1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the parser class for .ll files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "LLParser.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/None.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/AsmParser/SlotMapping.h"
20 #include "llvm/BinaryFormat/Dwarf.h"
21 #include "llvm/IR/Argument.h"
22 #include "llvm/IR/AutoUpgrade.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/CallingConv.h"
25 #include "llvm/IR/Comdat.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugInfoMetadata.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalIFunc.h"
31 #include "llvm/IR/GlobalObject.h"
32 #include "llvm/IR/InlineAsm.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/IR/Type.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/IR/ValueSymbolTable.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/MathExtras.h"
46 #include "llvm/Support/SaveAndRestore.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <cstring>
51 #include <iterator>
52 #include <vector>
53 
54 using namespace llvm;
55 
56 static std::string getTypeString(Type *T) {
57   std::string Result;
58   raw_string_ostream Tmp(Result);
59   Tmp << *T;
60   return Tmp.str();
61 }
62 
63 /// Run: module ::= toplevelentity*
64 bool LLParser::Run() {
65   // Prime the lexer.
66   Lex.Lex();
67 
68   if (Context.shouldDiscardValueNames())
69     return Error(
70         Lex.getLoc(),
71         "Can't read textual IR with a Context that discards named Values");
72 
73   return ParseTopLevelEntities() || ValidateEndOfModule() ||
74          ValidateEndOfIndex();
75 }
76 
77 bool LLParser::parseStandaloneConstantValue(Constant *&C,
78                                             const SlotMapping *Slots) {
79   restoreParsingState(Slots);
80   Lex.Lex();
81 
82   Type *Ty = nullptr;
83   if (ParseType(Ty) || parseConstantValue(Ty, C))
84     return true;
85   if (Lex.getKind() != lltok::Eof)
86     return Error(Lex.getLoc(), "expected end of string");
87   return false;
88 }
89 
90 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
91                                     const SlotMapping *Slots) {
92   restoreParsingState(Slots);
93   Lex.Lex();
94 
95   Read = 0;
96   SMLoc Start = Lex.getLoc();
97   Ty = nullptr;
98   if (ParseType(Ty))
99     return true;
100   SMLoc End = Lex.getLoc();
101   Read = End.getPointer() - Start.getPointer();
102 
103   return false;
104 }
105 
106 void LLParser::restoreParsingState(const SlotMapping *Slots) {
107   if (!Slots)
108     return;
109   NumberedVals = Slots->GlobalValues;
110   NumberedMetadata = Slots->MetadataNodes;
111   for (const auto &I : Slots->NamedTypes)
112     NamedTypes.insert(
113         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
114   for (const auto &I : Slots->Types)
115     NumberedTypes.insert(
116         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
117 }
118 
119 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
120 /// module.
121 bool LLParser::ValidateEndOfModule() {
122   if (!M)
123     return false;
124   // Handle any function attribute group forward references.
125   for (const auto &RAG : ForwardRefAttrGroups) {
126     Value *V = RAG.first;
127     const std::vector<unsigned> &Attrs = RAG.second;
128     AttrBuilder B;
129 
130     for (const auto &Attr : Attrs)
131       B.merge(NumberedAttrBuilders[Attr]);
132 
133     if (Function *Fn = dyn_cast<Function>(V)) {
134       AttributeList AS = Fn->getAttributes();
135       AttrBuilder FnAttrs(AS.getFnAttributes());
136       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
137 
138       FnAttrs.merge(B);
139 
140       // If the alignment was parsed as an attribute, move to the alignment
141       // field.
142       if (FnAttrs.hasAlignmentAttr()) {
143         Fn->setAlignment(FnAttrs.getAlignment());
144         FnAttrs.removeAttribute(Attribute::Alignment);
145       }
146 
147       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
148                             AttributeSet::get(Context, FnAttrs));
149       Fn->setAttributes(AS);
150     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
151       AttributeList AS = CI->getAttributes();
152       AttrBuilder FnAttrs(AS.getFnAttributes());
153       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
154       FnAttrs.merge(B);
155       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
156                             AttributeSet::get(Context, FnAttrs));
157       CI->setAttributes(AS);
158     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
159       AttributeList AS = II->getAttributes();
160       AttrBuilder FnAttrs(AS.getFnAttributes());
161       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
162       FnAttrs.merge(B);
163       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
164                             AttributeSet::get(Context, FnAttrs));
165       II->setAttributes(AS);
166     } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
167       AttributeList AS = CBI->getAttributes();
168       AttrBuilder FnAttrs(AS.getFnAttributes());
169       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
170       FnAttrs.merge(B);
171       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
172                             AttributeSet::get(Context, FnAttrs));
173       CBI->setAttributes(AS);
174     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
175       AttrBuilder Attrs(GV->getAttributes());
176       Attrs.merge(B);
177       GV->setAttributes(AttributeSet::get(Context,Attrs));
178     } else {
179       llvm_unreachable("invalid object with forward attribute group reference");
180     }
181   }
182 
183   // If there are entries in ForwardRefBlockAddresses at this point, the
184   // function was never defined.
185   if (!ForwardRefBlockAddresses.empty())
186     return Error(ForwardRefBlockAddresses.begin()->first.Loc,
187                  "expected function name in blockaddress");
188 
189   for (const auto &NT : NumberedTypes)
190     if (NT.second.second.isValid())
191       return Error(NT.second.second,
192                    "use of undefined type '%" + Twine(NT.first) + "'");
193 
194   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
195        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
196     if (I->second.second.isValid())
197       return Error(I->second.second,
198                    "use of undefined type named '" + I->getKey() + "'");
199 
200   if (!ForwardRefComdats.empty())
201     return Error(ForwardRefComdats.begin()->second,
202                  "use of undefined comdat '$" +
203                      ForwardRefComdats.begin()->first + "'");
204 
205   if (!ForwardRefVals.empty())
206     return Error(ForwardRefVals.begin()->second.second,
207                  "use of undefined value '@" + ForwardRefVals.begin()->first +
208                  "'");
209 
210   if (!ForwardRefValIDs.empty())
211     return Error(ForwardRefValIDs.begin()->second.second,
212                  "use of undefined value '@" +
213                  Twine(ForwardRefValIDs.begin()->first) + "'");
214 
215   if (!ForwardRefMDNodes.empty())
216     return Error(ForwardRefMDNodes.begin()->second.second,
217                  "use of undefined metadata '!" +
218                  Twine(ForwardRefMDNodes.begin()->first) + "'");
219 
220   // Resolve metadata cycles.
221   for (auto &N : NumberedMetadata) {
222     if (N.second && !N.second->isResolved())
223       N.second->resolveCycles();
224   }
225 
226   for (auto *Inst : InstsWithTBAATag) {
227     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
228     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
229     auto *UpgradedMD = UpgradeTBAANode(*MD);
230     if (MD != UpgradedMD)
231       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
232   }
233 
234   // Look for intrinsic functions and CallInst that need to be upgraded
235   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
236     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
237 
238   // Some types could be renamed during loading if several modules are
239   // loaded in the same LLVMContext (LTO scenario). In this case we should
240   // remangle intrinsics names as well.
241   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
242     Function *F = &*FI++;
243     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
244       F->replaceAllUsesWith(Remangled.getValue());
245       F->eraseFromParent();
246     }
247   }
248 
249   if (UpgradeDebugInfo)
250     llvm::UpgradeDebugInfo(*M);
251 
252   UpgradeModuleFlags(*M);
253   UpgradeSectionAttributes(*M);
254 
255   if (!Slots)
256     return false;
257   // Initialize the slot mapping.
258   // Because by this point we've parsed and validated everything, we can "steal"
259   // the mapping from LLParser as it doesn't need it anymore.
260   Slots->GlobalValues = std::move(NumberedVals);
261   Slots->MetadataNodes = std::move(NumberedMetadata);
262   for (const auto &I : NamedTypes)
263     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
264   for (const auto &I : NumberedTypes)
265     Slots->Types.insert(std::make_pair(I.first, I.second.first));
266 
267   return false;
268 }
269 
270 /// Do final validity and sanity checks at the end of the index.
271 bool LLParser::ValidateEndOfIndex() {
272   if (!Index)
273     return false;
274 
275   if (!ForwardRefValueInfos.empty())
276     return Error(ForwardRefValueInfos.begin()->second.front().second,
277                  "use of undefined summary '^" +
278                      Twine(ForwardRefValueInfos.begin()->first) + "'");
279 
280   if (!ForwardRefAliasees.empty())
281     return Error(ForwardRefAliasees.begin()->second.front().second,
282                  "use of undefined summary '^" +
283                      Twine(ForwardRefAliasees.begin()->first) + "'");
284 
285   if (!ForwardRefTypeIds.empty())
286     return Error(ForwardRefTypeIds.begin()->second.front().second,
287                  "use of undefined type id summary '^" +
288                      Twine(ForwardRefTypeIds.begin()->first) + "'");
289 
290   return false;
291 }
292 
293 //===----------------------------------------------------------------------===//
294 // Top-Level Entities
295 //===----------------------------------------------------------------------===//
296 
297 bool LLParser::ParseTopLevelEntities() {
298   // If there is no Module, then parse just the summary index entries.
299   if (!M) {
300     while (true) {
301       switch (Lex.getKind()) {
302       case lltok::Eof:
303         return false;
304       case lltok::SummaryID:
305         if (ParseSummaryEntry())
306           return true;
307         break;
308       case lltok::kw_source_filename:
309         if (ParseSourceFileName())
310           return true;
311         break;
312       default:
313         // Skip everything else
314         Lex.Lex();
315       }
316     }
317   }
318   while (true) {
319     switch (Lex.getKind()) {
320     default:         return TokError("expected top-level entity");
321     case lltok::Eof: return false;
322     case lltok::kw_declare: if (ParseDeclare()) return true; break;
323     case lltok::kw_define:  if (ParseDefine()) return true; break;
324     case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
325     case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
326     case lltok::kw_source_filename:
327       if (ParseSourceFileName())
328         return true;
329       break;
330     case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
331     case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
332     case lltok::LocalVar:   if (ParseNamedType()) return true; break;
333     case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
334     case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
335     case lltok::ComdatVar:  if (parseComdat()) return true; break;
336     case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
337     case lltok::SummaryID:
338       if (ParseSummaryEntry())
339         return true;
340       break;
341     case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
342     case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
343     case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
344     case lltok::kw_uselistorder_bb:
345       if (ParseUseListOrderBB())
346         return true;
347       break;
348     }
349   }
350 }
351 
352 /// toplevelentity
353 ///   ::= 'module' 'asm' STRINGCONSTANT
354 bool LLParser::ParseModuleAsm() {
355   assert(Lex.getKind() == lltok::kw_module);
356   Lex.Lex();
357 
358   std::string AsmStr;
359   if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
360       ParseStringConstant(AsmStr)) return true;
361 
362   M->appendModuleInlineAsm(AsmStr);
363   return false;
364 }
365 
366 /// toplevelentity
367 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
368 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
369 bool LLParser::ParseTargetDefinition() {
370   assert(Lex.getKind() == lltok::kw_target);
371   std::string Str;
372   switch (Lex.Lex()) {
373   default: return TokError("unknown target property");
374   case lltok::kw_triple:
375     Lex.Lex();
376     if (ParseToken(lltok::equal, "expected '=' after target triple") ||
377         ParseStringConstant(Str))
378       return true;
379     M->setTargetTriple(Str);
380     return false;
381   case lltok::kw_datalayout:
382     Lex.Lex();
383     if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
384         ParseStringConstant(Str))
385       return true;
386     if (DataLayoutStr.empty())
387       M->setDataLayout(Str);
388     return false;
389   }
390 }
391 
392 /// toplevelentity
393 ///   ::= 'source_filename' '=' STRINGCONSTANT
394 bool LLParser::ParseSourceFileName() {
395   assert(Lex.getKind() == lltok::kw_source_filename);
396   Lex.Lex();
397   if (ParseToken(lltok::equal, "expected '=' after source_filename") ||
398       ParseStringConstant(SourceFileName))
399     return true;
400   if (M)
401     M->setSourceFileName(SourceFileName);
402   return false;
403 }
404 
405 /// toplevelentity
406 ///   ::= 'deplibs' '=' '[' ']'
407 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
408 /// FIXME: Remove in 4.0. Currently parse, but ignore.
409 bool LLParser::ParseDepLibs() {
410   assert(Lex.getKind() == lltok::kw_deplibs);
411   Lex.Lex();
412   if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
413       ParseToken(lltok::lsquare, "expected '=' after deplibs"))
414     return true;
415 
416   if (EatIfPresent(lltok::rsquare))
417     return false;
418 
419   do {
420     std::string Str;
421     if (ParseStringConstant(Str)) return true;
422   } while (EatIfPresent(lltok::comma));
423 
424   return ParseToken(lltok::rsquare, "expected ']' at end of list");
425 }
426 
427 /// ParseUnnamedType:
428 ///   ::= LocalVarID '=' 'type' type
429 bool LLParser::ParseUnnamedType() {
430   LocTy TypeLoc = Lex.getLoc();
431   unsigned TypeID = Lex.getUIntVal();
432   Lex.Lex(); // eat LocalVarID;
433 
434   if (ParseToken(lltok::equal, "expected '=' after name") ||
435       ParseToken(lltok::kw_type, "expected 'type' after '='"))
436     return true;
437 
438   Type *Result = nullptr;
439   if (ParseStructDefinition(TypeLoc, "",
440                             NumberedTypes[TypeID], Result)) return true;
441 
442   if (!isa<StructType>(Result)) {
443     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
444     if (Entry.first)
445       return Error(TypeLoc, "non-struct types may not be recursive");
446     Entry.first = Result;
447     Entry.second = SMLoc();
448   }
449 
450   return false;
451 }
452 
453 /// toplevelentity
454 ///   ::= LocalVar '=' 'type' type
455 bool LLParser::ParseNamedType() {
456   std::string Name = Lex.getStrVal();
457   LocTy NameLoc = Lex.getLoc();
458   Lex.Lex();  // eat LocalVar.
459 
460   if (ParseToken(lltok::equal, "expected '=' after name") ||
461       ParseToken(lltok::kw_type, "expected 'type' after name"))
462     return true;
463 
464   Type *Result = nullptr;
465   if (ParseStructDefinition(NameLoc, Name,
466                             NamedTypes[Name], Result)) return true;
467 
468   if (!isa<StructType>(Result)) {
469     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
470     if (Entry.first)
471       return Error(NameLoc, "non-struct types may not be recursive");
472     Entry.first = Result;
473     Entry.second = SMLoc();
474   }
475 
476   return false;
477 }
478 
479 /// toplevelentity
480 ///   ::= 'declare' FunctionHeader
481 bool LLParser::ParseDeclare() {
482   assert(Lex.getKind() == lltok::kw_declare);
483   Lex.Lex();
484 
485   std::vector<std::pair<unsigned, MDNode *>> MDs;
486   while (Lex.getKind() == lltok::MetadataVar) {
487     unsigned MDK;
488     MDNode *N;
489     if (ParseMetadataAttachment(MDK, N))
490       return true;
491     MDs.push_back({MDK, N});
492   }
493 
494   Function *F;
495   if (ParseFunctionHeader(F, false))
496     return true;
497   for (auto &MD : MDs)
498     F->addMetadata(MD.first, *MD.second);
499   return false;
500 }
501 
502 /// toplevelentity
503 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
504 bool LLParser::ParseDefine() {
505   assert(Lex.getKind() == lltok::kw_define);
506   Lex.Lex();
507 
508   Function *F;
509   return ParseFunctionHeader(F, true) ||
510          ParseOptionalFunctionMetadata(*F) ||
511          ParseFunctionBody(*F);
512 }
513 
514 /// ParseGlobalType
515 ///   ::= 'constant'
516 ///   ::= 'global'
517 bool LLParser::ParseGlobalType(bool &IsConstant) {
518   if (Lex.getKind() == lltok::kw_constant)
519     IsConstant = true;
520   else if (Lex.getKind() == lltok::kw_global)
521     IsConstant = false;
522   else {
523     IsConstant = false;
524     return TokError("expected 'global' or 'constant'");
525   }
526   Lex.Lex();
527   return false;
528 }
529 
530 bool LLParser::ParseOptionalUnnamedAddr(
531     GlobalVariable::UnnamedAddr &UnnamedAddr) {
532   if (EatIfPresent(lltok::kw_unnamed_addr))
533     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
534   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
535     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
536   else
537     UnnamedAddr = GlobalValue::UnnamedAddr::None;
538   return false;
539 }
540 
541 /// ParseUnnamedGlobal:
542 ///   OptionalVisibility (ALIAS | IFUNC) ...
543 ///   OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
544 ///   OptionalDLLStorageClass
545 ///                                                     ...   -> global variable
546 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
547 ///   GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
548 ///                OptionalDLLStorageClass
549 ///                                                     ...   -> global variable
550 bool LLParser::ParseUnnamedGlobal() {
551   unsigned VarID = NumberedVals.size();
552   std::string Name;
553   LocTy NameLoc = Lex.getLoc();
554 
555   // Handle the GlobalID form.
556   if (Lex.getKind() == lltok::GlobalID) {
557     if (Lex.getUIntVal() != VarID)
558       return Error(Lex.getLoc(), "variable expected to be numbered '%" +
559                    Twine(VarID) + "'");
560     Lex.Lex(); // eat GlobalID;
561 
562     if (ParseToken(lltok::equal, "expected '=' after name"))
563       return true;
564   }
565 
566   bool HasLinkage;
567   unsigned Linkage, Visibility, DLLStorageClass;
568   bool DSOLocal;
569   GlobalVariable::ThreadLocalMode TLM;
570   GlobalVariable::UnnamedAddr UnnamedAddr;
571   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
572                            DSOLocal) ||
573       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
574     return true;
575 
576   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
577     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
578                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
579 
580   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
581                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
582 }
583 
584 /// ParseNamedGlobal:
585 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
586 ///   GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
587 ///                 OptionalVisibility OptionalDLLStorageClass
588 ///                                                     ...   -> global variable
589 bool LLParser::ParseNamedGlobal() {
590   assert(Lex.getKind() == lltok::GlobalVar);
591   LocTy NameLoc = Lex.getLoc();
592   std::string Name = Lex.getStrVal();
593   Lex.Lex();
594 
595   bool HasLinkage;
596   unsigned Linkage, Visibility, DLLStorageClass;
597   bool DSOLocal;
598   GlobalVariable::ThreadLocalMode TLM;
599   GlobalVariable::UnnamedAddr UnnamedAddr;
600   if (ParseToken(lltok::equal, "expected '=' in global variable") ||
601       ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
602                            DSOLocal) ||
603       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
604     return true;
605 
606   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
607     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
608                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
609 
610   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
611                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
612 }
613 
614 bool LLParser::parseComdat() {
615   assert(Lex.getKind() == lltok::ComdatVar);
616   std::string Name = Lex.getStrVal();
617   LocTy NameLoc = Lex.getLoc();
618   Lex.Lex();
619 
620   if (ParseToken(lltok::equal, "expected '=' here"))
621     return true;
622 
623   if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
624     return TokError("expected comdat type");
625 
626   Comdat::SelectionKind SK;
627   switch (Lex.getKind()) {
628   default:
629     return TokError("unknown selection kind");
630   case lltok::kw_any:
631     SK = Comdat::Any;
632     break;
633   case lltok::kw_exactmatch:
634     SK = Comdat::ExactMatch;
635     break;
636   case lltok::kw_largest:
637     SK = Comdat::Largest;
638     break;
639   case lltok::kw_noduplicates:
640     SK = Comdat::NoDuplicates;
641     break;
642   case lltok::kw_samesize:
643     SK = Comdat::SameSize;
644     break;
645   }
646   Lex.Lex();
647 
648   // See if the comdat was forward referenced, if so, use the comdat.
649   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
650   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
651   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
652     return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
653 
654   Comdat *C;
655   if (I != ComdatSymTab.end())
656     C = &I->second;
657   else
658     C = M->getOrInsertComdat(Name);
659   C->setSelectionKind(SK);
660 
661   return false;
662 }
663 
664 // MDString:
665 //   ::= '!' STRINGCONSTANT
666 bool LLParser::ParseMDString(MDString *&Result) {
667   std::string Str;
668   if (ParseStringConstant(Str)) return true;
669   Result = MDString::get(Context, Str);
670   return false;
671 }
672 
673 // MDNode:
674 //   ::= '!' MDNodeNumber
675 bool LLParser::ParseMDNodeID(MDNode *&Result) {
676   // !{ ..., !42, ... }
677   LocTy IDLoc = Lex.getLoc();
678   unsigned MID = 0;
679   if (ParseUInt32(MID))
680     return true;
681 
682   // If not a forward reference, just return it now.
683   if (NumberedMetadata.count(MID)) {
684     Result = NumberedMetadata[MID];
685     return false;
686   }
687 
688   // Otherwise, create MDNode forward reference.
689   auto &FwdRef = ForwardRefMDNodes[MID];
690   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
691 
692   Result = FwdRef.first.get();
693   NumberedMetadata[MID].reset(Result);
694   return false;
695 }
696 
697 /// ParseNamedMetadata:
698 ///   !foo = !{ !1, !2 }
699 bool LLParser::ParseNamedMetadata() {
700   assert(Lex.getKind() == lltok::MetadataVar);
701   std::string Name = Lex.getStrVal();
702   Lex.Lex();
703 
704   if (ParseToken(lltok::equal, "expected '=' here") ||
705       ParseToken(lltok::exclaim, "Expected '!' here") ||
706       ParseToken(lltok::lbrace, "Expected '{' here"))
707     return true;
708 
709   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
710   if (Lex.getKind() != lltok::rbrace)
711     do {
712       MDNode *N = nullptr;
713       // Parse DIExpressions inline as a special case. They are still MDNodes,
714       // so they can still appear in named metadata. Remove this logic if they
715       // become plain Metadata.
716       if (Lex.getKind() == lltok::MetadataVar &&
717           Lex.getStrVal() == "DIExpression") {
718         if (ParseDIExpression(N, /*IsDistinct=*/false))
719           return true;
720       } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
721                  ParseMDNodeID(N)) {
722         return true;
723       }
724       NMD->addOperand(N);
725     } while (EatIfPresent(lltok::comma));
726 
727   return ParseToken(lltok::rbrace, "expected end of metadata node");
728 }
729 
730 /// ParseStandaloneMetadata:
731 ///   !42 = !{...}
732 bool LLParser::ParseStandaloneMetadata() {
733   assert(Lex.getKind() == lltok::exclaim);
734   Lex.Lex();
735   unsigned MetadataID = 0;
736 
737   MDNode *Init;
738   if (ParseUInt32(MetadataID) ||
739       ParseToken(lltok::equal, "expected '=' here"))
740     return true;
741 
742   // Detect common error, from old metadata syntax.
743   if (Lex.getKind() == lltok::Type)
744     return TokError("unexpected type in metadata definition");
745 
746   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
747   if (Lex.getKind() == lltok::MetadataVar) {
748     if (ParseSpecializedMDNode(Init, IsDistinct))
749       return true;
750   } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
751              ParseMDTuple(Init, IsDistinct))
752     return true;
753 
754   // See if this was forward referenced, if so, handle it.
755   auto FI = ForwardRefMDNodes.find(MetadataID);
756   if (FI != ForwardRefMDNodes.end()) {
757     FI->second.first->replaceAllUsesWith(Init);
758     ForwardRefMDNodes.erase(FI);
759 
760     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
761   } else {
762     if (NumberedMetadata.count(MetadataID))
763       return TokError("Metadata id is already used");
764     NumberedMetadata[MetadataID].reset(Init);
765   }
766 
767   return false;
768 }
769 
770 // Skips a single module summary entry.
771 bool LLParser::SkipModuleSummaryEntry() {
772   // Each module summary entry consists of a tag for the entry
773   // type, followed by a colon, then the fields surrounded by nested sets of
774   // parentheses. The "tag:" looks like a Label. Once parsing support is
775   // in place we will look for the tokens corresponding to the expected tags.
776   if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
777       Lex.getKind() != lltok::kw_typeid)
778     return TokError(
779         "Expected 'gv', 'module', or 'typeid' at the start of summary entry");
780   Lex.Lex();
781   if (ParseToken(lltok::colon, "expected ':' at start of summary entry") ||
782       ParseToken(lltok::lparen, "expected '(' at start of summary entry"))
783     return true;
784   // Now walk through the parenthesized entry, until the number of open
785   // parentheses goes back down to 0 (the first '(' was parsed above).
786   unsigned NumOpenParen = 1;
787   do {
788     switch (Lex.getKind()) {
789     case lltok::lparen:
790       NumOpenParen++;
791       break;
792     case lltok::rparen:
793       NumOpenParen--;
794       break;
795     case lltok::Eof:
796       return TokError("found end of file while parsing summary entry");
797     default:
798       // Skip everything in between parentheses.
799       break;
800     }
801     Lex.Lex();
802   } while (NumOpenParen > 0);
803   return false;
804 }
805 
806 /// SummaryEntry
807 ///   ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
808 bool LLParser::ParseSummaryEntry() {
809   assert(Lex.getKind() == lltok::SummaryID);
810   unsigned SummaryID = Lex.getUIntVal();
811 
812   // For summary entries, colons should be treated as distinct tokens,
813   // not an indication of the end of a label token.
814   Lex.setIgnoreColonInIdentifiers(true);
815 
816   Lex.Lex();
817   if (ParseToken(lltok::equal, "expected '=' here"))
818     return true;
819 
820   // If we don't have an index object, skip the summary entry.
821   if (!Index)
822     return SkipModuleSummaryEntry();
823 
824   bool result = false;
825   switch (Lex.getKind()) {
826   case lltok::kw_gv:
827     result = ParseGVEntry(SummaryID);
828     break;
829   case lltok::kw_module:
830     result = ParseModuleEntry(SummaryID);
831     break;
832   case lltok::kw_typeid:
833     result = ParseTypeIdEntry(SummaryID);
834     break;
835   case lltok::kw_typeidCompatibleVTable:
836     result = ParseTypeIdCompatibleVtableEntry(SummaryID);
837     break;
838   default:
839     result = Error(Lex.getLoc(), "unexpected summary kind");
840     break;
841   }
842   Lex.setIgnoreColonInIdentifiers(false);
843   return result;
844 }
845 
846 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
847   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
848          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
849 }
850 
851 // If there was an explicit dso_local, update GV. In the absence of an explicit
852 // dso_local we keep the default value.
853 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
854   if (DSOLocal)
855     GV.setDSOLocal(true);
856 }
857 
858 /// parseIndirectSymbol:
859 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
860 ///                     OptionalVisibility OptionalDLLStorageClass
861 ///                     OptionalThreadLocal OptionalUnnamedAddr
862 ///                     'alias|ifunc' IndirectSymbol IndirectSymbolAttr*
863 ///
864 /// IndirectSymbol
865 ///   ::= TypeAndValue
866 ///
867 /// IndirectSymbolAttr
868 ///   ::= ',' 'partition' StringConstant
869 ///
870 /// Everything through OptionalUnnamedAddr has already been parsed.
871 ///
872 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
873                                    unsigned L, unsigned Visibility,
874                                    unsigned DLLStorageClass, bool DSOLocal,
875                                    GlobalVariable::ThreadLocalMode TLM,
876                                    GlobalVariable::UnnamedAddr UnnamedAddr) {
877   bool IsAlias;
878   if (Lex.getKind() == lltok::kw_alias)
879     IsAlias = true;
880   else if (Lex.getKind() == lltok::kw_ifunc)
881     IsAlias = false;
882   else
883     llvm_unreachable("Not an alias or ifunc!");
884   Lex.Lex();
885 
886   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
887 
888   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
889     return Error(NameLoc, "invalid linkage type for alias");
890 
891   if (!isValidVisibilityForLinkage(Visibility, L))
892     return Error(NameLoc,
893                  "symbol with local linkage must have default visibility");
894 
895   Type *Ty;
896   LocTy ExplicitTypeLoc = Lex.getLoc();
897   if (ParseType(Ty) ||
898       ParseToken(lltok::comma, "expected comma after alias or ifunc's type"))
899     return true;
900 
901   Constant *Aliasee;
902   LocTy AliaseeLoc = Lex.getLoc();
903   if (Lex.getKind() != lltok::kw_bitcast &&
904       Lex.getKind() != lltok::kw_getelementptr &&
905       Lex.getKind() != lltok::kw_addrspacecast &&
906       Lex.getKind() != lltok::kw_inttoptr) {
907     if (ParseGlobalTypeAndValue(Aliasee))
908       return true;
909   } else {
910     // The bitcast dest type is not present, it is implied by the dest type.
911     ValID ID;
912     if (ParseValID(ID))
913       return true;
914     if (ID.Kind != ValID::t_Constant)
915       return Error(AliaseeLoc, "invalid aliasee");
916     Aliasee = ID.ConstantVal;
917   }
918 
919   Type *AliaseeType = Aliasee->getType();
920   auto *PTy = dyn_cast<PointerType>(AliaseeType);
921   if (!PTy)
922     return Error(AliaseeLoc, "An alias or ifunc must have pointer type");
923   unsigned AddrSpace = PTy->getAddressSpace();
924 
925   if (IsAlias && Ty != PTy->getElementType())
926     return Error(
927         ExplicitTypeLoc,
928         "explicit pointee type doesn't match operand's pointee type");
929 
930   if (!IsAlias && !PTy->getElementType()->isFunctionTy())
931     return Error(
932         ExplicitTypeLoc,
933         "explicit pointee type should be a function type");
934 
935   GlobalValue *GVal = nullptr;
936 
937   // See if the alias was forward referenced, if so, prepare to replace the
938   // forward reference.
939   if (!Name.empty()) {
940     GVal = M->getNamedValue(Name);
941     if (GVal) {
942       if (!ForwardRefVals.erase(Name))
943         return Error(NameLoc, "redefinition of global '@" + Name + "'");
944     }
945   } else {
946     auto I = ForwardRefValIDs.find(NumberedVals.size());
947     if (I != ForwardRefValIDs.end()) {
948       GVal = I->second.first;
949       ForwardRefValIDs.erase(I);
950     }
951   }
952 
953   // Okay, create the alias but do not insert it into the module yet.
954   std::unique_ptr<GlobalIndirectSymbol> GA;
955   if (IsAlias)
956     GA.reset(GlobalAlias::create(Ty, AddrSpace,
957                                  (GlobalValue::LinkageTypes)Linkage, Name,
958                                  Aliasee, /*Parent*/ nullptr));
959   else
960     GA.reset(GlobalIFunc::create(Ty, AddrSpace,
961                                  (GlobalValue::LinkageTypes)Linkage, Name,
962                                  Aliasee, /*Parent*/ nullptr));
963   GA->setThreadLocalMode(TLM);
964   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
965   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
966   GA->setUnnamedAddr(UnnamedAddr);
967   maybeSetDSOLocal(DSOLocal, *GA);
968 
969   // At this point we've parsed everything except for the IndirectSymbolAttrs.
970   // Now parse them if there are any.
971   while (Lex.getKind() == lltok::comma) {
972     Lex.Lex();
973 
974     if (Lex.getKind() == lltok::kw_partition) {
975       Lex.Lex();
976       GA->setPartition(Lex.getStrVal());
977       if (ParseToken(lltok::StringConstant, "expected partition string"))
978         return true;
979     } else {
980       return TokError("unknown alias or ifunc property!");
981     }
982   }
983 
984   if (Name.empty())
985     NumberedVals.push_back(GA.get());
986 
987   if (GVal) {
988     // Verify that types agree.
989     if (GVal->getType() != GA->getType())
990       return Error(
991           ExplicitTypeLoc,
992           "forward reference and definition of alias have different types");
993 
994     // If they agree, just RAUW the old value with the alias and remove the
995     // forward ref info.
996     GVal->replaceAllUsesWith(GA.get());
997     GVal->eraseFromParent();
998   }
999 
1000   // Insert into the module, we know its name won't collide now.
1001   if (IsAlias)
1002     M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
1003   else
1004     M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
1005   assert(GA->getName() == Name && "Should not be a name conflict!");
1006 
1007   // The module owns this now
1008   GA.release();
1009 
1010   return false;
1011 }
1012 
1013 /// ParseGlobal
1014 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1015 ///       OptionalVisibility OptionalDLLStorageClass
1016 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
1017 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
1018 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
1019 ///       OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
1020 ///       OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
1021 ///       Const OptionalAttrs
1022 ///
1023 /// Everything up to and including OptionalUnnamedAddr has been parsed
1024 /// already.
1025 ///
1026 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
1027                            unsigned Linkage, bool HasLinkage,
1028                            unsigned Visibility, unsigned DLLStorageClass,
1029                            bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1030                            GlobalVariable::UnnamedAddr UnnamedAddr) {
1031   if (!isValidVisibilityForLinkage(Visibility, Linkage))
1032     return Error(NameLoc,
1033                  "symbol with local linkage must have default visibility");
1034 
1035   unsigned AddrSpace;
1036   bool IsConstant, IsExternallyInitialized;
1037   LocTy IsExternallyInitializedLoc;
1038   LocTy TyLoc;
1039 
1040   Type *Ty = nullptr;
1041   if (ParseOptionalAddrSpace(AddrSpace) ||
1042       ParseOptionalToken(lltok::kw_externally_initialized,
1043                          IsExternallyInitialized,
1044                          &IsExternallyInitializedLoc) ||
1045       ParseGlobalType(IsConstant) ||
1046       ParseType(Ty, TyLoc))
1047     return true;
1048 
1049   // If the linkage is specified and is external, then no initializer is
1050   // present.
1051   Constant *Init = nullptr;
1052   if (!HasLinkage ||
1053       !GlobalValue::isValidDeclarationLinkage(
1054           (GlobalValue::LinkageTypes)Linkage)) {
1055     if (ParseGlobalValue(Ty, Init))
1056       return true;
1057   }
1058 
1059   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1060     return Error(TyLoc, "invalid type for global variable");
1061 
1062   GlobalValue *GVal = nullptr;
1063 
1064   // See if the global was forward referenced, if so, use the global.
1065   if (!Name.empty()) {
1066     GVal = M->getNamedValue(Name);
1067     if (GVal) {
1068       if (!ForwardRefVals.erase(Name))
1069         return Error(NameLoc, "redefinition of global '@" + Name + "'");
1070     }
1071   } else {
1072     auto I = ForwardRefValIDs.find(NumberedVals.size());
1073     if (I != ForwardRefValIDs.end()) {
1074       GVal = I->second.first;
1075       ForwardRefValIDs.erase(I);
1076     }
1077   }
1078 
1079   GlobalVariable *GV;
1080   if (!GVal) {
1081     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
1082                             Name, nullptr, GlobalVariable::NotThreadLocal,
1083                             AddrSpace);
1084   } else {
1085     if (GVal->getValueType() != Ty)
1086       return Error(TyLoc,
1087             "forward reference and definition of global have different types");
1088 
1089     GV = cast<GlobalVariable>(GVal);
1090 
1091     // Move the forward-reference to the correct spot in the module.
1092     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
1093   }
1094 
1095   if (Name.empty())
1096     NumberedVals.push_back(GV);
1097 
1098   // Set the parsed properties on the global.
1099   if (Init)
1100     GV->setInitializer(Init);
1101   GV->setConstant(IsConstant);
1102   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1103   maybeSetDSOLocal(DSOLocal, *GV);
1104   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1105   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1106   GV->setExternallyInitialized(IsExternallyInitialized);
1107   GV->setThreadLocalMode(TLM);
1108   GV->setUnnamedAddr(UnnamedAddr);
1109 
1110   // Parse attributes on the global.
1111   while (Lex.getKind() == lltok::comma) {
1112     Lex.Lex();
1113 
1114     if (Lex.getKind() == lltok::kw_section) {
1115       Lex.Lex();
1116       GV->setSection(Lex.getStrVal());
1117       if (ParseToken(lltok::StringConstant, "expected global section string"))
1118         return true;
1119     } else if (Lex.getKind() == lltok::kw_partition) {
1120       Lex.Lex();
1121       GV->setPartition(Lex.getStrVal());
1122       if (ParseToken(lltok::StringConstant, "expected partition string"))
1123         return true;
1124     } else if (Lex.getKind() == lltok::kw_align) {
1125       MaybeAlign Alignment;
1126       if (ParseOptionalAlignment(Alignment)) return true;
1127       GV->setAlignment(Alignment);
1128     } else if (Lex.getKind() == lltok::MetadataVar) {
1129       if (ParseGlobalObjectMetadataAttachment(*GV))
1130         return true;
1131     } else {
1132       Comdat *C;
1133       if (parseOptionalComdat(Name, C))
1134         return true;
1135       if (C)
1136         GV->setComdat(C);
1137       else
1138         return TokError("unknown global variable property!");
1139     }
1140   }
1141 
1142   AttrBuilder Attrs;
1143   LocTy BuiltinLoc;
1144   std::vector<unsigned> FwdRefAttrGrps;
1145   if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1146     return true;
1147   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1148     GV->setAttributes(AttributeSet::get(Context, Attrs));
1149     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1150   }
1151 
1152   return false;
1153 }
1154 
1155 /// ParseUnnamedAttrGrp
1156 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1157 bool LLParser::ParseUnnamedAttrGrp() {
1158   assert(Lex.getKind() == lltok::kw_attributes);
1159   LocTy AttrGrpLoc = Lex.getLoc();
1160   Lex.Lex();
1161 
1162   if (Lex.getKind() != lltok::AttrGrpID)
1163     return TokError("expected attribute group id");
1164 
1165   unsigned VarID = Lex.getUIntVal();
1166   std::vector<unsigned> unused;
1167   LocTy BuiltinLoc;
1168   Lex.Lex();
1169 
1170   if (ParseToken(lltok::equal, "expected '=' here") ||
1171       ParseToken(lltok::lbrace, "expected '{' here") ||
1172       ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
1173                                  BuiltinLoc) ||
1174       ParseToken(lltok::rbrace, "expected end of attribute group"))
1175     return true;
1176 
1177   if (!NumberedAttrBuilders[VarID].hasAttributes())
1178     return Error(AttrGrpLoc, "attribute group has no attributes");
1179 
1180   return false;
1181 }
1182 
1183 /// ParseFnAttributeValuePairs
1184 ///   ::= <attr> | <attr> '=' <value>
1185 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
1186                                           std::vector<unsigned> &FwdRefAttrGrps,
1187                                           bool inAttrGrp, LocTy &BuiltinLoc) {
1188   bool HaveError = false;
1189 
1190   B.clear();
1191 
1192   while (true) {
1193     lltok::Kind Token = Lex.getKind();
1194     if (Token == lltok::kw_builtin)
1195       BuiltinLoc = Lex.getLoc();
1196     switch (Token) {
1197     default:
1198       if (!inAttrGrp) return HaveError;
1199       return Error(Lex.getLoc(), "unterminated attribute group");
1200     case lltok::rbrace:
1201       // Finished.
