1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the parser class for .ll files. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LLParser.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/AsmParser/SlotMapping.h" 21 #include "llvm/IR/Argument.h" 22 #include "llvm/IR/AutoUpgrade.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/CallingConv.h" 25 #include "llvm/IR/Comdat.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DebugInfoMetadata.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/GlobalIFunc.h" 31 #include "llvm/IR/GlobalObject.h" 32 #include "llvm/IR/InlineAsm.h" 33 #include "llvm/IR/Instruction.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/IR/Type.h" 41 #include "llvm/IR/Value.h" 42 #include "llvm/IR/ValueSymbolTable.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/Dwarf.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/MathExtras.h" 47 #include "llvm/Support/SaveAndRestore.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include <algorithm> 50 #include <cassert> 51 #include <cstring> 52 #include <iterator> 53 #include <vector> 54 55 using namespace llvm; 56 57 static std::string getTypeString(Type *T) { 58 std::string Result; 59 raw_string_ostream Tmp(Result); 60 Tmp << *T; 61 return Tmp.str(); 62 } 63 64 /// Run: module ::= toplevelentity* 65 bool LLParser::Run() { 66 // Prime the lexer. 67 Lex.Lex(); 68 69 if (Context.shouldDiscardValueNames()) 70 return Error( 71 Lex.getLoc(), 72 "Can't read textual IR with a Context that discards named Values"); 73 74 return ParseTopLevelEntities() || 75 ValidateEndOfModule(); 76 } 77 78 bool LLParser::parseStandaloneConstantValue(Constant *&C, 79 const SlotMapping *Slots) { 80 restoreParsingState(Slots); 81 Lex.Lex(); 82 83 Type *Ty = nullptr; 84 if (ParseType(Ty) || parseConstantValue(Ty, C)) 85 return true; 86 if (Lex.getKind() != lltok::Eof) 87 return Error(Lex.getLoc(), "expected end of string"); 88 return false; 89 } 90 91 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 92 const SlotMapping *Slots) { 93 restoreParsingState(Slots); 94 Lex.Lex(); 95 96 Read = 0; 97 SMLoc Start = Lex.getLoc(); 98 Ty = nullptr; 99 if (ParseType(Ty)) 100 return true; 101 SMLoc End = Lex.getLoc(); 102 Read = End.getPointer() - Start.getPointer(); 103 104 return false; 105 } 106 107 void LLParser::restoreParsingState(const SlotMapping *Slots) { 108 if (!Slots) 109 return; 110 NumberedVals = Slots->GlobalValues; 111 NumberedMetadata = Slots->MetadataNodes; 112 for (const auto &I : Slots->NamedTypes) 113 NamedTypes.insert( 114 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 115 for (const auto &I : Slots->Types) 116 NumberedTypes.insert( 117 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 118 } 119 120 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the 121 /// module. 122 bool LLParser::ValidateEndOfModule() { 123 // Handle any function attribute group forward references. 124 for (const auto &RAG : ForwardRefAttrGroups) { 125 Value *V = RAG.first; 126 const std::vector<unsigned> &Attrs = RAG.second; 127 AttrBuilder B; 128 129 for (const auto &Attr : Attrs) 130 B.merge(NumberedAttrBuilders[Attr]); 131 132 if (Function *Fn = dyn_cast<Function>(V)) { 133 AttributeList AS = Fn->getAttributes(); 134 AttrBuilder FnAttrs(AS.getFnAttributes()); 135 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 136 137 FnAttrs.merge(B); 138 139 // If the alignment was parsed as an attribute, move to the alignment 140 // field. 141 if (FnAttrs.hasAlignmentAttr()) { 142 Fn->setAlignment(FnAttrs.getAlignment()); 143 FnAttrs.removeAttribute(Attribute::Alignment); 144 } 145 146 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 147 AttributeSet::get(Context, FnAttrs)); 148 Fn->setAttributes(AS); 149 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 150 AttributeList AS = CI->getAttributes(); 151 AttrBuilder FnAttrs(AS.getFnAttributes()); 152 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 153 FnAttrs.merge(B); 154 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 155 AttributeSet::get(Context, FnAttrs)); 156 CI->setAttributes(AS); 157 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 158 AttributeList AS = II->getAttributes(); 159 AttrBuilder FnAttrs(AS.getFnAttributes()); 160 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 161 FnAttrs.merge(B); 162 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 163 AttributeSet::get(Context, FnAttrs)); 164 II->setAttributes(AS); 165 } else { 166 llvm_unreachable("invalid object with forward attribute group reference"); 167 } 168 } 169 170 // If there are entries in ForwardRefBlockAddresses at this point, the 171 // function was never defined. 172 if (!ForwardRefBlockAddresses.empty()) 173 return Error(ForwardRefBlockAddresses.begin()->first.Loc, 174 "expected function name in blockaddress"); 175 176 for (const auto &NT : NumberedTypes) 177 if (NT.second.second.isValid()) 178 return Error(NT.second.second, 179 "use of undefined type '%" + Twine(NT.first) + "'"); 180 181 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 182 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 183 if (I->second.second.isValid()) 184 return Error(I->second.second, 185 "use of undefined type named '" + I->getKey() + "'"); 186 187 if (!ForwardRefComdats.empty()) 188 return Error(ForwardRefComdats.begin()->second, 189 "use of undefined comdat '$" + 190 ForwardRefComdats.begin()->first + "'"); 191 192 if (!ForwardRefVals.empty()) 193 return Error(ForwardRefVals.begin()->second.second, 194 "use of undefined value '@" + ForwardRefVals.begin()->first + 195 "'"); 196 197 if (!ForwardRefValIDs.empty()) 198 return Error(ForwardRefValIDs.begin()->second.second, 199 "use of undefined value '@" + 200 Twine(ForwardRefValIDs.begin()->first) + "'"); 201 202 if (!ForwardRefMDNodes.empty()) 203 return Error(ForwardRefMDNodes.begin()->second.second, 204 "use of undefined metadata '!" + 205 Twine(ForwardRefMDNodes.begin()->first) + "'"); 206 207 // Resolve metadata cycles. 208 for (auto &N : NumberedMetadata) { 209 if (N.second && !N.second->isResolved()) 210 N.second->resolveCycles(); 211 } 212 213 for (auto *Inst : InstsWithTBAATag) { 214 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); 215 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); 216 auto *UpgradedMD = UpgradeTBAANode(*MD); 217 if (MD != UpgradedMD) 218 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); 219 } 220 221 // Look for intrinsic functions and CallInst that need to be upgraded 222 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 223 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove 224 225 // Some types could be renamed during loading if several modules are 226 // loaded in the same LLVMContext (LTO scenario). In this case we should 227 // remangle intrinsics names as well. 228 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) { 229 Function *F = &*FI++; 230 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) { 231 F->replaceAllUsesWith(Remangled.getValue()); 232 F->eraseFromParent(); 233 } 234 } 235 236 UpgradeDebugInfo(*M); 237 238 UpgradeModuleFlags(*M); 239 240 if (!Slots) 241 return false; 242 // Initialize the slot mapping. 243 // Because by this point we've parsed and validated everything, we can "steal" 244 // the mapping from LLParser as it doesn't need it anymore. 245 Slots->GlobalValues = std::move(NumberedVals); 246 Slots->MetadataNodes = std::move(NumberedMetadata); 247 for (const auto &I : NamedTypes) 248 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 249 for (const auto &I : NumberedTypes) 250 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 251 252 return false; 253 } 254 255 //===----------------------------------------------------------------------===// 256 // Top-Level Entities 257 //===----------------------------------------------------------------------===// 258 259 bool LLParser::ParseTopLevelEntities() { 260 while (true) { 261 switch (Lex.getKind()) { 262 default: return TokError("expected top-level entity"); 263 case lltok::Eof: return false; 264 case lltok::kw_declare: if (ParseDeclare()) return true; break; 265 case lltok::kw_define: if (ParseDefine()) return true; break; 266 case lltok::kw_module: if (ParseModuleAsm()) return true; break; 267 case lltok::kw_target: if (ParseTargetDefinition()) return true; break; 268 case lltok::kw_source_filename: 269 if (ParseSourceFileName()) 270 return true; 271 break; 272 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; 273 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; 274 case lltok::LocalVar: if (ParseNamedType()) return true; break; 275 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; 276 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; 277 case lltok::ComdatVar: if (parseComdat()) return true; break; 278 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break; 279 case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break; 280 case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break; 281 case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break; 282 case lltok::kw_uselistorder_bb: 283 if (ParseUseListOrderBB()) 284 return true; 285 break; 286 } 287 } 288 } 289 290 /// toplevelentity 291 /// ::= 'module' 'asm' STRINGCONSTANT 292 bool LLParser::ParseModuleAsm() { 293 assert(Lex.getKind() == lltok::kw_module); 294 Lex.Lex(); 295 296 std::string AsmStr; 297 if (ParseToken(lltok::kw_asm, "expected 'module asm'") || 298 ParseStringConstant(AsmStr)) return true; 299 300 M->appendModuleInlineAsm(AsmStr); 301 return false; 302 } 303 304 /// toplevelentity 305 /// ::= 'target' 'triple' '=' STRINGCONSTANT 306 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 307 bool LLParser::ParseTargetDefinition() { 308 assert(Lex.getKind() == lltok::kw_target); 309 std::string Str; 310 switch (Lex.Lex()) { 311 default: return TokError("unknown target property"); 312 case lltok::kw_triple: 313 Lex.Lex(); 314 if (ParseToken(lltok::equal, "expected '=' after target triple") || 315 ParseStringConstant(Str)) 316 return true; 317 M->setTargetTriple(Str); 318 return false; 319 case lltok::kw_datalayout: 320 Lex.Lex(); 321 if (ParseToken(lltok::equal, "expected '=' after target datalayout") || 322 ParseStringConstant(Str)) 323 return true; 324 M->setDataLayout(Str); 325 return false; 326 } 327 } 328 329 /// toplevelentity 330 /// ::= 'source_filename' '=' STRINGCONSTANT 331 bool LLParser::ParseSourceFileName() { 332 assert(Lex.getKind() == lltok::kw_source_filename); 333 std::string Str; 334 Lex.Lex(); 335 if (ParseToken(lltok::equal, "expected '=' after source_filename") || 336 ParseStringConstant(Str)) 337 return true; 338 M->setSourceFileName(Str); 339 return false; 340 } 341 342 /// toplevelentity 343 /// ::= 'deplibs' '=' '[' ']' 344 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 345 /// FIXME: Remove in 4.0. Currently parse, but ignore. 346 bool LLParser::ParseDepLibs() { 347 assert(Lex.getKind() == lltok::kw_deplibs); 348 Lex.Lex(); 349 if (ParseToken(lltok::equal, "expected '=' after deplibs") || 350 ParseToken(lltok::lsquare, "expected '=' after deplibs")) 351 return true; 352 353 if (EatIfPresent(lltok::rsquare)) 354 return false; 355 356 do { 357 std::string Str; 358 if (ParseStringConstant(Str)) return true; 359 } while (EatIfPresent(lltok::comma)); 360 361 return ParseToken(lltok::rsquare, "expected ']' at end of list"); 362 } 363 364 /// ParseUnnamedType: 365 /// ::= LocalVarID '=' 'type' type 366 bool LLParser::ParseUnnamedType() { 367 LocTy TypeLoc = Lex.getLoc(); 368 unsigned TypeID = Lex.getUIntVal(); 369 Lex.Lex(); // eat LocalVarID; 370 371 if (ParseToken(lltok::equal, "expected '=' after name") || 372 ParseToken(lltok::kw_type, "expected 'type' after '='")) 373 return true; 374 375 Type *Result = nullptr; 376 if (ParseStructDefinition(TypeLoc, "", 377 NumberedTypes[TypeID], Result)) return true; 378 379 if (!isa<StructType>(Result)) { 380 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 381 if (Entry.first) 382 return Error(TypeLoc, "non-struct types may not be recursive"); 383 Entry.first = Result; 384 Entry.second = SMLoc(); 385 } 386 387 return false; 388 } 389 390 /// toplevelentity 391 /// ::= LocalVar '=' 'type' type 392 bool LLParser::ParseNamedType() { 393 std::string Name = Lex.getStrVal(); 394 LocTy NameLoc = Lex.getLoc(); 395 Lex.Lex(); // eat LocalVar. 396 397 if (ParseToken(lltok::equal, "expected '=' after name") || 398 ParseToken(lltok::kw_type, "expected 'type' after name")) 399 return true; 400 401 Type *Result = nullptr; 402 if (ParseStructDefinition(NameLoc, Name, 403 NamedTypes[Name], Result)) return true; 404 405 if (!isa<StructType>(Result)) { 406 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 407 if (Entry.first) 408 return Error(NameLoc, "non-struct types may not be recursive"); 409 Entry.first = Result; 410 Entry.second = SMLoc(); 411 } 412 413 return false; 414 } 415 416 /// toplevelentity 417 /// ::= 'declare' FunctionHeader 418 bool LLParser::ParseDeclare() { 419 assert(Lex.getKind() == lltok::kw_declare); 420 Lex.Lex(); 421 422 std::vector<std::pair<unsigned, MDNode *>> MDs; 423 while (Lex.getKind() == lltok::MetadataVar) { 424 unsigned MDK; 425 MDNode *N; 426 if (ParseMetadataAttachment(MDK, N)) 427 return true; 428 MDs.push_back({MDK, N}); 429 } 430 431 Function *F; 432 if (ParseFunctionHeader(F, false)) 433 return true; 434 for (auto &MD : MDs) 435 F->addMetadata(MD.first, *MD.second); 436 return false; 437 } 438 439 /// toplevelentity 440 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 441 bool LLParser::ParseDefine() { 442 assert(Lex.getKind() == lltok::kw_define); 443 Lex.Lex(); 444 445 Function *F; 446 return ParseFunctionHeader(F, true) || 447 ParseOptionalFunctionMetadata(*F) || 448 ParseFunctionBody(*F); 449 } 450 451 /// ParseGlobalType 452 /// ::= 'constant' 453 /// ::= 'global' 454 bool LLParser::ParseGlobalType(bool &IsConstant) { 455 if (Lex.getKind() == lltok::kw_constant) 456 IsConstant = true; 457 else if (Lex.getKind() == lltok::kw_global) 458 IsConstant = false; 459 else { 460 IsConstant = false; 461 return TokError("expected 'global' or 'constant'"); 462 } 463 Lex.Lex(); 464 return false; 465 } 466 467 bool LLParser::ParseOptionalUnnamedAddr( 468 GlobalVariable::UnnamedAddr &UnnamedAddr) { 469 if (EatIfPresent(lltok::kw_unnamed_addr)) 470 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 471 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 472 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 473 else 474 UnnamedAddr = GlobalValue::UnnamedAddr::None; 475 return false; 476 } 477 478 /// ParseUnnamedGlobal: 479 /// OptionalVisibility (ALIAS | IFUNC) ... 480 /// OptionalLinkage OptionalVisibility OptionalDLLStorageClass 481 /// ... -> global variable 482 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 483 /// GlobalID '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 484 /// ... -> global variable 485 bool LLParser::ParseUnnamedGlobal() { 486 unsigned VarID = NumberedVals.size(); 487 std::string Name; 488 LocTy NameLoc = Lex.getLoc(); 489 490 // Handle the GlobalID form. 491 if (Lex.getKind() == lltok::GlobalID) { 492 if (Lex.getUIntVal() != VarID) 493 return Error(Lex.getLoc(), "variable expected to be numbered '%" + 494 Twine(VarID) + "'"); 495 Lex.Lex(); // eat GlobalID; 496 497 if (ParseToken(lltok::equal, "expected '=' after name")) 498 return true; 499 } 500 501 bool HasLinkage; 502 unsigned Linkage, Visibility, DLLStorageClass; 503 GlobalVariable::ThreadLocalMode TLM; 504 GlobalVariable::UnnamedAddr UnnamedAddr; 505 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) || 506 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 507 return true; 508 509 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 510 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 511 DLLStorageClass, TLM, UnnamedAddr); 512 513 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 514 DLLStorageClass, TLM, UnnamedAddr); 515 } 516 517 /// ParseNamedGlobal: 518 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 519 /// GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 520 /// ... -> global variable 521 bool LLParser::ParseNamedGlobal() { 522 assert(Lex.getKind() == lltok::GlobalVar); 523 LocTy NameLoc = Lex.getLoc(); 524 std::string Name = Lex.getStrVal(); 525 Lex.Lex(); 526 527 bool HasLinkage; 528 unsigned Linkage, Visibility, DLLStorageClass; 529 GlobalVariable::ThreadLocalMode TLM; 530 GlobalVariable::UnnamedAddr UnnamedAddr; 531 if (ParseToken(lltok::equal, "expected '=' in global variable") || 532 ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) || 533 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 534 return true; 535 536 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 537 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 538 DLLStorageClass, TLM, UnnamedAddr); 539 540 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 541 DLLStorageClass, TLM, UnnamedAddr); 542 } 543 544 bool LLParser::parseComdat() { 545 assert(Lex.getKind() == lltok::ComdatVar); 546 std::string Name = Lex.getStrVal(); 547 LocTy NameLoc = Lex.getLoc(); 548 Lex.Lex(); 549 550 if (ParseToken(lltok::equal, "expected '=' here")) 551 return true; 552 553 if (ParseToken(lltok::kw_comdat, "expected comdat keyword")) 554 return TokError("expected comdat type"); 555 556 Comdat::SelectionKind SK; 557 switch (Lex.getKind()) { 558 default: 559 return TokError("unknown selection kind"); 560 case lltok::kw_any: 561 SK = Comdat::Any; 562 break; 563 case lltok::kw_exactmatch: 564 SK = Comdat::ExactMatch; 565 break; 566 case lltok::kw_largest: 567 SK = Comdat::Largest; 568 break; 569 case lltok::kw_noduplicates: 570 SK = Comdat::NoDuplicates; 571 break; 572 case lltok::kw_samesize: 573 SK = Comdat::SameSize; 574 break; 575 } 576 Lex.Lex(); 577 578 // See if the comdat was forward referenced, if so, use the comdat. 579 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 580 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 581 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 582 return Error(NameLoc, "redefinition of comdat '$" + Name + "'"); 583 584 Comdat *C; 585 if (I != ComdatSymTab.end()) 586 C = &I->second; 587 else 588 C = M->getOrInsertComdat(Name); 589 C->setSelectionKind(SK); 590 591 return false; 592 } 593 594 // MDString: 595 // ::= '!' STRINGCONSTANT 596 bool LLParser::ParseMDString(MDString *&Result) { 597 std::string Str; 598 if (ParseStringConstant(Str)) return true; 599 Result = MDString::get(Context, Str); 600 return false; 601 } 602 603 // MDNode: 604 // ::= '!' MDNodeNumber 605 bool LLParser::ParseMDNodeID(MDNode *&Result) { 606 // !{ ..., !42, ... } 607 LocTy IDLoc = Lex.getLoc(); 608 unsigned MID = 0; 609 if (ParseUInt32(MID)) 610 return true; 611 612 // If not a forward reference, just return it now. 613 if (NumberedMetadata.count(MID)) { 614 Result = NumberedMetadata[MID]; 615 return false; 616 } 617 618 // Otherwise, create MDNode forward reference. 619 auto &FwdRef = ForwardRefMDNodes[MID]; 620 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 621 622 Result = FwdRef.first.get(); 623 NumberedMetadata[MID].reset(Result); 624 return false; 625 } 626 627 /// ParseNamedMetadata: 628 /// !foo = !{ !1, !2 } 629 bool LLParser::ParseNamedMetadata() { 630 assert(Lex.getKind() == lltok::MetadataVar); 631 std::string Name = Lex.getStrVal(); 632 Lex.Lex(); 633 634 if (ParseToken(lltok::equal, "expected '=' here") || 635 ParseToken(lltok::exclaim, "Expected '!' here") || 636 ParseToken(lltok::lbrace, "Expected '{' here")) 637 return true; 638 639 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 640 if (Lex.getKind() != lltok::rbrace) 641 do { 642 if (ParseToken(lltok::exclaim, "Expected '!' here")) 643 return true; 644 645 MDNode *N = nullptr; 646 if (ParseMDNodeID(N)) return true; 647 NMD->addOperand(N); 648 } while (EatIfPresent(lltok::comma)); 649 650 return ParseToken(lltok::rbrace, "expected end of metadata node"); 651 } 652 653 /// ParseStandaloneMetadata: 654 /// !42 = !{...} 655 bool LLParser::ParseStandaloneMetadata() { 656 assert(Lex.getKind() == lltok::exclaim); 657 Lex.Lex(); 658 unsigned MetadataID = 0; 659 660 MDNode *Init; 661 if (ParseUInt32(MetadataID) || 662 ParseToken(lltok::equal, "expected '=' here")) 663 return true; 664 665 // Detect common error, from old metadata syntax. 666 if (Lex.getKind() == lltok::Type) 667 return TokError("unexpected type in metadata definition"); 668 669 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 670 if (Lex.getKind() == lltok::MetadataVar) { 671 if (ParseSpecializedMDNode(Init, IsDistinct)) 672 return true; 673 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 674 ParseMDTuple(Init, IsDistinct)) 675 return true; 676 677 // See if this was forward referenced, if so, handle it. 678 auto FI = ForwardRefMDNodes.find(MetadataID); 679 if (FI != ForwardRefMDNodes.end()) { 680 FI->second.first->replaceAllUsesWith(Init); 681 ForwardRefMDNodes.erase(FI); 682 683 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 684 } else { 685 if (NumberedMetadata.count(MetadataID)) 686 return TokError("Metadata id is already used"); 687 NumberedMetadata[MetadataID].reset(Init); 688 } 689 690 return false; 691 } 692 693 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 694 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 695 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 696 } 697 698 /// parseIndirectSymbol: 699 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility 700 /// OptionalDLLStorageClass OptionalThreadLocal 701 /// OptionalUnnamedAddr 'alias|ifunc' IndirectSymbol 702 /// 703 /// IndirectSymbol 704 /// ::= TypeAndValue 705 /// 706 /// Everything through OptionalUnnamedAddr has already been parsed. 707 /// 708 bool LLParser::parseIndirectSymbol( 709 const std::string &Name, LocTy NameLoc, unsigned L, unsigned Visibility, 710 unsigned DLLStorageClass, GlobalVariable::ThreadLocalMode TLM, 711 GlobalVariable::UnnamedAddr UnnamedAddr) { 712 bool IsAlias; 713 if (Lex.getKind() == lltok::kw_alias) 714 IsAlias = true; 715 else if (Lex.getKind() == lltok::kw_ifunc) 716 IsAlias = false; 717 else 718 llvm_unreachable("Not an alias or ifunc!"); 719 Lex.Lex(); 720 721 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 722 723 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 724 return Error(NameLoc, "invalid linkage type for alias"); 725 726 if (!isValidVisibilityForLinkage(Visibility, L)) 727 return Error(NameLoc, 728 "symbol with local linkage must have default visibility"); 729 730 Type *Ty; 731 LocTy ExplicitTypeLoc = Lex.getLoc(); 732 if (ParseType(Ty) || 733 ParseToken(lltok::comma, "expected comma after alias or ifunc's type")) 734 return true; 735 736 Constant *Aliasee; 737 LocTy AliaseeLoc = Lex.getLoc(); 738 if (Lex.getKind() != lltok::kw_bitcast && 739 Lex.getKind() != lltok::kw_getelementptr && 740 Lex.getKind() != lltok::kw_addrspacecast && 741 Lex.getKind() != lltok::kw_inttoptr) { 742 if (ParseGlobalTypeAndValue(Aliasee)) 743 return true; 744 } else { 745 // The bitcast dest type is not present, it is implied by the dest type. 746 ValID ID; 747 if (ParseValID(ID)) 748 return true; 749 if (ID.Kind != ValID::t_Constant) 750 return Error(AliaseeLoc, "invalid aliasee"); 751 Aliasee = ID.ConstantVal; 752 } 753 754 Type *AliaseeType = Aliasee->getType(); 755 auto *PTy = dyn_cast<PointerType>(AliaseeType); 756 if (!PTy) 757 return Error(AliaseeLoc, "An alias or ifunc must have pointer type"); 758 unsigned AddrSpace = PTy->getAddressSpace(); 759 760 if (IsAlias && Ty != PTy->getElementType()) 761 return Error( 762 ExplicitTypeLoc, 763 "explicit pointee type doesn't match operand's pointee type"); 764 765 if (!IsAlias && !PTy->getElementType()->isFunctionTy()) 766 return Error( 767 ExplicitTypeLoc, 768 "explicit pointee type should be a function type"); 769 770 GlobalValue *GVal = nullptr; 771 772 // See if the alias was forward referenced, if so, prepare to replace the 773 // forward reference. 774 if (!Name.empty()) { 775 GVal = M->getNamedValue(Name); 776 if (GVal) { 777 if (!ForwardRefVals.erase(Name)) 778 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 779 } 780 } else { 781 auto I = ForwardRefValIDs.find(NumberedVals.size()); 782 if (I != ForwardRefValIDs.end()) { 783 GVal = I->second.first; 784 ForwardRefValIDs.erase(I); 785 } 786 } 787 788 // Okay, create the alias but do not insert it into the module yet. 789 std::unique_ptr<GlobalIndirectSymbol> GA; 790 if (IsAlias) 791 GA.reset(GlobalAlias::create(Ty, AddrSpace, 792 (GlobalValue::LinkageTypes)Linkage, Name, 793 Aliasee, /*Parent*/ nullptr)); 794 else 795 GA.reset(GlobalIFunc::create(Ty, AddrSpace, 796 (GlobalValue::LinkageTypes)Linkage, Name, 797 Aliasee, /*Parent*/ nullptr)); 798 GA->setThreadLocalMode(TLM); 799 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 800 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 801 GA->setUnnamedAddr(UnnamedAddr); 802 803 if (Name.empty()) 804 NumberedVals.push_back(GA.get()); 805 806 if (GVal) { 807 // Verify that types agree. 808 if (GVal->getType() != GA->getType()) 809 return Error( 810 ExplicitTypeLoc, 811 "forward reference and definition of alias have different types"); 812 813 // If they agree, just RAUW the old value with the alias and remove the 814 // forward ref info. 815 GVal->replaceAllUsesWith(GA.get()); 816 GVal->eraseFromParent(); 817 } 818 819 // Insert into the module, we know its name won't collide now. 820 if (IsAlias) 821 M->getAliasList().push_back(cast<GlobalAlias>(GA.get())); 822 else 823 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get())); 824 assert(GA->getName() == Name && "Should not be a name conflict!"); 825 826 // The module owns this now 827 GA.release(); 828 829 return false; 830 } 831 832 /// ParseGlobal 833 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 834 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 835 /// OptionalExternallyInitialized GlobalType Type Const 836 /// ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass 837 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 838 /// OptionalExternallyInitialized GlobalType Type Const 839 /// 840 /// Everything up to and including OptionalUnnamedAddr has been parsed 841 /// already. 842 /// 843 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, 844 unsigned Linkage, bool HasLinkage, 845 unsigned Visibility, unsigned DLLStorageClass, 846 GlobalVariable::ThreadLocalMode TLM, 847 GlobalVariable::UnnamedAddr UnnamedAddr) { 848 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 849 return Error(NameLoc, 850 "symbol with local linkage must have default visibility"); 851 852 unsigned AddrSpace; 853 bool IsConstant, IsExternallyInitialized; 854 LocTy IsExternallyInitializedLoc; 855 LocTy TyLoc; 856 857 Type *Ty = nullptr; 858 if (ParseOptionalAddrSpace(AddrSpace) || 859 ParseOptionalToken(lltok::kw_externally_initialized, 860 IsExternallyInitialized, 861 &IsExternallyInitializedLoc) || 862 ParseGlobalType(IsConstant) || 863 ParseType(Ty, TyLoc)) 864 return true; 865 866 // If the linkage is specified and is external, then no initializer is 867 // present. 868 Constant *Init = nullptr; 869 if (!HasLinkage || 870 !GlobalValue::isValidDeclarationLinkage( 871 (GlobalValue::LinkageTypes)Linkage)) { 872 if (ParseGlobalValue(Ty, Init)) 873 return true; 874 } 875 876 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 877 return Error(TyLoc, "invalid type for global variable"); 878 879 GlobalValue *GVal = nullptr; 880 881 // See if the global was forward referenced, if so, use the global. 