1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines the parser class for .ll files.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "LLParser.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/AsmParser/SlotMapping.h"
19 #include "llvm/IR/AutoUpgrade.h"
20 #include "llvm/IR/CallingConv.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DebugInfo.h"
23 #include "llvm/IR/DebugInfoMetadata.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/InlineAsm.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/LLVMContext.h"
28 #include "llvm/IR/Module.h"
29 #include "llvm/IR/Operator.h"
30 #include "llvm/IR/ValueSymbolTable.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/Dwarf.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/SaveAndRestore.h"
35 #include "llvm/Support/raw_ostream.h"
36 using namespace llvm;
37 
38 static std::string getTypeString(Type *T) {
39   std::string Result;
40   raw_string_ostream Tmp(Result);
41   Tmp << *T;
42   return Tmp.str();
43 }
44 
45 /// Run: module ::= toplevelentity*
46 bool LLParser::Run() {
47   // Prime the lexer.
48   Lex.Lex();
49 
50   if (Context.shouldDiscardValueNames())
51     return Error(
52         Lex.getLoc(),
53         "Can't read textual IR with a Context that discards named Values");
54 
55   return ParseTopLevelEntities() ||
56          ValidateEndOfModule();
57 }
58 
59 bool LLParser::parseStandaloneConstantValue(Constant *&C,
60                                             const SlotMapping *Slots) {
61   restoreParsingState(Slots);
62   Lex.Lex();
63 
64   Type *Ty = nullptr;
65   if (ParseType(Ty) || parseConstantValue(Ty, C))
66     return true;
67   if (Lex.getKind() != lltok::Eof)
68     return Error(Lex.getLoc(), "expected end of string");
69   return false;
70 }
71 
72 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
73                                     const SlotMapping *Slots) {
74   restoreParsingState(Slots);
75   Lex.Lex();
76 
77   Read = 0;
78   SMLoc Start = Lex.getLoc();
79   Ty = nullptr;
80   if (ParseType(Ty))
81     return true;
82   SMLoc End = Lex.getLoc();
83   Read = End.getPointer() - Start.getPointer();
84 
85   return false;
86 }
87 
88 void LLParser::restoreParsingState(const SlotMapping *Slots) {
89   if (!Slots)
90     return;
91   NumberedVals = Slots->GlobalValues;
92   NumberedMetadata = Slots->MetadataNodes;
93   for (const auto &I : Slots->NamedTypes)
94     NamedTypes.insert(
95         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
96   for (const auto &I : Slots->Types)
97     NumberedTypes.insert(
98         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
99 }
100 
101 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
102 /// module.
103 bool LLParser::ValidateEndOfModule() {
104   // Handle any function attribute group forward references.
105   for (std::map<Value*, std::vector<unsigned> >::iterator
106          I = ForwardRefAttrGroups.begin(), E = ForwardRefAttrGroups.end();
107          I != E; ++I) {
108     Value *V = I->first;
109     std::vector<unsigned> &Vec = I->second;
110     AttrBuilder B;
111 
112     for (std::vector<unsigned>::iterator VI = Vec.begin(), VE = Vec.end();
113          VI != VE; ++VI)
114       B.merge(NumberedAttrBuilders[*VI]);
115 
116     if (Function *Fn = dyn_cast<Function>(V)) {
117       AttributeSet AS = Fn->getAttributes();
118       AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
119       AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
120                                AS.getFnAttributes());
121 
122       FnAttrs.merge(B);
123 
124       // If the alignment was parsed as an attribute, move to the alignment
125       // field.
126       if (FnAttrs.hasAlignmentAttr()) {
127         Fn->setAlignment(FnAttrs.getAlignment());
128         FnAttrs.removeAttribute(Attribute::Alignment);
129       }
130 
131       AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
132                             AttributeSet::get(Context,
133                                               AttributeSet::FunctionIndex,
134                                               FnAttrs));
135       Fn->setAttributes(AS);
136     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
137       AttributeSet AS = CI->getAttributes();
138       AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
139       AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
140                                AS.getFnAttributes());
141       FnAttrs.merge(B);
142       AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
143                             AttributeSet::get(Context,
144                                               AttributeSet::FunctionIndex,
145                                               FnAttrs));
146       CI->setAttributes(AS);
147     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
148       AttributeSet AS = II->getAttributes();
149       AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
150       AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
151                                AS.getFnAttributes());
152       FnAttrs.merge(B);
153       AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
154                             AttributeSet::get(Context,
155                                               AttributeSet::FunctionIndex,
156                                               FnAttrs));
157       II->setAttributes(AS);
158     } else {
159       llvm_unreachable("invalid object with forward attribute group reference");
160     }
161   }
162 
163   // If there are entries in ForwardRefBlockAddresses at this point, the
164   // function was never defined.
165   if (!ForwardRefBlockAddresses.empty())
166     return Error(ForwardRefBlockAddresses.begin()->first.Loc,
167                  "expected function name in blockaddress");
168 
169   for (const auto &NT : NumberedTypes)
170     if (NT.second.second.isValid())
171       return Error(NT.second.second,
172                    "use of undefined type '%" + Twine(NT.first) + "'");
173 
174   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
175        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
176     if (I->second.second.isValid())
177       return Error(I->second.second,
178                    "use of undefined type named '" + I->getKey() + "'");
179 
180   if (!ForwardRefComdats.empty())
181     return Error(ForwardRefComdats.begin()->second,
182                  "use of undefined comdat '$" +
183                      ForwardRefComdats.begin()->first + "'");
184 
185   if (!ForwardRefVals.empty())
186     return Error(ForwardRefVals.begin()->second.second,
187                  "use of undefined value '@" + ForwardRefVals.begin()->first +
188                  "'");
189 
190   if (!ForwardRefValIDs.empty())
191     return Error(ForwardRefValIDs.begin()->second.second,
192                  "use of undefined value '@" +
193                  Twine(ForwardRefValIDs.begin()->first) + "'");
194 
195   if (!ForwardRefMDNodes.empty())
196     return Error(ForwardRefMDNodes.begin()->second.second,
197                  "use of undefined metadata '!" +
198                  Twine(ForwardRefMDNodes.begin()->first) + "'");
199 
200   // Resolve metadata cycles.
201   for (auto &N : NumberedMetadata) {
202     if (N.second && !N.second->isResolved())
203       N.second->resolveCycles();
204   }
205 
206   for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++)
207     UpgradeInstWithTBAATag(InstsWithTBAATag[I]);
208 
209   // Look for intrinsic functions and CallInst that need to be upgraded
210   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
211     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
212 
213   UpgradeDebugInfo(*M);
214 
215   UpgradeModuleFlags(*M);
216 
217   if (!Slots)
218     return false;
219   // Initialize the slot mapping.
220   // Because by this point we've parsed and validated everything, we can "steal"
221   // the mapping from LLParser as it doesn't need it anymore.
222   Slots->GlobalValues = std::move(NumberedVals);
223   Slots->MetadataNodes = std::move(NumberedMetadata);
224   for (const auto &I : NamedTypes)
225     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
226   for (const auto &I : NumberedTypes)
227     Slots->Types.insert(std::make_pair(I.first, I.second.first));
228 
229   return false;
230 }
231 
232 //===----------------------------------------------------------------------===//
233 // Top-Level Entities
234 //===----------------------------------------------------------------------===//
235 
236 bool LLParser::ParseTopLevelEntities() {
237   while (1) {
238     switch (Lex.getKind()) {
239     default:         return TokError("expected top-level entity");
240     case lltok::Eof: return false;
241     case lltok::kw_declare: if (ParseDeclare()) return true; break;
242     case lltok::kw_define:  if (ParseDefine()) return true; break;
243     case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
244     case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
245     case lltok::kw_source_filename:
246       if (ParseSourceFileName())
247         return true;
248       break;
249     case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
250     case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
251     case lltok::LocalVar:   if (ParseNamedType()) return true; break;
252     case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
253     case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
254     case lltok::ComdatVar:  if (parseComdat()) return true; break;
255     case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
256     case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
257     case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
258     case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
259     case lltok::kw_uselistorder_bb:
260                                  if (ParseUseListOrderBB()) return true; break;
261     }
262   }
263 }
264 
265 
266 /// toplevelentity
267 ///   ::= 'module' 'asm' STRINGCONSTANT
268 bool LLParser::ParseModuleAsm() {
269   assert(Lex.getKind() == lltok::kw_module);
270   Lex.Lex();
271 
272   std::string AsmStr;
273   if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
274       ParseStringConstant(AsmStr)) return true;
275 
276   M->appendModuleInlineAsm(AsmStr);
277   return false;
278 }
279 
280 /// toplevelentity
281 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
282 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
283 bool LLParser::ParseTargetDefinition() {
284   assert(Lex.getKind() == lltok::kw_target);
285   std::string Str;
286   switch (Lex.Lex()) {
287   default: return TokError("unknown target property");
288   case lltok::kw_triple:
289     Lex.Lex();
290     if (ParseToken(lltok::equal, "expected '=' after target triple") ||
291         ParseStringConstant(Str))
292       return true;
293     M->setTargetTriple(Str);
294     return false;
295   case lltok::kw_datalayout:
296     Lex.Lex();
297     if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
298         ParseStringConstant(Str))
299       return true;
300     M->setDataLayout(Str);
301     return false;
302   }
303 }
304 
305 /// toplevelentity
306 ///   ::= 'source_filename' '=' STRINGCONSTANT
307 bool LLParser::ParseSourceFileName() {
308   assert(Lex.getKind() == lltok::kw_source_filename);
309   std::string Str;
310   Lex.Lex();
311   if (ParseToken(lltok::equal, "expected '=' after source_filename") ||
312       ParseStringConstant(Str))
313     return true;
314   M->setSourceFileName(Str);
315   return false;
316 }
317 
318 /// toplevelentity
319 ///   ::= 'deplibs' '=' '[' ']'
320 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
321 /// FIXME: Remove in 4.0. Currently parse, but ignore.
322 bool LLParser::ParseDepLibs() {
323   assert(Lex.getKind() == lltok::kw_deplibs);
324   Lex.Lex();
325   if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
326       ParseToken(lltok::lsquare, "expected '=' after deplibs"))
327     return true;
328 
329   if (EatIfPresent(lltok::rsquare))
330     return false;
331 
332   do {
333     std::string Str;
334     if (ParseStringConstant(Str)) return true;
335   } while (EatIfPresent(lltok::comma));
336 
337   return ParseToken(lltok::rsquare, "expected ']' at end of list");
338 }
339 
340 /// ParseUnnamedType:
341 ///   ::= LocalVarID '=' 'type' type
342 bool LLParser::ParseUnnamedType() {
343   LocTy TypeLoc = Lex.getLoc();
344   unsigned TypeID = Lex.getUIntVal();
345   Lex.Lex(); // eat LocalVarID;
346 
347   if (ParseToken(lltok::equal, "expected '=' after name") ||
348       ParseToken(lltok::kw_type, "expected 'type' after '='"))
349     return true;
350 
351   Type *Result = nullptr;
352   if (ParseStructDefinition(TypeLoc, "",
353                             NumberedTypes[TypeID], Result)) return true;
354 
355   if (!isa<StructType>(Result)) {
356     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
357     if (Entry.first)
358       return Error(TypeLoc, "non-struct types may not be recursive");
359     Entry.first = Result;
360     Entry.second = SMLoc();
361   }
362 
363   return false;
364 }
365 
366 
367 /// toplevelentity
368 ///   ::= LocalVar '=' 'type' type
369 bool LLParser::ParseNamedType() {
370   std::string Name = Lex.getStrVal();
371   LocTy NameLoc = Lex.getLoc();
372   Lex.Lex();  // eat LocalVar.
373 
374   if (ParseToken(lltok::equal, "expected '=' after name") ||
375       ParseToken(lltok::kw_type, "expected 'type' after name"))
376     return true;
377 
378   Type *Result = nullptr;
379   if (ParseStructDefinition(NameLoc, Name,
380                             NamedTypes[Name], Result)) return true;
381 
382   if (!isa<StructType>(Result)) {
383     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
384     if (Entry.first)
385       return Error(NameLoc, "non-struct types may not be recursive");
386     Entry.first = Result;
387     Entry.second = SMLoc();
388   }
389 
390   return false;
391 }
392 
393 
394 /// toplevelentity
395 ///   ::= 'declare' FunctionHeader
396 bool LLParser::ParseDeclare() {
397   assert(Lex.getKind() == lltok::kw_declare);
398   Lex.Lex();
399 
400   Function *F;
401   return ParseFunctionHeader(F, false);
402 }
403 
404 /// toplevelentity
405 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
406 bool LLParser::ParseDefine() {
407   assert(Lex.getKind() == lltok::kw_define);
408   Lex.Lex();
409 
410   Function *F;
411   return ParseFunctionHeader(F, true) ||
412          ParseOptionalFunctionMetadata(*F) ||
413          ParseFunctionBody(*F);
414 }
415 
416 /// ParseGlobalType
417 ///   ::= 'constant'
418 ///   ::= 'global'
419 bool LLParser::ParseGlobalType(bool &IsConstant) {
420   if (Lex.getKind() == lltok::kw_constant)
421     IsConstant = true;
422   else if (Lex.getKind() == lltok::kw_global)
423     IsConstant = false;
424   else {
425     IsConstant = false;
426     return TokError("expected 'global' or 'constant'");
427   }
428   Lex.Lex();
429   return false;
430 }
431 
432 /// ParseUnnamedGlobal:
433 ///   OptionalVisibility (ALIAS | IFUNC) ...
434 ///   OptionalLinkage OptionalVisibility OptionalDLLStorageClass
435 ///                                                     ...   -> global variable
436 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
437 ///   GlobalID '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
438 ///                                                     ...   -> global variable
439 bool LLParser::ParseUnnamedGlobal() {
440   unsigned VarID = NumberedVals.size();
441   std::string Name;
442   LocTy NameLoc = Lex.getLoc();
443 
444   // Handle the GlobalID form.
445   if (Lex.getKind() == lltok::GlobalID) {
446     if (Lex.getUIntVal() != VarID)
447       return Error(Lex.getLoc(), "variable expected to be numbered '%" +
448                    Twine(VarID) + "'");
449     Lex.Lex(); // eat GlobalID;
450 
451     if (ParseToken(lltok::equal, "expected '=' after name"))
452       return true;
453   }
454 
455   bool HasLinkage;
456   unsigned Linkage, Visibility, DLLStorageClass;
457   GlobalVariable::ThreadLocalMode TLM;
458   bool UnnamedAddr;
459   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) ||
460       ParseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
461     return true;
462 
463   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
464     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
465                        DLLStorageClass, TLM, UnnamedAddr);
466 
467   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
468                              DLLStorageClass, TLM, UnnamedAddr);
469 }
470 
471 /// ParseNamedGlobal:
472 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
473 ///   GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
474 ///                                                     ...   -> global variable
475 bool LLParser::ParseNamedGlobal() {
476   assert(Lex.getKind() == lltok::GlobalVar);
477   LocTy NameLoc = Lex.getLoc();
478   std::string Name = Lex.getStrVal();
479   Lex.Lex();
480 
481   bool HasLinkage;
482   unsigned Linkage, Visibility, DLLStorageClass;
483   GlobalVariable::ThreadLocalMode TLM;
484   bool UnnamedAddr;
485   if (ParseToken(lltok::equal, "expected '=' in global variable") ||
486       ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) ||
487       ParseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
488     return true;
489 
490   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
491     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
492                        DLLStorageClass, TLM, UnnamedAddr);
493 
494   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
495                              DLLStorageClass, TLM, UnnamedAddr);
496 }
497 
498 bool LLParser::parseComdat() {
499   assert(Lex.getKind() == lltok::ComdatVar);
500   std::string Name = Lex.getStrVal();
501   LocTy NameLoc = Lex.getLoc();
502   Lex.Lex();
503 
504   if (ParseToken(lltok::equal, "expected '=' here"))
505     return true;
506 
507   if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
508     return TokError("expected comdat type");
509 
510   Comdat::SelectionKind SK;
511   switch (Lex.getKind()) {
512   default:
513     return TokError("unknown selection kind");
514   case lltok::kw_any:
515     SK = Comdat::Any;
516     break;
517   case lltok::kw_exactmatch:
518     SK = Comdat::ExactMatch;
519     break;
520   case lltok::kw_largest:
521     SK = Comdat::Largest;
522     break;
523   case lltok::kw_noduplicates:
524     SK = Comdat::NoDuplicates;
525     break;
526   case lltok::kw_samesize:
527     SK = Comdat::SameSize;
528     break;
529   }
530   Lex.Lex();
531 
532   // See if the comdat was forward referenced, if so, use the comdat.
533   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
534   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
535   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
536     return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
537 
538   Comdat *C;
539   if (I != ComdatSymTab.end())
540     C = &I->second;
541   else
542     C = M->getOrInsertComdat(Name);
543   C->setSelectionKind(SK);
544 
545   return false;
546 }
547 
548 // MDString:
549 //   ::= '!' STRINGCONSTANT
550 bool LLParser::ParseMDString(MDString *&Result) {
551   std::string Str;
552   if (ParseStringConstant(Str)) return true;
553   Result = MDString::get(Context, Str);
554   return false;
555 }
556 
557 // MDNode:
558 //   ::= '!' MDNodeNumber
559 bool LLParser::ParseMDNodeID(MDNode *&Result) {
560   // !{ ..., !42, ... }
561   LocTy IDLoc = Lex.getLoc();
562   unsigned MID = 0;
563   if (ParseUInt32(MID))
564     return true;
565 
566   // If not a forward reference, just return it now.
567   if (NumberedMetadata.count(MID)) {
568     Result = NumberedMetadata[MID];
569     return false;
570   }
571 
572   // Otherwise, create MDNode forward reference.
573   auto &FwdRef = ForwardRefMDNodes[MID];
574   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
575 
576   Result = FwdRef.first.get();
577   NumberedMetadata[MID].reset(Result);
578   return false;
579 }
580 
581 /// ParseNamedMetadata:
582 ///   !foo = !{ !1, !2 }
583 bool LLParser::ParseNamedMetadata() {
584   assert(Lex.getKind() == lltok::MetadataVar);
585   std::string Name = Lex.getStrVal();
586   Lex.Lex();
587 
588   if (ParseToken(lltok::equal, "expected '=' here") ||
589       ParseToken(lltok::exclaim, "Expected '!' here") ||
590       ParseToken(lltok::lbrace, "Expected '{' here"))
591     return true;
592 
593   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
594   if (Lex.getKind() != lltok::rbrace)
595     do {
596       if (ParseToken(lltok::exclaim, "Expected '!' here"))
597         return true;
598 
599       MDNode *N = nullptr;
600       if (ParseMDNodeID(N)) return true;
601       NMD->addOperand(N);
602     } while (EatIfPresent(lltok::comma));
603 
604   return ParseToken(lltok::rbrace, "expected end of metadata node");
605 }
606 
607 /// ParseStandaloneMetadata:
608 ///   !42 = !{...}
609 bool LLParser::ParseStandaloneMetadata() {
610   assert(Lex.getKind() == lltok::exclaim);
611   Lex.Lex();
612   unsigned MetadataID = 0;
613 
614   MDNode *Init;
615   if (ParseUInt32(MetadataID) ||
616       ParseToken(lltok::equal, "expected '=' here"))
617     return true;
618 
619   // Detect common error, from old metadata syntax.
620   if (Lex.getKind() == lltok::Type)
621     return TokError("unexpected type in metadata definition");
622 
623   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
624   if (Lex.getKind() == lltok::MetadataVar) {
625     if (ParseSpecializedMDNode(Init, IsDistinct))
626       return true;
627   } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
628              ParseMDTuple(Init, IsDistinct))
629     return true;
630 
631   // See if this was forward referenced, if so, handle it.
632   auto FI = ForwardRefMDNodes.find(MetadataID);
633   if (FI != ForwardRefMDNodes.end()) {
634     FI->second.first->replaceAllUsesWith(Init);
635     ForwardRefMDNodes.erase(FI);
636 
637     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
638   } else {
639     if (NumberedMetadata.count(MetadataID))
640       return TokError("Metadata id is already used");
641     NumberedMetadata[MetadataID].reset(Init);
642   }
643 
644   return false;
645 }
646 
647 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
648   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
649          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
650 }
651 
652 /// parseIndirectSymbol:
653 ///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility
654 ///                     OptionalDLLStorageClass OptionalThreadLocal
655 ///                     OptionalUnnamedAddr 'alias|ifunc' IndirectSymbol
656 ///
657 /// IndirectSymbol
658 ///   ::= TypeAndValue
659 ///
660 /// Everything through OptionalUnnamedAddr has already been parsed.
661 ///
662 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
663                                    unsigned L, unsigned Visibility,
664                                    unsigned DLLStorageClass,
665                                    GlobalVariable::ThreadLocalMode TLM,
666                                    bool UnnamedAddr) {
667   bool IsAlias;
668   if (Lex.getKind() == lltok::kw_alias)
669     IsAlias = true;
670   else if (Lex.getKind() == lltok::kw_ifunc)
671     IsAlias = false;
672   else
673     llvm_unreachable("Not an alias or ifunc!");
674   Lex.Lex();
675 
676   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
677 
678   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
679     return Error(NameLoc, "invalid linkage type for alias");
680 
681   if (!isValidVisibilityForLinkage(Visibility, L))
682     return Error(NameLoc,
683                  "symbol with local linkage must have default visibility");
684 
685   Type *Ty;
686   LocTy ExplicitTypeLoc = Lex.getLoc();
687   if (ParseType(Ty) ||
688       ParseToken(lltok::comma, "expected comma after alias or ifunc's type"))
689     return true;
690 
691   Constant *Aliasee;
692   LocTy AliaseeLoc = Lex.getLoc();
693   if (Lex.getKind() != lltok::kw_bitcast &&
694       Lex.getKind() != lltok::kw_getelementptr &&
695       Lex.getKind() != lltok::kw_addrspacecast &&
696       Lex.getKind() != lltok::kw_inttoptr) {
697     if (ParseGlobalTypeAndValue(Aliasee))
698       return true;
699   } else {
700     // The bitcast dest type is not present, it is implied by the dest type.
701     ValID ID;
702     if (ParseValID(ID))
703       return true;
704     if (ID.Kind != ValID::t_Constant)
705       return Error(AliaseeLoc, "invalid aliasee");
706     Aliasee = ID.ConstantVal;
707   }
708 
709   Type *AliaseeType = Aliasee->getType();
710   auto *PTy = dyn_cast<PointerType>(AliaseeType);
711   if (!PTy)
712     return Error(AliaseeLoc, "An alias or ifunc must have pointer type");
713   unsigned AddrSpace = PTy->getAddressSpace();
714 
715   if (IsAlias && Ty != PTy->getElementType())
716     return Error(
717         ExplicitTypeLoc,
718         "explicit pointee type doesn't match operand's pointee type");
719 
720   if (!IsAlias && !PTy->getElementType()->isFunctionTy())
721     return Error(
722         ExplicitTypeLoc,
723         "explicit pointee type should be a function type");
724 
725   GlobalValue *GVal = nullptr;
726 
727   // See if the alias was forward referenced, if so, prepare to replace the
728   // forward reference.
729   if (!Name.empty()) {
730     GVal = M->getNamedValue(Name);
731     if (GVal) {
732       if (!ForwardRefVals.erase(Name))
733         return Error(NameLoc, "redefinition of global '@" + Name + "'");
734     }
735   } else {
736     auto I = ForwardRefValIDs.find(NumberedVals.size());
737     if (I != ForwardRefValIDs.end()) {
738       GVal = I->second.first;
739       ForwardRefValIDs.erase(I);
740     }
741   }
742 
743   // Okay, create the alias but do not insert it into the module yet.
744   std::unique_ptr<GlobalIndirectSymbol> GA;
745   if (IsAlias)
746     GA.reset(GlobalAlias::create(Ty, AddrSpace,
747                                  (GlobalValue::LinkageTypes)Linkage, Name,
748                                  Aliasee, /*Parent*/ nullptr));
749   else
750     GA.reset(GlobalIFunc::create(Ty, AddrSpace,
751                                  (GlobalValue::LinkageTypes)Linkage, Name,
752                                  Aliasee, /*Parent*/ nullptr));
753   GA->setThreadLocalMode(TLM);
754   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
755   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
756   GA->setUnnamedAddr(UnnamedAddr);
757 
758   if (Name.empty())
759     NumberedVals.push_back(GA.get());
760 
761   if (GVal) {
762     // Verify that types agree.
763     if (GVal->getType() != GA->getType())
764       return Error(
765           ExplicitTypeLoc,
766           "forward reference and definition of alias have different types");
767 
768     // If they agree, just RAUW the old value with the alias and remove the
769     // forward ref info.
770     GVal->replaceAllUsesWith(GA.get());
771     GVal->eraseFromParent();
772   }
773 
774   // Insert into the module, we know its name won't collide now.
775   if (IsAlias)
776     M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
777   else
778     M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
779   assert(GA->getName() == Name && "Should not be a name conflict!");
780 
781   // The module owns this now
782   GA.release();
783 
784   return false;
785 }
786 
787 /// ParseGlobal
788 ///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
789 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
790 ///       OptionalExternallyInitialized GlobalType Type Const
791 ///   ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass
792 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
793 ///       OptionalExternallyInitialized GlobalType Type Const
794 ///
795 /// Everything up to and including OptionalUnnamedAddr has been parsed
796 /// already.
797 ///
798 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
799                            unsigned Linkage, bool HasLinkage,
800                            unsigned Visibility, unsigned DLLStorageClass,
801                            GlobalVariable::ThreadLocalMode TLM,
802                            bool UnnamedAddr) {
803   if (!isValidVisibilityForLinkage(Visibility, Linkage))
804     return Error(NameLoc,
805                  "symbol with local linkage must have default visibility");
806 
807   unsigned AddrSpace;
808   bool IsConstant, IsExternallyInitialized;
809   LocTy IsExternallyInitializedLoc;
810   LocTy TyLoc;
811 
812   Type *Ty = nullptr;
813   if (ParseOptionalAddrSpace(AddrSpace) ||
814       ParseOptionalToken(lltok::kw_externally_initialized,
815                          IsExternallyInitialized,
816                          &IsExternallyInitializedLoc) ||
817       ParseGlobalType(IsConstant) ||
818       ParseType(Ty, TyLoc))
819     return true;
820 
821   // If the linkage is specified and is external, then no initializer is
822   // present.
823   Constant *Init = nullptr;
824   if (!HasLinkage ||
825       !GlobalValue::isValidDeclarationLinkage(
826           (GlobalValue::LinkageTypes)Linkage)) {
827     if (ParseGlobalValue(Ty, Init))
828       return true;
829   }
830 
831   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
832     return Error(TyLoc, "invalid type for global variable");
833 
834   GlobalValue *GVal = nullptr;
835 
836   // See if the global was forward referenced, if so, use the global.
