1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the parser class for .ll files. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LLParser.h" 15 #include "llvm/AutoUpgrade.h" 16 #include "llvm/CallingConv.h" 17 #include "llvm/Constants.h" 18 #include "llvm/DerivedTypes.h" 19 #include "llvm/InlineAsm.h" 20 #include "llvm/Instructions.h" 21 #include "llvm/Module.h" 22 #include "llvm/Operator.h" 23 #include "llvm/ValueSymbolTable.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/Support/ErrorHandling.h" 26 #include "llvm/Support/raw_ostream.h" 27 using namespace llvm; 28 29 static std::string getTypeString(Type *T) { 30 std::string Result; 31 raw_string_ostream Tmp(Result); 32 Tmp << *T; 33 return Tmp.str(); 34 } 35 36 /// Run: module ::= toplevelentity* 37 bool LLParser::Run() { 38 // Prime the lexer. 39 Lex.Lex(); 40 41 return ParseTopLevelEntities() || 42 ValidateEndOfModule(); 43 } 44 45 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the 46 /// module. 47 bool LLParser::ValidateEndOfModule() { 48 // Handle any instruction metadata forward references. 49 if (!ForwardRefInstMetadata.empty()) { 50 for (DenseMap<Instruction*, std::vector<MDRef> >::iterator 51 I = ForwardRefInstMetadata.begin(), E = ForwardRefInstMetadata.end(); 52 I != E; ++I) { 53 Instruction *Inst = I->first; 54 const std::vector<MDRef> &MDList = I->second; 55 56 for (unsigned i = 0, e = MDList.size(); i != e; ++i) { 57 unsigned SlotNo = MDList[i].MDSlot; 58 59 if (SlotNo >= NumberedMetadata.size() || NumberedMetadata[SlotNo] == 0) 60 return Error(MDList[i].Loc, "use of undefined metadata '!" + 61 Twine(SlotNo) + "'"); 62 Inst->setMetadata(MDList[i].MDKind, NumberedMetadata[SlotNo]); 63 } 64 } 65 ForwardRefInstMetadata.clear(); 66 } 67 68 69 // If there are entries in ForwardRefBlockAddresses at this point, they are 70 // references after the function was defined. Resolve those now. 71 while (!ForwardRefBlockAddresses.empty()) { 72 // Okay, we are referencing an already-parsed function, resolve them now. 73 Function *TheFn = 0; 74 const ValID &Fn = ForwardRefBlockAddresses.begin()->first; 75 if (Fn.Kind == ValID::t_GlobalName) 76 TheFn = M->getFunction(Fn.StrVal); 77 else if (Fn.UIntVal < NumberedVals.size()) 78 TheFn = dyn_cast<Function>(NumberedVals[Fn.UIntVal]); 79 80 if (TheFn == 0) 81 return Error(Fn.Loc, "unknown function referenced by blockaddress"); 82 83 // Resolve all these references. 84 if (ResolveForwardRefBlockAddresses(TheFn, 85 ForwardRefBlockAddresses.begin()->second, 86 0)) 87 return true; 88 89 ForwardRefBlockAddresses.erase(ForwardRefBlockAddresses.begin()); 90 } 91 92 for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) 93 if (NumberedTypes[i].second.isValid()) 94 return Error(NumberedTypes[i].second, 95 "use of undefined type '%" + Twine(i) + "'"); 96 97 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 98 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 99 if (I->second.second.isValid()) 100 return Error(I->second.second, 101 "use of undefined type named '" + I->getKey() + "'"); 102 103 if (!ForwardRefVals.empty()) 104 return Error(ForwardRefVals.begin()->second.second, 105 "use of undefined value '@" + ForwardRefVals.begin()->first + 106 "'"); 107 108 if (!ForwardRefValIDs.empty()) 109 return Error(ForwardRefValIDs.begin()->second.second, 110 "use of undefined value '@" + 111 Twine(ForwardRefValIDs.begin()->first) + "'"); 112 113 if (!ForwardRefMDNodes.empty()) 114 return Error(ForwardRefMDNodes.begin()->second.second, 115 "use of undefined metadata '!" + 116 Twine(ForwardRefMDNodes.begin()->first) + "'"); 117 118 119 // Look for intrinsic functions and CallInst that need to be upgraded 120 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 121 UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove 122 123 return false; 124 } 125 126 bool LLParser::ResolveForwardRefBlockAddresses(Function *TheFn, 127 std::vector<std::pair<ValID, GlobalValue*> > &Refs, 128 PerFunctionState *PFS) { 129 // Loop over all the references, resolving them. 130 for (unsigned i = 0, e = Refs.size(); i != e; ++i) { 131 BasicBlock *Res; 132 if (PFS) { 133 if (Refs[i].first.Kind == ValID::t_LocalName) 134 Res = PFS->GetBB(Refs[i].first.StrVal, Refs[i].first.Loc); 135 else 136 Res = PFS->GetBB(Refs[i].first.UIntVal, Refs[i].first.Loc); 137 } else if (Refs[i].first.Kind == ValID::t_LocalID) { 138 return Error(Refs[i].first.Loc, 139 "cannot take address of numeric label after the function is defined"); 140 } else { 141 Res = dyn_cast_or_null<BasicBlock>( 142 TheFn->getValueSymbolTable().lookup(Refs[i].first.StrVal)); 143 } 144 145 if (Res == 0) 146 return Error(Refs[i].first.Loc, 147 "referenced value is not a basic block"); 148 149 // Get the BlockAddress for this and update references to use it. 150 BlockAddress *BA = BlockAddress::get(TheFn, Res); 151 Refs[i].second->replaceAllUsesWith(BA); 152 Refs[i].second->eraseFromParent(); 153 } 154 return false; 155 } 156 157 158 //===----------------------------------------------------------------------===// 159 // Top-Level Entities 160 //===----------------------------------------------------------------------===// 161 162 bool LLParser::ParseTopLevelEntities() { 163 while (1) { 164 switch (Lex.getKind()) { 165 default: return TokError("expected top-level entity"); 166 case lltok::Eof: return false; 167 case lltok::kw_declare: if (ParseDeclare()) return true; break; 168 case lltok::kw_define: if (ParseDefine()) return true; break; 169 case lltok::kw_module: if (ParseModuleAsm()) return true; break; 170 case lltok::kw_target: if (ParseTargetDefinition()) return true; break; 171 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; 172 case lltok::LocalVar: if (ParseNamedType()) return true; break; 173 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; 174 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; 175 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break; 176 case lltok::MetadataVar: if (ParseNamedMetadata()) return true; break; 177 178 // The Global variable production with no name can have many different 179 // optional leading prefixes, the production is: 180 // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal 181 // OptionalAddrSpace OptionalUnNammedAddr 182 // ('constant'|'global') ... 183 case lltok::kw_private: // OptionalLinkage 184 case lltok::kw_linker_private: // OptionalLinkage 185 case lltok::kw_linker_private_weak: // OptionalLinkage 186 case lltok::kw_linker_private_weak_def_auto: // FIXME: backwards compat. 187 case lltok::kw_internal: // OptionalLinkage 188 case lltok::kw_weak: // OptionalLinkage 189 case lltok::kw_weak_odr: // OptionalLinkage 190 case lltok::kw_linkonce: // OptionalLinkage 191 case lltok::kw_linkonce_odr: // OptionalLinkage 192 case lltok::kw_linkonce_odr_auto_hide: // OptionalLinkage 193 case lltok::kw_appending: // OptionalLinkage 194 case lltok::kw_dllexport: // OptionalLinkage 195 case lltok::kw_common: // OptionalLinkage 196 case lltok::kw_dllimport: // OptionalLinkage 197 case lltok::kw_extern_weak: // OptionalLinkage 198 case lltok::kw_external: { // OptionalLinkage 199 unsigned Linkage, Visibility; 200 if (ParseOptionalLinkage(Linkage) || 201 ParseOptionalVisibility(Visibility) || 202 ParseGlobal("", SMLoc(), Linkage, true, Visibility)) 203 return true; 204 break; 205 } 206 case lltok::kw_default: // OptionalVisibility 207 case lltok::kw_hidden: // OptionalVisibility 208 case lltok::kw_protected: { // OptionalVisibility 209 unsigned Visibility; 210 if (ParseOptionalVisibility(Visibility) || 211 ParseGlobal("", SMLoc(), 0, false, Visibility)) 212 return true; 213 break; 214 } 215 216 case lltok::kw_thread_local: // OptionalThreadLocal 217 case lltok::kw_addrspace: // OptionalAddrSpace 218 case lltok::kw_constant: // GlobalType 219 case lltok::kw_global: // GlobalType 220 if (ParseGlobal("", SMLoc(), 0, false, 0)) return true; 221 break; 222 } 223 } 224 } 225 226 227 /// toplevelentity 228 /// ::= 'module' 'asm' STRINGCONSTANT 229 bool LLParser::ParseModuleAsm() { 230 assert(Lex.getKind() == lltok::kw_module); 231 Lex.Lex(); 232 233 std::string AsmStr; 234 if (ParseToken(lltok::kw_asm, "expected 'module asm'") || 235 ParseStringConstant(AsmStr)) return true; 236 237 M->appendModuleInlineAsm(AsmStr); 238 return false; 239 } 240 241 /// toplevelentity 242 /// ::= 'target' 'triple' '=' STRINGCONSTANT 243 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 244 bool LLParser::ParseTargetDefinition() { 245 assert(Lex.getKind() == lltok::kw_target); 246 std::string Str; 247 switch (Lex.Lex()) { 248 default: return TokError("unknown target property"); 249 case lltok::kw_triple: 250 Lex.Lex(); 251 if (ParseToken(lltok::equal, "expected '=' after target triple") || 252 ParseStringConstant(Str)) 253 return true; 254 M->setTargetTriple(Str); 255 return false; 256 case lltok::kw_datalayout: 257 Lex.Lex(); 258 if (ParseToken(lltok::equal, "expected '=' after target datalayout") || 259 ParseStringConstant(Str)) 260 return true; 261 M->setDataLayout(Str); 262 return false; 263 } 264 } 265 266 /// ParseUnnamedType: 267 /// ::= LocalVarID '=' 'type' type 268 bool LLParser::ParseUnnamedType() { 269 LocTy TypeLoc = Lex.getLoc(); 270 unsigned TypeID = Lex.getUIntVal(); 271 Lex.Lex(); // eat LocalVarID; 272 273 if (ParseToken(lltok::equal, "expected '=' after name") || 274 ParseToken(lltok::kw_type, "expected 'type' after '='")) 275 return true; 276 277 if (TypeID >= NumberedTypes.size()) 278 NumberedTypes.resize(TypeID+1); 279 280 Type *Result = 0; 281 if (ParseStructDefinition(TypeLoc, "", 282 NumberedTypes[TypeID], Result)) return true; 283 284 if (!isa<StructType>(Result)) { 285 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 286 if (Entry.first) 287 return Error(TypeLoc, "non-struct types may not be recursive"); 288 Entry.first = Result; 289 Entry.second = SMLoc(); 290 } 291 292 return false; 293 } 294 295 296 /// toplevelentity 297 /// ::= LocalVar '=' 'type' type 298 bool LLParser::ParseNamedType() { 299 std::string Name = Lex.getStrVal(); 300 LocTy NameLoc = Lex.getLoc(); 301 Lex.Lex(); // eat LocalVar. 302 303 if (ParseToken(lltok::equal, "expected '=' after name") || 304 ParseToken(lltok::kw_type, "expected 'type' after name")) 305 return true; 306 307 Type *Result = 0; 308 if (ParseStructDefinition(NameLoc, Name, 309 NamedTypes[Name], Result)) return true; 310 311 if (!isa<StructType>(Result)) { 312 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 313 if (Entry.first) 314 return Error(NameLoc, "non-struct types may not be recursive"); 315 Entry.first = Result; 316 Entry.second = SMLoc(); 317 } 318 319 return false; 320 } 321 322 323 /// toplevelentity 324 /// ::= 'declare' FunctionHeader 325 bool LLParser::ParseDeclare() { 326 assert(Lex.getKind() == lltok::kw_declare); 327 Lex.Lex(); 328 329 Function *F; 330 return ParseFunctionHeader(F, false); 331 } 332 333 /// toplevelentity 334 /// ::= 'define' FunctionHeader '{' ... 335 bool LLParser::ParseDefine() { 336 assert(Lex.getKind() == lltok::kw_define); 337 Lex.Lex(); 338 339 Function *F; 340 return ParseFunctionHeader(F, true) || 341 ParseFunctionBody(*F); 342 } 343 344 /// ParseGlobalType 345 /// ::= 'constant' 346 /// ::= 'global' 347 bool LLParser::ParseGlobalType(bool &IsConstant) { 348 if (Lex.getKind() == lltok::kw_constant) 349 IsConstant = true; 350 else if (Lex.getKind() == lltok::kw_global) 351 IsConstant = false; 352 else { 353 IsConstant = false; 354 return TokError("expected 'global' or 'constant'"); 355 } 356 Lex.Lex(); 357 return false; 358 } 359 360 /// ParseUnnamedGlobal: 361 /// OptionalVisibility ALIAS ... 362 /// OptionalLinkage OptionalVisibility ... -> global variable 363 /// GlobalID '=' OptionalVisibility ALIAS ... 364 /// GlobalID '=' OptionalLinkage OptionalVisibility ... -> global variable 365 bool LLParser::ParseUnnamedGlobal() { 366 unsigned VarID = NumberedVals.size(); 367 std::string Name; 368 LocTy NameLoc = Lex.getLoc(); 369 370 // Handle the GlobalID form. 371 if (Lex.getKind() == lltok::GlobalID) { 372 if (Lex.getUIntVal() != VarID) 373 return Error(Lex.getLoc(), "variable expected to be numbered '%" + 374 Twine(VarID) + "'"); 375 Lex.Lex(); // eat GlobalID; 376 377 if (ParseToken(lltok::equal, "expected '=' after name")) 378 return true; 379 } 380 381 bool HasLinkage; 382 unsigned Linkage, Visibility; 383 if (ParseOptionalLinkage(Linkage, HasLinkage) || 384 ParseOptionalVisibility(Visibility)) 385 return true; 386 387 if (HasLinkage || Lex.getKind() != lltok::kw_alias) 388 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility); 389 return ParseAlias(Name, NameLoc, Visibility); 390 } 391 392 /// ParseNamedGlobal: 393 /// GlobalVar '=' OptionalVisibility ALIAS ... 394 /// GlobalVar '=' OptionalLinkage OptionalVisibility ... -> global variable 395 bool LLParser::ParseNamedGlobal() { 396 assert(Lex.getKind() == lltok::GlobalVar); 397 LocTy NameLoc = Lex.getLoc(); 398 std::string Name = Lex.getStrVal(); 399 Lex.Lex(); 400 401 bool HasLinkage; 402 unsigned Linkage, Visibility; 403 if (ParseToken(lltok::equal, "expected '=' in global variable") || 404 ParseOptionalLinkage(Linkage, HasLinkage) || 405 ParseOptionalVisibility(Visibility)) 406 return true; 407 408 if (HasLinkage || Lex.getKind() != lltok::kw_alias) 409 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility); 410 return ParseAlias(Name, NameLoc, Visibility); 411 } 412 413 // MDString: 414 // ::= '!' STRINGCONSTANT 415 bool LLParser::ParseMDString(MDString *&Result) { 416 std::string Str; 417 if (ParseStringConstant(Str)) return true; 418 Result = MDString::get(Context, Str); 419 return false; 420 } 421 422 // MDNode: 423 // ::= '!' MDNodeNumber 424 // 425 /// This version of ParseMDNodeID returns the slot number and null in the case 426 /// of a forward reference. 427 bool LLParser::ParseMDNodeID(MDNode *&Result, unsigned &SlotNo) { 428 // !{ ..., !42, ... } 429 if (ParseUInt32(SlotNo)) return true; 430 431 // Check existing MDNode. 432 if (SlotNo < NumberedMetadata.size() && NumberedMetadata[SlotNo] != 0) 433 Result = NumberedMetadata[SlotNo]; 434 else 435 Result = 0; 436 return false; 437 } 438 439 bool LLParser::ParseMDNodeID(MDNode *&Result) { 440 // !{ ..., !42, ... } 441 unsigned MID = 0; 442 if (ParseMDNodeID(Result, MID)) return true; 443 444 // If not a forward reference, just return it now. 445 if (Result) return false; 446 447 // Otherwise, create MDNode forward reference. 448 MDNode *FwdNode = MDNode::getTemporary(Context, ArrayRef<Value*>()); 449 ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc()); 450 451 if (NumberedMetadata.size() <= MID) 452 NumberedMetadata.resize(MID+1); 453 NumberedMetadata[MID] = FwdNode; 454 Result = FwdNode; 455 return false; 456 } 457 458 /// ParseNamedMetadata: 459 /// !foo = !{ !1, !2 } 460 bool LLParser::ParseNamedMetadata() { 461 assert(Lex.getKind() == lltok::MetadataVar); 462 std::string Name = Lex.getStrVal(); 463 Lex.Lex(); 464 465 if (ParseToken(lltok::equal, "expected '=' here") || 466 ParseToken(lltok::exclaim, "Expected '!' here") || 467 ParseToken(lltok::lbrace, "Expected '{' here")) 468 return true; 469 470 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 471 if (Lex.getKind() != lltok::rbrace) 472 do { 473 if (ParseToken(lltok::exclaim, "Expected '!' here")) 474 return true; 475 476 MDNode *N = 0; 477 if (ParseMDNodeID(N)) return true; 478 NMD->addOperand(N); 479 } while (EatIfPresent(lltok::comma)); 480 481 if (ParseToken(lltok::rbrace, "expected end of metadata node")) 482 return true; 483 484 return false; 485 } 486 487 /// ParseStandaloneMetadata: 488 /// !42 = !{...} 489 bool LLParser::ParseStandaloneMetadata() { 490 assert(Lex.getKind() == lltok::exclaim); 491 Lex.Lex(); 492 unsigned MetadataID = 0; 493 494 LocTy TyLoc; 495 Type *Ty = 0; 496 SmallVector<Value *, 16> Elts; 497 if (ParseUInt32(MetadataID) || 498 ParseToken(lltok::equal, "expected '=' here") || 499 ParseType(Ty, TyLoc) || 500 ParseToken(lltok::exclaim, "Expected '!' here") || 501 ParseToken(lltok::lbrace, "Expected '{' here") || 502 ParseMDNodeVector(Elts, NULL) || 503 ParseToken(lltok::rbrace, "expected end of metadata node")) 504 return true; 505 506 MDNode *Init = MDNode::get(Context, Elts); 507 508 // See if this was forward referenced, if so, handle it. 509 std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator 510 FI = ForwardRefMDNodes.find(MetadataID); 511 if (FI != ForwardRefMDNodes.end()) { 512 MDNode *Temp = FI->second.first; 513 Temp->replaceAllUsesWith(Init); 514 MDNode::deleteTemporary(Temp); 515 ForwardRefMDNodes.erase(FI); 516 517 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 518 } else { 519 if (MetadataID >= NumberedMetadata.size()) 520 NumberedMetadata.resize(MetadataID+1); 521 522 if (NumberedMetadata[MetadataID] != 0) 523 return TokError("Metadata id is already used"); 524 NumberedMetadata[MetadataID] = Init; 525 } 526 527 return false; 528 } 529 530 /// ParseAlias: 531 /// ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee 532 /// Aliasee 533 /// ::= TypeAndValue 534 /// ::= 'bitcast' '(' TypeAndValue 'to' Type ')' 535 /// ::= 'getelementptr' 'inbounds'? '(' ... ')' 536 /// 537 /// Everything through visibility has already been parsed. 