1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the parser class for .ll files. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LLParser.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/AsmParser/SlotMapping.h" 19 #include "llvm/IR/AutoUpgrade.h" 20 #include "llvm/IR/CallingConv.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DebugInfo.h" 23 #include "llvm/IR/DebugInfoMetadata.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/InlineAsm.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/LLVMContext.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/IR/ValueSymbolTable.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/Dwarf.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/SaveAndRestore.h" 35 #include "llvm/Support/raw_ostream.h" 36 using namespace llvm; 37 38 static std::string getTypeString(Type *T) { 39 std::string Result; 40 raw_string_ostream Tmp(Result); 41 Tmp << *T; 42 return Tmp.str(); 43 } 44 45 /// Run: module ::= toplevelentity* 46 bool LLParser::Run() { 47 // Prime the lexer. 48 Lex.Lex(); 49 50 if (Context.shouldDiscardValueNames()) 51 return Error( 52 Lex.getLoc(), 53 "Can't read textual IR with a Context that discards named Values"); 54 55 return ParseTopLevelEntities() || 56 ValidateEndOfModule(); 57 } 58 59 bool LLParser::parseStandaloneConstantValue(Constant *&C, 60 const SlotMapping *Slots) { 61 restoreParsingState(Slots); 62 Lex.Lex(); 63 64 Type *Ty = nullptr; 65 if (ParseType(Ty) || parseConstantValue(Ty, C)) 66 return true; 67 if (Lex.getKind() != lltok::Eof) 68 return Error(Lex.getLoc(), "expected end of string"); 69 return false; 70 } 71 72 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 73 const SlotMapping *Slots) { 74 restoreParsingState(Slots); 75 Lex.Lex(); 76 77 Read = 0; 78 SMLoc Start = Lex.getLoc(); 79 Ty = nullptr; 80 if (ParseType(Ty)) 81 return true; 82 SMLoc End = Lex.getLoc(); 83 Read = End.getPointer() - Start.getPointer(); 84 85 return false; 86 } 87 88 void LLParser::restoreParsingState(const SlotMapping *Slots) { 89 if (!Slots) 90 return; 91 NumberedVals = Slots->GlobalValues; 92 NumberedMetadata = Slots->MetadataNodes; 93 for (const auto &I : Slots->NamedTypes) 94 NamedTypes.insert( 95 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 96 for (const auto &I : Slots->Types) 97 NumberedTypes.insert( 98 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 99 } 100 101 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the 102 /// module. 103 bool LLParser::ValidateEndOfModule() { 104 // Handle any function attribute group forward references. 105 for (std::map<Value*, std::vector<unsigned> >::iterator 106 I = ForwardRefAttrGroups.begin(), E = ForwardRefAttrGroups.end(); 107 I != E; ++I) { 108 Value *V = I->first; 109 std::vector<unsigned> &Vec = I->second; 110 AttrBuilder B; 111 112 for (std::vector<unsigned>::iterator VI = Vec.begin(), VE = Vec.end(); 113 VI != VE; ++VI) 114 B.merge(NumberedAttrBuilders[*VI]); 115 116 if (Function *Fn = dyn_cast<Function>(V)) { 117 AttributeSet AS = Fn->getAttributes(); 118 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex); 119 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex, 120 AS.getFnAttributes()); 121 122 FnAttrs.merge(B); 123 124 // If the alignment was parsed as an attribute, move to the alignment 125 // field. 126 if (FnAttrs.hasAlignmentAttr()) { 127 Fn->setAlignment(FnAttrs.getAlignment()); 128 FnAttrs.removeAttribute(Attribute::Alignment); 129 } 130 131 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex, 132 AttributeSet::get(Context, 133 AttributeSet::FunctionIndex, 134 FnAttrs)); 135 Fn->setAttributes(AS); 136 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 137 AttributeSet AS = CI->getAttributes(); 138 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex); 139 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex, 140 AS.getFnAttributes()); 141 FnAttrs.merge(B); 142 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex, 143 AttributeSet::get(Context, 144 AttributeSet::FunctionIndex, 145 FnAttrs)); 146 CI->setAttributes(AS); 147 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 148 AttributeSet AS = II->getAttributes(); 149 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex); 150 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex, 151 AS.getFnAttributes()); 152 FnAttrs.merge(B); 153 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex, 154 AttributeSet::get(Context, 155 AttributeSet::FunctionIndex, 156 FnAttrs)); 157 II->setAttributes(AS); 158 } else { 159 llvm_unreachable("invalid object with forward attribute group reference"); 160 } 161 } 162 163 // If there are entries in ForwardRefBlockAddresses at this point, the 164 // function was never defined. 165 if (!ForwardRefBlockAddresses.empty()) 166 return Error(ForwardRefBlockAddresses.begin()->first.Loc, 167 "expected function name in blockaddress"); 168 169 for (const auto &NT : NumberedTypes) 170 if (NT.second.second.isValid()) 171 return Error(NT.second.second, 172 "use of undefined type '%" + Twine(NT.first) + "'"); 173 174 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 175 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 176 if (I->second.second.isValid()) 177 return Error(I->second.second, 178 "use of undefined type named '" + I->getKey() + "'"); 179 180 if (!ForwardRefComdats.empty()) 181 return Error(ForwardRefComdats.begin()->second, 182 "use of undefined comdat '$" + 183 ForwardRefComdats.begin()->first + "'"); 184 185 if (!ForwardRefVals.empty()) 186 return Error(ForwardRefVals.begin()->second.second, 187 "use of undefined value '@" + ForwardRefVals.begin()->first + 188 "'"); 189 190 if (!ForwardRefValIDs.empty()) 191 return Error(ForwardRefValIDs.begin()->second.second, 192 "use of undefined value '@" + 193 Twine(ForwardRefValIDs.begin()->first) + "'"); 194 195 if (!ForwardRefMDNodes.empty()) 196 return Error(ForwardRefMDNodes.begin()->second.second, 197 "use of undefined metadata '!" + 198 Twine(ForwardRefMDNodes.begin()->first) + "'"); 199 200 // Resolve metadata cycles. 201 for (auto &N : NumberedMetadata) { 202 if (N.second && !N.second->isResolved()) 203 N.second->resolveCycles(); 204 } 205 206 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 207 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 208 209 // Look for intrinsic functions and CallInst that need to be upgraded 210 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 211 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove 212 213 UpgradeDebugInfo(*M); 214 215 UpgradeModuleFlags(*M); 216 217 if (!Slots) 218 return false; 219 // Initialize the slot mapping. 220 // Because by this point we've parsed and validated everything, we can "steal" 221 // the mapping from LLParser as it doesn't need it anymore. 222 Slots->GlobalValues = std::move(NumberedVals); 223 Slots->MetadataNodes = std::move(NumberedMetadata); 224 for (const auto &I : NamedTypes) 225 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 226 for (const auto &I : NumberedTypes) 227 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 228 229 return false; 230 } 231 232 //===----------------------------------------------------------------------===// 233 // Top-Level Entities 234 //===----------------------------------------------------------------------===// 235 236 bool LLParser::ParseTopLevelEntities() { 237 while (1) { 238 switch (Lex.getKind()) { 239 default: return TokError("expected top-level entity"); 240 case lltok::Eof: return false; 241 case lltok::kw_declare: if (ParseDeclare()) return true; break; 242 case lltok::kw_define: if (ParseDefine()) return true; break; 243 case lltok::kw_module: if (ParseModuleAsm()) return true; break; 244 case lltok::kw_target: if (ParseTargetDefinition()) return true; break; 245 case lltok::kw_source_filename: 246 if (ParseSourceFileName()) 247 return true; 248 break; 249 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; 250 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; 251 case lltok::LocalVar: if (ParseNamedType()) return true; break; 252 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; 253 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; 254 case lltok::ComdatVar: if (parseComdat()) return true; break; 255 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break; 256 case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break; 257 case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break; 258 case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break; 259 case lltok::kw_uselistorder_bb: 260 if (ParseUseListOrderBB()) return true; break; 261 } 262 } 263 } 264 265 266 /// toplevelentity 267 /// ::= 'module' 'asm' STRINGCONSTANT 268 bool LLParser::ParseModuleAsm() { 269 assert(Lex.getKind() == lltok::kw_module); 270 Lex.Lex(); 271 272 std::string AsmStr; 273 if (ParseToken(lltok::kw_asm, "expected 'module asm'") || 274 ParseStringConstant(AsmStr)) return true; 275 276 M->appendModuleInlineAsm(AsmStr); 277 return false; 278 } 279 280 /// toplevelentity 281 /// ::= 'target' 'triple' '=' STRINGCONSTANT 282 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 283 bool LLParser::ParseTargetDefinition() { 284 assert(Lex.getKind() == lltok::kw_target); 285 std::string Str; 286 switch (Lex.Lex()) { 287 default: return TokError("unknown target property"); 288 case lltok::kw_triple: 289 Lex.Lex(); 290 if (ParseToken(lltok::equal, "expected '=' after target triple") || 291 ParseStringConstant(Str)) 292 return true; 293 M->setTargetTriple(Str); 294 return false; 295 case lltok::kw_datalayout: 296 Lex.Lex(); 297 if (ParseToken(lltok::equal, "expected '=' after target datalayout") || 298 ParseStringConstant(Str)) 299 return true; 300 M->setDataLayout(Str); 301 return false; 302 } 303 } 304 305 /// toplevelentity 306 /// ::= 'source_filename' '=' STRINGCONSTANT 307 bool LLParser::ParseSourceFileName() { 308 assert(Lex.getKind() == lltok::kw_source_filename); 309 std::string Str; 310 Lex.Lex(); 311 if (ParseToken(lltok::equal, "expected '=' after source_filename") || 312 ParseStringConstant(Str)) 313 return true; 314 M->setSourceFileName(Str); 315 return false; 316 } 317 318 /// toplevelentity 319 /// ::= 'deplibs' '=' '[' ']' 320 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 321 /// FIXME: Remove in 4.0. Currently parse, but ignore. 322 bool LLParser::ParseDepLibs() { 323 assert(Lex.getKind() == lltok::kw_deplibs); 324 Lex.Lex(); 325 if (ParseToken(lltok::equal, "expected '=' after deplibs") || 326 ParseToken(lltok::lsquare, "expected '=' after deplibs")) 327 return true; 328 329 if (EatIfPresent(lltok::rsquare)) 330 return false; 331 332 do { 333 std::string Str; 334 if (ParseStringConstant(Str)) return true; 335 } while (EatIfPresent(lltok::comma)); 336 337 return ParseToken(lltok::rsquare, "expected ']' at end of list"); 338 } 339 340 /// ParseUnnamedType: 341 /// ::= LocalVarID '=' 'type' type 342 bool LLParser::ParseUnnamedType() { 343 LocTy TypeLoc = Lex.getLoc(); 344 unsigned TypeID = Lex.getUIntVal(); 345 Lex.Lex(); // eat LocalVarID; 346 347 if (ParseToken(lltok::equal, "expected '=' after name") || 348 ParseToken(lltok::kw_type, "expected 'type' after '='")) 349 return true; 350 351 Type *Result = nullptr; 352 if (ParseStructDefinition(TypeLoc, "", 353 NumberedTypes[TypeID], Result)) return true; 354 355 if (!isa<StructType>(Result)) { 356 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 357 if (Entry.first) 358 return Error(TypeLoc, "non-struct types may not be recursive"); 359 Entry.first = Result; 360 Entry.second = SMLoc(); 361 } 362 363 return false; 364 } 365 366 367 /// toplevelentity 368 /// ::= LocalVar '=' 'type' type 369 bool LLParser::ParseNamedType() { 370 std::string Name = Lex.getStrVal(); 371 LocTy NameLoc = Lex.getLoc(); 372 Lex.Lex(); // eat LocalVar. 373 374 if (ParseToken(lltok::equal, "expected '=' after name") || 375 ParseToken(lltok::kw_type, "expected 'type' after name")) 376 return true; 377 378 Type *Result = nullptr; 379 if (ParseStructDefinition(NameLoc, Name, 380 NamedTypes[Name], Result)) return true; 381 382 if (!isa<StructType>(Result)) { 383 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 384 if (Entry.first) 385 return Error(NameLoc, "non-struct types may not be recursive"); 386 Entry.first = Result; 387 Entry.second = SMLoc(); 388 } 389 390 return false; 391 } 392 393 394 /// toplevelentity 395 /// ::= 'declare' FunctionHeader 396 bool LLParser::ParseDeclare() { 397 assert(Lex.getKind() == lltok::kw_declare); 398 Lex.Lex(); 399 400 Function *F; 401 return ParseFunctionHeader(F, false); 402 } 403 404 /// toplevelentity 405 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 406 bool LLParser::ParseDefine() { 407 assert(Lex.getKind() == lltok::kw_define); 408 Lex.Lex(); 409 410 Function *F; 411 return ParseFunctionHeader(F, true) || 412 ParseOptionalFunctionMetadata(*F) || 413 ParseFunctionBody(*F); 414 } 415 416 /// ParseGlobalType 417 /// ::= 'constant' 418 /// ::= 'global' 419 bool LLParser::ParseGlobalType(bool &IsConstant) { 420 if (Lex.getKind() == lltok::kw_constant) 421 IsConstant = true; 422 else if (Lex.getKind() == lltok::kw_global) 423 IsConstant = false; 424 else { 425 IsConstant = false; 426 return TokError("expected 'global' or 'constant'"); 427 } 428 Lex.Lex(); 429 return false; 430 } 431 432 /// ParseUnnamedGlobal: 433 /// OptionalVisibility (ALIAS | IFUNC) ... 434 /// OptionalLinkage OptionalVisibility OptionalDLLStorageClass 435 /// ... -> global variable 436 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 437 /// GlobalID '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 438 /// ... -> global variable 439 bool LLParser::ParseUnnamedGlobal() { 440 unsigned VarID = NumberedVals.size(); 441 std::string Name; 442 LocTy NameLoc = Lex.getLoc(); 443 444 // Handle the GlobalID form. 445 if (Lex.getKind() == lltok::GlobalID) { 446 if (Lex.getUIntVal() != VarID) 447 return Error(Lex.getLoc(), "variable expected to be numbered '%" + 448 Twine(VarID) + "'"); 449 Lex.Lex(); // eat GlobalID; 450 451 if (ParseToken(lltok::equal, "expected '=' after name")) 452 return true; 453 } 454 455 bool HasLinkage; 456 unsigned Linkage, Visibility, DLLStorageClass; 457 GlobalVariable::ThreadLocalMode TLM; 458 bool UnnamedAddr; 459 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) || 460 ParseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr)) 461 return true; 462 463 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 464 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 465 DLLStorageClass, TLM, UnnamedAddr); 466 467 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 468 DLLStorageClass, TLM, UnnamedAddr); 469 } 470 471 /// ParseNamedGlobal: 472 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 473 /// GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 474 /// ... -> global variable 475 bool LLParser::ParseNamedGlobal() { 476 assert(Lex.getKind() == lltok::GlobalVar); 477 LocTy NameLoc = Lex.getLoc(); 478 std::string Name = Lex.getStrVal(); 479 Lex.Lex(); 480 481 bool HasLinkage; 482 unsigned Linkage, Visibility, DLLStorageClass; 483 GlobalVariable::ThreadLocalMode TLM; 484 bool UnnamedAddr; 485 if (ParseToken(lltok::equal, "expected '=' in global variable") || 486 ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) || 487 ParseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr)) 488 return true; 489 490 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 491 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 492 DLLStorageClass, TLM, UnnamedAddr); 493 494 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 495 DLLStorageClass, TLM, UnnamedAddr); 496 } 497 498 bool LLParser::parseComdat() { 499 assert(Lex.getKind() == lltok::ComdatVar); 500 std::string Name = Lex.getStrVal(); 501 LocTy NameLoc = Lex.getLoc(); 502 Lex.Lex(); 503 504 if (ParseToken(lltok::equal, "expected '=' here")) 505 return true; 506 507 if (ParseToken(lltok::kw_comdat, "expected comdat keyword")) 508 return TokError("expected comdat type"); 509 510 Comdat::SelectionKind SK; 511 switch (Lex.getKind()) { 512 default: 513 return TokError("unknown selection kind"); 514 case lltok::kw_any: 515 SK = Comdat::Any; 516 break; 517 case lltok::kw_exactmatch: 518 SK = Comdat::ExactMatch; 519 break; 520 case lltok::kw_largest: 521 SK = Comdat::Largest; 522 break; 523 case lltok::kw_noduplicates: 524 SK = Comdat::NoDuplicates; 525 break; 526 case lltok::kw_samesize: 527 SK = Comdat::SameSize; 528 break; 529 } 530 Lex.Lex(); 531 532 // See if the comdat was forward referenced, if so, use the comdat. 533 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 534 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 535 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 536 return Error(NameLoc, "redefinition of comdat '$" + Name + "'"); 537 538 Comdat *C; 539 if (I != ComdatSymTab.end()) 540 C = &I->second; 541 else 542 C = M->getOrInsertComdat(Name); 543 C->setSelectionKind(SK); 544 545 return false; 546 } 547 548 // MDString: 549 // ::= '!' STRINGCONSTANT 550 bool LLParser::ParseMDString(MDString *&Result) { 551 std::string Str; 552 if (ParseStringConstant(Str)) return true; 553 Result = MDString::get(Context, Str); 554 return false; 555 } 556 557 // MDNode: 558 // ::= '!' MDNodeNumber 559 bool LLParser::ParseMDNodeID(MDNode *&Result) { 560 // !{ ..., !42, ... } 561 LocTy IDLoc = Lex.getLoc(); 562 unsigned MID = 0; 563 if (ParseUInt32(MID)) 564 return true; 565 566 // If not a forward reference, just return it now. 567 if (NumberedMetadata.count(MID)) { 568 Result = NumberedMetadata[MID]; 569 return false; 570 } 571 572 // Otherwise, create MDNode forward reference. 573 auto &FwdRef = ForwardRefMDNodes[MID]; 574 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 575 576 Result = FwdRef.first.get(); 577 NumberedMetadata[MID].reset(Result); 578 return false; 579 } 580 581 /// ParseNamedMetadata: 582 /// !foo = !{ !1, !2 } 583 bool LLParser::ParseNamedMetadata() { 584 assert(Lex.getKind() == lltok::MetadataVar); 585 std::string Name = Lex.getStrVal(); 586 Lex.Lex(); 587 588 if (ParseToken(lltok::equal, "expected '=' here") || 589 ParseToken(lltok::exclaim, "Expected '!' here") || 590 ParseToken(lltok::lbrace, "Expected '{' here")) 591 return true; 592 593 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 594 if (Lex.getKind() != lltok::rbrace) 595 do { 596 if (ParseToken(lltok::exclaim, "Expected '!' here")) 597 return true; 598 599 MDNode *N = nullptr; 600 if (ParseMDNodeID(N)) return true; 601 NMD->addOperand(N); 602 } while (EatIfPresent(lltok::comma)); 603 604 return ParseToken(lltok::rbrace, "expected end of metadata node"); 605 } 606 607 /// ParseStandaloneMetadata: 608 /// !42 = !{...} 609 bool LLParser::ParseStandaloneMetadata() { 610 assert(Lex.getKind() == lltok::exclaim); 611 Lex.Lex(); 612 unsigned MetadataID = 0; 613 614 MDNode *Init; 615 if (ParseUInt32(MetadataID) || 616 ParseToken(lltok::equal, "expected '=' here")) 617 return true; 618 619 // Detect common error, from old metadata syntax. 620 if (Lex.getKind() == lltok::Type) 621 return TokError("unexpected type in metadata definition"); 622 623 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 624 if (Lex.getKind() == lltok::MetadataVar) { 625 if (ParseSpecializedMDNode(Init, IsDistinct)) 626 return true; 627 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 628 ParseMDTuple(Init, IsDistinct)) 629 return true; 630 631 // See if this was forward referenced, if so, handle it. 632 auto FI = ForwardRefMDNodes.find(MetadataID); 633 if (FI != ForwardRefMDNodes.end()) { 634 FI->second.first->replaceAllUsesWith(Init); 635 ForwardRefMDNodes.erase(FI); 636 637 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 638 } else { 639 if (NumberedMetadata.count(MetadataID)) 640 return TokError("Metadata id is already used"); 641 NumberedMetadata[MetadataID].reset(Init); 642 } 643 644 return false; 645 } 646 647 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 648 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 649 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 650 } 651 652 /// parseIndirectSymbol: 653 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility 654 /// OptionalDLLStorageClass OptionalThreadLocal 655 /// OptionalUnnamedAddr 'alias|ifunc' IndirectSymbol 656 /// 657 /// IndirectSymbol 658 /// ::= TypeAndValue 659 /// 660 /// Everything through OptionalUnnamedAddr has already been parsed. 661 /// 662 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc, 663 unsigned L, unsigned Visibility, 664 unsigned DLLStorageClass, 665 GlobalVariable::ThreadLocalMode TLM, 666 bool UnnamedAddr) { 667 bool IsAlias; 668 if (Lex.getKind() == lltok::kw_alias) 669 IsAlias = true; 670 else if (Lex.getKind() == lltok::kw_ifunc) 671 IsAlias = false; 672 else 673 llvm_unreachable("Not an alias or ifunc!"); 674 Lex.Lex(); 675 676 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 677 678 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 679 return Error(NameLoc, "invalid linkage type for alias"); 680 681 if (!isValidVisibilityForLinkage(Visibility, L)) 682 return Error(NameLoc, 683 "symbol with local linkage must have default visibility"); 684 685 Type *Ty; 686 LocTy ExplicitTypeLoc = Lex.getLoc(); 687 if (ParseType(Ty) || 688 ParseToken(lltok::comma, "expected comma after alias or ifunc's type")) 689 return true; 690 691 Constant *Aliasee; 692 LocTy AliaseeLoc = Lex.getLoc(); 693 if (Lex.getKind() != lltok::kw_bitcast && 694 Lex.getKind() != lltok::kw_getelementptr && 695 Lex.getKind() != lltok::kw_addrspacecast && 696 Lex.getKind() != lltok::kw_inttoptr) { 697 if (ParseGlobalTypeAndValue(Aliasee)) 698 return true; 699 } else { 700 // The bitcast dest type is not present, it is implied by the dest type. 701 ValID ID; 702 if (ParseValID(ID)) 703 return true; 704 if (ID.Kind != ValID::t_Constant) 705 return Error(AliaseeLoc, "invalid aliasee"); 706 Aliasee = ID.ConstantVal; 707 } 708 709 Type *AliaseeType = Aliasee->getType(); 710 auto *PTy = dyn_cast<PointerType>(AliaseeType); 711 if (!PTy) 712 return Error(AliaseeLoc, "An alias or ifunc must have pointer type"); 713 unsigned AddrSpace = PTy->getAddressSpace(); 714 715 if (IsAlias && Ty != PTy->getElementType()) 716 return Error( 717 ExplicitTypeLoc, 718 "explicit pointee type doesn't match operand's pointee type"); 719 720 if (!IsAlias && !PTy->getElementType()->isFunctionTy()) 721 return Error( 722 ExplicitTypeLoc, 723 "explicit pointee type should be a function type"); 724 725 GlobalValue *GVal = nullptr; 726 727 // See if the alias was forward referenced, if so, prepare to replace the 728 // forward reference. 729 if (!Name.empty()) { 730 GVal = M->getNamedValue(Name); 731 if (GVal) { 732 if (!ForwardRefVals.erase(Name)) 733 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 734 } 735 } else { 736 auto I = ForwardRefValIDs.find(NumberedVals.size()); 737 if (I != ForwardRefValIDs.end()) { 738 GVal = I->second.first; 739 ForwardRefValIDs.erase(I); 740 } 741 } 742 743 // Okay, create the alias but do not insert it into the module yet. 744 std::unique_ptr<GlobalIndirectSymbol> GA; 745 if (IsAlias) 746 GA.reset(GlobalAlias::create(Ty, AddrSpace, 747 (GlobalValue::LinkageTypes)Linkage, Name, 748 Aliasee, /*Parent*/ nullptr)); 749 else 750 GA.reset(GlobalIFunc::create(Ty, AddrSpace, 751 (GlobalValue::LinkageTypes)Linkage, Name, 752 Aliasee, /*Parent*/ nullptr)); 753 GA->setThreadLocalMode(TLM); 754 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 755 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 756 GA->setUnnamedAddr(UnnamedAddr); 757 758 if (Name.empty()) 759 NumberedVals.push_back(GA.get()); 760 761 if (GVal) { 762 // Verify that types agree. 763 if (GVal->getType() != GA->getType()) 764 return Error( 765 ExplicitTypeLoc, 766 "forward reference and definition of alias have different types"); 767 768 // If they agree, just RAUW the old value with the alias and remove the 769 // forward ref info. 770 GVal->replaceAllUsesWith(GA.get()); 771 GVal->eraseFromParent(); 772 } 773 774 // Insert into the module, we know its name won't collide now. 775 if (IsAlias) 776 M->getAliasList().push_back(cast<GlobalAlias>(GA.get())); 777 else 778 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get())); 779 assert(GA->getName() == Name && "Should not be a name conflict!"); 780 781 // The module owns this now 782 GA.release(); 783 784 return false; 785 } 786 787 /// ParseGlobal 788 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 789 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 790 /// OptionalExternallyInitialized GlobalType Type Const 791 /// ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass 792 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 793 /// OptionalExternallyInitialized GlobalType Type Const 794 /// 795 /// Everything up to and including OptionalUnnamedAddr has been parsed 796 /// already. 797 /// 798 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, 799 unsigned Linkage, bool HasLinkage, 800 unsigned Visibility, unsigned DLLStorageClass, 801 GlobalVariable::ThreadLocalMode TLM, 802 bool UnnamedAddr) { 803 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 804 return Error(NameLoc, 805 "symbol with local linkage must have default visibility"); 806 807 unsigned AddrSpace; 808 bool IsConstant, IsExternallyInitialized; 809 LocTy IsExternallyInitializedLoc; 810 LocTy TyLoc; 811 812 Type *Ty = nullptr; 813 if (ParseOptionalAddrSpace(AddrSpace) || 814 ParseOptionalToken(lltok::kw_externally_initialized, 815 IsExternallyInitialized, 816 &IsExternallyInitializedLoc) || 817 ParseGlobalType(IsConstant) || 818 ParseType(Ty, TyLoc)) 819 return true; 820 821 // If the linkage is specified and is external, then no initializer is 822 // present. 823 Constant *Init = nullptr; 824 if (!HasLinkage || 825 !GlobalValue::isValidDeclarationLinkage( 826 (GlobalValue::LinkageTypes)Linkage)) { 827 if (ParseGlobalValue(Ty, Init)) 828 return true; 829 } 830 831 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 832 return Error(TyLoc, "invalid type for global variable"); 833 834 GlobalValue *GVal = nullptr; 835 836 // See if the global was forward referenced, if so, use the global. 837 if (!Name.empty()) { 838 GVal = M->getNamedValue(Name); 839 if (GVal) { 840 if (!ForwardRefVals.erase(Name)) 841 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 842 } 843 } else { 844 auto I = ForwardRefValIDs.find(NumberedVals.size()); 845 if (I != ForwardRefValIDs.end()) { 846 GVal = I->second.first; 847 ForwardRefValIDs.erase(I); 848 } 849 } 850 851 GlobalVariable *GV; 852 if (!GVal) { 853 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, 854 Name, nullptr, GlobalVariable::NotThreadLocal, 855 AddrSpace); 856 } else { 857 if (GVal->getValueType() != Ty) 858 return Error(TyLoc, 859 "forward reference and definition of global have different types"); 860 861 GV = cast<GlobalVariable>(GVal); 862 863 // Move the forward-reference to the correct spot in the module. 864 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 865 } 866 867 if (Name.empty()) 868 NumberedVals.push_back(GV); 869 870 // Set the parsed properties on the global. 