.merge(B);
161       AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
162                             AttributeSet::get(Context,
163                                               AttributeSet::FunctionIndex,
164                                               FnAttrs));
165       CI->setAttributes(AS);
166     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
167       AttributeSet AS = II->getAttributes();
168       AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
169       AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
170                                AS.getFnAttributes());
171       FnAttrs.merge(B);
172       AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
173                             AttributeSet::get(Context,
174                                               AttributeSet::FunctionIndex,
175                                               FnAttrs));
176       II->setAttributes(AS);
177     } else {
178       llvm_unreachable("invalid object with forward attribute group reference");
179     }
180   }
181 
182   // If there are entries in ForwardRefBlockAddresses at this point, the
183   // function was never defined.
184   if (!ForwardRefBlockAddresses.empty())
185     return Error(ForwardRefBlockAddresses.begin()->first.Loc,
186                  "expected function name in blockaddress");
187 
188   for (const auto &NT : NumberedTypes)
189     if (NT.second.second.isValid())
190       return Error(NT.second.second,
191                    "use of undefined type '%" + Twine(NT.first) + "'");
192 
193   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
194        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
195     if (I->second.second.isValid())
196       return Error(I->second.second,
197                    "use of undefined type named '" + I->getKey() + "'");
198 
199   if (!ForwardRefComdats.empty())
200     return Error(ForwardRefComdats.begin()->second,
201                  "use of undefined comdat '$" +
202                      ForwardRefComdats.begin()->first + "'");
203 
204   if (!ForwardRefVals.empty())
205     return Error(ForwardRefVals.begin()->second.second,
206                  "use of undefined value '@" + ForwardRefVals.begin()->first +
207                  "'");
208 
209   if (!ForwardRefValIDs.empty())
210     return Error(ForwardRefValIDs.begin()->second.second,
211                  "use of undefined value '@" +
212                  Twine(ForwardRefValIDs.begin()->first) + "'");
213 
214   if (!ForwardRefMDNodes.empty())
215     return Error(ForwardRefMDNodes.begin()->second.second,
216                  "use of undefined metadata '!" +
217                  Twine(ForwardRefMDNodes.begin()->first) + "'");
218 
219   // Resolve metadata cycles.
220   for (auto &N : NumberedMetadata) {
221     if (N.second && !N.second->isResolved())
222       N.second->resolveCycles();
223   }
224 
225   for (auto *Inst : InstsWithTBAATag) {
226     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
227     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
228     auto *UpgradedMD = UpgradeTBAANode(*MD);
229     if (MD != UpgradedMD)
230       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
231   }
232 
233   // Look for intrinsic functions and CallInst that need to be upgraded
234   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
235     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
236 
237   // Some types could be renamed during loading if several modules are
238   // loaded in the same LLVMContext (LTO scenario). In this case we should
239   // remangle intrinsics names as well.
240   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
241     Function *F = &*FI++;
242     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
243       F->replaceAllUsesWith(Remangled.getValue());
244       F->eraseFromParent();
245     }
246   }
247 
248   UpgradeDebugInfo(*M);
249 
250   UpgradeModuleFlags(*M);
251 
252   if (!Slots)
253     return false;
254   // Initialize the slot mapping.
255   // Because by this point we've parsed and validated everything, we can "steal"
256   // the mapping from LLParser as it doesn't need it anymore.
257   Slots->GlobalValues = std::move(NumberedVals);
258   Slots->MetadataNodes = std::move(NumberedMetadata);
259   for (const auto &I : NamedTypes)
260     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
261   for (const auto &I : NumberedTypes)
262     Slots->Types.insert(std::make_pair(I.first, I.second.first));
263 
264   return false;
265 }
266 
267 //===----------------------------------------------------------------------===//
268 // Top-Level Entities
269 //===----------------------------------------------------------------------===//
270 
271 bool LLParser::ParseTopLevelEntities() {
272   while (true) {
273     switch (Lex.getKind()) {
274     default:         return TokError("expected top-level entity");
275     case lltok::Eof: return false;
276     case lltok::kw_declare: if (ParseDeclare()) return true; break;
277     case lltok::kw_define:  if (ParseDefine()) return true; break;
278     case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
279     case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
280     case lltok::kw_source_filename:
281       if (ParseSourceFileName())
282         return true;
283       break;
284     case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
285     case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
286     case lltok::LocalVar:   if (ParseNamedType()) return true; break;
287     case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
288     case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
289     case lltok::ComdatVar:  if (parseComdat()) return true; break;
290     case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
291     case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
292     case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
293     case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
294     case lltok::kw_uselistorder_bb:
295       if (ParseUseListOrderBB())
296         return true;
297       break;
298     }
299   }
300 }
301 
302 /// toplevelentity
303 ///   ::= 'module' 'asm' STRINGCONSTANT
304 bool LLParser::ParseModuleAsm() {
305   assert(Lex.getKind() == lltok::kw_module);
306   Lex.Lex();
307 
308   std::string AsmStr;
309   if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
310       ParseStringConstant(AsmStr)) return true;
311 
312   M->appendModuleInlineAsm(AsmStr);
313   return false;
314 }
315 
316 /// toplevelentity
317 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
318 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
319 bool LLParser::ParseTargetDefinition() {
320   assert(Lex.getKind() == lltok::kw_target);
321   std::string Str;
322   switch (Lex.Lex()) {
323   default: return TokError("unknown target property");
324   case lltok::kw_triple:
325     Lex.Lex();
326     if (ParseToken(lltok::equal, "expected '=' after target triple") ||
327         ParseStringConstant(Str))
328       return true;
329     M->setTargetTriple(Str);
330     return false;
331   case lltok::kw_datalayout:
332     Lex.Lex();
333     if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
334         ParseStringConstant(Str))
335       return true;
336     M->setDataLayout(Str);
337     return false;
338   }
339 }
340 
341 /// toplevelentity
342 ///   ::= 'source_filename' '=' STRINGCONSTANT
343 bool LLParser::ParseSourceFileName() {
344   assert(Lex.getKind() == lltok::kw_source_filename);
345   std::string Str;
346   Lex.Lex();
347   if (ParseToken(lltok::equal, "expected '=' after source_filename") ||
348       ParseStringConstant(Str))
349     return true;
350   M->setSourceFileName(Str);
351   return false;
352 }
353 
354 /// toplevelentity
355 ///   ::= 'deplibs' '=' '[' ']'
356 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
357 /// FIXME: Remove in 4.0. Currently parse, but ignore.
358 bool LLParser::ParseDepLibs() {
359   assert(Lex.getKind() == lltok::kw_deplibs);
360   Lex.Lex();
361   if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
362       ParseToken(lltok::lsquare, "expected '=' after deplibs"))
363     return true;
364 
365   if (EatIfPresent(lltok::rsquare))
366     return false;
367 
368   do {
369     std::string Str;
370     if (ParseStringConstant(Str)) return true;
371   } while (EatIfPresent(lltok::comma));
372 
373   return ParseToken(lltok::rsquare, "expected ']' at end of list");
374 }
375 
376 /// ParseUnnamedType:
377 ///   ::= LocalVarID '=' 'type' type
378 bool LLParser::ParseUnnamedType() {
379   LocTy TypeLoc = Lex.getLoc();
380   unsigned TypeID = Lex.getUIntVal();
381   Lex.Lex(); // eat LocalVarID;
382 
383   if (ParseToken(lltok::equal, "expected '=' after name") ||
384       ParseToken(lltok::kw_type, "expected 'type' after '='"))
385     return true;
386 
387   Type *Result = nullptr;
388   if (ParseStructDefinition(TypeLoc, "",
389                             NumberedTypes[TypeID], Result)) return true;
390 
391   if (!isa<StructType>(Result)) {
392     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
393     if (Entry.first)
394       return Error(TypeLoc, "non-struct types may not be recursive");
395     Entry.first = Result;
396     Entry.second = SMLoc();
397   }
398 
399   return false;
400 }
401 
402 /// toplevelentity
403 ///   ::= LocalVar '=' 'type' type
404 bool LLParser::ParseNamedType() {
405   std::string Name = Lex.getStrVal();
406   LocTy NameLoc = Lex.getLoc();
407   Lex.Lex();  // eat LocalVar.
408 
409   if (ParseToken(lltok::equal, "expected '=' after name") ||
410       ParseToken(lltok::kw_type, "expected 'type' after name"))
411     return true;
412 
413   Type *Result = nullptr;
414   if (ParseStructDefinition(NameLoc, Name,
415                             NamedTypes[Name], Result)) return true;
416 
417   if (!isa<StructType>(Result)) {
418     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
419     if (Entry.first)
420       return Error(NameLoc, "non-struct types may not be recursive");
421     Entry.first = Result;
422     Entry.second = SMLoc();
423   }
424 
425   return false;
426 }
427 
428 /// toplevelentity
429 ///   ::= 'declare' FunctionHeader
430 bool LLParser::ParseDeclare() {
431   assert(Lex.getKind() == lltok::kw_declare);
432   Lex.Lex();
433 
434   std::vector<std::pair<unsigned, MDNode *>> MDs;
435   while (Lex.getKind() == lltok::MetadataVar) {
436     unsigned MDK;
437     MDNode *N;
438     if (ParseMetadataAttachment(MDK, N))
439       return true;
440     MDs.push_back({MDK, N});
441   }
442 
443   Function *F;
444   if (ParseFunctionHeader(F, false))
445     return true;
446   for (auto &MD : MDs)
447     F->addMetadata(MD.first, *MD.second);
448   return false;
449 }
450 
451 /// toplevelentity
452 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
453 bool LLParser::ParseDefine() {
454   assert(Lex.getKind() == lltok::kw_define);
455   Lex.Lex();
456 
457   Function *F;
458   return ParseFunctionHeader(F, true) ||
459          ParseOptionalFunctionMetadata(*F) ||
460          ParseFunctionBody(*F);
461 }
462 
463 /// ParseGlobalType
464 ///   ::= 'constant'
465 ///   ::= 'global'
466 bool LLParser::ParseGlobalType(bool &IsConstant) {
467   if (Lex.getKind() == lltok::kw_constant)
468     IsConstant = true;
469   else if (Lex.getKind() == lltok::kw_global)
470     IsConstant = false;
471   else {
472     IsConstant = false;
473     return TokError("expected 'global' or 'constant'");
474   }
475   Lex.Lex();
476   return false;
477 }
478 
479 bool LLParser::ParseOptionalUnnamedAddr(
480     GlobalVariable::UnnamedAddr &UnnamedAddr) {
481   if (EatIfPresent(lltok::kw_unnamed_addr))
482     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
483   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
484     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
485   else
486     UnnamedAddr = GlobalValue::UnnamedAddr::None;
487   return false;
488 }
489 
490 /// ParseUnnamedGlobal:
491 ///   OptionalVisibility (ALIAS | IFUNC) ...
492 ///   OptionalLinkage OptionalVisibility OptionalDLLStorageClass
493 ///                                                     ...   -> global variable
494 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
495 ///   GlobalID '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
496 ///                                                     ...   -> global variable
497 bool LLParser::ParseUnnamedGlobal() {
498   unsigned VarID = NumberedVals.size();
499   std::string Name;
500   LocTy NameLoc = Lex.getLoc();
501 
502   // Handle the GlobalID form.
503   if (Lex.getKind() == lltok::GlobalID) {
504     if (Lex.getUIntVal() != VarID)
505       return Error(Lex.getLoc(), "variable expected to be numbered '%" +
506                    Twine(VarID) + "'");
507     Lex.Lex(); // eat GlobalID;
508 
509     if (ParseToken(lltok::equal, "expected '=' after name"))
510       return true;
511   }
512 
513   bool HasLinkage;
514   unsigned Linkage, Visibility, DLLStorageClass;
515   GlobalVariable::ThreadLocalMode TLM;
516   GlobalVariable::UnnamedAddr UnnamedAddr;
517   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) ||
518       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
519     return true;
520 
521   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
522     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
523                        DLLStorageClass, TLM, UnnamedAddr);
524 
525   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
526                              DLLStorageClass, TLM, UnnamedAddr);
527 }
528 
529 /// ParseNamedGlobal:
530 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
531 ///   GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
532 ///                                                     ...   -> global variable
533 bool LLParser::ParseNamedGlobal() {
534   assert(Lex.getKind() == lltok::GlobalVar);
535   LocTy NameLoc = Lex.getLoc();
536   std::string Name = Lex.getStrVal();
537   Lex.Lex();
538 
539   bool HasLinkage;
540   unsigned Linkage, Visibility, DLLStorageClass;
541   GlobalVariable::ThreadLocalMode TLM;
542   GlobalVariable::UnnamedAddr UnnamedAddr;
543   if (ParseToken(lltok::equal, "expected '=' in global variable") ||
544       ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) ||
545       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
546     return true;
547 
548   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
549     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
550                        DLLStorageClass, TLM, UnnamedAddr);
551 
552   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
553                              DLLStorageClass, TLM, UnnamedAddr);
554 }
555 
556 bool LLParser::parseComdat() {
557   assert(Lex.getKind() == lltok::ComdatVar);
558   std::string Name = Lex.getStrVal();
559   LocTy NameLoc = Lex.getLoc();
560   Lex.Lex();
561 
562   if (ParseToken(lltok::equal, "expected '=' here"))
563     return true;
564 
565   if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
566     return TokError("expected comdat type");
567 
568   Comdat::SelectionKind SK;
569   switch (Lex.getKind()) {
570   default:
571     return TokError("unknown selection kind");
572   case lltok::kw_any:
573     SK = Comdat::Any;
574     break;
575   case lltok::kw_exactmatch:
576     SK = Comdat::ExactMatch;
577     break;
578   case lltok::kw_largest:
579     SK = Comdat::Largest;
580     break;
581   case lltok::kw_noduplicates:
582     SK = Comdat::NoDuplicates;
583     break;
584   case lltok::kw_samesize:
585     SK = Comdat::SameSize;
586     break;
587   }
588   Lex.Lex();
589 
590   // See if the comdat was forward referenced, if so, use the comdat.
591   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
592   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
593   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
594     return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
595 
596   Comdat *C;
597   if (I != ComdatSymTab.end())
598     C = &I->second;
599   else
600     C = M->getOrInsertComdat(Name);
601   C->setSelectionKind(SK);
602 
603   return false;
604 }
605 
606 // MDString:
607 //   ::= '!' STRINGCONSTANT
608 bool LLParser::ParseMDString(MDString *&Result) {
609   std::string Str;
610   if (ParseStringConstant(Str)) return true;
611   Result = MDString::get(Context, Str);
612   return false;
613 }
614 
615 // MDNode:
616 //   ::= '!' MDNodeNumber
617 bool LLParser::ParseMDNodeID(MDNode *&Result) {
618   // !{ ..., !42, ... }
619   LocTy IDLoc = Lex.getLoc();
620   unsigned MID = 0;
621   if (ParseUInt32(MID))
622     return true;
623 
624   // If not a forward reference, just return it now.
625   if (NumberedMetadata.count(MID)) {
626     Result = NumberedMetadata[MID];
627     return false;
628   }
629 
630   // Otherwise, create MDNode forward reference.
631   auto &FwdRef = ForwardRefMDNodes[MID];
632   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
633 
634   Result = FwdRef.first.get();
635   NumberedMetadata[MID].reset(Result);
636   return false;
637 }
638 
639 /// ParseNamedMetadata:
640 ///   !foo = !{ !1, !2 }
641 bool LLParser::ParseNamedMetadata() {
642   assert(Lex.getKind() == lltok::MetadataVar);
643   std::string Name = Lex.getStrVal();
644   Lex.Lex();
645 
646   if (ParseToken(lltok::equal, "expected '=' here") ||
647       ParseToken(lltok::exclaim, "Expected '!' here") ||
648       ParseToken(lltok::lbrace, "Expected '{' here"))
649     return true;
650 
651   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
652   if (Lex.getKind() != lltok::rbrace)
653     do {
654       if (ParseToken(lltok::exclaim, "Expected '!' here"))
655         return true;
656 
657       MDNode *N = nullptr;
658       if (ParseMDNodeID(N)) return true;
659       NMD->addOperand(N);
660     } while (EatIfPresent(lltok::comma));
661 
662   return ParseToken(lltok::rbrace, "expected end of metadata node");
663 }
664 
665 /// ParseStandaloneMetadata:
666 ///   !42 = !{...}
667 bool LLParser::ParseStandaloneMetadata() {
668   assert(Lex.getKind() == lltok::exclaim);
669   Lex.Lex();
670   unsigned MetadataID = 0;
671 
672   MDNode *Init;
673   if (ParseUInt32(MetadataID) ||
674       ParseToken(lltok::equal, "expected '=' here"))
675     return true;
676 
677   // Detect common error, from old metadata syntax.
678   if (Lex.getKind() == lltok::Type)
679     return TokError("unexpected type in metadata definition");
680 
681   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
682   if (Lex.getKind() == lltok::MetadataVar) {
683     if (ParseSpecializedMDNode(Init, IsDistinct))
684       return true;
685   } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
686              ParseMDTuple(Init, IsDistinct))
687     return true;
688 
689   // See if this was forward referenced, if so, handle it.
690   auto FI = ForwardRefMDNodes.find(MetadataID);
691   if (FI != ForwardRefMDNodes.end()) {
692     FI->second.first->replaceAllUsesWith(Init);
693     ForwardRefMDNodes.erase(FI);
694 
695     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
696   } else {
697     if (NumberedMetadata.count(MetadataID))
698       return TokError("Metadata id is already used");
699     NumberedMetadata[MetadataID].reset(Init);
700   }
701 
702   return false;
703 }
704 
705 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
706   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
707          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
708 }
709 
710 /// parseIndirectSymbol:
711 ///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility
712 ///                     OptionalDLLStorageClass OptionalThreadLocal
713 ///                     OptionalUnnamedAddr 'alias|ifunc' IndirectSymbol
714 ///
715 /// IndirectSymbol
716 ///   ::= TypeAndValue
717 ///
718 /// Everything through OptionalUnnamedAddr has already been parsed.
719 ///
720 bool LLParser::parseIndirectSymbol(
721     const std::string &Name, LocTy NameLoc, unsigned L, unsigned Visibility,
722     unsigned DLLStorageClass, GlobalVariable::ThreadLocalMode TLM,
723     GlobalVariable::UnnamedAddr UnnamedAddr) {
724   bool IsAlias;
725   if (Lex.getKind() == lltok::kw_alias)
726     IsAlias = true;
727   else if (Lex.getKind() == lltok::kw_ifunc)
728     IsAlias = false;
729   else
730     llvm_unreachable("Not an alias or ifunc!");
731   Lex.Lex();
732 
733   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
734 
735   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
736     return Error(NameLoc, "invalid linkage type for alias");
737 
738   if (!isValidVisibilityForLinkage(Visibility, L))
739     return Error(NameLoc,
740                  "symbol with local linkage must have default visibility");
741 
742   Type *Ty;
743   LocTy ExplicitTypeLoc = Lex.getLoc();
744   if (ParseType(Ty) ||
745       ParseToken(lltok::comma, "expected comma after alias or ifunc's type"))
746     return true;
747 
748   Constant *Aliasee;
749   LocTy AliaseeLoc = Lex.getLoc();
750   if (Lex.getKind() != lltok::kw_bitcast &&
751       Lex.getKind() != lltok::kw_getelementptr &&
752       Lex.getKind() != lltok::kw_addrspacecast &&
753       Lex.getKind() != lltok::kw_inttoptr) {
754     if (ParseGlobalTypeAndValue(Aliasee))
755       return true;
756   } else {
757     // The bitcast dest type is not present, it is implied by the dest type.
758     ValID ID;
759     if (ParseValID(ID))
760       return true;
761     if (ID.Kind != ValID::t_Constant)
762       return Error(AliaseeLoc, "invalid aliasee");
763     Aliasee = ID.ConstantVal;
764   }
765 
766   Type *AliaseeType = Aliasee->getType();
767   auto *PTy = dyn_cast<PointerType>(AliaseeType);
768   if (!PTy)
769     return Error(AliaseeLoc, "An alias or ifunc must have pointer type");
770   unsigned AddrSpace = PTy->getAddressSpace();
771 
772   if (IsAlias && Ty != PTy->getElementType())
773     return Error(
774         ExplicitTypeLoc,
775         "explicit pointee type doesn't match operand's pointee type");
776 
777   if (!IsAlias && !PTy->getElementType()->isFunctionTy())
778     return Error(
779         ExplicitTypeLoc,
780         "explicit pointee type should be a function type");
781 
782   GlobalValue *GVal = nullptr;
783 
784   // See if the alias was forward referenced, if so, prepare to replace the
785   // forward reference.
786   if (!Name.empty()) {
787     GVal = M->getNamedValue(Name);
788     if (GVal) {
789       if (!ForwardRefVals.erase(Name))
790         return Error(NameLoc, "redefinition of global '@" + Name + "'");
791     }
792   } else {
793     auto I = ForwardRefValIDs.find(NumberedVals.size());
794     if (I != ForwardRefValIDs.end()) {
795       GVal = I->second.first;
796       ForwardRefValIDs.erase(I);
797     }
798   }
799 
800   // Okay, create the alias but do not insert it into the module yet.
801   std::unique_ptr<GlobalIndirectSymbol> GA;
802   if (IsAlias)
803     GA.reset(GlobalAlias::create(Ty, AddrSpace,
804                                  (GlobalValue::LinkageTypes)Linkage, Name,
805                                  Aliasee, /*Parent*/ nullptr));
806   else
807     GA.reset(GlobalIFunc::create(Ty, AddrSpace,
808                                  (GlobalValue::LinkageTypes)Linkage, Name,
809                                  Aliasee, /*Parent*/ nullptr));
810   GA->setThreadLocalMode(TLM);
811   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
812   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
813   GA->setUnnamedAddr(UnnamedAddr);
814 
815   if (Name.empty())
816     NumberedVals.push_back(GA.get());
817 
818   if (GVal) {
819     // Verify that types agree.
820     if (GVal->getType() != GA->getType())
821       return Error(
822           ExplicitTypeLoc,
823           "forward reference and definition of alias have different types");
824 
825     // If they agree, just RAUW the old value with the alias and remove the
826     // forward ref info.
827     GVal->replaceAllUsesWith(GA.get());
828     GVal->eraseFromParent();
829   }
830 
831   // Insert into the module, we know its name won't collide now.
832   if (IsAlias)
833     M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
834   else
835     M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
836   assert(GA->getName() == Name && "Should not be a name conflict!");
837 
838   // The module owns this now
839   GA.release();
840 
841   return false;
842 }
843 
844 /// ParseGlobal
845 ///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
846 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
847 ///       OptionalExternallyInitialized GlobalType Type Const
848 ///   ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass
849 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
850 ///       OptionalExternallyInitialized GlobalType Type Const
851 ///
852 /// Everything up to and including OptionalUnnamedAddr has been parsed
853 /// already.
854 ///
855 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
856                            unsigned Linkage, bool HasLinkage,
857                            unsigned Visibility, unsigned DLLStorageClass,
858                            GlobalVariable::ThreadLocalMode TLM,
859                            GlobalVariable::UnnamedAddr UnnamedAddr) {
860   if (!isValidVisibilityForLinkage(Visibility, Linkage))
861     return Error(NameLoc,
862                  "symbol with local linkage must have default visibility");
863 
864   unsigned AddrSpace;
865   bool IsConstant, IsExternallyInitialized;
866   LocTy IsExternallyInitializedLoc;
867   LocTy TyLoc;
868 
869   Type *Ty = nullptr;
870   if (ParseOptionalAddrSpace(AddrSpace) ||
871       ParseOptionalToken(lltok::kw_externally_initialized,
872                          IsExternallyInitialized,
873                          &IsExternallyInitializedLoc) ||
874       ParseGlobalType(IsConstant) ||
875       ParseType(Ty, TyLoc))
876     return true;
877 
878   // If the linkage is specified and is external, then no initializer is
879   // present.
880   Constant *Init = nullptr;
881   if (!HasLinkage ||
882       !GlobalValue::isValidDeclarationLinkage(
883           (GlobalValue::LinkageTypes)Linkage)) {
884     if (ParseGlobalValue(Ty, Init))
885       return true;
886   }
887 
888   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
889     return Error(TyLoc, "invalid type for global variable");
890 
891   GlobalValue *GVal = nullptr;
892 
893   // See if the global was forward referenced, if so, use the global.
894   if (!Name.empty()) {
895     GVal = M->getNamedValue(Name);
896     if (GVal) {
897       if (!ForwardRefVals.erase(Name))
898         return Error(NameLoc, "redefinition of global '@" + Name + "'");
899     }
900   } else {
901     auto I = ForwardRefValIDs.find(NumberedVals.size());
902     if (I != ForwardRefValIDs.end()) {
903       GVal = I->second.first;
904       ForwardRefValIDs.erase(I);
905     }
906   }
907 
908   GlobalVariable *GV;
909   if (!GVal) {
910     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
911                             Name, nullptr, GlobalVariable::NotThreadLocal,
912                             AddrSpace);
913   } else {
914     if (GVal->getValueType() != Ty)
915       return Error(TyLoc,
916             "forward reference and definition of global have different types");
917 
918     GV = cast<GlobalVariable>(GVal);
919 
920     // Move the forward-reference to the correct spot in the module.
921     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
922   }
923 
924   if (Name.empty())
925     NumberedVals.push_back(GV);
926 
927   // Set the parsed properties on the global.
928   if (Init)
929     GV->setInitializer(Init);
930   GV->setConstant(IsConstant);
931   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
932   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
933   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
934   GV->setExternallyInitialized(IsExternallyInitialized);
935   GV->setThreadLocalMode(TLM);
936   GV->setUnnamedAddr(UnnamedAddr);
937 
938   // Parse attributes on the global.