1202       return false;
1203 
1204     case lltok::AttrGrpID: {
1205       // Allow a function to reference an attribute group:
1206       //
1207       //   define void @foo() #1 { ... }
1208       if (inAttrGrp)
1209         HaveError |=
1210           Error(Lex.getLoc(),
1211               "cannot have an attribute group reference in an attribute group");
1212 
1213       unsigned AttrGrpNum = Lex.getUIntVal();
1214       if (inAttrGrp) break;
1215 
1216       // Save the reference to the attribute group. We'll fill it in later.
1217       FwdRefAttrGrps.push_back(AttrGrpNum);
1218       break;
1219     }
1220     // Target-dependent attributes:
1221     case lltok::StringConstant: {
1222       if (ParseStringAttribute(B))
1223         return true;
1224       continue;
1225     }
1226 
1227     // Target-independent attributes:
1228     case lltok::kw_align: {
1229       // As a hack, we allow function alignment to be initially parsed as an
1230       // attribute on a function declaration/definition or added to an attribute
1231       // group and later moved to the alignment field.
1232       MaybeAlign Alignment;
1233       if (inAttrGrp) {
1234         Lex.Lex();
1235         uint32_t Value = 0;
1236         if (ParseToken(lltok::equal, "expected '=' here") || ParseUInt32(Value))
1237           return true;
1238         Alignment = Align(Value);
1239       } else {
1240         if (ParseOptionalAlignment(Alignment))
1241           return true;
1242       }
1243       B.addAlignmentAttr(Alignment);
1244       continue;
1245     }
1246     case lltok::kw_alignstack: {
1247       unsigned Alignment;
1248       if (inAttrGrp) {
1249         Lex.Lex();
1250         if (ParseToken(lltok::equal, "expected '=' here") ||
1251             ParseUInt32(Alignment))
1252           return true;
1253       } else {
1254         if (ParseOptionalStackAlignment(Alignment))
1255           return true;
1256       }
1257       B.addStackAlignmentAttr(Alignment);
1258       continue;
1259     }
1260     case lltok::kw_allocsize: {
1261       unsigned ElemSizeArg;
1262       Optional<unsigned> NumElemsArg;
1263       // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1264       if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1265         return true;
1266       B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1267       continue;
1268     }
1269     case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1270     case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1271     case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1272     case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1273     case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1274     case lltok::kw_inaccessiblememonly:
1275       B.addAttribute(Attribute::InaccessibleMemOnly); break;
1276     case lltok::kw_inaccessiblemem_or_argmemonly:
1277       B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1278     case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1279     case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1280     case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1281     case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1282     case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1283     case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1284     case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break;
1285     case lltok::kw_noimplicitfloat:
1286       B.addAttribute(Attribute::NoImplicitFloat); break;
1287     case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1288     case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1289     case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1290     case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1291     case lltok::kw_nosync: B.addAttribute(Attribute::NoSync); break;
1292     case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break;
1293     case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1294     case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1295     case lltok::kw_optforfuzzing:
1296       B.addAttribute(Attribute::OptForFuzzing); break;
1297     case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1298     case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1299     case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1300     case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1301     case lltok::kw_returns_twice:
1302       B.addAttribute(Attribute::ReturnsTwice); break;
1303     case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break;
1304     case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1305     case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1306     case lltok::kw_sspstrong:
1307       B.addAttribute(Attribute::StackProtectStrong); break;
1308     case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1309     case lltok::kw_shadowcallstack:
1310       B.addAttribute(Attribute::ShadowCallStack); break;
1311     case lltok::kw_sanitize_address:
1312       B.addAttribute(Attribute::SanitizeAddress); break;
1313     case lltok::kw_sanitize_hwaddress:
1314       B.addAttribute(Attribute::SanitizeHWAddress); break;
1315     case lltok::kw_sanitize_memtag:
1316       B.addAttribute(Attribute::SanitizeMemTag); break;
1317     case lltok::kw_sanitize_thread:
1318       B.addAttribute(Attribute::SanitizeThread); break;
1319     case lltok::kw_sanitize_memory:
1320       B.addAttribute(Attribute::SanitizeMemory); break;
1321     case lltok::kw_speculative_load_hardening:
1322       B.addAttribute(Attribute::SpeculativeLoadHardening);
1323       break;
1324     case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break;
1325     case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1326     case lltok::kw_willreturn: B.addAttribute(Attribute::WillReturn); break;
1327     case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1328 
1329     // Error handling.
1330     case lltok::kw_inreg:
1331     case lltok::kw_signext:
1332     case lltok::kw_zeroext:
1333       HaveError |=
1334         Error(Lex.getLoc(),
1335               "invalid use of attribute on a function");
1336       break;
1337     case lltok::kw_byval:
1338     case lltok::kw_dereferenceable:
1339     case lltok::kw_dereferenceable_or_null:
1340     case lltok::kw_inalloca:
1341     case lltok::kw_nest:
1342     case lltok::kw_noalias:
1343     case lltok::kw_nocapture:
1344     case lltok::kw_nonnull:
1345     case lltok::kw_returned:
1346     case lltok::kw_sret:
1347     case lltok::kw_swifterror:
1348     case lltok::kw_swiftself:
1349     case lltok::kw_immarg:
1350       HaveError |=
1351         Error(Lex.getLoc(),
1352               "invalid use of parameter-only attribute on a function");
1353       break;
1354     }
1355 
1356     Lex.Lex();
1357   }
1358 }
1359 
1360 //===----------------------------------------------------------------------===//
1361 // GlobalValue Reference/Resolution Routines.
1362 //===----------------------------------------------------------------------===//
1363 
1364 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1365                                               const std::string &Name) {
1366   if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1367     return Function::Create(FT, GlobalValue::ExternalWeakLinkage,
1368                             PTy->getAddressSpace(), Name, M);
1369   else
1370     return new GlobalVariable(*M, PTy->getElementType(), false,
1371                               GlobalValue::ExternalWeakLinkage, nullptr, Name,
1372                               nullptr, GlobalVariable::NotThreadLocal,
1373                               PTy->getAddressSpace());
1374 }
1375 
1376 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1377                                         Value *Val, bool IsCall) {
1378   if (Val->getType() == Ty)
1379     return Val;
1380   // For calls we also accept variables in the program address space.
1381   Type *SuggestedTy = Ty;
1382   if (IsCall && isa<PointerType>(Ty)) {
1383     Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo(
1384         M->getDataLayout().getProgramAddressSpace());
1385     SuggestedTy = TyInProgAS;
1386     if (Val->getType() == TyInProgAS)
1387       return Val;
1388   }
1389   if (Ty->isLabelTy())
1390     Error(Loc, "'" + Name + "' is not a basic block");
1391   else
1392     Error(Loc, "'" + Name + "' defined with type '" +
1393                    getTypeString(Val->getType()) + "' but expected '" +
1394                    getTypeString(SuggestedTy) + "'");
1395   return nullptr;
1396 }
1397 
1398 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1399 /// forward reference record if needed.  This can return null if the value
1400 /// exists but does not have the right type.
1401 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
1402                                     LocTy Loc, bool IsCall) {
1403   PointerType *PTy = dyn_cast<PointerType>(Ty);
1404   if (!PTy) {
1405     Error(Loc, "global variable reference must have pointer type");
1406     return nullptr;
1407   }
1408 
1409   // Look this name up in the normal function symbol table.
1410   GlobalValue *Val =
1411     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1412 
1413   // If this is a forward reference for the value, see if we already created a
1414   // forward ref record.
1415   if (!Val) {
1416     auto I = ForwardRefVals.find(Name);
1417     if (I != ForwardRefVals.end())
1418       Val = I->second.first;
1419   }
1420 
1421   // If we have the value in the symbol table or fwd-ref table, return it.
1422   if (Val)
1423     return cast_or_null<GlobalValue>(
1424         checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall));
1425 
1426   // Otherwise, create a new forward reference for this value and remember it.
1427   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1428   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1429   return FwdVal;
1430 }
1431 
1432 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc,
1433                                     bool IsCall) {
1434   PointerType *PTy = dyn_cast<PointerType>(Ty);
1435   if (!PTy) {
1436     Error(Loc, "global variable reference must have pointer type");
1437     return nullptr;
1438   }
1439 
1440   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1441 
1442   // If this is a forward reference for the value, see if we already created a
1443   // forward ref record.
1444   if (!Val) {
1445     auto I = ForwardRefValIDs.find(ID);
1446     if (I != ForwardRefValIDs.end())
1447       Val = I->second.first;
1448   }
1449 
1450   // If we have the value in the symbol table or fwd-ref table, return it.
1451   if (Val)
1452     return cast_or_null<GlobalValue>(
1453         checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall));
1454 
1455   // Otherwise, create a new forward reference for this value and remember it.
1456   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1457   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1458   return FwdVal;
1459 }
1460 
1461 //===----------------------------------------------------------------------===//
1462 // Comdat Reference/Resolution Routines.
1463 //===----------------------------------------------------------------------===//
1464 
1465 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1466   // Look this name up in the comdat symbol table.
1467   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1468   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1469   if (I != ComdatSymTab.end())
1470     return &I->second;
1471 
1472   // Otherwise, create a new forward reference for this value and remember it.
1473   Comdat *C = M->getOrInsertComdat(Name);
1474   ForwardRefComdats[Name] = Loc;
1475   return C;
1476 }
1477 
1478 //===----------------------------------------------------------------------===//
1479 // Helper Routines.
1480 //===----------------------------------------------------------------------===//
1481 
1482 /// ParseToken - If the current token has the specified kind, eat it and return
1483 /// success.  Otherwise, emit the specified error and return failure.
1484 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1485   if (Lex.getKind() != T)
1486     return TokError(ErrMsg);
1487   Lex.Lex();
1488   return false;
1489 }
1490 
1491 /// ParseStringConstant
1492 ///   ::= StringConstant
1493 bool LLParser::ParseStringConstant(std::string &Result) {
1494   if (Lex.getKind() != lltok::StringConstant)
1495     return TokError("expected string constant");
1496   Result = Lex.getStrVal();
1497   Lex.Lex();
1498   return false;
1499 }
1500 
1501 /// ParseUInt32
1502 ///   ::= uint32
1503 bool LLParser::ParseUInt32(uint32_t &Val) {
1504   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1505     return TokError("expected integer");
1506   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1507   if (Val64 != unsigned(Val64))
1508     return TokError("expected 32-bit integer (too large)");
1509   Val = Val64;
1510   Lex.Lex();
1511   return false;
1512 }
1513 
1514 /// ParseUInt64
1515 ///   ::= uint64
1516 bool LLParser::ParseUInt64(uint64_t &Val) {
1517   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1518     return TokError("expected integer");
1519   Val = Lex.getAPSIntVal().getLimitedValue();
1520   Lex.Lex();
1521   return false;
1522 }
1523 
1524 /// ParseTLSModel
1525 ///   := 'localdynamic'
1526 ///   := 'initialexec'
1527 ///   := 'localexec'
1528 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1529   switch (Lex.getKind()) {
1530     default:
1531       return TokError("expected localdynamic, initialexec or localexec");
1532     case lltok::kw_localdynamic:
1533       TLM = GlobalVariable::LocalDynamicTLSModel;
1534       break;
1535     case lltok::kw_initialexec:
1536       TLM = GlobalVariable::InitialExecTLSModel;
1537       break;
1538     case lltok::kw_localexec:
1539       TLM = GlobalVariable::LocalExecTLSModel;
1540       break;
1541   }
1542 
1543   Lex.Lex();
1544   return false;
1545 }
1546 
1547 /// ParseOptionalThreadLocal
1548 ///   := /*empty*/
1549 ///   := 'thread_local'
1550 ///   := 'thread_local' '(' tlsmodel ')'
1551 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1552   TLM = GlobalVariable::NotThreadLocal;
1553   if (!EatIfPresent(lltok::kw_thread_local))
1554     return false;
1555 
1556   TLM = GlobalVariable::GeneralDynamicTLSModel;
1557   if (Lex.getKind() == lltok::lparen) {
1558     Lex.Lex();
1559     return ParseTLSModel(TLM) ||
1560       ParseToken(lltok::rparen, "expected ')' after thread local model");
1561   }
1562   return false;
1563 }
1564 
1565 /// ParseOptionalAddrSpace
1566 ///   := /*empty*/
1567 ///   := 'addrspace' '(' uint32 ')'
1568 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1569   AddrSpace = DefaultAS;
1570   if (!EatIfPresent(lltok::kw_addrspace))
1571     return false;
1572   return ParseToken(lltok::lparen, "expected '(' in address space") ||
1573          ParseUInt32(AddrSpace) ||
1574          ParseToken(lltok::rparen, "expected ')' in address space");
1575 }
1576 
1577 /// ParseStringAttribute
1578 ///   := StringConstant
1579 ///   := StringConstant '=' StringConstant
1580 bool LLParser::ParseStringAttribute(AttrBuilder &B) {
1581   std::string Attr = Lex.getStrVal();
1582   Lex.Lex();
1583   std::string Val;
1584   if (EatIfPresent(lltok::equal) && ParseStringConstant(Val))
1585     return true;
1586   B.addAttribute(Attr, Val);
1587   return false;
1588 }
1589 
1590 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1591 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1592   bool HaveError = false;
1593 
1594   B.clear();
1595 
1596   while (true) {
1597     lltok::Kind Token = Lex.getKind();
1598     switch (Token) {
1599     default:  // End of attributes.
1600       return HaveError;
1601     case lltok::StringConstant: {
1602       if (ParseStringAttribute(B))
1603         return true;
1604       continue;
1605     }
1606     case lltok::kw_align: {
1607       MaybeAlign Alignment;
1608       if (ParseOptionalAlignment(Alignment))
1609         return true;
1610       B.addAlignmentAttr(Alignment);
1611       continue;
1612     }
1613     case lltok::kw_byval: {
1614       Type *Ty;
1615       if (ParseByValWithOptionalType(Ty))
1616         return true;
1617       B.addByValAttr(Ty);
1618       continue;
1619     }
1620     case lltok::kw_dereferenceable: {
1621       uint64_t Bytes;
1622       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1623         return true;
1624       B.addDereferenceableAttr(Bytes);
1625       continue;
1626     }
1627     case lltok::kw_dereferenceable_or_null: {
1628       uint64_t Bytes;
1629       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1630         return true;
1631       B.addDereferenceableOrNullAttr(Bytes);
1632       continue;
1633     }
1634     case lltok::kw_inalloca:        B.addAttribute(Attribute::InAlloca); break;
1635     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1636     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1637     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1638     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1639     case lltok::kw_nofree:          B.addAttribute(Attribute::NoFree); break;
1640     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1641     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1642     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1643     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1644     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1645     case lltok::kw_sret:            B.addAttribute(Attribute::StructRet); break;
1646     case lltok::kw_swifterror:      B.addAttribute(Attribute::SwiftError); break;
1647     case lltok::kw_swiftself:       B.addAttribute(Attribute::SwiftSelf); break;
1648     case lltok::kw_writeonly:       B.addAttribute(Attribute::WriteOnly); break;
1649     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1650     case lltok::kw_immarg:          B.addAttribute(Attribute::ImmArg); break;
1651 
1652     case lltok::kw_alignstack:
1653     case lltok::kw_alwaysinline:
1654     case lltok::kw_argmemonly:
1655     case lltok::kw_builtin:
1656     case lltok::kw_inlinehint:
1657     case lltok::kw_jumptable:
1658     case lltok::kw_minsize:
1659     case lltok::kw_naked:
1660     case lltok::kw_nobuiltin:
1661     case lltok::kw_noduplicate:
1662     case lltok::kw_noimplicitfloat:
1663     case lltok::kw_noinline:
1664     case lltok::kw_nonlazybind:
1665     case lltok::kw_noredzone:
1666     case lltok::kw_noreturn:
1667     case lltok::kw_nocf_check:
1668     case lltok::kw_nounwind:
1669     case lltok::kw_optforfuzzing:
1670     case lltok::kw_optnone:
1671     case lltok::kw_optsize:
1672     case lltok::kw_returns_twice:
1673     case lltok::kw_sanitize_address:
1674     case lltok::kw_sanitize_hwaddress:
1675     case lltok::kw_sanitize_memtag:
1676     case lltok::kw_sanitize_memory:
1677     case lltok::kw_sanitize_thread:
1678     case lltok::kw_speculative_load_hardening:
1679     case lltok::kw_ssp:
1680     case lltok::kw_sspreq:
1681     case lltok::kw_sspstrong:
1682     case lltok::kw_safestack:
1683     case lltok::kw_shadowcallstack:
1684     case lltok::kw_strictfp:
1685     case lltok::kw_uwtable:
1686       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1687       break;
1688     }
1689 
1690     Lex.Lex();
1691   }
1692 }
1693 
1694 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1695 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1696   bool HaveError = false;
1697 
1698   B.clear();
1699 
1700   while (true) {
1701     lltok::Kind Token = Lex.getKind();
1702     switch (Token) {
1703     default:  // End of attributes.
1704       return HaveError;
1705     case lltok::StringConstant: {
1706       if (ParseStringAttribute(B))
1707         return true;
1708       continue;
1709     }
1710     case lltok::kw_dereferenceable: {
1711       uint64_t Bytes;
1712       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1713         return true;
1714       B.addDereferenceableAttr(Bytes);
1715       continue;
1716     }
1717     case lltok::kw_dereferenceable_or_null: {
1718       uint64_t Bytes;
1719       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1720         return true;
1721       B.addDereferenceableOrNullAttr(Bytes);
1722       continue;
1723     }
1724     case lltok::kw_align: {
1725       MaybeAlign Alignment;
1726       if (ParseOptionalAlignment(Alignment))
1727         return true;
1728       B.addAlignmentAttr(Alignment);
1729       continue;
1730     }
1731     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1732     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1733     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1734     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1735     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1736 
1737     // Error handling.
1738     case lltok::kw_byval:
1739     case lltok::kw_inalloca:
1740     case lltok::kw_nest:
1741     case lltok::kw_nocapture:
1742     case lltok::kw_returned:
1743     case lltok::kw_sret:
1744     case lltok::kw_swifterror:
1745     case lltok::kw_swiftself:
1746     case lltok::kw_immarg:
1747       HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1748       break;
1749 
1750     case lltok::kw_alignstack:
1751     case lltok::kw_alwaysinline:
1752     case lltok::kw_argmemonly:
1753     case lltok::kw_builtin:
1754     case lltok::kw_cold:
1755     case lltok::kw_inlinehint:
1756     case lltok::kw_jumptable:
1757     case lltok::kw_minsize:
1758     case lltok::kw_naked:
1759     case lltok::kw_nobuiltin:
1760     case lltok::kw_noduplicate:
1761     case lltok::kw_noimplicitfloat:
1762     case lltok::kw_noinline:
1763     case lltok::kw_nonlazybind:
1764     case lltok::kw_noredzone:
1765     case lltok::kw_noreturn:
1766     case lltok::kw_nocf_check:
1767     case lltok::kw_nounwind:
1768     case lltok::kw_optforfuzzing:
1769     case lltok::kw_optnone:
1770     case lltok::kw_optsize:
1771     case lltok::kw_returns_twice:
1772     case lltok::kw_sanitize_address:
1773     case lltok::kw_sanitize_hwaddress:
1774     case lltok::kw_sanitize_memtag:
1775     case lltok::kw_sanitize_memory:
1776     case lltok::kw_sanitize_thread:
1777     case lltok::kw_speculative_load_hardening:
1778     case lltok::kw_ssp:
1779     case lltok::kw_sspreq:
1780     case lltok::kw_sspstrong:
1781     case lltok::kw_safestack:
1782     case lltok::kw_shadowcallstack:
1783     case lltok::kw_strictfp:
1784     case lltok::kw_uwtable:
1785       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1786       break;
1787 
1788     case lltok::kw_readnone:
1789     case lltok::kw_readonly:
1790       HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1791     }
1792 
1793     Lex.Lex();
1794   }
1795 }
1796 
1797 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1798   HasLinkage = true;
1799   switch (Kind) {
1800   default:
1801     HasLinkage = false;
1802     return GlobalValue::ExternalLinkage;
1803   case lltok::kw_private:
1804     return GlobalValue::PrivateLinkage;
1805   case lltok::kw_internal:
1806     return GlobalValue::InternalLinkage;
1807   case lltok::kw_weak:
1808     return GlobalValue::WeakAnyLinkage;
1809   case lltok::kw_weak_odr:
1810     return GlobalValue::WeakODRLinkage;
1811   case lltok::kw_linkonce:
1812     return GlobalValue::LinkOnceAnyLinkage;
1813   case lltok::kw_linkonce_odr:
1814     return GlobalValue::LinkOnceODRLinkage;
1815   case lltok::kw_available_externally:
1816     return GlobalValue::AvailableExternallyLinkage;
1817   case lltok::kw_appending:
1818     return GlobalValue::AppendingLinkage;
1819   case lltok::kw_common:
1820     return GlobalValue::CommonLinkage;
1821   case lltok::kw_extern_weak:
1822     return GlobalValue::ExternalWeakLinkage;
1823   case lltok::kw_external:
1824     return GlobalValue::ExternalLinkage;
1825   }
1826 }
1827 
1828 /// ParseOptionalLinkage
1829 ///   ::= /*empty*/
1830 ///   ::= 'private'
1831 ///   ::= 'internal'
1832 ///   ::= 'weak'
1833 ///   ::= 'weak_odr'
1834 ///   ::= 'linkonce'
1835 ///   ::= 'linkonce_odr'
1836 ///   ::= 'available_externally'
1837 ///   ::= 'appending'
1838 ///   ::= 'common'
1839 ///   ::= 'extern_weak'
1840 ///   ::= 'external'
1841 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1842                                     unsigned &Visibility,
1843                                     unsigned &DLLStorageClass,
1844                                     bool &DSOLocal) {
1845   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1846   if (HasLinkage)
1847     Lex.Lex();
1848   ParseOptionalDSOLocal(DSOLocal);
1849   ParseOptionalVisibility(Visibility);
1850   ParseOptionalDLLStorageClass(DLLStorageClass);
1851 
1852   if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
1853     return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
1854   }
1855 
1856   return false;
1857 }
1858 
1859 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) {
1860   switch (Lex.getKind()) {
1861   default:
1862     DSOLocal = false;
1863     break;
1864   case lltok::kw_dso_local:
1865     DSOLocal = true;
1866     Lex.Lex();
1867     break;
1868   case lltok::kw_dso_preemptable:
1869     DSOLocal = false;
1870     Lex.Lex();
1871     break;
1872   }
1873 }
1874 
1875 /// ParseOptionalVisibility
1876 ///   ::= /*empty*/
1877 ///   ::= 'default'
1878 ///   ::= 'hidden'
1879 ///   ::= 'protected'
1880 ///
1881 void LLParser::ParseOptionalVisibility(unsigned &Res) {
1882   switch (Lex.getKind()) {
1883   default:
1884     Res = GlobalValue::DefaultVisibility;
1885     return;
1886   case lltok::kw_default:
1887     Res = GlobalValue::DefaultVisibility;
1888     break;
1889   case lltok::kw_hidden:
1890     Res = GlobalValue::HiddenVisibility;
1891     break;
1892   case lltok::kw_protected:
1893     Res = GlobalValue::ProtectedVisibility;
1894     break;
1895   }
1896   Lex.Lex();
1897 }
1898 
1899 /// ParseOptionalDLLStorageClass
1900 ///   ::= /*empty*/
1901 ///   ::= 'dllimport'
1902 ///   ::= 'dllexport'
1903 ///
1904 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
1905   switch (Lex.getKind()) {
1906   default:
1907     Res = GlobalValue::DefaultStorageClass;
1908     return;
1909   case lltok::kw_dllimport:
1910     Res = GlobalValue::DLLImportStorageClass;
1911     break;
1912   case lltok::kw_dllexport:
1913     Res = GlobalValue::DLLExportStorageClass;
1914     break;
1915   }
1916   Lex.Lex();
1917 }
1918 
1919 /// ParseOptionalCallingConv
1920 ///   ::= /*empty*/
1921 ///   ::= 'ccc'
1922 ///   ::= 'fastcc'
1923 ///   ::= 'intel_ocl_bicc'
1924 ///   ::= 'coldcc'
1925 ///   ::= 'cfguard_checkcc'
1926 ///   ::= 'x86_stdcallcc'
1927 ///   ::= 'x86_fastcallcc'
1928 ///   ::= 'x86_thiscallcc'
1929 ///   ::= 'x86_vectorcallcc'
1930 ///   ::= 'arm_apcscc'
1931 ///   ::= 'arm_aapcscc'
1932 ///   ::= 'arm_aapcs_vfpcc'
1933 ///   ::= 'aarch64_vector_pcs'
1934 ///   ::= 'aarch64_sve_vector_pcs'
1935 ///   ::= 'msp430_intrcc'
1936 ///   ::= 'avr_intrcc'
1937 ///   ::= 'avr_signalcc'
1938 ///   ::= 'ptx_kernel'
1939 ///   ::= 'ptx_device'
1940 ///   ::= 'spir_func'
1941 ///   ::= 'spir_kernel'
1942 ///   ::= 'x86_64_sysvcc'
1943 ///   ::= 'win64cc'
1944 ///   ::= 'webkit_jscc'
1945 ///   ::= 'anyregcc'
1946 ///   ::= 'preserve_mostcc'
1947 ///   ::= 'preserve_allcc'
1948 ///   ::= 'ghccc'
1949 ///   ::= 'swiftcc'
1950 ///   ::= 'x86_intrcc'
1951 ///   ::= 'hhvmcc'
1952 ///   ::= 'hhvm_ccc'
1953 ///   ::= 'cxx_fast_tlscc'
1954 ///   ::= 'amdgpu_vs'
1955 ///   ::= 'amdgpu_ls'
1956 ///   ::= 'amdgpu_hs'
1957 ///   ::= 'amdgpu_es'
1958 ///   ::= 'amdgpu_gs'
1959 ///   ::= 'amdgpu_ps'
1960 ///   ::= 'amdgpu_cs'
1961 ///   ::= 'amdgpu_kernel'
1962 ///   ::= 'tailcc'
1963 ///   ::= 'cc' UINT
1964 ///
1965 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
1966   switch (Lex.getKind()) {
1967   default:                       CC = CallingConv::C; return false;
1968   case lltok::kw_ccc:            CC = CallingConv::C; break;
1969   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1970   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1971   case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break;
1972   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1973   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1974   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
1975   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1976   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
1977   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1978   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1979   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1980   case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
1981   case lltok::kw_aarch64_sve_vector_pcs:
1982     CC = CallingConv::AArch64_SVE_VectorCall;
1983     break;
1984   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1985   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
1986   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
1987   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1988   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1989   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
1990   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
1991   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1992   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
1993   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
1994   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
1995   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
1996   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
1997   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
1998   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
1999   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
2000   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
2001   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
2002   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
2003   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
2004   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
2005   case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
2006   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
2007   case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
2008   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
2009   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
2010   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
2011   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
2012   case lltok::kw_tailcc:         CC = CallingConv::Tail; break;
2013   case lltok::kw_cc: {
2014       Lex.Lex();
2015       return ParseUInt32(CC);
2016     }
2017   }
2018 
2019   Lex.Lex();
2020   return false;
2021 }
2022 
2023 /// ParseMetadataAttachment
2024 ///   ::= !dbg !42
2025 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
2026   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
2027 
2028   std::string Name = Lex.getStrVal();
2029   Kind = M->getMDKindID(Name);
2030   Lex.Lex();
2031 
2032   return ParseMDNode(MD);
2033 }
2034 
2035 /// ParseInstructionMetadata
2036 ///   ::= !dbg !42 (',' !dbg !57)*
2037 bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
2038   do {
2039     if (Lex.getKind() != lltok::MetadataVar)
2040       return TokError("expected metadata after comma");
2041 
2042     unsigned MDK;
2043     MDNode *N;
2044     if (ParseMetadataAttachment(MDK, N))
2045       return true;
2046 
2047     Inst.setMetadata(MDK, N);
2048     if (MDK == LLVMContext::MD_tbaa)
2049       InstsWithTBAATag.push_back(&Inst);
2050 
2051     // If this is the end of the list, we're done.
2052   } while (EatIfPresent(lltok::comma));
2053   return false;
2054 }
2055 
2056 /// ParseGlobalObjectMetadataAttachment
2057 ///   ::= !dbg !57
2058 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) {
2059   unsigned MDK;
2060   MDNode *N;
2061   if (ParseMetadataAttachment(MDK, N))
2062     return true;
2063 
2064   GO.addMetadata(MDK, *N);
2065   return false;
2066 }
2067 
2068 /// ParseOptionalFunctionMetadata
2069 ///   ::= (!dbg !57)*
2070 bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
2071   while (Lex.getKind() == lltok::MetadataVar)
2072     if (ParseGlobalObjectMetadataAttachment(F))
2073       return true;
2074   return false;
2075 }
2076 
2077 /// ParseOptionalAlignment
2078 ///   ::= /* empty */
2079 ///   ::= 'align' 4
2080 bool LLParser::ParseOptionalAlignment(MaybeAlign &Alignment) {
2081   Alignment = None;
2082   if (!EatIfPresent(lltok::kw_align))
2083     return false;
2084   LocTy AlignLoc = Lex.getLoc();
2085   uint32_t Value = 0;
2086   if (ParseUInt32(Value))
2087     return true;
2088   if (!isPowerOf2_32(Value))
2089     return Error(AlignLoc, "alignment is not a power of two");
2090   if (Value > Value::MaximumAlignment)
2091     return Error(AlignLoc, "huge alignments are not supported yet");
2092   Alignment = Align(Value);
2093   return false;
2094 }
2095 
2096 /// ParseOptionalDerefAttrBytes
2097 ///   ::= /* empty */
2098 ///   ::= AttrKind '(' 4 ')'
2099 ///
2100 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
2101 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2102                                            uint64_t &Bytes) {
2103   assert((AttrKind == lltok::kw_dereferenceable ||
2104           AttrKind == lltok::kw_dereferenceable_or_null) &&
2105          "contract!");
2106 
2107   Bytes = 0;
2108   if (!EatIfPresent(AttrKind))
2109     return false;
2110   LocTy ParenLoc = Lex.getLoc();
2111   if (!EatIfPresent(lltok::lparen))
2112     return Error(ParenLoc, "expected '('");
2113   LocTy DerefLoc = Lex.getLoc();
2114   if (ParseUInt64(Bytes)) return true;
2115   ParenLoc = Lex.getLoc();
2116   if (!EatIfPresent(lltok::rparen))
2117     return Error(ParenLoc, "expected ')'");
2118   if (!Bytes)
2119     return Error(DerefLoc, "dereferenceable bytes must be non-zero");
2120   return false;
2121 }
2122 
2123 /// ParseOptionalCommaAlign
2124 ///   ::=
2125 ///   ::= ',' align 4
2126 ///
2127 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2128 /// end.
2129 bool LLParser::ParseOptionalCommaAlign(MaybeAlign &Alignment,
2130                                        bool &AteExtraComma) {
2131   AteExtraComma = false;
2132   while (EatIfPresent(lltok::comma)) {
2133     // Metadata at the end is an early exit.
2134     if (Lex.getKind() == lltok::MetadataVar) {
2135       AteExtraComma = true;
2136       return false;
2137     }
2138 
2139     if (Lex.getKind() != lltok::kw_align)
2140       return Error(Lex.getLoc(), "expected metadata or 'align'");
2141 
2142     if (ParseOptionalAlignment(Alignment)) return true;
2143   }
2144 
2145   return false;
2146 }
2147 
2148 /// ParseOptionalCommaAddrSpace
2149 ///   ::=
2150 ///   ::= ',' addrspace(1)
2151 ///
2152 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2153 /// end.
2154 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace,
2155                                            LocTy &Loc,
2156                                            bool &AteExtraComma) {
2157   AteExtraComma = false;
2158   while (EatIfPresent(lltok::comma)) {
2159     // Metadata at the end is an early exit.
2160     if (Lex.getKind() == lltok::MetadataVar) {
2161       AteExtraComma = true;
2162       return false;
2163     }
2164 
2165     Loc = Lex.getLoc();
2166     if (Lex.getKind() != lltok::kw_addrspace)
2167       return Error(Lex.getLoc(), "expected metadata or 'addrspace'");
2168 
2169     if (ParseOptionalAddrSpace(AddrSpace))
2170       return true;
2171   }
2172 
2173   return false;
2174 }
2175 
2176 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2177                                        Optional<unsigned> &HowManyArg) {
2178   Lex.Lex();
2179 
2180   auto StartParen = Lex.getLoc();
2181   if (!EatIfPresent(lltok::lparen))
2182     return Error(StartParen, "expected '('");
2183 
2184   if (ParseUInt32(BaseSizeArg))
2185     return true;
2186 
2187   if (EatIfPresent(lltok::comma)) {
2188     auto HowManyAt = Lex.getLoc();
2189     unsigned HowMany;
2190     if (ParseUInt32(HowMany))
2191       return true;
2192     if (HowMany == BaseSizeArg)
2193       return Error(HowManyAt,
2194                    "'allocsize' indices can't refer to the same parameter");
2195     HowManyArg = HowMany;
2196   } else
2197     HowManyArg = None;
2198 
2199   auto EndParen = Lex.getLoc();
2200   if (!EatIfPresent(lltok::rparen))
2201     return Error(EndParen, "expected ')'");
2202   return false;
2203 }
2204 
2205 /// ParseScopeAndOrdering
2206 ///   if isAtomic: ::= SyncScope? AtomicOrdering
2207 ///   else: ::=
2208 ///
2209 /// This sets Scope and Ordering to the parsed values.
2210 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID,
2211                                      AtomicOrdering &Ordering) {
2212   if (!isAtomic)
2213     return false;
2214 
2215   return ParseScope(SSID) || ParseOrdering(Ordering);
2216 }
2217 
2218 /// ParseScope
2219 ///   ::= syncscope("singlethread" | "<target scope>")?
2220 ///
2221 /// This sets synchronization scope ID to the ID of the parsed value.
2222 bool LLParser::ParseScope(SyncScope::ID &SSID) {
2223   SSID = SyncScope::System;
2224   if (EatIfPresent(lltok::kw_syncscope)) {
2225     auto StartParenAt = Lex.getLoc();
2226     if (!EatIfPresent(lltok::lparen))
2227       return Error(StartParenAt, "Expected '(' in syncscope");
2228 
2229     std::string SSN;
2230     auto SSNAt = Lex.getLoc();
2231     if (ParseStringConstant(SSN))
2232       return Error(SSNAt, "Expected synchronization scope name");
2233 
2234     auto EndParenAt = Lex.getLoc();
2235     if (!EatIfPresent(lltok::rparen))
2236       return Error(EndParenAt, "Expected ')' in syncscope");
2237 
2238     SSID = Context.getOrInsertSyncScopeID(SSN);
2239   }
2240 
2241   return false;
2242 }
2243 
2244 /// ParseOrdering
2245 ///   ::= AtomicOrdering
2246 ///
2247 /// This sets Ordering to the parsed value.
2248 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
2249   switch (Lex.getKind()) {
2250   default: return TokError("Expected ordering on atomic instruction");
2251   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2252   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2253   // Not specified yet:
2254   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2255   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2256   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2257   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2258   case lltok::kw_seq_cst:
2259     Ordering = AtomicOrdering::SequentiallyConsistent;
2260     break;
2261   }
2262   Lex.Lex();
2263   return false;
2264 }
2265 
2266 /// ParseOptionalStackAlignment
2267 ///   ::= /* empty */
2268 ///   ::= 'alignstack' '(' 4 ')'
2269 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
2270   Alignment = 0;
2271   if (!EatIfPresent(lltok::kw_alignstack))
2272     return false;
2273   LocTy ParenLoc = Lex.getLoc();
2274   if (!EatIfPresent(lltok::lparen))
2275     return Error(ParenLoc, "expected '('");
2276   LocTy AlignLoc = Lex.getLoc();
2277   if (ParseUInt32(Alignment)) return true;
2278   ParenLoc = Lex.getLoc();
2279   if (!EatIfPresent(lltok::rparen))
2280     return Error(ParenLoc, "expected ')'");
2281   if (!isPowerOf2_32(Alignment))
2282     return Error(AlignLoc, "stack alignment is not a power of two");
2283   return false;
2284 }
2285 
2286 /// ParseIndexList - This parses the index list for an insert/extractvalue
2287 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2288 /// comma at the end of the line and find that it is followed by metadata.
2289 /// Clients that don't allow metadata can call the version of this function that
2290 /// only takes one argument.