871 if (Init) 872 GV->setInitializer(Init); 873 GV->setConstant(IsConstant); 874 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 875 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 876 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 877 GV->setExternallyInitialized(IsExternallyInitialized); 878 GV->setThreadLocalMode(TLM); 879 GV->setUnnamedAddr(UnnamedAddr); 880 881 // Parse attributes on the global. 882 while (Lex.getKind() == lltok::comma) { 883 Lex.Lex(); 884 885 if (Lex.getKind() == lltok::kw_section) { 886 Lex.Lex(); 887 GV->setSection(Lex.getStrVal()); 888 if (ParseToken(lltok::StringConstant, "expected global section string")) 889 return true; 890 } else if (Lex.getKind() == lltok::kw_align) { 891 unsigned Alignment; 892 if (ParseOptionalAlignment(Alignment)) return true; 893 GV->setAlignment(Alignment); 894 } else if (Lex.getKind() == lltok::MetadataVar) { 895 if (ParseGlobalObjectMetadataAttachment(*GV)) 896 return true; 897 } else { 898 Comdat *C; 899 if (parseOptionalComdat(Name, C)) 900 return true; 901 if (C) 902 GV->setComdat(C); 903 else 904 return TokError("unknown global variable property!"); 905 } 906 } 907 908 return false; 909 } 910 911 /// ParseUnnamedAttrGrp 912 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 913 bool LLParser::ParseUnnamedAttrGrp() { 914 assert(Lex.getKind() == lltok::kw_attributes); 915 LocTy AttrGrpLoc = Lex.getLoc(); 916 Lex.Lex(); 917 918 if (Lex.getKind() != lltok::AttrGrpID) 919 return TokError("expected attribute group id"); 920 921 unsigned VarID = Lex.getUIntVal(); 922 std::vector<unsigned> unused; 923 LocTy BuiltinLoc; 924 Lex.Lex(); 925 926 if (ParseToken(lltok::equal, "expected '=' here") || 927 ParseToken(lltok::lbrace, "expected '{' here") || 928 ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 929 BuiltinLoc) || 930 ParseToken(lltok::rbrace, "expected end of attribute group")) 931 return true; 932 933 if (!NumberedAttrBuilders[VarID].hasAttributes()) 934 return Error(AttrGrpLoc, "attribute group has no attributes"); 935 936 return false; 937 } 938 939 /// ParseFnAttributeValuePairs 940 /// ::= <attr> | <attr> '=' <value> 941 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B, 942 std::vector<unsigned> &FwdRefAttrGrps, 943 bool inAttrGrp, LocTy &BuiltinLoc) { 944 bool HaveError = false; 945 946 B.clear(); 947 948 while (true) { 949 lltok::Kind Token = Lex.getKind(); 950 if (Token == lltok::kw_builtin) 951 BuiltinLoc = Lex.getLoc(); 952 switch (Token) { 953 default: 954 if (!inAttrGrp) return HaveError; 955 return Error(Lex.getLoc(), "unterminated attribute group"); 956 case lltok::rbrace: 957 // Finished. 958 return false; 959 960 case lltok::AttrGrpID: { 961 // Allow a function to reference an attribute group: 962 // 963 // define void @foo() #1 { ... } 964 if (inAttrGrp) 965 HaveError |= 966 Error(Lex.getLoc(), 967 "cannot have an attribute group reference in an attribute group"); 968 969 unsigned AttrGrpNum = Lex.getUIntVal(); 970 if (inAttrGrp) break; 971 972 // Save the reference to the attribute group. We'll fill it in later. 973 FwdRefAttrGrps.push_back(AttrGrpNum); 974 break; 975 } 976 // Target-dependent attributes: 977 case lltok::StringConstant: { 978 if (ParseStringAttribute(B)) 979 return true; 980 continue; 981 } 982 983 // Target-independent attributes: 984 case lltok::kw_align: { 985 // As a hack, we allow function alignment to be initially parsed as an 986 // attribute on a function declaration/definition or added to an attribute 987 // group and later moved to the alignment field. 988 unsigned Alignment; 989 if (inAttrGrp) { 990 Lex.Lex(); 991 if (ParseToken(lltok::equal, "expected '=' here") || 992 ParseUInt32(Alignment)) 993 return true; 994 } else { 995 if (ParseOptionalAlignment(Alignment)) 996 return true; 997 } 998 B.addAlignmentAttr(Alignment); 999 continue; 1000 } 1001 case lltok::kw_alignstack: { 1002 unsigned Alignment; 1003 if (inAttrGrp) { 1004 Lex.Lex(); 1005 if (ParseToken(lltok::equal, "expected '=' here") || 1006 ParseUInt32(Alignment)) 1007 return true; 1008 } else { 1009 if (ParseOptionalStackAlignment(Alignment)) 1010 return true; 1011 } 1012 B.addStackAlignmentAttr(Alignment); 1013 continue; 1014 } 1015 case lltok::kw_allocsize: { 1016 unsigned ElemSizeArg; 1017 Optional<unsigned> NumElemsArg; 1018 // inAttrGrp doesn't matter; we only support allocsize(a[, b]) 1019 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1020 return true; 1021 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1022 continue; 1023 } 1024 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break; 1025 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break; 1026 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break; 1027 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break; 1028 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break; 1029 case lltok::kw_inaccessiblememonly: 1030 B.addAttribute(Attribute::InaccessibleMemOnly); break; 1031 case lltok::kw_inaccessiblemem_or_argmemonly: 1032 B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break; 1033 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break; 1034 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break; 1035 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break; 1036 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break; 1037 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break; 1038 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break; 1039 case lltok::kw_noimplicitfloat: 1040 B.addAttribute(Attribute::NoImplicitFloat); break; 1041 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break; 1042 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break; 1043 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break; 1044 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break; 1045 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break; 1046 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break; 1047 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break; 1048 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break; 1049 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1050 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1051 case lltok::kw_returns_twice: 1052 B.addAttribute(Attribute::ReturnsTwice); break; 1053 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break; 1054 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break; 1055 case lltok::kw_sspstrong: 1056 B.addAttribute(Attribute::StackProtectStrong); break; 1057 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break; 1058 case lltok::kw_sanitize_address: 1059 B.addAttribute(Attribute::SanitizeAddress); break; 1060 case lltok::kw_sanitize_thread: 1061 B.addAttribute(Attribute::SanitizeThread); break; 1062 case lltok::kw_sanitize_memory: 1063 B.addAttribute(Attribute::SanitizeMemory); break; 1064 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break; 1065 1066 // Error handling. 1067 case lltok::kw_inreg: 1068 case lltok::kw_signext: 1069 case lltok::kw_zeroext: 1070 HaveError |= 1071 Error(Lex.getLoc(), 1072 "invalid use of attribute on a function"); 1073 break; 1074 case lltok::kw_byval: 1075 case lltok::kw_dereferenceable: 1076 case lltok::kw_dereferenceable_or_null: 1077 case lltok::kw_inalloca: 1078 case lltok::kw_nest: 1079 case lltok::kw_noalias: 1080 case lltok::kw_nocapture: 1081 case lltok::kw_nonnull: 1082 case lltok::kw_returned: 1083 case lltok::kw_sret: 1084 case lltok::kw_swifterror: 1085 case lltok::kw_swiftself: 1086 HaveError |= 1087 Error(Lex.getLoc(), 1088 "invalid use of parameter-only attribute on a function"); 1089 break; 1090 } 1091 1092 Lex.Lex(); 1093 } 1094 } 1095 1096 //===----------------------------------------------------------------------===// 1097 // GlobalValue Reference/Resolution Routines. 1098 //===----------------------------------------------------------------------===// 1099 1100 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy, 1101 const std::string &Name) { 1102 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType())) 1103 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M); 1104 else 1105 return new GlobalVariable(*M, PTy->getElementType(), false, 1106 GlobalValue::ExternalWeakLinkage, nullptr, Name, 1107 nullptr, GlobalVariable::NotThreadLocal, 1108 PTy->getAddressSpace()); 1109 } 1110 1111 /// GetGlobalVal - Get a value with the specified name or ID, creating a 1112 /// forward reference record if needed. This can return null if the value 1113 /// exists but does not have the right type. 1114 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty, 1115 LocTy Loc) { 1116 PointerType *PTy = dyn_cast<PointerType>(Ty); 1117 if (!PTy) { 1118 Error(Loc, "global variable reference must have pointer type"); 1119 return nullptr; 1120 } 1121 1122 // Look this name up in the normal function symbol table. 1123 GlobalValue *Val = 1124 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1125 1126 // If this is a forward reference for the value, see if we already created a 1127 // forward ref record. 1128 if (!Val) { 1129 auto I = ForwardRefVals.find(Name); 1130 if (I != ForwardRefVals.end()) 1131 Val = I->second.first; 1132 } 1133 1134 // If we have the value in the symbol table or fwd-ref table, return it. 1135 if (Val) { 1136 if (Val->getType() == Ty) return Val; 1137 Error(Loc, "'@" + Name + "' defined with type '" + 1138 getTypeString(Val->getType()) + "'"); 1139 return nullptr; 1140 } 1141 1142 // Otherwise, create a new forward reference for this value and remember it. 1143 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name); 1144 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1145 return FwdVal; 1146 } 1147 1148 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) { 1149 PointerType *PTy = dyn_cast<PointerType>(Ty); 1150 if (!PTy) { 1151 Error(Loc, "global variable reference must have pointer type"); 1152 return nullptr; 1153 } 1154 1155 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1156 1157 // If this is a forward reference for the value, see if we already created a 1158 // forward ref record. 1159 if (!Val) { 1160 auto I = ForwardRefValIDs.find(ID); 1161 if (I != ForwardRefValIDs.end()) 1162 Val = I->second.first; 1163 } 1164 1165 // If we have the value in the symbol table or fwd-ref table, return it. 1166 if (Val) { 1167 if (Val->getType() == Ty) return Val; 1168 Error(Loc, "'@" + Twine(ID) + "' defined with type '" + 1169 getTypeString(Val->getType()) + "'"); 1170 return nullptr; 1171 } 1172 1173 // Otherwise, create a new forward reference for this value and remember it. 1174 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, ""); 1175 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1176 return FwdVal; 1177 } 1178 1179 1180 //===----------------------------------------------------------------------===// 1181 // Comdat Reference/Resolution Routines. 1182 //===----------------------------------------------------------------------===// 1183 1184 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1185 // Look this name up in the comdat symbol table. 1186 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1187 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1188 if (I != ComdatSymTab.end()) 1189 return &I->second; 1190 1191 // Otherwise, create a new forward reference for this value and remember it. 1192 Comdat *C = M->getOrInsertComdat(Name); 1193 ForwardRefComdats[Name] = Loc; 1194 return C; 1195 } 1196 1197 1198 //===----------------------------------------------------------------------===// 1199 // Helper Routines. 1200 //===----------------------------------------------------------------------===// 1201 1202 /// ParseToken - If the current token has the specified kind, eat it and return 1203 /// success. Otherwise, emit the specified error and return failure. 1204 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { 1205 if (Lex.getKind() != T) 1206 return TokError(ErrMsg); 1207 Lex.Lex(); 1208 return false; 1209 } 1210 1211 /// ParseStringConstant 1212 /// ::= StringConstant 1213 bool LLParser::ParseStringConstant(std::string &Result) { 1214 if (Lex.getKind() != lltok::StringConstant) 1215 return TokError("expected string constant"); 1216 Result = Lex.getStrVal(); 1217 Lex.Lex(); 1218 return false; 1219 } 1220 1221 /// ParseUInt32 1222 /// ::= uint32 1223 bool LLParser::ParseUInt32(unsigned &Val) { 1224 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1225 return TokError("expected integer"); 1226 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1227 if (Val64 != unsigned(Val64)) 1228 return TokError("expected 32-bit integer (too large)"); 1229 Val = Val64; 1230 Lex.Lex(); 1231 return false; 1232 } 1233 1234 /// ParseUInt64 1235 /// ::= uint64 1236 bool LLParser::ParseUInt64(uint64_t &Val) { 1237 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1238 return TokError("expected integer"); 1239 Val = Lex.getAPSIntVal().getLimitedValue(); 1240 Lex.Lex(); 1241 return false; 1242 } 1243 1244 /// ParseTLSModel 1245 /// := 'localdynamic' 1246 /// := 'initialexec' 1247 /// := 'localexec' 1248 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1249 switch (Lex.getKind()) { 1250 default: 1251 return TokError("expected localdynamic, initialexec or localexec"); 1252 case lltok::kw_localdynamic: 1253 TLM = GlobalVariable::LocalDynamicTLSModel; 1254 break; 1255 case lltok::kw_initialexec: 1256 TLM = GlobalVariable::InitialExecTLSModel; 1257 break; 1258 case lltok::kw_localexec: 1259 TLM = GlobalVariable::LocalExecTLSModel; 1260 break; 1261 } 1262 1263 Lex.Lex(); 1264 return false; 1265 } 1266 1267 /// ParseOptionalThreadLocal 1268 /// := /*empty*/ 1269 /// := 'thread_local' 1270 /// := 'thread_local' '(' tlsmodel ')' 1271 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1272 TLM = GlobalVariable::NotThreadLocal; 1273 if (!EatIfPresent(lltok::kw_thread_local)) 1274 return false; 1275 1276 TLM = GlobalVariable::GeneralDynamicTLSModel; 1277 if (Lex.getKind() == lltok::lparen) { 1278 Lex.Lex(); 1279 return ParseTLSModel(TLM) || 1280 ParseToken(lltok::rparen, "expected ')' after thread local model"); 1281 } 1282 return false; 1283 } 1284 1285 /// ParseOptionalAddrSpace 1286 /// := /*empty*/ 1287 /// := 'addrspace' '(' uint32 ')' 1288 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) { 1289 AddrSpace = 0; 1290 if (!EatIfPresent(lltok::kw_addrspace)) 1291 return false; 1292 return ParseToken(lltok::lparen, "expected '(' in address space") || 1293 ParseUInt32(AddrSpace) || 1294 ParseToken(lltok::rparen, "expected ')' in address space"); 1295 } 1296 1297 /// ParseStringAttribute 1298 /// := StringConstant 1299 /// := StringConstant '=' StringConstant 1300 bool LLParser::ParseStringAttribute(AttrBuilder &B) { 1301 std::string Attr = Lex.getStrVal(); 1302 Lex.Lex(); 1303 std::string Val; 1304 if (EatIfPresent(lltok::equal) && ParseStringConstant(Val)) 1305 return true; 1306 B.addAttribute(Attr, Val); 1307 return false; 1308 } 1309 1310 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes. 1311 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) { 1312 bool HaveError = false; 1313 1314 B.clear(); 1315 1316 while (1) { 1317 lltok::Kind Token = Lex.getKind(); 1318 switch (Token) { 1319 default: // End of attributes. 1320 return HaveError; 1321 case lltok::StringConstant: { 1322 if (ParseStringAttribute(B)) 1323 return true; 1324 continue; 1325 } 1326 case lltok::kw_align: { 1327 unsigned Alignment; 1328 if (ParseOptionalAlignment(Alignment)) 1329 return true; 1330 B.addAlignmentAttr(Alignment); 1331 continue; 1332 } 1333 case lltok::kw_byval: B.addAttribute(Attribute::ByVal); break; 1334 case lltok::kw_dereferenceable: { 1335 uint64_t Bytes; 1336 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1337 return true; 1338 B.addDereferenceableAttr(Bytes); 1339 continue; 1340 } 1341 case lltok::kw_dereferenceable_or_null: { 1342 uint64_t Bytes; 1343 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1344 return true; 1345 B.addDereferenceableOrNullAttr(Bytes); 1346 continue; 1347 } 1348 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break; 1349 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1350 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break; 1351 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1352 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break; 1353 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1354 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1355 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1356 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break; 1357 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1358 case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break; 1359 case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break; 1360 case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break; 1361 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1362 1363 case lltok::kw_alignstack: 1364 case lltok::kw_alwaysinline: 1365 case lltok::kw_argmemonly: 1366 case lltok::kw_builtin: 1367 case lltok::kw_inlinehint: 1368 case lltok::kw_jumptable: 1369 case lltok::kw_minsize: 1370 case lltok::kw_naked: 1371 case lltok::kw_nobuiltin: 1372 case lltok::kw_noduplicate: 1373 case lltok::kw_noimplicitfloat: 1374 case lltok::kw_noinline: 1375 case lltok::kw_nonlazybind: 1376 case lltok::kw_noredzone: 1377 case lltok::kw_noreturn: 1378 case lltok::kw_nounwind: 1379 case lltok::kw_optnone: 1380 case lltok::kw_optsize: 1381 case lltok::kw_returns_twice: 1382 case lltok::kw_sanitize_address: 1383 case lltok::kw_sanitize_memory: 1384 case lltok::kw_sanitize_thread: 1385 case lltok::kw_ssp: 1386 case lltok::kw_sspreq: 1387 case lltok::kw_sspstrong: 1388 case lltok::kw_safestack: 1389 case lltok::kw_uwtable: 1390 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1391 break; 1392 } 1393 1394 Lex.Lex(); 1395 } 1396 } 1397 1398 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes. 1399 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) { 1400 bool HaveError = false; 1401 1402 B.clear(); 1403 1404 while (1) { 1405 lltok::Kind Token = Lex.getKind(); 1406 switch (Token) { 1407 default: // End of attributes. 1408 return HaveError; 1409 case lltok::StringConstant: { 1410 if (ParseStringAttribute(B)) 1411 return true; 1412 continue; 1413 } 1414 case lltok::kw_dereferenceable: { 1415 uint64_t Bytes; 1416 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1417 return true; 1418 B.addDereferenceableAttr(Bytes); 1419 continue; 1420 } 1421 case lltok::kw_dereferenceable_or_null: { 1422 uint64_t Bytes; 1423 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1424 return true; 1425 B.addDereferenceableOrNullAttr(Bytes); 1426 continue; 1427 } 1428 case lltok::kw_align: { 1429 unsigned Alignment; 1430 if (ParseOptionalAlignment(Alignment)) 1431 return true; 1432 B.addAlignmentAttr(Alignment); 1433 continue; 1434 } 1435 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1436 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1437 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1438 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1439 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1440 1441 // Error handling. 1442 case lltok::kw_byval: 1443 case lltok::kw_inalloca: 1444 case lltok::kw_nest: 1445 case lltok::kw_nocapture: 1446 case lltok::kw_returned: 1447 case lltok::kw_sret: 1448 case lltok::kw_swifterror: 1449 case lltok::kw_swiftself: 1450 HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute"); 1451 break; 1452 1453 case lltok::kw_alignstack: 1454 case lltok::kw_alwaysinline: 1455 case lltok::kw_argmemonly: 1456 case lltok::kw_builtin: 1457 case lltok::kw_cold: 1458 case lltok::kw_inlinehint: 1459 case lltok::kw_jumptable: 1460 case lltok::kw_minsize: 1461 case lltok::kw_naked: 1462 case lltok::kw_nobuiltin: 1463 case lltok::kw_noduplicate: 1464 case lltok::kw_noimplicitfloat: 1465 case lltok::kw_noinline: 1466 case lltok::kw_nonlazybind: 1467 case lltok::kw_noredzone: 1468 case lltok::kw_noreturn: 1469 case lltok::kw_nounwind: 1470 case lltok::kw_optnone: 1471 case lltok::kw_optsize: 1472 case lltok::kw_returns_twice: 1473 case lltok::kw_sanitize_address: 1474 case lltok::kw_sanitize_memory: 1475 case lltok::kw_sanitize_thread: 1476 case lltok::kw_ssp: 1477 case lltok::kw_sspreq: 1478 case lltok::kw_sspstrong: 1479 case lltok::kw_safestack: 1480 case lltok::kw_uwtable: 1481 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1482 break; 1483 1484 case lltok::kw_readnone: 1485 case lltok::kw_readonly: 1486 HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type"); 1487 } 1488 1489 Lex.Lex(); 1490 } 1491 } 1492 1493 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1494 HasLinkage = true; 1495 switch (Kind) { 1496 default: 1497 HasLinkage = false; 1498 return GlobalValue::ExternalLinkage; 1499 case lltok::kw_private: 1500 return GlobalValue::PrivateLinkage; 1501 case lltok::kw_internal: 1502 return GlobalValue::InternalLinkage; 1503 case lltok::kw_weak: 1504 return GlobalValue::WeakAnyLinkage; 1505 case lltok::kw_weak_odr: 1506 return GlobalValue::WeakODRLinkage; 1507 case lltok::kw_linkonce: 1508 return GlobalValue::LinkOnceAnyLinkage; 1509 case lltok::kw_linkonce_odr: 1510 return GlobalValue::LinkOnceODRLinkage; 1511 case lltok::kw_available_externally: 1512 return GlobalValue::AvailableExternallyLinkage; 1513 case lltok::kw_appending: 1514 return GlobalValue::AppendingLinkage; 1515 case lltok::kw_common: 1516 return GlobalValue::CommonLinkage; 1517 case lltok::kw_extern_weak: 1518 return GlobalValue::ExternalWeakLinkage; 1519 case lltok::kw_external: 1520 return GlobalValue::ExternalLinkage; 1521 } 1522 } 1523 1524 /// ParseOptionalLinkage 1525 /// ::= /*empty*/ 1526 /// ::= 'private' 1527 /// ::= 'internal' 1528 /// ::= 'weak' 1529 /// ::= 'weak_odr' 1530 /// ::= 'linkonce' 1531 /// ::= 'linkonce_odr' 1532 /// ::= 'available_externally' 1533 /// ::= 'appending' 1534 /// ::= 'common' 1535 /// ::= 'extern_weak' 1536 /// ::= 'external' 1537 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage, 1538 unsigned &Visibility, 1539 unsigned &DLLStorageClass) { 1540 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 1541 if (HasLinkage) 1542 Lex.Lex(); 1543 ParseOptionalVisibility(Visibility); 1544 ParseOptionalDLLStorageClass(DLLStorageClass); 1545 return false; 1546 } 1547 1548 /// ParseOptionalVisibility 1549 /// ::= /*empty*/ 1550 /// ::= 'default' 1551 /// ::= 'hidden' 1552 /// ::= 'protected' 1553 /// 1554 void LLParser::ParseOptionalVisibility(unsigned &Res) { 1555 switch (Lex.getKind()) { 1556 default: 1557 Res = GlobalValue::DefaultVisibility; 1558 return; 1559 case lltok::kw_default: 1560 Res = GlobalValue::DefaultVisibility; 1561 break; 1562 case lltok::kw_hidden: 1563 Res = GlobalValue::HiddenVisibility; 1564 break; 1565 case lltok::kw_protected: 1566 Res = GlobalValue::ProtectedVisibility; 1567 break; 1568 } 1569 Lex.Lex(); 1570 } 1571 1572 /// ParseOptionalDLLStorageClass 1573 /// ::= /*empty*/ 1574 /// ::= 'dllimport' 1575 /// ::= 'dllexport' 1576 /// 1577 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) { 1578 switch (Lex.getKind()) { 1579 default: 1580 Res = GlobalValue::DefaultStorageClass; 1581 return; 1582 case lltok::kw_dllimport: 1583 Res = GlobalValue::DLLImportStorageClass; 1584 break; 1585 case lltok::kw_dllexport: 1586 Res = GlobalValue::DLLExportStorageClass; 1587 break; 1588 } 1589 Lex.Lex(); 1590 } 1591 1592 /// ParseOptionalCallingConv 1593 /// ::= /*empty*/ 1594 /// ::= 'ccc' 1595 /// ::= 'fastcc' 1596 /// ::= 'intel_ocl_bicc' 1597 /// ::= 'coldcc' 1598 /// ::= 'x86_stdcallcc' 1599 /// ::= 'x86_fastcallcc' 1600 /// ::= 'x86_thiscallcc' 1601 /// ::= 'x86_vectorcallcc' 1602 /// ::= 'arm_apcscc' 1603 /// ::= 'arm_aapcscc' 1604 /// ::= 'arm_aapcs_vfpcc' 1605 /// ::= 'msp430_intrcc' 1606 /// ::= 'avr_intrcc' 1607 /// ::= 'avr_signalcc' 1608 /// ::= 'ptx_kernel' 1609 /// ::= 'ptx_device' 1610 /// ::= 'spir_func' 1611 /// ::= 'spir_kernel' 1612 /// ::= 'x86_64_sysvcc' 1613 /// ::= 'x86_64_win64cc' 1614 /// ::= 'webkit_jscc' 1615 /// ::= 'anyregcc' 1616 /// ::= 'preserve_mostcc' 1617 /// ::= 'preserve_allcc' 1618 /// ::= 'ghccc' 1619 /// ::= 'swiftcc' 1620 /// ::= 'x86_intrcc' 1621 /// ::= 'hhvmcc' 1622 /// ::= 'hhvm_ccc' 1623 /// ::= 'cxx_fast_tlscc' 1624 /// ::= 'amdgpu_vs' 1625 /// ::= 'amdgpu_tcs' 1626 /// ::= 'amdgpu_tes' 1627 /// ::= 'amdgpu_gs' 1628 /// ::= 'amdgpu_ps' 1629 /// ::= 'amdgpu_cs' 1630 /// ::= 'amdgpu_kernel' 1631 /// ::= 'cc' UINT 1632 /// 1633 bool LLParser::ParseOptionalCallingConv(unsigned &CC) { 1634 switch (Lex.getKind()) { 1635 default: CC = CallingConv::C; return false; 1636 case lltok::kw_ccc: CC = CallingConv::C; break; 1637 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1638 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1639 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1640 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1641 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1642 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 1643 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1644 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1645 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1646 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1647 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 1648 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 1649 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1650 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1651 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 1652 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 1653 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 1654 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 1655 case lltok::kw_x86_64_win64cc: CC = CallingConv::X86_64_Win64; break; 1656 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 1657 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 1658 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 1659 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 1660 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 1661 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 1662 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 1663 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 1664 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 1665 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 1666 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 1667 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 1668 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 1669 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 1670 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 1671 case lltok::kw_cc: { 1672 Lex.Lex(); 1673 return ParseUInt32(CC); 1674 } 1675 } 1676 1677 Lex.Lex(); 1678 return false; 1679 } 1680 1681 /// ParseMetadataAttachment 1682 /// ::= !dbg !42 1683 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 1684 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 1685 1686 std::string Name = Lex.getStrVal(); 1687 Kind = M->getMDKindID(Name); 