837   if (!Name.empty()) {
838     GVal = M->getNamedValue(Name);
839     if (GVal) {
840       if (!ForwardRefVals.erase(Name))
841         return Error(NameLoc, "redefinition of global '@" + Name + "'");
842     }
843   } else {
844     auto I = ForwardRefValIDs.find(NumberedVals.size());
845     if (I != ForwardRefValIDs.end()) {
846       GVal = I->second.first;
847       ForwardRefValIDs.erase(I);
848     }
849   }
850 
851   GlobalVariable *GV;
852   if (!GVal) {
853     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
854                             Name, nullptr, GlobalVariable::NotThreadLocal,
855                             AddrSpace);
856   } else {
857     if (GVal->getValueType() != Ty)
858       return Error(TyLoc,
859             "forward reference and definition of global have different types");
860 
861     GV = cast<GlobalVariable>(GVal);
862 
863     // Move the forward-reference to the correct spot in the module.
864     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
865   }
866 
867   if (Name.empty())
868     NumberedVals.push_back(GV);
869 
870   // Set the parsed properties on the global.
871   if (Init)
872     GV->setInitializer(Init);
873   GV->setConstant(IsConstant);
874   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
875   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
876   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
877   GV->setExternallyInitialized(IsExternallyInitialized);
878   GV->setThreadLocalMode(TLM);
879   GV->setUnnamedAddr(UnnamedAddr);
880 
881   // Parse attributes on the global.
882   while (Lex.getKind() == lltok::comma) {
883     Lex.Lex();
884 
885     if (Lex.getKind() == lltok::kw_section) {
886       Lex.Lex();
887       GV->setSection(Lex.getStrVal());
888       if (ParseToken(lltok::StringConstant, "expected global section string"))
889         return true;
890     } else if (Lex.getKind() == lltok::kw_align) {
891       unsigned Alignment;
892       if (ParseOptionalAlignment(Alignment)) return true;
893       GV->setAlignment(Alignment);
894     } else if (Lex.getKind() == lltok::MetadataVar) {
895       if (ParseGlobalObjectMetadataAttachment(*GV))
896         return true;
897     } else {
898       Comdat *C;
899       if (parseOptionalComdat(Name, C))
900         return true;
901       if (C)
902         GV->setComdat(C);
903       else
904         return TokError("unknown global variable property!");
905     }
906   }
907 
908   return false;
909 }
910 
911 /// ParseUnnamedAttrGrp
912 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
913 bool LLParser::ParseUnnamedAttrGrp() {
914   assert(Lex.getKind() == lltok::kw_attributes);
915   LocTy AttrGrpLoc = Lex.getLoc();
916   Lex.Lex();
917 
918   if (Lex.getKind() != lltok::AttrGrpID)
919     return TokError("expected attribute group id");
920 
921   unsigned VarID = Lex.getUIntVal();
922   std::vector<unsigned> unused;
923   LocTy BuiltinLoc;
924   Lex.Lex();
925 
926   if (ParseToken(lltok::equal, "expected '=' here") ||
927       ParseToken(lltok::lbrace, "expected '{' here") ||
928       ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
929                                  BuiltinLoc) ||
930       ParseToken(lltok::rbrace, "expected end of attribute group"))
931     return true;
932 
933   if (!NumberedAttrBuilders[VarID].hasAttributes())
934     return Error(AttrGrpLoc, "attribute group has no attributes");
935 
936   return false;
937 }
938 
939 /// ParseFnAttributeValuePairs
940 ///   ::= <attr> | <attr> '=' <value>
941 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
942                                           std::vector<unsigned> &FwdRefAttrGrps,
943                                           bool inAttrGrp, LocTy &BuiltinLoc) {
944   bool HaveError = false;
945 
946   B.clear();
947 
948   while (true) {
949     lltok::Kind Token = Lex.getKind();
950     if (Token == lltok::kw_builtin)
951       BuiltinLoc = Lex.getLoc();
952     switch (Token) {
953     default:
954       if (!inAttrGrp) return HaveError;
955       return Error(Lex.getLoc(), "unterminated attribute group");
956     case lltok::rbrace:
957       // Finished.
958       return false;
959 
960     case lltok::AttrGrpID: {
961       // Allow a function to reference an attribute group:
962       //
963       //   define void @foo() #1 { ... }
964       if (inAttrGrp)
965         HaveError |=
966           Error(Lex.getLoc(),
967               "cannot have an attribute group reference in an attribute group");
968 
969       unsigned AttrGrpNum = Lex.getUIntVal();
970       if (inAttrGrp) break;
971 
972       // Save the reference to the attribute group. We'll fill it in later.
973       FwdRefAttrGrps.push_back(AttrGrpNum);
974       break;
975     }
976     // Target-dependent attributes:
977     case lltok::StringConstant: {
978       if (ParseStringAttribute(B))
979         return true;
980       continue;
981     }
982 
983     // Target-independent attributes:
984     case lltok::kw_align: {
985       // As a hack, we allow function alignment to be initially parsed as an
986       // attribute on a function declaration/definition or added to an attribute
987       // group and later moved to the alignment field.
988       unsigned Alignment;
989       if (inAttrGrp) {
990         Lex.Lex();
991         if (ParseToken(lltok::equal, "expected '=' here") ||
992             ParseUInt32(Alignment))
993           return true;
994       } else {
995         if (ParseOptionalAlignment(Alignment))
996           return true;
997       }
998       B.addAlignmentAttr(Alignment);
999       continue;
1000     }
1001     case lltok::kw_alignstack: {
1002       unsigned Alignment;
1003       if (inAttrGrp) {
1004         Lex.Lex();
1005         if (ParseToken(lltok::equal, "expected '=' here") ||
1006             ParseUInt32(Alignment))
1007           return true;
1008       } else {
1009         if (ParseOptionalStackAlignment(Alignment))
1010           return true;
1011       }
1012       B.addStackAlignmentAttr(Alignment);
1013       continue;
1014     }
1015     case lltok::kw_allocsize: {
1016       unsigned ElemSizeArg;
1017       Optional<unsigned> NumElemsArg;
1018       // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1019       if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1020         return true;
1021       B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1022       continue;
1023     }
1024     case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1025     case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1026     case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1027     case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1028     case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1029     case lltok::kw_inaccessiblememonly:
1030       B.addAttribute(Attribute::InaccessibleMemOnly); break;
1031     case lltok::kw_inaccessiblemem_or_argmemonly:
1032       B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1033     case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1034     case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1035     case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1036     case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1037     case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1038     case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1039     case lltok::kw_noimplicitfloat:
1040       B.addAttribute(Attribute::NoImplicitFloat); break;
1041     case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1042     case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1043     case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1044     case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1045     case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1046     case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1047     case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1048     case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1049     case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1050     case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1051     case lltok::kw_returns_twice:
1052       B.addAttribute(Attribute::ReturnsTwice); break;
1053     case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1054     case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1055     case lltok::kw_sspstrong:
1056       B.addAttribute(Attribute::StackProtectStrong); break;
1057     case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1058     case lltok::kw_sanitize_address:
1059       B.addAttribute(Attribute::SanitizeAddress); break;
1060     case lltok::kw_sanitize_thread:
1061       B.addAttribute(Attribute::SanitizeThread); break;
1062     case lltok::kw_sanitize_memory:
1063       B.addAttribute(Attribute::SanitizeMemory); break;
1064     case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1065 
1066     // Error handling.
1067     case lltok::kw_inreg:
1068     case lltok::kw_signext:
1069     case lltok::kw_zeroext:
1070       HaveError |=
1071         Error(Lex.getLoc(),
1072               "invalid use of attribute on a function");
1073       break;
1074     case lltok::kw_byval:
1075     case lltok::kw_dereferenceable:
1076     case lltok::kw_dereferenceable_or_null:
1077     case lltok::kw_inalloca:
1078     case lltok::kw_nest:
1079     case lltok::kw_noalias:
1080     case lltok::kw_nocapture:
1081     case lltok::kw_nonnull:
1082     case lltok::kw_returned:
1083     case lltok::kw_sret:
1084     case lltok::kw_swifterror:
1085     case lltok::kw_swiftself:
1086       HaveError |=
1087         Error(Lex.getLoc(),
1088               "invalid use of parameter-only attribute on a function");
1089       break;
1090     }
1091 
1092     Lex.Lex();
1093   }
1094 }
1095 
1096 //===----------------------------------------------------------------------===//
1097 // GlobalValue Reference/Resolution Routines.
1098 //===----------------------------------------------------------------------===//
1099 
1100 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1101                                               const std::string &Name) {
1102   if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1103     return Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
1104   else
1105     return new GlobalVariable(*M, PTy->getElementType(), false,
1106                               GlobalValue::ExternalWeakLinkage, nullptr, Name,
1107                               nullptr, GlobalVariable::NotThreadLocal,
1108                               PTy->getAddressSpace());
1109 }
1110 
1111 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1112 /// forward reference record if needed.  This can return null if the value
1113 /// exists but does not have the right type.
1114 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
1115                                     LocTy Loc) {
1116   PointerType *PTy = dyn_cast<PointerType>(Ty);
1117   if (!PTy) {
1118     Error(Loc, "global variable reference must have pointer type");
1119     return nullptr;
1120   }
1121 
1122   // Look this name up in the normal function symbol table.
1123   GlobalValue *Val =
1124     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1125 
1126   // If this is a forward reference for the value, see if we already created a
1127   // forward ref record.
1128   if (!Val) {
1129     auto I = ForwardRefVals.find(Name);
1130     if (I != ForwardRefVals.end())
1131       Val = I->second.first;
1132   }
1133 
1134   // If we have the value in the symbol table or fwd-ref table, return it.
1135   if (Val) {
1136     if (Val->getType() == Ty) return Val;
1137     Error(Loc, "'@" + Name + "' defined with type '" +
1138           getTypeString(Val->getType()) + "'");
1139     return nullptr;
1140   }
1141 
1142   // Otherwise, create a new forward reference for this value and remember it.
1143   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1144   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1145   return FwdVal;
1146 }
1147 
1148 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
1149   PointerType *PTy = dyn_cast<PointerType>(Ty);
1150   if (!PTy) {
1151     Error(Loc, "global variable reference must have pointer type");
1152     return nullptr;
1153   }
1154 
1155   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1156 
1157   // If this is a forward reference for the value, see if we already created a
1158   // forward ref record.
1159   if (!Val) {
1160     auto I = ForwardRefValIDs.find(ID);
1161     if (I != ForwardRefValIDs.end())
1162       Val = I->second.first;
1163   }
1164 
1165   // If we have the value in the symbol table or fwd-ref table, return it.
1166   if (Val) {
1167     if (Val->getType() == Ty) return Val;
1168     Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
1169           getTypeString(Val->getType()) + "'");
1170     return nullptr;
1171   }
1172 
1173   // Otherwise, create a new forward reference for this value and remember it.
1174   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1175   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1176   return FwdVal;
1177 }
1178 
1179 
1180 //===----------------------------------------------------------------------===//
1181 // Comdat Reference/Resolution Routines.
1182 //===----------------------------------------------------------------------===//
1183 
1184 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1185   // Look this name up in the comdat symbol table.
1186   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1187   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1188   if (I != ComdatSymTab.end())
1189     return &I->second;
1190 
1191   // Otherwise, create a new forward reference for this value and remember it.
1192   Comdat *C = M->getOrInsertComdat(Name);
1193   ForwardRefComdats[Name] = Loc;
1194   return C;
1195 }
1196 
1197 
1198 //===----------------------------------------------------------------------===//
1199 // Helper Routines.
1200 //===----------------------------------------------------------------------===//
1201 
1202 /// ParseToken - If the current token has the specified kind, eat it and return
1203 /// success.  Otherwise, emit the specified error and return failure.
1204 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1205   if (Lex.getKind() != T)
1206     return TokError(ErrMsg);
1207   Lex.Lex();
1208   return false;
1209 }
1210 
1211 /// ParseStringConstant
1212 ///   ::= StringConstant
1213 bool LLParser::ParseStringConstant(std::string &Result) {
1214   if (Lex.getKind() != lltok::StringConstant)
1215     return TokError("expected string constant");
1216   Result = Lex.getStrVal();
1217   Lex.Lex();
1218   return false;
1219 }
1220 
1221 /// ParseUInt32
1222 ///   ::= uint32
1223 bool LLParser::ParseUInt32(unsigned &Val) {
1224   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1225     return TokError("expected integer");
1226   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1227   if (Val64 != unsigned(Val64))
1228     return TokError("expected 32-bit integer (too large)");
1229   Val = Val64;
1230   Lex.Lex();
1231   return false;
1232 }
1233 
1234 /// ParseUInt64
1235 ///   ::= uint64
1236 bool LLParser::ParseUInt64(uint64_t &Val) {
1237   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1238     return TokError("expected integer");
1239   Val = Lex.getAPSIntVal().getLimitedValue();
1240   Lex.Lex();
1241   return false;
1242 }
1243 
1244 /// ParseTLSModel
1245 ///   := 'localdynamic'
1246 ///   := 'initialexec'
1247 ///   := 'localexec'
1248 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1249   switch (Lex.getKind()) {
1250     default:
1251       return TokError("expected localdynamic, initialexec or localexec");
1252     case lltok::kw_localdynamic:
1253       TLM = GlobalVariable::LocalDynamicTLSModel;
1254       break;
1255     case lltok::kw_initialexec:
1256       TLM = GlobalVariable::InitialExecTLSModel;
1257       break;
1258     case lltok::kw_localexec:
1259       TLM = GlobalVariable::LocalExecTLSModel;
1260       break;
1261   }
1262 
1263   Lex.Lex();
1264   return false;
1265 }
1266 
1267 /// ParseOptionalThreadLocal
1268 ///   := /*empty*/
1269 ///   := 'thread_local'
1270 ///   := 'thread_local' '(' tlsmodel ')'
1271 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1272   TLM = GlobalVariable::NotThreadLocal;
1273   if (!EatIfPresent(lltok::kw_thread_local))
1274     return false;
1275 
1276   TLM = GlobalVariable::GeneralDynamicTLSModel;
1277   if (Lex.getKind() == lltok::lparen) {
1278     Lex.Lex();
1279     return ParseTLSModel(TLM) ||
1280       ParseToken(lltok::rparen, "expected ')' after thread local model");
1281   }
1282   return false;
1283 }
1284 
1285 /// ParseOptionalAddrSpace
1286 ///   := /*empty*/
1287 ///   := 'addrspace' '(' uint32 ')'
1288 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
1289   AddrSpace = 0;
1290   if (!EatIfPresent(lltok::kw_addrspace))
1291     return false;
1292   return ParseToken(lltok::lparen, "expected '(' in address space") ||
1293          ParseUInt32(AddrSpace) ||
1294          ParseToken(lltok::rparen, "expected ')' in address space");
1295 }
1296 
1297 /// ParseStringAttribute
1298 ///   := StringConstant
1299 ///   := StringConstant '=' StringConstant
1300 bool LLParser::ParseStringAttribute(AttrBuilder &B) {
1301   std::string Attr = Lex.getStrVal();
1302   Lex.Lex();
1303   std::string Val;
1304   if (EatIfPresent(lltok::equal) && ParseStringConstant(Val))
1305     return true;
1306   B.addAttribute(Attr, Val);
1307   return false;
1308 }
1309 
1310 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1311 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1312   bool HaveError = false;
1313 
1314   B.clear();
1315 
1316   while (1) {
1317     lltok::Kind Token = Lex.getKind();
1318     switch (Token) {
1319     default:  // End of attributes.
1320       return HaveError;
1321     case lltok::StringConstant: {
1322       if (ParseStringAttribute(B))
1323         return true;
1324       continue;
1325     }
1326     case lltok::kw_align: {
1327       unsigned Alignment;
1328       if (ParseOptionalAlignment(Alignment))
1329         return true;
1330       B.addAlignmentAttr(Alignment);
1331       continue;
1332     }
1333     case lltok::kw_byval:           B.addAttribute(Attribute::ByVal); break;
1334     case lltok::kw_dereferenceable: {
1335       uint64_t Bytes;
1336       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1337         return true;
1338       B.addDereferenceableAttr(Bytes);
1339       continue;
1340     }
1341     case lltok::kw_dereferenceable_or_null: {
1342       uint64_t Bytes;
1343       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1344         return true;
1345       B.addDereferenceableOrNullAttr(Bytes);
1346       continue;
1347     }
1348     case lltok::kw_inalloca:        B.addAttribute(Attribute::InAlloca); break;
1349     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1350     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1351     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1352     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1353     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1354     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1355     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1356     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1357     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1358     case lltok::kw_sret:            B.addAttribute(Attribute::StructRet); break;
1359     case lltok::kw_swifterror:      B.addAttribute(Attribute::SwiftError); break;
1360     case lltok::kw_swiftself:       B.addAttribute(Attribute::SwiftSelf); break;
1361     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1362 
1363     case lltok::kw_alignstack:
1364     case lltok::kw_alwaysinline:
1365     case lltok::kw_argmemonly:
1366     case lltok::kw_builtin:
1367     case lltok::kw_inlinehint:
1368     case lltok::kw_jumptable:
1369     case lltok::kw_minsize:
1370     case lltok::kw_naked:
1371     case lltok::kw_nobuiltin:
1372     case lltok::kw_noduplicate:
1373     case lltok::kw_noimplicitfloat:
1374     case lltok::kw_noinline:
1375     case lltok::kw_nonlazybind:
1376     case lltok::kw_noredzone:
1377     case lltok::kw_noreturn:
1378     case lltok::kw_nounwind:
1379     case lltok::kw_optnone:
1380     case lltok::kw_optsize:
1381     case lltok::kw_returns_twice:
1382     case lltok::kw_sanitize_address:
1383     case lltok::kw_sanitize_memory:
1384     case lltok::kw_sanitize_thread:
1385     case lltok::kw_ssp:
1386     case lltok::kw_sspreq:
1387     case lltok::kw_sspstrong:
1388     case lltok::kw_safestack:
1389     case lltok::kw_uwtable:
1390       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1391       break;
1392     }
1393 
1394     Lex.Lex();
1395   }
1396 }
1397 
1398 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1399 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1400   bool HaveError = false;
1401 
1402   B.clear();
1403 
1404   while (1) {
1405     lltok::Kind Token = Lex.getKind();
1406     switch (Token) {
1407     default:  // End of attributes.
1408       return HaveError;
1409     case lltok::StringConstant: {
1410       if (ParseStringAttribute(B))
1411         return true;
1412       continue;
1413     }
1414     case lltok::kw_dereferenceable: {
1415       uint64_t Bytes;
1416       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1417         return true;
1418       B.addDereferenceableAttr(Bytes);
1419       continue;
1420     }
1421     case lltok::kw_dereferenceable_or_null: {
1422       uint64_t Bytes;
1423       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1424         return true;
1425       B.addDereferenceableOrNullAttr(Bytes);
1426       continue;
1427     }
1428     case lltok::kw_align: {
1429       unsigned Alignment;
1430       if (ParseOptionalAlignment(Alignment))
1431         return true;
1432       B.addAlignmentAttr(Alignment);
1433       continue;
1434     }
1435     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1436     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1437     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1438     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1439     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1440 
1441     // Error handling.
1442     case lltok::kw_byval:
1443     case lltok::kw_inalloca:
1444     case lltok::kw_nest:
1445     case lltok::kw_nocapture:
1446     case lltok::kw_returned:
1447     case lltok::kw_sret:
1448     case lltok::kw_swifterror:
1449     case lltok::kw_swiftself:
1450       HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1451       break;
1452 
1453     case lltok::kw_alignstack:
1454     case lltok::kw_alwaysinline:
1455     case lltok::kw_argmemonly:
1456     case lltok::kw_builtin:
1457     case lltok::kw_cold:
1458     case lltok::kw_inlinehint:
1459     case lltok::kw_jumptable:
1460     case lltok::kw_minsize:
1461     case lltok::kw_naked:
1462     case lltok::kw_nobuiltin:
1463     case lltok::kw_noduplicate:
1464     case lltok::kw_noimplicitfloat:
1465     case lltok::kw_noinline:
1466     case lltok::kw_nonlazybind:
1467     case lltok::kw_noredzone:
1468     case lltok::kw_noreturn:
1469     case lltok::kw_nounwind:
1470     case lltok::kw_optnone:
1471     case lltok::kw_optsize:
1472     case lltok::kw_returns_twice:
1473     case lltok::kw_sanitize_address:
1474     case lltok::kw_sanitize_memory:
1475     case lltok::kw_sanitize_thread:
1476     case lltok::kw_ssp:
1477     case lltok::kw_sspreq:
1478     case lltok::kw_sspstrong:
1479     case lltok::kw_safestack:
1480     case lltok::kw_uwtable:
1481       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1482       break;
1483 
1484     case lltok::kw_readnone:
1485     case lltok::kw_readonly:
1486       HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1487     }
1488 
1489     Lex.Lex();
1490   }
1491 }
1492 
1493 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1494   HasLinkage = true;
1495   switch (Kind) {
1496   default:
1497     HasLinkage = false;
1498     return GlobalValue::ExternalLinkage;
1499   case lltok::kw_private:
1500     return GlobalValue::PrivateLinkage;
1501   case lltok::kw_internal:
1502     return GlobalValue::InternalLinkage;
1503   case lltok::kw_weak:
1504     return GlobalValue::WeakAnyLinkage;
1505   case lltok::kw_weak_odr:
1506     return GlobalValue::WeakODRLinkage;
1507   case lltok::kw_linkonce:
1508     return GlobalValue::LinkOnceAnyLinkage;
1509   case lltok::kw_linkonce_odr:
1510     return GlobalValue::LinkOnceODRLinkage;
1511   case lltok::kw_available_externally:
1512     return GlobalValue::AvailableExternallyLinkage;
1513   case lltok::kw_appending:
1514     return GlobalValue::AppendingLinkage;
1515   case lltok::kw_common:
1516     return GlobalValue::CommonLinkage;
1517   case lltok::kw_extern_weak:
1518     return GlobalValue::ExternalWeakLinkage;
1519   case lltok::kw_external:
1520     return GlobalValue::ExternalLinkage;
1521   }
1522 }
1523 
1524 /// ParseOptionalLinkage
1525 ///   ::= /*empty*/
1526 ///   ::= 'private'
1527 ///   ::= 'internal'
1528 ///   ::= 'weak'
1529 ///   ::= 'weak_odr'
1530 ///   ::= 'linkonce'
1531 ///   ::= 'linkonce_odr'
1532 ///   ::= 'available_externally'
1533 ///   ::= 'appending'
1534 ///   ::= 'common'
1535 ///   ::= 'extern_weak'
1536 ///   ::= 'external'
1537 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1538                                     unsigned &Visibility,
1539                                     unsigned &DLLStorageClass) {
1540   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1541   if (HasLinkage)
1542     Lex.Lex();
1543   ParseOptionalVisibility(Visibility);
1544   ParseOptionalDLLStorageClass(DLLStorageClass);
1545   return false;
1546 }
1547 
1548 /// ParseOptionalVisibility
1549 ///   ::= /*empty*/
1550 ///   ::= 'default'
1551 ///   ::= 'hidden'
1552 ///   ::= 'protected'
1553 ///
1554 void LLParser::ParseOptionalVisibility(unsigned &Res) {
1555   switch (Lex.getKind()) {
1556   default:
1557     Res = GlobalValue::DefaultVisibility;
1558     return;
1559   case lltok::kw_default:
1560     Res = GlobalValue::DefaultVisibility;
1561     break;
1562   case lltok::kw_hidden:
1563     Res = GlobalValue::HiddenVisibility;
1564     break;
1565   case lltok::kw_protected:
1566     Res = GlobalValue::ProtectedVisibility;
1567     break;
1568   }
1569   Lex.Lex();
1570 }
1571 
1572 /// ParseOptionalDLLStorageClass
1573 ///   ::= /*empty*/
1574 ///   ::= 'dllimport'
1575 ///   ::= 'dllexport'
1576 ///
1577 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
1578   switch (Lex.getKind()) {
1579   default:
1580     Res = GlobalValue::DefaultStorageClass;
1581     return;
1582   case lltok::kw_dllimport:
1583     Res = GlobalValue::DLLImportStorageClass;
1584     break;
1585   case lltok::kw_dllexport:
1586     Res = GlobalValue::DLLExportStorageClass;
1587     break;
1588   }
1589   Lex.Lex();
1590 }
1591 
1592 /// ParseOptionalCallingConv
1593 ///   ::= /*empty*/
1594 ///   ::= 'ccc'
1595 ///   ::= 'fastcc'
1596 ///   ::= 'intel_ocl_bicc'
1597 ///   ::= 'coldcc'
1598 ///   ::= 'x86_stdcallcc'
1599 ///   ::= 'x86_fastcallcc'
1600 ///   ::= 'x86_thiscallcc'
1601 ///   ::= 'x86_vectorcallcc'
1602 ///   ::= 'arm_apcscc'
1603 ///   ::= 'arm_aapcscc'
1604 ///   ::= 'arm_aapcs_vfpcc'
1605 ///   ::= 'msp430_intrcc'
1606 ///   ::= 'avr_intrcc'
1607 ///   ::= 'avr_signalcc'
1608 ///   ::= 'ptx_kernel'
1609 ///   ::= 'ptx_device'
1610 ///   ::= 'spir_func'
1611 ///   ::= 'spir_kernel'
1612 ///   ::= 'x86_64_sysvcc'
1613 ///   ::= 'x86_64_win64cc'
1614 ///   ::= 'webkit_jscc'
1615 ///   ::= 'anyregcc'
1616 ///   ::= 'preserve_mostcc'
1617 ///   ::= 'preserve_allcc'
1618 ///   ::= 'ghccc'
1619 ///   ::= 'swiftcc'
1620 ///   ::= 'x86_intrcc'
1621 ///   ::= 'hhvmcc'
1622 ///   ::= 'hhvm_ccc'
1623 ///   ::= 'cxx_fast_tlscc'
1624 ///   ::= 'amdgpu_vs'
1625 ///   ::= 'amdgpu_tcs'
1626 ///   ::= 'amdgpu_tes'
1627 ///   ::= 'amdgpu_gs'
1628 ///   ::= 'amdgpu_ps'
1629 ///   ::= 'amdgpu_cs'
1630 ///   ::= 'amdgpu_kernel'
1631 ///   ::= 'cc' UINT
1632 ///
1633 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
1634   switch (Lex.getKind()) {
1635   default:                       CC = CallingConv::C; return false;
1636   case lltok::kw_ccc:            CC = CallingConv::C; break;
1637   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1638   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1639   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1640   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1641   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1642   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
1643   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1644   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1645   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1646   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1647   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
1648   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
1649   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1650   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1651   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
1652   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
1653   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1654   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
1655   case lltok::kw_x86_64_win64cc: CC = CallingConv::X86_64_Win64; break;
1656   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
1657   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
1658   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
1659   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
1660   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
1661   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
1662   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
1663   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
1664   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
1665   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
1666   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
1667   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
1668   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
1669   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
1670   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
1671   case lltok::kw_cc: {
1672       Lex.Lex();
1673       return ParseUInt32(CC);
1674     }
1675   }
1676 
1677   Lex.Lex();
1678   return false;
1679 }
1680 
1681 /// ParseMetadataAttachment
1682 ///   ::= !dbg !42
1683 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
1684   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
1685 
1686   std::string Name = Lex.getStrVal();
1687   Kind = M->getMDKindID(Name);
1688   Lex.Lex();
1689 
1690   return ParseMDNode(MD);
1691 }
1692 
1693 /// ParseInstructionMetadata
1694 ///   ::= !dbg !42 (',' !dbg !57)*
1695 bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
1696   do {
1697     if (Lex.getKind() != lltok::MetadataVar)
1698       return TokError("expected metadata after comma");
1699 
1700     unsigned MDK;
1701     MDNode *N;
1702     if (ParseMetadataAttachment(MDK, N))
1703       return true;
1704 
1705     Inst.setMetadata(MDK, N);
1706     if (MDK == LLVMContext::MD_tbaa)
1707       InstsWithTBAATag.push_back(&Inst);
1708 
1709     // If this is the end of the list, we're done.