882 if (!Name.empty()) { 883 GVal = M->getNamedValue(Name); 884 if (GVal) { 885 if (!ForwardRefVals.erase(Name)) 886 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 887 } 888 } else { 889 auto I = ForwardRefValIDs.find(NumberedVals.size()); 890 if (I != ForwardRefValIDs.end()) { 891 GVal = I->second.first; 892 ForwardRefValIDs.erase(I); 893 } 894 } 895 896 GlobalVariable *GV; 897 if (!GVal) { 898 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, 899 Name, nullptr, GlobalVariable::NotThreadLocal, 900 AddrSpace); 901 } else { 902 if (GVal->getValueType() != Ty) 903 return Error(TyLoc, 904 "forward reference and definition of global have different types"); 905 906 GV = cast<GlobalVariable>(GVal); 907 908 // Move the forward-reference to the correct spot in the module. 909 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 910 } 911 912 if (Name.empty()) 913 NumberedVals.push_back(GV); 914 915 // Set the parsed properties on the global. 916 if (Init) 917 GV->setInitializer(Init); 918 GV->setConstant(IsConstant); 919 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 920 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 921 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 922 GV->setExternallyInitialized(IsExternallyInitialized); 923 GV->setThreadLocalMode(TLM); 924 GV->setUnnamedAddr(UnnamedAddr); 925 926 // Parse attributes on the global. 927 while (Lex.getKind() == lltok::comma) { 928 Lex.Lex(); 929 930 if (Lex.getKind() == lltok::kw_section) { 931 Lex.Lex(); 932 GV->setSection(Lex.getStrVal()); 933 if (ParseToken(lltok::StringConstant, "expected global section string")) 934 return true; 935 } else if (Lex.getKind() == lltok::kw_align) { 936 unsigned Alignment; 937 if (ParseOptionalAlignment(Alignment)) return true; 938 GV->setAlignment(Alignment); 939 } else if (Lex.getKind() == lltok::MetadataVar) { 940 if (ParseGlobalObjectMetadataAttachment(*GV)) 941 return true; 942 } else { 943 Comdat *C; 944 if (parseOptionalComdat(Name, C)) 945 return true; 946 if (C) 947 GV->setComdat(C); 948 else 949 return TokError("unknown global variable property!"); 950 } 951 } 952 953 return false; 954 } 955 956 /// ParseUnnamedAttrGrp 957 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 958 bool LLParser::ParseUnnamedAttrGrp() { 959 assert(Lex.getKind() == lltok::kw_attributes); 960 LocTy AttrGrpLoc = Lex.getLoc(); 961 Lex.Lex(); 962 963 if (Lex.getKind() != lltok::AttrGrpID) 964 return TokError("expected attribute group id"); 965 966 unsigned VarID = Lex.getUIntVal(); 967 std::vector<unsigned> unused; 968 LocTy BuiltinLoc; 969 Lex.Lex(); 970 971 if (ParseToken(lltok::equal, "expected '=' here") || 972 ParseToken(lltok::lbrace, "expected '{' here") || 973 ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 974 BuiltinLoc) || 975 ParseToken(lltok::rbrace, "expected end of attribute group")) 976 return true; 977 978 if (!NumberedAttrBuilders[VarID].hasAttributes()) 979 return Error(AttrGrpLoc, "attribute group has no attributes"); 980 981 return false; 982 } 983 984 /// ParseFnAttributeValuePairs 985 /// ::= <attr> | <attr> '=' <value> 986 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B, 987 std::vector<unsigned> &FwdRefAttrGrps, 988 bool inAttrGrp, LocTy &BuiltinLoc) { 989 bool HaveError = false; 990 991 B.clear(); 992 993 while (true) { 994 lltok::Kind Token = Lex.getKind(); 995 if (Token == lltok::kw_builtin) 996 BuiltinLoc = Lex.getLoc(); 997 switch (Token) { 998 default: 999 if (!inAttrGrp) return HaveError; 1000 return Error(Lex.getLoc(), "unterminated attribute group"); 1001 case lltok::rbrace: 1002 // Finished. 1003 return false; 1004 1005 case lltok::AttrGrpID: { 1006 // Allow a function to reference an attribute group: 1007 // 1008 // define void @foo() #1 { ... } 1009 if (inAttrGrp) 1010 HaveError |= 1011 Error(Lex.getLoc(), 1012 "cannot have an attribute group reference in an attribute group"); 1013 1014 unsigned AttrGrpNum = Lex.getUIntVal(); 1015 if (inAttrGrp) break; 1016 1017 // Save the reference to the attribute group. We'll fill it in later. 1018 FwdRefAttrGrps.push_back(AttrGrpNum); 1019 break; 1020 } 1021 // Target-dependent attributes: 1022 case lltok::StringConstant: { 1023 if (ParseStringAttribute(B)) 1024 return true; 1025 continue; 1026 } 1027 1028 // Target-independent attributes: 1029 case lltok::kw_align: { 1030 // As a hack, we allow function alignment to be initially parsed as an 1031 // attribute on a function declaration/definition or added to an attribute 1032 // group and later moved to the alignment field. 1033 unsigned Alignment; 1034 if (inAttrGrp) { 1035 Lex.Lex(); 1036 if (ParseToken(lltok::equal, "expected '=' here") || 1037 ParseUInt32(Alignment)) 1038 return true; 1039 } else { 1040 if (ParseOptionalAlignment(Alignment)) 1041 return true; 1042 } 1043 B.addAlignmentAttr(Alignment); 1044 continue; 1045 } 1046 case lltok::kw_alignstack: { 1047 unsigned Alignment; 1048 if (inAttrGrp) { 1049 Lex.Lex(); 1050 if (ParseToken(lltok::equal, "expected '=' here") || 1051 ParseUInt32(Alignment)) 1052 return true; 1053 } else { 1054 if (ParseOptionalStackAlignment(Alignment)) 1055 return true; 1056 } 1057 B.addStackAlignmentAttr(Alignment); 1058 continue; 1059 } 1060 case lltok::kw_allocsize: { 1061 unsigned ElemSizeArg; 1062 Optional<unsigned> NumElemsArg; 1063 // inAttrGrp doesn't matter; we only support allocsize(a[, b]) 1064 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1065 return true; 1066 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1067 continue; 1068 } 1069 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break; 1070 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break; 1071 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break; 1072 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break; 1073 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break; 1074 case lltok::kw_inaccessiblememonly: 1075 B.addAttribute(Attribute::InaccessibleMemOnly); break; 1076 case lltok::kw_inaccessiblemem_or_argmemonly: 1077 B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break; 1078 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break; 1079 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break; 1080 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break; 1081 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break; 1082 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break; 1083 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break; 1084 case lltok::kw_noimplicitfloat: 1085 B.addAttribute(Attribute::NoImplicitFloat); break; 1086 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break; 1087 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break; 1088 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break; 1089 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break; 1090 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break; 1091 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break; 1092 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break; 1093 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break; 1094 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1095 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1096 case lltok::kw_returns_twice: 1097 B.addAttribute(Attribute::ReturnsTwice); break; 1098 case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break; 1099 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break; 1100 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break; 1101 case lltok::kw_sspstrong: 1102 B.addAttribute(Attribute::StackProtectStrong); break; 1103 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break; 1104 case lltok::kw_sanitize_address: 1105 B.addAttribute(Attribute::SanitizeAddress); break; 1106 case lltok::kw_sanitize_thread: 1107 B.addAttribute(Attribute::SanitizeThread); break; 1108 case lltok::kw_sanitize_memory: 1109 B.addAttribute(Attribute::SanitizeMemory); break; 1110 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break; 1111 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1112 1113 // Error handling. 1114 case lltok::kw_inreg: 1115 case lltok::kw_signext: 1116 case lltok::kw_zeroext: 1117 HaveError |= 1118 Error(Lex.getLoc(), 1119 "invalid use of attribute on a function"); 1120 break; 1121 case lltok::kw_byval: 1122 case lltok::kw_dereferenceable: 1123 case lltok::kw_dereferenceable_or_null: 1124 case lltok::kw_inalloca: 1125 case lltok::kw_nest: 1126 case lltok::kw_noalias: 1127 case lltok::kw_nocapture: 1128 case lltok::kw_nonnull: 1129 case lltok::kw_returned: 1130 case lltok::kw_sret: 1131 case lltok::kw_swifterror: 1132 case lltok::kw_swiftself: 1133 HaveError |= 1134 Error(Lex.getLoc(), 1135 "invalid use of parameter-only attribute on a function"); 1136 break; 1137 } 1138 1139 Lex.Lex(); 1140 } 1141 } 1142 1143 //===----------------------------------------------------------------------===// 1144 // GlobalValue Reference/Resolution Routines. 1145 //===----------------------------------------------------------------------===// 1146 1147 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy, 1148 const std::string &Name) { 1149 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType())) 1150 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M); 1151 else 1152 return new GlobalVariable(*M, PTy->getElementType(), false, 1153 GlobalValue::ExternalWeakLinkage, nullptr, Name, 1154 nullptr, GlobalVariable::NotThreadLocal, 1155 PTy->getAddressSpace()); 1156 } 1157 1158 /// GetGlobalVal - Get a value with the specified name or ID, creating a 1159 /// forward reference record if needed. This can return null if the value 1160 /// exists but does not have the right type. 1161 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty, 1162 LocTy Loc) { 1163 PointerType *PTy = dyn_cast<PointerType>(Ty); 1164 if (!PTy) { 1165 Error(Loc, "global variable reference must have pointer type"); 1166 return nullptr; 1167 } 1168 1169 // Look this name up in the normal function symbol table. 1170 GlobalValue *Val = 1171 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1172 1173 // If this is a forward reference for the value, see if we already created a 1174 // forward ref record. 1175 if (!Val) { 1176 auto I = ForwardRefVals.find(Name); 1177 if (I != ForwardRefVals.end()) 1178 Val = I->second.first; 1179 } 1180 1181 // If we have the value in the symbol table or fwd-ref table, return it. 1182 if (Val) { 1183 if (Val->getType() == Ty) return Val; 1184 Error(Loc, "'@" + Name + "' defined with type '" + 1185 getTypeString(Val->getType()) + "'"); 1186 return nullptr; 1187 } 1188 1189 // Otherwise, create a new forward reference for this value and remember it. 1190 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name); 1191 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1192 return FwdVal; 1193 } 1194 1195 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) { 1196 PointerType *PTy = dyn_cast<PointerType>(Ty); 1197 if (!PTy) { 1198 Error(Loc, "global variable reference must have pointer type"); 1199 return nullptr; 1200 } 1201 1202 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1203 1204 // If this is a forward reference for the value, see if we already created a 1205 // forward ref record. 1206 if (!Val) { 1207 auto I = ForwardRefValIDs.find(ID); 1208 if (I != ForwardRefValIDs.end()) 1209 Val = I->second.first; 1210 } 1211 1212 // If we have the value in the symbol table or fwd-ref table, return it. 1213 if (Val) { 1214 if (Val->getType() == Ty) return Val; 1215 Error(Loc, "'@" + Twine(ID) + "' defined with type '" + 1216 getTypeString(Val->getType()) + "'"); 1217 return nullptr; 1218 } 1219 1220 // Otherwise, create a new forward reference for this value and remember it. 1221 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, ""); 1222 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1223 return FwdVal; 1224 } 1225 1226 //===----------------------------------------------------------------------===// 1227 // Comdat Reference/Resolution Routines. 1228 //===----------------------------------------------------------------------===// 1229 1230 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1231 // Look this name up in the comdat symbol table. 1232 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1233 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1234 if (I != ComdatSymTab.end()) 1235 return &I->second; 1236 1237 // Otherwise, create a new forward reference for this value and remember it. 1238 Comdat *C = M->getOrInsertComdat(Name); 1239 ForwardRefComdats[Name] = Loc; 1240 return C; 1241 } 1242 1243 //===----------------------------------------------------------------------===// 1244 // Helper Routines. 1245 //===----------------------------------------------------------------------===// 1246 1247 /// ParseToken - If the current token has the specified kind, eat it and return 1248 /// success. Otherwise, emit the specified error and return failure. 1249 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { 1250 if (Lex.getKind() != T) 1251 return TokError(ErrMsg); 1252 Lex.Lex(); 1253 return false; 1254 } 1255 1256 /// ParseStringConstant 1257 /// ::= StringConstant 1258 bool LLParser::ParseStringConstant(std::string &Result) { 1259 if (Lex.getKind() != lltok::StringConstant) 1260 return TokError("expected string constant"); 1261 Result = Lex.getStrVal(); 1262 Lex.Lex(); 1263 return false; 1264 } 1265 1266 /// ParseUInt32 1267 /// ::= uint32 1268 bool LLParser::ParseUInt32(uint32_t &Val) { 1269 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1270 return TokError("expected integer"); 1271 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1272 if (Val64 != unsigned(Val64)) 1273 return TokError("expected 32-bit integer (too large)"); 1274 Val = Val64; 1275 Lex.Lex(); 1276 return false; 1277 } 1278 1279 /// ParseUInt64 1280 /// ::= uint64 1281 bool LLParser::ParseUInt64(uint64_t &Val) { 1282 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1283 return TokError("expected integer"); 1284 Val = Lex.getAPSIntVal().getLimitedValue(); 1285 Lex.Lex(); 1286 return false; 1287 } 1288 1289 /// ParseTLSModel 1290 /// := 'localdynamic' 1291 /// := 'initialexec' 1292 /// := 'localexec' 1293 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1294 switch (Lex.getKind()) { 1295 default: 1296 return TokError("expected localdynamic, initialexec or localexec"); 1297 case lltok::kw_localdynamic: 1298 TLM = GlobalVariable::LocalDynamicTLSModel; 1299 break; 1300 case lltok::kw_initialexec: 1301 TLM = GlobalVariable::InitialExecTLSModel; 1302 break; 1303 case lltok::kw_localexec: 1304 TLM = GlobalVariable::LocalExecTLSModel; 1305 break; 1306 } 1307 1308 Lex.Lex(); 1309 return false; 1310 } 1311 1312 /// ParseOptionalThreadLocal 1313 /// := /*empty*/ 1314 /// := 'thread_local' 1315 /// := 'thread_local' '(' tlsmodel ')' 1316 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1317 TLM = GlobalVariable::NotThreadLocal; 1318 if (!EatIfPresent(lltok::kw_thread_local)) 1319 return false; 1320 1321 TLM = GlobalVariable::GeneralDynamicTLSModel; 1322 if (Lex.getKind() == lltok::lparen) { 1323 Lex.Lex(); 1324 return ParseTLSModel(TLM) || 1325 ParseToken(lltok::rparen, "expected ')' after thread local model"); 1326 } 1327 return false; 1328 } 1329 1330 /// ParseOptionalAddrSpace 1331 /// := /*empty*/ 1332 /// := 'addrspace' '(' uint32 ')' 1333 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) { 1334 AddrSpace = 0; 1335 if (!EatIfPresent(lltok::kw_addrspace)) 1336 return false; 1337 return ParseToken(lltok::lparen, "expected '(' in address space") || 1338 ParseUInt32(AddrSpace) || 1339 ParseToken(lltok::rparen, "expected ')' in address space"); 1340 } 1341 1342 /// ParseStringAttribute 1343 /// := StringConstant 1344 /// := StringConstant '=' StringConstant 1345 bool LLParser::ParseStringAttribute(AttrBuilder &B) { 1346 std::string Attr = Lex.getStrVal(); 1347 Lex.Lex(); 1348 std::string Val; 1349 if (EatIfPresent(lltok::equal) && ParseStringConstant(Val)) 1350 return true; 1351 B.addAttribute(Attr, Val); 1352 return false; 1353 } 1354 1355 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes. 1356 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) { 1357 bool HaveError = false; 1358 1359 B.clear(); 1360 1361 while (true) { 1362 lltok::Kind Token = Lex.getKind(); 1363 switch (Token) { 1364 default: // End of attributes. 1365 return HaveError; 1366 case lltok::StringConstant: { 1367 if (ParseStringAttribute(B)) 1368 return true; 1369 continue; 1370 } 1371 case lltok::kw_align: { 1372 unsigned Alignment; 1373 if (ParseOptionalAlignment(Alignment)) 1374 return true; 1375 B.addAlignmentAttr(Alignment); 1376 continue; 1377 } 1378 case lltok::kw_byval: B.addAttribute(Attribute::ByVal); break; 1379 case lltok::kw_dereferenceable: { 1380 uint64_t Bytes; 1381 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1382 return true; 1383 B.addDereferenceableAttr(Bytes); 1384 continue; 1385 } 1386 case lltok::kw_dereferenceable_or_null: { 1387 uint64_t Bytes; 1388 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1389 return true; 1390 B.addDereferenceableOrNullAttr(Bytes); 1391 continue; 1392 } 1393 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break; 1394 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1395 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break; 1396 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1397 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break; 1398 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1399 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1400 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1401 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break; 1402 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1403 case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break; 1404 case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break; 1405 case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break; 1406 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1407 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1408 1409 case lltok::kw_alignstack: 1410 case lltok::kw_alwaysinline: 1411 case lltok::kw_argmemonly: 1412 case lltok::kw_builtin: 1413 case lltok::kw_inlinehint: 1414 case lltok::kw_jumptable: 1415 case lltok::kw_minsize: 1416 case lltok::kw_naked: 1417 case lltok::kw_nobuiltin: 1418 case lltok::kw_noduplicate: 1419 case lltok::kw_noimplicitfloat: 1420 case lltok::kw_noinline: 1421 case lltok::kw_nonlazybind: 1422 case lltok::kw_noredzone: 1423 case lltok::kw_noreturn: 1424 case lltok::kw_nounwind: 1425 case lltok::kw_optnone: 1426 case lltok::kw_optsize: 1427 case lltok::kw_returns_twice: 1428 case lltok::kw_sanitize_address: 1429 case lltok::kw_sanitize_memory: 1430 case lltok::kw_sanitize_thread: 1431 case lltok::kw_ssp: 1432 case lltok::kw_sspreq: 1433 case lltok::kw_sspstrong: 1434 case lltok::kw_safestack: 1435 case lltok::kw_uwtable: 1436 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1437 break; 1438 } 1439 1440 Lex.Lex(); 1441 } 1442 } 1443 1444 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes. 1445 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) { 1446 bool HaveError = false; 1447 1448 B.clear(); 1449 1450 while (true) { 1451 lltok::Kind Token = Lex.getKind(); 1452 switch (Token) { 1453 default: // End of attributes. 1454 return HaveError; 1455 case lltok::StringConstant: { 1456 if (ParseStringAttribute(B)) 1457 return true; 1458 continue; 1459 } 1460 case lltok::kw_dereferenceable: { 1461 uint64_t Bytes; 1462 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1463 return true; 1464 B.addDereferenceableAttr(Bytes); 1465 continue; 1466 } 1467 case lltok::kw_dereferenceable_or_null: { 1468 uint64_t Bytes; 1469 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1470 return true; 1471 B.addDereferenceableOrNullAttr(Bytes); 1472 continue; 1473 } 1474 case lltok::kw_align: { 1475 unsigned Alignment; 1476 if (ParseOptionalAlignment(Alignment)) 1477 return true; 1478 B.addAlignmentAttr(Alignment); 1479 continue; 1480 } 1481 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1482 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1483 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1484 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1485 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1486 1487 // Error handling. 1488 case lltok::kw_byval: 1489 case lltok::kw_inalloca: 1490 case lltok::kw_nest: 1491 case lltok::kw_nocapture: 1492 case lltok::kw_returned: 1493 case lltok::kw_sret: 1494 case lltok::kw_swifterror: 1495 case lltok::kw_swiftself: 1496 HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute"); 1497 break; 1498 1499 case lltok::kw_alignstack: 1500 case lltok::kw_alwaysinline: 1501 case lltok::kw_argmemonly: 1502 case lltok::kw_builtin: 1503 case lltok::kw_cold: 1504 case lltok::kw_inlinehint: 1505 case lltok::kw_jumptable: 1506 case lltok::kw_minsize: 1507 case lltok::kw_naked: 1508 case lltok::kw_nobuiltin: 1509 case lltok::kw_noduplicate: 1510 case lltok::kw_noimplicitfloat: 1511 case lltok::kw_noinline: 1512 case lltok::kw_nonlazybind: 1513 case lltok::kw_noredzone: 1514 case lltok::kw_noreturn: 1515 case lltok::kw_nounwind: 1516 case lltok::kw_optnone: 1517 case lltok::kw_optsize: 1518 case lltok::kw_returns_twice: 1519 case lltok::kw_sanitize_address: 1520 case lltok::kw_sanitize_memory: 1521 case lltok::kw_sanitize_thread: 1522 case lltok::kw_ssp: 1523 case lltok::kw_sspreq: 1524 case lltok::kw_sspstrong: 1525 case lltok::kw_safestack: 1526 case lltok::kw_uwtable: 1527 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1528 break; 1529 1530 case lltok::kw_readnone: 1531 case lltok::kw_readonly: 1532 HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type"); 1533 } 1534 1535 Lex.Lex(); 1536 } 1537 } 1538 1539 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1540 HasLinkage = true; 1541 switch (Kind) { 1542 default: 1543 HasLinkage = false; 1544 return GlobalValue::ExternalLinkage; 1545 case lltok::kw_private: 1546 return GlobalValue::PrivateLinkage; 1547 case lltok::kw_internal: 1548 return GlobalValue::InternalLinkage; 1549 case lltok::kw_weak: 1550 return GlobalValue::WeakAnyLinkage; 1551 case lltok::kw_weak_odr: 1552 return GlobalValue::WeakODRLinkage; 1553 case lltok::kw_linkonce: 1554 return GlobalValue::LinkOnceAnyLinkage; 1555 case lltok::kw_linkonce_odr: 1556 return GlobalValue::LinkOnceODRLinkage; 1557 case lltok::kw_available_externally: 1558 return GlobalValue::AvailableExternallyLinkage; 1559 case lltok::kw_appending: 1560 return GlobalValue::AppendingLinkage; 1561 case lltok::kw_common: 1562 return GlobalValue::CommonLinkage; 1563 case lltok::kw_extern_weak: 1564 return GlobalValue::ExternalWeakLinkage; 1565 case lltok::kw_external: 1566 return GlobalValue::ExternalLinkage; 1567 } 1568 } 1569 1570 /// ParseOptionalLinkage 1571 /// ::= /*empty*/ 1572 /// ::= 'private' 1573 /// ::= 'internal' 1574 /// ::= 'weak' 1575 /// ::= 'weak_odr' 1576 /// ::= 'linkonce' 1577 /// ::= 'linkonce_odr' 1578 /// ::= 'available_externally' 1579 /// ::= 'appending' 1580 /// ::= 'common' 1581 /// ::= 'extern_weak' 1582 /// ::= 'external' 1583 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage, 1584 unsigned &Visibility, 1585 unsigned &DLLStorageClass) { 1586 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 1587 if (HasLinkage) 1588 Lex.Lex(); 1589 ParseOptionalVisibility(Visibility); 1590 ParseOptionalDLLStorageClass(DLLStorageClass); 1591 return false; 1592 } 1593 1594 /// ParseOptionalVisibility 1595 /// ::= /*empty*/ 1596 /// ::= 'default' 1597 /// ::= 'hidden' 1598 /// ::= 'protected' 1599 /// 1600 void LLParser::ParseOptionalVisibility(unsigned &Res) { 1601 switch (Lex.getKind()) { 1602 default: 1603 Res = GlobalValue::DefaultVisibility; 1604 return; 1605 case lltok::kw_default: 1606 Res = GlobalValue::DefaultVisibility; 1607 break; 1608 case lltok::kw_hidden: 1609 Res = GlobalValue::HiddenVisibility; 1610 break; 1611 case lltok::kw_protected: 1612 Res = GlobalValue::ProtectedVisibility; 1613 break; 1614 } 1615 Lex.Lex(); 1616 } 1617 1618 /// ParseOptionalDLLStorageClass 1619 /// ::= /*empty*/ 1620 /// ::= 'dllimport' 1621 /// ::= 'dllexport' 1622 /// 1623 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) { 1624 switch (Lex.getKind()) { 1625 default: 1626 Res = GlobalValue::DefaultStorageClass; 1627 return; 1628 case lltok::kw_dllimport: 1629 Res = GlobalValue::DLLImportStorageClass; 1630 break; 1631 case lltok::kw_dllexport: 1632 Res = GlobalValue::DLLExportStorageClass; 1633 break; 1634 } 1635 Lex.Lex(); 1636 } 1637 1638 /// ParseOptionalCallingConv 1639 /// ::= /*empty*/ 1640 /// ::= 'ccc' 1641 /// ::= 'fastcc' 1642 /// ::= 'intel_ocl_bicc' 1643 /// ::= 'coldcc' 1644 /// ::= 'x86_stdcallcc' 1645 /// ::= 'x86_fastcallcc' 1646 /// ::= 'x86_thiscallcc' 1647 /// ::= 'x86_vectorcallcc' 1648 /// ::= 'arm_apcscc' 1649 /// ::= 'arm_aapcscc' 1650 /// ::= 'arm_aapcs_vfpcc' 1651 /// ::= 'msp430_intrcc' 1652 /// ::= 'avr_intrcc' 1653 /// ::= 'avr_signalcc' 1654 /// ::= 'ptx_kernel' 1655 /// ::= 'ptx_device' 1656 /// ::= 'spir_func' 1657 /// ::= 'spir_kernel' 1658 /// ::= 'x86_64_sysvcc' 1659 /// ::= 'x86_64_win64cc' 1660 /// ::= 'webkit_jscc' 1661 /// ::= 'anyregcc' 1662 /// ::= 'preserve_mostcc' 1663 /// ::= 'preserve_allcc' 1664 /// ::= 'ghccc' 1665 /// ::= 'swiftcc' 1666 /// ::= 'x86_intrcc' 1667 /// ::= 'hhvmcc' 1668 /// ::= 'hhvm_ccc' 1669 /// ::= 'cxx_fast_tlscc' 1670 /// ::= 'amdgpu_vs' 1671 /// ::= 'amdgpu_hs' 1672 /// ::= 'amdgpu_gs' 1673 /// ::= 'amdgpu_ps' 1674 /// ::= 'amdgpu_cs' 1675 /// ::= 'amdgpu_kernel' 1676 /// ::= 'cc' UINT 1677 /// 1678 bool LLParser::ParseOptionalCallingConv(unsigned &CC) { 1679 switch (Lex.getKind()) { 1680 default: CC = CallingConv::C; return false; 1681 case lltok::kw_ccc: CC = CallingConv::C; break; 1682 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1683 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1684 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1685 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1686 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break; 1687 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1688 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 1689 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1690 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1691 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1692 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1693 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 1694 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 1695 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1696 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1697 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 1698 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 1699 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 1700 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 1701 case lltok::kw_x86_64_win64cc: CC = CallingConv::X86_64_Win64; break; 1702 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 1703 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 1704 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 1705 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 1706 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 1707 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 1708 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 1709 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 1710 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 1711 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 1712 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 1713 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break; 1714 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 1715 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 1716 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 