2291 ///
2292 /// ParseIndexList
2293 ///    ::=  (',' uint32)+
2294 ///
2295 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
2296                               bool &AteExtraComma) {
2297   AteExtraComma = false;
2298 
2299   if (Lex.getKind() != lltok::comma)
2300     return TokError("expected ',' as start of index list");
2301 
2302   while (EatIfPresent(lltok::comma)) {
2303     if (Lex.getKind() == lltok::MetadataVar) {
2304       if (Indices.empty()) return TokError("expected index");
2305       AteExtraComma = true;
2306       return false;
2307     }
2308     unsigned Idx = 0;
2309     if (ParseUInt32(Idx)) return true;
2310     Indices.push_back(Idx);
2311   }
2312 
2313   return false;
2314 }
2315 
2316 //===----------------------------------------------------------------------===//
2317 // Type Parsing.
2318 //===----------------------------------------------------------------------===//
2319 
2320 /// ParseType - Parse a type.
2321 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2322   SMLoc TypeLoc = Lex.getLoc();
2323   switch (Lex.getKind()) {
2324   default:
2325     return TokError(Msg);
2326   case lltok::Type:
2327     // Type ::= 'float' | 'void' (etc)
2328     Result = Lex.getTyVal();
2329     Lex.Lex();
2330     break;
2331   case lltok::lbrace:
2332     // Type ::= StructType
2333     if (ParseAnonStructType(Result, false))
2334       return true;
2335     break;
2336   case lltok::lsquare:
2337     // Type ::= '[' ... ']'
2338     Lex.Lex(); // eat the lsquare.
2339     if (ParseArrayVectorType(Result, false))
2340       return true;
2341     break;
2342   case lltok::less: // Either vector or packed struct.
2343     // Type ::= '<' ... '>'
2344     Lex.Lex();
2345     if (Lex.getKind() == lltok::lbrace) {
2346       if (ParseAnonStructType(Result, true) ||
2347           ParseToken(lltok::greater, "expected '>' at end of packed struct"))
2348         return true;
2349     } else if (ParseArrayVectorType(Result, true))
2350       return true;
2351     break;
2352   case lltok::LocalVar: {
2353     // Type ::= %foo
2354     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2355 
2356     // If the type hasn't been defined yet, create a forward definition and
2357     // remember where that forward def'n was seen (in case it never is defined).
2358     if (!Entry.first) {
2359       Entry.first = StructType::create(Context, Lex.getStrVal());
2360       Entry.second = Lex.getLoc();
2361     }
2362     Result = Entry.first;
2363     Lex.Lex();
2364     break;
2365   }
2366 
2367   case lltok::LocalVarID: {
2368     // Type ::= %4
2369     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2370 
2371     // If the type hasn't been defined yet, create a forward definition and
2372     // remember where that forward def'n was seen (in case it never is defined).
2373     if (!Entry.first) {
2374       Entry.first = StructType::create(Context);
2375       Entry.second = Lex.getLoc();
2376     }
2377     Result = Entry.first;
2378     Lex.Lex();
2379     break;
2380   }
2381   }
2382 
2383   // Parse the type suffixes.
2384   while (true) {
2385     switch (Lex.getKind()) {
2386     // End of type.
2387     default:
2388       if (!AllowVoid && Result->isVoidTy())
2389         return Error(TypeLoc, "void type only allowed for function results");
2390       return false;
2391 
2392     // Type ::= Type '*'
2393     case lltok::star:
2394       if (Result->isLabelTy())
2395         return TokError("basic block pointers are invalid");
2396       if (Result->isVoidTy())
2397         return TokError("pointers to void are invalid - use i8* instead");
2398       if (!PointerType::isValidElementType(Result))
2399         return TokError("pointer to this type is invalid");
2400       Result = PointerType::getUnqual(Result);
2401       Lex.Lex();
2402       break;
2403 
2404     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2405     case lltok::kw_addrspace: {
2406       if (Result->isLabelTy())
2407         return TokError("basic block pointers are invalid");
2408       if (Result->isVoidTy())
2409         return TokError("pointers to void are invalid; use i8* instead");
2410       if (!PointerType::isValidElementType(Result))
2411         return TokError("pointer to this type is invalid");
2412       unsigned AddrSpace;
2413       if (ParseOptionalAddrSpace(AddrSpace) ||
2414           ParseToken(lltok::star, "expected '*' in address space"))
2415         return true;
2416 
2417       Result = PointerType::get(Result, AddrSpace);
2418       break;
2419     }
2420 
2421     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2422     case lltok::lparen:
2423       if (ParseFunctionType(Result))
2424         return true;
2425       break;
2426     }
2427   }
2428 }
2429 
2430 /// ParseParameterList
2431 ///    ::= '(' ')'
2432 ///    ::= '(' Arg (',' Arg)* ')'
2433 ///  Arg
2434 ///    ::= Type OptionalAttributes Value OptionalAttributes
2435 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2436                                   PerFunctionState &PFS, bool IsMustTailCall,
2437                                   bool InVarArgsFunc) {
2438   if (ParseToken(lltok::lparen, "expected '(' in call"))
2439     return true;
2440 
2441   while (Lex.getKind() != lltok::rparen) {
2442     // If this isn't the first argument, we need a comma.
2443     if (!ArgList.empty() &&
2444         ParseToken(lltok::comma, "expected ',' in argument list"))
2445       return true;
2446 
2447     // Parse an ellipsis if this is a musttail call in a variadic function.
2448     if (Lex.getKind() == lltok::dotdotdot) {
2449       const char *Msg = "unexpected ellipsis in argument list for ";
2450       if (!IsMustTailCall)
2451         return TokError(Twine(Msg) + "non-musttail call");
2452       if (!InVarArgsFunc)
2453         return TokError(Twine(Msg) + "musttail call in non-varargs function");
2454       Lex.Lex();  // Lex the '...', it is purely for readability.
2455       return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2456     }
2457 
2458     // Parse the argument.
2459     LocTy ArgLoc;
2460     Type *ArgTy = nullptr;
2461     AttrBuilder ArgAttrs;
2462     Value *V;
2463     if (ParseType(ArgTy, ArgLoc))
2464       return true;
2465 
2466     if (ArgTy->isMetadataTy()) {
2467       if (ParseMetadataAsValue(V, PFS))
2468         return true;
2469     } else {
2470       // Otherwise, handle normal operands.
2471       if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
2472         return true;
2473     }
2474     ArgList.push_back(ParamInfo(
2475         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2476   }
2477 
2478   if (IsMustTailCall && InVarArgsFunc)
2479     return TokError("expected '...' at end of argument list for musttail call "
2480                     "in varargs function");
2481 
2482   Lex.Lex();  // Lex the ')'.
2483   return false;
2484 }
2485 
2486 /// ParseByValWithOptionalType
2487 ///   ::= byval
2488 ///   ::= byval(<ty>)
2489 bool LLParser::ParseByValWithOptionalType(Type *&Result) {
2490   Result = nullptr;
2491   if (!EatIfPresent(lltok::kw_byval))
2492     return true;
2493   if (!EatIfPresent(lltok::lparen))
2494     return false;
2495   if (ParseType(Result))
2496     return true;
2497   if (!EatIfPresent(lltok::rparen))
2498     return Error(Lex.getLoc(), "expected ')'");
2499   return false;
2500 }
2501 
2502 /// ParseOptionalOperandBundles
2503 ///    ::= /*empty*/
2504 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2505 ///
2506 /// OperandBundle
2507 ///    ::= bundle-tag '(' ')'
2508 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2509 ///
2510 /// bundle-tag ::= String Constant
2511 bool LLParser::ParseOptionalOperandBundles(
2512     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2513   LocTy BeginLoc = Lex.getLoc();
2514   if (!EatIfPresent(lltok::lsquare))
2515     return false;
2516 
2517   while (Lex.getKind() != lltok::rsquare) {
2518     // If this isn't the first operand bundle, we need a comma.
2519     if (!BundleList.empty() &&
2520         ParseToken(lltok::comma, "expected ',' in input list"))
2521       return true;
2522 
2523     std::string Tag;
2524     if (ParseStringConstant(Tag))
2525       return true;
2526 
2527     if (ParseToken(lltok::lparen, "expected '(' in operand bundle"))
2528       return true;
2529 
2530     std::vector<Value *> Inputs;
2531     while (Lex.getKind() != lltok::rparen) {
2532       // If this isn't the first input, we need a comma.
2533       if (!Inputs.empty() &&
2534           ParseToken(lltok::comma, "expected ',' in input list"))
2535         return true;
2536 
2537       Type *Ty = nullptr;
2538       Value *Input = nullptr;
2539       if (ParseType(Ty) || ParseValue(Ty, Input, PFS))
2540         return true;
2541       Inputs.push_back(Input);
2542     }
2543 
2544     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2545 
2546     Lex.Lex(); // Lex the ')'.
2547   }
2548 
2549   if (BundleList.empty())
2550     return Error(BeginLoc, "operand bundle set must not be empty");
2551 
2552   Lex.Lex(); // Lex the ']'.
2553   return false;
2554 }
2555 
2556 /// ParseArgumentList - Parse the argument list for a function type or function
2557 /// prototype.
2558 ///   ::= '(' ArgTypeListI ')'
2559 /// ArgTypeListI
2560 ///   ::= /*empty*/
2561 ///   ::= '...'
2562 ///   ::= ArgTypeList ',' '...'
2563 ///   ::= ArgType (',' ArgType)*
2564 ///
2565 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2566                                  bool &isVarArg){
2567   unsigned CurValID = 0;
2568   isVarArg = false;
2569   assert(Lex.getKind() == lltok::lparen);
2570   Lex.Lex(); // eat the (.
2571 
2572   if (Lex.getKind() == lltok::rparen) {
2573     // empty
2574   } else if (Lex.getKind() == lltok::dotdotdot) {
2575     isVarArg = true;
2576     Lex.Lex();
2577   } else {
2578     LocTy TypeLoc = Lex.getLoc();
2579     Type *ArgTy = nullptr;
2580     AttrBuilder Attrs;
2581     std::string Name;
2582 
2583     if (ParseType(ArgTy) ||
2584         ParseOptionalParamAttrs(Attrs)) return true;
2585 
2586     if (ArgTy->isVoidTy())
2587       return Error(TypeLoc, "argument can not have void type");
2588 
2589     if (Lex.getKind() == lltok::LocalVar) {
2590       Name = Lex.getStrVal();
2591       Lex.Lex();
2592     } else if (Lex.getKind() == lltok::LocalVarID) {
2593       if (Lex.getUIntVal() != CurValID)
2594         return Error(TypeLoc, "argument expected to be numbered '%" +
2595                                   Twine(CurValID) + "'");
2596       ++CurValID;
2597       Lex.Lex();
2598     }
2599 
2600     if (!FunctionType::isValidArgumentType(ArgTy))
2601       return Error(TypeLoc, "invalid type for function argument");
2602 
2603     ArgList.emplace_back(TypeLoc, ArgTy,
2604                          AttributeSet::get(ArgTy->getContext(), Attrs),
2605                          std::move(Name));
2606 
2607     while (EatIfPresent(lltok::comma)) {
2608       // Handle ... at end of arg list.
2609       if (EatIfPresent(lltok::dotdotdot)) {
2610         isVarArg = true;
2611         break;
2612       }
2613 
2614       // Otherwise must be an argument type.
2615       TypeLoc = Lex.getLoc();
2616       if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
2617 
2618       if (ArgTy->isVoidTy())
2619         return Error(TypeLoc, "argument can not have void type");
2620 
2621       if (Lex.getKind() == lltok::LocalVar) {
2622         Name = Lex.getStrVal();
2623         Lex.Lex();
2624       } else {
2625         if (Lex.getKind() == lltok::LocalVarID) {
2626           if (Lex.getUIntVal() != CurValID)
2627             return Error(TypeLoc, "argument expected to be numbered '%" +
2628                                       Twine(CurValID) + "'");
2629           Lex.Lex();
2630         }
2631         ++CurValID;
2632         Name = "";
2633       }
2634 
2635       if (!ArgTy->isFirstClassType())
2636         return Error(TypeLoc, "invalid type for function argument");
2637 
2638       ArgList.emplace_back(TypeLoc, ArgTy,
2639                            AttributeSet::get(ArgTy->getContext(), Attrs),
2640                            std::move(Name));
2641     }
2642   }
2643 
2644   return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2645 }
2646 
2647 /// ParseFunctionType
2648 ///  ::= Type ArgumentList OptionalAttrs
2649 bool LLParser::ParseFunctionType(Type *&Result) {
2650   assert(Lex.getKind() == lltok::lparen);
2651 
2652   if (!FunctionType::isValidReturnType(Result))
2653     return TokError("invalid function return type");
2654 
2655   SmallVector<ArgInfo, 8> ArgList;
2656   bool isVarArg;
2657   if (ParseArgumentList(ArgList, isVarArg))
2658     return true;
2659 
2660   // Reject names on the arguments lists.
2661   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2662     if (!ArgList[i].Name.empty())
2663       return Error(ArgList[i].Loc, "argument name invalid in function type");
2664     if (ArgList[i].Attrs.hasAttributes())
2665       return Error(ArgList[i].Loc,
2666                    "argument attributes invalid in function type");
2667   }
2668 
2669   SmallVector<Type*, 16> ArgListTy;
2670   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2671     ArgListTy.push_back(ArgList[i].Ty);
2672 
2673   Result = FunctionType::get(Result, ArgListTy, isVarArg);
2674   return false;
2675 }
2676 
2677 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
2678 /// other structs.
2679 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
2680   SmallVector<Type*, 8> Elts;
2681   if (ParseStructBody(Elts)) return true;
2682 
2683   Result = StructType::get(Context, Elts, Packed);
2684   return false;
2685 }
2686 
2687 /// ParseStructDefinition - Parse a struct in a 'type' definition.
2688 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
2689                                      std::pair<Type*, LocTy> &Entry,
2690                                      Type *&ResultTy) {
2691   // If the type was already defined, diagnose the redefinition.
2692   if (Entry.first && !Entry.second.isValid())
2693     return Error(TypeLoc, "redefinition of type");
2694 
2695   // If we have opaque, just return without filling in the definition for the
2696   // struct.  This counts as a definition as far as the .ll file goes.
2697   if (EatIfPresent(lltok::kw_opaque)) {
2698     // This type is being defined, so clear the location to indicate this.
2699     Entry.second = SMLoc();
2700 
2701     // If this type number has never been uttered, create it.
2702     if (!Entry.first)
2703       Entry.first = StructType::create(Context, Name);
2704     ResultTy = Entry.first;
2705     return false;
2706   }
2707 
2708   // If the type starts with '<', then it is either a packed struct or a vector.
2709   bool isPacked = EatIfPresent(lltok::less);
2710 
2711   // If we don't have a struct, then we have a random type alias, which we
2712   // accept for compatibility with old files.  These types are not allowed to be
2713   // forward referenced and not allowed to be recursive.
2714   if (Lex.getKind() != lltok::lbrace) {
2715     if (Entry.first)
2716       return Error(TypeLoc, "forward references to non-struct type");
2717 
2718     ResultTy = nullptr;
2719     if (isPacked)
2720       return ParseArrayVectorType(ResultTy, true);
2721     return ParseType(ResultTy);
2722   }
2723 
2724   // This type is being defined, so clear the location to indicate this.
2725   Entry.second = SMLoc();
2726 
2727   // If this type number has never been uttered, create it.
2728   if (!Entry.first)
2729     Entry.first = StructType::create(Context, Name);
2730 
2731   StructType *STy = cast<StructType>(Entry.first);
2732 
2733   SmallVector<Type*, 8> Body;
2734   if (ParseStructBody(Body) ||
2735       (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
2736     return true;
2737 
2738   STy->setBody(Body, isPacked);
2739   ResultTy = STy;
2740   return false;
2741 }
2742 
2743 /// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2744 ///   StructType
2745 ///     ::= '{' '}'
2746 ///     ::= '{' Type (',' Type)* '}'
2747 ///     ::= '<' '{' '}' '>'
2748 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2749 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
2750   assert(Lex.getKind() == lltok::lbrace);
2751   Lex.Lex(); // Consume the '{'
2752 
2753   // Handle the empty struct.
2754   if (EatIfPresent(lltok::rbrace))
2755     return false;
2756 
2757   LocTy EltTyLoc = Lex.getLoc();
2758   Type *Ty = nullptr;
2759   if (ParseType(Ty)) return true;
2760   Body.push_back(Ty);
2761 
2762   if (!StructType::isValidElementType(Ty))
2763     return Error(EltTyLoc, "invalid element type for struct");
2764 
2765   while (EatIfPresent(lltok::comma)) {
2766     EltTyLoc = Lex.getLoc();
2767     if (ParseType(Ty)) return true;
2768 
2769     if (!StructType::isValidElementType(Ty))
2770       return Error(EltTyLoc, "invalid element type for struct");
2771 
2772     Body.push_back(Ty);
2773   }
2774 
2775   return ParseToken(lltok::rbrace, "expected '}' at end of struct");
2776 }
2777 
2778 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2779 /// token has already been consumed.
2780 ///   Type
2781 ///     ::= '[' APSINTVAL 'x' Types ']'
2782 ///     ::= '<' APSINTVAL 'x' Types '>'
2783 ///     ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>'
2784 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
2785   bool Scalable = false;
2786 
2787   if (isVector && Lex.getKind() == lltok::kw_vscale) {
2788     Lex.Lex(); // consume the 'vscale'
2789     if (ParseToken(lltok::kw_x, "expected 'x' after vscale"))
2790       return true;
2791 
2792     Scalable = true;
2793   }
2794 
2795   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2796       Lex.getAPSIntVal().getBitWidth() > 64)
2797     return TokError("expected number in address space");
2798 
2799   LocTy SizeLoc = Lex.getLoc();
2800   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2801   Lex.Lex();
2802 
2803   if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
2804       return true;
2805 
2806   LocTy TypeLoc = Lex.getLoc();
2807   Type *EltTy = nullptr;
2808   if (ParseType(EltTy)) return true;
2809 
2810   if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
2811                  "expected end of sequential type"))
2812     return true;
2813 
2814   if (isVector) {
2815     if (Size == 0)
2816       return Error(SizeLoc, "zero element vector is illegal");
2817     if ((unsigned)Size != Size)
2818       return Error(SizeLoc, "size too large for vector");
2819     if (!VectorType::isValidElementType(EltTy))
2820       return Error(TypeLoc, "invalid vector element type");
2821     Result = VectorType::get(EltTy, unsigned(Size), Scalable);
2822   } else {
2823     if (!ArrayType::isValidElementType(EltTy))
2824       return Error(TypeLoc, "invalid array element type");
2825     Result = ArrayType::get(EltTy, Size);
2826   }
2827   return false;
2828 }
2829 
2830 //===----------------------------------------------------------------------===//
2831 // Function Semantic Analysis.
2832 //===----------------------------------------------------------------------===//
2833 
2834 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2835                                              int functionNumber)
2836   : P(p), F(f), FunctionNumber(functionNumber) {
2837 
2838   // Insert unnamed arguments into the NumberedVals list.
2839   for (Argument &A : F.args())
2840     if (!A.hasName())
2841       NumberedVals.push_back(&A);
2842 }
2843 
2844 LLParser::PerFunctionState::~PerFunctionState() {
2845   // If there were any forward referenced non-basicblock values, delete them.
2846 
2847   for (const auto &P : ForwardRefVals) {
2848     if (isa<BasicBlock>(P.second.first))
2849       continue;
2850     P.second.first->replaceAllUsesWith(
2851         UndefValue::get(P.second.first->getType()));
2852     P.second.first->deleteValue();
2853   }
2854 
2855   for (const auto &P : ForwardRefValIDs) {
2856     if (isa<BasicBlock>(P.second.first))
2857       continue;
2858     P.second.first->replaceAllUsesWith(
2859         UndefValue::get(P.second.first->getType()));
2860     P.second.first->deleteValue();
2861   }
2862 }
2863 
2864 bool LLParser::PerFunctionState::FinishFunction() {
2865   if (!ForwardRefVals.empty())
2866     return P.Error(ForwardRefVals.begin()->second.second,
2867                    "use of undefined value '%" + ForwardRefVals.begin()->first +
2868                    "'");
2869   if (!ForwardRefValIDs.empty())
2870     return P.Error(ForwardRefValIDs.begin()->second.second,
2871                    "use of undefined value '%" +
2872                    Twine(ForwardRefValIDs.begin()->first) + "'");
2873   return false;
2874 }
2875 
2876 /// GetVal - Get a value with the specified name or ID, creating a
2877 /// forward reference record if needed.  This can return null if the value
2878 /// exists but does not have the right type.
2879 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty,
2880                                           LocTy Loc, bool IsCall) {
2881   // Look this name up in the normal function symbol table.
2882   Value *Val = F.getValueSymbolTable()->lookup(Name);
2883 
2884   // If this is a forward reference for the value, see if we already created a
2885   // forward ref record.
2886   if (!Val) {
2887     auto I = ForwardRefVals.find(Name);
2888     if (I != ForwardRefVals.end())
2889       Val = I->second.first;
2890   }
2891 
2892   // If we have the value in the symbol table or fwd-ref table, return it.
2893   if (Val)
2894     return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall);
2895 
2896   // Don't make placeholders with invalid type.
2897   if (!Ty->isFirstClassType()) {
2898     P.Error(Loc, "invalid use of a non-first-class type");
2899     return nullptr;
2900   }
2901 
2902   // Otherwise, create a new forward reference for this value and remember it.
2903   Value *FwdVal;
2904   if (Ty->isLabelTy()) {
2905     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2906   } else {
2907     FwdVal = new Argument(Ty, Name);
2908   }
2909 
2910   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2911   return FwdVal;
2912 }
2913 
2914 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc,
2915                                           bool IsCall) {
2916   // Look this name up in the normal function symbol table.
2917   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2918 
2919   // If this is a forward reference for the value, see if we already created a
2920   // forward ref record.
2921   if (!Val) {
2922     auto I = ForwardRefValIDs.find(ID);
2923     if (I != ForwardRefValIDs.end())
2924       Val = I->second.first;
2925   }
2926 
2927   // If we have the value in the symbol table or fwd-ref table, return it.
2928   if (Val)
2929     return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall);
2930 
2931   if (!Ty->isFirstClassType()) {
2932     P.Error(Loc, "invalid use of a non-first-class type");
2933     return nullptr;
2934   }
2935 
2936   // Otherwise, create a new forward reference for this value and remember it.
2937   Value *FwdVal;
2938   if (Ty->isLabelTy()) {
2939     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2940   } else {
2941     FwdVal = new Argument(Ty);
2942   }
2943 
2944   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2945   return FwdVal;
2946 }
2947 
2948 /// SetInstName - After an instruction is parsed and inserted into its
2949 /// basic block, this installs its name.
2950 bool LLParser::PerFunctionState::SetInstName(int NameID,
2951                                              const std::string &NameStr,
2952                                              LocTy NameLoc, Instruction *Inst) {
2953   // If this instruction has void type, it cannot have a name or ID specified.
2954   if (Inst->getType()->isVoidTy()) {
2955     if (NameID != -1 || !NameStr.empty())
2956       return P.Error(NameLoc, "instructions returning void cannot have a name");
2957     return false;
2958   }
2959 
2960   // If this was a numbered instruction, verify that the instruction is the
2961   // expected value and resolve any forward references.
2962   if (NameStr.empty()) {
2963     // If neither a name nor an ID was specified, just use the next ID.
2964     if (NameID == -1)
2965       NameID = NumberedVals.size();
2966 
2967     if (unsigned(NameID) != NumberedVals.size())
2968       return P.Error(NameLoc, "instruction expected to be numbered '%" +
2969                      Twine(NumberedVals.size()) + "'");
2970 
2971     auto FI = ForwardRefValIDs.find(NameID);
2972     if (FI != ForwardRefValIDs.end()) {
2973       Value *Sentinel = FI->second.first;
2974       if (Sentinel->getType() != Inst->getType())
2975         return P.Error(NameLoc, "instruction forward referenced with type '" +
2976                        getTypeString(FI->second.first->getType()) + "'");
2977 
2978       Sentinel->replaceAllUsesWith(Inst);
2979       Sentinel->deleteValue();
2980       ForwardRefValIDs.erase(FI);
2981     }
2982 
2983     NumberedVals.push_back(Inst);
2984     return false;
2985   }
2986 
2987   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
2988   auto FI = ForwardRefVals.find(NameStr);
2989   if (FI != ForwardRefVals.end()) {
2990     Value *Sentinel = FI->second.first;
2991     if (Sentinel->getType() != Inst->getType())
2992       return P.Error(NameLoc, "instruction forward referenced with type '" +
2993                      getTypeString(FI->second.first->getType()) + "'");
2994 
2995     Sentinel->replaceAllUsesWith(Inst);
2996     Sentinel->deleteValue();
2997     ForwardRefVals.erase(FI);
2998   }
2999 
3000   // Set the name on the instruction.
3001   Inst->setName(NameStr);
3002 
3003   if (Inst->getName() != NameStr)
3004     return P.Error(NameLoc, "multiple definition of local value named '" +
3005                    NameStr + "'");
3006   return false;
3007 }
3008 
3009 /// GetBB - Get a basic block with the specified name or ID, creating a
3010 /// forward reference record if needed.
3011 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
3012                                               LocTy Loc) {
3013   return dyn_cast_or_null<BasicBlock>(
3014       GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
3015 }
3016 
3017 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
3018   return dyn_cast_or_null<BasicBlock>(
3019       GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
3020 }
3021 
3022 /// DefineBB - Define the specified basic block, which is either named or
3023 /// unnamed.  If there is an error, this returns null otherwise it returns
3024 /// the block being defined.
3025 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
3026                                                  int NameID, LocTy Loc) {
3027   BasicBlock *BB;
3028   if (Name.empty()) {
3029     if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) {
3030       P.Error(Loc, "label expected to be numbered '" +
3031                        Twine(NumberedVals.size()) + "'");
3032       return nullptr;
3033     }
3034     BB = GetBB(NumberedVals.size(), Loc);
3035     if (!BB) {
3036       P.Error(Loc, "unable to create block numbered '" +
3037                        Twine(NumberedVals.size()) + "'");
3038       return nullptr;
3039     }
3040   } else {
3041     BB = GetBB(Name, Loc);
3042     if (!BB) {
3043       P.Error(Loc, "unable to create block named '" + Name + "'");
3044       return nullptr;
3045     }
3046   }
3047 
3048   // Move the block to the end of the function.  Forward ref'd blocks are
3049   // inserted wherever they happen to be referenced.
3050   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
3051 
3052   // Remove the block from forward ref sets.
3053   if (Name.empty()) {
3054     ForwardRefValIDs.erase(NumberedVals.size());
3055     NumberedVals.push_back(BB);
3056   } else {
3057     // BB forward references are already in the function symbol table.
3058     ForwardRefVals.erase(Name);
3059   }
3060 
3061   return BB;
3062 }
3063 
3064 //===----------------------------------------------------------------------===//
3065 // Constants.
3066 //===----------------------------------------------------------------------===//
3067 
3068 /// ParseValID - Parse an abstract value that doesn't necessarily have a
3069 /// type implied.  For example, if we parse "4" we don't know what integer type
3070 /// it has.  The value will later be combined with its type and checked for
3071 /// sanity.  PFS is used to convert function-local operands of metadata (since
3072 /// metadata operands are not just parsed here but also converted to values).
3073 /// PFS can be null when we are not parsing metadata values inside a function.
3074 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
3075   ID.Loc = Lex.getLoc();
3076   switch (Lex.getKind()) {
3077   default: return TokError("expected value token");
3078   case lltok::GlobalID:  // @42
3079     ID.UIntVal = Lex.getUIntVal();
3080     ID.Kind = ValID::t_GlobalID;
3081     break;
3082   case lltok::GlobalVar:  // @foo
3083     ID.StrVal = Lex.getStrVal();
3084     ID.Kind = ValID::t_GlobalName;
3085     break;
3086   case lltok::LocalVarID:  // %42
3087     ID.UIntVal = Lex.getUIntVal();
3088     ID.Kind = ValID::t_LocalID;
3089     break;
3090   case lltok::LocalVar:  // %foo
3091     ID.StrVal = Lex.getStrVal();
3092     ID.Kind = ValID::t_LocalName;
3093     break;
3094   case lltok::APSInt:
3095     ID.APSIntVal = Lex.getAPSIntVal();
3096     ID.Kind = ValID::t_APSInt;
3097     break;
3098   case lltok::APFloat:
3099     ID.APFloatVal = Lex.getAPFloatVal();
3100     ID.Kind = ValID::t_APFloat;
3101     break;
3102   case lltok::kw_true:
3103     ID.ConstantVal = ConstantInt::getTrue(Context);
3104     ID.Kind = ValID::t_Constant;
3105     break;
3106   case lltok::kw_false:
3107     ID.ConstantVal = ConstantInt::getFalse(Context);
3108     ID.Kind = ValID::t_Constant;
3109     break;
3110   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3111   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3112   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3113   case lltok::kw_none: ID.Kind = ValID::t_None; break;
3114 
3115   case lltok::lbrace: {
3116     // ValID ::= '{' ConstVector '}'
3117     Lex.Lex();
3118     SmallVector<Constant*, 16> Elts;
3119     if (ParseGlobalValueVector(Elts) ||
3120         ParseToken(lltok::rbrace, "expected end of struct constant"))
3121       return true;
3122 
3123     ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3124     ID.UIntVal = Elts.size();
3125     memcpy(ID.ConstantStructElts.get(), Elts.data(),
3126            Elts.size() * sizeof(Elts[0]));
3127     ID.Kind = ValID::t_ConstantStruct;
3128     return false;
3129   }
3130   case lltok::less: {
3131     // ValID ::= '<' ConstVector '>'         --> Vector.
3132     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3133     Lex.Lex();
3134     bool isPackedStruct = EatIfPresent(lltok::lbrace);
3135 
3136     SmallVector<Constant*, 16> Elts;
3137     LocTy FirstEltLoc = Lex.getLoc();
3138     if (ParseGlobalValueVector(Elts) ||
3139         (isPackedStruct &&
3140          ParseToken(lltok::rbrace, "expected end of packed struct")) ||
3141         ParseToken(lltok::greater, "expected end of constant"))
3142       return true;
3143 
3144     if (isPackedStruct) {
3145       ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3146       memcpy(ID.ConstantStructElts.get(), Elts.data(),
3147              Elts.size() * sizeof(Elts[0]));
3148       ID.UIntVal = Elts.size();
3149       ID.Kind = ValID::t_PackedConstantStruct;
3150       return false;
3151     }
3152 
3153     if (Elts.empty())
3154       return Error(ID.Loc, "constant vector must not be empty");
3155 
3156     if (!Elts[0]->getType()->isIntegerTy() &&
3157         !Elts[0]->getType()->isFloatingPointTy() &&
3158         !Elts[0]->getType()->isPointerTy())
3159       return Error(FirstEltLoc,
3160             "vector elements must have integer, pointer or floating point type");
3161 
3162     // Verify that all the vector elements have the same type.
3163     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3164       if (Elts[i]->getType() != Elts[0]->getType())
3165         return Error(FirstEltLoc,
3166                      "vector element #" + Twine(i) +
3167                     " is not of type '" + getTypeString(Elts[0]->getType()));
3168 
3169     ID.ConstantVal = ConstantVector::get(Elts);
3170     ID.Kind = ValID::t_Constant;
3171     return false;
3172   }
3173   case lltok::lsquare: {   // Array Constant
3174     Lex.Lex();
3175     SmallVector<Constant*, 16> Elts;
3176     LocTy FirstEltLoc = Lex.getLoc();
3177     if (ParseGlobalValueVector(Elts) ||
3178         ParseToken(lltok::rsquare, "expected end of array constant"))
3179       return true;
3180 
3181     // Handle empty element.
3182     if (Elts.empty()) {
3183       // Use undef instead of an array because it's inconvenient to determine
3184       // the element type at this point, there being no elements to examine.
3185       ID.Kind = ValID::t_EmptyArray;
3186       return false;
3187     }
3188 
3189     if (!Elts[0]->getType()->isFirstClassType())
3190       return Error(FirstEltLoc, "invalid array element type: " +
3191                    getTypeString(Elts[0]->getType()));
3192 
3193     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3194 
3195     // Verify all elements are correct type!
3196     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3197       if (Elts[i]->getType() != Elts[0]->getType())
3198         return Error(FirstEltLoc,
3199                      "array element #" + Twine(i) +
3200                      " is not of type '" + getTypeString(Elts[0]->getType()));
3201     }
3202 
3203     ID.ConstantVal = ConstantArray::get(ATy, Elts);
3204     ID.Kind = ValID::t_Constant;
3205     return false;
3206   }
3207   case lltok::kw_c:  // c "foo"
3208     Lex.Lex();
3209     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3210                                                   false);
3211     if (ParseToken(lltok::StringConstant, "expected string")) return true;
3212     ID.Kind = ValID::t_Constant;
3213     return false;
3214 
3215   case lltok::kw_asm: {
3216     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3217     //             STRINGCONSTANT
3218     bool HasSideEffect, AlignStack, AsmDialect;
3219     Lex.Lex();
3220     if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3221         ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3222         ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3223         ParseStringConstant(ID.StrVal) ||
3224         ParseToken(lltok::comma, "expected comma in inline asm expression") ||
3225         ParseToken(lltok::StringConstant, "expected constraint string"))
3226       return true;
3227     ID.StrVal2 = Lex.getStrVal();
3228     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
3229       (unsigned(AsmDialect)<<2);
3230     ID.Kind = ValID::t_InlineAsm;
3231     return false;
3232   }
3233 
3234   case lltok::kw_blockaddress: {
3235     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3236     Lex.Lex();
3237 
3238     ValID Fn, Label;
3239 
3240     if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
3241         ParseValID(Fn) ||
3242         ParseToken(lltok::comma, "expected comma in block address expression")||
3243         ParseValID(Label) ||
3244         ParseToken(lltok::rparen, "expected ')' in block address expression"))
3245       return true;
3246 
3247     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3248       return Error(Fn.Loc, "expected function name in blockaddress");
3249     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3250       return Error(Label.Loc, "expected basic block name in blockaddress");
3251 
3252     // Try to find the function (but skip it if it's forward-referenced).
3253     GlobalValue *GV = nullptr;
3254     if (Fn.Kind == ValID::t_GlobalID) {
3255       if (Fn.UIntVal < NumberedVals.size())
3256         GV = NumberedVals[Fn.UIntVal];
3257     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3258       GV = M->getNamedValue(Fn.StrVal);
3259     }
3260     Function *F = nullptr;
3261     if (GV) {
3262       // Confirm that it's actually a function with a definition.
3263       if (!isa<Function>(GV))
3264         return Error(Fn.Loc, "expected function name in blockaddress");
3265       F = cast<Function>(GV);
3266       if (F->isDeclaration())
3267         return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
3268     }
3269 
3270     if (!F) {
3271       // Make a global variable as a placeholder for this reference.
3272       GlobalValue *&FwdRef =
3273           ForwardRefBlockAddresses.insert(std::make_pair(
3274                                               std::move(Fn),
3275                                               std::map<ValID, GlobalValue *>()))
3276               .first->second.insert(std::make_pair(std::move(Label), nullptr))
3277               .first->second;
3278       if (!FwdRef)
3279         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
3280                                     GlobalValue::InternalLinkage, nullptr, "");
3281       ID.ConstantVal = FwdRef;
3282       ID.Kind = ValID::t_Constant;
3283       return false;
3284     }
3285 
3286     // We found the function; now find the basic block.  Don't use PFS, since we
3287     // might be inside a constant expression.