1710   } while (EatIfPresent(lltok::comma));
1711   return false;
1712 }
1713 
1714 /// ParseGlobalObjectMetadataAttachment
1715 ///   ::= !dbg !57
1716 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) {
1717   unsigned MDK;
1718   MDNode *N;
1719   if (ParseMetadataAttachment(MDK, N))
1720     return true;
1721 
1722   GO.addMetadata(MDK, *N);
1723   return false;
1724 }
1725 
1726 /// ParseOptionalFunctionMetadata
1727 ///   ::= (!dbg !57)*
1728 bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
1729   while (Lex.getKind() == lltok::MetadataVar)
1730     if (ParseGlobalObjectMetadataAttachment(F))
1731       return true;
1732   return false;
1733 }
1734 
1735 /// ParseOptionalAlignment
1736 ///   ::= /* empty */
1737 ///   ::= 'align' 4
1738 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1739   Alignment = 0;
1740   if (!EatIfPresent(lltok::kw_align))
1741     return false;
1742   LocTy AlignLoc = Lex.getLoc();
1743   if (ParseUInt32(Alignment)) return true;
1744   if (!isPowerOf2_32(Alignment))
1745     return Error(AlignLoc, "alignment is not a power of two");
1746   if (Alignment > Value::MaximumAlignment)
1747     return Error(AlignLoc, "huge alignments are not supported yet");
1748   return false;
1749 }
1750 
1751 /// ParseOptionalDerefAttrBytes
1752 ///   ::= /* empty */
1753 ///   ::= AttrKind '(' 4 ')'
1754 ///
1755 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
1756 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
1757                                            uint64_t &Bytes) {
1758   assert((AttrKind == lltok::kw_dereferenceable ||
1759           AttrKind == lltok::kw_dereferenceable_or_null) &&
1760          "contract!");
1761 
1762   Bytes = 0;
1763   if (!EatIfPresent(AttrKind))
1764     return false;
1765   LocTy ParenLoc = Lex.getLoc();
1766   if (!EatIfPresent(lltok::lparen))
1767     return Error(ParenLoc, "expected '('");
1768   LocTy DerefLoc = Lex.getLoc();
1769   if (ParseUInt64(Bytes)) return true;
1770   ParenLoc = Lex.getLoc();
1771   if (!EatIfPresent(lltok::rparen))
1772     return Error(ParenLoc, "expected ')'");
1773   if (!Bytes)
1774     return Error(DerefLoc, "dereferenceable bytes must be non-zero");
1775   return false;
1776 }
1777 
1778 /// ParseOptionalCommaAlign
1779 ///   ::=
1780 ///   ::= ',' align 4
1781 ///
1782 /// This returns with AteExtraComma set to true if it ate an excess comma at the
1783 /// end.
1784 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
1785                                        bool &AteExtraComma) {
1786   AteExtraComma = false;
1787   while (EatIfPresent(lltok::comma)) {
1788     // Metadata at the end is an early exit.
1789     if (Lex.getKind() == lltok::MetadataVar) {
1790       AteExtraComma = true;
1791       return false;
1792     }
1793 
1794     if (Lex.getKind() != lltok::kw_align)
1795       return Error(Lex.getLoc(), "expected metadata or 'align'");
1796 
1797     if (ParseOptionalAlignment(Alignment)) return true;
1798   }
1799 
1800   return false;
1801 }
1802 
1803 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
1804                                        Optional<unsigned> &HowManyArg) {
1805   Lex.Lex();
1806 
1807   auto StartParen = Lex.getLoc();
1808   if (!EatIfPresent(lltok::lparen))
1809     return Error(StartParen, "expected '('");
1810 
1811   if (ParseUInt32(BaseSizeArg))
1812     return true;
1813 
1814   if (EatIfPresent(lltok::comma)) {
1815     auto HowManyAt = Lex.getLoc();
1816     unsigned HowMany;
1817     if (ParseUInt32(HowMany))
1818       return true;
1819     if (HowMany == BaseSizeArg)
1820       return Error(HowManyAt,
1821                    "'allocsize' indices can't refer to the same parameter");
1822     HowManyArg = HowMany;
1823   } else
1824     HowManyArg = None;
1825 
1826   auto EndParen = Lex.getLoc();
1827   if (!EatIfPresent(lltok::rparen))
1828     return Error(EndParen, "expected ')'");
1829   return false;
1830 }
1831 
1832 /// ParseScopeAndOrdering
1833 ///   if isAtomic: ::= 'singlethread'? AtomicOrdering
1834 ///   else: ::=
1835 ///
1836 /// This sets Scope and Ordering to the parsed values.
1837 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope,
1838                                      AtomicOrdering &Ordering) {
1839   if (!isAtomic)
1840     return false;
1841 
1842   Scope = CrossThread;
1843   if (EatIfPresent(lltok::kw_singlethread))
1844     Scope = SingleThread;
1845 
1846   return ParseOrdering(Ordering);
1847 }
1848 
1849 /// ParseOrdering
1850 ///   ::= AtomicOrdering
1851 ///
1852 /// This sets Ordering to the parsed value.
1853 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
1854   switch (Lex.getKind()) {
1855   default: return TokError("Expected ordering on atomic instruction");
1856   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
1857   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
1858   // Not specified yet:
1859   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
1860   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
1861   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
1862   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
1863   case lltok::kw_seq_cst:
1864     Ordering = AtomicOrdering::SequentiallyConsistent;
1865     break;
1866   }
1867   Lex.Lex();
1868   return false;
1869 }
1870 
1871 /// ParseOptionalStackAlignment
1872 ///   ::= /* empty */
1873 ///   ::= 'alignstack' '(' 4 ')'
1874 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
1875   Alignment = 0;
1876   if (!EatIfPresent(lltok::kw_alignstack))
1877     return false;
1878   LocTy ParenLoc = Lex.getLoc();
1879   if (!EatIfPresent(lltok::lparen))
1880     return Error(ParenLoc, "expected '('");
1881   LocTy AlignLoc = Lex.getLoc();
1882   if (ParseUInt32(Alignment)) return true;
1883   ParenLoc = Lex.getLoc();
1884   if (!EatIfPresent(lltok::rparen))
1885     return Error(ParenLoc, "expected ')'");
1886   if (!isPowerOf2_32(Alignment))
1887     return Error(AlignLoc, "stack alignment is not a power of two");
1888   return false;
1889 }
1890 
1891 /// ParseIndexList - This parses the index list for an insert/extractvalue
1892 /// instruction.  This sets AteExtraComma in the case where we eat an extra
1893 /// comma at the end of the line and find that it is followed by metadata.
1894 /// Clients that don't allow metadata can call the version of this function that
1895 /// only takes one argument.
1896 ///
1897 /// ParseIndexList
1898 ///    ::=  (',' uint32)+
1899 ///
1900 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
1901                               bool &AteExtraComma) {
1902   AteExtraComma = false;
1903 
1904   if (Lex.getKind() != lltok::comma)
1905     return TokError("expected ',' as start of index list");
1906 
1907   while (EatIfPresent(lltok::comma)) {
1908     if (Lex.getKind() == lltok::MetadataVar) {
1909       if (Indices.empty()) return TokError("expected index");
1910       AteExtraComma = true;
1911       return false;
1912     }
1913     unsigned Idx = 0;
1914     if (ParseUInt32(Idx)) return true;
1915     Indices.push_back(Idx);
1916   }
1917 
1918   return false;
1919 }
1920 
1921 //===----------------------------------------------------------------------===//
1922 // Type Parsing.
1923 //===----------------------------------------------------------------------===//
1924 
1925 /// ParseType - Parse a type.
1926 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
1927   SMLoc TypeLoc = Lex.getLoc();
1928   switch (Lex.getKind()) {
1929   default:
1930     return TokError(Msg);
1931   case lltok::Type:
1932     // Type ::= 'float' | 'void' (etc)
1933     Result = Lex.getTyVal();
1934     Lex.Lex();
1935     break;
1936   case lltok::lbrace:
1937     // Type ::= StructType
1938     if (ParseAnonStructType(Result, false))
1939       return true;
1940     break;
1941   case lltok::lsquare:
1942     // Type ::= '[' ... ']'
1943     Lex.Lex(); // eat the lsquare.
1944     if (ParseArrayVectorType(Result, false))
1945       return true;
1946     break;
1947   case lltok::less: // Either vector or packed struct.
1948     // Type ::= '<' ... '>'
1949     Lex.Lex();
1950     if (Lex.getKind() == lltok::lbrace) {
1951       if (ParseAnonStructType(Result, true) ||
1952           ParseToken(lltok::greater, "expected '>' at end of packed struct"))
1953         return true;
1954     } else if (ParseArrayVectorType(Result, true))
1955       return true;
1956     break;
1957   case lltok::LocalVar: {
1958     // Type ::= %foo
1959     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
1960 
1961     // If the type hasn't been defined yet, create a forward definition and
1962     // remember where that forward def'n was seen (in case it never is defined).
1963     if (!Entry.first) {
1964       Entry.first = StructType::create(Context, Lex.getStrVal());
1965       Entry.second = Lex.getLoc();
1966     }
1967     Result = Entry.first;
1968     Lex.Lex();
1969     break;
1970   }
1971 
1972   case lltok::LocalVarID: {
1973     // Type ::= %4
1974     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
1975 
1976     // If the type hasn't been defined yet, create a forward definition and
1977     // remember where that forward def'n was seen (in case it never is defined).
1978     if (!Entry.first) {
1979       Entry.first = StructType::create(Context);
1980       Entry.second = Lex.getLoc();
1981     }
1982     Result = Entry.first;
1983     Lex.Lex();
1984     break;
1985   }
1986   }
1987 
1988   // Parse the type suffixes.
1989   while (1) {
1990     switch (Lex.getKind()) {
1991     // End of type.
1992     default:
1993       if (!AllowVoid && Result->isVoidTy())
1994         return Error(TypeLoc, "void type only allowed for function results");
1995       return false;
1996 
1997     // Type ::= Type '*'
1998     case lltok::star:
1999       if (Result->isLabelTy())
2000         return TokError("basic block pointers are invalid");
2001       if (Result->isVoidTy())
2002         return TokError("pointers to void are invalid - use i8* instead");
2003       if (!PointerType::isValidElementType(Result))
2004         return TokError("pointer to this type is invalid");
2005       Result = PointerType::getUnqual(Result);
2006       Lex.Lex();
2007       break;
2008 
2009     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2010     case lltok::kw_addrspace: {
2011       if (Result->isLabelTy())
2012         return TokError("basic block pointers are invalid");
2013       if (Result->isVoidTy())
2014         return TokError("pointers to void are invalid; use i8* instead");
2015       if (!PointerType::isValidElementType(Result))
2016         return TokError("pointer to this type is invalid");
2017       unsigned AddrSpace;
2018       if (ParseOptionalAddrSpace(AddrSpace) ||
2019           ParseToken(lltok::star, "expected '*' in address space"))
2020         return true;
2021 
2022       Result = PointerType::get(Result, AddrSpace);
2023       break;
2024     }
2025 
2026     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2027     case lltok::lparen:
2028       if (ParseFunctionType(Result))
2029         return true;
2030       break;
2031     }
2032   }
2033 }
2034 
2035 /// ParseParameterList
2036 ///    ::= '(' ')'
2037 ///    ::= '(' Arg (',' Arg)* ')'
2038 ///  Arg
2039 ///    ::= Type OptionalAttributes Value OptionalAttributes
2040 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2041                                   PerFunctionState &PFS, bool IsMustTailCall,
2042                                   bool InVarArgsFunc) {
2043   if (ParseToken(lltok::lparen, "expected '(' in call"))
2044     return true;
2045 
2046   unsigned AttrIndex = 1;
2047   while (Lex.getKind() != lltok::rparen) {
2048     // If this isn't the first argument, we need a comma.
2049     if (!ArgList.empty() &&
2050         ParseToken(lltok::comma, "expected ',' in argument list"))
2051       return true;
2052 
2053     // Parse an ellipsis if this is a musttail call in a variadic function.
2054     if (Lex.getKind() == lltok::dotdotdot) {
2055       const char *Msg = "unexpected ellipsis in argument list for ";
2056       if (!IsMustTailCall)
2057         return TokError(Twine(Msg) + "non-musttail call");
2058       if (!InVarArgsFunc)
2059         return TokError(Twine(Msg) + "musttail call in non-varargs function");
2060       Lex.Lex();  // Lex the '...', it is purely for readability.
2061       return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2062     }
2063 
2064     // Parse the argument.
2065     LocTy ArgLoc;
2066     Type *ArgTy = nullptr;
2067     AttrBuilder ArgAttrs;
2068     Value *V;
2069     if (ParseType(ArgTy, ArgLoc))
2070       return true;
2071 
2072     if (ArgTy->isMetadataTy()) {
2073       if (ParseMetadataAsValue(V, PFS))
2074         return true;
2075     } else {
2076       // Otherwise, handle normal operands.
2077       if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
2078         return true;
2079     }
2080     ArgList.push_back(ParamInfo(ArgLoc, V, AttributeSet::get(V->getContext(),
2081                                                              AttrIndex++,
2082                                                              ArgAttrs)));
2083   }
2084 
2085   if (IsMustTailCall && InVarArgsFunc)
2086     return TokError("expected '...' at end of argument list for musttail call "
2087                     "in varargs function");
2088 
2089   Lex.Lex();  // Lex the ')'.
2090   return false;
2091 }
2092 
2093 /// ParseOptionalOperandBundles
2094 ///    ::= /*empty*/
2095 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2096 ///
2097 /// OperandBundle
2098 ///    ::= bundle-tag '(' ')'
2099 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2100 ///
2101 /// bundle-tag ::= String Constant
2102 bool LLParser::ParseOptionalOperandBundles(
2103     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2104   LocTy BeginLoc = Lex.getLoc();
2105   if (!EatIfPresent(lltok::lsquare))
2106     return false;
2107 
2108   while (Lex.getKind() != lltok::rsquare) {
2109     // If this isn't the first operand bundle, we need a comma.
2110     if (!BundleList.empty() &&
2111         ParseToken(lltok::comma, "expected ',' in input list"))
2112       return true;
2113 
2114     std::string Tag;
2115     if (ParseStringConstant(Tag))
2116       return true;
2117 
2118     if (ParseToken(lltok::lparen, "expected '(' in operand bundle"))
2119       return true;
2120 
2121     std::vector<Value *> Inputs;
2122     while (Lex.getKind() != lltok::rparen) {
2123       // If this isn't the first input, we need a comma.
2124       if (!Inputs.empty() &&
2125           ParseToken(lltok::comma, "expected ',' in input list"))
2126         return true;
2127 
2128       Type *Ty = nullptr;
2129       Value *Input = nullptr;
2130       if (ParseType(Ty) || ParseValue(Ty, Input, PFS))
2131         return true;
2132       Inputs.push_back(Input);
2133     }
2134 
2135     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2136 
2137     Lex.Lex(); // Lex the ')'.
2138   }
2139 
2140   if (BundleList.empty())
2141     return Error(BeginLoc, "operand bundle set must not be empty");
2142 
2143   Lex.Lex(); // Lex the ']'.
2144   return false;
2145 }
2146 
2147 /// ParseArgumentList - Parse the argument list for a function type or function
2148 /// prototype.
2149 ///   ::= '(' ArgTypeListI ')'
2150 /// ArgTypeListI
2151 ///   ::= /*empty*/
2152 ///   ::= '...'
2153 ///   ::= ArgTypeList ',' '...'
2154 ///   ::= ArgType (',' ArgType)*
2155 ///
2156 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2157                                  bool &isVarArg){
2158   isVarArg = false;
2159   assert(Lex.getKind() == lltok::lparen);
2160   Lex.Lex(); // eat the (.
2161 
2162   if (Lex.getKind() == lltok::rparen) {
2163     // empty
2164   } else if (Lex.getKind() == lltok::dotdotdot) {
2165     isVarArg = true;
2166     Lex.Lex();
2167   } else {
2168     LocTy TypeLoc = Lex.getLoc();
2169     Type *ArgTy = nullptr;
2170     AttrBuilder Attrs;
2171     std::string Name;
2172 
2173     if (ParseType(ArgTy) ||
2174         ParseOptionalParamAttrs(Attrs)) return true;
2175 
2176     if (ArgTy->isVoidTy())
2177       return Error(TypeLoc, "argument can not have void type");
2178 
2179     if (Lex.getKind() == lltok::LocalVar) {
2180       Name = Lex.getStrVal();
2181       Lex.Lex();
2182     }
2183 
2184     if (!FunctionType::isValidArgumentType(ArgTy))
2185       return Error(TypeLoc, "invalid type for function argument");
2186 
2187     unsigned AttrIndex = 1;
2188     ArgList.emplace_back(TypeLoc, ArgTy, AttributeSet::get(ArgTy->getContext(),
2189                                                            AttrIndex++, Attrs),
2190                          std::move(Name));
2191 
2192     while (EatIfPresent(lltok::comma)) {
2193       // Handle ... at end of arg list.
2194       if (EatIfPresent(lltok::dotdotdot)) {
2195         isVarArg = true;
2196         break;
2197       }
2198 
2199       // Otherwise must be an argument type.
2200       TypeLoc = Lex.getLoc();
2201       if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
2202 
2203       if (ArgTy->isVoidTy())
2204         return Error(TypeLoc, "argument can not have void type");
2205 
2206       if (Lex.getKind() == lltok::LocalVar) {
2207         Name = Lex.getStrVal();
2208         Lex.Lex();
2209       } else {
2210         Name = "";
2211       }
2212 
2213       if (!ArgTy->isFirstClassType())
2214         return Error(TypeLoc, "invalid type for function argument");
2215 
2216       ArgList.emplace_back(
2217           TypeLoc, ArgTy,
2218           AttributeSet::get(ArgTy->getContext(), AttrIndex++, Attrs),
2219           std::move(Name));
2220     }
2221   }
2222 
2223   return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2224 }
2225 
2226 /// ParseFunctionType
2227 ///  ::= Type ArgumentList OptionalAttrs
2228 bool LLParser::ParseFunctionType(Type *&Result) {
2229   assert(Lex.getKind() == lltok::lparen);
2230 
2231   if (!FunctionType::isValidReturnType(Result))
2232     return TokError("invalid function return type");
2233 
2234   SmallVector<ArgInfo, 8> ArgList;
2235   bool isVarArg;
2236   if (ParseArgumentList(ArgList, isVarArg))
2237     return true;
2238 
2239   // Reject names on the arguments lists.
2240   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2241     if (!ArgList[i].Name.empty())
2242       return Error(ArgList[i].Loc, "argument name invalid in function type");
2243     if (ArgList[i].Attrs.hasAttributes(i + 1))
2244       return Error(ArgList[i].Loc,
2245                    "argument attributes invalid in function type");
2246   }
2247 
2248   SmallVector<Type*, 16> ArgListTy;
2249   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2250     ArgListTy.push_back(ArgList[i].Ty);
2251 
2252   Result = FunctionType::get(Result, ArgListTy, isVarArg);
2253   return false;
2254 }
2255 
2256 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
2257 /// other structs.
2258 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
2259   SmallVector<Type*, 8> Elts;
2260   if (ParseStructBody(Elts)) return true;
2261 
2262   Result = StructType::get(Context, Elts, Packed);
2263   return false;
2264 }
2265 
2266 /// ParseStructDefinition - Parse a struct in a 'type' definition.
2267 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
2268                                      std::pair<Type*, LocTy> &Entry,
2269                                      Type *&ResultTy) {
2270   // If the type was already defined, diagnose the redefinition.
2271   if (Entry.first && !Entry.second.isValid())
2272     return Error(TypeLoc, "redefinition of type");
2273 
2274   // If we have opaque, just return without filling in the definition for the
2275   // struct.  This counts as a definition as far as the .ll file goes.
2276   if (EatIfPresent(lltok::kw_opaque)) {
2277     // This type is being defined, so clear the location to indicate this.
2278     Entry.second = SMLoc();
2279 
2280     // If this type number has never been uttered, create it.
2281     if (!Entry.first)
2282       Entry.first = StructType::create(Context, Name);
2283     ResultTy = Entry.first;
2284     return false;
2285   }
2286 
2287   // If the type starts with '<', then it is either a packed struct or a vector.
2288   bool isPacked = EatIfPresent(lltok::less);
2289 
2290   // If we don't have a struct, then we have a random type alias, which we
2291   // accept for compatibility with old files.  These types are not allowed to be
2292   // forward referenced and not allowed to be recursive.
2293   if (Lex.getKind() != lltok::lbrace) {
2294     if (Entry.first)
2295       return Error(TypeLoc, "forward references to non-struct type");
2296 
2297     ResultTy = nullptr;
2298     if (isPacked)
2299       return ParseArrayVectorType(ResultTy, true);
2300     return ParseType(ResultTy);
2301   }
2302 
2303   // This type is being defined, so clear the location to indicate this.
2304   Entry.second = SMLoc();
2305 
2306   // If this type number has never been uttered, create it.
2307   if (!Entry.first)
2308     Entry.first = StructType::create(Context, Name);
2309 
2310   StructType *STy = cast<StructType>(Entry.first);
2311 
2312   SmallVector<Type*, 8> Body;
2313   if (ParseStructBody(Body) ||
2314       (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
2315     return true;
2316 
2317   STy->setBody(Body, isPacked);
2318   ResultTy = STy;
2319   return false;
2320 }
2321 
2322 
2323 /// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2324 ///   StructType
2325 ///     ::= '{' '}'
2326 ///     ::= '{' Type (',' Type)* '}'
2327 ///     ::= '<' '{' '}' '>'
2328 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2329 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
2330   assert(Lex.getKind() == lltok::lbrace);
2331   Lex.Lex(); // Consume the '{'
2332 
2333   // Handle the empty struct.
2334   if (EatIfPresent(lltok::rbrace))
2335     return false;
2336 
2337   LocTy EltTyLoc = Lex.getLoc();
2338   Type *Ty = nullptr;
2339   if (ParseType(Ty)) return true;
2340   Body.push_back(Ty);
2341 
2342   if (!StructType::isValidElementType(Ty))
2343     return Error(EltTyLoc, "invalid element type for struct");
2344 
2345   while (EatIfPresent(lltok::comma)) {
2346     EltTyLoc = Lex.getLoc();
2347     if (ParseType(Ty)) return true;
2348 
2349     if (!StructType::isValidElementType(Ty))
2350       return Error(EltTyLoc, "invalid element type for struct");
2351 
2352     Body.push_back(Ty);
2353   }
2354 
2355   return ParseToken(lltok::rbrace, "expected '}' at end of struct");
2356 }
2357 
2358 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2359 /// token has already been consumed.
2360 ///   Type
2361 ///     ::= '[' APSINTVAL 'x' Types ']'
2362 ///     ::= '<' APSINTVAL 'x' Types '>'
2363 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
2364   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2365       Lex.getAPSIntVal().getBitWidth() > 64)
2366     return TokError("expected number in address space");
2367 
2368   LocTy SizeLoc = Lex.getLoc();
2369   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2370   Lex.Lex();
2371 
2372   if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
2373       return true;
2374 
2375   LocTy TypeLoc = Lex.getLoc();
2376   Type *EltTy = nullptr;
2377   if (ParseType(EltTy)) return true;
2378 
2379   if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
2380                  "expected end of sequential type"))
2381     return true;
2382 
2383   if (isVector) {
2384     if (Size == 0)
2385       return Error(SizeLoc, "zero element vector is illegal");
2386     if ((unsigned)Size != Size)
2387       return Error(SizeLoc, "size too large for vector");
2388     if (!VectorType::isValidElementType(EltTy))
2389       return Error(TypeLoc, "invalid vector element type");
2390     Result = VectorType::get(EltTy, unsigned(Size));
2391   } else {
2392     if (!ArrayType::isValidElementType(EltTy))
2393       return Error(TypeLoc, "invalid array element type");
2394     Result = ArrayType::get(EltTy, Size);
2395   }
2396   return false;
2397 }
2398 
2399 //===----------------------------------------------------------------------===//
2400 // Function Semantic Analysis.
2401 //===----------------------------------------------------------------------===//
2402 
2403 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2404                                              int functionNumber)
2405   : P(p), F(f), FunctionNumber(functionNumber) {
2406 
2407   // Insert unnamed arguments into the NumberedVals list.
2408   for (Argument &A : F.args())
2409     if (!A.hasName())
2410       NumberedVals.push_back(&A);
2411 }
2412 
2413 LLParser::PerFunctionState::~PerFunctionState() {
2414   // If there were any forward referenced non-basicblock values, delete them.
2415 
2416   for (const auto &P : ForwardRefVals) {
2417     if (isa<BasicBlock>(P.second.first))
2418       continue;
2419     P.second.first->replaceAllUsesWith(
2420         UndefValue::get(P.second.first->getType()));
2421     delete P.second.first;
2422   }
2423 
2424   for (const auto &P : ForwardRefValIDs) {
2425     if (isa<BasicBlock>(P.second.first))
2426       continue;
2427     P.second.first->replaceAllUsesWith(
2428         UndefValue::get(P.second.first->getType()));
2429     delete P.second.first;
2430   }
2431 }
2432 
2433 bool LLParser::PerFunctionState::FinishFunction() {
2434   if (!ForwardRefVals.empty())
2435     return P.Error(ForwardRefVals.begin()->second.second,
2436                    "use of undefined value '%" + ForwardRefVals.begin()->first +
2437                    "'");
2438   if (!ForwardRefValIDs.empty())
2439     return P.Error(ForwardRefValIDs.begin()->second.second,
2440                    "use of undefined value '%" +
2441                    Twine(ForwardRefValIDs.begin()->first) + "'");
2442   return false;
2443 }
2444 
2445 
2446 /// GetVal - Get a value with the specified name or ID, creating a
2447 /// forward reference record if needed.  This can return null if the value
2448 /// exists but does not have the right type.
2449 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty,
2450                                           LocTy Loc) {
2451   // Look this name up in the normal function symbol table.
2452   Value *Val = F.getValueSymbolTable().lookup(Name);
2453 
2454   // If this is a forward reference for the value, see if we already created a
2455   // forward ref record.
2456   if (!Val) {
2457     auto I = ForwardRefVals.find(Name);
2458     if (I != ForwardRefVals.end())
2459       Val = I->second.first;
2460   }
2461 
2462   // If we have the value in the symbol table or fwd-ref table, return it.