1717 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 1718 case lltok::kw_cc: { 1719 Lex.Lex(); 1720 return ParseUInt32(CC); 1721 } 1722 } 1723 1724 Lex.Lex(); 1725 return false; 1726 } 1727 1728 /// ParseMetadataAttachment 1729 /// ::= !dbg !42 1730 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 1731 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 1732 1733 std::string Name = Lex.getStrVal(); 1734 Kind = M->getMDKindID(Name); 1735 Lex.Lex(); 1736 1737 return ParseMDNode(MD); 1738 } 1739 1740 /// ParseInstructionMetadata 1741 /// ::= !dbg !42 (',' !dbg !57)* 1742 bool LLParser::ParseInstructionMetadata(Instruction &Inst) { 1743 do { 1744 if (Lex.getKind() != lltok::MetadataVar) 1745 return TokError("expected metadata after comma"); 1746 1747 unsigned MDK; 1748 MDNode *N; 1749 if (ParseMetadataAttachment(MDK, N)) 1750 return true; 1751 1752 Inst.setMetadata(MDK, N); 1753 if (MDK == LLVMContext::MD_tbaa) 1754 InstsWithTBAATag.push_back(&Inst); 1755 1756 // If this is the end of the list, we're done. 1757 } while (EatIfPresent(lltok::comma)); 1758 return false; 1759 } 1760 1761 /// ParseGlobalObjectMetadataAttachment 1762 /// ::= !dbg !57 1763 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) { 1764 unsigned MDK; 1765 MDNode *N; 1766 if (ParseMetadataAttachment(MDK, N)) 1767 return true; 1768 1769 GO.addMetadata(MDK, *N); 1770 return false; 1771 } 1772 1773 /// ParseOptionalFunctionMetadata 1774 /// ::= (!dbg !57)* 1775 bool LLParser::ParseOptionalFunctionMetadata(Function &F) { 1776 while (Lex.getKind() == lltok::MetadataVar) 1777 if (ParseGlobalObjectMetadataAttachment(F)) 1778 return true; 1779 return false; 1780 } 1781 1782 /// ParseOptionalAlignment 1783 /// ::= /* empty */ 1784 /// ::= 'align' 4 1785 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) { 1786 Alignment = 0; 1787 if (!EatIfPresent(lltok::kw_align)) 1788 return false; 1789 LocTy AlignLoc = Lex.getLoc(); 1790 if (ParseUInt32(Alignment)) return true; 1791 if (!isPowerOf2_32(Alignment)) 1792 return Error(AlignLoc, "alignment is not a power of two"); 1793 if (Alignment > Value::MaximumAlignment) 1794 return Error(AlignLoc, "huge alignments are not supported yet"); 1795 return false; 1796 } 1797 1798 /// ParseOptionalDerefAttrBytes 1799 /// ::= /* empty */ 1800 /// ::= AttrKind '(' 4 ')' 1801 /// 1802 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 1803 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind, 1804 uint64_t &Bytes) { 1805 assert((AttrKind == lltok::kw_dereferenceable || 1806 AttrKind == lltok::kw_dereferenceable_or_null) && 1807 "contract!"); 1808 1809 Bytes = 0; 1810 if (!EatIfPresent(AttrKind)) 1811 return false; 1812 LocTy ParenLoc = Lex.getLoc(); 1813 if (!EatIfPresent(lltok::lparen)) 1814 return Error(ParenLoc, "expected '('"); 1815 LocTy DerefLoc = Lex.getLoc(); 1816 if (ParseUInt64(Bytes)) return true; 1817 ParenLoc = Lex.getLoc(); 1818 if (!EatIfPresent(lltok::rparen)) 1819 return Error(ParenLoc, "expected ')'"); 1820 if (!Bytes) 1821 return Error(DerefLoc, "dereferenceable bytes must be non-zero"); 1822 return false; 1823 } 1824 1825 /// ParseOptionalCommaAlign 1826 /// ::= 1827 /// ::= ',' align 4 1828 /// 1829 /// This returns with AteExtraComma set to true if it ate an excess comma at the 1830 /// end. 1831 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment, 1832 bool &AteExtraComma) { 1833 AteExtraComma = false; 1834 while (EatIfPresent(lltok::comma)) { 1835 // Metadata at the end is an early exit. 1836 if (Lex.getKind() == lltok::MetadataVar) { 1837 AteExtraComma = true; 1838 return false; 1839 } 1840 1841 if (Lex.getKind() != lltok::kw_align) 1842 return Error(Lex.getLoc(), "expected metadata or 'align'"); 1843 1844 if (ParseOptionalAlignment(Alignment)) return true; 1845 } 1846 1847 return false; 1848 } 1849 1850 /// ParseOptionalCommaAddrSpace 1851 /// ::= 1852 /// ::= ',' addrspace(1) 1853 /// 1854 /// This returns with AteExtraComma set to true if it ate an excess comma at the 1855 /// end. 1856 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace, 1857 LocTy &Loc, 1858 bool &AteExtraComma) { 1859 AteExtraComma = false; 1860 while (EatIfPresent(lltok::comma)) { 1861 // Metadata at the end is an early exit. 1862 if (Lex.getKind() == lltok::MetadataVar) { 1863 AteExtraComma = true; 1864 return false; 1865 } 1866 1867 Loc = Lex.getLoc(); 1868 if (Lex.getKind() != lltok::kw_addrspace) 1869 return Error(Lex.getLoc(), "expected metadata or 'addrspace'"); 1870 1871 if (ParseOptionalAddrSpace(AddrSpace)) 1872 return true; 1873 } 1874 1875 return false; 1876 } 1877 1878 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 1879 Optional<unsigned> &HowManyArg) { 1880 Lex.Lex(); 1881 1882 auto StartParen = Lex.getLoc(); 1883 if (!EatIfPresent(lltok::lparen)) 1884 return Error(StartParen, "expected '('"); 1885 1886 if (ParseUInt32(BaseSizeArg)) 1887 return true; 1888 1889 if (EatIfPresent(lltok::comma)) { 1890 auto HowManyAt = Lex.getLoc(); 1891 unsigned HowMany; 1892 if (ParseUInt32(HowMany)) 1893 return true; 1894 if (HowMany == BaseSizeArg) 1895 return Error(HowManyAt, 1896 "'allocsize' indices can't refer to the same parameter"); 1897 HowManyArg = HowMany; 1898 } else 1899 HowManyArg = None; 1900 1901 auto EndParen = Lex.getLoc(); 1902 if (!EatIfPresent(lltok::rparen)) 1903 return Error(EndParen, "expected ')'"); 1904 return false; 1905 } 1906 1907 /// ParseScopeAndOrdering 1908 /// if isAtomic: ::= 'singlethread'? AtomicOrdering 1909 /// else: ::= 1910 /// 1911 /// This sets Scope and Ordering to the parsed values. 1912 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope, 1913 AtomicOrdering &Ordering) { 1914 if (!isAtomic) 1915 return false; 1916 1917 Scope = CrossThread; 1918 if (EatIfPresent(lltok::kw_singlethread)) 1919 Scope = SingleThread; 1920 1921 return ParseOrdering(Ordering); 1922 } 1923 1924 /// ParseOrdering 1925 /// ::= AtomicOrdering 1926 /// 1927 /// This sets Ordering to the parsed value. 1928 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) { 1929 switch (Lex.getKind()) { 1930 default: return TokError("Expected ordering on atomic instruction"); 1931 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 1932 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 1933 // Not specified yet: 1934 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 1935 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 1936 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 1937 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 1938 case lltok::kw_seq_cst: 1939 Ordering = AtomicOrdering::SequentiallyConsistent; 1940 break; 1941 } 1942 Lex.Lex(); 1943 return false; 1944 } 1945 1946 /// ParseOptionalStackAlignment 1947 /// ::= /* empty */ 1948 /// ::= 'alignstack' '(' 4 ')' 1949 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { 1950 Alignment = 0; 1951 if (!EatIfPresent(lltok::kw_alignstack)) 1952 return false; 1953 LocTy ParenLoc = Lex.getLoc(); 1954 if (!EatIfPresent(lltok::lparen)) 1955 return Error(ParenLoc, "expected '('"); 1956 LocTy AlignLoc = Lex.getLoc(); 1957 if (ParseUInt32(Alignment)) return true; 1958 ParenLoc = Lex.getLoc(); 1959 if (!EatIfPresent(lltok::rparen)) 1960 return Error(ParenLoc, "expected ')'"); 1961 if (!isPowerOf2_32(Alignment)) 1962 return Error(AlignLoc, "stack alignment is not a power of two"); 1963 return false; 1964 } 1965 1966 /// ParseIndexList - This parses the index list for an insert/extractvalue 1967 /// instruction. This sets AteExtraComma in the case where we eat an extra 1968 /// comma at the end of the line and find that it is followed by metadata. 1969 /// Clients that don't allow metadata can call the version of this function that 1970 /// only takes one argument. 1971 /// 1972 /// ParseIndexList 1973 /// ::= (',' uint32)+ 1974 /// 1975 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, 1976 bool &AteExtraComma) { 1977 AteExtraComma = false; 1978 1979 if (Lex.getKind() != lltok::comma) 1980 return TokError("expected ',' as start of index list"); 1981 1982 while (EatIfPresent(lltok::comma)) { 1983 if (Lex.getKind() == lltok::MetadataVar) { 1984 if (Indices.empty()) return TokError("expected index"); 1985 AteExtraComma = true; 1986 return false; 1987 } 1988 unsigned Idx = 0; 1989 if (ParseUInt32(Idx)) return true; 1990 Indices.push_back(Idx); 1991 } 1992 1993 return false; 1994 } 1995 1996 //===----------------------------------------------------------------------===// 1997 // Type Parsing. 1998 //===----------------------------------------------------------------------===// 1999 2000 /// ParseType - Parse a type. 2001 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 2002 SMLoc TypeLoc = Lex.getLoc(); 2003 switch (Lex.getKind()) { 2004 default: 2005 return TokError(Msg); 2006 case lltok::Type: 2007 // Type ::= 'float' | 'void' (etc) 2008 Result = Lex.getTyVal(); 2009 Lex.Lex(); 2010 break; 2011 case lltok::lbrace: 2012 // Type ::= StructType 2013 if (ParseAnonStructType(Result, false)) 2014 return true; 2015 break; 2016 case lltok::lsquare: 2017 // Type ::= '[' ... ']' 2018 Lex.Lex(); // eat the lsquare. 2019 if (ParseArrayVectorType(Result, false)) 2020 return true; 2021 break; 2022 case lltok::less: // Either vector or packed struct. 2023 // Type ::= '<' ... '>' 2024 Lex.Lex(); 2025 if (Lex.getKind() == lltok::lbrace) { 2026 if (ParseAnonStructType(Result, true) || 2027 ParseToken(lltok::greater, "expected '>' at end of packed struct")) 2028 return true; 2029 } else if (ParseArrayVectorType(Result, true)) 2030 return true; 2031 break; 2032 case lltok::LocalVar: { 2033 // Type ::= %foo 2034 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2035 2036 // If the type hasn't been defined yet, create a forward definition and 2037 // remember where that forward def'n was seen (in case it never is defined). 2038 if (!Entry.first) { 2039 Entry.first = StructType::create(Context, Lex.getStrVal()); 2040 Entry.second = Lex.getLoc(); 2041 } 2042 Result = Entry.first; 2043 Lex.Lex(); 2044 break; 2045 } 2046 2047 case lltok::LocalVarID: { 2048 // Type ::= %4 2049 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2050 2051 // If the type hasn't been defined yet, create a forward definition and 2052 // remember where that forward def'n was seen (in case it never is defined). 2053 if (!Entry.first) { 2054 Entry.first = StructType::create(Context); 2055 Entry.second = Lex.getLoc(); 2056 } 2057 Result = Entry.first; 2058 Lex.Lex(); 2059 break; 2060 } 2061 } 2062 2063 // Parse the type suffixes. 2064 while (true) { 2065 switch (Lex.getKind()) { 2066 // End of type. 2067 default: 2068 if (!AllowVoid && Result->isVoidTy()) 2069 return Error(TypeLoc, "void type only allowed for function results"); 2070 return false; 2071 2072 // Type ::= Type '*' 2073 case lltok::star: 2074 if (Result->isLabelTy()) 2075 return TokError("basic block pointers are invalid"); 2076 if (Result->isVoidTy()) 2077 return TokError("pointers to void are invalid - use i8* instead"); 2078 if (!PointerType::isValidElementType(Result)) 2079 return TokError("pointer to this type is invalid"); 2080 Result = PointerType::getUnqual(Result); 2081 Lex.Lex(); 2082 break; 2083 2084 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2085 case lltok::kw_addrspace: { 2086 if (Result->isLabelTy()) 2087 return TokError("basic block pointers are invalid"); 2088 if (Result->isVoidTy()) 2089 return TokError("pointers to void are invalid; use i8* instead"); 2090 if (!PointerType::isValidElementType(Result)) 2091 return TokError("pointer to this type is invalid"); 2092 unsigned AddrSpace; 2093 if (ParseOptionalAddrSpace(AddrSpace) || 2094 ParseToken(lltok::star, "expected '*' in address space")) 2095 return true; 2096 2097 Result = PointerType::get(Result, AddrSpace); 2098 break; 2099 } 2100 2101 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2102 case lltok::lparen: 2103 if (ParseFunctionType(Result)) 2104 return true; 2105 break; 2106 } 2107 } 2108 } 2109 2110 /// ParseParameterList 2111 /// ::= '(' ')' 2112 /// ::= '(' Arg (',' Arg)* ')' 2113 /// Arg 2114 /// ::= Type OptionalAttributes Value OptionalAttributes 2115 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2116 PerFunctionState &PFS, bool IsMustTailCall, 2117 bool InVarArgsFunc) { 2118 if (ParseToken(lltok::lparen, "expected '(' in call")) 2119 return true; 2120 2121 while (Lex.getKind() != lltok::rparen) { 2122 // If this isn't the first argument, we need a comma. 2123 if (!ArgList.empty() && 2124 ParseToken(lltok::comma, "expected ',' in argument list")) 2125 return true; 2126 2127 // Parse an ellipsis if this is a musttail call in a variadic function. 2128 if (Lex.getKind() == lltok::dotdotdot) { 2129 const char *Msg = "unexpected ellipsis in argument list for "; 2130 if (!IsMustTailCall) 2131 return TokError(Twine(Msg) + "non-musttail call"); 2132 if (!InVarArgsFunc) 2133 return TokError(Twine(Msg) + "musttail call in non-varargs function"); 2134 Lex.Lex(); // Lex the '...', it is purely for readability. 2135 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2136 } 2137 2138 // Parse the argument. 2139 LocTy ArgLoc; 2140 Type *ArgTy = nullptr; 2141 AttrBuilder ArgAttrs; 2142 Value *V; 2143 if (ParseType(ArgTy, ArgLoc)) 2144 return true; 2145 2146 if (ArgTy->isMetadataTy()) { 2147 if (ParseMetadataAsValue(V, PFS)) 2148 return true; 2149 } else { 2150 // Otherwise, handle normal operands. 2151 if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS)) 2152 return true; 2153 } 2154 ArgList.push_back(ParamInfo( 2155 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs))); 2156 } 2157 2158 if (IsMustTailCall && InVarArgsFunc) 2159 return TokError("expected '...' at end of argument list for musttail call " 2160 "in varargs function"); 2161 2162 Lex.Lex(); // Lex the ')'. 2163 return false; 2164 } 2165 2166 /// ParseOptionalOperandBundles 2167 /// ::= /*empty*/ 2168 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2169 /// 2170 /// OperandBundle 2171 /// ::= bundle-tag '(' ')' 2172 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2173 /// 2174 /// bundle-tag ::= String Constant 2175 bool LLParser::ParseOptionalOperandBundles( 2176 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2177 LocTy BeginLoc = Lex.getLoc(); 2178 if (!EatIfPresent(lltok::lsquare)) 2179 return false; 2180 2181 while (Lex.getKind() != lltok::rsquare) { 2182 // If this isn't the first operand bundle, we need a comma. 2183 if (!BundleList.empty() && 2184 ParseToken(lltok::comma, "expected ',' in input list")) 2185 return true; 2186 2187 std::string Tag; 2188 if (ParseStringConstant(Tag)) 2189 return true; 2190 2191 if (ParseToken(lltok::lparen, "expected '(' in operand bundle")) 2192 return true; 2193 2194 std::vector<Value *> Inputs; 2195 while (Lex.getKind() != lltok::rparen) { 2196 // If this isn't the first input, we need a comma. 2197 if (!Inputs.empty() && 2198 ParseToken(lltok::comma, "expected ',' in input list")) 2199 return true; 2200 2201 Type *Ty = nullptr; 2202 Value *Input = nullptr; 2203 if (ParseType(Ty) || ParseValue(Ty, Input, PFS)) 2204 return true; 2205 Inputs.push_back(Input); 2206 } 2207 2208 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2209 2210 Lex.Lex(); // Lex the ')'. 2211 } 2212 2213 if (BundleList.empty()) 2214 return Error(BeginLoc, "operand bundle set must not be empty"); 2215 2216 Lex.Lex(); // Lex the ']'. 2217 return false; 2218 } 2219 2220 /// ParseArgumentList - Parse the argument list for a function type or function 2221 /// prototype. 2222 /// ::= '(' ArgTypeListI ')' 2223 /// ArgTypeListI 2224 /// ::= /*empty*/ 2225 /// ::= '...' 2226 /// ::= ArgTypeList ',' '...' 2227 /// ::= ArgType (',' ArgType)* 2228 /// 2229 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2230 bool &isVarArg){ 2231 isVarArg = false; 2232 assert(Lex.getKind() == lltok::lparen); 2233 Lex.Lex(); // eat the (. 2234 2235 if (Lex.getKind() == lltok::rparen) { 2236 // empty 2237 } else if (Lex.getKind() == lltok::dotdotdot) { 2238 isVarArg = true; 2239 Lex.Lex(); 2240 } else { 2241 LocTy TypeLoc = Lex.getLoc(); 2242 Type *ArgTy = nullptr; 2243 AttrBuilder Attrs; 2244 std::string Name; 2245 2246 if (ParseType(ArgTy) || 2247 ParseOptionalParamAttrs(Attrs)) return true; 2248 2249 if (ArgTy->isVoidTy()) 2250 return Error(TypeLoc, "argument can not have void type"); 2251 2252 if (Lex.getKind() == lltok::LocalVar) { 2253 Name = Lex.getStrVal(); 2254 Lex.Lex(); 2255 } 2256 2257 if (!FunctionType::isValidArgumentType(ArgTy)) 2258 return Error(TypeLoc, "invalid type for function argument"); 2259 2260 ArgList.emplace_back(TypeLoc, ArgTy, 2261 AttributeSet::get(ArgTy->getContext(), Attrs), 2262 std::move(Name)); 2263 2264 while (EatIfPresent(lltok::comma)) { 2265 // Handle ... at end of arg list. 2266 if (EatIfPresent(lltok::dotdotdot)) { 2267 isVarArg = true; 2268 break; 2269 } 2270 2271 // Otherwise must be an argument type. 2272 TypeLoc = Lex.getLoc(); 2273 if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true; 2274 2275 if (ArgTy->isVoidTy()) 2276 return Error(TypeLoc, "argument can not have void type"); 2277 2278 if (Lex.getKind() == lltok::LocalVar) { 2279 Name = Lex.getStrVal(); 2280 Lex.Lex(); 2281 } else { 2282 Name = ""; 2283 } 2284 2285 if (!ArgTy->isFirstClassType()) 2286 return Error(TypeLoc, "invalid type for function argument"); 2287 2288 ArgList.emplace_back(TypeLoc, ArgTy, 2289 AttributeSet::get(ArgTy->getContext(), Attrs), 2290 std::move(Name)); 2291 } 2292 } 2293 2294 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2295 } 2296 2297 /// ParseFunctionType 2298 /// ::= Type ArgumentList OptionalAttrs 2299 bool LLParser::ParseFunctionType(Type *&Result) { 2300 assert(Lex.getKind() == lltok::lparen); 2301 2302 if (!FunctionType::isValidReturnType(Result)) 2303 return TokError("invalid function return type"); 2304 2305 SmallVector<ArgInfo, 8> ArgList; 2306 bool isVarArg; 2307 if (ParseArgumentList(ArgList, isVarArg)) 2308 return true; 2309 2310 // Reject names on the arguments lists. 2311 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2312 if (!ArgList[i].Name.empty()) 2313 return Error(ArgList[i].Loc, "argument name invalid in function type"); 2314 if (ArgList[i].Attrs.hasAttributes()) 2315 return Error(ArgList[i].Loc, 2316 "argument attributes invalid in function type"); 2317 } 2318 2319 SmallVector<Type*, 16> ArgListTy; 2320 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2321 ArgListTy.push_back(ArgList[i].Ty); 2322 2323 Result = FunctionType::get(Result, ArgListTy, isVarArg); 2324 return false; 2325 } 2326 2327 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into 2328 /// other structs. 2329 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) { 2330 SmallVector<Type*, 8> Elts; 2331 if (ParseStructBody(Elts)) return true; 2332 2333 Result = StructType::get(Context, Elts, Packed); 2334 return false; 2335 } 2336 2337 /// ParseStructDefinition - Parse a struct in a 'type' definition. 2338 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name, 2339 std::pair<Type*, LocTy> &Entry, 2340 Type *&ResultTy) { 2341 // If the type was already defined, diagnose the redefinition. 2342 if (Entry.first && !Entry.second.isValid()) 2343 return Error(TypeLoc, "redefinition of type"); 2344 2345 // If we have opaque, just return without filling in the definition for the 2346 // struct. This counts as a definition as far as the .ll file goes. 2347 if (EatIfPresent(lltok::kw_opaque)) { 2348 // This type is being defined, so clear the location to indicate this. 2349 Entry.second = SMLoc(); 2350 2351 // If this type number has never been uttered, create it. 2352 if (!Entry.first) 2353 Entry.first = StructType::create(Context, Name); 2354 ResultTy = Entry.first; 2355 return false; 2356 } 2357 2358 // If the type starts with '<', then it is either a packed struct or a vector. 2359 bool isPacked = EatIfPresent(lltok::less); 2360 2361 // If we don't have a struct, then we have a random type alias, which we 2362 // accept for compatibility with old files. These types are not allowed to be 2363 // forward referenced and not allowed to be recursive. 2364 if (Lex.getKind() != lltok::lbrace) { 2365 if (Entry.first) 2366 return Error(TypeLoc, "forward references to non-struct type"); 2367 2368 ResultTy = nullptr; 2369 if (isPacked) 2370 return ParseArrayVectorType(ResultTy, true); 2371 return ParseType(ResultTy); 2372 } 2373 2374 // This type is being defined, so clear the location to indicate this. 2375 Entry.second = SMLoc(); 2376 2377 // If this type number has never been uttered, create it. 2378 if (!Entry.first) 2379 Entry.first = StructType::create(Context, Name); 2380 2381 StructType *STy = cast<StructType>(Entry.first); 2382 2383 SmallVector<Type*, 8> Body; 2384 if (ParseStructBody(Body) || 2385 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct"))) 2386 return true; 2387 2388 STy->setBody(Body, isPacked); 2389 ResultTy = STy; 2390 return false; 2391 } 2392 2393 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2394 /// StructType 2395 /// ::= '{' '}' 2396 /// ::= '{' Type (',' Type)* '}' 2397 /// ::= '<' '{' '}' '>' 2398 /// ::= '<' '{' Type (',' Type)* '}' '>' 2399 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) { 2400 assert(Lex.getKind() == lltok::lbrace); 2401 Lex.Lex(); // Consume the '{' 2402 2403 // Handle the empty struct. 2404 if (EatIfPresent(lltok::rbrace)) 2405 return false; 2406 2407 LocTy EltTyLoc = Lex.getLoc(); 2408 Type *Ty = nullptr; 2409 if (ParseType(Ty)) return true; 2410 Body.push_back(Ty); 2411 2412 if (!StructType::isValidElementType(Ty)) 2413 return Error(EltTyLoc, "invalid element type for struct"); 2414 2415 while (EatIfPresent(lltok::comma)) { 2416 EltTyLoc = Lex.getLoc(); 2417 if (ParseType(Ty)) return true; 2418 2419 if (!StructType::isValidElementType(Ty)) 2420 return Error(EltTyLoc, "invalid element type for struct"); 2421 2422 Body.push_back(Ty); 2423 } 2424 2425 return ParseToken(lltok::rbrace, "expected '}' at end of struct"); 2426 } 2427 2428 /// ParseArrayVectorType - Parse an array or vector type, assuming the first 2429 /// token has already been consumed. 2430 /// Type 2431 /// ::= '[' APSINTVAL 'x' Types ']' 2432 /// ::= '<' APSINTVAL 'x' Types '>' 2433 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) { 2434 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2435 Lex.getAPSIntVal().getBitWidth() > 64) 2436 return TokError("expected number in address space"); 2437 2438 LocTy SizeLoc = Lex.getLoc(); 2439 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2440 Lex.Lex(); 2441 2442 if (ParseToken(lltok::kw_x, "expected 'x' after element count")) 2443 return true; 2444 2445 LocTy TypeLoc = Lex.getLoc(); 2446 Type *EltTy = nullptr; 2447 if (ParseType(EltTy)) return true; 2448 2449 if (ParseToken(isVector ? lltok::greater : lltok::rsquare, 2450 "expected end of sequential type")) 2451 return true; 2452 2453 if (isVector) { 2454 if (Size == 0) 2455 return Error(SizeLoc, "zero element vector is illegal"); 2456 if ((unsigned)Size != Size) 2457 return Error(SizeLoc, "size too large for vector"); 2458 if (!VectorType::isValidElementType(EltTy)) 2459 return Error(TypeLoc, "invalid vector element type"); 2460 Result = VectorType::get(EltTy, unsigned(Size)); 2461 } else { 2462 if (!ArrayType::isValidElementType(EltTy)) 2463 return Error(TypeLoc, "invalid array element type"); 2464 Result = ArrayType::get(EltTy, Size); 2465 } 2466 return false; 2467 } 2468 2469 //===----------------------------------------------------------------------===// 2470 // Function Semantic Analysis. 2471 //===----------------------------------------------------------------------===// 2472 2473 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 2474 int functionNumber) 2475 : P(p), F(f), FunctionNumber(functionNumber) { 2476 2477 // Insert unnamed arguments into the NumberedVals list. 2478 for (Argument &A : F.args()) 2479 if (!A.hasName()) 2480 NumberedVals.push_back(&A); 2481 } 2482 2483 LLParser::PerFunctionState::~PerFunctionState() { 2484 // If there were any forward referenced non-basicblock values, delete them. 2485 2486 for (const auto &P : ForwardRefVals) { 2487 if (isa<BasicBlock>(P.second.first)) 2488 continue; 2489 P.second.first->replaceAllUsesWith( 2490 UndefValue::get(P.second.first->getType())); 2491 delete P.second.first; 2492 } 2493 2494 for (const auto &P : ForwardRefValIDs) { 2495 if (isa<BasicBlock>(P.second.first)) 2496 continue; 2497 P.second.first->replaceAllUsesWith( 2498 UndefValue::get(P.second.first->getType())); 2499 delete P.second.first; 2500 } 2501 } 2502 2503 bool LLParser::PerFunctionState::FinishFunction() { 2504 if (!ForwardRefVals.empty()) 2505 return P.Error(ForwardRefVals.begin()->second.second, 2506 "use of undefined value '%" + ForwardRefVals.begin()->first + 2507 "'"); 2508 if (!ForwardRefValIDs.empty()) 2509 return P.Error(ForwardRefValIDs.begin()->second.second, 2510 "use of undefined value '%" + 2511 Twine(ForwardRefValIDs.begin()->first) + "'"); 2512 return false; 2513 } 2514 2515 /// GetVal - Get a value with the specified name or ID, creating a 2516 /// forward reference record if needed. This can return null if the value 2517 /// exists but does not have the right type. 2518 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty, 2519 LocTy Loc) { 2520 // Look this name up in the normal function symbol table. 2521 Value *Val = F.getValueSymbolTable()->lookup(Name); 2522 2523 // If this is a forward reference for the value, see if we already created a 2524 // forward ref record. 2525 if (!Val) { 2526 auto I = ForwardRefVals.find(Name); 2527 if (I != ForwardRefVals.end()) 2528 Val = I->second.first; 2529 } 2530 2531 // If we have the value in the symbol table or fwd-ref table, return it. 2532 if (Val) { 2533 if (Val->getType() == Ty) return Val; 2534 if (Ty->isLabelTy()) 2535 P.Error(Loc, "'%" + Name + "' is not a basic block"); 2536 else 2537 P.Error(Loc, "'%" + Name + "' defined with type '" + 2538 getTypeString(Val->getType()) + "'"); 2539 return nullptr; 2540 } 2541 2542 // Don't make placeholders with invalid type. 2543 if (!Ty->isFirstClassType()) { 2544 P.Error(Loc, "invalid use of a non-first-class type"); 2545 return nullptr; 2546 } 2547 2548 // Otherwise, create a new forward reference for this value and remember it. 2549 Value *FwdVal; 2550 if (Ty->isLabelTy()) { 2551 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 2552 } else { 2553 FwdVal = new Argument(Ty, Name); 2554 } 2555 2556 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 2557 return FwdVal; 2558 } 2559 2560 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc) { 2561 // Look this name up in the normal function symbol table. 2562 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 2563 2564 // If this is a forward reference for the value, see if we already created a 2565 // forward ref record. 2566 if (!Val) { 2567 auto I = ForwardRefValIDs.find(ID); 2568 if (I != ForwardRefValIDs.end()) 2569 Val = I->second.first; 2570 } 2571 2572 // If we have the value in the symbol table or fwd-ref table, return it. 2573 if (Val) { 2574 if (Val->getType() == Ty) return Val; 2575 if (Ty->isLabelTy()) 2576 P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block"); 2577 else 2578 P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" + 2579 getTypeString(Val->getType()) + "'"); 2580 return nullptr; 2581 } 2582 2583 if (!Ty->isFirstClassType()) { 2584 P.Error(Loc, "invalid use of a non-first-class type"); 2585 return nullptr; 2586 } 2587 2588 // Otherwise, create a new forward reference for this value and remember it. 2589 Value *FwdVal; 2590 if (Ty->isLabelTy()) { 2591 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 2592 } else { 2593 FwdVal = new Argument(Ty); 2594 } 2595 2596 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 2597 return FwdVal; 2598 } 2599 2600 /// SetInstName - After an instruction is parsed and inserted into its 2601 /// basic block, this installs its name. 2602 bool LLParser::PerFunctionState::SetInstName(int NameID, 2603 const std::string &NameStr, 2604 LocTy NameLoc, Instruction *Inst) { 2605 // If this instruction has void type, it cannot have a name or ID specified. 