1688 Lex.Lex(); 1689 1690 return ParseMDNode(MD); 1691 } 1692 1693 /// ParseInstructionMetadata 1694 /// ::= !dbg !42 (',' !dbg !57)* 1695 bool LLParser::ParseInstructionMetadata(Instruction &Inst) { 1696 do { 1697 if (Lex.getKind() != lltok::MetadataVar) 1698 return TokError("expected metadata after comma"); 1699 1700 unsigned MDK; 1701 MDNode *N; 1702 if (ParseMetadataAttachment(MDK, N)) 1703 return true; 1704 1705 Inst.setMetadata(MDK, N); 1706 if (MDK == LLVMContext::MD_tbaa) 1707 InstsWithTBAATag.push_back(&Inst); 1708 1709 // If this is the end of the list, we're done. 1710 } while (EatIfPresent(lltok::comma)); 1711 return false; 1712 } 1713 1714 /// ParseGlobalObjectMetadataAttachment 1715 /// ::= !dbg !57 1716 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) { 1717 unsigned MDK; 1718 MDNode *N; 1719 if (ParseMetadataAttachment(MDK, N)) 1720 return true; 1721 1722 GO.addMetadata(MDK, *N); 1723 return false; 1724 } 1725 1726 /// ParseOptionalFunctionMetadata 1727 /// ::= (!dbg !57)* 1728 bool LLParser::ParseOptionalFunctionMetadata(Function &F) { 1729 while (Lex.getKind() == lltok::MetadataVar) 1730 if (ParseGlobalObjectMetadataAttachment(F)) 1731 return true; 1732 return false; 1733 } 1734 1735 /// ParseOptionalAlignment 1736 /// ::= /* empty */ 1737 /// ::= 'align' 4 1738 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) { 1739 Alignment = 0; 1740 if (!EatIfPresent(lltok::kw_align)) 1741 return false; 1742 LocTy AlignLoc = Lex.getLoc(); 1743 if (ParseUInt32(Alignment)) return true; 1744 if (!isPowerOf2_32(Alignment)) 1745 return Error(AlignLoc, "alignment is not a power of two"); 1746 if (Alignment > Value::MaximumAlignment) 1747 return Error(AlignLoc, "huge alignments are not supported yet"); 1748 return false; 1749 } 1750 1751 /// ParseOptionalDerefAttrBytes 1752 /// ::= /* empty */ 1753 /// ::= AttrKind '(' 4 ')' 1754 /// 1755 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 1756 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind, 1757 uint64_t &Bytes) { 1758 assert((AttrKind == lltok::kw_dereferenceable || 1759 AttrKind == lltok::kw_dereferenceable_or_null) && 1760 "contract!"); 1761 1762 Bytes = 0; 1763 if (!EatIfPresent(AttrKind)) 1764 return false; 1765 LocTy ParenLoc = Lex.getLoc(); 1766 if (!EatIfPresent(lltok::lparen)) 1767 return Error(ParenLoc, "expected '('"); 1768 LocTy DerefLoc = Lex.getLoc(); 1769 if (ParseUInt64(Bytes)) return true; 1770 ParenLoc = Lex.getLoc(); 1771 if (!EatIfPresent(lltok::rparen)) 1772 return Error(ParenLoc, "expected ')'"); 1773 if (!Bytes) 1774 return Error(DerefLoc, "dereferenceable bytes must be non-zero"); 1775 return false; 1776 } 1777 1778 /// ParseOptionalCommaAlign 1779 /// ::= 1780 /// ::= ',' align 4 1781 /// 1782 /// This returns with AteExtraComma set to true if it ate an excess comma at the 1783 /// end. 1784 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment, 1785 bool &AteExtraComma) { 1786 AteExtraComma = false; 1787 while (EatIfPresent(lltok::comma)) { 1788 // Metadata at the end is an early exit. 1789 if (Lex.getKind() == lltok::MetadataVar) { 1790 AteExtraComma = true; 1791 return false; 1792 } 1793 1794 if (Lex.getKind() != lltok::kw_align) 1795 return Error(Lex.getLoc(), "expected metadata or 'align'"); 1796 1797 if (ParseOptionalAlignment(Alignment)) return true; 1798 } 1799 1800 return false; 1801 } 1802 1803 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 1804 Optional<unsigned> &HowManyArg) { 1805 Lex.Lex(); 1806 1807 auto StartParen = Lex.getLoc(); 1808 if (!EatIfPresent(lltok::lparen)) 1809 return Error(StartParen, "expected '('"); 1810 1811 if (ParseUInt32(BaseSizeArg)) 1812 return true; 1813 1814 if (EatIfPresent(lltok::comma)) { 1815 auto HowManyAt = Lex.getLoc(); 1816 unsigned HowMany; 1817 if (ParseUInt32(HowMany)) 1818 return true; 1819 if (HowMany == BaseSizeArg) 1820 return Error(HowManyAt, 1821 "'allocsize' indices can't refer to the same parameter"); 1822 HowManyArg = HowMany; 1823 } else 1824 HowManyArg = None; 1825 1826 auto EndParen = Lex.getLoc(); 1827 if (!EatIfPresent(lltok::rparen)) 1828 return Error(EndParen, "expected ')'"); 1829 return false; 1830 } 1831 1832 /// ParseScopeAndOrdering 1833 /// if isAtomic: ::= 'singlethread'? AtomicOrdering 1834 /// else: ::= 1835 /// 1836 /// This sets Scope and Ordering to the parsed values. 1837 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope, 1838 AtomicOrdering &Ordering) { 1839 if (!isAtomic) 1840 return false; 1841 1842 Scope = CrossThread; 1843 if (EatIfPresent(lltok::kw_singlethread)) 1844 Scope = SingleThread; 1845 1846 return ParseOrdering(Ordering); 1847 } 1848 1849 /// ParseOrdering 1850 /// ::= AtomicOrdering 1851 /// 1852 /// This sets Ordering to the parsed value. 1853 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) { 1854 switch (Lex.getKind()) { 1855 default: return TokError("Expected ordering on atomic instruction"); 1856 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 1857 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 1858 // Not specified yet: 1859 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 1860 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 1861 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 1862 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 1863 case lltok::kw_seq_cst: 1864 Ordering = AtomicOrdering::SequentiallyConsistent; 1865 break; 1866 } 1867 Lex.Lex(); 1868 return false; 1869 } 1870 1871 /// ParseOptionalStackAlignment 1872 /// ::= /* empty */ 1873 /// ::= 'alignstack' '(' 4 ')' 1874 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { 1875 Alignment = 0; 1876 if (!EatIfPresent(lltok::kw_alignstack)) 1877 return false; 1878 LocTy ParenLoc = Lex.getLoc(); 1879 if (!EatIfPresent(lltok::lparen)) 1880 return Error(ParenLoc, "expected '('"); 1881 LocTy AlignLoc = Lex.getLoc(); 1882 if (ParseUInt32(Alignment)) return true; 1883 ParenLoc = Lex.getLoc(); 1884 if (!EatIfPresent(lltok::rparen)) 1885 return Error(ParenLoc, "expected ')'"); 1886 if (!isPowerOf2_32(Alignment)) 1887 return Error(AlignLoc, "stack alignment is not a power of two"); 1888 return false; 1889 } 1890 1891 /// ParseIndexList - This parses the index list for an insert/extractvalue 1892 /// instruction. This sets AteExtraComma in the case where we eat an extra 1893 /// comma at the end of the line and find that it is followed by metadata. 1894 /// Clients that don't allow metadata can call the version of this function that 1895 /// only takes one argument. 1896 /// 1897 /// ParseIndexList 1898 /// ::= (',' uint32)+ 1899 /// 1900 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, 1901 bool &AteExtraComma) { 1902 AteExtraComma = false; 1903 1904 if (Lex.getKind() != lltok::comma) 1905 return TokError("expected ',' as start of index list"); 1906 1907 while (EatIfPresent(lltok::comma)) { 1908 if (Lex.getKind() == lltok::MetadataVar) { 1909 if (Indices.empty()) return TokError("expected index"); 1910 AteExtraComma = true; 1911 return false; 1912 } 1913 unsigned Idx = 0; 1914 if (ParseUInt32(Idx)) return true; 1915 Indices.push_back(Idx); 1916 } 1917 1918 return false; 1919 } 1920 1921 //===----------------------------------------------------------------------===// 1922 // Type Parsing. 1923 //===----------------------------------------------------------------------===// 1924 1925 /// ParseType - Parse a type. 1926 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 1927 SMLoc TypeLoc = Lex.getLoc(); 1928 switch (Lex.getKind()) { 1929 default: 1930 return TokError(Msg); 1931 case lltok::Type: 1932 // Type ::= 'float' | 'void' (etc) 1933 Result = Lex.getTyVal(); 1934 Lex.Lex(); 1935 break; 1936 case lltok::lbrace: 1937 // Type ::= StructType 1938 if (ParseAnonStructType(Result, false)) 1939 return true; 1940 break; 1941 case lltok::lsquare: 1942 // Type ::= '[' ... ']' 1943 Lex.Lex(); // eat the lsquare. 1944 if (ParseArrayVectorType(Result, false)) 1945 return true; 1946 break; 1947 case lltok::less: // Either vector or packed struct. 1948 // Type ::= '<' ... '>' 1949 Lex.Lex(); 1950 if (Lex.getKind() == lltok::lbrace) { 1951 if (ParseAnonStructType(Result, true) || 1952 ParseToken(lltok::greater, "expected '>' at end of packed struct")) 1953 return true; 1954 } else if (ParseArrayVectorType(Result, true)) 1955 return true; 1956 break; 1957 case lltok::LocalVar: { 1958 // Type ::= %foo 1959 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 1960 1961 // If the type hasn't been defined yet, create a forward definition and 1962 // remember where that forward def'n was seen (in case it never is defined). 1963 if (!Entry.first) { 1964 Entry.first = StructType::create(Context, Lex.getStrVal()); 1965 Entry.second = Lex.getLoc(); 1966 } 1967 Result = Entry.first; 1968 Lex.Lex(); 1969 break; 1970 } 1971 1972 case lltok::LocalVarID: { 1973 // Type ::= %4 1974 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 1975 1976 // If the type hasn't been defined yet, create a forward definition and 1977 // remember where that forward def'n was seen (in case it never is defined). 1978 if (!Entry.first) { 1979 Entry.first = StructType::create(Context); 1980 Entry.second = Lex.getLoc(); 1981 } 1982 Result = Entry.first; 1983 Lex.Lex(); 1984 break; 1985 } 1986 } 1987 1988 // Parse the type suffixes. 1989 while (1) { 1990 switch (Lex.getKind()) { 1991 // End of type. 1992 default: 1993 if (!AllowVoid && Result->isVoidTy()) 1994 return Error(TypeLoc, "void type only allowed for function results"); 1995 return false; 1996 1997 // Type ::= Type '*' 1998 case lltok::star: 1999 if (Result->isLabelTy()) 2000 return TokError("basic block pointers are invalid"); 2001 if (Result->isVoidTy()) 2002 return TokError("pointers to void are invalid - use i8* instead"); 2003 if (!PointerType::isValidElementType(Result)) 2004 return TokError("pointer to this type is invalid"); 2005 Result = PointerType::getUnqual(Result); 2006 Lex.Lex(); 2007 break; 2008 2009 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2010 case lltok::kw_addrspace: { 2011 if (Result->isLabelTy()) 2012 return TokError("basic block pointers are invalid"); 2013 if (Result->isVoidTy()) 2014 return TokError("pointers to void are invalid; use i8* instead"); 2015 if (!PointerType::isValidElementType(Result)) 2016 return TokError("pointer to this type is invalid"); 2017 unsigned AddrSpace; 2018 if (ParseOptionalAddrSpace(AddrSpace) || 2019 ParseToken(lltok::star, "expected '*' in address space")) 2020 return true; 2021 2022 Result = PointerType::get(Result, AddrSpace); 2023 break; 2024 } 2025 2026 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2027 case lltok::lparen: 2028 if (ParseFunctionType(Result)) 2029 return true; 2030 break; 2031 } 2032 } 2033 } 2034 2035 /// ParseParameterList 2036 /// ::= '(' ')' 2037 /// ::= '(' Arg (',' Arg)* ')' 2038 /// Arg 2039 /// ::= Type OptionalAttributes Value OptionalAttributes 2040 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2041 PerFunctionState &PFS, bool IsMustTailCall, 2042 bool InVarArgsFunc) { 2043 if (ParseToken(lltok::lparen, "expected '(' in call")) 2044 return true; 2045 2046 unsigned AttrIndex = 1; 2047 while (Lex.getKind() != lltok::rparen) { 2048 // If this isn't the first argument, we need a comma. 2049 if (!ArgList.empty() && 2050 ParseToken(lltok::comma, "expected ',' in argument list")) 2051 return true; 2052 2053 // Parse an ellipsis if this is a musttail call in a variadic function. 2054 if (Lex.getKind() == lltok::dotdotdot) { 2055 const char *Msg = "unexpected ellipsis in argument list for "; 2056 if (!IsMustTailCall) 2057 return TokError(Twine(Msg) + "non-musttail call"); 2058 if (!InVarArgsFunc) 2059 return TokError(Twine(Msg) + "musttail call in non-varargs function"); 2060 Lex.Lex(); // Lex the '...', it is purely for readability. 2061 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2062 } 2063 2064 // Parse the argument. 2065 LocTy ArgLoc; 2066 Type *ArgTy = nullptr; 2067 AttrBuilder ArgAttrs; 2068 Value *V; 2069 if (ParseType(ArgTy, ArgLoc)) 2070 return true; 2071 2072 if (ArgTy->isMetadataTy()) { 2073 if (ParseMetadataAsValue(V, PFS)) 2074 return true; 2075 } else { 2076 // Otherwise, handle normal operands. 2077 if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS)) 2078 return true; 2079 } 2080 ArgList.push_back(ParamInfo(ArgLoc, V, AttributeSet::get(V->getContext(), 2081 AttrIndex++, 2082 ArgAttrs))); 2083 } 2084 2085 if (IsMustTailCall && InVarArgsFunc) 2086 return TokError("expected '...' at end of argument list for musttail call " 2087 "in varargs function"); 2088 2089 Lex.Lex(); // Lex the ')'. 2090 return false; 2091 } 2092 2093 /// ParseOptionalOperandBundles 2094 /// ::= /*empty*/ 2095 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2096 /// 2097 /// OperandBundle 2098 /// ::= bundle-tag '(' ')' 2099 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2100 /// 2101 /// bundle-tag ::= String Constant 2102 bool LLParser::ParseOptionalOperandBundles( 2103 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2104 LocTy BeginLoc = Lex.getLoc(); 2105 if (!EatIfPresent(lltok::lsquare)) 2106 return false; 2107 2108 while (Lex.getKind() != lltok::rsquare) { 2109 // If this isn't the first operand bundle, we need a comma. 2110 if (!BundleList.empty() && 2111 ParseToken(lltok::comma, "expected ',' in input list")) 2112 return true; 2113 2114 std::string Tag; 2115 if (ParseStringConstant(Tag)) 2116 return true; 2117 2118 if (ParseToken(lltok::lparen, "expected '(' in operand bundle")) 2119 return true; 2120 2121 std::vector<Value *> Inputs; 2122 while (Lex.getKind() != lltok::rparen) { 2123 // If this isn't the first input, we need a comma. 2124 if (!Inputs.empty() && 2125 ParseToken(lltok::comma, "expected ',' in input list")) 2126 return true; 2127 2128 Type *Ty = nullptr; 2129 Value *Input = nullptr; 2130 if (ParseType(Ty) || ParseValue(Ty, Input, PFS)) 2131 return true; 2132 Inputs.push_back(Input); 2133 } 2134 2135 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2136 2137 Lex.Lex(); // Lex the ')'. 2138 } 2139 2140 if (BundleList.empty()) 2141 return Error(BeginLoc, "operand bundle set must not be empty"); 2142 2143 Lex.Lex(); // Lex the ']'. 2144 return false; 2145 } 2146 2147 /// ParseArgumentList - Parse the argument list for a function type or function 2148 /// prototype. 2149 /// ::= '(' ArgTypeListI ')' 2150 /// ArgTypeListI 2151 /// ::= /*empty*/ 2152 /// ::= '...' 2153 /// ::= ArgTypeList ',' '...' 2154 /// ::= ArgType (',' ArgType)* 2155 /// 2156 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2157 bool &isVarArg){ 2158 isVarArg = false; 2159 assert(Lex.getKind() == lltok::lparen); 2160 Lex.Lex(); // eat the (. 2161 2162 if (Lex.getKind() == lltok::rparen) { 2163 // empty 2164 } else if (Lex.getKind() == lltok::dotdotdot) { 2165 isVarArg = true; 2166 Lex.Lex(); 2167 } else { 2168 LocTy TypeLoc = Lex.getLoc(); 2169 Type *ArgTy = nullptr; 2170 AttrBuilder Attrs; 2171 std::string Name; 2172 2173 if (ParseType(ArgTy) || 2174 ParseOptionalParamAttrs(Attrs)) return true; 2175 2176 if (ArgTy->isVoidTy()) 2177 return Error(TypeLoc, "argument can not have void type"); 2178 2179 if (Lex.getKind() == lltok::LocalVar) { 2180 Name = Lex.getStrVal(); 2181 Lex.Lex(); 2182 } 2183 2184 if (!FunctionType::isValidArgumentType(ArgTy)) 2185 return Error(TypeLoc, "invalid type for function argument"); 2186 2187 unsigned AttrIndex = 1; 2188 ArgList.emplace_back(TypeLoc, ArgTy, AttributeSet::get(ArgTy->getContext(), 2189 AttrIndex++, Attrs), 2190 std::move(Name)); 2191 2192 while (EatIfPresent(lltok::comma)) { 2193 // Handle ... at end of arg list. 2194 if (EatIfPresent(lltok::dotdotdot)) { 2195 isVarArg = true; 2196 break; 2197 } 2198 2199 // Otherwise must be an argument type. 2200 TypeLoc = Lex.getLoc(); 2201 if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true; 2202 2203 if (ArgTy->isVoidTy()) 2204 return Error(TypeLoc, "argument can not have void type"); 2205 2206 if (Lex.getKind() == lltok::LocalVar) { 2207 Name = Lex.getStrVal(); 2208 Lex.Lex(); 2209 } else { 2210 Name = ""; 2211 } 2212 2213 if (!ArgTy->isFirstClassType()) 2214 return Error(TypeLoc, "invalid type for function argument"); 2215 2216 ArgList.emplace_back( 2217 TypeLoc, ArgTy, 2218 AttributeSet::get(ArgTy->getContext(), AttrIndex++, Attrs), 2219 std::move(Name)); 2220 } 2221 } 2222 2223 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2224 } 2225 2226 /// ParseFunctionType 2227 /// ::= Type ArgumentList OptionalAttrs 2228 bool LLParser::ParseFunctionType(Type *&Result) { 2229 assert(Lex.getKind() == lltok::lparen); 2230 2231 if (!FunctionType::isValidReturnType(Result)) 2232 return TokError("invalid function return type"); 2233 2234 SmallVector<ArgInfo, 8> ArgList; 2235 bool isVarArg; 2236 if (ParseArgumentList(ArgList, isVarArg)) 2237 return true; 2238 2239 // Reject names on the arguments lists. 2240 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2241 if (!ArgList[i].Name.empty()) 2242 return Error(ArgList[i].Loc, "argument name invalid in function type"); 2243 if (ArgList[i].Attrs.hasAttributes(i + 1)) 2244 return Error(ArgList[i].Loc, 2245 "argument attributes invalid in function type"); 2246 } 2247 2248 SmallVector<Type*, 16> ArgListTy; 2249 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2250 ArgListTy.push_back(ArgList[i].Ty); 2251 2252 Result = FunctionType::get(Result, ArgListTy, isVarArg); 2253 return false; 2254 } 2255 2256 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into 2257 /// other structs. 2258 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) { 2259 SmallVector<Type*, 8> Elts; 2260 if (ParseStructBody(Elts)) return true; 2261 2262 Result = StructType::get(Context, Elts, Packed); 2263 return false; 2264 } 2265 2266 /// ParseStructDefinition - Parse a struct in a 'type' definition. 2267 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name, 2268 std::pair<Type*, LocTy> &Entry, 2269 Type *&ResultTy) { 2270 // If the type was already defined, diagnose the redefinition. 2271 if (Entry.first && !Entry.second.isValid()) 2272 return Error(TypeLoc, "redefinition of type"); 2273 2274 // If we have opaque, just return without filling in the definition for the 2275 // struct. This counts as a definition as far as the .ll file goes. 2276 if (EatIfPresent(lltok::kw_opaque)) { 2277 // This type is being defined, so clear the location to indicate this. 2278 Entry.second = SMLoc(); 2279 2280 // If this type number has never been uttered, create it. 2281 if (!Entry.first) 2282 Entry.first = StructType::create(Context, Name); 2283 ResultTy = Entry.first; 2284 return false; 2285 } 2286 2287 // If the type starts with '<', then it is either a packed struct or a vector. 2288 bool isPacked = EatIfPresent(lltok::less); 2289 2290 // If we don't have a struct, then we have a random type alias, which we 2291 // accept for compatibility with old files. These types are not allowed to be 2292 // forward referenced and not allowed to be recursive. 2293 if (Lex.getKind() != lltok::lbrace) { 2294 if (Entry.first) 2295 return Error(TypeLoc, "forward references to non-struct type"); 2296 2297 ResultTy = nullptr; 2298 if (isPacked) 2299 return ParseArrayVectorType(ResultTy, true); 2300 return ParseType(ResultTy); 2301 } 2302 2303 // This type is being defined, so clear the location to indicate this. 2304 Entry.second = SMLoc(); 2305 2306 // If this type number has never been uttered, create it. 2307 if (!Entry.first) 2308 Entry.first = StructType::create(Context, Name); 2309 2310 StructType *STy = cast<StructType>(Entry.first); 2311 2312 SmallVector<Type*, 8> Body; 2313 if (ParseStructBody(Body) || 2314 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct"))) 2315 return true; 2316 2317 STy->setBody(Body, isPacked); 2318 ResultTy = STy; 2319 return false; 2320 } 2321 2322 2323 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2324 /// StructType 2325 /// ::= '{' '}' 2326 /// ::= '{' Type (',' Type)* '}' 2327 /// ::= '<' '{' '}' '>' 2328 /// ::= '<' '{' Type (',' Type)* '}' '>' 2329 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) { 2330 assert(Lex.getKind() == lltok::lbrace); 2331 Lex.Lex(); // Consume the '{' 2332 2333 // Handle the empty struct. 2334 if (EatIfPresent(lltok::rbrace)) 2335 return false; 2336 2337 LocTy EltTyLoc = Lex.getLoc(); 2338 Type *Ty = nullptr; 2339 if (ParseType(Ty)) return true; 2340 Body.push_back(Ty); 2341 2342 if (!StructType::isValidElementType(Ty)) 2343 return Error(EltTyLoc, "invalid element type for struct"); 2344 2345 while (EatIfPresent(lltok::comma)) { 2346 EltTyLoc = Lex.getLoc(); 2347 if (ParseType(Ty)) return true; 2348 2349 if (!StructType::isValidElementType(Ty)) 2350 return Error(EltTyLoc, "invalid element type for struct"); 2351 2352 Body.push_back(Ty); 2353 } 2354 2355 return ParseToken(lltok::rbrace, "expected '}' at end of struct"); 2356 } 2357 2358 /// ParseArrayVectorType - Parse an array or vector type, assuming the first 2359 /// token has already been consumed. 2360 /// Type 2361 /// ::= '[' APSINTVAL 'x' Types ']' 2362 /// ::= '<' APSINTVAL 'x' Types '>' 2363 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) { 2364 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2365 Lex.getAPSIntVal().getBitWidth() > 64) 2366 return TokError("expected number in address space"); 2367 2368 LocTy SizeLoc = Lex.getLoc(); 2369 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2370 Lex.Lex(); 2371 2372 if (ParseToken(lltok::kw_x, "expected 'x' after element count")) 2373 return true; 2374 2375 LocTy TypeLoc = Lex.getLoc(); 2376 Type *EltTy = nullptr; 2377 if (ParseType(EltTy)) return true; 2378 2379 if (ParseToken(isVector ? lltok::greater : lltok::rsquare, 2380 "expected end of sequential type")) 2381 return true; 2382 2383 if (isVector) { 2384 if (Size == 0) 2385 return Error(SizeLoc, "zero element vector is illegal"); 2386 if ((unsigned)Size != Size) 2387 return Error(SizeLoc, "size too large for vector"); 2388 if (!VectorType::isValidElementType(EltTy)) 2389 return Error(TypeLoc, "invalid vector element type"); 2390 Result = VectorType::get(EltTy, unsigned(Size)); 2391 } else { 2392 if (!ArrayType::isValidElementType(EltTy)) 2393 return Error(TypeLoc, "invalid array element type"); 2394 Result = ArrayType::get(EltTy, Size); 2395 } 2396 return false; 2397 } 2398 2399 //===----------------------------------------------------------------------===// 2400 // Function Semantic Analysis. 2401 //===----------------------------------------------------------------------===// 2402 2403 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 2404 int functionNumber) 2405 : P(p), F(f), FunctionNumber(functionNumber) { 2406 2407 // Insert unnamed arguments into the NumberedVals list. 2408 for (Argument &A : F.args()) 2409 if (!A.hasName()) 2410 NumberedVals.push_back(&A); 2411 } 2412 2413 LLParser::PerFunctionState::~PerFunctionState() { 2414 // If there were any forward referenced non-basicblock values, delete them. 2415 2416 for (const auto &P : ForwardRefVals) { 2417 if (isa<BasicBlock>(P.second.first)) 2418 continue; 2419 P.second.first->replaceAllUsesWith( 2420 UndefValue::get(P.second.first->getType())); 2421 delete P.second.first; 2422 } 2423 2424 for (const auto &P : ForwardRefValIDs) { 2425 if (isa<BasicBlock>(P.second.first)) 2426 continue; 2427 P.second.first->replaceAllUsesWith( 2428 UndefValue::get(P.second.first->getType())); 2429 delete P.second.first; 2430 } 2431 } 2432 2433 bool LLParser::PerFunctionState::FinishFunction() { 2434 if (!ForwardRefVals.empty()) 2435 return P.Error(ForwardRefVals.begin()->second.second, 2436 "use of undefined value '%" + ForwardRefVals.begin()->first + 2437 "'"); 2438 if (!ForwardRefValIDs.empty()) 2439 return P.Error(ForwardRefValIDs.begin()->second.second, 2440 "use of undefined value '%" + 2441 Twine(ForwardRefValIDs.begin()->first) + "'"); 2442 return false; 2443 } 2444 2445 2446 /// GetVal - Get a value with the specified name or ID, creating a 2447 /// forward reference record if needed. This can return null if the value 2448 /// exists but does not have the right type. 2449 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty, 2450 LocTy Loc) { 2451 // Look this name up in the normal function symbol table. 2452 Value *Val = F.getValueSymbolTable().lookup(Name); 2453 2454 // If this is a forward reference for the value, see if we already created a 2455 // forward ref record. 2456 if (!Val) { 2457 auto I = ForwardRefVals.find(Name); 2458 if (I != ForwardRefVals.end()) 2459 Val = I->second.first; 2460 } 2461 2462 // If we have the value in the symbol table or fwd-ref table, return it. 2463 if (Val) { 2464 if (Val->getType() == Ty) return Val; 2465 if (Ty->isLabelTy()) 2466 P.Error(Loc, "'%" + Name + "' is not a basic block"); 2467 else 2468 P.Error(Loc, "'%" + Name + "' defined with type '" + 2469 getTypeString(Val->getType()) + "'"); 2470 return nullptr; 2471 } 2472 2473 // Don't make placeholders with invalid type. 2474 if (!Ty->isFirstClassType()) { 2475 P.Error(Loc, "invalid use of a non-first-class type"); 2476 return nullptr; 2477 } 2478 2479 // Otherwise, create a new forward reference for this value and remember it. 2480 Value *FwdVal; 2481 if (Ty->isLabelTy()) { 2482 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 2483 } else { 2484 FwdVal = new Argument(Ty, Name); 2485 } 2486 2487 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 2488 return FwdVal; 2489 } 2490 2491 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc) { 2492 // Look this name up in the normal function symbol table. 2493 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 2494 2495 // If this is a forward reference for the value, see if we already created a 2496 // forward ref record. 2497 if (!Val) { 2498 auto I = ForwardRefValIDs.find(ID); 2499 if (I != ForwardRefValIDs.end()) 2500 Val = I->second.first; 2501 } 2502 2503 // If we have the value in the symbol table or fwd-ref table, return it. 2504 if (Val) { 2505 if (Val->getType() == Ty) return Val; 2506 if (Ty->isLabelTy()) 2507 P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block"); 2508 else 2509 P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" + 2510 getTypeString(Val->getType()) + "'"); 2511 return nullptr; 2512 } 2513 2514 if (!Ty->isFirstClassType()) { 2515 P.Error(Loc, "invalid use of a non-first-class type"); 2516 return nullptr; 2517 } 2518 2519 // Otherwise, create a new forward reference for this value and remember it. 2520 Value *FwdVal; 2521 if (Ty->isLabelTy()) { 2522 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 2523 } else { 2524 FwdVal = new Argument(Ty); 2525 } 2526 2527 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 2528 return FwdVal; 2529 } 2530 2531 /// SetInstName - After an instruction is parsed and inserted into its 2532 /// basic block, this installs its name. 2533 bool LLParser::PerFunctionState::SetInstName(int NameID, 2534 const std::string &NameStr, 2535 LocTy NameLoc, Instruction *Inst) { 2536 // If this instruction has void type, it cannot have a name or ID specified. 