2463   if (Val) {
2464     if (Val->getType() == Ty) return Val;
2465     if (Ty->isLabelTy())
2466       P.Error(Loc, "'%" + Name + "' is not a basic block");
2467     else
2468       P.Error(Loc, "'%" + Name + "' defined with type '" +
2469               getTypeString(Val->getType()) + "'");
2470     return nullptr;
2471   }
2472 
2473   // Don't make placeholders with invalid type.
2474   if (!Ty->isFirstClassType()) {
2475     P.Error(Loc, "invalid use of a non-first-class type");
2476     return nullptr;
2477   }
2478 
2479   // Otherwise, create a new forward reference for this value and remember it.
2480   Value *FwdVal;
2481   if (Ty->isLabelTy()) {
2482     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2483   } else {
2484     FwdVal = new Argument(Ty, Name);
2485   }
2486 
2487   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2488   return FwdVal;
2489 }
2490 
2491 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc) {
2492   // Look this name up in the normal function symbol table.
2493   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2494 
2495   // If this is a forward reference for the value, see if we already created a
2496   // forward ref record.
2497   if (!Val) {
2498     auto I = ForwardRefValIDs.find(ID);
2499     if (I != ForwardRefValIDs.end())
2500       Val = I->second.first;
2501   }
2502 
2503   // If we have the value in the symbol table or fwd-ref table, return it.
2504   if (Val) {
2505     if (Val->getType() == Ty) return Val;
2506     if (Ty->isLabelTy())
2507       P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
2508     else
2509       P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
2510               getTypeString(Val->getType()) + "'");
2511     return nullptr;
2512   }
2513 
2514   if (!Ty->isFirstClassType()) {
2515     P.Error(Loc, "invalid use of a non-first-class type");
2516     return nullptr;
2517   }
2518 
2519   // Otherwise, create a new forward reference for this value and remember it.
2520   Value *FwdVal;
2521   if (Ty->isLabelTy()) {
2522     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2523   } else {
2524     FwdVal = new Argument(Ty);
2525   }
2526 
2527   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2528   return FwdVal;
2529 }
2530 
2531 /// SetInstName - After an instruction is parsed and inserted into its
2532 /// basic block, this installs its name.
2533 bool LLParser::PerFunctionState::SetInstName(int NameID,
2534                                              const std::string &NameStr,
2535                                              LocTy NameLoc, Instruction *Inst) {
2536   // If this instruction has void type, it cannot have a name or ID specified.
2537   if (Inst->getType()->isVoidTy()) {
2538     if (NameID != -1 || !NameStr.empty())
2539       return P.Error(NameLoc, "instructions returning void cannot have a name");
2540     return false;
2541   }
2542 
2543   // If this was a numbered instruction, verify that the instruction is the
2544   // expected value and resolve any forward references.
2545   if (NameStr.empty()) {
2546     // If neither a name nor an ID was specified, just use the next ID.
2547     if (NameID == -1)
2548       NameID = NumberedVals.size();
2549 
2550     if (unsigned(NameID) != NumberedVals.size())
2551       return P.Error(NameLoc, "instruction expected to be numbered '%" +
2552                      Twine(NumberedVals.size()) + "'");
2553 
2554     auto FI = ForwardRefValIDs.find(NameID);
2555     if (FI != ForwardRefValIDs.end()) {
2556       Value *Sentinel = FI->second.first;
2557       if (Sentinel->getType() != Inst->getType())
2558         return P.Error(NameLoc, "instruction forward referenced with type '" +
2559                        getTypeString(FI->second.first->getType()) + "'");
2560 
2561       Sentinel->replaceAllUsesWith(Inst);
2562       delete Sentinel;
2563       ForwardRefValIDs.erase(FI);
2564     }
2565 
2566     NumberedVals.push_back(Inst);
2567     return false;
2568   }
2569 
2570   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
2571   auto FI = ForwardRefVals.find(NameStr);
2572   if (FI != ForwardRefVals.end()) {
2573     Value *Sentinel = FI->second.first;
2574     if (Sentinel->getType() != Inst->getType())
2575       return P.Error(NameLoc, "instruction forward referenced with type '" +
2576                      getTypeString(FI->second.first->getType()) + "'");
2577 
2578     Sentinel->replaceAllUsesWith(Inst);
2579     delete Sentinel;
2580     ForwardRefVals.erase(FI);
2581   }
2582 
2583   // Set the name on the instruction.
2584   Inst->setName(NameStr);
2585 
2586   if (Inst->getName() != NameStr)
2587     return P.Error(NameLoc, "multiple definition of local value named '" +
2588                    NameStr + "'");
2589   return false;
2590 }
2591 
2592 /// GetBB - Get a basic block with the specified name or ID, creating a
2593 /// forward reference record if needed.
2594 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
2595                                               LocTy Loc) {
2596   return dyn_cast_or_null<BasicBlock>(GetVal(Name,
2597                                       Type::getLabelTy(F.getContext()), Loc));
2598 }
2599 
2600 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
2601   return dyn_cast_or_null<BasicBlock>(GetVal(ID,
2602                                       Type::getLabelTy(F.getContext()), Loc));
2603 }
2604 
2605 /// DefineBB - Define the specified basic block, which is either named or
2606 /// unnamed.  If there is an error, this returns null otherwise it returns
2607 /// the block being defined.
2608 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
2609                                                  LocTy Loc) {
2610   BasicBlock *BB;
2611   if (Name.empty())
2612     BB = GetBB(NumberedVals.size(), Loc);
2613   else
2614     BB = GetBB(Name, Loc);
2615   if (!BB) return nullptr; // Already diagnosed error.
2616 
2617   // Move the block to the end of the function.  Forward ref'd blocks are
2618   // inserted wherever they happen to be referenced.
2619   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
2620 
2621   // Remove the block from forward ref sets.
2622   if (Name.empty()) {
2623     ForwardRefValIDs.erase(NumberedVals.size());
2624     NumberedVals.push_back(BB);
2625   } else {
2626     // BB forward references are already in the function symbol table.
2627     ForwardRefVals.erase(Name);
2628   }
2629 
2630   return BB;
2631 }
2632 
2633 //===----------------------------------------------------------------------===//
2634 // Constants.
2635 //===----------------------------------------------------------------------===//
2636 
2637 /// ParseValID - Parse an abstract value that doesn't necessarily have a
2638 /// type implied.  For example, if we parse "4" we don't know what integer type
2639 /// it has.  The value will later be combined with its type and checked for
2640 /// sanity.  PFS is used to convert function-local operands of metadata (since
2641 /// metadata operands are not just parsed here but also converted to values).
2642 /// PFS can be null when we are not parsing metadata values inside a function.
2643 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
2644   ID.Loc = Lex.getLoc();
2645   switch (Lex.getKind()) {
2646   default: return TokError("expected value token");
2647   case lltok::GlobalID:  // @42
2648     ID.UIntVal = Lex.getUIntVal();
2649     ID.Kind = ValID::t_GlobalID;
2650     break;
2651   case lltok::GlobalVar:  // @foo
2652     ID.StrVal = Lex.getStrVal();
2653     ID.Kind = ValID::t_GlobalName;
2654     break;
2655   case lltok::LocalVarID:  // %42
2656     ID.UIntVal = Lex.getUIntVal();
2657     ID.Kind = ValID::t_LocalID;
2658     break;
2659   case lltok::LocalVar:  // %foo
2660     ID.StrVal = Lex.getStrVal();
2661     ID.Kind = ValID::t_LocalName;
2662     break;
2663   case lltok::APSInt:
2664     ID.APSIntVal = Lex.getAPSIntVal();
2665     ID.Kind = ValID::t_APSInt;
2666     break;
2667   case lltok::APFloat:
2668     ID.APFloatVal = Lex.getAPFloatVal();
2669     ID.Kind = ValID::t_APFloat;
2670     break;
2671   case lltok::kw_true:
2672     ID.ConstantVal = ConstantInt::getTrue(Context);
2673     ID.Kind = ValID::t_Constant;
2674     break;
2675   case lltok::kw_false:
2676     ID.ConstantVal = ConstantInt::getFalse(Context);
2677     ID.Kind = ValID::t_Constant;
2678     break;
2679   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
2680   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
2681   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
2682   case lltok::kw_none: ID.Kind = ValID::t_None; break;
2683 
2684   case lltok::lbrace: {
2685     // ValID ::= '{' ConstVector '}'
2686     Lex.Lex();
2687     SmallVector<Constant*, 16> Elts;
2688     if (ParseGlobalValueVector(Elts) ||
2689         ParseToken(lltok::rbrace, "expected end of struct constant"))
2690       return true;
2691 
2692     ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
2693     ID.UIntVal = Elts.size();
2694     memcpy(ID.ConstantStructElts.get(), Elts.data(),
2695            Elts.size() * sizeof(Elts[0]));
2696     ID.Kind = ValID::t_ConstantStruct;
2697     return false;
2698   }
2699   case lltok::less: {
2700     // ValID ::= '<' ConstVector '>'         --> Vector.
2701     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
2702     Lex.Lex();
2703     bool isPackedStruct = EatIfPresent(lltok::lbrace);
2704 
2705     SmallVector<Constant*, 16> Elts;
2706     LocTy FirstEltLoc = Lex.getLoc();
2707     if (ParseGlobalValueVector(Elts) ||
2708         (isPackedStruct &&
2709          ParseToken(lltok::rbrace, "expected end of packed struct")) ||
2710         ParseToken(lltok::greater, "expected end of constant"))
2711       return true;
2712 
2713     if (isPackedStruct) {
2714       ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
2715       memcpy(ID.ConstantStructElts.get(), Elts.data(),
2716              Elts.size() * sizeof(Elts[0]));
2717       ID.UIntVal = Elts.size();
2718       ID.Kind = ValID::t_PackedConstantStruct;
2719       return false;
2720     }
2721 
2722     if (Elts.empty())
2723       return Error(ID.Loc, "constant vector must not be empty");
2724 
2725     if (!Elts[0]->getType()->isIntegerTy() &&
2726         !Elts[0]->getType()->isFloatingPointTy() &&
2727         !Elts[0]->getType()->isPointerTy())
2728       return Error(FirstEltLoc,
2729             "vector elements must have integer, pointer or floating point type");
2730 
2731     // Verify that all the vector elements have the same type.
2732     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
2733       if (Elts[i]->getType() != Elts[0]->getType())
2734         return Error(FirstEltLoc,
2735                      "vector element #" + Twine(i) +
2736                     " is not of type '" + getTypeString(Elts[0]->getType()));
2737 
2738     ID.ConstantVal = ConstantVector::get(Elts);
2739     ID.Kind = ValID::t_Constant;
2740     return false;
2741   }
2742   case lltok::lsquare: {   // Array Constant
2743     Lex.Lex();
2744     SmallVector<Constant*, 16> Elts;
2745     LocTy FirstEltLoc = Lex.getLoc();
2746     if (ParseGlobalValueVector(Elts) ||
2747         ParseToken(lltok::rsquare, "expected end of array constant"))
2748       return true;
2749 
2750     // Handle empty element.
2751     if (Elts.empty()) {
2752       // Use undef instead of an array because it's inconvenient to determine
2753       // the element type at this point, there being no elements to examine.
2754       ID.Kind = ValID::t_EmptyArray;
2755       return false;
2756     }
2757 
2758     if (!Elts[0]->getType()->isFirstClassType())
2759       return Error(FirstEltLoc, "invalid array element type: " +
2760                    getTypeString(Elts[0]->getType()));
2761 
2762     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2763 
2764     // Verify all elements are correct type!
2765     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2766       if (Elts[i]->getType() != Elts[0]->getType())
2767         return Error(FirstEltLoc,
2768                      "array element #" + Twine(i) +
2769                      " is not of type '" + getTypeString(Elts[0]->getType()));
2770     }
2771 
2772     ID.ConstantVal = ConstantArray::get(ATy, Elts);
2773     ID.Kind = ValID::t_Constant;
2774     return false;
2775   }
2776   case lltok::kw_c:  // c "foo"
2777     Lex.Lex();
2778     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
2779                                                   false);
2780     if (ParseToken(lltok::StringConstant, "expected string")) return true;
2781     ID.Kind = ValID::t_Constant;
2782     return false;
2783 
2784   case lltok::kw_asm: {
2785     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
2786     //             STRINGCONSTANT
2787     bool HasSideEffect, AlignStack, AsmDialect;
2788     Lex.Lex();
2789     if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2790         ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2791         ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
2792         ParseStringConstant(ID.StrVal) ||
2793         ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2794         ParseToken(lltok::StringConstant, "expected constraint string"))
2795       return true;
2796     ID.StrVal2 = Lex.getStrVal();
2797     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
2798       (unsigned(AsmDialect)<<2);
2799     ID.Kind = ValID::t_InlineAsm;
2800     return false;
2801   }
2802 
2803   case lltok::kw_blockaddress: {
2804     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2805     Lex.Lex();
2806 
2807     ValID Fn, Label;
2808 
2809     if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2810         ParseValID(Fn) ||
2811         ParseToken(lltok::comma, "expected comma in block address expression")||
2812         ParseValID(Label) ||
2813         ParseToken(lltok::rparen, "expected ')' in block address expression"))
2814       return true;
2815 
2816     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
2817       return Error(Fn.Loc, "expected function name in blockaddress");
2818     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
2819       return Error(Label.Loc, "expected basic block name in blockaddress");
2820 
2821     // Try to find the function (but skip it if it's forward-referenced).
2822     GlobalValue *GV = nullptr;
2823     if (Fn.Kind == ValID::t_GlobalID) {
2824       if (Fn.UIntVal < NumberedVals.size())
2825         GV = NumberedVals[Fn.UIntVal];
2826     } else if (!ForwardRefVals.count(Fn.StrVal)) {
2827       GV = M->getNamedValue(Fn.StrVal);
2828     }
2829     Function *F = nullptr;
2830     if (GV) {
2831       // Confirm that it's actually a function with a definition.
2832       if (!isa<Function>(GV))
2833         return Error(Fn.Loc, "expected function name in blockaddress");
2834       F = cast<Function>(GV);
2835       if (F->isDeclaration())
2836         return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
2837     }
2838 
2839     if (!F) {
2840       // Make a global variable as a placeholder for this reference.
2841       GlobalValue *&FwdRef =
2842           ForwardRefBlockAddresses.insert(std::make_pair(
2843                                               std::move(Fn),
2844                                               std::map<ValID, GlobalValue *>()))
2845               .first->second.insert(std::make_pair(std::move(Label), nullptr))
2846               .first->second;
2847       if (!FwdRef)
2848         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
2849                                     GlobalValue::InternalLinkage, nullptr, "");
2850       ID.ConstantVal = FwdRef;
2851       ID.Kind = ValID::t_Constant;
2852       return false;
2853     }
2854 
2855     // We found the function; now find the basic block.  Don't use PFS, since we
2856     // might be inside a constant expression.
2857     BasicBlock *BB;
2858     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
2859       if (Label.Kind == ValID::t_LocalID)
2860         BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
2861       else
2862         BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
2863       if (!BB)
2864         return Error(Label.Loc, "referenced value is not a basic block");
2865     } else {
2866       if (Label.Kind == ValID::t_LocalID)
2867         return Error(Label.Loc, "cannot take address of numeric label after "
2868                                 "the function is defined");
2869       BB = dyn_cast_or_null<BasicBlock>(
2870           F->getValueSymbolTable().lookup(Label.StrVal));
2871       if (!BB)
2872         return Error(Label.Loc, "referenced value is not a basic block");
2873     }
2874 
2875     ID.ConstantVal = BlockAddress::get(F, BB);
2876     ID.Kind = ValID::t_Constant;
2877     return false;
2878   }
2879 
2880   case lltok::kw_trunc:
2881   case lltok::kw_zext:
2882   case lltok::kw_sext:
2883   case lltok::kw_fptrunc:
2884   case lltok::kw_fpext:
2885   case lltok::kw_bitcast:
2886   case lltok::kw_addrspacecast:
2887   case lltok::kw_uitofp:
2888   case lltok::kw_sitofp:
2889   case lltok::kw_fptoui:
2890   case lltok::kw_fptosi:
2891   case lltok::kw_inttoptr:
2892   case lltok::kw_ptrtoint: {
2893     unsigned Opc = Lex.getUIntVal();
2894     Type *DestTy = nullptr;
2895     Constant *SrcVal;
2896     Lex.Lex();
2897     if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
2898         ParseGlobalTypeAndValue(SrcVal) ||
2899         ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
2900         ParseType(DestTy) ||
2901         ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
2902       return true;
2903     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
2904       return Error(ID.Loc, "invalid cast opcode for cast from '" +
2905                    getTypeString(SrcVal->getType()) + "' to '" +
2906                    getTypeString(DestTy) + "'");
2907     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
2908                                                  SrcVal, DestTy);
2909     ID.Kind = ValID::t_Constant;
2910     return false;
2911   }
2912   case lltok::kw_extractvalue: {
2913     Lex.Lex();
2914     Constant *Val;
2915     SmallVector<unsigned, 4> Indices;
2916     if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
2917         ParseGlobalTypeAndValue(Val) ||
2918         ParseIndexList(Indices) ||
2919         ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
2920       return true;
2921 
2922     if (!Val->getType()->isAggregateType())
2923       return Error(ID.Loc, "extractvalue operand must be aggregate type");
2924     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
2925       return Error(ID.Loc, "invalid indices for extractvalue");
2926     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
2927     ID.Kind = ValID::t_Constant;
2928     return false;
2929   }
2930   case lltok::kw_insertvalue: {
2931     Lex.Lex();
2932     Constant *Val0, *Val1;
2933     SmallVector<unsigned, 4> Indices;
2934     if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
2935         ParseGlobalTypeAndValue(Val0) ||
2936         ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
2937         ParseGlobalTypeAndValue(Val1) ||
2938         ParseIndexList(Indices) ||
2939         ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
2940       return true;
2941     if (!Val0->getType()->isAggregateType())
2942       return Error(ID.Loc, "insertvalue operand must be aggregate type");
2943     Type *IndexedType =
2944         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
2945     if (!IndexedType)
2946       return Error(ID.Loc, "invalid indices for insertvalue");
2947     if (IndexedType != Val1->getType())
2948       return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
2949                                getTypeString(Val1->getType()) +
2950                                "' instead of '" + getTypeString(IndexedType) +
2951                                "'");
2952     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
2953     ID.Kind = ValID::t_Constant;
2954     return false;
2955   }
2956   case lltok::kw_icmp:
2957   case lltok::kw_fcmp: {
2958     unsigned PredVal, Opc = Lex.getUIntVal();
2959     Constant *Val0, *Val1;
2960     Lex.Lex();
2961     if (ParseCmpPredicate(PredVal, Opc) ||
2962         ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
2963         ParseGlobalTypeAndValue(Val0) ||
2964         ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
2965         ParseGlobalTypeAndValue(Val1) ||
2966         ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
2967       return true;
2968 
2969     if (Val0->getType() != Val1->getType())
2970       return Error(ID.Loc, "compare operands must have the same type");
2971 
2972     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
2973 
2974     if (Opc == Instruction::FCmp) {
2975       if (!Val0->getType()->isFPOrFPVectorTy())
2976         return Error(ID.Loc, "fcmp requires floating point operands");
2977       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
2978     } else {
2979       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
2980       if (!Val0->getType()->isIntOrIntVectorTy() &&
2981           !Val0->getType()->getScalarType()->isPointerTy())
2982         return Error(ID.Loc, "icmp requires pointer or integer operands");
2983       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
2984     }
2985     ID.Kind = ValID::t_Constant;
2986     return false;
2987   }
2988 
2989   // Binary Operators.
2990   case lltok::kw_add:
2991   case lltok::kw_fadd:
2992   case lltok::kw_sub:
2993   case lltok::kw_fsub:
2994   case lltok::kw_mul:
2995   case lltok::kw_fmul:
2996   case lltok::kw_udiv:
2997   case lltok::kw_sdiv:
2998   case lltok::kw_fdiv:
2999   case lltok::kw_urem:
3000   case lltok::kw_srem:
3001   case lltok::kw_frem:
3002   case lltok::kw_shl:
3003   case lltok::kw_lshr:
3004   case lltok::kw_ashr: {
3005     bool NUW = false;
3006     bool NSW = false;
3007     bool Exact = false;
3008     unsigned Opc = Lex.getUIntVal();
3009     Constant *Val0, *Val1;
3010     Lex.Lex();
3011     LocTy ModifierLoc = Lex.getLoc();
3012     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3013         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3014       if (EatIfPresent(lltok::kw_nuw))
3015         NUW = true;
3016       if (EatIfPresent(lltok::kw_nsw)) {
3017         NSW = true;
3018         if (EatIfPresent(lltok::kw_nuw))
3019           NUW = true;
3020       }
3021     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3022                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3023       if (EatIfPresent(lltok::kw_exact))
3024         Exact = true;
3025     }
3026     if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3027         ParseGlobalTypeAndValue(Val0) ||
3028         ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
3029         ParseGlobalTypeAndValue(Val1) ||
3030         ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3031       return true;
3032     if (Val0->getType() != Val1->getType())
3033       return Error(ID.Loc, "operands of constexpr must have same type");
3034     if (!Val0->getType()->isIntOrIntVectorTy()) {
3035       if (NUW)
3036         return Error(ModifierLoc, "nuw only applies to integer operations");
3037       if (NSW)
3038         return Error(ModifierLoc, "nsw only applies to integer operations");
3039     }
3040     // Check that the type is valid for the operator.
3041     switch (Opc) {
3042     case Instruction::Add:
3043     case Instruction::Sub:
3044     case Instruction::Mul:
3045     case Instruction::UDiv:
3046     case Instruction::SDiv:
3047     case Instruction::URem:
3048     case Instruction::SRem:
3049     case Instruction::Shl:
3050     case Instruction::AShr:
3051     case Instruction::LShr:
3052       if (!Val0->getType()->isIntOrIntVectorTy())
3053         return Error(ID.Loc, "constexpr requires integer operands");
3054       break;
3055     case Instruction::FAdd:
3056     case Instruction::FSub:
3057     case Instruction::FMul:
3058     case Instruction::FDiv:
3059     case Instruction::FRem:
3060       if (!Val0->getType()->isFPOrFPVectorTy())
3061         return Error(ID.Loc, "constexpr requires fp operands");
3062       break;
3063     default: llvm_unreachable("Unknown binary operator!");
3064     }
3065     unsigned Flags = 0;
3066     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3067     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3068     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3069     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3070     ID.ConstantVal = C;
3071     ID.Kind = ValID::t_Constant;
3072     return false;
3073   }
3074 
3075   // Logical Operations
3076   case lltok::kw_and:
3077   case lltok::kw_or:
3078   case lltok::kw_xor: {
3079     unsigned Opc = Lex.getUIntVal();
3080     Constant *Val0, *Val1;
3081     Lex.Lex();
3082     if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3083         ParseGlobalTypeAndValue(Val0) ||
3084         ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
3085         ParseGlobalTypeAndValue(Val1) ||
3086         ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3087       return true;
3088     if (Val0->getType() != Val1->getType())
3089       return Error(ID.Loc, "operands of constexpr must have same type");
3090     if (!Val0->getType()->isIntOrIntVectorTy())
3091       return Error(ID.Loc,
3092                    "constexpr requires integer or integer vector operands");
3093     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3094     ID.Kind = ValID::t_Constant;
3095     return false;
3096   }
3097 
3098   case lltok::kw_getelementptr:
3099   case lltok::kw_shufflevector:
3100   case lltok::kw_insertelement:
3101   case lltok::kw_extractelement:
3102   case lltok::kw_select: {
3103     unsigned Opc = Lex.getUIntVal();
3104     SmallVector<Constant*, 16> Elts;
3105     bool InBounds = false;
3106     Type *Ty;
3107     Lex.Lex();
3108 
3109     if (Opc == Instruction::GetElementPtr)
3110       InBounds = EatIfPresent(lltok::kw_inbounds);
3111 
3112     if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
3113       return true;
3114 
3115     LocTy ExplicitTypeLoc = Lex.getLoc();
3116     if (Opc == Instruction::GetElementPtr) {
3117       if (ParseType(Ty) ||
3118           ParseToken(lltok::comma, "expected comma after getelementptr's type"))
3119         return true;
3120     }
3121 
3122     if (ParseGlobalValueVector(Elts) ||
3123         ParseToken(lltok::rparen, "expected ')' in constantexpr"))
3124       return true;
3125 
3126     if (Opc == Instruction::GetElementPtr) {
3127       if (Elts.size() == 0 ||
3128           !Elts[0]->getType()->getScalarType()->isPointerTy())
3129         return Error(ID.Loc, "base of getelementptr must be a pointer");
3130 
3131       Type *BaseType = Elts[0]->getType();
3132       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3133       if (Ty != BasePointerType->getElementType())
3134         return Error(
3135             ExplicitTypeLoc,
3136             "explicit pointee type doesn't match operand's pointee type");
3137 
3138       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3139       for (Constant *Val : Indices) {
3140         Type *ValTy = Val->getType();
3141         if (!ValTy->getScalarType()->isIntegerTy())
3142           return Error(ID.Loc, "getelementptr index must be an integer");
3143         if (ValTy->isVectorTy() != BaseType->isVectorTy())
3144           return Error(ID.Loc, "getelementptr index type missmatch");
3145         if (ValTy->isVectorTy()) {
3146           unsigned ValNumEl = ValTy->getVectorNumElements();
3147           unsigned PtrNumEl = BaseType->getVectorNumElements();
3148           if (ValNumEl != PtrNumEl)
3149             return Error(
3150                 ID.Loc,
3151                 "getelementptr vector index has a wrong number of elements");
3152         }
3153       }
3154 
3155       SmallPtrSet<Type*, 4> Visited;
3156       if (!Indices.empty() && !Ty->isSized(&Visited))
3157         return Error(ID.Loc, "base element of getelementptr must be sized");
3158 
3159       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3160         return Error(ID.Loc, "invalid getelementptr indices");
3161       ID.ConstantVal =
3162           ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, InBounds);
3163     } else if (Opc == Instruction::Select) {
3164       if (Elts.size() != 3)
3165         return Error(ID.Loc, "expected three operands to select");
3166       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3167                                                               Elts[2]))
3168         return Error(ID.Loc, Reason);
3169       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3170     } else if (Opc == Instruction::ShuffleVector) {
3171       if (Elts.size() != 3)
3172         return Error(ID.Loc, "expected three operands to shufflevector");
3173       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3174         return Error(ID.Loc, "invalid operands to shufflevector");
3175       ID.ConstantVal =
3176                  ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
3177     } else if (Opc == Instruction::ExtractElement) {
3178       if (Elts.size() != 2)
3179         return Error(ID.Loc, "expected two operands to extractelement");
3180       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3181         return Error(ID.Loc, "invalid extractelement operands");
3182       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3183     } else {
3184       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3185       if (Elts.size() != 3)
3186       return Error(ID.Loc, "expected three operands to insertelement");
3187       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3188         return Error(ID.Loc, "invalid insertelement operands");
3189       ID.ConstantVal =
3190                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3191     }
3192 
3193     ID.Kind = ValID::t_Constant;
3194     return false;
3195   }
3196   }
3197 
3198   Lex.Lex();
3199   return false;
3200 }
3201 
3202 /// ParseGlobalValue - Parse a global value with the specified type.
