1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the parser class for .ll files. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LLParser.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/AsmParser/SlotMapping.h" 21 #include "llvm/BinaryFormat/Dwarf.h" 22 #include "llvm/IR/Argument.h" 23 #include "llvm/IR/AutoUpgrade.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallingConv.h" 26 #include "llvm/IR/Comdat.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DebugInfoMetadata.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/GlobalIFunc.h" 32 #include "llvm/IR/GlobalObject.h" 33 #include "llvm/IR/InlineAsm.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/LLVMContext.h" 38 #include "llvm/IR/Metadata.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/Operator.h" 41 #include "llvm/IR/Type.h" 42 #include "llvm/IR/Value.h" 43 #include "llvm/IR/ValueSymbolTable.h" 44 #include "llvm/Support/Casting.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/MathExtras.h" 47 #include "llvm/Support/SaveAndRestore.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include <algorithm> 50 #include <cassert> 51 #include <cstring> 52 #include <iterator> 53 #include <vector> 54 55 using namespace llvm; 56 57 static std::string getTypeString(Type *T) { 58 std::string Result; 59 raw_string_ostream Tmp(Result); 60 Tmp << *T; 61 return Tmp.str(); 62 } 63 64 /// Run: module ::= toplevelentity* 65 bool LLParser::Run() { 66 // Prime the lexer. 67 Lex.Lex(); 68 69 if (Context.shouldDiscardValueNames()) 70 return Error( 71 Lex.getLoc(), 72 "Can't read textual IR with a Context that discards named Values"); 73 74 return ParseTopLevelEntities() || 75 ValidateEndOfModule(); 76 } 77 78 bool LLParser::parseStandaloneConstantValue(Constant *&C, 79 const SlotMapping *Slots) { 80 restoreParsingState(Slots); 81 Lex.Lex(); 82 83 Type *Ty = nullptr; 84 if (ParseType(Ty) || parseConstantValue(Ty, C)) 85 return true; 86 if (Lex.getKind() != lltok::Eof) 87 return Error(Lex.getLoc(), "expected end of string"); 88 return false; 89 } 90 91 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 92 const SlotMapping *Slots) { 93 restoreParsingState(Slots); 94 Lex.Lex(); 95 96 Read = 0; 97 SMLoc Start = Lex.getLoc(); 98 Ty = nullptr; 99 if (ParseType(Ty)) 100 return true; 101 SMLoc End = Lex.getLoc(); 102 Read = End.getPointer() - Start.getPointer(); 103 104 return false; 105 } 106 107 void LLParser::restoreParsingState(const SlotMapping *Slots) { 108 if (!Slots) 109 return; 110 NumberedVals = Slots->GlobalValues; 111 NumberedMetadata = Slots->MetadataNodes; 112 for (const auto &I : Slots->NamedTypes) 113 NamedTypes.insert( 114 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 115 for (const auto &I : Slots->Types) 116 NumberedTypes.insert( 117 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 118 } 119 120 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the 121 /// module. 122 bool LLParser::ValidateEndOfModule() { 123 // Handle any function attribute group forward references. 124 for (const auto &RAG : ForwardRefAttrGroups) { 125 Value *V = RAG.first; 126 const std::vector<unsigned> &Attrs = RAG.second; 127 AttrBuilder B; 128 129 for (const auto &Attr : Attrs) 130 B.merge(NumberedAttrBuilders[Attr]); 131 132 if (Function *Fn = dyn_cast<Function>(V)) { 133 AttributeList AS = Fn->getAttributes(); 134 AttrBuilder FnAttrs(AS.getFnAttributes()); 135 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 136 137 FnAttrs.merge(B); 138 139 // If the alignment was parsed as an attribute, move to the alignment 140 // field. 141 if (FnAttrs.hasAlignmentAttr()) { 142 Fn->setAlignment(FnAttrs.getAlignment()); 143 FnAttrs.removeAttribute(Attribute::Alignment); 144 } 145 146 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 147 AttributeSet::get(Context, FnAttrs)); 148 Fn->setAttributes(AS); 149 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 150 AttributeList AS = CI->getAttributes(); 151 AttrBuilder FnAttrs(AS.getFnAttributes()); 152 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 153 FnAttrs.merge(B); 154 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 155 AttributeSet::get(Context, FnAttrs)); 156 CI->setAttributes(AS); 157 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 158 AttributeList AS = II->getAttributes(); 159 AttrBuilder FnAttrs(AS.getFnAttributes()); 160 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 161 FnAttrs.merge(B); 162 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 163 AttributeSet::get(Context, FnAttrs)); 164 II->setAttributes(AS); 165 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) { 166 AttrBuilder Attrs(GV->getAttributes()); 167 Attrs.merge(B); 168 GV->setAttributes(AttributeSet::get(Context,Attrs)); 169 } else { 170 llvm_unreachable("invalid object with forward attribute group reference"); 171 } 172 } 173 174 // If there are entries in ForwardRefBlockAddresses at this point, the 175 // function was never defined. 176 if (!ForwardRefBlockAddresses.empty()) 177 return Error(ForwardRefBlockAddresses.begin()->first.Loc, 178 "expected function name in blockaddress"); 179 180 for (const auto &NT : NumberedTypes) 181 if (NT.second.second.isValid()) 182 return Error(NT.second.second, 183 "use of undefined type '%" + Twine(NT.first) + "'"); 184 185 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 186 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 187 if (I->second.second.isValid()) 188 return Error(I->second.second, 189 "use of undefined type named '" + I->getKey() + "'"); 190 191 if (!ForwardRefComdats.empty()) 192 return Error(ForwardRefComdats.begin()->second, 193 "use of undefined comdat '$" + 194 ForwardRefComdats.begin()->first + "'"); 195 196 if (!ForwardRefVals.empty()) 197 return Error(ForwardRefVals.begin()->second.second, 198 "use of undefined value '@" + ForwardRefVals.begin()->first + 199 "'"); 200 201 if (!ForwardRefValIDs.empty()) 202 return Error(ForwardRefValIDs.begin()->second.second, 203 "use of undefined value '@" + 204 Twine(ForwardRefValIDs.begin()->first) + "'"); 205 206 if (!ForwardRefMDNodes.empty()) 207 return Error(ForwardRefMDNodes.begin()->second.second, 208 "use of undefined metadata '!" + 209 Twine(ForwardRefMDNodes.begin()->first) + "'"); 210 211 // Resolve metadata cycles. 212 for (auto &N : NumberedMetadata) { 213 if (N.second && !N.second->isResolved()) 214 N.second->resolveCycles(); 215 } 216 217 for (auto *Inst : InstsWithTBAATag) { 218 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); 219 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); 220 auto *UpgradedMD = UpgradeTBAANode(*MD); 221 if (MD != UpgradedMD) 222 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); 223 } 224 225 // Look for intrinsic functions and CallInst that need to be upgraded 226 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 227 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove 228 229 // Some types could be renamed during loading if several modules are 230 // loaded in the same LLVMContext (LTO scenario). In this case we should 231 // remangle intrinsics names as well. 232 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) { 233 Function *F = &*FI++; 234 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) { 235 F->replaceAllUsesWith(Remangled.getValue()); 236 F->eraseFromParent(); 237 } 238 } 239 240 if (UpgradeDebugInfo) 241 llvm::UpgradeDebugInfo(*M); 242 243 UpgradeModuleFlags(*M); 244 UpgradeSectionAttributes(*M); 245 246 if (!Slots) 247 return false; 248 // Initialize the slot mapping. 249 // Because by this point we've parsed and validated everything, we can "steal" 250 // the mapping from LLParser as it doesn't need it anymore. 251 Slots->GlobalValues = std::move(NumberedVals); 252 Slots->MetadataNodes = std::move(NumberedMetadata); 253 for (const auto &I : NamedTypes) 254 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 255 for (const auto &I : NumberedTypes) 256 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 257 258 return false; 259 } 260 261 //===----------------------------------------------------------------------===// 262 // Top-Level Entities 263 //===----------------------------------------------------------------------===// 264 265 bool LLParser::ParseTopLevelEntities() { 266 while (true) { 267 switch (Lex.getKind()) { 268 default: return TokError("expected top-level entity"); 269 case lltok::Eof: return false; 270 case lltok::kw_declare: if (ParseDeclare()) return true; break; 271 case lltok::kw_define: if (ParseDefine()) return true; break; 272 case lltok::kw_module: if (ParseModuleAsm()) return true; break; 273 case lltok::kw_target: if (ParseTargetDefinition()) return true; break; 274 case lltok::kw_source_filename: 275 if (ParseSourceFileName()) 276 return true; 277 break; 278 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; 279 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; 280 case lltok::LocalVar: if (ParseNamedType()) return true; break; 281 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; 282 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; 283 case lltok::ComdatVar: if (parseComdat()) return true; break; 284 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break; 285 case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break; 286 case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break; 287 case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break; 288 case lltok::kw_uselistorder_bb: 289 if (ParseUseListOrderBB()) 290 return true; 291 break; 292 } 293 } 294 } 295 296 /// toplevelentity 297 /// ::= 'module' 'asm' STRINGCONSTANT 298 bool LLParser::ParseModuleAsm() { 299 assert(Lex.getKind() == lltok::kw_module); 300 Lex.Lex(); 301 302 std::string AsmStr; 303 if (ParseToken(lltok::kw_asm, "expected 'module asm'") || 304 ParseStringConstant(AsmStr)) return true; 305 306 M->appendModuleInlineAsm(AsmStr); 307 return false; 308 } 309 310 /// toplevelentity 311 /// ::= 'target' 'triple' '=' STRINGCONSTANT 312 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 313 bool LLParser::ParseTargetDefinition() { 314 assert(Lex.getKind() == lltok::kw_target); 315 std::string Str; 316 switch (Lex.Lex()) { 317 default: return TokError("unknown target property"); 318 case lltok::kw_triple: 319 Lex.Lex(); 320 if (ParseToken(lltok::equal, "expected '=' after target triple") || 321 ParseStringConstant(Str)) 322 return true; 323 M->setTargetTriple(Str); 324 return false; 325 case lltok::kw_datalayout: 326 Lex.Lex(); 327 if (ParseToken(lltok::equal, "expected '=' after target datalayout") || 328 ParseStringConstant(Str)) 329 return true; 330 M->setDataLayout(Str); 331 return false; 332 } 333 } 334 335 /// toplevelentity 336 /// ::= 'source_filename' '=' STRINGCONSTANT 337 bool LLParser::ParseSourceFileName() { 338 assert(Lex.getKind() == lltok::kw_source_filename); 339 std::string Str; 340 Lex.Lex(); 341 if (ParseToken(lltok::equal, "expected '=' after source_filename") || 342 ParseStringConstant(Str)) 343 return true; 344 M->setSourceFileName(Str); 345 return false; 346 } 347 348 /// toplevelentity 349 /// ::= 'deplibs' '=' '[' ']' 350 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 351 /// FIXME: Remove in 4.0. Currently parse, but ignore. 352 bool LLParser::ParseDepLibs() { 353 assert(Lex.getKind() == lltok::kw_deplibs); 354 Lex.Lex(); 355 if (ParseToken(lltok::equal, "expected '=' after deplibs") || 356 ParseToken(lltok::lsquare, "expected '=' after deplibs")) 357 return true; 358 359 if (EatIfPresent(lltok::rsquare)) 360 return false; 361 362 do { 363 std::string Str; 364 if (ParseStringConstant(Str)) return true; 365 } while (EatIfPresent(lltok::comma)); 366 367 return ParseToken(lltok::rsquare, "expected ']' at end of list"); 368 } 369 370 /// ParseUnnamedType: 371 /// ::= LocalVarID '=' 'type' type 372 bool LLParser::ParseUnnamedType() { 373 LocTy TypeLoc = Lex.getLoc(); 374 unsigned TypeID = Lex.getUIntVal(); 375 Lex.Lex(); // eat LocalVarID; 376 377 if (ParseToken(lltok::equal, "expected '=' after name") || 378 ParseToken(lltok::kw_type, "expected 'type' after '='")) 379 return true; 380 381 Type *Result = nullptr; 382 if (ParseStructDefinition(TypeLoc, "", 383 NumberedTypes[TypeID], Result)) return true; 384 385 if (!isa<StructType>(Result)) { 386 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 387 if (Entry.first) 388 return Error(TypeLoc, "non-struct types may not be recursive"); 389 Entry.first = Result; 390 Entry.second = SMLoc(); 391 } 392 393 return false; 394 } 395 396 /// toplevelentity 397 /// ::= LocalVar '=' 'type' type 398 bool LLParser::ParseNamedType() { 399 std::string Name = Lex.getStrVal(); 400 LocTy NameLoc = Lex.getLoc(); 401 Lex.Lex(); // eat LocalVar. 402 403 if (ParseToken(lltok::equal, "expected '=' after name") || 404 ParseToken(lltok::kw_type, "expected 'type' after name")) 405 return true; 406 407 Type *Result = nullptr; 408 if (ParseStructDefinition(NameLoc, Name, 409 NamedTypes[Name], Result)) return true; 410 411 if (!isa<StructType>(Result)) { 412 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 413 if (Entry.first) 414 return Error(NameLoc, "non-struct types may not be recursive"); 415 Entry.first = Result; 416 Entry.second = SMLoc(); 417 } 418 419 return false; 420 } 421 422 /// toplevelentity 423 /// ::= 'declare' FunctionHeader 424 bool LLParser::ParseDeclare() { 425 assert(Lex.getKind() == lltok::kw_declare); 426 Lex.Lex(); 427 428 std::vector<std::pair<unsigned, MDNode *>> MDs; 429 while (Lex.getKind() == lltok::MetadataVar) { 430 unsigned MDK; 431 MDNode *N; 432 if (ParseMetadataAttachment(MDK, N)) 433 return true; 434 MDs.push_back({MDK, N}); 435 } 436 437 Function *F; 438 if (ParseFunctionHeader(F, false)) 439 return true; 440 for (auto &MD : MDs) 441 F->addMetadata(MD.first, *MD.second); 442 return false; 443 } 444 445 /// toplevelentity 446 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 447 bool LLParser::ParseDefine() { 448 assert(Lex.getKind() == lltok::kw_define); 449 Lex.Lex(); 450 451 Function *F; 452 return ParseFunctionHeader(F, true) || 453 ParseOptionalFunctionMetadata(*F) || 454 ParseFunctionBody(*F); 455 } 456 457 /// ParseGlobalType 458 /// ::= 'constant' 459 /// ::= 'global' 460 bool LLParser::ParseGlobalType(bool &IsConstant) { 461 if (Lex.getKind() == lltok::kw_constant) 462 IsConstant = true; 463 else if (Lex.getKind() == lltok::kw_global) 464 IsConstant = false; 465 else { 466 IsConstant = false; 467 return TokError("expected 'global' or 'constant'"); 468 } 469 Lex.Lex(); 470 return false; 471 } 472 473 bool LLParser::ParseOptionalUnnamedAddr( 474 GlobalVariable::UnnamedAddr &UnnamedAddr) { 475 if (EatIfPresent(lltok::kw_unnamed_addr)) 476 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 477 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 478 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 479 else 480 UnnamedAddr = GlobalValue::UnnamedAddr::None; 481 return false; 482 } 483 484 /// ParseUnnamedGlobal: 485 /// OptionalVisibility (ALIAS | IFUNC) ... 