538 /// 539 bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc, 540 unsigned Visibility) { 541 assert(Lex.getKind() == lltok::kw_alias); 542 Lex.Lex(); 543 unsigned Linkage; 544 LocTy LinkageLoc = Lex.getLoc(); 545 if (ParseOptionalLinkage(Linkage)) 546 return true; 547 548 if (Linkage != GlobalValue::ExternalLinkage && 549 Linkage != GlobalValue::WeakAnyLinkage && 550 Linkage != GlobalValue::WeakODRLinkage && 551 Linkage != GlobalValue::InternalLinkage && 552 Linkage != GlobalValue::PrivateLinkage && 553 Linkage != GlobalValue::LinkerPrivateLinkage && 554 Linkage != GlobalValue::LinkerPrivateWeakLinkage) 555 return Error(LinkageLoc, "invalid linkage type for alias"); 556 557 Constant *Aliasee; 558 LocTy AliaseeLoc = Lex.getLoc(); 559 if (Lex.getKind() != lltok::kw_bitcast && 560 Lex.getKind() != lltok::kw_getelementptr) { 561 if (ParseGlobalTypeAndValue(Aliasee)) return true; 562 } else { 563 // The bitcast dest type is not present, it is implied by the dest type. 564 ValID ID; 565 if (ParseValID(ID)) return true; 566 if (ID.Kind != ValID::t_Constant) 567 return Error(AliaseeLoc, "invalid aliasee"); 568 Aliasee = ID.ConstantVal; 569 } 570 571 if (!Aliasee->getType()->isPointerTy()) 572 return Error(AliaseeLoc, "alias must have pointer type"); 573 574 // Okay, create the alias but do not insert it into the module yet. 575 GlobalAlias* GA = new GlobalAlias(Aliasee->getType(), 576 (GlobalValue::LinkageTypes)Linkage, Name, 577 Aliasee); 578 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 579 580 // See if this value already exists in the symbol table. If so, it is either 581 // a redefinition or a definition of a forward reference. 582 if (GlobalValue *Val = M->getNamedValue(Name)) { 583 // See if this was a redefinition. If so, there is no entry in 584 // ForwardRefVals. 585 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator 586 I = ForwardRefVals.find(Name); 587 if (I == ForwardRefVals.end()) 588 return Error(NameLoc, "redefinition of global named '@" + Name + "'"); 589 590 // Otherwise, this was a definition of forward ref. Verify that types 591 // agree. 592 if (Val->getType() != GA->getType()) 593 return Error(NameLoc, 594 "forward reference and definition of alias have different types"); 595 596 // If they agree, just RAUW the old value with the alias and remove the 597 // forward ref info. 598 Val->replaceAllUsesWith(GA); 599 Val->eraseFromParent(); 600 ForwardRefVals.erase(I); 601 } 602 603 // Insert into the module, we know its name won't collide now. 604 M->getAliasList().push_back(GA); 605 assert(GA->getName() == Name && "Should not be a name conflict!"); 606 607 return false; 608 } 609 610 /// ParseGlobal 611 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal 612 /// OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const 613 /// ::= OptionalLinkage OptionalVisibility OptionalThreadLocal 614 /// OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const 615 /// 616 /// Everything through visibility has been parsed already. 617 /// 618 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, 619 unsigned Linkage, bool HasLinkage, 620 unsigned Visibility) { 621 unsigned AddrSpace; 622 bool IsConstant, UnnamedAddr; 623 GlobalVariable::ThreadLocalMode TLM; 624 LocTy UnnamedAddrLoc; 625 LocTy TyLoc; 626 627 Type *Ty = 0; 628 if (ParseOptionalThreadLocal(TLM) || 629 ParseOptionalAddrSpace(AddrSpace) || 630 ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr, 631 &UnnamedAddrLoc) || 632 ParseGlobalType(IsConstant) || 633 ParseType(Ty, TyLoc)) 634 return true; 635 636 // If the linkage is specified and is external, then no initializer is 637 // present. 638 Constant *Init = 0; 639 if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage && 640 Linkage != GlobalValue::ExternalWeakLinkage && 641 Linkage != GlobalValue::ExternalLinkage)) { 642 if (ParseGlobalValue(Ty, Init)) 643 return true; 644 } 645 646 if (Ty->isFunctionTy() || Ty->isLabelTy()) 647 return Error(TyLoc, "invalid type for global variable"); 648 649 GlobalVariable *GV = 0; 650 651 // See if the global was forward referenced, if so, use the global. 652 if (!Name.empty()) { 653 if (GlobalValue *GVal = M->getNamedValue(Name)) { 654 if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal)) 655 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 656 GV = cast<GlobalVariable>(GVal); 657 } 658 } else { 659 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator 660 I = ForwardRefValIDs.find(NumberedVals.size()); 661 if (I != ForwardRefValIDs.end()) { 662 GV = cast<GlobalVariable>(I->second.first); 663 ForwardRefValIDs.erase(I); 664 } 665 } 666 667 if (GV == 0) { 668 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0, 669 Name, 0, GlobalVariable::NotThreadLocal, 670 AddrSpace); 671 } else { 672 if (GV->getType()->getElementType() != Ty) 673 return Error(TyLoc, 674 "forward reference and definition of global have different types"); 675 676 // Move the forward-reference to the correct spot in the module. 677 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 678 } 679 680 if (Name.empty()) 681 NumberedVals.push_back(GV); 682 683 // Set the parsed properties on the global. 684 if (Init) 685 GV->setInitializer(Init); 686 GV->setConstant(IsConstant); 687 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 688 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 689 GV->setThreadLocalMode(TLM); 690 GV->setUnnamedAddr(UnnamedAddr); 691 692 // Parse attributes on the global. 693 while (Lex.getKind() == lltok::comma) { 694 Lex.Lex(); 695 696 if (Lex.getKind() == lltok::kw_section) { 697 Lex.Lex(); 698 GV->setSection(Lex.getStrVal()); 699 if (ParseToken(lltok::StringConstant, "expected global section string")) 700 return true; 701 } else if (Lex.getKind() == lltok::kw_align) { 702 unsigned Alignment; 703 if (ParseOptionalAlignment(Alignment)) return true; 704 GV->setAlignment(Alignment); 705 } else { 706 TokError("unknown global variable property!"); 707 } 708 } 709 710 return false; 711 } 712 713 714 //===----------------------------------------------------------------------===// 715 // GlobalValue Reference/Resolution Routines. 716 //===----------------------------------------------------------------------===// 717 718 /// GetGlobalVal - Get a value with the specified name or ID, creating a 719 /// forward reference record if needed. This can return null if the value 720 /// exists but does not have the right type. 721 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty, 722 LocTy Loc) { 723 PointerType *PTy = dyn_cast<PointerType>(Ty); 724 if (PTy == 0) { 725 Error(Loc, "global variable reference must have pointer type"); 726 return 0; 727 } 728 729 // Look this name up in the normal function symbol table. 730 GlobalValue *Val = 731 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 732 733 // If this is a forward reference for the value, see if we already created a 734 // forward ref record. 735 if (Val == 0) { 736 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator 737 I = ForwardRefVals.find(Name); 738 if (I != ForwardRefVals.end()) 739 Val = I->second.first; 740 } 741 742 // If we have the value in the symbol table or fwd-ref table, return it. 743 if (Val) { 744 if (Val->getType() == Ty) return Val; 745 Error(Loc, "'@" + Name + "' defined with type '" + 746 getTypeString(Val->getType()) + "'"); 747 return 0; 748 } 749 750 // Otherwise, create a new forward reference for this value and remember it. 751 GlobalValue *FwdVal; 752 if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) 753 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M); 754 else 755 FwdVal = new GlobalVariable(*M, PTy->getElementType(), false, 756 GlobalValue::ExternalWeakLinkage, 0, Name, 757 0, GlobalVariable::NotThreadLocal, 758 PTy->getAddressSpace()); 759 760 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 761 return FwdVal; 762 } 763 764 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) { 765 PointerType *PTy = dyn_cast<PointerType>(Ty); 766 if (PTy == 0) { 767 Error(Loc, "global variable reference must have pointer type"); 768 return 0; 769 } 770 771 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0; 772 773 // If this is a forward reference for the value, see if we already created a 774 // forward ref record. 775 if (Val == 0) { 776 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator 777 I = ForwardRefValIDs.find(ID); 778 if (I != ForwardRefValIDs.end()) 779 Val = I->second.first; 780 } 781 782 // If we have the value in the symbol table or fwd-ref table, return it. 783 if (Val) { 784 if (Val->getType() == Ty) return Val; 785 Error(Loc, "'@" + Twine(ID) + "' defined with type '" + 786 getTypeString(Val->getType()) + "'"); 787 return 0; 788 } 789 790 // Otherwise, create a new forward reference for this value and remember it. 791 GlobalValue *FwdVal; 792 if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) 793 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M); 794 else 795 FwdVal = new GlobalVariable(*M, PTy->getElementType(), false, 796 GlobalValue::ExternalWeakLinkage, 0, ""); 797 798 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 799 return FwdVal; 800 } 801 802 803 //===----------------------------------------------------------------------===// 804 // Helper Routines. 805 //===----------------------------------------------------------------------===// 806 807 /// ParseToken - If the current token has the specified kind, eat it and return 808 /// success. Otherwise, emit the specified error and return failure. 809 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { 810 if (Lex.getKind() != T) 811 return TokError(ErrMsg); 812 Lex.Lex(); 813 return false; 814 } 815 816 /// ParseStringConstant 817 /// ::= StringConstant 818 bool LLParser::ParseStringConstant(std::string &Result) { 819 if (Lex.getKind() != lltok::StringConstant) 820 return TokError("expected string constant"); 821 Result = Lex.getStrVal(); 822 Lex.Lex(); 823 return false; 824 } 825 826 /// ParseUInt32 827 /// ::= uint32 828 bool LLParser::ParseUInt32(unsigned &Val) { 829 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 830 return TokError("expected integer"); 831 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 832 if (Val64 != unsigned(Val64)) 833 return TokError("expected 32-bit integer (too large)"); 834 Val = Val64; 835 Lex.Lex(); 836 return false; 837 } 838 839 /// ParseTLSModel 840 /// := 'localdynamic' 841 /// := 'initialexec' 842 /// := 'localexec' 843 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 844 switch (Lex.getKind()) { 845 default: 846 return TokError("expected localdynamic, initialexec or localexec"); 847 case lltok::kw_localdynamic: 848 TLM = GlobalVariable::LocalDynamicTLSModel; 849 break; 850 case lltok::kw_initialexec: 851 TLM = GlobalVariable::InitialExecTLSModel; 852 break; 853 case lltok::kw_localexec: 854 TLM = GlobalVariable::LocalExecTLSModel; 855 break; 856 } 857 858 Lex.Lex(); 859 return false; 860 } 861 862 /// ParseOptionalThreadLocal 863 /// := /*empty*/ 864 /// := 'thread_local' 865 /// := 'thread_local' '(' tlsmodel ')' 866 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 867 TLM = GlobalVariable::NotThreadLocal; 868 if (!EatIfPresent(lltok::kw_thread_local)) 869 return false; 870 871 TLM = GlobalVariable::GeneralDynamicTLSModel; 872 if (Lex.getKind() == lltok::lparen) { 873 Lex.Lex(); 874 return ParseTLSModel(TLM) || 875 ParseToken(lltok::rparen, "expected ')' after thread local model"); 876 } 877 return false; 878 } 879 880 /// ParseOptionalAddrSpace 881 /// := /*empty*/ 882 /// := 'addrspace' '(' uint32 ')' 883 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) { 884 AddrSpace = 0; 885 if (!EatIfPresent(lltok::kw_addrspace)) 886 return false; 887 return ParseToken(lltok::lparen, "expected '(' in address space") || 888 ParseUInt32(AddrSpace) || 889 ParseToken(lltok::rparen, "expected ')' in address space"); 890 } 891 892 /// ParseOptionalAttrs - Parse a potentially empty attribute list. AttrKind 893 /// indicates what kind of attribute list this is: 0: function arg, 1: result, 894 /// 2: function attr. 895 bool LLParser::ParseOptionalAttrs(AttrBuilder &B, unsigned AttrKind) { 896 LocTy AttrLoc = Lex.getLoc(); 897 bool HaveError = false; 898 899 B.clear(); 900 901 while (1) { 902 lltok::Kind Token = Lex.getKind(); 903 switch (Token) { 904 default: // End of attributes. 905 return HaveError; 906 case lltok::kw_zeroext: B.addAttribute(Attributes::ZExt); break; 907 case lltok::kw_signext: B.addAttribute(Attributes::SExt); break; 908 case lltok::kw_inreg: B.addAttribute(Attributes::InReg); break; 909 case lltok::kw_sret: B.addAttribute(Attributes::StructRet); break; 910 case lltok::kw_noalias: B.addAttribute(Attributes::NoAlias); break; 911 case lltok::kw_nocapture: B.addAttribute(Attributes::NoCapture); break; 912 case lltok::kw_byval: B.addAttribute(Attributes::ByVal); break; 913 case lltok::kw_nest: B.addAttribute(Attributes::Nest); break; 914 915 case lltok::kw_noreturn: B.addAttribute(Attributes::NoReturn); break; 916 case lltok::kw_nounwind: B.addAttribute(Attributes::NoUnwind); break; 917 case lltok::kw_uwtable: B.addAttribute(Attributes::UWTable); break; 918 case lltok::kw_returns_twice: B.addAttribute(Attributes::ReturnsTwice); break; 919 case lltok::kw_noinline: B.addAttribute(Attributes::NoInline); break; 920 case lltok::kw_readnone: B.addAttribute(Attributes::ReadNone); break; 921 case lltok::kw_readonly: B.addAttribute(Attributes::ReadOnly); break; 922 case lltok::kw_inlinehint: B.addAttribute(Attributes::InlineHint); break; 923 case lltok::kw_alwaysinline: B.addAttribute(Attributes::AlwaysInline); break; 924 case lltok::kw_optsize: B.addAttribute(Attributes::OptimizeForSize); break; 925 case lltok::kw_ssp: B.addAttribute(Attributes::StackProtect); break; 926 case lltok::kw_sspreq: B.addAttribute(Attributes::StackProtectReq); break; 927 case lltok::kw_noredzone: B.addAttribute(Attributes::NoRedZone); break; 928 case lltok::kw_noimplicitfloat: B.addAttribute(Attributes::NoImplicitFloat); break; 929 case lltok::kw_naked: B.addAttribute(Attributes::Naked); break; 930 case lltok::kw_nonlazybind: B.addAttribute(Attributes::NonLazyBind); break; 931 case lltok::kw_address_safety: B.addAttribute(Attributes::AddressSafety); break; 932 case lltok::kw_minsize: B.addAttribute(Attributes::MinSize); break; 933 934 case lltok::kw_alignstack: { 935 unsigned Alignment; 936 if (ParseOptionalStackAlignment(Alignment)) 937 return true; 938 B.addStackAlignmentAttr(Alignment); 939 continue; 940 } 941 942 case lltok::kw_align: { 943 unsigned Alignment; 944 if (ParseOptionalAlignment(Alignment)) 945 return true; 946 B.addAlignmentAttr(Alignment); 947 continue; 948 } 949 950 } 951 952 // Perform some error checking. 953 switch (Token) { 954 default: 955 if (AttrKind == 2) 956 HaveError |= Error(AttrLoc, "invalid use of attribute on a function"); 957 break; 958 case lltok::kw_align: 959 // As a hack, we allow "align 2" on functions as a synonym for 960 // "alignstack 2". 961 break; 962 963 // Parameter Only: 964 case lltok::kw_sret: 965 case lltok::kw_nocapture: 966 case lltok::kw_byval: 967 case lltok::kw_nest: 968 if (AttrKind != 0) 969 HaveError |= Error(AttrLoc, "invalid use of parameter-only attribute"); 970 break; 971 972 // Function Only: 973 case lltok::kw_noreturn: 974 case lltok::kw_nounwind: 975 case lltok::kw_readnone: 976 case lltok::kw_readonly: 977 case lltok::kw_noinline: 978 case lltok::kw_alwaysinline: 979 case lltok::kw_optsize: 980 case lltok::kw_ssp: 981 case lltok::kw_sspreq: 982 case lltok::kw_noredzone: 983 case lltok::kw_noimplicitfloat: 984 case lltok::kw_naked: 985 case lltok::kw_inlinehint: 986 case lltok::kw_alignstack: 987 case lltok::kw_uwtable: 988 case lltok::kw_nonlazybind: 989 case lltok::kw_returns_twice: 990 case lltok::kw_address_safety: 991 case lltok::kw_minsize: 992 if (AttrKind != 2) 993 HaveError |= Error(AttrLoc, "invalid use of function-only attribute"); 994 break; 995 } 996 997 Lex.Lex(); 998 } 999 } 1000 1001 /// ParseOptionalLinkage 1002 /// ::= /*empty*/ 1003 /// ::= 'private' 1004 /// ::= 'linker_private' 1005 /// ::= 'linker_private_weak' 1006 /// ::= 'internal' 1007 /// ::= 'weak' 1008 /// ::= 'weak_odr' 1009 /// ::= 'linkonce' 1010 /// ::= 'linkonce_odr' 1011 /// ::= 'linkonce_odr_auto_hide' 1012 /// ::= 'available_externally' 1013 /// ::= 'appending' 1014 /// ::= 'dllexport' 1015 /// ::= 'common' 1016 /// ::= 'dllimport' 1017 /// ::= 'extern_weak' 1018 /// ::= 'external' 1019 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) { 1020 HasLinkage = false; 1021 switch (Lex.getKind()) { 1022 default: Res=GlobalValue::ExternalLinkage; return false; 1023 case lltok::kw_private: Res = GlobalValue::PrivateLinkage; break; 1024 case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break; 1025 case lltok::kw_linker_private_weak: 1026 Res = GlobalValue::LinkerPrivateWeakLinkage; 1027 break; 1028 case lltok::kw_internal: Res = GlobalValue::InternalLinkage; break; 1029 case lltok::kw_weak: Res = GlobalValue::WeakAnyLinkage; break; 1030 case lltok::kw_weak_odr: Res = GlobalValue::WeakODRLinkage; break; 1031 case lltok::kw_linkonce: Res = GlobalValue::LinkOnceAnyLinkage; break; 1032 case lltok::kw_linkonce_odr: Res = GlobalValue::LinkOnceODRLinkage; break; 1033 case lltok::kw_linkonce_odr_auto_hide: 1034 case lltok::kw_linker_private_weak_def_auto: // FIXME: For backwards compat. 