939   while (Lex.getKind() == lltok::comma) {
940     Lex.Lex();
941 
942     if (Lex.getKind() == lltok::kw_section) {
943       Lex.Lex();
944       GV->setSection(Lex.getStrVal());
945       if (ParseToken(lltok::StringConstant, "expected global section string"))
946         return true;
947     } else if (Lex.getKind() == lltok::kw_align) {
948       unsigned Alignment;
949       if (ParseOptionalAlignment(Alignment)) return true;
950       GV->setAlignment(Alignment);
951     } else if (Lex.getKind() == lltok::MetadataVar) {
952       if (ParseGlobalObjectMetadataAttachment(*GV))
953         return true;
954     } else {
955       Comdat *C;
956       if (parseOptionalComdat(Name, C))
957         return true;
958       if (C)
959         GV->setComdat(C);
960       else
961         return TokError("unknown global variable property!");
962     }
963   }
964 
965   return false;
966 }
967 
968 /// ParseUnnamedAttrGrp
969 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
970 bool LLParser::ParseUnnamedAttrGrp() {
971   assert(Lex.getKind() == lltok::kw_attributes);
972   LocTy AttrGrpLoc = Lex.getLoc();
973   Lex.Lex();
974 
975   if (Lex.getKind() != lltok::AttrGrpID)
976     return TokError("expected attribute group id");
977 
978   unsigned VarID = Lex.getUIntVal();
979   std::vector<unsigned> unused;
980   LocTy BuiltinLoc;
981   Lex.Lex();
982 
983   if (ParseToken(lltok::equal, "expected '=' here") ||
984       ParseToken(lltok::lbrace, "expected '{' here") ||
985       ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
986                                  BuiltinLoc) ||
987       ParseToken(lltok::rbrace, "expected end of attribute group"))
988     return true;
989 
990   if (!NumberedAttrBuilders[VarID].hasAttributes())
991     return Error(AttrGrpLoc, "attribute group has no attributes");
992 
993   return false;
994 }
995 
996 /// ParseFnAttributeValuePairs
997 ///   ::= <attr> | <attr> '=' <value>
998 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
999                                           std::vector<unsigned> &FwdRefAttrGrps,
1000                                           bool inAttrGrp, LocTy &BuiltinLoc) {
1001   bool HaveError = false;
1002 
1003   B.clear();
1004 
1005   while (true) {
1006     lltok::Kind Token = Lex.getKind();
1007     if (Token == lltok::kw_builtin)
1008       BuiltinLoc = Lex.getLoc();
1009     switch (Token) {
1010     default:
1011       if (!inAttrGrp) return HaveError;
1012       return Error(Lex.getLoc(), "unterminated attribute group");
1013     case lltok::rbrace:
1014       // Finished.
1015       return false;
1016 
1017     case lltok::AttrGrpID: {
1018       // Allow a function to reference an attribute group:
1019       //
1020       //   define void @foo() #1 { ... }
1021       if (inAttrGrp)
1022         HaveError |=
1023           Error(Lex.getLoc(),
1024               "cannot have an attribute group reference in an attribute group");
1025 
1026       unsigned AttrGrpNum = Lex.getUIntVal();
1027       if (inAttrGrp) break;
1028 
1029       // Save the reference to the attribute group. We'll fill it in later.
1030       FwdRefAttrGrps.push_back(AttrGrpNum);
1031       break;
1032     }
1033     // Target-dependent attributes:
1034     case lltok::StringConstant: {
1035       if (ParseStringAttribute(B))
1036         return true;
1037       continue;
1038     }
1039 
1040     // Target-independent attributes:
1041     case lltok::kw_align: {
1042       // As a hack, we allow function alignment to be initially parsed as an
1043       // attribute on a function declaration/definition or added to an attribute
1044       // group and later moved to the alignment field.
1045       unsigned Alignment;
1046       if (inAttrGrp) {
1047         Lex.Lex();
1048         if (ParseToken(lltok::equal, "expected '=' here") ||
1049             ParseUInt32(Alignment))
1050           return true;
1051       } else {
1052         if (ParseOptionalAlignment(Alignment))
1053           return true;
1054       }
1055       B.addAlignmentAttr(Alignment);
1056       continue;
1057     }
1058     case lltok::kw_alignstack: {
1059       unsigned Alignment;
1060       if (inAttrGrp) {
1061         Lex.Lex();
1062         if (ParseToken(lltok::equal, "expected '=' here") ||
1063             ParseUInt32(Alignment))
1064           return true;
1065       } else {
1066         if (ParseOptionalStackAlignment(Alignment))
1067           return true;
1068       }
1069       B.addStackAlignmentAttr(Alignment);
1070       continue;
1071     }
1072     case lltok::kw_allocsize: {
1073       unsigned ElemSizeArg;
1074       Optional<unsigned> NumElemsArg;
1075       // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1076       if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1077         return true;
1078       B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1079       continue;
1080     }
1081     case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1082     case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1083     case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1084     case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1085     case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1086     case lltok::kw_inaccessiblememonly:
1087       B.addAttribute(Attribute::InaccessibleMemOnly); break;
1088     case lltok::kw_inaccessiblemem_or_argmemonly:
1089       B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1090     case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1091     case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1092     case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1093     case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1094     case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1095     case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1096     case lltok::kw_noimplicitfloat:
1097       B.addAttribute(Attribute::NoImplicitFloat); break;
1098     case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1099     case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1100     case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1101     case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1102     case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1103     case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1104     case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1105     case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1106     case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1107     case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1108     case lltok::kw_returns_twice:
1109       B.addAttribute(Attribute::ReturnsTwice); break;
1110     case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1111     case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1112     case lltok::kw_sspstrong:
1113       B.addAttribute(Attribute::StackProtectStrong); break;
1114     case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1115     case lltok::kw_sanitize_address:
1116       B.addAttribute(Attribute::SanitizeAddress); break;
1117     case lltok::kw_sanitize_thread:
1118       B.addAttribute(Attribute::SanitizeThread); break;
1119     case lltok::kw_sanitize_memory:
1120       B.addAttribute(Attribute::SanitizeMemory); break;
1121     case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1122     case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1123 
1124     // Error handling.
1125     case lltok::kw_inreg:
1126     case lltok::kw_signext:
1127     case lltok::kw_zeroext:
1128       HaveError |=
1129         Error(Lex.getLoc(),
1130               "invalid use of attribute on a function");
1131       break;
1132     case lltok::kw_byval:
1133     case lltok::kw_dereferenceable:
1134     case lltok::kw_dereferenceable_or_null:
1135     case lltok::kw_inalloca:
1136     case lltok::kw_nest:
1137     case lltok::kw_noalias:
1138     case lltok::kw_nocapture:
1139     case lltok::kw_nonnull:
1140     case lltok::kw_returned:
1141     case lltok::kw_sret:
1142     case lltok::kw_swifterror:
1143     case lltok::kw_swiftself:
1144       HaveError |=
1145         Error(Lex.getLoc(),
1146               "invalid use of parameter-only attribute on a function");
1147       break;
1148     }
1149 
1150     Lex.Lex();
1151   }
1152 }
1153 
1154 //===----------------------------------------------------------------------===//
1155 // GlobalValue Reference/Resolution Routines.
1156 //===----------------------------------------------------------------------===//
1157 
1158 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1159                                               const std::string &Name) {
1160   if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1161     return Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
1162   else
1163     return new GlobalVariable(*M, PTy->getElementType(), false,
1164                               GlobalValue::ExternalWeakLinkage, nullptr, Name,
1165                               nullptr, GlobalVariable::NotThreadLocal,
1166                               PTy->getAddressSpace());
1167 }
1168 
1169 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1170 /// forward reference record if needed.  This can return null if the value
1171 /// exists but does not have the right type.
1172 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
1173                                     LocTy Loc) {
1174   PointerType *PTy = dyn_cast<PointerType>(Ty);
1175   if (!PTy) {
1176     Error(Loc, "global variable reference must have pointer type");
1177     return nullptr;
1178   }
1179 
1180   // Look this name up in the normal function symbol table.
1181   GlobalValue *Val =
1182     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1183 
1184   // If this is a forward reference for the value, see if we already created a
1185   // forward ref record.
1186   if (!Val) {
1187     auto I = ForwardRefVals.find(Name);
1188     if (I != ForwardRefVals.end())
1189       Val = I->second.first;
1190   }
1191 
1192   // If we have the value in the symbol table or fwd-ref table, return it.
1193   if (Val) {
1194     if (Val->getType() == Ty) return Val;
1195     Error(Loc, "'@" + Name + "' defined with type '" +
1196           getTypeString(Val->getType()) + "'");
1197     return nullptr;
1198   }
1199 
1200   // Otherwise, create a new forward reference for this value and remember it.
1201   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1202   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1203   return FwdVal;
1204 }
1205 
1206 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
1207   PointerType *PTy = dyn_cast<PointerType>(Ty);
1208   if (!PTy) {
1209     Error(Loc, "global variable reference must have pointer type");
1210     return nullptr;
1211   }
1212 
1213   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1214 
1215   // If this is a forward reference for the value, see if we already created a
1216   // forward ref record.
1217   if (!Val) {
1218     auto I = ForwardRefValIDs.find(ID);
1219     if (I != ForwardRefValIDs.end())
1220       Val = I->second.first;
1221   }
1222 
1223   // If we have the value in the symbol table or fwd-ref table, return it.
1224   if (Val) {
1225     if (Val->getType() == Ty) return Val;
1226     Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
1227           getTypeString(Val->getType()) + "'");
1228     return nullptr;
1229   }
1230 
1231   // Otherwise, create a new forward reference for this value and remember it.
1232   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1233   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1234   return FwdVal;
1235 }
1236 
1237 //===----------------------------------------------------------------------===//
1238 // Comdat Reference/Resolution Routines.
1239 //===----------------------------------------------------------------------===//
1240 
1241 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1242   // Look this name up in the comdat symbol table.
1243   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1244   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1245   if (I != ComdatSymTab.end())
1246     return &I->second;
1247 
1248   // Otherwise, create a new forward reference for this value and remember it.
1249   Comdat *C = M->getOrInsertComdat(Name);
1250   ForwardRefComdats[Name] = Loc;
1251   return C;
1252 }
1253 
1254 //===----------------------------------------------------------------------===//
1255 // Helper Routines.
1256 //===----------------------------------------------------------------------===//
1257 
1258 /// ParseToken - If the current token has the specified kind, eat it and return
1259 /// success.  Otherwise, emit the specified error and return failure.
1260 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1261   if (Lex.getKind() != T)
1262     return TokError(ErrMsg);
1263   Lex.Lex();
1264   return false;
1265 }
1266 
1267 /// ParseStringConstant
1268 ///   ::= StringConstant
1269 bool LLParser::ParseStringConstant(std::string &Result) {
1270   if (Lex.getKind() != lltok::StringConstant)
1271     return TokError("expected string constant");
1272   Result = Lex.getStrVal();
1273   Lex.Lex();
1274   return false;
1275 }
1276 
1277 /// ParseUInt32
1278 ///   ::= uint32
1279 bool LLParser::ParseUInt32(uint32_t &Val) {
1280   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1281     return TokError("expected integer");
1282   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1283   if (Val64 != unsigned(Val64))
1284     return TokError("expected 32-bit integer (too large)");
1285   Val = Val64;
1286   Lex.Lex();
1287   return false;
1288 }
1289 
1290 /// ParseUInt64
1291 ///   ::= uint64
1292 bool LLParser::ParseUInt64(uint64_t &Val) {
1293   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1294     return TokError("expected integer");
1295   Val = Lex.getAPSIntVal().getLimitedValue();
1296   Lex.Lex();
1297   return false;
1298 }
1299 
1300 /// ParseTLSModel
1301 ///   := 'localdynamic'
1302 ///   := 'initialexec'
1303 ///   := 'localexec'
1304 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1305   switch (Lex.getKind()) {
1306     default:
1307       return TokError("expected localdynamic, initialexec or localexec");
1308     case lltok::kw_localdynamic:
1309       TLM = GlobalVariable::LocalDynamicTLSModel;
1310       break;
1311     case lltok::kw_initialexec:
1312       TLM = GlobalVariable::InitialExecTLSModel;
1313       break;
1314     case lltok::kw_localexec:
1315       TLM = GlobalVariable::LocalExecTLSModel;
1316       break;
1317   }
1318 
1319   Lex.Lex();
1320   return false;
1321 }
1322 
1323 /// ParseOptionalThreadLocal
1324 ///   := /*empty*/
1325 ///   := 'thread_local'
1326 ///   := 'thread_local' '(' tlsmodel ')'
1327 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1328   TLM = GlobalVariable::NotThreadLocal;
1329   if (!EatIfPresent(lltok::kw_thread_local))
1330     return false;
1331 
1332   TLM = GlobalVariable::GeneralDynamicTLSModel;
1333   if (Lex.getKind() == lltok::lparen) {
1334     Lex.Lex();
1335     return ParseTLSModel(TLM) ||
1336       ParseToken(lltok::rparen, "expected ')' after thread local model");
1337   }
1338   return false;
1339 }
1340 
1341 /// ParseOptionalAddrSpace
1342 ///   := /*empty*/
1343 ///   := 'addrspace' '(' uint32 ')'
1344 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
1345   AddrSpace = 0;
1346   if (!EatIfPresent(lltok::kw_addrspace))
1347     return false;
1348   return ParseToken(lltok::lparen, "expected '(' in address space") ||
1349          ParseUInt32(AddrSpace) ||
1350          ParseToken(lltok::rparen, "expected ')' in address space");
1351 }
1352 
1353 /// ParseStringAttribute
1354 ///   := StringConstant
1355 ///   := StringConstant '=' StringConstant
1356 bool LLParser::ParseStringAttribute(AttrBuilder &B) {
1357   std::string Attr = Lex.getStrVal();
1358   Lex.Lex();
1359   std::string Val;
1360   if (EatIfPresent(lltok::equal) && ParseStringConstant(Val))
1361     return true;
1362   B.addAttribute(Attr, Val);
1363   return false;
1364 }
1365 
1366 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1367 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1368   bool HaveError = false;
1369 
1370   B.clear();
1371 
1372   while (true) {
1373     lltok::Kind Token = Lex.getKind();
1374     switch (Token) {
1375     default:  // End of attributes.
1376       return HaveError;
1377     case lltok::StringConstant: {
1378       if (ParseStringAttribute(B))
1379         return true;
1380       continue;
1381     }
1382     case lltok::kw_align: {
1383       unsigned Alignment;
1384       if (ParseOptionalAlignment(Alignment))
1385         return true;
1386       B.addAlignmentAttr(Alignment);
1387       continue;
1388     }
1389     case lltok::kw_byval:           B.addAttribute(Attribute::ByVal); break;
1390     case lltok::kw_dereferenceable: {
1391       uint64_t Bytes;
1392       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1393         return true;
1394       B.addDereferenceableAttr(Bytes);
1395       continue;
1396     }
1397     case lltok::kw_dereferenceable_or_null: {
1398       uint64_t Bytes;
1399       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1400         return true;
1401       B.addDereferenceableOrNullAttr(Bytes);
1402       continue;
1403     }
1404     case lltok::kw_inalloca:        B.addAttribute(Attribute::InAlloca); break;
1405     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1406     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1407     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1408     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1409     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1410     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1411     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1412     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1413     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1414     case lltok::kw_sret:            B.addAttribute(Attribute::StructRet); break;
1415     case lltok::kw_swifterror:      B.addAttribute(Attribute::SwiftError); break;
1416     case lltok::kw_swiftself:       B.addAttribute(Attribute::SwiftSelf); break;
1417     case lltok::kw_writeonly:       B.addAttribute(Attribute::WriteOnly); break;
1418     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1419 
1420     case lltok::kw_alignstack:
1421     case lltok::kw_alwaysinline:
1422     case lltok::kw_argmemonly:
1423     case lltok::kw_builtin:
1424     case lltok::kw_inlinehint:
1425     case lltok::kw_jumptable:
1426     case lltok::kw_minsize:
1427     case lltok::kw_naked:
1428     case lltok::kw_nobuiltin:
1429     case lltok::kw_noduplicate:
1430     case lltok::kw_noimplicitfloat:
1431     case lltok::kw_noinline:
1432     case lltok::kw_nonlazybind:
1433     case lltok::kw_noredzone:
1434     case lltok::kw_noreturn:
1435     case lltok::kw_nounwind:
1436     case lltok::kw_optnone:
1437     case lltok::kw_optsize:
1438     case lltok::kw_returns_twice:
1439     case lltok::kw_sanitize_address:
1440     case lltok::kw_sanitize_memory:
1441     case lltok::kw_sanitize_thread:
1442     case lltok::kw_ssp:
1443     case lltok::kw_sspreq:
1444     case lltok::kw_sspstrong:
1445     case lltok::kw_safestack:
1446     case lltok::kw_uwtable:
1447       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1448       break;
1449     }
1450 
1451     Lex.Lex();
1452   }
1453 }
1454 
1455 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1456 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1457   bool HaveError = false;
1458 
1459   B.clear();
1460 
1461   while (true) {
1462     lltok::Kind Token = Lex.getKind();
1463     switch (Token) {
1464     default:  // End of attributes.
1465       return HaveError;
1466     case lltok::StringConstant: {
1467       if (ParseStringAttribute(B))
1468         return true;
1469       continue;
1470     }
1471     case lltok::kw_dereferenceable: {
1472       uint64_t Bytes;
1473       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1474         return true;
1475       B.addDereferenceableAttr(Bytes);
1476       continue;
1477     }
1478     case lltok::kw_dereferenceable_or_null: {
1479       uint64_t Bytes;
1480       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1481         return true;
1482       B.addDereferenceableOrNullAttr(Bytes);
1483       continue;
1484     }
1485     case lltok::kw_align: {
1486       unsigned Alignment;
1487       if (ParseOptionalAlignment(Alignment))
1488         return true;
1489       B.addAlignmentAttr(Alignment);
1490       continue;
1491     }
1492     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1493     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1494     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1495     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1496     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1497 
1498     // Error handling.
1499     case lltok::kw_byval:
1500     case lltok::kw_inalloca:
1501     case lltok::kw_nest:
1502     case lltok::kw_nocapture:
1503     case lltok::kw_returned:
1504     case lltok::kw_sret:
1505     case lltok::kw_swifterror:
1506     case lltok::kw_swiftself:
1507       HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1508       break;
1509 
1510     case lltok::kw_alignstack:
1511     case lltok::kw_alwaysinline:
1512     case lltok::kw_argmemonly:
1513     case lltok::kw_builtin:
1514     case lltok::kw_cold:
1515     case lltok::kw_inlinehint:
1516     case lltok::kw_jumptable:
1517     case lltok::kw_minsize:
1518     case lltok::kw_naked:
1519     case lltok::kw_nobuiltin:
1520     case lltok::kw_noduplicate:
1521     case lltok::kw_noimplicitfloat:
1522     case lltok::kw_noinline:
1523     case lltok::kw_nonlazybind:
1524     case lltok::kw_noredzone:
1525     case lltok::kw_noreturn:
1526     case lltok::kw_nounwind:
1527     case lltok::kw_optnone:
1528     case lltok::kw_optsize:
1529     case lltok::kw_returns_twice:
1530     case lltok::kw_sanitize_address:
1531     case lltok::kw_sanitize_memory:
1532     case lltok::kw_sanitize_thread:
1533     case lltok::kw_ssp:
1534     case lltok::kw_sspreq:
1535     case lltok::kw_sspstrong:
1536     case lltok::kw_safestack:
1537     case lltok::kw_uwtable:
1538       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1539       break;
1540 
1541     case lltok::kw_readnone:
1542     case lltok::kw_readonly:
1543       HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1544     }
1545 
1546     Lex.Lex();
1547   }
1548 }
1549 
1550 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1551   HasLinkage = true;
1552   switch (Kind) {
1553   default:
1554     HasLinkage = false;
1555     return GlobalValue::ExternalLinkage;
1556   case lltok::kw_private:
1557     return GlobalValue::PrivateLinkage;
1558   case lltok::kw_internal:
1559     return GlobalValue::InternalLinkage;
1560   case lltok::kw_weak:
1561     return GlobalValue::WeakAnyLinkage;
1562   case lltok::kw_weak_odr:
1563     return GlobalValue::WeakODRLinkage;
1564   case lltok::kw_linkonce:
1565     return GlobalValue::LinkOnceAnyLinkage;
1566   case lltok::kw_linkonce_odr:
1567     return GlobalValue::LinkOnceODRLinkage;
1568   case lltok::kw_available_externally:
1569     return GlobalValue::AvailableExternallyLinkage;
1570   case lltok::kw_appending:
1571     return GlobalValue::AppendingLinkage;
1572   case lltok::kw_common:
1573     return GlobalValue::CommonLinkage;
1574   case lltok::kw_extern_weak:
1575     return GlobalValue::ExternalWeakLinkage;
1576   case lltok::kw_external:
1577     return GlobalValue::ExternalLinkage;
1578   }
1579 }
1580 
1581 /// ParseOptionalLinkage
1582 ///   ::= /*empty*/
1583 ///   ::= 'private'
1584 ///   ::= 'internal'
1585 ///   ::= 'weak'
1586 ///   ::= 'weak_odr'
1587 ///   ::= 'linkonce'
1588 ///   ::= 'linkonce_odr'
1589 ///   ::= 'available_externally'
1590 ///   ::= 'appending'
1591 ///   ::= 'common'
1592 ///   ::= 'extern_weak'
1593 ///   ::= 'external'
1594 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1595                                     unsigned &Visibility,
1596                                     unsigned &DLLStorageClass) {
1597   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1598   if (HasLinkage)
1599     Lex.Lex();
1600   ParseOptionalVisibility(Visibility);
1601   ParseOptionalDLLStorageClass(DLLStorageClass);
1602   return false;
1603 }
1604 
1605 /// ParseOptionalVisibility
1606 ///   ::= /*empty*/
1607 ///   ::= 'default'
1608 ///   ::= 'hidden'
1609 ///   ::= 'protected'
1610 ///
1611 void LLParser::ParseOptionalVisibility(unsigned &Res) {
1612   switch (Lex.getKind()) {
1613   default:
1614     Res = GlobalValue::DefaultVisibility;
1615     return;
1616   case lltok::kw_default:
1617     Res = GlobalValue::DefaultVisibility;
1618     break;
1619   case lltok::kw_hidden:
1620     Res = GlobalValue::HiddenVisibility;
1621     break;
1622   case lltok::kw_protected:
1623     Res = GlobalValue::ProtectedVisibility;
1624     break;
1625   }
1626   Lex.Lex();
1627 }
1628 
1629 /// ParseOptionalDLLStorageClass
1630 ///   ::= /*empty*/
1631 ///   ::= 'dllimport'
1632 ///   ::= 'dllexport'
1633 ///
1634 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
1635   switch (Lex.getKind()) {
1636   default:
1637     Res = GlobalValue::DefaultStorageClass;
1638     return;
1639   case lltok::kw_dllimport:
1640     Res = GlobalValue::DLLImportStorageClass;
1641     break;
1642   case lltok::kw_dllexport:
1643     Res = GlobalValue::DLLExportStorageClass;
1644     break;
1645   }
1646   Lex.Lex();
1647 }
1648 
1649 /// ParseOptionalCallingConv
1650 ///   ::= /*empty*/
1651 ///   ::= 'ccc'
1652 ///   ::= 'fastcc'
1653 ///   ::= 'intel_ocl_bicc'
1654 ///   ::= 'coldcc'
1655 ///   ::= 'x86_stdcallcc'
1656 ///   ::= 'x86_fastcallcc'
1657 ///   ::= 'x86_thiscallcc'
1658 ///   ::= 'x86_vectorcallcc'
1659 ///   ::= 'arm_apcscc'
1660 ///   ::= 'arm_aapcscc'
1661 ///   ::= 'arm_aapcs_vfpcc'
1662 ///   ::= 'msp430_intrcc'
1663 ///   ::= 'avr_intrcc'
1664 ///   ::= 'avr_signalcc'
1665 ///   ::= 'ptx_kernel'
1666 ///   ::= 'ptx_device'
1667 ///   ::= 'spir_func'
1668 ///   ::= 'spir_kernel'
1669 ///   ::= 'x86_64_sysvcc'
1670 ///   ::= 'x86_64_win64cc'
1671 ///   ::= 'webkit_jscc'
1672 ///   ::= 'anyregcc'
1673 ///   ::= 'preserve_mostcc'
1674 ///   ::= 'preserve_allcc'
1675 ///   ::= 'ghccc'
1676 ///   ::= 'swiftcc'
1677 ///   ::= 'x86_intrcc'
1678 ///   ::= 'hhvmcc'
1679 ///   ::= 'hhvm_ccc'
1680 ///   ::= 'cxx_fast_tlscc'
1681 ///   ::= 'amdgpu_vs'
1682 ///   ::= 'amdgpu_tcs'
1683 ///   ::= 'amdgpu_tes'
1684 ///   ::= 'amdgpu_gs'
1685 ///   ::= 'amdgpu_ps'
1686 ///   ::= 'amdgpu_cs'
1687 ///   ::= 'amdgpu_kernel'
1688 ///   ::= 'cc' UINT
1689 ///
1690 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
1691   switch (Lex.getKind()) {
1692   default:                       CC = CallingConv::C; return false;
1693   case lltok::kw_ccc:            CC = CallingConv::C; break;
1694   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1695   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1696   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1697   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1698   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
1699   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1700   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
1701   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1702   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1703   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1704   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1705   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
1706   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
1707   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1708   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1709   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
1710   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
1711   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1712   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
1713   case lltok::kw_x86_64_win64cc: CC = CallingConv::X86_64_Win64; break;
1714   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
1715   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
1716   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
1717   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
1718   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
1719   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
1720   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
1721   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
1722   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
1723   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
1724   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
1725   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
1726   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
1727   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
1728   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
1729   case lltok::kw_cc: {
1730       Lex.Lex();
1731       return ParseUInt32(CC);
1732     }
1733   }
1734 
1735   Lex.Lex();
1736   return false;
1737 }
1738 
1739 /// ParseMetadataAttachment
1740 ///   ::= !dbg !42
1741 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
1742   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
1743 
1744   std::string Name = Lex.getStrVal();
1745   Kind = M->getMDKindID(Name);
1746   Lex.Lex();
1747 
1748   return ParseMDNode(MD);
1749 }
1750 
1751 /// ParseInstructionMetadata
1752 ///   ::= !dbg !42 (',' !dbg !57)*
1753 bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
1754   do {
1755     if (Lex.getKind() != lltok::MetadataVar)
1756       return TokError("expected metadata after comma");
1757 
1758     unsigned MDK;
1759     MDNode *N;
1760     if (ParseMetadataAttachment(MDK, N))
1761       return true;
1762 
1763     Inst.setMetadata(MDK, N);
1764     if (MDK == LLVMContext::MD_tbaa)
1765       InstsWithTBAATag.push_back(&Inst);
1766 
1767     // If this is the end of the list, we're done.