3203 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
3204   C = nullptr;
3205   ValID ID;
3206   Value *V = nullptr;
3207   bool Parsed = ParseValID(ID) ||
3208                 ConvertValIDToValue(Ty, ID, V, nullptr);
3209   if (V && !(C = dyn_cast<Constant>(V)))
3210     return Error(ID.Loc, "global values must be constants");
3211   return Parsed;
3212 }
3213 
3214 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
3215   Type *Ty = nullptr;
3216   return ParseType(Ty) ||
3217          ParseGlobalValue(Ty, V);
3218 }
3219 
3220 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3221   C = nullptr;
3222 
3223   LocTy KwLoc = Lex.getLoc();
3224   if (!EatIfPresent(lltok::kw_comdat))
3225     return false;
3226 
3227   if (EatIfPresent(lltok::lparen)) {
3228     if (Lex.getKind() != lltok::ComdatVar)
3229       return TokError("expected comdat variable");
3230     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3231     Lex.Lex();
3232     if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
3233       return true;
3234   } else {
3235     if (GlobalName.empty())
3236       return TokError("comdat cannot be unnamed");
3237     C = getComdat(GlobalName, KwLoc);
3238   }
3239 
3240   return false;
3241 }
3242 
3243 /// ParseGlobalValueVector
3244 ///   ::= /*empty*/
3245 ///   ::= TypeAndValue (',' TypeAndValue)*
3246 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts) {
3247   // Empty list.
3248   if (Lex.getKind() == lltok::rbrace ||
3249       Lex.getKind() == lltok::rsquare ||
3250       Lex.getKind() == lltok::greater ||
3251       Lex.getKind() == lltok::rparen)
3252     return false;
3253 
3254   Constant *C;
3255   if (ParseGlobalTypeAndValue(C)) return true;
3256   Elts.push_back(C);
3257 
3258   while (EatIfPresent(lltok::comma)) {
3259     if (ParseGlobalTypeAndValue(C)) return true;
3260     Elts.push_back(C);
3261   }
3262 
3263   return false;
3264 }
3265 
3266 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
3267   SmallVector<Metadata *, 16> Elts;
3268   if (ParseMDNodeVector(Elts))
3269     return true;
3270 
3271   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3272   return false;
3273 }
3274 
3275 /// MDNode:
3276 ///  ::= !{ ... }
3277 ///  ::= !7
3278 ///  ::= !DILocation(...)
3279 bool LLParser::ParseMDNode(MDNode *&N) {
3280   if (Lex.getKind() == lltok::MetadataVar)
3281     return ParseSpecializedMDNode(N);
3282 
3283   return ParseToken(lltok::exclaim, "expected '!' here") ||
3284          ParseMDNodeTail(N);
3285 }
3286 
3287 bool LLParser::ParseMDNodeTail(MDNode *&N) {
3288   // !{ ... }
3289   if (Lex.getKind() == lltok::lbrace)
3290     return ParseMDTuple(N);
3291 
3292   // !42
3293   return ParseMDNodeID(N);
3294 }
3295 
3296 namespace {
3297 
3298 /// Structure to represent an optional metadata field.
3299 template <class FieldTy> struct MDFieldImpl {
3300   typedef MDFieldImpl ImplTy;
3301   FieldTy Val;
3302   bool Seen;
3303 
3304   void assign(FieldTy Val) {
3305     Seen = true;
3306     this->Val = std::move(Val);
3307   }
3308 
3309   explicit MDFieldImpl(FieldTy Default)
3310       : Val(std::move(Default)), Seen(false) {}
3311 };
3312 
3313 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3314   uint64_t Max;
3315 
3316   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3317       : ImplTy(Default), Max(Max) {}
3318 };
3319 struct LineField : public MDUnsignedField {
3320   LineField() : MDUnsignedField(0, UINT32_MAX) {}
3321 };
3322 struct ColumnField : public MDUnsignedField {
3323   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3324 };
3325 struct DwarfTagField : public MDUnsignedField {
3326   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3327   DwarfTagField(dwarf::Tag DefaultTag)
3328       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3329 };
3330 struct DwarfMacinfoTypeField : public MDUnsignedField {
3331   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3332   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3333     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3334 };
3335 struct DwarfAttEncodingField : public MDUnsignedField {
3336   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3337 };
3338 struct DwarfVirtualityField : public MDUnsignedField {
3339   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3340 };
3341 struct DwarfLangField : public MDUnsignedField {
3342   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3343 };
3344 struct EmissionKindField : public MDUnsignedField {
3345   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3346 };
3347 
3348 struct DIFlagField : public MDUnsignedField {
3349   DIFlagField() : MDUnsignedField(0, UINT32_MAX) {}
3350 };
3351 
3352 struct MDSignedField : public MDFieldImpl<int64_t> {
3353   int64_t Min;
3354   int64_t Max;
3355 
3356   MDSignedField(int64_t Default = 0)
3357       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3358   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3359       : ImplTy(Default), Min(Min), Max(Max) {}
3360 };
3361 
3362 struct MDBoolField : public MDFieldImpl<bool> {
3363   MDBoolField(bool Default = false) : ImplTy(Default) {}
3364 };
3365 struct MDField : public MDFieldImpl<Metadata *> {
3366   bool AllowNull;
3367 
3368   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3369 };
3370 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
3371   MDConstant() : ImplTy(nullptr) {}
3372 };
3373 struct MDStringField : public MDFieldImpl<MDString *> {
3374   bool AllowEmpty;
3375   MDStringField(bool AllowEmpty = true)
3376       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3377 };
3378 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3379   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3380 };
3381 
3382 } // end namespace
3383 
3384 namespace llvm {
3385 
3386 template <>
3387 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3388                             MDUnsignedField &Result) {
3389   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3390     return TokError("expected unsigned integer");
3391 
3392   auto &U = Lex.getAPSIntVal();
3393   if (U.ugt(Result.Max))
3394     return TokError("value for '" + Name + "' too large, limit is " +
3395                     Twine(Result.Max));
3396   Result.assign(U.getZExtValue());
3397   assert(Result.Val <= Result.Max && "Expected value in range");
3398   Lex.Lex();
3399   return false;
3400 }
3401 
3402 template <>
3403 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
3404   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3405 }
3406 template <>
3407 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
3408   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3409 }
3410 
3411 template <>
3412 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
3413   if (Lex.getKind() == lltok::APSInt)
3414     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3415 
3416   if (Lex.getKind() != lltok::DwarfTag)
3417     return TokError("expected DWARF tag");
3418 
3419   unsigned Tag = dwarf::getTag(Lex.getStrVal());
3420   if (Tag == dwarf::DW_TAG_invalid)
3421     return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
3422   assert(Tag <= Result.Max && "Expected valid DWARF tag");
3423 
3424   Result.assign(Tag);
3425   Lex.Lex();
3426   return false;
3427 }
3428 
3429 template <>
3430 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3431                             DwarfMacinfoTypeField &Result) {
3432   if (Lex.getKind() == lltok::APSInt)
3433     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3434 
3435   if (Lex.getKind() != lltok::DwarfMacinfo)
3436     return TokError("expected DWARF macinfo type");
3437 
3438   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
3439   if (Macinfo == dwarf::DW_MACINFO_invalid)
3440     return TokError(
3441         "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'");
3442   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
3443 
3444   Result.assign(Macinfo);
3445   Lex.Lex();
3446   return false;
3447 }
3448 
3449 template <>
3450 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3451                             DwarfVirtualityField &Result) {
3452   if (Lex.getKind() == lltok::APSInt)
3453     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3454 
3455   if (Lex.getKind() != lltok::DwarfVirtuality)
3456     return TokError("expected DWARF virtuality code");
3457 
3458   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
3459   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
3460     return TokError("invalid DWARF virtuality code" + Twine(" '") +
3461                     Lex.getStrVal() + "'");
3462   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
3463   Result.assign(Virtuality);
3464   Lex.Lex();
3465   return false;
3466 }
3467 
3468 template <>
3469 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
3470   if (Lex.getKind() == lltok::APSInt)
3471     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3472 
3473   if (Lex.getKind() != lltok::DwarfLang)
3474     return TokError("expected DWARF language");
3475 
3476   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
3477   if (!Lang)
3478     return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
3479                     "'");
3480   assert(Lang <= Result.Max && "Expected valid DWARF language");
3481   Result.assign(Lang);
3482   Lex.Lex();
3483   return false;
3484 }
3485 
3486 template <>
3487 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) {
3488   if (Lex.getKind() == lltok::APSInt)
3489     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3490 
3491   if (Lex.getKind() != lltok::EmissionKind)
3492     return TokError("expected emission kind");
3493 
3494   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
3495   if (!Kind)
3496     return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
3497                     "'");
3498   assert(*Kind <= Result.Max && "Expected valid emission kind");
3499   Result.assign(*Kind);
3500   Lex.Lex();
3501   return false;
3502 }
3503 
3504 template <>
3505 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3506                             DwarfAttEncodingField &Result) {
3507   if (Lex.getKind() == lltok::APSInt)
3508     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3509 
3510   if (Lex.getKind() != lltok::DwarfAttEncoding)
3511     return TokError("expected DWARF type attribute encoding");
3512 
3513   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
3514   if (!Encoding)
3515     return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
3516                     Lex.getStrVal() + "'");
3517   assert(Encoding <= Result.Max && "Expected valid DWARF language");
3518   Result.assign(Encoding);
3519   Lex.Lex();
3520   return false;
3521 }
3522 
3523 /// DIFlagField
3524 ///  ::= uint32
3525 ///  ::= DIFlagVector
3526 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
3527 template <>
3528 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
3529   assert(Result.Max == UINT32_MAX && "Expected only 32-bits");
3530 
3531   // Parser for a single flag.
3532   auto parseFlag = [&](unsigned &Val) {
3533     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned())
3534       return ParseUInt32(Val);
3535 
3536     if (Lex.getKind() != lltok::DIFlag)
3537       return TokError("expected debug info flag");
3538 
3539     Val = DINode::getFlag(Lex.getStrVal());
3540     if (!Val)
3541       return TokError(Twine("invalid debug info flag flag '") +
3542                       Lex.getStrVal() + "'");
3543     Lex.Lex();
3544     return false;
3545   };
3546 
3547   // Parse the flags and combine them together.
3548   unsigned Combined = 0;
3549   do {
3550     unsigned Val;
3551     if (parseFlag(Val))
3552       return true;
3553     Combined |= Val;
3554   } while (EatIfPresent(lltok::bar));
3555 
3556   Result.assign(Combined);
3557   return false;
3558 }
3559 
3560 template <>
3561 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3562                             MDSignedField &Result) {
3563   if (Lex.getKind() != lltok::APSInt)
3564     return TokError("expected signed integer");
3565 
3566   auto &S = Lex.getAPSIntVal();
3567   if (S < Result.Min)
3568     return TokError("value for '" + Name + "' too small, limit is " +
3569                     Twine(Result.Min));
3570   if (S > Result.Max)
3571     return TokError("value for '" + Name + "' too large, limit is " +
3572                     Twine(Result.Max));
3573   Result.assign(S.getExtValue());
3574   assert(Result.Val >= Result.Min && "Expected value in range");
3575   assert(Result.Val <= Result.Max && "Expected value in range");
3576   Lex.Lex();
3577   return false;
3578 }
3579 
3580 template <>
3581 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
3582   switch (Lex.getKind()) {
3583   default:
3584     return TokError("expected 'true' or 'false'");
3585   case lltok::kw_true:
3586     Result.assign(true);
3587     break;
3588   case lltok::kw_false:
3589     Result.assign(false);
3590     break;
3591   }
3592   Lex.Lex();
3593   return false;
3594 }
3595 
3596 template <>
3597 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
3598   if (Lex.getKind() == lltok::kw_null) {
3599     if (!Result.AllowNull)
3600       return TokError("'" + Name + "' cannot be null");
3601     Lex.Lex();
3602     Result.assign(nullptr);
3603     return false;
3604   }
3605 
3606   Metadata *MD;
3607   if (ParseMetadata(MD, nullptr))
3608     return true;
3609 
3610   Result.assign(MD);
3611   return false;
3612 }
3613 
3614 template <>
3615 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDConstant &Result) {
3616   Metadata *MD;
3617   if (ParseValueAsMetadata(MD, "expected constant", nullptr))
3618     return true;
3619 
3620   Result.assign(cast<ConstantAsMetadata>(MD));
3621   return false;
3622 }
3623 
3624 template <>
3625 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
3626   LocTy ValueLoc = Lex.getLoc();
3627   std::string S;
3628   if (ParseStringConstant(S))
3629     return true;
3630 
3631   if (!Result.AllowEmpty && S.empty())
3632     return Error(ValueLoc, "'" + Name + "' cannot be empty");
3633 
3634   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
3635   return false;
3636 }
3637 
3638 template <>
3639 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
3640   SmallVector<Metadata *, 4> MDs;
3641   if (ParseMDNodeVector(MDs))
3642     return true;
3643 
3644   Result.assign(std::move(MDs));
3645   return false;
3646 }
3647 
3648 } // end namespace llvm
3649 
3650 template <class ParserTy>
3651 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
3652   do {
3653     if (Lex.getKind() != lltok::LabelStr)
3654       return TokError("expected field label here");
3655 
3656     if (parseField())
3657       return true;
3658   } while (EatIfPresent(lltok::comma));
3659 
3660   return false;
3661 }
3662 
3663 template <class ParserTy>
3664 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
3665   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
3666   Lex.Lex();
3667 
3668   if (ParseToken(lltok::lparen, "expected '(' here"))
3669     return true;
3670   if (Lex.getKind() != lltok::rparen)
3671     if (ParseMDFieldsImplBody(parseField))
3672       return true;
3673 
3674   ClosingLoc = Lex.getLoc();
3675   return ParseToken(lltok::rparen, "expected ')' here");
3676 }
3677 
3678 template <class FieldTy>
3679 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
3680   if (Result.Seen)
3681     return TokError("field '" + Name + "' cannot be specified more than once");
3682 
3683   LocTy Loc = Lex.getLoc();
3684   Lex.Lex();
3685   return ParseMDField(Loc, Name, Result);
3686 }
3687 
3688 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
3689   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
3690 
3691 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
3692   if (Lex.getStrVal() == #CLASS)                                               \
3693     return Parse##CLASS(N, IsDistinct);
3694 #include "llvm/IR/Metadata.def"
3695 
3696   return TokError("expected metadata type");
3697 }
3698 
3699 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
3700 #define NOP_FIELD(NAME, TYPE, INIT)
3701 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
3702   if (!NAME.Seen)                                                              \
3703     return Error(ClosingLoc, "missing required field '" #NAME "'");
3704 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
3705   if (Lex.getStrVal() == #NAME)                                                \
3706     return ParseMDField(#NAME, NAME);
3707 #define PARSE_MD_FIELDS()                                                      \
3708   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
3709   do {                                                                         \
3710     LocTy ClosingLoc;                                                          \
3711     if (ParseMDFieldsImpl([&]() -> bool {                                      \
3712       VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                          \
3713       return TokError(Twine("invalid field '") + Lex.getStrVal() + "'");       \
3714     }, ClosingLoc))                                                            \
3715       return true;                                                             \
3716     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
3717   } while (false)
3718 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
3719   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
3720 
3721 /// ParseDILocationFields:
3722 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6)
3723 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
3724 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3725   OPTIONAL(line, LineField, );                                                 \
3726   OPTIONAL(column, ColumnField, );                                             \
3727   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
3728   OPTIONAL(inlinedAt, MDField, );
3729   PARSE_MD_FIELDS();
3730 #undef VISIT_MD_FIELDS
3731 
3732   Result = GET_OR_DISTINCT(
3733       DILocation, (Context, line.Val, column.Val, scope.Val, inlinedAt.Val));
3734   return false;
3735 }
3736 
3737 /// ParseGenericDINode:
3738 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
3739 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
3740 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3741   REQUIRED(tag, DwarfTagField, );                                              \
3742   OPTIONAL(header, MDStringField, );                                           \
3743   OPTIONAL(operands, MDFieldList, );
3744   PARSE_MD_FIELDS();
3745 #undef VISIT_MD_FIELDS
3746 
3747   Result = GET_OR_DISTINCT(GenericDINode,
3748                            (Context, tag.Val, header.Val, operands.Val));
3749   return false;
3750 }
3751 
3752 /// ParseDISubrange:
3753 ///   ::= !DISubrange(count: 30, lowerBound: 2)
3754 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
3755 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3756   REQUIRED(count, MDSignedField, (-1, -1, INT64_MAX));                         \
3757   OPTIONAL(lowerBound, MDSignedField, );
3758   PARSE_MD_FIELDS();
3759 #undef VISIT_MD_FIELDS
3760 
3761   Result = GET_OR_DISTINCT(DISubrange, (Context, count.Val, lowerBound.Val));
3762   return false;
3763 }
3764 
3765 /// ParseDIEnumerator:
3766 ///   ::= !DIEnumerator(value: 30, name: "SomeKind")
3767 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
3768 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3769   REQUIRED(name, MDStringField, );                                             \
3770   REQUIRED(value, MDSignedField, );
3771   PARSE_MD_FIELDS();
3772 #undef VISIT_MD_FIELDS
3773 
3774   Result = GET_OR_DISTINCT(DIEnumerator, (Context, value.Val, name.Val));
3775   return false;
3776 }
3777 
3778 /// ParseDIBasicType:
3779 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32)
3780 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
3781 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3782   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
3783   OPTIONAL(name, MDStringField, );                                             \
3784   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
3785   OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX));                           \
3786   OPTIONAL(encoding, DwarfAttEncodingField, );
3787   PARSE_MD_FIELDS();
3788 #undef VISIT_MD_FIELDS
3789 
3790   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
3791                                          align.Val, encoding.Val));
3792   return false;
3793 }
3794 
3795 /// ParseDIDerivedType:
3796 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
3797 ///                      line: 7, scope: !1, baseType: !2, size: 32,
3798 ///                      align: 32, offset: 0, flags: 0, extraData: !3)
3799 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
3800 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3801   REQUIRED(tag, DwarfTagField, );                                              \
3802   OPTIONAL(name, MDStringField, );                                             \
3803   OPTIONAL(file, MDField, );                                                   \
3804   OPTIONAL(line, LineField, );                                                 \
3805   OPTIONAL(scope, MDField, );                                                  \
3806   REQUIRED(baseType, MDField, );                                               \
3807   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
3808   OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX));                           \
3809   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
3810   OPTIONAL(flags, DIFlagField, );                                              \
3811   OPTIONAL(extraData, MDField, );
3812   PARSE_MD_FIELDS();
3813 #undef VISIT_MD_FIELDS
3814 
3815   Result = GET_OR_DISTINCT(DIDerivedType,
3816                            (Context, tag.Val, name.Val, file.Val, line.Val,
3817                             scope.Val, baseType.Val, size.Val, align.Val,
3818                             offset.Val, flags.Val, extraData.Val));
3819   return false;
3820 }
3821 
3822 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
3823 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3824   REQUIRED(tag, DwarfTagField, );                                              \
3825   OPTIONAL(name, MDStringField, );                                             \
3826   OPTIONAL(file, MDField, );                                                   \
3827   OPTIONAL(line, LineField, );                                                 \
3828   OPTIONAL(scope, MDField, );                                                  \
3829   OPTIONAL(baseType, MDField, );                                               \
3830   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
3831   OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX));                           \
3832   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
3833   OPTIONAL(flags, DIFlagField, );                                              \
3834   OPTIONAL(elements, MDField, );                                               \
3835   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
3836   OPTIONAL(vtableHolder, MDField, );                                           \
3837   OPTIONAL(templateParams, MDField, );                                         \
3838   OPTIONAL(identifier, MDStringField, );
3839   PARSE_MD_FIELDS();
3840 #undef VISIT_MD_FIELDS
3841 
3842   // If this has an identifier try to build an ODR type.
3843   if (identifier.Val)
3844     if (auto *CT = DICompositeType::buildODRType(
3845             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
3846             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
3847             elements.Val, runtimeLang.Val, vtableHolder.Val,
3848             templateParams.Val)) {
3849       Result = CT;
3850       return false;
3851     }
3852 
3853   // Create a new node, and save it in the context if it belongs in the type
3854   // map.