486 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 487 /// OptionalDLLStorageClass 488 /// ... -> global variable 489 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 490 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 491 /// OptionalDLLStorageClass 492 /// ... -> global variable 493 bool LLParser::ParseUnnamedGlobal() { 494 unsigned VarID = NumberedVals.size(); 495 std::string Name; 496 LocTy NameLoc = Lex.getLoc(); 497 498 // Handle the GlobalID form. 499 if (Lex.getKind() == lltok::GlobalID) { 500 if (Lex.getUIntVal() != VarID) 501 return Error(Lex.getLoc(), "variable expected to be numbered '%" + 502 Twine(VarID) + "'"); 503 Lex.Lex(); // eat GlobalID; 504 505 if (ParseToken(lltok::equal, "expected '=' after name")) 506 return true; 507 } 508 509 bool HasLinkage; 510 unsigned Linkage, Visibility, DLLStorageClass; 511 bool DSOLocal; 512 GlobalVariable::ThreadLocalMode TLM; 513 GlobalVariable::UnnamedAddr UnnamedAddr; 514 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 515 DSOLocal) || 516 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 517 return true; 518 519 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 520 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 521 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 522 523 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 524 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 525 } 526 527 /// ParseNamedGlobal: 528 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 529 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 530 /// OptionalVisibility OptionalDLLStorageClass 531 /// ... -> global variable 532 bool LLParser::ParseNamedGlobal() { 533 assert(Lex.getKind() == lltok::GlobalVar); 534 LocTy NameLoc = Lex.getLoc(); 535 std::string Name = Lex.getStrVal(); 536 Lex.Lex(); 537 538 bool HasLinkage; 539 unsigned Linkage, Visibility, DLLStorageClass; 540 bool DSOLocal; 541 GlobalVariable::ThreadLocalMode TLM; 542 GlobalVariable::UnnamedAddr UnnamedAddr; 543 if (ParseToken(lltok::equal, "expected '=' in global variable") || 544 ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 545 DSOLocal) || 546 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 547 return true; 548 549 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 550 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 551 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 552 553 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 554 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 555 } 556 557 bool LLParser::parseComdat() { 558 assert(Lex.getKind() == lltok::ComdatVar); 559 std::string Name = Lex.getStrVal(); 560 LocTy NameLoc = Lex.getLoc(); 561 Lex.Lex(); 562 563 if (ParseToken(lltok::equal, "expected '=' here")) 564 return true; 565 566 if (ParseToken(lltok::kw_comdat, "expected comdat keyword")) 567 return TokError("expected comdat type"); 568 569 Comdat::SelectionKind SK; 570 switch (Lex.getKind()) { 571 default: 572 return TokError("unknown selection kind"); 573 case lltok::kw_any: 574 SK = Comdat::Any; 575 break; 576 case lltok::kw_exactmatch: 577 SK = Comdat::ExactMatch; 578 break; 579 case lltok::kw_largest: 580 SK = Comdat::Largest; 581 break; 582 case lltok::kw_noduplicates: 583 SK = Comdat::NoDuplicates; 584 break; 585 case lltok::kw_samesize: 586 SK = Comdat::SameSize; 587 break; 588 } 589 Lex.Lex(); 590 591 // See if the comdat was forward referenced, if so, use the comdat. 592 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 593 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 594 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 595 return Error(NameLoc, "redefinition of comdat '$" + Name + "'"); 596 597 Comdat *C; 598 if (I != ComdatSymTab.end()) 599 C = &I->second; 600 else 601 C = M->getOrInsertComdat(Name); 602 C->setSelectionKind(SK); 603 604 return false; 605 } 606 607 // MDString: 608 // ::= '!' STRINGCONSTANT 609 bool LLParser::ParseMDString(MDString *&Result) { 610 std::string Str; 611 if (ParseStringConstant(Str)) return true; 612 Result = MDString::get(Context, Str); 613 return false; 614 } 615 616 // MDNode: 617 // ::= '!' MDNodeNumber 618 bool LLParser::ParseMDNodeID(MDNode *&Result) { 619 // !{ ..., !42, ... } 620 LocTy IDLoc = Lex.getLoc(); 621 unsigned MID = 0; 622 if (ParseUInt32(MID)) 623 return true; 624 625 // If not a forward reference, just return it now. 626 if (NumberedMetadata.count(MID)) { 627 Result = NumberedMetadata[MID]; 628 return false; 629 } 630 631 // Otherwise, create MDNode forward reference. 632 auto &FwdRef = ForwardRefMDNodes[MID]; 633 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 634 635 Result = FwdRef.first.get(); 636 NumberedMetadata[MID].reset(Result); 637 return false; 638 } 639 640 /// ParseNamedMetadata: 641 /// !foo = !{ !1, !2 } 642 bool LLParser::ParseNamedMetadata() { 643 assert(Lex.getKind() == lltok::MetadataVar); 644 std::string Name = Lex.getStrVal(); 645 Lex.Lex(); 646 647 if (ParseToken(lltok::equal, "expected '=' here") || 648 ParseToken(lltok::exclaim, "Expected '!' here") || 649 ParseToken(lltok::lbrace, "Expected '{' here")) 650 return true; 651 652 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 653 if (Lex.getKind() != lltok::rbrace) 654 do { 655 MDNode *N = nullptr; 656 // Parse DIExpressions inline as a special case. They are still MDNodes, 657 // so they can still appear in named metadata. Remove this logic if they 658 // become plain Metadata. 659 if (Lex.getKind() == lltok::MetadataVar && 660 Lex.getStrVal() == "DIExpression") { 661 if (ParseDIExpression(N, /*IsDistinct=*/false)) 662 return true; 663 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 664 ParseMDNodeID(N)) { 665 return true; 666 } 667 NMD->addOperand(N); 668 } while (EatIfPresent(lltok::comma)); 669 670 return ParseToken(lltok::rbrace, "expected end of metadata node"); 671 } 672 673 /// ParseStandaloneMetadata: 674 /// !42 = !{...} 675 bool LLParser::ParseStandaloneMetadata() { 676 assert(Lex.getKind() == lltok::exclaim); 677 Lex.Lex(); 678 unsigned MetadataID = 0; 679 680 MDNode *Init; 681 if (ParseUInt32(MetadataID) || 682 ParseToken(lltok::equal, "expected '=' here")) 683 return true; 684 685 // Detect common error, from old metadata syntax. 686 if (Lex.getKind() == lltok::Type) 687 return TokError("unexpected type in metadata definition"); 688 689 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 690 if (Lex.getKind() == lltok::MetadataVar) { 691 if (ParseSpecializedMDNode(Init, IsDistinct)) 692 return true; 693 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 694 ParseMDTuple(Init, IsDistinct)) 695 return true; 696 697 // See if this was forward referenced, if so, handle it. 698 auto FI = ForwardRefMDNodes.find(MetadataID); 699 if (FI != ForwardRefMDNodes.end()) { 700 FI->second.first->replaceAllUsesWith(Init); 701 ForwardRefMDNodes.erase(FI); 702 703 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 704 } else { 705 if (NumberedMetadata.count(MetadataID)) 706 return TokError("Metadata id is already used"); 707 NumberedMetadata[MetadataID].reset(Init); 708 } 709 710 return false; 711 } 712 713 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 714 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 715 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 716 } 717 718 // If there was an explicit dso_local, update GV. In the absence of an explicit 719 // dso_local we keep the default value. 720 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) { 721 if (DSOLocal) 722 GV.setDSOLocal(true); 723 } 724 725 /// parseIndirectSymbol: 726 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 727 /// OptionalVisibility OptionalDLLStorageClass 728 /// OptionalThreadLocal OptionalUnnamedAddr 729 // 'alias|ifunc' IndirectSymbol 730 /// 731 /// IndirectSymbol 732 /// ::= TypeAndValue 733 /// 734 /// Everything through OptionalUnnamedAddr has already been parsed. 735 /// 736 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc, 737 unsigned L, unsigned Visibility, 738 unsigned DLLStorageClass, bool DSOLocal, 739 GlobalVariable::ThreadLocalMode TLM, 740 GlobalVariable::UnnamedAddr UnnamedAddr) { 741 bool IsAlias; 742 if (Lex.getKind() == lltok::kw_alias) 743 IsAlias = true; 744 else if (Lex.getKind() == lltok::kw_ifunc) 745 IsAlias = false; 746 else 747 llvm_unreachable("Not an alias or ifunc!"); 748 Lex.Lex(); 749 750 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 751 752 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 753 return Error(NameLoc, "invalid linkage type for alias"); 754 755 if (!isValidVisibilityForLinkage(Visibility, L)) 756 return Error(NameLoc, 757 "symbol with local linkage must have default visibility"); 758 759 Type *Ty; 760 LocTy ExplicitTypeLoc = Lex.getLoc(); 761 if (ParseType(Ty) || 762 ParseToken(lltok::comma, "expected comma after alias or ifunc's type")) 763 return true; 764 765 Constant *Aliasee; 766 LocTy AliaseeLoc = Lex.getLoc(); 767 if (Lex.getKind() != lltok::kw_bitcast && 768 Lex.getKind() != lltok::kw_getelementptr && 769 Lex.getKind() != lltok::kw_addrspacecast && 770 Lex.getKind() != lltok::kw_inttoptr) { 771 if (ParseGlobalTypeAndValue(Aliasee)) 772 return true; 773 } else { 774 // The bitcast dest type is not present, it is implied by the dest type. 775 ValID ID; 776 if (ParseValID(ID)) 777 return true; 778 if (ID.Kind != ValID::t_Constant) 779 return Error(AliaseeLoc, "invalid aliasee"); 780 Aliasee = ID.ConstantVal; 781 } 782 783 Type *AliaseeType = Aliasee->getType(); 784 auto *PTy = dyn_cast<PointerType>(AliaseeType); 785 if (!PTy) 786 return Error(AliaseeLoc, "An alias or ifunc must have pointer type"); 787 unsigned AddrSpace = PTy->getAddressSpace(); 788 789 if (IsAlias && Ty != PTy->getElementType()) 790 return Error( 791 ExplicitTypeLoc, 792 "explicit pointee type doesn't match operand's pointee type"); 793 794 if (!IsAlias && !PTy->getElementType()->isFunctionTy()) 795 return Error( 796 ExplicitTypeLoc, 797 "explicit pointee type should be a function type"); 798 799 GlobalValue *GVal = nullptr; 800 801 // See if the alias was forward referenced, if so, prepare to replace the 802 // forward reference. 803 if (!Name.empty()) { 804 GVal = M->getNamedValue(Name); 805 if (GVal) { 806 if (!ForwardRefVals.erase(Name)) 807 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 808 } 809 } else { 810 auto I = ForwardRefValIDs.find(NumberedVals.size()); 811 if (I != ForwardRefValIDs.end()) { 812 GVal = I->second.first; 813 ForwardRefValIDs.erase(I); 814 } 815 } 816 817 // Okay, create the alias but do not insert it into the module yet. 818 std::unique_ptr<GlobalIndirectSymbol> GA; 819 if (IsAlias) 820 GA.reset(GlobalAlias::create(Ty, AddrSpace, 821 (GlobalValue::LinkageTypes)Linkage, Name, 822 Aliasee, /*Parent*/ nullptr)); 823 else 824 GA.reset(GlobalIFunc::create(Ty, AddrSpace, 825 (GlobalValue::LinkageTypes)Linkage, Name, 826 Aliasee, /*Parent*/ nullptr)); 827 GA->setThreadLocalMode(TLM); 828 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 829 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 830 GA->setUnnamedAddr(UnnamedAddr); 831 maybeSetDSOLocal(DSOLocal, *GA); 832 833 if (Name.empty()) 834 NumberedVals.push_back(GA.get()); 835 836 if (GVal) { 837 // Verify that types agree. 838 if (GVal->getType() != GA->getType()) 839 return Error( 840 ExplicitTypeLoc, 841 "forward reference and definition of alias have different types"); 842 843 // If they agree, just RAUW the old value with the alias and remove the 844 // forward ref info. 845 GVal->replaceAllUsesWith(GA.get()); 846 GVal->eraseFromParent(); 847 } 848 849 // Insert into the module, we know its name won't collide now. 850 if (IsAlias) 851 M->getAliasList().push_back(cast<GlobalAlias>(GA.get())); 852 else 853 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get())); 854 assert(GA->getName() == Name && "Should not be a name conflict!"); 855 856 // The module owns this now 857 GA.release(); 858 859 return false; 860 } 861 862 /// ParseGlobal 863 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 864 /// OptionalVisibility OptionalDLLStorageClass 865 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 866 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs 867 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 868 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr 869 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type 870 /// Const OptionalAttrs 871 /// 872 /// Everything up to and including OptionalUnnamedAddr has been parsed 873 /// already. 874 /// 875 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, 876 unsigned Linkage, bool HasLinkage, 877 unsigned Visibility, unsigned DLLStorageClass, 878 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM, 879 GlobalVariable::UnnamedAddr UnnamedAddr) { 880 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 881 return Error(NameLoc, 882 "symbol with local linkage must have default visibility"); 883 884 unsigned AddrSpace; 885 bool IsConstant, IsExternallyInitialized; 886 LocTy IsExternallyInitializedLoc; 887 LocTy TyLoc; 888 889 Type *Ty = nullptr; 890 if (ParseOptionalAddrSpace(AddrSpace) || 891 ParseOptionalToken(lltok::kw_externally_initialized, 892 IsExternallyInitialized, 893 &IsExternallyInitializedLoc) || 894 ParseGlobalType(IsConstant) || 895 ParseType(Ty, TyLoc)) 896 return true; 897 898 // If the linkage is specified and is external, then no initializer is 899 // present. 900 Constant *Init = nullptr; 901 if (!HasLinkage || 902 !GlobalValue::isValidDeclarationLinkage( 903 (GlobalValue::LinkageTypes)Linkage)) { 904 if (ParseGlobalValue(Ty, Init)) 905 return true; 906 } 907 908 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 909 return Error(TyLoc, "invalid type for global variable"); 910 911 GlobalValue *GVal = nullptr; 912 913 // See if the global was forward referenced, if so, use the global. 