1768   } while (EatIfPresent(lltok::comma));
1769   return false;
1770 }
1771 
1772 /// ParseGlobalObjectMetadataAttachment
1773 ///   ::= !dbg !57
1774 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) {
1775   unsigned MDK;
1776   MDNode *N;
1777   if (ParseMetadataAttachment(MDK, N))
1778     return true;
1779 
1780   GO.addMetadata(MDK, *N);
1781   return false;
1782 }
1783 
1784 /// ParseOptionalFunctionMetadata
1785 ///   ::= (!dbg !57)*
1786 bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
1787   while (Lex.getKind() == lltok::MetadataVar)
1788     if (ParseGlobalObjectMetadataAttachment(F))
1789       return true;
1790   return false;
1791 }
1792 
1793 /// ParseOptionalAlignment
1794 ///   ::= /* empty */
1795 ///   ::= 'align' 4
1796 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1797   Alignment = 0;
1798   if (!EatIfPresent(lltok::kw_align))
1799     return false;
1800   LocTy AlignLoc = Lex.getLoc();
1801   if (ParseUInt32(Alignment)) return true;
1802   if (!isPowerOf2_32(Alignment))
1803     return Error(AlignLoc, "alignment is not a power of two");
1804   if (Alignment > Value::MaximumAlignment)
1805     return Error(AlignLoc, "huge alignments are not supported yet");
1806   return false;
1807 }
1808 
1809 /// ParseOptionalDerefAttrBytes
1810 ///   ::= /* empty */
1811 ///   ::= AttrKind '(' 4 ')'
1812 ///
1813 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
1814 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
1815                                            uint64_t &Bytes) {
1816   assert((AttrKind == lltok::kw_dereferenceable ||
1817           AttrKind == lltok::kw_dereferenceable_or_null) &&
1818          "contract!");
1819 
1820   Bytes = 0;
1821   if (!EatIfPresent(AttrKind))
1822     return false;
1823   LocTy ParenLoc = Lex.getLoc();
1824   if (!EatIfPresent(lltok::lparen))
1825     return Error(ParenLoc, "expected '('");
1826   LocTy DerefLoc = Lex.getLoc();
1827   if (ParseUInt64(Bytes)) return true;
1828   ParenLoc = Lex.getLoc();
1829   if (!EatIfPresent(lltok::rparen))
1830     return Error(ParenLoc, "expected ')'");
1831   if (!Bytes)
1832     return Error(DerefLoc, "dereferenceable bytes must be non-zero");
1833   return false;
1834 }
1835 
1836 /// ParseOptionalCommaAlign
1837 ///   ::=
1838 ///   ::= ',' align 4
1839 ///
1840 /// This returns with AteExtraComma set to true if it ate an excess comma at the
1841 /// end.
1842 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
1843                                        bool &AteExtraComma) {
1844   AteExtraComma = false;
1845   while (EatIfPresent(lltok::comma)) {
1846     // Metadata at the end is an early exit.
1847     if (Lex.getKind() == lltok::MetadataVar) {
1848       AteExtraComma = true;
1849       return false;
1850     }
1851 
1852     if (Lex.getKind() != lltok::kw_align)
1853       return Error(Lex.getLoc(), "expected metadata or 'align'");
1854 
1855     if (ParseOptionalAlignment(Alignment)) return true;
1856   }
1857 
1858   return false;
1859 }
1860 
1861 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
1862                                        Optional<unsigned> &HowManyArg) {
1863   Lex.Lex();
1864 
1865   auto StartParen = Lex.getLoc();
1866   if (!EatIfPresent(lltok::lparen))
1867     return Error(StartParen, "expected '('");
1868 
1869   if (ParseUInt32(BaseSizeArg))
1870     return true;
1871 
1872   if (EatIfPresent(lltok::comma)) {
1873     auto HowManyAt = Lex.getLoc();
1874     unsigned HowMany;
1875     if (ParseUInt32(HowMany))
1876       return true;
1877     if (HowMany == BaseSizeArg)
1878       return Error(HowManyAt,
1879                    "'allocsize' indices can't refer to the same parameter");
1880     HowManyArg = HowMany;
1881   } else
1882     HowManyArg = None;
1883 
1884   auto EndParen = Lex.getLoc();
1885   if (!EatIfPresent(lltok::rparen))
1886     return Error(EndParen, "expected ')'");
1887   return false;
1888 }
1889 
1890 /// ParseScopeAndOrdering
1891 ///   if isAtomic: ::= 'singlethread'? AtomicOrdering
1892 ///   else: ::=
1893 ///
1894 /// This sets Scope and Ordering to the parsed values.
1895 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope,
1896                                      AtomicOrdering &Ordering) {
1897   if (!isAtomic)
1898     return false;
1899 
1900   Scope = CrossThread;
1901   if (EatIfPresent(lltok::kw_singlethread))
1902     Scope = SingleThread;
1903 
1904   return ParseOrdering(Ordering);
1905 }
1906 
1907 /// ParseOrdering
1908 ///   ::= AtomicOrdering
1909 ///
1910 /// This sets Ordering to the parsed value.
1911 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
1912   switch (Lex.getKind()) {
1913   default: return TokError("Expected ordering on atomic instruction");
1914   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
1915   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
1916   // Not specified yet:
1917   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
1918   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
1919   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
1920   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
1921   case lltok::kw_seq_cst:
1922     Ordering = AtomicOrdering::SequentiallyConsistent;
1923     break;
1924   }
1925   Lex.Lex();
1926   return false;
1927 }
1928 
1929 /// ParseOptionalStackAlignment
1930 ///   ::= /* empty */
1931 ///   ::= 'alignstack' '(' 4 ')'
1932 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
1933   Alignment = 0;
1934   if (!EatIfPresent(lltok::kw_alignstack))
1935     return false;
1936   LocTy ParenLoc = Lex.getLoc();
1937   if (!EatIfPresent(lltok::lparen))
1938     return Error(ParenLoc, "expected '('");
1939   LocTy AlignLoc = Lex.getLoc();
1940   if (ParseUInt32(Alignment)) return true;
1941   ParenLoc = Lex.getLoc();
1942   if (!EatIfPresent(lltok::rparen))
1943     return Error(ParenLoc, "expected ')'");
1944   if (!isPowerOf2_32(Alignment))
1945     return Error(AlignLoc, "stack alignment is not a power of two");
1946   return false;
1947 }
1948 
1949 /// ParseIndexList - This parses the index list for an insert/extractvalue
1950 /// instruction.  This sets AteExtraComma in the case where we eat an extra
1951 /// comma at the end of the line and find that it is followed by metadata.
1952 /// Clients that don't allow metadata can call the version of this function that
1953 /// only takes one argument.
1954 ///
1955 /// ParseIndexList
1956 ///    ::=  (',' uint32)+
1957 ///
1958 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
1959                               bool &AteExtraComma) {
1960   AteExtraComma = false;
1961 
1962   if (Lex.getKind() != lltok::comma)
1963     return TokError("expected ',' as start of index list");
1964 
1965   while (EatIfPresent(lltok::comma)) {
1966     if (Lex.getKind() == lltok::MetadataVar) {
1967       if (Indices.empty()) return TokError("expected index");
1968       AteExtraComma = true;
1969       return false;
1970     }
1971     unsigned Idx = 0;
1972     if (ParseUInt32(Idx)) return true;
1973     Indices.push_back(Idx);
1974   }
1975 
1976   return false;
1977 }
1978 
1979 //===----------------------------------------------------------------------===//
1980 // Type Parsing.
1981 //===----------------------------------------------------------------------===//
1982 
1983 /// ParseType - Parse a type.
1984 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
1985   SMLoc TypeLoc = Lex.getLoc();
1986   switch (Lex.getKind()) {
1987   default:
1988     return TokError(Msg);
1989   case lltok::Type:
1990     // Type ::= 'float' | 'void' (etc)
1991     Result = Lex.getTyVal();
1992     Lex.Lex();
1993     break;
1994   case lltok::lbrace:
1995     // Type ::= StructType
1996     if (ParseAnonStructType(Result, false))
1997       return true;
1998     break;
1999   case lltok::lsquare:
2000     // Type ::= '[' ... ']'
2001     Lex.Lex(); // eat the lsquare.
2002     if (ParseArrayVectorType(Result, false))
2003       return true;
2004     break;
2005   case lltok::less: // Either vector or packed struct.
2006     // Type ::= '<' ... '>'
2007     Lex.Lex();
2008     if (Lex.getKind() == lltok::lbrace) {
2009       if (ParseAnonStructType(Result, true) ||
2010           ParseToken(lltok::greater, "expected '>' at end of packed struct"))
2011         return true;
2012     } else if (ParseArrayVectorType(Result, true))
2013       return true;
2014     break;
2015   case lltok::LocalVar: {
2016     // Type ::= %foo
2017     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2018 
2019     // If the type hasn't been defined yet, create a forward definition and
2020     // remember where that forward def'n was seen (in case it never is defined).
2021     if (!Entry.first) {
2022       Entry.first = StructType::create(Context, Lex.getStrVal());
2023       Entry.second = Lex.getLoc();
2024     }
2025     Result = Entry.first;
2026     Lex.Lex();
2027     break;
2028   }
2029 
2030   case lltok::LocalVarID: {
2031     // Type ::= %4
2032     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2033 
2034     // If the type hasn't been defined yet, create a forward definition and
2035     // remember where that forward def'n was seen (in case it never is defined).
2036     if (!Entry.first) {
2037       Entry.first = StructType::create(Context);
2038       Entry.second = Lex.getLoc();
2039     }
2040     Result = Entry.first;
2041     Lex.Lex();
2042     break;
2043   }
2044   }
2045 
2046   // Parse the type suffixes.
2047   while (true) {
2048     switch (Lex.getKind()) {
2049     // End of type.
2050     default:
2051       if (!AllowVoid && Result->isVoidTy())
2052         return Error(TypeLoc, "void type only allowed for function results");
2053       return false;
2054 
2055     // Type ::= Type '*'
2056     case lltok::star:
2057       if (Result->isLabelTy())
2058         return TokError("basic block pointers are invalid");
2059       if (Result->isVoidTy())
2060         return TokError("pointers to void are invalid - use i8* instead");
2061       if (!PointerType::isValidElementType(Result))
2062         return TokError("pointer to this type is invalid");
2063       Result = PointerType::getUnqual(Result);
2064       Lex.Lex();
2065       break;
2066 
2067     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2068     case lltok::kw_addrspace: {
2069       if (Result->isLabelTy())
2070         return TokError("basic block pointers are invalid");
2071       if (Result->isVoidTy())
2072         return TokError("pointers to void are invalid; use i8* instead");
2073       if (!PointerType::isValidElementType(Result))
2074         return TokError("pointer to this type is invalid");
2075       unsigned AddrSpace;
2076       if (ParseOptionalAddrSpace(AddrSpace) ||
2077           ParseToken(lltok::star, "expected '*' in address space"))
2078         return true;
2079 
2080       Result = PointerType::get(Result, AddrSpace);
2081       break;
2082     }
2083 
2084     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2085     case lltok::lparen:
2086       if (ParseFunctionType(Result))
2087         return true;
2088       break;
2089     }
2090   }
2091 }
2092 
2093 /// ParseParameterList
2094 ///    ::= '(' ')'
2095 ///    ::= '(' Arg (',' Arg)* ')'
2096 ///  Arg
2097 ///    ::= Type OptionalAttributes Value OptionalAttributes
2098 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2099                                   PerFunctionState &PFS, bool IsMustTailCall,
2100                                   bool InVarArgsFunc) {
2101   if (ParseToken(lltok::lparen, "expected '(' in call"))
2102     return true;
2103 
2104   unsigned AttrIndex = 1;
2105   while (Lex.getKind() != lltok::rparen) {
2106     // If this isn't the first argument, we need a comma.
2107     if (!ArgList.empty() &&
2108         ParseToken(lltok::comma, "expected ',' in argument list"))
2109       return true;
2110 
2111     // Parse an ellipsis if this is a musttail call in a variadic function.
2112     if (Lex.getKind() == lltok::dotdotdot) {
2113       const char *Msg = "unexpected ellipsis in argument list for ";
2114       if (!IsMustTailCall)
2115         return TokError(Twine(Msg) + "non-musttail call");
2116       if (!InVarArgsFunc)
2117         return TokError(Twine(Msg) + "musttail call in non-varargs function");
2118       Lex.Lex();  // Lex the '...', it is purely for readability.
2119       return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2120     }
2121 
2122     // Parse the argument.
2123     LocTy ArgLoc;
2124     Type *ArgTy = nullptr;
2125     AttrBuilder ArgAttrs;
2126     Value *V;
2127     if (ParseType(ArgTy, ArgLoc))
2128       return true;
2129 
2130     if (ArgTy->isMetadataTy()) {
2131       if (ParseMetadataAsValue(V, PFS))
2132         return true;
2133     } else {
2134       // Otherwise, handle normal operands.
2135       if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
2136         return true;
2137     }
2138     ArgList.push_back(ParamInfo(ArgLoc, V, AttributeSet::get(V->getContext(),
2139                                                              AttrIndex++,
2140                                                              ArgAttrs)));
2141   }
2142 
2143   if (IsMustTailCall && InVarArgsFunc)
2144     return TokError("expected '...' at end of argument list for musttail call "
2145                     "in varargs function");
2146 
2147   Lex.Lex();  // Lex the ')'.
2148   return false;
2149 }
2150 
2151 /// ParseOptionalOperandBundles
2152 ///    ::= /*empty*/
2153 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2154 ///
2155 /// OperandBundle
2156 ///    ::= bundle-tag '(' ')'
2157 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2158 ///
2159 /// bundle-tag ::= String Constant
2160 bool LLParser::ParseOptionalOperandBundles(
2161     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2162   LocTy BeginLoc = Lex.getLoc();
2163   if (!EatIfPresent(lltok::lsquare))
2164     return false;
2165 
2166   while (Lex.getKind() != lltok::rsquare) {
2167     // If this isn't the first operand bundle, we need a comma.
2168     if (!BundleList.empty() &&
2169         ParseToken(lltok::comma, "expected ',' in input list"))
2170       return true;
2171 
2172     std::string Tag;
2173     if (ParseStringConstant(Tag))
2174       return true;
2175 
2176     if (ParseToken(lltok::lparen, "expected '(' in operand bundle"))
2177       return true;
2178 
2179     std::vector<Value *> Inputs;
2180     while (Lex.getKind() != lltok::rparen) {
2181       // If this isn't the first input, we need a comma.
2182       if (!Inputs.empty() &&
2183           ParseToken(lltok::comma, "expected ',' in input list"))
2184         return true;
2185 
2186       Type *Ty = nullptr;
2187       Value *Input = nullptr;
2188       if (ParseType(Ty) || ParseValue(Ty, Input, PFS))
2189         return true;
2190       Inputs.push_back(Input);
2191     }
2192 
2193     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2194 
2195     Lex.Lex(); // Lex the ')'.
2196   }
2197 
2198   if (BundleList.empty())
2199     return Error(BeginLoc, "operand bundle set must not be empty");
2200 
2201   Lex.Lex(); // Lex the ']'.
2202   return false;
2203 }
2204 
2205 /// ParseArgumentList - Parse the argument list for a function type or function
2206 /// prototype.
2207 ///   ::= '(' ArgTypeListI ')'
2208 /// ArgTypeListI
2209 ///   ::= /*empty*/
2210 ///   ::= '...'
2211 ///   ::= ArgTypeList ',' '...'
2212 ///   ::= ArgType (',' ArgType)*
2213 ///
2214 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2215                                  bool &isVarArg){
2216   isVarArg = false;
2217   assert(Lex.getKind() == lltok::lparen);
2218   Lex.Lex(); // eat the (.
2219 
2220   if (Lex.getKind() == lltok::rparen) {
2221     // empty
2222   } else if (Lex.getKind() == lltok::dotdotdot) {
2223     isVarArg = true;
2224     Lex.Lex();
2225   } else {
2226     LocTy TypeLoc = Lex.getLoc();
2227     Type *ArgTy = nullptr;
2228     AttrBuilder Attrs;
2229     std::string Name;
2230 
2231     if (ParseType(ArgTy) ||
2232         ParseOptionalParamAttrs(Attrs)) return true;
2233 
2234     if (ArgTy->isVoidTy())
2235       return Error(TypeLoc, "argument can not have void type");
2236 
2237     if (Lex.getKind() == lltok::LocalVar) {
2238       Name = Lex.getStrVal();
2239       Lex.Lex();
2240     }
2241 
2242     if (!FunctionType::isValidArgumentType(ArgTy))
2243       return Error(TypeLoc, "invalid type for function argument");
2244 
2245     unsigned AttrIndex = 1;
2246     ArgList.emplace_back(TypeLoc, ArgTy, AttributeSet::get(ArgTy->getContext(),
2247                                                            AttrIndex++, Attrs),
2248                          std::move(Name));
2249 
2250     while (EatIfPresent(lltok::comma)) {
2251       // Handle ... at end of arg list.
2252       if (EatIfPresent(lltok::dotdotdot)) {
2253         isVarArg = true;
2254         break;
2255       }
2256 
2257       // Otherwise must be an argument type.
2258       TypeLoc = Lex.getLoc();
2259       if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
2260 
2261       if (ArgTy->isVoidTy())
2262         return Error(TypeLoc, "argument can not have void type");
2263 
2264       if (Lex.getKind() == lltok::LocalVar) {
2265         Name = Lex.getStrVal();
2266         Lex.Lex();
2267       } else {
2268         Name = "";
2269       }
2270 
2271       if (!ArgTy->isFirstClassType())
2272         return Error(TypeLoc, "invalid type for function argument");
2273 
2274       ArgList.emplace_back(
2275           TypeLoc, ArgTy,
2276           AttributeSet::get(ArgTy->getContext(), AttrIndex++, Attrs),
2277           std::move(Name));
2278     }
2279   }
2280 
2281   return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2282 }
2283 
2284 /// ParseFunctionType
2285 ///  ::= Type ArgumentList OptionalAttrs
2286 bool LLParser::ParseFunctionType(Type *&Result) {
2287   assert(Lex.getKind() == lltok::lparen);
2288 
2289   if (!FunctionType::isValidReturnType(Result))
2290     return TokError("invalid function return type");
2291 
2292   SmallVector<ArgInfo, 8> ArgList;
2293   bool isVarArg;
2294   if (ParseArgumentList(ArgList, isVarArg))
2295     return true;
2296 
2297   // Reject names on the arguments lists.
2298   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2299     if (!ArgList[i].Name.empty())
2300       return Error(ArgList[i].Loc, "argument name invalid in function type");
2301     if (ArgList[i].Attrs.hasAttributes(i + 1))
2302       return Error(ArgList[i].Loc,
2303                    "argument attributes invalid in function type");
2304   }
2305 
2306   SmallVector<Type*, 16> ArgListTy;
2307   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2308     ArgListTy.push_back(ArgList[i].Ty);
2309 
2310   Result = FunctionType::get(Result, ArgListTy, isVarArg);
2311   return false;
2312 }
2313 
2314 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
2315 /// other structs.
2316 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
2317   SmallVector<Type*, 8> Elts;
2318   if (ParseStructBody(Elts)) return true;
2319 
2320   Result = StructType::get(Context, Elts, Packed);
2321   return false;
2322 }
2323 
2324 /// ParseStructDefinition - Parse a struct in a 'type' definition.
2325 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
2326                                      std::pair<Type*, LocTy> &Entry,
2327                                      Type *&ResultTy) {
2328   // If the type was already defined, diagnose the redefinition.
2329   if (Entry.first && !Entry.second.isValid())
2330     return Error(TypeLoc, "redefinition of type");
2331 
2332   // If we have opaque, just return without filling in the definition for the
2333   // struct.  This counts as a definition as far as the .ll file goes.
2334   if (EatIfPresent(lltok::kw_opaque)) {
2335     // This type is being defined, so clear the location to indicate this.
2336     Entry.second = SMLoc();
2337 
2338     // If this type number has never been uttered, create it.
2339     if (!Entry.first)
2340       Entry.first = StructType::create(Context, Name);
2341     ResultTy = Entry.first;
2342     return false;
2343   }
2344 
2345   // If the type starts with '<', then it is either a packed struct or a vector.
2346   bool isPacked = EatIfPresent(lltok::less);
2347 
2348   // If we don't have a struct, then we have a random type alias, which we
2349   // accept for compatibility with old files.  These types are not allowed to be
2350   // forward referenced and not allowed to be recursive.
2351   if (Lex.getKind() != lltok::lbrace) {
2352     if (Entry.first)
2353       return Error(TypeLoc, "forward references to non-struct type");
2354 
2355     ResultTy = nullptr;
2356     if (isPacked)
2357       return ParseArrayVectorType(ResultTy, true);
2358     return ParseType(ResultTy);
2359   }
2360 
2361   // This type is being defined, so clear the location to indicate this.
2362   Entry.second = SMLoc();
2363 
2364   // If this type number has never been uttered, create it.
2365   if (!Entry.first)
2366     Entry.first = StructType::create(Context, Name);
2367 
2368   StructType *STy = cast<StructType>(Entry.first);
2369 
2370   SmallVector<Type*, 8> Body;
2371   if (ParseStructBody(Body) ||
2372       (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
2373     return true;
2374 
2375   STy->setBody(Body, isPacked);
2376   ResultTy = STy;
2377   return false;
2378 }
2379 
2380 /// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2381 ///   StructType
2382 ///     ::= '{' '}'
2383 ///     ::= '{' Type (',' Type)* '}'
2384 ///     ::= '<' '{' '}' '>'
2385 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2386 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
2387   assert(Lex.getKind() == lltok::lbrace);
2388   Lex.Lex(); // Consume the '{'
2389 
2390   // Handle the empty struct.
2391   if (EatIfPresent(lltok::rbrace))
2392     return false;
2393 
2394   LocTy EltTyLoc = Lex.getLoc();
2395   Type *Ty = nullptr;
2396   if (ParseType(Ty)) return true;
2397   Body.push_back(Ty);
2398 
2399   if (!StructType::isValidElementType(Ty))
2400     return Error(EltTyLoc, "invalid element type for struct");
2401 
2402   while (EatIfPresent(lltok::comma)) {
2403     EltTyLoc = Lex.getLoc();
2404     if (ParseType(Ty)) return true;
2405 
2406     if (!StructType::isValidElementType(Ty))
2407       return Error(EltTyLoc, "invalid element type for struct");
2408 
2409     Body.push_back(Ty);
2410   }
2411 
2412   return ParseToken(lltok::rbrace, "expected '}' at end of struct");
2413 }
2414 
2415 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2416 /// token has already been consumed.
2417 ///   Type
2418 ///     ::= '[' APSINTVAL 'x' Types ']'
2419 ///     ::= '<' APSINTVAL 'x' Types '>'
2420 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
2421   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2422       Lex.getAPSIntVal().getBitWidth() > 64)
2423     return TokError("expected number in address space");
2424 
2425   LocTy SizeLoc = Lex.getLoc();
2426   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2427   Lex.Lex();
2428 
2429   if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
2430       return true;
2431 
2432   LocTy TypeLoc = Lex.getLoc();
2433   Type *EltTy = nullptr;
2434   if (ParseType(EltTy)) return true;
2435 
2436   if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
2437                  "expected end of sequential type"))
2438     return true;
2439 
2440   if (isVector) {
2441     if (Size == 0)
2442       return Error(SizeLoc, "zero element vector is illegal");
2443     if ((unsigned)Size != Size)
2444       return Error(SizeLoc, "size too large for vector");
2445     if (!VectorType::isValidElementType(EltTy))
2446       return Error(TypeLoc, "invalid vector element type");
2447     Result = VectorType::get(EltTy, unsigned(Size));
2448   } else {
2449     if (!ArrayType::isValidElementType(EltTy))
2450       return Error(TypeLoc, "invalid array element type");
2451     Result = ArrayType::get(EltTy, Size);
2452   }
2453   return false;
2454 }
2455 
2456 //===----------------------------------------------------------------------===//
2457 // Function Semantic Analysis.
2458 //===----------------------------------------------------------------------===//
2459 
2460 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2461                                              int functionNumber)
2462   : P(p), F(f), FunctionNumber(functionNumber) {
2463 
2464   // Insert unnamed arguments into the NumberedVals list.
2465   for (Argument &A : F.args())
2466     if (!A.hasName())
2467       NumberedVals.push_back(&A);
2468 }
2469 
2470 LLParser::PerFunctionState::~PerFunctionState() {
2471   // If there were any forward referenced non-basicblock values, delete them.
2472 
2473   for (const auto &P : ForwardRefVals) {
2474     if (isa<BasicBlock>(P.second.first))
2475       continue;
2476     P.second.first->replaceAllUsesWith(
2477         UndefValue::get(P.second.first->getType()));
2478     delete P.second.first;
2479   }
2480 
2481   for (const auto &P : ForwardRefValIDs) {
2482     if (isa<BasicBlock>(P.second.first))
2483       continue;
2484     P.second.first->replaceAllUsesWith(
2485         UndefValue::get(P.second.first->getType()));
2486     delete P.second.first;
2487   }
2488 }
2489 
2490 bool LLParser::PerFunctionState::FinishFunction() {
2491   if (!ForwardRefVals.empty())
2492     return P.Error(ForwardRefVals.begin()->second.second,
2493                    "use of undefined value '%" + ForwardRefVals.begin()->first +
2494                    "'");
2495   if (!ForwardRefValIDs.empty())
2496     return P.Error(ForwardRefValIDs.begin()->second.second,
2497                    "use of undefined value '%" +
2498                    Twine(ForwardRefValIDs.begin()->first) + "'");
2499   return false;
2500 }
2501 
2502 /// GetVal - Get a value with the specified name or ID, creating a
2503 /// forward reference record if needed.  This can return null if the value
2504 /// exists but does not have the right type.
2505 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty,
2506                                           LocTy Loc) {
2507   // Look this name up in the normal function symbol table.
2508   Value *Val = F.getValueSymbolTable()->lookup(Name);
2509 
2510   // If this is a forward reference for the value, see if we already created a
2511   // forward ref record.
2512   if (!Val) {
2513     auto I = ForwardRefVals.find(Name);
2514     if (I != ForwardRefVals.end())
2515       Val = I->second.first;
2516   }
2517 
2518   // If we have the value in the symbol table or fwd-ref table, return it.
2519   if (Val) {
2520     if (Val->getType() == Ty) return Val;
2521     if (Ty->isLabelTy())
2522       P.Error(Loc, "'%" + Name + "' is not a basic block");
2523     else
2524       P.Error(Loc, "'%" + Name + "' defined with type '" +
2525               getTypeString(Val->getType()) + "'");
2526     return nullptr;
2527   }
2528 
2529   // Don't make placeholders with invalid type.
2530   if (!Ty->isFirstClassType()) {
2531     P.Error(Loc, "invalid use of a non-first-class type");
2532     return nullptr;
2533   }
2534 
2535   // Otherwise, create a new forward reference for this value and remember it.
2536   Value *FwdVal;
2537   if (Ty->isLabelTy()) {
2538     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2539   } else {
2540     FwdVal = new Argument(Ty, Name);
2541   }
2542 
2543   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2544   return FwdVal;
2545 }
2546 
2547 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc) {
2548   // Look this name up in the normal function symbol table.
2549   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2550 
2551   // If this is a forward reference for the value, see if we already created a
2552   // forward ref record.
2553   if (!Val) {
2554     auto I = ForwardRefValIDs.find(ID);
2555     if (I != ForwardRefValIDs.end())
2556       Val = I->second.first;
2557   }
2558 
2559   // If we have the value in the symbol table or fwd-ref table, return it.
2560   if (Val) {
2561     if (Val->getType() == Ty) return Val;
2562     if (Ty->isLabelTy())
2563       P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
2564     else
2565       P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
2566               getTypeString(Val->getType()) + "'");
2567     return nullptr;
2568   }
2569 
2570   if (!Ty->isFirstClassType()) {
2571     P.Error(Loc, "invalid use of a non-first-class type");
2572     return nullptr;
2573   }
2574 
2575   // Otherwise, create a new forward reference for this value and remember it.