3855   Result = GET_OR_DISTINCT(
3856       DICompositeType,
3857       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
3858        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
3859        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val));
3860   return false;
3861 }
3862 
3863 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
3864 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3865   OPTIONAL(flags, DIFlagField, );                                              \
3866   REQUIRED(types, MDField, );
3867   PARSE_MD_FIELDS();
3868 #undef VISIT_MD_FIELDS
3869 
3870   Result = GET_OR_DISTINCT(DISubroutineType, (Context, flags.Val, types.Val));
3871   return false;
3872 }
3873 
3874 /// ParseDIFileType:
3875 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir")
3876 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
3877 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3878   REQUIRED(filename, MDStringField, );                                         \
3879   REQUIRED(directory, MDStringField, );
3880   PARSE_MD_FIELDS();
3881 #undef VISIT_MD_FIELDS
3882 
3883   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val));
3884   return false;
3885 }
3886 
3887 /// ParseDICompileUnit:
3888 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
3889 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
3890 ///                      splitDebugFilename: "abc.debug",
3891 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
3892 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd)
3893 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
3894   if (!IsDistinct)
3895     return Lex.Error("missing 'distinct', required for !DICompileUnit");
3896 
3897 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3898   REQUIRED(language, DwarfLangField, );                                        \
3899   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
3900   OPTIONAL(producer, MDStringField, );                                         \
3901   OPTIONAL(isOptimized, MDBoolField, );                                        \
3902   OPTIONAL(flags, MDStringField, );                                            \
3903   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
3904   OPTIONAL(splitDebugFilename, MDStringField, );                               \
3905   OPTIONAL(emissionKind, EmissionKindField, );                                 \
3906   OPTIONAL(enums, MDField, );                                                  \
3907   OPTIONAL(retainedTypes, MDField, );                                          \
3908   OPTIONAL(globals, MDField, );                                                \
3909   OPTIONAL(imports, MDField, );                                                \
3910   OPTIONAL(macros, MDField, );                                                 \
3911   OPTIONAL(dwoId, MDUnsignedField, );
3912   PARSE_MD_FIELDS();
3913 #undef VISIT_MD_FIELDS
3914 
3915   Result = DICompileUnit::getDistinct(
3916       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
3917       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
3918       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val);
3919   return false;
3920 }
3921 
3922 /// ParseDISubprogram:
3923 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
3924 ///                     file: !1, line: 7, type: !2, isLocal: false,
3925 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
3926 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
3927 ///                     virtualIndex: 10, flags: 11,
3928 ///                     isOptimized: false, templateParams: !4, declaration: !5,
3929 ///                     variables: !6)
3930 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
3931   auto Loc = Lex.getLoc();
3932 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3933   OPTIONAL(scope, MDField, );                                                  \
3934   OPTIONAL(name, MDStringField, );                                             \
3935   OPTIONAL(linkageName, MDStringField, );                                      \
3936   OPTIONAL(file, MDField, );                                                   \
3937   OPTIONAL(line, LineField, );                                                 \
3938   OPTIONAL(type, MDField, );                                                   \
3939   OPTIONAL(isLocal, MDBoolField, );                                            \
3940   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
3941   OPTIONAL(scopeLine, LineField, );                                            \
3942   OPTIONAL(containingType, MDField, );                                         \
3943   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
3944   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
3945   OPTIONAL(flags, DIFlagField, );                                              \
3946   OPTIONAL(isOptimized, MDBoolField, );                                        \
3947   OPTIONAL(unit, MDField, );                                                   \
3948   OPTIONAL(templateParams, MDField, );                                         \
3949   OPTIONAL(declaration, MDField, );                                            \
3950   OPTIONAL(variables, MDField, );
3951   PARSE_MD_FIELDS();
3952 #undef VISIT_MD_FIELDS
3953 
3954   if (isDefinition.Val && !IsDistinct)
3955     return Lex.Error(
3956         Loc,
3957         "missing 'distinct', required for !DISubprogram when 'isDefinition'");
3958 
3959   Result = GET_OR_DISTINCT(
3960       DISubprogram, (Context, scope.Val, name.Val, linkageName.Val, file.Val,
3961                      line.Val, type.Val, isLocal.Val, isDefinition.Val,
3962                      scopeLine.Val, containingType.Val, virtuality.Val,
3963                      virtualIndex.Val, flags.Val, isOptimized.Val, unit.Val,
3964                      templateParams.Val, declaration.Val, variables.Val));
3965   return false;
3966 }
3967 
3968 /// ParseDILexicalBlock:
3969 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
3970 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
3971 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3972   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
3973   OPTIONAL(file, MDField, );                                                   \
3974   OPTIONAL(line, LineField, );                                                 \
3975   OPTIONAL(column, ColumnField, );
3976   PARSE_MD_FIELDS();
3977 #undef VISIT_MD_FIELDS
3978 
3979   Result = GET_OR_DISTINCT(
3980       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
3981   return false;
3982 }
3983 
3984 /// ParseDILexicalBlockFile:
3985 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
3986 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
3987 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3988   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
3989   OPTIONAL(file, MDField, );                                                   \
3990   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
3991   PARSE_MD_FIELDS();
3992 #undef VISIT_MD_FIELDS
3993 
3994   Result = GET_OR_DISTINCT(DILexicalBlockFile,
3995                            (Context, scope.Val, file.Val, discriminator.Val));
3996   return false;
3997 }
3998 
3999 /// ParseDINamespace:
4000 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4001 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
4002 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4003   REQUIRED(scope, MDField, );                                                  \
4004   OPTIONAL(file, MDField, );                                                   \
4005   OPTIONAL(name, MDStringField, );                                             \
4006   OPTIONAL(line, LineField, );
4007   PARSE_MD_FIELDS();
4008 #undef VISIT_MD_FIELDS
4009 
4010   Result = GET_OR_DISTINCT(DINamespace,
4011                            (Context, scope.Val, file.Val, name.Val, line.Val));
4012   return false;
4013 }
4014 
4015 /// ParseDIMacro:
4016 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
4017 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) {
4018 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4019   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
4020   REQUIRED(line, LineField, );                                                 \
4021   REQUIRED(name, MDStringField, );                                             \
4022   OPTIONAL(value, MDStringField, );
4023   PARSE_MD_FIELDS();
4024 #undef VISIT_MD_FIELDS
4025 
4026   Result = GET_OR_DISTINCT(DIMacro,
4027                            (Context, type.Val, line.Val, name.Val, value.Val));
4028   return false;
4029 }
4030 
4031 /// ParseDIMacroFile:
4032 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4033 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4034 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4035   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
4036   REQUIRED(line, LineField, );                                                 \
4037   REQUIRED(file, MDField, );                                                   \
4038   OPTIONAL(nodes, MDField, );
4039   PARSE_MD_FIELDS();
4040 #undef VISIT_MD_FIELDS
4041 
4042   Result = GET_OR_DISTINCT(DIMacroFile,
4043                            (Context, type.Val, line.Val, file.Val, nodes.Val));
4044   return false;
4045 }
4046 
4047 
4048 /// ParseDIModule:
4049 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG",
4050 ///                 includePath: "/usr/include", isysroot: "/")
4051 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
4052 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4053   REQUIRED(scope, MDField, );                                                  \
4054   REQUIRED(name, MDStringField, );                                             \
4055   OPTIONAL(configMacros, MDStringField, );                                     \
4056   OPTIONAL(includePath, MDStringField, );                                      \
4057   OPTIONAL(isysroot, MDStringField, );
4058   PARSE_MD_FIELDS();
4059 #undef VISIT_MD_FIELDS
4060 
4061   Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val,
4062                            configMacros.Val, includePath.Val, isysroot.Val));
4063   return false;
4064 }
4065 
4066 /// ParseDITemplateTypeParameter:
4067 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1)
4068 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4069 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4070   OPTIONAL(name, MDStringField, );                                             \
4071   REQUIRED(type, MDField, );
4072   PARSE_MD_FIELDS();
4073 #undef VISIT_MD_FIELDS
4074 
4075   Result =
4076       GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val));
4077   return false;
4078 }
4079 
4080 /// ParseDITemplateValueParameter:
4081 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4082 ///                                 name: "V", type: !1, value: i32 7)
4083 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4084 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4085   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
4086   OPTIONAL(name, MDStringField, );                                             \
4087   OPTIONAL(type, MDField, );                                                   \
4088   REQUIRED(value, MDField, );
4089   PARSE_MD_FIELDS();
4090 #undef VISIT_MD_FIELDS
4091 
4092   Result = GET_OR_DISTINCT(DITemplateValueParameter,
4093                            (Context, tag.Val, name.Val, type.Val, value.Val));
4094   return false;
4095 }
4096 
4097 /// ParseDIGlobalVariable:
4098 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
4099 ///                         file: !1, line: 7, type: !2, isLocal: false,
4100 ///                         isDefinition: true, variable: i32* @foo,
4101 ///                         declaration: !3)
4102 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
4103 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4104   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
4105   OPTIONAL(scope, MDField, );                                                  \
4106   OPTIONAL(linkageName, MDStringField, );                                      \
4107   OPTIONAL(file, MDField, );                                                   \
4108   OPTIONAL(line, LineField, );                                                 \
4109   OPTIONAL(type, MDField, );                                                   \
4110   OPTIONAL(isLocal, MDBoolField, );                                            \
4111   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4112   OPTIONAL(variable, MDConstant, );                                            \
4113   OPTIONAL(declaration, MDField, );
4114   PARSE_MD_FIELDS();
4115 #undef VISIT_MD_FIELDS
4116 
4117   Result = GET_OR_DISTINCT(DIGlobalVariable,
4118                            (Context, scope.Val, name.Val, linkageName.Val,
4119                             file.Val, line.Val, type.Val, isLocal.Val,
4120                             isDefinition.Val, variable.Val, declaration.Val));
4121   return false;
4122 }
4123 
4124 /// ParseDILocalVariable:
4125 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
4126 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7)
4127 ///   ::= !DILocalVariable(scope: !0, name: "foo",
4128 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7)
4129 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
4130 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4131   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4132   OPTIONAL(name, MDStringField, );                                             \
4133   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
4134   OPTIONAL(file, MDField, );                                                   \
4135   OPTIONAL(line, LineField, );                                                 \
4136   OPTIONAL(type, MDField, );                                                   \
4137   OPTIONAL(flags, DIFlagField, );
4138   PARSE_MD_FIELDS();
4139 #undef VISIT_MD_FIELDS
4140 
4141   Result = GET_OR_DISTINCT(DILocalVariable,
4142                            (Context, scope.Val, name.Val, file.Val, line.Val,
4143                             type.Val, arg.Val, flags.Val));
4144   return false;
4145 }
4146 
4147 /// ParseDIExpression:
4148 ///   ::= !DIExpression(0, 7, -1)
4149 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
4150   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4151   Lex.Lex();
4152 
4153   if (ParseToken(lltok::lparen, "expected '(' here"))
4154     return true;
4155 
4156   SmallVector<uint64_t, 8> Elements;
4157   if (Lex.getKind() != lltok::rparen)
4158     do {
4159       if (Lex.getKind() == lltok::DwarfOp) {
4160         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
4161           Lex.Lex();
4162           Elements.push_back(Op);
4163           continue;
4164         }
4165         return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
4166       }
4167 
4168       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4169         return TokError("expected unsigned integer");
4170 
4171       auto &U = Lex.getAPSIntVal();
4172       if (U.ugt(UINT64_MAX))
4173         return TokError("element too large, limit is " + Twine(UINT64_MAX));
4174       Elements.push_back(U.getZExtValue());
4175       Lex.Lex();
4176     } while (EatIfPresent(lltok::comma));
4177 
4178   if (ParseToken(lltok::rparen, "expected ')' here"))
4179     return true;
4180 
4181   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
4182   return false;
4183 }
4184 
4185 /// ParseDIObjCProperty:
4186 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
4187 ///                       getter: "getFoo", attributes: 7, type: !2)
4188 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
4189 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4190   OPTIONAL(name, MDStringField, );                                             \
4191   OPTIONAL(file, MDField, );                                                   \
4192   OPTIONAL(line, LineField, );                                                 \
4193   OPTIONAL(setter, MDStringField, );                                           \
4194   OPTIONAL(getter, MDStringField, );                                           \
4195   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
4196   OPTIONAL(type, MDField, );
4197   PARSE_MD_FIELDS();
4198 #undef VISIT_MD_FIELDS
4199 
4200   Result = GET_OR_DISTINCT(DIObjCProperty,
4201                            (Context, name.Val, file.Val, line.Val, setter.Val,
4202                             getter.Val, attributes.Val, type.Val));
4203   return false;
4204 }
4205 
4206 /// ParseDIImportedEntity:
4207 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
4208 ///                         line: 7, name: "foo")
4209 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
4210 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4211   REQUIRED(tag, DwarfTagField, );                                              \
4212   REQUIRED(scope, MDField, );                                                  \
4213   OPTIONAL(entity, MDField, );                                                 \
4214   OPTIONAL(line, LineField, );                                                 \
4215   OPTIONAL(name, MDStringField, );
4216   PARSE_MD_FIELDS();
4217 #undef VISIT_MD_FIELDS
4218 
4219   Result = GET_OR_DISTINCT(DIImportedEntity, (Context, tag.Val, scope.Val,
4220                                               entity.Val, line.Val, name.Val));
4221   return false;
4222 }
4223 
4224 #undef PARSE_MD_FIELD
4225 #undef NOP_FIELD
4226 #undef REQUIRE_FIELD
4227 #undef DECLARE_FIELD
4228 
4229 /// ParseMetadataAsValue
4230 ///  ::= metadata i32 %local
4231 ///  ::= metadata i32 @global
4232 ///  ::= metadata i32 7
4233 ///  ::= metadata !0
4234 ///  ::= metadata !{...}
4235 ///  ::= metadata !"string"
4236 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
4237   // Note: the type 'metadata' has already been parsed.
4238   Metadata *MD;
4239   if (ParseMetadata(MD, &PFS))
4240     return true;
4241 
4242   V = MetadataAsValue::get(Context, MD);
4243   return false;
4244 }
4245 
4246 /// ParseValueAsMetadata
4247 ///  ::= i32 %local
4248 ///  ::= i32 @global
4249 ///  ::= i32 7
4250 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
4251                                     PerFunctionState *PFS) {
4252   Type *Ty;
4253   LocTy Loc;
4254   if (ParseType(Ty, TypeMsg, Loc))
4255     return true;
4256   if (Ty->isMetadataTy())
4257     return Error(Loc, "invalid metadata-value-metadata roundtrip");
4258 
4259   Value *V;
4260   if (ParseValue(Ty, V, PFS))
4261     return true;
4262 
4263   MD = ValueAsMetadata::get(V);
4264   return false;
4265 }
4266 
4267 /// ParseMetadata
4268 ///  ::= i32 %local
4269 ///  ::= i32 @global
4270 ///  ::= i32 7
4271 ///  ::= !42
4272 ///  ::= !{...}
4273 ///  ::= !"string"
4274 ///  ::= !DILocation(...)
4275 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
4276   if (Lex.getKind() == lltok::MetadataVar) {
4277     MDNode *N;
4278     if (ParseSpecializedMDNode(N))
4279       return true;
4280     MD = N;
4281     return false;
4282   }
4283 
4284   // ValueAsMetadata:
4285   // <type> <value>
4286   if (Lex.getKind() != lltok::exclaim)
4287     return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
4288 
4289   // '!'.
4290   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
4291   Lex.Lex();
4292 
4293   // MDString:
4294   //   ::= '!' STRINGCONSTANT
4295   if (Lex.getKind() == lltok::StringConstant) {
4296     MDString *S;
4297     if (ParseMDString(S))
4298       return true;
4299     MD = S;
4300     return false;
4301   }
4302 
4303   // MDNode:
4304   // !{ ... }
4305   // !7
4306   MDNode *N;
4307   if (ParseMDNodeTail(N))
4308     return true;
4309   MD = N;
4310   return false;
4311 }
4312 
4313 
4314 //===----------------------------------------------------------------------===//
4315 // Function Parsing.
4316 //===----------------------------------------------------------------------===//
4317 
4318 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
4319                                    PerFunctionState *PFS) {
4320   if (Ty->isFunctionTy())
4321     return Error(ID.Loc, "functions are not values, refer to them as pointers");
4322 
4323   switch (ID.Kind) {
4324   case ValID::t_LocalID:
4325     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
4326     V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
4327     return V == nullptr;
4328   case ValID::t_LocalName:
4329     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
4330     V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
4331     return V == nullptr;
4332   case ValID::t_InlineAsm: {
4333     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
4334       return Error(ID.Loc, "invalid type for inline asm constraint string");
4335     V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
4336                        (ID.UIntVal >> 1) & 1,
4337                        (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
4338     return false;
4339   }
4340   case ValID::t_GlobalName:
4341     V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
4342     return V == nullptr;
4343   case ValID::t_GlobalID:
4344     V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
4345     return V == nullptr;
4346   case ValID::t_APSInt:
4347     if (!Ty->isIntegerTy())
4348       return Error(ID.Loc, "integer constant must have integer type");
4349     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
4350     V = ConstantInt::get(Context, ID.APSIntVal);
4351     return false;
4352   case ValID::t_APFloat:
4353     if (!Ty->isFloatingPointTy() ||
4354         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
4355       return Error(ID.Loc, "floating point constant invalid for type");
4356 
4357     // The lexer has no type info, so builds all half, float, and double FP
4358     // constants as double.  Fix this here.  Long double does not need this.
4359     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) {
4360       bool Ignored;
4361       if (Ty->isHalfTy())
4362         ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven,
4363                               &Ignored);
4364       else if (Ty->isFloatTy())
4365         ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
4366                               &Ignored);
4367     }
4368     V = ConstantFP::get(Context, ID.APFloatVal);
4369 
4370     if (V->getType() != Ty)
4371       return Error(ID.Loc, "floating point constant does not have type '" +
4372                    getTypeString(Ty) + "'");
4373 
4374     return false;
4375   case ValID::t_Null:
4376     if (!Ty->isPointerTy())
4377       return Error(ID.Loc, "null must be a pointer type");
4378     V = ConstantPointerNull::get(cast<PointerType>(Ty));
4379     return false;
4380   case ValID::t_Undef:
4381     // FIXME: LabelTy should not be a first-class type.
4382     if (!Ty->isFirstClassType() || Ty->isLabelTy())
4383       return Error(ID.Loc, "invalid type for undef constant");
4384     V = UndefValue::get(Ty);
4385     return false;
4386   case ValID::t_EmptyArray:
4387     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
4388       return Error(ID.Loc, "invalid empty array initializer");
4389     V = UndefValue::get(Ty);
4390     return false;
4391   case ValID::t_Zero:
4392     // FIXME: LabelTy should not be a first-class type.
4393     if (!Ty->isFirstClassType() || Ty->isLabelTy())
4394       return Error(ID.Loc, "invalid type for null constant");
4395     V = Constant::getNullValue(Ty);
4396     return false;
4397   case ValID::t_None:
4398     if (!Ty->isTokenTy())
4399       return Error(ID.Loc, "invalid type for none constant");
4400     V = Constant::getNullValue(Ty);
4401     return false;
4402   case ValID::t_Constant:
4403     if (ID.ConstantVal->getType() != Ty)
4404       return Error(ID.Loc, "constant expression type mismatch");
4405 
4406     V = ID.ConstantVal;
4407     return false;
4408   case ValID::t_ConstantStruct:
4409   case ValID::t_PackedConstantStruct:
4410     if (StructType *ST = dyn_cast<StructType>(Ty)) {
4411       if (ST->getNumElements() != ID.UIntVal)
4412         return Error(ID.Loc,
4413                      "initializer with struct type has wrong # elements");
4414       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
4415         return Error(ID.Loc, "packed'ness of initializer and type don't match");
4416 
4417       // Verify that the elements are compatible with the structtype.
4418       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
4419         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
4420           return Error(ID.Loc, "element " + Twine(i) +
4421                     " of struct initializer doesn't match struct element type");
4422 
4423       V = ConstantStruct::get(
4424           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
4425     } else
4426       return Error(ID.Loc, "constant expression type mismatch");
4427     return false;
4428   }
4429   llvm_unreachable("Invalid ValID");
4430 }
4431 
4432 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
4433   C = nullptr;
4434   ValID ID;
4435   auto Loc = Lex.getLoc();
4436   if (ParseValID(ID, /*PFS=*/nullptr))
4437     return true;
4438   switch (ID.Kind) {
4439   case ValID::t_APSInt:
4440   case ValID::t_APFloat:
4441   case ValID::t_Undef:
4442   case ValID::t_Constant:
4443   case ValID::t_ConstantStruct:
4444   case ValID::t_PackedConstantStruct: {
4445     Value *V;
4446     if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr))
4447       return true;
4448     assert(isa<Constant>(V) && "Expected a constant value");
4449     C = cast<Constant>(V);
4450     return false;
4451   }
4452   default:
4453     return Error(Loc, "expected a constant value");
4454   }
4455 }
4456 
4457 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
4458   V = nullptr;
4459   ValID ID;
4460   return ParseValID(ID, PFS) || ConvertValIDToValue(Ty, ID, V, PFS);
4461 }
4462 
4463 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
4464   Type *Ty = nullptr;
4465   return ParseType(Ty) ||
4466          ParseValue(Ty, V, PFS);
4467 }
4468 
4469 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
4470                                       PerFunctionState &PFS) {
4471   Value *V;
4472   Loc = Lex.getLoc();
4473   if (ParseTypeAndValue(V, PFS)) return true;
4474   if (!isa<BasicBlock>(V))
4475     return Error(Loc, "expected a basic block");
4476   BB = cast<BasicBlock>(V);
4477   return false;
4478 }
4479 
4480 
4481 /// FunctionHeader
4482 ///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
4483 ///       OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
4484 ///       OptionalAlign OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
4485 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
4486   // Parse the linkage.
4487   LocTy LinkageLoc = Lex.getLoc();
4488   unsigned Linkage;
4489 
4490   unsigned Visibility;
4491   unsigned DLLStorageClass;
4492   AttrBuilder RetAttrs;
4493   unsigned CC;
4494   bool HasLinkage;
4495   Type *RetType = nullptr;
4496   LocTy RetTypeLoc = Lex.getLoc();
4497   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) ||
4498       ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
4499       ParseType(RetType, RetTypeLoc, true /*void allowed*/))
4500     return true;
4501 
4502   // Verify that the linkage is ok.
4503   switch ((GlobalValue::LinkageTypes)Linkage) {
4504   case GlobalValue::ExternalLinkage:
4505     break; // always ok.
4506   case GlobalValue::ExternalWeakLinkage:
4507     if (isDefine)
4508       return Error(LinkageLoc, "invalid linkage for function definition");
4509     break;
4510   case GlobalValue::PrivateLinkage:
4511   case GlobalValue::InternalLinkage:
4512   case GlobalValue::AvailableExternallyLinkage:
4513   case GlobalValue::LinkOnceAnyLinkage:
4514   case GlobalValue::LinkOnceODRLinkage:
4515   case GlobalValue::WeakAnyLinkage:
4516   case GlobalValue::WeakODRLinkage:
4517     if (!isDefine)
4518       return Error(LinkageLoc, "invalid linkage for function declaration");
4519     break;
4520   case GlobalValue::AppendingLinkage:
4521   case GlobalValue::CommonLinkage:
4522     return Error(LinkageLoc, "invalid function linkage type");
4523   }
4524 
4525   if (!isValidVisibilityForLinkage(Visibility, Linkage))
4526     return Error(LinkageLoc,
4527                  "symbol with local linkage must have default visibility");
4528 
4529   if (!FunctionType::isValidReturnType(RetType))
4530     return Error(RetTypeLoc, "invalid function return type");
4531 
4532   LocTy NameLoc = Lex.getLoc();
4533 
4534   std::string FunctionName;
4535   if (Lex.getKind() == lltok::GlobalVar) {
4536     FunctionName = Lex.getStrVal();
4537   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
4538     unsigned NameID = Lex.getUIntVal();
4539 
4540     if (NameID != NumberedVals.size())
4541       return TokError("function expected to be numbered '%" +
4542                       Twine(NumberedVals.size()) + "'");
4543   } else {
4544     return TokError("expected function name");
4545   }
4546 
4547   Lex.Lex();
4548 
4549   if (Lex.getKind() != lltok::lparen)
4550     return TokError("expected '(' in function argument list");
4551 
4552   SmallVector<ArgInfo, 8> ArgList;
4553   bool isVarArg;
4554   AttrBuilder FuncAttrs;
4555   std::vector<unsigned> FwdRefAttrGrps;
4556   LocTy BuiltinLoc;
4557   std::string Section;
4558   unsigned Alignment;
4559   std::string GC;
4560   bool UnnamedAddr;
4561   LocTy UnnamedAddrLoc;
4562   Constant *Prefix = nullptr;
4563   Constant *Prologue = nullptr;
4564   Constant *PersonalityFn = nullptr;
4565   Comdat *C;
4566 
4567   if (ParseArgumentList(ArgList, isVarArg) ||
4568       ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
4569                          &UnnamedAddrLoc) ||
4570       ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
4571                                  BuiltinLoc) ||
4572       (EatIfPresent(lltok::kw_section) &&
4573        ParseStringConstant(Section)) ||
4574       parseOptionalComdat(FunctionName, C) ||
4575       ParseOptionalAlignment(Alignment) ||
4576       (EatIfPresent(lltok::kw_gc) &&
4577        ParseStringConstant(GC)) ||
4578       (EatIfPresent(lltok::kw_prefix) &&
4579        ParseGlobalTypeAndValue(Prefix)) ||
4580       (EatIfPresent(lltok::kw_prologue) &&
4581        ParseGlobalTypeAndValue(Prologue)) ||
4582       (EatIfPresent(lltok::kw_personality) &&
4583        ParseGlobalTypeAndValue(PersonalityFn)))
4584     return true;
4585 
4586   if (FuncAttrs.contains(Attribute::Builtin))
4587     return Error(BuiltinLoc, "'builtin' attribute not valid on function");
4588 
4589   // If the alignment was parsed as an attribute, move to the alignment field.
4590   if (FuncAttrs.hasAlignmentAttr()) {
4591     Alignment = FuncAttrs.getAlignment();
4592     FuncAttrs.removeAttribute(Attribute::Alignment);
4593   }
4594 
4595   // Okay, if we got here, the function is syntactically valid.  Convert types
4596   // and do semantic checks.
4597   std::vector<Type*> ParamTypeList;
4598   SmallVector<AttributeSet, 8> Attrs;
4599 
4600   if (RetAttrs.hasAttributes())
4601     Attrs.push_back(AttributeSet::get(RetType->getContext(),
4602                                       AttributeSet::ReturnIndex,
4603                                       RetAttrs));
4604 
4605   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
4606     ParamTypeList.push_back(ArgList[i].Ty);
4607     if (ArgList[i].Attrs.hasAttributes(i + 1)) {
4608       AttrBuilder B(ArgList[i].Attrs, i + 1);
4609       Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
4610     }
4611   }
4612 
4613   if (FuncAttrs.hasAttributes())
4614     Attrs.push_back(AttributeSet::get(RetType->getContext(),
4615                                       AttributeSet::FunctionIndex,
4616                                       FuncAttrs));
4617 
4618   AttributeSet PAL = AttributeSet::get(Context, Attrs);
4619 
4620   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
4621     return Error(RetTypeLoc, "functions with 'sret' argument must return void");
4622 
4623   FunctionType *FT =
4624     FunctionType::get(RetType, ParamTypeList, isVarArg);
4625   PointerType *PFT = PointerType::getUnqual(FT);
4626 
4627   Fn = nullptr;
4628   if (!FunctionName.empty()) {
4629     // If this was a definition of a forward reference, remove the definition
4630     // from the forward reference table and fill in the forward ref.
4631     auto FRVI = ForwardRefVals.find(FunctionName);
4632     if (FRVI != ForwardRefVals.end()) {
4633       Fn = M->getFunction(FunctionName);
4634       if (!Fn)
4635         return Error(FRVI->second.second, "invalid forward reference to "
4636                      "function as global value!");
4637       if (Fn->getType() != PFT)
4638         return Error(FRVI->second.second, "invalid forward reference to "
4639                      "function '" + FunctionName + "' with wrong type!");
4640 
4641       ForwardRefVals.erase(FRVI);
4642     } else if ((Fn = M->getFunction(FunctionName))) {
4643       // Reject redefinitions.
4644       return Error(NameLoc, "invalid redefinition of function '" +
4645                    FunctionName + "'");
4646     } else if (M->getNamedValue(FunctionName)) {
4647       return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
4648     }
4649 
4650   } else {
4651     // If this is a definition of a forward referenced function, make sure the
4652     // types agree.
4653     auto I = ForwardRefValIDs.find(NumberedVals.size());
4654     if (I != ForwardRefValIDs.end()) {
4655       Fn = cast<Function>(I->second.first);
4656       if (Fn->getType() != PFT)
4657         return Error(NameLoc, "type of definition and forward reference of '@" +
4658                      Twine(NumberedVals.size()) + "' disagree");
4659       ForwardRefValIDs.erase(I);
4660     }
4661   }
4662 
4663   if (!Fn)
4664     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
4665   else // Move the forward-reference to the correct spot in the module.
4666     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
4667 
4668   if (FunctionName.empty())
4669     NumberedVals.push_back(Fn);
4670 
4671   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
4672   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
4673   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
4674   Fn->setCallingConv(CC);
4675   Fn->setAttributes(PAL);
4676   Fn->setUnnamedAddr(UnnamedAddr);
4677   Fn->setAlignment(Alignment);
4678   Fn->setSection(Section);
4679   Fn->setComdat(C);
4680   Fn->setPersonalityFn(PersonalityFn);
4681   if (!GC.empty()) Fn->setGC(GC);
4682   Fn->setPrefixData(Prefix);
4683   Fn->setPrologueData(Prologue);
4684   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
4685 
4686   // Add all of the arguments we parsed to the function.
4687   Function::arg_iterator ArgIt = Fn->arg_begin();
4688   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
4689     // If the argument has a name, insert it into the argument symbol table.
4690     if (ArgList[i].Name.empty()) continue;
4691 
4692     // Set the name, if it conflicted, it will be auto-renamed.
4693     ArgIt->setName(ArgList[i].Name);
4694 
4695     if (ArgIt->getName() != ArgList[i].Name)
4696       return Error(ArgList[i].Loc, "redefinition of argument '%" +
4697                    ArgList[i].Name + "'");
4698   }
4699 
4700   if (isDefine)
4701     return false;
4702 
4703   // Check the declaration has no block address forward references.
4704   ValID ID;
4705   if (FunctionName.empty()) {
4706     ID.Kind = ValID::t_GlobalID;
4707     ID.UIntVal = NumberedVals.size() - 1;
4708   } else {
4709     ID.Kind = ValID::t_GlobalName;
4710     ID.StrVal = FunctionName;
4711   }
4712   auto Blocks = ForwardRefBlockAddresses.find(ID);
4713   if (Blocks != ForwardRefBlockAddresses.end())
4714     return Error(Blocks->first.Loc,
4715                  "cannot take blockaddress inside a declaration");
4716   return false;
4717 }
4718 
4719 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
4720   ValID ID;
4721   if (FunctionNumber == -1) {
4722     ID.Kind = ValID::t_GlobalName;
4723     ID.StrVal = F.getName();
4724   } else {
4725     ID.Kind = ValID::t_GlobalID;
4726     ID.UIntVal = FunctionNumber;
4727   }
4728 
4729   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
4730   if (Blocks == P.ForwardRefBlockAddresses.end())
4731     return false;
4732 
4733   for (const auto &I : Blocks->second) {
4734     const ValID &BBID = I.first;
4735     GlobalValue *GV = I.second;
4736 
4737     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
4738            "Expected local id or name");
4739     BasicBlock *BB;
4740     if (BBID.Kind == ValID::t_LocalName)
4741       BB = GetBB(BBID.StrVal, BBID.Loc);
4742     else
4743       BB = GetBB(BBID.UIntVal, BBID.Loc);
4744     if (!BB)
4745       return P.Error(BBID.Loc, "referenced value is not a basic block");
4746 
4747     GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
4748     GV->eraseFromParent();
4749   }
4750 
4751   P.ForwardRefBlockAddresses.erase(Blocks);
4752   return false;
4753 }
4754 
4755 /// ParseFunctionBody
4756 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
4757 bool LLParser::ParseFunctionBody(Function &Fn) {
4758   if (Lex.getKind() != lltok::lbrace)
4759     return TokError("expected '{' in function body");
4760   Lex.Lex();  // eat the {.
4761 
4762   int FunctionNumber = -1;
4763   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
4764 
4765   PerFunctionState PFS(*this, Fn, FunctionNumber);
4766 
4767   // Resolve block addresses and allow basic blocks to be forward-declared
4768   // within this function.
4769   if (PFS.resolveForwardRefBlockAddresses())
4770     return true;
4771   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
4772 
4773   // We need at least one basic block.
4774   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
4775     return TokError("function body requires at least one basic block");
4776 
4777   while (Lex.getKind() != lltok::rbrace &&
4778          Lex.getKind() != lltok::kw_uselistorder)
4779     if (ParseBasicBlock(PFS)) return true;
4780 
4781   while (Lex.getKind() != lltok::rbrace)
4782     if (ParseUseListOrder(&PFS))
4783       return true;
4784 
4785   // Eat the }.
4786   Lex.Lex();
4787 
4788   // Verify function is ok.
4789   return PFS.FinishFunction();
4790 }
4791 
4792 /// ParseBasicBlock
4793 ///   ::= LabelStr? Instruction*
4794 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
4795   // If this basic block starts out with a name, remember it.