2606 if (Inst->getType()->isVoidTy()) { 2607 if (NameID != -1 || !NameStr.empty()) 2608 return P.Error(NameLoc, "instructions returning void cannot have a name"); 2609 return false; 2610 } 2611 2612 // If this was a numbered instruction, verify that the instruction is the 2613 // expected value and resolve any forward references. 2614 if (NameStr.empty()) { 2615 // If neither a name nor an ID was specified, just use the next ID. 2616 if (NameID == -1) 2617 NameID = NumberedVals.size(); 2618 2619 if (unsigned(NameID) != NumberedVals.size()) 2620 return P.Error(NameLoc, "instruction expected to be numbered '%" + 2621 Twine(NumberedVals.size()) + "'"); 2622 2623 auto FI = ForwardRefValIDs.find(NameID); 2624 if (FI != ForwardRefValIDs.end()) { 2625 Value *Sentinel = FI->second.first; 2626 if (Sentinel->getType() != Inst->getType()) 2627 return P.Error(NameLoc, "instruction forward referenced with type '" + 2628 getTypeString(FI->second.first->getType()) + "'"); 2629 2630 Sentinel->replaceAllUsesWith(Inst); 2631 delete Sentinel; 2632 ForwardRefValIDs.erase(FI); 2633 } 2634 2635 NumberedVals.push_back(Inst); 2636 return false; 2637 } 2638 2639 // Otherwise, the instruction had a name. Resolve forward refs and set it. 2640 auto FI = ForwardRefVals.find(NameStr); 2641 if (FI != ForwardRefVals.end()) { 2642 Value *Sentinel = FI->second.first; 2643 if (Sentinel->getType() != Inst->getType()) 2644 return P.Error(NameLoc, "instruction forward referenced with type '" + 2645 getTypeString(FI->second.first->getType()) + "'"); 2646 2647 Sentinel->replaceAllUsesWith(Inst); 2648 delete Sentinel; 2649 ForwardRefVals.erase(FI); 2650 } 2651 2652 // Set the name on the instruction. 2653 Inst->setName(NameStr); 2654 2655 if (Inst->getName() != NameStr) 2656 return P.Error(NameLoc, "multiple definition of local value named '" + 2657 NameStr + "'"); 2658 return false; 2659 } 2660 2661 /// GetBB - Get a basic block with the specified name or ID, creating a 2662 /// forward reference record if needed. 2663 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, 2664 LocTy Loc) { 2665 return dyn_cast_or_null<BasicBlock>(GetVal(Name, 2666 Type::getLabelTy(F.getContext()), Loc)); 2667 } 2668 2669 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { 2670 return dyn_cast_or_null<BasicBlock>(GetVal(ID, 2671 Type::getLabelTy(F.getContext()), Loc)); 2672 } 2673 2674 /// DefineBB - Define the specified basic block, which is either named or 2675 /// unnamed. If there is an error, this returns null otherwise it returns 2676 /// the block being defined. 2677 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, 2678 LocTy Loc) { 2679 BasicBlock *BB; 2680 if (Name.empty()) 2681 BB = GetBB(NumberedVals.size(), Loc); 2682 else 2683 BB = GetBB(Name, Loc); 2684 if (!BB) return nullptr; // Already diagnosed error. 2685 2686 // Move the block to the end of the function. Forward ref'd blocks are 2687 // inserted wherever they happen to be referenced. 2688 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 2689 2690 // Remove the block from forward ref sets. 2691 if (Name.empty()) { 2692 ForwardRefValIDs.erase(NumberedVals.size()); 2693 NumberedVals.push_back(BB); 2694 } else { 2695 // BB forward references are already in the function symbol table. 2696 ForwardRefVals.erase(Name); 2697 } 2698 2699 return BB; 2700 } 2701 2702 //===----------------------------------------------------------------------===// 2703 // Constants. 2704 //===----------------------------------------------------------------------===// 2705 2706 /// ParseValID - Parse an abstract value that doesn't necessarily have a 2707 /// type implied. For example, if we parse "4" we don't know what integer type 2708 /// it has. The value will later be combined with its type and checked for 2709 /// sanity. PFS is used to convert function-local operands of metadata (since 2710 /// metadata operands are not just parsed here but also converted to values). 2711 /// PFS can be null when we are not parsing metadata values inside a function. 2712 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { 2713 ID.Loc = Lex.getLoc(); 2714 switch (Lex.getKind()) { 2715 default: return TokError("expected value token"); 2716 case lltok::GlobalID: // @42 2717 ID.UIntVal = Lex.getUIntVal(); 2718 ID.Kind = ValID::t_GlobalID; 2719 break; 2720 case lltok::GlobalVar: // @foo 2721 ID.StrVal = Lex.getStrVal(); 2722 ID.Kind = ValID::t_GlobalName; 2723 break; 2724 case lltok::LocalVarID: // %42 2725 ID.UIntVal = Lex.getUIntVal(); 2726 ID.Kind = ValID::t_LocalID; 2727 break; 2728 case lltok::LocalVar: // %foo 2729 ID.StrVal = Lex.getStrVal(); 2730 ID.Kind = ValID::t_LocalName; 2731 break; 2732 case lltok::APSInt: 2733 ID.APSIntVal = Lex.getAPSIntVal(); 2734 ID.Kind = ValID::t_APSInt; 2735 break; 2736 case lltok::APFloat: 2737 ID.APFloatVal = Lex.getAPFloatVal(); 2738 ID.Kind = ValID::t_APFloat; 2739 break; 2740 case lltok::kw_true: 2741 ID.ConstantVal = ConstantInt::getTrue(Context); 2742 ID.Kind = ValID::t_Constant; 2743 break; 2744 case lltok::kw_false: 2745 ID.ConstantVal = ConstantInt::getFalse(Context); 2746 ID.Kind = ValID::t_Constant; 2747 break; 2748 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 2749 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 2750 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 2751 case lltok::kw_none: ID.Kind = ValID::t_None; break; 2752 2753 case lltok::lbrace: { 2754 // ValID ::= '{' ConstVector '}' 2755 Lex.Lex(); 2756 SmallVector<Constant*, 16> Elts; 2757 if (ParseGlobalValueVector(Elts) || 2758 ParseToken(lltok::rbrace, "expected end of struct constant")) 2759 return true; 2760 2761 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 2762 ID.UIntVal = Elts.size(); 2763 memcpy(ID.ConstantStructElts.get(), Elts.data(), 2764 Elts.size() * sizeof(Elts[0])); 2765 ID.Kind = ValID::t_ConstantStruct; 2766 return false; 2767 } 2768 case lltok::less: { 2769 // ValID ::= '<' ConstVector '>' --> Vector. 2770 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 2771 Lex.Lex(); 2772 bool isPackedStruct = EatIfPresent(lltok::lbrace); 2773 2774 SmallVector<Constant*, 16> Elts; 2775 LocTy FirstEltLoc = Lex.getLoc(); 2776 if (ParseGlobalValueVector(Elts) || 2777 (isPackedStruct && 2778 ParseToken(lltok::rbrace, "expected end of packed struct")) || 2779 ParseToken(lltok::greater, "expected end of constant")) 2780 return true; 2781 2782 if (isPackedStruct) { 2783 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 2784 memcpy(ID.ConstantStructElts.get(), Elts.data(), 2785 Elts.size() * sizeof(Elts[0])); 2786 ID.UIntVal = Elts.size(); 2787 ID.Kind = ValID::t_PackedConstantStruct; 2788 return false; 2789 } 2790 2791 if (Elts.empty()) 2792 return Error(ID.Loc, "constant vector must not be empty"); 2793 2794 if (!Elts[0]->getType()->isIntegerTy() && 2795 !Elts[0]->getType()->isFloatingPointTy() && 2796 !Elts[0]->getType()->isPointerTy()) 2797 return Error(FirstEltLoc, 2798 "vector elements must have integer, pointer or floating point type"); 2799 2800 // Verify that all the vector elements have the same type. 2801 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 2802 if (Elts[i]->getType() != Elts[0]->getType()) 2803 return Error(FirstEltLoc, 2804 "vector element #" + Twine(i) + 2805 " is not of type '" + getTypeString(Elts[0]->getType())); 2806 2807 ID.ConstantVal = ConstantVector::get(Elts); 2808 ID.Kind = ValID::t_Constant; 2809 return false; 2810 } 2811 case lltok::lsquare: { // Array Constant 2812 Lex.Lex(); 2813 SmallVector<Constant*, 16> Elts; 2814 LocTy FirstEltLoc = Lex.getLoc(); 2815 if (ParseGlobalValueVector(Elts) || 2816 ParseToken(lltok::rsquare, "expected end of array constant")) 2817 return true; 2818 2819 // Handle empty element. 2820 if (Elts.empty()) { 2821 // Use undef instead of an array because it's inconvenient to determine 2822 // the element type at this point, there being no elements to examine. 2823 ID.Kind = ValID::t_EmptyArray; 2824 return false; 2825 } 2826 2827 if (!Elts[0]->getType()->isFirstClassType()) 2828 return Error(FirstEltLoc, "invalid array element type: " + 2829 getTypeString(Elts[0]->getType())); 2830 2831 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 2832 2833 // Verify all elements are correct type! 2834 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 2835 if (Elts[i]->getType() != Elts[0]->getType()) 2836 return Error(FirstEltLoc, 2837 "array element #" + Twine(i) + 2838 " is not of type '" + getTypeString(Elts[0]->getType())); 2839 } 2840 2841 ID.ConstantVal = ConstantArray::get(ATy, Elts); 2842 ID.Kind = ValID::t_Constant; 2843 return false; 2844 } 2845 case lltok::kw_c: // c "foo" 2846 Lex.Lex(); 2847 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 2848 false); 2849 if (ParseToken(lltok::StringConstant, "expected string")) return true; 2850 ID.Kind = ValID::t_Constant; 2851 return false; 2852 2853 case lltok::kw_asm: { 2854 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 2855 // STRINGCONSTANT 2856 bool HasSideEffect, AlignStack, AsmDialect; 2857 Lex.Lex(); 2858 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 2859 ParseOptionalToken(lltok::kw_alignstack, AlignStack) || 2860 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 2861 ParseStringConstant(ID.StrVal) || 2862 ParseToken(lltok::comma, "expected comma in inline asm expression") || 2863 ParseToken(lltok::StringConstant, "expected constraint string")) 2864 return true; 2865 ID.StrVal2 = Lex.getStrVal(); 2866 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) | 2867 (unsigned(AsmDialect)<<2); 2868 ID.Kind = ValID::t_InlineAsm; 2869 return false; 2870 } 2871 2872 case lltok::kw_blockaddress: { 2873 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 2874 Lex.Lex(); 2875 2876 ValID Fn, Label; 2877 2878 if (ParseToken(lltok::lparen, "expected '(' in block address expression") || 2879 ParseValID(Fn) || 2880 ParseToken(lltok::comma, "expected comma in block address expression")|| 2881 ParseValID(Label) || 2882 ParseToken(lltok::rparen, "expected ')' in block address expression")) 2883 return true; 2884 2885 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 2886 return Error(Fn.Loc, "expected function name in blockaddress"); 2887 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 2888 return Error(Label.Loc, "expected basic block name in blockaddress"); 2889 2890 // Try to find the function (but skip it if it's forward-referenced). 2891 GlobalValue *GV = nullptr; 2892 if (Fn.Kind == ValID::t_GlobalID) { 2893 if (Fn.UIntVal < NumberedVals.size()) 2894 GV = NumberedVals[Fn.UIntVal]; 2895 } else if (!ForwardRefVals.count(Fn.StrVal)) { 2896 GV = M->getNamedValue(Fn.StrVal); 2897 } 2898 Function *F = nullptr; 2899 if (GV) { 2900 // Confirm that it's actually a function with a definition. 2901 if (!isa<Function>(GV)) 2902 return Error(Fn.Loc, "expected function name in blockaddress"); 2903 F = cast<Function>(GV); 2904 if (F->isDeclaration()) 2905 return Error(Fn.Loc, "cannot take blockaddress inside a declaration"); 2906 } 2907 2908 if (!F) { 2909 // Make a global variable as a placeholder for this reference. 2910 GlobalValue *&FwdRef = 2911 ForwardRefBlockAddresses.insert(std::make_pair( 2912 std::move(Fn), 2913 std::map<ValID, GlobalValue *>())) 2914 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 2915 .first->second; 2916 if (!FwdRef) 2917 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 2918 GlobalValue::InternalLinkage, nullptr, ""); 2919 ID.ConstantVal = FwdRef; 2920 ID.Kind = ValID::t_Constant; 2921 return false; 2922 } 2923 2924 // We found the function; now find the basic block. Don't use PFS, since we 2925 // might be inside a constant expression. 2926 BasicBlock *BB; 2927 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 2928 if (Label.Kind == ValID::t_LocalID) 2929 BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc); 2930 else 2931 BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc); 2932 if (!BB) 2933 return Error(Label.Loc, "referenced value is not a basic block"); 2934 } else { 2935 if (Label.Kind == ValID::t_LocalID) 2936 return Error(Label.Loc, "cannot take address of numeric label after " 2937 "the function is defined"); 2938 BB = dyn_cast_or_null<BasicBlock>( 2939 F->getValueSymbolTable()->lookup(Label.StrVal)); 2940 if (!BB) 2941 return Error(Label.Loc, "referenced value is not a basic block"); 2942 } 2943 2944 ID.ConstantVal = BlockAddress::get(F, BB); 2945 ID.Kind = ValID::t_Constant; 2946 return false; 2947 } 2948 2949 case lltok::kw_trunc: 2950 case lltok::kw_zext: 2951 case lltok::kw_sext: 2952 case lltok::kw_fptrunc: 2953 case lltok::kw_fpext: 2954 case lltok::kw_bitcast: 2955 case lltok::kw_addrspacecast: 2956 case lltok::kw_uitofp: 2957 case lltok::kw_sitofp: 2958 case lltok::kw_fptoui: 2959 case lltok::kw_fptosi: 2960 case lltok::kw_inttoptr: 2961 case lltok::kw_ptrtoint: { 2962 unsigned Opc = Lex.getUIntVal(); 2963 Type *DestTy = nullptr; 2964 Constant *SrcVal; 2965 Lex.Lex(); 2966 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || 2967 ParseGlobalTypeAndValue(SrcVal) || 2968 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 2969 ParseType(DestTy) || 2970 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 2971 return true; 2972 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 2973 return Error(ID.Loc, "invalid cast opcode for cast from '" + 2974 getTypeString(SrcVal->getType()) + "' to '" + 2975 getTypeString(DestTy) + "'"); 2976 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 2977 SrcVal, DestTy); 2978 ID.Kind = ValID::t_Constant; 2979 return false; 2980 } 2981 case lltok::kw_extractvalue: { 2982 Lex.Lex(); 2983 Constant *Val; 2984 SmallVector<unsigned, 4> Indices; 2985 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| 2986 ParseGlobalTypeAndValue(Val) || 2987 ParseIndexList(Indices) || 2988 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 2989 return true; 2990 2991 if (!Val->getType()->isAggregateType()) 2992 return Error(ID.Loc, "extractvalue operand must be aggregate type"); 2993 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 2994 return Error(ID.Loc, "invalid indices for extractvalue"); 2995 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 2996 ID.Kind = ValID::t_Constant; 2997 return false; 2998 } 2999 case lltok::kw_insertvalue: { 3000 Lex.Lex(); 3001 Constant *Val0, *Val1; 3002 SmallVector<unsigned, 4> Indices; 3003 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| 3004 ParseGlobalTypeAndValue(Val0) || 3005 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| 3006 ParseGlobalTypeAndValue(Val1) || 3007 ParseIndexList(Indices) || 3008 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 3009 return true; 3010 if (!Val0->getType()->isAggregateType()) 3011 return Error(ID.Loc, "insertvalue operand must be aggregate type"); 3012 Type *IndexedType = 3013 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 3014 if (!IndexedType) 3015 return Error(ID.Loc, "invalid indices for insertvalue"); 3016 if (IndexedType != Val1->getType()) 3017 return Error(ID.Loc, "insertvalue operand and field disagree in type: '" + 3018 getTypeString(Val1->getType()) + 3019 "' instead of '" + getTypeString(IndexedType) + 3020 "'"); 3021 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 3022 ID.Kind = ValID::t_Constant; 3023 return false; 3024 } 3025 case lltok::kw_icmp: 3026 case lltok::kw_fcmp: { 3027 unsigned PredVal, Opc = Lex.getUIntVal(); 3028 Constant *Val0, *Val1; 3029 Lex.Lex(); 3030 if (ParseCmpPredicate(PredVal, Opc) || 3031 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || 3032 ParseGlobalTypeAndValue(Val0) || 3033 ParseToken(lltok::comma, "expected comma in compare constantexpr") || 3034 ParseGlobalTypeAndValue(Val1) || 3035 ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) 3036 return true; 3037 3038 if (Val0->getType() != Val1->getType()) 3039 return Error(ID.Loc, "compare operands must have the same type"); 3040 3041 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 3042 3043 if (Opc == Instruction::FCmp) { 3044 if (!Val0->getType()->isFPOrFPVectorTy()) 3045 return Error(ID.Loc, "fcmp requires floating point operands"); 3046 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3047 } else { 3048 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3049 if (!Val0->getType()->isIntOrIntVectorTy() && 3050 !Val0->getType()->getScalarType()->isPointerTy()) 3051 return Error(ID.Loc, "icmp requires pointer or integer operands"); 3052 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3053 } 3054 ID.Kind = ValID::t_Constant; 3055 return false; 3056 } 3057 3058 // Binary Operators. 3059 case lltok::kw_add: 3060 case lltok::kw_fadd: 3061 case lltok::kw_sub: 3062 case lltok::kw_fsub: 3063 case lltok::kw_mul: 3064 case lltok::kw_fmul: 3065 case lltok::kw_udiv: 3066 case lltok::kw_sdiv: 3067 case lltok::kw_fdiv: 3068 case lltok::kw_urem: 3069 case lltok::kw_srem: 3070 case lltok::kw_frem: 3071 case lltok::kw_shl: 3072 case lltok::kw_lshr: 3073 case lltok::kw_ashr: { 3074 bool NUW = false; 3075 bool NSW = false; 3076 bool Exact = false; 3077 unsigned Opc = Lex.getUIntVal(); 3078 Constant *Val0, *Val1; 3079 Lex.Lex(); 3080 LocTy ModifierLoc = Lex.getLoc(); 3081 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3082 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3083 if (EatIfPresent(lltok::kw_nuw)) 3084 NUW = true; 3085 if (EatIfPresent(lltok::kw_nsw)) { 3086 NSW = true; 3087 if (EatIfPresent(lltok::kw_nuw)) 3088 NUW = true; 3089 } 3090 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3091 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3092 if (EatIfPresent(lltok::kw_exact)) 3093 Exact = true; 3094 } 3095 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3096 ParseGlobalTypeAndValue(Val0) || 3097 ParseToken(lltok::comma, "expected comma in binary constantexpr") || 3098 ParseGlobalTypeAndValue(Val1) || 3099 ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3100 return true; 3101 if (Val0->getType() != Val1->getType()) 3102 return Error(ID.Loc, "operands of constexpr must have same type"); 3103 if (!Val0->getType()->isIntOrIntVectorTy()) { 3104 if (NUW) 3105 return Error(ModifierLoc, "nuw only applies to integer operations"); 3106 if (NSW) 3107 return Error(ModifierLoc, "nsw only applies to integer operations"); 3108 } 3109 // Check that the type is valid for the operator. 3110 switch (Opc) { 3111 case Instruction::Add: 3112 case Instruction::Sub: 3113 case Instruction::Mul: 3114 case Instruction::UDiv: 3115 case Instruction::SDiv: 3116 case Instruction::URem: 3117 case Instruction::SRem: 3118 case Instruction::Shl: 3119 case Instruction::AShr: 3120 case Instruction::LShr: 3121 if (!Val0->getType()->isIntOrIntVectorTy()) 3122 return Error(ID.Loc, "constexpr requires integer operands"); 3123 break; 3124 case Instruction::FAdd: 3125 case Instruction::FSub: 3126 case Instruction::FMul: 3127 case Instruction::FDiv: 3128 case Instruction::FRem: 3129 if (!Val0->getType()->isFPOrFPVectorTy()) 3130 return Error(ID.Loc, "constexpr requires fp operands"); 3131 break; 3132 default: llvm_unreachable("Unknown binary operator!"); 3133 } 3134 unsigned Flags = 0; 3135 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3136 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3137 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3138 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3139 ID.ConstantVal = C; 3140 ID.Kind = ValID::t_Constant; 3141 return false; 3142 } 3143 3144 // Logical Operations 3145 case lltok::kw_and: 3146 case lltok::kw_or: 3147 case lltok::kw_xor: { 3148 unsigned Opc = Lex.getUIntVal(); 3149 Constant *Val0, *Val1; 3150 Lex.Lex(); 3151 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3152 ParseGlobalTypeAndValue(Val0) || 3153 ParseToken(lltok::comma, "expected comma in logical constantexpr") || 3154 ParseGlobalTypeAndValue(Val1) || 3155 ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3156 return true; 3157 if (Val0->getType() != Val1->getType()) 3158 return Error(ID.Loc, "operands of constexpr must have same type"); 3159 if (!Val0->getType()->isIntOrIntVectorTy()) 3160 return Error(ID.Loc, 3161 "constexpr requires integer or integer vector operands"); 3162 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3163 ID.Kind = ValID::t_Constant; 3164 return false; 3165 } 3166 3167 case lltok::kw_getelementptr: 3168 case lltok::kw_shufflevector: 3169 case lltok::kw_insertelement: 3170 case lltok::kw_extractelement: 3171 case lltok::kw_select: { 3172 unsigned Opc = Lex.getUIntVal(); 3173 SmallVector<Constant*, 16> Elts; 3174 bool InBounds = false; 3175 Type *Ty; 3176 Lex.Lex(); 3177 3178 if (Opc == Instruction::GetElementPtr) 3179 InBounds = EatIfPresent(lltok::kw_inbounds); 3180 3181 if (ParseToken(lltok::lparen, "expected '(' in constantexpr")) 3182 return true; 3183 3184 LocTy ExplicitTypeLoc = Lex.getLoc(); 3185 if (Opc == Instruction::GetElementPtr) { 3186 if (ParseType(Ty) || 3187 ParseToken(lltok::comma, "expected comma after getelementptr's type")) 3188 return true; 3189 } 3190 3191 Optional<unsigned> InRangeOp; 3192 if (ParseGlobalValueVector( 3193 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) || 3194 ParseToken(lltok::rparen, "expected ')' in constantexpr")) 3195 return true; 3196 3197 if (Opc == Instruction::GetElementPtr) { 3198 if (Elts.size() == 0 || 3199 !Elts[0]->getType()->getScalarType()->isPointerTy()) 3200 return Error(ID.Loc, "base of getelementptr must be a pointer"); 3201 3202 Type *BaseType = Elts[0]->getType(); 3203 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3204 if (Ty != BasePointerType->getElementType()) 3205 return Error( 3206 ExplicitTypeLoc, 3207 "explicit pointee type doesn't match operand's pointee type"); 3208 3209 unsigned GEPWidth = 3210 BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0; 3211 3212 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3213 for (Constant *Val : Indices) { 3214 Type *ValTy = Val->getType(); 3215 if (!ValTy->getScalarType()->isIntegerTy()) 3216 return Error(ID.Loc, "getelementptr index must be an integer"); 3217 if (ValTy->isVectorTy()) { 3218 unsigned ValNumEl = ValTy->getVectorNumElements(); 3219 if (GEPWidth && (ValNumEl != GEPWidth)) 3220 return Error( 3221 ID.Loc, 3222 "getelementptr vector index has a wrong number of elements"); 3223 // GEPWidth may have been unknown because the base is a scalar, 3224 // but it is known now. 3225 GEPWidth = ValNumEl; 3226 } 3227 } 3228 3229 SmallPtrSet<Type*, 4> Visited; 3230 if (!Indices.empty() && !Ty->isSized(&Visited)) 3231 return Error(ID.Loc, "base element of getelementptr must be sized"); 3232 3233 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3234 return Error(ID.Loc, "invalid getelementptr indices"); 3235 3236 if (InRangeOp) { 3237 if (*InRangeOp == 0) 3238 return Error(ID.Loc, 3239 "inrange keyword may not appear on pointer operand"); 3240 --*InRangeOp; 3241 } 3242 3243 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, 3244 InBounds, InRangeOp); 3245 } else if (Opc == Instruction::Select) { 3246 if (Elts.size() != 3) 3247 return Error(ID.Loc, "expected three operands to select"); 3248 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3249 Elts[2])) 3250 return Error(ID.Loc, Reason); 3251 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3252 } else if (Opc == Instruction::ShuffleVector) { 3253 if (Elts.size() != 3) 3254 return Error(ID.Loc, "expected three operands to shufflevector"); 3255 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3256 return Error(ID.Loc, "invalid operands to shufflevector"); 3257 ID.ConstantVal = 3258 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); 3259 } else if (Opc == Instruction::ExtractElement) { 3260 if (Elts.size() != 2) 3261 return Error(ID.Loc, "expected two operands to extractelement"); 3262 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3263 return Error(ID.Loc, "invalid extractelement operands"); 3264 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3265 } else { 3266 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3267 if (Elts.size() != 3) 3268 return Error(ID.Loc, "expected three operands to insertelement"); 3269 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3270 return Error(ID.Loc, "invalid insertelement operands"); 3271 ID.ConstantVal = 3272 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3273 } 3274 3275 ID.Kind = ValID::t_Constant; 3276 return false; 3277 } 3278 } 3279 3280 Lex.Lex(); 3281 return false; 3282 } 3283 3284 /// ParseGlobalValue - Parse a global value with the specified type. 3285 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) { 3286 C = nullptr; 3287 ValID ID; 3288 Value *V = nullptr; 3289 bool Parsed = ParseValID(ID) || 3290 ConvertValIDToValue(Ty, ID, V, nullptr); 3291 if (V && !(C = dyn_cast<Constant>(V))) 3292 return Error(ID.Loc, "global values must be constants"); 3293 return Parsed; 3294 } 3295 3296 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { 3297 Type *Ty = nullptr; 3298 return ParseType(Ty) || 3299 ParseGlobalValue(Ty, V); 3300 } 3301 3302 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3303 C = nullptr; 3304 3305 LocTy KwLoc = Lex.getLoc(); 3306 if (!EatIfPresent(lltok::kw_comdat)) 3307 return false; 3308 3309 if (EatIfPresent(lltok::lparen)) { 3310 if (Lex.getKind() != lltok::ComdatVar) 3311 return TokError("expected comdat variable"); 3312 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3313 Lex.Lex(); 3314 if (ParseToken(lltok::rparen, "expected ')' after comdat var")) 3315 return true; 3316 } else { 3317 if (GlobalName.empty()) 3318 return TokError("comdat cannot be unnamed"); 3319 C = getComdat(GlobalName, KwLoc); 3320 } 3321 3322 return false; 3323 } 3324 3325 /// ParseGlobalValueVector 3326 /// ::= /*empty*/ 3327 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)* 3328 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts, 3329 Optional<unsigned> *InRangeOp) { 3330 // Empty list. 3331 if (Lex.getKind() == lltok::rbrace || 3332 Lex.getKind() == lltok::rsquare || 3333 Lex.getKind() == lltok::greater || 3334 Lex.getKind() == lltok::rparen) 3335 return false; 3336 3337 do { 3338 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange)) 3339 *InRangeOp = Elts.size(); 3340 3341 Constant *C; 3342 if (ParseGlobalTypeAndValue(C)) return true; 3343 Elts.push_back(C); 3344 } while (EatIfPresent(lltok::comma)); 3345 3346 return false; 3347 } 3348 3349 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) { 3350 SmallVector<Metadata *, 16> Elts; 3351 if (ParseMDNodeVector(Elts)) 3352 return true; 3353 3354 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3355 return false; 3356 } 3357 3358 /// MDNode: 3359 /// ::= !{ ... } 3360 /// ::= !7 3361 /// ::= !DILocation(...) 3362 bool LLParser::ParseMDNode(MDNode *&N) { 3363 if (Lex.getKind() == lltok::MetadataVar) 3364 return ParseSpecializedMDNode(N); 3365 3366 return ParseToken(lltok::exclaim, "expected '!' here") || 3367 ParseMDNodeTail(N); 3368 } 3369 3370 bool LLParser::ParseMDNodeTail(MDNode *&N) { 3371 // !{ ... } 3372 if (Lex.getKind() == lltok::lbrace) 3373 return ParseMDTuple(N); 3374 3375 // !42 3376 return ParseMDNodeID(N); 3377 } 3378 3379 namespace { 3380 3381 /// Structure to represent an optional metadata field. 