2576   Value *FwdVal;
2577   if (Ty->isLabelTy()) {
2578     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2579   } else {
2580     FwdVal = new Argument(Ty);
2581   }
2582 
2583   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2584   return FwdVal;
2585 }
2586 
2587 /// SetInstName - After an instruction is parsed and inserted into its
2588 /// basic block, this installs its name.
2589 bool LLParser::PerFunctionState::SetInstName(int NameID,
2590                                              const std::string &NameStr,
2591                                              LocTy NameLoc, Instruction *Inst) {
2592   // If this instruction has void type, it cannot have a name or ID specified.
2593   if (Inst->getType()->isVoidTy()) {
2594     if (NameID != -1 || !NameStr.empty())
2595       return P.Error(NameLoc, "instructions returning void cannot have a name");
2596     return false;
2597   }
2598 
2599   // If this was a numbered instruction, verify that the instruction is the
2600   // expected value and resolve any forward references.
2601   if (NameStr.empty()) {
2602     // If neither a name nor an ID was specified, just use the next ID.
2603     if (NameID == -1)
2604       NameID = NumberedVals.size();
2605 
2606     if (unsigned(NameID) != NumberedVals.size())
2607       return P.Error(NameLoc, "instruction expected to be numbered '%" +
2608                      Twine(NumberedVals.size()) + "'");
2609 
2610     auto FI = ForwardRefValIDs.find(NameID);
2611     if (FI != ForwardRefValIDs.end()) {
2612       Value *Sentinel = FI->second.first;
2613       if (Sentinel->getType() != Inst->getType())
2614         return P.Error(NameLoc, "instruction forward referenced with type '" +
2615                        getTypeString(FI->second.first->getType()) + "'");
2616 
2617       Sentinel->replaceAllUsesWith(Inst);
2618       delete Sentinel;
2619       ForwardRefValIDs.erase(FI);
2620     }
2621 
2622     NumberedVals.push_back(Inst);
2623     return false;
2624   }
2625 
2626   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
2627   auto FI = ForwardRefVals.find(NameStr);
2628   if (FI != ForwardRefVals.end()) {
2629     Value *Sentinel = FI->second.first;
2630     if (Sentinel->getType() != Inst->getType())
2631       return P.Error(NameLoc, "instruction forward referenced with type '" +
2632                      getTypeString(FI->second.first->getType()) + "'");
2633 
2634     Sentinel->replaceAllUsesWith(Inst);
2635     delete Sentinel;
2636     ForwardRefVals.erase(FI);
2637   }
2638 
2639   // Set the name on the instruction.
2640   Inst->setName(NameStr);
2641 
2642   if (Inst->getName() != NameStr)
2643     return P.Error(NameLoc, "multiple definition of local value named '" +
2644                    NameStr + "'");
2645   return false;
2646 }
2647 
2648 /// GetBB - Get a basic block with the specified name or ID, creating a
2649 /// forward reference record if needed.
2650 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
2651                                               LocTy Loc) {
2652   return dyn_cast_or_null<BasicBlock>(GetVal(Name,
2653                                       Type::getLabelTy(F.getContext()), Loc));
2654 }
2655 
2656 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
2657   return dyn_cast_or_null<BasicBlock>(GetVal(ID,
2658                                       Type::getLabelTy(F.getContext()), Loc));
2659 }
2660 
2661 /// DefineBB - Define the specified basic block, which is either named or
2662 /// unnamed.  If there is an error, this returns null otherwise it returns
2663 /// the block being defined.
2664 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
2665                                                  LocTy Loc) {
2666   BasicBlock *BB;
2667   if (Name.empty())
2668     BB = GetBB(NumberedVals.size(), Loc);
2669   else
2670     BB = GetBB(Name, Loc);
2671   if (!BB) return nullptr; // Already diagnosed error.
2672 
2673   // Move the block to the end of the function.  Forward ref'd blocks are
2674   // inserted wherever they happen to be referenced.
2675   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
2676 
2677   // Remove the block from forward ref sets.
2678   if (Name.empty()) {
2679     ForwardRefValIDs.erase(NumberedVals.size());
2680     NumberedVals.push_back(BB);
2681   } else {
2682     // BB forward references are already in the function symbol table.
2683     ForwardRefVals.erase(Name);
2684   }
2685 
2686   return BB;
2687 }
2688 
2689 //===----------------------------------------------------------------------===//
2690 // Constants.
2691 //===----------------------------------------------------------------------===//
2692 
2693 /// ParseValID - Parse an abstract value that doesn't necessarily have a
2694 /// type implied.  For example, if we parse "4" we don't know what integer type
2695 /// it has.  The value will later be combined with its type and checked for
2696 /// sanity.  PFS is used to convert function-local operands of metadata (since
2697 /// metadata operands are not just parsed here but also converted to values).
2698 /// PFS can be null when we are not parsing metadata values inside a function.
2699 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
2700   ID.Loc = Lex.getLoc();
2701   switch (Lex.getKind()) {
2702   default: return TokError("expected value token");
2703   case lltok::GlobalID:  // @42
2704     ID.UIntVal = Lex.getUIntVal();
2705     ID.Kind = ValID::t_GlobalID;
2706     break;
2707   case lltok::GlobalVar:  // @foo
2708     ID.StrVal = Lex.getStrVal();
2709     ID.Kind = ValID::t_GlobalName;
2710     break;
2711   case lltok::LocalVarID:  // %42
2712     ID.UIntVal = Lex.getUIntVal();
2713     ID.Kind = ValID::t_LocalID;
2714     break;
2715   case lltok::LocalVar:  // %foo
2716     ID.StrVal = Lex.getStrVal();
2717     ID.Kind = ValID::t_LocalName;
2718     break;
2719   case lltok::APSInt:
2720     ID.APSIntVal = Lex.getAPSIntVal();
2721     ID.Kind = ValID::t_APSInt;
2722     break;
2723   case lltok::APFloat:
2724     ID.APFloatVal = Lex.getAPFloatVal();
2725     ID.Kind = ValID::t_APFloat;
2726     break;
2727   case lltok::kw_true:
2728     ID.ConstantVal = ConstantInt::getTrue(Context);
2729     ID.Kind = ValID::t_Constant;
2730     break;
2731   case lltok::kw_false:
2732     ID.ConstantVal = ConstantInt::getFalse(Context);
2733     ID.Kind = ValID::t_Constant;
2734     break;
2735   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
2736   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
2737   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
2738   case lltok::kw_none: ID.Kind = ValID::t_None; break;
2739 
2740   case lltok::lbrace: {
2741     // ValID ::= '{' ConstVector '}'
2742     Lex.Lex();
2743     SmallVector<Constant*, 16> Elts;
2744     if (ParseGlobalValueVector(Elts) ||
2745         ParseToken(lltok::rbrace, "expected end of struct constant"))
2746       return true;
2747 
2748     ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
2749     ID.UIntVal = Elts.size();
2750     memcpy(ID.ConstantStructElts.get(), Elts.data(),
2751            Elts.size() * sizeof(Elts[0]));
2752     ID.Kind = ValID::t_ConstantStruct;
2753     return false;
2754   }
2755   case lltok::less: {
2756     // ValID ::= '<' ConstVector '>'         --> Vector.
2757     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
2758     Lex.Lex();
2759     bool isPackedStruct = EatIfPresent(lltok::lbrace);
2760 
2761     SmallVector<Constant*, 16> Elts;
2762     LocTy FirstEltLoc = Lex.getLoc();
2763     if (ParseGlobalValueVector(Elts) ||
2764         (isPackedStruct &&
2765          ParseToken(lltok::rbrace, "expected end of packed struct")) ||
2766         ParseToken(lltok::greater, "expected end of constant"))
2767       return true;
2768 
2769     if (isPackedStruct) {
2770       ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
2771       memcpy(ID.ConstantStructElts.get(), Elts.data(),
2772              Elts.size() * sizeof(Elts[0]));
2773       ID.UIntVal = Elts.size();
2774       ID.Kind = ValID::t_PackedConstantStruct;
2775       return false;
2776     }
2777 
2778     if (Elts.empty())
2779       return Error(ID.Loc, "constant vector must not be empty");
2780 
2781     if (!Elts[0]->getType()->isIntegerTy() &&
2782         !Elts[0]->getType()->isFloatingPointTy() &&
2783         !Elts[0]->getType()->isPointerTy())
2784       return Error(FirstEltLoc,
2785             "vector elements must have integer, pointer or floating point type");
2786 
2787     // Verify that all the vector elements have the same type.
2788     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
2789       if (Elts[i]->getType() != Elts[0]->getType())
2790         return Error(FirstEltLoc,
2791                      "vector element #" + Twine(i) +
2792                     " is not of type '" + getTypeString(Elts[0]->getType()));
2793 
2794     ID.ConstantVal = ConstantVector::get(Elts);
2795     ID.Kind = ValID::t_Constant;
2796     return false;
2797   }
2798   case lltok::lsquare: {   // Array Constant
2799     Lex.Lex();
2800     SmallVector<Constant*, 16> Elts;
2801     LocTy FirstEltLoc = Lex.getLoc();
2802     if (ParseGlobalValueVector(Elts) ||
2803         ParseToken(lltok::rsquare, "expected end of array constant"))
2804       return true;
2805 
2806     // Handle empty element.
2807     if (Elts.empty()) {
2808       // Use undef instead of an array because it's inconvenient to determine
2809       // the element type at this point, there being no elements to examine.
2810       ID.Kind = ValID::t_EmptyArray;
2811       return false;
2812     }
2813 
2814     if (!Elts[0]->getType()->isFirstClassType())
2815       return Error(FirstEltLoc, "invalid array element type: " +
2816                    getTypeString(Elts[0]->getType()));
2817 
2818     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2819 
2820     // Verify all elements are correct type!
2821     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2822       if (Elts[i]->getType() != Elts[0]->getType())
2823         return Error(FirstEltLoc,
2824                      "array element #" + Twine(i) +
2825                      " is not of type '" + getTypeString(Elts[0]->getType()));
2826     }
2827 
2828     ID.ConstantVal = ConstantArray::get(ATy, Elts);
2829     ID.Kind = ValID::t_Constant;
2830     return false;
2831   }
2832   case lltok::kw_c:  // c "foo"
2833     Lex.Lex();
2834     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
2835                                                   false);
2836     if (ParseToken(lltok::StringConstant, "expected string")) return true;
2837     ID.Kind = ValID::t_Constant;
2838     return false;
2839 
2840   case lltok::kw_asm: {
2841     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
2842     //             STRINGCONSTANT
2843     bool HasSideEffect, AlignStack, AsmDialect;
2844     Lex.Lex();
2845     if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2846         ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2847         ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
2848         ParseStringConstant(ID.StrVal) ||
2849         ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2850         ParseToken(lltok::StringConstant, "expected constraint string"))
2851       return true;
2852     ID.StrVal2 = Lex.getStrVal();
2853     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
2854       (unsigned(AsmDialect)<<2);
2855     ID.Kind = ValID::t_InlineAsm;
2856     return false;
2857   }
2858 
2859   case lltok::kw_blockaddress: {
2860     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2861     Lex.Lex();
2862 
2863     ValID Fn, Label;
2864 
2865     if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2866         ParseValID(Fn) ||
2867         ParseToken(lltok::comma, "expected comma in block address expression")||
2868         ParseValID(Label) ||
2869         ParseToken(lltok::rparen, "expected ')' in block address expression"))
2870       return true;
2871 
2872     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
2873       return Error(Fn.Loc, "expected function name in blockaddress");
2874     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
2875       return Error(Label.Loc, "expected basic block name in blockaddress");
2876 
2877     // Try to find the function (but skip it if it's forward-referenced).
2878     GlobalValue *GV = nullptr;
2879     if (Fn.Kind == ValID::t_GlobalID) {
2880       if (Fn.UIntVal < NumberedVals.size())
2881         GV = NumberedVals[Fn.UIntVal];
2882     } else if (!ForwardRefVals.count(Fn.StrVal)) {
2883       GV = M->getNamedValue(Fn.StrVal);
2884     }
2885     Function *F = nullptr;
2886     if (GV) {
2887       // Confirm that it's actually a function with a definition.
2888       if (!isa<Function>(GV))
2889         return Error(Fn.Loc, "expected function name in blockaddress");
2890       F = cast<Function>(GV);
2891       if (F->isDeclaration())
2892         return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
2893     }
2894 
2895     if (!F) {
2896       // Make a global variable as a placeholder for this reference.
2897       GlobalValue *&FwdRef =
2898           ForwardRefBlockAddresses.insert(std::make_pair(
2899                                               std::move(Fn),
2900                                               std::map<ValID, GlobalValue *>()))
2901               .first->second.insert(std::make_pair(std::move(Label), nullptr))
2902               .first->second;
2903       if (!FwdRef)
2904         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
2905                                     GlobalValue::InternalLinkage, nullptr, "");
2906       ID.ConstantVal = FwdRef;
2907       ID.Kind = ValID::t_Constant;
2908       return false;
2909     }
2910 
2911     // We found the function; now find the basic block.  Don't use PFS, since we
2912     // might be inside a constant expression.
2913     BasicBlock *BB;
2914     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
2915       if (Label.Kind == ValID::t_LocalID)
2916         BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
2917       else
2918         BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
2919       if (!BB)
2920         return Error(Label.Loc, "referenced value is not a basic block");
2921     } else {
2922       if (Label.Kind == ValID::t_LocalID)
2923         return Error(Label.Loc, "cannot take address of numeric label after "
2924                                 "the function is defined");
2925       BB = dyn_cast_or_null<BasicBlock>(
2926           F->getValueSymbolTable()->lookup(Label.StrVal));
2927       if (!BB)
2928         return Error(Label.Loc, "referenced value is not a basic block");
2929     }
2930 
2931     ID.ConstantVal = BlockAddress::get(F, BB);
2932     ID.Kind = ValID::t_Constant;
2933     return false;
2934   }
2935 
2936   case lltok::kw_trunc:
2937   case lltok::kw_zext:
2938   case lltok::kw_sext:
2939   case lltok::kw_fptrunc:
2940   case lltok::kw_fpext:
2941   case lltok::kw_bitcast:
2942   case lltok::kw_addrspacecast:
2943   case lltok::kw_uitofp:
2944   case lltok::kw_sitofp:
2945   case lltok::kw_fptoui:
2946   case lltok::kw_fptosi:
2947   case lltok::kw_inttoptr:
2948   case lltok::kw_ptrtoint: {
2949     unsigned Opc = Lex.getUIntVal();
2950     Type *DestTy = nullptr;
2951     Constant *SrcVal;
2952     Lex.Lex();
2953     if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
2954         ParseGlobalTypeAndValue(SrcVal) ||
2955         ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
2956         ParseType(DestTy) ||
2957         ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
2958       return true;
2959     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
2960       return Error(ID.Loc, "invalid cast opcode for cast from '" +
2961                    getTypeString(SrcVal->getType()) + "' to '" +
2962                    getTypeString(DestTy) + "'");
2963     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
2964                                                  SrcVal, DestTy);
2965     ID.Kind = ValID::t_Constant;
2966     return false;
2967   }
2968   case lltok::kw_extractvalue: {
2969     Lex.Lex();
2970     Constant *Val;
2971     SmallVector<unsigned, 4> Indices;
2972     if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
2973         ParseGlobalTypeAndValue(Val) ||
2974         ParseIndexList(Indices) ||
2975         ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
2976       return true;
2977 
2978     if (!Val->getType()->isAggregateType())
2979       return Error(ID.Loc, "extractvalue operand must be aggregate type");
2980     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
2981       return Error(ID.Loc, "invalid indices for extractvalue");
2982     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
2983     ID.Kind = ValID::t_Constant;
2984     return false;
2985   }
2986   case lltok::kw_insertvalue: {
2987     Lex.Lex();
2988     Constant *Val0, *Val1;
2989     SmallVector<unsigned, 4> Indices;
2990     if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
2991         ParseGlobalTypeAndValue(Val0) ||
2992         ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
2993         ParseGlobalTypeAndValue(Val1) ||
2994         ParseIndexList(Indices) ||
2995         ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
2996       return true;
2997     if (!Val0->getType()->isAggregateType())
2998       return Error(ID.Loc, "insertvalue operand must be aggregate type");
2999     Type *IndexedType =
3000         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3001     if (!IndexedType)
3002       return Error(ID.Loc, "invalid indices for insertvalue");
3003     if (IndexedType != Val1->getType())
3004       return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3005                                getTypeString(Val1->getType()) +
3006                                "' instead of '" + getTypeString(IndexedType) +
3007                                "'");
3008     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3009     ID.Kind = ValID::t_Constant;
3010     return false;
3011   }
3012   case lltok::kw_icmp:
3013   case lltok::kw_fcmp: {
3014     unsigned PredVal, Opc = Lex.getUIntVal();
3015     Constant *Val0, *Val1;
3016     Lex.Lex();
3017     if (ParseCmpPredicate(PredVal, Opc) ||
3018         ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3019         ParseGlobalTypeAndValue(Val0) ||
3020         ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
3021         ParseGlobalTypeAndValue(Val1) ||
3022         ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3023       return true;
3024 
3025     if (Val0->getType() != Val1->getType())
3026       return Error(ID.Loc, "compare operands must have the same type");
3027 
3028     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3029 
3030     if (Opc == Instruction::FCmp) {
3031       if (!Val0->getType()->isFPOrFPVectorTy())
3032         return Error(ID.Loc, "fcmp requires floating point operands");
3033       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3034     } else {
3035       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3036       if (!Val0->getType()->isIntOrIntVectorTy() &&
3037           !Val0->getType()->getScalarType()->isPointerTy())
3038         return Error(ID.Loc, "icmp requires pointer or integer operands");
3039       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3040     }
3041     ID.Kind = ValID::t_Constant;
3042     return false;
3043   }
3044 
3045   // Binary Operators.
3046   case lltok::kw_add:
3047   case lltok::kw_fadd:
3048   case lltok::kw_sub:
3049   case lltok::kw_fsub:
3050   case lltok::kw_mul:
3051   case lltok::kw_fmul:
3052   case lltok::kw_udiv:
3053   case lltok::kw_sdiv:
3054   case lltok::kw_fdiv:
3055   case lltok::kw_urem:
3056   case lltok::kw_srem:
3057   case lltok::kw_frem:
3058   case lltok::kw_shl:
3059   case lltok::kw_lshr:
3060   case lltok::kw_ashr: {
3061     bool NUW = false;
3062     bool NSW = false;
3063     bool Exact = false;
3064     unsigned Opc = Lex.getUIntVal();
3065     Constant *Val0, *Val1;
3066     Lex.Lex();
3067     LocTy ModifierLoc = Lex.getLoc();
3068     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3069         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3070       if (EatIfPresent(lltok::kw_nuw))
3071         NUW = true;
3072       if (EatIfPresent(lltok::kw_nsw)) {
3073         NSW = true;
3074         if (EatIfPresent(lltok::kw_nuw))
3075           NUW = true;
3076       }
3077     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3078                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3079       if (EatIfPresent(lltok::kw_exact))
3080         Exact = true;
3081     }
3082     if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3083         ParseGlobalTypeAndValue(Val0) ||
3084         ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
3085         ParseGlobalTypeAndValue(Val1) ||
3086         ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3087       return true;
3088     if (Val0->getType() != Val1->getType())
3089       return Error(ID.Loc, "operands of constexpr must have same type");
3090     if (!Val0->getType()->isIntOrIntVectorTy()) {
3091       if (NUW)
3092         return Error(ModifierLoc, "nuw only applies to integer operations");
3093       if (NSW)
3094         return Error(ModifierLoc, "nsw only applies to integer operations");
3095     }
3096     // Check that the type is valid for the operator.
3097     switch (Opc) {
3098     case Instruction::Add:
3099     case Instruction::Sub:
3100     case Instruction::Mul:
3101     case Instruction::UDiv:
3102     case Instruction::SDiv:
3103     case Instruction::URem:
3104     case Instruction::SRem:
3105     case Instruction::Shl:
3106     case Instruction::AShr:
3107     case Instruction::LShr:
3108       if (!Val0->getType()->isIntOrIntVectorTy())
3109         return Error(ID.Loc, "constexpr requires integer operands");
3110       break;
3111     case Instruction::FAdd:
3112     case Instruction::FSub:
3113     case Instruction::FMul:
3114     case Instruction::FDiv:
3115     case Instruction::FRem:
3116       if (!Val0->getType()->isFPOrFPVectorTy())
3117         return Error(ID.Loc, "constexpr requires fp operands");
3118       break;
3119     default: llvm_unreachable("Unknown binary operator!");
3120     }
3121     unsigned Flags = 0;
3122     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3123     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3124     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3125     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3126     ID.ConstantVal = C;
3127     ID.Kind = ValID::t_Constant;
3128     return false;
3129   }
3130 
3131   // Logical Operations
3132   case lltok::kw_and:
3133   case lltok::kw_or:
3134   case lltok::kw_xor: {
3135     unsigned Opc = Lex.getUIntVal();
3136     Constant *Val0, *Val1;
3137     Lex.Lex();
3138     if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3139         ParseGlobalTypeAndValue(Val0) ||
3140         ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
3141         ParseGlobalTypeAndValue(Val1) ||
3142         ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3143       return true;
3144     if (Val0->getType() != Val1->getType())
3145       return Error(ID.Loc, "operands of constexpr must have same type");
3146     if (!Val0->getType()->isIntOrIntVectorTy())
3147       return Error(ID.Loc,
3148                    "constexpr requires integer or integer vector operands");
3149     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3150     ID.Kind = ValID::t_Constant;
3151     return false;
3152   }
3153 
3154   case lltok::kw_getelementptr:
3155   case lltok::kw_shufflevector:
3156   case lltok::kw_insertelement:
3157   case lltok::kw_extractelement:
3158   case lltok::kw_select: {
3159     unsigned Opc = Lex.getUIntVal();
3160     SmallVector<Constant*, 16> Elts;
3161     bool InBounds = false;
3162     Type *Ty;
3163     Lex.Lex();
3164 
3165     if (Opc == Instruction::GetElementPtr)
3166       InBounds = EatIfPresent(lltok::kw_inbounds);
3167 
3168     if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
3169       return true;
3170 
3171     LocTy ExplicitTypeLoc = Lex.getLoc();
3172     if (Opc == Instruction::GetElementPtr) {
3173       if (ParseType(Ty) ||
3174           ParseToken(lltok::comma, "expected comma after getelementptr's type"))
3175         return true;
3176     }
3177 
3178     Optional<unsigned> InRangeOp;
3179     if (ParseGlobalValueVector(
3180             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3181         ParseToken(lltok::rparen, "expected ')' in constantexpr"))
3182       return true;
3183 
3184     if (Opc == Instruction::GetElementPtr) {
3185       if (Elts.size() == 0 ||
3186           !Elts[0]->getType()->getScalarType()->isPointerTy())
3187         return Error(ID.Loc, "base of getelementptr must be a pointer");
3188 
3189       Type *BaseType = Elts[0]->getType();
3190       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3191       if (Ty != BasePointerType->getElementType())
3192         return Error(
3193             ExplicitTypeLoc,
3194             "explicit pointee type doesn't match operand's pointee type");
3195 
3196       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3197       for (Constant *Val : Indices) {
3198         Type *ValTy = Val->getType();
3199         if (!ValTy->getScalarType()->isIntegerTy())
3200           return Error(ID.Loc, "getelementptr index must be an integer");
3201         if (ValTy->isVectorTy() != BaseType->isVectorTy())
3202           return Error(ID.Loc, "getelementptr index type missmatch");
3203         if (ValTy->isVectorTy()) {
3204           unsigned ValNumEl = ValTy->getVectorNumElements();
3205           unsigned PtrNumEl = BaseType->getVectorNumElements();
3206           if (ValNumEl != PtrNumEl)
3207             return Error(
3208                 ID.Loc,
3209                 "getelementptr vector index has a wrong number of elements");
3210         }
3211       }
3212 
3213       SmallPtrSet<Type*, 4> Visited;
3214       if (!Indices.empty() && !Ty->isSized(&Visited))
3215         return Error(ID.Loc, "base element of getelementptr must be sized");
3216 
3217       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3218         return Error(ID.Loc, "invalid getelementptr indices");
3219 
3220       if (InRangeOp) {
3221         if (*InRangeOp == 0)
3222           return Error(ID.Loc,
3223                        "inrange keyword may not appear on pointer operand");
3224         --*InRangeOp;
3225       }
3226 
3227       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3228                                                       InBounds, InRangeOp);
3229     } else if (Opc == Instruction::Select) {
3230       if (Elts.size() != 3)
3231         return Error(ID.Loc, "expected three operands to select");
3232       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3233                                                               Elts[2]))
3234         return Error(ID.Loc, Reason);
3235       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3236     } else if (Opc == Instruction::ShuffleVector) {
3237       if (Elts.size() != 3)
3238         return Error(ID.Loc, "expected three operands to shufflevector");
3239       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3240         return Error(ID.Loc, "invalid operands to shufflevector");
3241       ID.ConstantVal =
3242                  ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
3243     } else if (Opc == Instruction::ExtractElement) {
3244       if (Elts.size() != 2)
3245         return Error(ID.Loc, "expected two operands to extractelement");
3246       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3247         return Error(ID.Loc, "invalid extractelement operands");
3248       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3249     } else {
3250       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3251       if (Elts.size() != 3)
3252       return Error(ID.Loc, "expected three operands to insertelement");
3253       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3254         return Error(ID.Loc, "invalid insertelement operands");
3255       ID.ConstantVal =
3256                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3257     }
3258 
3259     ID.Kind = ValID::t_Constant;
3260     return false;
3261   }
3262   }
3263 
3264   Lex.Lex();
3265   return false;
3266 }
3267 
3268 /// ParseGlobalValue - Parse a global value with the specified type.
3269 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
3270   C = nullptr;
3271   ValID ID;
3272   Value *V = nullptr;
3273   bool Parsed = ParseValID(ID) ||
3274                 ConvertValIDToValue(Ty, ID, V, nullptr);
3275   if (V && !(C = dyn_cast<Constant>(V)))
3276     return Error(ID.Loc, "global values must be constants");
3277   return Parsed;
3278 }
3279 
3280 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
3281   Type *Ty = nullptr;
3282   return ParseType(Ty) ||
3283          ParseGlobalValue(Ty, V);
3284 }
3285 
3286 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3287   C = nullptr;
3288 
3289   LocTy KwLoc = Lex.getLoc();
3290   if (!EatIfPresent(lltok::kw_comdat))
3291     return false;
3292 
3293   if (EatIfPresent(lltok::lparen)) {
3294     if (Lex.getKind() != lltok::ComdatVar)
3295       return TokError("expected comdat variable");
3296     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3297     Lex.Lex();
3298     if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
3299       return true;
3300   } else {
3301     if (GlobalName.empty())
3302       return TokError("comdat cannot be unnamed");
3303     C = getComdat(GlobalName, KwLoc);
3304   }
3305 
3306   return false;
3307 }
3308 
3309 /// ParseGlobalValueVector
3310 ///   ::= /*empty*/
3311 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3312 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3313                                       Optional<unsigned> *InRangeOp) {
3314   // Empty list.