914 if (!Name.empty()) { 915 GVal = M->getNamedValue(Name); 916 if (GVal) { 917 if (!ForwardRefVals.erase(Name)) 918 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 919 } 920 } else { 921 auto I = ForwardRefValIDs.find(NumberedVals.size()); 922 if (I != ForwardRefValIDs.end()) { 923 GVal = I->second.first; 924 ForwardRefValIDs.erase(I); 925 } 926 } 927 928 GlobalVariable *GV; 929 if (!GVal) { 930 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, 931 Name, nullptr, GlobalVariable::NotThreadLocal, 932 AddrSpace); 933 } else { 934 if (GVal->getValueType() != Ty) 935 return Error(TyLoc, 936 "forward reference and definition of global have different types"); 937 938 GV = cast<GlobalVariable>(GVal); 939 940 // Move the forward-reference to the correct spot in the module. 941 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 942 } 943 944 if (Name.empty()) 945 NumberedVals.push_back(GV); 946 947 // Set the parsed properties on the global. 948 if (Init) 949 GV->setInitializer(Init); 950 GV->setConstant(IsConstant); 951 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 952 maybeSetDSOLocal(DSOLocal, *GV); 953 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 954 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 955 GV->setExternallyInitialized(IsExternallyInitialized); 956 GV->setThreadLocalMode(TLM); 957 GV->setUnnamedAddr(UnnamedAddr); 958 959 // Parse attributes on the global. 960 while (Lex.getKind() == lltok::comma) { 961 Lex.Lex(); 962 963 if (Lex.getKind() == lltok::kw_section) { 964 Lex.Lex(); 965 GV->setSection(Lex.getStrVal()); 966 if (ParseToken(lltok::StringConstant, "expected global section string")) 967 return true; 968 } else if (Lex.getKind() == lltok::kw_align) { 969 unsigned Alignment; 970 if (ParseOptionalAlignment(Alignment)) return true; 971 GV->setAlignment(Alignment); 972 } else if (Lex.getKind() == lltok::MetadataVar) { 973 if (ParseGlobalObjectMetadataAttachment(*GV)) 974 return true; 975 } else { 976 Comdat *C; 977 if (parseOptionalComdat(Name, C)) 978 return true; 979 if (C) 980 GV->setComdat(C); 981 else 982 return TokError("unknown global variable property!"); 983 } 984 } 985 986 AttrBuilder Attrs; 987 LocTy BuiltinLoc; 988 std::vector<unsigned> FwdRefAttrGrps; 989 if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc)) 990 return true; 991 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) { 992 GV->setAttributes(AttributeSet::get(Context, Attrs)); 993 ForwardRefAttrGroups[GV] = FwdRefAttrGrps; 994 } 995 996 return false; 997 } 998 999 /// ParseUnnamedAttrGrp 1000 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 1001 bool LLParser::ParseUnnamedAttrGrp() { 1002 assert(Lex.getKind() == lltok::kw_attributes); 1003 LocTy AttrGrpLoc = Lex.getLoc(); 1004 Lex.Lex(); 1005 1006 if (Lex.getKind() != lltok::AttrGrpID) 1007 return TokError("expected attribute group id"); 1008 1009 unsigned VarID = Lex.getUIntVal(); 1010 std::vector<unsigned> unused; 1011 LocTy BuiltinLoc; 1012 Lex.Lex(); 1013 1014 if (ParseToken(lltok::equal, "expected '=' here") || 1015 ParseToken(lltok::lbrace, "expected '{' here") || 1016 ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 1017 BuiltinLoc) || 1018 ParseToken(lltok::rbrace, "expected end of attribute group")) 1019 return true; 1020 1021 if (!NumberedAttrBuilders[VarID].hasAttributes()) 1022 return Error(AttrGrpLoc, "attribute group has no attributes"); 1023 1024 return false; 1025 } 1026 1027 /// ParseFnAttributeValuePairs 1028 /// ::= <attr> | <attr> '=' <value> 1029 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B, 1030 std::vector<unsigned> &FwdRefAttrGrps, 1031 bool inAttrGrp, LocTy &BuiltinLoc) { 1032 bool HaveError = false; 1033 1034 B.clear(); 1035 1036 while (true) { 1037 lltok::Kind Token = Lex.getKind(); 1038 if (Token == lltok::kw_builtin) 1039 BuiltinLoc = Lex.getLoc(); 1040 switch (Token) { 1041 default: 1042 if (!inAttrGrp) return HaveError; 1043 return Error(Lex.getLoc(), "unterminated attribute group"); 1044 case lltok::rbrace: 1045 // Finished. 1046 return false; 1047 1048 case lltok::AttrGrpID: { 1049 // Allow a function to reference an attribute group: 1050 // 1051 // define void @foo() #1 { ... } 1052 if (inAttrGrp) 1053 HaveError |= 1054 Error(Lex.getLoc(), 1055 "cannot have an attribute group reference in an attribute group"); 1056 1057 unsigned AttrGrpNum = Lex.getUIntVal(); 1058 if (inAttrGrp) break; 1059 1060 // Save the reference to the attribute group. We'll fill it in later. 1061 FwdRefAttrGrps.push_back(AttrGrpNum); 1062 break; 1063 } 1064 // Target-dependent attributes: 1065 case lltok::StringConstant: { 1066 if (ParseStringAttribute(B)) 1067 return true; 1068 continue; 1069 } 1070 1071 // Target-independent attributes: 1072 case lltok::kw_align: { 1073 // As a hack, we allow function alignment to be initially parsed as an 1074 // attribute on a function declaration/definition or added to an attribute 1075 // group and later moved to the alignment field. 1076 unsigned Alignment; 1077 if (inAttrGrp) { 1078 Lex.Lex(); 1079 if (ParseToken(lltok::equal, "expected '=' here") || 1080 ParseUInt32(Alignment)) 1081 return true; 1082 } else { 1083 if (ParseOptionalAlignment(Alignment)) 1084 return true; 1085 } 1086 B.addAlignmentAttr(Alignment); 1087 continue; 1088 } 1089 case lltok::kw_alignstack: { 1090 unsigned Alignment; 1091 if (inAttrGrp) { 1092 Lex.Lex(); 1093 if (ParseToken(lltok::equal, "expected '=' here") || 1094 ParseUInt32(Alignment)) 1095 return true; 1096 } else { 1097 if (ParseOptionalStackAlignment(Alignment)) 1098 return true; 1099 } 1100 B.addStackAlignmentAttr(Alignment); 1101 continue; 1102 } 1103 case lltok::kw_allocsize: { 1104 unsigned ElemSizeArg; 1105 Optional<unsigned> NumElemsArg; 1106 // inAttrGrp doesn't matter; we only support allocsize(a[, b]) 1107 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1108 return true; 1109 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1110 continue; 1111 } 1112 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break; 1113 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break; 1114 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break; 1115 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break; 1116 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break; 1117 case lltok::kw_inaccessiblememonly: 1118 B.addAttribute(Attribute::InaccessibleMemOnly); break; 1119 case lltok::kw_inaccessiblemem_or_argmemonly: 1120 B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break; 1121 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break; 1122 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break; 1123 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break; 1124 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break; 1125 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break; 1126 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break; 1127 case lltok::kw_noimplicitfloat: 1128 B.addAttribute(Attribute::NoImplicitFloat); break; 1129 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break; 1130 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break; 1131 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break; 1132 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break; 1133 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break; 1134 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break; 1135 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break; 1136 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break; 1137 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1138 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1139 case lltok::kw_returns_twice: 1140 B.addAttribute(Attribute::ReturnsTwice); break; 1141 case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break; 1142 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break; 1143 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break; 1144 case lltok::kw_sspstrong: 1145 B.addAttribute(Attribute::StackProtectStrong); break; 1146 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break; 1147 case lltok::kw_sanitize_address: 1148 B.addAttribute(Attribute::SanitizeAddress); break; 1149 case lltok::kw_sanitize_hwaddress: 1150 B.addAttribute(Attribute::SanitizeHWAddress); break; 1151 case lltok::kw_sanitize_thread: 1152 B.addAttribute(Attribute::SanitizeThread); break; 1153 case lltok::kw_sanitize_memory: 1154 B.addAttribute(Attribute::SanitizeMemory); break; 1155 case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break; 1156 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break; 1157 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1158 1159 // Error handling. 1160 case lltok::kw_inreg: 1161 case lltok::kw_signext: 1162 case lltok::kw_zeroext: 1163 HaveError |= 1164 Error(Lex.getLoc(), 1165 "invalid use of attribute on a function"); 1166 break; 1167 case lltok::kw_byval: 1168 case lltok::kw_dereferenceable: 1169 case lltok::kw_dereferenceable_or_null: 1170 case lltok::kw_inalloca: 1171 case lltok::kw_nest: 1172 case lltok::kw_noalias: 1173 case lltok::kw_nocapture: 1174 case lltok::kw_nonnull: 1175 case lltok::kw_returned: 1176 case lltok::kw_sret: 1177 case lltok::kw_swifterror: 1178 case lltok::kw_swiftself: 1179 HaveError |= 1180 Error(Lex.getLoc(), 1181 "invalid use of parameter-only attribute on a function"); 1182 break; 1183 } 1184 1185 Lex.Lex(); 1186 } 1187 } 1188 1189 //===----------------------------------------------------------------------===// 1190 // GlobalValue Reference/Resolution Routines. 1191 //===----------------------------------------------------------------------===// 1192 1193 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy, 1194 const std::string &Name) { 1195 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType())) 1196 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M); 1197 else 1198 return new GlobalVariable(*M, PTy->getElementType(), false, 1199 GlobalValue::ExternalWeakLinkage, nullptr, Name, 1200 nullptr, GlobalVariable::NotThreadLocal, 1201 PTy->getAddressSpace()); 1202 } 1203 1204 /// GetGlobalVal - Get a value with the specified name or ID, creating a 1205 /// forward reference record if needed. This can return null if the value 1206 /// exists but does not have the right type. 1207 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty, 1208 LocTy Loc) { 1209 PointerType *PTy = dyn_cast<PointerType>(Ty); 1210 if (!PTy) { 1211 Error(Loc, "global variable reference must have pointer type"); 1212 return nullptr; 1213 } 1214 1215 // Look this name up in the normal function symbol table. 1216 GlobalValue *Val = 1217 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1218 1219 // If this is a forward reference for the value, see if we already created a 1220 // forward ref record. 1221 if (!Val) { 1222 auto I = ForwardRefVals.find(Name); 1223 if (I != ForwardRefVals.end()) 1224 Val = I->second.first; 1225 } 1226 1227 // If we have the value in the symbol table or fwd-ref table, return it. 1228 if (Val) { 1229 if (Val->getType() == Ty) return Val; 1230 Error(Loc, "'@" + Name + "' defined with type '" + 1231 getTypeString(Val->getType()) + "'"); 1232 return nullptr; 1233 } 1234 1235 // Otherwise, create a new forward reference for this value and remember it. 1236 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name); 1237 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1238 return FwdVal; 1239 } 1240 1241 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) { 1242 PointerType *PTy = dyn_cast<PointerType>(Ty); 1243 if (!PTy) { 1244 Error(Loc, "global variable reference must have pointer type"); 1245 return nullptr; 1246 } 1247 1248 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1249 1250 // If this is a forward reference for the value, see if we already created a 1251 // forward ref record. 1252 if (!Val) { 1253 auto I = ForwardRefValIDs.find(ID); 1254 if (I != ForwardRefValIDs.end()) 1255 Val = I->second.first; 1256 } 1257 1258 // If we have the value in the symbol table or fwd-ref table, return it. 1259 if (Val) { 1260 if (Val->getType() == Ty) return Val; 1261 Error(Loc, "'@" + Twine(ID) + "' defined with type '" + 1262 getTypeString(Val->getType()) + "'"); 1263 return nullptr; 1264 } 1265 1266 // Otherwise, create a new forward reference for this value and remember it. 1267 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, ""); 1268 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1269 return FwdVal; 1270 } 1271 1272 //===----------------------------------------------------------------------===// 1273 // Comdat Reference/Resolution Routines. 1274 //===----------------------------------------------------------------------===// 1275 1276 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1277 // Look this name up in the comdat symbol table. 1278 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1279 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1280 if (I != ComdatSymTab.end()) 1281 return &I->second; 1282 1283 // Otherwise, create a new forward reference for this value and remember it. 1284 Comdat *C = M->getOrInsertComdat(Name); 1285 ForwardRefComdats[Name] = Loc; 1286 return C; 1287 } 1288 1289 //===----------------------------------------------------------------------===// 1290 // Helper Routines. 1291 //===----------------------------------------------------------------------===// 1292 1293 /// ParseToken - If the current token has the specified kind, eat it and return 1294 /// success. Otherwise, emit the specified error and return failure. 