4796   std::string Name;
4797   LocTy NameLoc = Lex.getLoc();
4798   if (Lex.getKind() == lltok::LabelStr) {
4799     Name = Lex.getStrVal();
4800     Lex.Lex();
4801   }
4802 
4803   BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
4804   if (!BB)
4805     return Error(NameLoc,
4806                  "unable to create block named '" + Name + "'");
4807 
4808   std::string NameStr;
4809 
4810   // Parse the instructions in this block until we get a terminator.
4811   Instruction *Inst;
4812   do {
4813     // This instruction may have three possibilities for a name: a) none
4814     // specified, b) name specified "%foo =", c) number specified: "%4 =".
4815     LocTy NameLoc = Lex.getLoc();
4816     int NameID = -1;
4817     NameStr = "";
4818 
4819     if (Lex.getKind() == lltok::LocalVarID) {
4820       NameID = Lex.getUIntVal();
4821       Lex.Lex();
4822       if (ParseToken(lltok::equal, "expected '=' after instruction id"))
4823         return true;
4824     } else if (Lex.getKind() == lltok::LocalVar) {
4825       NameStr = Lex.getStrVal();
4826       Lex.Lex();
4827       if (ParseToken(lltok::equal, "expected '=' after instruction name"))
4828         return true;
4829     }
4830 
4831     switch (ParseInstruction(Inst, BB, PFS)) {
4832     default: llvm_unreachable("Unknown ParseInstruction result!");
4833     case InstError: return true;
4834     case InstNormal:
4835       BB->getInstList().push_back(Inst);
4836 
4837       // With a normal result, we check to see if the instruction is followed by
4838       // a comma and metadata.
4839       if (EatIfPresent(lltok::comma))
4840         if (ParseInstructionMetadata(*Inst))
4841           return true;
4842       break;
4843     case InstExtraComma:
4844       BB->getInstList().push_back(Inst);
4845 
4846       // If the instruction parser ate an extra comma at the end of it, it
4847       // *must* be followed by metadata.
4848       if (ParseInstructionMetadata(*Inst))
4849         return true;
4850       break;
4851     }
4852 
4853     // Set the name on the instruction.
4854     if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
4855   } while (!isa<TerminatorInst>(Inst));
4856 
4857   return false;
4858 }
4859 
4860 //===----------------------------------------------------------------------===//
4861 // Instruction Parsing.
4862 //===----------------------------------------------------------------------===//
4863 
4864 /// ParseInstruction - Parse one of the many different instructions.
4865 ///
4866 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
4867                                PerFunctionState &PFS) {
4868   lltok::Kind Token = Lex.getKind();
4869   if (Token == lltok::Eof)
4870     return TokError("found end of file when expecting more instructions");
4871   LocTy Loc = Lex.getLoc();
4872   unsigned KeywordVal = Lex.getUIntVal();
4873   Lex.Lex();  // Eat the keyword.
4874 
4875   switch (Token) {
4876   default:                    return Error(Loc, "expected instruction opcode");
4877   // Terminator Instructions.
4878   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
4879   case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
4880   case lltok::kw_br:          return ParseBr(Inst, PFS);
4881   case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
4882   case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
4883   case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
4884   case lltok::kw_resume:      return ParseResume(Inst, PFS);
4885   case lltok::kw_cleanupret:  return ParseCleanupRet(Inst, PFS);
4886   case lltok::kw_catchret:    return ParseCatchRet(Inst, PFS);
4887   case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS);
4888   case lltok::kw_catchpad:    return ParseCatchPad(Inst, PFS);
4889   case lltok::kw_cleanuppad:  return ParseCleanupPad(Inst, PFS);
4890   // Binary Operators.
4891   case lltok::kw_add:
4892   case lltok::kw_sub:
4893   case lltok::kw_mul:
4894   case lltok::kw_shl: {
4895     bool NUW = EatIfPresent(lltok::kw_nuw);
4896     bool NSW = EatIfPresent(lltok::kw_nsw);
4897     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
4898 
4899     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
4900 
4901     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
4902     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
4903     return false;
4904   }
4905   case lltok::kw_fadd:
4906   case lltok::kw_fsub:
4907   case lltok::kw_fmul:
4908   case lltok::kw_fdiv:
4909   case lltok::kw_frem: {
4910     FastMathFlags FMF = EatFastMathFlagsIfPresent();
4911     int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2);
4912     if (Res != 0)
4913       return Res;
4914     if (FMF.any())
4915       Inst->setFastMathFlags(FMF);
4916     return 0;
4917   }
4918 
4919   case lltok::kw_sdiv:
4920   case lltok::kw_udiv:
4921   case lltok::kw_lshr:
4922   case lltok::kw_ashr: {
4923     bool Exact = EatIfPresent(lltok::kw_exact);
4924 
4925     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
4926     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
4927     return false;
4928   }
4929 
4930   case lltok::kw_urem:
4931   case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
4932   case lltok::kw_and:
4933   case lltok::kw_or:
4934   case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
4935   case lltok::kw_icmp:   return ParseCompare(Inst, PFS, KeywordVal);
4936   case lltok::kw_fcmp: {
4937     FastMathFlags FMF = EatFastMathFlagsIfPresent();
4938     int Res = ParseCompare(Inst, PFS, KeywordVal);
4939     if (Res != 0)
4940       return Res;
4941     if (FMF.any())
4942       Inst->setFastMathFlags(FMF);
4943     return 0;
4944   }
4945 
4946   // Casts.
4947   case lltok::kw_trunc:
4948   case lltok::kw_zext:
4949   case lltok::kw_sext:
4950   case lltok::kw_fptrunc:
4951   case lltok::kw_fpext:
4952   case lltok::kw_bitcast:
4953   case lltok::kw_addrspacecast:
4954   case lltok::kw_uitofp:
4955   case lltok::kw_sitofp:
4956   case lltok::kw_fptoui:
4957   case lltok::kw_fptosi:
4958   case lltok::kw_inttoptr:
4959   case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
4960   // Other.
4961   case lltok::kw_select:         return ParseSelect(Inst, PFS);
4962   case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
4963   case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
4964   case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
4965   case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
4966   case lltok::kw_phi:            return ParsePHI(Inst, PFS);
4967   case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
4968   // Call.
4969   case lltok::kw_call:     return ParseCall(Inst, PFS, CallInst::TCK_None);
4970   case lltok::kw_tail:     return ParseCall(Inst, PFS, CallInst::TCK_Tail);
4971   case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail);
4972   case lltok::kw_notail:   return ParseCall(Inst, PFS, CallInst::TCK_NoTail);
4973   // Memory.
4974   case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
4975   case lltok::kw_load:           return ParseLoad(Inst, PFS);
4976   case lltok::kw_store:          return ParseStore(Inst, PFS);
4977   case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
4978   case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
4979   case lltok::kw_fence:          return ParseFence(Inst, PFS);
4980   case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
4981   case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
4982   case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
4983   }
4984 }
4985 
4986 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
4987 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
4988   if (Opc == Instruction::FCmp) {
4989     switch (Lex.getKind()) {
4990     default: return TokError("expected fcmp predicate (e.g. 'oeq')");
4991     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
4992     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
4993     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
4994     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
4995     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
4996     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
4997     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
4998     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
4999     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
5000     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
5001     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
5002     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
5003     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
5004     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
5005     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
5006     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
5007     }
5008   } else {
5009     switch (Lex.getKind()) {
5010     default: return TokError("expected icmp predicate (e.g. 'eq')");
5011     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
5012     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
5013     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
5014     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
5015     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
5016     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
5017     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
5018     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
5019     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
5020     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
5021     }
5022   }
5023   Lex.Lex();
5024   return false;
5025 }
5026 
5027 //===----------------------------------------------------------------------===//
5028 // Terminator Instructions.
5029 //===----------------------------------------------------------------------===//
5030 
5031 /// ParseRet - Parse a return instruction.
5032 ///   ::= 'ret' void (',' !dbg, !1)*
5033 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
5034 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
5035                         PerFunctionState &PFS) {
5036   SMLoc TypeLoc = Lex.getLoc();
5037   Type *Ty = nullptr;
5038   if (ParseType(Ty, true /*void allowed*/)) return true;
5039 
5040   Type *ResType = PFS.getFunction().getReturnType();
5041 
5042   if (Ty->isVoidTy()) {
5043     if (!ResType->isVoidTy())
5044       return Error(TypeLoc, "value doesn't match function result type '" +
5045                    getTypeString(ResType) + "'");
5046 
5047     Inst = ReturnInst::Create(Context);
5048     return false;
5049   }
5050 
5051   Value *RV;
5052   if (ParseValue(Ty, RV, PFS)) return true;
5053 
5054   if (ResType != RV->getType())
5055     return Error(TypeLoc, "value doesn't match function result type '" +
5056                  getTypeString(ResType) + "'");
5057 
5058   Inst = ReturnInst::Create(Context, RV);
5059   return false;
5060 }
5061 
5062 
5063 /// ParseBr
5064 ///   ::= 'br' TypeAndValue
5065 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5066 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
5067   LocTy Loc, Loc2;
5068   Value *Op0;
5069   BasicBlock *Op1, *Op2;
5070   if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
5071 
5072   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
5073     Inst = BranchInst::Create(BB);
5074     return false;
5075   }
5076 
5077   if (Op0->getType() != Type::getInt1Ty(Context))
5078     return Error(Loc, "branch condition must have 'i1' type");
5079 
5080   if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
5081       ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
5082       ParseToken(lltok::comma, "expected ',' after true destination") ||
5083       ParseTypeAndBasicBlock(Op2, Loc2, PFS))
5084     return true;
5085 
5086   Inst = BranchInst::Create(Op1, Op2, Op0);
5087   return false;
5088 }
5089 
5090 /// ParseSwitch
5091 ///  Instruction
5092 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
5093 ///  JumpTable
5094 ///    ::= (TypeAndValue ',' TypeAndValue)*
5095 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5096   LocTy CondLoc, BBLoc;
5097   Value *Cond;
5098   BasicBlock *DefaultBB;
5099   if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
5100       ParseToken(lltok::comma, "expected ',' after switch condition") ||
5101       ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
5102       ParseToken(lltok::lsquare, "expected '[' with switch table"))
5103     return true;
5104 
5105   if (!Cond->getType()->isIntegerTy())
5106     return Error(CondLoc, "switch condition must have integer type");
5107 
5108   // Parse the jump table pairs.
5109   SmallPtrSet<Value*, 32> SeenCases;
5110   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
5111   while (Lex.getKind() != lltok::rsquare) {
5112     Value *Constant;
5113     BasicBlock *DestBB;
5114 
5115     if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
5116         ParseToken(lltok::comma, "expected ',' after case value") ||
5117         ParseTypeAndBasicBlock(DestBB, PFS))
5118       return true;
5119 
5120     if (!SeenCases.insert(Constant).second)
5121       return Error(CondLoc, "duplicate case value in switch");
5122     if (!isa<ConstantInt>(Constant))
5123       return Error(CondLoc, "case value is not a constant integer");
5124 
5125     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
5126   }
5127 
5128   Lex.Lex();  // Eat the ']'.
5129 
5130   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
5131   for (unsigned i = 0, e = Table.size(); i != e; ++i)
5132     SI->addCase(Table[i].first, Table[i].second);
5133   Inst = SI;
5134   return false;
5135 }
5136 
5137 /// ParseIndirectBr
5138 ///  Instruction
5139 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
5140 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
5141   LocTy AddrLoc;
5142   Value *Address;
5143   if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
5144       ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
5145       ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
5146     return true;
5147 
5148   if (!Address->getType()->isPointerTy())
5149     return Error(AddrLoc, "indirectbr address must have pointer type");
5150 
5151   // Parse the destination list.
5152   SmallVector<BasicBlock*, 16> DestList;
5153 
5154   if (Lex.getKind() != lltok::rsquare) {
5155     BasicBlock *DestBB;
5156     if (ParseTypeAndBasicBlock(DestBB, PFS))
5157       return true;
5158     DestList.push_back(DestBB);
5159 
5160     while (EatIfPresent(lltok::comma)) {
5161       if (ParseTypeAndBasicBlock(DestBB, PFS))
5162         return true;
5163       DestList.push_back(DestBB);
5164     }
5165   }
5166 
5167   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
5168     return true;
5169 
5170   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
5171   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
5172     IBI->addDestination(DestList[i]);
5173   Inst = IBI;
5174   return false;
5175 }
5176 
5177 
5178 /// ParseInvoke
5179 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
5180 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
5181 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
5182   LocTy CallLoc = Lex.getLoc();
5183   AttrBuilder RetAttrs, FnAttrs;
5184   std::vector<unsigned> FwdRefAttrGrps;
5185   LocTy NoBuiltinLoc;
5186   unsigned CC;
5187   Type *RetType = nullptr;
5188   LocTy RetTypeLoc;
5189   ValID CalleeID;
5190   SmallVector<ParamInfo, 16> ArgList;
5191   SmallVector<OperandBundleDef, 2> BundleList;
5192 
5193   BasicBlock *NormalBB, *UnwindBB;
5194   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5195       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
5196       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
5197       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
5198                                  NoBuiltinLoc) ||
5199       ParseOptionalOperandBundles(BundleList, PFS) ||
5200       ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
5201       ParseTypeAndBasicBlock(NormalBB, PFS) ||
5202       ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
5203       ParseTypeAndBasicBlock(UnwindBB, PFS))
5204     return true;
5205 
5206   // If RetType is a non-function pointer type, then this is the short syntax
5207   // for the call, which means that RetType is just the return type.  Infer the
5208   // rest of the function argument types from the arguments that are present.
5209   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
5210   if (!Ty) {
5211     // Pull out the types of all of the arguments...
5212     std::vector<Type*> ParamTypes;
5213     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
5214       ParamTypes.push_back(ArgList[i].V->getType());
5215 
5216     if (!FunctionType::isValidReturnType(RetType))
5217       return Error(RetTypeLoc, "Invalid result type for LLVM function");
5218 
5219     Ty = FunctionType::get(RetType, ParamTypes, false);
5220   }
5221 
5222   CalleeID.FTy = Ty;
5223 
5224   // Look up the callee.
5225   Value *Callee;
5226   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS))
5227     return true;
5228 
5229   // Set up the Attribute for the function.
5230   SmallVector<AttributeSet, 8> Attrs;
5231   if (RetAttrs.hasAttributes())
5232     Attrs.push_back(AttributeSet::get(RetType->getContext(),
5233                                       AttributeSet::ReturnIndex,
5234                                       RetAttrs));
5235 
5236   SmallVector<Value*, 8> Args;
5237 
5238   // Loop through FunctionType's arguments and ensure they are specified
5239   // correctly.  Also, gather any parameter attributes.
5240   FunctionType::param_iterator I = Ty->param_begin();
5241   FunctionType::param_iterator E = Ty->param_end();
5242   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5243     Type *ExpectedTy = nullptr;
5244     if (I != E) {
5245       ExpectedTy = *I++;
5246     } else if (!Ty->isVarArg()) {
5247       return Error(ArgList[i].Loc, "too many arguments specified");
5248     }
5249 
5250     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
5251       return Error(ArgList[i].Loc, "argument is not of expected type '" +
5252                    getTypeString(ExpectedTy) + "'");
5253     Args.push_back(ArgList[i].V);
5254     if (ArgList[i].Attrs.hasAttributes(i + 1)) {
5255       AttrBuilder B(ArgList[i].Attrs, i + 1);
5256       Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
5257     }
5258   }
5259 
5260   if (I != E)
5261     return Error(CallLoc, "not enough parameters specified for call");
5262 
5263   if (FnAttrs.hasAttributes()) {
5264     if (FnAttrs.hasAlignmentAttr())
5265       return Error(CallLoc, "invoke instructions may not have an alignment");
5266 
5267     Attrs.push_back(AttributeSet::get(RetType->getContext(),
5268                                       AttributeSet::FunctionIndex,
5269                                       FnAttrs));
5270   }
5271 
5272   // Finish off the Attribute and check them
5273   AttributeSet PAL = AttributeSet::get(Context, Attrs);
5274 
5275   InvokeInst *II =
5276       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
5277   II->setCallingConv(CC);
5278   II->setAttributes(PAL);
5279   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
5280   Inst = II;
5281   return false;
5282 }
5283 
5284 /// ParseResume
5285 ///   ::= 'resume' TypeAndValue
5286 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
5287   Value *Exn; LocTy ExnLoc;
5288   if (ParseTypeAndValue(Exn, ExnLoc, PFS))
5289     return true;
5290 
5291   ResumeInst *RI = ResumeInst::Create(Exn);
5292   Inst = RI;
5293   return false;
5294 }
5295 
5296 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args,
5297                                   PerFunctionState &PFS) {
5298   if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
5299     return true;
5300 
5301   while (Lex.getKind() != lltok::rsquare) {
5302     // If this isn't the first argument, we need a comma.
5303     if (!Args.empty() &&
5304         ParseToken(lltok::comma, "expected ',' in argument list"))
5305       return true;
5306 
5307     // Parse the argument.
5308     LocTy ArgLoc;
5309     Type *ArgTy = nullptr;
5310     if (ParseType(ArgTy, ArgLoc))
5311       return true;
5312 
5313     Value *V;
5314     if (ArgTy->isMetadataTy()) {
5315       if (ParseMetadataAsValue(V, PFS))
5316         return true;
5317     } else {
5318       if (ParseValue(ArgTy, V, PFS))
5319         return true;
5320     }
5321     Args.push_back(V);
5322   }
5323 
5324   Lex.Lex();  // Lex the ']'.
5325   return false;
5326 }
5327 
5328 /// ParseCleanupRet
5329 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
5330 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
5331   Value *CleanupPad = nullptr;
5332 
5333   if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret"))
5334     return true;
5335 
5336   if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS))
5337     return true;
5338 
5339   if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
5340     return true;
5341 
5342   BasicBlock *UnwindBB = nullptr;
5343   if (Lex.getKind() == lltok::kw_to) {
5344     Lex.Lex();
5345     if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
5346       return true;
5347   } else {
5348     if (ParseTypeAndBasicBlock(UnwindBB, PFS)) {
5349       return true;
5350     }
5351   }
5352 
5353   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
5354   return false;
5355 }
5356 
5357 /// ParseCatchRet
5358 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
5359 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
5360   Value *CatchPad = nullptr;
5361 
5362   if (ParseToken(lltok::kw_from, "expected 'from' after catchret"))
5363     return true;
5364 
5365   if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS))
5366     return true;
5367 
5368   BasicBlock *BB;
5369   if (ParseToken(lltok::kw_to, "expected 'to' in catchret") ||
5370       ParseTypeAndBasicBlock(BB, PFS))
5371       return true;
5372 
5373   Inst = CatchReturnInst::Create(CatchPad, BB);
5374   return false;
5375 }
5376 
5377 /// ParseCatchSwitch
5378 ///   ::= 'catchswitch' within Parent
5379 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5380   Value *ParentPad;
5381   LocTy BBLoc;
5382 
5383   if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch"))
5384     return true;
5385 
5386   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
5387       Lex.getKind() != lltok::LocalVarID)
5388     return TokError("expected scope value for catchswitch");
5389 
5390   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
5391     return true;
5392 
5393   if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
5394     return true;
5395 
5396   SmallVector<BasicBlock *, 32> Table;
5397   do {
5398     BasicBlock *DestBB;
5399     if (ParseTypeAndBasicBlock(DestBB, PFS))
5400       return true;
5401     Table.push_back(DestBB);
5402   } while (EatIfPresent(lltok::comma));
5403 
5404   if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
5405     return true;
5406 
5407   if (ParseToken(lltok::kw_unwind,
5408                  "expected 'unwind' after catchswitch scope"))
5409     return true;
5410 
5411   BasicBlock *UnwindBB = nullptr;
5412   if (EatIfPresent(lltok::kw_to)) {
5413     if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
5414       return true;
5415   } else {
5416     if (ParseTypeAndBasicBlock(UnwindBB, PFS))
5417       return true;
5418   }
5419 
5420   auto *CatchSwitch =
5421       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
5422   for (BasicBlock *DestBB : Table)
5423     CatchSwitch->addHandler(DestBB);
5424   Inst = CatchSwitch;
5425   return false;
5426 }
5427 
5428 /// ParseCatchPad
5429 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
5430 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
5431   Value *CatchSwitch = nullptr;
5432 
5433   if (ParseToken(lltok::kw_within, "expected 'within' after catchpad"))
5434     return true;
5435 
5436   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
5437     return TokError("expected scope value for catchpad");
5438 
5439   if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
5440     return true;
5441 
5442   SmallVector<Value *, 8> Args;
5443   if (ParseExceptionArgs(Args, PFS))
5444     return true;
5445 
5446   Inst = CatchPadInst::Create(CatchSwitch, Args);
5447   return false;
5448 }
5449 
5450 /// ParseCleanupPad
5451 ///   ::= 'cleanuppad' within Parent ParamList
5452 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
5453   Value *ParentPad = nullptr;
5454 
5455   if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
5456     return true;
5457 
5458   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
5459       Lex.getKind() != lltok::LocalVarID)
5460     return TokError("expected scope value for cleanuppad");
5461 
5462   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
5463     return true;
5464 
5465   SmallVector<Value *, 8> Args;
5466   if (ParseExceptionArgs(Args, PFS))
5467     return true;
5468 
5469   Inst = CleanupPadInst::Create(ParentPad, Args);
5470   return false;
5471 }
5472 
5473 //===----------------------------------------------------------------------===//
5474 // Binary Operators.
5475 //===----------------------------------------------------------------------===//
5476 
5477 /// ParseArithmetic
5478 ///  ::= ArithmeticOps TypeAndValue ',' Value
5479 ///
5480 /// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
5481 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
5482 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
5483                                unsigned Opc, unsigned OperandType) {
5484   LocTy Loc; Value *LHS, *RHS;
5485   if (ParseTypeAndValue(LHS, Loc, PFS) ||
5486       ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
5487       ParseValue(LHS->getType(), RHS, PFS))
5488     return true;
5489 
5490   bool Valid;
5491   switch (OperandType) {
5492   default: llvm_unreachable("Unknown operand type!");
5493   case 0: // int or FP.
5494     Valid = LHS->getType()->isIntOrIntVectorTy() ||
5495             LHS->getType()->isFPOrFPVectorTy();
5496     break;
5497   case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
5498   case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
5499   }
5500 
5501   if (!Valid)
5502     return Error(Loc, "invalid operand type for instruction");
5503 
5504   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
5505   return false;
5506 }
5507 
5508 /// ParseLogical
5509 ///  ::= ArithmeticOps TypeAndValue ',' Value {
5510 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
5511                             unsigned Opc) {
5512   LocTy Loc; Value *LHS, *RHS;
5513   if (ParseTypeAndValue(LHS, Loc, PFS) ||
5514       ParseToken(lltok::comma, "expected ',' in logical operation") ||
5515       ParseValue(LHS->getType(), RHS, PFS))
5516     return true;
5517 
5518   if (!LHS->getType()->isIntOrIntVectorTy())
5519     return Error(Loc,"instruction requires integer or integer vector operands");
5520 
5521   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
5522   return false;
5523 }
5524 
5525 
5526 /// ParseCompare
5527 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
5528 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
5529 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
5530                             unsigned Opc) {
5531   // Parse the integer/fp comparison predicate.
5532   LocTy Loc;
5533   unsigned Pred;
5534   Value *LHS, *RHS;
5535   if (ParseCmpPredicate(Pred, Opc) ||
5536       ParseTypeAndValue(LHS, Loc, PFS) ||
5537       ParseToken(lltok::comma, "expected ',' after compare value") ||
5538       ParseValue(LHS->getType(), RHS, PFS))
5539     return true;
5540 
5541   if (Opc == Instruction::FCmp) {
5542     if (!LHS->getType()->isFPOrFPVectorTy())
5543       return Error(Loc, "fcmp requires floating point operands");
5544     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
5545   } else {
5546     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
5547     if (!LHS->getType()->isIntOrIntVectorTy() &&
5548         !LHS->getType()->getScalarType()->isPointerTy())
5549       return Error(Loc, "icmp requires integer operands");
5550     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
5551   }
5552   return false;
5553 }
5554 
5555 //===----------------------------------------------------------------------===//
5556 // Other Instructions.
5557 //===----------------------------------------------------------------------===//
5558 
5559 
5560 /// ParseCast
5561 ///   ::= CastOpc TypeAndValue 'to' Type
5562 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
5563                          unsigned Opc) {
5564   LocTy Loc;
5565   Value *Op;
5566   Type *DestTy = nullptr;
5567   if (ParseTypeAndValue(Op, Loc, PFS) ||
5568       ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
5569       ParseType(DestTy))
5570     return true;
5571 
5572   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
5573     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
5574     return Error(Loc, "invalid cast opcode for cast from '" +
5575                  getTypeString(Op->getType()) + "' to '" +
5576                  getTypeString(DestTy) + "'");
5577   }
5578   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
5579   return false;
5580 }
5581 
5582 /// ParseSelect
5583 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5584 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
5585   LocTy Loc;
5586   Value *Op0, *Op1, *Op2;
5587   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5588       ParseToken(lltok::comma, "expected ',' after select condition") ||
5589       ParseTypeAndValue(Op1, PFS) ||
5590       ParseToken(lltok::comma, "expected ',' after select value") ||
5591       ParseTypeAndValue(Op2, PFS))
5592     return true;
5593 
5594   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
5595     return Error(Loc, Reason);
5596 
5597   Inst = SelectInst::Create(Op0, Op1, Op2);
5598   return false;
5599 }
5600 
5601 /// ParseVA_Arg
5602 ///   ::= 'va_arg' TypeAndValue ',' Type
5603 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
5604   Value *Op;
5605   Type *EltTy = nullptr;
5606   LocTy TypeLoc;
5607   if (ParseTypeAndValue(Op, PFS) ||
5608       ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
5609       ParseType(EltTy, TypeLoc))
5610     return true;
5611 
5612   if (!EltTy->isFirstClassType())
5613     return Error(TypeLoc, "va_arg requires operand with first class type");
5614 
5615   Inst = new VAArgInst(Op, EltTy);
5616   return false;
5617 }
5618 
5619 /// ParseExtractElement
5620 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
5621 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
5622   LocTy Loc;
5623   Value *Op0, *Op1;
5624   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5625       ParseToken(lltok::comma, "expected ',' after extract value") ||
5626       ParseTypeAndValue(Op1, PFS))
5627     return true;
5628 
5629   if (!ExtractElementInst::isValidOperands(Op0, Op1))
5630     return Error(Loc, "invalid extractelement operands");
5631 
5632   Inst = ExtractElementInst::Create(Op0, Op1);
5633   return false;
5634 }
5635 
5636 /// ParseInsertElement
5637 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5638 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
5639   LocTy Loc;
5640   Value *Op0, *Op1, *Op2;
5641   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5642       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5643       ParseTypeAndValue(Op1, PFS) ||
5644       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5645       ParseTypeAndValue(Op2, PFS))
5646     return true;
5647 
5648   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
5649     return Error(Loc, "invalid insertelement operands");
5650 
5651   Inst = InsertElementInst::Create(Op0, Op1, Op2);
5652   return false;
5653 }
5654 
5655 /// ParseShuffleVector
5656 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5657 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
5658   LocTy Loc;
5659   Value *Op0, *Op1, *Op2;
5660   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5661       ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
5662       ParseTypeAndValue(Op1, PFS) ||
5663       ParseToken(lltok::comma, "expected ',' after shuffle value") ||
5664       ParseTypeAndValue(Op2, PFS))
5665     return true;
5666 
5667   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
5668     return Error(Loc, "invalid shufflevector operands");
5669 
5670   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
5671   return false;
5672 }
5673 
5674 /// ParsePHI
5675 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
5676 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
5677   Type *Ty = nullptr;  LocTy TypeLoc;
5678   Value *Op0, *Op1;
5679 
5680   if (ParseType(Ty, TypeLoc) ||
5681       ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
5682       ParseValue(Ty, Op0, PFS) ||
5683       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5684       ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
5685       ParseToken(lltok::rsquare, "expected ']' in phi value list"))
5686     return true;
5687 
5688   bool AteExtraComma = false;
5689   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
5690   while (1) {
5691     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
5692 
5693     if (!EatIfPresent(lltok::comma))
5694       break;
5695 
5696     if (Lex.getKind() == lltok::MetadataVar) {
5697       AteExtraComma = true;
5698       break;
5699     }
5700 
5701     if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
5702         ParseValue(Ty, Op0, PFS) ||
5703         ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5704         ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
5705         ParseToken(lltok::rsquare, "expected ']' in phi value list"))
5706       return true;
5707   }
5708 
5709   if (!Ty->isFirstClassType())
5710     return Error(TypeLoc, "phi node must have first class type");
5711 
5712   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
5713   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
5714     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
5715   Inst = PN;
5716   return AteExtraComma ? InstExtraComma : InstNormal;
5717 }
5718 
5719 /// ParseLandingPad
5720 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
5721 /// Clause
5722 ///   ::= 'catch' TypeAndValue
5723 ///   ::= 'filter'
5724 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
5725 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
5726   Type *Ty = nullptr; LocTy TyLoc;
5727 
5728   if (ParseType(Ty, TyLoc))
5729     return true;
5730 
5731   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
5732   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
5733 
5734   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
5735     LandingPadInst::ClauseType CT;
5736     if (EatIfPresent(lltok::kw_catch))
5737       CT = LandingPadInst::Catch;
5738     else if (EatIfPresent(lltok::kw_filter))
5739       CT = LandingPadInst::Filter;
5740     else
5741       return TokError("expected 'catch' or 'filter' clause type");
5742 
5743     Value *V;
5744     LocTy VLoc;
5745     if (ParseTypeAndValue(V, VLoc, PFS))
5746       return true;
5747 
5748     // A 'catch' type expects a non-array constant. A filter clause expects an
5749     // array constant.