3315   if (Lex.getKind() == lltok::rbrace ||
3316       Lex.getKind() == lltok::rsquare ||
3317       Lex.getKind() == lltok::greater ||
3318       Lex.getKind() == lltok::rparen)
3319     return false;
3320 
3321   do {
3322     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3323       *InRangeOp = Elts.size();
3324 
3325     Constant *C;
3326     if (ParseGlobalTypeAndValue(C)) return true;
3327     Elts.push_back(C);
3328   } while (EatIfPresent(lltok::comma));
3329 
3330   return false;
3331 }
3332 
3333 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
3334   SmallVector<Metadata *, 16> Elts;
3335   if (ParseMDNodeVector(Elts))
3336     return true;
3337 
3338   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3339   return false;
3340 }
3341 
3342 /// MDNode:
3343 ///  ::= !{ ... }
3344 ///  ::= !7
3345 ///  ::= !DILocation(...)
3346 bool LLParser::ParseMDNode(MDNode *&N) {
3347   if (Lex.getKind() == lltok::MetadataVar)
3348     return ParseSpecializedMDNode(N);
3349 
3350   return ParseToken(lltok::exclaim, "expected '!' here") ||
3351          ParseMDNodeTail(N);
3352 }
3353 
3354 bool LLParser::ParseMDNodeTail(MDNode *&N) {
3355   // !{ ... }
3356   if (Lex.getKind() == lltok::lbrace)
3357     return ParseMDTuple(N);
3358 
3359   // !42
3360   return ParseMDNodeID(N);
3361 }
3362 
3363 namespace {
3364 
3365 /// Structure to represent an optional metadata field.
3366 template <class FieldTy> struct MDFieldImpl {
3367   typedef MDFieldImpl ImplTy;
3368   FieldTy Val;
3369   bool Seen;
3370 
3371   void assign(FieldTy Val) {
3372     Seen = true;
3373     this->Val = std::move(Val);
3374   }
3375 
3376   explicit MDFieldImpl(FieldTy Default)
3377       : Val(std::move(Default)), Seen(false) {}
3378 };
3379 
3380 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3381   uint64_t Max;
3382 
3383   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3384       : ImplTy(Default), Max(Max) {}
3385 };
3386 
3387 struct LineField : public MDUnsignedField {
3388   LineField() : MDUnsignedField(0, UINT32_MAX) {}
3389 };
3390 
3391 struct ColumnField : public MDUnsignedField {
3392   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3393 };
3394 
3395 struct DwarfTagField : public MDUnsignedField {
3396   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3397   DwarfTagField(dwarf::Tag DefaultTag)
3398       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3399 };
3400 
3401 struct DwarfMacinfoTypeField : public MDUnsignedField {
3402   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3403   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3404     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3405 };
3406 
3407 struct DwarfAttEncodingField : public MDUnsignedField {
3408   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3409 };
3410 
3411 struct DwarfVirtualityField : public MDUnsignedField {
3412   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3413 };
3414 
3415 struct DwarfLangField : public MDUnsignedField {
3416   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3417 };
3418 
3419 struct DwarfCCField : public MDUnsignedField {
3420   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3421 };
3422 
3423 struct EmissionKindField : public MDUnsignedField {
3424   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3425 };
3426 
3427 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
3428   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3429 };
3430 
3431 struct MDSignedField : public MDFieldImpl<int64_t> {
3432   int64_t Min;
3433   int64_t Max;
3434 
3435   MDSignedField(int64_t Default = 0)
3436       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3437   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3438       : ImplTy(Default), Min(Min), Max(Max) {}
3439 };
3440 
3441 struct MDBoolField : public MDFieldImpl<bool> {
3442   MDBoolField(bool Default = false) : ImplTy(Default) {}
3443 };
3444 
3445 struct MDField : public MDFieldImpl<Metadata *> {
3446   bool AllowNull;
3447 
3448   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3449 };
3450 
3451 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
3452   MDConstant() : ImplTy(nullptr) {}
3453 };
3454 
3455 struct MDStringField : public MDFieldImpl<MDString *> {
3456   bool AllowEmpty;
3457   MDStringField(bool AllowEmpty = true)
3458       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3459 };
3460 
3461 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3462   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3463 };
3464 
3465 } // end anonymous namespace
3466 
3467 namespace llvm {
3468 
3469 template <>
3470 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3471                             MDUnsignedField &Result) {
3472   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3473     return TokError("expected unsigned integer");
3474 
3475   auto &U = Lex.getAPSIntVal();
3476   if (U.ugt(Result.Max))
3477     return TokError("value for '" + Name + "' too large, limit is " +
3478                     Twine(Result.Max));
3479   Result.assign(U.getZExtValue());
3480   assert(Result.Val <= Result.Max && "Expected value in range");
3481   Lex.Lex();
3482   return false;
3483 }
3484 
3485 template <>
3486 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
3487   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3488 }
3489 template <>
3490 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
3491   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3492 }
3493 
3494 template <>
3495 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
3496   if (Lex.getKind() == lltok::APSInt)
3497     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3498 
3499   if (Lex.getKind() != lltok::DwarfTag)
3500     return TokError("expected DWARF tag");
3501 
3502   unsigned Tag = dwarf::getTag(Lex.getStrVal());
3503   if (Tag == dwarf::DW_TAG_invalid)
3504     return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
3505   assert(Tag <= Result.Max && "Expected valid DWARF tag");
3506 
3507   Result.assign(Tag);
3508   Lex.Lex();
3509   return false;
3510 }
3511 
3512 template <>
3513 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3514                             DwarfMacinfoTypeField &Result) {
3515   if (Lex.getKind() == lltok::APSInt)
3516     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3517 
3518   if (Lex.getKind() != lltok::DwarfMacinfo)
3519     return TokError("expected DWARF macinfo type");
3520 
3521   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
3522   if (Macinfo == dwarf::DW_MACINFO_invalid)
3523     return TokError(
3524         "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'");
3525   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
3526 
3527   Result.assign(Macinfo);
3528   Lex.Lex();
3529   return false;
3530 }
3531 
3532 template <>
3533 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3534                             DwarfVirtualityField &Result) {
3535   if (Lex.getKind() == lltok::APSInt)
3536     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3537 
3538   if (Lex.getKind() != lltok::DwarfVirtuality)
3539     return TokError("expected DWARF virtuality code");
3540 
3541   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
3542   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
3543     return TokError("invalid DWARF virtuality code" + Twine(" '") +
3544                     Lex.getStrVal() + "'");
3545   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
3546   Result.assign(Virtuality);
3547   Lex.Lex();
3548   return false;
3549 }
3550 
3551 template <>
3552 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
3553   if (Lex.getKind() == lltok::APSInt)
3554     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3555 
3556   if (Lex.getKind() != lltok::DwarfLang)
3557     return TokError("expected DWARF language");
3558 
3559   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
3560   if (!Lang)
3561     return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
3562                     "'");
3563   assert(Lang <= Result.Max && "Expected valid DWARF language");
3564   Result.assign(Lang);
3565   Lex.Lex();
3566   return false;
3567 }
3568 
3569 template <>
3570 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
3571   if (Lex.getKind() == lltok::APSInt)
3572     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3573 
3574   if (Lex.getKind() != lltok::DwarfCC)
3575     return TokError("expected DWARF calling convention");
3576 
3577   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
3578   if (!CC)
3579     return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() +
3580                     "'");
3581   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
3582   Result.assign(CC);
3583   Lex.Lex();
3584   return false;
3585 }
3586 
3587 template <>
3588 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) {
3589   if (Lex.getKind() == lltok::APSInt)
3590     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3591 
3592   if (Lex.getKind() != lltok::EmissionKind)
3593     return TokError("expected emission kind");
3594 
3595   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
3596   if (!Kind)
3597     return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
3598                     "'");
3599   assert(*Kind <= Result.Max && "Expected valid emission kind");
3600   Result.assign(*Kind);
3601   Lex.Lex();
3602   return false;
3603 }
3604 
3605 template <>
3606 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3607                             DwarfAttEncodingField &Result) {
3608   if (Lex.getKind() == lltok::APSInt)
3609     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3610 
3611   if (Lex.getKind() != lltok::DwarfAttEncoding)
3612     return TokError("expected DWARF type attribute encoding");
3613 
3614   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
3615   if (!Encoding)
3616     return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
3617                     Lex.getStrVal() + "'");
3618   assert(Encoding <= Result.Max && "Expected valid DWARF language");
3619   Result.assign(Encoding);
3620   Lex.Lex();
3621   return false;
3622 }
3623 
3624 /// DIFlagField
3625 ///  ::= uint32
3626 ///  ::= DIFlagVector
3627 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
3628 template <>
3629 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
3630 
3631   // Parser for a single flag.
3632   auto parseFlag = [&](DINode::DIFlags &Val) {
3633     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
3634       uint32_t TempVal = static_cast<uint32_t>(Val);
3635       bool Res = ParseUInt32(TempVal);
3636       Val = static_cast<DINode::DIFlags>(TempVal);
3637       return Res;
3638     }
3639 
3640     if (Lex.getKind() != lltok::DIFlag)
3641       return TokError("expected debug info flag");
3642 
3643     Val = DINode::getFlag(Lex.getStrVal());
3644     if (!Val)
3645       return TokError(Twine("invalid debug info flag flag '") +
3646                       Lex.getStrVal() + "'");
3647     Lex.Lex();
3648     return false;
3649   };
3650 
3651   // Parse the flags and combine them together.
3652   DINode::DIFlags Combined = DINode::FlagZero;
3653   do {
3654     DINode::DIFlags Val;
3655     if (parseFlag(Val))
3656       return true;
3657     Combined |= Val;
3658   } while (EatIfPresent(lltok::bar));
3659 
3660   Result.assign(Combined);
3661   return false;
3662 }
3663 
3664 template <>
3665 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3666                             MDSignedField &Result) {
3667   if (Lex.getKind() != lltok::APSInt)
3668     return TokError("expected signed integer");
3669 
3670   auto &S = Lex.getAPSIntVal();
3671   if (S < Result.Min)
3672     return TokError("value for '" + Name + "' too small, limit is " +
3673                     Twine(Result.Min));
3674   if (S > Result.Max)
3675     return TokError("value for '" + Name + "' too large, limit is " +
3676                     Twine(Result.Max));
3677   Result.assign(S.getExtValue());
3678   assert(Result.Val >= Result.Min && "Expected value in range");
3679   assert(Result.Val <= Result.Max && "Expected value in range");
3680   Lex.Lex();
3681   return false;
3682 }
3683 
3684 template <>
3685 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
3686   switch (Lex.getKind()) {
3687   default:
3688     return TokError("expected 'true' or 'false'");
3689   case lltok::kw_true:
3690     Result.assign(true);
3691     break;
3692   case lltok::kw_false:
3693     Result.assign(false);
3694     break;
3695   }
3696   Lex.Lex();
3697   return false;
3698 }
3699 
3700 template <>
3701 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
3702   if (Lex.getKind() == lltok::kw_null) {
3703     if (!Result.AllowNull)
3704       return TokError("'" + Name + "' cannot be null");
3705     Lex.Lex();
3706     Result.assign(nullptr);
3707     return false;
3708   }
3709 
3710   Metadata *MD;
3711   if (ParseMetadata(MD, nullptr))
3712     return true;
3713 
3714   Result.assign(MD);
3715   return false;
3716 }
3717 
3718 template <>
3719 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
3720   LocTy ValueLoc = Lex.getLoc();
3721   std::string S;
3722   if (ParseStringConstant(S))
3723     return true;
3724 
3725   if (!Result.AllowEmpty && S.empty())
3726     return Error(ValueLoc, "'" + Name + "' cannot be empty");
3727 
3728   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
3729   return false;
3730 }
3731 
3732 template <>
3733 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
3734   SmallVector<Metadata *, 4> MDs;
3735   if (ParseMDNodeVector(MDs))
3736     return true;
3737 
3738   Result.assign(std::move(MDs));
3739   return false;
3740 }
3741 
3742 } // end namespace llvm
3743 
3744 template <class ParserTy>
3745 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
3746   do {
3747     if (Lex.getKind() != lltok::LabelStr)
3748       return TokError("expected field label here");
3749 
3750     if (parseField())
3751       return true;
3752   } while (EatIfPresent(lltok::comma));
3753 
3754   return false;
3755 }
3756 
3757 template <class ParserTy>
3758 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
3759   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
3760   Lex.Lex();
3761 
3762   if (ParseToken(lltok::lparen, "expected '(' here"))
3763     return true;
3764   if (Lex.getKind() != lltok::rparen)
3765     if (ParseMDFieldsImplBody(parseField))
3766       return true;
3767 
3768   ClosingLoc = Lex.getLoc();
3769   return ParseToken(lltok::rparen, "expected ')' here");
3770 }
3771 
3772 template <class FieldTy>
3773 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
3774   if (Result.Seen)
3775     return TokError("field '" + Name + "' cannot be specified more than once");
3776 
3777   LocTy Loc = Lex.getLoc();
3778   Lex.Lex();
3779   return ParseMDField(Loc, Name, Result);
3780 }
3781 
3782 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
3783   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
3784 
3785 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
3786   if (Lex.getStrVal() == #CLASS)                                               \
3787     return Parse##CLASS(N, IsDistinct);
3788 #include "llvm/IR/Metadata.def"
3789 
3790   return TokError("expected metadata type");
3791 }
3792 
3793 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
3794 #define NOP_FIELD(NAME, TYPE, INIT)
3795 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
3796   if (!NAME.Seen)                                                              \
3797     return Error(ClosingLoc, "missing required field '" #NAME "'");
3798 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
3799   if (Lex.getStrVal() == #NAME)                                                \
3800     return ParseMDField(#NAME, NAME);
3801 #define PARSE_MD_FIELDS()                                                      \
3802   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
3803   do {                                                                         \
3804     LocTy ClosingLoc;                                                          \
3805     if (ParseMDFieldsImpl([&]() -> bool {                                      \
3806       VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                          \
3807       return TokError(Twine("invalid field '") + Lex.getStrVal() + "'");       \
3808     }, ClosingLoc))                                                            \
3809       return true;                                                             \
3810     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
3811   } while (false)
3812 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
3813   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
3814 
3815 /// ParseDILocationFields:
3816 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6)
3817 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
3818 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3819   OPTIONAL(line, LineField, );                                                 \
3820   OPTIONAL(column, ColumnField, );                                             \
3821   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
3822   OPTIONAL(inlinedAt, MDField, );
3823   PARSE_MD_FIELDS();
3824 #undef VISIT_MD_FIELDS
3825 
3826   Result = GET_OR_DISTINCT(
3827       DILocation, (Context, line.Val, column.Val, scope.Val, inlinedAt.Val));
3828   return false;
3829 }
3830 
3831 /// ParseGenericDINode:
3832 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
3833 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
3834 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3835   REQUIRED(tag, DwarfTagField, );                                              \
3836   OPTIONAL(header, MDStringField, );                                           \
3837   OPTIONAL(operands, MDFieldList, );
3838   PARSE_MD_FIELDS();
3839 #undef VISIT_MD_FIELDS
3840 
3841   Result = GET_OR_DISTINCT(GenericDINode,
3842                            (Context, tag.Val, header.Val, operands.Val));
3843   return false;
3844 }
3845 
3846 /// ParseDISubrange:
3847 ///   ::= !DISubrange(count: 30, lowerBound: 2)
3848 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
3849 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3850   REQUIRED(count, MDSignedField, (-1, -1, INT64_MAX));                         \
3851   OPTIONAL(lowerBound, MDSignedField, );
3852   PARSE_MD_FIELDS();
3853 #undef VISIT_MD_FIELDS
3854 
3855   Result = GET_OR_DISTINCT(DISubrange, (Context, count.Val, lowerBound.Val));
3856   return false;
3857 }
3858 
3859 /// ParseDIEnumerator:
3860 ///   ::= !DIEnumerator(value: 30, name: "SomeKind")
3861 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
3862 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3863   REQUIRED(name, MDStringField, );                                             \
3864   REQUIRED(value, MDSignedField, );
3865   PARSE_MD_FIELDS();
3866 #undef VISIT_MD_FIELDS
3867 
3868   Result = GET_OR_DISTINCT(DIEnumerator, (Context, value.Val, name.Val));
3869   return false;
3870 }
3871 
3872 /// ParseDIBasicType:
3873 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32)
3874 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
3875 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3876   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
3877   OPTIONAL(name, MDStringField, );                                             \
3878   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
3879   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
3880   OPTIONAL(encoding, DwarfAttEncodingField, );
3881   PARSE_MD_FIELDS();
3882 #undef VISIT_MD_FIELDS
3883 
3884   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
3885                                          align.Val, encoding.Val));
3886   return false;
3887 }
3888 
3889 /// ParseDIDerivedType:
3890 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
3891 ///                      line: 7, scope: !1, baseType: !2, size: 32,
3892 ///                      align: 32, offset: 0, flags: 0, extraData: !3)
3893 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
3894 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3895   REQUIRED(tag, DwarfTagField, );                                              \
3896   OPTIONAL(name, MDStringField, );                                             \
3897   OPTIONAL(file, MDField, );                                                   \
3898   OPTIONAL(line, LineField, );                                                 \
3899   OPTIONAL(scope, MDField, );                                                  \
3900   REQUIRED(baseType, MDField, );                                               \
3901   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
3902   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
3903   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
3904   OPTIONAL(flags, DIFlagField, );                                              \
3905   OPTIONAL(extraData, MDField, );
3906   PARSE_MD_FIELDS();
3907 #undef VISIT_MD_FIELDS
3908 
3909   Result = GET_OR_DISTINCT(DIDerivedType,
3910                            (Context, tag.Val, name.Val, file.Val, line.Val,
3911                             scope.Val, baseType.Val, size.Val, align.Val,
3912                             offset.Val, flags.Val, extraData.Val));
3913   return false;
3914 }
3915 
3916 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
3917 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3918   REQUIRED(tag, DwarfTagField, );                                              \
3919   OPTIONAL(name, MDStringField, );                                             \
3920   OPTIONAL(file, MDField, );                                                   \
3921   OPTIONAL(line, LineField, );                                                 \
3922   OPTIONAL(scope, MDField, );                                                  \
3923   OPTIONAL(baseType, MDField, );                                               \
3924   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
3925   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
3926   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
3927   OPTIONAL(flags, DIFlagField, );                                              \
3928   OPTIONAL(elements, MDField, );                                               \
3929   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
3930   OPTIONAL(vtableHolder, MDField, );                                           \
3931   OPTIONAL(templateParams, MDField, );                                         \
3932   OPTIONAL(identifier, MDStringField, );
3933   PARSE_MD_FIELDS();
3934 #undef VISIT_MD_FIELDS
3935 
3936   // If this has an identifier try to build an ODR type.
3937   if (identifier.Val)
3938     if (auto *CT = DICompositeType::buildODRType(
3939             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
3940             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
3941             elements.Val, runtimeLang.Val, vtableHolder.Val,
3942             templateParams.Val)) {
3943       Result = CT;
3944       return false;
3945     }
3946 
3947   // Create a new node, and save it in the context if it belongs in the type
3948   // map.
3949   Result = GET_OR_DISTINCT(
3950       DICompositeType,
3951       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
3952        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
3953        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val));
3954   return false;
3955 }
3956 
3957 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
3958 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3959   OPTIONAL(flags, DIFlagField, );                                              \
3960   OPTIONAL(cc, DwarfCCField, );                                                \
3961   REQUIRED(types, MDField, );
3962   PARSE_MD_FIELDS();
3963 #undef VISIT_MD_FIELDS
3964 
3965   Result = GET_OR_DISTINCT(DISubroutineType,
3966                            (Context, flags.Val, cc.Val, types.Val));
3967   return false;
3968 }
3969 
3970 /// ParseDIFileType:
3971 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir")
3972 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
3973 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3974   REQUIRED(filename, MDStringField, );                                         \
3975   REQUIRED(directory, MDStringField, );
3976   PARSE_MD_FIELDS();
3977 #undef VISIT_MD_FIELDS
3978 
3979   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val));
3980   return false;
3981 }
3982 
3983 /// ParseDICompileUnit:
3984 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
3985 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
3986 ///                      splitDebugFilename: "abc.debug",
3987 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
3988 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd)
3989 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
3990   if (!IsDistinct)
3991     return Lex.Error("missing 'distinct', required for !DICompileUnit");
3992 
3993 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3994   REQUIRED(language, DwarfLangField, );                                        \
3995   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
3996   OPTIONAL(producer, MDStringField, );                                         \
3997   OPTIONAL(isOptimized, MDBoolField, );                                        \
3998   OPTIONAL(flags, MDStringField, );                                            \
3999   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
4000   OPTIONAL(splitDebugFilename, MDStringField, );                               \
4001   OPTIONAL(emissionKind, EmissionKindField, );                                 \
4002   OPTIONAL(enums, MDField, );                                                  \
4003   OPTIONAL(retainedTypes, MDField, );                                          \
4004   OPTIONAL(globals, MDField, );                                                \
4005   OPTIONAL(imports, MDField, );                                                \
4006   OPTIONAL(macros, MDField, );                                                 \
4007   OPTIONAL(dwoId, MDUnsignedField, );                                          \
4008   OPTIONAL(splitDebugInlining, MDBoolField, = true);
4009   PARSE_MD_FIELDS();
4010 #undef VISIT_MD_FIELDS
4011 
4012   Result = DICompileUnit::getDistinct(
4013       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4014       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4015       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4016       splitDebugInlining.Val);
4017   return false;
4018 }
4019 
4020 /// ParseDISubprogram:
4021 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4022 ///                     file: !1, line: 7, type: !2, isLocal: false,
4023 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
4024 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
4025 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
4026 ///                     isOptimized: false, templateParams: !4, declaration: !5,
4027 ///                     variables: !6)
4028 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
4029   auto Loc = Lex.getLoc();
4030 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4031   OPTIONAL(scope, MDField, );                                                  \
4032   OPTIONAL(name, MDStringField, );                                             \
4033   OPTIONAL(linkageName, MDStringField, );                                      \
4034   OPTIONAL(file, MDField, );                                                   \
4035   OPTIONAL(line, LineField, );                                                 \
4036   OPTIONAL(type, MDField, );                                                   \
4037   OPTIONAL(isLocal, MDBoolField, );                                            \
4038   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4039   OPTIONAL(scopeLine, LineField, );                                            \
4040   OPTIONAL(containingType, MDField, );                                         \
4041   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
4042   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
4043   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
4044   OPTIONAL(flags, DIFlagField, );                                              \
4045   OPTIONAL(isOptimized, MDBoolField, );                                        \
4046   OPTIONAL(unit, MDField, );                                                   \
4047   OPTIONAL(templateParams, MDField, );                                         \
4048   OPTIONAL(declaration, MDField, );                                            \
4049   OPTIONAL(variables, MDField, );
4050   PARSE_MD_FIELDS();
4051 #undef VISIT_MD_FIELDS
4052 
4053   if (isDefinition.Val && !IsDistinct)
4054     return Lex.Error(
4055         Loc,
4056         "missing 'distinct', required for !DISubprogram when 'isDefinition'");
4057 
4058   Result = GET_OR_DISTINCT(
4059       DISubprogram, (Context, scope.Val, name.Val, linkageName.Val, file.Val,
4060                      line.Val, type.Val, isLocal.Val, isDefinition.Val,
4061                      scopeLine.Val, containingType.Val, virtuality.Val,
4062                      virtualIndex.Val, thisAdjustment.Val, flags.Val,
4063                      isOptimized.Val, unit.Val, templateParams.Val,
4064                      declaration.Val, variables.Val));
4065   return false;
4066 }
4067 
4068 /// ParseDILexicalBlock:
4069 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4070 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4071 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4072   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4073   OPTIONAL(file, MDField, );                                                   \
4074   OPTIONAL(line, LineField, );                                                 \
4075   OPTIONAL(column, ColumnField, );
4076   PARSE_MD_FIELDS();
4077 #undef VISIT_MD_FIELDS
4078 
4079   Result = GET_OR_DISTINCT(
4080       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4081   return false;
4082 }
4083 
4084 /// ParseDILexicalBlockFile:
4085 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4086 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4087 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4088   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4089   OPTIONAL(file, MDField, );                                                   \
4090   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4091   PARSE_MD_FIELDS();
4092 #undef VISIT_MD_FIELDS
4093 
4094   Result = GET_OR_DISTINCT(DILexicalBlockFile,
4095                            (Context, scope.Val, file.Val, discriminator.Val));
4096   return false;
4097 }
4098 
4099 /// ParseDINamespace:
4100 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4101 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
4102 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4103   REQUIRED(scope, MDField, );                                                  \
4104   OPTIONAL(file, MDField, );                                                   \
4105   OPTIONAL(name, MDStringField, );                                             \
4106   OPTIONAL(line, LineField, );                                                 \
4107   OPTIONAL(exportSymbols, MDBoolField, );
4108   PARSE_MD_FIELDS();
4109 #undef VISIT_MD_FIELDS
4110 
4111   Result = GET_OR_DISTINCT(DINamespace,
4112   (Context, scope.Val, file.Val, name.Val, line.Val, exportSymbols.Val));
4113   return false;
4114 }
4115 
4116 /// ParseDIMacro:
4117 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
4118 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) {
4119 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4120   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
4121   REQUIRED(line, LineField, );                                                 \
4122   REQUIRED(name, MDStringField, );                                             \
4123   OPTIONAL(value, MDStringField, );
4124   PARSE_MD_FIELDS();
4125 #undef VISIT_MD_FIELDS
4126 
4127   Result = GET_OR_DISTINCT(DIMacro,
4128                            (Context, type.Val, line.Val, name.Val, value.Val));
4129   return false;
4130 }
4131 
4132 /// ParseDIMacroFile:
4133 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4134 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4135 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4136   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
4137   REQUIRED(line, LineField, );                                                 \
4138   REQUIRED(file, MDField, );                                                   \
4139   OPTIONAL(nodes, MDField, );
4140   PARSE_MD_FIELDS();
4141 #undef VISIT_MD_FIELDS
4142 
4143   Result = GET_OR_DISTINCT(DIMacroFile,
4144                            (Context, type.Val, line.Val, file.Val, nodes.Val));
4145   return false;
4146 }
4147 
4148 /// ParseDIModule:
4149 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG",
4150 ///                 includePath: "/usr/include", isysroot: "/")
4151 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
4152 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4153   REQUIRED(scope, MDField, );                                                  \
4154   REQUIRED(name, MDStringField, );                                             \
4155   OPTIONAL(configMacros, MDStringField, );                                     \
4156   OPTIONAL(includePath, MDStringField, );                                      \
4157   OPTIONAL(isysroot, MDStringField, );
4158   PARSE_MD_FIELDS();
4159 #undef VISIT_MD_FIELDS
4160 
4161   Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val,
4162                            configMacros.Val, includePath.Val, isysroot.Val));
4163   return false;
4164 }
4165 
4166 /// ParseDITemplateTypeParameter:
4167 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1)
4168 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4169 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4170   OPTIONAL(name, MDStringField, );                                             \
4171   REQUIRED(type, MDField, );
4172   PARSE_MD_FIELDS();
4173 #undef VISIT_MD_FIELDS
4174 
4175   Result =
4176       GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val));
4177   return false;
4178 }
4179 
4180 /// ParseDITemplateValueParameter:
4181 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4182 ///                                 name: "V", type: !1, value: i32 7)
4183 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4184 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4185   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
4186   OPTIONAL(name, MDStringField, );                                             \
4187   OPTIONAL(type, MDField, );                                                   \
4188   REQUIRED(value, MDField, );
4189   PARSE_MD_FIELDS();
4190 #undef VISIT_MD_FIELDS
4191 
4192   Result = GET_OR_DISTINCT(DITemplateValueParameter,
4193                            (Context, tag.Val, name.Val, type.Val, value.Val));
4194   return false;
4195 }
4196 
4197 /// ParseDIGlobalVariable:
4198 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
4199 ///                         file: !1, line: 7, type: !2, isLocal: false,
4200 ///                         isDefinition: true, variable: i32* @foo,
4201 ///                         declaration: !3, align: 8)
4202 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
4203 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4204   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
4205   OPTIONAL(scope, MDField, );                                                  \
4206   OPTIONAL(linkageName, MDStringField, );                                      \
4207   OPTIONAL(file, MDField, );                                                   \
4208   OPTIONAL(line, LineField, );                                                 \
4209   OPTIONAL(type, MDField, );                                                   \
4210   OPTIONAL(isLocal, MDBoolField, );                                            \
4211   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4212   OPTIONAL(expr, MDField, );                                                   \
4213   OPTIONAL(declaration, MDField, );                                            \
4214   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4215   PARSE_MD_FIELDS();
4216 #undef VISIT_MD_FIELDS
4217 
4218   Result = GET_OR_DISTINCT(DIGlobalVariable,
4219                            (Context, scope.Val, name.Val, linkageName.Val,
4220                             file.Val, line.Val, type.Val, isLocal.Val,
4221                             isDefinition.Val, expr.Val, declaration.Val,
4222                             align.Val));
4223   return false;
4224 }
4225 
4226 /// ParseDILocalVariable:
4227 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
4228 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4229 ///                        align: 8)
4230 ///   ::= !DILocalVariable(scope: !0, name: "foo",
4231 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4232 ///                        align: 8)
4233 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
4234 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4235   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4236   OPTIONAL(name, MDStringField, );                                             \
4237   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
4238   OPTIONAL(file, MDField, );                                                   \
4239   OPTIONAL(line, LineField, );                                                 \
4240   OPTIONAL(type, MDField, );                                                   \
4241   OPTIONAL(flags, DIFlagField, );                                              \
4242   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4243   PARSE_MD_FIELDS();
4244 #undef VISIT_MD_FIELDS
4245 
4246   Result = GET_OR_DISTINCT(DILocalVariable,
4247                            (Context, scope.Val, name.Val, file.Val, line.Val,
4248                             type.Val, arg.Val, flags.Val, align.Val));
4249   return false;
4250 }
4251 
4252 /// ParseDIExpression:
4253 ///   ::= !DIExpression(0, 7, -1)
4254 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
4255   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4256   Lex.Lex();
4257 
4258   if (ParseToken(lltok::lparen, "expected '(' here"))
4259     return true;
4260 
4261   SmallVector<uint64_t, 8> Elements;
4262   if (Lex.getKind() != lltok::rparen)
4263     do {
4264       if (Lex.getKind() == lltok::DwarfOp) {
4265         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
4266           Lex.Lex();
4267           Elements.push_back(Op);
4268           continue;
4269         }
4270         return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
4271       }
4272 
4273       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4274         return TokError("expected unsigned integer");
4275 
4276       auto &U = Lex.getAPSIntVal();
4277       if (U.ugt(UINT64_MAX))
4278         return TokError("element too large, limit is " + Twine(UINT64_MAX));
4279       Elements.push_back(U.getZExtValue());
4280       Lex.Lex();
4281     } while (EatIfPresent(lltok::comma));
4282 
4283   if (ParseToken(lltok::rparen, "expected ')' here"))
4284     return true;
4285 
4286   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
4287   return false;
4288 }
4289 
4290 /// ParseDIObjCProperty:
4291 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
4292 ///                       getter: "getFoo", attributes: 7, type: !2)
4293 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
4294 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4295   OPTIONAL(name, MDStringField, );                                             \
4296   OPTIONAL(file, MDField, );                                                   \
4297   OPTIONAL(line, LineField, );                                                 \
4298   OPTIONAL(setter, MDStringField, );                                           \
4299   OPTIONAL(getter, MDStringField, );                                           \
4300   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
4301   OPTIONAL(type, MDField, );
4302   PARSE_MD_FIELDS();
4303 #undef VISIT_MD_FIELDS
4304 
4305   Result = GET_OR_DISTINCT(DIObjCProperty,
4306                            (Context, name.Val, file.Val, line.Val, setter.Val,
4307                             getter.Val, attributes.Val, type.Val));
4308   return false;
4309 }
4310 
4311 /// ParseDIImportedEntity:
4312 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
4313 ///                         line: 7, name: "foo")
4314 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
4315 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4316   REQUIRED(tag, DwarfTagField, );                                              \
4317   REQUIRED(scope, MDField, );                                                  \
4318   OPTIONAL(entity, MDField, );                                                 \
4319   OPTIONAL(line, LineField, );                                                 \
4320   OPTIONAL(name, MDStringField, );
4321   PARSE_MD_FIELDS();
4322 #undef VISIT_MD_FIELDS
4323 
4324   Result = GET_OR_DISTINCT(DIImportedEntity, (Context, tag.Val, scope.Val,
4325                                               entity.Val, line.Val, name.Val));
4326   return false;
4327 }
4328 
4329 #undef PARSE_MD_FIELD
4330 #undef NOP_FIELD
4331 #undef REQUIRE_FIELD
4332 #undef DECLARE_FIELD
4333 
4334 /// ParseMetadataAsValue
4335 ///  ::= metadata i32 %local
4336 ///  ::= metadata i32 @global
4337 ///  ::= metadata i32 7
4338 ///  ::= metadata !0
4339 ///  ::= metadata !{...}
4340 ///  ::= metadata !"string"
4341 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
4342   // Note: the type 'metadata' has already been parsed.