3382 template <class FieldTy> struct MDFieldImpl { 3383 typedef MDFieldImpl ImplTy; 3384 FieldTy Val; 3385 bool Seen; 3386 3387 void assign(FieldTy Val) { 3388 Seen = true; 3389 this->Val = std::move(Val); 3390 } 3391 3392 explicit MDFieldImpl(FieldTy Default) 3393 : Val(std::move(Default)), Seen(false) {} 3394 }; 3395 3396 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 3397 uint64_t Max; 3398 3399 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 3400 : ImplTy(Default), Max(Max) {} 3401 }; 3402 3403 struct LineField : public MDUnsignedField { 3404 LineField() : MDUnsignedField(0, UINT32_MAX) {} 3405 }; 3406 3407 struct ColumnField : public MDUnsignedField { 3408 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 3409 }; 3410 3411 struct DwarfTagField : public MDUnsignedField { 3412 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 3413 DwarfTagField(dwarf::Tag DefaultTag) 3414 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 3415 }; 3416 3417 struct DwarfMacinfoTypeField : public MDUnsignedField { 3418 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 3419 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 3420 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 3421 }; 3422 3423 struct DwarfAttEncodingField : public MDUnsignedField { 3424 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 3425 }; 3426 3427 struct DwarfVirtualityField : public MDUnsignedField { 3428 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 3429 }; 3430 3431 struct DwarfLangField : public MDUnsignedField { 3432 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 3433 }; 3434 3435 struct DwarfCCField : public MDUnsignedField { 3436 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 3437 }; 3438 3439 struct EmissionKindField : public MDUnsignedField { 3440 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 3441 }; 3442 3443 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 3444 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 3445 }; 3446 3447 struct MDSignedField : public MDFieldImpl<int64_t> { 3448 int64_t Min; 3449 int64_t Max; 3450 3451 MDSignedField(int64_t Default = 0) 3452 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 3453 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 3454 : ImplTy(Default), Min(Min), Max(Max) {} 3455 }; 3456 3457 struct MDBoolField : public MDFieldImpl<bool> { 3458 MDBoolField(bool Default = false) : ImplTy(Default) {} 3459 }; 3460 3461 struct MDField : public MDFieldImpl<Metadata *> { 3462 bool AllowNull; 3463 3464 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 3465 }; 3466 3467 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> { 3468 MDConstant() : ImplTy(nullptr) {} 3469 }; 3470 3471 struct MDStringField : public MDFieldImpl<MDString *> { 3472 bool AllowEmpty; 3473 MDStringField(bool AllowEmpty = true) 3474 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 3475 }; 3476 3477 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 3478 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 3479 }; 3480 3481 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> { 3482 ChecksumKindField() : ImplTy(DIFile::CSK_None) {} 3483 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {} 3484 }; 3485 3486 } // end anonymous namespace 3487 3488 namespace llvm { 3489 3490 template <> 3491 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3492 MDUnsignedField &Result) { 3493 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 3494 return TokError("expected unsigned integer"); 3495 3496 auto &U = Lex.getAPSIntVal(); 3497 if (U.ugt(Result.Max)) 3498 return TokError("value for '" + Name + "' too large, limit is " + 3499 Twine(Result.Max)); 3500 Result.assign(U.getZExtValue()); 3501 assert(Result.Val <= Result.Max && "Expected value in range"); 3502 Lex.Lex(); 3503 return false; 3504 } 3505 3506 template <> 3507 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) { 3508 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3509 } 3510 template <> 3511 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 3512 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3513 } 3514 3515 template <> 3516 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 3517 if (Lex.getKind() == lltok::APSInt) 3518 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3519 3520 if (Lex.getKind() != lltok::DwarfTag) 3521 return TokError("expected DWARF tag"); 3522 3523 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 3524 if (Tag == dwarf::DW_TAG_invalid) 3525 return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 3526 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 3527 3528 Result.assign(Tag); 3529 Lex.Lex(); 3530 return false; 3531 } 3532 3533 template <> 3534 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3535 DwarfMacinfoTypeField &Result) { 3536 if (Lex.getKind() == lltok::APSInt) 3537 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3538 3539 if (Lex.getKind() != lltok::DwarfMacinfo) 3540 return TokError("expected DWARF macinfo type"); 3541 3542 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 3543 if (Macinfo == dwarf::DW_MACINFO_invalid) 3544 return TokError( 3545 "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'"); 3546 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 3547 3548 Result.assign(Macinfo); 3549 Lex.Lex(); 3550 return false; 3551 } 3552 3553 template <> 3554 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3555 DwarfVirtualityField &Result) { 3556 if (Lex.getKind() == lltok::APSInt) 3557 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3558 3559 if (Lex.getKind() != lltok::DwarfVirtuality) 3560 return TokError("expected DWARF virtuality code"); 3561 3562 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 3563 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 3564 return TokError("invalid DWARF virtuality code" + Twine(" '") + 3565 Lex.getStrVal() + "'"); 3566 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 3567 Result.assign(Virtuality); 3568 Lex.Lex(); 3569 return false; 3570 } 3571 3572 template <> 3573 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 3574 if (Lex.getKind() == lltok::APSInt) 3575 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3576 3577 if (Lex.getKind() != lltok::DwarfLang) 3578 return TokError("expected DWARF language"); 3579 3580 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 3581 if (!Lang) 3582 return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 3583 "'"); 3584 assert(Lang <= Result.Max && "Expected valid DWARF language"); 3585 Result.assign(Lang); 3586 Lex.Lex(); 3587 return false; 3588 } 3589 3590 template <> 3591 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 3592 if (Lex.getKind() == lltok::APSInt) 3593 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3594 3595 if (Lex.getKind() != lltok::DwarfCC) 3596 return TokError("expected DWARF calling convention"); 3597 3598 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 3599 if (!CC) 3600 return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() + 3601 "'"); 3602 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 3603 Result.assign(CC); 3604 Lex.Lex(); 3605 return false; 3606 } 3607 3608 template <> 3609 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) { 3610 if (Lex.getKind() == lltok::APSInt) 3611 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3612 3613 if (Lex.getKind() != lltok::EmissionKind) 3614 return TokError("expected emission kind"); 3615 3616 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 3617 if (!Kind) 3618 return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 3619 "'"); 3620 assert(*Kind <= Result.Max && "Expected valid emission kind"); 3621 Result.assign(*Kind); 3622 Lex.Lex(); 3623 return false; 3624 } 3625 3626 template <> 3627 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3628 DwarfAttEncodingField &Result) { 3629 if (Lex.getKind() == lltok::APSInt) 3630 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3631 3632 if (Lex.getKind() != lltok::DwarfAttEncoding) 3633 return TokError("expected DWARF type attribute encoding"); 3634 3635 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 3636 if (!Encoding) 3637 return TokError("invalid DWARF type attribute encoding" + Twine(" '") + 3638 Lex.getStrVal() + "'"); 3639 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 3640 Result.assign(Encoding); 3641 Lex.Lex(); 3642 return false; 3643 } 3644 3645 /// DIFlagField 3646 /// ::= uint32 3647 /// ::= DIFlagVector 3648 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 3649 template <> 3650 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 3651 3652 // Parser for a single flag. 3653 auto parseFlag = [&](DINode::DIFlags &Val) { 3654 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 3655 uint32_t TempVal = static_cast<uint32_t>(Val); 3656 bool Res = ParseUInt32(TempVal); 3657 Val = static_cast<DINode::DIFlags>(TempVal); 3658 return Res; 3659 } 3660 3661 if (Lex.getKind() != lltok::DIFlag) 3662 return TokError("expected debug info flag"); 3663 3664 Val = DINode::getFlag(Lex.getStrVal()); 3665 if (!Val) 3666 return TokError(Twine("invalid debug info flag flag '") + 3667 Lex.getStrVal() + "'"); 3668 Lex.Lex(); 3669 return false; 3670 }; 3671 3672 // Parse the flags and combine them together. 3673 DINode::DIFlags Combined = DINode::FlagZero; 3674 do { 3675 DINode::DIFlags Val; 3676 if (parseFlag(Val)) 3677 return true; 3678 Combined |= Val; 3679 } while (EatIfPresent(lltok::bar)); 3680 3681 Result.assign(Combined); 3682 return false; 3683 } 3684 3685 template <> 3686 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3687 MDSignedField &Result) { 3688 if (Lex.getKind() != lltok::APSInt) 3689 return TokError("expected signed integer"); 3690 3691 auto &S = Lex.getAPSIntVal(); 3692 if (S < Result.Min) 3693 return TokError("value for '" + Name + "' too small, limit is " + 3694 Twine(Result.Min)); 3695 if (S > Result.Max) 3696 return TokError("value for '" + Name + "' too large, limit is " + 3697 Twine(Result.Max)); 3698 Result.assign(S.getExtValue()); 3699 assert(Result.Val >= Result.Min && "Expected value in range"); 3700 assert(Result.Val <= Result.Max && "Expected value in range"); 3701 Lex.Lex(); 3702 return false; 3703 } 3704 3705 template <> 3706 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 3707 switch (Lex.getKind()) { 3708 default: 3709 return TokError("expected 'true' or 'false'"); 3710 case lltok::kw_true: 3711 Result.assign(true); 3712 break; 3713 case lltok::kw_false: 3714 Result.assign(false); 3715 break; 3716 } 3717 Lex.Lex(); 3718 return false; 3719 } 3720 3721 template <> 3722 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) { 3723 if (Lex.getKind() == lltok::kw_null) { 3724 if (!Result.AllowNull) 3725 return TokError("'" + Name + "' cannot be null"); 3726 Lex.Lex(); 3727 Result.assign(nullptr); 3728 return false; 3729 } 3730 3731 Metadata *MD; 3732 if (ParseMetadata(MD, nullptr)) 3733 return true; 3734 3735 Result.assign(MD); 3736 return false; 3737 } 3738 3739 template <> 3740 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 3741 LocTy ValueLoc = Lex.getLoc(); 3742 std::string S; 3743 if (ParseStringConstant(S)) 3744 return true; 3745 3746 if (!Result.AllowEmpty && S.empty()) 3747 return Error(ValueLoc, "'" + Name + "' cannot be empty"); 3748 3749 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 3750 return false; 3751 } 3752 3753 template <> 3754 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 3755 SmallVector<Metadata *, 4> MDs; 3756 if (ParseMDNodeVector(MDs)) 3757 return true; 3758 3759 Result.assign(std::move(MDs)); 3760 return false; 3761 } 3762 3763 template <> 3764 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3765 ChecksumKindField &Result) { 3766 if (Lex.getKind() != lltok::ChecksumKind) 3767 return TokError( 3768 "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'"); 3769 3770 DIFile::ChecksumKind CSKind = DIFile::getChecksumKind(Lex.getStrVal()); 3771 3772 Result.assign(CSKind); 3773 Lex.Lex(); 3774 return false; 3775 } 3776 3777 } // end namespace llvm 3778 3779 template <class ParserTy> 3780 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) { 3781 do { 3782 if (Lex.getKind() != lltok::LabelStr) 3783 return TokError("expected field label here"); 3784 3785 if (parseField()) 3786 return true; 3787 } while (EatIfPresent(lltok::comma)); 3788 3789 return false; 3790 } 3791 3792 template <class ParserTy> 3793 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) { 3794 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 3795 Lex.Lex(); 3796 3797 if (ParseToken(lltok::lparen, "expected '(' here")) 3798 return true; 3799 if (Lex.getKind() != lltok::rparen) 3800 if (ParseMDFieldsImplBody(parseField)) 3801 return true; 3802 3803 ClosingLoc = Lex.getLoc(); 3804 return ParseToken(lltok::rparen, "expected ')' here"); 3805 } 3806 3807 template <class FieldTy> 3808 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) { 3809 if (Result.Seen) 3810 return TokError("field '" + Name + "' cannot be specified more than once"); 3811 3812 LocTy Loc = Lex.getLoc(); 3813 Lex.Lex(); 3814 return ParseMDField(Loc, Name, Result); 3815 } 3816 3817 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 3818 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 3819 3820 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 3821 if (Lex.getStrVal() == #CLASS) \ 3822 return Parse##CLASS(N, IsDistinct); 3823 #include "llvm/IR/Metadata.def" 3824 3825 return TokError("expected metadata type"); 3826 } 3827 3828 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 3829 #define NOP_FIELD(NAME, TYPE, INIT) 3830 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 3831 if (!NAME.Seen) \ 3832 return Error(ClosingLoc, "missing required field '" #NAME "'"); 3833 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 3834 if (Lex.getStrVal() == #NAME) \ 3835 return ParseMDField(#NAME, NAME); 3836 #define PARSE_MD_FIELDS() \ 3837 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 3838 do { \ 3839 LocTy ClosingLoc; \ 3840 if (ParseMDFieldsImpl([&]() -> bool { \ 3841 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 3842 return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \ 3843 }, ClosingLoc)) \ 3844 return true; \ 3845 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 3846 } while (false) 3847 #define GET_OR_DISTINCT(CLASS, ARGS) \ 3848 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 3849 3850 /// ParseDILocationFields: 3851 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6) 3852 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) { 3853 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3854 OPTIONAL(line, LineField, ); \ 3855 OPTIONAL(column, ColumnField, ); \ 3856 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 3857 OPTIONAL(inlinedAt, MDField, ); 3858 PARSE_MD_FIELDS(); 3859 #undef VISIT_MD_FIELDS 3860 3861 Result = GET_OR_DISTINCT( 3862 DILocation, (Context, line.Val, column.Val, scope.Val, inlinedAt.Val)); 3863 return false; 3864 } 3865 3866 /// ParseGenericDINode: 3867 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 3868 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) { 3869 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3870 REQUIRED(tag, DwarfTagField, ); \ 3871 OPTIONAL(header, MDStringField, ); \ 3872 OPTIONAL(operands, MDFieldList, ); 3873 PARSE_MD_FIELDS(); 3874 #undef VISIT_MD_FIELDS 3875 3876 Result = GET_OR_DISTINCT(GenericDINode, 3877 (Context, tag.Val, header.Val, operands.Val)); 3878 return false; 3879 } 3880 3881 /// ParseDISubrange: 3882 /// ::= !DISubrange(count: 30, lowerBound: 2) 3883 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) { 3884 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3885 REQUIRED(count, MDSignedField, (-1, -1, INT64_MAX)); \ 3886 OPTIONAL(lowerBound, MDSignedField, ); 3887 PARSE_MD_FIELDS(); 3888 #undef VISIT_MD_FIELDS 3889 3890 Result = GET_OR_DISTINCT(DISubrange, (Context, count.Val, lowerBound.Val)); 3891 return false; 3892 } 3893 3894 /// ParseDIEnumerator: 3895 /// ::= !DIEnumerator(value: 30, name: "SomeKind") 3896 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) { 3897 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3898 REQUIRED(name, MDStringField, ); \ 3899 REQUIRED(value, MDSignedField, ); 3900 PARSE_MD_FIELDS(); 3901 #undef VISIT_MD_FIELDS 3902 3903 Result = GET_OR_DISTINCT(DIEnumerator, (Context, value.Val, name.Val)); 3904 return false; 3905 } 3906 3907 /// ParseDIBasicType: 3908 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32) 3909 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) { 3910 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3911 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 3912 OPTIONAL(name, MDStringField, ); \ 3913 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 3914 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 3915 OPTIONAL(encoding, DwarfAttEncodingField, ); 3916 PARSE_MD_FIELDS(); 3917 #undef VISIT_MD_FIELDS 3918 3919 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 3920 align.Val, encoding.Val)); 3921 return false; 3922 } 3923 3924 /// ParseDIDerivedType: 3925 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 3926 /// line: 7, scope: !1, baseType: !2, size: 32, 3927 /// align: 32, offset: 0, flags: 0, extraData: !3, 3928 /// dwarfAddressSpace: 3) 3929 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) { 3930 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3931 REQUIRED(tag, DwarfTagField, ); \ 3932 OPTIONAL(name, MDStringField, ); \ 3933 OPTIONAL(file, MDField, ); \ 3934 OPTIONAL(line, LineField, ); \ 3935 OPTIONAL(scope, MDField, ); \ 3936 REQUIRED(baseType, MDField, ); \ 3937 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 3938 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 3939 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 3940 OPTIONAL(flags, DIFlagField, ); \ 3941 OPTIONAL(extraData, MDField, ); \ 3942 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); 3943 PARSE_MD_FIELDS(); 3944 #undef VISIT_MD_FIELDS 3945 3946 Optional<unsigned> DWARFAddressSpace; 3947 if (dwarfAddressSpace.Val != UINT32_MAX) 3948 DWARFAddressSpace = dwarfAddressSpace.Val; 3949 3950 Result = GET_OR_DISTINCT(DIDerivedType, 3951 (Context, tag.Val, name.Val, file.Val, line.Val, 3952 scope.Val, baseType.Val, size.Val, align.Val, 3953 offset.Val, DWARFAddressSpace, flags.Val, 3954 extraData.Val)); 3955 return false; 3956 } 3957 3958 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) { 3959 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3960 REQUIRED(tag, DwarfTagField, ); \ 3961 OPTIONAL(name, MDStringField, ); \ 3962 OPTIONAL(file, MDField, ); \ 3963 OPTIONAL(line, LineField, ); \ 3964 OPTIONAL(scope, MDField, ); \ 3965 OPTIONAL(baseType, MDField, ); \ 3966 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 3967 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 3968 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 3969 OPTIONAL(flags, DIFlagField, ); \ 3970 OPTIONAL(elements, MDField, ); \ 3971 OPTIONAL(runtimeLang, DwarfLangField, ); \ 3972 OPTIONAL(vtableHolder, MDField, ); \ 3973 OPTIONAL(templateParams, MDField, ); \ 3974 OPTIONAL(identifier, MDStringField, ); 3975 PARSE_MD_FIELDS(); 3976 #undef VISIT_MD_FIELDS 3977 3978 // If this has an identifier try to build an ODR type. 3979 if (identifier.Val) 3980 if (auto *CT = DICompositeType::buildODRType( 3981 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 3982 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 3983 elements.Val, runtimeLang.Val, vtableHolder.Val, 3984 templateParams.Val)) { 3985 Result = CT; 3986 return false; 3987 } 3988 3989 // Create a new node, and save it in the context if it belongs in the type 3990 // map. 3991 Result = GET_OR_DISTINCT( 3992 DICompositeType, 3993 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 3994 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 3995 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val)); 3996 return false; 3997 } 3998 3999 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) { 4000 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4001 OPTIONAL(flags, DIFlagField, ); \ 4002 OPTIONAL(cc, DwarfCCField, ); \ 4003 REQUIRED(types, MDField, ); 4004 PARSE_MD_FIELDS(); 4005 #undef VISIT_MD_FIELDS 4006 4007 Result = GET_OR_DISTINCT(DISubroutineType, 4008 (Context, flags.Val, cc.Val, types.Val)); 4009 return false; 4010 } 4011 4012 /// ParseDIFileType: 4013 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir" 4014 /// checksumkind: CSK_MD5, 4015 /// checksum: "000102030405060708090a0b0c0d0e0f") 4016 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) { 4017 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4018 REQUIRED(filename, MDStringField, ); \ 4019 REQUIRED(directory, MDStringField, ); \ 4020 OPTIONAL(checksumkind, ChecksumKindField, ); \ 4021 OPTIONAL(checksum, MDStringField, ); 4022 PARSE_MD_FIELDS(); 4023 #undef VISIT_MD_FIELDS 4024 4025 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val, 4026 checksumkind.Val, checksum.Val)); 4027 return false; 4028 } 4029 4030 /// ParseDICompileUnit: 4031 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 4032 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 4033 /// splitDebugFilename: "abc.debug", 4034 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 4035 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd) 4036 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) { 4037 if (!IsDistinct) 4038 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 4039 4040 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4041 REQUIRED(language, DwarfLangField, ); \ 4042 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 4043 OPTIONAL(producer, MDStringField, ); \ 4044 OPTIONAL(isOptimized, MDBoolField, ); \ 4045 OPTIONAL(flags, MDStringField, ); \ 4046 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 4047 OPTIONAL(splitDebugFilename, MDStringField, ); \ 4048 OPTIONAL(emissionKind, EmissionKindField, ); \ 4049 OPTIONAL(enums, MDField, ); \ 4050 OPTIONAL(retainedTypes, MDField, ); \ 4051 OPTIONAL(globals, MDField, ); \ 4052 OPTIONAL(imports, MDField, ); \ 4053 OPTIONAL(macros, MDField, ); \ 4054 OPTIONAL(dwoId, MDUnsignedField, ); \ 4055 OPTIONAL(splitDebugInlining, MDBoolField, = true); \ 4056 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); 4057 PARSE_MD_FIELDS(); 4058 #undef VISIT_MD_FIELDS 4059 4060 Result = DICompileUnit::getDistinct( 4061 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 4062 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 4063 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 4064 splitDebugInlining.Val, debugInfoForProfiling.Val); 4065 return false; 4066 } 4067 4068 /// ParseDISubprogram: 4069 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 4070 /// file: !1, line: 7, type: !2, isLocal: false, 4071 /// isDefinition: true, scopeLine: 8, containingType: !3, 4072 /// virtuality: DW_VIRTUALTIY_pure_virtual, 4073 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 4074 /// isOptimized: false, templateParams: !4, declaration: !5, 4075 /// variables: !6, thrownTypes: !7) 4076 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) { 4077 auto Loc = Lex.getLoc(); 4078 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4079 OPTIONAL(scope, MDField, ); \ 4080 OPTIONAL(name, MDStringField, ); \ 4081 OPTIONAL(linkageName, MDStringField, ); \ 4082 OPTIONAL(file, MDField, ); \ 4083 OPTIONAL(line, LineField, ); \ 4084 OPTIONAL(type, MDField, ); \ 4085 OPTIONAL(isLocal, MDBoolField, ); \ 4086 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4087 OPTIONAL(scopeLine, LineField, ); \ 4088 OPTIONAL(containingType, MDField, ); \ 4089 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 4090 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 4091 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 4092 OPTIONAL(flags, DIFlagField, ); \ 4093 OPTIONAL(isOptimized, MDBoolField, ); \ 4094 OPTIONAL(unit, MDField, ); \ 4095 OPTIONAL(templateParams, MDField, ); \ 4096 OPTIONAL(declaration, MDField, ); \ 4097 OPTIONAL(variables, MDField, ); \ 4098 OPTIONAL(thrownTypes, MDField, ); 4099 PARSE_MD_FIELDS(); 4100 #undef VISIT_MD_FIELDS 4101 4102 if (isDefinition.Val && !IsDistinct) 4103 return Lex.Error( 4104 Loc, 4105 "missing 'distinct', required for !DISubprogram when 'isDefinition'"); 4106 4107 Result = GET_OR_DISTINCT( 4108 DISubprogram, 4109 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 4110 type.Val, isLocal.Val, isDefinition.Val, scopeLine.Val, 4111 containingType.Val, virtuality.Val, virtualIndex.Val, thisAdjustment.Val, 4112 flags.Val, isOptimized.Val, unit.Val, templateParams.Val, 4113 declaration.Val, variables.Val, thrownTypes.Val)); 4114 return false; 4115 } 4116 4117 /// ParseDILexicalBlock: 4118 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 4119 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 4120 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4121 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4122 OPTIONAL(file, MDField, ); \ 4123 OPTIONAL(line, LineField, ); \ 4124 OPTIONAL(column, ColumnField, ); 4125 PARSE_MD_FIELDS(); 4126 #undef VISIT_MD_FIELDS 4127 4128 Result = GET_OR_DISTINCT( 4129 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 4130 return false; 4131 } 4132 4133 /// ParseDILexicalBlockFile: 4134 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 4135 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 4136 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4137 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4138 OPTIONAL(file, MDField, ); \ 4139 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 4140 PARSE_MD_FIELDS(); 4141 #undef VISIT_MD_FIELDS 4142 4143 Result = GET_OR_DISTINCT(DILexicalBlockFile, 4144 (Context, scope.Val, file.Val, discriminator.Val)); 4145 return false; 4146 } 4147 4148 /// ParseDINamespace: 4149 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 4150 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) { 4151 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4152 REQUIRED(scope, MDField, ); \ 4153 OPTIONAL(name, MDStringField, ); \ 4154 OPTIONAL(exportSymbols, MDBoolField, ); 4155 PARSE_MD_FIELDS(); 4156 #undef VISIT_MD_FIELDS 4157 4158 Result = GET_OR_DISTINCT(DINamespace, 4159 (Context, scope.Val, name.Val, exportSymbols.Val)); 4160 return false; 4161 } 4162 4163 /// ParseDIMacro: 4164 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue") 4165 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) { 4166 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4167 REQUIRED(type, DwarfMacinfoTypeField, ); \ 4168 OPTIONAL(line, LineField, ); \ 4169 REQUIRED(name, MDStringField, ); \ 4170 OPTIONAL(value, MDStringField, ); 4171 PARSE_MD_FIELDS(); 4172 #undef VISIT_MD_FIELDS 4173 4174 Result = GET_OR_DISTINCT(DIMacro, 4175 (Context, type.Val, line.Val, name.Val, value.Val)); 4176 return false; 4177 } 4178 4179 /// ParseDIMacroFile: 4180 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 4181 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) { 4182 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4183 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 4184 OPTIONAL(line, LineField, ); \ 4185 REQUIRED(file, MDField, ); \ 4186 OPTIONAL(nodes, MDField, ); 4187 PARSE_MD_FIELDS(); 4188 #undef VISIT_MD_FIELDS 4189 4190 Result = GET_OR_DISTINCT(DIMacroFile, 4191 (Context, type.Val, line.Val, file.Val, nodes.Val)); 4192 return false; 4193 } 4194 4195 /// ParseDIModule: 4196 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG", 4197 /// includePath: "/usr/include", isysroot: "/") 4198 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) { 4199 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4200 REQUIRED(scope, MDField, ); \ 4201 REQUIRED(name, MDStringField, ); \ 