2537 if (Inst->getType()->isVoidTy()) { 2538 if (NameID != -1 || !NameStr.empty()) 2539 return P.Error(NameLoc, "instructions returning void cannot have a name"); 2540 return false; 2541 } 2542 2543 // If this was a numbered instruction, verify that the instruction is the 2544 // expected value and resolve any forward references. 2545 if (NameStr.empty()) { 2546 // If neither a name nor an ID was specified, just use the next ID. 2547 if (NameID == -1) 2548 NameID = NumberedVals.size(); 2549 2550 if (unsigned(NameID) != NumberedVals.size()) 2551 return P.Error(NameLoc, "instruction expected to be numbered '%" + 2552 Twine(NumberedVals.size()) + "'"); 2553 2554 auto FI = ForwardRefValIDs.find(NameID); 2555 if (FI != ForwardRefValIDs.end()) { 2556 Value *Sentinel = FI->second.first; 2557 if (Sentinel->getType() != Inst->getType()) 2558 return P.Error(NameLoc, "instruction forward referenced with type '" + 2559 getTypeString(FI->second.first->getType()) + "'"); 2560 2561 Sentinel->replaceAllUsesWith(Inst); 2562 delete Sentinel; 2563 ForwardRefValIDs.erase(FI); 2564 } 2565 2566 NumberedVals.push_back(Inst); 2567 return false; 2568 } 2569 2570 // Otherwise, the instruction had a name. Resolve forward refs and set it. 2571 auto FI = ForwardRefVals.find(NameStr); 2572 if (FI != ForwardRefVals.end()) { 2573 Value *Sentinel = FI->second.first; 2574 if (Sentinel->getType() != Inst->getType()) 2575 return P.Error(NameLoc, "instruction forward referenced with type '" + 2576 getTypeString(FI->second.first->getType()) + "'"); 2577 2578 Sentinel->replaceAllUsesWith(Inst); 2579 delete Sentinel; 2580 ForwardRefVals.erase(FI); 2581 } 2582 2583 // Set the name on the instruction. 2584 Inst->setName(NameStr); 2585 2586 if (Inst->getName() != NameStr) 2587 return P.Error(NameLoc, "multiple definition of local value named '" + 2588 NameStr + "'"); 2589 return false; 2590 } 2591 2592 /// GetBB - Get a basic block with the specified name or ID, creating a 2593 /// forward reference record if needed. 2594 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, 2595 LocTy Loc) { 2596 return dyn_cast_or_null<BasicBlock>(GetVal(Name, 2597 Type::getLabelTy(F.getContext()), Loc)); 2598 } 2599 2600 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { 2601 return dyn_cast_or_null<BasicBlock>(GetVal(ID, 2602 Type::getLabelTy(F.getContext()), Loc)); 2603 } 2604 2605 /// DefineBB - Define the specified basic block, which is either named or 2606 /// unnamed. If there is an error, this returns null otherwise it returns 2607 /// the block being defined. 2608 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, 2609 LocTy Loc) { 2610 BasicBlock *BB; 2611 if (Name.empty()) 2612 BB = GetBB(NumberedVals.size(), Loc); 2613 else 2614 BB = GetBB(Name, Loc); 2615 if (!BB) return nullptr; // Already diagnosed error. 2616 2617 // Move the block to the end of the function. Forward ref'd blocks are 2618 // inserted wherever they happen to be referenced. 2619 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 2620 2621 // Remove the block from forward ref sets. 2622 if (Name.empty()) { 2623 ForwardRefValIDs.erase(NumberedVals.size()); 2624 NumberedVals.push_back(BB); 2625 } else { 2626 // BB forward references are already in the function symbol table. 2627 ForwardRefVals.erase(Name); 2628 } 2629 2630 return BB; 2631 } 2632 2633 //===----------------------------------------------------------------------===// 2634 // Constants. 2635 //===----------------------------------------------------------------------===// 2636 2637 /// ParseValID - Parse an abstract value that doesn't necessarily have a 2638 /// type implied. For example, if we parse "4" we don't know what integer type 2639 /// it has. The value will later be combined with its type and checked for 2640 /// sanity. PFS is used to convert function-local operands of metadata (since 2641 /// metadata operands are not just parsed here but also converted to values). 2642 /// PFS can be null when we are not parsing metadata values inside a function. 2643 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { 2644 ID.Loc = Lex.getLoc(); 2645 switch (Lex.getKind()) { 2646 default: return TokError("expected value token"); 2647 case lltok::GlobalID: // @42 2648 ID.UIntVal = Lex.getUIntVal(); 2649 ID.Kind = ValID::t_GlobalID; 2650 break; 2651 case lltok::GlobalVar: // @foo 2652 ID.StrVal = Lex.getStrVal(); 2653 ID.Kind = ValID::t_GlobalName; 2654 break; 2655 case lltok::LocalVarID: // %42 2656 ID.UIntVal = Lex.getUIntVal(); 2657 ID.Kind = ValID::t_LocalID; 2658 break; 2659 case lltok::LocalVar: // %foo 2660 ID.StrVal = Lex.getStrVal(); 2661 ID.Kind = ValID::t_LocalName; 2662 break; 2663 case lltok::APSInt: 2664 ID.APSIntVal = Lex.getAPSIntVal(); 2665 ID.Kind = ValID::t_APSInt; 2666 break; 2667 case lltok::APFloat: 2668 ID.APFloatVal = Lex.getAPFloatVal(); 2669 ID.Kind = ValID::t_APFloat; 2670 break; 2671 case lltok::kw_true: 2672 ID.ConstantVal = ConstantInt::getTrue(Context); 2673 ID.Kind = ValID::t_Constant; 2674 break; 2675 case lltok::kw_false: 2676 ID.ConstantVal = ConstantInt::getFalse(Context); 2677 ID.Kind = ValID::t_Constant; 2678 break; 2679 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 2680 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 2681 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 2682 case lltok::kw_none: ID.Kind = ValID::t_None; break; 2683 2684 case lltok::lbrace: { 2685 // ValID ::= '{' ConstVector '}' 2686 Lex.Lex(); 2687 SmallVector<Constant*, 16> Elts; 2688 if (ParseGlobalValueVector(Elts) || 2689 ParseToken(lltok::rbrace, "expected end of struct constant")) 2690 return true; 2691 2692 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 2693 ID.UIntVal = Elts.size(); 2694 memcpy(ID.ConstantStructElts.get(), Elts.data(), 2695 Elts.size() * sizeof(Elts[0])); 2696 ID.Kind = ValID::t_ConstantStruct; 2697 return false; 2698 } 2699 case lltok::less: { 2700 // ValID ::= '<' ConstVector '>' --> Vector. 2701 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 2702 Lex.Lex(); 2703 bool isPackedStruct = EatIfPresent(lltok::lbrace); 2704 2705 SmallVector<Constant*, 16> Elts; 2706 LocTy FirstEltLoc = Lex.getLoc(); 2707 if (ParseGlobalValueVector(Elts) || 2708 (isPackedStruct && 2709 ParseToken(lltok::rbrace, "expected end of packed struct")) || 2710 ParseToken(lltok::greater, "expected end of constant")) 2711 return true; 2712 2713 if (isPackedStruct) { 2714 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 2715 memcpy(ID.ConstantStructElts.get(), Elts.data(), 2716 Elts.size() * sizeof(Elts[0])); 2717 ID.UIntVal = Elts.size(); 2718 ID.Kind = ValID::t_PackedConstantStruct; 2719 return false; 2720 } 2721 2722 if (Elts.empty()) 2723 return Error(ID.Loc, "constant vector must not be empty"); 2724 2725 if (!Elts[0]->getType()->isIntegerTy() && 2726 !Elts[0]->getType()->isFloatingPointTy() && 2727 !Elts[0]->getType()->isPointerTy()) 2728 return Error(FirstEltLoc, 2729 "vector elements must have integer, pointer or floating point type"); 2730 2731 // Verify that all the vector elements have the same type. 2732 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 2733 if (Elts[i]->getType() != Elts[0]->getType()) 2734 return Error(FirstEltLoc, 2735 "vector element #" + Twine(i) + 2736 " is not of type '" + getTypeString(Elts[0]->getType())); 2737 2738 ID.ConstantVal = ConstantVector::get(Elts); 2739 ID.Kind = ValID::t_Constant; 2740 return false; 2741 } 2742 case lltok::lsquare: { // Array Constant 2743 Lex.Lex(); 2744 SmallVector<Constant*, 16> Elts; 2745 LocTy FirstEltLoc = Lex.getLoc(); 2746 if (ParseGlobalValueVector(Elts) || 2747 ParseToken(lltok::rsquare, "expected end of array constant")) 2748 return true; 2749 2750 // Handle empty element. 2751 if (Elts.empty()) { 2752 // Use undef instead of an array because it's inconvenient to determine 2753 // the element type at this point, there being no elements to examine. 2754 ID.Kind = ValID::t_EmptyArray; 2755 return false; 2756 } 2757 2758 if (!Elts[0]->getType()->isFirstClassType()) 2759 return Error(FirstEltLoc, "invalid array element type: " + 2760 getTypeString(Elts[0]->getType())); 2761 2762 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 2763 2764 // Verify all elements are correct type! 2765 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 2766 if (Elts[i]->getType() != Elts[0]->getType()) 2767 return Error(FirstEltLoc, 2768 "array element #" + Twine(i) + 2769 " is not of type '" + getTypeString(Elts[0]->getType())); 2770 } 2771 2772 ID.ConstantVal = ConstantArray::get(ATy, Elts); 2773 ID.Kind = ValID::t_Constant; 2774 return false; 2775 } 2776 case lltok::kw_c: // c "foo" 2777 Lex.Lex(); 2778 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 2779 false); 2780 if (ParseToken(lltok::StringConstant, "expected string")) return true; 2781 ID.Kind = ValID::t_Constant; 2782 return false; 2783 2784 case lltok::kw_asm: { 2785 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 2786 // STRINGCONSTANT 2787 bool HasSideEffect, AlignStack, AsmDialect; 2788 Lex.Lex(); 2789 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 2790 ParseOptionalToken(lltok::kw_alignstack, AlignStack) || 2791 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 2792 ParseStringConstant(ID.StrVal) || 2793 ParseToken(lltok::comma, "expected comma in inline asm expression") || 2794 ParseToken(lltok::StringConstant, "expected constraint string")) 2795 return true; 2796 ID.StrVal2 = Lex.getStrVal(); 2797 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) | 2798 (unsigned(AsmDialect)<<2); 2799 ID.Kind = ValID::t_InlineAsm; 2800 return false; 2801 } 2802 2803 case lltok::kw_blockaddress: { 2804 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 2805 Lex.Lex(); 2806 2807 ValID Fn, Label; 2808 2809 if (ParseToken(lltok::lparen, "expected '(' in block address expression") || 2810 ParseValID(Fn) || 2811 ParseToken(lltok::comma, "expected comma in block address expression")|| 2812 ParseValID(Label) || 2813 ParseToken(lltok::rparen, "expected ')' in block address expression")) 2814 return true; 2815 2816 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 2817 return Error(Fn.Loc, "expected function name in blockaddress"); 2818 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 2819 return Error(Label.Loc, "expected basic block name in blockaddress"); 2820 2821 // Try to find the function (but skip it if it's forward-referenced). 2822 GlobalValue *GV = nullptr; 2823 if (Fn.Kind == ValID::t_GlobalID) { 2824 if (Fn.UIntVal < NumberedVals.size()) 2825 GV = NumberedVals[Fn.UIntVal]; 2826 } else if (!ForwardRefVals.count(Fn.StrVal)) { 2827 GV = M->getNamedValue(Fn.StrVal); 2828 } 2829 Function *F = nullptr; 2830 if (GV) { 2831 // Confirm that it's actually a function with a definition. 2832 if (!isa<Function>(GV)) 2833 return Error(Fn.Loc, "expected function name in blockaddress"); 2834 F = cast<Function>(GV); 2835 if (F->isDeclaration()) 2836 return Error(Fn.Loc, "cannot take blockaddress inside a declaration"); 2837 } 2838 2839 if (!F) { 2840 // Make a global variable as a placeholder for this reference. 2841 GlobalValue *&FwdRef = 2842 ForwardRefBlockAddresses.insert(std::make_pair( 2843 std::move(Fn), 2844 std::map<ValID, GlobalValue *>())) 2845 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 2846 .first->second; 2847 if (!FwdRef) 2848 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 2849 GlobalValue::InternalLinkage, nullptr, ""); 2850 ID.ConstantVal = FwdRef; 2851 ID.Kind = ValID::t_Constant; 2852 return false; 2853 } 2854 2855 // We found the function; now find the basic block. Don't use PFS, since we 2856 // might be inside a constant expression. 2857 BasicBlock *BB; 2858 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 2859 if (Label.Kind == ValID::t_LocalID) 2860 BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc); 2861 else 2862 BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc); 2863 if (!BB) 2864 return Error(Label.Loc, "referenced value is not a basic block"); 2865 } else { 2866 if (Label.Kind == ValID::t_LocalID) 2867 return Error(Label.Loc, "cannot take address of numeric label after " 2868 "the function is defined"); 2869 BB = dyn_cast_or_null<BasicBlock>( 2870 F->getValueSymbolTable().lookup(Label.StrVal)); 2871 if (!BB) 2872 return Error(Label.Loc, "referenced value is not a basic block"); 2873 } 2874 2875 ID.ConstantVal = BlockAddress::get(F, BB); 2876 ID.Kind = ValID::t_Constant; 2877 return false; 2878 } 2879 2880 case lltok::kw_trunc: 2881 case lltok::kw_zext: 2882 case lltok::kw_sext: 2883 case lltok::kw_fptrunc: 2884 case lltok::kw_fpext: 2885 case lltok::kw_bitcast: 2886 case lltok::kw_addrspacecast: 2887 case lltok::kw_uitofp: 2888 case lltok::kw_sitofp: 2889 case lltok::kw_fptoui: 2890 case lltok::kw_fptosi: 2891 case lltok::kw_inttoptr: 2892 case lltok::kw_ptrtoint: { 2893 unsigned Opc = Lex.getUIntVal(); 2894 Type *DestTy = nullptr; 2895 Constant *SrcVal; 2896 Lex.Lex(); 2897 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || 2898 ParseGlobalTypeAndValue(SrcVal) || 2899 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 2900 ParseType(DestTy) || 2901 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 2902 return true; 2903 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 2904 return Error(ID.Loc, "invalid cast opcode for cast from '" + 2905 getTypeString(SrcVal->getType()) + "' to '" + 2906 getTypeString(DestTy) + "'"); 2907 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 2908 SrcVal, DestTy); 2909 ID.Kind = ValID::t_Constant; 2910 return false; 2911 } 2912 case lltok::kw_extractvalue: { 2913 Lex.Lex(); 2914 Constant *Val; 2915 SmallVector<unsigned, 4> Indices; 2916 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| 2917 ParseGlobalTypeAndValue(Val) || 2918 ParseIndexList(Indices) || 2919 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 2920 return true; 2921 2922 if (!Val->getType()->isAggregateType()) 2923 return Error(ID.Loc, "extractvalue operand must be aggregate type"); 2924 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 2925 return Error(ID.Loc, "invalid indices for extractvalue"); 2926 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 2927 ID.Kind = ValID::t_Constant; 2928 return false; 2929 } 2930 case lltok::kw_insertvalue: { 2931 Lex.Lex(); 2932 Constant *Val0, *Val1; 2933 SmallVector<unsigned, 4> Indices; 2934 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| 2935 ParseGlobalTypeAndValue(Val0) || 2936 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| 2937 ParseGlobalTypeAndValue(Val1) || 2938 ParseIndexList(Indices) || 2939 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 2940 return true; 2941 if (!Val0->getType()->isAggregateType()) 2942 return Error(ID.Loc, "insertvalue operand must be aggregate type"); 2943 Type *IndexedType = 2944 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 2945 if (!IndexedType) 2946 return Error(ID.Loc, "invalid indices for insertvalue"); 2947 if (IndexedType != Val1->getType()) 2948 return Error(ID.Loc, "insertvalue operand and field disagree in type: '" + 2949 getTypeString(Val1->getType()) + 2950 "' instead of '" + getTypeString(IndexedType) + 2951 "'"); 2952 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 2953 ID.Kind = ValID::t_Constant; 2954 return false; 2955 } 2956 case lltok::kw_icmp: 2957 case lltok::kw_fcmp: { 2958 unsigned PredVal, Opc = Lex.getUIntVal(); 2959 Constant *Val0, *Val1; 2960 Lex.Lex(); 2961 if (ParseCmpPredicate(PredVal, Opc) || 2962 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || 2963 ParseGlobalTypeAndValue(Val0) || 2964 ParseToken(lltok::comma, "expected comma in compare constantexpr") || 2965 ParseGlobalTypeAndValue(Val1) || 2966 ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) 2967 return true; 2968 2969 if (Val0->getType() != Val1->getType()) 2970 return Error(ID.Loc, "compare operands must have the same type"); 2971 2972 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 2973 2974 if (Opc == Instruction::FCmp) { 2975 if (!Val0->getType()->isFPOrFPVectorTy()) 2976 return Error(ID.Loc, "fcmp requires floating point operands"); 2977 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 2978 } else { 2979 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 2980 if (!Val0->getType()->isIntOrIntVectorTy() && 2981 !Val0->getType()->getScalarType()->isPointerTy()) 2982 return Error(ID.Loc, "icmp requires pointer or integer operands"); 2983 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 2984 } 2985 ID.Kind = ValID::t_Constant; 2986 return false; 2987 } 2988 2989 // Binary Operators. 2990 case lltok::kw_add: 2991 case lltok::kw_fadd: 2992 case lltok::kw_sub: 2993 case lltok::kw_fsub: 2994 case lltok::kw_mul: 2995 case lltok::kw_fmul: 2996 case lltok::kw_udiv: 2997 case lltok::kw_sdiv: 2998 case lltok::kw_fdiv: 2999 case lltok::kw_urem: 3000 case lltok::kw_srem: 3001 case lltok::kw_frem: 3002 case lltok::kw_shl: 3003 case lltok::kw_lshr: 3004 case lltok::kw_ashr: { 3005 bool NUW = false; 3006 bool NSW = false; 3007 bool Exact = false; 3008 unsigned Opc = Lex.getUIntVal(); 3009 Constant *Val0, *Val1; 3010 Lex.Lex(); 3011 LocTy ModifierLoc = Lex.getLoc(); 3012 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3013 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3014 if (EatIfPresent(lltok::kw_nuw)) 3015 NUW = true; 3016 if (EatIfPresent(lltok::kw_nsw)) { 3017 NSW = true; 3018 if (EatIfPresent(lltok::kw_nuw)) 3019 NUW = true; 3020 } 3021 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3022 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3023 if (EatIfPresent(lltok::kw_exact)) 3024 Exact = true; 3025 } 3026 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3027 ParseGlobalTypeAndValue(Val0) || 3028 ParseToken(lltok::comma, "expected comma in binary constantexpr") || 3029 ParseGlobalTypeAndValue(Val1) || 3030 ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3031 return true; 3032 if (Val0->getType() != Val1->getType()) 3033 return Error(ID.Loc, "operands of constexpr must have same type"); 3034 if (!Val0->getType()->isIntOrIntVectorTy()) { 3035 if (NUW) 3036 return Error(ModifierLoc, "nuw only applies to integer operations"); 3037 if (NSW) 3038 return Error(ModifierLoc, "nsw only applies to integer operations"); 3039 } 3040 // Check that the type is valid for the operator. 3041 switch (Opc) { 3042 case Instruction::Add: 3043 case Instruction::Sub: 3044 case Instruction::Mul: 3045 case Instruction::UDiv: 3046 case Instruction::SDiv: 3047 case Instruction::URem: 3048 case Instruction::SRem: 3049 case Instruction::Shl: 3050 case Instruction::AShr: 3051 case Instruction::LShr: 3052 if (!Val0->getType()->isIntOrIntVectorTy()) 3053 return Error(ID.Loc, "constexpr requires integer operands"); 3054 break; 3055 case Instruction::FAdd: 3056 case Instruction::FSub: 3057 case Instruction::FMul: 3058 case Instruction::FDiv: 3059 case Instruction::FRem: 3060 if (!Val0->getType()->isFPOrFPVectorTy()) 3061 return Error(ID.Loc, "constexpr requires fp operands"); 3062 break; 3063 default: llvm_unreachable("Unknown binary operator!"); 3064 } 3065 unsigned Flags = 0; 3066 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3067 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3068 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3069 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3070 ID.ConstantVal = C; 3071 ID.Kind = ValID::t_Constant; 3072 return false; 3073 } 3074 3075 // Logical Operations 3076 case lltok::kw_and: 3077 case lltok::kw_or: 3078 case lltok::kw_xor: { 3079 unsigned Opc = Lex.getUIntVal(); 3080 Constant *Val0, *Val1; 3081 Lex.Lex(); 3082 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3083 ParseGlobalTypeAndValue(Val0) || 3084 ParseToken(lltok::comma, "expected comma in logical constantexpr") || 3085 ParseGlobalTypeAndValue(Val1) || 3086 ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3087 return true; 3088 if (Val0->getType() != Val1->getType()) 3089 return Error(ID.Loc, "operands of constexpr must have same type"); 3090 if (!Val0->getType()->isIntOrIntVectorTy()) 3091 return Error(ID.Loc, 3092 "constexpr requires integer or integer vector operands"); 3093 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3094 ID.Kind = ValID::t_Constant; 3095 return false; 3096 } 3097 3098 case lltok::kw_getelementptr: 3099 case lltok::kw_shufflevector: 3100 case lltok::kw_insertelement: 3101 case lltok::kw_extractelement: 3102 case lltok::kw_select: { 3103 unsigned Opc = Lex.getUIntVal(); 3104 SmallVector<Constant*, 16> Elts; 3105 bool InBounds = false; 3106 Type *Ty; 3107 Lex.Lex(); 3108 3109 if (Opc == Instruction::GetElementPtr) 3110 InBounds = EatIfPresent(lltok::kw_inbounds); 3111 3112 if (ParseToken(lltok::lparen, "expected '(' in constantexpr")) 3113 return true; 3114 3115 LocTy ExplicitTypeLoc = Lex.getLoc(); 3116 if (Opc == Instruction::GetElementPtr) { 3117 if (ParseType(Ty) || 3118 ParseToken(lltok::comma, "expected comma after getelementptr's type")) 3119 return true; 3120 } 3121 3122 if (ParseGlobalValueVector(Elts) || 3123 ParseToken(lltok::rparen, "expected ')' in constantexpr")) 3124 return true; 3125 3126 if (Opc == Instruction::GetElementPtr) { 3127 if (Elts.size() == 0 || 3128 !Elts[0]->getType()->getScalarType()->isPointerTy()) 3129 return Error(ID.Loc, "base of getelementptr must be a pointer"); 3130 3131 Type *BaseType = Elts[0]->getType(); 3132 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3133 if (Ty != BasePointerType->getElementType()) 3134 return Error( 3135 ExplicitTypeLoc, 3136 "explicit pointee type doesn't match operand's pointee type"); 3137 3138 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3139 for (Constant *Val : Indices) { 3140 Type *ValTy = Val->getType(); 3141 if (!ValTy->getScalarType()->isIntegerTy()) 3142 return Error(ID.Loc, "getelementptr index must be an integer"); 3143 if (ValTy->isVectorTy() != BaseType->isVectorTy()) 3144 return Error(ID.Loc, "getelementptr index type missmatch"); 3145 if (ValTy->isVectorTy()) { 3146 unsigned ValNumEl = ValTy->getVectorNumElements(); 3147 unsigned PtrNumEl = BaseType->getVectorNumElements(); 3148 if (ValNumEl != PtrNumEl) 3149 return Error( 3150 ID.Loc, 3151 "getelementptr vector index has a wrong number of elements"); 3152 } 3153 } 3154 3155 SmallPtrSet<Type*, 4> Visited; 3156 if (!Indices.empty() && !Ty->isSized(&Visited)) 3157 return Error(ID.Loc, "base element of getelementptr must be sized"); 3158 3159 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3160 return Error(ID.Loc, "invalid getelementptr indices"); 3161 ID.ConstantVal = 3162 ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, InBounds); 3163 } else if (Opc == Instruction::Select) { 3164 if (Elts.size() != 3) 3165 return Error(ID.Loc, "expected three operands to select"); 3166 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3167 Elts[2])) 3168 return Error(ID.Loc, Reason); 3169 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3170 } else if (Opc == Instruction::ShuffleVector) { 3171 if (Elts.size() != 3) 3172 return Error(ID.Loc, "expected three operands to shufflevector"); 3173 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3174 return Error(ID.Loc, "invalid operands to shufflevector"); 3175 ID.ConstantVal = 3176 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); 3177 } else if (Opc == Instruction::ExtractElement) { 3178 if (Elts.size() != 2) 3179 return Error(ID.Loc, "expected two operands to extractelement"); 3180 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3181 return Error(ID.Loc, "invalid extractelement operands"); 3182 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3183 } else { 3184 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3185 if (Elts.size() != 3) 3186 return Error(ID.Loc, "expected three operands to insertelement"); 3187 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3188 return Error(ID.Loc, "invalid insertelement operands"); 3189 ID.ConstantVal = 3190 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3191 } 3192 3193 ID.Kind = ValID::t_Constant; 3194 return false; 3195 } 3196 } 3197 3198 Lex.Lex(); 3199 return false; 3200 } 3201 3202 /// ParseGlobalValue - Parse a global value with the specified type. 3203 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) { 3204 C = nullptr; 3205 ValID ID; 3206 Value *V = nullptr; 3207 bool Parsed = ParseValID(ID) || 3208 ConvertValIDToValue(Ty, ID, V, nullptr); 3209 if (V && !(C = dyn_cast<Constant>(V))) 3210 return Error(ID.Loc, "global values must be constants"); 3211 return Parsed; 3212 } 3213 3214 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { 3215 Type *Ty = nullptr; 3216 return ParseType(Ty) || 3217 ParseGlobalValue(Ty, V); 3218 } 3219 3220 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3221 C = nullptr; 3222 3223 LocTy KwLoc = Lex.getLoc(); 3224 if (!EatIfPresent(lltok::kw_comdat)) 3225 return false; 3226 3227 if (EatIfPresent(lltok::lparen)) { 3228 if (Lex.getKind() != lltok::ComdatVar) 3229 return TokError("expected comdat variable"); 3230 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3231 Lex.Lex(); 3232 if (ParseToken(lltok::rparen, "expected ')' after comdat var")) 3233 return true; 3234 } else { 3235 if (GlobalName.empty()) 3236 return TokError("comdat cannot be unnamed"); 3237 C = getComdat(GlobalName, KwLoc); 3238 } 3239 3240 return false; 3241 } 3242 3243 /// ParseGlobalValueVector 3244 /// ::= /*empty*/ 3245 /// ::= TypeAndValue (',' TypeAndValue)* 3246 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts) { 3247 // Empty list. 3248 if (Lex.getKind() == lltok::rbrace || 3249 Lex.getKind() == lltok::rsquare || 3250 Lex.getKind() == lltok::greater || 3251 Lex.getKind() == lltok::rparen) 3252 return false; 3253 3254 Constant *C; 3255 if (ParseGlobalTypeAndValue(C)) return true; 3256 Elts.push_back(C); 3257 3258 while (EatIfPresent(lltok::comma)) { 3259 if (ParseGlobalTypeAndValue(C)) return true; 3260 Elts.push_back(C); 3261 } 3262 3263 return false; 3264 } 3265 3266 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) { 3267 SmallVector<Metadata *, 16> Elts; 3268 if (ParseMDNodeVector(Elts)) 3269 return true; 3270 3271 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3272 return false; 3273 } 3274 3275 /// MDNode: 3276 /// ::= !{ ... } 3277 /// ::= !7 3278 /// ::= !DILocation(...) 3279 bool LLParser::ParseMDNode(MDNode *&N) { 3280 if (Lex.getKind() == lltok::MetadataVar) 3281 return ParseSpecializedMDNode(N); 3282 3283 return ParseToken(lltok::exclaim, "expected '!' here") || 3284 ParseMDNodeTail(N); 3285 } 3286 3287 bool LLParser::ParseMDNodeTail(MDNode *&N) { 3288 // !{ ... } 3289 if (Lex.getKind() == lltok::lbrace) 3290 return ParseMDTuple(N); 3291 3292 // !42 3293 return ParseMDNodeID(N); 3294 } 3295 3296 namespace { 3297 3298 /// Structure to represent an optional metadata field. 