1295 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { 1296 if (Lex.getKind() != T) 1297 return TokError(ErrMsg); 1298 Lex.Lex(); 1299 return false; 1300 } 1301 1302 /// ParseStringConstant 1303 /// ::= StringConstant 1304 bool LLParser::ParseStringConstant(std::string &Result) { 1305 if (Lex.getKind() != lltok::StringConstant) 1306 return TokError("expected string constant"); 1307 Result = Lex.getStrVal(); 1308 Lex.Lex(); 1309 return false; 1310 } 1311 1312 /// ParseUInt32 1313 /// ::= uint32 1314 bool LLParser::ParseUInt32(uint32_t &Val) { 1315 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1316 return TokError("expected integer"); 1317 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1318 if (Val64 != unsigned(Val64)) 1319 return TokError("expected 32-bit integer (too large)"); 1320 Val = Val64; 1321 Lex.Lex(); 1322 return false; 1323 } 1324 1325 /// ParseUInt64 1326 /// ::= uint64 1327 bool LLParser::ParseUInt64(uint64_t &Val) { 1328 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1329 return TokError("expected integer"); 1330 Val = Lex.getAPSIntVal().getLimitedValue(); 1331 Lex.Lex(); 1332 return false; 1333 } 1334 1335 /// ParseTLSModel 1336 /// := 'localdynamic' 1337 /// := 'initialexec' 1338 /// := 'localexec' 1339 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1340 switch (Lex.getKind()) { 1341 default: 1342 return TokError("expected localdynamic, initialexec or localexec"); 1343 case lltok::kw_localdynamic: 1344 TLM = GlobalVariable::LocalDynamicTLSModel; 1345 break; 1346 case lltok::kw_initialexec: 1347 TLM = GlobalVariable::InitialExecTLSModel; 1348 break; 1349 case lltok::kw_localexec: 1350 TLM = GlobalVariable::LocalExecTLSModel; 1351 break; 1352 } 1353 1354 Lex.Lex(); 1355 return false; 1356 } 1357 1358 /// ParseOptionalThreadLocal 1359 /// := /*empty*/ 1360 /// := 'thread_local' 1361 /// := 'thread_local' '(' tlsmodel ')' 1362 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1363 TLM = GlobalVariable::NotThreadLocal; 1364 if (!EatIfPresent(lltok::kw_thread_local)) 1365 return false; 1366 1367 TLM = GlobalVariable::GeneralDynamicTLSModel; 1368 if (Lex.getKind() == lltok::lparen) { 1369 Lex.Lex(); 1370 return ParseTLSModel(TLM) || 1371 ParseToken(lltok::rparen, "expected ')' after thread local model"); 1372 } 1373 return false; 1374 } 1375 1376 /// ParseOptionalAddrSpace 1377 /// := /*empty*/ 1378 /// := 'addrspace' '(' uint32 ')' 1379 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) { 1380 AddrSpace = 0; 1381 if (!EatIfPresent(lltok::kw_addrspace)) 1382 return false; 1383 return ParseToken(lltok::lparen, "expected '(' in address space") || 1384 ParseUInt32(AddrSpace) || 1385 ParseToken(lltok::rparen, "expected ')' in address space"); 1386 } 1387 1388 /// ParseStringAttribute 1389 /// := StringConstant 1390 /// := StringConstant '=' StringConstant 1391 bool LLParser::ParseStringAttribute(AttrBuilder &B) { 1392 std::string Attr = Lex.getStrVal(); 1393 Lex.Lex(); 1394 std::string Val; 1395 if (EatIfPresent(lltok::equal) && ParseStringConstant(Val)) 1396 return true; 1397 B.addAttribute(Attr, Val); 1398 return false; 1399 } 1400 1401 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes. 1402 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) { 1403 bool HaveError = false; 1404 1405 B.clear(); 1406 1407 while (true) { 1408 lltok::Kind Token = Lex.getKind(); 1409 switch (Token) { 1410 default: // End of attributes. 1411 return HaveError; 1412 case lltok::StringConstant: { 1413 if (ParseStringAttribute(B)) 1414 return true; 1415 continue; 1416 } 1417 case lltok::kw_align: { 1418 unsigned Alignment; 1419 if (ParseOptionalAlignment(Alignment)) 1420 return true; 1421 B.addAlignmentAttr(Alignment); 1422 continue; 1423 } 1424 case lltok::kw_byval: B.addAttribute(Attribute::ByVal); break; 1425 case lltok::kw_dereferenceable: { 1426 uint64_t Bytes; 1427 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1428 return true; 1429 B.addDereferenceableAttr(Bytes); 1430 continue; 1431 } 1432 case lltok::kw_dereferenceable_or_null: { 1433 uint64_t Bytes; 1434 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1435 return true; 1436 B.addDereferenceableOrNullAttr(Bytes); 1437 continue; 1438 } 1439 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break; 1440 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1441 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break; 1442 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1443 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break; 1444 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1445 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1446 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1447 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break; 1448 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1449 case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break; 1450 case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break; 1451 case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break; 1452 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1453 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1454 1455 case lltok::kw_alignstack: 1456 case lltok::kw_alwaysinline: 1457 case lltok::kw_argmemonly: 1458 case lltok::kw_builtin: 1459 case lltok::kw_inlinehint: 1460 case lltok::kw_jumptable: 1461 case lltok::kw_minsize: 1462 case lltok::kw_naked: 1463 case lltok::kw_nobuiltin: 1464 case lltok::kw_noduplicate: 1465 case lltok::kw_noimplicitfloat: 1466 case lltok::kw_noinline: 1467 case lltok::kw_nonlazybind: 1468 case lltok::kw_noredzone: 1469 case lltok::kw_noreturn: 1470 case lltok::kw_nounwind: 1471 case lltok::kw_optnone: 1472 case lltok::kw_optsize: 1473 case lltok::kw_returns_twice: 1474 case lltok::kw_sanitize_address: 1475 case lltok::kw_sanitize_hwaddress: 1476 case lltok::kw_sanitize_memory: 1477 case lltok::kw_sanitize_thread: 1478 case lltok::kw_ssp: 1479 case lltok::kw_sspreq: 1480 case lltok::kw_sspstrong: 1481 case lltok::kw_safestack: 1482 case lltok::kw_strictfp: 1483 case lltok::kw_uwtable: 1484 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1485 break; 1486 } 1487 1488 Lex.Lex(); 1489 } 1490 } 1491 1492 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes. 1493 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) { 1494 bool HaveError = false; 1495 1496 B.clear(); 1497 1498 while (true) { 1499 lltok::Kind Token = Lex.getKind(); 1500 switch (Token) { 1501 default: // End of attributes. 1502 return HaveError; 1503 case lltok::StringConstant: { 1504 if (ParseStringAttribute(B)) 1505 return true; 1506 continue; 1507 } 1508 case lltok::kw_dereferenceable: { 1509 uint64_t Bytes; 1510 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1511 return true; 1512 B.addDereferenceableAttr(Bytes); 1513 continue; 1514 } 1515 case lltok::kw_dereferenceable_or_null: { 1516 uint64_t Bytes; 1517 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1518 return true; 1519 B.addDereferenceableOrNullAttr(Bytes); 1520 continue; 1521 } 1522 case lltok::kw_align: { 1523 unsigned Alignment; 1524 if (ParseOptionalAlignment(Alignment)) 1525 return true; 1526 B.addAlignmentAttr(Alignment); 1527 continue; 1528 } 1529 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1530 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1531 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1532 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1533 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1534 1535 // Error handling. 1536 case lltok::kw_byval: 1537 case lltok::kw_inalloca: 1538 case lltok::kw_nest: 1539 case lltok::kw_nocapture: 1540 case lltok::kw_returned: 1541 case lltok::kw_sret: 1542 case lltok::kw_swifterror: 1543 case lltok::kw_swiftself: 1544 HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute"); 1545 break; 1546 1547 case lltok::kw_alignstack: 1548 case lltok::kw_alwaysinline: 1549 case lltok::kw_argmemonly: 1550 case lltok::kw_builtin: 1551 case lltok::kw_cold: 1552 case lltok::kw_inlinehint: 1553 case lltok::kw_jumptable: 1554 case lltok::kw_minsize: 1555 case lltok::kw_naked: 1556 case lltok::kw_nobuiltin: 1557 case lltok::kw_noduplicate: 1558 case lltok::kw_noimplicitfloat: 1559 case lltok::kw_noinline: 1560 case lltok::kw_nonlazybind: 1561 case lltok::kw_noredzone: 1562 case lltok::kw_noreturn: 1563 case lltok::kw_nounwind: 1564 case lltok::kw_optnone: 1565 case lltok::kw_optsize: 1566 case lltok::kw_returns_twice: 1567 case lltok::kw_sanitize_address: 1568 case lltok::kw_sanitize_hwaddress: 1569 case lltok::kw_sanitize_memory: 1570 case lltok::kw_sanitize_thread: 1571 case lltok::kw_ssp: 1572 case lltok::kw_sspreq: 1573 case lltok::kw_sspstrong: 1574 case lltok::kw_safestack: 1575 case lltok::kw_strictfp: 1576 case lltok::kw_uwtable: 1577 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1578 break; 1579 1580 case lltok::kw_readnone: 1581 case lltok::kw_readonly: 1582 HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type"); 1583 } 1584 1585 Lex.Lex(); 1586 } 1587 } 1588 1589 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1590 HasLinkage = true; 1591 switch (Kind) { 1592 default: 1593 HasLinkage = false; 1594 return GlobalValue::ExternalLinkage; 1595 case lltok::kw_private: 1596 return GlobalValue::PrivateLinkage; 1597 case lltok::kw_internal: 1598 return GlobalValue::InternalLinkage; 1599 case lltok::kw_weak: 1600 return GlobalValue::WeakAnyLinkage; 1601 case lltok::kw_weak_odr: 1602 return GlobalValue::WeakODRLinkage; 1603 case lltok::kw_linkonce: 1604 return GlobalValue::LinkOnceAnyLinkage; 1605 case lltok::kw_linkonce_odr: 1606 return GlobalValue::LinkOnceODRLinkage; 1607 case lltok::kw_available_externally: 1608 return GlobalValue::AvailableExternallyLinkage; 1609 case lltok::kw_appending: 1610 return GlobalValue::AppendingLinkage; 1611 case lltok::kw_common: 1612 return GlobalValue::CommonLinkage; 1613 case lltok::kw_extern_weak: 1614 return GlobalValue::ExternalWeakLinkage; 1615 case lltok::kw_external: 1616 return GlobalValue::ExternalLinkage; 1617 } 1618 } 1619 1620 /// ParseOptionalLinkage 1621 /// ::= /*empty*/ 1622 /// ::= 'private' 1623 /// ::= 'internal' 1624 /// ::= 'weak' 1625 /// ::= 'weak_odr' 1626 /// ::= 'linkonce' 1627 /// ::= 'linkonce_odr' 1628 /// ::= 'available_externally' 1629 /// ::= 'appending' 1630 /// ::= 'common' 1631 /// ::= 'extern_weak' 1632 /// ::= 'external' 1633 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage, 1634 unsigned &Visibility, 1635 unsigned &DLLStorageClass, 1636 bool &DSOLocal) { 1637 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 1638 if (HasLinkage) 1639 Lex.Lex(); 1640 ParseOptionalDSOLocal(DSOLocal); 1641 ParseOptionalVisibility(Visibility); 1642 ParseOptionalDLLStorageClass(DLLStorageClass); 1643 1644 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) { 1645 return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch"); 1646 } 1647 1648 return false; 1649 } 1650 1651 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) { 1652 switch (Lex.getKind()) { 1653 default: 1654 DSOLocal = false; 1655 break; 1656 case lltok::kw_dso_local: 1657 DSOLocal = true; 1658 Lex.Lex(); 1659 break; 1660 case lltok::kw_dso_preemptable: 1661 DSOLocal = false; 1662 Lex.Lex(); 1663 break; 1664 } 1665 } 1666 1667 /// ParseOptionalVisibility 1668 /// ::= /*empty*/ 1669 /// ::= 'default' 1670 /// ::= 'hidden' 1671 /// ::= 'protected' 1672 /// 1673 void LLParser::ParseOptionalVisibility(unsigned &Res) { 1674 switch (Lex.getKind()) { 1675 default: 1676 Res = GlobalValue::DefaultVisibility; 1677 return; 1678 case lltok::kw_default: 1679 Res = GlobalValue::DefaultVisibility; 1680 break; 1681 case lltok::kw_hidden: 1682 Res = GlobalValue::HiddenVisibility; 1683 break; 1684 case lltok::kw_protected: 1685 Res = GlobalValue::ProtectedVisibility; 1686 break; 1687 } 1688 Lex.Lex(); 1689 } 1690 1691 /// ParseOptionalDLLStorageClass 1692 /// ::= /*empty*/ 1693 /// ::= 'dllimport' 1694 /// ::= 'dllexport' 1695 /// 1696 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) { 1697 switch (Lex.getKind()) { 1698 default: 1699 Res = GlobalValue::DefaultStorageClass; 1700 return; 1701 case lltok::kw_dllimport: 1702 Res = GlobalValue::DLLImportStorageClass; 1703 break; 1704 case lltok::kw_dllexport: 1705 Res = GlobalValue::DLLExportStorageClass; 1706 break; 1707 } 1708 Lex.Lex(); 1709 } 1710 1711 /// ParseOptionalCallingConv 1712 /// ::= /*empty*/ 1713 /// ::= 'ccc' 1714 /// ::= 'fastcc' 1715 /// ::= 'intel_ocl_bicc' 1716 /// ::= 'coldcc' 1717 /// ::= 'x86_stdcallcc' 1718 /// ::= 'x86_fastcallcc' 1719 /// ::= 'x86_thiscallcc' 1720 /// ::= 'x86_vectorcallcc' 1721 /// ::= 'arm_apcscc' 1722 /// ::= 'arm_aapcscc' 1723 /// ::= 'arm_aapcs_vfpcc' 1724 /// ::= 'msp430_intrcc' 1725 /// ::= 'avr_intrcc' 1726 /// ::= 'avr_signalcc' 1727 /// ::= 'ptx_kernel' 1728 /// ::= 'ptx_device' 1729 /// ::= 'spir_func' 1730 /// ::= 'spir_kernel' 1731 /// ::= 'x86_64_sysvcc' 1732 /// ::= 'win64cc' 1733 /// ::= 'webkit_jscc' 1734 /// ::= 'anyregcc' 1735 /// ::= 'preserve_mostcc' 1736 /// ::= 'preserve_allcc' 1737 /// ::= 'ghccc' 1738 /// ::= 'swiftcc' 1739 /// ::= 'x86_intrcc' 1740 /// ::= 'hhvmcc' 1741 /// ::= 'hhvm_ccc' 1742 /// ::= 'cxx_fast_tlscc' 1743 /// ::= 'amdgpu_vs' 1744 /// ::= 'amdgpu_ls' 1745 /// ::= 'amdgpu_hs' 1746 /// ::= 'amdgpu_es' 1747 /// ::= 'amdgpu_gs' 1748 /// ::= 'amdgpu_ps' 1749 /// ::= 'amdgpu_cs' 1750 /// ::= 'amdgpu_kernel' 1751 /// ::= 'cc' UINT 1752 /// 1753 bool LLParser::ParseOptionalCallingConv(unsigned &CC) { 1754 switch (Lex.getKind()) { 1755 default: CC = CallingConv::C; return false; 1756 case lltok::kw_ccc: CC = CallingConv::C; break; 1757 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1758 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1759 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1760 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1761 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break; 1762 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1763 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 1764 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1765 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1766 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1767 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1768 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 1769 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 1770 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1771 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1772 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 1773 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 1774 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 1775 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 1776 case lltok::kw_win64cc: CC = CallingConv::Win64; break; 1777 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 1778 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 1779 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 1780 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 1781 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 1782 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 1783 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 1784 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 1785 