5750     if (CT == LandingPadInst::Catch) {
5751       if (isa<ArrayType>(V->getType()))
5752         Error(VLoc, "'catch' clause has an invalid type");
5753     } else {
5754       if (!isa<ArrayType>(V->getType()))
5755         Error(VLoc, "'filter' clause has an invalid type");
5756     }
5757 
5758     Constant *CV = dyn_cast<Constant>(V);
5759     if (!CV)
5760       return Error(VLoc, "clause argument must be a constant");
5761     LP->addClause(CV);
5762   }
5763 
5764   Inst = LP.release();
5765   return false;
5766 }
5767 
5768 /// ParseCall
5769 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
5770 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
5771 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
5772 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
5773 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
5774 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
5775 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
5776 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
5777 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
5778                          CallInst::TailCallKind TCK) {
5779   AttrBuilder RetAttrs, FnAttrs;
5780   std::vector<unsigned> FwdRefAttrGrps;
5781   LocTy BuiltinLoc;
5782   unsigned CC;
5783   Type *RetType = nullptr;
5784   LocTy RetTypeLoc;
5785   ValID CalleeID;
5786   SmallVector<ParamInfo, 16> ArgList;
5787   SmallVector<OperandBundleDef, 2> BundleList;
5788   LocTy CallLoc = Lex.getLoc();
5789 
5790   if (TCK != CallInst::TCK_None &&
5791       ParseToken(lltok::kw_call,
5792                  "expected 'tail call', 'musttail call', or 'notail call'"))
5793     return true;
5794 
5795   FastMathFlags FMF = EatFastMathFlagsIfPresent();
5796 
5797   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5798       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
5799       ParseValID(CalleeID) ||
5800       ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
5801                          PFS.getFunction().isVarArg()) ||
5802       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
5803       ParseOptionalOperandBundles(BundleList, PFS))
5804     return true;
5805 
5806   if (FMF.any() && !RetType->isFPOrFPVectorTy())
5807     return Error(CallLoc, "fast-math-flags specified for call without "
5808                           "floating-point scalar or vector return type");
5809 
5810   // If RetType is a non-function pointer type, then this is the short syntax
5811   // for the call, which means that RetType is just the return type.  Infer the
5812   // rest of the function argument types from the arguments that are present.
5813   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
5814   if (!Ty) {
5815     // Pull out the types of all of the arguments...
5816     std::vector<Type*> ParamTypes;
5817     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
5818       ParamTypes.push_back(ArgList[i].V->getType());
5819 
5820     if (!FunctionType::isValidReturnType(RetType))
5821       return Error(RetTypeLoc, "Invalid result type for LLVM function");
5822 
5823     Ty = FunctionType::get(RetType, ParamTypes, false);
5824   }
5825 
5826   CalleeID.FTy = Ty;
5827 
5828   // Look up the callee.
5829   Value *Callee;
5830   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS))
5831     return true;
5832 
5833   // Set up the Attribute for the function.
5834   SmallVector<AttributeSet, 8> Attrs;
5835   if (RetAttrs.hasAttributes())
5836     Attrs.push_back(AttributeSet::get(RetType->getContext(),
5837                                       AttributeSet::ReturnIndex,
5838                                       RetAttrs));
5839 
5840   SmallVector<Value*, 8> Args;
5841 
5842   // Loop through FunctionType's arguments and ensure they are specified
5843   // correctly.  Also, gather any parameter attributes.
5844   FunctionType::param_iterator I = Ty->param_begin();
5845   FunctionType::param_iterator E = Ty->param_end();
5846   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5847     Type *ExpectedTy = nullptr;
5848     if (I != E) {
5849       ExpectedTy = *I++;
5850     } else if (!Ty->isVarArg()) {
5851       return Error(ArgList[i].Loc, "too many arguments specified");
5852     }
5853 
5854     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
5855       return Error(ArgList[i].Loc, "argument is not of expected type '" +
5856                    getTypeString(ExpectedTy) + "'");
5857     Args.push_back(ArgList[i].V);
5858     if (ArgList[i].Attrs.hasAttributes(i + 1)) {
5859       AttrBuilder B(ArgList[i].Attrs, i + 1);
5860       Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
5861     }
5862   }
5863 
5864   if (I != E)
5865     return Error(CallLoc, "not enough parameters specified for call");
5866 
5867   if (FnAttrs.hasAttributes()) {
5868     if (FnAttrs.hasAlignmentAttr())
5869       return Error(CallLoc, "call instructions may not have an alignment");
5870 
5871     Attrs.push_back(AttributeSet::get(RetType->getContext(),
5872                                       AttributeSet::FunctionIndex,
5873                                       FnAttrs));
5874   }
5875 
5876   // Finish off the Attribute and check them
5877   AttributeSet PAL = AttributeSet::get(Context, Attrs);
5878 
5879   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
5880   CI->setTailCallKind(TCK);
5881   CI->setCallingConv(CC);
5882   if (FMF.any())
5883     CI->setFastMathFlags(FMF);
5884   CI->setAttributes(PAL);
5885   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
5886   Inst = CI;
5887   return false;
5888 }
5889 
5890 //===----------------------------------------------------------------------===//
5891 // Memory Instructions.
5892 //===----------------------------------------------------------------------===//
5893 
5894 /// ParseAlloc
5895 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
5896 ///       (',' 'align' i32)?
5897 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
5898   Value *Size = nullptr;
5899   LocTy SizeLoc, TyLoc;
5900   unsigned Alignment = 0;
5901   Type *Ty = nullptr;
5902 
5903   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
5904   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
5905 
5906   if (ParseType(Ty, TyLoc)) return true;
5907 
5908   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
5909     return Error(TyLoc, "invalid type for alloca");
5910 
5911   bool AteExtraComma = false;
5912   if (EatIfPresent(lltok::comma)) {
5913     if (Lex.getKind() == lltok::kw_align) {
5914       if (ParseOptionalAlignment(Alignment)) return true;
5915     } else if (Lex.getKind() == lltok::MetadataVar) {
5916       AteExtraComma = true;
5917     } else {
5918       if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
5919           ParseOptionalCommaAlign(Alignment, AteExtraComma))
5920         return true;
5921     }
5922   }
5923 
5924   if (Size && !Size->getType()->isIntegerTy())
5925     return Error(SizeLoc, "element count must have integer type");
5926 
5927   AllocaInst *AI = new AllocaInst(Ty, Size, Alignment);
5928   AI->setUsedWithInAlloca(IsInAlloca);
5929   AI->setSwiftError(IsSwiftError);
5930   Inst = AI;
5931   return AteExtraComma ? InstExtraComma : InstNormal;
5932 }
5933 
5934 /// ParseLoad
5935 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
5936 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
5937 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
5938 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
5939   Value *Val; LocTy Loc;
5940   unsigned Alignment = 0;
5941   bool AteExtraComma = false;
5942   bool isAtomic = false;
5943   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
5944   SynchronizationScope Scope = CrossThread;
5945 
5946   if (Lex.getKind() == lltok::kw_atomic) {
5947     isAtomic = true;
5948     Lex.Lex();
5949   }
5950 
5951   bool isVolatile = false;
5952   if (Lex.getKind() == lltok::kw_volatile) {
5953     isVolatile = true;
5954     Lex.Lex();
5955   }
5956 
5957   Type *Ty;
5958   LocTy ExplicitTypeLoc = Lex.getLoc();
5959   if (ParseType(Ty) ||
5960       ParseToken(lltok::comma, "expected comma after load's type") ||
5961       ParseTypeAndValue(Val, Loc, PFS) ||
5962       ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
5963       ParseOptionalCommaAlign(Alignment, AteExtraComma))
5964     return true;
5965 
5966   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
5967     return Error(Loc, "load operand must be a pointer to a first class type");
5968   if (isAtomic && !Alignment)
5969     return Error(Loc, "atomic load must have explicit non-zero alignment");
5970   if (Ordering == AtomicOrdering::Release ||
5971       Ordering == AtomicOrdering::AcquireRelease)
5972     return Error(Loc, "atomic load cannot use Release ordering");
5973 
5974   if (Ty != cast<PointerType>(Val->getType())->getElementType())
5975     return Error(ExplicitTypeLoc,
5976                  "explicit pointee type doesn't match operand's pointee type");
5977 
5978   Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, Scope);
5979   return AteExtraComma ? InstExtraComma : InstNormal;
5980 }
5981 
5982 /// ParseStore
5983 
5984 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
5985 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
5986 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
5987 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
5988   Value *Val, *Ptr; LocTy Loc, PtrLoc;
5989   unsigned Alignment = 0;
5990   bool AteExtraComma = false;
5991   bool isAtomic = false;
5992   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
5993   SynchronizationScope Scope = CrossThread;
5994 
5995   if (Lex.getKind() == lltok::kw_atomic) {
5996     isAtomic = true;
5997     Lex.Lex();
5998   }
5999 
6000   bool isVolatile = false;
6001   if (Lex.getKind() == lltok::kw_volatile) {
6002     isVolatile = true;
6003     Lex.Lex();
6004   }
6005 
6006   if (ParseTypeAndValue(Val, Loc, PFS) ||
6007       ParseToken(lltok::comma, "expected ',' after store operand") ||
6008       ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6009       ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
6010       ParseOptionalCommaAlign(Alignment, AteExtraComma))
6011     return true;
6012 
6013   if (!Ptr->getType()->isPointerTy())
6014     return Error(PtrLoc, "store operand must be a pointer");
6015   if (!Val->getType()->isFirstClassType())
6016     return Error(Loc, "store operand must be a first class value");
6017   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
6018     return Error(Loc, "stored value and pointer type do not match");
6019   if (isAtomic && !Alignment)
6020     return Error(Loc, "atomic store must have explicit non-zero alignment");
6021   if (Ordering == AtomicOrdering::Acquire ||
6022       Ordering == AtomicOrdering::AcquireRelease)
6023     return Error(Loc, "atomic store cannot use Acquire ordering");
6024 
6025   Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope);
6026   return AteExtraComma ? InstExtraComma : InstNormal;
6027 }
6028 
6029 /// ParseCmpXchg
6030 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
6031 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
6032 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
6033   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
6034   bool AteExtraComma = false;
6035   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
6036   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
6037   SynchronizationScope Scope = CrossThread;
6038   bool isVolatile = false;
6039   bool isWeak = false;
6040 
6041   if (EatIfPresent(lltok::kw_weak))
6042     isWeak = true;
6043 
6044   if (EatIfPresent(lltok::kw_volatile))
6045     isVolatile = true;
6046 
6047   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6048       ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
6049       ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
6050       ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
6051       ParseTypeAndValue(New, NewLoc, PFS) ||
6052       ParseScopeAndOrdering(true /*Always atomic*/, Scope, SuccessOrdering) ||
6053       ParseOrdering(FailureOrdering))
6054     return true;
6055 
6056   if (SuccessOrdering == AtomicOrdering::Unordered ||
6057       FailureOrdering == AtomicOrdering::Unordered)
6058     return TokError("cmpxchg cannot be unordered");
6059   if (isStrongerThan(FailureOrdering, SuccessOrdering))
6060     return TokError("cmpxchg failure argument shall be no stronger than the "
6061                     "success argument");
6062   if (FailureOrdering == AtomicOrdering::Release ||
6063       FailureOrdering == AtomicOrdering::AcquireRelease)
6064     return TokError(
6065         "cmpxchg failure ordering cannot include release semantics");
6066   if (!Ptr->getType()->isPointerTy())
6067     return Error(PtrLoc, "cmpxchg operand must be a pointer");
6068   if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
6069     return Error(CmpLoc, "compare value and pointer type do not match");
6070   if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
6071     return Error(NewLoc, "new value and pointer type do not match");
6072   if (!New->getType()->isFirstClassType())
6073     return Error(NewLoc, "cmpxchg operand must be a first class value");
6074   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
6075       Ptr, Cmp, New, SuccessOrdering, FailureOrdering, Scope);
6076   CXI->setVolatile(isVolatile);
6077   CXI->setWeak(isWeak);
6078   Inst = CXI;
6079   return AteExtraComma ? InstExtraComma : InstNormal;
6080 }
6081 
6082 /// ParseAtomicRMW
6083 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
6084 ///       'singlethread'? AtomicOrdering
6085 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
6086   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
6087   bool AteExtraComma = false;
6088   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6089   SynchronizationScope Scope = CrossThread;
6090   bool isVolatile = false;
6091   AtomicRMWInst::BinOp Operation;
6092 
6093   if (EatIfPresent(lltok::kw_volatile))
6094     isVolatile = true;
6095 
6096   switch (Lex.getKind()) {
6097   default: return TokError("expected binary operation in atomicrmw");
6098   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
6099   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
6100   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
6101   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
6102   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
6103   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
6104   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
6105   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
6106   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
6107   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
6108   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
6109   }
6110   Lex.Lex();  // Eat the operation.
6111 
6112   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6113       ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
6114       ParseTypeAndValue(Val, ValLoc, PFS) ||
6115       ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
6116     return true;
6117 
6118   if (Ordering == AtomicOrdering::Unordered)
6119     return TokError("atomicrmw cannot be unordered");
6120   if (!Ptr->getType()->isPointerTy())
6121     return Error(PtrLoc, "atomicrmw operand must be a pointer");
6122   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
6123     return Error(ValLoc, "atomicrmw value and pointer type do not match");
6124   if (!Val->getType()->isIntegerTy())
6125     return Error(ValLoc, "atomicrmw operand must be an integer");
6126   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
6127   if (Size < 8 || (Size & (Size - 1)))
6128     return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
6129                          " integer");
6130 
6131   AtomicRMWInst *RMWI =
6132     new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope);
6133   RMWI->setVolatile(isVolatile);
6134   Inst = RMWI;
6135   return AteExtraComma ? InstExtraComma : InstNormal;
6136 }
6137 
6138 /// ParseFence
6139 ///   ::= 'fence' 'singlethread'? AtomicOrdering
6140 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
6141   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6142   SynchronizationScope Scope = CrossThread;
6143   if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
6144     return true;
6145 
6146   if (Ordering == AtomicOrdering::Unordered)
6147     return TokError("fence cannot be unordered");
6148   if (Ordering == AtomicOrdering::Monotonic)
6149     return TokError("fence cannot be monotonic");
6150 
6151   Inst = new FenceInst(Context, Ordering, Scope);
6152   return InstNormal;
6153 }
6154 
6155 /// ParseGetElementPtr
6156 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
6157 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
6158   Value *Ptr = nullptr;
6159   Value *Val = nullptr;
6160   LocTy Loc, EltLoc;
6161 
6162   bool InBounds = EatIfPresent(lltok::kw_inbounds);
6163 
6164   Type *Ty = nullptr;
6165   LocTy ExplicitTypeLoc = Lex.getLoc();
6166   if (ParseType(Ty) ||
6167       ParseToken(lltok::comma, "expected comma after getelementptr's type") ||
6168       ParseTypeAndValue(Ptr, Loc, PFS))
6169     return true;
6170 
6171   Type *BaseType = Ptr->getType();
6172   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
6173   if (!BasePointerType)
6174     return Error(Loc, "base of getelementptr must be a pointer");
6175 
6176   if (Ty != BasePointerType->getElementType())
6177     return Error(ExplicitTypeLoc,
6178                  "explicit pointee type doesn't match operand's pointee type");
6179 
6180   SmallVector<Value*, 16> Indices;
6181   bool AteExtraComma = false;
6182   // GEP returns a vector of pointers if at least one of parameters is a vector.
6183   // All vector parameters should have the same vector width.
6184   unsigned GEPWidth = BaseType->isVectorTy() ?
6185     BaseType->getVectorNumElements() : 0;
6186 
6187   while (EatIfPresent(lltok::comma)) {
6188     if (Lex.getKind() == lltok::MetadataVar) {
6189       AteExtraComma = true;
6190       break;
6191     }
6192     if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
6193     if (!Val->getType()->getScalarType()->isIntegerTy())
6194       return Error(EltLoc, "getelementptr index must be an integer");
6195 
6196     if (Val->getType()->isVectorTy()) {
6197       unsigned ValNumEl = Val->getType()->getVectorNumElements();
6198       if (GEPWidth && GEPWidth != ValNumEl)
6199         return Error(EltLoc,
6200           "getelementptr vector index has a wrong number of elements");
6201       GEPWidth = ValNumEl;
6202     }
6203     Indices.push_back(Val);
6204   }
6205 
6206   SmallPtrSet<Type*, 4> Visited;
6207   if (!Indices.empty() && !Ty->isSized(&Visited))
6208     return Error(Loc, "base element of getelementptr must be sized");
6209 
6210   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
6211     return Error(Loc, "invalid getelementptr indices");
6212   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
6213   if (InBounds)
6214     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
6215   return AteExtraComma ? InstExtraComma : InstNormal;
6216 }
6217 
6218 /// ParseExtractValue
6219 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
6220 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
6221   Value *Val; LocTy Loc;
6222   SmallVector<unsigned, 4> Indices;
6223   bool AteExtraComma;
6224   if (ParseTypeAndValue(Val, Loc, PFS) ||
6225       ParseIndexList(Indices, AteExtraComma))
6226     return true;
6227 
6228   if (!Val->getType()->isAggregateType())
6229     return Error(Loc, "extractvalue operand must be aggregate type");
6230 
6231   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
6232     return Error(Loc, "invalid indices for extractvalue");
6233   Inst = ExtractValueInst::Create(Val, Indices);
6234   return AteExtraComma ? InstExtraComma : InstNormal;
6235 }
6236 
6237 /// ParseInsertValue
6238 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
6239 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
6240   Value *Val0, *Val1; LocTy Loc0, Loc1;
6241   SmallVector<unsigned, 4> Indices;
6242   bool AteExtraComma;
6243   if (ParseTypeAndValue(Val0, Loc0, PFS) ||
6244       ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
6245       ParseTypeAndValue(Val1, Loc1, PFS) ||
6246       ParseIndexList(Indices, AteExtraComma))
6247     return true;
6248 
6249   if (!Val0->getType()->isAggregateType())
6250     return Error(Loc0, "insertvalue operand must be aggregate type");
6251 
6252   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
6253   if (!IndexedType)
6254     return Error(Loc0, "invalid indices for insertvalue");
6255   if (IndexedType != Val1->getType())
6256     return Error(Loc1, "insertvalue operand and field disagree in type: '" +
6257                            getTypeString(Val1->getType()) + "' instead of '" +
6258                            getTypeString(IndexedType) + "'");
6259   Inst = InsertValueInst::Create(Val0, Val1, Indices);
6260   return AteExtraComma ? InstExtraComma : InstNormal;
6261 }
6262 
6263 //===----------------------------------------------------------------------===//
6264 // Embedded metadata.
6265 //===----------------------------------------------------------------------===//
6266 
6267 /// ParseMDNodeVector
6268 ///   ::= { Element (',' Element)* }
6269 /// Element
6270 ///   ::= 'null' | TypeAndValue
6271 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
6272   if (ParseToken(lltok::lbrace, "expected '{' here"))
6273     return true;
6274 
6275   // Check for an empty list.
6276   if (EatIfPresent(lltok::rbrace))
6277     return false;
6278 
6279   do {
6280     // Null is a special case since it is typeless.
6281     if (EatIfPresent(lltok::kw_null)) {
6282       Elts.push_back(nullptr);
6283       continue;
6284     }
6285 
6286     Metadata *MD;
6287     if (ParseMetadata(MD, nullptr))
6288       return true;
6289     Elts.push_back(MD);
6290   } while (EatIfPresent(lltok::comma));
6291 
6292   return ParseToken(lltok::rbrace, "expected end of metadata node");
6293 }
6294 
6295 //===----------------------------------------------------------------------===//
6296 // Use-list order directives.
6297 //===----------------------------------------------------------------------===//
6298 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
6299                                 SMLoc Loc) {
6300   if (V->use_empty())
6301     return Error(Loc, "value has no uses");
6302 
6303   unsigned NumUses = 0;
6304   SmallDenseMap<const Use *, unsigned, 16> Order;
6305   for (const Use &U : V->uses()) {
6306     if (++NumUses > Indexes.size())
6307       break;
6308     Order[&U] = Indexes[NumUses - 1];
6309   }
6310   if (NumUses < 2)
6311     return Error(Loc, "value only has one use");
6312   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
6313     return Error(Loc, "wrong number of indexes, expected " +
6314                           Twine(std::distance(V->use_begin(), V->use_end())));
6315 
6316   V->sortUseList([&](const Use &L, const Use &R) {
6317     return Order.lookup(&L) < Order.lookup(&R);
6318   });
6319   return false;
6320 }
6321 
6322 /// ParseUseListOrderIndexes
6323 ///   ::= '{' uint32 (',' uint32)+ '}'
6324 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
6325   SMLoc Loc = Lex.getLoc();
6326   if (ParseToken(lltok::lbrace, "expected '{' here"))
6327     return true;
6328   if (Lex.getKind() == lltok::rbrace)
6329     return Lex.Error("expected non-empty list of uselistorder indexes");
6330 
6331   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
6332   // indexes should be distinct numbers in the range [0, size-1], and should
6333   // not be in order.
6334   unsigned Offset = 0;
6335   unsigned Max = 0;
6336   bool IsOrdered = true;
6337   assert(Indexes.empty() && "Expected empty order vector");
6338   do {
6339     unsigned Index;
6340     if (ParseUInt32(Index))
6341       return true;
6342 
6343     // Update consistency checks.
6344     Offset += Index - Indexes.size();
6345     Max = std::max(Max, Index);
6346     IsOrdered &= Index == Indexes.size();
6347 
6348     Indexes.push_back(Index);
6349   } while (EatIfPresent(lltok::comma));
6350 
6351   if (ParseToken(lltok::rbrace, "expected '}' here"))
6352     return true;
6353 
6354   if (Indexes.size() < 2)
6355     return Error(Loc, "expected >= 2 uselistorder indexes");
6356   if (Offset != 0 || Max >= Indexes.size())
6357     return Error(Loc, "expected distinct uselistorder indexes in range [0, size)");
6358   if (IsOrdered)
6359     return Error(Loc, "expected uselistorder indexes to change the order");
6360 
6361   return false;
6362 }
6363 
6364 /// ParseUseListOrder
6365 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
6366 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) {
6367   SMLoc Loc = Lex.getLoc();
6368   if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
6369     return true;
6370 
6371   Value *V;
6372   SmallVector<unsigned, 16> Indexes;
6373   if (ParseTypeAndValue(V, PFS) ||
6374       ParseToken(lltok::comma, "expected comma in uselistorder directive") ||
6375       ParseUseListOrderIndexes(Indexes))
6376     return true;
6377 
6378   return sortUseListOrder(V, Indexes, Loc);
6379 }
6380 
6381 /// ParseUseListOrderBB
6382 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
6383 bool LLParser::ParseUseListOrderBB() {
6384   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
6385   SMLoc Loc = Lex.getLoc();
6386   Lex.Lex();
6387 
6388   ValID Fn, Label;
6389   SmallVector<unsigned, 16> Indexes;
6390   if (ParseValID(Fn) ||
6391       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
6392       ParseValID(Label) ||
6393       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
6394       ParseUseListOrderIndexes(Indexes))
6395     return true;
6396 
6397   // Check the function.
6398   GlobalValue *GV;
6399   if (Fn.Kind == ValID::t_GlobalName)
6400     GV = M->getNamedValue(Fn.StrVal);
6401   else if (Fn.Kind == ValID::t_GlobalID)
6402     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
6403   else
6404     return Error(Fn.Loc, "expected function name in uselistorder_bb");
6405   if (!GV)
6406     return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb");
6407   auto *F = dyn_cast<Function>(GV);
6408   if (!F)
6409     return Error(Fn.Loc, "expected function name in uselistorder_bb");
6410   if (F->isDeclaration())
6411     return Error(Fn.Loc, "invalid declaration in uselistorder_bb");
6412 
6413   // Check the basic block.
6414   if (Label.Kind == ValID::t_LocalID)
6415     return Error(Label.Loc, "invalid numeric label in uselistorder_bb");
6416   if (Label.Kind != ValID::t_LocalName)
6417     return Error(Label.Loc, "expected basic block name in uselistorder_bb");
6418   Value *V = F->getValueSymbolTable().lookup(Label.StrVal);
6419   if (!V)
6420     return Error(Label.Loc, "invalid basic block in uselistorder_bb");
6421   if (!isa<BasicBlock>(V))
6422     return Error(Label.Loc, "expected basic block in uselistorder_bb");
6423 
6424   return sortUseListOrder(V, Indexes, Loc);
6425 }
6426