3299 template <class FieldTy> struct MDFieldImpl { 3300 typedef MDFieldImpl ImplTy; 3301 FieldTy Val; 3302 bool Seen; 3303 3304 void assign(FieldTy Val) { 3305 Seen = true; 3306 this->Val = std::move(Val); 3307 } 3308 3309 explicit MDFieldImpl(FieldTy Default) 3310 : Val(std::move(Default)), Seen(false) {} 3311 }; 3312 3313 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 3314 uint64_t Max; 3315 3316 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 3317 : ImplTy(Default), Max(Max) {} 3318 }; 3319 struct LineField : public MDUnsignedField { 3320 LineField() : MDUnsignedField(0, UINT32_MAX) {} 3321 }; 3322 struct ColumnField : public MDUnsignedField { 3323 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 3324 }; 3325 struct DwarfTagField : public MDUnsignedField { 3326 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 3327 DwarfTagField(dwarf::Tag DefaultTag) 3328 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 3329 }; 3330 struct DwarfMacinfoTypeField : public MDUnsignedField { 3331 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 3332 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 3333 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 3334 }; 3335 struct DwarfAttEncodingField : public MDUnsignedField { 3336 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 3337 }; 3338 struct DwarfVirtualityField : public MDUnsignedField { 3339 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 3340 }; 3341 struct DwarfLangField : public MDUnsignedField { 3342 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 3343 }; 3344 struct EmissionKindField : public MDUnsignedField { 3345 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 3346 }; 3347 3348 struct DIFlagField : public MDUnsignedField { 3349 DIFlagField() : MDUnsignedField(0, UINT32_MAX) {} 3350 }; 3351 3352 struct MDSignedField : public MDFieldImpl<int64_t> { 3353 int64_t Min; 3354 int64_t Max; 3355 3356 MDSignedField(int64_t Default = 0) 3357 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 3358 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 3359 : ImplTy(Default), Min(Min), Max(Max) {} 3360 }; 3361 3362 struct MDBoolField : public MDFieldImpl<bool> { 3363 MDBoolField(bool Default = false) : ImplTy(Default) {} 3364 }; 3365 struct MDField : public MDFieldImpl<Metadata *> { 3366 bool AllowNull; 3367 3368 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 3369 }; 3370 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> { 3371 MDConstant() : ImplTy(nullptr) {} 3372 }; 3373 struct MDStringField : public MDFieldImpl<MDString *> { 3374 bool AllowEmpty; 3375 MDStringField(bool AllowEmpty = true) 3376 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 3377 }; 3378 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 3379 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 3380 }; 3381 3382 } // end namespace 3383 3384 namespace llvm { 3385 3386 template <> 3387 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3388 MDUnsignedField &Result) { 3389 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 3390 return TokError("expected unsigned integer"); 3391 3392 auto &U = Lex.getAPSIntVal(); 3393 if (U.ugt(Result.Max)) 3394 return TokError("value for '" + Name + "' too large, limit is " + 3395 Twine(Result.Max)); 3396 Result.assign(U.getZExtValue()); 3397 assert(Result.Val <= Result.Max && "Expected value in range"); 3398 Lex.Lex(); 3399 return false; 3400 } 3401 3402 template <> 3403 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) { 3404 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3405 } 3406 template <> 3407 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 3408 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3409 } 3410 3411 template <> 3412 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 3413 if (Lex.getKind() == lltok::APSInt) 3414 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3415 3416 if (Lex.getKind() != lltok::DwarfTag) 3417 return TokError("expected DWARF tag"); 3418 3419 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 3420 if (Tag == dwarf::DW_TAG_invalid) 3421 return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 3422 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 3423 3424 Result.assign(Tag); 3425 Lex.Lex(); 3426 return false; 3427 } 3428 3429 template <> 3430 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3431 DwarfMacinfoTypeField &Result) { 3432 if (Lex.getKind() == lltok::APSInt) 3433 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3434 3435 if (Lex.getKind() != lltok::DwarfMacinfo) 3436 return TokError("expected DWARF macinfo type"); 3437 3438 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 3439 if (Macinfo == dwarf::DW_MACINFO_invalid) 3440 return TokError( 3441 "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'"); 3442 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 3443 3444 Result.assign(Macinfo); 3445 Lex.Lex(); 3446 return false; 3447 } 3448 3449 template <> 3450 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3451 DwarfVirtualityField &Result) { 3452 if (Lex.getKind() == lltok::APSInt) 3453 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3454 3455 if (Lex.getKind() != lltok::DwarfVirtuality) 3456 return TokError("expected DWARF virtuality code"); 3457 3458 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 3459 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 3460 return TokError("invalid DWARF virtuality code" + Twine(" '") + 3461 Lex.getStrVal() + "'"); 3462 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 3463 Result.assign(Virtuality); 3464 Lex.Lex(); 3465 return false; 3466 } 3467 3468 template <> 3469 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 3470 if (Lex.getKind() == lltok::APSInt) 3471 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3472 3473 if (Lex.getKind() != lltok::DwarfLang) 3474 return TokError("expected DWARF language"); 3475 3476 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 3477 if (!Lang) 3478 return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 3479 "'"); 3480 assert(Lang <= Result.Max && "Expected valid DWARF language"); 3481 Result.assign(Lang); 3482 Lex.Lex(); 3483 return false; 3484 } 3485 3486 template <> 3487 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) { 3488 if (Lex.getKind() == lltok::APSInt) 3489 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3490 3491 if (Lex.getKind() != lltok::EmissionKind) 3492 return TokError("expected emission kind"); 3493 3494 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 3495 if (!Kind) 3496 return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 3497 "'"); 3498 assert(*Kind <= Result.Max && "Expected valid emission kind"); 3499 Result.assign(*Kind); 3500 Lex.Lex(); 3501 return false; 3502 } 3503 3504 template <> 3505 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3506 DwarfAttEncodingField &Result) { 3507 if (Lex.getKind() == lltok::APSInt) 3508 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3509 3510 if (Lex.getKind() != lltok::DwarfAttEncoding) 3511 return TokError("expected DWARF type attribute encoding"); 3512 3513 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 3514 if (!Encoding) 3515 return TokError("invalid DWARF type attribute encoding" + Twine(" '") + 3516 Lex.getStrVal() + "'"); 3517 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 3518 Result.assign(Encoding); 3519 Lex.Lex(); 3520 return false; 3521 } 3522 3523 /// DIFlagField 3524 /// ::= uint32 3525 /// ::= DIFlagVector 3526 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 3527 template <> 3528 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 3529 assert(Result.Max == UINT32_MAX && "Expected only 32-bits"); 3530 3531 // Parser for a single flag. 3532 auto parseFlag = [&](unsigned &Val) { 3533 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) 3534 return ParseUInt32(Val); 3535 3536 if (Lex.getKind() != lltok::DIFlag) 3537 return TokError("expected debug info flag"); 3538 3539 Val = DINode::getFlag(Lex.getStrVal()); 3540 if (!Val) 3541 return TokError(Twine("invalid debug info flag flag '") + 3542 Lex.getStrVal() + "'"); 3543 Lex.Lex(); 3544 return false; 3545 }; 3546 3547 // Parse the flags and combine them together. 3548 unsigned Combined = 0; 3549 do { 3550 unsigned Val; 3551 if (parseFlag(Val)) 3552 return true; 3553 Combined |= Val; 3554 } while (EatIfPresent(lltok::bar)); 3555 3556 Result.assign(Combined); 3557 return false; 3558 } 3559 3560 template <> 3561 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3562 MDSignedField &Result) { 3563 if (Lex.getKind() != lltok::APSInt) 3564 return TokError("expected signed integer"); 3565 3566 auto &S = Lex.getAPSIntVal(); 3567 if (S < Result.Min) 3568 return TokError("value for '" + Name + "' too small, limit is " + 3569 Twine(Result.Min)); 3570 if (S > Result.Max) 3571 return TokError("value for '" + Name + "' too large, limit is " + 3572 Twine(Result.Max)); 3573 Result.assign(S.getExtValue()); 3574 assert(Result.Val >= Result.Min && "Expected value in range"); 3575 assert(Result.Val <= Result.Max && "Expected value in range"); 3576 Lex.Lex(); 3577 return false; 3578 } 3579 3580 template <> 3581 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 3582 switch (Lex.getKind()) { 3583 default: 3584 return TokError("expected 'true' or 'false'"); 3585 case lltok::kw_true: 3586 Result.assign(true); 3587 break; 3588 case lltok::kw_false: 3589 Result.assign(false); 3590 break; 3591 } 3592 Lex.Lex(); 3593 return false; 3594 } 3595 3596 template <> 3597 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) { 3598 if (Lex.getKind() == lltok::kw_null) { 3599 if (!Result.AllowNull) 3600 return TokError("'" + Name + "' cannot be null"); 3601 Lex.Lex(); 3602 Result.assign(nullptr); 3603 return false; 3604 } 3605 3606 Metadata *MD; 3607 if (ParseMetadata(MD, nullptr)) 3608 return true; 3609 3610 Result.assign(MD); 3611 return false; 3612 } 3613 3614 template <> 3615 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDConstant &Result) { 3616 Metadata *MD; 3617 if (ParseValueAsMetadata(MD, "expected constant", nullptr)) 3618 return true; 3619 3620 Result.assign(cast<ConstantAsMetadata>(MD)); 3621 return false; 3622 } 3623 3624 template <> 3625 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 3626 LocTy ValueLoc = Lex.getLoc(); 3627 std::string S; 3628 if (ParseStringConstant(S)) 3629 return true; 3630 3631 if (!Result.AllowEmpty && S.empty()) 3632 return Error(ValueLoc, "'" + Name + "' cannot be empty"); 3633 3634 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 3635 return false; 3636 } 3637 3638 template <> 3639 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 3640 SmallVector<Metadata *, 4> MDs; 3641 if (ParseMDNodeVector(MDs)) 3642 return true; 3643 3644 Result.assign(std::move(MDs)); 3645 return false; 3646 } 3647 3648 } // end namespace llvm 3649 3650 template <class ParserTy> 3651 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) { 3652 do { 3653 if (Lex.getKind() != lltok::LabelStr) 3654 return TokError("expected field label here"); 3655 3656 if (parseField()) 3657 return true; 3658 } while (EatIfPresent(lltok::comma)); 3659 3660 return false; 3661 } 3662 3663 template <class ParserTy> 3664 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) { 3665 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 3666 Lex.Lex(); 3667 3668 if (ParseToken(lltok::lparen, "expected '(' here")) 3669 return true; 3670 if (Lex.getKind() != lltok::rparen) 3671 if (ParseMDFieldsImplBody(parseField)) 3672 return true; 3673 3674 ClosingLoc = Lex.getLoc(); 3675 return ParseToken(lltok::rparen, "expected ')' here"); 3676 } 3677 3678 template <class FieldTy> 3679 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) { 3680 if (Result.Seen) 3681 return TokError("field '" + Name + "' cannot be specified more than once"); 3682 3683 LocTy Loc = Lex.getLoc(); 3684 Lex.Lex(); 3685 return ParseMDField(Loc, Name, Result); 3686 } 3687 3688 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 3689 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 3690 3691 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 3692 if (Lex.getStrVal() == #CLASS) \ 3693 return Parse##CLASS(N, IsDistinct); 3694 #include "llvm/IR/Metadata.def" 3695 3696 return TokError("expected metadata type"); 3697 } 3698 3699 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 3700 #define NOP_FIELD(NAME, TYPE, INIT) 3701 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 3702 if (!NAME.Seen) \ 3703 return Error(ClosingLoc, "missing required field '" #NAME "'"); 3704 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 3705 if (Lex.getStrVal() == #NAME) \ 3706 return ParseMDField(#NAME, NAME); 3707 #define PARSE_MD_FIELDS() \ 3708 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 3709 do { \ 3710 LocTy ClosingLoc; \ 3711 if (ParseMDFieldsImpl([&]() -> bool { \ 3712 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 3713 return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \ 3714 }, ClosingLoc)) \ 3715 return true; \ 3716 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 3717 } while (false) 3718 #define GET_OR_DISTINCT(CLASS, ARGS) \ 3719 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 3720 3721 /// ParseDILocationFields: 3722 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6) 3723 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) { 3724 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3725 OPTIONAL(line, LineField, ); \ 3726 OPTIONAL(column, ColumnField, ); \ 3727 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 3728 OPTIONAL(inlinedAt, MDField, ); 3729 PARSE_MD_FIELDS(); 3730 #undef VISIT_MD_FIELDS 3731 3732 Result = GET_OR_DISTINCT( 3733 DILocation, (Context, line.Val, column.Val, scope.Val, inlinedAt.Val)); 3734 return false; 3735 } 3736 3737 /// ParseGenericDINode: 3738 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 3739 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) { 3740 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3741 REQUIRED(tag, DwarfTagField, ); \ 3742 OPTIONAL(header, MDStringField, ); \ 3743 OPTIONAL(operands, MDFieldList, ); 3744 PARSE_MD_FIELDS(); 3745 #undef VISIT_MD_FIELDS 3746 3747 Result = GET_OR_DISTINCT(GenericDINode, 3748 (Context, tag.Val, header.Val, operands.Val)); 3749 return false; 3750 } 3751 3752 /// ParseDISubrange: 3753 /// ::= !DISubrange(count: 30, lowerBound: 2) 3754 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) { 3755 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3756 REQUIRED(count, MDSignedField, (-1, -1, INT64_MAX)); \ 3757 OPTIONAL(lowerBound, MDSignedField, ); 3758 PARSE_MD_FIELDS(); 3759 #undef VISIT_MD_FIELDS 3760 3761 Result = GET_OR_DISTINCT(DISubrange, (Context, count.Val, lowerBound.Val)); 3762 return false; 3763 } 3764 3765 /// ParseDIEnumerator: 3766 /// ::= !DIEnumerator(value: 30, name: "SomeKind") 3767 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) { 3768 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3769 REQUIRED(name, MDStringField, ); \ 3770 REQUIRED(value, MDSignedField, ); 3771 PARSE_MD_FIELDS(); 3772 #undef VISIT_MD_FIELDS 3773 3774 Result = GET_OR_DISTINCT(DIEnumerator, (Context, value.Val, name.Val)); 3775 return false; 3776 } 3777 3778 /// ParseDIBasicType: 3779 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32) 3780 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) { 3781 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3782 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 3783 OPTIONAL(name, MDStringField, ); \ 3784 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 3785 OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX)); \ 3786 OPTIONAL(encoding, DwarfAttEncodingField, ); 3787 PARSE_MD_FIELDS(); 3788 #undef VISIT_MD_FIELDS 3789 3790 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 3791 align.Val, encoding.Val)); 3792 return false; 3793 } 3794 3795 /// ParseDIDerivedType: 3796 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 3797 /// line: 7, scope: !1, baseType: !2, size: 32, 3798 /// align: 32, offset: 0, flags: 0, extraData: !3) 3799 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) { 3800 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3801 REQUIRED(tag, DwarfTagField, ); \ 3802 OPTIONAL(name, MDStringField, ); \ 3803 OPTIONAL(file, MDField, ); \ 3804 OPTIONAL(line, LineField, ); \ 3805 OPTIONAL(scope, MDField, ); \ 3806 REQUIRED(baseType, MDField, ); \ 3807 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 3808 OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX)); \ 3809 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 3810 OPTIONAL(flags, DIFlagField, ); \ 3811 OPTIONAL(extraData, MDField, ); 3812 PARSE_MD_FIELDS(); 3813 #undef VISIT_MD_FIELDS 3814 3815 Result = GET_OR_DISTINCT(DIDerivedType, 3816 (Context, tag.Val, name.Val, file.Val, line.Val, 3817 scope.Val, baseType.Val, size.Val, align.Val, 3818 offset.Val, flags.Val, extraData.Val)); 3819 return false; 3820 } 3821 3822 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) { 3823 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3824 REQUIRED(tag, DwarfTagField, ); \ 3825 OPTIONAL(name, MDStringField, ); \ 3826 OPTIONAL(file, MDField, ); \ 3827 OPTIONAL(line, LineField, ); \ 3828 OPTIONAL(scope, MDField, ); \ 3829 OPTIONAL(baseType, MDField, ); \ 3830 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 3831 OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX)); \ 3832 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 3833 OPTIONAL(flags, DIFlagField, ); \ 3834 OPTIONAL(elements, MDField, ); \ 3835 OPTIONAL(runtimeLang, DwarfLangField, ); \ 3836 OPTIONAL(vtableHolder, MDField, ); \ 3837 OPTIONAL(templateParams, MDField, ); \ 3838 OPTIONAL(identifier, MDStringField, ); 3839 PARSE_MD_FIELDS(); 3840 #undef VISIT_MD_FIELDS 3841 3842 // If this has an identifier try to build an ODR type. 3843 if (identifier.Val) 3844 if (auto *CT = DICompositeType::buildODRType( 3845 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 3846 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 3847 elements.Val, runtimeLang.Val, vtableHolder.Val, 3848 templateParams.Val)) { 3849 Result = CT; 3850 return false; 3851 } 3852 3853 // Create a new node, and save it in the context if it belongs in the type 3854 // map. 3855 Result = GET_OR_DISTINCT( 3856 DICompositeType, 3857 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 3858 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 3859 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val)); 3860 return false; 3861 } 3862 3863 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) { 3864 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3865 OPTIONAL(flags, DIFlagField, ); \ 3866 REQUIRED(types, MDField, ); 3867 PARSE_MD_FIELDS(); 3868 #undef VISIT_MD_FIELDS 3869 3870 Result = GET_OR_DISTINCT(DISubroutineType, (Context, flags.Val, types.Val)); 3871 return false; 3872 } 3873 3874 /// ParseDIFileType: 3875 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir") 3876 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) { 3877 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3878 REQUIRED(filename, MDStringField, ); \ 3879 REQUIRED(directory, MDStringField, ); 3880 PARSE_MD_FIELDS(); 3881 #undef VISIT_MD_FIELDS 3882 3883 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val)); 3884 return false; 3885 } 3886 3887 /// ParseDICompileUnit: 3888 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 3889 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 3890 /// splitDebugFilename: "abc.debug", 3891 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 3892 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd) 3893 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) { 3894 if (!IsDistinct) 3895 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 3896 3897 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3898 REQUIRED(language, DwarfLangField, ); \ 3899 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 3900 OPTIONAL(producer, MDStringField, ); \ 3901 OPTIONAL(isOptimized, MDBoolField, ); \ 3902 OPTIONAL(flags, MDStringField, ); \ 3903 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 3904 OPTIONAL(splitDebugFilename, MDStringField, ); \ 3905 OPTIONAL(emissionKind, EmissionKindField, ); \ 3906 OPTIONAL(enums, MDField, ); \ 3907 OPTIONAL(retainedTypes, MDField, ); \ 3908 OPTIONAL(globals, MDField, ); \ 3909 OPTIONAL(imports, MDField, ); \ 3910 OPTIONAL(macros, MDField, ); \ 3911 OPTIONAL(dwoId, MDUnsignedField, ); 3912 PARSE_MD_FIELDS(); 3913 #undef VISIT_MD_FIELDS 3914 3915 Result = DICompileUnit::getDistinct( 3916 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 3917 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 3918 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val); 3919 return false; 3920 } 3921 3922 /// ParseDISubprogram: 3923 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 3924 /// file: !1, line: 7, type: !2, isLocal: false, 3925 /// isDefinition: true, scopeLine: 8, containingType: !3, 3926 /// virtuality: DW_VIRTUALTIY_pure_virtual, 3927 /// virtualIndex: 10, flags: 11, 3928 /// isOptimized: false, templateParams: !4, declaration: !5, 3929 /// variables: !6) 3930 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) { 3931 auto Loc = Lex.getLoc(); 3932 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3933 OPTIONAL(scope, MDField, ); \ 3934 OPTIONAL(name, MDStringField, ); \ 3935 OPTIONAL(linkageName, MDStringField, ); \ 3936 OPTIONAL(file, MDField, ); \ 3937 OPTIONAL(line, LineField, ); \ 3938 OPTIONAL(type, MDField, ); \ 3939 OPTIONAL(isLocal, MDBoolField, ); \ 3940 OPTIONAL(isDefinition, MDBoolField, (true)); \ 3941 OPTIONAL(scopeLine, LineField, ); \ 3942 OPTIONAL(containingType, MDField, ); \ 3943 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 3944 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 3945 OPTIONAL(flags, DIFlagField, ); \ 3946 OPTIONAL(isOptimized, MDBoolField, ); \ 3947 OPTIONAL(unit, MDField, ); \ 3948 OPTIONAL(templateParams, MDField, ); \ 3949 OPTIONAL(declaration, MDField, ); \ 3950 OPTIONAL(variables, MDField, ); 3951 PARSE_MD_FIELDS(); 3952 #undef VISIT_MD_FIELDS 3953 3954 if (isDefinition.Val && !IsDistinct) 3955 return Lex.Error( 3956 Loc, 3957 "missing 'distinct', required for !DISubprogram when 'isDefinition'"); 3958 3959 Result = GET_OR_DISTINCT( 3960 DISubprogram, (Context, scope.Val, name.Val, linkageName.Val, file.Val, 3961 line.Val, type.Val, isLocal.Val, isDefinition.Val, 3962 scopeLine.Val, containingType.Val, virtuality.Val, 3963 virtualIndex.Val, flags.Val, isOptimized.Val, unit.Val, 3964 templateParams.Val, declaration.Val, variables.Val)); 3965 return false; 3966 } 3967 3968 /// ParseDILexicalBlock: 3969 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 3970 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 3971 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3972 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 3973 OPTIONAL(file, MDField, ); \ 3974 OPTIONAL(line, LineField, ); \ 3975 OPTIONAL(column, ColumnField, ); 3976 PARSE_MD_FIELDS(); 3977 #undef VISIT_MD_FIELDS 3978 3979 Result = GET_OR_DISTINCT( 3980 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 3981 return false; 3982 } 3983 3984 /// ParseDILexicalBlockFile: 3985 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 3986 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 3987 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3988 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 3989 OPTIONAL(file, MDField, ); \ 3990 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 3991 PARSE_MD_FIELDS(); 3992 #undef VISIT_MD_FIELDS 3993 3994 Result = GET_OR_DISTINCT(DILexicalBlockFile, 3995 (Context, scope.Val, file.Val, discriminator.Val)); 3996 return false; 3997 } 3998 3999 /// ParseDINamespace: 4000 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 4001 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) { 4002 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4003 REQUIRED(scope, MDField, ); \ 4004 OPTIONAL(file, MDField, ); \ 4005 OPTIONAL(name, MDStringField, ); \ 4006 OPTIONAL(line, LineField, ); 4007 PARSE_MD_FIELDS(); 4008 #undef VISIT_MD_FIELDS 4009 4010 Result = GET_OR_DISTINCT(DINamespace, 4011 (Context, scope.Val, file.Val, name.Val, line.Val)); 4012 return false; 4013 } 4014 4015 /// ParseDIMacro: 4016 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue") 4017 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) { 4018 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4019 REQUIRED(type, DwarfMacinfoTypeField, ); \ 4020 REQUIRED(line, LineField, ); \ 4021 REQUIRED(name, MDStringField, ); \ 4022 OPTIONAL(value, MDStringField, ); 4023 PARSE_MD_FIELDS(); 4024 #undef VISIT_MD_FIELDS 4025 4026 Result = GET_OR_DISTINCT(DIMacro, 4027 (Context, type.Val, line.Val, name.Val, value.Val)); 4028 return false; 4029 } 4030 4031 /// ParseDIMacroFile: 4032 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 4033 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) { 4034 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4035 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 4036 REQUIRED(line, LineField, ); \ 4037 REQUIRED(file, MDField, ); \ 4038 OPTIONAL(nodes, MDField, ); 4039 PARSE_MD_FIELDS(); 4040 #undef VISIT_MD_FIELDS 4041 4042 Result = GET_OR_DISTINCT(DIMacroFile, 4043 (Context, type.Val, line.Val, file.Val, nodes.Val)); 4044 return false; 4045 } 4046 4047 4048 /// ParseDIModule: 4049 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG", 4050 /// includePath: "/usr/include", isysroot: "/") 4051 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) { 4052 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4053 REQUIRED(scope, MDField, ); \ 4054 REQUIRED(name, MDStringField, ); \ 4055 OPTIONAL(configMacros, MDStringField, ); \ 4056 OPTIONAL(includePath, MDStringField, ); \ 4057 OPTIONAL(isysroot, MDStringField, ); 4058 PARSE_MD_FIELDS(); 4059 #undef VISIT_MD_FIELDS 4060 4061 Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val, 4062 configMacros.Val, includePath.Val, isysroot.Val)); 4063 return false; 4064 } 4065 4066 /// ParseDITemplateTypeParameter: 4067 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1) 4068 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 4069 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4070 OPTIONAL(name, MDStringField, ); \ 4071 REQUIRED(type, MDField, ); 4072 PARSE_MD_FIELDS(); 4073 #undef VISIT_MD_FIELDS 4074 4075 Result = 4076 GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val)); 4077 return false; 4078 } 4079 4080 /// ParseDITemplateValueParameter: 4081 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 4082 /// name: "V", type: !1, value: i32 7) 4083 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 4084 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4085 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 4086 OPTIONAL(name, MDStringField, ); \ 4087 OPTIONAL(type, MDField, ); \ 4088 REQUIRED(value, MDField, ); 4089 PARSE_MD_FIELDS(); 4090 #undef VISIT_MD_FIELDS 4091 4092 Result = GET_OR_DISTINCT(DITemplateValueParameter, 4093 (Context, tag.Val, name.Val, type.Val, value.Val)); 4094 return false; 4095 } 4096 4097 /// ParseDIGlobalVariable: 4098 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 4099 /// file: !1, line: 7, type: !2, isLocal: false, 4100 /// isDefinition: true, variable: i32* @foo, 