4202 OPTIONAL(configMacros, MDStringField, ); \ 4203 OPTIONAL(includePath, MDStringField, ); \ 4204 OPTIONAL(isysroot, MDStringField, ); 4205 PARSE_MD_FIELDS(); 4206 #undef VISIT_MD_FIELDS 4207 4208 Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val, 4209 configMacros.Val, includePath.Val, isysroot.Val)); 4210 return false; 4211 } 4212 4213 /// ParseDITemplateTypeParameter: 4214 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1) 4215 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 4216 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4217 OPTIONAL(name, MDStringField, ); \ 4218 REQUIRED(type, MDField, ); 4219 PARSE_MD_FIELDS(); 4220 #undef VISIT_MD_FIELDS 4221 4222 Result = 4223 GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val)); 4224 return false; 4225 } 4226 4227 /// ParseDITemplateValueParameter: 4228 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 4229 /// name: "V", type: !1, value: i32 7) 4230 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 4231 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4232 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 4233 OPTIONAL(name, MDStringField, ); \ 4234 OPTIONAL(type, MDField, ); \ 4235 REQUIRED(value, MDField, ); 4236 PARSE_MD_FIELDS(); 4237 #undef VISIT_MD_FIELDS 4238 4239 Result = GET_OR_DISTINCT(DITemplateValueParameter, 4240 (Context, tag.Val, name.Val, type.Val, value.Val)); 4241 return false; 4242 } 4243 4244 /// ParseDIGlobalVariable: 4245 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 4246 /// file: !1, line: 7, type: !2, isLocal: false, 4247 /// isDefinition: true, declaration: !3, align: 8) 4248 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 4249 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4250 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 4251 OPTIONAL(scope, MDField, ); \ 4252 OPTIONAL(linkageName, MDStringField, ); \ 4253 OPTIONAL(file, MDField, ); \ 4254 OPTIONAL(line, LineField, ); \ 4255 OPTIONAL(type, MDField, ); \ 4256 OPTIONAL(isLocal, MDBoolField, ); \ 4257 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4258 OPTIONAL(declaration, MDField, ); \ 4259 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4260 PARSE_MD_FIELDS(); 4261 #undef VISIT_MD_FIELDS 4262 4263 Result = GET_OR_DISTINCT(DIGlobalVariable, 4264 (Context, scope.Val, name.Val, linkageName.Val, 4265 file.Val, line.Val, type.Val, isLocal.Val, 4266 isDefinition.Val, declaration.Val, align.Val)); 4267 return false; 4268 } 4269 4270 /// ParseDILocalVariable: 4271 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 4272 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4273 /// align: 8) 4274 /// ::= !DILocalVariable(scope: !0, name: "foo", 4275 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4276 /// align: 8) 4277 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) { 4278 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4279 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4280 OPTIONAL(name, MDStringField, ); \ 4281 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 4282 OPTIONAL(file, MDField, ); \ 4283 OPTIONAL(line, LineField, ); \ 4284 OPTIONAL(type, MDField, ); \ 4285 OPTIONAL(flags, DIFlagField, ); \ 4286 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4287 PARSE_MD_FIELDS(); 4288 #undef VISIT_MD_FIELDS 4289 4290 Result = GET_OR_DISTINCT(DILocalVariable, 4291 (Context, scope.Val, name.Val, file.Val, line.Val, 4292 type.Val, arg.Val, flags.Val, align.Val)); 4293 return false; 4294 } 4295 4296 /// ParseDIExpression: 4297 /// ::= !DIExpression(0, 7, -1) 4298 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) { 4299 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4300 Lex.Lex(); 4301 4302 if (ParseToken(lltok::lparen, "expected '(' here")) 4303 return true; 4304 4305 SmallVector<uint64_t, 8> Elements; 4306 if (Lex.getKind() != lltok::rparen) 4307 do { 4308 if (Lex.getKind() == lltok::DwarfOp) { 4309 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 4310 Lex.Lex(); 4311 Elements.push_back(Op); 4312 continue; 4313 } 4314 return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 4315 } 4316 4317 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4318 return TokError("expected unsigned integer"); 4319 4320 auto &U = Lex.getAPSIntVal(); 4321 if (U.ugt(UINT64_MAX)) 4322 return TokError("element too large, limit is " + Twine(UINT64_MAX)); 4323 Elements.push_back(U.getZExtValue()); 4324 Lex.Lex(); 4325 } while (EatIfPresent(lltok::comma)); 4326 4327 if (ParseToken(lltok::rparen, "expected ')' here")) 4328 return true; 4329 4330 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 4331 return false; 4332 } 4333 4334 /// ParseDIGlobalVariableExpression: 4335 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1) 4336 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result, 4337 bool IsDistinct) { 4338 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4339 REQUIRED(var, MDField, ); \ 4340 OPTIONAL(expr, MDField, ); 4341 PARSE_MD_FIELDS(); 4342 #undef VISIT_MD_FIELDS 4343 4344 Result = 4345 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val)); 4346 return false; 4347 } 4348 4349 /// ParseDIObjCProperty: 4350 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 4351 /// getter: "getFoo", attributes: 7, type: !2) 4352 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 4353 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4354 OPTIONAL(name, MDStringField, ); \ 4355 OPTIONAL(file, MDField, ); \ 4356 OPTIONAL(line, LineField, ); \ 4357 OPTIONAL(setter, MDStringField, ); \ 4358 OPTIONAL(getter, MDStringField, ); \ 4359 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 4360 OPTIONAL(type, MDField, ); 4361 PARSE_MD_FIELDS(); 4362 #undef VISIT_MD_FIELDS 4363 4364 Result = GET_OR_DISTINCT(DIObjCProperty, 4365 (Context, name.Val, file.Val, line.Val, setter.Val, 4366 getter.Val, attributes.Val, type.Val)); 4367 return false; 4368 } 4369 4370 /// ParseDIImportedEntity: 4371 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 4372 /// line: 7, name: "foo") 4373 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 4374 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4375 REQUIRED(tag, DwarfTagField, ); \ 4376 REQUIRED(scope, MDField, ); \ 4377 OPTIONAL(entity, MDField, ); \ 4378 OPTIONAL(line, LineField, ); \ 4379 OPTIONAL(name, MDStringField, ); 4380 PARSE_MD_FIELDS(); 4381 #undef VISIT_MD_FIELDS 4382 4383 Result = GET_OR_DISTINCT(DIImportedEntity, (Context, tag.Val, scope.Val, 4384 entity.Val, line.Val, name.Val)); 4385 return false; 4386 } 4387 4388 #undef PARSE_MD_FIELD 4389 #undef NOP_FIELD 4390 #undef REQUIRE_FIELD 4391 #undef DECLARE_FIELD 4392 4393 /// ParseMetadataAsValue 4394 /// ::= metadata i32 %local 4395 /// ::= metadata i32 @global 4396 /// ::= metadata i32 7 4397 /// ::= metadata !0 4398 /// ::= metadata !{...} 4399 /// ::= metadata !"string" 4400 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 4401 // Note: the type 'metadata' has already been parsed. 4402 Metadata *MD; 4403 if (ParseMetadata(MD, &PFS)) 4404 return true; 4405 4406 V = MetadataAsValue::get(Context, MD); 4407 return false; 4408 } 4409 4410 /// ParseValueAsMetadata 4411 /// ::= i32 %local 4412 /// ::= i32 @global 4413 /// ::= i32 7 4414 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 4415 PerFunctionState *PFS) { 4416 Type *Ty; 4417 LocTy Loc; 4418 if (ParseType(Ty, TypeMsg, Loc)) 4419 return true; 4420 if (Ty->isMetadataTy()) 4421 return Error(Loc, "invalid metadata-value-metadata roundtrip"); 4422 4423 Value *V; 4424 if (ParseValue(Ty, V, PFS)) 4425 return true; 4426 4427 MD = ValueAsMetadata::get(V); 4428 return false; 4429 } 4430 4431 /// ParseMetadata 4432 /// ::= i32 %local 4433 /// ::= i32 @global 4434 /// ::= i32 7 4435 /// ::= !42 4436 /// ::= !{...} 4437 /// ::= !"string" 4438 /// ::= !DILocation(...) 4439 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) { 4440 if (Lex.getKind() == lltok::MetadataVar) { 4441 MDNode *N; 4442 if (ParseSpecializedMDNode(N)) 4443 return true; 4444 MD = N; 4445 return false; 4446 } 4447 4448 // ValueAsMetadata: 4449 // <type> <value> 4450 if (Lex.getKind() != lltok::exclaim) 4451 return ParseValueAsMetadata(MD, "expected metadata operand", PFS); 4452 4453 // '!'. 4454 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 4455 Lex.Lex(); 4456 4457 // MDString: 4458 // ::= '!' STRINGCONSTANT 4459 if (Lex.getKind() == lltok::StringConstant) { 4460 MDString *S; 4461 if (ParseMDString(S)) 4462 return true; 4463 MD = S; 4464 return false; 4465 } 4466 4467 // MDNode: 4468 // !{ ... } 4469 // !7 4470 MDNode *N; 4471 if (ParseMDNodeTail(N)) 4472 return true; 4473 MD = N; 4474 return false; 4475 } 4476 4477 //===----------------------------------------------------------------------===// 4478 // Function Parsing. 4479 //===----------------------------------------------------------------------===// 4480 4481 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, 4482 PerFunctionState *PFS) { 4483 if (Ty->isFunctionTy()) 4484 return Error(ID.Loc, "functions are not values, refer to them as pointers"); 4485 4486 switch (ID.Kind) { 4487 case ValID::t_LocalID: 4488 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 4489 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc); 4490 return V == nullptr; 4491 case ValID::t_LocalName: 4492 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 4493 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc); 4494 return V == nullptr; 4495 case ValID::t_InlineAsm: { 4496 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 4497 return Error(ID.Loc, "invalid type for inline asm constraint string"); 4498 V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, 4499 (ID.UIntVal >> 1) & 1, 4500 (InlineAsm::AsmDialect(ID.UIntVal >> 2))); 4501 return false; 4502 } 4503 case ValID::t_GlobalName: 4504 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc); 4505 return V == nullptr; 4506 case ValID::t_GlobalID: 4507 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc); 4508 return V == nullptr; 4509 case ValID::t_APSInt: 4510 if (!Ty->isIntegerTy()) 4511 return Error(ID.Loc, "integer constant must have integer type"); 4512 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 4513 V = ConstantInt::get(Context, ID.APSIntVal); 4514 return false; 4515 case ValID::t_APFloat: 4516 if (!Ty->isFloatingPointTy() || 4517 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 4518 return Error(ID.Loc, "floating point constant invalid for type"); 4519 4520 // The lexer has no type info, so builds all half, float, and double FP 4521 // constants as double. Fix this here. Long double does not need this. 4522 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) { 4523 bool Ignored; 4524 if (Ty->isHalfTy()) 4525 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, 4526 &Ignored); 4527 else if (Ty->isFloatTy()) 4528 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 4529 &Ignored); 4530 } 4531 V = ConstantFP::get(Context, ID.APFloatVal); 4532 4533 if (V->getType() != Ty) 4534 return Error(ID.Loc, "floating point constant does not have type '" + 4535 getTypeString(Ty) + "'"); 4536 4537 return false; 4538 case ValID::t_Null: 4539 if (!Ty->isPointerTy()) 4540 return Error(ID.Loc, "null must be a pointer type"); 4541 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 4542 return false; 4543 case ValID::t_Undef: 4544 // FIXME: LabelTy should not be a first-class type. 4545 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 4546 return Error(ID.Loc, "invalid type for undef constant"); 4547 V = UndefValue::get(Ty); 4548 return false; 4549 case ValID::t_EmptyArray: 4550 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 4551 return Error(ID.Loc, "invalid empty array initializer"); 4552 V = UndefValue::get(Ty); 4553 return false; 4554 case ValID::t_Zero: 4555 // FIXME: LabelTy should not be a first-class type. 4556 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 4557 return Error(ID.Loc, "invalid type for null constant"); 4558 V = Constant::getNullValue(Ty); 4559 return false; 4560 case ValID::t_None: 4561 if (!Ty->isTokenTy()) 4562 return Error(ID.Loc, "invalid type for none constant"); 4563 V = Constant::getNullValue(Ty); 4564 return false; 4565 case ValID::t_Constant: 4566 if (ID.ConstantVal->getType() != Ty) 4567 return Error(ID.Loc, "constant expression type mismatch"); 4568 4569 V = ID.ConstantVal; 4570 return false; 4571 case ValID::t_ConstantStruct: 4572 case ValID::t_PackedConstantStruct: 4573 if (StructType *ST = dyn_cast<StructType>(Ty)) { 4574 if (ST->getNumElements() != ID.UIntVal) 4575 return Error(ID.Loc, 4576 "initializer with struct type has wrong # elements"); 4577 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 4578 return Error(ID.Loc, "packed'ness of initializer and type don't match"); 4579 4580 // Verify that the elements are compatible with the structtype. 4581 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 4582 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 4583 return Error(ID.Loc, "element " + Twine(i) + 4584 " of struct initializer doesn't match struct element type"); 4585 4586 V = ConstantStruct::get( 4587 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 4588 } else 4589 return Error(ID.Loc, "constant expression type mismatch"); 4590 return false; 4591 } 4592 llvm_unreachable("Invalid ValID"); 4593 } 4594 4595 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 4596 C = nullptr; 4597 ValID ID; 4598 auto Loc = Lex.getLoc(); 4599 if (ParseValID(ID, /*PFS=*/nullptr)) 4600 return true; 4601 switch (ID.Kind) { 4602 case ValID::t_APSInt: 4603 case ValID::t_APFloat: 4604 case ValID::t_Undef: 4605 case ValID::t_Constant: 4606 case ValID::t_ConstantStruct: 4607 case ValID::t_PackedConstantStruct: { 4608 Value *V; 4609 if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr)) 4610 return true; 4611 assert(isa<Constant>(V) && "Expected a constant value"); 4612 C = cast<Constant>(V); 4613 return false; 4614 } 4615 case ValID::t_Null: 4616 C = Constant::getNullValue(Ty); 4617 return false; 4618 default: 4619 return Error(Loc, "expected a constant value"); 4620 } 4621 } 4622 4623 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 4624 V = nullptr; 4625 ValID ID; 4626 return ParseValID(ID, PFS) || ConvertValIDToValue(Ty, ID, V, PFS); 4627 } 4628 4629 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) { 4630 Type *Ty = nullptr; 4631 return ParseType(Ty) || 4632 ParseValue(Ty, V, PFS); 4633 } 4634 4635 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 4636 PerFunctionState &PFS) { 4637 Value *V; 4638 Loc = Lex.getLoc(); 4639 if (ParseTypeAndValue(V, PFS)) return true; 4640 if (!isa<BasicBlock>(V)) 4641 return Error(Loc, "expected a basic block"); 4642 BB = cast<BasicBlock>(V); 4643 return false; 4644 } 4645 4646 /// FunctionHeader 4647 /// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs 4648 /// OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection 4649 /// OptionalAlign OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 4650 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { 4651 // Parse the linkage. 4652 LocTy LinkageLoc = Lex.getLoc(); 4653 unsigned Linkage; 4654 4655 unsigned Visibility; 4656 unsigned DLLStorageClass; 4657 AttrBuilder RetAttrs; 4658 unsigned CC; 4659 bool HasLinkage; 4660 Type *RetType = nullptr; 4661 LocTy RetTypeLoc = Lex.getLoc(); 4662 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) || 4663 ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 4664 ParseType(RetType, RetTypeLoc, true /*void allowed*/)) 4665 return true; 4666 4667 // Verify that the linkage is ok. 4668 switch ((GlobalValue::LinkageTypes)Linkage) { 4669 case GlobalValue::ExternalLinkage: 4670 break; // always ok. 4671 case GlobalValue::ExternalWeakLinkage: 4672 if (isDefine) 4673 return Error(LinkageLoc, "invalid linkage for function definition"); 4674 break; 4675 case GlobalValue::PrivateLinkage: 4676 case GlobalValue::InternalLinkage: 4677 case GlobalValue::AvailableExternallyLinkage: 4678 case GlobalValue::LinkOnceAnyLinkage: 4679 case GlobalValue::LinkOnceODRLinkage: 4680 case GlobalValue::WeakAnyLinkage: 4681 case GlobalValue::WeakODRLinkage: 4682 if (!isDefine) 4683 return Error(LinkageLoc, "invalid linkage for function declaration"); 4684 break; 4685 case GlobalValue::AppendingLinkage: 4686 case GlobalValue::CommonLinkage: 4687 return Error(LinkageLoc, "invalid function linkage type"); 4688 } 4689 4690 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 4691 return Error(LinkageLoc, 4692 "symbol with local linkage must have default visibility"); 4693 4694 if (!FunctionType::isValidReturnType(RetType)) 4695 return Error(RetTypeLoc, "invalid function return type"); 4696 4697 LocTy NameLoc = Lex.getLoc(); 4698 4699 std::string FunctionName; 4700 if (Lex.getKind() == lltok::GlobalVar) { 4701 FunctionName = Lex.getStrVal(); 4702 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 4703 unsigned NameID = Lex.getUIntVal(); 4704 4705 if (NameID != NumberedVals.size()) 4706 return TokError("function expected to be numbered '%" + 4707 Twine(NumberedVals.size()) + "'"); 4708 } else { 4709 return TokError("expected function name"); 4710 } 4711 4712 Lex.Lex(); 4713 4714 if (Lex.getKind() != lltok::lparen) 4715 return TokError("expected '(' in function argument list"); 4716 4717 SmallVector<ArgInfo, 8> ArgList; 4718 bool isVarArg; 4719 AttrBuilder FuncAttrs; 4720 std::vector<unsigned> FwdRefAttrGrps; 4721 LocTy BuiltinLoc; 4722 std::string Section; 4723 unsigned Alignment; 4724 std::string GC; 4725 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4726 LocTy UnnamedAddrLoc; 4727 Constant *Prefix = nullptr; 4728 Constant *Prologue = nullptr; 4729 Constant *PersonalityFn = nullptr; 4730 Comdat *C; 4731 4732 if (ParseArgumentList(ArgList, isVarArg) || 4733 ParseOptionalUnnamedAddr(UnnamedAddr) || 4734 ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 4735 BuiltinLoc) || 4736 (EatIfPresent(lltok::kw_section) && 4737 ParseStringConstant(Section)) || 4738 parseOptionalComdat(FunctionName, C) || 4739 ParseOptionalAlignment(Alignment) || 4740 (EatIfPresent(lltok::kw_gc) && 4741 ParseStringConstant(GC)) || 4742 (EatIfPresent(lltok::kw_prefix) && 4743 ParseGlobalTypeAndValue(Prefix)) || 4744 (EatIfPresent(lltok::kw_prologue) && 4745 ParseGlobalTypeAndValue(Prologue)) || 4746 (EatIfPresent(lltok::kw_personality) && 4747 ParseGlobalTypeAndValue(PersonalityFn))) 4748 return true; 4749 4750 if (FuncAttrs.contains(Attribute::Builtin)) 4751 return Error(BuiltinLoc, "'builtin' attribute not valid on function"); 4752 4753 // If the alignment was parsed as an attribute, move to the alignment field. 4754 if (FuncAttrs.hasAlignmentAttr()) { 4755 Alignment = FuncAttrs.getAlignment(); 4756 FuncAttrs.removeAttribute(Attribute::Alignment); 4757 } 4758 4759 // Okay, if we got here, the function is syntactically valid. Convert types 4760 // and do semantic checks. 4761 std::vector<Type*> ParamTypeList; 4762 SmallVector<AttributeSet, 8> Attrs; 4763 4764 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 4765 ParamTypeList.push_back(ArgList[i].Ty); 4766 Attrs.push_back(ArgList[i].Attrs); 4767 } 4768 4769 AttributeList PAL = 4770 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs), 4771 AttributeSet::get(Context, RetAttrs), Attrs); 4772 4773 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy()) 4774 return Error(RetTypeLoc, "functions with 'sret' argument must return void"); 4775 4776 FunctionType *FT = 4777 FunctionType::get(RetType, ParamTypeList, isVarArg); 4778 PointerType *PFT = PointerType::getUnqual(FT); 4779 4780 Fn = nullptr; 4781 if (!FunctionName.empty()) { 4782 // If this was a definition of a forward reference, remove the definition 4783 // from the forward reference table and fill in the forward ref. 4784 auto FRVI = ForwardRefVals.find(FunctionName); 4785 if (FRVI != ForwardRefVals.end()) { 4786 Fn = M->getFunction(FunctionName); 4787 if (!Fn) 4788 return Error(FRVI->second.second, "invalid forward reference to " 4789 "function as global value!"); 4790 if (Fn->getType() != PFT) 4791 return Error(FRVI->second.second, "invalid forward reference to " 4792 "function '" + FunctionName + "' with wrong type!"); 4793 4794 ForwardRefVals.erase(FRVI); 4795 } else if ((Fn = M->getFunction(FunctionName))) { 4796 // Reject redefinitions. 4797 return Error(NameLoc, "invalid redefinition of function '" + 4798 FunctionName + "'"); 4799 } else if (M->getNamedValue(FunctionName)) { 4800 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 4801 } 4802 4803 } else { 4804 // If this is a definition of a forward referenced function, make sure the 4805 // types agree. 4806 auto I = ForwardRefValIDs.find(NumberedVals.size()); 4807 if (I != ForwardRefValIDs.end()) { 4808 Fn = cast<Function>(I->second.first); 4809 if (Fn->getType() != PFT) 4810 return Error(NameLoc, "type of definition and forward reference of '@" + 4811 Twine(NumberedVals.size()) + "' disagree"); 4812 ForwardRefValIDs.erase(I); 4813 } 4814 } 4815 4816 if (!Fn) 4817 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M); 4818 else // Move the forward-reference to the correct spot in the module. 4819 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 4820 4821 if (FunctionName.empty()) 4822 NumberedVals.push_back(Fn); 4823 4824 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 4825 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 4826 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 4827 Fn->setCallingConv(CC); 4828 Fn->setAttributes(PAL); 4829 Fn->setUnnamedAddr(UnnamedAddr); 4830 Fn->setAlignment(Alignment); 4831 Fn->setSection(Section); 4832 Fn->setComdat(C); 4833 Fn->setPersonalityFn(PersonalityFn); 4834 if (!GC.empty()) Fn->setGC(GC); 4835 Fn->setPrefixData(Prefix); 4836 Fn->setPrologueData(Prologue); 4837 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 4838 4839 // Add all of the arguments we parsed to the function. 4840 Function::arg_iterator ArgIt = Fn->arg_begin(); 4841 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 4842 // If the argument has a name, insert it into the argument symbol table. 4843 if (ArgList[i].Name.empty()) continue; 4844 4845 // Set the name, if it conflicted, it will be auto-renamed. 4846 ArgIt->setName(ArgList[i].Name); 4847 4848 if (ArgIt->getName() != ArgList[i].Name) 4849 return Error(ArgList[i].Loc, "redefinition of argument '%" + 4850 ArgList[i].Name + "'"); 4851 } 4852 4853 if (isDefine) 4854 return false; 4855 4856 // Check the declaration has no block address forward references. 4857 ValID ID; 4858 if (FunctionName.empty()) { 4859 ID.Kind = ValID::t_GlobalID; 4860 ID.UIntVal = NumberedVals.size() - 1; 4861 } else { 4862 ID.Kind = ValID::t_GlobalName; 4863 ID.StrVal = FunctionName; 4864 } 4865 auto Blocks = ForwardRefBlockAddresses.find(ID); 4866 if (Blocks != ForwardRefBlockAddresses.end()) 4867 return Error(Blocks->first.Loc, 4868 "cannot take blockaddress inside a declaration"); 4869 return false; 4870 } 4871 4872 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 4873 ValID ID; 4874 if (FunctionNumber == -1) { 4875 ID.Kind = ValID::t_GlobalName; 4876 ID.StrVal = F.getName(); 4877 } else { 4878 ID.Kind = ValID::t_GlobalID; 4879 ID.UIntVal = FunctionNumber; 4880 } 4881 4882 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 4883 if (Blocks == P.ForwardRefBlockAddresses.end()) 4884 return false; 4885 4886 for (const auto &I : Blocks->second) { 4887 const ValID &BBID = I.first; 4888 GlobalValue *GV = I.second; 4889 4890 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 4891 "Expected local id or name"); 4892 BasicBlock *BB; 4893 if (BBID.Kind == ValID::t_LocalName) 4894 BB = GetBB(BBID.StrVal, BBID.Loc); 4895 else 4896 BB = GetBB(BBID.UIntVal, BBID.Loc); 4897 if (!BB) 4898 return P.Error(BBID.Loc, "referenced value is not a basic block"); 4899 4900 GV->replaceAllUsesWith(BlockAddress::get(&F, BB)); 4901 GV->eraseFromParent(); 4902 } 4903 4904 P.ForwardRefBlockAddresses.erase(Blocks); 4905 return false; 4906 } 4907 4908 /// ParseFunctionBody 4909 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 4910 bool LLParser::ParseFunctionBody(Function &Fn) { 4911 if (Lex.getKind() != lltok::lbrace) 4912 return TokError("expected '{' in function body"); 4913 Lex.Lex(); // eat the {. 4914 4915 int FunctionNumber = -1; 4916 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 4917 4918 PerFunctionState PFS(*this, Fn, FunctionNumber); 4919 4920 // Resolve block addresses and allow basic blocks to be forward-declared 4921 // within this function. 4922 if (PFS.resolveForwardRefBlockAddresses()) 4923 return true; 4924 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 4925 4926 // We need at least one basic block. 4927 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 4928 return TokError("function body requires at least one basic block"); 4929 4930 while (Lex.getKind() != lltok::rbrace && 4931 Lex.getKind() != lltok::kw_uselistorder) 4932 if (ParseBasicBlock(PFS)) return true; 4933 4934 while (Lex.getKind() != lltok::rbrace) 4935 if (ParseUseListOrder(&PFS)) 4936 return true; 4937 4938 // Eat the }. 4939 Lex.Lex(); 4940 4941 // Verify function is ok. 4942 return PFS.FinishFunction(); 4943 } 4944 4945 /// ParseBasicBlock 4946 /// ::= LabelStr? Instruction* 4947 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { 4948 // If this basic block starts out with a name, remember it. 4949 std::string Name; 4950 LocTy NameLoc = Lex.getLoc(); 4951 if (Lex.getKind() == lltok::LabelStr) { 4952 Name = Lex.getStrVal(); 4953 Lex.Lex(); 4954 } 4955 4956 BasicBlock *BB = PFS.DefineBB(Name, NameLoc); 4957 if (!BB) 4958 return Error(NameLoc, 4959 "unable to create block named '" + Name + "'"); 4960 4961 std::string NameStr; 4962 4963 // Parse the instructions in this block until we get a terminator. 4964 Instruction *Inst; 4965 do { 4966 // This instruction may have three possibilities for a name: a) none 4967 // specified, b) name specified "%foo =", c) number specified: "%4 =". 4968 LocTy NameLoc = Lex.getLoc(); 4969 int NameID = -1; 4970 NameStr = ""; 4971 4972 if (Lex.getKind() == lltok::LocalVarID) { 4973 NameID = Lex.getUIntVal(); 4974 Lex.Lex(); 4975 if (ParseToken(lltok::equal, "expected '=' after instruction id")) 4976 return true; 4977 } else if (Lex.getKind() == lltok::LocalVar) { 4978 NameStr = Lex.getStrVal(); 4979 Lex.Lex(); 4980 if (ParseToken(lltok::equal, "expected '=' after instruction name")) 4981 return true; 4982 } 4983 4984 switch (ParseInstruction(Inst, BB, PFS)) { 4985 default: llvm_unreachable("Unknown ParseInstruction result!"); 4986 case InstError: return true; 4987 case InstNormal: 4988 BB->getInstList().push_back(Inst); 4989 4990 // With a normal result, we check to see if the instruction is followed by 4991 // a comma and metadata. 4992 if (EatIfPresent(lltok::comma)) 4993 if (ParseInstructionMetadata(*Inst)) 4994 return true; 4995 break; 4996 case InstExtraComma: 4997 BB->getInstList().push_back(Inst); 4998 4999 // If the instruction parser ate an extra comma at the end of it, it 5000 // *must* be followed by metadata. 5001 if (ParseInstructionMetadata(*Inst)) 5002 return true; 5003 break; 5004 } 5005 5006 // Set the name on the instruction. 5007 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; 5008 } while (!isa<TerminatorInst>(Inst)); 5009 5010 return false; 5011 } 5012 5013 //===----------------------------------------------------------------------===// 5014 // Instruction Parsing. 5015 //===----------------------------------------------------------------------===// 5016 5017 /// ParseInstruction - Parse one of the many different instructions. 