1035 Res = GlobalValue::LinkOnceODRAutoHideLinkage; 1036 break; 1037 case lltok::kw_available_externally: 1038 Res = GlobalValue::AvailableExternallyLinkage; 1039 break; 1040 case lltok::kw_appending: Res = GlobalValue::AppendingLinkage; break; 1041 case lltok::kw_dllexport: Res = GlobalValue::DLLExportLinkage; break; 1042 case lltok::kw_common: Res = GlobalValue::CommonLinkage; break; 1043 case lltok::kw_dllimport: Res = GlobalValue::DLLImportLinkage; break; 1044 case lltok::kw_extern_weak: Res = GlobalValue::ExternalWeakLinkage; break; 1045 case lltok::kw_external: Res = GlobalValue::ExternalLinkage; break; 1046 } 1047 Lex.Lex(); 1048 HasLinkage = true; 1049 return false; 1050 } 1051 1052 /// ParseOptionalVisibility 1053 /// ::= /*empty*/ 1054 /// ::= 'default' 1055 /// ::= 'hidden' 1056 /// ::= 'protected' 1057 /// 1058 bool LLParser::ParseOptionalVisibility(unsigned &Res) { 1059 switch (Lex.getKind()) { 1060 default: Res = GlobalValue::DefaultVisibility; return false; 1061 case lltok::kw_default: Res = GlobalValue::DefaultVisibility; break; 1062 case lltok::kw_hidden: Res = GlobalValue::HiddenVisibility; break; 1063 case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break; 1064 } 1065 Lex.Lex(); 1066 return false; 1067 } 1068 1069 /// ParseOptionalCallingConv 1070 /// ::= /*empty*/ 1071 /// ::= 'ccc' 1072 /// ::= 'fastcc' 1073 /// ::= 'kw_intel_ocl_bicc' 1074 /// ::= 'coldcc' 1075 /// ::= 'x86_stdcallcc' 1076 /// ::= 'x86_fastcallcc' 1077 /// ::= 'x86_thiscallcc' 1078 /// ::= 'arm_apcscc' 1079 /// ::= 'arm_aapcscc' 1080 /// ::= 'arm_aapcs_vfpcc' 1081 /// ::= 'msp430_intrcc' 1082 /// ::= 'ptx_kernel' 1083 /// ::= 'ptx_device' 1084 /// ::= 'spir_func' 1085 /// ::= 'spir_kernel' 1086 /// ::= 'cc' UINT 1087 /// 1088 bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) { 1089 switch (Lex.getKind()) { 1090 default: CC = CallingConv::C; return false; 1091 case lltok::kw_ccc: CC = CallingConv::C; break; 1092 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1093 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1094 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1095 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1096 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1097 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1098 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1099 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1100 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1101 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1102 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1103 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 1104 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 1105 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 1106 case lltok::kw_cc: { 1107 unsigned ArbitraryCC; 1108 Lex.Lex(); 1109 if (ParseUInt32(ArbitraryCC)) 1110 return true; 1111 CC = static_cast<CallingConv::ID>(ArbitraryCC); 1112 return false; 1113 } 1114 } 1115 1116 Lex.Lex(); 1117 return false; 1118 } 1119 1120 /// ParseInstructionMetadata 1121 /// ::= !dbg !42 (',' !dbg !57)* 1122 bool LLParser::ParseInstructionMetadata(Instruction *Inst, 1123 PerFunctionState *PFS) { 1124 do { 1125 if (Lex.getKind() != lltok::MetadataVar) 1126 return TokError("expected metadata after comma"); 1127 1128 std::string Name = Lex.getStrVal(); 1129 unsigned MDK = M->getMDKindID(Name); 1130 Lex.Lex(); 1131 1132 MDNode *Node; 1133 SMLoc Loc = Lex.getLoc(); 1134 1135 if (ParseToken(lltok::exclaim, "expected '!' here")) 1136 return true; 1137 1138 // This code is similar to that of ParseMetadataValue, however it needs to 1139 // have special-case code for a forward reference; see the comments on 1140 // ForwardRefInstMetadata for details. Also, MDStrings are not supported 1141 // at the top level here. 1142 if (Lex.getKind() == lltok::lbrace) { 1143 ValID ID; 1144 if (ParseMetadataListValue(ID, PFS)) 1145 return true; 1146 assert(ID.Kind == ValID::t_MDNode); 1147 Inst->setMetadata(MDK, ID.MDNodeVal); 1148 } else { 1149 unsigned NodeID = 0; 1150 if (ParseMDNodeID(Node, NodeID)) 1151 return true; 1152 if (Node) { 1153 // If we got the node, add it to the instruction. 1154 Inst->setMetadata(MDK, Node); 1155 } else { 1156 MDRef R = { Loc, MDK, NodeID }; 1157 // Otherwise, remember that this should be resolved later. 1158 ForwardRefInstMetadata[Inst].push_back(R); 1159 } 1160 } 1161 1162 // If this is the end of the list, we're done. 1163 } while (EatIfPresent(lltok::comma)); 1164 return false; 1165 } 1166 1167 /// ParseOptionalAlignment 1168 /// ::= /* empty */ 1169 /// ::= 'align' 4 1170 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) { 1171 Alignment = 0; 1172 if (!EatIfPresent(lltok::kw_align)) 1173 return false; 1174 LocTy AlignLoc = Lex.getLoc(); 1175 if (ParseUInt32(Alignment)) return true; 1176 if (!isPowerOf2_32(Alignment)) 1177 return Error(AlignLoc, "alignment is not a power of two"); 1178 if (Alignment > Value::MaximumAlignment) 1179 return Error(AlignLoc, "huge alignments are not supported yet"); 1180 return false; 1181 } 1182 1183 /// ParseOptionalCommaAlign 1184 /// ::= 1185 /// ::= ',' align 4 1186 /// 1187 /// This returns with AteExtraComma set to true if it ate an excess comma at the 1188 /// end. 1189 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment, 1190 bool &AteExtraComma) { 1191 AteExtraComma = false; 1192 while (EatIfPresent(lltok::comma)) { 1193 // Metadata at the end is an early exit. 1194 if (Lex.getKind() == lltok::MetadataVar) { 1195 AteExtraComma = true; 1196 return false; 1197 } 1198 1199 if (Lex.getKind() != lltok::kw_align) 1200 return Error(Lex.getLoc(), "expected metadata or 'align'"); 1201 1202 if (ParseOptionalAlignment(Alignment)) return true; 1203 } 1204 1205 return false; 1206 } 1207 1208 /// ParseScopeAndOrdering 1209 /// if isAtomic: ::= 'singlethread'? AtomicOrdering 1210 /// else: ::= 1211 /// 1212 /// This sets Scope and Ordering to the parsed values. 1213 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope, 1214 AtomicOrdering &Ordering) { 1215 if (!isAtomic) 1216 return false; 1217 1218 Scope = CrossThread; 1219 if (EatIfPresent(lltok::kw_singlethread)) 1220 Scope = SingleThread; 1221 switch (Lex.getKind()) { 1222 default: return TokError("Expected ordering on atomic instruction"); 1223 case lltok::kw_unordered: Ordering = Unordered; break; 1224 case lltok::kw_monotonic: Ordering = Monotonic; break; 1225 case lltok::kw_acquire: Ordering = Acquire; break; 1226 case lltok::kw_release: Ordering = Release; break; 1227 case lltok::kw_acq_rel: Ordering = AcquireRelease; break; 1228 case lltok::kw_seq_cst: Ordering = SequentiallyConsistent; break; 1229 } 1230 Lex.Lex(); 1231 return false; 1232 } 1233 1234 /// ParseOptionalStackAlignment 1235 /// ::= /* empty */ 1236 /// ::= 'alignstack' '(' 4 ')' 1237 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { 1238 Alignment = 0; 1239 if (!EatIfPresent(lltok::kw_alignstack)) 1240 return false; 1241 LocTy ParenLoc = Lex.getLoc(); 1242 if (!EatIfPresent(lltok::lparen)) 1243 return Error(ParenLoc, "expected '('"); 1244 LocTy AlignLoc = Lex.getLoc(); 1245 if (ParseUInt32(Alignment)) return true; 1246 ParenLoc = Lex.getLoc(); 1247 if (!EatIfPresent(lltok::rparen)) 1248 return Error(ParenLoc, "expected ')'"); 1249 if (!isPowerOf2_32(Alignment)) 1250 return Error(AlignLoc, "stack alignment is not a power of two"); 1251 return false; 1252 } 1253 1254 /// ParseIndexList - This parses the index list for an insert/extractvalue 1255 /// instruction. This sets AteExtraComma in the case where we eat an extra 1256 /// comma at the end of the line and find that it is followed by metadata. 1257 /// Clients that don't allow metadata can call the version of this function that 1258 /// only takes one argument. 1259 /// 1260 /// ParseIndexList 1261 /// ::= (',' uint32)+ 1262 /// 1263 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, 1264 bool &AteExtraComma) { 1265 AteExtraComma = false; 1266 1267 if (Lex.getKind() != lltok::comma) 1268 return TokError("expected ',' as start of index list"); 1269 1270 while (EatIfPresent(lltok::comma)) { 1271 if (Lex.getKind() == lltok::MetadataVar) { 1272 AteExtraComma = true; 1273 return false; 1274 } 1275 unsigned Idx = 0; 1276 if (ParseUInt32(Idx)) return true; 1277 Indices.push_back(Idx); 1278 } 1279 1280 return false; 1281 } 1282 1283 //===----------------------------------------------------------------------===// 1284 // Type Parsing. 1285 //===----------------------------------------------------------------------===// 1286 1287 /// ParseType - Parse a type. 1288 bool LLParser::ParseType(Type *&Result, bool AllowVoid) { 1289 SMLoc TypeLoc = Lex.getLoc(); 1290 switch (Lex.getKind()) { 1291 default: 1292 return TokError("expected type"); 1293 case lltok::Type: 1294 // Type ::= 'float' | 'void' (etc) 1295 Result = Lex.getTyVal(); 1296 Lex.Lex(); 1297 break; 1298 case lltok::lbrace: 1299 // Type ::= StructType 1300 if (ParseAnonStructType(Result, false)) 1301 return true; 1302 break; 1303 case lltok::lsquare: 1304 // Type ::= '[' ... ']' 1305 Lex.Lex(); // eat the lsquare. 1306 if (ParseArrayVectorType(Result, false)) 1307 return true; 1308 break; 1309 case lltok::less: // Either vector or packed struct. 1310 // Type ::= '<' ... '>' 1311 Lex.Lex(); 1312 if (Lex.getKind() == lltok::lbrace) { 1313 if (ParseAnonStructType(Result, true) || 1314 ParseToken(lltok::greater, "expected '>' at end of packed struct")) 1315 return true; 1316 } else if (ParseArrayVectorType(Result, true)) 1317 return true; 1318 break; 1319 case lltok::LocalVar: { 1320 // Type ::= %foo 1321 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 1322 1323 // If the type hasn't been defined yet, create a forward definition and 1324 // remember where that forward def'n was seen (in case it never is defined). 1325 if (Entry.first == 0) { 1326 Entry.first = StructType::create(Context, Lex.getStrVal()); 1327 Entry.second = Lex.getLoc(); 1328 } 1329 Result = Entry.first; 1330 Lex.Lex(); 1331 break; 1332 } 1333 1334 case lltok::LocalVarID: { 1335 // Type ::= %4 1336 if (Lex.getUIntVal() >= NumberedTypes.size()) 1337 NumberedTypes.resize(Lex.getUIntVal()+1); 1338 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 1339 1340 // If the type hasn't been defined yet, create a forward definition and 1341 // remember where that forward def'n was seen (in case it never is defined). 1342 if (Entry.first == 0) { 1343 Entry.first = StructType::create(Context); 1344 Entry.second = Lex.getLoc(); 1345 } 1346 Result = Entry.first; 1347 Lex.Lex(); 1348 break; 1349 } 1350 } 1351 1352 // Parse the type suffixes. 1353 while (1) { 1354 switch (Lex.getKind()) { 1355 // End of type. 1356 default: 1357 if (!AllowVoid && Result->isVoidTy()) 1358 return Error(TypeLoc, "void type only allowed for function results"); 1359 return false; 1360 1361 // Type ::= Type '*' 1362 case lltok::star: 1363 if (Result->isLabelTy()) 1364 return TokError("basic block pointers are invalid"); 1365 if (Result->isVoidTy()) 1366 return TokError("pointers to void are invalid - use i8* instead"); 1367 if (!PointerType::isValidElementType(Result)) 1368 return TokError("pointer to this type is invalid"); 1369 Result = PointerType::getUnqual(Result); 1370 Lex.Lex(); 1371 break; 1372 1373 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 1374 case lltok::kw_addrspace: { 1375 if (Result->isLabelTy()) 1376 return TokError("basic block pointers are invalid"); 1377 if (Result->isVoidTy()) 1378 return TokError("pointers to void are invalid; use i8* instead"); 1379 if (!PointerType::isValidElementType(Result)) 1380 return TokError("pointer to this type is invalid"); 1381 unsigned AddrSpace; 1382 if (ParseOptionalAddrSpace(AddrSpace) || 1383 ParseToken(lltok::star, "expected '*' in address space")) 1384 return true; 1385 1386 Result = PointerType::get(Result, AddrSpace); 1387 break; 1388 } 1389 1390 /// Types '(' ArgTypeListI ')' OptFuncAttrs 1391 case lltok::lparen: 1392 if (ParseFunctionType(Result)) 1393 return true; 1394 break; 1395 } 1396 } 1397 } 1398 1399 /// ParseParameterList 1400 /// ::= '(' ')' 1401 /// ::= '(' Arg (',' Arg)* ')' 1402 /// Arg 1403 /// ::= Type OptionalAttributes Value OptionalAttributes 1404 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 1405 PerFunctionState &PFS) { 1406 if (ParseToken(lltok::lparen, "expected '(' in call")) 1407 return true; 1408 1409 while (Lex.getKind() != lltok::rparen) { 1410 // If this isn't the first argument, we need a comma. 1411 if (!ArgList.empty() && 1412 ParseToken(lltok::comma, "expected ',' in argument list")) 1413 return true; 1414 1415 // Parse the argument. 1416 LocTy ArgLoc; 1417 Type *ArgTy = 0; 1418 AttrBuilder ArgAttrs; 1419 Value *V; 1420 if (ParseType(ArgTy, ArgLoc)) 1421 return true; 1422 1423 // Otherwise, handle normal operands. 1424 if (ParseOptionalAttrs(ArgAttrs, 0) || ParseValue(ArgTy, V, PFS)) 1425 return true; 1426 ArgList.push_back(ParamInfo(ArgLoc, V, Attributes::get(V->getContext(), 1427 ArgAttrs))); 1428 } 1429 1430 Lex.Lex(); // Lex the ')'. 1431 return false; 1432 } 1433 1434 1435 1436 /// ParseArgumentList - Parse the argument list for a function type or function 1437 /// prototype. 1438 /// ::= '(' ArgTypeListI ')' 1439 /// ArgTypeListI 1440 /// ::= /*empty*/ 1441 /// ::= '...' 1442 /// ::= ArgTypeList ',' '...' 1443 /// ::= ArgType (',' ArgType)* 1444 /// 1445 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 1446 bool &isVarArg){ 1447 isVarArg = false; 1448 assert(Lex.getKind() == lltok::lparen); 1449 Lex.Lex(); // eat the (. 1450 1451 if (Lex.getKind() == lltok::rparen) { 1452 // empty 1453 } else if (Lex.getKind() == lltok::dotdotdot) { 1454 isVarArg = true; 1455 Lex.Lex(); 1456 } else { 1457 LocTy TypeLoc = Lex.getLoc(); 1458 Type *ArgTy = 0; 1459 AttrBuilder Attrs; 1460 std::string Name; 1461 1462 if (ParseType(ArgTy) || 1463 ParseOptionalAttrs(Attrs, 0)) return true; 1464 1465 if (ArgTy->isVoidTy()) 1466 return Error(TypeLoc, "argument can not have void type"); 1467 1468 if (Lex.getKind() == lltok::LocalVar) { 1469 Name = Lex.getStrVal(); 1470 Lex.Lex(); 1471 } 1472 1473 if (!FunctionType::isValidArgumentType(ArgTy)) 1474 return Error(TypeLoc, "invalid type for function argument"); 1475 1476 ArgList.push_back(ArgInfo(TypeLoc, ArgTy, 1477 Attributes::get(ArgTy->getContext(), 1478 Attrs), Name)); 1479 1480 while (EatIfPresent(lltok::comma)) { 1481 // Handle ... at end of arg list. 1482 if (EatIfPresent(lltok::dotdotdot)) { 1483 isVarArg = true; 1484 break; 1485 } 1486 1487 // Otherwise must be an argument type. 1488 TypeLoc = Lex.getLoc(); 1489 if (ParseType(ArgTy) || ParseOptionalAttrs(Attrs, 0)) return true; 1490 1491 if (ArgTy->isVoidTy()) 1492 return Error(TypeLoc, "argument can not have void type"); 1493 1494 if (Lex.getKind() == lltok::LocalVar) { 1495 Name = Lex.getStrVal(); 1496 Lex.Lex(); 1497 } else { 1498 Name = ""; 1499 } 1500 1501 if (!ArgTy->isFirstClassType()) 1502 return Error(TypeLoc, "invalid type for function argument"); 1503 1504 ArgList.push_back(ArgInfo(TypeLoc, ArgTy, 1505 Attributes::get(ArgTy->getContext(), Attrs), 1506 Name)); 1507 } 1508 } 1509 1510 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 1511 } 1512 1513 /// ParseFunctionType 1514 /// ::= Type ArgumentList OptionalAttrs 1515 bool LLParser::ParseFunctionType(Type *&Result) { 1516 assert(Lex.getKind() == lltok::lparen); 1517 1518 if (!FunctionType::isValidReturnType(Result)) 1519 return TokError("invalid function return type"); 1520 1521 SmallVector<ArgInfo, 8> ArgList; 1522 bool isVarArg; 1523 if (ParseArgumentList(ArgList, isVarArg)) 1524 return true; 1525 1526 // Reject names on the arguments lists. 1527 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 1528 if (!ArgList[i].Name.empty()) 1529 return Error(ArgList[i].Loc, "argument name invalid in function type"); 1530 if (ArgList[i].Attrs.hasAttributes()) 1531 return Error(ArgList[i].Loc, 1532 "argument attributes invalid in function type"); 1533 } 1534 1535 SmallVector<Type*, 16> ArgListTy; 1536 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 1537 ArgListTy.push_back(ArgList[i].Ty); 1538 1539 Result = FunctionType::get(Result, ArgListTy, isVarArg); 1540 return false; 1541 } 1542 1543 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into 1544 /// other structs. 1545 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) { 1546 SmallVector<Type*, 8> Elts; 1547 if (ParseStructBody(Elts)) return true; 1548 1549 Result = StructType::get(Context, Elts, Packed); 1550 return false; 1551 } 1552 1553 /// ParseStructDefinition - Parse a struct in a 'type' definition. 1554 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name, 1555 std::pair<Type*, LocTy> &Entry, 1556 Type *&ResultTy) { 1557 // If the type was already defined, diagnose the redefinition. 1558 if (Entry.first && !Entry.second.isValid()) 1559 return Error(TypeLoc, "redefinition of type"); 1560 1561 // If we have opaque, just return without filling in the definition for the 1562 // struct. This counts as a definition as far as the .ll file goes. 1563 if (EatIfPresent(lltok::kw_opaque)) { 1564 // This type is being defined, so clear the location to indicate this. 1565 Entry.second = SMLoc(); 1566 1567 // If this type number has never been uttered, create it. 1568 if (Entry.first == 0) 1569 Entry.first = StructType::create(Context, Name); 1570 ResultTy = Entry.first; 1571 return false; 1572 } 1573 1574 // If the type starts with '<', then it is either a packed struct or a vector. 1575 bool isPacked = EatIfPresent(lltok::less); 1576 1577 // If we don't have a struct, then we have a random type alias, which we 1578 // accept for compatibility with old files. These types are not allowed to be 1579 // forward referenced and not allowed to be recursive. 1580 if (Lex.getKind() != lltok::lbrace) { 1581 if (Entry.first) 1582 return Error(TypeLoc, "forward references to non-struct type"); 1583 1584 ResultTy = 0; 1585 if (isPacked) 1586 return ParseArrayVectorType(ResultTy, true); 1587 return ParseType(ResultTy); 1588 } 1589 1590 // This type is being defined, so clear the location to indicate this. 1591 Entry.second = SMLoc(); 1592 1593 // If this type number has never been uttered, create it. 1594 if (Entry.first == 0) 1595 Entry.first = StructType::create(Context, Name); 1596 1597 StructType *STy = cast<StructType>(Entry.first); 1598 1599 SmallVector<Type*, 8> Body; 1600 if (ParseStructBody(Body) || 1601 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct"))) 1602 return true; 1603 1604 STy->setBody(Body, isPacked); 1605 ResultTy = STy; 1606 return false; 1607 } 1608 1609 1610 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. 