4343   Metadata *MD;
4344   if (ParseMetadata(MD, &PFS))
4345     return true;
4346 
4347   V = MetadataAsValue::get(Context, MD);
4348   return false;
4349 }
4350 
4351 /// ParseValueAsMetadata
4352 ///  ::= i32 %local
4353 ///  ::= i32 @global
4354 ///  ::= i32 7
4355 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
4356                                     PerFunctionState *PFS) {
4357   Type *Ty;
4358   LocTy Loc;
4359   if (ParseType(Ty, TypeMsg, Loc))
4360     return true;
4361   if (Ty->isMetadataTy())
4362     return Error(Loc, "invalid metadata-value-metadata roundtrip");
4363 
4364   Value *V;
4365   if (ParseValue(Ty, V, PFS))
4366     return true;
4367 
4368   MD = ValueAsMetadata::get(V);
4369   return false;
4370 }
4371 
4372 /// ParseMetadata
4373 ///  ::= i32 %local
4374 ///  ::= i32 @global
4375 ///  ::= i32 7
4376 ///  ::= !42
4377 ///  ::= !{...}
4378 ///  ::= !"string"
4379 ///  ::= !DILocation(...)
4380 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
4381   if (Lex.getKind() == lltok::MetadataVar) {
4382     MDNode *N;
4383     if (ParseSpecializedMDNode(N))
4384       return true;
4385     MD = N;
4386     return false;
4387   }
4388 
4389   // ValueAsMetadata:
4390   // <type> <value>
4391   if (Lex.getKind() != lltok::exclaim)
4392     return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
4393 
4394   // '!'.
4395   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
4396   Lex.Lex();
4397 
4398   // MDString:
4399   //   ::= '!' STRINGCONSTANT
4400   if (Lex.getKind() == lltok::StringConstant) {
4401     MDString *S;
4402     if (ParseMDString(S))
4403       return true;
4404     MD = S;
4405     return false;
4406   }
4407 
4408   // MDNode:
4409   // !{ ... }
4410   // !7
4411   MDNode *N;
4412   if (ParseMDNodeTail(N))
4413     return true;
4414   MD = N;
4415   return false;
4416 }
4417 
4418 //===----------------------------------------------------------------------===//
4419 // Function Parsing.
4420 //===----------------------------------------------------------------------===//
4421 
4422 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
4423                                    PerFunctionState *PFS) {
4424   if (Ty->isFunctionTy())
4425     return Error(ID.Loc, "functions are not values, refer to them as pointers");
4426 
4427   switch (ID.Kind) {
4428   case ValID::t_LocalID:
4429     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
4430     V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
4431     return V == nullptr;
4432   case ValID::t_LocalName:
4433     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
4434     V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
4435     return V == nullptr;
4436   case ValID::t_InlineAsm: {
4437     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
4438       return Error(ID.Loc, "invalid type for inline asm constraint string");
4439     V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
4440                        (ID.UIntVal >> 1) & 1,
4441                        (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
4442     return false;
4443   }
4444   case ValID::t_GlobalName:
4445     V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
4446     return V == nullptr;
4447   case ValID::t_GlobalID:
4448     V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
4449     return V == nullptr;
4450   case ValID::t_APSInt:
4451     if (!Ty->isIntegerTy())
4452       return Error(ID.Loc, "integer constant must have integer type");
4453     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
4454     V = ConstantInt::get(Context, ID.APSIntVal);
4455     return false;
4456   case ValID::t_APFloat:
4457     if (!Ty->isFloatingPointTy() ||
4458         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
4459       return Error(ID.Loc, "floating point constant invalid for type");
4460 
4461     // The lexer has no type info, so builds all half, float, and double FP
4462     // constants as double.  Fix this here.  Long double does not need this.
4463     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) {
4464       bool Ignored;
4465       if (Ty->isHalfTy())
4466         ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven,
4467                               &Ignored);
4468       else if (Ty->isFloatTy())
4469         ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
4470                               &Ignored);
4471     }
4472     V = ConstantFP::get(Context, ID.APFloatVal);
4473 
4474     if (V->getType() != Ty)
4475       return Error(ID.Loc, "floating point constant does not have type '" +
4476                    getTypeString(Ty) + "'");
4477 
4478     return false;
4479   case ValID::t_Null:
4480     if (!Ty->isPointerTy())
4481       return Error(ID.Loc, "null must be a pointer type");
4482     V = ConstantPointerNull::get(cast<PointerType>(Ty));
4483     return false;
4484   case ValID::t_Undef:
4485     // FIXME: LabelTy should not be a first-class type.
4486     if (!Ty->isFirstClassType() || Ty->isLabelTy())
4487       return Error(ID.Loc, "invalid type for undef constant");
4488     V = UndefValue::get(Ty);
4489     return false;
4490   case ValID::t_EmptyArray:
4491     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
4492       return Error(ID.Loc, "invalid empty array initializer");
4493     V = UndefValue::get(Ty);
4494     return false;
4495   case ValID::t_Zero:
4496     // FIXME: LabelTy should not be a first-class type.
4497     if (!Ty->isFirstClassType() || Ty->isLabelTy())
4498       return Error(ID.Loc, "invalid type for null constant");
4499     V = Constant::getNullValue(Ty);
4500     return false;
4501   case ValID::t_None:
4502     if (!Ty->isTokenTy())
4503       return Error(ID.Loc, "invalid type for none constant");
4504     V = Constant::getNullValue(Ty);
4505     return false;
4506   case ValID::t_Constant:
4507     if (ID.ConstantVal->getType() != Ty)
4508       return Error(ID.Loc, "constant expression type mismatch");
4509 
4510     V = ID.ConstantVal;
4511     return false;
4512   case ValID::t_ConstantStruct:
4513   case ValID::t_PackedConstantStruct:
4514     if (StructType *ST = dyn_cast<StructType>(Ty)) {
4515       if (ST->getNumElements() != ID.UIntVal)
4516         return Error(ID.Loc,
4517                      "initializer with struct type has wrong # elements");
4518       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
4519         return Error(ID.Loc, "packed'ness of initializer and type don't match");
4520 
4521       // Verify that the elements are compatible with the structtype.
4522       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
4523         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
4524           return Error(ID.Loc, "element " + Twine(i) +
4525                     " of struct initializer doesn't match struct element type");
4526 
4527       V = ConstantStruct::get(
4528           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
4529     } else
4530       return Error(ID.Loc, "constant expression type mismatch");
4531     return false;
4532   }
4533   llvm_unreachable("Invalid ValID");
4534 }
4535 
4536 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
4537   C = nullptr;
4538   ValID ID;
4539   auto Loc = Lex.getLoc();
4540   if (ParseValID(ID, /*PFS=*/nullptr))
4541     return true;
4542   switch (ID.Kind) {
4543   case ValID::t_APSInt:
4544   case ValID::t_APFloat:
4545   case ValID::t_Undef:
4546   case ValID::t_Constant:
4547   case ValID::t_ConstantStruct:
4548   case ValID::t_PackedConstantStruct: {
4549     Value *V;
4550     if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr))
4551       return true;
4552     assert(isa<Constant>(V) && "Expected a constant value");
4553     C = cast<Constant>(V);
4554     return false;
4555   }
4556   default:
4557     return Error(Loc, "expected a constant value");
4558   }
4559 }
4560 
4561 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
4562   V = nullptr;
4563   ValID ID;
4564   return ParseValID(ID, PFS) || ConvertValIDToValue(Ty, ID, V, PFS);
4565 }
4566 
4567 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
4568   Type *Ty = nullptr;
4569   return ParseType(Ty) ||
4570          ParseValue(Ty, V, PFS);
4571 }
4572 
4573 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
4574                                       PerFunctionState &PFS) {
4575   Value *V;
4576   Loc = Lex.getLoc();
4577   if (ParseTypeAndValue(V, PFS)) return true;
4578   if (!isa<BasicBlock>(V))
4579     return Error(Loc, "expected a basic block");
4580   BB = cast<BasicBlock>(V);
4581   return false;
4582 }
4583 
4584 /// FunctionHeader
4585 ///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
4586 ///       OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
4587 ///       OptionalAlign OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
4588 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
4589   // Parse the linkage.
4590   LocTy LinkageLoc = Lex.getLoc();
4591   unsigned Linkage;
4592 
4593   unsigned Visibility;
4594   unsigned DLLStorageClass;
4595   AttrBuilder RetAttrs;
4596   unsigned CC;
4597   bool HasLinkage;
4598   Type *RetType = nullptr;
4599   LocTy RetTypeLoc = Lex.getLoc();
4600   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) ||
4601       ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
4602       ParseType(RetType, RetTypeLoc, true /*void allowed*/))
4603     return true;
4604 
4605   // Verify that the linkage is ok.
4606   switch ((GlobalValue::LinkageTypes)Linkage) {
4607   case GlobalValue::ExternalLinkage:
4608     break; // always ok.
4609   case GlobalValue::ExternalWeakLinkage:
4610     if (isDefine)
4611       return Error(LinkageLoc, "invalid linkage for function definition");
4612     break;
4613   case GlobalValue::PrivateLinkage:
4614   case GlobalValue::InternalLinkage:
4615   case GlobalValue::AvailableExternallyLinkage:
4616   case GlobalValue::LinkOnceAnyLinkage:
4617   case GlobalValue::LinkOnceODRLinkage:
4618   case GlobalValue::WeakAnyLinkage:
4619   case GlobalValue::WeakODRLinkage:
4620     if (!isDefine)
4621       return Error(LinkageLoc, "invalid linkage for function declaration");
4622     break;
4623   case GlobalValue::AppendingLinkage:
4624   case GlobalValue::CommonLinkage:
4625     return Error(LinkageLoc, "invalid function linkage type");
4626   }
4627 
4628   if (!isValidVisibilityForLinkage(Visibility, Linkage))
4629     return Error(LinkageLoc,
4630                  "symbol with local linkage must have default visibility");
4631 
4632   if (!FunctionType::isValidReturnType(RetType))
4633     return Error(RetTypeLoc, "invalid function return type");
4634 
4635   LocTy NameLoc = Lex.getLoc();
4636 
4637   std::string FunctionName;
4638   if (Lex.getKind() == lltok::GlobalVar) {
4639     FunctionName = Lex.getStrVal();
4640   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
4641     unsigned NameID = Lex.getUIntVal();
4642 
4643     if (NameID != NumberedVals.size())
4644       return TokError("function expected to be numbered '%" +
4645                       Twine(NumberedVals.size()) + "'");
4646   } else {
4647     return TokError("expected function name");
4648   }
4649 
4650   Lex.Lex();
4651 
4652   if (Lex.getKind() != lltok::lparen)
4653     return TokError("expected '(' in function argument list");
4654 
4655   SmallVector<ArgInfo, 8> ArgList;
4656   bool isVarArg;
4657   AttrBuilder FuncAttrs;
4658   std::vector<unsigned> FwdRefAttrGrps;
4659   LocTy BuiltinLoc;
4660   std::string Section;
4661   unsigned Alignment;
4662   std::string GC;
4663   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4664   LocTy UnnamedAddrLoc;
4665   Constant *Prefix = nullptr;
4666   Constant *Prologue = nullptr;
4667   Constant *PersonalityFn = nullptr;
4668   Comdat *C;
4669 
4670   if (ParseArgumentList(ArgList, isVarArg) ||
4671       ParseOptionalUnnamedAddr(UnnamedAddr) ||
4672       ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
4673                                  BuiltinLoc) ||
4674       (EatIfPresent(lltok::kw_section) &&
4675        ParseStringConstant(Section)) ||
4676       parseOptionalComdat(FunctionName, C) ||
4677       ParseOptionalAlignment(Alignment) ||
4678       (EatIfPresent(lltok::kw_gc) &&
4679        ParseStringConstant(GC)) ||
4680       (EatIfPresent(lltok::kw_prefix) &&
4681        ParseGlobalTypeAndValue(Prefix)) ||
4682       (EatIfPresent(lltok::kw_prologue) &&
4683        ParseGlobalTypeAndValue(Prologue)) ||
4684       (EatIfPresent(lltok::kw_personality) &&
4685        ParseGlobalTypeAndValue(PersonalityFn)))
4686     return true;
4687 
4688   if (FuncAttrs.contains(Attribute::Builtin))
4689     return Error(BuiltinLoc, "'builtin' attribute not valid on function");
4690 
4691   // If the alignment was parsed as an attribute, move to the alignment field.
4692   if (FuncAttrs.hasAlignmentAttr()) {
4693     Alignment = FuncAttrs.getAlignment();
4694     FuncAttrs.removeAttribute(Attribute::Alignment);
4695   }
4696 
4697   // Okay, if we got here, the function is syntactically valid.  Convert types
4698   // and do semantic checks.
4699   std::vector<Type*> ParamTypeList;
4700   SmallVector<AttributeSet, 8> Attrs;
4701 
4702   if (RetAttrs.hasAttributes())
4703     Attrs.push_back(AttributeSet::get(RetType->getContext(),
4704                                       AttributeSet::ReturnIndex,
4705                                       RetAttrs));
4706 
4707   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
4708     ParamTypeList.push_back(ArgList[i].Ty);
4709     if (ArgList[i].Attrs.hasAttributes(i + 1)) {
4710       AttrBuilder B(ArgList[i].Attrs, i + 1);
4711       Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
4712     }
4713   }
4714 
4715   if (FuncAttrs.hasAttributes())
4716     Attrs.push_back(AttributeSet::get(RetType->getContext(),
4717                                       AttributeSet::FunctionIndex,
4718                                       FuncAttrs));
4719 
4720   AttributeSet PAL = AttributeSet::get(Context, Attrs);
4721 
4722   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
4723     return Error(RetTypeLoc, "functions with 'sret' argument must return void");
4724 
4725   FunctionType *FT =
4726     FunctionType::get(RetType, ParamTypeList, isVarArg);
4727   PointerType *PFT = PointerType::getUnqual(FT);
4728 
4729   Fn = nullptr;
4730   if (!FunctionName.empty()) {
4731     // If this was a definition of a forward reference, remove the definition
4732     // from the forward reference table and fill in the forward ref.
4733     auto FRVI = ForwardRefVals.find(FunctionName);
4734     if (FRVI != ForwardRefVals.end()) {
4735       Fn = M->getFunction(FunctionName);
4736       if (!Fn)
4737         return Error(FRVI->second.second, "invalid forward reference to "
4738                      "function as global value!");
4739       if (Fn->getType() != PFT)
4740         return Error(FRVI->second.second, "invalid forward reference to "
4741                      "function '" + FunctionName + "' with wrong type!");
4742 
4743       ForwardRefVals.erase(FRVI);
4744     } else if ((Fn = M->getFunction(FunctionName))) {
4745       // Reject redefinitions.
4746       return Error(NameLoc, "invalid redefinition of function '" +
4747                    FunctionName + "'");
4748     } else if (M->getNamedValue(FunctionName)) {
4749       return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
4750     }
4751 
4752   } else {
4753     // If this is a definition of a forward referenced function, make sure the
4754     // types agree.
4755     auto I = ForwardRefValIDs.find(NumberedVals.size());
4756     if (I != ForwardRefValIDs.end()) {
4757       Fn = cast<Function>(I->second.first);
4758       if (Fn->getType() != PFT)
4759         return Error(NameLoc, "type of definition and forward reference of '@" +
4760                      Twine(NumberedVals.size()) + "' disagree");
4761       ForwardRefValIDs.erase(I);
4762     }
4763   }
4764 
4765   if (!Fn)
4766     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
4767   else // Move the forward-reference to the correct spot in the module.
4768     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
4769 
4770   if (FunctionName.empty())
4771     NumberedVals.push_back(Fn);
4772 
4773   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
4774   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
4775   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
4776   Fn->setCallingConv(CC);
4777   Fn->setAttributes(PAL);
4778   Fn->setUnnamedAddr(UnnamedAddr);
4779   Fn->setAlignment(Alignment);
4780   Fn->setSection(Section);
4781   Fn->setComdat(C);
4782   Fn->setPersonalityFn(PersonalityFn);
4783   if (!GC.empty()) Fn->setGC(GC);
4784   Fn->setPrefixData(Prefix);
4785   Fn->setPrologueData(Prologue);
4786   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
4787 
4788   // Add all of the arguments we parsed to the function.
4789   Function::arg_iterator ArgIt = Fn->arg_begin();
4790   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
4791     // If the argument has a name, insert it into the argument symbol table.
4792     if (ArgList[i].Name.empty()) continue;
4793 
4794     // Set the name, if it conflicted, it will be auto-renamed.
4795     ArgIt->setName(ArgList[i].Name);
4796 
4797     if (ArgIt->getName() != ArgList[i].Name)
4798       return Error(ArgList[i].Loc, "redefinition of argument '%" +
4799                    ArgList[i].Name + "'");
4800   }
4801 
4802   if (isDefine)
4803     return false;
4804 
4805   // Check the declaration has no block address forward references.
4806   ValID ID;
4807   if (FunctionName.empty()) {
4808     ID.Kind = ValID::t_GlobalID;
4809     ID.UIntVal = NumberedVals.size() - 1;
4810   } else {
4811     ID.Kind = ValID::t_GlobalName;
4812     ID.StrVal = FunctionName;
4813   }
4814   auto Blocks = ForwardRefBlockAddresses.find(ID);
4815   if (Blocks != ForwardRefBlockAddresses.end())
4816     return Error(Blocks->first.Loc,
4817                  "cannot take blockaddress inside a declaration");
4818   return false;
4819 }
4820 
4821 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
4822   ValID ID;
4823   if (FunctionNumber == -1) {
4824     ID.Kind = ValID::t_GlobalName;
4825     ID.StrVal = F.getName();
4826   } else {
4827     ID.Kind = ValID::t_GlobalID;
4828     ID.UIntVal = FunctionNumber;
4829   }
4830 
4831   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
4832   if (Blocks == P.ForwardRefBlockAddresses.end())
4833     return false;
4834 
4835   for (const auto &I : Blocks->second) {
4836     const ValID &BBID = I.first;
4837     GlobalValue *GV = I.second;
4838 
4839     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
4840            "Expected local id or name");
4841     BasicBlock *BB;
4842     if (BBID.Kind == ValID::t_LocalName)
4843       BB = GetBB(BBID.StrVal, BBID.Loc);
4844     else
4845       BB = GetBB(BBID.UIntVal, BBID.Loc);
4846     if (!BB)
4847       return P.Error(BBID.Loc, "referenced value is not a basic block");
4848 
4849     GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
4850     GV->eraseFromParent();
4851   }
4852 
4853   P.ForwardRefBlockAddresses.erase(Blocks);
4854   return false;
4855 }
4856 
4857 /// ParseFunctionBody
4858 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
4859 bool LLParser::ParseFunctionBody(Function &Fn) {
4860   if (Lex.getKind() != lltok::lbrace)
4861     return TokError("expected '{' in function body");
4862   Lex.Lex();  // eat the {.
4863 
4864   int FunctionNumber = -1;
4865   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
4866 
4867   PerFunctionState PFS(*this, Fn, FunctionNumber);
4868 
4869   // Resolve block addresses and allow basic blocks to be forward-declared
4870   // within this function.
4871   if (PFS.resolveForwardRefBlockAddresses())
4872     return true;
4873   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
4874 
4875   // We need at least one basic block.
4876   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
4877     return TokError("function body requires at least one basic block");
4878 
4879   while (Lex.getKind() != lltok::rbrace &&
4880          Lex.getKind() != lltok::kw_uselistorder)
4881     if (ParseBasicBlock(PFS)) return true;
4882 
4883   while (Lex.getKind() != lltok::rbrace)
4884     if (ParseUseListOrder(&PFS))
4885       return true;
4886 
4887   // Eat the }.
4888   Lex.Lex();
4889 
4890   // Verify function is ok.
4891   return PFS.FinishFunction();
4892 }
4893 
4894 /// ParseBasicBlock
4895 ///   ::= LabelStr? Instruction*
4896 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
4897   // If this basic block starts out with a name, remember it.
4898   std::string Name;
4899   LocTy NameLoc = Lex.getLoc();
4900   if (Lex.getKind() == lltok::LabelStr) {
4901     Name = Lex.getStrVal();
4902     Lex.Lex();
4903   }
4904 
4905   BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
4906   if (!BB)
4907     return Error(NameLoc,
4908                  "unable to create block named '" + Name + "'");
4909 
4910   std::string NameStr;
4911 
4912   // Parse the instructions in this block until we get a terminator.