3288     BasicBlock *BB;
3289     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3290       if (Label.Kind == ValID::t_LocalID)
3291         BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
3292       else
3293         BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
3294       if (!BB)
3295         return Error(Label.Loc, "referenced value is not a basic block");
3296     } else {
3297       if (Label.Kind == ValID::t_LocalID)
3298         return Error(Label.Loc, "cannot take address of numeric label after "
3299                                 "the function is defined");
3300       BB = dyn_cast_or_null<BasicBlock>(
3301           F->getValueSymbolTable()->lookup(Label.StrVal));
3302       if (!BB)
3303         return Error(Label.Loc, "referenced value is not a basic block");
3304     }
3305 
3306     ID.ConstantVal = BlockAddress::get(F, BB);
3307     ID.Kind = ValID::t_Constant;
3308     return false;
3309   }
3310 
3311   case lltok::kw_trunc:
3312   case lltok::kw_zext:
3313   case lltok::kw_sext:
3314   case lltok::kw_fptrunc:
3315   case lltok::kw_fpext:
3316   case lltok::kw_bitcast:
3317   case lltok::kw_addrspacecast:
3318   case lltok::kw_uitofp:
3319   case lltok::kw_sitofp:
3320   case lltok::kw_fptoui:
3321   case lltok::kw_fptosi:
3322   case lltok::kw_inttoptr:
3323   case lltok::kw_ptrtoint: {
3324     unsigned Opc = Lex.getUIntVal();
3325     Type *DestTy = nullptr;
3326     Constant *SrcVal;
3327     Lex.Lex();
3328     if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3329         ParseGlobalTypeAndValue(SrcVal) ||
3330         ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3331         ParseType(DestTy) ||
3332         ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3333       return true;
3334     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3335       return Error(ID.Loc, "invalid cast opcode for cast from '" +
3336                    getTypeString(SrcVal->getType()) + "' to '" +
3337                    getTypeString(DestTy) + "'");
3338     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3339                                                  SrcVal, DestTy);
3340     ID.Kind = ValID::t_Constant;
3341     return false;
3342   }
3343   case lltok::kw_extractvalue: {
3344     Lex.Lex();
3345     Constant *Val;
3346     SmallVector<unsigned, 4> Indices;
3347     if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
3348         ParseGlobalTypeAndValue(Val) ||
3349         ParseIndexList(Indices) ||
3350         ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3351       return true;
3352 
3353     if (!Val->getType()->isAggregateType())
3354       return Error(ID.Loc, "extractvalue operand must be aggregate type");
3355     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3356       return Error(ID.Loc, "invalid indices for extractvalue");
3357     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3358     ID.Kind = ValID::t_Constant;
3359     return false;
3360   }
3361   case lltok::kw_insertvalue: {
3362     Lex.Lex();
3363     Constant *Val0, *Val1;
3364     SmallVector<unsigned, 4> Indices;
3365     if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
3366         ParseGlobalTypeAndValue(Val0) ||
3367         ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
3368         ParseGlobalTypeAndValue(Val1) ||
3369         ParseIndexList(Indices) ||
3370         ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3371       return true;
3372     if (!Val0->getType()->isAggregateType())
3373       return Error(ID.Loc, "insertvalue operand must be aggregate type");
3374     Type *IndexedType =
3375         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3376     if (!IndexedType)
3377       return Error(ID.Loc, "invalid indices for insertvalue");
3378     if (IndexedType != Val1->getType())
3379       return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3380                                getTypeString(Val1->getType()) +
3381                                "' instead of '" + getTypeString(IndexedType) +
3382                                "'");
3383     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3384     ID.Kind = ValID::t_Constant;
3385     return false;
3386   }
3387   case lltok::kw_icmp:
3388   case lltok::kw_fcmp: {
3389     unsigned PredVal, Opc = Lex.getUIntVal();
3390     Constant *Val0, *Val1;
3391     Lex.Lex();
3392     if (ParseCmpPredicate(PredVal, Opc) ||
3393         ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3394         ParseGlobalTypeAndValue(Val0) ||
3395         ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
3396         ParseGlobalTypeAndValue(Val1) ||
3397         ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3398       return true;
3399 
3400     if (Val0->getType() != Val1->getType())
3401       return Error(ID.Loc, "compare operands must have the same type");
3402 
3403     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3404 
3405     if (Opc == Instruction::FCmp) {
3406       if (!Val0->getType()->isFPOrFPVectorTy())
3407         return Error(ID.Loc, "fcmp requires floating point operands");
3408       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3409     } else {
3410       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3411       if (!Val0->getType()->isIntOrIntVectorTy() &&
3412           !Val0->getType()->isPtrOrPtrVectorTy())
3413         return Error(ID.Loc, "icmp requires pointer or integer operands");
3414       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3415     }
3416     ID.Kind = ValID::t_Constant;
3417     return false;
3418   }
3419 
3420   // Unary Operators.
3421   case lltok::kw_fneg: {
3422     unsigned Opc = Lex.getUIntVal();
3423     Constant *Val;
3424     Lex.Lex();
3425     if (ParseToken(lltok::lparen, "expected '(' in unary constantexpr") ||
3426         ParseGlobalTypeAndValue(Val) ||
3427         ParseToken(lltok::rparen, "expected ')' in unary constantexpr"))
3428       return true;
3429 
3430     // Check that the type is valid for the operator.
3431     switch (Opc) {
3432     case Instruction::FNeg:
3433       if (!Val->getType()->isFPOrFPVectorTy())
3434         return Error(ID.Loc, "constexpr requires fp operands");
3435       break;
3436     default: llvm_unreachable("Unknown unary operator!");
3437     }
3438     unsigned Flags = 0;
3439     Constant *C = ConstantExpr::get(Opc, Val, Flags);
3440     ID.ConstantVal = C;
3441     ID.Kind = ValID::t_Constant;
3442     return false;
3443   }
3444   // Binary Operators.
3445   case lltok::kw_add:
3446   case lltok::kw_fadd:
3447   case lltok::kw_sub:
3448   case lltok::kw_fsub:
3449   case lltok::kw_mul:
3450   case lltok::kw_fmul:
3451   case lltok::kw_udiv:
3452   case lltok::kw_sdiv:
3453   case lltok::kw_fdiv:
3454   case lltok::kw_urem:
3455   case lltok::kw_srem:
3456   case lltok::kw_frem:
3457   case lltok::kw_shl:
3458   case lltok::kw_lshr:
3459   case lltok::kw_ashr: {
3460     bool NUW = false;
3461     bool NSW = false;
3462     bool Exact = false;
3463     unsigned Opc = Lex.getUIntVal();
3464     Constant *Val0, *Val1;
3465     Lex.Lex();
3466     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3467         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3468       if (EatIfPresent(lltok::kw_nuw))
3469         NUW = true;
3470       if (EatIfPresent(lltok::kw_nsw)) {
3471         NSW = true;
3472         if (EatIfPresent(lltok::kw_nuw))
3473           NUW = true;
3474       }
3475     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3476                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3477       if (EatIfPresent(lltok::kw_exact))
3478         Exact = true;
3479     }
3480     if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3481         ParseGlobalTypeAndValue(Val0) ||
3482         ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
3483         ParseGlobalTypeAndValue(Val1) ||
3484         ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3485       return true;
3486     if (Val0->getType() != Val1->getType())
3487       return Error(ID.Loc, "operands of constexpr must have same type");
3488     // Check that the type is valid for the operator.
3489     switch (Opc) {
3490     case Instruction::Add:
3491     case Instruction::Sub:
3492     case Instruction::Mul:
3493     case Instruction::UDiv:
3494     case Instruction::SDiv:
3495     case Instruction::URem:
3496     case Instruction::SRem:
3497     case Instruction::Shl:
3498     case Instruction::AShr:
3499     case Instruction::LShr:
3500       if (!Val0->getType()->isIntOrIntVectorTy())
3501         return Error(ID.Loc, "constexpr requires integer operands");
3502       break;
3503     case Instruction::FAdd:
3504     case Instruction::FSub:
3505     case Instruction::FMul:
3506     case Instruction::FDiv:
3507     case Instruction::FRem:
3508       if (!Val0->getType()->isFPOrFPVectorTy())
3509         return Error(ID.Loc, "constexpr requires fp operands");
3510       break;
3511     default: llvm_unreachable("Unknown binary operator!");
3512     }
3513     unsigned Flags = 0;
3514     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3515     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3516     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3517     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3518     ID.ConstantVal = C;
3519     ID.Kind = ValID::t_Constant;
3520     return false;
3521   }
3522 
3523   // Logical Operations
3524   case lltok::kw_and:
3525   case lltok::kw_or:
3526   case lltok::kw_xor: {
3527     unsigned Opc = Lex.getUIntVal();
3528     Constant *Val0, *Val1;
3529     Lex.Lex();
3530     if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3531         ParseGlobalTypeAndValue(Val0) ||
3532         ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
3533         ParseGlobalTypeAndValue(Val1) ||
3534         ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3535       return true;
3536     if (Val0->getType() != Val1->getType())
3537       return Error(ID.Loc, "operands of constexpr must have same type");
3538     if (!Val0->getType()->isIntOrIntVectorTy())
3539       return Error(ID.Loc,
3540                    "constexpr requires integer or integer vector operands");
3541     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3542     ID.Kind = ValID::t_Constant;
3543     return false;
3544   }
3545 
3546   case lltok::kw_getelementptr:
3547   case lltok::kw_shufflevector:
3548   case lltok::kw_insertelement:
3549   case lltok::kw_extractelement:
3550   case lltok::kw_select: {
3551     unsigned Opc = Lex.getUIntVal();
3552     SmallVector<Constant*, 16> Elts;
3553     bool InBounds = false;
3554     Type *Ty;
3555     Lex.Lex();
3556 
3557     if (Opc == Instruction::GetElementPtr)
3558       InBounds = EatIfPresent(lltok::kw_inbounds);
3559 
3560     if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
3561       return true;
3562 
3563     LocTy ExplicitTypeLoc = Lex.getLoc();
3564     if (Opc == Instruction::GetElementPtr) {
3565       if (ParseType(Ty) ||
3566           ParseToken(lltok::comma, "expected comma after getelementptr's type"))
3567         return true;
3568     }
3569 
3570     Optional<unsigned> InRangeOp;
3571     if (ParseGlobalValueVector(
3572             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3573         ParseToken(lltok::rparen, "expected ')' in constantexpr"))
3574       return true;
3575 
3576     if (Opc == Instruction::GetElementPtr) {
3577       if (Elts.size() == 0 ||
3578           !Elts[0]->getType()->isPtrOrPtrVectorTy())
3579         return Error(ID.Loc, "base of getelementptr must be a pointer");
3580 
3581       Type *BaseType = Elts[0]->getType();
3582       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3583       if (Ty != BasePointerType->getElementType())
3584         return Error(
3585             ExplicitTypeLoc,
3586             "explicit pointee type doesn't match operand's pointee type");
3587 
3588       unsigned GEPWidth =
3589           BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0;
3590 
3591       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3592       for (Constant *Val : Indices) {
3593         Type *ValTy = Val->getType();
3594         if (!ValTy->isIntOrIntVectorTy())
3595           return Error(ID.Loc, "getelementptr index must be an integer");
3596         if (ValTy->isVectorTy()) {
3597           unsigned ValNumEl = ValTy->getVectorNumElements();
3598           if (GEPWidth && (ValNumEl != GEPWidth))
3599             return Error(
3600                 ID.Loc,
3601                 "getelementptr vector index has a wrong number of elements");
3602           // GEPWidth may have been unknown because the base is a scalar,
3603           // but it is known now.
3604           GEPWidth = ValNumEl;
3605         }
3606       }
3607 
3608       SmallPtrSet<Type*, 4> Visited;
3609       if (!Indices.empty() && !Ty->isSized(&Visited))
3610         return Error(ID.Loc, "base element of getelementptr must be sized");
3611 
3612       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3613         return Error(ID.Loc, "invalid getelementptr indices");
3614 
3615       if (InRangeOp) {
3616         if (*InRangeOp == 0)
3617           return Error(ID.Loc,
3618                        "inrange keyword may not appear on pointer operand");
3619         --*InRangeOp;
3620       }
3621 
3622       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3623                                                       InBounds, InRangeOp);
3624     } else if (Opc == Instruction::Select) {
3625       if (Elts.size() != 3)
3626         return Error(ID.Loc, "expected three operands to select");
3627       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3628                                                               Elts[2]))
3629         return Error(ID.Loc, Reason);
3630       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3631     } else if (Opc == Instruction::ShuffleVector) {
3632       if (Elts.size() != 3)
3633         return Error(ID.Loc, "expected three operands to shufflevector");
3634       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3635         return Error(ID.Loc, "invalid operands to shufflevector");
3636       ID.ConstantVal =
3637                  ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
3638     } else if (Opc == Instruction::ExtractElement) {
3639       if (Elts.size() != 2)
3640         return Error(ID.Loc, "expected two operands to extractelement");
3641       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3642         return Error(ID.Loc, "invalid extractelement operands");
3643       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3644     } else {
3645       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3646       if (Elts.size() != 3)
3647       return Error(ID.Loc, "expected three operands to insertelement");
3648       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3649         return Error(ID.Loc, "invalid insertelement operands");
3650       ID.ConstantVal =
3651                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3652     }
3653 
3654     ID.Kind = ValID::t_Constant;
3655     return false;
3656   }
3657   }
3658 
3659   Lex.Lex();
3660   return false;
3661 }
3662 
3663 /// ParseGlobalValue - Parse a global value with the specified type.
3664 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
3665   C = nullptr;
3666   ValID ID;
3667   Value *V = nullptr;
3668   bool Parsed = ParseValID(ID) ||
3669                 ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false);
3670   if (V && !(C = dyn_cast<Constant>(V)))
3671     return Error(ID.Loc, "global values must be constants");
3672   return Parsed;
3673 }
3674 
3675 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
3676   Type *Ty = nullptr;
3677   return ParseType(Ty) ||
3678          ParseGlobalValue(Ty, V);
3679 }
3680 
3681 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3682   C = nullptr;
3683 
3684   LocTy KwLoc = Lex.getLoc();
3685   if (!EatIfPresent(lltok::kw_comdat))
3686     return false;
3687 
3688   if (EatIfPresent(lltok::lparen)) {
3689     if (Lex.getKind() != lltok::ComdatVar)
3690       return TokError("expected comdat variable");
3691     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3692     Lex.Lex();
3693     if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
3694       return true;
3695   } else {
3696     if (GlobalName.empty())
3697       return TokError("comdat cannot be unnamed");
3698     C = getComdat(GlobalName, KwLoc);
3699   }
3700 
3701   return false;
3702 }
3703 
3704 /// ParseGlobalValueVector
3705 ///   ::= /*empty*/
3706 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3707 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3708                                       Optional<unsigned> *InRangeOp) {
3709   // Empty list.
3710   if (Lex.getKind() == lltok::rbrace ||
3711       Lex.getKind() == lltok::rsquare ||
3712       Lex.getKind() == lltok::greater ||
3713       Lex.getKind() == lltok::rparen)
3714     return false;
3715 
3716   do {
3717     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3718       *InRangeOp = Elts.size();
3719 
3720     Constant *C;
3721     if (ParseGlobalTypeAndValue(C)) return true;
3722     Elts.push_back(C);
3723   } while (EatIfPresent(lltok::comma));
3724 
3725   return false;
3726 }
3727 
3728 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
3729   SmallVector<Metadata *, 16> Elts;
3730   if (ParseMDNodeVector(Elts))
3731     return true;
3732 
3733   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3734   return false;
3735 }
3736 
3737 /// MDNode:
3738 ///  ::= !{ ... }
3739 ///  ::= !7
3740 ///  ::= !DILocation(...)
3741 bool LLParser::ParseMDNode(MDNode *&N) {
3742   if (Lex.getKind() == lltok::MetadataVar)
3743     return ParseSpecializedMDNode(N);
3744 
3745   return ParseToken(lltok::exclaim, "expected '!' here") ||
3746          ParseMDNodeTail(N);
3747 }
3748 
3749 bool LLParser::ParseMDNodeTail(MDNode *&N) {
3750   // !{ ... }
3751   if (Lex.getKind() == lltok::lbrace)
3752     return ParseMDTuple(N);
3753 
3754   // !42
3755   return ParseMDNodeID(N);
3756 }
3757 
3758 namespace {
3759 
3760 /// Structure to represent an optional metadata field.
3761 template <class FieldTy> struct MDFieldImpl {
3762   typedef MDFieldImpl ImplTy;
3763   FieldTy Val;
3764   bool Seen;
3765 
3766   void assign(FieldTy Val) {
3767     Seen = true;
3768     this->Val = std::move(Val);
3769   }
3770 
3771   explicit MDFieldImpl(FieldTy Default)
3772       : Val(std::move(Default)), Seen(false) {}
3773 };
3774 
3775 /// Structure to represent an optional metadata field that
3776 /// can be of either type (A or B) and encapsulates the
3777 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
3778 /// to reimplement the specifics for representing each Field.
3779 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
3780   typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
3781   FieldTypeA A;
3782   FieldTypeB B;
3783   bool Seen;
3784 
3785   enum {
3786     IsInvalid = 0,
3787     IsTypeA = 1,
3788     IsTypeB = 2
3789   } WhatIs;
3790 
3791   void assign(FieldTypeA A) {
3792     Seen = true;
3793     this->A = std::move(A);
3794     WhatIs = IsTypeA;
3795   }
3796 
3797   void assign(FieldTypeB B) {
3798     Seen = true;
3799     this->B = std::move(B);
3800     WhatIs = IsTypeB;
3801   }
3802 
3803   explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
3804       : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
3805         WhatIs(IsInvalid) {}
3806 };
3807 
3808 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3809   uint64_t Max;
3810 
3811   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3812       : ImplTy(Default), Max(Max) {}
3813 };
3814 
3815 struct LineField : public MDUnsignedField {
3816   LineField() : MDUnsignedField(0, UINT32_MAX) {}
3817 };
3818 
3819 struct ColumnField : public MDUnsignedField {
3820   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3821 };
3822 
3823 struct DwarfTagField : public MDUnsignedField {
3824   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3825   DwarfTagField(dwarf::Tag DefaultTag)
3826       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3827 };
3828 
3829 struct DwarfMacinfoTypeField : public MDUnsignedField {
3830   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3831   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3832     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3833 };
3834 
3835 struct DwarfAttEncodingField : public MDUnsignedField {
3836   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3837 };
3838 
3839 struct DwarfVirtualityField : public MDUnsignedField {
3840   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3841 };
3842 
3843 struct DwarfLangField : public MDUnsignedField {
3844   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3845 };
3846 
3847 struct DwarfCCField : public MDUnsignedField {
3848   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3849 };
3850 
3851 struct EmissionKindField : public MDUnsignedField {
3852   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3853 };
3854 
3855 struct NameTableKindField : public MDUnsignedField {
3856   NameTableKindField()
3857       : MDUnsignedField(
3858             0, (unsigned)
3859                    DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
3860 };
3861 
3862 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
3863   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3864 };
3865 
3866 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
3867   DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
3868 };
3869 
3870 struct MDSignedField : public MDFieldImpl<int64_t> {
3871   int64_t Min;
3872   int64_t Max;
3873 
3874   MDSignedField(int64_t Default = 0)
3875       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3876   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3877       : ImplTy(Default), Min(Min), Max(Max) {}
3878 };
3879 
3880 struct MDBoolField : public MDFieldImpl<bool> {
3881   MDBoolField(bool Default = false) : ImplTy(Default) {}
3882 };
3883 
3884 struct MDField : public MDFieldImpl<Metadata *> {
3885   bool AllowNull;
3886 
3887   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3888 };
3889 
3890 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
3891   MDConstant() : ImplTy(nullptr) {}
3892 };
3893 
3894 struct MDStringField : public MDFieldImpl<MDString *> {
3895   bool AllowEmpty;
3896   MDStringField(bool AllowEmpty = true)
3897       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3898 };
3899 
3900 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3901   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3902 };
3903 
3904 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
3905   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
3906 };
3907 
3908 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
3909   MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
3910       : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
3911 
3912   MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
3913                     bool AllowNull = true)
3914       : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
3915 
3916   bool isMDSignedField() const { return WhatIs == IsTypeA; }
3917   bool isMDField() const { return WhatIs == IsTypeB; }
3918   int64_t getMDSignedValue() const {
3919     assert(isMDSignedField() && "Wrong field type");
3920     return A.Val;
3921   }
3922   Metadata *getMDFieldValue() const {
3923     assert(isMDField() && "Wrong field type");
3924     return B.Val;
3925   }
3926 };
3927 
3928 struct MDSignedOrUnsignedField
3929     : MDEitherFieldImpl<MDSignedField, MDUnsignedField> {
3930   MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {}
3931 
3932   bool isMDSignedField() const { return WhatIs == IsTypeA; }
3933   bool isMDUnsignedField() const { return WhatIs == IsTypeB; }
3934   int64_t getMDSignedValue() const {
3935     assert(isMDSignedField() && "Wrong field type");
3936     return A.Val;
3937   }
3938   uint64_t getMDUnsignedValue() const {
3939     assert(isMDUnsignedField() && "Wrong field type");
3940     return B.Val;
3941   }
3942 };
3943 
3944 } // end anonymous namespace
3945 
3946 namespace llvm {
3947 
3948 template <>
3949 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3950                             MDUnsignedField &Result) {
3951   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3952     return TokError("expected unsigned integer");
3953 
3954   auto &U = Lex.getAPSIntVal();
3955   if (U.ugt(Result.Max))
3956     return TokError("value for '" + Name + "' too large, limit is " +
3957                     Twine(Result.Max));
3958   Result.assign(U.getZExtValue());
3959   assert(Result.Val <= Result.Max && "Expected value in range");
3960   Lex.Lex();
3961   return false;
3962 }
3963 
3964 template <>
3965 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
3966   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3967 }
3968 template <>
3969 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
3970   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3971 }
3972 
3973 template <>
3974 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
3975   if (Lex.getKind() == lltok::APSInt)
3976     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3977 
3978   if (Lex.getKind() != lltok::DwarfTag)
3979     return TokError("expected DWARF tag");
3980 
3981   unsigned Tag = dwarf::getTag(Lex.getStrVal());
3982   if (Tag == dwarf::DW_TAG_invalid)
3983     return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
3984   assert(Tag <= Result.Max && "Expected valid DWARF tag");
3985 
3986   Result.assign(Tag);
3987   Lex.Lex();
3988   return false;
3989 }
3990 
3991 template <>
3992 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3993                             DwarfMacinfoTypeField &Result) {
3994   if (Lex.getKind() == lltok::APSInt)
3995     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3996 
3997   if (Lex.getKind() != lltok::DwarfMacinfo)
3998     return TokError("expected DWARF macinfo type");
3999 
4000   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
4001   if (Macinfo == dwarf::DW_MACINFO_invalid)
4002     return TokError(
4003         "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'");
4004   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
4005 
4006   Result.assign(Macinfo);
4007   Lex.Lex();
4008   return false;
4009 }
4010 
4011 template <>
4012 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4013                             DwarfVirtualityField &Result) {
4014   if (Lex.getKind() == lltok::APSInt)
4015     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4016 
4017   if (Lex.getKind() != lltok::DwarfVirtuality)
4018     return TokError("expected DWARF virtuality code");
4019 
4020   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
4021   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
4022     return TokError("invalid DWARF virtuality code" + Twine(" '") +
4023                     Lex.getStrVal() + "'");
4024   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
4025   Result.assign(Virtuality);
4026   Lex.Lex();
4027   return false;
4028 }
4029 
4030 template <>
4031 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
4032   if (Lex.getKind() == lltok::APSInt)
4033     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4034 
4035   if (Lex.getKind() != lltok::DwarfLang)
4036     return TokError("expected DWARF language");
4037 
4038   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
4039   if (!Lang)
4040     return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
4041                     "'");
4042   assert(Lang <= Result.Max && "Expected valid DWARF language");
4043   Result.assign(Lang);
4044   Lex.Lex();
4045   return false;
4046 }
4047 
4048 template <>
4049 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
4050   if (Lex.getKind() == lltok::APSInt)
4051     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4052 
4053   if (Lex.getKind() != lltok::DwarfCC)
4054     return TokError("expected DWARF calling convention");
4055 
4056   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
4057   if (!CC)
4058     return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() +
4059                     "'");
4060   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
4061   Result.assign(CC);
4062   Lex.Lex();
4063   return false;
4064 }
4065 
4066 template <>
4067 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) {
4068   if (Lex.getKind() == lltok::APSInt)
4069     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4070 
4071   if (Lex.getKind() != lltok::EmissionKind)
4072     return TokError("expected emission kind");
4073 
4074   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
4075   if (!Kind)
4076     return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
4077                     "'");
4078   assert(*Kind <= Result.Max && "Expected valid emission kind");
4079   Result.assign(*Kind);
4080   Lex.Lex();
4081   return false;
4082 }
4083 
4084 template <>
4085 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4086                             NameTableKindField &Result) {
4087   if (Lex.getKind() == lltok::APSInt)
4088     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4089 
4090   if (Lex.getKind() != lltok::NameTableKind)
4091     return TokError("expected nameTable kind");
4092 
4093   auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
4094   if (!Kind)
4095     return TokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
4096                     "'");
4097   assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
4098   Result.assign((unsigned)*Kind);
4099   Lex.Lex();
4100   return false;
4101 }
4102 
4103 template <>
4104 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4105                             DwarfAttEncodingField &Result) {
4106   if (Lex.getKind() == lltok::APSInt)
4107     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4108 
4109   if (Lex.getKind() != lltok::DwarfAttEncoding)
4110     return TokError("expected DWARF type attribute encoding");
4111 
4112   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4113   if (!Encoding)
4114     return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
4115                     Lex.getStrVal() + "'");
4116   assert(Encoding <= Result.Max && "Expected valid DWARF language");
4117   Result.assign(Encoding);
4118   Lex.Lex();
4119   return false;
4120 }
4121 
4122 /// DIFlagField
4123 ///  ::= uint32
4124 ///  ::= DIFlagVector
4125 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4126 template <>
4127 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4128 
4129   // Parser for a single flag.
4130   auto parseFlag = [&](DINode::DIFlags &Val) {
4131     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4132       uint32_t TempVal = static_cast<uint32_t>(Val);
4133       bool Res = ParseUInt32(TempVal);
4134       Val = static_cast<DINode::DIFlags>(TempVal);
4135       return Res;
4136     }
4137 
4138     if (Lex.getKind() != lltok::DIFlag)
4139       return TokError("expected debug info flag");
4140 
4141     Val = DINode::getFlag(Lex.getStrVal());
4142     if (!Val)
4143       return TokError(Twine("invalid debug info flag flag '") +
4144                       Lex.getStrVal() + "'");
4145     Lex.Lex();
4146     return false;
4147   };
4148 
4149   // Parse the flags and combine them together.
4150   DINode::DIFlags Combined = DINode::FlagZero;
4151   do {
4152     DINode::DIFlags Val;
4153     if (parseFlag(Val))
4154       return true;
4155     Combined |= Val;
4156   } while (EatIfPresent(lltok::bar));
4157 
4158   Result.assign(Combined);
4159   return false;
4160 }
4161 
4162 /// DISPFlagField
4163 ///  ::= uint32
4164 ///  ::= DISPFlagVector
4165 ///  ::= DISPFlagVector '|' DISPFlag* '|' uint32
4166 template <>
4167 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4168 
4169   // Parser for a single flag.
4170   auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4171     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4172       uint32_t TempVal = static_cast<uint32_t>(Val);
4173       bool Res = ParseUInt32(TempVal);
4174       Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4175       return Res;
4176     }
4177 
4178     if (Lex.getKind() != lltok::DISPFlag)
4179       return TokError("expected debug info flag");
4180 
4181     Val = DISubprogram::getFlag(Lex.getStrVal());
4182     if (!Val)
4183       return TokError(Twine("invalid subprogram debug info flag '") +
4184                       Lex.getStrVal() + "'");
4185     Lex.Lex();
4186     return false;
4187   };
4188 
4189   // Parse the flags and combine them together.
4190   DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4191   do {
4192     DISubprogram::DISPFlags Val;
4193     if (parseFlag(Val))
4194       return true;
4195     Combined |= Val;
4196   } while (EatIfPresent(lltok::bar));
4197 
4198   Result.assign(Combined);
4199   return false;
4200 }
4201 
4202 template <>
4203 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4204                             MDSignedField &Result) {
4205   if (Lex.getKind() != lltok::APSInt)
4206     return TokError("expected signed integer");
4207 
4208   auto &S = Lex.getAPSIntVal();
4209   if (S < Result.Min)
4210     return TokError("value for '" + Name + "' too small, limit is " +
4211                     Twine(Result.Min));
4212   if (S > Result.Max)
4213     return TokError("value for '" + Name + "' too large, limit is " +
4214                     Twine(Result.Max));
4215   Result.assign(S.getExtValue());
4216   assert(Result.Val >= Result.Min && "Expected value in range");
4217   assert(Result.Val <= Result.Max && "Expected value in range");
4218   Lex.Lex();
4219   return false;
4220 }
4221 
4222 template <>
4223 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4224   switch (Lex.getKind()) {
4225   default:
4226     return TokError("expected 'true' or 'false'");
4227   case lltok::kw_true:
4228     Result.assign(true);
4229     break;
4230   case lltok::kw_false:
4231     Result.assign(false);
4232     break;
4233   }
4234   Lex.Lex();
4235   return false;
4236 }
4237 
4238 template <>
4239 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4240   if (Lex.getKind() == lltok::kw_null) {
4241     if (!Result.AllowNull)
4242       return TokError("'" + Name + "' cannot be null");
4243     Lex.Lex();
4244     Result.assign(nullptr);
4245     return false;
4246   }
4247 
4248   Metadata *MD;
4249   if (ParseMetadata(MD, nullptr))
4250     return true;
4251 
4252   Result.assign(MD);
4253   return false;
4254 }
4255 
4256 template <>
4257 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4258                             MDSignedOrMDField &Result) {
4259   // Try to parse a signed int.
4260   if (Lex.getKind() == lltok::APSInt) {
4261     MDSignedField Res = Result.A;
4262     if (!ParseMDField(Loc, Name, Res)) {
4263       Result.assign(Res);
4264       return false;
4265     }
4266     return true;
4267   }
4268 
4269   // Otherwise, try to parse as an MDField.
4270   MDField Res = Result.B;
4271   if (!ParseMDField(Loc, Name, Res)) {
4272     Result.assign(Res);
4273     return false;
4274   }
4275 
4276   return true;
4277 }
4278 
4279 template <>
4280 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4281                             MDSignedOrUnsignedField &Result) {
4282   if (Lex.getKind() != lltok::APSInt)
4283     return false;
4284 
4285   if (Lex.getAPSIntVal().isSigned()) {
4286     MDSignedField Res = Result.A;
4287     if (ParseMDField(Loc, Name, Res))
4288       return true;
4289     Result.assign(Res);
4290     return false;
4291   }
4292 
4293   MDUnsignedField Res = Result.B;
4294   if (ParseMDField(Loc, Name, Res))
4295     return true;
4296   Result.assign(Res);
4297   return false;
4298 }
4299 
4300 template <>
4301 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4302   LocTy ValueLoc = Lex.getLoc();
4303   std::string S;
4304   if (ParseStringConstant(S))
4305     return true;
4306 
4307   if (!Result.AllowEmpty && S.empty())
4308     return Error(ValueLoc, "'" + Name + "' cannot be empty");
4309 
4310   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4311   return false;
4312 }
4313 
4314 template <>
4315 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4316   SmallVector<Metadata *, 4> MDs;
4317   if (ParseMDNodeVector(MDs))
4318     return true;
4319 
4320   Result.assign(std::move(MDs));
4321   return false;
4322 }
4323 
4324 template <>
4325 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4326                             ChecksumKindField &Result) {
4327   Optional<DIFile::ChecksumKind> CSKind =
4328       DIFile::getChecksumKind(Lex.getStrVal());
4329 
4330   if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4331     return TokError(
4332         "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'");
4333 
4334   Result.assign(*CSKind);
4335   Lex.Lex();
4336   return false;
4337 }
4338 
4339 } // end namespace llvm
4340 
4341 template <class ParserTy>
4342 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
4343   do {
4344     if (Lex.getKind() != lltok::LabelStr)
4345       return TokError("expected field label here");
4346 
4347     if (parseField())
4348       return true;
4349   } while (EatIfPresent(lltok::comma));
4350 
4351   return false;
4352 }
4353 
4354 template <class ParserTy>
4355 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
4356   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4357   Lex.Lex();
4358 
4359   if (ParseToken(lltok::lparen, "expected '(' here"))
4360     return true;
4361   if (Lex.getKind() != lltok::rparen)
4362     if (ParseMDFieldsImplBody(parseField))
4363       return true;
4364 
4365   ClosingLoc = Lex.getLoc();
4366   return ParseToken(lltok::rparen, "expected ')' here");
4367 }
4368 
4369 template <class FieldTy>
4370 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
4371   if (Result.Seen)
4372     return TokError("field '" + Name + "' cannot be specified more than once");
4373 
4374   LocTy Loc = Lex.getLoc();
4375   Lex.Lex();
4376   return ParseMDField(Loc, Name, Result);
4377 }
4378 
4379 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4380   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4381 
4382 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
4383   if (Lex.getStrVal() == #CLASS)                                               \
4384     return Parse##CLASS(N, IsDistinct);
4385 #include "llvm/IR/Metadata.def"
4386 
4387   return TokError("expected metadata type");
4388 }
4389 
4390 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4391 #define NOP_FIELD(NAME, TYPE, INIT)
4392 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
4393   if (!NAME.Seen)                                                              \
4394     return Error(ClosingLoc, "missing required field '" #NAME "'");
4395 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
4396   if (Lex.getStrVal() == #NAME)                                                \
4397     return ParseMDField(#NAME, NAME);
4398 #define PARSE_MD_FIELDS()                                                      \
4399   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
4400   do {                                                                         \
4401     LocTy ClosingLoc;                                                          \
4402     if (ParseMDFieldsImpl([&]() -> bool {                                      \
4403       VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                          \
4404       return TokError(Twine("invalid field '") + Lex.getStrVal() + "'");       \
4405     }, ClosingLoc))                                                            \
4406       return true;                                                             \
4407     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
4408   } while (false)
4409 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
4410   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4411 
4412 /// ParseDILocationFields:
4413 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4414 ///   isImplicitCode: true)
4415 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
4416 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4417   OPTIONAL(line, LineField, );                                                 \
4418   OPTIONAL(column, ColumnField, );                                             \
4419   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4420   OPTIONAL(inlinedAt, MDField, );                                              \
4421   OPTIONAL(isImplicitCode, MDBoolField, (false));
4422   PARSE_MD_FIELDS();
4423 #undef VISIT_MD_FIELDS
4424 
4425   Result =
4426       GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4427                                    inlinedAt.Val, isImplicitCode.Val));
4428   return false;
4429 }
4430 
4431 /// ParseGenericDINode:
4432 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4433 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
4434 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4435   REQUIRED(tag, DwarfTagField, );                                              \
4436   OPTIONAL(header, MDStringField, );                                           \
4437   OPTIONAL(operands, MDFieldList, );
4438   PARSE_MD_FIELDS();
4439 #undef VISIT_MD_FIELDS
4440 
4441   Result = GET_OR_DISTINCT(GenericDINode,
4442                            (Context, tag.Val, header.Val, operands.Val));
4443   return false;
4444 }
4445 
4446 /// ParseDISubrange:
4447 ///   ::= !DISubrange(count: 30, lowerBound: 2)
4448 ///   ::= !DISubrange(count: !node, lowerBound: 2)
4449 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
4450 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4451   REQUIRED(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false));              \
4452   OPTIONAL(lowerBound, MDSignedField, );
4453   PARSE_MD_FIELDS();
4454 #undef VISIT_MD_FIELDS
4455 
4456   if (count.isMDSignedField())
4457     Result = GET_OR_DISTINCT(
4458         DISubrange, (Context, count.getMDSignedValue(), lowerBound.Val));
4459   else if (count.isMDField())
4460     Result = GET_OR_DISTINCT(
4461         DISubrange, (Context, count.getMDFieldValue(), lowerBound.Val));
4462   else
4463     return true;
4464 
4465   return false;
4466 }
4467 
4468 /// ParseDIEnumerator:
4469 ///   ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4470 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4471 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4472   REQUIRED(name, MDStringField, );                                             \
4473   REQUIRED(value, MDSignedOrUnsignedField, );                                  \
4474   OPTIONAL(isUnsigned, MDBoolField, (false));
4475   PARSE_MD_FIELDS();
4476 #undef VISIT_MD_FIELDS
4477 
4478   if (isUnsigned.Val && value.isMDSignedField())
4479     return TokError("unsigned enumerator with negative value");
4480 
4481   int64_t Value = value.isMDSignedField()
4482                       ? value.getMDSignedValue()
4483                       : static_cast<int64_t>(value.getMDUnsignedValue());
4484   Result =
4485       GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4486 
4487   return false;
4488 }
4489 
4490 /// ParseDIBasicType:
4491 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4492 ///                    encoding: DW_ATE_encoding, flags: 0)
4493 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
4494 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4495   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
4496   OPTIONAL(name, MDStringField, );                                             \
4497   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4498   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4499   OPTIONAL(encoding, DwarfAttEncodingField, );                                 \
4500   OPTIONAL(flags, DIFlagField, );
4501   PARSE_MD_FIELDS();
4502 #undef VISIT_MD_FIELDS
4503 
4504   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4505                                          align.Val, encoding.Val, flags.Val));
4506   return false;
4507 }
4508 
4509 /// ParseDIDerivedType:
4510 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4511 ///                      line: 7, scope: !1, baseType: !2, size: 32,
4512 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
4513 ///                      dwarfAddressSpace: 3)
4514 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4515 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4516   REQUIRED(tag, DwarfTagField, );                                              \
4517   OPTIONAL(name, MDStringField, );                                             \
4518   OPTIONAL(file, MDField, );                                                   \
4519   OPTIONAL(line, LineField, );                                                 \
4520   OPTIONAL(scope, MDField, );                                                  \
4521   REQUIRED(baseType, MDField, );                                               \
4522   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4523   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4524   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4525   OPTIONAL(flags, DIFlagField, );                                              \
4526   OPTIONAL(extraData, MDField, );                                              \
4527   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
4528   PARSE_MD_FIELDS();
4529 #undef VISIT_MD_FIELDS
4530 
4531   Optional<unsigned> DWARFAddressSpace;
4532   if (dwarfAddressSpace.Val != UINT32_MAX)
4533     DWARFAddressSpace = dwarfAddressSpace.Val;
4534 
4535   Result = GET_OR_DISTINCT(DIDerivedType,
4536                            (Context, tag.Val, name.Val, file.Val, line.Val,
4537                             scope.Val, baseType.Val, size.Val, align.Val,
4538                             offset.Val, DWARFAddressSpace, flags.Val,
4539                             extraData.Val));
4540   return false;
4541 }
4542 
4543 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
4544 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4545   REQUIRED(tag, DwarfTagField, );                                              \
4546   OPTIONAL(name, MDStringField, );                                             \
4547   OPTIONAL(file, MDField, );                                                   \
4548   OPTIONAL(line, LineField, );                                                 \
4549   OPTIONAL(scope, MDField, );                                                  \
4550   OPTIONAL(baseType, MDField, );                                               \
4551   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4552   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4553   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4554   OPTIONAL(flags, DIFlagField, );                                              \
4555   OPTIONAL(elements, MDField, );                                               \
4556   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
4557   OPTIONAL(vtableHolder, MDField, );                                           \
4558   OPTIONAL(templateParams, MDField, );                                         \
4559   OPTIONAL(identifier, MDStringField, );                                       \
4560   OPTIONAL(discriminator, MDField, );
4561   PARSE_MD_FIELDS();
4562 #undef VISIT_MD_FIELDS
4563 
4564   // If this has an identifier try to build an ODR type.