1611 /// StructType 1612 /// ::= '{' '}' 1613 /// ::= '{' Type (',' Type)* '}' 1614 /// ::= '<' '{' '}' '>' 1615 /// ::= '<' '{' Type (',' Type)* '}' '>' 1616 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) { 1617 assert(Lex.getKind() == lltok::lbrace); 1618 Lex.Lex(); // Consume the '{' 1619 1620 // Handle the empty struct. 1621 if (EatIfPresent(lltok::rbrace)) 1622 return false; 1623 1624 LocTy EltTyLoc = Lex.getLoc(); 1625 Type *Ty = 0; 1626 if (ParseType(Ty)) return true; 1627 Body.push_back(Ty); 1628 1629 if (!StructType::isValidElementType(Ty)) 1630 return Error(EltTyLoc, "invalid element type for struct"); 1631 1632 while (EatIfPresent(lltok::comma)) { 1633 EltTyLoc = Lex.getLoc(); 1634 if (ParseType(Ty)) return true; 1635 1636 if (!StructType::isValidElementType(Ty)) 1637 return Error(EltTyLoc, "invalid element type for struct"); 1638 1639 Body.push_back(Ty); 1640 } 1641 1642 return ParseToken(lltok::rbrace, "expected '}' at end of struct"); 1643 } 1644 1645 /// ParseArrayVectorType - Parse an array or vector type, assuming the first 1646 /// token has already been consumed. 1647 /// Type 1648 /// ::= '[' APSINTVAL 'x' Types ']' 1649 /// ::= '<' APSINTVAL 'x' Types '>' 1650 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) { 1651 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 1652 Lex.getAPSIntVal().getBitWidth() > 64) 1653 return TokError("expected number in address space"); 1654 1655 LocTy SizeLoc = Lex.getLoc(); 1656 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 1657 Lex.Lex(); 1658 1659 if (ParseToken(lltok::kw_x, "expected 'x' after element count")) 1660 return true; 1661 1662 LocTy TypeLoc = Lex.getLoc(); 1663 Type *EltTy = 0; 1664 if (ParseType(EltTy)) return true; 1665 1666 if (ParseToken(isVector ? lltok::greater : lltok::rsquare, 1667 "expected end of sequential type")) 1668 return true; 1669 1670 if (isVector) { 1671 if (Size == 0) 1672 return Error(SizeLoc, "zero element vector is illegal"); 1673 if ((unsigned)Size != Size) 1674 return Error(SizeLoc, "size too large for vector"); 1675 if (!VectorType::isValidElementType(EltTy)) 1676 return Error(TypeLoc, "invalid vector element type"); 1677 Result = VectorType::get(EltTy, unsigned(Size)); 1678 } else { 1679 if (!ArrayType::isValidElementType(EltTy)) 1680 return Error(TypeLoc, "invalid array element type"); 1681 Result = ArrayType::get(EltTy, Size); 1682 } 1683 return false; 1684 } 1685 1686 //===----------------------------------------------------------------------===// 1687 // Function Semantic Analysis. 1688 //===----------------------------------------------------------------------===// 1689 1690 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 1691 int functionNumber) 1692 : P(p), F(f), FunctionNumber(functionNumber) { 1693 1694 // Insert unnamed arguments into the NumberedVals list. 1695 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); 1696 AI != E; ++AI) 1697 if (!AI->hasName()) 1698 NumberedVals.push_back(AI); 1699 } 1700 1701 LLParser::PerFunctionState::~PerFunctionState() { 1702 // If there were any forward referenced non-basicblock values, delete them. 1703 for (std::map<std::string, std::pair<Value*, LocTy> >::iterator 1704 I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I) 1705 if (!isa<BasicBlock>(I->second.first)) { 1706 I->second.first->replaceAllUsesWith( 1707 UndefValue::get(I->second.first->getType())); 1708 delete I->second.first; 1709 I->second.first = 0; 1710 } 1711 1712 for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator 1713 I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I) 1714 if (!isa<BasicBlock>(I->second.first)) { 1715 I->second.first->replaceAllUsesWith( 1716 UndefValue::get(I->second.first->getType())); 1717 delete I->second.first; 1718 I->second.first = 0; 1719 } 1720 } 1721 1722 bool LLParser::PerFunctionState::FinishFunction() { 1723 // Check to see if someone took the address of labels in this block. 1724 if (!P.ForwardRefBlockAddresses.empty()) { 1725 ValID FunctionID; 1726 if (!F.getName().empty()) { 1727 FunctionID.Kind = ValID::t_GlobalName; 1728 FunctionID.StrVal = F.getName(); 1729 } else { 1730 FunctionID.Kind = ValID::t_GlobalID; 1731 FunctionID.UIntVal = FunctionNumber; 1732 } 1733 1734 std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >::iterator 1735 FRBAI = P.ForwardRefBlockAddresses.find(FunctionID); 1736 if (FRBAI != P.ForwardRefBlockAddresses.end()) { 1737 // Resolve all these references. 1738 if (P.ResolveForwardRefBlockAddresses(&F, FRBAI->second, this)) 1739 return true; 1740 1741 P.ForwardRefBlockAddresses.erase(FRBAI); 1742 } 1743 } 1744 1745 if (!ForwardRefVals.empty()) 1746 return P.Error(ForwardRefVals.begin()->second.second, 1747 "use of undefined value '%" + ForwardRefVals.begin()->first + 1748 "'"); 1749 if (!ForwardRefValIDs.empty()) 1750 return P.Error(ForwardRefValIDs.begin()->second.second, 1751 "use of undefined value '%" + 1752 Twine(ForwardRefValIDs.begin()->first) + "'"); 1753 return false; 1754 } 1755 1756 1757 /// GetVal - Get a value with the specified name or ID, creating a 1758 /// forward reference record if needed. This can return null if the value 1759 /// exists but does not have the right type. 1760 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, 1761 Type *Ty, LocTy Loc) { 1762 // Look this name up in the normal function symbol table. 1763 Value *Val = F.getValueSymbolTable().lookup(Name); 1764 1765 // If this is a forward reference for the value, see if we already created a 1766 // forward ref record. 1767 if (Val == 0) { 1768 std::map<std::string, std::pair<Value*, LocTy> >::iterator 1769 I = ForwardRefVals.find(Name); 1770 if (I != ForwardRefVals.end()) 1771 Val = I->second.first; 1772 } 1773 1774 // If we have the value in the symbol table or fwd-ref table, return it. 1775 if (Val) { 1776 if (Val->getType() == Ty) return Val; 1777 if (Ty->isLabelTy()) 1778 P.Error(Loc, "'%" + Name + "' is not a basic block"); 1779 else 1780 P.Error(Loc, "'%" + Name + "' defined with type '" + 1781 getTypeString(Val->getType()) + "'"); 1782 return 0; 1783 } 1784 1785 // Don't make placeholders with invalid type. 1786 if (!Ty->isFirstClassType() && !Ty->isLabelTy()) { 1787 P.Error(Loc, "invalid use of a non-first-class type"); 1788 return 0; 1789 } 1790 1791 // Otherwise, create a new forward reference for this value and remember it. 1792 Value *FwdVal; 1793 if (Ty->isLabelTy()) 1794 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 1795 else 1796 FwdVal = new Argument(Ty, Name); 1797 1798 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1799 return FwdVal; 1800 } 1801 1802 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, 1803 LocTy Loc) { 1804 // Look this name up in the normal function symbol table. 1805 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0; 1806 1807 // If this is a forward reference for the value, see if we already created a 1808 // forward ref record. 1809 if (Val == 0) { 1810 std::map<unsigned, std::pair<Value*, LocTy> >::iterator 1811 I = ForwardRefValIDs.find(ID); 1812 if (I != ForwardRefValIDs.end()) 1813 Val = I->second.first; 1814 } 1815 1816 // If we have the value in the symbol table or fwd-ref table, return it. 1817 if (Val) { 1818 if (Val->getType() == Ty) return Val; 1819 if (Ty->isLabelTy()) 1820 P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block"); 1821 else 1822 P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" + 1823 getTypeString(Val->getType()) + "'"); 1824 return 0; 1825 } 1826 1827 if (!Ty->isFirstClassType() && !Ty->isLabelTy()) { 1828 P.Error(Loc, "invalid use of a non-first-class type"); 1829 return 0; 1830 } 1831 1832 // Otherwise, create a new forward reference for this value and remember it. 1833 Value *FwdVal; 1834 if (Ty->isLabelTy()) 1835 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 1836 else 1837 FwdVal = new Argument(Ty); 1838 1839 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1840 return FwdVal; 1841 } 1842 1843 /// SetInstName - After an instruction is parsed and inserted into its 1844 /// basic block, this installs its name. 1845 bool LLParser::PerFunctionState::SetInstName(int NameID, 1846 const std::string &NameStr, 1847 LocTy NameLoc, Instruction *Inst) { 1848 // If this instruction has void type, it cannot have a name or ID specified. 1849 if (Inst->getType()->isVoidTy()) { 1850 if (NameID != -1 || !NameStr.empty()) 1851 return P.Error(NameLoc, "instructions returning void cannot have a name"); 1852 return false; 1853 } 1854 1855 // If this was a numbered instruction, verify that the instruction is the 1856 // expected value and resolve any forward references. 1857 if (NameStr.empty()) { 1858 // If neither a name nor an ID was specified, just use the next ID. 1859 if (NameID == -1) 1860 NameID = NumberedVals.size(); 1861 1862 if (unsigned(NameID) != NumberedVals.size()) 1863 return P.Error(NameLoc, "instruction expected to be numbered '%" + 1864 Twine(NumberedVals.size()) + "'"); 1865 1866 std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI = 1867 ForwardRefValIDs.find(NameID); 1868 if (FI != ForwardRefValIDs.end()) { 1869 if (FI->second.first->getType() != Inst->getType()) 1870 return P.Error(NameLoc, "instruction forward referenced with type '" + 1871 getTypeString(FI->second.first->getType()) + "'"); 1872 FI->second.first->replaceAllUsesWith(Inst); 1873 delete FI->second.first; 1874 ForwardRefValIDs.erase(FI); 1875 } 1876 1877 NumberedVals.push_back(Inst); 1878 return false; 1879 } 1880 1881 // Otherwise, the instruction had a name. Resolve forward refs and set it. 1882 std::map<std::string, std::pair<Value*, LocTy> >::iterator 1883 FI = ForwardRefVals.find(NameStr); 1884 if (FI != ForwardRefVals.end()) { 1885 if (FI->second.first->getType() != Inst->getType()) 1886 return P.Error(NameLoc, "instruction forward referenced with type '" + 1887 getTypeString(FI->second.first->getType()) + "'"); 1888 FI->second.first->replaceAllUsesWith(Inst); 1889 delete FI->second.first; 1890 ForwardRefVals.erase(FI); 1891 } 1892 1893 // Set the name on the instruction. 1894 Inst->setName(NameStr); 1895 1896 if (Inst->getName() != NameStr) 1897 return P.Error(NameLoc, "multiple definition of local value named '" + 1898 NameStr + "'"); 1899 return false; 1900 } 1901 1902 /// GetBB - Get a basic block with the specified name or ID, creating a 1903 /// forward reference record if needed. 1904 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, 1905 LocTy Loc) { 1906 return cast_or_null<BasicBlock>(GetVal(Name, 1907 Type::getLabelTy(F.getContext()), Loc)); 1908 } 1909 1910 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { 1911 return cast_or_null<BasicBlock>(GetVal(ID, 1912 Type::getLabelTy(F.getContext()), Loc)); 1913 } 1914 1915 /// DefineBB - Define the specified basic block, which is either named or 1916 /// unnamed. If there is an error, this returns null otherwise it returns 1917 /// the block being defined. 1918 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, 1919 LocTy Loc) { 1920 BasicBlock *BB; 1921 if (Name.empty()) 1922 BB = GetBB(NumberedVals.size(), Loc); 1923 else 1924 BB = GetBB(Name, Loc); 1925 if (BB == 0) return 0; // Already diagnosed error. 1926 1927 // Move the block to the end of the function. Forward ref'd blocks are 1928 // inserted wherever they happen to be referenced. 1929 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 1930 1931 // Remove the block from forward ref sets. 1932 if (Name.empty()) { 1933 ForwardRefValIDs.erase(NumberedVals.size()); 1934 NumberedVals.push_back(BB); 1935 } else { 1936 // BB forward references are already in the function symbol table. 1937 ForwardRefVals.erase(Name); 1938 } 1939 1940 return BB; 1941 } 1942 1943 //===----------------------------------------------------------------------===// 1944 // Constants. 1945 //===----------------------------------------------------------------------===// 1946 1947 /// ParseValID - Parse an abstract value that doesn't necessarily have a 1948 /// type implied. For example, if we parse "4" we don't know what integer type 1949 /// it has. The value will later be combined with its type and checked for 1950 /// sanity. PFS is used to convert function-local operands of metadata (since 1951 /// metadata operands are not just parsed here but also converted to values). 1952 /// PFS can be null when we are not parsing metadata values inside a function. 1953 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { 1954 ID.Loc = Lex.getLoc(); 1955 switch (Lex.getKind()) { 1956 default: return TokError("expected value token"); 1957 case lltok::GlobalID: // @42 1958 ID.UIntVal = Lex.getUIntVal(); 1959 ID.Kind = ValID::t_GlobalID; 1960 break; 1961 case lltok::GlobalVar: // @foo 1962 ID.StrVal = Lex.getStrVal(); 1963 ID.Kind = ValID::t_GlobalName; 1964 break; 1965 case lltok::LocalVarID: // %42 1966 ID.UIntVal = Lex.getUIntVal(); 1967 ID.Kind = ValID::t_LocalID; 1968 break; 1969 case lltok::LocalVar: // %foo 1970 ID.StrVal = Lex.getStrVal(); 1971 ID.Kind = ValID::t_LocalName; 1972 break; 1973 case lltok::exclaim: // !42, !{...}, or !"foo" 1974 return ParseMetadataValue(ID, PFS); 1975 case lltok::APSInt: 1976 ID.APSIntVal = Lex.getAPSIntVal(); 1977 ID.Kind = ValID::t_APSInt; 1978 break; 1979 case lltok::APFloat: 1980 ID.APFloatVal = Lex.getAPFloatVal(); 1981 ID.Kind = ValID::t_APFloat; 1982 break; 1983 case lltok::kw_true: 1984 ID.ConstantVal = ConstantInt::getTrue(Context); 1985 ID.Kind = ValID::t_Constant; 1986 break; 1987 case lltok::kw_false: 1988 ID.ConstantVal = ConstantInt::getFalse(Context); 1989 ID.Kind = ValID::t_Constant; 1990 break; 1991 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 1992 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 1993 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 1994 1995 case lltok::lbrace: { 1996 // ValID ::= '{' ConstVector '}' 1997 Lex.Lex(); 1998 SmallVector<Constant*, 16> Elts; 1999 if (ParseGlobalValueVector(Elts) || 2000 ParseToken(lltok::rbrace, "expected end of struct constant")) 2001 return true; 2002 2003 ID.ConstantStructElts = new Constant*[Elts.size()]; 2004 ID.UIntVal = Elts.size(); 2005 memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0])); 2006 ID.Kind = ValID::t_ConstantStruct; 2007 return false; 2008 } 2009 case lltok::less: { 2010 // ValID ::= '<' ConstVector '>' --> Vector. 2011 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 2012 Lex.Lex(); 2013 bool isPackedStruct = EatIfPresent(lltok::lbrace); 2014 2015 SmallVector<Constant*, 16> Elts; 2016 LocTy FirstEltLoc = Lex.getLoc(); 2017 if (ParseGlobalValueVector(Elts) || 2018 (isPackedStruct && 2019 ParseToken(lltok::rbrace, "expected end of packed struct")) || 2020 ParseToken(lltok::greater, "expected end of constant")) 2021 return true; 2022 2023 if (isPackedStruct) { 2024 ID.ConstantStructElts = new Constant*[Elts.size()]; 2025 memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0])); 2026 ID.UIntVal = Elts.size(); 2027 ID.Kind = ValID::t_PackedConstantStruct; 2028 return false; 2029 } 2030 2031 if (Elts.empty()) 2032 return Error(ID.Loc, "constant vector must not be empty"); 2033 2034 if (!Elts[0]->getType()->isIntegerTy() && 2035 !Elts[0]->getType()->isFloatingPointTy() && 2036 !Elts[0]->getType()->isPointerTy()) 2037 return Error(FirstEltLoc, 2038 "vector elements must have integer, pointer or floating point type"); 2039 2040 // Verify that all the vector elements have the same type. 2041 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 2042 if (Elts[i]->getType() != Elts[0]->getType()) 2043 return Error(FirstEltLoc, 2044 "vector element #" + Twine(i) + 2045 " is not of type '" + getTypeString(Elts[0]->getType())); 2046 2047 ID.ConstantVal = ConstantVector::get(Elts); 2048 ID.Kind = ValID::t_Constant; 2049 return false; 2050 } 2051 case lltok::lsquare: { // Array Constant 2052 Lex.Lex(); 2053 SmallVector<Constant*, 16> Elts; 2054 LocTy FirstEltLoc = Lex.getLoc(); 2055 if (ParseGlobalValueVector(Elts) || 2056 ParseToken(lltok::rsquare, "expected end of array constant")) 2057 return true; 2058 2059 // Handle empty element. 2060 if (Elts.empty()) { 2061 // Use undef instead of an array because it's inconvenient to determine 2062 // the element type at this point, there being no elements to examine. 2063 ID.Kind = ValID::t_EmptyArray; 2064 return false; 2065 } 2066 2067 if (!Elts[0]->getType()->isFirstClassType()) 2068 return Error(FirstEltLoc, "invalid array element type: " + 2069 getTypeString(Elts[0]->getType())); 2070 2071 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 2072 2073 // Verify all elements are correct type! 2074 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 2075 if (Elts[i]->getType() != Elts[0]->getType()) 2076 return Error(FirstEltLoc, 2077 "array element #" + Twine(i) + 2078 " is not of type '" + getTypeString(Elts[0]->getType())); 2079 } 2080 2081 ID.ConstantVal = ConstantArray::get(ATy, Elts); 2082 ID.Kind = ValID::t_Constant; 2083 return false; 2084 } 2085 case lltok::kw_c: // c "foo" 2086 Lex.Lex(); 2087 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 2088 false); 2089 if (ParseToken(lltok::StringConstant, "expected string")) return true; 2090 ID.Kind = ValID::t_Constant; 2091 return false; 2092 2093 case lltok::kw_asm: { 2094 // ValID ::= 'asm' SideEffect? AlignStack? STRINGCONSTANT ',' STRINGCONSTANT 2095 bool HasSideEffect, AlignStack, AsmDialect; 2096 Lex.Lex(); 2097 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 2098 ParseOptionalToken(lltok::kw_alignstack, AlignStack) || 2099 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 2100 ParseStringConstant(ID.StrVal) || 2101 ParseToken(lltok::comma, "expected comma in inline asm expression") || 2102 ParseToken(lltok::StringConstant, "expected constraint string")) 2103 return true; 2104 ID.StrVal2 = Lex.getStrVal(); 2105 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) | 2106 (unsigned(AsmDialect)<<2); 2107 ID.Kind = ValID::t_InlineAsm; 2108 return false; 2109 } 2110 2111 case lltok::kw_blockaddress: { 2112 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 2113 Lex.Lex(); 2114 2115 ValID Fn, Label; 2116 LocTy FnLoc, LabelLoc; 2117 2118 if (ParseToken(lltok::lparen, "expected '(' in block address expression") || 2119 ParseValID(Fn) || 2120 ParseToken(lltok::comma, "expected comma in block address expression")|| 2121 ParseValID(Label) || 2122 ParseToken(lltok::rparen, "expected ')' in block address expression")) 2123 return true; 2124 2125 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 2126 return Error(Fn.Loc, "expected function name in blockaddress"); 2127 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 2128 return Error(Label.Loc, "expected basic block name in blockaddress"); 2129 2130 // Make a global variable as a placeholder for this reference. 