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 1786 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 1787 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 1788 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break; 1789 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break; 1790 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break; 1791 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 1792 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 1793 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 1794 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 1795 case lltok::kw_cc: { 1796 Lex.Lex(); 1797 return ParseUInt32(CC); 1798 } 1799 } 1800 1801 Lex.Lex(); 1802 return false; 1803 } 1804 1805 /// ParseMetadataAttachment 1806 /// ::= !dbg !42 1807 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 1808 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 1809 1810 std::string Name = Lex.getStrVal(); 1811 Kind = M->getMDKindID(Name); 1812 Lex.Lex(); 1813 1814 return ParseMDNode(MD); 1815 } 1816 1817 /// ParseInstructionMetadata 1818 /// ::= !dbg !42 (',' !dbg !57)* 1819 bool LLParser::ParseInstructionMetadata(Instruction &Inst) { 1820 do { 1821 if (Lex.getKind() != lltok::MetadataVar) 1822 return TokError("expected metadata after comma"); 1823 1824 unsigned MDK; 1825 MDNode *N; 1826 if (ParseMetadataAttachment(MDK, N)) 1827 return true; 1828 1829 Inst.setMetadata(MDK, N); 1830 if (MDK == LLVMContext::MD_tbaa) 1831 InstsWithTBAATag.push_back(&Inst); 1832 1833 // If this is the end of the list, we're done. 1834 } while (EatIfPresent(lltok::comma)); 1835 return false; 1836 } 1837 1838 /// ParseGlobalObjectMetadataAttachment 1839 /// ::= !dbg !57 1840 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) { 1841 unsigned MDK; 1842 MDNode *N; 1843 if (ParseMetadataAttachment(MDK, N)) 1844 return true; 1845 1846 GO.addMetadata(MDK, *N); 1847 return false; 1848 } 1849 1850 /// ParseOptionalFunctionMetadata 1851 /// ::= (!dbg !57)* 1852 bool LLParser::ParseOptionalFunctionMetadata(Function &F) { 1853 while (Lex.getKind() == lltok::MetadataVar) 1854 if (ParseGlobalObjectMetadataAttachment(F)) 1855 return true; 1856 return false; 1857 } 1858 1859 /// ParseOptionalAlignment 1860 /// ::= /* empty */ 1861 /// ::= 'align' 4 1862 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) { 1863 Alignment = 0; 1864 if (!EatIfPresent(lltok::kw_align)) 1865 return false; 1866 LocTy AlignLoc = Lex.getLoc(); 1867 if (ParseUInt32(Alignment)) return true; 1868 if (!isPowerOf2_32(Alignment)) 1869 return Error(AlignLoc, "alignment is not a power of two"); 1870 if (Alignment > Value::MaximumAlignment) 1871 return Error(AlignLoc, "huge alignments are not supported yet"); 1872 return false; 1873 } 1874 1875 /// ParseOptionalDerefAttrBytes 1876 /// ::= /* empty */ 1877 /// ::= AttrKind '(' 4 ')' 1878 /// 1879 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 1880 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind, 1881 uint64_t &Bytes) { 1882 assert((AttrKind == lltok::kw_dereferenceable || 1883 AttrKind == lltok::kw_dereferenceable_or_null) && 1884 "contract!"); 1885 1886 Bytes = 0; 1887 if (!EatIfPresent(AttrKind)) 1888 return false; 1889 LocTy ParenLoc = Lex.getLoc(); 1890 if (!EatIfPresent(lltok::lparen)) 1891 return Error(ParenLoc, "expected '('"); 1892 LocTy DerefLoc = Lex.getLoc(); 1893 if (ParseUInt64(Bytes)) return true; 1894 ParenLoc = Lex.getLoc(); 1895 if (!EatIfPresent(lltok::rparen)) 1896 return Error(ParenLoc, "expected ')'"); 1897 if (!Bytes) 1898 return Error(DerefLoc, "dereferenceable bytes must be non-zero"); 1899 return false; 1900 } 1901 1902 /// ParseOptionalCommaAlign 1903 /// ::= 1904 /// ::= ',' align 4 1905 /// 1906 /// This returns with AteExtraComma set to true if it ate an excess comma at the 1907 /// end. 1908 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment, 1909 bool &AteExtraComma) { 1910 AteExtraComma = false; 1911 while (EatIfPresent(lltok::comma)) { 1912 // Metadata at the end is an early exit. 1913 if (Lex.getKind() == lltok::MetadataVar) { 1914 AteExtraComma = true; 1915 return false; 1916 } 1917 1918 if (Lex.getKind() != lltok::kw_align) 1919 return Error(Lex.getLoc(), "expected metadata or 'align'"); 1920 1921 if (ParseOptionalAlignment(Alignment)) return true; 1922 } 1923 1924 return false; 1925 } 1926 1927 /// ParseOptionalCommaAddrSpace 1928 /// ::= 1929 /// ::= ',' addrspace(1) 1930 /// 1931 /// This returns with AteExtraComma set to true if it ate an excess comma at the 1932 /// end. 1933 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace, 1934 LocTy &Loc, 1935 bool &AteExtraComma) { 1936 AteExtraComma = false; 1937 while (EatIfPresent(lltok::comma)) { 1938 // Metadata at the end is an early exit. 1939 if (Lex.getKind() == lltok::MetadataVar) { 1940 AteExtraComma = true; 1941 return false; 1942 } 1943 1944 Loc = Lex.getLoc(); 1945 if (Lex.getKind() != lltok::kw_addrspace) 1946 return Error(Lex.getLoc(), "expected metadata or 'addrspace'"); 1947 1948 if (ParseOptionalAddrSpace(AddrSpace)) 1949 return true; 1950 } 1951 1952 return false; 1953 } 1954 1955 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 1956 Optional<unsigned> &HowManyArg) { 1957 Lex.Lex(); 1958 1959 auto StartParen = Lex.getLoc(); 1960 if (!EatIfPresent(lltok::lparen)) 1961 return Error(StartParen, "expected '('"); 1962 1963 if (ParseUInt32(BaseSizeArg)) 1964 return true; 1965 1966 if (EatIfPresent(lltok::comma)) { 1967 auto HowManyAt = Lex.getLoc(); 1968 unsigned HowMany; 1969 if (ParseUInt32(HowMany)) 1970 return true; 1971 if (HowMany == BaseSizeArg) 1972 return Error(HowManyAt, 1973 "'allocsize' indices can't refer to the same parameter"); 1974 HowManyArg = HowMany; 1975 } else 1976 HowManyArg = None; 1977 1978 auto EndParen = Lex.getLoc(); 1979 if (!EatIfPresent(lltok::rparen)) 1980 return Error(EndParen, "expected ')'"); 1981 return false; 1982 } 1983 1984 /// ParseScopeAndOrdering 1985 /// if isAtomic: ::= SyncScope? AtomicOrdering 1986 /// else: ::= 1987 /// 1988 /// This sets Scope and Ordering to the parsed values. 1989 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID, 1990 AtomicOrdering &Ordering) { 1991 if (!isAtomic) 1992 return false; 1993 1994 return ParseScope(SSID) || ParseOrdering(Ordering); 1995 } 1996 1997 /// ParseScope 1998 /// ::= syncscope("singlethread" | "<target scope>")? 1999 /// 2000 /// This sets synchronization scope ID to the ID of the parsed value. 2001 bool LLParser::ParseScope(SyncScope::ID &SSID) { 2002 SSID = SyncScope::System; 2003 if (EatIfPresent(lltok::kw_syncscope)) { 2004 auto StartParenAt = Lex.getLoc(); 2005 if (!EatIfPresent(lltok::lparen)) 2006 return Error(StartParenAt, "Expected '(' in syncscope"); 2007 2008 std::string SSN; 2009 auto SSNAt = Lex.getLoc(); 2010 if (ParseStringConstant(SSN)) 2011 return Error(SSNAt, "Expected synchronization scope name"); 2012 2013 auto EndParenAt = Lex.getLoc(); 2014 if (!EatIfPresent(lltok::rparen)) 2015 return Error(EndParenAt, "Expected ')' in syncscope"); 2016 2017 SSID = Context.getOrInsertSyncScopeID(SSN); 2018 } 2019 2020 return false; 2021 } 2022 2023 /// ParseOrdering 2024 /// ::= AtomicOrdering 2025 /// 2026 /// This sets Ordering to the parsed value. 2027 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) { 2028 switch (Lex.getKind()) { 2029 default: return TokError("Expected ordering on atomic instruction"); 2030 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 2031 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 2032 // Not specified yet: 2033 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 2034 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 2035 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 2036 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 2037 case lltok::kw_seq_cst: 2038 Ordering = AtomicOrdering::SequentiallyConsistent; 2039 break; 2040 } 2041 Lex.Lex(); 2042 return false; 2043 } 2044 2045 /// ParseOptionalStackAlignment 2046 /// ::= /* empty */ 2047 /// ::= 'alignstack' '(' 4 ')' 2048 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { 2049 Alignment = 0; 2050 if (!EatIfPresent(lltok::kw_alignstack)) 2051 return false; 2052 LocTy ParenLoc = Lex.getLoc(); 2053 if (!EatIfPresent(lltok::lparen)) 2054 return Error(ParenLoc, "expected '('"); 2055 LocTy AlignLoc = Lex.getLoc(); 2056 if (ParseUInt32(Alignment)) return true; 2057 ParenLoc = Lex.getLoc(); 2058 if (!EatIfPresent(lltok::rparen)) 2059 return Error(ParenLoc, "expected ')'"); 2060 if (!isPowerOf2_32(Alignment)) 2061 return Error(AlignLoc, "stack alignment is not a power of two"); 2062 return false; 2063 } 2064 2065 /// ParseIndexList - This parses the index list for an insert/extractvalue 2066 /// instruction. This sets AteExtraComma in the case where we eat an extra 2067 /// comma at the end of the line and find that it is followed by metadata. 2068 /// Clients that don't allow metadata can call the version of this function that 2069 /// only takes one argument. 2070 /// 2071 /// ParseIndexList 2072 /// ::= (',' uint32)+ 2073 /// 2074 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, 2075 bool &AteExtraComma) { 2076 AteExtraComma = false; 2077 2078 if (Lex.getKind() != lltok::comma) 2079 return TokError("expected ',' as start of index list"); 2080 2081 while (EatIfPresent(lltok::comma)) { 2082 if (Lex.getKind() == lltok::MetadataVar) { 2083 if (Indices.empty()) return TokError("expected index"); 2084 AteExtraComma = true; 2085 return false; 2086 } 2087 unsigned Idx = 0; 2088 if (ParseUInt32(Idx)) return true; 2089 Indices.push_back(Idx); 2090 } 2091 2092 return false; 2093 } 2094 2095 //===----------------------------------------------------------------------===// 2096 // Type Parsing. 2097 //===----------------------------------------------------------------------===// 2098 2099 /// ParseType - Parse a type. 2100 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 2101 SMLoc TypeLoc = Lex.getLoc(); 2102 switch (Lex.getKind()) { 2103 default: 2104 return TokError(Msg); 2105 case lltok::Type: 2106 // Type ::= 'float' | 'void' (etc) 2107 Result = Lex.getTyVal(); 2108 Lex.Lex(); 2109 break; 2110 case lltok::lbrace: 2111 // Type ::= StructType 2112 if (ParseAnonStructType(Result, false)) 2113 return true; 2114 break; 2115 case lltok::lsquare: 2116 // Type ::= '[' ... ']' 2117 Lex.Lex(); // eat the lsquare. 2118 if (ParseArrayVectorType(Result, false)) 2119 return true; 2120 break; 2121 case lltok::less: // Either vector or packed struct. 2122 // Type ::= '<' ... '>' 2123 Lex.Lex(); 2124 if (Lex.getKind() == lltok::lbrace) { 2125 if (ParseAnonStructType(Result, true) || 2126 ParseToken(lltok::greater, "expected '>' at end of packed struct")) 2127 return true; 2128 } else if (ParseArrayVectorType(Result, true)) 2129 return true; 2130 break; 2131 case lltok::LocalVar: { 2132 // Type ::= %foo 2133 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2134 2135 // If the type hasn't been defined yet, create a forward definition and 2136 // remember where that forward def'n was seen (in case it never is defined). 2137 if (!Entry.first) { 2138 Entry.first = StructType::create(Context, Lex.getStrVal()); 2139 Entry.second = Lex.getLoc(); 2140 } 2141 Result = Entry.first; 2142 Lex.Lex(); 2143 break; 2144 } 2145 2146 case lltok::LocalVarID: { 2147 // Type ::= %4 2148 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2149 2150 // If the type hasn't been defined yet, create a forward definition and 2151 // remember where that forward def'n was seen (in case it never is defined). 2152 if (!Entry.first) { 2153 Entry.first = StructType::create(Context); 2154 Entry.second = Lex.getLoc(); 2155 } 2156 Result = Entry.first; 2157 Lex.Lex(); 2158 break; 2159 } 2160 } 2161 2162 // Parse the type suffixes. 2163 while (true) { 2164 switch (Lex.getKind()) { 2165 // End of type. 2166 default: 2167 if (!AllowVoid && Result->isVoidTy()) 2168 return Error(TypeLoc, "void type only allowed for function results"); 2169 return false; 2170 2171 // Type ::= Type '*' 2172 case lltok::star: 2173 if (Result->isLabelTy()) 2174 return TokError("basic block pointers are invalid"); 2175 if (Result->isVoidTy()) 2176 return TokError("pointers to void are invalid - use i8* instead"); 2177 if (!PointerType::isValidElementType(Result)) 2178 return TokError("pointer to this type is invalid"); 2179 Result = PointerType::getUnqual(Result); 2180 Lex.Lex(); 2181 break; 2182 2183 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2184 case lltok::kw_addrspace: { 2185 if (Result->isLabelTy()) 2186 return TokError("basic block pointers are invalid"); 2187 if (Result->isVoidTy()) 2188 return TokError("pointers to void are invalid; use i8* instead"); 2189 if (!PointerType::isValidElementType(Result)) 2190 return TokError("pointer to this type is invalid"); 2191 unsigned AddrSpace; 2192 if (ParseOptionalAddrSpace(AddrSpace) || 2193 ParseToken(lltok::star, "expected '*' in address space")) 2194 return true; 2195 2196 Result = PointerType::get(Result, AddrSpace); 2197 break; 2198 } 2199 2200 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2201 case lltok::lparen: 2202 if (ParseFunctionType(Result)) 2203 return true; 2204 break; 2205 } 2206 } 2207 } 2208 2209 /// ParseParameterList 2210 /// ::= '(' ')' 2211 /// ::= '(' Arg (',' Arg)* ')' 2212 /// Arg 2213 /// ::= Type OptionalAttributes Value OptionalAttributes 2214 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2215 PerFunctionState &PFS, bool IsMustTailCall, 2216 bool InVarArgsFunc) { 2217 if (ParseToken(lltok::lparen, "expected '(' in call")) 2218 return true; 2219 2220 while (Lex.getKind() != lltok::rparen) { 2221 // If this isn't the first argument, we need a comma. 2222 if (!ArgList.empty() && 2223 ParseToken(lltok::comma, "expected ',' in argument list")) 2224 return true; 2225 2226 // Parse an ellipsis if this is a musttail call in a variadic function. 2227 if (Lex.getKind() == lltok::dotdotdot) { 2228 const char *Msg = "unexpected ellipsis in argument list for "; 2229 if (!IsMustTailCall) 2230 return TokError(Twine(Msg) + "non-musttail call"); 2231 if (!InVarArgsFunc) 2232 return TokError(Twine(Msg) + "musttail call in non-varargs function"); 2233 Lex.Lex(); // Lex the '...', it is purely for readability. 2234 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2235 } 2236 2237 // Parse the argument. 