4565   if (identifier.Val)
4566     if (auto *CT = DICompositeType::buildODRType(
4567             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4568             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4569             elements.Val, runtimeLang.Val, vtableHolder.Val,
4570             templateParams.Val, discriminator.Val)) {
4571       Result = CT;
4572       return false;
4573     }
4574 
4575   // Create a new node, and save it in the context if it belongs in the type
4576   // map.
4577   Result = GET_OR_DISTINCT(
4578       DICompositeType,
4579       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4580        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4581        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4582        discriminator.Val));
4583   return false;
4584 }
4585 
4586 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4587 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4588   OPTIONAL(flags, DIFlagField, );                                              \
4589   OPTIONAL(cc, DwarfCCField, );                                                \
4590   REQUIRED(types, MDField, );
4591   PARSE_MD_FIELDS();
4592 #undef VISIT_MD_FIELDS
4593 
4594   Result = GET_OR_DISTINCT(DISubroutineType,
4595                            (Context, flags.Val, cc.Val, types.Val));
4596   return false;
4597 }
4598 
4599 /// ParseDIFileType:
4600 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4601 ///                   checksumkind: CSK_MD5,
4602 ///                   checksum: "000102030405060708090a0b0c0d0e0f",
4603 ///                   source: "source file contents")
4604 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
4605   // The default constructed value for checksumkind is required, but will never
4606   // be used, as the parser checks if the field was actually Seen before using
4607   // the Val.
4608 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4609   REQUIRED(filename, MDStringField, );                                         \
4610   REQUIRED(directory, MDStringField, );                                        \
4611   OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5));                \
4612   OPTIONAL(checksum, MDStringField, );                                         \
4613   OPTIONAL(source, MDStringField, );
4614   PARSE_MD_FIELDS();
4615 #undef VISIT_MD_FIELDS
4616 
4617   Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
4618   if (checksumkind.Seen && checksum.Seen)
4619     OptChecksum.emplace(checksumkind.Val, checksum.Val);
4620   else if (checksumkind.Seen || checksum.Seen)
4621     return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4622 
4623   Optional<MDString *> OptSource;
4624   if (source.Seen)
4625     OptSource = source.Val;
4626   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4627                                     OptChecksum, OptSource));
4628   return false;
4629 }
4630 
4631 /// ParseDICompileUnit:
4632 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4633 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
4634 ///                      splitDebugFilename: "abc.debug",
4635 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4636 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd,
4637 ///                      sysroot: "/")
4638 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4639   if (!IsDistinct)
4640     return Lex.Error("missing 'distinct', required for !DICompileUnit");
4641 
4642 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4643   REQUIRED(language, DwarfLangField, );                                        \
4644   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
4645   OPTIONAL(producer, MDStringField, );                                         \
4646   OPTIONAL(isOptimized, MDBoolField, );                                        \
4647   OPTIONAL(flags, MDStringField, );                                            \
4648   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
4649   OPTIONAL(splitDebugFilename, MDStringField, );                               \
4650   OPTIONAL(emissionKind, EmissionKindField, );                                 \
4651   OPTIONAL(enums, MDField, );                                                  \
4652   OPTIONAL(retainedTypes, MDField, );                                          \
4653   OPTIONAL(globals, MDField, );                                                \
4654   OPTIONAL(imports, MDField, );                                                \
4655   OPTIONAL(macros, MDField, );                                                 \
4656   OPTIONAL(dwoId, MDUnsignedField, );                                          \
4657   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
4658   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
4659   OPTIONAL(nameTableKind, NameTableKindField, );                               \
4660   OPTIONAL(debugBaseAddress, MDBoolField, = false);                            \
4661   OPTIONAL(sysroot, MDStringField, );
4662   PARSE_MD_FIELDS();
4663 #undef VISIT_MD_FIELDS
4664 
4665   Result = DICompileUnit::getDistinct(
4666       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4667       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4668       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4669       splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
4670       debugBaseAddress.Val, sysroot.Val);
4671   return false;
4672 }
4673 
4674 /// ParseDISubprogram:
4675 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4676 ///                     file: !1, line: 7, type: !2, isLocal: false,
4677 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
4678 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
4679 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
4680 ///                     spFlags: 10, isOptimized: false, templateParams: !4,
4681 ///                     declaration: !5, retainedNodes: !6, thrownTypes: !7)
4682 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
4683   auto Loc = Lex.getLoc();
4684 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4685   OPTIONAL(scope, MDField, );                                                  \
4686   OPTIONAL(name, MDStringField, );                                             \
4687   OPTIONAL(linkageName, MDStringField, );                                      \
4688   OPTIONAL(file, MDField, );                                                   \
4689   OPTIONAL(line, LineField, );                                                 \
4690   OPTIONAL(type, MDField, );                                                   \
4691   OPTIONAL(isLocal, MDBoolField, );                                            \
4692   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4693   OPTIONAL(scopeLine, LineField, );                                            \
4694   OPTIONAL(containingType, MDField, );                                         \
4695   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
4696   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
4697   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
4698   OPTIONAL(flags, DIFlagField, );                                              \
4699   OPTIONAL(spFlags, DISPFlagField, );                                          \
4700   OPTIONAL(isOptimized, MDBoolField, );                                        \
4701   OPTIONAL(unit, MDField, );                                                   \
4702   OPTIONAL(templateParams, MDField, );                                         \
4703   OPTIONAL(declaration, MDField, );                                            \
4704   OPTIONAL(retainedNodes, MDField, );                                          \
4705   OPTIONAL(thrownTypes, MDField, );
4706   PARSE_MD_FIELDS();
4707 #undef VISIT_MD_FIELDS
4708 
4709   // An explicit spFlags field takes precedence over individual fields in
4710   // older IR versions.
4711   DISubprogram::DISPFlags SPFlags =
4712       spFlags.Seen ? spFlags.Val
4713                    : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
4714                                              isOptimized.Val, virtuality.Val);
4715   if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
4716     return Lex.Error(
4717         Loc,
4718         "missing 'distinct', required for !DISubprogram that is a Definition");
4719   Result = GET_OR_DISTINCT(
4720       DISubprogram,
4721       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
4722        type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
4723        thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
4724        declaration.Val, retainedNodes.Val, thrownTypes.Val));
4725   return false;
4726 }
4727 
4728 /// ParseDILexicalBlock:
4729 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4730 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4731 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4732   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4733   OPTIONAL(file, MDField, );                                                   \
4734   OPTIONAL(line, LineField, );                                                 \
4735   OPTIONAL(column, ColumnField, );
4736   PARSE_MD_FIELDS();
4737 #undef VISIT_MD_FIELDS
4738 
4739   Result = GET_OR_DISTINCT(
4740       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4741   return false;
4742 }
4743 
4744 /// ParseDILexicalBlockFile:
4745 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4746 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4747 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4748   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4749   OPTIONAL(file, MDField, );                                                   \
4750   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4751   PARSE_MD_FIELDS();
4752 #undef VISIT_MD_FIELDS
4753 
4754   Result = GET_OR_DISTINCT(DILexicalBlockFile,
4755                            (Context, scope.Val, file.Val, discriminator.Val));
4756   return false;
4757 }
4758 
4759 /// ParseDICommonBlock:
4760 ///   ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9)
4761 bool LLParser::ParseDICommonBlock(MDNode *&Result, bool IsDistinct) {
4762 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4763   REQUIRED(scope, MDField, );                                                  \
4764   OPTIONAL(declaration, MDField, );                                            \
4765   OPTIONAL(name, MDStringField, );                                             \
4766   OPTIONAL(file, MDField, );                                                   \
4767   OPTIONAL(line, LineField, );
4768   PARSE_MD_FIELDS();
4769 #undef VISIT_MD_FIELDS
4770 
4771   Result = GET_OR_DISTINCT(DICommonBlock,
4772                            (Context, scope.Val, declaration.Val, name.Val,
4773                             file.Val, line.Val));
4774   return false;
4775 }
4776 
4777 /// ParseDINamespace:
4778 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4779 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
4780 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4781   REQUIRED(scope, MDField, );                                                  \
4782   OPTIONAL(name, MDStringField, );                                             \
4783   OPTIONAL(exportSymbols, MDBoolField, );
4784   PARSE_MD_FIELDS();
4785 #undef VISIT_MD_FIELDS
4786 
4787   Result = GET_OR_DISTINCT(DINamespace,
4788                            (Context, scope.Val, name.Val, exportSymbols.Val));
4789   return false;
4790 }
4791 
4792 /// ParseDIMacro:
4793 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
4794 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) {
4795 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4796   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
4797   OPTIONAL(line, LineField, );                                                 \
4798   REQUIRED(name, MDStringField, );                                             \
4799   OPTIONAL(value, MDStringField, );
4800   PARSE_MD_FIELDS();
4801 #undef VISIT_MD_FIELDS
4802 
4803   Result = GET_OR_DISTINCT(DIMacro,
4804                            (Context, type.Val, line.Val, name.Val, value.Val));
4805   return false;
4806 }
4807 
4808 /// ParseDIMacroFile:
4809 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4810 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4811 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4812   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
4813   OPTIONAL(line, LineField, );                                                 \
4814   REQUIRED(file, MDField, );                                                   \
4815   OPTIONAL(nodes, MDField, );
4816   PARSE_MD_FIELDS();
4817 #undef VISIT_MD_FIELDS
4818 
4819   Result = GET_OR_DISTINCT(DIMacroFile,
4820                            (Context, type.Val, line.Val, file.Val, nodes.Val));
4821   return false;
4822 }
4823 
4824 /// ParseDIModule:
4825 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG",
4826 ///                 includePath: "/usr/include")
4827 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
4828 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4829   REQUIRED(scope, MDField, );                                                  \
4830   REQUIRED(name, MDStringField, );                                             \
4831   OPTIONAL(configMacros, MDStringField, );                                     \
4832   OPTIONAL(includePath, MDStringField, );
4833   PARSE_MD_FIELDS();
4834 #undef VISIT_MD_FIELDS
4835 
4836   Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val,
4837                            configMacros.Val, includePath.Val));
4838   return false;
4839 }
4840 
4841 /// ParseDITemplateTypeParameter:
4842 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1)
4843 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4844 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4845   OPTIONAL(name, MDStringField, );                                             \
4846   REQUIRED(type, MDField, );
4847   PARSE_MD_FIELDS();
4848 #undef VISIT_MD_FIELDS
4849 
4850   Result =
4851       GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val));
4852   return false;
4853 }
4854 
4855 /// ParseDITemplateValueParameter:
4856 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4857 ///                                 name: "V", type: !1, value: i32 7)
4858 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4859 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4860   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
4861   OPTIONAL(name, MDStringField, );                                             \
4862   OPTIONAL(type, MDField, );                                                   \
4863   REQUIRED(value, MDField, );
4864   PARSE_MD_FIELDS();
4865 #undef VISIT_MD_FIELDS
4866 
4867   Result = GET_OR_DISTINCT(DITemplateValueParameter,
4868                            (Context, tag.Val, name.Val, type.Val, value.Val));
4869   return false;
4870 }
4871 
4872 /// ParseDIGlobalVariable:
4873 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
4874 ///                         file: !1, line: 7, type: !2, isLocal: false,
4875 ///                         isDefinition: true, templateParams: !3,
4876 ///                         declaration: !4, align: 8)
4877 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
4878 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4879   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
4880   OPTIONAL(scope, MDField, );                                                  \
4881   OPTIONAL(linkageName, MDStringField, );                                      \
4882   OPTIONAL(file, MDField, );                                                   \
4883   OPTIONAL(line, LineField, );                                                 \
4884   OPTIONAL(type, MDField, );                                                   \
4885   OPTIONAL(isLocal, MDBoolField, );                                            \
4886   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4887   OPTIONAL(templateParams, MDField, );                                         \
4888   OPTIONAL(declaration, MDField, );                                            \
4889   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4890   PARSE_MD_FIELDS();
4891 #undef VISIT_MD_FIELDS
4892 
4893   Result =
4894       GET_OR_DISTINCT(DIGlobalVariable,
4895                       (Context, scope.Val, name.Val, linkageName.Val, file.Val,
4896                        line.Val, type.Val, isLocal.Val, isDefinition.Val,
4897                        declaration.Val, templateParams.Val, align.Val));
4898   return false;
4899 }
4900 
4901 /// ParseDILocalVariable:
4902 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
4903 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4904 ///                        align: 8)
4905 ///   ::= !DILocalVariable(scope: !0, name: "foo",
4906 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4907 ///                        align: 8)
4908 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
4909 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4910   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4911   OPTIONAL(name, MDStringField, );                                             \
4912   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
4913   OPTIONAL(file, MDField, );                                                   \
4914   OPTIONAL(line, LineField, );                                                 \
4915   OPTIONAL(type, MDField, );                                                   \
4916   OPTIONAL(flags, DIFlagField, );                                              \
4917   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4918   PARSE_MD_FIELDS();
4919 #undef VISIT_MD_FIELDS
4920 
4921   Result = GET_OR_DISTINCT(DILocalVariable,
4922                            (Context, scope.Val, name.Val, file.Val, line.Val,
4923                             type.Val, arg.Val, flags.Val, align.Val));
4924   return false;
4925 }
4926 
4927 /// ParseDILabel:
4928 ///   ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
4929 bool LLParser::ParseDILabel(MDNode *&Result, bool IsDistinct) {
4930 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4931   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4932   REQUIRED(name, MDStringField, );                                             \
4933   REQUIRED(file, MDField, );                                                   \
4934   REQUIRED(line, LineField, );
4935   PARSE_MD_FIELDS();
4936 #undef VISIT_MD_FIELDS
4937 
4938   Result = GET_OR_DISTINCT(DILabel,
4939                            (Context, scope.Val, name.Val, file.Val, line.Val));
4940   return false;
4941 }
4942 
4943 /// ParseDIExpression:
4944 ///   ::= !DIExpression(0, 7, -1)
4945 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
4946   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4947   Lex.Lex();
4948 
4949   if (ParseToken(lltok::lparen, "expected '(' here"))
4950     return true;
4951 
4952   SmallVector<uint64_t, 8> Elements;
4953   if (Lex.getKind() != lltok::rparen)
4954     do {
4955       if (Lex.getKind() == lltok::DwarfOp) {
4956         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
4957           Lex.Lex();
4958           Elements.push_back(Op);
4959           continue;
4960         }
4961         return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
4962       }
4963 
4964       if (Lex.getKind() == lltok::DwarfAttEncoding) {
4965         if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) {
4966           Lex.Lex();
4967           Elements.push_back(Op);
4968           continue;
4969         }
4970         return TokError(Twine("invalid DWARF attribute encoding '") + Lex.getStrVal() + "'");
4971       }
4972 
4973       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4974         return TokError("expected unsigned integer");
4975 
4976       auto &U = Lex.getAPSIntVal();
4977       if (U.ugt(UINT64_MAX))
4978         return TokError("element too large, limit is " + Twine(UINT64_MAX));
4979       Elements.push_back(U.getZExtValue());
4980       Lex.Lex();
4981     } while (EatIfPresent(lltok::comma));
4982 
4983   if (ParseToken(lltok::rparen, "expected ')' here"))
4984     return true;
4985 
4986   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
4987   return false;
4988 }
4989 
4990 /// ParseDIGlobalVariableExpression:
4991 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
4992 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result,
4993                                                bool IsDistinct) {
4994 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4995   REQUIRED(var, MDField, );                                                    \
4996   REQUIRED(expr, MDField, );
4997   PARSE_MD_FIELDS();
4998 #undef VISIT_MD_FIELDS
4999 
5000   Result =
5001       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
5002   return false;
5003 }
5004 
5005 /// ParseDIObjCProperty:
5006 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
5007 ///                       getter: "getFoo", attributes: 7, type: !2)
5008 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
5009 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5010   OPTIONAL(name, MDStringField, );                                             \
5011   OPTIONAL(file, MDField, );                                                   \
5012   OPTIONAL(line, LineField, );                                                 \
5013   OPTIONAL(setter, MDStringField, );                                           \
5014   OPTIONAL(getter, MDStringField, );                                           \
5015   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
5016   OPTIONAL(type, MDField, );
5017   PARSE_MD_FIELDS();
5018 #undef VISIT_MD_FIELDS
5019 
5020   Result = GET_OR_DISTINCT(DIObjCProperty,
5021                            (Context, name.Val, file.Val, line.Val, setter.Val,
5022                             getter.Val, attributes.Val, type.Val));
5023   return false;
5024 }
5025 
5026 /// ParseDIImportedEntity:
5027 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
5028 ///                         line: 7, name: "foo")
5029 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
5030 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5031   REQUIRED(tag, DwarfTagField, );                                              \
5032   REQUIRED(scope, MDField, );                                                  \
5033   OPTIONAL(entity, MDField, );                                                 \
5034   OPTIONAL(file, MDField, );                                                   \
5035   OPTIONAL(line, LineField, );                                                 \
5036   OPTIONAL(name, MDStringField, );
5037   PARSE_MD_FIELDS();
5038 #undef VISIT_MD_FIELDS
5039 
5040   Result = GET_OR_DISTINCT(
5041       DIImportedEntity,
5042       (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
5043   return false;
5044 }
5045 
5046 #undef PARSE_MD_FIELD
5047 #undef NOP_FIELD
5048 #undef REQUIRE_FIELD
5049 #undef DECLARE_FIELD
5050 
5051 /// ParseMetadataAsValue
5052 ///  ::= metadata i32 %local
5053 ///  ::= metadata i32 @global
5054 ///  ::= metadata i32 7
5055 ///  ::= metadata !0
5056 ///  ::= metadata !{...}
5057 ///  ::= metadata !"string"
5058 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
5059   // Note: the type 'metadata' has already been parsed.
5060   Metadata *MD;
5061   if (ParseMetadata(MD, &PFS))
5062     return true;
5063 
5064   V = MetadataAsValue::get(Context, MD);
5065   return false;
5066 }
5067 
5068 /// ParseValueAsMetadata
5069 ///  ::= i32 %local
5070 ///  ::= i32 @global
5071 ///  ::= i32 7
5072 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
5073                                     PerFunctionState *PFS) {
5074   Type *Ty;
5075   LocTy Loc;
5076   if (ParseType(Ty, TypeMsg, Loc))
5077     return true;
5078   if (Ty->isMetadataTy())
5079     return Error(Loc, "invalid metadata-value-metadata roundtrip");
5080 
5081   Value *V;
5082   if (ParseValue(Ty, V, PFS))
5083     return true;
5084 
5085   MD = ValueAsMetadata::get(V);
5086   return false;
5087 }
5088 
5089 /// ParseMetadata
5090 ///  ::= i32 %local
5091 ///  ::= i32 @global
5092 ///  ::= i32 7
5093 ///  ::= !42
5094 ///  ::= !{...}
5095 ///  ::= !"string"
5096 ///  ::= !DILocation(...)
5097 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
5098   if (Lex.getKind() == lltok::MetadataVar) {
5099     MDNode *N;
5100     if (ParseSpecializedMDNode(N))
5101       return true;
5102     MD = N;
5103     return false;
5104   }
5105 
5106   // ValueAsMetadata:
5107   // <type> <value>
5108   if (Lex.getKind() != lltok::exclaim)
5109     return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
5110 
5111   // '!'.
5112   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
5113   Lex.Lex();
5114 
5115   // MDString:
5116   //   ::= '!' STRINGCONSTANT
5117   if (Lex.getKind() == lltok::StringConstant) {
5118     MDString *S;
5119     if (ParseMDString(S))
5120       return true;
5121     MD = S;
5122     return false;
5123   }
5124 
5125   // MDNode:
5126   // !{ ... }
5127   // !7
5128   MDNode *N;
5129   if (ParseMDNodeTail(N))
5130     return true;
5131   MD = N;
5132   return false;
5133 }
5134 
5135 //===----------------------------------------------------------------------===//
5136 // Function Parsing.
5137 //===----------------------------------------------------------------------===//
5138 
5139 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
5140                                    PerFunctionState *PFS, bool IsCall) {
5141   if (Ty->isFunctionTy())
5142     return Error(ID.Loc, "functions are not values, refer to them as pointers");
5143 
5144   switch (ID.Kind) {
5145   case ValID::t_LocalID:
5146     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5147     V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5148     return V == nullptr;
5149   case ValID::t_LocalName:
5150     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5151     V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall);
5152     return V == nullptr;
5153   case ValID::t_InlineAsm: {
5154     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
5155       return Error(ID.Loc, "invalid type for inline asm constraint string");
5156     V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
5157                        (ID.UIntVal >> 1) & 1,
5158                        (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
5159     return false;
5160   }
5161   case ValID::t_GlobalName:
5162     V = GetGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall);
5163     return V == nullptr;
5164   case ValID::t_GlobalID:
5165     V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5166     return V == nullptr;
5167   case ValID::t_APSInt:
5168     if (!Ty->isIntegerTy())
5169       return Error(ID.Loc, "integer constant must have integer type");
5170     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
5171     V = ConstantInt::get(Context, ID.APSIntVal);
5172     return false;
5173   case ValID::t_APFloat:
5174     if (!Ty->isFloatingPointTy() ||
5175         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
5176       return Error(ID.Loc, "floating point constant invalid for type");
5177 
5178     // The lexer has no type info, so builds all half, float, and double FP
5179     // constants as double.  Fix this here.  Long double does not need this.
5180     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
5181       bool Ignored;
5182       if (Ty->isHalfTy())
5183         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
5184                               &Ignored);
5185       else if (Ty->isFloatTy())
5186         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
5187                               &Ignored);
5188     }
5189     V = ConstantFP::get(Context, ID.APFloatVal);
5190 
5191     if (V->getType() != Ty)
5192       return Error(ID.Loc, "floating point constant does not have type '" +
5193                    getTypeString(Ty) + "'");
5194 
5195     return false;
5196   case ValID::t_Null:
5197     if (!Ty->isPointerTy())
5198       return Error(ID.Loc, "null must be a pointer type");
5199     V = ConstantPointerNull::get(cast<PointerType>(Ty));
5200     return false;
5201   case ValID::t_Undef:
5202     // FIXME: LabelTy should not be a first-class type.
5203     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5204       return Error(ID.Loc, "invalid type for undef constant");
5205     V = UndefValue::get(Ty);
5206     return false;
5207   case ValID::t_EmptyArray:
5208     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
5209       return Error(ID.Loc, "invalid empty array initializer");
5210     V = UndefValue::get(Ty);
5211     return false;
5212   case ValID::t_Zero:
5213     // FIXME: LabelTy should not be a first-class type.
5214     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5215       return Error(ID.Loc, "invalid type for null constant");
5216     V = Constant::getNullValue(Ty);
5217     return false;
5218   case ValID::t_None:
5219     if (!Ty->isTokenTy())
5220       return Error(ID.Loc, "invalid type for none constant");
5221     V = Constant::getNullValue(Ty);
5222     return false;
5223   case ValID::t_Constant:
5224     if (ID.ConstantVal->getType() != Ty)
5225       return Error(ID.Loc, "constant expression type mismatch");
5226 
5227     V = ID.ConstantVal;
5228     return false;
5229   case ValID::t_ConstantStruct:
5230   case ValID::t_PackedConstantStruct:
5231     if (StructType *ST = dyn_cast<StructType>(Ty)) {
5232       if (ST->getNumElements() != ID.UIntVal)
5233         return Error(ID.Loc,
5234                      "initializer with struct type has wrong # elements");
5235       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5236         return Error(ID.Loc, "packed'ness of initializer and type don't match");
5237 
5238       // Verify that the elements are compatible with the structtype.
5239       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5240         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5241           return Error(ID.Loc, "element " + Twine(i) +
5242                     " of struct initializer doesn't match struct element type");
5243 
5244       V = ConstantStruct::get(
5245           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5246     } else
5247       return Error(ID.Loc, "constant expression type mismatch");
5248     return false;
5249   }
5250   llvm_unreachable("Invalid ValID");
5251 }
5252 
5253 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5254   C = nullptr;
5255   ValID ID;
5256   auto Loc = Lex.getLoc();
5257   if (ParseValID(ID, /*PFS=*/nullptr))
5258     return true;
5259   switch (ID.Kind) {
5260   case ValID::t_APSInt:
5261   case ValID::t_APFloat:
5262   case ValID::t_Undef:
5263   case ValID::t_Constant:
5264   case ValID::t_ConstantStruct:
5265   case ValID::t_PackedConstantStruct: {
5266     Value *V;
5267     if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false))
5268       return true;
5269     assert(isa<Constant>(V) && "Expected a constant value");
5270     C = cast<Constant>(V);
5271     return false;
5272   }
5273   case ValID::t_Null:
5274     C = Constant::getNullValue(Ty);
5275     return false;
5276   default:
5277     return Error(Loc, "expected a constant value");
5278   }
5279 }
5280 
5281 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5282   V = nullptr;
5283   ValID ID;
5284   return ParseValID(ID, PFS) ||
5285          ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false);
5286 }
5287 
5288 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5289   Type *Ty = nullptr;
5290   return ParseType(Ty) ||
5291          ParseValue(Ty, V, PFS);
5292 }
5293 
5294 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5295                                       PerFunctionState &PFS) {
5296   Value *V;
5297   Loc = Lex.getLoc();
5298   if (ParseTypeAndValue(V, PFS)) return true;
5299   if (!isa<BasicBlock>(V))
5300     return Error(Loc, "expected a basic block");
5301   BB = cast<BasicBlock>(V);
5302   return false;
5303 }
5304 
5305 /// FunctionHeader
5306 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5307 ///       OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5308 ///       '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5309 ///       OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
5310 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
5311   // Parse the linkage.
5312   LocTy LinkageLoc = Lex.getLoc();
5313   unsigned Linkage;
5314   unsigned Visibility;
5315   unsigned DLLStorageClass;
5316   bool DSOLocal;
5317   AttrBuilder RetAttrs;
5318   unsigned CC;
5319   bool HasLinkage;
5320   Type *RetType = nullptr;
5321   LocTy RetTypeLoc = Lex.getLoc();
5322   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5323                            DSOLocal) ||
5324       ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5325       ParseType(RetType, RetTypeLoc, true /*void allowed*/))
5326     return true;
5327 
5328   // Verify that the linkage is ok.
5329   switch ((GlobalValue::LinkageTypes)Linkage) {
5330   case GlobalValue::ExternalLinkage:
5331     break; // always ok.
5332   case GlobalValue::ExternalWeakLinkage:
5333     if (isDefine)
5334       return Error(LinkageLoc, "invalid linkage for function definition");
5335     break;
5336   case GlobalValue::PrivateLinkage:
5337   case GlobalValue::InternalLinkage:
5338   case GlobalValue::AvailableExternallyLinkage:
5339   case GlobalValue::LinkOnceAnyLinkage:
5340   case GlobalValue::LinkOnceODRLinkage:
5341   case GlobalValue::WeakAnyLinkage:
5342   case GlobalValue::WeakODRLinkage:
5343     if (!isDefine)
5344       return Error(LinkageLoc, "invalid linkage for function declaration");
5345     break;
5346   case GlobalValue::AppendingLinkage:
5347   case GlobalValue::CommonLinkage:
5348     return Error(LinkageLoc, "invalid function linkage type");
5349   }
5350 
5351   if (!isValidVisibilityForLinkage(Visibility, Linkage))
5352     return Error(LinkageLoc,
5353                  "symbol with local linkage must have default visibility");
5354 
5355   if (!FunctionType::isValidReturnType(RetType))
5356     return Error(RetTypeLoc, "invalid function return type");
5357 
5358   LocTy NameLoc = Lex.getLoc();
5359 
5360   std::string FunctionName;
5361   if (Lex.getKind() == lltok::GlobalVar) {
5362     FunctionName = Lex.getStrVal();
5363   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
5364     unsigned NameID = Lex.getUIntVal();
5365 
5366     if (NameID != NumberedVals.size())
5367       return TokError("function expected to be numbered '%" +
5368                       Twine(NumberedVals.size()) + "'");
5369   } else {
5370     return TokError("expected function name");
5371   }
5372 
5373   Lex.Lex();
5374 
5375   if (Lex.getKind() != lltok::lparen)
5376     return TokError("expected '(' in function argument list");
5377 
5378   SmallVector<ArgInfo, 8> ArgList;
5379   bool isVarArg;
5380   AttrBuilder FuncAttrs;
5381   std::vector<unsigned> FwdRefAttrGrps;
5382   LocTy BuiltinLoc;
5383   std::string Section;
5384   std::string Partition;
5385   MaybeAlign Alignment;
5386   std::string GC;
5387   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
5388   unsigned AddrSpace = 0;
5389   Constant *Prefix = nullptr;
5390   Constant *Prologue = nullptr;
5391   Constant *PersonalityFn = nullptr;
5392   Comdat *C;
5393 
5394   if (ParseArgumentList(ArgList, isVarArg) ||
5395       ParseOptionalUnnamedAddr(UnnamedAddr) ||
5396       ParseOptionalProgramAddrSpace(AddrSpace) ||
5397       ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5398                                  BuiltinLoc) ||
5399       (EatIfPresent(lltok::kw_section) &&
5400        ParseStringConstant(Section)) ||
5401       (EatIfPresent(lltok::kw_partition) &&
5402        ParseStringConstant(Partition)) ||
5403       parseOptionalComdat(FunctionName, C) ||
5404       ParseOptionalAlignment(Alignment) ||
5405       (EatIfPresent(lltok::kw_gc) &&
5406        ParseStringConstant(GC)) ||
5407       (EatIfPresent(lltok::kw_prefix) &&
5408        ParseGlobalTypeAndValue(Prefix)) ||
5409       (EatIfPresent(lltok::kw_prologue) &&
5410        ParseGlobalTypeAndValue(Prologue)) ||
5411       (EatIfPresent(lltok::kw_personality) &&
5412        ParseGlobalTypeAndValue(PersonalityFn)))
5413     return true;
5414 
5415   if (FuncAttrs.contains(Attribute::Builtin))
5416     return Error(BuiltinLoc, "'builtin' attribute not valid on function");
5417 
5418   // If the alignment was parsed as an attribute, move to the alignment field.
5419   if (FuncAttrs.hasAlignmentAttr()) {
5420     Alignment = FuncAttrs.getAlignment();
5421     FuncAttrs.removeAttribute(Attribute::Alignment);
5422   }
5423 
5424   // Okay, if we got here, the function is syntactically valid.  Convert types
5425   // and do semantic checks.
5426   std::vector<Type*> ParamTypeList;
5427   SmallVector<AttributeSet, 8> Attrs;
5428 
5429   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5430     ParamTypeList.push_back(ArgList[i].Ty);
5431     Attrs.push_back(ArgList[i].Attrs);
5432   }
5433 
5434   AttributeList PAL =
5435       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5436                          AttributeSet::get(Context, RetAttrs), Attrs);
5437 
5438   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
5439     return Error(RetTypeLoc, "functions with 'sret' argument must return void");
5440 
5441   FunctionType *FT =
5442     FunctionType::get(RetType, ParamTypeList, isVarArg);
5443   PointerType *PFT = PointerType::get(FT, AddrSpace);
5444 
5445   Fn = nullptr;
5446   if (!FunctionName.empty()) {
5447     // If this was a definition of a forward reference, remove the definition
5448     // from the forward reference table and fill in the forward ref.
5449     auto FRVI = ForwardRefVals.find(FunctionName);
5450     if (FRVI != ForwardRefVals.end()) {
5451       Fn = M->getFunction(FunctionName);
5452       if (!Fn)
5453         return Error(FRVI->second.second, "invalid forward reference to "
5454                      "function as global value!");
5455       if (Fn->getType() != PFT)
5456         return Error(FRVI->second.second, "invalid forward reference to "
5457                      "function '" + FunctionName + "' with wrong type: "
5458                      "expected '" + getTypeString(PFT) + "' but was '" +
5459                      getTypeString(Fn->getType()) + "'");
5460       ForwardRefVals.erase(FRVI);
5461     } else if ((Fn = M->getFunction(FunctionName))) {
5462       // Reject redefinitions.
5463       return Error(NameLoc, "invalid redefinition of function '" +
5464                    FunctionName + "'");
5465     } else if (M->getNamedValue(FunctionName)) {
5466       return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5467     }
5468 
5469   } else {
5470     // If this is a definition of a forward referenced function, make sure the
5471     // types agree.
5472     auto I = ForwardRefValIDs.find(NumberedVals.size());
5473     if (I != ForwardRefValIDs.end()) {
5474       Fn = cast<Function>(I->second.first);
5475       if (Fn->getType() != PFT)
5476         return Error(NameLoc, "type of definition and forward reference of '@" +
5477                      Twine(NumberedVals.size()) + "' disagree: "
5478                      "expected '" + getTypeString(PFT) + "' but was '" +
5479                      getTypeString(Fn->getType()) + "'");
5480       ForwardRefValIDs.erase(I);
5481     }
5482   }
5483 
5484   if (!Fn)
5485     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
5486                           FunctionName, M);
5487   else // Move the forward-reference to the correct spot in the module.
5488     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
5489 
5490   assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
5491 
5492   if (FunctionName.empty())
5493     NumberedVals.push_back(Fn);
5494 
5495   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5496   maybeSetDSOLocal(DSOLocal, *Fn);
5497   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5498   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5499   Fn->setCallingConv(CC);
5500   Fn->setAttributes(PAL);
5501   Fn->setUnnamedAddr(UnnamedAddr);
5502   Fn->setAlignment(MaybeAlign(Alignment));
5503   Fn->setSection(Section);
5504   Fn->setPartition(Partition);
5505   Fn->setComdat(C);
5506   Fn->setPersonalityFn(PersonalityFn);
5507   if (!GC.empty()) Fn->setGC(GC);
5508   Fn->setPrefixData(Prefix);
5509   Fn->setPrologueData(Prologue);
5510   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5511 
5512   // Add all of the arguments we parsed to the function.
5513   Function::arg_iterator ArgIt = Fn->arg_begin();
5514   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5515     // If the argument has a name, insert it into the argument symbol table.
5516     if (ArgList[i].Name.empty()) continue;
5517 
5518     // Set the name, if it conflicted, it will be auto-renamed.
5519     ArgIt->setName(ArgList[i].Name);
5520 
5521     if (ArgIt->getName() != ArgList[i].Name)
5522       return Error(ArgList[i].Loc, "redefinition of argument '%" +
5523                    ArgList[i].Name + "'");
5524   }
5525 
5526   if (isDefine)
5527     return false;
5528 
5529   // Check the declaration has no block address forward references.
5530   ValID ID;
5531   if (FunctionName.empty()) {
5532     ID.Kind = ValID::t_GlobalID;
5533     ID.UIntVal = NumberedVals.size() - 1;
5534   } else {
5535     ID.Kind = ValID::t_GlobalName;
5536     ID.StrVal = FunctionName;
5537   }
5538   auto Blocks = ForwardRefBlockAddresses.find(ID);
5539   if (Blocks != ForwardRefBlockAddresses.end())
5540     return Error(Blocks->first.Loc,
5541                  "cannot take blockaddress inside a declaration");
5542   return false;
5543 }
5544 
5545 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5546   ValID ID;
5547   if (FunctionNumber == -1) {
5548     ID.Kind = ValID::t_GlobalName;
5549     ID.StrVal = F.getName();
5550   } else {
5551     ID.Kind = ValID::t_GlobalID;
5552     ID.UIntVal = FunctionNumber;
5553   }
5554 
5555   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
5556   if (Blocks == P.ForwardRefBlockAddresses.end())
5557     return false;
5558 
5559   for (const auto &I : Blocks->second) {
5560     const ValID &BBID = I.first;
5561     GlobalValue *GV = I.second;
5562 
5563     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
5564            "Expected local id or name");
5565     BasicBlock *BB;
5566     if (BBID.Kind == ValID::t_LocalName)
5567       BB = GetBB(BBID.StrVal, BBID.Loc);
5568     else
5569       BB = GetBB(BBID.UIntVal, BBID.Loc);
5570     if (!BB)
5571       return P.Error(BBID.Loc, "referenced value is not a basic block");
5572 
5573     GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
5574     GV->eraseFromParent();
5575   }
5576 
5577   P.ForwardRefBlockAddresses.erase(Blocks);
5578   return false;
5579 }
5580 
5581 /// ParseFunctionBody
5582 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
5583 bool LLParser::ParseFunctionBody(Function &Fn) {
5584   if (Lex.getKind() != lltok::lbrace)
5585     return TokError("expected '{' in function body");
5586   Lex.Lex();  // eat the {.
5587 
5588   int FunctionNumber = -1;
5589   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
5590 
5591   PerFunctionState PFS(*this, Fn, FunctionNumber);
5592 
5593   // Resolve block addresses and allow basic blocks to be forward-declared
5594   // within this function.
5595   if (PFS.resolveForwardRefBlockAddresses())
5596     return true;
5597   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
5598 
5599   // We need at least one basic block.
5600   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
5601     return TokError("function body requires at least one basic block");
5602 
5603   while (Lex.getKind() != lltok::rbrace &&
5604          Lex.getKind() != lltok::kw_uselistorder)
5605     if (ParseBasicBlock(PFS)) return true;
5606 
5607   while (Lex.getKind() != lltok::rbrace)
5608     if (ParseUseListOrder(&PFS))
5609       return true;
5610 
5611   // Eat the }.
5612   Lex.Lex();
5613 
5614   // Verify function is ok.
5615   return PFS.FinishFunction();
5616 }
5617 
5618 /// ParseBasicBlock
5619 ///   ::= (LabelStr|LabelID)? Instruction*
5620 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
5621   // If this basic block starts out with a name, remember it.