4101 /// declaration: !3) 4102 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 4103 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4104 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 4105 OPTIONAL(scope, MDField, ); \ 4106 OPTIONAL(linkageName, MDStringField, ); \ 4107 OPTIONAL(file, MDField, ); \ 4108 OPTIONAL(line, LineField, ); \ 4109 OPTIONAL(type, MDField, ); \ 4110 OPTIONAL(isLocal, MDBoolField, ); \ 4111 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4112 OPTIONAL(variable, MDConstant, ); \ 4113 OPTIONAL(declaration, MDField, ); 4114 PARSE_MD_FIELDS(); 4115 #undef VISIT_MD_FIELDS 4116 4117 Result = GET_OR_DISTINCT(DIGlobalVariable, 4118 (Context, scope.Val, name.Val, linkageName.Val, 4119 file.Val, line.Val, type.Val, isLocal.Val, 4120 isDefinition.Val, variable.Val, declaration.Val)); 4121 return false; 4122 } 4123 4124 /// ParseDILocalVariable: 4125 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 4126 /// file: !1, line: 7, type: !2, arg: 2, flags: 7) 4127 /// ::= !DILocalVariable(scope: !0, name: "foo", 4128 /// file: !1, line: 7, type: !2, arg: 2, flags: 7) 4129 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) { 4130 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4131 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4132 OPTIONAL(name, MDStringField, ); \ 4133 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 4134 OPTIONAL(file, MDField, ); \ 4135 OPTIONAL(line, LineField, ); \ 4136 OPTIONAL(type, MDField, ); \ 4137 OPTIONAL(flags, DIFlagField, ); 4138 PARSE_MD_FIELDS(); 4139 #undef VISIT_MD_FIELDS 4140 4141 Result = GET_OR_DISTINCT(DILocalVariable, 4142 (Context, scope.Val, name.Val, file.Val, line.Val, 4143 type.Val, arg.Val, flags.Val)); 4144 return false; 4145 } 4146 4147 /// ParseDIExpression: 4148 /// ::= !DIExpression(0, 7, -1) 4149 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) { 4150 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4151 Lex.Lex(); 4152 4153 if (ParseToken(lltok::lparen, "expected '(' here")) 4154 return true; 4155 4156 SmallVector<uint64_t, 8> Elements; 4157 if (Lex.getKind() != lltok::rparen) 4158 do { 4159 if (Lex.getKind() == lltok::DwarfOp) { 4160 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 4161 Lex.Lex(); 4162 Elements.push_back(Op); 4163 continue; 4164 } 4165 return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 4166 } 4167 4168 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4169 return TokError("expected unsigned integer"); 4170 4171 auto &U = Lex.getAPSIntVal(); 4172 if (U.ugt(UINT64_MAX)) 4173 return TokError("element too large, limit is " + Twine(UINT64_MAX)); 4174 Elements.push_back(U.getZExtValue()); 4175 Lex.Lex(); 4176 } while (EatIfPresent(lltok::comma)); 4177 4178 if (ParseToken(lltok::rparen, "expected ')' here")) 4179 return true; 4180 4181 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 4182 return false; 4183 } 4184 4185 /// ParseDIObjCProperty: 4186 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 4187 /// getter: "getFoo", attributes: 7, type: !2) 4188 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 4189 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4190 OPTIONAL(name, MDStringField, ); \ 4191 OPTIONAL(file, MDField, ); \ 4192 OPTIONAL(line, LineField, ); \ 4193 OPTIONAL(setter, MDStringField, ); \ 4194 OPTIONAL(getter, MDStringField, ); \ 4195 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 4196 OPTIONAL(type, MDField, ); 4197 PARSE_MD_FIELDS(); 4198 #undef VISIT_MD_FIELDS 4199 4200 Result = GET_OR_DISTINCT(DIObjCProperty, 4201 (Context, name.Val, file.Val, line.Val, setter.Val, 4202 getter.Val, attributes.Val, type.Val)); 4203 return false; 4204 } 4205 4206 /// ParseDIImportedEntity: 4207 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 4208 /// line: 7, name: "foo") 4209 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 4210 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4211 REQUIRED(tag, DwarfTagField, ); \ 4212 REQUIRED(scope, MDField, ); \ 4213 OPTIONAL(entity, MDField, ); \ 4214 OPTIONAL(line, LineField, ); \ 4215 OPTIONAL(name, MDStringField, ); 4216 PARSE_MD_FIELDS(); 4217 #undef VISIT_MD_FIELDS 4218 4219 Result = GET_OR_DISTINCT(DIImportedEntity, (Context, tag.Val, scope.Val, 4220 entity.Val, line.Val, name.Val)); 4221 return false; 4222 } 4223 4224 #undef PARSE_MD_FIELD 4225 #undef NOP_FIELD 4226 #undef REQUIRE_FIELD 4227 #undef DECLARE_FIELD 4228 4229 /// ParseMetadataAsValue 4230 /// ::= metadata i32 %local 4231 /// ::= metadata i32 @global 4232 /// ::= metadata i32 7 4233 /// ::= metadata !0 4234 /// ::= metadata !{...} 4235 /// ::= metadata !"string" 4236 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 4237 // Note: the type 'metadata' has already been parsed. 4238 Metadata *MD; 4239 if (ParseMetadata(MD, &PFS)) 4240 return true; 4241 4242 V = MetadataAsValue::get(Context, MD); 4243 return false; 4244 } 4245 4246 /// ParseValueAsMetadata 4247 /// ::= i32 %local 4248 /// ::= i32 @global 4249 /// ::= i32 7 4250 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 4251 PerFunctionState *PFS) { 4252 Type *Ty; 4253 LocTy Loc; 4254 if (ParseType(Ty, TypeMsg, Loc)) 4255 return true; 4256 if (Ty->isMetadataTy()) 4257 return Error(Loc, "invalid metadata-value-metadata roundtrip"); 4258 4259 Value *V; 4260 if (ParseValue(Ty, V, PFS)) 4261 return true; 4262 4263 MD = ValueAsMetadata::get(V); 4264 return false; 4265 } 4266 4267 /// ParseMetadata 4268 /// ::= i32 %local 4269 /// ::= i32 @global 4270 /// ::= i32 7 4271 /// ::= !42 4272 /// ::= !{...} 4273 /// ::= !"string" 4274 /// ::= !DILocation(...) 4275 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) { 4276 if (Lex.getKind() == lltok::MetadataVar) { 4277 MDNode *N; 4278 if (ParseSpecializedMDNode(N)) 4279 return true; 4280 MD = N; 4281 return false; 4282 } 4283 4284 // ValueAsMetadata: 4285 // <type> <value> 4286 if (Lex.getKind() != lltok::exclaim) 4287 return ParseValueAsMetadata(MD, "expected metadata operand", PFS); 4288 4289 // '!'. 4290 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 4291 Lex.Lex(); 4292 4293 // MDString: 4294 // ::= '!' STRINGCONSTANT 4295 if (Lex.getKind() == lltok::StringConstant) { 4296 MDString *S; 4297 if (ParseMDString(S)) 4298 return true; 4299 MD = S; 4300 return false; 4301 } 4302 4303 // MDNode: 4304 // !{ ... } 4305 // !7 4306 MDNode *N; 4307 if (ParseMDNodeTail(N)) 4308 return true; 4309 MD = N; 4310 return false; 4311 } 4312 4313 4314 //===----------------------------------------------------------------------===// 4315 // Function Parsing. 4316 //===----------------------------------------------------------------------===// 4317 4318 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, 4319 PerFunctionState *PFS) { 4320 if (Ty->isFunctionTy()) 4321 return Error(ID.Loc, "functions are not values, refer to them as pointers"); 4322 4323 switch (ID.Kind) { 4324 case ValID::t_LocalID: 4325 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 4326 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc); 4327 return V == nullptr; 4328 case ValID::t_LocalName: 4329 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 4330 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc); 4331 return V == nullptr; 4332 case ValID::t_InlineAsm: { 4333 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 4334 return Error(ID.Loc, "invalid type for inline asm constraint string"); 4335 V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, 4336 (ID.UIntVal >> 1) & 1, 4337 (InlineAsm::AsmDialect(ID.UIntVal >> 2))); 4338 return false; 4339 } 4340 case ValID::t_GlobalName: 4341 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc); 4342 return V == nullptr; 4343 case ValID::t_GlobalID: 4344 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc); 4345 return V == nullptr; 4346 case ValID::t_APSInt: 4347 if (!Ty->isIntegerTy()) 4348 return Error(ID.Loc, "integer constant must have integer type"); 4349 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 4350 V = ConstantInt::get(Context, ID.APSIntVal); 4351 return false; 4352 case ValID::t_APFloat: 4353 if (!Ty->isFloatingPointTy() || 4354 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 4355 return Error(ID.Loc, "floating point constant invalid for type"); 4356 4357 // The lexer has no type info, so builds all half, float, and double FP 4358 // constants as double. Fix this here. Long double does not need this. 4359 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) { 4360 bool Ignored; 4361 if (Ty->isHalfTy()) 4362 ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, 4363 &Ignored); 4364 else if (Ty->isFloatTy()) 4365 ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, 4366 &Ignored); 4367 } 4368 V = ConstantFP::get(Context, ID.APFloatVal); 4369 4370 if (V->getType() != Ty) 4371 return Error(ID.Loc, "floating point constant does not have type '" + 4372 getTypeString(Ty) + "'"); 4373 4374 return false; 4375 case ValID::t_Null: 4376 if (!Ty->isPointerTy()) 4377 return Error(ID.Loc, "null must be a pointer type"); 4378 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 4379 return false; 4380 case ValID::t_Undef: 4381 // FIXME: LabelTy should not be a first-class type. 4382 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 4383 return Error(ID.Loc, "invalid type for undef constant"); 4384 V = UndefValue::get(Ty); 4385 return false; 4386 case ValID::t_EmptyArray: 4387 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 4388 return Error(ID.Loc, "invalid empty array initializer"); 4389 V = UndefValue::get(Ty); 4390 return false; 4391 case ValID::t_Zero: 4392 // FIXME: LabelTy should not be a first-class type. 4393 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 4394 return Error(ID.Loc, "invalid type for null constant"); 4395 V = Constant::getNullValue(Ty); 4396 return false; 4397 case ValID::t_None: 4398 if (!Ty->isTokenTy()) 4399 return Error(ID.Loc, "invalid type for none constant"); 4400 V = Constant::getNullValue(Ty); 4401 return false; 4402 case ValID::t_Constant: 4403 if (ID.ConstantVal->getType() != Ty) 4404 return Error(ID.Loc, "constant expression type mismatch"); 4405 4406 V = ID.ConstantVal; 4407 return false; 4408 case ValID::t_ConstantStruct: 4409 case ValID::t_PackedConstantStruct: 4410 if (StructType *ST = dyn_cast<StructType>(Ty)) { 4411 if (ST->getNumElements() != ID.UIntVal) 4412 return Error(ID.Loc, 4413 "initializer with struct type has wrong # elements"); 4414 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 4415 return Error(ID.Loc, "packed'ness of initializer and type don't match"); 4416 4417 // Verify that the elements are compatible with the structtype. 4418 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 4419 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 4420 return Error(ID.Loc, "element " + Twine(i) + 4421 " of struct initializer doesn't match struct element type"); 4422 4423 V = ConstantStruct::get( 4424 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 4425 } else 4426 return Error(ID.Loc, "constant expression type mismatch"); 4427 return false; 4428 } 4429 llvm_unreachable("Invalid ValID"); 4430 } 4431 4432 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 4433 C = nullptr; 4434 ValID ID; 4435 auto Loc = Lex.getLoc(); 4436 if (ParseValID(ID, /*PFS=*/nullptr)) 4437 return true; 4438 switch (ID.Kind) { 4439 case ValID::t_APSInt: 4440 case ValID::t_APFloat: 4441 case ValID::t_Undef: 4442 case ValID::t_Constant: 4443 case ValID::t_ConstantStruct: 4444 case ValID::t_PackedConstantStruct: { 4445 Value *V; 4446 if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr)) 4447 return true; 4448 assert(isa<Constant>(V) && "Expected a constant value"); 4449 C = cast<Constant>(V); 4450 return false; 4451 } 4452 default: 4453 return Error(Loc, "expected a constant value"); 4454 } 4455 } 4456 4457 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 4458 V = nullptr; 4459 ValID ID; 4460 return ParseValID(ID, PFS) || ConvertValIDToValue(Ty, ID, V, PFS); 4461 } 4462 4463 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) { 4464 Type *Ty = nullptr; 4465 return ParseType(Ty) || 4466 ParseValue(Ty, V, PFS); 4467 } 4468 4469 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 4470 PerFunctionState &PFS) { 4471 Value *V; 4472 Loc = Lex.getLoc(); 4473 if (ParseTypeAndValue(V, PFS)) return true; 4474 if (!isa<BasicBlock>(V)) 4475 return Error(Loc, "expected a basic block"); 4476 BB = cast<BasicBlock>(V); 4477 return false; 4478 } 4479 4480 4481 /// FunctionHeader 4482 /// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs 4483 /// OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection 4484 /// OptionalAlign OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 4485 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { 4486 // Parse the linkage. 4487 LocTy LinkageLoc = Lex.getLoc(); 4488 unsigned Linkage; 4489 4490 unsigned Visibility; 4491 unsigned DLLStorageClass; 4492 AttrBuilder RetAttrs; 4493 unsigned CC; 4494 bool HasLinkage; 4495 Type *RetType = nullptr; 4496 LocTy RetTypeLoc = Lex.getLoc(); 4497 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) || 4498 ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 4499 ParseType(RetType, RetTypeLoc, true /*void allowed*/)) 4500 return true; 4501 4502 // Verify that the linkage is ok. 4503 switch ((GlobalValue::LinkageTypes)Linkage) { 4504 case GlobalValue::ExternalLinkage: 4505 break; // always ok. 4506 case GlobalValue::ExternalWeakLinkage: 4507 if (isDefine) 4508 return Error(LinkageLoc, "invalid linkage for function definition"); 4509 break; 4510 case GlobalValue::PrivateLinkage: 4511 case GlobalValue::InternalLinkage: 4512 case GlobalValue::AvailableExternallyLinkage: 4513 case GlobalValue::LinkOnceAnyLinkage: 4514 case GlobalValue::LinkOnceODRLinkage: 4515 case GlobalValue::WeakAnyLinkage: 4516 case GlobalValue::WeakODRLinkage: 4517 if (!isDefine) 4518 return Error(LinkageLoc, "invalid linkage for function declaration"); 4519 break; 4520 case GlobalValue::AppendingLinkage: 4521 case GlobalValue::CommonLinkage: 4522 return Error(LinkageLoc, "invalid function linkage type"); 4523 } 4524 4525 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 4526 return Error(LinkageLoc, 4527 "symbol with local linkage must have default visibility"); 4528 4529 if (!FunctionType::isValidReturnType(RetType)) 4530 return Error(RetTypeLoc, "invalid function return type"); 4531 4532 LocTy NameLoc = Lex.getLoc(); 4533 4534 std::string FunctionName; 4535 if (Lex.getKind() == lltok::GlobalVar) { 4536 FunctionName = Lex.getStrVal(); 4537 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 4538 unsigned NameID = Lex.getUIntVal(); 4539 4540 if (NameID != NumberedVals.size()) 4541 return TokError("function expected to be numbered '%" + 4542 Twine(NumberedVals.size()) + "'"); 4543 } else { 4544 return TokError("expected function name"); 4545 } 4546 4547 Lex.Lex(); 4548 4549 if (Lex.getKind() != lltok::lparen) 4550 return TokError("expected '(' in function argument list"); 4551 4552 SmallVector<ArgInfo, 8> ArgList; 4553 bool isVarArg; 4554 AttrBuilder FuncAttrs; 4555 std::vector<unsigned> FwdRefAttrGrps; 4556 LocTy BuiltinLoc; 4557 std::string Section; 4558 unsigned Alignment; 4559 std::string GC; 4560 bool UnnamedAddr; 4561 LocTy UnnamedAddrLoc; 4562 Constant *Prefix = nullptr; 4563 Constant *Prologue = nullptr; 4564 Constant *PersonalityFn = nullptr; 4565 Comdat *C; 4566 4567 if (ParseArgumentList(ArgList, isVarArg) || 4568 ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr, 4569 &UnnamedAddrLoc) || 4570 ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 4571 BuiltinLoc) || 4572 (EatIfPresent(lltok::kw_section) && 4573 ParseStringConstant(Section)) || 4574 parseOptionalComdat(FunctionName, C) || 4575 ParseOptionalAlignment(Alignment) || 4576 (EatIfPresent(lltok::kw_gc) && 4577 ParseStringConstant(GC)) || 4578 (EatIfPresent(lltok::kw_prefix) && 4579 ParseGlobalTypeAndValue(Prefix)) || 4580 (EatIfPresent(lltok::kw_prologue) && 4581 ParseGlobalTypeAndValue(Prologue)) || 4582 (EatIfPresent(lltok::kw_personality) && 4583 ParseGlobalTypeAndValue(PersonalityFn))) 4584 return true; 4585 4586 if (FuncAttrs.contains(Attribute::Builtin)) 4587 return Error(BuiltinLoc, "'builtin' attribute not valid on function"); 4588 4589 // If the alignment was parsed as an attribute, move to the alignment field. 4590 if (FuncAttrs.hasAlignmentAttr()) { 4591 Alignment = FuncAttrs.getAlignment(); 4592 FuncAttrs.removeAttribute(Attribute::Alignment); 4593 } 4594 4595 // Okay, if we got here, the function is syntactically valid. Convert types 4596 // and do semantic checks. 4597 std::vector<Type*> ParamTypeList; 4598 SmallVector<AttributeSet, 8> Attrs; 4599 4600 if (RetAttrs.hasAttributes()) 4601 Attrs.push_back(AttributeSet::get(RetType->getContext(), 4602 AttributeSet::ReturnIndex, 4603 RetAttrs)); 4604 4605 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 4606 ParamTypeList.push_back(ArgList[i].Ty); 4607 if (ArgList[i].Attrs.hasAttributes(i + 1)) { 4608 AttrBuilder B(ArgList[i].Attrs, i + 1); 4609 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B)); 4610 } 4611 } 4612 4613 if (FuncAttrs.hasAttributes()) 4614 Attrs.push_back(AttributeSet::get(RetType->getContext(), 4615 AttributeSet::FunctionIndex, 4616 FuncAttrs)); 4617 4618 AttributeSet PAL = AttributeSet::get(Context, Attrs); 4619 4620 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy()) 4621 return Error(RetTypeLoc, "functions with 'sret' argument must return void"); 4622 4623 FunctionType *FT = 4624 FunctionType::get(RetType, ParamTypeList, isVarArg); 4625 PointerType *PFT = PointerType::getUnqual(FT); 4626 4627 Fn = nullptr; 4628 if (!FunctionName.empty()) { 4629 // If this was a definition of a forward reference, remove the definition 4630 // from the forward reference table and fill in the forward ref. 4631 auto FRVI = ForwardRefVals.find(FunctionName); 4632 if (FRVI != ForwardRefVals.end()) { 4633 Fn = M->getFunction(FunctionName); 4634 if (!Fn) 4635 return Error(FRVI->second.second, "invalid forward reference to " 4636 "function as global value!"); 4637 if (Fn->getType() != PFT) 4638 return Error(FRVI->second.second, "invalid forward reference to " 4639 "function '" + FunctionName + "' with wrong type!"); 4640 4641 ForwardRefVals.erase(FRVI); 4642 } else if ((Fn = M->getFunction(FunctionName))) { 4643 // Reject redefinitions. 4644 return Error(NameLoc, "invalid redefinition of function '" + 4645 FunctionName + "'"); 4646 } else if (M->getNamedValue(FunctionName)) { 4647 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 4648 } 4649 4650 } else { 4651 // If this is a definition of a forward referenced function, make sure the 4652 // types agree. 4653 auto I = ForwardRefValIDs.find(NumberedVals.size()); 4654 if (I != ForwardRefValIDs.end()) { 4655 Fn = cast<Function>(I->second.first); 4656 if (Fn->getType() != PFT) 4657 return Error(NameLoc, "type of definition and forward reference of '@" + 4658 Twine(NumberedVals.size()) + "' disagree"); 4659 ForwardRefValIDs.erase(I); 4660 } 4661 } 4662 4663 if (!Fn) 4664 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M); 4665 else // Move the forward-reference to the correct spot in the module. 4666 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 4667 4668 if (FunctionName.empty()) 4669 NumberedVals.push_back(Fn); 4670 4671 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 4672 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 4673 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 4674 Fn->setCallingConv(CC); 4675 Fn->setAttributes(PAL); 4676 Fn->setUnnamedAddr(UnnamedAddr); 4677 Fn->setAlignment(Alignment); 4678 Fn->setSection(Section); 4679 Fn->setComdat(C); 4680 Fn->setPersonalityFn(PersonalityFn); 4681 if (!GC.empty()) Fn->setGC(GC); 4682 Fn->setPrefixData(Prefix); 4683 Fn->setPrologueData(Prologue); 4684 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 4685 4686 // Add all of the arguments we parsed to the function. 4687 Function::arg_iterator ArgIt = Fn->arg_begin(); 4688 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 4689 // If the argument has a name, insert it into the argument symbol table. 4690 if (ArgList[i].Name.empty()) continue; 4691 4692 // Set the name, if it conflicted, it will be auto-renamed. 4693 ArgIt->setName(ArgList[i].Name); 4694 4695 if (ArgIt->getName() != ArgList[i].Name) 4696 return Error(ArgList[i].Loc, "redefinition of argument '%" + 4697 ArgList[i].Name + "'"); 4698 } 4699 4700 if (isDefine) 4701 return false; 4702 4703 // Check the declaration has no block address forward references. 4704 ValID ID; 4705 if (FunctionName.empty()) { 4706 ID.Kind = ValID::t_GlobalID; 4707 ID.UIntVal = NumberedVals.size() - 1; 4708 } else { 4709 ID.Kind = ValID::t_GlobalName; 4710 ID.StrVal = FunctionName; 4711 } 4712 auto Blocks = ForwardRefBlockAddresses.find(ID); 4713 if (Blocks != ForwardRefBlockAddresses.end()) 4714 return Error(Blocks->first.Loc, 4715 "cannot take blockaddress inside a declaration"); 4716 return false; 4717 } 4718 4719 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 4720 ValID ID; 4721 if (FunctionNumber == -1) { 4722 ID.Kind = ValID::t_GlobalName; 4723 ID.StrVal = F.getName(); 4724 } else { 4725 ID.Kind = ValID::t_GlobalID; 4726 ID.UIntVal = FunctionNumber; 4727 } 4728 4729 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 4730 if (Blocks == P.ForwardRefBlockAddresses.end()) 4731 return false; 4732 4733 for (const auto &I : Blocks->second) { 4734 const ValID &BBID = I.first; 4735 GlobalValue *GV = I.second; 4736 4737 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 4738 "Expected local id or name"); 4739 BasicBlock *BB; 4740 if (BBID.Kind == ValID::t_LocalName) 4741 BB = GetBB(BBID.StrVal, BBID.Loc); 4742 else 4743 BB = GetBB(BBID.UIntVal, BBID.Loc); 4744 if (!BB) 4745 return P.Error(BBID.Loc, "referenced value is not a basic block"); 4746 4747 GV->replaceAllUsesWith(BlockAddress::get(&F, BB)); 4748 GV->eraseFromParent(); 4749 } 4750 4751 P.ForwardRefBlockAddresses.erase(Blocks); 4752 return false; 4753 } 4754 4755 /// ParseFunctionBody 4756 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 4757 bool LLParser::ParseFunctionBody(Function &Fn) { 4758 if (Lex.getKind() != lltok::lbrace) 4759 return TokError("expected '{' in function body"); 4760 Lex.Lex(); // eat the {. 4761 4762 int FunctionNumber = -1; 4763 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 4764 4765 PerFunctionState PFS(*this, Fn, FunctionNumber); 4766 4767 // Resolve block addresses and allow basic blocks to be forward-declared 4768 // within this function. 4769 if (PFS.resolveForwardRefBlockAddresses()) 4770 return true; 4771 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 4772 4773 // We need at least one basic block. 4774 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 4775 return TokError("function body requires at least one basic block"); 4776 4777 while (Lex.getKind() != lltok::rbrace && 4778 Lex.getKind() != lltok::kw_uselistorder) 4779 if (ParseBasicBlock(PFS)) return true; 4780 4781 while (Lex.getKind() != lltok::rbrace) 4782 if (ParseUseListOrder(&PFS)) 4783 return true; 4784 4785 // Eat the }. 4786 Lex.Lex(); 4787 4788 // Verify function is ok. 4789 return PFS.FinishFunction(); 4790 } 4791 4792 /// ParseBasicBlock 4793 /// ::= LabelStr? Instruction* 4794 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { 4795 // If this basic block starts out with a name, remember it. 4796 std::string Name; 4797 LocTy NameLoc = Lex.getLoc(); 4798 if (Lex.getKind() == lltok::LabelStr) { 4799 Name = Lex.getStrVal(); 4800 Lex.Lex(); 4801 } 4802 4803 BasicBlock *BB = PFS.DefineBB(Name, NameLoc); 4804 if (!BB) 4805 return Error(NameLoc, 4806 "unable to create block named '" + Name + "'"); 4807 4808 std::string NameStr; 4809 4810 // Parse the instructions in this block until we get a terminator. 4811 Instruction *Inst; 4812 do { 4813 // This instruction may have three possibilities for a name: a) none 4814 // specified, b) name specified "%foo =", c) number specified: "%4 =". 4815 LocTy NameLoc = Lex.getLoc(); 4816 int NameID = -1; 4817 NameStr = ""; 4818 4819 if (Lex.getKind() == lltok::LocalVarID) { 4820 NameID = Lex.getUIntVal(); 4821 Lex.Lex(); 4822 if (ParseToken(lltok::equal, "expected '=' after instruction id")) 4823 return true; 4824 } else if (Lex.getKind() == lltok::LocalVar) { 4825 NameStr = Lex.getStrVal(); 4826 Lex.Lex(); 4827 if (ParseToken(lltok::equal, "expected '=' after instruction name")) 4828 return true; 4829 } 4830 4831 switch (ParseInstruction(Inst, BB, PFS)) { 4832 default: llvm_unreachable("Unknown ParseInstruction result!"); 4833 case InstError: return true; 4834 case InstNormal: 4835 BB->getInstList().push_back(Inst); 4836 4837 // With a normal result, we check to see if the instruction is followed by 4838 // a comma and metadata. 4839 if (EatIfPresent(lltok::comma)) 4840 if (ParseInstructionMetadata(*Inst)) 4841 return true; 4842 break; 4843 case InstExtraComma: 4844 BB->getInstList().push_back(Inst); 4845 4846 // If the instruction parser ate an extra comma at the end of it, it 4847 // *must* be followed by metadata. 4848 if (ParseInstructionMetadata(*Inst)) 4849 return true; 4850 break; 4851 } 4852 4853 // Set the name on the instruction. 4854 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; 4855 } while (!isa<TerminatorInst>(Inst)); 4856 4857 return false; 4858 } 4859 4860 //===----------------------------------------------------------------------===// 4861 // Instruction Parsing. 4862 //===----------------------------------------------------------------------===// 4863 4864 /// ParseInstruction - Parse one of the many different instructions. 4865 /// 4866 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, 4867 PerFunctionState &PFS) { 4868 lltok::Kind Token = Lex.getKind(); 4869 if (Token == lltok::Eof) 4870 return TokError("found end of file when expecting more instructions"); 4871 LocTy Loc = Lex.getLoc(); 4872 unsigned KeywordVal = Lex.getUIntVal(); 4873 Lex.Lex(); // Eat the keyword. 4874 4875 switch (Token) { 4876 default: return Error(Loc, "expected instruction opcode"); 4877 // Terminator Instructions. 4878 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 4879 case lltok::kw_ret: return ParseRet(Inst, BB, PFS); 4880 case lltok::kw_br: return ParseBr(Inst, PFS); 4881 case lltok::kw_switch: return ParseSwitch(Inst, PFS); 4882 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS); 4883 case lltok::kw_invoke: return ParseInvoke(Inst, PFS); 4884 case lltok::kw_resume: return ParseResume(Inst, PFS); 4885 case lltok::kw_cleanupret: return ParseCleanupRet(Inst, PFS); 4886 case lltok::kw_catchret: return ParseCatchRet(Inst, PFS); 4887 case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS); 4888 case lltok::kw_catchpad: return ParseCatchPad(Inst, PFS); 4889 case lltok::kw_cleanuppad: return ParseCleanupPad(Inst, PFS); 4890 // Binary Operators. 