5018 /// 5019 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, 5020 PerFunctionState &PFS) { 5021 lltok::Kind Token = Lex.getKind(); 5022 if (Token == lltok::Eof) 5023 return TokError("found end of file when expecting more instructions"); 5024 LocTy Loc = Lex.getLoc(); 5025 unsigned KeywordVal = Lex.getUIntVal(); 5026 Lex.Lex(); // Eat the keyword. 5027 5028 switch (Token) { 5029 default: return Error(Loc, "expected instruction opcode"); 5030 // Terminator Instructions. 5031 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 5032 case lltok::kw_ret: return ParseRet(Inst, BB, PFS); 5033 case lltok::kw_br: return ParseBr(Inst, PFS); 5034 case lltok::kw_switch: return ParseSwitch(Inst, PFS); 5035 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS); 5036 case lltok::kw_invoke: return ParseInvoke(Inst, PFS); 5037 case lltok::kw_resume: return ParseResume(Inst, PFS); 5038 case lltok::kw_cleanupret: return ParseCleanupRet(Inst, PFS); 5039 case lltok::kw_catchret: return ParseCatchRet(Inst, PFS); 5040 case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS); 5041 case lltok::kw_catchpad: return ParseCatchPad(Inst, PFS); 5042 case lltok::kw_cleanuppad: return ParseCleanupPad(Inst, PFS); 5043 // Binary Operators. 5044 case lltok::kw_add: 5045 case lltok::kw_sub: 5046 case lltok::kw_mul: 5047 case lltok::kw_shl: { 5048 bool NUW = EatIfPresent(lltok::kw_nuw); 5049 bool NSW = EatIfPresent(lltok::kw_nsw); 5050 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 5051 5052 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 5053 5054 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 5055 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 5056 return false; 5057 } 5058 case lltok::kw_fadd: 5059 case lltok::kw_fsub: 5060 case lltok::kw_fmul: 5061 case lltok::kw_fdiv: 5062 case lltok::kw_frem: { 5063 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5064 int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2); 5065 if (Res != 0) 5066 return Res; 5067 if (FMF.any()) 5068 Inst->setFastMathFlags(FMF); 5069 return 0; 5070 } 5071 5072 case lltok::kw_sdiv: 5073 case lltok::kw_udiv: 5074 case lltok::kw_lshr: 5075 case lltok::kw_ashr: { 5076 bool Exact = EatIfPresent(lltok::kw_exact); 5077 5078 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 5079 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 5080 return false; 5081 } 5082 5083 case lltok::kw_urem: 5084 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1); 5085 case lltok::kw_and: 5086 case lltok::kw_or: 5087 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); 5088 case lltok::kw_icmp: return ParseCompare(Inst, PFS, KeywordVal); 5089 case lltok::kw_fcmp: { 5090 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5091 int Res = ParseCompare(Inst, PFS, KeywordVal); 5092 if (Res != 0) 5093 return Res; 5094 if (FMF.any()) 5095 Inst->setFastMathFlags(FMF); 5096 return 0; 5097 } 5098 5099 // Casts. 5100 case lltok::kw_trunc: 5101 case lltok::kw_zext: 5102 case lltok::kw_sext: 5103 case lltok::kw_fptrunc: 5104 case lltok::kw_fpext: 5105 case lltok::kw_bitcast: 5106 case lltok::kw_addrspacecast: 5107 case lltok::kw_uitofp: 5108 case lltok::kw_sitofp: 5109 case lltok::kw_fptoui: 5110 case lltok::kw_fptosi: 5111 case lltok::kw_inttoptr: 5112 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); 5113 // Other. 5114 case lltok::kw_select: return ParseSelect(Inst, PFS); 5115 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); 5116 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); 5117 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); 5118 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); 5119 case lltok::kw_phi: return ParsePHI(Inst, PFS); 5120 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS); 5121 // Call. 5122 case lltok::kw_call: return ParseCall(Inst, PFS, CallInst::TCK_None); 5123 case lltok::kw_tail: return ParseCall(Inst, PFS, CallInst::TCK_Tail); 5124 case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail); 5125 case lltok::kw_notail: return ParseCall(Inst, PFS, CallInst::TCK_NoTail); 5126 // Memory. 5127 case lltok::kw_alloca: return ParseAlloc(Inst, PFS); 5128 case lltok::kw_load: return ParseLoad(Inst, PFS); 5129 case lltok::kw_store: return ParseStore(Inst, PFS); 5130 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS); 5131 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS); 5132 case lltok::kw_fence: return ParseFence(Inst, PFS); 5133 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); 5134 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); 5135 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); 5136 } 5137 } 5138 5139 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. 5140 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { 5141 if (Opc == Instruction::FCmp) { 5142 switch (Lex.getKind()) { 5143 default: return TokError("expected fcmp predicate (e.g. 'oeq')"); 5144 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 5145 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 5146 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 5147 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 5148 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 5149 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 5150 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 5151 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 5152 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 5153 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 5154 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 5155 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 5156 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 5157 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 5158 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 5159 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 5160 } 5161 } else { 5162 switch (Lex.getKind()) { 5163 default: return TokError("expected icmp predicate (e.g. 'eq')"); 5164 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 5165 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 5166 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 5167 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 5168 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 5169 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 5170 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 5171 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 5172 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 5173 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 5174 } 5175 } 5176 Lex.Lex(); 5177 return false; 5178 } 5179 5180 //===----------------------------------------------------------------------===// 5181 // Terminator Instructions. 5182 //===----------------------------------------------------------------------===// 5183 5184 /// ParseRet - Parse a return instruction. 5185 /// ::= 'ret' void (',' !dbg, !1)* 5186 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 5187 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, 5188 PerFunctionState &PFS) { 5189 SMLoc TypeLoc = Lex.getLoc(); 5190 Type *Ty = nullptr; 5191 if (ParseType(Ty, true /*void allowed*/)) return true; 5192 5193 Type *ResType = PFS.getFunction().getReturnType(); 5194 5195 if (Ty->isVoidTy()) { 5196 if (!ResType->isVoidTy()) 5197 return Error(TypeLoc, "value doesn't match function result type '" + 5198 getTypeString(ResType) + "'"); 5199 5200 Inst = ReturnInst::Create(Context); 5201 return false; 5202 } 5203 5204 Value *RV; 5205 if (ParseValue(Ty, RV, PFS)) return true; 5206 5207 if (ResType != RV->getType()) 5208 return Error(TypeLoc, "value doesn't match function result type '" + 5209 getTypeString(ResType) + "'"); 5210 5211 Inst = ReturnInst::Create(Context, RV); 5212 return false; 5213 } 5214 5215 /// ParseBr 5216 /// ::= 'br' TypeAndValue 5217 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5218 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { 5219 LocTy Loc, Loc2; 5220 Value *Op0; 5221 BasicBlock *Op1, *Op2; 5222 if (ParseTypeAndValue(Op0, Loc, PFS)) return true; 5223 5224 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 5225 Inst = BranchInst::Create(BB); 5226 return false; 5227 } 5228 5229 if (Op0->getType() != Type::getInt1Ty(Context)) 5230 return Error(Loc, "branch condition must have 'i1' type"); 5231 5232 if (ParseToken(lltok::comma, "expected ',' after branch condition") || 5233 ParseTypeAndBasicBlock(Op1, Loc, PFS) || 5234 ParseToken(lltok::comma, "expected ',' after true destination") || 5235 ParseTypeAndBasicBlock(Op2, Loc2, PFS)) 5236 return true; 5237 5238 Inst = BranchInst::Create(Op1, Op2, Op0); 5239 return false; 5240 } 5241 5242 /// ParseSwitch 5243 /// Instruction 5244 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 5245 /// JumpTable 5246 /// ::= (TypeAndValue ',' TypeAndValue)* 5247 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 5248 LocTy CondLoc, BBLoc; 5249 Value *Cond; 5250 BasicBlock *DefaultBB; 5251 if (ParseTypeAndValue(Cond, CondLoc, PFS) || 5252 ParseToken(lltok::comma, "expected ',' after switch condition") || 5253 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 5254 ParseToken(lltok::lsquare, "expected '[' with switch table")) 5255 return true; 5256 5257 if (!Cond->getType()->isIntegerTy()) 5258 return Error(CondLoc, "switch condition must have integer type"); 5259 5260 // Parse the jump table pairs. 5261 SmallPtrSet<Value*, 32> SeenCases; 5262 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 5263 while (Lex.getKind() != lltok::rsquare) { 5264 Value *Constant; 5265 BasicBlock *DestBB; 5266 5267 if (ParseTypeAndValue(Constant, CondLoc, PFS) || 5268 ParseToken(lltok::comma, "expected ',' after case value") || 5269 ParseTypeAndBasicBlock(DestBB, PFS)) 5270 return true; 5271 5272 if (!SeenCases.insert(Constant).second) 5273 return Error(CondLoc, "duplicate case value in switch"); 5274 if (!isa<ConstantInt>(Constant)) 5275 return Error(CondLoc, "case value is not a constant integer"); 5276 5277 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 5278 } 5279 5280 Lex.Lex(); // Eat the ']'. 5281 5282 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 5283 for (unsigned i = 0, e = Table.size(); i != e; ++i) 5284 SI->addCase(Table[i].first, Table[i].second); 5285 Inst = SI; 5286 return false; 5287 } 5288 5289 /// ParseIndirectBr 5290 /// Instruction 5291 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 5292 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 5293 LocTy AddrLoc; 5294 Value *Address; 5295 if (ParseTypeAndValue(Address, AddrLoc, PFS) || 5296 ParseToken(lltok::comma, "expected ',' after indirectbr address") || 5297 ParseToken(lltok::lsquare, "expected '[' with indirectbr")) 5298 return true; 5299 5300 if (!Address->getType()->isPointerTy()) 5301 return Error(AddrLoc, "indirectbr address must have pointer type"); 5302 5303 // Parse the destination list. 5304 SmallVector<BasicBlock*, 16> DestList; 5305 5306 if (Lex.getKind() != lltok::rsquare) { 5307 BasicBlock *DestBB; 5308 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5309 return true; 5310 DestList.push_back(DestBB); 5311 5312 while (EatIfPresent(lltok::comma)) { 5313 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5314 return true; 5315 DestList.push_back(DestBB); 5316 } 5317 } 5318 5319 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 5320 return true; 5321 5322 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 5323 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 5324 IBI->addDestination(DestList[i]); 5325 Inst = IBI; 5326 return false; 5327 } 5328 5329 /// ParseInvoke 5330 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 5331 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 5332 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 5333 LocTy CallLoc = Lex.getLoc(); 5334 AttrBuilder RetAttrs, FnAttrs; 5335 std::vector<unsigned> FwdRefAttrGrps; 5336 LocTy NoBuiltinLoc; 5337 unsigned CC; 5338 Type *RetType = nullptr; 5339 LocTy RetTypeLoc; 5340 ValID CalleeID; 5341 SmallVector<ParamInfo, 16> ArgList; 5342 SmallVector<OperandBundleDef, 2> BundleList; 5343 5344 BasicBlock *NormalBB, *UnwindBB; 5345 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5346 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 5347 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || 5348 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 5349 NoBuiltinLoc) || 5350 ParseOptionalOperandBundles(BundleList, PFS) || 5351 ParseToken(lltok::kw_to, "expected 'to' in invoke") || 5352 ParseTypeAndBasicBlock(NormalBB, PFS) || 5353 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 5354 ParseTypeAndBasicBlock(UnwindBB, PFS)) 5355 return true; 5356 5357 // If RetType is a non-function pointer type, then this is the short syntax 5358 // for the call, which means that RetType is just the return type. Infer the 5359 // rest of the function argument types from the arguments that are present. 5360 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 5361 if (!Ty) { 5362 // Pull out the types of all of the arguments... 5363 std::vector<Type*> ParamTypes; 5364 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 5365 ParamTypes.push_back(ArgList[i].V->getType()); 5366 5367 if (!FunctionType::isValidReturnType(RetType)) 5368 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 5369 5370 Ty = FunctionType::get(RetType, ParamTypes, false); 5371 } 5372 5373 CalleeID.FTy = Ty; 5374 5375 // Look up the callee. 5376 Value *Callee; 5377 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS)) 5378 return true; 5379 5380 // Set up the Attribute for the function. 5381 SmallVector<Value *, 8> Args; 5382 SmallVector<AttributeSet, 8> ArgAttrs; 5383 5384 // Loop through FunctionType's arguments and ensure they are specified 5385 // correctly. Also, gather any parameter attributes. 5386 FunctionType::param_iterator I = Ty->param_begin(); 5387 FunctionType::param_iterator E = Ty->param_end(); 5388 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5389 Type *ExpectedTy = nullptr; 5390 if (I != E) { 5391 ExpectedTy = *I++; 5392 } else if (!Ty->isVarArg()) { 5393 return Error(ArgList[i].Loc, "too many arguments specified"); 5394 } 5395 5396 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 5397 return Error(ArgList[i].Loc, "argument is not of expected type '" + 5398 getTypeString(ExpectedTy) + "'"); 5399 Args.push_back(ArgList[i].V); 5400 ArgAttrs.push_back(ArgList[i].Attrs); 5401 } 5402 5403 if (I != E) 5404 return Error(CallLoc, "not enough parameters specified for call"); 5405 5406 if (FnAttrs.hasAlignmentAttr()) 5407 return Error(CallLoc, "invoke instructions may not have an alignment"); 5408 5409 // Finish off the Attribute and check them 5410 AttributeList PAL = 5411 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 5412 AttributeSet::get(Context, RetAttrs), ArgAttrs); 5413 5414 InvokeInst *II = 5415 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 5416 II->setCallingConv(CC); 5417 II->setAttributes(PAL); 5418 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 5419 Inst = II; 5420 return false; 5421 } 5422 5423 /// ParseResume 5424 /// ::= 'resume' TypeAndValue 5425 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) { 5426 Value *Exn; LocTy ExnLoc; 5427 if (ParseTypeAndValue(Exn, ExnLoc, PFS)) 5428 return true; 5429 5430 ResumeInst *RI = ResumeInst::Create(Exn); 5431 Inst = RI; 5432 return false; 5433 } 5434 5435 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args, 5436 PerFunctionState &PFS) { 5437 if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 5438 return true; 5439 5440 while (Lex.getKind() != lltok::rsquare) { 5441 // If this isn't the first argument, we need a comma. 5442 if (!Args.empty() && 5443 ParseToken(lltok::comma, "expected ',' in argument list")) 5444 return true; 5445 5446 // Parse the argument. 5447 LocTy ArgLoc; 5448 Type *ArgTy = nullptr; 5449 if (ParseType(ArgTy, ArgLoc)) 5450 return true; 5451 5452 Value *V; 5453 if (ArgTy->isMetadataTy()) { 5454 if (ParseMetadataAsValue(V, PFS)) 5455 return true; 5456 } else { 5457 if (ParseValue(ArgTy, V, PFS)) 5458 return true; 5459 } 5460 Args.push_back(V); 5461 } 5462 5463 Lex.Lex(); // Lex the ']'. 5464 return false; 5465 } 5466 5467 /// ParseCleanupRet 5468 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 5469 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 5470 Value *CleanupPad = nullptr; 5471 5472 if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret")) 5473 return true; 5474 5475 if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 5476 return true; 5477 5478 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 5479 return true; 5480 5481 BasicBlock *UnwindBB = nullptr; 5482 if (Lex.getKind() == lltok::kw_to) { 5483 Lex.Lex(); 5484 if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 5485 return true; 5486 } else { 5487 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 5488 return true; 5489 } 5490 } 5491 5492 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 5493 return false; 5494 } 5495 5496 /// ParseCatchRet 5497 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 5498 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 5499 Value *CatchPad = nullptr; 5500 5501 if (ParseToken(lltok::kw_from, "expected 'from' after catchret")) 5502 return true; 5503 5504 if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS)) 5505 return true; 5506 5507 BasicBlock *BB; 5508 if (ParseToken(lltok::kw_to, "expected 'to' in catchret") || 5509 ParseTypeAndBasicBlock(BB, PFS)) 5510 return true; 5511 5512 Inst = CatchReturnInst::Create(CatchPad, BB); 5513 return false; 5514 } 5515 5516 /// ParseCatchSwitch 5517 /// ::= 'catchswitch' within Parent 5518 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 5519 Value *ParentPad; 5520 LocTy BBLoc; 5521 5522 if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch")) 5523 return true; 5524 5525 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 5526 Lex.getKind() != lltok::LocalVarID) 5527 return TokError("expected scope value for catchswitch"); 5528 5529 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 5530 return true; 5531 5532 if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 5533 return true; 5534 5535 SmallVector<BasicBlock *, 32> Table; 5536 do { 5537 BasicBlock *DestBB; 5538 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5539 return true; 5540 Table.push_back(DestBB); 5541 } while (EatIfPresent(lltok::comma)); 5542 5543 if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 5544 return true; 5545 5546 if (ParseToken(lltok::kw_unwind, 5547 "expected 'unwind' after catchswitch scope")) 5548 return true; 5549 5550 BasicBlock *UnwindBB = nullptr; 5551 if (EatIfPresent(lltok::kw_to)) { 5552 if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 5553 return true; 5554 } else { 5555 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) 5556 return true; 5557 } 5558 5559 auto *CatchSwitch = 5560 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 5561 for (BasicBlock *DestBB : Table) 5562 CatchSwitch->addHandler(DestBB); 5563 Inst = CatchSwitch; 5564 return false; 5565 } 5566 5567 /// ParseCatchPad 5568 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 5569 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 5570 Value *CatchSwitch = nullptr; 5571 5572 if (ParseToken(lltok::kw_within, "expected 'within' after catchpad")) 5573 return true; 5574 5575 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 5576 return TokError("expected scope value for catchpad"); 5577 5578 if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 5579 return true; 5580 5581 SmallVector<Value *, 8> Args; 5582 if (ParseExceptionArgs(Args, PFS)) 5583 return true; 5584 5585 Inst = CatchPadInst::Create(CatchSwitch, Args); 5586 return false; 5587 } 5588 5589 /// ParseCleanupPad 5590 /// ::= 'cleanuppad' within Parent ParamList 5591 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 5592 Value *ParentPad = nullptr; 5593 5594 if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 5595 return true; 5596 5597 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 5598 Lex.getKind() != lltok::LocalVarID) 5599 return TokError("expected scope value for cleanuppad"); 5600 5601 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 5602 return true; 5603 5604 SmallVector<Value *, 8> Args; 5605 if (ParseExceptionArgs(Args, PFS)) 5606 return true; 5607 5608 Inst = CleanupPadInst::Create(ParentPad, Args); 5609 return false; 5610 } 5611 5612 //===----------------------------------------------------------------------===// 5613 // Binary Operators. 5614 //===----------------------------------------------------------------------===// 5615 5616 /// ParseArithmetic 5617 /// ::= ArithmeticOps TypeAndValue ',' Value 5618 /// 5619 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1, 5620 /// then any integer operand is allowed, if it is 2, any fp operand is allowed. 5621 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 5622 unsigned Opc, unsigned OperandType) { 5623 LocTy Loc; Value *LHS, *RHS; 5624 if (ParseTypeAndValue(LHS, Loc, PFS) || 5625 ParseToken(lltok::comma, "expected ',' in arithmetic operation") || 5626 ParseValue(LHS->getType(), RHS, PFS)) 5627 return true; 5628 5629 bool Valid; 5630 switch (OperandType) { 5631 default: llvm_unreachable("Unknown operand type!"); 5632 case 0: // int or FP. 5633 Valid = LHS->getType()->isIntOrIntVectorTy() || 5634 LHS->getType()->isFPOrFPVectorTy(); 5635 break; 5636 case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break; 5637 case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break; 5638 } 5639 5640 if (!Valid) 5641 return Error(Loc, "invalid operand type for instruction"); 5642 5643 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 5644 return false; 5645 } 5646 5647 /// ParseLogical 5648 /// ::= ArithmeticOps TypeAndValue ',' Value { 5649 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, 5650 unsigned Opc) { 5651 LocTy Loc; Value *LHS, *RHS; 5652 if (ParseTypeAndValue(LHS, Loc, PFS) || 5653 ParseToken(lltok::comma, "expected ',' in logical operation") || 5654 ParseValue(LHS->getType(), RHS, PFS)) 5655 return true; 5656 5657 if (!LHS->getType()->isIntOrIntVectorTy()) 5658 return Error(Loc,"instruction requires integer or integer vector operands"); 5659 5660 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 5661 return false; 5662 } 5663 5664 /// ParseCompare 5665 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 5666 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 5667 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, 5668 unsigned Opc) { 5669 // Parse the integer/fp comparison predicate. 5670 LocTy Loc; 5671 unsigned Pred; 5672 Value *LHS, *RHS; 5673 if (ParseCmpPredicate(Pred, Opc) || 5674 ParseTypeAndValue(LHS, Loc, PFS) || 5675 ParseToken(lltok::comma, "expected ',' after compare value") || 5676 ParseValue(LHS->getType(), RHS, PFS)) 5677 return true; 5678 5679 if (Opc == Instruction::FCmp) { 5680 if (!LHS->getType()->isFPOrFPVectorTy()) 5681 return Error(Loc, "fcmp requires floating point operands"); 5682 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 5683 } else { 5684 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 5685 if (!LHS->getType()->isIntOrIntVectorTy() && 5686 !LHS->getType()->getScalarType()->isPointerTy()) 5687 return Error(Loc, "icmp requires integer operands"); 5688 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 5689 } 5690 return false; 5691 } 5692 5693 //===----------------------------------------------------------------------===// 5694 // Other Instructions. 5695 //===----------------------------------------------------------------------===// 5696 5697 5698 /// ParseCast 5699 /// ::= CastOpc TypeAndValue 'to' Type 5700 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, 5701 unsigned Opc) { 5702 LocTy Loc; 5703 Value *Op; 5704 Type *DestTy = nullptr; 5705 if (ParseTypeAndValue(Op, Loc, PFS) || 5706 ParseToken(lltok::kw_to, "expected 'to' after cast value") || 5707 ParseType(DestTy)) 5708 return true; 5709 5710 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 5711 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 5712 return Error(Loc, "invalid cast opcode for cast from '" + 5713 getTypeString(Op->getType()) + "' to '" + 5714 getTypeString(DestTy) + "'"); 5715 } 5716 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 5717 return false; 5718 } 5719 5720 /// ParseSelect 5721 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5722 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { 5723 LocTy Loc; 5724 Value *Op0, *Op1, *Op2; 5725 if (ParseTypeAndValue(Op0, Loc, PFS) || 5726 ParseToken(lltok::comma, "expected ',' after select condition") || 5727 ParseTypeAndValue(Op1, PFS) || 5728 ParseToken(lltok::comma, "expected ',' after select value") || 5729 ParseTypeAndValue(Op2, PFS)) 5730 return true; 5731 5732 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 5733 return Error(Loc, Reason); 5734 5735 Inst = SelectInst::Create(Op0, Op1, Op2); 5736 return false; 5737 } 5738 5739 /// ParseVA_Arg 5740 /// ::= 'va_arg' TypeAndValue ',' Type 5741 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { 5742 Value *Op; 5743 Type *EltTy = nullptr; 5744 LocTy TypeLoc; 5745 if (ParseTypeAndValue(Op, PFS) || 5746 ParseToken(lltok::comma, "expected ',' after vaarg operand") || 5747 ParseType(EltTy, TypeLoc)) 5748 return true; 5749 5750 if (!EltTy->isFirstClassType()) 5751 return Error(TypeLoc, "va_arg requires operand with first class type"); 5752 5753 Inst = new VAArgInst(Op, EltTy); 5754 return false; 5755 } 5756 5757 /// ParseExtractElement 5758 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 5759 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 5760 LocTy Loc; 5761 Value *Op0, *Op1; 5762 if (ParseTypeAndValue(Op0, Loc, PFS) || 5763 ParseToken(lltok::comma, "expected ',' after extract value") || 5764 ParseTypeAndValue(Op1, PFS)) 5765 return true; 5766 5767 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 5768 return Error(Loc, "invalid extractelement operands"); 5769 5770 Inst = ExtractElementInst::Create(Op0, Op1); 5771 return false; 5772 } 5773 5774 /// ParseInsertElement 5775 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5776 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 5777 LocTy Loc; 5778 Value *Op0, *Op1, *Op2; 5779 if (ParseTypeAndValue(Op0, Loc, PFS) || 5780 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5781 ParseTypeAndValue(Op1, PFS) || 5782 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5783 ParseTypeAndValue(Op2, PFS)) 5784 return true; 5785 5786 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 5787 return Error(Loc, "invalid insertelement operands"); 5788 5789 Inst = InsertElementInst::Create(Op0, Op1, Op2); 5790 return false; 5791 } 5792 5793 /// ParseShuffleVector 5794 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5795 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 5796 LocTy Loc; 5797 Value *Op0, *Op1, *Op2; 5798 if (ParseTypeAndValue(Op0, Loc, PFS) || 5799 ParseToken(lltok::comma, "expected ',' after shuffle mask") || 5800 ParseTypeAndValue(Op1, PFS) || 5801 ParseToken(lltok::comma, "expected ',' after shuffle value") || 5802 ParseTypeAndValue(Op2, PFS)) 5803 return true; 5804 5805 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 5806 return Error(Loc, "invalid shufflevector operands"); 5807 5808 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 5809 return false; 5810 } 5811 5812 /// ParsePHI 5813 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 5814 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { 5815 Type *Ty = nullptr; LocTy TypeLoc; 5816 Value *Op0, *Op1; 5817 5818 if (ParseType(Ty, TypeLoc) || 5819 ParseToken(lltok::lsquare, "expected '[' in phi value list") || 5820 ParseValue(Ty, Op0, PFS) || 5821 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5822 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 5823 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 5824 return true; 5825 5826 bool AteExtraComma = false; 5827 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 5828 5829 while (true) { 5830 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 5831 5832 if (!EatIfPresent(lltok::comma)) 5833 break; 5834 5835 if (Lex.getKind() == lltok::MetadataVar) { 5836 AteExtraComma = true; 5837 break; 5838 } 5839 5840 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || 5841 ParseValue(Ty, Op0, PFS) || 5842 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5843 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 5844 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 5845 return true; 5846 } 5847 5848 if (!Ty->isFirstClassType()) 5849 return Error(TypeLoc, "phi node must have first class type"); 5850 5851 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 5852 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 5853 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 5854 Inst = PN; 5855 return AteExtraComma ? InstExtraComma : InstNormal; 5856 } 5857 5858 /// ParseLandingPad 5859 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 5860 /// Clause 5861 /// ::= 'catch' TypeAndValue 5862 /// ::= 'filter' 5863 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 5864 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 5865 Type *Ty = nullptr; LocTy TyLoc; 5866 5867 if (ParseType(Ty, TyLoc)) 5868 return true; 5869 5870 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 5871 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 5872 5873 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 5874 LandingPadInst::ClauseType CT; 5875 if (EatIfPresent(lltok::kw_catch)) 5876 CT = LandingPadInst::Catch; 5877 else if (EatIfPresent(lltok::kw_filter)) 5878 CT = LandingPadInst::Filter; 5879 else 5880 return TokError("expected 'catch' or 'filter' clause type"); 5881 5882 Value *V; 5883 LocTy VLoc; 5884 if (ParseTypeAndValue(V, VLoc, PFS)) 5885 return true; 5886 5887 // A 'catch' type expects a non-array constant. A filter clause expects an 5888 // array constant. 