5622   std::string Name;
5623   int NameID = -1;
5624   LocTy NameLoc = Lex.getLoc();
5625   if (Lex.getKind() == lltok::LabelStr) {
5626     Name = Lex.getStrVal();
5627     Lex.Lex();
5628   } else if (Lex.getKind() == lltok::LabelID) {
5629     NameID = Lex.getUIntVal();
5630     Lex.Lex();
5631   }
5632 
5633   BasicBlock *BB = PFS.DefineBB(Name, NameID, NameLoc);
5634   if (!BB)
5635     return true;
5636 
5637   std::string NameStr;
5638 
5639   // Parse the instructions in this block until we get a terminator.
5640   Instruction *Inst;
5641   do {
5642     // This instruction may have three possibilities for a name: a) none
5643     // specified, b) name specified "%foo =", c) number specified: "%4 =".
5644     LocTy NameLoc = Lex.getLoc();
5645     int NameID = -1;
5646     NameStr = "";
5647 
5648     if (Lex.getKind() == lltok::LocalVarID) {
5649       NameID = Lex.getUIntVal();
5650       Lex.Lex();
5651       if (ParseToken(lltok::equal, "expected '=' after instruction id"))
5652         return true;
5653     } else if (Lex.getKind() == lltok::LocalVar) {
5654       NameStr = Lex.getStrVal();
5655       Lex.Lex();
5656       if (ParseToken(lltok::equal, "expected '=' after instruction name"))
5657         return true;
5658     }
5659 
5660     switch (ParseInstruction(Inst, BB, PFS)) {
5661     default: llvm_unreachable("Unknown ParseInstruction result!");
5662     case InstError: return true;
5663     case InstNormal:
5664       BB->getInstList().push_back(Inst);
5665 
5666       // With a normal result, we check to see if the instruction is followed by
5667       // a comma and metadata.
5668       if (EatIfPresent(lltok::comma))
5669         if (ParseInstructionMetadata(*Inst))
5670           return true;
5671       break;
5672     case InstExtraComma:
5673       BB->getInstList().push_back(Inst);
5674 
5675       // If the instruction parser ate an extra comma at the end of it, it
5676       // *must* be followed by metadata.
5677       if (ParseInstructionMetadata(*Inst))
5678         return true;
5679       break;
5680     }
5681 
5682     // Set the name on the instruction.
5683     if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
5684   } while (!Inst->isTerminator());
5685 
5686   return false;
5687 }
5688 
5689 //===----------------------------------------------------------------------===//
5690 // Instruction Parsing.
5691 //===----------------------------------------------------------------------===//
5692 
5693 /// ParseInstruction - Parse one of the many different instructions.
5694 ///
5695 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
5696                                PerFunctionState &PFS) {
5697   lltok::Kind Token = Lex.getKind();
5698   if (Token == lltok::Eof)
5699     return TokError("found end of file when expecting more instructions");
5700   LocTy Loc = Lex.getLoc();
5701   unsigned KeywordVal = Lex.getUIntVal();
5702   Lex.Lex();  // Eat the keyword.
5703 
5704   switch (Token) {
5705   default:                    return Error(Loc, "expected instruction opcode");
5706   // Terminator Instructions.
5707   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
5708   case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
5709   case lltok::kw_br:          return ParseBr(Inst, PFS);
5710   case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
5711   case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
5712   case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
5713   case lltok::kw_resume:      return ParseResume(Inst, PFS);
5714   case lltok::kw_cleanupret:  return ParseCleanupRet(Inst, PFS);
5715   case lltok::kw_catchret:    return ParseCatchRet(Inst, PFS);
5716   case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS);
5717   case lltok::kw_catchpad:    return ParseCatchPad(Inst, PFS);
5718   case lltok::kw_cleanuppad:  return ParseCleanupPad(Inst, PFS);
5719   case lltok::kw_callbr:      return ParseCallBr(Inst, PFS);
5720   // Unary Operators.
5721   case lltok::kw_fneg: {
5722     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5723     int Res = ParseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/true);
5724     if (Res != 0)
5725       return Res;
5726     if (FMF.any())
5727       Inst->setFastMathFlags(FMF);
5728     return false;
5729   }
5730   // Binary Operators.
5731   case lltok::kw_add:
5732   case lltok::kw_sub:
5733   case lltok::kw_mul:
5734   case lltok::kw_shl: {
5735     bool NUW = EatIfPresent(lltok::kw_nuw);
5736     bool NSW = EatIfPresent(lltok::kw_nsw);
5737     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
5738 
5739     if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true;
5740 
5741     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
5742     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
5743     return false;
5744   }
5745   case lltok::kw_fadd:
5746   case lltok::kw_fsub:
5747   case lltok::kw_fmul:
5748   case lltok::kw_fdiv:
5749   case lltok::kw_frem: {
5750     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5751     int Res = ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/true);
5752     if (Res != 0)
5753       return Res;
5754     if (FMF.any())
5755       Inst->setFastMathFlags(FMF);
5756     return 0;
5757   }
5758 
5759   case lltok::kw_sdiv:
5760   case lltok::kw_udiv:
5761   case lltok::kw_lshr:
5762   case lltok::kw_ashr: {
5763     bool Exact = EatIfPresent(lltok::kw_exact);
5764 
5765     if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true;
5766     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
5767     return false;
5768   }
5769 
5770   case lltok::kw_urem:
5771   case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal,
5772                                                 /*IsFP*/false);
5773   case lltok::kw_and:
5774   case lltok::kw_or:
5775   case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
5776   case lltok::kw_icmp:   return ParseCompare(Inst, PFS, KeywordVal);
5777   case lltok::kw_fcmp: {
5778     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5779     int Res = ParseCompare(Inst, PFS, KeywordVal);
5780     if (Res != 0)
5781       return Res;
5782     if (FMF.any())
5783       Inst->setFastMathFlags(FMF);
5784     return 0;
5785   }
5786 
5787   // Casts.
5788   case lltok::kw_trunc:
5789   case lltok::kw_zext:
5790   case lltok::kw_sext:
5791   case lltok::kw_fptrunc:
5792   case lltok::kw_fpext:
5793   case lltok::kw_bitcast:
5794   case lltok::kw_addrspacecast:
5795   case lltok::kw_uitofp:
5796   case lltok::kw_sitofp:
5797   case lltok::kw_fptoui:
5798   case lltok::kw_fptosi:
5799   case lltok::kw_inttoptr:
5800   case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
5801   // Other.
5802   case lltok::kw_select: {
5803     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5804     int Res = ParseSelect(Inst, PFS);
5805     if (Res != 0)
5806       return Res;
5807     if (FMF.any()) {
5808       if (!isa<FPMathOperator>(Inst))
5809         return Error(Loc, "fast-math-flags specified for select without "
5810                           "floating-point scalar or vector return type");
5811       Inst->setFastMathFlags(FMF);
5812     }
5813     return 0;
5814   }
5815   case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
5816   case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
5817   case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
5818   case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
5819   case lltok::kw_phi: {
5820     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5821     int Res = ParsePHI(Inst, PFS);
5822     if (Res != 0)
5823       return Res;
5824     if (FMF.any()) {
5825       if (!isa<FPMathOperator>(Inst))
5826         return Error(Loc, "fast-math-flags specified for phi without "
5827                           "floating-point scalar or vector return type");
5828       Inst->setFastMathFlags(FMF);
5829     }
5830     return 0;
5831   }
5832   case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
5833   case lltok::kw_freeze:         return ParseFreeze(Inst, PFS);
5834   // Call.
5835   case lltok::kw_call:     return ParseCall(Inst, PFS, CallInst::TCK_None);
5836   case lltok::kw_tail:     return ParseCall(Inst, PFS, CallInst::TCK_Tail);
5837   case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail);
5838   case lltok::kw_notail:   return ParseCall(Inst, PFS, CallInst::TCK_NoTail);
5839   // Memory.
5840   case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
5841   case lltok::kw_load:           return ParseLoad(Inst, PFS);
5842   case lltok::kw_store:          return ParseStore(Inst, PFS);
5843   case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
5844   case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
5845   case lltok::kw_fence:          return ParseFence(Inst, PFS);
5846   case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
5847   case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
5848   case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
5849   }
5850 }
5851 
5852 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
5853 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
5854   if (Opc == Instruction::FCmp) {
5855     switch (Lex.getKind()) {
5856     default: return TokError("expected fcmp predicate (e.g. 'oeq')");
5857     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
5858     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
5859     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
5860     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
5861     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
5862     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
5863     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
5864     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
5865     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
5866     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
5867     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
5868     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
5869     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
5870     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
5871     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
5872     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
5873     }
5874   } else {
5875     switch (Lex.getKind()) {
5876     default: return TokError("expected icmp predicate (e.g. 'eq')");
5877     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
5878     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
5879     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
5880     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
5881     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
5882     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
5883     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
5884     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
5885     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
5886     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
5887     }
5888   }
5889   Lex.Lex();
5890   return false;
5891 }
5892 
5893 //===----------------------------------------------------------------------===//
5894 // Terminator Instructions.
5895 //===----------------------------------------------------------------------===//
5896 
5897 /// ParseRet - Parse a return instruction.
5898 ///   ::= 'ret' void (',' !dbg, !1)*
5899 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
5900 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
5901                         PerFunctionState &PFS) {
5902   SMLoc TypeLoc = Lex.getLoc();
5903   Type *Ty = nullptr;
5904   if (ParseType(Ty, true /*void allowed*/)) return true;
5905 
5906   Type *ResType = PFS.getFunction().getReturnType();
5907 
5908   if (Ty->isVoidTy()) {
5909     if (!ResType->isVoidTy())
5910       return Error(TypeLoc, "value doesn't match function result type '" +
5911                    getTypeString(ResType) + "'");
5912 
5913     Inst = ReturnInst::Create(Context);
5914     return false;
5915   }
5916 
5917   Value *RV;
5918   if (ParseValue(Ty, RV, PFS)) return true;
5919 
5920   if (ResType != RV->getType())
5921     return Error(TypeLoc, "value doesn't match function result type '" +
5922                  getTypeString(ResType) + "'");
5923 
5924   Inst = ReturnInst::Create(Context, RV);
5925   return false;
5926 }
5927 
5928 /// ParseBr
5929 ///   ::= 'br' TypeAndValue
5930 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5931 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
5932   LocTy Loc, Loc2;
5933   Value *Op0;
5934   BasicBlock *Op1, *Op2;
5935   if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
5936 
5937   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
5938     Inst = BranchInst::Create(BB);
5939     return false;
5940   }
5941 
5942   if (Op0->getType() != Type::getInt1Ty(Context))
5943     return Error(Loc, "branch condition must have 'i1' type");
5944 
5945   if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
5946       ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
5947       ParseToken(lltok::comma, "expected ',' after true destination") ||
5948       ParseTypeAndBasicBlock(Op2, Loc2, PFS))
5949     return true;
5950 
5951   Inst = BranchInst::Create(Op1, Op2, Op0);
5952   return false;
5953 }
5954 
5955 /// ParseSwitch
5956 ///  Instruction
5957 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
5958 ///  JumpTable
5959 ///    ::= (TypeAndValue ',' TypeAndValue)*
5960 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5961   LocTy CondLoc, BBLoc;
5962   Value *Cond;
5963   BasicBlock *DefaultBB;
5964   if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
5965       ParseToken(lltok::comma, "expected ',' after switch condition") ||
5966       ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
5967       ParseToken(lltok::lsquare, "expected '[' with switch table"))
5968     return true;
5969 
5970   if (!Cond->getType()->isIntegerTy())
5971     return Error(CondLoc, "switch condition must have integer type");
5972 
5973   // Parse the jump table pairs.
5974   SmallPtrSet<Value*, 32> SeenCases;
5975   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
5976   while (Lex.getKind() != lltok::rsquare) {
5977     Value *Constant;
5978     BasicBlock *DestBB;
5979 
5980     if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
5981         ParseToken(lltok::comma, "expected ',' after case value") ||
5982         ParseTypeAndBasicBlock(DestBB, PFS))
5983       return true;
5984 
5985     if (!SeenCases.insert(Constant).second)
5986       return Error(CondLoc, "duplicate case value in switch");
5987     if (!isa<ConstantInt>(Constant))
5988       return Error(CondLoc, "case value is not a constant integer");
5989 
5990     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
5991   }
5992 
5993   Lex.Lex();  // Eat the ']'.
5994 
5995   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
5996   for (unsigned i = 0, e = Table.size(); i != e; ++i)
5997     SI->addCase(Table[i].first, Table[i].second);
5998   Inst = SI;
5999   return false;
6000 }
6001 
6002 /// ParseIndirectBr
6003 ///  Instruction
6004 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
6005 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
6006   LocTy AddrLoc;
6007   Value *Address;
6008   if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
6009       ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
6010       ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
6011     return true;
6012 
6013   if (!Address->getType()->isPointerTy())
6014     return Error(AddrLoc, "indirectbr address must have pointer type");
6015 
6016   // Parse the destination list.
6017   SmallVector<BasicBlock*, 16> DestList;
6018 
6019   if (Lex.getKind() != lltok::rsquare) {
6020     BasicBlock *DestBB;
6021     if (ParseTypeAndBasicBlock(DestBB, PFS))
6022       return true;
6023     DestList.push_back(DestBB);
6024 
6025     while (EatIfPresent(lltok::comma)) {
6026       if (ParseTypeAndBasicBlock(DestBB, PFS))
6027         return true;
6028       DestList.push_back(DestBB);
6029     }
6030   }
6031 
6032   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
6033     return true;
6034 
6035   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
6036   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
6037     IBI->addDestination(DestList[i]);
6038   Inst = IBI;
6039   return false;
6040 }
6041 
6042 /// ParseInvoke
6043 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
6044 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
6045 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
6046   LocTy CallLoc = Lex.getLoc();
6047   AttrBuilder RetAttrs, FnAttrs;
6048   std::vector<unsigned> FwdRefAttrGrps;
6049   LocTy NoBuiltinLoc;
6050   unsigned CC;
6051   unsigned InvokeAddrSpace;
6052   Type *RetType = nullptr;
6053   LocTy RetTypeLoc;
6054   ValID CalleeID;
6055   SmallVector<ParamInfo, 16> ArgList;
6056   SmallVector<OperandBundleDef, 2> BundleList;
6057 
6058   BasicBlock *NormalBB, *UnwindBB;
6059   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6060       ParseOptionalProgramAddrSpace(InvokeAddrSpace) ||
6061       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6062       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
6063       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6064                                  NoBuiltinLoc) ||
6065       ParseOptionalOperandBundles(BundleList, PFS) ||
6066       ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
6067       ParseTypeAndBasicBlock(NormalBB, PFS) ||
6068       ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
6069       ParseTypeAndBasicBlock(UnwindBB, PFS))
6070     return true;
6071 
6072   // If RetType is a non-function pointer type, then this is the short syntax
6073   // for the call, which means that RetType is just the return type.  Infer the
6074   // rest of the function argument types from the arguments that are present.
6075   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6076   if (!Ty) {
6077     // Pull out the types of all of the arguments...
6078     std::vector<Type*> ParamTypes;
6079     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6080       ParamTypes.push_back(ArgList[i].V->getType());
6081 
6082     if (!FunctionType::isValidReturnType(RetType))
6083       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6084 
6085     Ty = FunctionType::get(RetType, ParamTypes, false);
6086   }
6087 
6088   CalleeID.FTy = Ty;
6089 
6090   // Look up the callee.
6091   Value *Callee;
6092   if (ConvertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
6093                           Callee, &PFS, /*IsCall=*/true))
6094     return true;
6095 
6096   // Set up the Attribute for the function.
6097   SmallVector<Value *, 8> Args;
6098   SmallVector<AttributeSet, 8> ArgAttrs;
6099 
6100   // Loop through FunctionType's arguments and ensure they are specified
6101   // correctly.  Also, gather any parameter attributes.
6102   FunctionType::param_iterator I = Ty->param_begin();
6103   FunctionType::param_iterator E = Ty->param_end();
6104   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6105     Type *ExpectedTy = nullptr;
6106     if (I != E) {
6107       ExpectedTy = *I++;
6108     } else if (!Ty->isVarArg()) {
6109       return Error(ArgList[i].Loc, "too many arguments specified");
6110     }
6111 
6112     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6113       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6114                    getTypeString(ExpectedTy) + "'");
6115     Args.push_back(ArgList[i].V);
6116     ArgAttrs.push_back(ArgList[i].Attrs);
6117   }
6118 
6119   if (I != E)
6120     return Error(CallLoc, "not enough parameters specified for call");
6121 
6122   if (FnAttrs.hasAlignmentAttr())
6123     return Error(CallLoc, "invoke instructions may not have an alignment");
6124 
6125   // Finish off the Attribute and check them
6126   AttributeList PAL =
6127       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6128                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6129 
6130   InvokeInst *II =
6131       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
6132   II->setCallingConv(CC);
6133   II->setAttributes(PAL);
6134   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
6135   Inst = II;
6136   return false;
6137 }
6138 
6139 /// ParseResume
6140 ///   ::= 'resume' TypeAndValue
6141 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
6142   Value *Exn; LocTy ExnLoc;
6143   if (ParseTypeAndValue(Exn, ExnLoc, PFS))
6144     return true;
6145 
6146   ResumeInst *RI = ResumeInst::Create(Exn);
6147   Inst = RI;
6148   return false;
6149 }
6150 
6151 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args,
6152                                   PerFunctionState &PFS) {
6153   if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
6154     return true;
6155 
6156   while (Lex.getKind() != lltok::rsquare) {
6157     // If this isn't the first argument, we need a comma.
6158     if (!Args.empty() &&
6159         ParseToken(lltok::comma, "expected ',' in argument list"))
6160       return true;
6161 
6162     // Parse the argument.
6163     LocTy ArgLoc;
6164     Type *ArgTy = nullptr;
6165     if (ParseType(ArgTy, ArgLoc))
6166       return true;
6167 
6168     Value *V;
6169     if (ArgTy->isMetadataTy()) {
6170       if (ParseMetadataAsValue(V, PFS))
6171         return true;
6172     } else {
6173       if (ParseValue(ArgTy, V, PFS))
6174         return true;
6175     }
6176     Args.push_back(V);
6177   }
6178 
6179   Lex.Lex();  // Lex the ']'.
6180   return false;
6181 }
6182 
6183 /// ParseCleanupRet
6184 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
6185 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
6186   Value *CleanupPad = nullptr;
6187 
6188   if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret"))
6189     return true;
6190 
6191   if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS))
6192     return true;
6193 
6194   if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
6195     return true;
6196 
6197   BasicBlock *UnwindBB = nullptr;
6198   if (Lex.getKind() == lltok::kw_to) {
6199     Lex.Lex();
6200     if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
6201       return true;
6202   } else {
6203     if (ParseTypeAndBasicBlock(UnwindBB, PFS)) {
6204       return true;
6205     }
6206   }
6207 
6208   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
6209   return false;
6210 }
6211 
6212 /// ParseCatchRet
6213 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
6214 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
6215   Value *CatchPad = nullptr;
6216 
6217   if (ParseToken(lltok::kw_from, "expected 'from' after catchret"))
6218     return true;
6219 
6220   if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS))
6221     return true;
6222 
6223   BasicBlock *BB;
6224   if (ParseToken(lltok::kw_to, "expected 'to' in catchret") ||
6225       ParseTypeAndBasicBlock(BB, PFS))
6226       return true;
6227 
6228   Inst = CatchReturnInst::Create(CatchPad, BB);
6229   return false;
6230 }
6231 
6232 /// ParseCatchSwitch
6233 ///   ::= 'catchswitch' within Parent
6234 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6235   Value *ParentPad;
6236 
6237   if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch"))
6238     return true;
6239 
6240   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6241       Lex.getKind() != lltok::LocalVarID)
6242     return TokError("expected scope value for catchswitch");
6243 
6244   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
6245     return true;
6246 
6247   if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
6248     return true;
6249 
6250   SmallVector<BasicBlock *, 32> Table;
6251   do {
6252     BasicBlock *DestBB;
6253     if (ParseTypeAndBasicBlock(DestBB, PFS))
6254       return true;
6255     Table.push_back(DestBB);
6256   } while (EatIfPresent(lltok::comma));
6257 
6258   if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
6259     return true;
6260 
6261   if (ParseToken(lltok::kw_unwind,
6262                  "expected 'unwind' after catchswitch scope"))
6263     return true;
6264 
6265   BasicBlock *UnwindBB = nullptr;
6266   if (EatIfPresent(lltok::kw_to)) {
6267     if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
6268       return true;
6269   } else {
6270     if (ParseTypeAndBasicBlock(UnwindBB, PFS))
6271       return true;
6272   }
6273 
6274   auto *CatchSwitch =
6275       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
6276   for (BasicBlock *DestBB : Table)
6277     CatchSwitch->addHandler(DestBB);
6278   Inst = CatchSwitch;
6279   return false;
6280 }
6281 
6282 /// ParseCatchPad
6283 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
6284 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
6285   Value *CatchSwitch = nullptr;
6286 
6287   if (ParseToken(lltok::kw_within, "expected 'within' after catchpad"))
6288     return true;
6289 
6290   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
6291     return TokError("expected scope value for catchpad");
6292 
6293   if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
6294     return true;
6295 
6296   SmallVector<Value *, 8> Args;
6297   if (ParseExceptionArgs(Args, PFS))
6298     return true;
6299 
6300   Inst = CatchPadInst::Create(CatchSwitch, Args);
6301   return false;
6302 }
6303 
6304 /// ParseCleanupPad
6305 ///   ::= 'cleanuppad' within Parent ParamList
6306 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
6307   Value *ParentPad = nullptr;
6308 
6309   if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
6310     return true;
6311 
6312   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6313       Lex.getKind() != lltok::LocalVarID)
6314     return TokError("expected scope value for cleanuppad");
6315 
6316   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
6317     return true;
6318 
6319   SmallVector<Value *, 8> Args;
6320   if (ParseExceptionArgs(Args, PFS))
6321     return true;
6322 
6323   Inst = CleanupPadInst::Create(ParentPad, Args);
6324   return false;
6325 }
6326 
6327 //===----------------------------------------------------------------------===//
6328 // Unary Operators.
6329 //===----------------------------------------------------------------------===//
6330 
6331 /// ParseUnaryOp
6332 ///  ::= UnaryOp TypeAndValue ',' Value
6333 ///
6334 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6335 /// operand is allowed.
6336 bool LLParser::ParseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
6337                             unsigned Opc, bool IsFP) {
6338   LocTy Loc; Value *LHS;
6339   if (ParseTypeAndValue(LHS, Loc, PFS))
6340     return true;
6341 
6342   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6343                     : LHS->getType()->isIntOrIntVectorTy();
6344 
6345   if (!Valid)
6346     return Error(Loc, "invalid operand type for instruction");
6347 
6348   Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
6349   return false;
6350 }
6351 
6352 /// ParseCallBr
6353 ///   ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
6354 ///       OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
6355 ///       '[' LabelList ']'
6356 bool LLParser::ParseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
6357   LocTy CallLoc = Lex.getLoc();
6358   AttrBuilder RetAttrs, FnAttrs;
6359   std::vector<unsigned> FwdRefAttrGrps;
6360   LocTy NoBuiltinLoc;
6361   unsigned CC;
6362   Type *RetType = nullptr;
6363   LocTy RetTypeLoc;
6364   ValID CalleeID;
6365   SmallVector<ParamInfo, 16> ArgList;
6366   SmallVector<OperandBundleDef, 2> BundleList;
6367 
6368   BasicBlock *DefaultDest;
6369   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6370       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6371       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
6372       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6373                                  NoBuiltinLoc) ||
6374       ParseOptionalOperandBundles(BundleList, PFS) ||
6375       ParseToken(lltok::kw_to, "expected 'to' in callbr") ||
6376       ParseTypeAndBasicBlock(DefaultDest, PFS) ||
6377       ParseToken(lltok::lsquare, "expected '[' in callbr"))
6378     return true;
6379 
6380   // Parse the destination list.
6381   SmallVector<BasicBlock *, 16> IndirectDests;
6382 
6383   if (Lex.getKind() != lltok::rsquare) {
6384     BasicBlock *DestBB;
6385     if (ParseTypeAndBasicBlock(DestBB, PFS))
6386       return true;
6387     IndirectDests.push_back(DestBB);
6388 
6389     while (EatIfPresent(lltok::comma)) {
6390       if (ParseTypeAndBasicBlock(DestBB, PFS))
6391         return true;
6392       IndirectDests.push_back(DestBB);
6393     }
6394   }
6395 
6396   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
6397     return true;
6398 
6399   // If RetType is a non-function pointer type, then this is the short syntax
6400   // for the call, which means that RetType is just the return type.  Infer the
6401   // rest of the function argument types from the arguments that are present.
6402   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6403   if (!Ty) {
6404     // Pull out the types of all of the arguments...
6405     std::vector<Type *> ParamTypes;
6406     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6407       ParamTypes.push_back(ArgList[i].V->getType());
6408 
6409     if (!FunctionType::isValidReturnType(RetType))
6410       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6411 
6412     Ty = FunctionType::get(RetType, ParamTypes, false);
6413   }
6414 
6415   CalleeID.FTy = Ty;
6416 
6417   // Look up the callee.
6418   Value *Callee;
6419   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS,
6420                           /*IsCall=*/true))
6421     return true;
6422 
6423   if (isa<InlineAsm>(Callee) && !Ty->getReturnType()->isVoidTy())
6424     return Error(RetTypeLoc, "asm-goto outputs not supported");
6425 
6426   // Set up the Attribute for the function.
6427   SmallVector<Value *, 8> Args;
6428   SmallVector<AttributeSet, 8> ArgAttrs;
6429 
6430   // Loop through FunctionType's arguments and ensure they are specified
6431   // correctly.  Also, gather any parameter attributes.
6432   FunctionType::param_iterator I = Ty->param_begin();
6433   FunctionType::param_iterator E = Ty->param_end();
6434   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6435     Type *ExpectedTy = nullptr;
6436     if (I != E) {
6437       ExpectedTy = *I++;
6438     } else if (!Ty->isVarArg()) {
6439       return Error(ArgList[i].Loc, "too many arguments specified");
6440     }
6441 
6442     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6443       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6444                                        getTypeString(ExpectedTy) + "'");
6445     Args.push_back(ArgList[i].V);
6446     ArgAttrs.push_back(ArgList[i].Attrs);
6447   }
6448 
6449   if (I != E)
6450     return Error(CallLoc, "not enough parameters specified for call");
6451 
6452   if (FnAttrs.hasAlignmentAttr())
6453     return Error(CallLoc, "callbr instructions may not have an alignment");
6454 
6455   // Finish off the Attribute and check them
6456   AttributeList PAL =
6457       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6458                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6459 
6460   CallBrInst *CBI =
6461       CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
6462                          BundleList);
6463   CBI->setCallingConv(CC);
6464   CBI->setAttributes(PAL);
6465   ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
6466   Inst = CBI;
6467   return false;
6468 }
6469 
6470 //===----------------------------------------------------------------------===//
6471 // Binary Operators.
6472 //===----------------------------------------------------------------------===//
6473 
6474 /// ParseArithmetic
6475 ///  ::= ArithmeticOps TypeAndValue ',' Value
6476 ///
6477 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6478 /// operand is allowed.
6479 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
6480                                unsigned Opc, bool IsFP) {
6481   LocTy Loc; Value *LHS, *RHS;
6482   if (ParseTypeAndValue(LHS, Loc, PFS) ||
6483       ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
6484       ParseValue(LHS->getType(), RHS, PFS))
6485     return true;
6486 
6487   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6488                     : LHS->getType()->isIntOrIntVectorTy();
6489 
6490   if (!Valid)
6491     return Error(Loc, "invalid operand type for instruction");
6492 
6493   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6494   return false;
6495 }
6496 
6497 /// ParseLogical
6498 ///  ::= ArithmeticOps TypeAndValue ',' Value {
6499 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
6500                             unsigned Opc) {
6501   LocTy Loc; Value *LHS, *RHS;
6502   if (ParseTypeAndValue(LHS, Loc, PFS) ||
6503       ParseToken(lltok::comma, "expected ',' in logical operation") ||
6504       ParseValue(LHS->getType(), RHS, PFS))
6505     return true;
6506 
6507   if (!LHS->getType()->isIntOrIntVectorTy())
6508     return Error(Loc,"instruction requires integer or integer vector operands");
6509 
6510   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6511   return false;
6512 }
6513 
6514 /// ParseCompare
6515 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
6516 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
6517 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
6518                             unsigned Opc) {
6519   // Parse the integer/fp comparison predicate.
6520   LocTy Loc;
6521   unsigned Pred;
6522   Value *LHS, *RHS;
6523   if (ParseCmpPredicate(Pred, Opc) ||
6524       ParseTypeAndValue(LHS, Loc, PFS) ||
6525       ParseToken(lltok::comma, "expected ',' after compare value") ||
6526       ParseValue(LHS->getType(), RHS, PFS))
6527     return true;
6528 
6529   if (Opc == Instruction::FCmp) {
6530     if (!LHS->getType()->isFPOrFPVectorTy())
6531       return Error(Loc, "fcmp requires floating point operands");
6532     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6533   } else {
6534     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
6535     if (!LHS->getType()->isIntOrIntVectorTy() &&
6536         !LHS->getType()->isPtrOrPtrVectorTy())
6537       return Error(Loc, "icmp requires integer operands");
6538     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6539   }
6540   return false;
6541 }
6542 
6543 //===----------------------------------------------------------------------===//
6544 // Other Instructions.
6545 //===----------------------------------------------------------------------===//
6546 
6547 
6548 /// ParseCast
6549 ///   ::= CastOpc TypeAndValue 'to' Type
6550 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
6551                          unsigned Opc) {
6552   LocTy Loc;
6553   Value *Op;
6554   Type *DestTy = nullptr;
6555   if (ParseTypeAndValue(Op, Loc, PFS) ||
6556       ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
6557       ParseType(DestTy))
6558     return true;
6559 
6560   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
6561     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
6562     return Error(Loc, "invalid cast opcode for cast from '" +
6563                  getTypeString(Op->getType()) + "' to '" +
6564                  getTypeString(DestTy) + "'");
6565   }
6566   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
6567   return false;
6568 }
6569 
6570 /// ParseSelect
6571 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6572 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
6573   LocTy Loc;
6574   Value *Op0, *Op1, *Op2;
6575   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6576       ParseToken(lltok::comma, "expected ',' after select condition") ||
6577       ParseTypeAndValue(Op1, PFS) ||
6578       ParseToken(lltok::comma, "expected ',' after select value") ||
6579       ParseTypeAndValue(Op2, PFS))
6580     return true;
6581 
6582   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
6583     return Error(Loc, Reason);
6584 
6585   Inst = SelectInst::Create(Op0, Op1, Op2);
6586   return false;
6587 }
6588 
6589 /// ParseVA_Arg
6590 ///   ::= 'va_arg' TypeAndValue ',' Type
6591 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
6592   Value *Op;
6593   Type *EltTy = nullptr;
6594   LocTy TypeLoc;
6595   if (ParseTypeAndValue(Op, PFS) ||
6596       ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
6597       ParseType(EltTy, TypeLoc))
6598     return true;
6599 
6600   if (!EltTy->isFirstClassType())
6601     return Error(TypeLoc, "va_arg requires operand with first class type");
6602 
6603   Inst = new VAArgInst(Op, EltTy);
6604   return false;
6605 }
6606 
6607 /// ParseExtractElement
6608 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
6609 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
6610   LocTy Loc;
6611   Value *Op0, *Op1;
6612   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6613       ParseToken(lltok::comma, "expected ',' after extract value") ||
6614       ParseTypeAndValue(Op1, PFS))
6615     return true;
6616 
6617   if (!ExtractElementInst::isValidOperands(Op0, Op1))
6618     return Error(Loc, "invalid extractelement operands");
6619 
6620   Inst = ExtractElementInst::Create(Op0, Op1);
6621   return false;
6622 }
6623 
6624 /// ParseInsertElement
6625 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6626 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
6627   LocTy Loc;
6628   Value *Op0, *Op1, *Op2;
6629   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6630       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6631       ParseTypeAndValue(Op1, PFS) ||
6632       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6633       ParseTypeAndValue(Op2, PFS))
6634     return true;
6635 
6636   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
6637     return Error(Loc, "invalid insertelement operands");
6638 
6639   Inst = InsertElementInst::Create(Op0, Op1, Op2);
6640   return false;
6641 }
6642 
6643 /// ParseShuffleVector
6644 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6645 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
6646   LocTy Loc;
6647   Value *Op0, *Op1, *Op2;
6648   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6649       ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
6650       ParseTypeAndValue(Op1, PFS) ||
6651       ParseToken(lltok::comma, "expected ',' after shuffle value") ||
6652       ParseTypeAndValue(Op2, PFS))
6653     return true;
6654 
6655   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
6656     return Error(Loc, "invalid shufflevector operands");
6657 
6658   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
6659   return false;
6660 }
6661 
6662 /// ParsePHI
6663 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
6664 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
6665   Type *Ty = nullptr;  LocTy TypeLoc;
6666   Value *Op0, *Op1;
6667 
6668   if (ParseType(Ty, TypeLoc) ||
6669       ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6670       ParseValue(Ty, Op0, PFS) ||
6671       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6672       ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6673       ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6674     return true;
6675 
6676   bool AteExtraComma = false;
6677   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
6678 
6679   while (true) {
6680     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
6681 
6682     if (!EatIfPresent(lltok::comma))
6683       break;
6684 
6685     if (Lex.getKind() == lltok::MetadataVar) {
6686       AteExtraComma = true;
6687       break;
6688     }
6689 
6690     if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6691         ParseValue(Ty, Op0, PFS) ||
6692         ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6693         ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6694         ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6695       return true;
6696   }
6697 
6698   if (!Ty->isFirstClassType())
6699     return Error(TypeLoc, "phi node must have first class type");
6700 
6701   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
6702   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
6703     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
6704   Inst = PN;
6705   return AteExtraComma ? InstExtraComma : InstNormal;
6706 }
6707 
6708 /// ParseLandingPad
6709 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
6710 /// Clause
6711 ///   ::= 'catch' TypeAndValue
6712 ///   ::= 'filter'
6713 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
6714 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
6715   Type *Ty = nullptr; LocTy TyLoc;
6716 
6717   if (ParseType(Ty, TyLoc))
6718     return true;
6719 
6720   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
6721   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
6722 
6723   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
6724     LandingPadInst::ClauseType CT;
6725     if (EatIfPresent(lltok::kw_catch))
6726       CT = LandingPadInst::Catch;
6727     else if (EatIfPresent(lltok::kw_filter))
6728       CT = LandingPadInst::Filter;
6729     else
6730       return TokError("expected 'catch' or 'filter' clause type");
6731 
6732     Value *V;
6733     LocTy VLoc;
6734     if (ParseTypeAndValue(V, VLoc, PFS))
6735       return true;
6736 
6737     // A 'catch' type expects a non-array constant. A filter clause expects an
6738     // array constant.
6739     if (CT == LandingPadInst::Catch) {
6740       if (isa<ArrayType>(V->getType()))
6741         Error(VLoc, "'catch' clause has an invalid type");
6742     } else {
6743       if (!isa<ArrayType>(V->getType()))
6744         Error(VLoc, "'filter' clause has an invalid type");
6745     }
6746 
6747     Constant *CV = dyn_cast<Constant>(V);
6748     if (!CV)
6749       return Error(VLoc, "clause argument must be a constant");
6750     LP->addClause(CV);
6751   }
6752 
6753   Inst = LP.release();
6754   return false;
6755 }
6756 
6757 /// ParseFreeze
6758 ///   ::= 'freeze' Type Value
6759 bool LLParser::ParseFreeze(Instruction *&Inst, PerFunctionState &PFS) {
6760   LocTy Loc;
6761   Value *Op;
6762   if (ParseTypeAndValue(Op, Loc, PFS))
6763     return true;
6764 
6765   Inst = new FreezeInst(Op);
6766   return false;
6767 }
6768 
6769 /// ParseCall
6770 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
6771 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6772 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
6773 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6774 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
6775 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6776 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
6777 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6778 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
6779                          CallInst::TailCallKind TCK) {
6780   AttrBuilder RetAttrs, FnAttrs;
6781   std::vector<unsigned> FwdRefAttrGrps;
6782   LocTy BuiltinLoc;
6783   unsigned CallAddrSpace;
6784   unsigned CC;
6785   Type *RetType = nullptr;
6786   LocTy RetTypeLoc;
6787   ValID CalleeID;
6788   SmallVector<ParamInfo, 16> ArgList;
6789   SmallVector<OperandBundleDef, 2> BundleList;
6790   LocTy CallLoc = Lex.getLoc();
6791 
6792   if (TCK != CallInst::TCK_None &&
6793       ParseToken(lltok::kw_call,
6794                  "expected 'tail call', 'musttail call', or 'notail call'"))
6795     return true;
6796 
6797   FastMathFlags FMF = EatFastMathFlagsIfPresent();
6798 
6799   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6800       ParseOptionalProgramAddrSpace(CallAddrSpace) ||
6801       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6802       ParseValID(CalleeID) ||
6803       ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
6804                          PFS.getFunction().isVarArg()) ||
6805       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
6806       ParseOptionalOperandBundles(BundleList, PFS))
6807     return true;
6808 
6809   // If RetType is a non-function pointer type, then this is the short syntax
6810   // for the call, which means that RetType is just the return type.  Infer the
6811   // rest of the function argument types from the arguments that are present.
6812   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6813   if (!Ty) {
6814     // Pull out the types of all of the arguments...
6815     std::vector<Type*> ParamTypes;
6816     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6817       ParamTypes.push_back(ArgList[i].V->getType());
6818 
6819     if (!FunctionType::isValidReturnType(RetType))
6820       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6821 
6822     Ty = FunctionType::get(RetType, ParamTypes, false);
6823   }
6824 
6825   CalleeID.FTy = Ty;
6826 
6827   // Look up the callee.
6828   Value *Callee;
6829   if (ConvertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
6830                           &PFS, /*IsCall=*/true))
6831     return true;
6832 
6833   // Set up the Attribute for the function.