4891 case lltok::kw_add: 4892 case lltok::kw_sub: 4893 case lltok::kw_mul: 4894 case lltok::kw_shl: { 4895 bool NUW = EatIfPresent(lltok::kw_nuw); 4896 bool NSW = EatIfPresent(lltok::kw_nsw); 4897 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 4898 4899 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 4900 4901 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 4902 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 4903 return false; 4904 } 4905 case lltok::kw_fadd: 4906 case lltok::kw_fsub: 4907 case lltok::kw_fmul: 4908 case lltok::kw_fdiv: 4909 case lltok::kw_frem: { 4910 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 4911 int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2); 4912 if (Res != 0) 4913 return Res; 4914 if (FMF.any()) 4915 Inst->setFastMathFlags(FMF); 4916 return 0; 4917 } 4918 4919 case lltok::kw_sdiv: 4920 case lltok::kw_udiv: 4921 case lltok::kw_lshr: 4922 case lltok::kw_ashr: { 4923 bool Exact = EatIfPresent(lltok::kw_exact); 4924 4925 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 4926 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 4927 return false; 4928 } 4929 4930 case lltok::kw_urem: 4931 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1); 4932 case lltok::kw_and: 4933 case lltok::kw_or: 4934 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); 4935 case lltok::kw_icmp: return ParseCompare(Inst, PFS, KeywordVal); 4936 case lltok::kw_fcmp: { 4937 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 4938 int Res = ParseCompare(Inst, PFS, KeywordVal); 4939 if (Res != 0) 4940 return Res; 4941 if (FMF.any()) 4942 Inst->setFastMathFlags(FMF); 4943 return 0; 4944 } 4945 4946 // Casts. 4947 case lltok::kw_trunc: 4948 case lltok::kw_zext: 4949 case lltok::kw_sext: 4950 case lltok::kw_fptrunc: 4951 case lltok::kw_fpext: 4952 case lltok::kw_bitcast: 4953 case lltok::kw_addrspacecast: 4954 case lltok::kw_uitofp: 4955 case lltok::kw_sitofp: 4956 case lltok::kw_fptoui: 4957 case lltok::kw_fptosi: 4958 case lltok::kw_inttoptr: 4959 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); 4960 // Other. 4961 case lltok::kw_select: return ParseSelect(Inst, PFS); 4962 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); 4963 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); 4964 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); 4965 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); 4966 case lltok::kw_phi: return ParsePHI(Inst, PFS); 4967 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS); 4968 // Call. 4969 case lltok::kw_call: return ParseCall(Inst, PFS, CallInst::TCK_None); 4970 case lltok::kw_tail: return ParseCall(Inst, PFS, CallInst::TCK_Tail); 4971 case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail); 4972 case lltok::kw_notail: return ParseCall(Inst, PFS, CallInst::TCK_NoTail); 4973 // Memory. 4974 case lltok::kw_alloca: return ParseAlloc(Inst, PFS); 4975 case lltok::kw_load: return ParseLoad(Inst, PFS); 4976 case lltok::kw_store: return ParseStore(Inst, PFS); 4977 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS); 4978 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS); 4979 case lltok::kw_fence: return ParseFence(Inst, PFS); 4980 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); 4981 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); 4982 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); 4983 } 4984 } 4985 4986 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. 4987 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { 4988 if (Opc == Instruction::FCmp) { 4989 switch (Lex.getKind()) { 4990 default: return TokError("expected fcmp predicate (e.g. 'oeq')"); 4991 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 4992 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 4993 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 4994 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 4995 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 4996 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 4997 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 4998 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 4999 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 5000 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 5001 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 5002 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 5003 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 5004 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 5005 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 5006 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 5007 } 5008 } else { 5009 switch (Lex.getKind()) { 5010 default: return TokError("expected icmp predicate (e.g. 'eq')"); 5011 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 5012 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 5013 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 5014 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 5015 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 5016 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 5017 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 5018 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 5019 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 5020 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 5021 } 5022 } 5023 Lex.Lex(); 5024 return false; 5025 } 5026 5027 //===----------------------------------------------------------------------===// 5028 // Terminator Instructions. 5029 //===----------------------------------------------------------------------===// 5030 5031 /// ParseRet - Parse a return instruction. 5032 /// ::= 'ret' void (',' !dbg, !1)* 5033 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 5034 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, 5035 PerFunctionState &PFS) { 5036 SMLoc TypeLoc = Lex.getLoc(); 5037 Type *Ty = nullptr; 5038 if (ParseType(Ty, true /*void allowed*/)) return true; 5039 5040 Type *ResType = PFS.getFunction().getReturnType(); 5041 5042 if (Ty->isVoidTy()) { 5043 if (!ResType->isVoidTy()) 5044 return Error(TypeLoc, "value doesn't match function result type '" + 5045 getTypeString(ResType) + "'"); 5046 5047 Inst = ReturnInst::Create(Context); 5048 return false; 5049 } 5050 5051 Value *RV; 5052 if (ParseValue(Ty, RV, PFS)) return true; 5053 5054 if (ResType != RV->getType()) 5055 return Error(TypeLoc, "value doesn't match function result type '" + 5056 getTypeString(ResType) + "'"); 5057 5058 Inst = ReturnInst::Create(Context, RV); 5059 return false; 5060 } 5061 5062 5063 /// ParseBr 5064 /// ::= 'br' TypeAndValue 5065 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5066 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { 5067 LocTy Loc, Loc2; 5068 Value *Op0; 5069 BasicBlock *Op1, *Op2; 5070 if (ParseTypeAndValue(Op0, Loc, PFS)) return true; 5071 5072 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 5073 Inst = BranchInst::Create(BB); 5074 return false; 5075 } 5076 5077 if (Op0->getType() != Type::getInt1Ty(Context)) 5078 return Error(Loc, "branch condition must have 'i1' type"); 5079 5080 if (ParseToken(lltok::comma, "expected ',' after branch condition") || 5081 ParseTypeAndBasicBlock(Op1, Loc, PFS) || 5082 ParseToken(lltok::comma, "expected ',' after true destination") || 5083 ParseTypeAndBasicBlock(Op2, Loc2, PFS)) 5084 return true; 5085 5086 Inst = BranchInst::Create(Op1, Op2, Op0); 5087 return false; 5088 } 5089 5090 /// ParseSwitch 5091 /// Instruction 5092 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 5093 /// JumpTable 5094 /// ::= (TypeAndValue ',' TypeAndValue)* 5095 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 5096 LocTy CondLoc, BBLoc; 5097 Value *Cond; 5098 BasicBlock *DefaultBB; 5099 if (ParseTypeAndValue(Cond, CondLoc, PFS) || 5100 ParseToken(lltok::comma, "expected ',' after switch condition") || 5101 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 5102 ParseToken(lltok::lsquare, "expected '[' with switch table")) 5103 return true; 5104 5105 if (!Cond->getType()->isIntegerTy()) 5106 return Error(CondLoc, "switch condition must have integer type"); 5107 5108 // Parse the jump table pairs. 5109 SmallPtrSet<Value*, 32> SeenCases; 5110 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 5111 while (Lex.getKind() != lltok::rsquare) { 5112 Value *Constant; 5113 BasicBlock *DestBB; 5114 5115 if (ParseTypeAndValue(Constant, CondLoc, PFS) || 5116 ParseToken(lltok::comma, "expected ',' after case value") || 5117 ParseTypeAndBasicBlock(DestBB, PFS)) 5118 return true; 5119 5120 if (!SeenCases.insert(Constant).second) 5121 return Error(CondLoc, "duplicate case value in switch"); 5122 if (!isa<ConstantInt>(Constant)) 5123 return Error(CondLoc, "case value is not a constant integer"); 5124 5125 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 5126 } 5127 5128 Lex.Lex(); // Eat the ']'. 5129 5130 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 5131 for (unsigned i = 0, e = Table.size(); i != e; ++i) 5132 SI->addCase(Table[i].first, Table[i].second); 5133 Inst = SI; 5134 return false; 5135 } 5136 5137 /// ParseIndirectBr 5138 /// Instruction 5139 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 5140 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 5141 LocTy AddrLoc; 5142 Value *Address; 5143 if (ParseTypeAndValue(Address, AddrLoc, PFS) || 5144 ParseToken(lltok::comma, "expected ',' after indirectbr address") || 5145 ParseToken(lltok::lsquare, "expected '[' with indirectbr")) 5146 return true; 5147 5148 if (!Address->getType()->isPointerTy()) 5149 return Error(AddrLoc, "indirectbr address must have pointer type"); 5150 5151 // Parse the destination list. 5152 SmallVector<BasicBlock*, 16> DestList; 5153 5154 if (Lex.getKind() != lltok::rsquare) { 5155 BasicBlock *DestBB; 5156 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5157 return true; 5158 DestList.push_back(DestBB); 5159 5160 while (EatIfPresent(lltok::comma)) { 5161 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5162 return true; 5163 DestList.push_back(DestBB); 5164 } 5165 } 5166 5167 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 5168 return true; 5169 5170 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 5171 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 5172 IBI->addDestination(DestList[i]); 5173 Inst = IBI; 5174 return false; 5175 } 5176 5177 5178 /// ParseInvoke 5179 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 5180 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 5181 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 5182 LocTy CallLoc = Lex.getLoc(); 5183 AttrBuilder RetAttrs, FnAttrs; 5184 std::vector<unsigned> FwdRefAttrGrps; 5185 LocTy NoBuiltinLoc; 5186 unsigned CC; 5187 Type *RetType = nullptr; 5188 LocTy RetTypeLoc; 5189 ValID CalleeID; 5190 SmallVector<ParamInfo, 16> ArgList; 5191 SmallVector<OperandBundleDef, 2> BundleList; 5192 5193 BasicBlock *NormalBB, *UnwindBB; 5194 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5195 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 5196 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || 5197 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 5198 NoBuiltinLoc) || 5199 ParseOptionalOperandBundles(BundleList, PFS) || 5200 ParseToken(lltok::kw_to, "expected 'to' in invoke") || 5201 ParseTypeAndBasicBlock(NormalBB, PFS) || 5202 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 5203 ParseTypeAndBasicBlock(UnwindBB, PFS)) 5204 return true; 5205 5206 // If RetType is a non-function pointer type, then this is the short syntax 5207 // for the call, which means that RetType is just the return type. Infer the 5208 // rest of the function argument types from the arguments that are present. 5209 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 5210 if (!Ty) { 5211 // Pull out the types of all of the arguments... 5212 std::vector<Type*> ParamTypes; 5213 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 5214 ParamTypes.push_back(ArgList[i].V->getType()); 5215 5216 if (!FunctionType::isValidReturnType(RetType)) 5217 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 5218 5219 Ty = FunctionType::get(RetType, ParamTypes, false); 5220 } 5221 5222 CalleeID.FTy = Ty; 5223 5224 // Look up the callee. 5225 Value *Callee; 5226 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS)) 5227 return true; 5228 5229 // Set up the Attribute for the function. 5230 SmallVector<AttributeSet, 8> Attrs; 5231 if (RetAttrs.hasAttributes()) 5232 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5233 AttributeSet::ReturnIndex, 5234 RetAttrs)); 5235 5236 SmallVector<Value*, 8> Args; 5237 5238 // Loop through FunctionType's arguments and ensure they are specified 5239 // correctly. Also, gather any parameter attributes. 5240 FunctionType::param_iterator I = Ty->param_begin(); 5241 FunctionType::param_iterator E = Ty->param_end(); 5242 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5243 Type *ExpectedTy = nullptr; 5244 if (I != E) { 5245 ExpectedTy = *I++; 5246 } else if (!Ty->isVarArg()) { 5247 return Error(ArgList[i].Loc, "too many arguments specified"); 5248 } 5249 5250 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 5251 return Error(ArgList[i].Loc, "argument is not of expected type '" + 5252 getTypeString(ExpectedTy) + "'"); 5253 Args.push_back(ArgList[i].V); 5254 if (ArgList[i].Attrs.hasAttributes(i + 1)) { 5255 AttrBuilder B(ArgList[i].Attrs, i + 1); 5256 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B)); 5257 } 5258 } 5259 5260 if (I != E) 5261 return Error(CallLoc, "not enough parameters specified for call"); 5262 5263 if (FnAttrs.hasAttributes()) { 5264 if (FnAttrs.hasAlignmentAttr()) 5265 return Error(CallLoc, "invoke instructions may not have an alignment"); 5266 5267 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5268 AttributeSet::FunctionIndex, 5269 FnAttrs)); 5270 } 5271 5272 // Finish off the Attribute and check them 5273 AttributeSet PAL = AttributeSet::get(Context, Attrs); 5274 5275 InvokeInst *II = 5276 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 5277 II->setCallingConv(CC); 5278 II->setAttributes(PAL); 5279 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 5280 Inst = II; 5281 return false; 5282 } 5283 5284 /// ParseResume 5285 /// ::= 'resume' TypeAndValue 5286 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) { 5287 Value *Exn; LocTy ExnLoc; 5288 if (ParseTypeAndValue(Exn, ExnLoc, PFS)) 5289 return true; 5290 5291 ResumeInst *RI = ResumeInst::Create(Exn); 5292 Inst = RI; 5293 return false; 5294 } 5295 5296 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args, 5297 PerFunctionState &PFS) { 5298 if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 5299 return true; 5300 5301 while (Lex.getKind() != lltok::rsquare) { 5302 // If this isn't the first argument, we need a comma. 5303 if (!Args.empty() && 5304 ParseToken(lltok::comma, "expected ',' in argument list")) 5305 return true; 5306 5307 // Parse the argument. 5308 LocTy ArgLoc; 5309 Type *ArgTy = nullptr; 5310 if (ParseType(ArgTy, ArgLoc)) 5311 return true; 5312 5313 Value *V; 5314 if (ArgTy->isMetadataTy()) { 5315 if (ParseMetadataAsValue(V, PFS)) 5316 return true; 5317 } else { 5318 if (ParseValue(ArgTy, V, PFS)) 5319 return true; 5320 } 5321 Args.push_back(V); 5322 } 5323 5324 Lex.Lex(); // Lex the ']'. 5325 return false; 5326 } 5327 5328 /// ParseCleanupRet 5329 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 5330 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 5331 Value *CleanupPad = nullptr; 5332 5333 if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret")) 5334 return true; 5335 5336 if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 5337 return true; 5338 5339 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 5340 return true; 5341 5342 BasicBlock *UnwindBB = nullptr; 5343 if (Lex.getKind() == lltok::kw_to) { 5344 Lex.Lex(); 5345 if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 5346 return true; 5347 } else { 5348 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 5349 return true; 5350 } 5351 } 5352 5353 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 5354 return false; 5355 } 5356 5357 /// ParseCatchRet 5358 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 5359 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 5360 Value *CatchPad = nullptr; 5361 5362 if (ParseToken(lltok::kw_from, "expected 'from' after catchret")) 5363 return true; 5364 5365 if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS)) 5366 return true; 5367 5368 BasicBlock *BB; 5369 if (ParseToken(lltok::kw_to, "expected 'to' in catchret") || 5370 ParseTypeAndBasicBlock(BB, PFS)) 5371 return true; 5372 5373 Inst = CatchReturnInst::Create(CatchPad, BB); 5374 return false; 5375 } 5376 5377 /// ParseCatchSwitch 5378 /// ::= 'catchswitch' within Parent 5379 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 5380 Value *ParentPad; 5381 LocTy BBLoc; 5382 5383 if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch")) 5384 return true; 5385 5386 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 5387 Lex.getKind() != lltok::LocalVarID) 5388 return TokError("expected scope value for catchswitch"); 5389 5390 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 5391 return true; 5392 5393 if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 5394 return true; 5395 5396 SmallVector<BasicBlock *, 32> Table; 5397 do { 5398 BasicBlock *DestBB; 5399 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5400 return true; 5401 Table.push_back(DestBB); 5402 } while (EatIfPresent(lltok::comma)); 5403 5404 if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 5405 return true; 5406 5407 if (ParseToken(lltok::kw_unwind, 5408 "expected 'unwind' after catchswitch scope")) 5409 return true; 5410 5411 BasicBlock *UnwindBB = nullptr; 5412 if (EatIfPresent(lltok::kw_to)) { 5413 if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 5414 return true; 5415 } else { 5416 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) 5417 return true; 5418 } 5419 5420 auto *CatchSwitch = 5421 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 5422 for (BasicBlock *DestBB : Table) 5423 CatchSwitch->addHandler(DestBB); 5424 Inst = CatchSwitch; 5425 return false; 5426 } 5427 5428 /// ParseCatchPad 5429 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 5430 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 5431 Value *CatchSwitch = nullptr; 5432 5433 if (ParseToken(lltok::kw_within, "expected 'within' after catchpad")) 5434 return true; 5435 5436 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 5437 return TokError("expected scope value for catchpad"); 5438 5439 if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 5440 return true; 5441 5442 SmallVector<Value *, 8> Args; 5443 if (ParseExceptionArgs(Args, PFS)) 5444 return true; 5445 5446 Inst = CatchPadInst::Create(CatchSwitch, Args); 5447 return false; 5448 } 5449 5450 /// ParseCleanupPad 5451 /// ::= 'cleanuppad' within Parent ParamList 5452 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 5453 Value *ParentPad = nullptr; 5454 5455 if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 5456 return true; 5457 5458 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 5459 Lex.getKind() != lltok::LocalVarID) 5460 return TokError("expected scope value for cleanuppad"); 5461 5462 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 5463 return true; 5464 5465 SmallVector<Value *, 8> Args; 5466 if (ParseExceptionArgs(Args, PFS)) 5467 return true; 5468 5469 Inst = CleanupPadInst::Create(ParentPad, Args); 5470 return false; 5471 } 5472 5473 //===----------------------------------------------------------------------===// 5474 // Binary Operators. 5475 //===----------------------------------------------------------------------===// 5476 5477 /// ParseArithmetic 5478 /// ::= ArithmeticOps TypeAndValue ',' Value 5479 /// 5480 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1, 5481 /// then any integer operand is allowed, if it is 2, any fp operand is allowed. 5482 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 5483 unsigned Opc, unsigned OperandType) { 5484 LocTy Loc; Value *LHS, *RHS; 5485 if (ParseTypeAndValue(LHS, Loc, PFS) || 5486 ParseToken(lltok::comma, "expected ',' in arithmetic operation") || 5487 ParseValue(LHS->getType(), RHS, PFS)) 5488 return true; 5489 5490 bool Valid; 5491 switch (OperandType) { 5492 default: llvm_unreachable("Unknown operand type!"); 5493 case 0: // int or FP. 5494 Valid = LHS->getType()->isIntOrIntVectorTy() || 5495 LHS->getType()->isFPOrFPVectorTy(); 5496 break; 5497 case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break; 5498 case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break; 5499 } 5500 5501 if (!Valid) 5502 return Error(Loc, "invalid operand type for instruction"); 5503 5504 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 5505 return false; 5506 } 5507 5508 /// ParseLogical 5509 /// ::= ArithmeticOps TypeAndValue ',' Value { 5510 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, 5511 unsigned Opc) { 5512 LocTy Loc; Value *LHS, *RHS; 5513 if (ParseTypeAndValue(LHS, Loc, PFS) || 5514 ParseToken(lltok::comma, "expected ',' in logical operation") || 5515 ParseValue(LHS->getType(), RHS, PFS)) 5516 return true; 5517 5518 if (!LHS->getType()->isIntOrIntVectorTy()) 5519 return Error(Loc,"instruction requires integer or integer vector operands"); 5520 5521 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 5522 return false; 5523 } 5524 5525 5526 /// ParseCompare 5527 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 5528 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 5529 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, 5530 unsigned Opc) { 5531 // Parse the integer/fp comparison predicate. 5532 LocTy Loc; 5533 unsigned Pred; 5534 Value *LHS, *RHS; 5535 if (ParseCmpPredicate(Pred, Opc) || 5536 ParseTypeAndValue(LHS, Loc, PFS) || 5537 ParseToken(lltok::comma, "expected ',' after compare value") || 5538 ParseValue(LHS->getType(), RHS, PFS)) 5539 return true; 5540 5541 if (Opc == Instruction::FCmp) { 5542 if (!LHS->getType()->isFPOrFPVectorTy()) 5543 return Error(Loc, "fcmp requires floating point operands"); 5544 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 5545 } else { 5546 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 5547 if (!LHS->getType()->isIntOrIntVectorTy() && 5548 !LHS->getType()->getScalarType()->isPointerTy()) 5549 return Error(Loc, "icmp requires integer operands"); 5550 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 5551 } 5552 return false; 5553 } 5554 5555 //===----------------------------------------------------------------------===// 5556 // Other Instructions. 5557 //===----------------------------------------------------------------------===// 5558 5559 5560 /// ParseCast 5561 /// ::= CastOpc TypeAndValue 'to' Type 5562 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, 5563 unsigned Opc) { 5564 LocTy Loc; 5565 Value *Op; 5566 Type *DestTy = nullptr; 5567 if (ParseTypeAndValue(Op, Loc, PFS) || 5568 ParseToken(lltok::kw_to, "expected 'to' after cast value") || 5569 ParseType(DestTy)) 5570 return true; 5571 5572 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 5573 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 5574 return Error(Loc, "invalid cast opcode for cast from '" + 5575 getTypeString(Op->getType()) + "' to '" + 5576 getTypeString(DestTy) + "'"); 5577 } 5578 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 5579 return false; 5580 } 5581 5582 /// ParseSelect 5583 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5584 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { 5585 LocTy Loc; 5586 Value *Op0, *Op1, *Op2; 5587 if (ParseTypeAndValue(Op0, Loc, PFS) || 5588 ParseToken(lltok::comma, "expected ',' after select condition") || 5589 ParseTypeAndValue(Op1, PFS) || 5590 ParseToken(lltok::comma, "expected ',' after select value") || 5591 ParseTypeAndValue(Op2, PFS)) 5592 return true; 5593 5594 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 5595 return Error(Loc, Reason); 5596 5597 Inst = SelectInst::Create(Op0, Op1, Op2); 5598 return false; 5599 } 5600 5601 /// ParseVA_Arg 5602 /// ::= 'va_arg' TypeAndValue ',' Type 5603 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { 5604 Value *Op; 5605 Type *EltTy = nullptr; 5606 LocTy TypeLoc; 5607 if (ParseTypeAndValue(Op, PFS) || 5608 ParseToken(lltok::comma, "expected ',' after vaarg operand") || 5609 ParseType(EltTy, TypeLoc)) 5610 return true; 5611 5612 if (!EltTy->isFirstClassType()) 5613 return Error(TypeLoc, "va_arg requires operand with first class type"); 5614 5615 Inst = new VAArgInst(Op, EltTy); 5616 return false; 5617 } 5618 5619 /// ParseExtractElement 5620 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 5621 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 5622 LocTy Loc; 5623 Value *Op0, *Op1; 5624 if (ParseTypeAndValue(Op0, Loc, PFS) || 5625 ParseToken(lltok::comma, "expected ',' after extract value") || 5626 ParseTypeAndValue(Op1, PFS)) 5627 return true; 5628 5629 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 5630 return Error(Loc, "invalid extractelement operands"); 5631 5632 Inst = ExtractElementInst::Create(Op0, Op1); 5633 return false; 5634 } 5635 5636 /// ParseInsertElement 5637 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5638 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 5639 LocTy Loc; 5640 Value *Op0, *Op1, *Op2; 5641 if (ParseTypeAndValue(Op0, Loc, PFS) || 5642 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5643 ParseTypeAndValue(Op1, PFS) || 5644 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5645 ParseTypeAndValue(Op2, PFS)) 5646 return true; 5647 5648 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 5649 return Error(Loc, "invalid insertelement operands"); 5650 5651 Inst = InsertElementInst::Create(Op0, Op1, Op2); 5652 return false; 5653 } 5654 5655 /// ParseShuffleVector 5656 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5657 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 5658 LocTy Loc; 5659 Value *Op0, *Op1, *Op2; 5660 if (ParseTypeAndValue(Op0, Loc, PFS) || 5661 ParseToken(lltok::comma, "expected ',' after shuffle mask") || 5662 ParseTypeAndValue(Op1, PFS) || 5663 ParseToken(lltok::comma, "expected ',' after shuffle value") || 5664 ParseTypeAndValue(Op2, PFS)) 5665 return true; 5666 5667 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 5668 return Error(Loc, "invalid shufflevector operands"); 5669 5670 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 5671 return false; 5672 } 5673 5674 /// ParsePHI 5675 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 5676 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { 5677 Type *Ty = nullptr; LocTy TypeLoc; 5678 Value *Op0, *Op1; 5679 5680 if (ParseType(Ty, TypeLoc) || 5681 ParseToken(lltok::lsquare, "expected '[' in phi value list") || 5682 ParseValue(Ty, Op0, PFS) || 5683 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5684 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 5685 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 5686 return true; 5687 5688 bool AteExtraComma = false; 5689 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 5690 while (1) { 5691 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 5692 5693 if (!EatIfPresent(lltok::comma)) 5694 break; 5695 5696 if (Lex.getKind() == lltok::MetadataVar) { 5697 AteExtraComma = true; 5698 break; 5699 } 5700 5701 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || 5702 ParseValue(Ty, Op0, PFS) || 5703 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5704 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 5705 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 5706 return true; 5707 } 5708 5709 if (!Ty->isFirstClassType()) 5710 return Error(TypeLoc, "phi node must have first class type"); 5711 5712 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 5713 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 5714 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 5715 Inst = PN; 5716 return AteExtraComma ? InstExtraComma : InstNormal; 5717 } 5718 5719 /// ParseLandingPad 5720 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 5721 /// Clause 5722 /// ::= 'catch' TypeAndValue 5723 /// ::= 'filter' 5724 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 5725 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 5726 Type *Ty = nullptr; LocTy TyLoc; 5727 5728 if (ParseType(Ty, TyLoc)) 5729 return true; 5730 5731 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 5732 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 5733 5734 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 5735 LandingPadInst::ClauseType CT; 5736 if (EatIfPresent(lltok::kw_catch)) 5737 CT = LandingPadInst::Catch; 5738 else if (EatIfPresent(lltok::kw_filter)) 5739 CT = LandingPadInst::Filter; 5740 else 5741 return TokError("expected 'catch' or 'filter' clause type"); 5742 5743 Value *V; 5744 LocTy VLoc; 5745 if (ParseTypeAndValue(V, VLoc, PFS)) 5746 return true; 5747 5748 // A 'catch' type expects a non-array constant. A filter clause expects an 5749 // array constant. 