2131 GlobalVariable *FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), 2132 false, GlobalValue::InternalLinkage, 2133 0, ""); 2134 ForwardRefBlockAddresses[Fn].push_back(std::make_pair(Label, FwdRef)); 2135 ID.ConstantVal = FwdRef; 2136 ID.Kind = ValID::t_Constant; 2137 return false; 2138 } 2139 2140 case lltok::kw_trunc: 2141 case lltok::kw_zext: 2142 case lltok::kw_sext: 2143 case lltok::kw_fptrunc: 2144 case lltok::kw_fpext: 2145 case lltok::kw_bitcast: 2146 case lltok::kw_uitofp: 2147 case lltok::kw_sitofp: 2148 case lltok::kw_fptoui: 2149 case lltok::kw_fptosi: 2150 case lltok::kw_inttoptr: 2151 case lltok::kw_ptrtoint: { 2152 unsigned Opc = Lex.getUIntVal(); 2153 Type *DestTy = 0; 2154 Constant *SrcVal; 2155 Lex.Lex(); 2156 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || 2157 ParseGlobalTypeAndValue(SrcVal) || 2158 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 2159 ParseType(DestTy) || 2160 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 2161 return true; 2162 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 2163 return Error(ID.Loc, "invalid cast opcode for cast from '" + 2164 getTypeString(SrcVal->getType()) + "' to '" + 2165 getTypeString(DestTy) + "'"); 2166 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 2167 SrcVal, DestTy); 2168 ID.Kind = ValID::t_Constant; 2169 return false; 2170 } 2171 case lltok::kw_extractvalue: { 2172 Lex.Lex(); 2173 Constant *Val; 2174 SmallVector<unsigned, 4> Indices; 2175 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| 2176 ParseGlobalTypeAndValue(Val) || 2177 ParseIndexList(Indices) || 2178 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 2179 return true; 2180 2181 if (!Val->getType()->isAggregateType()) 2182 return Error(ID.Loc, "extractvalue operand must be aggregate type"); 2183 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 2184 return Error(ID.Loc, "invalid indices for extractvalue"); 2185 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 2186 ID.Kind = ValID::t_Constant; 2187 return false; 2188 } 2189 case lltok::kw_insertvalue: { 2190 Lex.Lex(); 2191 Constant *Val0, *Val1; 2192 SmallVector<unsigned, 4> Indices; 2193 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| 2194 ParseGlobalTypeAndValue(Val0) || 2195 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| 2196 ParseGlobalTypeAndValue(Val1) || 2197 ParseIndexList(Indices) || 2198 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 2199 return true; 2200 if (!Val0->getType()->isAggregateType()) 2201 return Error(ID.Loc, "insertvalue operand must be aggregate type"); 2202 if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices)) 2203 return Error(ID.Loc, "invalid indices for insertvalue"); 2204 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 2205 ID.Kind = ValID::t_Constant; 2206 return false; 2207 } 2208 case lltok::kw_icmp: 2209 case lltok::kw_fcmp: { 2210 unsigned PredVal, Opc = Lex.getUIntVal(); 2211 Constant *Val0, *Val1; 2212 Lex.Lex(); 2213 if (ParseCmpPredicate(PredVal, Opc) || 2214 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || 2215 ParseGlobalTypeAndValue(Val0) || 2216 ParseToken(lltok::comma, "expected comma in compare constantexpr") || 2217 ParseGlobalTypeAndValue(Val1) || 2218 ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) 2219 return true; 2220 2221 if (Val0->getType() != Val1->getType()) 2222 return Error(ID.Loc, "compare operands must have the same type"); 2223 2224 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 2225 2226 if (Opc == Instruction::FCmp) { 2227 if (!Val0->getType()->isFPOrFPVectorTy()) 2228 return Error(ID.Loc, "fcmp requires floating point operands"); 2229 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 2230 } else { 2231 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 2232 if (!Val0->getType()->isIntOrIntVectorTy() && 2233 !Val0->getType()->getScalarType()->isPointerTy()) 2234 return Error(ID.Loc, "icmp requires pointer or integer operands"); 2235 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 2236 } 2237 ID.Kind = ValID::t_Constant; 2238 return false; 2239 } 2240 2241 // Binary Operators. 2242 case lltok::kw_add: 2243 case lltok::kw_fadd: 2244 case lltok::kw_sub: 2245 case lltok::kw_fsub: 2246 case lltok::kw_mul: 2247 case lltok::kw_fmul: 2248 case lltok::kw_udiv: 2249 case lltok::kw_sdiv: 2250 case lltok::kw_fdiv: 2251 case lltok::kw_urem: 2252 case lltok::kw_srem: 2253 case lltok::kw_frem: 2254 case lltok::kw_shl: 2255 case lltok::kw_lshr: 2256 case lltok::kw_ashr: { 2257 bool NUW = false; 2258 bool NSW = false; 2259 bool Exact = false; 2260 unsigned Opc = Lex.getUIntVal(); 2261 Constant *Val0, *Val1; 2262 Lex.Lex(); 2263 LocTy ModifierLoc = Lex.getLoc(); 2264 if (Opc == Instruction::Add || Opc == Instruction::Sub || 2265 Opc == Instruction::Mul || Opc == Instruction::Shl) { 2266 if (EatIfPresent(lltok::kw_nuw)) 2267 NUW = true; 2268 if (EatIfPresent(lltok::kw_nsw)) { 2269 NSW = true; 2270 if (EatIfPresent(lltok::kw_nuw)) 2271 NUW = true; 2272 } 2273 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 2274 Opc == Instruction::LShr || Opc == Instruction::AShr) { 2275 if (EatIfPresent(lltok::kw_exact)) 2276 Exact = true; 2277 } 2278 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || 2279 ParseGlobalTypeAndValue(Val0) || 2280 ParseToken(lltok::comma, "expected comma in binary constantexpr") || 2281 ParseGlobalTypeAndValue(Val1) || 2282 ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) 2283 return true; 2284 if (Val0->getType() != Val1->getType()) 2285 return Error(ID.Loc, "operands of constexpr must have same type"); 2286 if (!Val0->getType()->isIntOrIntVectorTy()) { 2287 if (NUW) 2288 return Error(ModifierLoc, "nuw only applies to integer operations"); 2289 if (NSW) 2290 return Error(ModifierLoc, "nsw only applies to integer operations"); 2291 } 2292 // Check that the type is valid for the operator. 2293 switch (Opc) { 2294 case Instruction::Add: 2295 case Instruction::Sub: 2296 case Instruction::Mul: 2297 case Instruction::UDiv: 2298 case Instruction::SDiv: 2299 case Instruction::URem: 2300 case Instruction::SRem: 2301 case Instruction::Shl: 2302 case Instruction::AShr: 2303 case Instruction::LShr: 2304 if (!Val0->getType()->isIntOrIntVectorTy()) 2305 return Error(ID.Loc, "constexpr requires integer operands"); 2306 break; 2307 case Instruction::FAdd: 2308 case Instruction::FSub: 2309 case Instruction::FMul: 2310 case Instruction::FDiv: 2311 case Instruction::FRem: 2312 if (!Val0->getType()->isFPOrFPVectorTy()) 2313 return Error(ID.Loc, "constexpr requires fp operands"); 2314 break; 2315 default: llvm_unreachable("Unknown binary operator!"); 2316 } 2317 unsigned Flags = 0; 2318 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2319 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 2320 if (Exact) Flags |= PossiblyExactOperator::IsExact; 2321 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 2322 ID.ConstantVal = C; 2323 ID.Kind = ValID::t_Constant; 2324 return false; 2325 } 2326 2327 // Logical Operations 2328 case lltok::kw_and: 2329 case lltok::kw_or: 2330 case lltok::kw_xor: { 2331 unsigned Opc = Lex.getUIntVal(); 2332 Constant *Val0, *Val1; 2333 Lex.Lex(); 2334 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || 2335 ParseGlobalTypeAndValue(Val0) || 2336 ParseToken(lltok::comma, "expected comma in logical constantexpr") || 2337 ParseGlobalTypeAndValue(Val1) || 2338 ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) 2339 return true; 2340 if (Val0->getType() != Val1->getType()) 2341 return Error(ID.Loc, "operands of constexpr must have same type"); 2342 if (!Val0->getType()->isIntOrIntVectorTy()) 2343 return Error(ID.Loc, 2344 "constexpr requires integer or integer vector operands"); 2345 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 2346 ID.Kind = ValID::t_Constant; 2347 return false; 2348 } 2349 2350 case lltok::kw_getelementptr: 2351 case lltok::kw_shufflevector: 2352 case lltok::kw_insertelement: 2353 case lltok::kw_extractelement: 2354 case lltok::kw_select: { 2355 unsigned Opc = Lex.getUIntVal(); 2356 SmallVector<Constant*, 16> Elts; 2357 bool InBounds = false; 2358 Lex.Lex(); 2359 if (Opc == Instruction::GetElementPtr) 2360 InBounds = EatIfPresent(lltok::kw_inbounds); 2361 if (ParseToken(lltok::lparen, "expected '(' in constantexpr") || 2362 ParseGlobalValueVector(Elts) || 2363 ParseToken(lltok::rparen, "expected ')' in constantexpr")) 2364 return true; 2365 2366 if (Opc == Instruction::GetElementPtr) { 2367 if (Elts.size() == 0 || 2368 !Elts[0]->getType()->getScalarType()->isPointerTy()) 2369 return Error(ID.Loc, "getelementptr requires pointer operand"); 2370 2371 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2372 if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(), Indices)) 2373 return Error(ID.Loc, "invalid indices for getelementptr"); 2374 ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0], Indices, 2375 InBounds); 2376 } else if (Opc == Instruction::Select) { 2377 if (Elts.size() != 3) 2378 return Error(ID.Loc, "expected three operands to select"); 2379 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 2380 Elts[2])) 2381 return Error(ID.Loc, Reason); 2382 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 2383 } else if (Opc == Instruction::ShuffleVector) { 2384 if (Elts.size() != 3) 2385 return Error(ID.Loc, "expected three operands to shufflevector"); 2386 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 2387 return Error(ID.Loc, "invalid operands to shufflevector"); 2388 ID.ConstantVal = 2389 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); 2390 } else if (Opc == Instruction::ExtractElement) { 2391 if (Elts.size() != 2) 2392 return Error(ID.Loc, "expected two operands to extractelement"); 2393 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 2394 return Error(ID.Loc, "invalid extractelement operands"); 2395 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 2396 } else { 2397 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 2398 if (Elts.size() != 3) 2399 return Error(ID.Loc, "expected three operands to insertelement"); 2400 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 2401 return Error(ID.Loc, "invalid insertelement operands"); 2402 ID.ConstantVal = 2403 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 2404 } 2405 2406 ID.Kind = ValID::t_Constant; 2407 return false; 2408 } 2409 } 2410 2411 Lex.Lex(); 2412 return false; 2413 } 2414 2415 /// ParseGlobalValue - Parse a global value with the specified type. 2416 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) { 2417 C = 0; 2418 ValID ID; 2419 Value *V = NULL; 2420 bool Parsed = ParseValID(ID) || 2421 ConvertValIDToValue(Ty, ID, V, NULL); 2422 if (V && !(C = dyn_cast<Constant>(V))) 2423 return Error(ID.Loc, "global values must be constants"); 2424 return Parsed; 2425 } 2426 2427 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { 2428 Type *Ty = 0; 2429 return ParseType(Ty) || 2430 ParseGlobalValue(Ty, V); 2431 } 2432 2433 /// ParseGlobalValueVector 2434 /// ::= /*empty*/ 2435 /// ::= TypeAndValue (',' TypeAndValue)* 2436 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) { 2437 // Empty list. 2438 if (Lex.getKind() == lltok::rbrace || 2439 Lex.getKind() == lltok::rsquare || 2440 Lex.getKind() == lltok::greater || 2441 Lex.getKind() == lltok::rparen) 2442 return false; 2443 2444 Constant *C; 2445 if (ParseGlobalTypeAndValue(C)) return true; 2446 Elts.push_back(C); 2447 2448 while (EatIfPresent(lltok::comma)) { 2449 if (ParseGlobalTypeAndValue(C)) return true; 2450 Elts.push_back(C); 2451 } 2452 2453 return false; 2454 } 2455 2456 bool LLParser::ParseMetadataListValue(ValID &ID, PerFunctionState *PFS) { 2457 assert(Lex.getKind() == lltok::lbrace); 2458 Lex.Lex(); 2459 2460 SmallVector<Value*, 16> Elts; 2461 if (ParseMDNodeVector(Elts, PFS) || 2462 ParseToken(lltok::rbrace, "expected end of metadata node")) 2463 return true; 2464 2465 ID.MDNodeVal = MDNode::get(Context, Elts); 2466 ID.Kind = ValID::t_MDNode; 2467 return false; 2468 } 2469 2470 /// ParseMetadataValue 2471 /// ::= !42 2472 /// ::= !{...} 2473 /// ::= !"string" 2474 bool LLParser::ParseMetadataValue(ValID &ID, PerFunctionState *PFS) { 2475 assert(Lex.getKind() == lltok::exclaim); 2476 Lex.Lex(); 2477 2478 // MDNode: 2479 // !{ ... } 2480 if (Lex.getKind() == lltok::lbrace) 2481 return ParseMetadataListValue(ID, PFS); 2482 2483 // Standalone metadata reference 2484 // !42 2485 if (Lex.getKind() == lltok::APSInt) { 2486 if (ParseMDNodeID(ID.MDNodeVal)) return true; 2487 ID.Kind = ValID::t_MDNode; 2488 return false; 2489 } 2490 2491 // MDString: 2492 // ::= '!' STRINGCONSTANT 2493 if (ParseMDString(ID.MDStringVal)) return true; 2494 ID.Kind = ValID::t_MDString; 2495 return false; 2496 } 2497 2498 2499 //===----------------------------------------------------------------------===// 2500 // Function Parsing. 2501 //===----------------------------------------------------------------------===// 2502 2503 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, 2504 PerFunctionState *PFS) { 2505 if (Ty->isFunctionTy()) 2506 return Error(ID.Loc, "functions are not values, refer to them as pointers"); 2507 2508 switch (ID.Kind) { 2509 case ValID::t_LocalID: 2510 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 2511 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc); 2512 return (V == 0); 2513 case ValID::t_LocalName: 2514 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 2515 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc); 2516 return (V == 0); 2517 case ValID::t_InlineAsm: { 2518 PointerType *PTy = dyn_cast<PointerType>(Ty); 2519 FunctionType *FTy = 2520 PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0; 2521 if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2)) 2522 return Error(ID.Loc, "invalid type for inline asm constraint string"); 2523 V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1, 2524 (ID.UIntVal>>1)&1, (InlineAsm::AsmDialect(ID.UIntVal>>2))); 2525 return false; 2526 } 2527 case ValID::t_MDNode: 2528 if (!Ty->isMetadataTy()) 2529 return Error(ID.Loc, "metadata value must have metadata type"); 2530 V = ID.MDNodeVal; 2531 return false; 2532 case ValID::t_MDString: 2533 if (!Ty->isMetadataTy()) 2534 return Error(ID.Loc, "metadata value must have metadata type"); 2535 V = ID.MDStringVal; 2536 return false; 2537 case ValID::t_GlobalName: 2538 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc); 2539 return V == 0; 2540 case ValID::t_GlobalID: 2541 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc); 2542 return V == 0; 2543 case ValID::t_APSInt: 2544 if (!Ty->isIntegerTy()) 2545 return Error(ID.Loc, "integer constant must have integer type"); 2546 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 2547 V = ConstantInt::get(Context, ID.APSIntVal); 2548 return false; 2549 case ValID::t_APFloat: 2550 if (!Ty->isFloatingPointTy() || 2551 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 2552 return Error(ID.Loc, "floating point constant invalid for type"); 2553 2554 // The lexer has no type info, so builds all half, float, and double FP 2555 // constants as double. Fix this here. Long double does not need this. 2556 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) { 2557 bool Ignored; 2558 if (Ty->isHalfTy()) 2559 ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, 2560 &Ignored); 2561 else if (Ty->isFloatTy()) 2562 ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, 2563 &Ignored); 2564 } 2565 V = ConstantFP::get(Context, ID.APFloatVal); 2566 2567 if (V->getType() != Ty) 2568 return Error(ID.Loc, "floating point constant does not have type '" + 2569 getTypeString(Ty) + "'"); 2570 2571 return false; 2572 case ValID::t_Null: 2573 if (!Ty->isPointerTy()) 2574 return Error(ID.Loc, "null must be a pointer type"); 2575 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 2576 return false; 2577 case ValID::t_Undef: 2578 // FIXME: LabelTy should not be a first-class type. 2579 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 2580 return Error(ID.Loc, "invalid type for undef constant"); 2581 V = UndefValue::get(Ty); 2582 return false; 2583 case ValID::t_EmptyArray: 2584 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 2585 return Error(ID.Loc, "invalid empty array initializer"); 2586 V = UndefValue::get(Ty); 2587 return false; 2588 case ValID::t_Zero: 2589 // FIXME: LabelTy should not be a first-class type. 2590 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 2591 return Error(ID.Loc, "invalid type for null constant"); 2592 V = Constant::getNullValue(Ty); 2593 return false; 2594 case ValID::t_Constant: 2595 if (ID.ConstantVal->getType() != Ty) 2596 return Error(ID.Loc, "constant expression type mismatch"); 2597 2598 V = ID.ConstantVal; 2599 return false; 2600 case ValID::t_ConstantStruct: 2601 case ValID::t_PackedConstantStruct: 2602 if (StructType *ST = dyn_cast<StructType>(Ty)) { 2603 if (ST->getNumElements() != ID.UIntVal) 2604 return Error(ID.Loc, 2605 "initializer with struct type has wrong # elements"); 2606 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 2607 return Error(ID.Loc, "packed'ness of initializer and type don't match"); 2608 2609 // Verify that the elements are compatible with the structtype. 