6834   SmallVector<AttributeSet, 8> Attrs;
6835 
6836   SmallVector<Value*, 8> Args;
6837 
6838   // Loop through FunctionType's arguments and ensure they are specified
6839   // correctly.  Also, gather any parameter attributes.
6840   FunctionType::param_iterator I = Ty->param_begin();
6841   FunctionType::param_iterator E = Ty->param_end();
6842   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6843     Type *ExpectedTy = nullptr;
6844     if (I != E) {
6845       ExpectedTy = *I++;
6846     } else if (!Ty->isVarArg()) {
6847       return Error(ArgList[i].Loc, "too many arguments specified");
6848     }
6849 
6850     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6851       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6852                    getTypeString(ExpectedTy) + "'");
6853     Args.push_back(ArgList[i].V);
6854     Attrs.push_back(ArgList[i].Attrs);
6855   }
6856 
6857   if (I != E)
6858     return Error(CallLoc, "not enough parameters specified for call");
6859 
6860   if (FnAttrs.hasAlignmentAttr())
6861     return Error(CallLoc, "call instructions may not have an alignment");
6862 
6863   // Finish off the Attribute and check them
6864   AttributeList PAL =
6865       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6866                          AttributeSet::get(Context, RetAttrs), Attrs);
6867 
6868   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
6869   CI->setTailCallKind(TCK);
6870   CI->setCallingConv(CC);
6871   if (FMF.any()) {
6872     if (!isa<FPMathOperator>(CI))
6873       return Error(CallLoc, "fast-math-flags specified for call without "
6874                    "floating-point scalar or vector return type");
6875     CI->setFastMathFlags(FMF);
6876   }
6877   CI->setAttributes(PAL);
6878   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
6879   Inst = CI;
6880   return false;
6881 }
6882 
6883 //===----------------------------------------------------------------------===//
6884 // Memory Instructions.
6885 //===----------------------------------------------------------------------===//
6886 
6887 /// ParseAlloc
6888 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
6889 ///       (',' 'align' i32)? (',', 'addrspace(n))?
6890 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
6891   Value *Size = nullptr;
6892   LocTy SizeLoc, TyLoc, ASLoc;
6893   MaybeAlign Alignment;
6894   unsigned AddrSpace = 0;
6895   Type *Ty = nullptr;
6896 
6897   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
6898   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
6899 
6900   if (ParseType(Ty, TyLoc)) return true;
6901 
6902   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
6903     return Error(TyLoc, "invalid type for alloca");
6904 
6905   bool AteExtraComma = false;
6906   if (EatIfPresent(lltok::comma)) {
6907     if (Lex.getKind() == lltok::kw_align) {
6908       if (ParseOptionalAlignment(Alignment))
6909         return true;
6910       if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6911         return true;
6912     } else if (Lex.getKind() == lltok::kw_addrspace) {
6913       ASLoc = Lex.getLoc();
6914       if (ParseOptionalAddrSpace(AddrSpace))
6915         return true;
6916     } else if (Lex.getKind() == lltok::MetadataVar) {
6917       AteExtraComma = true;
6918     } else {
6919       if (ParseTypeAndValue(Size, SizeLoc, PFS))
6920         return true;
6921       if (EatIfPresent(lltok::comma)) {
6922         if (Lex.getKind() == lltok::kw_align) {
6923           if (ParseOptionalAlignment(Alignment))
6924             return true;
6925           if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6926             return true;
6927         } else if (Lex.getKind() == lltok::kw_addrspace) {
6928           ASLoc = Lex.getLoc();
6929           if (ParseOptionalAddrSpace(AddrSpace))
6930             return true;
6931         } else if (Lex.getKind() == lltok::MetadataVar) {
6932           AteExtraComma = true;
6933         }
6934       }
6935     }
6936   }
6937 
6938   if (Size && !Size->getType()->isIntegerTy())
6939     return Error(SizeLoc, "element count must have integer type");
6940 
6941   AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, Alignment);
6942   AI->setUsedWithInAlloca(IsInAlloca);
6943   AI->setSwiftError(IsSwiftError);
6944   Inst = AI;
6945   return AteExtraComma ? InstExtraComma : InstNormal;
6946 }
6947 
6948 /// ParseLoad
6949 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
6950 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
6951 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
6952 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
6953   Value *Val; LocTy Loc;
6954   MaybeAlign Alignment;
6955   bool AteExtraComma = false;
6956   bool isAtomic = false;
6957   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6958   SyncScope::ID SSID = SyncScope::System;
6959 
6960   if (Lex.getKind() == lltok::kw_atomic) {
6961     isAtomic = true;
6962     Lex.Lex();
6963   }
6964 
6965   bool isVolatile = false;
6966   if (Lex.getKind() == lltok::kw_volatile) {
6967     isVolatile = true;
6968     Lex.Lex();
6969   }
6970 
6971   Type *Ty;
6972   LocTy ExplicitTypeLoc = Lex.getLoc();
6973   if (ParseType(Ty) ||
6974       ParseToken(lltok::comma, "expected comma after load's type") ||
6975       ParseTypeAndValue(Val, Loc, PFS) ||
6976       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
6977       ParseOptionalCommaAlign(Alignment, AteExtraComma))
6978     return true;
6979 
6980   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
6981     return Error(Loc, "load operand must be a pointer to a first class type");
6982   if (isAtomic && !Alignment)
6983     return Error(Loc, "atomic load must have explicit non-zero alignment");
6984   if (Ordering == AtomicOrdering::Release ||
6985       Ordering == AtomicOrdering::AcquireRelease)
6986     return Error(Loc, "atomic load cannot use Release ordering");
6987 
6988   if (Ty != cast<PointerType>(Val->getType())->getElementType())
6989     return Error(ExplicitTypeLoc,
6990                  "explicit pointee type doesn't match operand's pointee type");
6991 
6992   Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, SSID);
6993   return AteExtraComma ? InstExtraComma : InstNormal;
6994 }
6995 
6996 /// ParseStore
6997 
6998 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
6999 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
7000 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7001 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
7002   Value *Val, *Ptr; LocTy Loc, PtrLoc;
7003   MaybeAlign Alignment;
7004   bool AteExtraComma = false;
7005   bool isAtomic = false;
7006   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7007   SyncScope::ID SSID = SyncScope::System;
7008 
7009   if (Lex.getKind() == lltok::kw_atomic) {
7010     isAtomic = true;
7011     Lex.Lex();
7012   }
7013 
7014   bool isVolatile = false;
7015   if (Lex.getKind() == lltok::kw_volatile) {
7016     isVolatile = true;
7017     Lex.Lex();
7018   }
7019 
7020   if (ParseTypeAndValue(Val, Loc, PFS) ||
7021       ParseToken(lltok::comma, "expected ',' after store operand") ||
7022       ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
7023       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7024       ParseOptionalCommaAlign(Alignment, AteExtraComma))
7025     return true;
7026 
7027   if (!Ptr->getType()->isPointerTy())
7028     return Error(PtrLoc, "store operand must be a pointer");
7029   if (!Val->getType()->isFirstClassType())
7030     return Error(Loc, "store operand must be a first class value");
7031   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
7032     return Error(Loc, "stored value and pointer type do not match");
7033   if (isAtomic && !Alignment)
7034     return Error(Loc, "atomic store must have explicit non-zero alignment");
7035   if (Ordering == AtomicOrdering::Acquire ||
7036       Ordering == AtomicOrdering::AcquireRelease)
7037     return Error(Loc, "atomic store cannot use Acquire ordering");
7038 
7039   Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, SSID);
7040   return AteExtraComma ? InstExtraComma : InstNormal;
7041 }
7042 
7043 /// ParseCmpXchg
7044 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
7045 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
7046 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
7047   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
7048   bool AteExtraComma = false;
7049   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
7050   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
7051   SyncScope::ID SSID = SyncScope::System;
7052   bool isVolatile = false;
7053   bool isWeak = false;
7054 
7055   if (EatIfPresent(lltok::kw_weak))
7056     isWeak = true;
7057 
7058   if (EatIfPresent(lltok::kw_volatile))
7059     isVolatile = true;
7060 
7061   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
7062       ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
7063       ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
7064       ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
7065       ParseTypeAndValue(New, NewLoc, PFS) ||
7066       ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
7067       ParseOrdering(FailureOrdering))
7068     return true;
7069 
7070   if (SuccessOrdering == AtomicOrdering::Unordered ||
7071       FailureOrdering == AtomicOrdering::Unordered)
7072     return TokError("cmpxchg cannot be unordered");
7073   if (isStrongerThan(FailureOrdering, SuccessOrdering))
7074     return TokError("cmpxchg failure argument shall be no stronger than the "
7075                     "success argument");
7076   if (FailureOrdering == AtomicOrdering::Release ||
7077       FailureOrdering == AtomicOrdering::AcquireRelease)
7078     return TokError(
7079         "cmpxchg failure ordering cannot include release semantics");
7080   if (!Ptr->getType()->isPointerTy())
7081     return Error(PtrLoc, "cmpxchg operand must be a pointer");
7082   if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
7083     return Error(CmpLoc, "compare value and pointer type do not match");
7084   if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
7085     return Error(NewLoc, "new value and pointer type do not match");
7086   if (!New->getType()->isFirstClassType())
7087     return Error(NewLoc, "cmpxchg operand must be a first class value");
7088   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
7089       Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID);
7090   CXI->setVolatile(isVolatile);
7091   CXI->setWeak(isWeak);
7092   Inst = CXI;
7093   return AteExtraComma ? InstExtraComma : InstNormal;
7094 }
7095 
7096 /// ParseAtomicRMW
7097 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
7098 ///       'singlethread'? AtomicOrdering
7099 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
7100   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
7101   bool AteExtraComma = false;
7102   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7103   SyncScope::ID SSID = SyncScope::System;
7104   bool isVolatile = false;
7105   bool IsFP = false;
7106   AtomicRMWInst::BinOp Operation;
7107 
7108   if (EatIfPresent(lltok::kw_volatile))
7109     isVolatile = true;
7110 
7111   switch (Lex.getKind()) {
7112   default: return TokError("expected binary operation in atomicrmw");
7113   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
7114   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
7115   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
7116   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
7117   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
7118   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
7119   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
7120   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
7121   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
7122   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
7123   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
7124   case lltok::kw_fadd:
7125     Operation = AtomicRMWInst::FAdd;
7126     IsFP = true;
7127     break;
7128   case lltok::kw_fsub:
7129     Operation = AtomicRMWInst::FSub;
7130     IsFP = true;
7131     break;
7132   }
7133   Lex.Lex();  // Eat the operation.
7134 
7135   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
7136       ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
7137       ParseTypeAndValue(Val, ValLoc, PFS) ||
7138       ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7139     return true;
7140 
7141   if (Ordering == AtomicOrdering::Unordered)
7142     return TokError("atomicrmw cannot be unordered");
7143   if (!Ptr->getType()->isPointerTy())
7144     return Error(PtrLoc, "atomicrmw operand must be a pointer");
7145   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
7146     return Error(ValLoc, "atomicrmw value and pointer type do not match");
7147 
7148   if (Operation == AtomicRMWInst::Xchg) {
7149     if (!Val->getType()->isIntegerTy() &&
7150         !Val->getType()->isFloatingPointTy()) {
7151       return Error(ValLoc, "atomicrmw " +
7152                    AtomicRMWInst::getOperationName(Operation) +
7153                    " operand must be an integer or floating point type");
7154     }
7155   } else if (IsFP) {
7156     if (!Val->getType()->isFloatingPointTy()) {
7157       return Error(ValLoc, "atomicrmw " +
7158                    AtomicRMWInst::getOperationName(Operation) +
7159                    " operand must be a floating point type");
7160     }
7161   } else {
7162     if (!Val->getType()->isIntegerTy()) {
7163       return Error(ValLoc, "atomicrmw " +
7164                    AtomicRMWInst::getOperationName(Operation) +
7165                    " operand must be an integer");
7166     }
7167   }
7168 
7169   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
7170   if (Size < 8 || (Size & (Size - 1)))
7171     return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
7172                          " integer");
7173 
7174   AtomicRMWInst *RMWI =
7175     new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
7176   RMWI->setVolatile(isVolatile);
7177   Inst = RMWI;
7178   return AteExtraComma ? InstExtraComma : InstNormal;
7179 }
7180 
7181 /// ParseFence
7182 ///   ::= 'fence' 'singlethread'? AtomicOrdering
7183 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
7184   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7185   SyncScope::ID SSID = SyncScope::System;
7186   if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7187     return true;
7188 
7189   if (Ordering == AtomicOrdering::Unordered)
7190     return TokError("fence cannot be unordered");
7191   if (Ordering == AtomicOrdering::Monotonic)
7192     return TokError("fence cannot be monotonic");
7193 
7194   Inst = new FenceInst(Context, Ordering, SSID);
7195   return InstNormal;
7196 }
7197 
7198 /// ParseGetElementPtr
7199 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
7200 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
7201   Value *Ptr = nullptr;
7202   Value *Val = nullptr;
7203   LocTy Loc, EltLoc;
7204 
7205   bool InBounds = EatIfPresent(lltok::kw_inbounds);
7206 
7207   Type *Ty = nullptr;
7208   LocTy ExplicitTypeLoc = Lex.getLoc();
7209   if (ParseType(Ty) ||
7210       ParseToken(lltok::comma, "expected comma after getelementptr's type") ||
7211       ParseTypeAndValue(Ptr, Loc, PFS))
7212     return true;
7213 
7214   Type *BaseType = Ptr->getType();
7215   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
7216   if (!BasePointerType)
7217     return Error(Loc, "base of getelementptr must be a pointer");
7218 
7219   if (Ty != BasePointerType->getElementType())
7220     return Error(ExplicitTypeLoc,
7221                  "explicit pointee type doesn't match operand's pointee type");
7222 
7223   SmallVector<Value*, 16> Indices;
7224   bool AteExtraComma = false;
7225   // GEP returns a vector of pointers if at least one of parameters is a vector.
7226   // All vector parameters should have the same vector width.
7227   unsigned GEPWidth = BaseType->isVectorTy() ?
7228     BaseType->getVectorNumElements() : 0;
7229 
7230   while (EatIfPresent(lltok::comma)) {
7231     if (Lex.getKind() == lltok::MetadataVar) {
7232       AteExtraComma = true;
7233       break;
7234     }
7235     if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
7236     if (!Val->getType()->isIntOrIntVectorTy())
7237       return Error(EltLoc, "getelementptr index must be an integer");
7238 
7239     if (Val->getType()->isVectorTy()) {
7240       unsigned ValNumEl = Val->getType()->getVectorNumElements();
7241       if (GEPWidth && GEPWidth != ValNumEl)
7242         return Error(EltLoc,
7243           "getelementptr vector index has a wrong number of elements");
7244       GEPWidth = ValNumEl;
7245     }
7246     Indices.push_back(Val);
7247   }
7248 
7249   SmallPtrSet<Type*, 4> Visited;
7250   if (!Indices.empty() && !Ty->isSized(&Visited))
7251     return Error(Loc, "base element of getelementptr must be sized");
7252 
7253   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
7254     return Error(Loc, "invalid getelementptr indices");
7255   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
7256   if (InBounds)
7257     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
7258   return AteExtraComma ? InstExtraComma : InstNormal;
7259 }
7260 
7261 /// ParseExtractValue
7262 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
7263 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
7264   Value *Val; LocTy Loc;
7265   SmallVector<unsigned, 4> Indices;
7266   bool AteExtraComma;
7267   if (ParseTypeAndValue(Val, Loc, PFS) ||
7268       ParseIndexList(Indices, AteExtraComma))
7269     return true;
7270 
7271   if (!Val->getType()->isAggregateType())
7272     return Error(Loc, "extractvalue operand must be aggregate type");
7273 
7274   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
7275     return Error(Loc, "invalid indices for extractvalue");
7276   Inst = ExtractValueInst::Create(Val, Indices);
7277   return AteExtraComma ? InstExtraComma : InstNormal;
7278 }
7279 
7280 /// ParseInsertValue
7281 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
7282 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
7283   Value *Val0, *Val1; LocTy Loc0, Loc1;
7284   SmallVector<unsigned, 4> Indices;
7285   bool AteExtraComma;
7286   if (ParseTypeAndValue(Val0, Loc0, PFS) ||
7287       ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
7288       ParseTypeAndValue(Val1, Loc1, PFS) ||
7289       ParseIndexList(Indices, AteExtraComma))
7290     return true;
7291 
7292   if (!Val0->getType()->isAggregateType())
7293     return Error(Loc0, "insertvalue operand must be aggregate type");
7294 
7295   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
7296   if (!IndexedType)
7297     return Error(Loc0, "invalid indices for insertvalue");
7298   if (IndexedType != Val1->getType())
7299     return Error(Loc1, "insertvalue operand and field disagree in type: '" +
7300                            getTypeString(Val1->getType()) + "' instead of '" +
7301                            getTypeString(IndexedType) + "'");
7302   Inst = InsertValueInst::Create(Val0, Val1, Indices);
7303   return AteExtraComma ? InstExtraComma : InstNormal;
7304 }
7305 
7306 //===----------------------------------------------------------------------===//
7307 // Embedded metadata.
7308 //===----------------------------------------------------------------------===//
7309 
7310 /// ParseMDNodeVector
7311 ///   ::= { Element (',' Element)* }
7312 /// Element
7313 ///   ::= 'null' | TypeAndValue
7314 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
7315   if (ParseToken(lltok::lbrace, "expected '{' here"))
7316     return true;
7317 
7318   // Check for an empty list.
7319   if (EatIfPresent(lltok::rbrace))
7320     return false;
7321 
7322   do {
7323     // Null is a special case since it is typeless.
7324     if (EatIfPresent(lltok::kw_null)) {
7325       Elts.push_back(nullptr);
7326       continue;
7327     }
7328 
7329     Metadata *MD;
7330     if (ParseMetadata(MD, nullptr))
7331       return true;
7332     Elts.push_back(MD);
7333   } while (EatIfPresent(lltok::comma));
7334 
7335   return ParseToken(lltok::rbrace, "expected end of metadata node");
7336 }
7337 
7338 //===----------------------------------------------------------------------===//
7339 // Use-list order directives.
7340 //===----------------------------------------------------------------------===//
7341 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
7342                                 SMLoc Loc) {
7343   if (V->use_empty())
7344     return Error(Loc, "value has no uses");
7345 
7346   unsigned NumUses = 0;
7347   SmallDenseMap<const Use *, unsigned, 16> Order;
7348   for (const Use &U : V->uses()) {
7349     if (++NumUses > Indexes.size())
7350       break;
7351     Order[&U] = Indexes[NumUses - 1];
7352   }
7353   if (NumUses < 2)
7354     return Error(Loc, "value only has one use");
7355   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
7356     return Error(Loc,
7357                  "wrong number of indexes, expected " + Twine(V->getNumUses()));
7358 
7359   V->sortUseList([&](const Use &L, const Use &R) {
7360     return Order.lookup(&L) < Order.lookup(&R);
7361   });
7362   return false;
7363 }
7364 
7365 /// ParseUseListOrderIndexes
7366 ///   ::= '{' uint32 (',' uint32)+ '}'
7367 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
7368   SMLoc Loc = Lex.getLoc();
7369   if (ParseToken(lltok::lbrace, "expected '{' here"))
7370     return true;
7371   if (Lex.getKind() == lltok::rbrace)
7372     return Lex.Error("expected non-empty list of uselistorder indexes");
7373 
7374   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
7375   // indexes should be distinct numbers in the range [0, size-1], and should
7376   // not be in order.
7377   unsigned Offset = 0;
7378   unsigned Max = 0;
7379   bool IsOrdered = true;
7380   assert(Indexes.empty() && "Expected empty order vector");
7381   do {
7382     unsigned Index;
7383     if (ParseUInt32(Index))
7384       return true;
7385 
7386     // Update consistency checks.
7387     Offset += Index - Indexes.size();
7388     Max = std::max(Max, Index);
7389     IsOrdered &= Index == Indexes.size();
7390 
7391     Indexes.push_back(Index);
7392   } while (EatIfPresent(lltok::comma));
7393 
7394   if (ParseToken(lltok::rbrace, "expected '}' here"))
7395     return true;
7396 
7397   if (Indexes.size() < 2)
7398     return Error(Loc, "expected >= 2 uselistorder indexes");
7399   if (Offset != 0 || Max >= Indexes.size())
7400     return Error(Loc, "expected distinct uselistorder indexes in range [0, size)");
7401   if (IsOrdered)
7402     return Error(Loc, "expected uselistorder indexes to change the order");
7403 
7404   return false;
7405 }
7406 
7407 /// ParseUseListOrder
7408 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
7409 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) {
7410   SMLoc Loc = Lex.getLoc();
7411   if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
7412     return true;
7413 
7414   Value *V;
7415   SmallVector<unsigned, 16> Indexes;
7416   if (ParseTypeAndValue(V, PFS) ||
7417       ParseToken(lltok::comma, "expected comma in uselistorder directive") ||
7418       ParseUseListOrderIndexes(Indexes))
7419     return true;
7420 
7421   return sortUseListOrder(V, Indexes, Loc);
7422 }
7423 
7424 /// ParseUseListOrderBB
7425 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
7426 bool LLParser::ParseUseListOrderBB() {
7427   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
7428   SMLoc Loc = Lex.getLoc();
7429   Lex.Lex();
7430 
7431   ValID Fn, Label;
7432   SmallVector<unsigned, 16> Indexes;
7433   if (ParseValID(Fn) ||
7434       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7435       ParseValID(Label) ||
7436       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7437       ParseUseListOrderIndexes(Indexes))
7438     return true;
7439 
7440   // Check the function.
7441   GlobalValue *GV;
7442   if (Fn.Kind == ValID::t_GlobalName)
7443     GV = M->getNamedValue(Fn.StrVal);
7444   else if (Fn.Kind == ValID::t_GlobalID)
7445     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
7446   else
7447     return Error(Fn.Loc, "expected function name in uselistorder_bb");
7448   if (!GV)
7449     return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb");
7450   auto *F = dyn_cast<Function>(GV);
7451   if (!F)
7452     return Error(Fn.Loc, "expected function name in uselistorder_bb");
7453   if (F->isDeclaration())
7454     return Error(Fn.Loc, "invalid declaration in uselistorder_bb");
7455 
7456   // Check the basic block.
7457   if (Label.Kind == ValID::t_LocalID)
7458     return Error(Label.Loc, "invalid numeric label in uselistorder_bb");
7459   if (Label.Kind != ValID::t_LocalName)
7460     return Error(Label.Loc, "expected basic block name in uselistorder_bb");
7461   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
7462   if (!V)
7463     return Error(Label.Loc, "invalid basic block in uselistorder_bb");
7464   if (!isa<BasicBlock>(V))
7465     return Error(Label.Loc, "expected basic block in uselistorder_bb");
7466 
7467   return sortUseListOrder(V, Indexes, Loc);
7468 }
7469 
7470 /// ModuleEntry
7471 ///   ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
7472 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
7473 bool LLParser::ParseModuleEntry(unsigned ID) {
7474   assert(Lex.getKind() == lltok::kw_module);
7475   Lex.Lex();
7476 
7477   std::string Path;
7478   if (ParseToken(lltok::colon, "expected ':' here") ||
7479       ParseToken(lltok::lparen, "expected '(' here") ||
7480       ParseToken(lltok::kw_path, "expected 'path' here") ||
7481       ParseToken(lltok::colon, "expected ':' here") ||
7482       ParseStringConstant(Path) ||
7483       ParseToken(lltok::comma, "expected ',' here") ||
7484       ParseToken(lltok::kw_hash, "expected 'hash' here") ||
7485       ParseToken(lltok::colon, "expected ':' here") ||
7486       ParseToken(lltok::lparen, "expected '(' here"))
7487     return true;
7488 
7489   ModuleHash Hash;
7490   if (ParseUInt32(Hash[0]) || ParseToken(lltok::comma, "expected ',' here") ||
7491       ParseUInt32(Hash[1]) || ParseToken(lltok::comma, "expected ',' here") ||
7492       ParseUInt32(Hash[2]) || ParseToken(lltok::comma, "expected ',' here") ||
7493       ParseUInt32(Hash[3]) || ParseToken(lltok::comma, "expected ',' here") ||
7494       ParseUInt32(Hash[4]))
7495     return true;
7496 
7497   if (ParseToken(lltok::rparen, "expected ')' here") ||
7498       ParseToken(lltok::rparen, "expected ')' here"))
7499     return true;
7500 
7501   auto ModuleEntry = Index->addModule(Path, ID, Hash);
7502   ModuleIdMap[ID] = ModuleEntry->first();
7503 
7504   return false;
7505 }
7506 
7507 /// TypeIdEntry
7508 ///   ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
7509 bool LLParser::ParseTypeIdEntry(unsigned ID) {
7510   assert(Lex.getKind() == lltok::kw_typeid);
7511   Lex.Lex();
7512 
7513   std::string Name;
7514   if (ParseToken(lltok::colon, "expected ':' here") ||
7515       ParseToken(lltok::lparen, "expected '(' here") ||
7516       ParseToken(lltok::kw_name, "expected 'name' here") ||
7517       ParseToken(lltok::colon, "expected ':' here") ||
7518       ParseStringConstant(Name))
7519     return true;
7520 
7521   TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
7522   if (ParseToken(lltok::comma, "expected ',' here") ||
7523       ParseTypeIdSummary(TIS) || ParseToken(lltok::rparen, "expected ')' here"))
7524     return true;
7525 
7526   // Check if this ID was forward referenced, and if so, update the
7527   // corresponding GUIDs.
7528   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7529   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7530     for (auto TIDRef : FwdRefTIDs->second) {
7531       assert(!*TIDRef.first &&
7532              "Forward referenced type id GUID expected to be 0");
7533       *TIDRef.first = GlobalValue::getGUID(Name);
7534     }
7535     ForwardRefTypeIds.erase(FwdRefTIDs);
7536   }
7537 
7538   return false;
7539 }
7540 
7541 /// TypeIdSummary
7542 ///   ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
7543 bool LLParser::ParseTypeIdSummary(TypeIdSummary &TIS) {
7544   if (ParseToken(lltok::kw_summary, "expected 'summary' here") ||
7545       ParseToken(lltok::colon, "expected ':' here") ||
7546       ParseToken(lltok::lparen, "expected '(' here") ||
7547       ParseTypeTestResolution(TIS.TTRes))
7548     return true;
7549 
7550   if (EatIfPresent(lltok::comma)) {
7551     // Expect optional wpdResolutions field
7552     if (ParseOptionalWpdResolutions(TIS.WPDRes))
7553       return true;
7554   }
7555 
7556   if (ParseToken(lltok::rparen, "expected ')' here"))
7557     return true;
7558 
7559   return false;
7560 }
7561 
7562 static ValueInfo EmptyVI =
7563     ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
7564 
7565 /// TypeIdCompatibleVtableEntry
7566 ///   ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ','
7567 ///   TypeIdCompatibleVtableInfo
7568 ///   ')'
7569 bool LLParser::ParseTypeIdCompatibleVtableEntry(unsigned ID) {
7570   assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable);
7571   Lex.Lex();
7572 
7573   std::string Name;
7574   if (ParseToken(lltok::colon, "expected ':' here") ||
7575       ParseToken(lltok::lparen, "expected '(' here") ||
7576       ParseToken(lltok::kw_name, "expected 'name' here") ||
7577       ParseToken(lltok::colon, "expected ':' here") ||
7578       ParseStringConstant(Name))
7579     return true;
7580 
7581   TypeIdCompatibleVtableInfo &TI =
7582       Index->getOrInsertTypeIdCompatibleVtableSummary(Name);
7583   if (ParseToken(lltok::comma, "expected ',' here") ||
7584       ParseToken(lltok::kw_summary, "expected 'summary' here") ||
7585       ParseToken(lltok::colon, "expected ':' here") ||
7586       ParseToken(lltok::lparen, "expected '(' here"))
7587     return true;
7588 
7589   IdToIndexMapType IdToIndexMap;
7590   // Parse each call edge
7591   do {
7592     uint64_t Offset;
7593     if (ParseToken(lltok::lparen, "expected '(' here") ||
7594         ParseToken(lltok::kw_offset, "expected 'offset' here") ||
7595         ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) ||
7596         ParseToken(lltok::comma, "expected ',' here"))
7597       return true;
7598 
7599     LocTy Loc = Lex.getLoc();
7600     unsigned GVId;
7601     ValueInfo VI;
7602     if (ParseGVReference(VI, GVId))
7603       return true;
7604 
7605     // Keep track of the TypeIdCompatibleVtableInfo array index needing a
7606     // forward reference. We will save the location of the ValueInfo needing an
7607     // update, but can only do so once the std::vector is finalized.
7608     if (VI == EmptyVI)
7609       IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc));
7610     TI.push_back({Offset, VI});
7611 
7612     if (ParseToken(lltok::rparen, "expected ')' in call"))
7613       return true;
7614   } while (EatIfPresent(lltok::comma));
7615 
7616   // Now that the TI vector is finalized, it is safe to save the locations
7617   // of any forward GV references that need updating later.
7618   for (auto I : IdToIndexMap) {
7619     for (auto P : I.second) {
7620       assert(TI[P.first].VTableVI == EmptyVI &&
7621              "Forward referenced ValueInfo expected to be empty");
7622       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
7623           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
7624       FwdRef.first->second.push_back(
7625           std::make_pair(&TI[P.first].VTableVI, P.second));
7626     }
7627   }
7628 
7629   if (ParseToken(lltok::rparen, "expected ')' here") ||
7630       ParseToken(lltok::rparen, "expected ')' here"))
7631     return true;
7632 
7633   // Check if this ID was forward referenced, and if so, update the
7634   // corresponding GUIDs.
7635   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7636   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7637     for (auto TIDRef : FwdRefTIDs->second) {
7638       assert(!*TIDRef.first &&
7639              "Forward referenced type id GUID expected to be 0");
7640       *TIDRef.first = GlobalValue::getGUID(Name);
7641     }
7642     ForwardRefTypeIds.erase(FwdRefTIDs);
7643   }
7644 
7645   return false;
7646 }
7647 
7648 /// TypeTestResolution
7649 ///   ::= 'typeTestRes' ':' '(' 'kind' ':'
7650 ///         ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
7651 ///         'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
7652 ///         [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
7653 ///         [',' 'inlinesBits' ':' UInt64]? ')'
7654 bool LLParser::ParseTypeTestResolution(TypeTestResolution &TTRes) {
7655   if (ParseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
7656       ParseToken(lltok::colon, "expected ':' here") ||
7657       ParseToken(lltok::lparen, "expected '(' here") ||
7658       ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7659       ParseToken(lltok::colon, "expected ':' here"))
7660     return true;
7661 
7662   switch (Lex.getKind()) {
7663   case lltok::kw_unsat:
7664     TTRes.TheKind = TypeTestResolution::Unsat;
7665     break;
7666   case lltok::kw_byteArray:
7667     TTRes.TheKind = TypeTestResolution::ByteArray;
7668     break;
7669   case lltok::kw_inline:
7670     TTRes.TheKind = TypeTestResolution::Inline;
7671     break;
7672   case lltok::kw_single:
7673     TTRes.TheKind = TypeTestResolution::Single;
7674     break;
7675   case lltok::kw_allOnes:
7676     TTRes.TheKind = TypeTestResolution::AllOnes;
7677     break;
7678   default:
7679     return Error(Lex.getLoc(), "unexpected TypeTestResolution kind");
7680   }
7681   Lex.Lex();
7682 
7683   if (ParseToken(lltok::comma, "expected ',' here") ||
7684       ParseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
7685       ParseToken(lltok::colon, "expected ':' here") ||
7686       ParseUInt32(TTRes.SizeM1BitWidth))
7687     return true;
7688 
7689   // Parse optional fields
7690   while (EatIfPresent(lltok::comma)) {
7691     switch (Lex.getKind()) {
7692     case lltok::kw_alignLog2:
7693       Lex.Lex();
7694       if (ParseToken(lltok::colon, "expected ':'") ||
7695           ParseUInt64(TTRes.AlignLog2))
7696         return true;
7697       break;
7698     case lltok::kw_sizeM1:
7699       Lex.Lex();
7700       if (ParseToken(lltok::colon, "expected ':'") || ParseUInt64(TTRes.SizeM1))
7701         return true;
7702       break;
7703     case lltok::kw_bitMask: {
7704       unsigned Val;
7705       Lex.Lex();
7706       if (ParseToken(lltok::colon, "expected ':'") || ParseUInt32(Val))
7707         return true;
7708       assert(Val <= 0xff);
7709       TTRes.BitMask = (uint8_t)Val;
7710       break;
7711     }
7712     case lltok::kw_inlineBits:
7713       Lex.Lex();
7714       if (ParseToken(lltok::colon, "expected ':'") ||
7715           ParseUInt64(TTRes.InlineBits))
7716         return true;
7717       break;
7718     default:
7719       return Error(Lex.getLoc(), "expected optional TypeTestResolution field");
7720     }
7721   }
7722 
7723   if (ParseToken(lltok::rparen, "expected ')' here"))
7724     return true;
7725 
7726   return false;
7727 }
7728 
7729 /// OptionalWpdResolutions
7730 ///   ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
7731 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
7732 bool LLParser::ParseOptionalWpdResolutions(
7733     std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
7734   if (ParseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
7735       ParseToken(lltok::colon, "expected ':' here") ||
7736       ParseToken(lltok::lparen, "expected '(' here"))
7737     return true;
7738 
7739   do {
7740     uint64_t Offset;
7741     WholeProgramDevirtResolution WPDRes;
7742     if (ParseToken(lltok::lparen, "expected '(' here") ||
7743         ParseToken(lltok::kw_offset, "expected 'offset' here") ||
7744         ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) ||
7745         ParseToken(lltok::comma, "expected ',' here") || ParseWpdRes(WPDRes) ||
7746         ParseToken(lltok::rparen, "expected ')' here"))
7747       return true;
7748     WPDResMap[Offset] = WPDRes;
7749   } while (EatIfPresent(lltok::comma));
7750 
7751   if (ParseToken(lltok::rparen, "expected ')' here"))
7752     return true;
7753 
7754   return false;
7755 }
7756 
7757 /// WpdRes
7758 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
7759 ///         [',' OptionalResByArg]? ')'
7760 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
7761 ///         ',' 'singleImplName' ':' STRINGCONSTANT ','
7762 ///         [',' OptionalResByArg]? ')'
7763 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
7764 ///         [',' OptionalResByArg]? ')'
7765 bool LLParser::ParseWpdRes(WholeProgramDevirtResolution &WPDRes) {
7766   if (ParseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
7767       ParseToken(lltok::colon, "expected ':' here") ||
7768       ParseToken(lltok::lparen, "expected '(' here") ||
7769       ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7770       ParseToken(lltok::colon, "expected ':' here"))
7771     return true;
7772 
7773   switch (Lex.getKind()) {
7774   case lltok::kw_indir:
7775     WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
7776     break;
7777   case lltok::kw_singleImpl:
7778     WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
7779     break;
7780   case lltok::kw_branchFunnel:
7781     WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
7782     break;
7783   default:
7784     return Error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
7785   }
7786   Lex.Lex();
7787 
7788   // Parse optional fields
7789   while (EatIfPresent(lltok::comma)) {
7790     switch (Lex.getKind()) {
7791     case lltok::kw_singleImplName:
7792       Lex.Lex();
7793       if (ParseToken(lltok::colon, "expected ':' here") ||
7794           ParseStringConstant(WPDRes.SingleImplName))
7795         return true;
7796       break;
7797     case lltok::kw_resByArg:
7798       if (ParseOptionalResByArg(WPDRes.ResByArg))
7799         return true;
7800       break;
7801     default:
7802       return Error(Lex.getLoc(),
7803                    "expected optional WholeProgramDevirtResolution field");
7804     }
7805   }
7806 
7807   if (ParseToken(lltok::rparen, "expected ')' here"))
7808     return true;
7809 
7810   return false;
7811 }
7812 
7813 /// OptionalResByArg
7814 ///   ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
7815 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
7816 ///                ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
7817 ///                  'virtualConstProp' )
7818 ///                [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
7819 ///                [',' 'bit' ':' UInt32]? ')'
7820 bool LLParser::ParseOptionalResByArg(
7821     std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
7822         &ResByArg) {
7823   if (ParseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
7824       ParseToken(lltok::colon, "expected ':' here") ||
7825       ParseToken(lltok::lparen, "expected '(' here"))
7826     return true;
7827 
7828   do {
7829     std::vector<uint64_t> Args;
7830     if (ParseArgs(Args) || ParseToken(lltok::comma, "expected ',' here") ||
7831         ParseToken(lltok::kw_byArg, "expected 'byArg here") ||
7832         ParseToken(lltok::colon, "expected ':' here") ||
7833         ParseToken(lltok::lparen, "expected '(' here") ||
7834         ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7835         ParseToken(lltok::colon, "expected ':' here"))
7836       return true;
7837 
7838     WholeProgramDevirtResolution::ByArg ByArg;
7839     switch (Lex.getKind()) {
7840     case lltok::kw_indir:
7841       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
7842       break;
7843     case lltok::kw_uniformRetVal:
7844       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
7845       break;
7846     case lltok::kw_uniqueRetVal:
7847       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
7848       break;
7849     case lltok::kw_virtualConstProp:
7850       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
7851       break;
7852     default:
7853       return Error(Lex.getLoc(),
7854                    "unexpected WholeProgramDevirtResolution::ByArg kind");
7855     }
7856     Lex.Lex();
7857 
7858     // Parse optional fields
7859     while (EatIfPresent(lltok::comma)) {
7860       switch (Lex.getKind()) {
7861       case lltok::kw_info:
7862         Lex.Lex();
7863         if (ParseToken(lltok::colon, "expected ':' here") ||
7864             ParseUInt64(ByArg.Info))
7865           return true;
7866         break;
7867       case lltok::kw_byte:
7868         Lex.Lex();
7869         if (ParseToken(lltok::colon, "expected ':' here") ||
7870             ParseUInt32(ByArg.Byte))
7871           return true;
7872         break;
7873       case lltok::kw_bit:
7874         Lex.Lex();
7875         if (ParseToken(lltok::colon, "expected ':' here") ||
7876             ParseUInt32(ByArg.Bit))
7877           return true;
7878         break;
7879       default:
7880         return Error(Lex.getLoc(),
7881                      "expected optional whole program devirt field");
7882       }
7883     }
7884 
7885     if (ParseToken(lltok::rparen, "expected ')' here"))
7886       return true;
7887 
7888     ResByArg[Args] = ByArg;
7889   } while (EatIfPresent(lltok::comma));
7890 
7891   if (ParseToken(lltok::rparen, "expected ')' here"))
7892     return true;
7893 
7894   return false;
7895 }
7896 
7897 /// OptionalResByArg
7898 ///   ::= 'args' ':' '(' UInt64[, UInt64]* ')'
7899 bool LLParser::ParseArgs(std::vector<uint64_t> &Args) {
7900   if (ParseToken(lltok::kw_args, "expected 'args' here") ||
7901       ParseToken(lltok::colon, "expected ':' here") ||
7902       ParseToken(lltok::lparen, "expected '(' here"))
7903     return true;
7904 
7905   do {
7906     uint64_t Val;
7907     if (ParseUInt64(Val))
7908       return true;
7909     Args.push_back(Val);
7910   } while (EatIfPresent(lltok::comma));
7911 
7912   if (ParseToken(lltok::rparen, "expected ')' here"))
7913     return true;
7914 
7915   return false;
7916 }
7917 
7918 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
7919 
7920 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
7921   bool ReadOnly = Fwd->isReadOnly();
7922   bool WriteOnly = Fwd->isWriteOnly();
7923   assert(!(ReadOnly && WriteOnly));
7924   *Fwd = Resolved;
7925   if (ReadOnly)
7926     Fwd->setReadOnly();
7927   if (WriteOnly)
7928     Fwd->setWriteOnly();
7929 }
7930 
7931 /// Stores the given Name/GUID and associated summary into the Index.