2238 LocTy ArgLoc; 2239 Type *ArgTy = nullptr; 2240 AttrBuilder ArgAttrs; 2241 Value *V; 2242 if (ParseType(ArgTy, ArgLoc)) 2243 return true; 2244 2245 if (ArgTy->isMetadataTy()) { 2246 if (ParseMetadataAsValue(V, PFS)) 2247 return true; 2248 } else { 2249 // Otherwise, handle normal operands. 2250 if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS)) 2251 return true; 2252 } 2253 ArgList.push_back(ParamInfo( 2254 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs))); 2255 } 2256 2257 if (IsMustTailCall && InVarArgsFunc) 2258 return TokError("expected '...' at end of argument list for musttail call " 2259 "in varargs function"); 2260 2261 Lex.Lex(); // Lex the ')'. 2262 return false; 2263 } 2264 2265 /// ParseOptionalOperandBundles 2266 /// ::= /*empty*/ 2267 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2268 /// 2269 /// OperandBundle 2270 /// ::= bundle-tag '(' ')' 2271 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2272 /// 2273 /// bundle-tag ::= String Constant 2274 bool LLParser::ParseOptionalOperandBundles( 2275 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2276 LocTy BeginLoc = Lex.getLoc(); 2277 if (!EatIfPresent(lltok::lsquare)) 2278 return false; 2279 2280 while (Lex.getKind() != lltok::rsquare) { 2281 // If this isn't the first operand bundle, we need a comma. 2282 if (!BundleList.empty() && 2283 ParseToken(lltok::comma, "expected ',' in input list")) 2284 return true; 2285 2286 std::string Tag; 2287 if (ParseStringConstant(Tag)) 2288 return true; 2289 2290 if (ParseToken(lltok::lparen, "expected '(' in operand bundle")) 2291 return true; 2292 2293 std::vector<Value *> Inputs; 2294 while (Lex.getKind() != lltok::rparen) { 2295 // If this isn't the first input, we need a comma. 2296 if (!Inputs.empty() && 2297 ParseToken(lltok::comma, "expected ',' in input list")) 2298 return true; 2299 2300 Type *Ty = nullptr; 2301 Value *Input = nullptr; 2302 if (ParseType(Ty) || ParseValue(Ty, Input, PFS)) 2303 return true; 2304 Inputs.push_back(Input); 2305 } 2306 2307 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2308 2309 Lex.Lex(); // Lex the ')'. 2310 } 2311 2312 if (BundleList.empty()) 2313 return Error(BeginLoc, "operand bundle set must not be empty"); 2314 2315 Lex.Lex(); // Lex the ']'. 2316 return false; 2317 } 2318 2319 /// ParseArgumentList - Parse the argument list for a function type or function 2320 /// prototype. 2321 /// ::= '(' ArgTypeListI ')' 2322 /// ArgTypeListI 2323 /// ::= /*empty*/ 2324 /// ::= '...' 2325 /// ::= ArgTypeList ',' '...' 2326 /// ::= ArgType (',' ArgType)* 2327 /// 2328 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2329 bool &isVarArg){ 2330 isVarArg = false; 2331 assert(Lex.getKind() == lltok::lparen); 2332 Lex.Lex(); // eat the (. 2333 2334 if (Lex.getKind() == lltok::rparen) { 2335 // empty 2336 } else if (Lex.getKind() == lltok::dotdotdot) { 2337 isVarArg = true; 2338 Lex.Lex(); 2339 } else { 2340 LocTy TypeLoc = Lex.getLoc(); 2341 Type *ArgTy = nullptr; 2342 AttrBuilder Attrs; 2343 std::string Name; 2344 2345 if (ParseType(ArgTy) || 2346 ParseOptionalParamAttrs(Attrs)) return true; 2347 2348 if (ArgTy->isVoidTy()) 2349 return Error(TypeLoc, "argument can not have void type"); 2350 2351 if (Lex.getKind() == lltok::LocalVar) { 2352 Name = Lex.getStrVal(); 2353 Lex.Lex(); 2354 } 2355 2356 if (!FunctionType::isValidArgumentType(ArgTy)) 2357 return Error(TypeLoc, "invalid type for function argument"); 2358 2359 ArgList.emplace_back(TypeLoc, ArgTy, 2360 AttributeSet::get(ArgTy->getContext(), Attrs), 2361 std::move(Name)); 2362 2363 while (EatIfPresent(lltok::comma)) { 2364 // Handle ... at end of arg list. 2365 if (EatIfPresent(lltok::dotdotdot)) { 2366 isVarArg = true; 2367 break; 2368 } 2369 2370 // Otherwise must be an argument type. 2371 TypeLoc = Lex.getLoc(); 2372 if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true; 2373 2374 if (ArgTy->isVoidTy()) 2375 return Error(TypeLoc, "argument can not have void type"); 2376 2377 if (Lex.getKind() == lltok::LocalVar) { 2378 Name = Lex.getStrVal(); 2379 Lex.Lex(); 2380 } else { 2381 Name = ""; 2382 } 2383 2384 if (!ArgTy->isFirstClassType()) 2385 return Error(TypeLoc, "invalid type for function argument"); 2386 2387 ArgList.emplace_back(TypeLoc, ArgTy, 2388 AttributeSet::get(ArgTy->getContext(), Attrs), 2389 std::move(Name)); 2390 } 2391 } 2392 2393 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2394 } 2395 2396 /// ParseFunctionType 2397 /// ::= Type ArgumentList OptionalAttrs 2398 bool LLParser::ParseFunctionType(Type *&Result) { 2399 assert(Lex.getKind() == lltok::lparen); 2400 2401 if (!FunctionType::isValidReturnType(Result)) 2402 return TokError("invalid function return type"); 2403 2404 SmallVector<ArgInfo, 8> ArgList; 2405 bool isVarArg; 2406 if (ParseArgumentList(ArgList, isVarArg)) 2407 return true; 2408 2409 // Reject names on the arguments lists. 2410 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2411 if (!ArgList[i].Name.empty()) 2412 return Error(ArgList[i].Loc, "argument name invalid in function type"); 2413 if (ArgList[i].Attrs.hasAttributes()) 2414 return Error(ArgList[i].Loc, 2415 "argument attributes invalid in function type"); 2416 } 2417 2418 SmallVector<Type*, 16> ArgListTy; 2419 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2420 ArgListTy.push_back(ArgList[i].Ty); 2421 2422 Result = FunctionType::get(Result, ArgListTy, isVarArg); 2423 return false; 2424 } 2425 2426 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into 2427 /// other structs. 2428 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) { 2429 SmallVector<Type*, 8> Elts; 2430 if (ParseStructBody(Elts)) return true; 2431 2432 Result = StructType::get(Context, Elts, Packed); 2433 return false; 2434 } 2435 2436 /// ParseStructDefinition - Parse a struct in a 'type' definition. 2437 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name, 2438 std::pair<Type*, LocTy> &Entry, 2439 Type *&ResultTy) { 2440 // If the type was already defined, diagnose the redefinition. 2441 if (Entry.first && !Entry.second.isValid()) 2442 return Error(TypeLoc, "redefinition of type"); 2443 2444 // If we have opaque, just return without filling in the definition for the 2445 // struct. This counts as a definition as far as the .ll file goes. 2446 if (EatIfPresent(lltok::kw_opaque)) { 2447 // This type is being defined, so clear the location to indicate this. 2448 Entry.second = SMLoc(); 2449 2450 // If this type number has never been uttered, create it. 2451 if (!Entry.first) 2452 Entry.first = StructType::create(Context, Name); 2453 ResultTy = Entry.first; 2454 return false; 2455 } 2456 2457 // If the type starts with '<', then it is either a packed struct or a vector. 2458 bool isPacked = EatIfPresent(lltok::less); 2459 2460 // If we don't have a struct, then we have a random type alias, which we 2461 // accept for compatibility with old files. These types are not allowed to be 2462 // forward referenced and not allowed to be recursive. 2463 if (Lex.getKind() != lltok::lbrace) { 2464 if (Entry.first) 2465 return Error(TypeLoc, "forward references to non-struct type"); 2466 2467 ResultTy = nullptr; 2468 if (isPacked) 2469 return ParseArrayVectorType(ResultTy, true); 2470 return ParseType(ResultTy); 2471 } 2472 2473 // This type is being defined, so clear the location to indicate this. 2474 Entry.second = SMLoc(); 2475 2476 // If this type number has never been uttered, create it. 2477 if (!Entry.first) 2478 Entry.first = StructType::create(Context, Name); 2479 2480 StructType *STy = cast<StructType>(Entry.first); 2481 2482 SmallVector<Type*, 8> Body; 2483 if (ParseStructBody(Body) || 2484 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct"))) 2485 return true; 2486 2487 STy->setBody(Body, isPacked); 2488 ResultTy = STy; 2489 return false; 2490 } 2491 2492 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2493 /// StructType 2494 /// ::= '{' '}' 2495 /// ::= '{' Type (',' Type)* '}' 2496 /// ::= '<' '{' '}' '>' 2497 /// ::= '<' '{' Type (',' Type)* '}' '>' 2498 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) { 2499 assert(Lex.getKind() == lltok::lbrace); 2500 Lex.Lex(); // Consume the '{' 2501 2502 // Handle the empty struct. 2503 if (EatIfPresent(lltok::rbrace)) 2504 return false; 2505 2506 LocTy EltTyLoc = Lex.getLoc(); 2507 Type *Ty = nullptr; 2508 if (ParseType(Ty)) return true; 2509 Body.push_back(Ty); 2510 2511 if (!StructType::isValidElementType(Ty)) 2512 return Error(EltTyLoc, "invalid element type for struct"); 2513 2514 while (EatIfPresent(lltok::comma)) { 2515 EltTyLoc = Lex.getLoc(); 2516 if (ParseType(Ty)) return true; 2517 2518 if (!StructType::isValidElementType(Ty)) 2519 return Error(EltTyLoc, "invalid element type for struct"); 2520 2521 Body.push_back(Ty); 2522 } 2523 2524 return ParseToken(lltok::rbrace, "expected '}' at end of struct"); 2525 } 2526 2527 /// ParseArrayVectorType - Parse an array or vector type, assuming the first 2528 /// token has already been consumed. 2529 /// Type 2530 /// ::= '[' APSINTVAL 'x' Types ']' 2531 /// ::= '<' APSINTVAL 'x' Types '>' 2532 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) { 2533 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2534 Lex.getAPSIntVal().getBitWidth() > 64) 2535 return TokError("expected number in address space"); 2536 2537 LocTy SizeLoc = Lex.getLoc(); 2538 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2539 Lex.Lex(); 2540 2541 if (ParseToken(lltok::kw_x, "expected 'x' after element count")) 2542 return true; 2543 2544 LocTy TypeLoc = Lex.getLoc(); 2545 Type *EltTy = nullptr; 2546 if (ParseType(EltTy)) return true; 2547 2548 if (ParseToken(isVector ? lltok::greater : lltok::rsquare, 2549 "expected end of sequential type")) 2550 return true; 2551 2552 if (isVector) { 2553 if (Size == 0) 2554 return Error(SizeLoc, "zero element vector is illegal"); 2555 if ((unsigned)Size != Size) 2556 return Error(SizeLoc, "size too large for vector"); 2557 if (!VectorType::isValidElementType(EltTy)) 2558 return Error(TypeLoc, "invalid vector element type"); 2559 Result = VectorType::get(EltTy, unsigned(Size)); 2560 } else { 2561 if (!ArrayType::isValidElementType(EltTy)) 2562 return Error(TypeLoc, "invalid array element type"); 2563 Result = ArrayType::get(EltTy, Size); 2564 } 2565 return false; 2566 } 2567 2568 //===----------------------------------------------------------------------===// 2569 // Function Semantic Analysis. 2570 //===----------------------------------------------------------------------===// 2571 2572 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 2573 int functionNumber) 2574 : P(p), F(f), FunctionNumber(functionNumber) { 2575 2576 // Insert unnamed arguments into the NumberedVals list. 2577 for (Argument &A : F.args()) 2578 if (!A.hasName()) 2579 NumberedVals.push_back(&A); 2580 } 2581 2582 LLParser::PerFunctionState::~PerFunctionState() { 2583 // If there were any forward referenced non-basicblock values, delete them. 2584 2585 for (const auto &P : ForwardRefVals) { 2586 if (isa<BasicBlock>(P.second.first)) 2587 continue; 2588 P.second.first->replaceAllUsesWith( 2589 UndefValue::get(P.second.first->getType())); 2590 P.second.first->deleteValue(); 2591 } 2592 2593 for (const auto &P : ForwardRefValIDs) { 2594 if (isa<BasicBlock>(P.second.first)) 2595 continue; 2596 P.second.first->replaceAllUsesWith( 2597 UndefValue::get(P.second.first->getType())); 2598 P.second.first->deleteValue(); 2599 } 2600 } 2601 2602 bool LLParser::PerFunctionState::FinishFunction() { 2603 if (!ForwardRefVals.empty()) 2604 return P.Error(ForwardRefVals.begin()->second.second, 2605 "use of undefined value '%" + ForwardRefVals.begin()->first + 2606 "'"); 2607 if (!ForwardRefValIDs.empty()) 2608 return P.Error(ForwardRefValIDs.begin()->second.second, 2609 "use of undefined value '%" + 2610 Twine(ForwardRefValIDs.begin()->first) + "'"); 2611 return false; 2612 } 2613 2614 /// GetVal - Get a value with the specified name or ID, creating a 2615 /// forward reference record if needed. This can return null if the value 2616 /// exists but does not have the right type. 2617 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty, 2618 LocTy Loc) { 2619 // Look this name up in the normal function symbol table. 2620 Value *Val = F.getValueSymbolTable()->lookup(Name); 2621 2622 // If this is a forward reference for the value, see if we already created a 2623 // forward ref record. 2624 if (!Val) { 2625 auto I = ForwardRefVals.find(Name); 2626 if (I != ForwardRefVals.end()) 2627 Val = I->second.first; 2628 } 2629 2630 // If we have the value in the symbol table or fwd-ref table, return it. 2631 if (Val) { 2632 if (Val->getType() == Ty) return Val; 2633 if (Ty->isLabelTy()) 2634 P.Error(Loc, "'%" + Name + "' is not a basic block"); 2635 else 2636 P.Error(Loc, "'%" + Name + "' defined with type '" + 2637 getTypeString(Val->getType()) + "'"); 2638 return nullptr; 2639 } 2640 2641 // Don't make placeholders with invalid type. 2642 if (!Ty->isFirstClassType()) { 2643 P.Error(Loc, "invalid use of a non-first-class type"); 2644 return nullptr; 2645 } 2646 2647 // Otherwise, create a new forward reference for this value and remember it. 2648 Value *FwdVal; 2649 if (Ty->isLabelTy()) { 2650 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 2651 } else { 2652 FwdVal = new Argument(Ty, Name); 2653 } 2654 2655 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 2656 return FwdVal; 2657 } 2658 2659 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc) { 2660 // Look this name up in the normal function symbol table. 2661 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 2662 2663 // If this is a forward reference for the value, see if we already created a 2664 // forward ref record. 2665 if (!Val) { 2666 auto I = ForwardRefValIDs.find(ID); 2667 if (I != ForwardRefValIDs.end()) 2668 Val = I->second.first; 2669 } 2670 2671 // If we have the value in the symbol table or fwd-ref table, return it. 2672 if (Val) { 2673 if (Val->getType() == Ty) return Val; 2674 if (Ty->isLabelTy()) 2675 P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block"); 2676 else 2677 P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" + 2678 getTypeString(Val->getType()) + "'"); 2679 return nullptr; 2680 } 2681 2682 if (!Ty->isFirstClassType()) { 2683 P.Error(Loc, "invalid use of a non-first-class type"); 2684 return nullptr; 2685 } 2686 2687 // Otherwise, create a new forward reference for this value and remember it. 2688 Value *FwdVal; 2689 if (Ty->isLabelTy()) { 2690 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 2691 } else { 2692 FwdVal = new Argument(Ty); 2693 } 2694 2695 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 2696 return FwdVal; 2697 } 2698 2699 /// SetInstName - After an instruction is parsed and inserted into its 2700 /// basic block, this installs its name. 2701 bool LLParser::PerFunctionState::SetInstName(int NameID, 2702 const std::string &NameStr, 2703 LocTy NameLoc, Instruction *Inst) { 2704 // If this instruction has void type, it cannot have a name or ID specified. 