5889 if (CT == LandingPadInst::Catch) { 5890 if (isa<ArrayType>(V->getType())) 5891 Error(VLoc, "'catch' clause has an invalid type"); 5892 } else { 5893 if (!isa<ArrayType>(V->getType())) 5894 Error(VLoc, "'filter' clause has an invalid type"); 5895 } 5896 5897 Constant *CV = dyn_cast<Constant>(V); 5898 if (!CV) 5899 return Error(VLoc, "clause argument must be a constant"); 5900 LP->addClause(CV); 5901 } 5902 5903 Inst = LP.release(); 5904 return false; 5905 } 5906 5907 /// ParseCall 5908 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 5909 /// OptionalAttrs Type Value ParameterList OptionalAttrs 5910 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 5911 /// OptionalAttrs Type Value ParameterList OptionalAttrs 5912 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 5913 /// OptionalAttrs Type Value ParameterList OptionalAttrs 5914 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 5915 /// OptionalAttrs Type Value ParameterList OptionalAttrs 5916 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, 5917 CallInst::TailCallKind TCK) { 5918 AttrBuilder RetAttrs, FnAttrs; 5919 std::vector<unsigned> FwdRefAttrGrps; 5920 LocTy BuiltinLoc; 5921 unsigned CC; 5922 Type *RetType = nullptr; 5923 LocTy RetTypeLoc; 5924 ValID CalleeID; 5925 SmallVector<ParamInfo, 16> ArgList; 5926 SmallVector<OperandBundleDef, 2> BundleList; 5927 LocTy CallLoc = Lex.getLoc(); 5928 5929 if (TCK != CallInst::TCK_None && 5930 ParseToken(lltok::kw_call, 5931 "expected 'tail call', 'musttail call', or 'notail call'")) 5932 return true; 5933 5934 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5935 5936 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5937 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 5938 ParseValID(CalleeID) || 5939 ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 5940 PFS.getFunction().isVarArg()) || 5941 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 5942 ParseOptionalOperandBundles(BundleList, PFS)) 5943 return true; 5944 5945 if (FMF.any() && !RetType->isFPOrFPVectorTy()) 5946 return Error(CallLoc, "fast-math-flags specified for call without " 5947 "floating-point scalar or vector return type"); 5948 5949 // If RetType is a non-function pointer type, then this is the short syntax 5950 // for the call, which means that RetType is just the return type. Infer the 5951 // rest of the function argument types from the arguments that are present. 5952 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 5953 if (!Ty) { 5954 // Pull out the types of all of the arguments... 5955 std::vector<Type*> ParamTypes; 5956 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 5957 ParamTypes.push_back(ArgList[i].V->getType()); 5958 5959 if (!FunctionType::isValidReturnType(RetType)) 5960 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 5961 5962 Ty = FunctionType::get(RetType, ParamTypes, false); 5963 } 5964 5965 CalleeID.FTy = Ty; 5966 5967 // Look up the callee. 5968 Value *Callee; 5969 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS)) 5970 return true; 5971 5972 // Set up the Attribute for the function. 5973 SmallVector<AttributeSet, 8> Attrs; 5974 5975 SmallVector<Value*, 8> Args; 5976 5977 // Loop through FunctionType's arguments and ensure they are specified 5978 // correctly. Also, gather any parameter attributes. 5979 FunctionType::param_iterator I = Ty->param_begin(); 5980 FunctionType::param_iterator E = Ty->param_end(); 5981 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5982 Type *ExpectedTy = nullptr; 5983 if (I != E) { 5984 ExpectedTy = *I++; 5985 } else if (!Ty->isVarArg()) { 5986 return Error(ArgList[i].Loc, "too many arguments specified"); 5987 } 5988 5989 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 5990 return Error(ArgList[i].Loc, "argument is not of expected type '" + 5991 getTypeString(ExpectedTy) + "'"); 5992 Args.push_back(ArgList[i].V); 5993 Attrs.push_back(ArgList[i].Attrs); 5994 } 5995 5996 if (I != E) 5997 return Error(CallLoc, "not enough parameters specified for call"); 5998 5999 if (FnAttrs.hasAlignmentAttr()) 6000 return Error(CallLoc, "call instructions may not have an alignment"); 6001 6002 // Finish off the Attribute and check them 6003 AttributeList PAL = 6004 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6005 AttributeSet::get(Context, RetAttrs), Attrs); 6006 6007 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 6008 CI->setTailCallKind(TCK); 6009 CI->setCallingConv(CC); 6010 if (FMF.any()) 6011 CI->setFastMathFlags(FMF); 6012 CI->setAttributes(PAL); 6013 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 6014 Inst = CI; 6015 return false; 6016 } 6017 6018 //===----------------------------------------------------------------------===// 6019 // Memory Instructions. 6020 //===----------------------------------------------------------------------===// 6021 6022 /// ParseAlloc 6023 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 6024 /// (',' 'align' i32)? 6025 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 6026 Value *Size = nullptr; 6027 LocTy SizeLoc, TyLoc, ASLoc; 6028 unsigned Alignment = 0; 6029 unsigned AddrSpace = 0; 6030 Type *Ty = nullptr; 6031 6032 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 6033 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 6034 6035 if (ParseType(Ty, TyLoc)) return true; 6036 6037 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 6038 return Error(TyLoc, "invalid type for alloca"); 6039 6040 bool AteExtraComma = false; 6041 if (EatIfPresent(lltok::comma)) { 6042 if (Lex.getKind() == lltok::kw_align) { 6043 if (ParseOptionalAlignment(Alignment)) 6044 return true; 6045 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 6046 return true; 6047 } else if (Lex.getKind() == lltok::kw_addrspace) { 6048 ASLoc = Lex.getLoc(); 6049 if (ParseOptionalAddrSpace(AddrSpace)) 6050 return true; 6051 } else if (Lex.getKind() == lltok::MetadataVar) { 6052 AteExtraComma = true; 6053 } else { 6054 if (ParseTypeAndValue(Size, SizeLoc, PFS) || 6055 ParseOptionalCommaAlign(Alignment, AteExtraComma) || 6056 (!AteExtraComma && 6057 ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))) 6058 return true; 6059 } 6060 } 6061 6062 if (Size && !Size->getType()->isIntegerTy()) 6063 return Error(SizeLoc, "element count must have integer type"); 6064 6065 const DataLayout &DL = M->getDataLayout(); 6066 unsigned AS = DL.getAllocaAddrSpace(); 6067 if (AS != AddrSpace) { 6068 // TODO: In the future it should be possible to specify addrspace per-alloca. 6069 return Error(ASLoc, "address space must match datalayout"); 6070 } 6071 6072 AllocaInst *AI = new AllocaInst(Ty, AS, Size, Alignment); 6073 AI->setUsedWithInAlloca(IsInAlloca); 6074 AI->setSwiftError(IsSwiftError); 6075 Inst = AI; 6076 return AteExtraComma ? InstExtraComma : InstNormal; 6077 } 6078 6079 /// ParseLoad 6080 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 6081 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 6082 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6083 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) { 6084 Value *Val; LocTy Loc; 6085 unsigned Alignment = 0; 6086 bool AteExtraComma = false; 6087 bool isAtomic = false; 6088 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6089 SynchronizationScope Scope = CrossThread; 6090 6091 if (Lex.getKind() == lltok::kw_atomic) { 6092 isAtomic = true; 6093 Lex.Lex(); 6094 } 6095 6096 bool isVolatile = false; 6097 if (Lex.getKind() == lltok::kw_volatile) { 6098 isVolatile = true; 6099 Lex.Lex(); 6100 } 6101 6102 Type *Ty; 6103 LocTy ExplicitTypeLoc = Lex.getLoc(); 6104 if (ParseType(Ty) || 6105 ParseToken(lltok::comma, "expected comma after load's type") || 6106 ParseTypeAndValue(Val, Loc, PFS) || 6107 ParseScopeAndOrdering(isAtomic, Scope, Ordering) || 6108 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6109 return true; 6110 6111 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 6112 return Error(Loc, "load operand must be a pointer to a first class type"); 6113 if (isAtomic && !Alignment) 6114 return Error(Loc, "atomic load must have explicit non-zero alignment"); 6115 if (Ordering == AtomicOrdering::Release || 6116 Ordering == AtomicOrdering::AcquireRelease) 6117 return Error(Loc, "atomic load cannot use Release ordering"); 6118 6119 if (Ty != cast<PointerType>(Val->getType())->getElementType()) 6120 return Error(ExplicitTypeLoc, 6121 "explicit pointee type doesn't match operand's pointee type"); 6122 6123 Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, Scope); 6124 return AteExtraComma ? InstExtraComma : InstNormal; 6125 } 6126 6127 /// ParseStore 6128 6129 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 6130 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 6131 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6132 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) { 6133 Value *Val, *Ptr; LocTy Loc, PtrLoc; 6134 unsigned Alignment = 0; 6135 bool AteExtraComma = false; 6136 bool isAtomic = false; 6137 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6138 SynchronizationScope Scope = CrossThread; 6139 6140 if (Lex.getKind() == lltok::kw_atomic) { 6141 isAtomic = true; 6142 Lex.Lex(); 6143 } 6144 6145 bool isVolatile = false; 6146 if (Lex.getKind() == lltok::kw_volatile) { 6147 isVolatile = true; 6148 Lex.Lex(); 6149 } 6150 6151 if (ParseTypeAndValue(Val, Loc, PFS) || 6152 ParseToken(lltok::comma, "expected ',' after store operand") || 6153 ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6154 ParseScopeAndOrdering(isAtomic, Scope, Ordering) || 6155 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6156 return true; 6157 6158 if (!Ptr->getType()->isPointerTy()) 6159 return Error(PtrLoc, "store operand must be a pointer"); 6160 if (!Val->getType()->isFirstClassType()) 6161 return Error(Loc, "store operand must be a first class value"); 6162 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 6163 return Error(Loc, "stored value and pointer type do not match"); 6164 if (isAtomic && !Alignment) 6165 return Error(Loc, "atomic store must have explicit non-zero alignment"); 6166 if (Ordering == AtomicOrdering::Acquire || 6167 Ordering == AtomicOrdering::AcquireRelease) 6168 return Error(Loc, "atomic store cannot use Acquire ordering"); 6169 6170 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope); 6171 return AteExtraComma ? InstExtraComma : InstNormal; 6172 } 6173 6174 /// ParseCmpXchg 6175 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 6176 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering 6177 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 6178 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 6179 bool AteExtraComma = false; 6180 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 6181 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 6182 SynchronizationScope Scope = CrossThread; 6183 bool isVolatile = false; 6184 bool isWeak = false; 6185 6186 if (EatIfPresent(lltok::kw_weak)) 6187 isWeak = true; 6188 6189 if (EatIfPresent(lltok::kw_volatile)) 6190 isVolatile = true; 6191 6192 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6193 ParseToken(lltok::comma, "expected ',' after cmpxchg address") || 6194 ParseTypeAndValue(Cmp, CmpLoc, PFS) || 6195 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 6196 ParseTypeAndValue(New, NewLoc, PFS) || 6197 ParseScopeAndOrdering(true /*Always atomic*/, Scope, SuccessOrdering) || 6198 ParseOrdering(FailureOrdering)) 6199 return true; 6200 6201 if (SuccessOrdering == AtomicOrdering::Unordered || 6202 FailureOrdering == AtomicOrdering::Unordered) 6203 return TokError("cmpxchg cannot be unordered"); 6204 if (isStrongerThan(FailureOrdering, SuccessOrdering)) 6205 return TokError("cmpxchg failure argument shall be no stronger than the " 6206 "success argument"); 6207 if (FailureOrdering == AtomicOrdering::Release || 6208 FailureOrdering == AtomicOrdering::AcquireRelease) 6209 return TokError( 6210 "cmpxchg failure ordering cannot include release semantics"); 6211 if (!Ptr->getType()->isPointerTy()) 6212 return Error(PtrLoc, "cmpxchg operand must be a pointer"); 6213 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 6214 return Error(CmpLoc, "compare value and pointer type do not match"); 6215 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 6216 return Error(NewLoc, "new value and pointer type do not match"); 6217 if (!New->getType()->isFirstClassType()) 6218 return Error(NewLoc, "cmpxchg operand must be a first class value"); 6219 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 6220 Ptr, Cmp, New, SuccessOrdering, FailureOrdering, Scope); 6221 CXI->setVolatile(isVolatile); 6222 CXI->setWeak(isWeak); 6223 Inst = CXI; 6224 return AteExtraComma ? InstExtraComma : InstNormal; 6225 } 6226 6227 /// ParseAtomicRMW 6228 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 6229 /// 'singlethread'? AtomicOrdering 6230 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 6231 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 6232 bool AteExtraComma = false; 6233 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6234 SynchronizationScope Scope = CrossThread; 6235 bool isVolatile = false; 6236 AtomicRMWInst::BinOp Operation; 6237 6238 if (EatIfPresent(lltok::kw_volatile)) 6239 isVolatile = true; 6240 6241 switch (Lex.getKind()) { 6242 default: return TokError("expected binary operation in atomicrmw"); 6243 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 6244 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 6245 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 6246 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 6247 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 6248 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 6249 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 6250 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 6251 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 6252 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 6253 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 6254 } 6255 Lex.Lex(); // Eat the operation. 6256 6257 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6258 ParseToken(lltok::comma, "expected ',' after atomicrmw address") || 6259 ParseTypeAndValue(Val, ValLoc, PFS) || 6260 ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 6261 return true; 6262 6263 if (Ordering == AtomicOrdering::Unordered) 6264 return TokError("atomicrmw cannot be unordered"); 6265 if (!Ptr->getType()->isPointerTy()) 6266 return Error(PtrLoc, "atomicrmw operand must be a pointer"); 6267 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 6268 return Error(ValLoc, "atomicrmw value and pointer type do not match"); 6269 if (!Val->getType()->isIntegerTy()) 6270 return Error(ValLoc, "atomicrmw operand must be an integer"); 6271 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 6272 if (Size < 8 || (Size & (Size - 1))) 6273 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 6274 " integer"); 6275 6276 AtomicRMWInst *RMWI = 6277 new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope); 6278 RMWI->setVolatile(isVolatile); 6279 Inst = RMWI; 6280 return AteExtraComma ? InstExtraComma : InstNormal; 6281 } 6282 6283 /// ParseFence 6284 /// ::= 'fence' 'singlethread'? AtomicOrdering 6285 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) { 6286 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6287 SynchronizationScope Scope = CrossThread; 6288 if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 6289 return true; 6290 6291 if (Ordering == AtomicOrdering::Unordered) 6292 return TokError("fence cannot be unordered"); 6293 if (Ordering == AtomicOrdering::Monotonic) 6294 return TokError("fence cannot be monotonic"); 6295 6296 Inst = new FenceInst(Context, Ordering, Scope); 6297 return InstNormal; 6298 } 6299 6300 /// ParseGetElementPtr 6301 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 6302 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 6303 Value *Ptr = nullptr; 6304 Value *Val = nullptr; 6305 LocTy Loc, EltLoc; 6306 6307 bool InBounds = EatIfPresent(lltok::kw_inbounds); 6308 6309 Type *Ty = nullptr; 6310 LocTy ExplicitTypeLoc = Lex.getLoc(); 6311 if (ParseType(Ty) || 6312 ParseToken(lltok::comma, "expected comma after getelementptr's type") || 6313 ParseTypeAndValue(Ptr, Loc, PFS)) 6314 return true; 6315 6316 Type *BaseType = Ptr->getType(); 6317 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 6318 if (!BasePointerType) 6319 return Error(Loc, "base of getelementptr must be a pointer"); 6320 6321 if (Ty != BasePointerType->getElementType()) 6322 return Error(ExplicitTypeLoc, 6323 "explicit pointee type doesn't match operand's pointee type"); 6324 6325 SmallVector<Value*, 16> Indices; 6326 bool AteExtraComma = false; 6327 // GEP returns a vector of pointers if at least one of parameters is a vector. 6328 // All vector parameters should have the same vector width. 6329 unsigned GEPWidth = BaseType->isVectorTy() ? 6330 BaseType->getVectorNumElements() : 0; 6331 6332 while (EatIfPresent(lltok::comma)) { 6333 if (Lex.getKind() == lltok::MetadataVar) { 6334 AteExtraComma = true; 6335 break; 6336 } 6337 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; 6338 if (!Val->getType()->getScalarType()->isIntegerTy()) 6339 return Error(EltLoc, "getelementptr index must be an integer"); 6340 6341 if (Val->getType()->isVectorTy()) { 6342 unsigned ValNumEl = Val->getType()->getVectorNumElements(); 6343 if (GEPWidth && GEPWidth != ValNumEl) 6344 return Error(EltLoc, 6345 "getelementptr vector index has a wrong number of elements"); 6346 GEPWidth = ValNumEl; 6347 } 6348 Indices.push_back(Val); 6349 } 6350 6351 SmallPtrSet<Type*, 4> Visited; 6352 if (!Indices.empty() && !Ty->isSized(&Visited)) 6353 return Error(Loc, "base element of getelementptr must be sized"); 6354 6355 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 6356 return Error(Loc, "invalid getelementptr indices"); 6357 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 6358 if (InBounds) 6359 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 6360 return AteExtraComma ? InstExtraComma : InstNormal; 6361 } 6362 6363 /// ParseExtractValue 6364 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 6365 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 6366 Value *Val; LocTy Loc; 6367 SmallVector<unsigned, 4> Indices; 6368 bool AteExtraComma; 6369 if (ParseTypeAndValue(Val, Loc, PFS) || 6370 ParseIndexList(Indices, AteExtraComma)) 6371 return true; 6372 6373 if (!Val->getType()->isAggregateType()) 6374 return Error(Loc, "extractvalue operand must be aggregate type"); 6375 6376 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 6377 return Error(Loc, "invalid indices for extractvalue"); 6378 Inst = ExtractValueInst::Create(Val, Indices); 6379 return AteExtraComma ? InstExtraComma : InstNormal; 6380 } 6381 6382 /// ParseInsertValue 6383 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 6384 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 6385 Value *Val0, *Val1; LocTy Loc0, Loc1; 6386 SmallVector<unsigned, 4> Indices; 6387 bool AteExtraComma; 6388 if (ParseTypeAndValue(Val0, Loc0, PFS) || 6389 ParseToken(lltok::comma, "expected comma after insertvalue operand") || 6390 ParseTypeAndValue(Val1, Loc1, PFS) || 6391 ParseIndexList(Indices, AteExtraComma)) 6392 return true; 6393 6394 if (!Val0->getType()->isAggregateType()) 6395 return Error(Loc0, "insertvalue operand must be aggregate type"); 6396 6397 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 6398 if (!IndexedType) 6399 return Error(Loc0, "invalid indices for insertvalue"); 6400 if (IndexedType != Val1->getType()) 6401 return Error(Loc1, "insertvalue operand and field disagree in type: '" + 6402 getTypeString(Val1->getType()) + "' instead of '" + 6403 getTypeString(IndexedType) + "'"); 6404 Inst = InsertValueInst::Create(Val0, Val1, Indices); 6405 return AteExtraComma ? InstExtraComma : InstNormal; 6406 } 6407 6408 //===----------------------------------------------------------------------===// 6409 // Embedded metadata. 6410 //===----------------------------------------------------------------------===// 6411 6412 /// ParseMDNodeVector 6413 /// ::= { Element (',' Element)* } 6414 /// Element 6415 /// ::= 'null' | TypeAndValue 6416 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 6417 if (ParseToken(lltok::lbrace, "expected '{' here")) 6418 return true; 6419 6420 // Check for an empty list. 6421 if (EatIfPresent(lltok::rbrace)) 6422 return false; 6423 6424 do { 6425 // Null is a special case since it is typeless. 6426 if (EatIfPresent(lltok::kw_null)) { 6427 Elts.push_back(nullptr); 6428 continue; 6429 } 6430 6431 Metadata *MD; 6432 if (ParseMetadata(MD, nullptr)) 6433 return true; 6434 Elts.push_back(MD); 6435 } while (EatIfPresent(lltok::comma)); 6436 6437 return ParseToken(lltok::rbrace, "expected end of metadata node"); 6438 } 6439 6440 //===----------------------------------------------------------------------===// 6441 // Use-list order directives. 6442 //===----------------------------------------------------------------------===// 6443 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 6444 SMLoc Loc) { 6445 if (V->use_empty()) 6446 return Error(Loc, "value has no uses"); 6447 6448 unsigned NumUses = 0; 6449 SmallDenseMap<const Use *, unsigned, 16> Order; 6450 for (const Use &U : V->uses()) { 6451 if (++NumUses > Indexes.size()) 6452 break; 6453 Order[&U] = Indexes[NumUses - 1]; 6454 } 6455 if (NumUses < 2) 6456 return Error(Loc, "value only has one use"); 6457 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 6458 return Error(Loc, "wrong number of indexes, expected " + 6459 Twine(std::distance(V->use_begin(), V->use_end()))); 6460 6461 V->sortUseList([&](const Use &L, const Use &R) { 6462 return Order.lookup(&L) < Order.lookup(&R); 6463 }); 6464 return false; 6465 } 6466 6467 /// ParseUseListOrderIndexes 6468 /// ::= '{' uint32 (',' uint32)+ '}' 6469 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 6470 SMLoc Loc = Lex.getLoc(); 6471 if (ParseToken(lltok::lbrace, "expected '{' here")) 6472 return true; 6473 if (Lex.getKind() == lltok::rbrace) 6474 return Lex.Error("expected non-empty list of uselistorder indexes"); 6475 6476 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 6477 // indexes should be distinct numbers in the range [0, size-1], and should 6478 // not be in order. 6479 unsigned Offset = 0; 6480 unsigned Max = 0; 6481 bool IsOrdered = true; 6482 assert(Indexes.empty() && "Expected empty order vector"); 6483 do { 6484 unsigned Index; 6485 if (ParseUInt32(Index)) 6486 return true; 6487 6488 // Update consistency checks. 6489 Offset += Index - Indexes.size(); 6490 Max = std::max(Max, Index); 6491 IsOrdered &= Index == Indexes.size(); 6492 6493 Indexes.push_back(Index); 6494 } while (EatIfPresent(lltok::comma)); 6495 6496 if (ParseToken(lltok::rbrace, "expected '}' here")) 6497 return true; 6498 6499 if (Indexes.size() < 2) 6500 return Error(Loc, "expected >= 2 uselistorder indexes"); 6501 if (Offset != 0 || Max >= Indexes.size()) 6502 return Error(Loc, "expected distinct uselistorder indexes in range [0, size)"); 6503 if (IsOrdered) 6504 return Error(Loc, "expected uselistorder indexes to change the order"); 6505 6506 return false; 6507 } 6508 6509 /// ParseUseListOrder 6510 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 6511 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) { 6512 SMLoc Loc = Lex.getLoc(); 6513 if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 6514 return true; 6515 6516 Value *V; 6517 SmallVector<unsigned, 16> Indexes; 6518 if (ParseTypeAndValue(V, PFS) || 6519 ParseToken(lltok::comma, "expected comma in uselistorder directive") || 6520 ParseUseListOrderIndexes(Indexes)) 6521 return true; 6522 6523 return sortUseListOrder(V, Indexes, Loc); 6524 } 6525 6526 /// ParseUseListOrderBB 6527 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 6528 bool LLParser::ParseUseListOrderBB() { 6529 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 6530 SMLoc Loc = Lex.getLoc(); 6531 Lex.Lex(); 6532 6533 ValID Fn, Label; 6534 SmallVector<unsigned, 16> Indexes; 6535 if (ParseValID(Fn) || 6536 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 6537 ParseValID(Label) || 6538 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 6539 ParseUseListOrderIndexes(Indexes)) 6540 return true; 6541 6542 // Check the function. 6543 GlobalValue *GV; 6544 if (Fn.Kind == ValID::t_GlobalName) 6545 GV = M->getNamedValue(Fn.StrVal); 6546 else if (Fn.Kind == ValID::t_GlobalID) 6547 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 6548 else 6549 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 6550 if (!GV) 6551 return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb"); 6552 auto *F = dyn_cast<Function>(GV); 6553 if (!F) 6554 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 6555 if (F->isDeclaration()) 6556 return Error(Fn.Loc, "invalid declaration in uselistorder_bb"); 6557 6558 // Check the basic block. 6559 if (Label.Kind == ValID::t_LocalID) 6560 return Error(Label.Loc, "invalid numeric label in uselistorder_bb"); 6561 if (Label.Kind != ValID::t_LocalName) 6562 return Error(Label.Loc, "expected basic block name in uselistorder_bb"); 6563 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); 6564 if (!V) 6565 return Error(Label.Loc, "invalid basic block in uselistorder_bb"); 6566 if (!isa<BasicBlock>(V)) 6567 return Error(Label.Loc, "expected basic block in uselistorder_bb"); 6568 6569 return sortUseListOrder(V, Indexes, Loc); 6570 } 6571