5750 if (CT == LandingPadInst::Catch) { 5751 if (isa<ArrayType>(V->getType())) 5752 Error(VLoc, "'catch' clause has an invalid type"); 5753 } else { 5754 if (!isa<ArrayType>(V->getType())) 5755 Error(VLoc, "'filter' clause has an invalid type"); 5756 } 5757 5758 Constant *CV = dyn_cast<Constant>(V); 5759 if (!CV) 5760 return Error(VLoc, "clause argument must be a constant"); 5761 LP->addClause(CV); 5762 } 5763 5764 Inst = LP.release(); 5765 return false; 5766 } 5767 5768 /// ParseCall 5769 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 5770 /// OptionalAttrs Type Value ParameterList OptionalAttrs 5771 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 5772 /// OptionalAttrs Type Value ParameterList OptionalAttrs 5773 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 5774 /// OptionalAttrs Type Value ParameterList OptionalAttrs 5775 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 5776 /// OptionalAttrs Type Value ParameterList OptionalAttrs 5777 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, 5778 CallInst::TailCallKind TCK) { 5779 AttrBuilder RetAttrs, FnAttrs; 5780 std::vector<unsigned> FwdRefAttrGrps; 5781 LocTy BuiltinLoc; 5782 unsigned CC; 5783 Type *RetType = nullptr; 5784 LocTy RetTypeLoc; 5785 ValID CalleeID; 5786 SmallVector<ParamInfo, 16> ArgList; 5787 SmallVector<OperandBundleDef, 2> BundleList; 5788 LocTy CallLoc = Lex.getLoc(); 5789 5790 if (TCK != CallInst::TCK_None && 5791 ParseToken(lltok::kw_call, 5792 "expected 'tail call', 'musttail call', or 'notail call'")) 5793 return true; 5794 5795 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5796 5797 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5798 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 5799 ParseValID(CalleeID) || 5800 ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 5801 PFS.getFunction().isVarArg()) || 5802 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 5803 ParseOptionalOperandBundles(BundleList, PFS)) 5804 return true; 5805 5806 if (FMF.any() && !RetType->isFPOrFPVectorTy()) 5807 return Error(CallLoc, "fast-math-flags specified for call without " 5808 "floating-point scalar or vector return type"); 5809 5810 // If RetType is a non-function pointer type, then this is the short syntax 5811 // for the call, which means that RetType is just the return type. Infer the 5812 // rest of the function argument types from the arguments that are present. 5813 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 5814 if (!Ty) { 5815 // Pull out the types of all of the arguments... 5816 std::vector<Type*> ParamTypes; 5817 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 5818 ParamTypes.push_back(ArgList[i].V->getType()); 5819 5820 if (!FunctionType::isValidReturnType(RetType)) 5821 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 5822 5823 Ty = FunctionType::get(RetType, ParamTypes, false); 5824 } 5825 5826 CalleeID.FTy = Ty; 5827 5828 // Look up the callee. 5829 Value *Callee; 5830 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS)) 5831 return true; 5832 5833 // Set up the Attribute for the function. 5834 SmallVector<AttributeSet, 8> Attrs; 5835 if (RetAttrs.hasAttributes()) 5836 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5837 AttributeSet::ReturnIndex, 5838 RetAttrs)); 5839 5840 SmallVector<Value*, 8> Args; 5841 5842 // Loop through FunctionType's arguments and ensure they are specified 5843 // correctly. Also, gather any parameter attributes. 5844 FunctionType::param_iterator I = Ty->param_begin(); 5845 FunctionType::param_iterator E = Ty->param_end(); 5846 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5847 Type *ExpectedTy = nullptr; 5848 if (I != E) { 5849 ExpectedTy = *I++; 5850 } else if (!Ty->isVarArg()) { 5851 return Error(ArgList[i].Loc, "too many arguments specified"); 5852 } 5853 5854 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 5855 return Error(ArgList[i].Loc, "argument is not of expected type '" + 5856 getTypeString(ExpectedTy) + "'"); 5857 Args.push_back(ArgList[i].V); 5858 if (ArgList[i].Attrs.hasAttributes(i + 1)) { 5859 AttrBuilder B(ArgList[i].Attrs, i + 1); 5860 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B)); 5861 } 5862 } 5863 5864 if (I != E) 5865 return Error(CallLoc, "not enough parameters specified for call"); 5866 5867 if (FnAttrs.hasAttributes()) { 5868 if (FnAttrs.hasAlignmentAttr()) 5869 return Error(CallLoc, "call instructions may not have an alignment"); 5870 5871 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5872 AttributeSet::FunctionIndex, 5873 FnAttrs)); 5874 } 5875 5876 // Finish off the Attribute and check them 5877 AttributeSet PAL = AttributeSet::get(Context, Attrs); 5878 5879 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 5880 CI->setTailCallKind(TCK); 5881 CI->setCallingConv(CC); 5882 if (FMF.any()) 5883 CI->setFastMathFlags(FMF); 5884 CI->setAttributes(PAL); 5885 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 5886 Inst = CI; 5887 return false; 5888 } 5889 5890 //===----------------------------------------------------------------------===// 5891 // Memory Instructions. 5892 //===----------------------------------------------------------------------===// 5893 5894 /// ParseAlloc 5895 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 5896 /// (',' 'align' i32)? 5897 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 5898 Value *Size = nullptr; 5899 LocTy SizeLoc, TyLoc; 5900 unsigned Alignment = 0; 5901 Type *Ty = nullptr; 5902 5903 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 5904 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 5905 5906 if (ParseType(Ty, TyLoc)) return true; 5907 5908 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 5909 return Error(TyLoc, "invalid type for alloca"); 5910 5911 bool AteExtraComma = false; 5912 if (EatIfPresent(lltok::comma)) { 5913 if (Lex.getKind() == lltok::kw_align) { 5914 if (ParseOptionalAlignment(Alignment)) return true; 5915 } else if (Lex.getKind() == lltok::MetadataVar) { 5916 AteExtraComma = true; 5917 } else { 5918 if (ParseTypeAndValue(Size, SizeLoc, PFS) || 5919 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 5920 return true; 5921 } 5922 } 5923 5924 if (Size && !Size->getType()->isIntegerTy()) 5925 return Error(SizeLoc, "element count must have integer type"); 5926 5927 AllocaInst *AI = new AllocaInst(Ty, Size, Alignment); 5928 AI->setUsedWithInAlloca(IsInAlloca); 5929 AI->setSwiftError(IsSwiftError); 5930 Inst = AI; 5931 return AteExtraComma ? InstExtraComma : InstNormal; 5932 } 5933 5934 /// ParseLoad 5935 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 5936 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 5937 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 5938 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) { 5939 Value *Val; LocTy Loc; 5940 unsigned Alignment = 0; 5941 bool AteExtraComma = false; 5942 bool isAtomic = false; 5943 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 5944 SynchronizationScope Scope = CrossThread; 5945 5946 if (Lex.getKind() == lltok::kw_atomic) { 5947 isAtomic = true; 5948 Lex.Lex(); 5949 } 5950 5951 bool isVolatile = false; 5952 if (Lex.getKind() == lltok::kw_volatile) { 5953 isVolatile = true; 5954 Lex.Lex(); 5955 } 5956 5957 Type *Ty; 5958 LocTy ExplicitTypeLoc = Lex.getLoc(); 5959 if (ParseType(Ty) || 5960 ParseToken(lltok::comma, "expected comma after load's type") || 5961 ParseTypeAndValue(Val, Loc, PFS) || 5962 ParseScopeAndOrdering(isAtomic, Scope, Ordering) || 5963 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 5964 return true; 5965 5966 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 5967 return Error(Loc, "load operand must be a pointer to a first class type"); 5968 if (isAtomic && !Alignment) 5969 return Error(Loc, "atomic load must have explicit non-zero alignment"); 5970 if (Ordering == AtomicOrdering::Release || 5971 Ordering == AtomicOrdering::AcquireRelease) 5972 return Error(Loc, "atomic load cannot use Release ordering"); 5973 5974 if (Ty != cast<PointerType>(Val->getType())->getElementType()) 5975 return Error(ExplicitTypeLoc, 5976 "explicit pointee type doesn't match operand's pointee type"); 5977 5978 Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, Scope); 5979 return AteExtraComma ? InstExtraComma : InstNormal; 5980 } 5981 5982 /// ParseStore 5983 5984 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 5985 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 5986 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 5987 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) { 5988 Value *Val, *Ptr; LocTy Loc, PtrLoc; 5989 unsigned Alignment = 0; 5990 bool AteExtraComma = false; 5991 bool isAtomic = false; 5992 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 5993 SynchronizationScope Scope = CrossThread; 5994 5995 if (Lex.getKind() == lltok::kw_atomic) { 5996 isAtomic = true; 5997 Lex.Lex(); 5998 } 5999 6000 bool isVolatile = false; 6001 if (Lex.getKind() == lltok::kw_volatile) { 6002 isVolatile = true; 6003 Lex.Lex(); 6004 } 6005 6006 if (ParseTypeAndValue(Val, Loc, PFS) || 6007 ParseToken(lltok::comma, "expected ',' after store operand") || 6008 ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6009 ParseScopeAndOrdering(isAtomic, Scope, Ordering) || 6010 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6011 return true; 6012 6013 if (!Ptr->getType()->isPointerTy()) 6014 return Error(PtrLoc, "store operand must be a pointer"); 6015 if (!Val->getType()->isFirstClassType()) 6016 return Error(Loc, "store operand must be a first class value"); 6017 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 6018 return Error(Loc, "stored value and pointer type do not match"); 6019 if (isAtomic && !Alignment) 6020 return Error(Loc, "atomic store must have explicit non-zero alignment"); 6021 if (Ordering == AtomicOrdering::Acquire || 6022 Ordering == AtomicOrdering::AcquireRelease) 6023 return Error(Loc, "atomic store cannot use Acquire ordering"); 6024 6025 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope); 6026 return AteExtraComma ? InstExtraComma : InstNormal; 6027 } 6028 6029 /// ParseCmpXchg 6030 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 6031 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering 6032 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 6033 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 6034 bool AteExtraComma = false; 6035 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 6036 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 6037 SynchronizationScope Scope = CrossThread; 6038 bool isVolatile = false; 6039 bool isWeak = false; 6040 6041 if (EatIfPresent(lltok::kw_weak)) 6042 isWeak = true; 6043 6044 if (EatIfPresent(lltok::kw_volatile)) 6045 isVolatile = true; 6046 6047 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6048 ParseToken(lltok::comma, "expected ',' after cmpxchg address") || 6049 ParseTypeAndValue(Cmp, CmpLoc, PFS) || 6050 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 6051 ParseTypeAndValue(New, NewLoc, PFS) || 6052 ParseScopeAndOrdering(true /*Always atomic*/, Scope, SuccessOrdering) || 6053 ParseOrdering(FailureOrdering)) 6054 return true; 6055 6056 if (SuccessOrdering == AtomicOrdering::Unordered || 6057 FailureOrdering == AtomicOrdering::Unordered) 6058 return TokError("cmpxchg cannot be unordered"); 6059 if (isStrongerThan(FailureOrdering, SuccessOrdering)) 6060 return TokError("cmpxchg failure argument shall be no stronger than the " 6061 "success argument"); 6062 if (FailureOrdering == AtomicOrdering::Release || 6063 FailureOrdering == AtomicOrdering::AcquireRelease) 6064 return TokError( 6065 "cmpxchg failure ordering cannot include release semantics"); 6066 if (!Ptr->getType()->isPointerTy()) 6067 return Error(PtrLoc, "cmpxchg operand must be a pointer"); 6068 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 6069 return Error(CmpLoc, "compare value and pointer type do not match"); 6070 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 6071 return Error(NewLoc, "new value and pointer type do not match"); 6072 if (!New->getType()->isFirstClassType()) 6073 return Error(NewLoc, "cmpxchg operand must be a first class value"); 6074 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 6075 Ptr, Cmp, New, SuccessOrdering, FailureOrdering, Scope); 6076 CXI->setVolatile(isVolatile); 6077 CXI->setWeak(isWeak); 6078 Inst = CXI; 6079 return AteExtraComma ? InstExtraComma : InstNormal; 6080 } 6081 6082 /// ParseAtomicRMW 6083 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 6084 /// 'singlethread'? AtomicOrdering 6085 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 6086 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 6087 bool AteExtraComma = false; 6088 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6089 SynchronizationScope Scope = CrossThread; 6090 bool isVolatile = false; 6091 AtomicRMWInst::BinOp Operation; 6092 6093 if (EatIfPresent(lltok::kw_volatile)) 6094 isVolatile = true; 6095 6096 switch (Lex.getKind()) { 6097 default: return TokError("expected binary operation in atomicrmw"); 6098 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 6099 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 6100 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 6101 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 6102 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 6103 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 6104 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 6105 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 6106 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 6107 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 6108 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 6109 } 6110 Lex.Lex(); // Eat the operation. 6111 6112 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6113 ParseToken(lltok::comma, "expected ',' after atomicrmw address") || 6114 ParseTypeAndValue(Val, ValLoc, PFS) || 6115 ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 6116 return true; 6117 6118 if (Ordering == AtomicOrdering::Unordered) 6119 return TokError("atomicrmw cannot be unordered"); 6120 if (!Ptr->getType()->isPointerTy()) 6121 return Error(PtrLoc, "atomicrmw operand must be a pointer"); 6122 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 6123 return Error(ValLoc, "atomicrmw value and pointer type do not match"); 6124 if (!Val->getType()->isIntegerTy()) 6125 return Error(ValLoc, "atomicrmw operand must be an integer"); 6126 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 6127 if (Size < 8 || (Size & (Size - 1))) 6128 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 6129 " integer"); 6130 6131 AtomicRMWInst *RMWI = 6132 new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope); 6133 RMWI->setVolatile(isVolatile); 6134 Inst = RMWI; 6135 return AteExtraComma ? InstExtraComma : InstNormal; 6136 } 6137 6138 /// ParseFence 6139 /// ::= 'fence' 'singlethread'? AtomicOrdering 6140 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) { 6141 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6142 SynchronizationScope Scope = CrossThread; 6143 if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 6144 return true; 6145 6146 if (Ordering == AtomicOrdering::Unordered) 6147 return TokError("fence cannot be unordered"); 6148 if (Ordering == AtomicOrdering::Monotonic) 6149 return TokError("fence cannot be monotonic"); 6150 6151 Inst = new FenceInst(Context, Ordering, Scope); 6152 return InstNormal; 6153 } 6154 6155 /// ParseGetElementPtr 6156 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 6157 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 6158 Value *Ptr = nullptr; 6159 Value *Val = nullptr; 6160 LocTy Loc, EltLoc; 6161 6162 bool InBounds = EatIfPresent(lltok::kw_inbounds); 6163 6164 Type *Ty = nullptr; 6165 LocTy ExplicitTypeLoc = Lex.getLoc(); 6166 if (ParseType(Ty) || 6167 ParseToken(lltok::comma, "expected comma after getelementptr's type") || 6168 ParseTypeAndValue(Ptr, Loc, PFS)) 6169 return true; 6170 6171 Type *BaseType = Ptr->getType(); 6172 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 6173 if (!BasePointerType) 6174 return Error(Loc, "base of getelementptr must be a pointer"); 6175 6176 if (Ty != BasePointerType->getElementType()) 6177 return Error(ExplicitTypeLoc, 6178 "explicit pointee type doesn't match operand's pointee type"); 6179 6180 SmallVector<Value*, 16> Indices; 6181 bool AteExtraComma = false; 6182 // GEP returns a vector of pointers if at least one of parameters is a vector. 6183 // All vector parameters should have the same vector width. 6184 unsigned GEPWidth = BaseType->isVectorTy() ? 6185 BaseType->getVectorNumElements() : 0; 6186 6187 while (EatIfPresent(lltok::comma)) { 6188 if (Lex.getKind() == lltok::MetadataVar) { 6189 AteExtraComma = true; 6190 break; 6191 } 6192 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; 6193 if (!Val->getType()->getScalarType()->isIntegerTy()) 6194 return Error(EltLoc, "getelementptr index must be an integer"); 6195 6196 if (Val->getType()->isVectorTy()) { 6197 unsigned ValNumEl = Val->getType()->getVectorNumElements(); 6198 if (GEPWidth && GEPWidth != ValNumEl) 6199 return Error(EltLoc, 6200 "getelementptr vector index has a wrong number of elements"); 6201 GEPWidth = ValNumEl; 6202 } 6203 Indices.push_back(Val); 6204 } 6205 6206 SmallPtrSet<Type*, 4> Visited; 6207 if (!Indices.empty() && !Ty->isSized(&Visited)) 6208 return Error(Loc, "base element of getelementptr must be sized"); 6209 6210 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 6211 return Error(Loc, "invalid getelementptr indices"); 6212 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 6213 if (InBounds) 6214 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 6215 return AteExtraComma ? InstExtraComma : InstNormal; 6216 } 6217 6218 /// ParseExtractValue 6219 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 6220 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 6221 Value *Val; LocTy Loc; 6222 SmallVector<unsigned, 4> Indices; 6223 bool AteExtraComma; 6224 if (ParseTypeAndValue(Val, Loc, PFS) || 6225 ParseIndexList(Indices, AteExtraComma)) 6226 return true; 6227 6228 if (!Val->getType()->isAggregateType()) 6229 return Error(Loc, "extractvalue operand must be aggregate type"); 6230 6231 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 6232 return Error(Loc, "invalid indices for extractvalue"); 6233 Inst = ExtractValueInst::Create(Val, Indices); 6234 return AteExtraComma ? InstExtraComma : InstNormal; 6235 } 6236 6237 /// ParseInsertValue 6238 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 6239 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 6240 Value *Val0, *Val1; LocTy Loc0, Loc1; 6241 SmallVector<unsigned, 4> Indices; 6242 bool AteExtraComma; 6243 if (ParseTypeAndValue(Val0, Loc0, PFS) || 6244 ParseToken(lltok::comma, "expected comma after insertvalue operand") || 6245 ParseTypeAndValue(Val1, Loc1, PFS) || 6246 ParseIndexList(Indices, AteExtraComma)) 6247 return true; 6248 6249 if (!Val0->getType()->isAggregateType()) 6250 return Error(Loc0, "insertvalue operand must be aggregate type"); 6251 6252 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 6253 if (!IndexedType) 6254 return Error(Loc0, "invalid indices for insertvalue"); 6255 if (IndexedType != Val1->getType()) 6256 return Error(Loc1, "insertvalue operand and field disagree in type: '" + 6257 getTypeString(Val1->getType()) + "' instead of '" + 6258 getTypeString(IndexedType) + "'"); 6259 Inst = InsertValueInst::Create(Val0, Val1, Indices); 6260 return AteExtraComma ? InstExtraComma : InstNormal; 6261 } 6262 6263 //===----------------------------------------------------------------------===// 6264 // Embedded metadata. 6265 //===----------------------------------------------------------------------===// 6266 6267 /// ParseMDNodeVector 6268 /// ::= { Element (',' Element)* } 6269 /// Element 6270 /// ::= 'null' | TypeAndValue 6271 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 6272 if (ParseToken(lltok::lbrace, "expected '{' here")) 6273 return true; 6274 6275 // Check for an empty list. 6276 if (EatIfPresent(lltok::rbrace)) 6277 return false; 6278 6279 do { 6280 // Null is a special case since it is typeless. 6281 if (EatIfPresent(lltok::kw_null)) { 6282 Elts.push_back(nullptr); 6283 continue; 6284 } 6285 6286 Metadata *MD; 6287 if (ParseMetadata(MD, nullptr)) 6288 return true; 6289 Elts.push_back(MD); 6290 } while (EatIfPresent(lltok::comma)); 6291 6292 return ParseToken(lltok::rbrace, "expected end of metadata node"); 6293 } 6294 6295 //===----------------------------------------------------------------------===// 6296 // Use-list order directives. 6297 //===----------------------------------------------------------------------===// 6298 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 6299 SMLoc Loc) { 6300 if (V->use_empty()) 6301 return Error(Loc, "value has no uses"); 6302 6303 unsigned NumUses = 0; 6304 SmallDenseMap<const Use *, unsigned, 16> Order; 6305 for (const Use &U : V->uses()) { 6306 if (++NumUses > Indexes.size()) 6307 break; 6308 Order[&U] = Indexes[NumUses - 1]; 6309 } 6310 if (NumUses < 2) 6311 return Error(Loc, "value only has one use"); 6312 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 6313 return Error(Loc, "wrong number of indexes, expected " + 6314 Twine(std::distance(V->use_begin(), V->use_end()))); 6315 6316 V->sortUseList([&](const Use &L, const Use &R) { 6317 return Order.lookup(&L) < Order.lookup(&R); 6318 }); 6319 return false; 6320 } 6321 6322 /// ParseUseListOrderIndexes 6323 /// ::= '{' uint32 (',' uint32)+ '}' 6324 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 6325 SMLoc Loc = Lex.getLoc(); 6326 if (ParseToken(lltok::lbrace, "expected '{' here")) 6327 return true; 6328 if (Lex.getKind() == lltok::rbrace) 6329 return Lex.Error("expected non-empty list of uselistorder indexes"); 6330 6331 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 6332 // indexes should be distinct numbers in the range [0, size-1], and should 6333 // not be in order. 6334 unsigned Offset = 0; 6335 unsigned Max = 0; 6336 bool IsOrdered = true; 6337 assert(Indexes.empty() && "Expected empty order vector"); 6338 do { 6339 unsigned Index; 6340 if (ParseUInt32(Index)) 6341 return true; 6342 6343 // Update consistency checks. 6344 Offset += Index - Indexes.size(); 6345 Max = std::max(Max, Index); 6346 IsOrdered &= Index == Indexes.size(); 6347 6348 Indexes.push_back(Index); 6349 } while (EatIfPresent(lltok::comma)); 6350 6351 if (ParseToken(lltok::rbrace, "expected '}' here")) 6352 return true; 6353 6354 if (Indexes.size() < 2) 6355 return Error(Loc, "expected >= 2 uselistorder indexes"); 6356 if (Offset != 0 || Max >= Indexes.size()) 6357 return Error(Loc, "expected distinct uselistorder indexes in range [0, size)"); 6358 if (IsOrdered) 6359 return Error(Loc, "expected uselistorder indexes to change the order"); 6360 6361 return false; 6362 } 6363 6364 /// ParseUseListOrder 6365 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 6366 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) { 6367 SMLoc Loc = Lex.getLoc(); 6368 if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 6369 return true; 6370 6371 Value *V; 6372 SmallVector<unsigned, 16> Indexes; 6373 if (ParseTypeAndValue(V, PFS) || 6374 ParseToken(lltok::comma, "expected comma in uselistorder directive") || 6375 ParseUseListOrderIndexes(Indexes)) 6376 return true; 6377 6378 return sortUseListOrder(V, Indexes, Loc); 6379 } 6380 6381 /// ParseUseListOrderBB 6382 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 6383 bool LLParser::ParseUseListOrderBB() { 6384 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 6385 SMLoc Loc = Lex.getLoc(); 6386 Lex.Lex(); 6387 6388 ValID Fn, Label; 6389 SmallVector<unsigned, 16> Indexes; 6390 if (ParseValID(Fn) || 6391 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 6392 ParseValID(Label) || 6393 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 6394 ParseUseListOrderIndexes(Indexes)) 6395 return true; 6396 6397 // Check the function. 6398 GlobalValue *GV; 6399 if (Fn.Kind == ValID::t_GlobalName) 6400 GV = M->getNamedValue(Fn.StrVal); 6401 else if (Fn.Kind == ValID::t_GlobalID) 6402 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 6403 else 6404 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 6405 if (!GV) 6406 return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb"); 6407 auto *F = dyn_cast<Function>(GV); 6408 if (!F) 6409 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 6410 if (F->isDeclaration()) 6411 return Error(Fn.Loc, "invalid declaration in uselistorder_bb"); 6412 6413 // Check the basic block. 6414 if (Label.Kind == ValID::t_LocalID) 6415 return Error(Label.Loc, "invalid numeric label in uselistorder_bb"); 6416 if (Label.Kind != ValID::t_LocalName) 6417 return Error(Label.Loc, "expected basic block name in uselistorder_bb"); 6418 Value *V = F->getValueSymbolTable().lookup(Label.StrVal); 6419 if (!V) 6420 return Error(Label.Loc, "invalid basic block in uselistorder_bb"); 6421 if (!isa<BasicBlock>(V)) 6422 return Error(Label.Loc, "expected basic block in uselistorder_bb"); 6423 6424 return sortUseListOrder(V, Indexes, Loc); 6425 } 6426