2705 if (Inst->getType()->isVoidTy()) { 2706 if (NameID != -1 || !NameStr.empty()) 2707 return P.Error(NameLoc, "instructions returning void cannot have a name"); 2708 return false; 2709 } 2710 2711 // If this was a numbered instruction, verify that the instruction is the 2712 // expected value and resolve any forward references. 2713 if (NameStr.empty()) { 2714 // If neither a name nor an ID was specified, just use the next ID. 2715 if (NameID == -1) 2716 NameID = NumberedVals.size(); 2717 2718 if (unsigned(NameID) != NumberedVals.size()) 2719 return P.Error(NameLoc, "instruction expected to be numbered '%" + 2720 Twine(NumberedVals.size()) + "'"); 2721 2722 auto FI = ForwardRefValIDs.find(NameID); 2723 if (FI != ForwardRefValIDs.end()) { 2724 Value *Sentinel = FI->second.first; 2725 if (Sentinel->getType() != Inst->getType()) 2726 return P.Error(NameLoc, "instruction forward referenced with type '" + 2727 getTypeString(FI->second.first->getType()) + "'"); 2728 2729 Sentinel->replaceAllUsesWith(Inst); 2730 Sentinel->deleteValue(); 2731 ForwardRefValIDs.erase(FI); 2732 } 2733 2734 NumberedVals.push_back(Inst); 2735 return false; 2736 } 2737 2738 // Otherwise, the instruction had a name. Resolve forward refs and set it. 2739 auto FI = ForwardRefVals.find(NameStr); 2740 if (FI != ForwardRefVals.end()) { 2741 Value *Sentinel = FI->second.first; 2742 if (Sentinel->getType() != Inst->getType()) 2743 return P.Error(NameLoc, "instruction forward referenced with type '" + 2744 getTypeString(FI->second.first->getType()) + "'"); 2745 2746 Sentinel->replaceAllUsesWith(Inst); 2747 Sentinel->deleteValue(); 2748 ForwardRefVals.erase(FI); 2749 } 2750 2751 // Set the name on the instruction. 2752 Inst->setName(NameStr); 2753 2754 if (Inst->getName() != NameStr) 2755 return P.Error(NameLoc, "multiple definition of local value named '" + 2756 NameStr + "'"); 2757 return false; 2758 } 2759 2760 /// GetBB - Get a basic block with the specified name or ID, creating a 2761 /// forward reference record if needed. 2762 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, 2763 LocTy Loc) { 2764 return dyn_cast_or_null<BasicBlock>(GetVal(Name, 2765 Type::getLabelTy(F.getContext()), Loc)); 2766 } 2767 2768 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { 2769 return dyn_cast_or_null<BasicBlock>(GetVal(ID, 2770 Type::getLabelTy(F.getContext()), Loc)); 2771 } 2772 2773 /// DefineBB - Define the specified basic block, which is either named or 2774 /// unnamed. If there is an error, this returns null otherwise it returns 2775 /// the block being defined. 2776 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, 2777 LocTy Loc) { 2778 BasicBlock *BB; 2779 if (Name.empty()) 2780 BB = GetBB(NumberedVals.size(), Loc); 2781 else 2782 BB = GetBB(Name, Loc); 2783 if (!BB) return nullptr; // Already diagnosed error. 2784 2785 // Move the block to the end of the function. Forward ref'd blocks are 2786 // inserted wherever they happen to be referenced. 2787 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 2788 2789 // Remove the block from forward ref sets. 2790 if (Name.empty()) { 2791 ForwardRefValIDs.erase(NumberedVals.size()); 2792 NumberedVals.push_back(BB); 2793 } else { 2794 // BB forward references are already in the function symbol table. 2795 ForwardRefVals.erase(Name); 2796 } 2797 2798 return BB; 2799 } 2800 2801 //===----------------------------------------------------------------------===// 2802 // Constants. 2803 //===----------------------------------------------------------------------===// 2804 2805 /// ParseValID - Parse an abstract value that doesn't necessarily have a 2806 /// type implied. For example, if we parse "4" we don't know what integer type 2807 /// it has. The value will later be combined with its type and checked for 2808 /// sanity. PFS is used to convert function-local operands of metadata (since 2809 /// metadata operands are not just parsed here but also converted to values). 2810 /// PFS can be null when we are not parsing metadata values inside a function. 2811 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { 2812 ID.Loc = Lex.getLoc(); 2813 switch (Lex.getKind()) { 2814 default: return TokError("expected value token"); 2815 case lltok::GlobalID: // @42 2816 ID.UIntVal = Lex.getUIntVal(); 2817 ID.Kind = ValID::t_GlobalID; 2818 break; 2819 case lltok::GlobalVar: // @foo 2820 ID.StrVal = Lex.getStrVal(); 2821 ID.Kind = ValID::t_GlobalName; 2822 break; 2823 case lltok::LocalVarID: // %42 2824 ID.UIntVal = Lex.getUIntVal(); 2825 ID.Kind = ValID::t_LocalID; 2826 break; 2827 case lltok::LocalVar: // %foo 2828 ID.StrVal = Lex.getStrVal(); 2829 ID.Kind = ValID::t_LocalName; 2830 break; 2831 case lltok::APSInt: 2832 ID.APSIntVal = Lex.getAPSIntVal(); 2833 ID.Kind = ValID::t_APSInt; 2834 break; 2835 case lltok::APFloat: 2836 ID.APFloatVal = Lex.getAPFloatVal(); 2837 ID.Kind = ValID::t_APFloat; 2838 break; 2839 case lltok::kw_true: 2840 ID.ConstantVal = ConstantInt::getTrue(Context); 2841 ID.Kind = ValID::t_Constant; 2842 break; 2843 case lltok::kw_false: 2844 ID.ConstantVal = ConstantInt::getFalse(Context); 2845 ID.Kind = ValID::t_Constant; 2846 break; 2847 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 2848 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 2849 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 2850 case lltok::kw_none: ID.Kind = ValID::t_None; break; 2851 2852 case lltok::lbrace: { 2853 // ValID ::= '{' ConstVector '}' 2854 Lex.Lex(); 2855 SmallVector<Constant*, 16> Elts; 2856 if (ParseGlobalValueVector(Elts) || 2857 ParseToken(lltok::rbrace, "expected end of struct constant")) 2858 return true; 2859 2860 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 2861 ID.UIntVal = Elts.size(); 2862 memcpy(ID.ConstantStructElts.get(), Elts.data(), 2863 Elts.size() * sizeof(Elts[0])); 2864 ID.Kind = ValID::t_ConstantStruct; 2865 return false; 2866 } 2867 case lltok::less: { 2868 // ValID ::= '<' ConstVector '>' --> Vector. 2869 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 2870 Lex.Lex(); 2871 bool isPackedStruct = EatIfPresent(lltok::lbrace); 2872 2873 SmallVector<Constant*, 16> Elts; 2874 LocTy FirstEltLoc = Lex.getLoc(); 2875 if (ParseGlobalValueVector(Elts) || 2876 (isPackedStruct && 2877 ParseToken(lltok::rbrace, "expected end of packed struct")) || 2878 ParseToken(lltok::greater, "expected end of constant")) 2879 return true; 2880 2881 if (isPackedStruct) { 2882 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 2883 memcpy(ID.ConstantStructElts.get(), Elts.data(), 2884 Elts.size() * sizeof(Elts[0])); 2885 ID.UIntVal = Elts.size(); 2886 ID.Kind = ValID::t_PackedConstantStruct; 2887 return false; 2888 } 2889 2890 if (Elts.empty()) 2891 return Error(ID.Loc, "constant vector must not be empty"); 2892 2893 if (!Elts[0]->getType()->isIntegerTy() && 2894 !Elts[0]->getType()->isFloatingPointTy() && 2895 !Elts[0]->getType()->isPointerTy()) 2896 return Error(FirstEltLoc, 2897 "vector elements must have integer, pointer or floating point type"); 2898 2899 // Verify that all the vector elements have the same type. 2900 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 2901 if (Elts[i]->getType() != Elts[0]->getType()) 2902 return Error(FirstEltLoc, 2903 "vector element #" + Twine(i) + 2904 " is not of type '" + getTypeString(Elts[0]->getType())); 2905 2906 ID.ConstantVal = ConstantVector::get(Elts); 2907 ID.Kind = ValID::t_Constant; 2908 return false; 2909 } 2910 case lltok::lsquare: { // Array Constant 2911 Lex.Lex(); 2912 SmallVector<Constant*, 16> Elts; 2913 LocTy FirstEltLoc = Lex.getLoc(); 2914 if (ParseGlobalValueVector(Elts) || 2915 ParseToken(lltok::rsquare, "expected end of array constant")) 2916 return true; 2917 2918 // Handle empty element. 2919 if (Elts.empty()) { 2920 // Use undef instead of an array because it's inconvenient to determine 2921 // the element type at this point, there being no elements to examine. 2922 ID.Kind = ValID::t_EmptyArray; 2923 return false; 2924 } 2925 2926 if (!Elts[0]->getType()->isFirstClassType()) 2927 return Error(FirstEltLoc, "invalid array element type: " + 2928 getTypeString(Elts[0]->getType())); 2929 2930 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 2931 2932 // Verify all elements are correct type! 2933 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 2934 if (Elts[i]->getType() != Elts[0]->getType()) 2935 return Error(FirstEltLoc, 2936 "array element #" + Twine(i) + 2937 " is not of type '" + getTypeString(Elts[0]->getType())); 2938 } 2939 2940 ID.ConstantVal = ConstantArray::get(ATy, Elts); 2941 ID.Kind = ValID::t_Constant; 2942 return false; 2943 } 2944 case lltok::kw_c: // c "foo" 2945 Lex.Lex(); 2946 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 2947 false); 2948 if (ParseToken(lltok::StringConstant, "expected string")) return true; 2949 ID.Kind = ValID::t_Constant; 2950 return false; 2951 2952 case lltok::kw_asm: { 2953 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 2954 // STRINGCONSTANT 2955 bool HasSideEffect, AlignStack, AsmDialect; 2956 Lex.Lex(); 2957 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 2958 ParseOptionalToken(lltok::kw_alignstack, AlignStack) || 2959 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 2960 ParseStringConstant(ID.StrVal) || 2961 ParseToken(lltok::comma, "expected comma in inline asm expression") || 2962 ParseToken(lltok::StringConstant, "expected constraint string")) 2963 return true; 2964 ID.StrVal2 = Lex.getStrVal(); 2965 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) | 2966 (unsigned(AsmDialect)<<2); 2967 ID.Kind = ValID::t_InlineAsm; 2968 return false; 2969 } 2970 2971 case lltok::kw_blockaddress: { 2972 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 2973 Lex.Lex(); 2974 2975 ValID Fn, Label; 2976 2977 if (ParseToken(lltok::lparen, "expected '(' in block address expression") || 2978 ParseValID(Fn) || 2979 ParseToken(lltok::comma, "expected comma in block address expression")|| 2980 ParseValID(Label) || 2981 ParseToken(lltok::rparen, "expected ')' in block address expression")) 2982 return true; 2983 2984 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 2985 return Error(Fn.Loc, "expected function name in blockaddress"); 2986 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 2987 return Error(Label.Loc, "expected basic block name in blockaddress"); 2988 2989 // Try to find the function (but skip it if it's forward-referenced). 2990 GlobalValue *GV = nullptr; 2991 if (Fn.Kind == ValID::t_GlobalID) { 2992 if (Fn.UIntVal < NumberedVals.size()) 2993 GV = NumberedVals[Fn.UIntVal]; 2994 } else if (!ForwardRefVals.count(Fn.StrVal)) { 2995 GV = M->getNamedValue(Fn.StrVal); 2996 } 2997 Function *F = nullptr; 2998 if (GV) { 2999 // Confirm that it's actually a function with a definition. 3000 if (!isa<Function>(GV)) 3001 return Error(Fn.Loc, "expected function name in blockaddress"); 3002 F = cast<Function>(GV); 3003 if (F->isDeclaration()) 3004 return Error(Fn.Loc, "cannot take blockaddress inside a declaration"); 3005 } 3006 3007 if (!F) { 3008 // Make a global variable as a placeholder for this reference. 3009 GlobalValue *&FwdRef = 3010 ForwardRefBlockAddresses.insert(std::make_pair( 3011 std::move(Fn), 3012 std::map<ValID, GlobalValue *>())) 3013 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 3014 .first->second; 3015 if (!FwdRef) 3016 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 3017 GlobalValue::InternalLinkage, nullptr, ""); 3018 ID.ConstantVal = FwdRef; 3019 ID.Kind = ValID::t_Constant; 3020 return false; 3021 } 3022 3023 // We found the function; now find the basic block. Don't use PFS, since we 3024 // might be inside a constant expression. 