4913   Instruction *Inst;
4914   do {
4915     // This instruction may have three possibilities for a name: a) none
4916     // specified, b) name specified "%foo =", c) number specified: "%4 =".
4917     LocTy NameLoc = Lex.getLoc();
4918     int NameID = -1;
4919     NameStr = "";
4920 
4921     if (Lex.getKind() == lltok::LocalVarID) {
4922       NameID = Lex.getUIntVal();
4923       Lex.Lex();
4924       if (ParseToken(lltok::equal, "expected '=' after instruction id"))
4925         return true;
4926     } else if (Lex.getKind() == lltok::LocalVar) {
4927       NameStr = Lex.getStrVal();
4928       Lex.Lex();
4929       if (ParseToken(lltok::equal, "expected '=' after instruction name"))
4930         return true;
4931     }
4932 
4933     switch (ParseInstruction(Inst, BB, PFS)) {
4934     default: llvm_unreachable("Unknown ParseInstruction result!");
4935     case InstError: return true;
4936     case InstNormal:
4937       BB->getInstList().push_back(Inst);
4938 
4939       // With a normal result, we check to see if the instruction is followed by
4940       // a comma and metadata.
4941       if (EatIfPresent(lltok::comma))
4942         if (ParseInstructionMetadata(*Inst))
4943           return true;
4944       break;
4945     case InstExtraComma:
4946       BB->getInstList().push_back(Inst);
4947 
4948       // If the instruction parser ate an extra comma at the end of it, it
4949       // *must* be followed by metadata.
4950       if (ParseInstructionMetadata(*Inst))
4951         return true;
4952       break;
4953     }
4954 
4955     // Set the name on the instruction.
4956     if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
4957   } while (!isa<TerminatorInst>(Inst));
4958 
4959   return false;
4960 }
4961 
4962 //===----------------------------------------------------------------------===//
4963 // Instruction Parsing.
4964 //===----------------------------------------------------------------------===//
4965 
4966 /// ParseInstruction - Parse one of the many different instructions.
4967 ///
4968 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
4969                                PerFunctionState &PFS) {
4970   lltok::Kind Token = Lex.getKind();
4971   if (Token == lltok::Eof)
4972     return TokError("found end of file when expecting more instructions");
4973   LocTy Loc = Lex.getLoc();
4974   unsigned KeywordVal = Lex.getUIntVal();
4975   Lex.Lex();  // Eat the keyword.
4976 
4977   switch (Token) {
4978   default:                    return Error(Loc, "expected instruction opcode");
4979   // Terminator Instructions.
4980   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
4981   case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
4982   case lltok::kw_br:          return ParseBr(Inst, PFS);
4983   case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
4984   case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
4985   case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
4986   case lltok::kw_resume:      return ParseResume(Inst, PFS);
4987   case lltok::kw_cleanupret:  return ParseCleanupRet(Inst, PFS);
4988   case lltok::kw_catchret:    return ParseCatchRet(Inst, PFS);
4989   case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS);
4990   case lltok::kw_catchpad:    return ParseCatchPad(Inst, PFS);
4991   case lltok::kw_cleanuppad:  return ParseCleanupPad(Inst, PFS);
4992   // Binary Operators.
4993   case lltok::kw_add:
4994   case lltok::kw_sub:
4995   case lltok::kw_mul:
4996   case lltok::kw_shl: {
4997     bool NUW = EatIfPresent(lltok::kw_nuw);
4998     bool NSW = EatIfPresent(lltok::kw_nsw);
4999     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
5000 
5001     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
5002 
5003     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
5004     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
5005     return false;
5006   }
5007   case lltok::kw_fadd:
5008   case lltok::kw_fsub:
5009   case lltok::kw_fmul:
5010   case lltok::kw_fdiv:
5011   case lltok::kw_frem: {
5012     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5013     int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2);
5014     if (Res != 0)
5015       return Res;
5016     if (FMF.any())
5017       Inst->setFastMathFlags(FMF);
5018     return 0;
5019   }
5020 
5021   case lltok::kw_sdiv:
5022   case lltok::kw_udiv:
5023   case lltok::kw_lshr:
5024   case lltok::kw_ashr: {
5025     bool Exact = EatIfPresent(lltok::kw_exact);
5026 
5027     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
5028     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
5029     return false;
5030   }
5031 
5032   case lltok::kw_urem:
5033   case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
5034   case lltok::kw_and:
5035   case lltok::kw_or:
5036   case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
5037   case lltok::kw_icmp:   return ParseCompare(Inst, PFS, KeywordVal);
5038   case lltok::kw_fcmp: {
5039     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5040     int Res = ParseCompare(Inst, PFS, KeywordVal);
5041     if (Res != 0)
5042       return Res;
5043     if (FMF.any())
5044       Inst->setFastMathFlags(FMF);
5045     return 0;
5046   }
5047 
5048   // Casts.
5049   case lltok::kw_trunc:
5050   case lltok::kw_zext:
5051   case lltok::kw_sext:
5052   case lltok::kw_fptrunc:
5053   case lltok::kw_fpext:
5054   case lltok::kw_bitcast:
5055   case lltok::kw_addrspacecast:
5056   case lltok::kw_uitofp:
5057   case lltok::kw_sitofp:
5058   case lltok::kw_fptoui:
5059   case lltok::kw_fptosi:
5060   case lltok::kw_inttoptr:
5061   case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
5062   // Other.
5063   case lltok::kw_select:         return ParseSelect(Inst, PFS);
5064   case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
5065   case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
5066   case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
5067   case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
5068   case lltok::kw_phi:            return ParsePHI(Inst, PFS);
5069   case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
5070   // Call.
5071   case lltok::kw_call:     return ParseCall(Inst, PFS, CallInst::TCK_None);
5072   case lltok::kw_tail:     return ParseCall(Inst, PFS, CallInst::TCK_Tail);
5073   case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail);
5074   case lltok::kw_notail:   return ParseCall(Inst, PFS, CallInst::TCK_NoTail);
5075   // Memory.
5076   case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
5077   case lltok::kw_load:           return ParseLoad(Inst, PFS);
5078   case lltok::kw_store:          return ParseStore(Inst, PFS);
5079   case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
5080   case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
5081   case lltok::kw_fence:          return ParseFence(Inst, PFS);
5082   case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
5083   case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
5084   case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
5085   }
5086 }
5087 
5088 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
5089 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
5090   if (Opc == Instruction::FCmp) {
5091     switch (Lex.getKind()) {
5092     default: return TokError("expected fcmp predicate (e.g. 'oeq')");
5093     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
5094     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
5095     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
5096     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
5097     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
5098     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
5099     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
5100     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
5101     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
5102     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
5103     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
5104     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
5105     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
5106     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
5107     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
5108     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
5109     }
5110   } else {
5111     switch (Lex.getKind()) {
5112     default: return TokError("expected icmp predicate (e.g. 'eq')");
5113     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
5114     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
5115     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
5116     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
5117     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
5118     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
5119     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
5120     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
5121     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
5122     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
5123     }
5124   }
5125   Lex.Lex();
5126   return false;
5127 }
5128 
5129 //===----------------------------------------------------------------------===//
5130 // Terminator Instructions.
5131 //===----------------------------------------------------------------------===//
5132 
5133 /// ParseRet - Parse a return instruction.
5134 ///   ::= 'ret' void (',' !dbg, !1)*
5135 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
5136 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
5137                         PerFunctionState &PFS) {
5138   SMLoc TypeLoc = Lex.getLoc();
5139   Type *Ty = nullptr;
5140   if (ParseType(Ty, true /*void allowed*/)) return true;
5141 
5142   Type *ResType = PFS.getFunction().getReturnType();
5143 
5144   if (Ty->isVoidTy()) {
5145     if (!ResType->isVoidTy())
5146       return Error(TypeLoc, "value doesn't match function result type '" +
5147                    getTypeString(ResType) + "'");
5148 
5149     Inst = ReturnInst::Create(Context);
5150     return false;
5151   }
5152 
5153   Value *RV;
5154   if (ParseValue(Ty, RV, PFS)) return true;
5155 
5156   if (ResType != RV->getType())
5157     return Error(TypeLoc, "value doesn't match function result type '" +
5158                  getTypeString(ResType) + "'");
5159 
5160   Inst = ReturnInst::Create(Context, RV);
5161   return false;
5162 }
5163 
5164 /// ParseBr
5165 ///   ::= 'br' TypeAndValue
5166 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5167 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
5168   LocTy Loc, Loc2;
5169   Value *Op0;
5170   BasicBlock *Op1, *Op2;
5171   if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
5172 
5173   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
5174     Inst = BranchInst::Create(BB);
5175     return false;
5176   }
5177 
5178   if (Op0->getType() != Type::getInt1Ty(Context))
5179     return Error(Loc, "branch condition must have 'i1' type");
5180 
5181   if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
5182       ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
5183       ParseToken(lltok::comma, "expected ',' after true destination") ||
5184       ParseTypeAndBasicBlock(Op2, Loc2, PFS))
5185     return true;
5186 
5187   Inst = BranchInst::Create(Op1, Op2, Op0);
5188   return false;
5189 }
5190 
5191 /// ParseSwitch
5192 ///  Instruction
5193 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
5194 ///  JumpTable
5195 ///    ::= (TypeAndValue ',' TypeAndValue)*
5196 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5197   LocTy CondLoc, BBLoc;
5198   Value *Cond;
5199   BasicBlock *DefaultBB;
5200   if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
5201       ParseToken(lltok::comma, "expected ',' after switch condition") ||
5202       ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
5203       ParseToken(lltok::lsquare, "expected '[' with switch table"))
5204     return true;
5205 
5206   if (!Cond->getType()->isIntegerTy())
5207     return Error(CondLoc, "switch condition must have integer type");
5208 
5209   // Parse the jump table pairs.
5210   SmallPtrSet<Value*, 32> SeenCases;
5211   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
5212   while (Lex.getKind() != lltok::rsquare) {
5213     Value *Constant;
5214     BasicBlock *DestBB;
5215 
5216     if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
5217         ParseToken(lltok::comma, "expected ',' after case value") ||
5218         ParseTypeAndBasicBlock(DestBB, PFS))
5219       return true;
5220 
5221     if (!SeenCases.insert(Constant).second)
5222       return Error(CondLoc, "duplicate case value in switch");
5223     if (!isa<ConstantInt>(Constant))
5224       return Error(CondLoc, "case value is not a constant integer");
5225 
5226     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
5227   }
5228 
5229   Lex.Lex();  // Eat the ']'.
5230 
5231   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
5232   for (unsigned i = 0, e = Table.size(); i != e; ++i)
5233     SI->addCase(Table[i].first, Table[i].second);
5234   Inst = SI;
5235   return false;
5236 }
5237 
5238 /// ParseIndirectBr
5239 ///  Instruction
5240 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
5241 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
5242   LocTy AddrLoc;
5243   Value *Address;
5244   if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
5245       ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
5246       ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
5247     return true;
5248 
5249   if (!Address->getType()->isPointerTy())
5250     return Error(AddrLoc, "indirectbr address must have pointer type");
5251 
5252   // Parse the destination list.
5253   SmallVector<BasicBlock*, 16> DestList;
5254 
5255   if (Lex.getKind() != lltok::rsquare) {
5256     BasicBlock *DestBB;
5257     if (ParseTypeAndBasicBlock(DestBB, PFS))
5258       return true;
5259     DestList.push_back(DestBB);
5260 
5261     while (EatIfPresent(lltok::comma)) {
5262       if (ParseTypeAndBasicBlock(DestBB, PFS))
5263         return true;
5264       DestList.push_back(DestBB);
5265     }
5266   }
5267 
5268   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
5269     return true;
5270 
5271   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
5272   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
5273     IBI->addDestination(DestList[i]);
5274   Inst = IBI;
5275   return false;
5276 }
5277 
5278 /// ParseInvoke
5279 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
5280 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
5281 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
5282   LocTy CallLoc = Lex.getLoc();
5283   AttrBuilder RetAttrs, FnAttrs;
5284   std::vector<unsigned> FwdRefAttrGrps;
5285   LocTy NoBuiltinLoc;
5286   unsigned CC;
5287   Type *RetType = nullptr;
5288   LocTy RetTypeLoc;
5289   ValID CalleeID;
5290   SmallVector<ParamInfo, 16> ArgList;
5291   SmallVector<OperandBundleDef, 2> BundleList;
5292 
5293   BasicBlock *NormalBB, *UnwindBB;
5294   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5295       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
5296       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
5297       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
5298                                  NoBuiltinLoc) ||
5299       ParseOptionalOperandBundles(BundleList, PFS) ||
5300       ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
5301       ParseTypeAndBasicBlock(NormalBB, PFS) ||
5302       ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
5303       ParseTypeAndBasicBlock(UnwindBB, PFS))
5304     return true;
5305 
5306   // If RetType is a non-function pointer type, then this is the short syntax
5307   // for the call, which means that RetType is just the return type.  Infer the
5308   // rest of the function argument types from the arguments that are present.
5309   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
5310   if (!Ty) {
5311     // Pull out the types of all of the arguments...
5312     std::vector<Type*> ParamTypes;
5313     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
5314       ParamTypes.push_back(ArgList[i].V->getType());
5315 
5316     if (!FunctionType::isValidReturnType(RetType))
5317       return Error(RetTypeLoc, "Invalid result type for LLVM function");
5318 
5319     Ty = FunctionType::get(RetType, ParamTypes, false);
5320   }
5321 
5322   CalleeID.FTy = Ty;
5323 
5324   // Look up the callee.
5325   Value *Callee;
5326   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS))
5327     return true;
5328 
5329   // Set up the Attribute for the function.
5330   SmallVector<AttributeSet, 8> Attrs;
5331   if (RetAttrs.hasAttributes())
5332     Attrs.push_back(AttributeSet::get(RetType->getContext(),
5333                                       AttributeSet::ReturnIndex,
5334                                       RetAttrs));
5335 
5336   SmallVector<Value*, 8> Args;
5337 
5338   // Loop through FunctionType's arguments and ensure they are specified
5339   // correctly.  Also, gather any parameter attributes.
5340   FunctionType::param_iterator I = Ty->param_begin();
5341   FunctionType::param_iterator E = Ty->param_end();
5342   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5343     Type *ExpectedTy = nullptr;
5344     if (I != E) {
5345       ExpectedTy = *I++;
5346     } else if (!Ty->isVarArg()) {
5347       return Error(ArgList[i].Loc, "too many arguments specified");
5348     }
5349 
5350     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
5351       return Error(ArgList[i].Loc, "argument is not of expected type '" +
5352                    getTypeString(ExpectedTy) + "'");
5353     Args.push_back(ArgList[i].V);
5354     if (ArgList[i].Attrs.hasAttributes(i + 1)) {
5355       AttrBuilder B(ArgList[i].Attrs, i + 1);
5356       Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
5357     }
5358   }
5359 
5360   if (I != E)
5361     return Error(CallLoc, "not enough parameters specified for call");
5362 
5363   if (FnAttrs.hasAttributes()) {
5364     if (FnAttrs.hasAlignmentAttr())
5365       return Error(CallLoc, "invoke instructions may not have an alignment");
5366 
5367     Attrs.push_back(AttributeSet::get(RetType->getContext(),
5368                                       AttributeSet::FunctionIndex,
5369                                       FnAttrs));
5370   }
5371 
5372   // Finish off the Attribute and check them
5373   AttributeSet PAL = AttributeSet::get(Context, Attrs);
5374 
5375   InvokeInst *II =
5376       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
5377   II->setCallingConv(CC);
5378   II->setAttributes(PAL);
5379   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
5380   Inst = II;
5381   return false;
5382 }
5383 
5384 /// ParseResume
5385 ///   ::= 'resume' TypeAndValue
5386 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
5387   Value *Exn; LocTy ExnLoc;
5388   if (ParseTypeAndValue(Exn, ExnLoc, PFS))
5389     return true;
5390 
5391   ResumeInst *RI = ResumeInst::Create(Exn);
5392   Inst = RI;
5393   return false;
5394 }
5395 
5396 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args,
5397                                   PerFunctionState &PFS) {
5398   if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
5399     return true;
5400 
5401   while (Lex.getKind() != lltok::rsquare) {
5402     // If this isn't the first argument, we need a comma.
5403     if (!Args.empty() &&
5404         ParseToken(lltok::comma, "expected ',' in argument list"))
5405       return true;
5406 
5407     // Parse the argument.
5408     LocTy ArgLoc;
5409     Type *ArgTy = nullptr;
5410     if (ParseType(ArgTy, ArgLoc))
5411       return true;
5412 
5413     Value *V;
5414     if (ArgTy->isMetadataTy()) {
5415       if (ParseMetadataAsValue(V, PFS))
5416         return true;
5417     } else {
5418       if (ParseValue(ArgTy, V, PFS))
5419         return true;
5420     }
5421     Args.push_back(V);
5422   }
5423 
5424   Lex.Lex();  // Lex the ']'.
5425   return false;
5426 }
5427 
5428 /// ParseCleanupRet
5429 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
5430 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
5431   Value *CleanupPad = nullptr;
5432 
5433   if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret"))
5434     return true;
5435 
5436   if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS))
5437     return true;
5438 
5439   if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
5440     return true;
5441 
5442   BasicBlock *UnwindBB = nullptr;
5443   if (Lex.getKind() == lltok::kw_to) {
5444     Lex.Lex();
5445     if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
5446       return true;
5447   } else {
5448     if (ParseTypeAndBasicBlock(UnwindBB, PFS)) {
5449       return true;
5450     }
5451   }
5452 
5453   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
5454   return false;
5455 }
5456 
5457 /// ParseCatchRet
5458 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
5459 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
5460   Value *CatchPad = nullptr;
5461 
5462   if (ParseToken(lltok::kw_from, "expected 'from' after catchret"))
5463     return true;
5464 
5465   if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS))
5466     return true;
5467 
5468   BasicBlock *BB;
5469   if (ParseToken(lltok::kw_to, "expected 'to' in catchret") ||
5470       ParseTypeAndBasicBlock(BB, PFS))
5471       return true;
5472 
5473   Inst = CatchReturnInst::Create(CatchPad, BB);
5474   return false;
5475 }
5476 
5477 /// ParseCatchSwitch
5478 ///   ::= 'catchswitch' within Parent
5479 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5480   Value *ParentPad;
5481   LocTy BBLoc;
5482 
5483   if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch"))
5484     return true;
5485 
5486   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
5487       Lex.getKind() != lltok::LocalVarID)
5488     return TokError("expected scope value for catchswitch");
5489 
5490   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
5491     return true;
5492 
5493   if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
5494     return true;
5495 
5496   SmallVector<BasicBlock *, 32> Table;
5497   do {
5498     BasicBlock *DestBB;
5499     if (ParseTypeAndBasicBlock(DestBB, PFS))
5500       return true;
5501     Table.push_back(DestBB);
5502   } while (EatIfPresent(lltok::comma));
5503 
5504   if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
5505     return true;
5506 
5507   if (ParseToken(lltok::kw_unwind,
5508                  "expected 'unwind' after catchswitch scope"))
5509     return true;
5510 
5511   BasicBlock *UnwindBB = nullptr;
5512   if (EatIfPresent(lltok::kw_to)) {
5513     if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
5514       return true;
5515   } else {
5516     if (ParseTypeAndBasicBlock(UnwindBB, PFS))
5517       return true;
5518   }
5519 
5520   auto *CatchSwitch =
5521       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
5522   for (BasicBlock *DestBB : Table)
5523     CatchSwitch->addHandler(DestBB);
5524   Inst = CatchSwitch;
5525   return false;
5526 }
5527 
5528 /// ParseCatchPad
5529 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
5530 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
5531   Value *CatchSwitch = nullptr;
5532 
5533   if (ParseToken(lltok::kw_within, "expected 'within' after catchpad"))
5534     return true;
5535 
5536   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
5537     return TokError("expected scope value for catchpad");
5538 
5539   if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
5540     return true;
5541 
5542   SmallVector<Value *, 8> Args;
5543   if (ParseExceptionArgs(Args, PFS))
5544     return true;
5545 
5546   Inst = CatchPadInst::Create(CatchSwitch, Args);
5547   return false;
5548 }
5549 
5550 /// ParseCleanupPad
5551 ///   ::= 'cleanuppad' within Parent ParamList
5552 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
5553   Value *ParentPad = nullptr;
5554 
5555   if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
5556     return true;
5557 
5558   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
5559       Lex.getKind() != lltok::LocalVarID)
5560     return TokError("expected scope value for cleanuppad");
5561 
5562   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
5563     return true;
5564 
5565   SmallVector<Value *, 8> Args;
5566   if (ParseExceptionArgs(Args, PFS))
5567     return true;
5568 
5569   Inst = CleanupPadInst::Create(ParentPad, Args);
5570   return false;
5571 }
5572 
5573 //===----------------------------------------------------------------------===//
5574 // Binary Operators.
5575 //===----------------------------------------------------------------------===//
5576 
5577 /// ParseArithmetic
5578 ///  ::= ArithmeticOps TypeAndValue ',' Value
5579 ///
5580 /// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
5581 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
5582 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
5583                                unsigned Opc, unsigned OperandType) {
5584   LocTy Loc; Value *LHS, *RHS;
5585   if (ParseTypeAndValue(LHS, Loc, PFS) ||
5586       ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
5587       ParseValue(LHS->getType(), RHS, PFS))
5588     return true;
5589 
5590   bool Valid;
5591   switch (OperandType) {
5592   default: llvm_unreachable("Unknown operand type!");
5593   case 0: // int or FP.
5594     Valid = LHS->getType()->isIntOrIntVectorTy() ||
5595             LHS->getType()->isFPOrFPVectorTy();
5596     break;
5597   case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
5598   case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
5599   }
5600 
5601   if (!Valid)
5602     return Error(Loc, "invalid operand type for instruction");
5603 
5604   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
5605   return false;
5606 }
5607 
5608 /// ParseLogical
5609 ///  ::= ArithmeticOps TypeAndValue ',' Value {
5610 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
5611                             unsigned Opc) {
5612   LocTy Loc; Value *LHS, *RHS;
5613   if (ParseTypeAndValue(LHS, Loc, PFS) ||
5614       ParseToken(lltok::comma, "expected ',' in logical operation") ||
5615       ParseValue(LHS->getType(), RHS, PFS))
5616     return true;
5617 
5618   if (!LHS->getType()->isIntOrIntVectorTy())
5619     return Error(Loc,"instruction requires integer or integer vector operands");
5620 
5621   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
5622   return false;
5623 }
5624 
5625 /// ParseCompare
5626 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
5627 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
5628 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
5629                             unsigned Opc) {
5630   // Parse the integer/fp comparison predicate.
5631   LocTy Loc;
5632   unsigned Pred;
5633   Value *LHS, *RHS;
5634   if (ParseCmpPredicate(Pred, Opc) ||
5635       ParseTypeAndValue(LHS, Loc, PFS) ||
5636       ParseToken(lltok::comma, "expected ',' after compare value") ||
5637       ParseValue(LHS->getType(), RHS, PFS))
5638     return true;
5639 
5640   if (Opc == Instruction::FCmp) {
5641     if (!LHS->getType()->isFPOrFPVectorTy())
5642       return Error(Loc, "fcmp requires floating point operands");
5643     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
5644   } else {
5645     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
5646     if (!LHS->getType()->isIntOrIntVectorTy() &&
5647         !LHS->getType()->getScalarType()->isPointerTy())
5648       return Error(Loc, "icmp requires integer operands");
5649     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
5650   }
5651   return false;
5652 }
5653 
5654 //===----------------------------------------------------------------------===//
5655 // Other Instructions.
5656 //===----------------------------------------------------------------------===//
5657 
5658 
5659 /// ParseCast
5660 ///   ::= CastOpc TypeAndValue 'to' Type
5661 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
5662                          unsigned Opc) {
5663   LocTy Loc;
5664   Value *Op;
5665   Type *DestTy = nullptr;
5666   if (ParseTypeAndValue(Op, Loc, PFS) ||
5667       ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
5668       ParseType(DestTy))
5669     return true;
5670 
5671   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
5672     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
5673     return Error(Loc, "invalid cast opcode for cast from '" +
5674                  getTypeString(Op->getType()) + "' to '" +
5675                  getTypeString(DestTy) + "'");
5676   }
5677   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
5678   return false;
5679 }
5680 
5681 /// ParseSelect
5682 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5683 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
5684   LocTy Loc;
5685   Value *Op0, *Op1, *Op2;
5686   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5687       ParseToken(lltok::comma, "expected ',' after select condition") ||
5688       ParseTypeAndValue(Op1, PFS) ||
5689       ParseToken(lltok::comma, "expected ',' after select value") ||
5690       ParseTypeAndValue(Op2, PFS))
5691     return true;
5692 
5693   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
5694     return Error(Loc, Reason);
5695 
5696   Inst = SelectInst::Create(Op0, Op1, Op2);
5697   return false;
5698 }
5699 
5700 /// ParseVA_Arg
5701 ///   ::= 'va_arg' TypeAndValue ',' Type
5702 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
5703   Value *Op;
5704   Type *EltTy = nullptr;
5705   LocTy TypeLoc;
5706   if (ParseTypeAndValue(Op, PFS) ||
5707       ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
5708       ParseType(EltTy, TypeLoc))
5709     return true;
5710 
5711   if (!EltTy->isFirstClassType())
5712     return Error(TypeLoc, "va_arg requires operand with first class type");
5713 
5714   Inst = new VAArgInst(Op, EltTy);
5715   return false;
5716 }
5717 
5718 /// ParseExtractElement
5719 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
5720 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
5721   LocTy Loc;
5722   Value *Op0, *Op1;
5723   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5724       ParseToken(lltok::comma, "expected ',' after extract value") ||
5725       ParseTypeAndValue(Op1, PFS))
5726     return true;
5727 
5728   if (!ExtractElementInst::isValidOperands(Op0, Op1))
5729     return Error(Loc, "invalid extractelement operands");
5730 
5731   Inst = ExtractElementInst::Create(Op0, Op1);
5732   return false;
5733 }
5734 
5735 /// ParseInsertElement
5736 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5737 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
5738   LocTy Loc;
5739   Value *Op0, *Op1, *Op2;
5740   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5741       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5742       ParseTypeAndValue(Op1, PFS) ||
5743       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5744       ParseTypeAndValue(Op2, PFS))
5745     return true;
5746 
5747   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
5748     return Error(Loc, "invalid insertelement operands");
5749 
5750   Inst = InsertElementInst::Create(Op0, Op1, Op2);
5751   return false;
5752 }
5753 
5754 /// ParseShuffleVector
5755 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5756 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
5757   LocTy Loc;
5758   Value *Op0, *Op1, *Op2;
5759   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5760       ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
5761       ParseTypeAndValue(Op1, PFS) ||
5762       ParseToken(lltok::comma, "expected ',' after shuffle value") ||
5763       ParseTypeAndValue(Op2, PFS))
5764     return true;
5765 
5766   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
5767     return Error(Loc, "invalid shufflevector operands");
5768 
5769   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
5770   return false;
5771 }
5772 
5773 /// ParsePHI
5774 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
5775 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
5776   Type *Ty = nullptr;  LocTy TypeLoc;
5777   Value *Op0, *Op1;
5778 
5779   if (ParseType(Ty, TypeLoc) ||
5780       ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
5781       ParseValue(Ty, Op0, PFS) ||
5782       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5783       ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
5784       ParseToken(lltok::rsquare, "expected ']' in phi value list"))
5785     return true;
5786 
5787   bool AteExtraComma = false;
5788   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
5789 
5790   while (true) {
5791     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
5792 
5793     if (!EatIfPresent(lltok::comma))
5794       break;
5795 
5796     if (Lex.getKind() == lltok::MetadataVar) {
5797       AteExtraComma = true;
5798       break;
5799     }
5800 
5801     if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
5802         ParseValue(Ty, Op0, PFS) ||
5803         ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5804         ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
5805         ParseToken(lltok::rsquare, "expected ']' in phi value list"))
5806       return true;
5807   }
5808 
5809   if (!Ty->isFirstClassType())
5810     return Error(TypeLoc, "phi node must have first class type");
5811 
5812   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
5813   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
5814     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
5815   Inst = PN;
5816   return AteExtraComma ? InstExtraComma : InstNormal;
5817 }
5818 
5819 /// ParseLandingPad
5820 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
5821 /// Clause
5822 ///   ::= 'catch' TypeAndValue
5823 ///   ::= 'filter'
5824 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
5825 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
5826   Type *Ty = nullptr; LocTy TyLoc;
5827 
5828   if (ParseType(Ty, TyLoc))
5829     return true;
5830 
5831   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
5832   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
5833 
5834   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
5835     LandingPadInst::ClauseType CT;
5836     if (EatIfPresent(lltok::kw_catch))
5837       CT = LandingPadInst::Catch;
5838     else if (EatIfPresent(lltok::kw_filter))
5839       CT = LandingPadInst::Filter;
5840     else
5841       return TokError("expected 'catch' or 'filter' clause type");
5842 
5843     Value *V;
5844     LocTy VLoc;
5845     if (ParseTypeAndValue(V, VLoc, PFS))
5846       return true;
5847 
5848     // A 'catch' type expects a non-array constant. A filter clause expects an
5849     // array constant.