2610 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 2611 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 2612 return Error(ID.Loc, "element " + Twine(i) + 2613 " of struct initializer doesn't match struct element type"); 2614 2615 V = ConstantStruct::get(ST, makeArrayRef(ID.ConstantStructElts, 2616 ID.UIntVal)); 2617 } else 2618 return Error(ID.Loc, "constant expression type mismatch"); 2619 return false; 2620 } 2621 llvm_unreachable("Invalid ValID"); 2622 } 2623 2624 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 2625 V = 0; 2626 ValID ID; 2627 return ParseValID(ID, PFS) || 2628 ConvertValIDToValue(Ty, ID, V, PFS); 2629 } 2630 2631 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) { 2632 Type *Ty = 0; 2633 return ParseType(Ty) || 2634 ParseValue(Ty, V, PFS); 2635 } 2636 2637 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 2638 PerFunctionState &PFS) { 2639 Value *V; 2640 Loc = Lex.getLoc(); 2641 if (ParseTypeAndValue(V, PFS)) return true; 2642 if (!isa<BasicBlock>(V)) 2643 return Error(Loc, "expected a basic block"); 2644 BB = cast<BasicBlock>(V); 2645 return false; 2646 } 2647 2648 2649 /// FunctionHeader 2650 /// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs 2651 /// OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection 2652 /// OptionalAlign OptGC 2653 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { 2654 // Parse the linkage. 2655 LocTy LinkageLoc = Lex.getLoc(); 2656 unsigned Linkage; 2657 2658 unsigned Visibility; 2659 AttrBuilder RetAttrs; 2660 CallingConv::ID CC; 2661 Type *RetType = 0; 2662 LocTy RetTypeLoc = Lex.getLoc(); 2663 if (ParseOptionalLinkage(Linkage) || 2664 ParseOptionalVisibility(Visibility) || 2665 ParseOptionalCallingConv(CC) || 2666 ParseOptionalAttrs(RetAttrs, 1) || 2667 ParseType(RetType, RetTypeLoc, true /*void allowed*/)) 2668 return true; 2669 2670 // Verify that the linkage is ok. 2671 switch ((GlobalValue::LinkageTypes)Linkage) { 2672 case GlobalValue::ExternalLinkage: 2673 break; // always ok. 2674 case GlobalValue::DLLImportLinkage: 2675 case GlobalValue::ExternalWeakLinkage: 2676 if (isDefine) 2677 return Error(LinkageLoc, "invalid linkage for function definition"); 2678 break; 2679 case GlobalValue::PrivateLinkage: 2680 case GlobalValue::LinkerPrivateLinkage: 2681 case GlobalValue::LinkerPrivateWeakLinkage: 2682 case GlobalValue::InternalLinkage: 2683 case GlobalValue::AvailableExternallyLinkage: 2684 case GlobalValue::LinkOnceAnyLinkage: 2685 case GlobalValue::LinkOnceODRLinkage: 2686 case GlobalValue::LinkOnceODRAutoHideLinkage: 2687 case GlobalValue::WeakAnyLinkage: 2688 case GlobalValue::WeakODRLinkage: 2689 case GlobalValue::DLLExportLinkage: 2690 if (!isDefine) 2691 return Error(LinkageLoc, "invalid linkage for function declaration"); 2692 break; 2693 case GlobalValue::AppendingLinkage: 2694 case GlobalValue::CommonLinkage: 2695 return Error(LinkageLoc, "invalid function linkage type"); 2696 } 2697 2698 if (!FunctionType::isValidReturnType(RetType)) 2699 return Error(RetTypeLoc, "invalid function return type"); 2700 2701 LocTy NameLoc = Lex.getLoc(); 2702 2703 std::string FunctionName; 2704 if (Lex.getKind() == lltok::GlobalVar) { 2705 FunctionName = Lex.getStrVal(); 2706 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 2707 unsigned NameID = Lex.getUIntVal(); 2708 2709 if (NameID != NumberedVals.size()) 2710 return TokError("function expected to be numbered '%" + 2711 Twine(NumberedVals.size()) + "'"); 2712 } else { 2713 return TokError("expected function name"); 2714 } 2715 2716 Lex.Lex(); 2717 2718 if (Lex.getKind() != lltok::lparen) 2719 return TokError("expected '(' in function argument list"); 2720 2721 SmallVector<ArgInfo, 8> ArgList; 2722 bool isVarArg; 2723 AttrBuilder FuncAttrs; 2724 std::string Section; 2725 unsigned Alignment; 2726 std::string GC; 2727 bool UnnamedAddr; 2728 LocTy UnnamedAddrLoc; 2729 2730 if (ParseArgumentList(ArgList, isVarArg) || 2731 ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr, 2732 &UnnamedAddrLoc) || 2733 ParseOptionalAttrs(FuncAttrs, 2) || 2734 (EatIfPresent(lltok::kw_section) && 2735 ParseStringConstant(Section)) || 2736 ParseOptionalAlignment(Alignment) || 2737 (EatIfPresent(lltok::kw_gc) && 2738 ParseStringConstant(GC))) 2739 return true; 2740 2741 // If the alignment was parsed as an attribute, move to the alignment field. 2742 if (FuncAttrs.hasAlignmentAttr()) { 2743 Alignment = FuncAttrs.getAlignment(); 2744 FuncAttrs.removeAttribute(Attributes::Alignment); 2745 } 2746 2747 // Okay, if we got here, the function is syntactically valid. Convert types 2748 // and do semantic checks. 2749 std::vector<Type*> ParamTypeList; 2750 SmallVector<AttributeWithIndex, 8> Attrs; 2751 2752 if (RetAttrs.hasAttributes()) 2753 Attrs.push_back( 2754 AttributeWithIndex::get(AttrListPtr::ReturnIndex, 2755 Attributes::get(RetType->getContext(), 2756 RetAttrs))); 2757 2758 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2759 ParamTypeList.push_back(ArgList[i].Ty); 2760 if (ArgList[i].Attrs.hasAttributes()) 2761 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs)); 2762 } 2763 2764 if (FuncAttrs.hasAttributes()) 2765 Attrs.push_back( 2766 AttributeWithIndex::get(AttrListPtr::FunctionIndex, 2767 Attributes::get(RetType->getContext(), 2768 FuncAttrs))); 2769 2770 AttrListPtr PAL = AttrListPtr::get(Context, Attrs); 2771 2772 if (PAL.getParamAttributes(1).hasAttribute(Attributes::StructRet) && 2773 !RetType->isVoidTy()) 2774 return Error(RetTypeLoc, "functions with 'sret' argument must return void"); 2775 2776 FunctionType *FT = 2777 FunctionType::get(RetType, ParamTypeList, isVarArg); 2778 PointerType *PFT = PointerType::getUnqual(FT); 2779 2780 Fn = 0; 2781 if (!FunctionName.empty()) { 2782 // If this was a definition of a forward reference, remove the definition 2783 // from the forward reference table and fill in the forward ref. 2784 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI = 2785 ForwardRefVals.find(FunctionName); 2786 if (FRVI != ForwardRefVals.end()) { 2787 Fn = M->getFunction(FunctionName); 2788 if (!Fn) 2789 return Error(FRVI->second.second, "invalid forward reference to " 2790 "function as global value!"); 2791 if (Fn->getType() != PFT) 2792 return Error(FRVI->second.second, "invalid forward reference to " 2793 "function '" + FunctionName + "' with wrong type!"); 2794 2795 ForwardRefVals.erase(FRVI); 2796 } else if ((Fn = M->getFunction(FunctionName))) { 2797 // Reject redefinitions. 2798 return Error(NameLoc, "invalid redefinition of function '" + 2799 FunctionName + "'"); 2800 } else if (M->getNamedValue(FunctionName)) { 2801 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 2802 } 2803 2804 } else { 2805 // If this is a definition of a forward referenced function, make sure the 2806 // types agree. 2807 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I 2808 = ForwardRefValIDs.find(NumberedVals.size()); 2809 if (I != ForwardRefValIDs.end()) { 2810 Fn = cast<Function>(I->second.first); 2811 if (Fn->getType() != PFT) 2812 return Error(NameLoc, "type of definition and forward reference of '@" + 2813 Twine(NumberedVals.size()) + "' disagree"); 2814 ForwardRefValIDs.erase(I); 2815 } 2816 } 2817 2818 if (Fn == 0) 2819 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M); 2820 else // Move the forward-reference to the correct spot in the module. 2821 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 2822 2823 if (FunctionName.empty()) 2824 NumberedVals.push_back(Fn); 2825 2826 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 2827 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 2828 Fn->setCallingConv(CC); 2829 Fn->setAttributes(PAL); 2830 Fn->setUnnamedAddr(UnnamedAddr); 2831 Fn->setAlignment(Alignment); 2832 Fn->setSection(Section); 2833 if (!GC.empty()) Fn->setGC(GC.c_str()); 2834 2835 // Add all of the arguments we parsed to the function. 2836 Function::arg_iterator ArgIt = Fn->arg_begin(); 2837 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 2838 // If the argument has a name, insert it into the argument symbol table. 2839 if (ArgList[i].Name.empty()) continue; 2840 2841 // Set the name, if it conflicted, it will be auto-renamed. 2842 ArgIt->setName(ArgList[i].Name); 2843 2844 if (ArgIt->getName() != ArgList[i].Name) 2845 return Error(ArgList[i].Loc, "redefinition of argument '%" + 2846 ArgList[i].Name + "'"); 2847 } 2848 2849 return false; 2850 } 2851 2852 2853 /// ParseFunctionBody 2854 /// ::= '{' BasicBlock+ '}' 2855 /// 2856 bool LLParser::ParseFunctionBody(Function &Fn) { 2857 if (Lex.getKind() != lltok::lbrace) 2858 return TokError("expected '{' in function body"); 2859 Lex.Lex(); // eat the {. 2860 2861 int FunctionNumber = -1; 2862 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 2863 2864 PerFunctionState PFS(*this, Fn, FunctionNumber); 2865 2866 // We need at least one basic block. 2867 if (Lex.getKind() == lltok::rbrace) 2868 return TokError("function body requires at least one basic block"); 2869 2870 while (Lex.getKind() != lltok::rbrace) 2871 if (ParseBasicBlock(PFS)) return true; 2872 2873 // Eat the }. 2874 Lex.Lex(); 2875 2876 // Verify function is ok. 2877 return PFS.FinishFunction(); 2878 } 2879 2880 /// ParseBasicBlock 2881 /// ::= LabelStr? Instruction* 2882 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { 2883 // If this basic block starts out with a name, remember it. 2884 std::string Name; 2885 LocTy NameLoc = Lex.getLoc(); 2886 if (Lex.getKind() == lltok::LabelStr) { 2887 Name = Lex.getStrVal(); 2888 Lex.Lex(); 2889 } 2890 2891 BasicBlock *BB = PFS.DefineBB(Name, NameLoc); 2892 if (BB == 0) return true; 2893 2894 std::string NameStr; 2895 2896 // Parse the instructions in this block until we get a terminator. 2897 Instruction *Inst; 2898 SmallVector<std::pair<unsigned, MDNode *>, 4> MetadataOnInst; 2899 do { 2900 // This instruction may have three possibilities for a name: a) none 2901 // specified, b) name specified "%foo =", c) number specified: "%4 =". 2902 LocTy NameLoc = Lex.getLoc(); 2903 int NameID = -1; 2904 NameStr = ""; 2905 2906 if (Lex.getKind() == lltok::LocalVarID) { 2907 NameID = Lex.getUIntVal(); 2908 Lex.Lex(); 2909 if (ParseToken(lltok::equal, "expected '=' after instruction id")) 2910 return true; 2911 } else if (Lex.getKind() == lltok::LocalVar) { 2912 NameStr = Lex.getStrVal(); 2913 Lex.Lex(); 2914 if (ParseToken(lltok::equal, "expected '=' after instruction name")) 2915 return true; 2916 } 2917 2918 switch (ParseInstruction(Inst, BB, PFS)) { 2919 default: llvm_unreachable("Unknown ParseInstruction result!"); 2920 case InstError: return true; 2921 case InstNormal: 2922 BB->getInstList().push_back(Inst); 2923 2924 // With a normal result, we check to see if the instruction is followed by 2925 // a comma and metadata. 2926 if (EatIfPresent(lltok::comma)) 2927 if (ParseInstructionMetadata(Inst, &PFS)) 2928 return true; 2929 break; 2930 case InstExtraComma: 2931 BB->getInstList().push_back(Inst); 2932 2933 // If the instruction parser ate an extra comma at the end of it, it 2934 // *must* be followed by metadata. 2935 if (ParseInstructionMetadata(Inst, &PFS)) 2936 return true; 2937 break; 2938 } 2939 2940 // Set the name on the instruction. 2941 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; 2942 } while (!isa<TerminatorInst>(Inst)); 2943 2944 return false; 2945 } 2946 2947 //===----------------------------------------------------------------------===// 2948 // Instruction Parsing. 2949 //===----------------------------------------------------------------------===// 2950 2951 /// ParseInstruction - Parse one of the many different instructions. 2952 /// 2953 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, 2954 PerFunctionState &PFS) { 2955 lltok::Kind Token = Lex.getKind(); 2956 if (Token == lltok::Eof) 2957 return TokError("found end of file when expecting more instructions"); 2958 LocTy Loc = Lex.getLoc(); 2959 unsigned KeywordVal = Lex.getUIntVal(); 2960 Lex.Lex(); // Eat the keyword. 2961 2962 switch (Token) { 2963 default: return Error(Loc, "expected instruction opcode"); 2964 // Terminator Instructions. 2965 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 2966 case lltok::kw_ret: return ParseRet(Inst, BB, PFS); 2967 case lltok::kw_br: return ParseBr(Inst, PFS); 2968 case lltok::kw_switch: return ParseSwitch(Inst, PFS); 2969 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS); 2970 case lltok::kw_invoke: return ParseInvoke(Inst, PFS); 2971 case lltok::kw_resume: return ParseResume(Inst, PFS); 2972 // Binary Operators. 2973 case lltok::kw_add: 2974 case lltok::kw_sub: 2975 case lltok::kw_mul: 2976 case lltok::kw_shl: { 2977 bool NUW = EatIfPresent(lltok::kw_nuw); 2978 bool NSW = EatIfPresent(lltok::kw_nsw); 2979 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 2980 2981 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 2982 2983 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 2984 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 2985 return false; 2986 } 2987 case lltok::kw_fadd: 2988 case lltok::kw_fsub: 2989 case lltok::kw_fmul: 2990 case lltok::kw_fdiv: 2991 case lltok::kw_frem: { 2992 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 2993 int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2); 2994 if (Res != 0) 2995 return Res; 2996 if (FMF.any()) 2997 Inst->setFastMathFlags(FMF); 2998 return 0; 2999 } 3000 3001 case lltok::kw_sdiv: 3002 case lltok::kw_udiv: 3003 case lltok::kw_lshr: 3004 case lltok::kw_ashr: { 3005 bool Exact = EatIfPresent(lltok::kw_exact); 3006 3007 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 3008 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 3009 return false; 3010 } 3011 3012 case lltok::kw_urem: 3013 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1); 3014 case lltok::kw_and: 3015 case lltok::kw_or: 3016 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); 3017 case lltok::kw_icmp: 3018 case lltok::kw_fcmp: return ParseCompare(Inst, PFS, KeywordVal); 3019 // Casts. 3020 case lltok::kw_trunc: 3021 case lltok::kw_zext: 3022 case lltok::kw_sext: 3023 case lltok::kw_fptrunc: 3024 case lltok::kw_fpext: 3025 case lltok::kw_bitcast: 3026 case lltok::kw_uitofp: 3027 case lltok::kw_sitofp: 3028 case lltok::kw_fptoui: 3029 case lltok::kw_fptosi: 3030 case lltok::kw_inttoptr: 3031 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); 3032 // Other. 3033 case lltok::kw_select: return ParseSelect(Inst, PFS); 3034 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); 3035 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); 3036 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); 3037 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); 3038 case lltok::kw_phi: return ParsePHI(Inst, PFS); 3039 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS); 3040 case lltok::kw_call: return ParseCall(Inst, PFS, false); 3041 case lltok::kw_tail: return ParseCall(Inst, PFS, true); 3042 // Memory. 3043 case lltok::kw_alloca: return ParseAlloc(Inst, PFS); 3044 case lltok::kw_load: return ParseLoad(Inst, PFS); 3045 case lltok::kw_store: return ParseStore(Inst, PFS); 3046 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS); 3047 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS); 3048 case lltok::kw_fence: return ParseFence(Inst, PFS); 3049 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); 3050 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); 3051 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); 3052 } 3053 } 3054 3055 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. 3056 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { 3057 if (Opc == Instruction::FCmp) { 3058 switch (Lex.getKind()) { 3059 default: TokError("expected fcmp predicate (e.g. 'oeq')"); 3060 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 3061 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 3062 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 3063 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 3064 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 3065 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 3066 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 3067 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 3068 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 3069 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 3070 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 3071 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 3072 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 3073 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 3074 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 3075 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 3076 } 3077 } else { 3078 switch (Lex.getKind()) { 3079 default: TokError("expected icmp predicate (e.g. 'eq')"); 3080 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 3081 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 3082 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 3083 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 3084 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 3085 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 3086 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 3087 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 3088 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 3089 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 3090 } 3091 } 3092 Lex.Lex(); 3093 return false; 3094 } 3095 3096 //===----------------------------------------------------------------------===// 3097 // Terminator Instructions. 