7932 /// Also updates any forward references to the associated entry ID.
7933 void LLParser::AddGlobalValueToIndex(
7934     std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
7935     unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) {
7936   // First create the ValueInfo utilizing the Name or GUID.
7937   ValueInfo VI;
7938   if (GUID != 0) {
7939     assert(Name.empty());
7940     VI = Index->getOrInsertValueInfo(GUID);
7941   } else {
7942     assert(!Name.empty());
7943     if (M) {
7944       auto *GV = M->getNamedValue(Name);
7945       assert(GV);
7946       VI = Index->getOrInsertValueInfo(GV);
7947     } else {
7948       assert(
7949           (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
7950           "Need a source_filename to compute GUID for local");
7951       GUID = GlobalValue::getGUID(
7952           GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
7953       VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
7954     }
7955   }
7956 
7957   // Resolve forward references from calls/refs
7958   auto FwdRefVIs = ForwardRefValueInfos.find(ID);
7959   if (FwdRefVIs != ForwardRefValueInfos.end()) {
7960     for (auto VIRef : FwdRefVIs->second) {
7961       assert(VIRef.first->getRef() == FwdVIRef &&
7962              "Forward referenced ValueInfo expected to be empty");
7963       resolveFwdRef(VIRef.first, VI);
7964     }
7965     ForwardRefValueInfos.erase(FwdRefVIs);
7966   }
7967 
7968   // Resolve forward references from aliases
7969   auto FwdRefAliasees = ForwardRefAliasees.find(ID);
7970   if (FwdRefAliasees != ForwardRefAliasees.end()) {
7971     for (auto AliaseeRef : FwdRefAliasees->second) {
7972       assert(!AliaseeRef.first->hasAliasee() &&
7973              "Forward referencing alias already has aliasee");
7974       assert(Summary && "Aliasee must be a definition");
7975       AliaseeRef.first->setAliasee(VI, Summary.get());
7976     }
7977     ForwardRefAliasees.erase(FwdRefAliasees);
7978   }
7979 
7980   // Add the summary if one was provided.
7981   if (Summary)
7982     Index->addGlobalValueSummary(VI, std::move(Summary));
7983 
7984   // Save the associated ValueInfo for use in later references by ID.
7985   if (ID == NumberedValueInfos.size())
7986     NumberedValueInfos.push_back(VI);
7987   else {
7988     // Handle non-continuous numbers (to make test simplification easier).
7989     if (ID > NumberedValueInfos.size())
7990       NumberedValueInfos.resize(ID + 1);
7991     NumberedValueInfos[ID] = VI;
7992   }
7993 }
7994 
7995 /// ParseGVEntry
7996 ///   ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
7997 ///         [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
7998 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
7999 bool LLParser::ParseGVEntry(unsigned ID) {
8000   assert(Lex.getKind() == lltok::kw_gv);
8001   Lex.Lex();
8002 
8003   if (ParseToken(lltok::colon, "expected ':' here") ||
8004       ParseToken(lltok::lparen, "expected '(' here"))
8005     return true;
8006 
8007   std::string Name;
8008   GlobalValue::GUID GUID = 0;
8009   switch (Lex.getKind()) {
8010   case lltok::kw_name:
8011     Lex.Lex();
8012     if (ParseToken(lltok::colon, "expected ':' here") ||
8013         ParseStringConstant(Name))
8014       return true;
8015     // Can't create GUID/ValueInfo until we have the linkage.
8016     break;
8017   case lltok::kw_guid:
8018     Lex.Lex();
8019     if (ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(GUID))
8020       return true;
8021     break;
8022   default:
8023     return Error(Lex.getLoc(), "expected name or guid tag");
8024   }
8025 
8026   if (!EatIfPresent(lltok::comma)) {
8027     // No summaries. Wrap up.
8028     if (ParseToken(lltok::rparen, "expected ')' here"))
8029       return true;
8030     // This was created for a call to an external or indirect target.
8031     // A GUID with no summary came from a VALUE_GUID record, dummy GUID
8032     // created for indirect calls with VP. A Name with no GUID came from
8033     // an external definition. We pass ExternalLinkage since that is only
8034     // used when the GUID must be computed from Name, and in that case
8035     // the symbol must have external linkage.
8036     AddGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
8037                           nullptr);
8038     return false;
8039   }
8040 
8041   // Have a list of summaries
8042   if (ParseToken(lltok::kw_summaries, "expected 'summaries' here") ||
8043       ParseToken(lltok::colon, "expected ':' here") ||
8044       ParseToken(lltok::lparen, "expected '(' here"))
8045     return true;
8046   do {
8047     switch (Lex.getKind()) {
8048     case lltok::kw_function:
8049       if (ParseFunctionSummary(Name, GUID, ID))
8050         return true;
8051       break;
8052     case lltok::kw_variable:
8053       if (ParseVariableSummary(Name, GUID, ID))
8054         return true;
8055       break;
8056     case lltok::kw_alias:
8057       if (ParseAliasSummary(Name, GUID, ID))
8058         return true;
8059       break;
8060     default:
8061       return Error(Lex.getLoc(), "expected summary type");
8062     }
8063   } while (EatIfPresent(lltok::comma));
8064 
8065   if (ParseToken(lltok::rparen, "expected ')' here") ||
8066       ParseToken(lltok::rparen, "expected ')' here"))
8067     return true;
8068 
8069   return false;
8070 }
8071 
8072 /// FunctionSummary
8073 ///   ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8074 ///         ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
8075 ///         [',' OptionalTypeIdInfo]? [',' OptionalRefs]? ')'
8076 bool LLParser::ParseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
8077                                     unsigned ID) {
8078   assert(Lex.getKind() == lltok::kw_function);
8079   Lex.Lex();
8080 
8081   StringRef ModulePath;
8082   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8083       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8084       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8085   unsigned InstCount;
8086   std::vector<FunctionSummary::EdgeTy> Calls;
8087   FunctionSummary::TypeIdInfo TypeIdInfo;
8088   std::vector<ValueInfo> Refs;
8089   // Default is all-zeros (conservative values).
8090   FunctionSummary::FFlags FFlags = {};
8091   if (ParseToken(lltok::colon, "expected ':' here") ||
8092       ParseToken(lltok::lparen, "expected '(' here") ||
8093       ParseModuleReference(ModulePath) ||
8094       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
8095       ParseToken(lltok::comma, "expected ',' here") ||
8096       ParseToken(lltok::kw_insts, "expected 'insts' here") ||
8097       ParseToken(lltok::colon, "expected ':' here") || ParseUInt32(InstCount))
8098     return true;
8099 
8100   // Parse optional fields
8101   while (EatIfPresent(lltok::comma)) {
8102     switch (Lex.getKind()) {
8103     case lltok::kw_funcFlags:
8104       if (ParseOptionalFFlags(FFlags))
8105         return true;
8106       break;
8107     case lltok::kw_calls:
8108       if (ParseOptionalCalls(Calls))
8109         return true;
8110       break;
8111     case lltok::kw_typeIdInfo:
8112       if (ParseOptionalTypeIdInfo(TypeIdInfo))
8113         return true;
8114       break;
8115     case lltok::kw_refs:
8116       if (ParseOptionalRefs(Refs))
8117         return true;
8118       break;
8119     default:
8120       return Error(Lex.getLoc(), "expected optional function summary field");
8121     }
8122   }
8123 
8124   if (ParseToken(lltok::rparen, "expected ')' here"))
8125     return true;
8126 
8127   auto FS = std::make_unique<FunctionSummary>(
8128       GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
8129       std::move(Calls), std::move(TypeIdInfo.TypeTests),
8130       std::move(TypeIdInfo.TypeTestAssumeVCalls),
8131       std::move(TypeIdInfo.TypeCheckedLoadVCalls),
8132       std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
8133       std::move(TypeIdInfo.TypeCheckedLoadConstVCalls));
8134 
8135   FS->setModulePath(ModulePath);
8136 
8137   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8138                         ID, std::move(FS));
8139 
8140   return false;
8141 }
8142 
8143 /// VariableSummary
8144 ///   ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8145 ///         [',' OptionalRefs]? ')'
8146 bool LLParser::ParseVariableSummary(std::string Name, GlobalValue::GUID GUID,
8147                                     unsigned ID) {
8148   assert(Lex.getKind() == lltok::kw_variable);
8149   Lex.Lex();
8150 
8151   StringRef ModulePath;
8152   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8153       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8154       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8155   GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false,
8156                                         /* WriteOnly */ false,
8157                                         /* Constant */ false,
8158                                         GlobalObject::VCallVisibilityPublic);
8159   std::vector<ValueInfo> Refs;
8160   VTableFuncList VTableFuncs;
8161   if (ParseToken(lltok::colon, "expected ':' here") ||
8162       ParseToken(lltok::lparen, "expected '(' here") ||
8163       ParseModuleReference(ModulePath) ||
8164       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
8165       ParseToken(lltok::comma, "expected ',' here") ||
8166       ParseGVarFlags(GVarFlags))
8167     return true;
8168 
8169   // Parse optional fields
8170   while (EatIfPresent(lltok::comma)) {
8171     switch (Lex.getKind()) {
8172     case lltok::kw_vTableFuncs:
8173       if (ParseOptionalVTableFuncs(VTableFuncs))
8174         return true;
8175       break;
8176     case lltok::kw_refs:
8177       if (ParseOptionalRefs(Refs))
8178         return true;
8179       break;
8180     default:
8181       return Error(Lex.getLoc(), "expected optional variable summary field");
8182     }
8183   }
8184 
8185   if (ParseToken(lltok::rparen, "expected ')' here"))
8186     return true;
8187 
8188   auto GS =
8189       std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
8190 
8191   GS->setModulePath(ModulePath);
8192   GS->setVTableFuncs(std::move(VTableFuncs));
8193 
8194   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8195                         ID, std::move(GS));
8196 
8197   return false;
8198 }
8199 
8200 /// AliasSummary
8201 ///   ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
8202 ///         'aliasee' ':' GVReference ')'
8203 bool LLParser::ParseAliasSummary(std::string Name, GlobalValue::GUID GUID,
8204                                  unsigned ID) {
8205   assert(Lex.getKind() == lltok::kw_alias);
8206   LocTy Loc = Lex.getLoc();
8207   Lex.Lex();
8208 
8209   StringRef ModulePath;
8210   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8211       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8212       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8213   if (ParseToken(lltok::colon, "expected ':' here") ||
8214       ParseToken(lltok::lparen, "expected '(' here") ||
8215       ParseModuleReference(ModulePath) ||
8216       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
8217       ParseToken(lltok::comma, "expected ',' here") ||
8218       ParseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
8219       ParseToken(lltok::colon, "expected ':' here"))
8220     return true;
8221 
8222   ValueInfo AliaseeVI;
8223   unsigned GVId;
8224   if (ParseGVReference(AliaseeVI, GVId))
8225     return true;
8226 
8227   if (ParseToken(lltok::rparen, "expected ')' here"))
8228     return true;
8229 
8230   auto AS = std::make_unique<AliasSummary>(GVFlags);
8231 
8232   AS->setModulePath(ModulePath);
8233 
8234   // Record forward reference if the aliasee is not parsed yet.
8235   if (AliaseeVI.getRef() == FwdVIRef) {
8236     auto FwdRef = ForwardRefAliasees.insert(
8237         std::make_pair(GVId, std::vector<std::pair<AliasSummary *, LocTy>>()));
8238     FwdRef.first->second.push_back(std::make_pair(AS.get(), Loc));
8239   } else {
8240     auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath);
8241     assert(Summary && "Aliasee must be a definition");
8242     AS->setAliasee(AliaseeVI, Summary);
8243   }
8244 
8245   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8246                         ID, std::move(AS));
8247 
8248   return false;
8249 }
8250 
8251 /// Flag
8252 ///   ::= [0|1]
8253 bool LLParser::ParseFlag(unsigned &Val) {
8254   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
8255     return TokError("expected integer");
8256   Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
8257   Lex.Lex();
8258   return false;
8259 }
8260 
8261 /// OptionalFFlags
8262 ///   := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
8263 ///        [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
8264 ///        [',' 'returnDoesNotAlias' ':' Flag]? ')'
8265 ///        [',' 'noInline' ':' Flag]? ')'
8266 ///        [',' 'alwaysInline' ':' Flag]? ')'
8267 
8268 bool LLParser::ParseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
8269   assert(Lex.getKind() == lltok::kw_funcFlags);
8270   Lex.Lex();
8271 
8272   if (ParseToken(lltok::colon, "expected ':' in funcFlags") |
8273       ParseToken(lltok::lparen, "expected '(' in funcFlags"))
8274     return true;
8275 
8276   do {
8277     unsigned Val = 0;
8278     switch (Lex.getKind()) {
8279     case lltok::kw_readNone:
8280       Lex.Lex();
8281       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8282         return true;
8283       FFlags.ReadNone = Val;
8284       break;
8285     case lltok::kw_readOnly:
8286       Lex.Lex();
8287       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8288         return true;
8289       FFlags.ReadOnly = Val;
8290       break;
8291     case lltok::kw_noRecurse:
8292       Lex.Lex();
8293       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8294         return true;
8295       FFlags.NoRecurse = Val;
8296       break;
8297     case lltok::kw_returnDoesNotAlias:
8298       Lex.Lex();
8299       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8300         return true;
8301       FFlags.ReturnDoesNotAlias = Val;
8302       break;
8303     case lltok::kw_noInline:
8304       Lex.Lex();
8305       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8306         return true;
8307       FFlags.NoInline = Val;
8308       break;
8309     case lltok::kw_alwaysInline:
8310       Lex.Lex();
8311       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8312         return true;
8313       FFlags.AlwaysInline = Val;
8314       break;
8315     default:
8316       return Error(Lex.getLoc(), "expected function flag type");
8317     }
8318   } while (EatIfPresent(lltok::comma));
8319 
8320   if (ParseToken(lltok::rparen, "expected ')' in funcFlags"))
8321     return true;
8322 
8323   return false;
8324 }
8325 
8326 /// OptionalCalls
8327 ///   := 'calls' ':' '(' Call [',' Call]* ')'
8328 /// Call ::= '(' 'callee' ':' GVReference
8329 ///            [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
8330 bool LLParser::ParseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
8331   assert(Lex.getKind() == lltok::kw_calls);
8332   Lex.Lex();
8333 
8334   if (ParseToken(lltok::colon, "expected ':' in calls") |
8335       ParseToken(lltok::lparen, "expected '(' in calls"))
8336     return true;
8337 
8338   IdToIndexMapType IdToIndexMap;
8339   // Parse each call edge
8340   do {
8341     ValueInfo VI;
8342     if (ParseToken(lltok::lparen, "expected '(' in call") ||
8343         ParseToken(lltok::kw_callee, "expected 'callee' in call") ||
8344         ParseToken(lltok::colon, "expected ':'"))
8345       return true;
8346 
8347     LocTy Loc = Lex.getLoc();
8348     unsigned GVId;
8349     if (ParseGVReference(VI, GVId))
8350       return true;
8351 
8352     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
8353     unsigned RelBF = 0;
8354     if (EatIfPresent(lltok::comma)) {
8355       // Expect either hotness or relbf
8356       if (EatIfPresent(lltok::kw_hotness)) {
8357         if (ParseToken(lltok::colon, "expected ':'") || ParseHotness(Hotness))
8358           return true;
8359       } else {
8360         if (ParseToken(lltok::kw_relbf, "expected relbf") ||
8361             ParseToken(lltok::colon, "expected ':'") || ParseUInt32(RelBF))
8362           return true;
8363       }
8364     }
8365     // Keep track of the Call array index needing a forward reference.
8366     // We will save the location of the ValueInfo needing an update, but
8367     // can only do so once the std::vector is finalized.
8368     if (VI.getRef() == FwdVIRef)
8369       IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
8370     Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)});
8371 
8372     if (ParseToken(lltok::rparen, "expected ')' in call"))
8373       return true;
8374   } while (EatIfPresent(lltok::comma));
8375 
8376   // Now that the Calls vector is finalized, it is safe to save the locations
8377   // of any forward GV references that need updating later.
8378   for (auto I : IdToIndexMap) {
8379     for (auto P : I.second) {
8380       assert(Calls[P.first].first.getRef() == FwdVIRef &&
8381              "Forward referenced ValueInfo expected to be empty");
8382       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8383           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8384       FwdRef.first->second.push_back(
8385           std::make_pair(&Calls[P.first].first, P.second));
8386     }
8387   }
8388 
8389   if (ParseToken(lltok::rparen, "expected ')' in calls"))
8390     return true;
8391 
8392   return false;
8393 }
8394 
8395 /// Hotness
8396 ///   := ('unknown'|'cold'|'none'|'hot'|'critical')
8397 bool LLParser::ParseHotness(CalleeInfo::HotnessType &Hotness) {
8398   switch (Lex.getKind()) {
8399   case lltok::kw_unknown:
8400     Hotness = CalleeInfo::HotnessType::Unknown;
8401     break;
8402   case lltok::kw_cold:
8403     Hotness = CalleeInfo::HotnessType::Cold;
8404     break;
8405   case lltok::kw_none:
8406     Hotness = CalleeInfo::HotnessType::None;
8407     break;
8408   case lltok::kw_hot:
8409     Hotness = CalleeInfo::HotnessType::Hot;
8410     break;
8411   case lltok::kw_critical:
8412     Hotness = CalleeInfo::HotnessType::Critical;
8413     break;
8414   default:
8415     return Error(Lex.getLoc(), "invalid call edge hotness");
8416   }
8417   Lex.Lex();
8418   return false;
8419 }
8420 
8421 /// OptionalVTableFuncs
8422 ///   := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')'
8423 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')'
8424 bool LLParser::ParseOptionalVTableFuncs(VTableFuncList &VTableFuncs) {
8425   assert(Lex.getKind() == lltok::kw_vTableFuncs);
8426   Lex.Lex();
8427 
8428   if (ParseToken(lltok::colon, "expected ':' in vTableFuncs") |
8429       ParseToken(lltok::lparen, "expected '(' in vTableFuncs"))
8430     return true;
8431 
8432   IdToIndexMapType IdToIndexMap;
8433   // Parse each virtual function pair
8434   do {
8435     ValueInfo VI;
8436     if (ParseToken(lltok::lparen, "expected '(' in vTableFunc") ||
8437         ParseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") ||
8438         ParseToken(lltok::colon, "expected ':'"))
8439       return true;
8440 
8441     LocTy Loc = Lex.getLoc();
8442     unsigned GVId;
8443     if (ParseGVReference(VI, GVId))
8444       return true;
8445 
8446     uint64_t Offset;
8447     if (ParseToken(lltok::comma, "expected comma") ||
8448         ParseToken(lltok::kw_offset, "expected offset") ||
8449         ParseToken(lltok::colon, "expected ':'") || ParseUInt64(Offset))
8450       return true;
8451 
8452     // Keep track of the VTableFuncs array index needing a forward reference.
8453     // We will save the location of the ValueInfo needing an update, but
8454     // can only do so once the std::vector is finalized.
8455     if (VI == EmptyVI)
8456       IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc));
8457     VTableFuncs.push_back({VI, Offset});
8458 
8459     if (ParseToken(lltok::rparen, "expected ')' in vTableFunc"))
8460       return true;
8461   } while (EatIfPresent(lltok::comma));
8462 
8463   // Now that the VTableFuncs vector is finalized, it is safe to save the
8464   // locations of any forward GV references that need updating later.
8465   for (auto I : IdToIndexMap) {
8466     for (auto P : I.second) {
8467       assert(VTableFuncs[P.first].FuncVI == EmptyVI &&
8468              "Forward referenced ValueInfo expected to be empty");
8469       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8470           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8471       FwdRef.first->second.push_back(
8472           std::make_pair(&VTableFuncs[P.first].FuncVI, P.second));
8473     }
8474   }
8475 
8476   if (ParseToken(lltok::rparen, "expected ')' in vTableFuncs"))
8477     return true;
8478 
8479   return false;
8480 }
8481 
8482 /// OptionalRefs
8483 ///   := 'refs' ':' '(' GVReference [',' GVReference]* ')'
8484 bool LLParser::ParseOptionalRefs(std::vector<ValueInfo> &Refs) {
8485   assert(Lex.getKind() == lltok::kw_refs);
8486   Lex.Lex();
8487 
8488   if (ParseToken(lltok::colon, "expected ':' in refs") |
8489       ParseToken(lltok::lparen, "expected '(' in refs"))
8490     return true;
8491 
8492   struct ValueContext {
8493     ValueInfo VI;
8494     unsigned GVId;
8495     LocTy Loc;
8496   };
8497   std::vector<ValueContext> VContexts;
8498   // Parse each ref edge
8499   do {
8500     ValueContext VC;
8501     VC.Loc = Lex.getLoc();
8502     if (ParseGVReference(VC.VI, VC.GVId))
8503       return true;
8504     VContexts.push_back(VC);
8505   } while (EatIfPresent(lltok::comma));
8506 
8507   // Sort value contexts so that ones with writeonly
8508   // and readonly ValueInfo  are at the end of VContexts vector.
8509   // See FunctionSummary::specialRefCounts()
8510   llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
8511     return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier();
8512   });
8513 
8514   IdToIndexMapType IdToIndexMap;
8515   for (auto &VC : VContexts) {
8516     // Keep track of the Refs array index needing a forward reference.
8517     // We will save the location of the ValueInfo needing an update, but
8518     // can only do so once the std::vector is finalized.
8519     if (VC.VI.getRef() == FwdVIRef)
8520       IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
8521     Refs.push_back(VC.VI);
8522   }
8523 
8524   // Now that the Refs vector is finalized, it is safe to save the locations
8525   // of any forward GV references that need updating later.
8526   for (auto I : IdToIndexMap) {
8527     for (auto P : I.second) {
8528       assert(Refs[P.first].getRef() == FwdVIRef &&
8529              "Forward referenced ValueInfo expected to be empty");
8530       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8531           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8532       FwdRef.first->second.push_back(std::make_pair(&Refs[P.first], P.second));
8533     }
8534   }
8535 
8536   if (ParseToken(lltok::rparen, "expected ')' in refs"))
8537     return true;
8538 
8539   return false;
8540 }
8541 
8542 /// OptionalTypeIdInfo
8543 ///   := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
8544 ///         [',' TypeCheckedLoadVCalls]?  [',' TypeTestAssumeConstVCalls]?
8545 ///         [',' TypeCheckedLoadConstVCalls]? ')'
8546 bool LLParser::ParseOptionalTypeIdInfo(
8547     FunctionSummary::TypeIdInfo &TypeIdInfo) {
8548   assert(Lex.getKind() == lltok::kw_typeIdInfo);
8549   Lex.Lex();
8550 
8551   if (ParseToken(lltok::colon, "expected ':' here") ||
8552       ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8553     return true;
8554 
8555   do {
8556     switch (Lex.getKind()) {
8557     case lltok::kw_typeTests:
8558       if (ParseTypeTests(TypeIdInfo.TypeTests))
8559         return true;
8560       break;
8561     case lltok::kw_typeTestAssumeVCalls:
8562       if (ParseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
8563                            TypeIdInfo.TypeTestAssumeVCalls))
8564         return true;
8565       break;
8566     case lltok::kw_typeCheckedLoadVCalls:
8567       if (ParseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
8568                            TypeIdInfo.TypeCheckedLoadVCalls))
8569         return true;
8570       break;
8571     case lltok::kw_typeTestAssumeConstVCalls:
8572       if (ParseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
8573                               TypeIdInfo.TypeTestAssumeConstVCalls))
8574         return true;
8575       break;
8576     case lltok::kw_typeCheckedLoadConstVCalls:
8577       if (ParseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
8578                               TypeIdInfo.TypeCheckedLoadConstVCalls))
8579         return true;
8580       break;
8581     default:
8582       return Error(Lex.getLoc(), "invalid typeIdInfo list type");
8583     }
8584   } while (EatIfPresent(lltok::comma));
8585 
8586   if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8587     return true;
8588 
8589   return false;
8590 }
8591 
8592 /// TypeTests
8593 ///   ::= 'typeTests' ':' '(' (SummaryID | UInt64)
8594 ///         [',' (SummaryID | UInt64)]* ')'
8595 bool LLParser::ParseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
8596   assert(Lex.getKind() == lltok::kw_typeTests);
8597   Lex.Lex();
8598 
8599   if (ParseToken(lltok::colon, "expected ':' here") ||
8600       ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8601     return true;
8602 
8603   IdToIndexMapType IdToIndexMap;
8604   do {
8605     GlobalValue::GUID GUID = 0;
8606     if (Lex.getKind() == lltok::SummaryID) {
8607       unsigned ID = Lex.getUIntVal();
8608       LocTy Loc = Lex.getLoc();
8609       // Keep track of the TypeTests array index needing a forward reference.
8610       // We will save the location of the GUID needing an update, but
8611       // can only do so once the std::vector is finalized.
8612       IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
8613       Lex.Lex();
8614     } else if (ParseUInt64(GUID))
8615       return true;
8616     TypeTests.push_back(GUID);
8617   } while (EatIfPresent(lltok::comma));
8618 
8619   // Now that the TypeTests vector is finalized, it is safe to save the
8620   // locations of any forward GV references that need updating later.
8621   for (auto I : IdToIndexMap) {
8622     for (auto P : I.second) {
8623       assert(TypeTests[P.first] == 0 &&
8624              "Forward referenced type id GUID expected to be 0");
8625       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8626           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8627       FwdRef.first->second.push_back(
8628           std::make_pair(&TypeTests[P.first], P.second));
8629     }
8630   }
8631 
8632   if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8633     return true;
8634 
8635   return false;
8636 }
8637 
8638 /// VFuncIdList
8639 ///   ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
8640 bool LLParser::ParseVFuncIdList(
8641     lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
8642   assert(Lex.getKind() == Kind);
8643   Lex.Lex();
8644 
8645   if (ParseToken(lltok::colon, "expected ':' here") ||
8646       ParseToken(lltok::lparen, "expected '(' here"))
8647     return true;
8648 
8649   IdToIndexMapType IdToIndexMap;
8650   do {
8651     FunctionSummary::VFuncId VFuncId;
8652     if (ParseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
8653       return true;
8654     VFuncIdList.push_back(VFuncId);
8655   } while (EatIfPresent(lltok::comma));
8656 
8657   if (ParseToken(lltok::rparen, "expected ')' here"))
8658     return true;
8659 
8660   // Now that the VFuncIdList vector is finalized, it is safe to save the
8661   // locations of any forward GV references that need updating later.
8662   for (auto I : IdToIndexMap) {
8663     for (auto P : I.second) {
8664       assert(VFuncIdList[P.first].GUID == 0 &&
8665              "Forward referenced type id GUID expected to be 0");
8666       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8667           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8668       FwdRef.first->second.push_back(
8669           std::make_pair(&VFuncIdList[P.first].GUID, P.second));
8670     }
8671   }
8672 
8673   return false;
8674 }
8675 
8676 /// ConstVCallList
8677 ///   ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
8678 bool LLParser::ParseConstVCallList(
8679     lltok::Kind Kind,
8680     std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
8681   assert(Lex.getKind() == Kind);
8682   Lex.Lex();
8683 
8684   if (ParseToken(lltok::colon, "expected ':' here") ||
8685       ParseToken(lltok::lparen, "expected '(' here"))
8686     return true;
8687 
8688   IdToIndexMapType IdToIndexMap;
8689   do {
8690     FunctionSummary::ConstVCall ConstVCall;
8691     if (ParseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
8692       return true;
8693     ConstVCallList.push_back(ConstVCall);
8694   } while (EatIfPresent(lltok::comma));
8695 
8696   if (ParseToken(lltok::rparen, "expected ')' here"))
8697     return true;
8698 
8699   // Now that the ConstVCallList vector is finalized, it is safe to save the
8700   // locations of any forward GV references that need updating later.
8701   for (auto I : IdToIndexMap) {
8702     for (auto P : I.second) {
8703       assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
8704              "Forward referenced type id GUID expected to be 0");
8705       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8706           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8707       FwdRef.first->second.push_back(
8708           std::make_pair(&ConstVCallList[P.first].VFunc.GUID, P.second));
8709     }
8710   }
8711 
8712   return false;
8713 }
8714 
8715 /// ConstVCall
8716 ///   ::= '(' VFuncId ',' Args ')'
8717 bool LLParser::ParseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
8718                                IdToIndexMapType &IdToIndexMap, unsigned Index) {
8719   if (ParseToken(lltok::lparen, "expected '(' here") ||
8720       ParseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
8721     return true;
8722 
8723   if (EatIfPresent(lltok::comma))
8724     if (ParseArgs(ConstVCall.Args))
8725       return true;
8726 
8727   if (ParseToken(lltok::rparen, "expected ')' here"))
8728     return true;
8729 
8730   return false;
8731 }
8732 
8733 /// VFuncId
8734 ///   ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
8735 ///         'offset' ':' UInt64 ')'
8736 bool LLParser::ParseVFuncId(FunctionSummary::VFuncId &VFuncId,
8737                             IdToIndexMapType &IdToIndexMap, unsigned Index) {
8738   assert(Lex.getKind() == lltok::kw_vFuncId);
8739   Lex.Lex();
8740 
8741   if (ParseToken(lltok::colon, "expected ':' here") ||
8742       ParseToken(lltok::lparen, "expected '(' here"))
8743     return true;
8744 
8745   if (Lex.getKind() == lltok::SummaryID) {
8746     VFuncId.GUID = 0;
8747     unsigned ID = Lex.getUIntVal();
8748     LocTy Loc = Lex.getLoc();
8749     // Keep track of the array index needing a forward reference.
8750     // We will save the location of the GUID needing an update, but
8751     // can only do so once the caller's std::vector is finalized.
8752     IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
8753     Lex.Lex();
8754   } else if (ParseToken(lltok::kw_guid, "expected 'guid' here") ||
8755              ParseToken(lltok::colon, "expected ':' here") ||
8756              ParseUInt64(VFuncId.GUID))
8757     return true;
8758 
8759   if (ParseToken(lltok::comma, "expected ',' here") ||
8760       ParseToken(lltok::kw_offset, "expected 'offset' here") ||
8761       ParseToken(lltok::colon, "expected ':' here") ||
8762       ParseUInt64(VFuncId.Offset) ||
8763       ParseToken(lltok::rparen, "expected ')' here"))
8764     return true;
8765 
8766   return false;
8767 }
8768 
8769 /// GVFlags
8770 ///   ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
8771 ///         'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ','
8772 ///         'dsoLocal' ':' Flag ',' 'canAutoHide' ':' Flag ')'
8773 bool LLParser::ParseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
8774   assert(Lex.getKind() == lltok::kw_flags);
8775   Lex.Lex();
8776 
8777   if (ParseToken(lltok::colon, "expected ':' here") ||
8778       ParseToken(lltok::lparen, "expected '(' here"))
8779     return true;
8780 
8781   do {
8782     unsigned Flag = 0;
8783     switch (Lex.getKind()) {
8784     case lltok::kw_linkage:
8785       Lex.Lex();
8786       if (ParseToken(lltok::colon, "expected ':'"))
8787         return true;
8788       bool HasLinkage;
8789       GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
8790       assert(HasLinkage && "Linkage not optional in summary entry");
8791       Lex.Lex();
8792       break;
8793     case lltok::kw_notEligibleToImport:
8794       Lex.Lex();
8795       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8796         return true;
8797       GVFlags.NotEligibleToImport = Flag;
8798       break;
8799     case lltok::kw_live:
8800       Lex.Lex();
8801       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8802         return true;
8803       GVFlags.Live = Flag;
8804       break;
8805     case lltok::kw_dsoLocal:
8806       Lex.Lex();
8807       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8808         return true;
8809       GVFlags.DSOLocal = Flag;
8810       break;
8811     case lltok::kw_canAutoHide:
8812       Lex.Lex();
8813       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8814         return true;
8815       GVFlags.CanAutoHide = Flag;
8816       break;
8817     default:
8818       return Error(Lex.getLoc(), "expected gv flag type");
8819     }
8820   } while (EatIfPresent(lltok::comma));
8821 
8822   if (ParseToken(lltok::rparen, "expected ')' here"))
8823     return true;
8824 
8825   return false;
8826 }
8827 
8828 /// GVarFlags
8829 ///   ::= 'varFlags' ':' '(' 'readonly' ':' Flag
8830 ///                      ',' 'writeonly' ':' Flag
8831 ///                      ',' 'constant' ':' Flag ')'
8832 bool LLParser::ParseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
8833   assert(Lex.getKind() == lltok::kw_varFlags);
8834   Lex.Lex();
8835 
8836   if (ParseToken(lltok::colon, "expected ':' here") ||
8837       ParseToken(lltok::lparen, "expected '(' here"))
8838     return true;
8839 
8840   auto ParseRest = [this](unsigned int &Val) {
8841     Lex.Lex();
8842     if (ParseToken(lltok::colon, "expected ':'"))
8843       return true;
8844     return ParseFlag(Val);
8845   };
8846 
8847   do {
8848     unsigned Flag = 0;
8849     switch (Lex.getKind()) {
8850     case lltok::kw_readonly:
8851       if (ParseRest(Flag))
8852         return true;
8853       GVarFlags.MaybeReadOnly = Flag;
8854       break;
8855     case lltok::kw_writeonly:
8856       if (ParseRest(Flag))
8857         return true;
8858       GVarFlags.MaybeWriteOnly = Flag;
8859       break;
8860     case lltok::kw_constant:
8861       if (ParseRest(Flag))
8862         return true;
8863       GVarFlags.Constant = Flag;
8864       break;
8865     case lltok::kw_vcall_visibility:
8866       if (ParseRest(Flag))
8867         return true;
8868       GVarFlags.VCallVisibility = Flag;
8869       break;
8870     default:
8871       return Error(Lex.getLoc(), "expected gvar flag type");
8872     }
8873   } while (EatIfPresent(lltok::comma));
8874   return ParseToken(lltok::rparen, "expected ')' here");
8875 }
8876 
8877 /// ModuleReference
8878 ///   ::= 'module' ':' UInt
8879 bool LLParser::ParseModuleReference(StringRef &ModulePath) {
8880   // Parse module id.
8881   if (ParseToken(lltok::kw_module, "expected 'module' here") ||
8882       ParseToken(lltok::colon, "expected ':' here") ||
8883       ParseToken(lltok::SummaryID, "expected module ID"))
8884     return true;
8885 
8886   unsigned ModuleID = Lex.getUIntVal();
8887   auto I = ModuleIdMap.find(ModuleID);
8888   // We should have already parsed all module IDs
8889   assert(I != ModuleIdMap.end());
8890   ModulePath = I->second;
8891   return false;
8892 }
8893 
8894 /// GVReference
8895 ///   ::= SummaryID
8896 bool LLParser::ParseGVReference(ValueInfo &VI, unsigned &GVId) {
8897   bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly);
8898   if (!ReadOnly)
8899     WriteOnly = EatIfPresent(lltok::kw_writeonly);
8900   if (ParseToken(lltok::SummaryID, "expected GV ID"))
8901     return true;
8902 
8903   GVId = Lex.getUIntVal();
8904   // Check if we already have a VI for this GV
8905   if (GVId < NumberedValueInfos.size()) {
8906     assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
8907     VI = NumberedValueInfos[GVId];
8908   } else
8909     // We will create a forward reference to the stored location.
8910     VI = ValueInfo(false, FwdVIRef);
8911 
8912   if (ReadOnly)
8913     VI.setReadOnly();
8914   if (WriteOnly)
8915     VI.setWriteOnly();
8916   return false;
8917 }
8918