5850     if (CT == LandingPadInst::Catch) {
5851       if (isa<ArrayType>(V->getType()))
5852         Error(VLoc, "'catch' clause has an invalid type");
5853     } else {
5854       if (!isa<ArrayType>(V->getType()))
5855         Error(VLoc, "'filter' clause has an invalid type");
5856     }
5857 
5858     Constant *CV = dyn_cast<Constant>(V);
5859     if (!CV)
5860       return Error(VLoc, "clause argument must be a constant");
5861     LP->addClause(CV);
5862   }
5863 
5864   Inst = LP.release();
5865   return false;
5866 }
5867 
5868 /// ParseCall
5869 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
5870 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
5871 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
5872 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
5873 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
5874 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
5875 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
5876 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
5877 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
5878                          CallInst::TailCallKind TCK) {
5879   AttrBuilder RetAttrs, FnAttrs;
5880   std::vector<unsigned> FwdRefAttrGrps;
5881   LocTy BuiltinLoc;
5882   unsigned CC;
5883   Type *RetType = nullptr;
5884   LocTy RetTypeLoc;
5885   ValID CalleeID;
5886   SmallVector<ParamInfo, 16> ArgList;
5887   SmallVector<OperandBundleDef, 2> BundleList;
5888   LocTy CallLoc = Lex.getLoc();
5889 
5890   if (TCK != CallInst::TCK_None &&
5891       ParseToken(lltok::kw_call,
5892                  "expected 'tail call', 'musttail call', or 'notail call'"))
5893     return true;
5894 
5895   FastMathFlags FMF = EatFastMathFlagsIfPresent();
5896 
5897   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5898       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
5899       ParseValID(CalleeID) ||
5900       ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
5901                          PFS.getFunction().isVarArg()) ||
5902       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
5903       ParseOptionalOperandBundles(BundleList, PFS))
5904     return true;
5905 
5906   if (FMF.any() && !RetType->isFPOrFPVectorTy())
5907     return Error(CallLoc, "fast-math-flags specified for call without "
5908                           "floating-point scalar or vector return type");
5909 
5910   // If RetType is a non-function pointer type, then this is the short syntax
5911   // for the call, which means that RetType is just the return type.  Infer the
5912   // rest of the function argument types from the arguments that are present.
5913   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
5914   if (!Ty) {
5915     // Pull out the types of all of the arguments...
5916     std::vector<Type*> ParamTypes;
5917     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
5918       ParamTypes.push_back(ArgList[i].V->getType());
5919 
5920     if (!FunctionType::isValidReturnType(RetType))
5921       return Error(RetTypeLoc, "Invalid result type for LLVM function");
5922 
5923     Ty = FunctionType::get(RetType, ParamTypes, false);
5924   }
5925 
5926   CalleeID.FTy = Ty;
5927 
5928   // Look up the callee.
5929   Value *Callee;
5930   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS))
5931     return true;
5932 
5933   // Set up the Attribute for the function.
5934   SmallVector<AttributeSet, 8> Attrs;
5935   if (RetAttrs.hasAttributes())
5936     Attrs.push_back(AttributeSet::get(RetType->getContext(),
5937                                       AttributeSet::ReturnIndex,
5938                                       RetAttrs));
5939 
5940   SmallVector<Value*, 8> Args;
5941 
5942   // Loop through FunctionType's arguments and ensure they are specified
5943   // correctly.  Also, gather any parameter attributes.
5944   FunctionType::param_iterator I = Ty->param_begin();
5945   FunctionType::param_iterator E = Ty->param_end();
5946   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5947     Type *ExpectedTy = nullptr;
5948     if (I != E) {
5949       ExpectedTy = *I++;
5950     } else if (!Ty->isVarArg()) {
5951       return Error(ArgList[i].Loc, "too many arguments specified");
5952     }
5953 
5954     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
5955       return Error(ArgList[i].Loc, "argument is not of expected type '" +
5956                    getTypeString(ExpectedTy) + "'");
5957     Args.push_back(ArgList[i].V);
5958     if (ArgList[i].Attrs.hasAttributes(i + 1)) {
5959       AttrBuilder B(ArgList[i].Attrs, i + 1);
5960       Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
5961     }
5962   }
5963 
5964   if (I != E)
5965     return Error(CallLoc, "not enough parameters specified for call");
5966 
5967   if (FnAttrs.hasAttributes()) {
5968     if (FnAttrs.hasAlignmentAttr())
5969       return Error(CallLoc, "call instructions may not have an alignment");
5970 
5971     Attrs.push_back(AttributeSet::get(RetType->getContext(),
5972                                       AttributeSet::FunctionIndex,
5973                                       FnAttrs));
5974   }
5975 
5976   // Finish off the Attribute and check them
5977   AttributeSet PAL = AttributeSet::get(Context, Attrs);
5978 
5979   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
5980   CI->setTailCallKind(TCK);
5981   CI->setCallingConv(CC);
5982   if (FMF.any())
5983     CI->setFastMathFlags(FMF);
5984   CI->setAttributes(PAL);
5985   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
5986   Inst = CI;
5987   return false;
5988 }
5989 
5990 //===----------------------------------------------------------------------===//
5991 // Memory Instructions.
5992 //===----------------------------------------------------------------------===//
5993 
5994 /// ParseAlloc
5995 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
5996 ///       (',' 'align' i32)?
5997 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
5998   Value *Size = nullptr;
5999   LocTy SizeLoc, TyLoc;
6000   unsigned Alignment = 0;
6001   Type *Ty = nullptr;
6002 
6003   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
6004   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
6005 
6006   if (ParseType(Ty, TyLoc)) return true;
6007 
6008   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
6009     return Error(TyLoc, "invalid type for alloca");
6010 
6011   bool AteExtraComma = false;
6012   if (EatIfPresent(lltok::comma)) {
6013     if (Lex.getKind() == lltok::kw_align) {
6014       if (ParseOptionalAlignment(Alignment)) return true;
6015     } else if (Lex.getKind() == lltok::MetadataVar) {
6016       AteExtraComma = true;
6017     } else {
6018       if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
6019           ParseOptionalCommaAlign(Alignment, AteExtraComma))
6020         return true;
6021     }
6022   }
6023 
6024   if (Size && !Size->getType()->isIntegerTy())
6025     return Error(SizeLoc, "element count must have integer type");
6026 
6027   AllocaInst *AI = new AllocaInst(Ty, Size, Alignment);
6028   AI->setUsedWithInAlloca(IsInAlloca);
6029   AI->setSwiftError(IsSwiftError);
6030   Inst = AI;
6031   return AteExtraComma ? InstExtraComma : InstNormal;
6032 }
6033 
6034 /// ParseLoad
6035 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
6036 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
6037 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
6038 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
6039   Value *Val; LocTy Loc;
6040   unsigned Alignment = 0;
6041   bool AteExtraComma = false;
6042   bool isAtomic = false;
6043   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6044   SynchronizationScope Scope = CrossThread;
6045 
6046   if (Lex.getKind() == lltok::kw_atomic) {
6047     isAtomic = true;
6048     Lex.Lex();
6049   }
6050 
6051   bool isVolatile = false;
6052   if (Lex.getKind() == lltok::kw_volatile) {
6053     isVolatile = true;
6054     Lex.Lex();
6055   }
6056 
6057   Type *Ty;
6058   LocTy ExplicitTypeLoc = Lex.getLoc();
6059   if (ParseType(Ty) ||
6060       ParseToken(lltok::comma, "expected comma after load's type") ||
6061       ParseTypeAndValue(Val, Loc, PFS) ||
6062       ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
6063       ParseOptionalCommaAlign(Alignment, AteExtraComma))
6064     return true;
6065 
6066   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
6067     return Error(Loc, "load operand must be a pointer to a first class type");
6068   if (isAtomic && !Alignment)
6069     return Error(Loc, "atomic load must have explicit non-zero alignment");
6070   if (Ordering == AtomicOrdering::Release ||
6071       Ordering == AtomicOrdering::AcquireRelease)
6072     return Error(Loc, "atomic load cannot use Release ordering");
6073 
6074   if (Ty != cast<PointerType>(Val->getType())->getElementType())
6075     return Error(ExplicitTypeLoc,
6076                  "explicit pointee type doesn't match operand's pointee type");
6077 
6078   Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, Scope);
6079   return AteExtraComma ? InstExtraComma : InstNormal;
6080 }
6081 
6082 /// ParseStore
6083 
6084 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
6085 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
6086 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
6087 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
6088   Value *Val, *Ptr; LocTy Loc, PtrLoc;
6089   unsigned Alignment = 0;
6090   bool AteExtraComma = false;
6091   bool isAtomic = false;
6092   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6093   SynchronizationScope Scope = CrossThread;
6094 
6095   if (Lex.getKind() == lltok::kw_atomic) {
6096     isAtomic = true;
6097     Lex.Lex();
6098   }
6099 
6100   bool isVolatile = false;
6101   if (Lex.getKind() == lltok::kw_volatile) {
6102     isVolatile = true;
6103     Lex.Lex();
6104   }
6105 
6106   if (ParseTypeAndValue(Val, Loc, PFS) ||
6107       ParseToken(lltok::comma, "expected ',' after store operand") ||
6108       ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6109       ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
6110       ParseOptionalCommaAlign(Alignment, AteExtraComma))
6111     return true;
6112 
6113   if (!Ptr->getType()->isPointerTy())
6114     return Error(PtrLoc, "store operand must be a pointer");
6115   if (!Val->getType()->isFirstClassType())
6116     return Error(Loc, "store operand must be a first class value");
6117   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
6118     return Error(Loc, "stored value and pointer type do not match");
6119   if (isAtomic && !Alignment)
6120     return Error(Loc, "atomic store must have explicit non-zero alignment");
6121   if (Ordering == AtomicOrdering::Acquire ||
6122       Ordering == AtomicOrdering::AcquireRelease)
6123     return Error(Loc, "atomic store cannot use Acquire ordering");
6124 
6125   Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope);
6126   return AteExtraComma ? InstExtraComma : InstNormal;
6127 }
6128 
6129 /// ParseCmpXchg
6130 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
6131 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
6132 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
6133   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
6134   bool AteExtraComma = false;
6135   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
6136   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
6137   SynchronizationScope Scope = CrossThread;
6138   bool isVolatile = false;
6139   bool isWeak = false;
6140 
6141   if (EatIfPresent(lltok::kw_weak))
6142     isWeak = true;
6143 
6144   if (EatIfPresent(lltok::kw_volatile))
6145     isVolatile = true;
6146 
6147   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6148       ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
6149       ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
6150       ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
6151       ParseTypeAndValue(New, NewLoc, PFS) ||
6152       ParseScopeAndOrdering(true /*Always atomic*/, Scope, SuccessOrdering) ||
6153       ParseOrdering(FailureOrdering))
6154     return true;
6155 
6156   if (SuccessOrdering == AtomicOrdering::Unordered ||
6157       FailureOrdering == AtomicOrdering::Unordered)
6158     return TokError("cmpxchg cannot be unordered");
6159   if (isStrongerThan(FailureOrdering, SuccessOrdering))
6160     return TokError("cmpxchg failure argument shall be no stronger than the "
6161                     "success argument");
6162   if (FailureOrdering == AtomicOrdering::Release ||
6163       FailureOrdering == AtomicOrdering::AcquireRelease)
6164     return TokError(
6165         "cmpxchg failure ordering cannot include release semantics");
6166   if (!Ptr->getType()->isPointerTy())
6167     return Error(PtrLoc, "cmpxchg operand must be a pointer");
6168   if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
6169     return Error(CmpLoc, "compare value and pointer type do not match");
6170   if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
6171     return Error(NewLoc, "new value and pointer type do not match");
6172   if (!New->getType()->isFirstClassType())
6173     return Error(NewLoc, "cmpxchg operand must be a first class value");
6174   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
6175       Ptr, Cmp, New, SuccessOrdering, FailureOrdering, Scope);
6176   CXI->setVolatile(isVolatile);
6177   CXI->setWeak(isWeak);
6178   Inst = CXI;
6179   return AteExtraComma ? InstExtraComma : InstNormal;
6180 }
6181 
6182 /// ParseAtomicRMW
6183 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
6184 ///       'singlethread'? AtomicOrdering
6185 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
6186   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
6187   bool AteExtraComma = false;
6188   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6189   SynchronizationScope Scope = CrossThread;
6190   bool isVolatile = false;
6191   AtomicRMWInst::BinOp Operation;
6192 
6193   if (EatIfPresent(lltok::kw_volatile))
6194     isVolatile = true;
6195 
6196   switch (Lex.getKind()) {
6197   default: return TokError("expected binary operation in atomicrmw");
6198   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
6199   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
6200   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
6201   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
6202   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
6203   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
6204   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
6205   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
6206   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
6207   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
6208   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
6209   }
6210   Lex.Lex();  // Eat the operation.
6211 
6212   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6213       ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
6214       ParseTypeAndValue(Val, ValLoc, PFS) ||
6215       ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
6216     return true;
6217 
6218   if (Ordering == AtomicOrdering::Unordered)
6219     return TokError("atomicrmw cannot be unordered");
6220   if (!Ptr->getType()->isPointerTy())
6221     return Error(PtrLoc, "atomicrmw operand must be a pointer");
6222   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
6223     return Error(ValLoc, "atomicrmw value and pointer type do not match");
6224   if (!Val->getType()->isIntegerTy())
6225     return Error(ValLoc, "atomicrmw operand must be an integer");
6226   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
6227   if (Size < 8 || (Size & (Size - 1)))
6228     return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
6229                          " integer");
6230 
6231   AtomicRMWInst *RMWI =
6232     new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope);
6233   RMWI->setVolatile(isVolatile);
6234   Inst = RMWI;
6235   return AteExtraComma ? InstExtraComma : InstNormal;
6236 }
6237 
6238 /// ParseFence
6239 ///   ::= 'fence' 'singlethread'? AtomicOrdering
6240 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
6241   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6242   SynchronizationScope Scope = CrossThread;
6243   if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
6244     return true;
6245 
6246   if (Ordering == AtomicOrdering::Unordered)
6247     return TokError("fence cannot be unordered");
6248   if (Ordering == AtomicOrdering::Monotonic)
6249     return TokError("fence cannot be monotonic");
6250 
6251   Inst = new FenceInst(Context, Ordering, Scope);
6252   return InstNormal;
6253 }
6254 
6255 /// ParseGetElementPtr
6256 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
6257 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
6258   Value *Ptr = nullptr;
6259   Value *Val = nullptr;
6260   LocTy Loc, EltLoc;
6261 
6262   bool InBounds = EatIfPresent(lltok::kw_inbounds);
6263 
6264   Type *Ty = nullptr;
6265   LocTy ExplicitTypeLoc = Lex.getLoc();
6266   if (ParseType(Ty) ||
6267       ParseToken(lltok::comma, "expected comma after getelementptr's type") ||
6268       ParseTypeAndValue(Ptr, Loc, PFS))
6269     return true;
6270 
6271   Type *BaseType = Ptr->getType();
6272   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
6273   if (!BasePointerType)
6274     return Error(Loc, "base of getelementptr must be a pointer");
6275 
6276   if (Ty != BasePointerType->getElementType())
6277     return Error(ExplicitTypeLoc,
6278                  "explicit pointee type doesn't match operand's pointee type");
6279 
6280   SmallVector<Value*, 16> Indices;
6281   bool AteExtraComma = false;
6282   // GEP returns a vector of pointers if at least one of parameters is a vector.
6283   // All vector parameters should have the same vector width.
6284   unsigned GEPWidth = BaseType->isVectorTy() ?
6285     BaseType->getVectorNumElements() : 0;
6286 
6287   while (EatIfPresent(lltok::comma)) {
6288     if (Lex.getKind() == lltok::MetadataVar) {
6289       AteExtraComma = true;
6290       break;
6291     }
6292     if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
6293     if (!Val->getType()->getScalarType()->isIntegerTy())
6294       return Error(EltLoc, "getelementptr index must be an integer");
6295 
6296     if (Val->getType()->isVectorTy()) {
6297       unsigned ValNumEl = Val->getType()->getVectorNumElements();
6298       if (GEPWidth && GEPWidth != ValNumEl)
6299         return Error(EltLoc,
6300           "getelementptr vector index has a wrong number of elements");
6301       GEPWidth = ValNumEl;
6302     }
6303     Indices.push_back(Val);
6304   }
6305 
6306   SmallPtrSet<Type*, 4> Visited;
6307   if (!Indices.empty() && !Ty->isSized(&Visited))
6308     return Error(Loc, "base element of getelementptr must be sized");
6309 
6310   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
6311     return Error(Loc, "invalid getelementptr indices");
6312   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
6313   if (InBounds)
6314     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
6315   return AteExtraComma ? InstExtraComma : InstNormal;
6316 }
6317 
6318 /// ParseExtractValue
6319 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
6320 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
6321   Value *Val; LocTy Loc;
6322   SmallVector<unsigned, 4> Indices;
6323   bool AteExtraComma;
6324   if (ParseTypeAndValue(Val, Loc, PFS) ||
6325       ParseIndexList(Indices, AteExtraComma))
6326     return true;
6327 
6328   if (!Val->getType()->isAggregateType())
6329     return Error(Loc, "extractvalue operand must be aggregate type");
6330 
6331   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
6332     return Error(Loc, "invalid indices for extractvalue");
6333   Inst = ExtractValueInst::Create(Val, Indices);
6334   return AteExtraComma ? InstExtraComma : InstNormal;
6335 }
6336 
6337 /// ParseInsertValue
6338 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
6339 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
6340   Value *Val0, *Val1; LocTy Loc0, Loc1;
6341   SmallVector<unsigned, 4> Indices;
6342   bool AteExtraComma;
6343   if (ParseTypeAndValue(Val0, Loc0, PFS) ||
6344       ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
6345       ParseTypeAndValue(Val1, Loc1, PFS) ||
6346       ParseIndexList(Indices, AteExtraComma))
6347     return true;
6348 
6349   if (!Val0->getType()->isAggregateType())
6350     return Error(Loc0, "insertvalue operand must be aggregate type");
6351 
6352   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
6353   if (!IndexedType)
6354     return Error(Loc0, "invalid indices for insertvalue");
6355   if (IndexedType != Val1->getType())
6356     return Error(Loc1, "insertvalue operand and field disagree in type: '" +
6357                            getTypeString(Val1->getType()) + "' instead of '" +
6358                            getTypeString(IndexedType) + "'");
6359   Inst = InsertValueInst::Create(Val0, Val1, Indices);
6360   return AteExtraComma ? InstExtraComma : InstNormal;
6361 }
6362 
6363 //===----------------------------------------------------------------------===//
6364 // Embedded metadata.
6365 //===----------------------------------------------------------------------===//
6366 
6367 /// ParseMDNodeVector
6368 ///   ::= { Element (',' Element)* }
6369 /// Element
6370 ///   ::= 'null' | TypeAndValue
6371 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
6372   if (ParseToken(lltok::lbrace, "expected '{' here"))
6373     return true;
6374 
6375   // Check for an empty list.
6376   if (EatIfPresent(lltok::rbrace))
6377     return false;
6378 
6379   do {
6380     // Null is a special case since it is typeless.
6381     if (EatIfPresent(lltok::kw_null)) {
6382       Elts.push_back(nullptr);
6383       continue;
6384     }
6385 
6386     Metadata *MD;
6387     if (ParseMetadata(MD, nullptr))
6388       return true;
6389     Elts.push_back(MD);
6390   } while (EatIfPresent(lltok::comma));
6391 
6392   return ParseToken(lltok::rbrace, "expected end of metadata node");
6393 }
6394 
6395 //===----------------------------------------------------------------------===//
6396 // Use-list order directives.
6397 //===----------------------------------------------------------------------===//
6398 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
6399                                 SMLoc Loc) {
6400   if (V->use_empty())
6401     return Error(Loc, "value has no uses");
6402 
6403   unsigned NumUses = 0;
6404   SmallDenseMap<const Use *, unsigned, 16> Order;
6405   for (const Use &U : V->uses()) {
6406     if (++NumUses > Indexes.size())
6407       break;
6408     Order[&U] = Indexes[NumUses - 1];
6409   }
6410   if (NumUses < 2)
6411     return Error(Loc, "value only has one use");
6412   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
6413     return Error(Loc, "wrong number of indexes, expected " +
6414                           Twine(std::distance(V->use_begin(), V->use_end())));
6415 
6416   V->sortUseList([&](const Use &L, const Use &R) {
6417     return Order.lookup(&L) < Order.lookup(&R);
6418   });
6419   return false;
6420 }
6421 
6422 /// ParseUseListOrderIndexes
6423 ///   ::= '{' uint32 (',' uint32)+ '}'
6424 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
6425   SMLoc Loc = Lex.getLoc();
6426   if (ParseToken(lltok::lbrace, "expected '{' here"))
6427     return true;
6428   if (Lex.getKind() == lltok::rbrace)
6429     return Lex.Error("expected non-empty list of uselistorder indexes");
6430 
6431   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
6432   // indexes should be distinct numbers in the range [0, size-1], and should
6433   // not be in order.
6434   unsigned Offset = 0;
6435   unsigned Max = 0;
6436   bool IsOrdered = true;
6437   assert(Indexes.empty() && "Expected empty order vector");
6438   do {
6439     unsigned Index;
6440     if (ParseUInt32(Index))
6441       return true;
6442 
6443     // Update consistency checks.
6444     Offset += Index - Indexes.size();
6445     Max = std::max(Max, Index);
6446     IsOrdered &= Index == Indexes.size();
6447 
6448     Indexes.push_back(Index);
6449   } while (EatIfPresent(lltok::comma));
6450 
6451   if (ParseToken(lltok::rbrace, "expected '}' here"))
6452     return true;
6453 
6454   if (Indexes.size() < 2)
6455     return Error(Loc, "expected >= 2 uselistorder indexes");
6456   if (Offset != 0 || Max >= Indexes.size())
6457     return Error(Loc, "expected distinct uselistorder indexes in range [0, size)");
6458   if (IsOrdered)
6459     return Error(Loc, "expected uselistorder indexes to change the order");
6460 
6461   return false;
6462 }
6463 
6464 /// ParseUseListOrder
6465 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
6466 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) {
6467   SMLoc Loc = Lex.getLoc();
6468   if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
6469     return true;
6470 
6471   Value *V;
6472   SmallVector<unsigned, 16> Indexes;
6473   if (ParseTypeAndValue(V, PFS) ||
6474       ParseToken(lltok::comma, "expected comma in uselistorder directive") ||
6475       ParseUseListOrderIndexes(Indexes))
6476     return true;
6477 
6478   return sortUseListOrder(V, Indexes, Loc);
6479 }
6480 
6481 /// ParseUseListOrderBB
6482 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
6483 bool LLParser::ParseUseListOrderBB() {
6484   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
6485   SMLoc Loc = Lex.getLoc();
6486   Lex.Lex();
6487 
6488   ValID Fn, Label;
6489   SmallVector<unsigned, 16> Indexes;
6490   if (ParseValID(Fn) ||
6491       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
6492       ParseValID(Label) ||
6493       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
6494       ParseUseListOrderIndexes(Indexes))
6495     return true;
6496 
6497   // Check the function.
6498   GlobalValue *GV;
6499   if (Fn.Kind == ValID::t_GlobalName)
6500     GV = M->getNamedValue(Fn.StrVal);
6501   else if (Fn.Kind == ValID::t_GlobalID)
6502     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
6503   else
6504     return Error(Fn.Loc, "expected function name in uselistorder_bb");
6505   if (!GV)
6506     return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb");
6507   auto *F = dyn_cast<Function>(GV);
6508   if (!F)
6509     return Error(Fn.Loc, "expected function name in uselistorder_bb");
6510   if (F->isDeclaration())
6511     return Error(Fn.Loc, "invalid declaration in uselistorder_bb");
6512 
6513   // Check the basic block.
6514   if (Label.Kind == ValID::t_LocalID)
6515     return Error(Label.Loc, "invalid numeric label in uselistorder_bb");
6516   if (Label.Kind != ValID::t_LocalName)
6517     return Error(Label.Loc, "expected basic block name in uselistorder_bb");
6518   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
6519   if (!V)
6520     return Error(Label.Loc, "invalid basic block in uselistorder_bb");
6521   if (!isa<BasicBlock>(V))
6522     return Error(Label.Loc, "expected basic block in uselistorder_bb");
6523 
6524   return sortUseListOrder(V, Indexes, Loc);
6525 }
6526