3098 //===----------------------------------------------------------------------===// 3099 3100 /// ParseRet - Parse a return instruction. 3101 /// ::= 'ret' void (',' !dbg, !1)* 3102 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 3103 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, 3104 PerFunctionState &PFS) { 3105 SMLoc TypeLoc = Lex.getLoc(); 3106 Type *Ty = 0; 3107 if (ParseType(Ty, true /*void allowed*/)) return true; 3108 3109 Type *ResType = PFS.getFunction().getReturnType(); 3110 3111 if (Ty->isVoidTy()) { 3112 if (!ResType->isVoidTy()) 3113 return Error(TypeLoc, "value doesn't match function result type '" + 3114 getTypeString(ResType) + "'"); 3115 3116 Inst = ReturnInst::Create(Context); 3117 return false; 3118 } 3119 3120 Value *RV; 3121 if (ParseValue(Ty, RV, PFS)) return true; 3122 3123 if (ResType != RV->getType()) 3124 return Error(TypeLoc, "value doesn't match function result type '" + 3125 getTypeString(ResType) + "'"); 3126 3127 Inst = ReturnInst::Create(Context, RV); 3128 return false; 3129 } 3130 3131 3132 /// ParseBr 3133 /// ::= 'br' TypeAndValue 3134 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 3135 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { 3136 LocTy Loc, Loc2; 3137 Value *Op0; 3138 BasicBlock *Op1, *Op2; 3139 if (ParseTypeAndValue(Op0, Loc, PFS)) return true; 3140 3141 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 3142 Inst = BranchInst::Create(BB); 3143 return false; 3144 } 3145 3146 if (Op0->getType() != Type::getInt1Ty(Context)) 3147 return Error(Loc, "branch condition must have 'i1' type"); 3148 3149 if (ParseToken(lltok::comma, "expected ',' after branch condition") || 3150 ParseTypeAndBasicBlock(Op1, Loc, PFS) || 3151 ParseToken(lltok::comma, "expected ',' after true destination") || 3152 ParseTypeAndBasicBlock(Op2, Loc2, PFS)) 3153 return true; 3154 3155 Inst = BranchInst::Create(Op1, Op2, Op0); 3156 return false; 3157 } 3158 3159 /// ParseSwitch 3160 /// Instruction 3161 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 3162 /// JumpTable 3163 /// ::= (TypeAndValue ',' TypeAndValue)* 3164 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 3165 LocTy CondLoc, BBLoc; 3166 Value *Cond; 3167 BasicBlock *DefaultBB; 3168 if (ParseTypeAndValue(Cond, CondLoc, PFS) || 3169 ParseToken(lltok::comma, "expected ',' after switch condition") || 3170 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 3171 ParseToken(lltok::lsquare, "expected '[' with switch table")) 3172 return true; 3173 3174 if (!Cond->getType()->isIntegerTy()) 3175 return Error(CondLoc, "switch condition must have integer type"); 3176 3177 // Parse the jump table pairs. 3178 SmallPtrSet<Value*, 32> SeenCases; 3179 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 3180 while (Lex.getKind() != lltok::rsquare) { 3181 Value *Constant; 3182 BasicBlock *DestBB; 3183 3184 if (ParseTypeAndValue(Constant, CondLoc, PFS) || 3185 ParseToken(lltok::comma, "expected ',' after case value") || 3186 ParseTypeAndBasicBlock(DestBB, PFS)) 3187 return true; 3188 3189 if (!SeenCases.insert(Constant)) 3190 return Error(CondLoc, "duplicate case value in switch"); 3191 if (!isa<ConstantInt>(Constant)) 3192 return Error(CondLoc, "case value is not a constant integer"); 3193 3194 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 3195 } 3196 3197 Lex.Lex(); // Eat the ']'. 3198 3199 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 3200 for (unsigned i = 0, e = Table.size(); i != e; ++i) 3201 SI->addCase(Table[i].first, Table[i].second); 3202 Inst = SI; 3203 return false; 3204 } 3205 3206 /// ParseIndirectBr 3207 /// Instruction 3208 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 3209 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 3210 LocTy AddrLoc; 3211 Value *Address; 3212 if (ParseTypeAndValue(Address, AddrLoc, PFS) || 3213 ParseToken(lltok::comma, "expected ',' after indirectbr address") || 3214 ParseToken(lltok::lsquare, "expected '[' with indirectbr")) 3215 return true; 3216 3217 if (!Address->getType()->isPointerTy()) 3218 return Error(AddrLoc, "indirectbr address must have pointer type"); 3219 3220 // Parse the destination list. 3221 SmallVector<BasicBlock*, 16> DestList; 3222 3223 if (Lex.getKind() != lltok::rsquare) { 3224 BasicBlock *DestBB; 3225 if (ParseTypeAndBasicBlock(DestBB, PFS)) 3226 return true; 3227 DestList.push_back(DestBB); 3228 3229 while (EatIfPresent(lltok::comma)) { 3230 if (ParseTypeAndBasicBlock(DestBB, PFS)) 3231 return true; 3232 DestList.push_back(DestBB); 3233 } 3234 } 3235 3236 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 3237 return true; 3238 3239 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 3240 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 3241 IBI->addDestination(DestList[i]); 3242 Inst = IBI; 3243 return false; 3244 } 3245 3246 3247 /// ParseInvoke 3248 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 3249 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 3250 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 3251 LocTy CallLoc = Lex.getLoc(); 3252 AttrBuilder RetAttrs, FnAttrs; 3253 CallingConv::ID CC; 3254 Type *RetType = 0; 3255 LocTy RetTypeLoc; 3256 ValID CalleeID; 3257 SmallVector<ParamInfo, 16> ArgList; 3258 3259 BasicBlock *NormalBB, *UnwindBB; 3260 if (ParseOptionalCallingConv(CC) || 3261 ParseOptionalAttrs(RetAttrs, 1) || 3262 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 3263 ParseValID(CalleeID) || 3264 ParseParameterList(ArgList, PFS) || 3265 ParseOptionalAttrs(FnAttrs, 2) || 3266 ParseToken(lltok::kw_to, "expected 'to' in invoke") || 3267 ParseTypeAndBasicBlock(NormalBB, PFS) || 3268 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 3269 ParseTypeAndBasicBlock(UnwindBB, PFS)) 3270 return true; 3271 3272 // If RetType is a non-function pointer type, then this is the short syntax 3273 // for the call, which means that RetType is just the return type. Infer the 3274 // rest of the function argument types from the arguments that are present. 3275 PointerType *PFTy = 0; 3276 FunctionType *Ty = 0; 3277 if (!(PFTy = dyn_cast<PointerType>(RetType)) || 3278 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) { 3279 // Pull out the types of all of the arguments... 3280 std::vector<Type*> ParamTypes; 3281 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 3282 ParamTypes.push_back(ArgList[i].V->getType()); 3283 3284 if (!FunctionType::isValidReturnType(RetType)) 3285 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 3286 3287 Ty = FunctionType::get(RetType, ParamTypes, false); 3288 PFTy = PointerType::getUnqual(Ty); 3289 } 3290 3291 // Look up the callee. 3292 Value *Callee; 3293 if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true; 3294 3295 // Set up the Attributes for the function. 3296 SmallVector<AttributeWithIndex, 8> Attrs; 3297 if (RetAttrs.hasAttributes()) 3298 Attrs.push_back( 3299 AttributeWithIndex::get(AttrListPtr::ReturnIndex, 3300 Attributes::get(Callee->getContext(), 3301 RetAttrs))); 3302 3303 SmallVector<Value*, 8> Args; 3304 3305 // Loop through FunctionType's arguments and ensure they are specified 3306 // correctly. Also, gather any parameter attributes. 3307 FunctionType::param_iterator I = Ty->param_begin(); 3308 FunctionType::param_iterator E = Ty->param_end(); 3309 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 3310 Type *ExpectedTy = 0; 3311 if (I != E) { 3312 ExpectedTy = *I++; 3313 } else if (!Ty->isVarArg()) { 3314 return Error(ArgList[i].Loc, "too many arguments specified"); 3315 } 3316 3317 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 3318 return Error(ArgList[i].Loc, "argument is not of expected type '" + 3319 getTypeString(ExpectedTy) + "'"); 3320 Args.push_back(ArgList[i].V); 3321 if (ArgList[i].Attrs.hasAttributes()) 3322 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs)); 3323 } 3324 3325 if (I != E) 3326 return Error(CallLoc, "not enough parameters specified for call"); 3327 3328 if (FnAttrs.hasAttributes()) 3329 Attrs.push_back( 3330 AttributeWithIndex::get(AttrListPtr::FunctionIndex, 3331 Attributes::get(Callee->getContext(), 3332 FnAttrs))); 3333 3334 // Finish off the Attributes and check them 3335 AttrListPtr PAL = AttrListPtr::get(Context, Attrs); 3336 3337 InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB, Args); 3338 II->setCallingConv(CC); 3339 II->setAttributes(PAL); 3340 Inst = II; 3341 return false; 3342 } 3343 3344 /// ParseResume 3345 /// ::= 'resume' TypeAndValue 3346 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) { 3347 Value *Exn; LocTy ExnLoc; 3348 if (ParseTypeAndValue(Exn, ExnLoc, PFS)) 3349 return true; 3350 3351 ResumeInst *RI = ResumeInst::Create(Exn); 3352 Inst = RI; 3353 return false; 3354 } 3355 3356 //===----------------------------------------------------------------------===// 3357 // Binary Operators. 3358 //===----------------------------------------------------------------------===// 3359 3360 /// ParseArithmetic 3361 /// ::= ArithmeticOps TypeAndValue ',' Value 3362 /// 3363 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1, 3364 /// then any integer operand is allowed, if it is 2, any fp operand is allowed. 3365 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 3366 unsigned Opc, unsigned OperandType) { 3367 LocTy Loc; Value *LHS, *RHS; 3368 if (ParseTypeAndValue(LHS, Loc, PFS) || 3369 ParseToken(lltok::comma, "expected ',' in arithmetic operation") || 3370 ParseValue(LHS->getType(), RHS, PFS)) 3371 return true; 3372 3373 bool Valid; 3374 switch (OperandType) { 3375 default: llvm_unreachable("Unknown operand type!"); 3376 case 0: // int or FP. 3377 Valid = LHS->getType()->isIntOrIntVectorTy() || 3378 LHS->getType()->isFPOrFPVectorTy(); 3379 break; 3380 case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break; 3381 case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break; 3382 } 3383 3384 if (!Valid) 3385 return Error(Loc, "invalid operand type for instruction"); 3386 3387 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3388 return false; 3389 } 3390 3391 /// ParseLogical 3392 /// ::= ArithmeticOps TypeAndValue ',' Value { 3393 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, 3394 unsigned Opc) { 3395 LocTy Loc; Value *LHS, *RHS; 3396 if (ParseTypeAndValue(LHS, Loc, PFS) || 3397 ParseToken(lltok::comma, "expected ',' in logical operation") || 3398 ParseValue(LHS->getType(), RHS, PFS)) 3399 return true; 3400 3401 if (!LHS->getType()->isIntOrIntVectorTy()) 3402 return Error(Loc,"instruction requires integer or integer vector operands"); 3403 3404 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3405 return false; 3406 } 3407 3408 3409 /// ParseCompare 3410 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 3411 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 3412 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, 3413 unsigned Opc) { 3414 // Parse the integer/fp comparison predicate. 3415 LocTy Loc; 3416 unsigned Pred; 3417 Value *LHS, *RHS; 3418 if (ParseCmpPredicate(Pred, Opc) || 3419 ParseTypeAndValue(LHS, Loc, PFS) || 3420 ParseToken(lltok::comma, "expected ',' after compare value") || 3421 ParseValue(LHS->getType(), RHS, PFS)) 3422 return true; 3423 3424 if (Opc == Instruction::FCmp) { 3425 if (!LHS->getType()->isFPOrFPVectorTy()) 3426 return Error(Loc, "fcmp requires floating point operands"); 3427 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 3428 } else { 3429 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 3430 if (!LHS->getType()->isIntOrIntVectorTy() && 3431 !LHS->getType()->getScalarType()->isPointerTy()) 3432 return Error(Loc, "icmp requires integer operands"); 3433 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 3434 } 3435 return false; 3436 } 3437 3438 //===----------------------------------------------------------------------===// 3439 // Other Instructions. 3440 //===----------------------------------------------------------------------===// 3441 3442 3443 /// ParseCast 3444 /// ::= CastOpc TypeAndValue 'to' Type 3445 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, 3446 unsigned Opc) { 3447 LocTy Loc; 3448 Value *Op; 3449 Type *DestTy = 0; 3450 if (ParseTypeAndValue(Op, Loc, PFS) || 3451 ParseToken(lltok::kw_to, "expected 'to' after cast value") || 3452 ParseType(DestTy)) 3453 return true; 3454 3455 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 3456 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 3457 return Error(Loc, "invalid cast opcode for cast from '" + 3458 getTypeString(Op->getType()) + "' to '" + 3459 getTypeString(DestTy) + "'"); 3460 } 3461 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 3462 return false; 3463 } 3464 3465 /// ParseSelect 3466 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 3467 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { 3468 LocTy Loc; 3469 Value *Op0, *Op1, *Op2; 3470 if (ParseTypeAndValue(Op0, Loc, PFS) || 3471 ParseToken(lltok::comma, "expected ',' after select condition") || 3472 ParseTypeAndValue(Op1, PFS) || 3473 ParseToken(lltok::comma, "expected ',' after select value") || 3474 ParseTypeAndValue(Op2, PFS)) 3475 return true; 3476 3477 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 3478 return Error(Loc, Reason); 3479 3480 Inst = SelectInst::Create(Op0, Op1, Op2); 3481 return false; 3482 } 3483 3484 /// ParseVA_Arg 3485 /// ::= 'va_arg' TypeAndValue ',' Type 3486 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { 3487 Value *Op; 3488 Type *EltTy = 0; 3489 LocTy TypeLoc; 3490 if (ParseTypeAndValue(Op, PFS) || 3491 ParseToken(lltok::comma, "expected ',' after vaarg operand") || 3492 ParseType(EltTy, TypeLoc)) 3493 return true; 3494 3495 if (!EltTy->isFirstClassType()) 3496 return Error(TypeLoc, "va_arg requires operand with first class type"); 3497 3498 Inst = new VAArgInst(Op, EltTy); 3499 return false; 3500 } 3501 3502 /// ParseExtractElement 3503 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 3504 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 3505 LocTy Loc; 3506 Value *Op0, *Op1; 3507 if (ParseTypeAndValue(Op0, Loc, PFS) || 3508 ParseToken(lltok::comma, "expected ',' after extract value") || 3509 ParseTypeAndValue(Op1, PFS)) 3510 return true; 3511 3512 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 3513 return Error(Loc, "invalid extractelement operands"); 3514 3515 Inst = ExtractElementInst::Create(Op0, Op1); 3516 return false; 3517 } 3518 3519 /// ParseInsertElement 3520 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 3521 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 3522 LocTy Loc; 3523 Value *Op0, *Op1, *Op2; 3524 if (ParseTypeAndValue(Op0, Loc, PFS) || 3525 ParseToken(lltok::comma, "expected ',' after insertelement value") || 3526 ParseTypeAndValue(Op1, PFS) || 3527 ParseToken(lltok::comma, "expected ',' after insertelement value") || 3528 ParseTypeAndValue(Op2, PFS)) 3529 return true; 3530 3531 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 3532 return Error(Loc, "invalid insertelement operands"); 3533 3534 Inst = InsertElementInst::Create(Op0, Op1, Op2); 3535 return false; 3536 } 3537 3538 /// ParseShuffleVector 3539 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 3540 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 3541 LocTy Loc; 3542 Value *Op0, *Op1, *Op2; 3543 if (ParseTypeAndValue(Op0, Loc, PFS) || 3544 ParseToken(lltok::comma, "expected ',' after shuffle mask") || 3545 ParseTypeAndValue(Op1, PFS) || 3546 ParseToken(lltok::comma, "expected ',' after shuffle value") || 3547 ParseTypeAndValue(Op2, PFS)) 3548 return true; 3549 3550 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 3551 return Error(Loc, "invalid shufflevector operands"); 3552 3553 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 3554 return false; 3555 } 3556 3557 /// ParsePHI 3558 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 3559 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { 3560 Type *Ty = 0; LocTy TypeLoc; 3561 Value *Op0, *Op1; 3562 3563 if (ParseType(Ty, TypeLoc) || 3564 ParseToken(lltok::lsquare, "expected '[' in phi value list") || 3565 ParseValue(Ty, Op0, PFS) || 3566 ParseToken(lltok::comma, "expected ',' after insertelement value") || 3567 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 3568 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 3569 return true; 3570 3571 bool AteExtraComma = false; 3572 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 3573 while (1) { 3574 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 3575 3576 if (!EatIfPresent(lltok::comma)) 3577 break; 3578 3579 if (Lex.getKind() == lltok::MetadataVar) { 3580 AteExtraComma = true; 3581 break; 3582 } 3583 3584 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || 3585 ParseValue(Ty, Op0, PFS) || 3586 ParseToken(lltok::comma, "expected ',' after insertelement value") || 3587 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 3588 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 3589 return true; 3590 } 3591 3592 if (!Ty->isFirstClassType()) 3593 return Error(TypeLoc, "phi node must have first class type"); 3594 3595 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 3596 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 3597 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 3598 Inst = PN; 3599 return AteExtraComma ? InstExtraComma : InstNormal; 3600 } 3601 3602 /// ParseLandingPad 3603 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 3604 /// Clause 3605 /// ::= 'catch' TypeAndValue 3606 /// ::= 'filter' 3607 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 3608 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 3609 Type *Ty = 0; LocTy TyLoc; 3610 Value *PersFn; LocTy PersFnLoc; 3611 3612 if (ParseType(Ty, TyLoc) || 3613 ParseToken(lltok::kw_personality, "expected 'personality'") || 3614 ParseTypeAndValue(PersFn, PersFnLoc, PFS)) 3615 return true; 3616 3617 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, 0); 3618 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 3619 3620 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 3621 LandingPadInst::ClauseType CT; 3622 if (EatIfPresent(lltok::kw_catch)) 3623 CT = LandingPadInst::Catch; 3624 else if (EatIfPresent(lltok::kw_filter)) 3625 CT = LandingPadInst::Filter; 3626 else 3627 return TokError("expected 'catch' or 'filter' clause type"); 3628 3629 Value *V; LocTy VLoc; 3630 if (ParseTypeAndValue(V, VLoc, PFS)) { 3631 delete LP; 3632 return true; 3633 } 3634 3635 // A 'catch' type expects a non-array constant. A filter clause expects an 3636 // array constant. 3637 if (CT == LandingPadInst::Catch) { 3638 if (isa<ArrayType>(V->getType())) 3639 Error(VLoc, "'catch' clause has an invalid type"); 3640 } else { 3641 if (!isa<ArrayType>(V->getType())) 3642 Error(VLoc, "'filter' clause has an invalid type"); 3643 } 3644 3645 LP->addClause(V); 3646 } 3647 3648 Inst = LP; 3649 return false; 3650 } 3651 3652 /// ParseCall 3653 /// ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value 3654 /// ParameterList OptionalAttrs 3655 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, 3656 bool isTail) { 3657 AttrBuilder RetAttrs, FnAttrs; 3658 CallingConv::ID CC; 3659 Type *RetType = 0; 3660 LocTy RetTypeLoc; 3661 ValID CalleeID; 3662 SmallVector<ParamInfo, 16> ArgList; 3663 LocTy CallLoc = Lex.getLoc(); 3664 3665 if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) || 3666 ParseOptionalCallingConv(CC) || 3667 ParseOptionalAttrs(RetAttrs, 1) || 3668 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 3669 ParseValID(CalleeID) || 3670 ParseParameterList(ArgList, PFS) || 3671 ParseOptionalAttrs(FnAttrs, 2)) 3672 return true; 3673 3674 // If RetType is a non-function pointer type, then this is the short syntax 3675 // for the call, which means that RetType is just the return type. Infer the 3676 // rest of the function argument types from the arguments that are present. 3677 PointerType *PFTy = 0; 3678 FunctionType *Ty = 0; 3679 if (!(PFTy = dyn_cast<PointerType>(RetType)) || 3680 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) { 3681 // Pull out the types of all of the arguments... 3682 std::vector<Type*> ParamTypes; 3683 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 3684 ParamTypes.push_back(ArgList[i].V->getType()); 3685 3686 if (!FunctionType::isValidReturnType(RetType)) 3687 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 3688 3689 Ty = FunctionType::get(RetType, ParamTypes, false); 3690 PFTy = PointerType::getUnqual(Ty); 3691 } 3692 3693 // Look up the callee. 3694 Value *Callee; 3695 if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true; 3696 3697 // Set up the Attributes for the function. 3698 SmallVector<AttributeWithIndex, 8> Attrs; 3699 if (RetAttrs.hasAttributes()) 3700 Attrs.push_back( 3701 AttributeWithIndex::get(AttrListPtr::ReturnIndex, 3702 Attributes::get(Callee->getContext(), 3703 RetAttrs))); 3704 3705 SmallVector<Value*, 8> Args; 3706 3707 // Loop through FunctionType's arguments and ensure they are specified 3708 // correctly. Also, gather any parameter attributes. 3709 FunctionType::param_iterator I = Ty->param_begin(); 3710 FunctionType::param_iterator E = Ty->param_end(); 3711 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 3712 Type *ExpectedTy = 0; 3713 if (I != E) { 3714 ExpectedTy = *I++; 3715 } else if (!Ty->isVarArg()) { 3716 return Error(ArgList[i].Loc, "too many arguments specified"); 3717 } 3718 3719 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 3720 return Error(ArgList[i].Loc, "argument is not of expected type '" + 3721 getTypeString(ExpectedTy) + "'"); 3722 Args.push_back(ArgList[i].V); 3723 if (ArgList[i].Attrs.hasAttributes()) 3724 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs)); 3725 } 3726 3727 if (I != E) 3728 return Error(CallLoc, "not enough parameters specified for call"); 3729 3730 if (FnAttrs.hasAttributes()) 3731 Attrs.push_back( 3732 AttributeWithIndex::get(AttrListPtr::FunctionIndex, 3733 Attributes::get(Callee->getContext(), 3734 FnAttrs))); 3735 3736 // Finish off the Attributes and check them 3737 AttrListPtr PAL = AttrListPtr::get(Context, Attrs); 3738 3739 CallInst *CI = CallInst::Create(Callee, Args); 3740 CI->setTailCall(isTail); 3741 CI->setCallingConv(CC); 3742 CI->setAttributes(PAL); 3743 Inst = CI; 3744 return false; 3745 } 3746 3747 //===----------------------------------------------------------------------===// 3748 // Memory Instructions. 3749 //===----------------------------------------------------------------------===// 3750 3751 /// ParseAlloc 3752 /// ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)? 3753 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 3754 Value *Size = 0; 3755 LocTy SizeLoc; 3756 unsigned Alignment = 0; 3757 Type *Ty = 0; 3758 if (ParseType(Ty)) return true; 3759 3760 bool AteExtraComma = false; 3761 if (EatIfPresent(lltok::comma)) { 3762 if (Lex.getKind() == lltok::kw_align) { 3763 if (ParseOptionalAlignment(Alignment)) return true; 3764 } else if (Lex.getKind() == lltok::MetadataVar) { 3765 AteExtraComma = true; 3766 } else { 3767 if (ParseTypeAndValue(Size, SizeLoc, PFS) || 3768 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 3769 return true; 3770 } 3771 } 3772 3773 if (Size && !Size->getType()->isIntegerTy()) 3774 return Error(SizeLoc, "element count must have integer type"); 3775 3776 Inst = new AllocaInst(Ty, Size, Alignment); 3777 return AteExtraComma ? InstExtraComma : InstNormal; 3778 } 3779 3780 /// ParseLoad 3781 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 3782 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 3783 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 3784 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) { 3785 Value *Val; LocTy Loc; 3786 unsigned Alignment = 0; 3787 bool AteExtraComma = false; 3788 bool isAtomic = false; 3789 AtomicOrdering Ordering = NotAtomic; 3790 SynchronizationScope Scope = CrossThread; 3791 3792 if (Lex.getKind() == lltok::kw_atomic) { 3793 isAtomic = true; 3794 Lex.Lex(); 3795 } 3796 3797 bool isVolatile = false; 3798 if (Lex.getKind() == lltok::kw_volatile) { 3799 isVolatile = true; 3800 Lex.Lex(); 3801 } 3802 3803 if (ParseTypeAndValue(Val, Loc, PFS) || 3804 ParseScopeAndOrdering(isAtomic, Scope, Ordering) || 3805 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 3806 return true; 3807 3808 if (!Val->getType()->isPointerTy() || 3809 !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType()) 3810 return Error(Loc, "load operand must be a pointer to a first class type"); 3811 if (isAtomic && !Alignment) 3812 return Error(Loc, "atomic load must have explicit non-zero alignment"); 3813 if (Ordering == Release || Ordering == AcquireRelease) 3814 return Error(Loc, "atomic load cannot use Release ordering"); 3815 3816 Inst = new LoadInst(Val, "", isVolatile, Alignment, Ordering, Scope); 3817 return AteExtraComma ? InstExtraComma : InstNormal; 3818 } 3819 3820 /// ParseStore 3821 3822 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 3823 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 3824 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 3825 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) { 3826 Value *Val, *Ptr; LocTy Loc, PtrLoc; 3827 unsigned Alignment = 0; 3828 bool AteExtraComma = false; 3829 bool isAtomic = false; 3830 AtomicOrdering Ordering = NotAtomic; 3831 SynchronizationScope Scope = CrossThread; 3832 3833 if (Lex.getKind() == lltok::kw_atomic) { 3834 isAtomic = true; 3835 Lex.Lex(); 3836 } 3837 3838 bool isVolatile = false; 3839 if (Lex.getKind() == lltok::kw_volatile) { 3840 isVolatile = true; 3841 Lex.Lex(); 3842 } 3843 3844 if (ParseTypeAndValue(Val, Loc, PFS) || 3845 ParseToken(lltok::comma, "expected ',' after store operand") || 3846 ParseTypeAndValue(Ptr, PtrLoc, PFS) || 3847 ParseScopeAndOrdering(isAtomic, Scope, Ordering) || 3848 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 3849 return true; 3850 3851 if (!Ptr->getType()->isPointerTy()) 3852 return Error(PtrLoc, "store operand must be a pointer"); 3853 if (!Val->getType()->isFirstClassType()) 3854 return Error(Loc, "store operand must be a first class value"); 3855 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 3856 return Error(Loc, "stored value and pointer type do not match"); 3857 if (isAtomic && !Alignment) 3858 return Error(Loc, "atomic store must have explicit non-zero alignment"); 3859 if (Ordering == Acquire || Ordering == AcquireRelease) 3860 return Error(Loc, "atomic store cannot use Acquire ordering"); 3861 3862 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope); 3863 return AteExtraComma ? InstExtraComma : InstNormal; 3864 } 3865 3866 /// ParseCmpXchg 3867 /// ::= 'cmpxchg' 'volatile'? TypeAndValue ',' TypeAndValue ',' TypeAndValue 3868 /// 'singlethread'? AtomicOrdering 3869 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 3870 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 3871 bool AteExtraComma = false; 3872 AtomicOrdering Ordering = NotAtomic; 3873 SynchronizationScope Scope = CrossThread; 3874 bool isVolatile = false; 3875 3876 if (EatIfPresent(lltok::kw_volatile)) 3877 isVolatile = true; 3878 3879 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 3880 ParseToken(lltok::comma, "expected ',' after cmpxchg address") || 3881 ParseTypeAndValue(Cmp, CmpLoc, PFS) || 3882 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 3883 ParseTypeAndValue(New, NewLoc, PFS) || 3884 ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 3885 return true; 3886 3887 if (Ordering == Unordered) 3888 return TokError("cmpxchg cannot be unordered"); 3889 if (!Ptr->getType()->isPointerTy()) 3890 return Error(PtrLoc, "cmpxchg operand must be a pointer"); 3891 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 3892 return Error(CmpLoc, "compare value and pointer type do not match"); 3893 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 3894 return Error(NewLoc, "new value and pointer type do not match"); 3895 if (!New->getType()->isIntegerTy()) 3896 return Error(NewLoc, "cmpxchg operand must be an integer"); 3897 unsigned Size = New->getType()->getPrimitiveSizeInBits(); 3898 if (Size < 8 || (Size & (Size - 1))) 3899 return Error(NewLoc, "cmpxchg operand must be power-of-two byte-sized" 3900 " integer"); 3901 3902 AtomicCmpXchgInst *CXI = 3903 new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, Scope); 3904 CXI->setVolatile(isVolatile); 3905 Inst = CXI; 3906 return AteExtraComma ? InstExtraComma : InstNormal; 3907 } 3908 3909 /// ParseAtomicRMW 3910 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 3911 /// 'singlethread'? AtomicOrdering 3912 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 3913 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 3914 bool AteExtraComma = false; 3915 AtomicOrdering Ordering = NotAtomic; 3916 SynchronizationScope Scope = CrossThread; 3917 bool isVolatile = false; 3918 AtomicRMWInst::BinOp Operation; 3919 3920 if (EatIfPresent(lltok::kw_volatile)) 3921 isVolatile = true; 3922 3923 switch (Lex.getKind()) { 3924 default: return TokError("expected binary operation in atomicrmw"); 3925 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 3926 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 3927 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 3928 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 3929 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 3930 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 3931 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 3932 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 3933 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 3934 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 3935 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 3936 } 3937 Lex.Lex(); // Eat the operation. 3938 3939 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 3940 ParseToken(lltok::comma, "expected ',' after atomicrmw address") || 3941 ParseTypeAndValue(Val, ValLoc, PFS) || 3942 ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 3943 return true; 3944 3945 if (Ordering == Unordered) 3946 return TokError("atomicrmw cannot be unordered"); 3947 if (!Ptr->getType()->isPointerTy()) 3948 return Error(PtrLoc, "atomicrmw operand must be a pointer"); 3949 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 3950 return Error(ValLoc, "atomicrmw value and pointer type do not match"); 3951 if (!Val->getType()->isIntegerTy()) 3952 return Error(ValLoc, "atomicrmw operand must be an integer"); 3953 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 3954 if (Size < 8 || (Size & (Size - 1))) 3955 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 3956 " integer"); 3957 3958 AtomicRMWInst *RMWI = 3959 new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope); 3960 RMWI->setVolatile(isVolatile); 3961 Inst = RMWI; 3962 return AteExtraComma ? InstExtraComma : InstNormal; 3963 } 3964 3965 /// ParseFence 3966 /// ::= 'fence' 'singlethread'? AtomicOrdering 3967 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) { 3968 AtomicOrdering Ordering = NotAtomic; 3969 SynchronizationScope Scope = CrossThread; 3970 if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 3971 return true; 3972 3973 if (Ordering == Unordered) 3974 return TokError("fence cannot be unordered"); 3975 if (Ordering == Monotonic) 3976 return TokError("fence cannot be monotonic"); 3977 3978 Inst = new FenceInst(Context, Ordering, Scope); 3979 return InstNormal; 3980 } 3981 3982 /// ParseGetElementPtr 3983 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 3984 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 3985 Value *Ptr = 0; 3986 Value *Val = 0; 3987 LocTy Loc, EltLoc; 3988 3989 bool InBounds = EatIfPresent(lltok::kw_inbounds); 3990 3991 if (ParseTypeAndValue(Ptr, Loc, PFS)) return true; 3992 3993 if (!Ptr->getType()->getScalarType()->isPointerTy()) 3994 return Error(Loc, "base of getelementptr must be a pointer"); 3995 3996 SmallVector<Value*, 16> Indices; 3997 bool AteExtraComma = false; 3998 while (EatIfPresent(lltok::comma)) { 3999 if (Lex.getKind() == lltok::MetadataVar) { 4000 AteExtraComma = true; 4001 break; 4002 } 4003 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; 4004 if (!Val->getType()->getScalarType()->isIntegerTy()) 4005 return Error(EltLoc, "getelementptr index must be an integer"); 4006 if (Val->getType()->isVectorTy() != Ptr->getType()->isVectorTy()) 4007 return Error(EltLoc, "getelementptr index type missmatch"); 4008 if (Val->getType()->isVectorTy()) { 4009 unsigned ValNumEl = cast<VectorType>(Val->getType())->getNumElements(); 4010 unsigned PtrNumEl = cast<VectorType>(Ptr->getType())->getNumElements(); 4011 if (ValNumEl != PtrNumEl) 4012 return Error(EltLoc, 4013 "getelementptr vector index has a wrong number of elements"); 4014 } 4015 Indices.push_back(Val); 4016 } 4017 4018 if (!GetElementPtrInst::getIndexedType(Ptr->getType(), Indices)) 4019 return Error(Loc, "invalid getelementptr indices"); 4020 Inst = GetElementPtrInst::Create(Ptr, Indices); 4021 if (InBounds) 4022 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 4023 return AteExtraComma ? InstExtraComma : InstNormal; 4024 } 4025 4026 /// ParseExtractValue 4027 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 4028 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 4029 Value *Val; LocTy Loc; 4030 SmallVector<unsigned, 4> Indices; 4031 bool AteExtraComma; 4032 if (ParseTypeAndValue(Val, Loc, PFS) || 4033 ParseIndexList(Indices, AteExtraComma)) 4034 return true; 4035 4036 if (!Val->getType()->isAggregateType()) 4037 return Error(Loc, "extractvalue operand must be aggregate type"); 4038 4039 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 4040 return Error(Loc, "invalid indices for extractvalue"); 4041 Inst = ExtractValueInst::Create(Val, Indices); 4042 return AteExtraComma ? InstExtraComma : InstNormal; 4043 } 4044 4045 /// ParseInsertValue 4046 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 4047 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 4048 Value *Val0, *Val1; LocTy Loc0, Loc1; 4049 SmallVector<unsigned, 4> Indices; 4050 bool AteExtraComma; 4051 if (ParseTypeAndValue(Val0, Loc0, PFS) || 4052 ParseToken(lltok::comma, "expected comma after insertvalue operand") || 4053 ParseTypeAndValue(Val1, Loc1, PFS) || 4054 ParseIndexList(Indices, AteExtraComma)) 4055 return true; 4056 4057 if (!Val0->getType()->isAggregateType()) 4058 return Error(Loc0, "insertvalue operand must be aggregate type"); 4059 4060 if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices)) 4061 return Error(Loc0, "invalid indices for insertvalue"); 4062 Inst = InsertValueInst::Create(Val0, Val1, Indices); 4063 return AteExtraComma ? InstExtraComma : InstNormal; 4064 } 4065 4066 //===----------------------------------------------------------------------===// 4067 // Embedded metadata. 4068 //===----------------------------------------------------------------------===// 4069 4070 /// ParseMDNodeVector 4071 /// ::= Element (',' Element)* 4072 /// Element 4073 /// ::= 'null' | TypeAndValue 4074 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts, 4075 PerFunctionState *PFS) { 4076 // Check for an empty list. 4077 if (Lex.getKind() == lltok::rbrace) 4078 return false; 4079 4080 do { 4081 // Null is a special case since it is typeless. 4082 if (EatIfPresent(lltok::kw_null)) { 4083 Elts.push_back(0); 4084 continue; 4085 } 4086 4087 Value *V = 0; 4088 if (ParseTypeAndValue(V, PFS)) return true; 4089 Elts.push_back(V); 4090 } while (EatIfPresent(lltok::comma)); 4091 4092 return false; 4093 } 4094