3025 BasicBlock *BB; 3026 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 3027 if (Label.Kind == ValID::t_LocalID) 3028 BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc); 3029 else 3030 BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc); 3031 if (!BB) 3032 return Error(Label.Loc, "referenced value is not a basic block"); 3033 } else { 3034 if (Label.Kind == ValID::t_LocalID) 3035 return Error(Label.Loc, "cannot take address of numeric label after " 3036 "the function is defined"); 3037 BB = dyn_cast_or_null<BasicBlock>( 3038 F->getValueSymbolTable()->lookup(Label.StrVal)); 3039 if (!BB) 3040 return Error(Label.Loc, "referenced value is not a basic block"); 3041 } 3042 3043 ID.ConstantVal = BlockAddress::get(F, BB); 3044 ID.Kind = ValID::t_Constant; 3045 return false; 3046 } 3047 3048 case lltok::kw_trunc: 3049 case lltok::kw_zext: 3050 case lltok::kw_sext: 3051 case lltok::kw_fptrunc: 3052 case lltok::kw_fpext: 3053 case lltok::kw_bitcast: 3054 case lltok::kw_addrspacecast: 3055 case lltok::kw_uitofp: 3056 case lltok::kw_sitofp: 3057 case lltok::kw_fptoui: 3058 case lltok::kw_fptosi: 3059 case lltok::kw_inttoptr: 3060 case lltok::kw_ptrtoint: { 3061 unsigned Opc = Lex.getUIntVal(); 3062 Type *DestTy = nullptr; 3063 Constant *SrcVal; 3064 Lex.Lex(); 3065 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || 3066 ParseGlobalTypeAndValue(SrcVal) || 3067 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 3068 ParseType(DestTy) || 3069 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 3070 return true; 3071 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 3072 return Error(ID.Loc, "invalid cast opcode for cast from '" + 3073 getTypeString(SrcVal->getType()) + "' to '" + 3074 getTypeString(DestTy) + "'"); 3075 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 3076 SrcVal, DestTy); 3077 ID.Kind = ValID::t_Constant; 3078 return false; 3079 } 3080 case lltok::kw_extractvalue: { 3081 Lex.Lex(); 3082 Constant *Val; 3083 SmallVector<unsigned, 4> Indices; 3084 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| 3085 ParseGlobalTypeAndValue(Val) || 3086 ParseIndexList(Indices) || 3087 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 3088 return true; 3089 3090 if (!Val->getType()->isAggregateType()) 3091 return Error(ID.Loc, "extractvalue operand must be aggregate type"); 3092 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 3093 return Error(ID.Loc, "invalid indices for extractvalue"); 3094 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 3095 ID.Kind = ValID::t_Constant; 3096 return false; 3097 } 3098 case lltok::kw_insertvalue: { 3099 Lex.Lex(); 3100 Constant *Val0, *Val1; 3101 SmallVector<unsigned, 4> Indices; 3102 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| 3103 ParseGlobalTypeAndValue(Val0) || 3104 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| 3105 ParseGlobalTypeAndValue(Val1) || 3106 ParseIndexList(Indices) || 3107 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 3108 return true; 3109 if (!Val0->getType()->isAggregateType()) 3110 return Error(ID.Loc, "insertvalue operand must be aggregate type"); 3111 Type *IndexedType = 3112 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 3113 if (!IndexedType) 3114 return Error(ID.Loc, "invalid indices for insertvalue"); 3115 if (IndexedType != Val1->getType()) 3116 return Error(ID.Loc, "insertvalue operand and field disagree in type: '" + 3117 getTypeString(Val1->getType()) + 3118 "' instead of '" + getTypeString(IndexedType) + 3119 "'"); 3120 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 3121 ID.Kind = ValID::t_Constant; 3122 return false; 3123 } 3124 case lltok::kw_icmp: 3125 case lltok::kw_fcmp: { 3126 unsigned PredVal, Opc = Lex.getUIntVal(); 3127 Constant *Val0, *Val1; 3128 Lex.Lex(); 3129 if (ParseCmpPredicate(PredVal, Opc) || 3130 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || 3131 ParseGlobalTypeAndValue(Val0) || 3132 ParseToken(lltok::comma, "expected comma in compare constantexpr") || 3133 ParseGlobalTypeAndValue(Val1) || 3134 ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) 3135 return true; 3136 3137 if (Val0->getType() != Val1->getType()) 3138 return Error(ID.Loc, "compare operands must have the same type"); 3139 3140 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 3141 3142 if (Opc == Instruction::FCmp) { 3143 if (!Val0->getType()->isFPOrFPVectorTy()) 3144 return Error(ID.Loc, "fcmp requires floating point operands"); 3145 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3146 } else { 3147 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3148 if (!Val0->getType()->isIntOrIntVectorTy() && 3149 !Val0->getType()->isPtrOrPtrVectorTy()) 3150 return Error(ID.Loc, "icmp requires pointer or integer operands"); 3151 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3152 } 3153 ID.Kind = ValID::t_Constant; 3154 return false; 3155 } 3156 3157 // Binary Operators. 3158 case lltok::kw_add: 3159 case lltok::kw_fadd: 3160 case lltok::kw_sub: 3161 case lltok::kw_fsub: 3162 case lltok::kw_mul: 3163 case lltok::kw_fmul: 3164 case lltok::kw_udiv: 3165 case lltok::kw_sdiv: 3166 case lltok::kw_fdiv: 3167 case lltok::kw_urem: 3168 case lltok::kw_srem: 3169 case lltok::kw_frem: 3170 case lltok::kw_shl: 3171 case lltok::kw_lshr: 3172 case lltok::kw_ashr: { 3173 bool NUW = false; 3174 bool NSW = false; 3175 bool Exact = false; 3176 unsigned Opc = Lex.getUIntVal(); 3177 Constant *Val0, *Val1; 3178 Lex.Lex(); 3179 LocTy ModifierLoc = Lex.getLoc(); 3180 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3181 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3182 if (EatIfPresent(lltok::kw_nuw)) 3183 NUW = true; 3184 if (EatIfPresent(lltok::kw_nsw)) { 3185 NSW = true; 3186 if (EatIfPresent(lltok::kw_nuw)) 3187 NUW = true; 3188 } 3189 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3190 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3191 if (EatIfPresent(lltok::kw_exact)) 3192 Exact = true; 3193 } 3194 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3195 ParseGlobalTypeAndValue(Val0) || 3196 ParseToken(lltok::comma, "expected comma in binary constantexpr") || 3197 ParseGlobalTypeAndValue(Val1) || 3198 ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3199 return true; 3200 if (Val0->getType() != Val1->getType()) 3201 return Error(ID.Loc, "operands of constexpr must have same type"); 3202 if (!Val0->getType()->isIntOrIntVectorTy()) { 3203 if (NUW) 3204 return Error(ModifierLoc, "nuw only applies to integer operations"); 3205 if (NSW) 3206 return Error(ModifierLoc, "nsw only applies to integer operations"); 3207 } 3208 // Check that the type is valid for the operator. 3209 switch (Opc) { 3210 case Instruction::Add: 3211 case Instruction::Sub: 3212 case Instruction::Mul: 3213 case Instruction::UDiv: 3214 case Instruction::SDiv: 3215 case Instruction::URem: 3216 case Instruction::SRem: 3217 case Instruction::Shl: 3218 case Instruction::AShr: 3219 case Instruction::LShr: 3220 if (!Val0->getType()->isIntOrIntVectorTy()) 3221 return Error(ID.Loc, "constexpr requires integer operands"); 3222 break; 3223 case Instruction::FAdd: 3224 case Instruction::FSub: 3225 case Instruction::FMul: 3226 case Instruction::FDiv: 3227 case Instruction::FRem: 3228 if (!Val0->getType()->isFPOrFPVectorTy()) 3229 return Error(ID.Loc, "constexpr requires fp operands"); 3230 break; 3231 default: llvm_unreachable("Unknown binary operator!"); 3232 } 3233 unsigned Flags = 0; 3234 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3235 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3236 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3237 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3238 ID.ConstantVal = C; 3239 ID.Kind = ValID::t_Constant; 3240 return false; 3241 } 3242 3243 // Logical Operations 3244 case lltok::kw_and: 3245 case lltok::kw_or: 3246 case lltok::kw_xor: { 3247 unsigned Opc = Lex.getUIntVal(); 3248 Constant *Val0, *Val1; 3249 Lex.Lex(); 3250 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3251 ParseGlobalTypeAndValue(Val0) || 3252 ParseToken(lltok::comma, "expected comma in logical constantexpr") || 3253 ParseGlobalTypeAndValue(Val1) || 3254 ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3255 return true; 3256 if (Val0->getType() != Val1->getType()) 3257 return Error(ID.Loc, "operands of constexpr must have same type"); 3258 if (!Val0->getType()->isIntOrIntVectorTy()) 3259 return Error(ID.Loc, 3260 "constexpr requires integer or integer vector operands"); 3261 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3262 ID.Kind = ValID::t_Constant; 3263 return false; 3264 } 3265 3266 case lltok::kw_getelementptr: 3267 case lltok::kw_shufflevector: 3268 case lltok::kw_insertelement: 3269 case lltok::kw_extractelement: 3270 case lltok::kw_select: { 3271 unsigned Opc = Lex.getUIntVal(); 3272 SmallVector<Constant*, 16> Elts; 3273 bool InBounds = false; 3274 Type *Ty; 3275 Lex.Lex(); 3276 3277 if (Opc == Instruction::GetElementPtr) 3278 InBounds = EatIfPresent(lltok::kw_inbounds); 3279 3280 if (ParseToken(lltok::lparen, "expected '(' in constantexpr")) 3281 return true; 3282 3283 LocTy ExplicitTypeLoc = Lex.getLoc(); 3284 if (Opc == Instruction::GetElementPtr) { 3285 if (ParseType(Ty) || 3286 ParseToken(lltok::comma, "expected comma after getelementptr's type")) 3287 return true; 3288 } 3289 3290 Optional<unsigned> InRangeOp; 3291 if (ParseGlobalValueVector( 3292 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) || 3293 ParseToken(lltok::rparen, "expected ')' in constantexpr")) 3294 return true; 3295 3296 if (Opc == Instruction::GetElementPtr) { 3297 if (Elts.size() == 0 || 3298 !Elts[0]->getType()->isPtrOrPtrVectorTy()) 3299 return Error(ID.Loc, "base of getelementptr must be a pointer"); 3300 3301 Type *BaseType = Elts[0]->getType(); 3302 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3303 if (Ty != BasePointerType->getElementType()) 3304 return Error( 3305 ExplicitTypeLoc, 3306 "explicit pointee type doesn't match operand's pointee type"); 3307 3308 unsigned GEPWidth = 3309 BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0; 3310 3311 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3312 for (Constant *Val : Indices) { 3313 Type *ValTy = Val->getType(); 3314 if (!ValTy->isIntOrIntVectorTy()) 3315 return Error(ID.Loc, "getelementptr index must be an integer"); 3316 if (ValTy->isVectorTy()) { 3317 unsigned ValNumEl = ValTy->getVectorNumElements(); 3318 if (GEPWidth && (ValNumEl != GEPWidth)) 3319 return Error( 3320 ID.Loc, 3321 "getelementptr vector index has a wrong number of elements"); 3322 // GEPWidth may have been unknown because the base is a scalar, 3323 // but it is known now. 3324 GEPWidth = ValNumEl; 3325 } 3326 } 3327 3328 SmallPtrSet<Type*, 4> Visited; 3329 if (!Indices.empty() && !Ty->isSized(&Visited)) 3330 return Error(ID.Loc, "base element of getelementptr must be sized"); 3331 3332 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3333 return Error(ID.Loc, "invalid getelementptr indices"); 3334 3335 if (InRangeOp) { 3336 if (*InRangeOp == 0) 3337 return Error(ID.Loc, 3338 "inrange keyword may not appear on pointer operand"); 3339 --*InRangeOp; 3340 } 3341 3342 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, 3343 InBounds, InRangeOp); 3344 } else if (Opc == Instruction::Select) { 3345 if (Elts.size() != 3) 3346 return Error(ID.Loc, "expected three operands to select"); 3347 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3348 Elts[2])) 3349 return Error(ID.Loc, Reason); 3350 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3351 } else if (Opc == Instruction::ShuffleVector) { 3352 if (Elts.size() != 3) 3353 return Error(ID.Loc, "expected three operands to shufflevector"); 3354 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3355 return Error(ID.Loc, "invalid operands to shufflevector"); 3356 ID.ConstantVal = 3357 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); 3358 } else if (Opc == Instruction::ExtractElement) { 3359 if (Elts.size() != 2) 3360 return Error(ID.Loc, "expected two operands to extractelement"); 3361 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3362 return Error(ID.Loc, "invalid extractelement operands"); 3363 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3364 } else { 3365 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3366 if (Elts.size() != 3) 3367 return Error(ID.Loc, "expected three operands to insertelement"); 3368 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3369 return Error(ID.Loc, "invalid insertelement operands"); 3370 ID.ConstantVal = 3371 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3372 } 3373 3374 ID.Kind = ValID::t_Constant; 3375 return false; 3376 } 3377 } 3378 3379 Lex.Lex(); 3380 return false; 3381 } 3382 3383 /// ParseGlobalValue - Parse a global value with the specified type. 3384 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) { 3385 C = nullptr; 3386 ValID ID; 3387 Value *V = nullptr; 3388 bool Parsed = ParseValID(ID) || 3389 ConvertValIDToValue(Ty, ID, V, nullptr); 3390 if (V && !(C = dyn_cast<Constant>(V))) 3391 return Error(ID.Loc, "global values must be constants"); 3392 return Parsed; 3393 } 3394 3395 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { 3396 Type *Ty = nullptr; 3397 return ParseType(Ty) || 3398 ParseGlobalValue(Ty, V); 3399 } 3400 3401 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3402 C = nullptr; 3403 3404 LocTy KwLoc = Lex.getLoc(); 3405 if (!EatIfPresent(lltok::kw_comdat)) 3406 return false; 3407 3408 if (EatIfPresent(lltok::lparen)) { 3409 if (Lex.getKind() != lltok::ComdatVar) 3410 return TokError("expected comdat variable"); 3411 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3412 Lex.Lex(); 3413 if (ParseToken(lltok::rparen, "expected ')' after comdat var")) 3414 return true; 3415 } else { 3416 if (GlobalName.empty()) 3417 return TokError("comdat cannot be unnamed"); 3418 C = getComdat(GlobalName, KwLoc); 3419 } 3420 3421 return false; 3422 } 3423 3424 /// ParseGlobalValueVector 3425 /// ::= /*empty*/ 3426 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)* 3427 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts, 3428 Optional<unsigned> *InRangeOp) { 3429 // Empty list. 3430 if (Lex.getKind() == lltok::rbrace || 3431 Lex.getKind() == lltok::rsquare || 3432 Lex.getKind() == lltok::greater || 3433 Lex.getKind() == lltok::rparen) 3434 return false; 3435 3436 do { 3437 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange)) 3438 *InRangeOp = Elts.size(); 3439 3440 Constant *C; 3441 if (ParseGlobalTypeAndValue(C)) return true; 3442 Elts.push_back(C); 3443 } while (EatIfPresent(lltok::comma)); 3444 3445 return false; 3446 } 3447 3448 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) { 3449 SmallVector<Metadata *, 16> Elts; 3450 if (ParseMDNodeVector(Elts)) 3451 return true; 3452 3453 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3454 return false; 3455 } 3456 3457 /// MDNode: 3458 /// ::= !{ ... } 3459 /// ::= !7 3460 /// ::= !DILocation(...) 3461 bool LLParser::ParseMDNode(MDNode *&N) { 3462 if (Lex.getKind() == lltok::MetadataVar) 3463 return ParseSpecializedMDNode(N); 3464 3465 return ParseToken(lltok::exclaim, "expected '!' here") || 3466 ParseMDNodeTail(N); 3467 } 3468 3469 bool LLParser::ParseMDNodeTail(MDNode *&N) { 3470 // !{ ... } 3471 if (Lex.getKind() == lltok::lbrace) 3472 return ParseMDTuple(N); 3473 3474 // !42 3475 return ParseMDNodeID(N); 3476 } 3477 3478 namespace { 3479 3480 /// Structure to represent an optional metadata field. 3481 template <class FieldTy> struct MDFieldImpl { 3482 typedef MDFieldImpl ImplTy; 3483 FieldTy Val; 3484 bool Seen; 3485 3486 void assign(FieldTy Val) { 3487 Seen = true; 3488 this->Val = std::move(Val); 3489 } 3490 3491 explicit MDFieldImpl(FieldTy Default) 3492 : Val(std::move(Default)), Seen(false) {} 3493 }; 3494 3495 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 3496 uint64_t Max; 3497 3498 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 3499 : ImplTy(Default), Max(Max) {} 3500 }; 3501 3502 struct LineField : public MDUnsignedField { 3503 LineField() : MDUnsignedField(0, UINT32_MAX) {} 3504 }; 3505 3506 struct ColumnField : public MDUnsignedField { 3507 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 3508 }; 3509 3510 struct DwarfTagField : public MDUnsignedField { 3511 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 3512 DwarfTagField(dwarf::Tag DefaultTag) 3513 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 3514 }; 3515 3516 struct DwarfMacinfoTypeField : public MDUnsignedField { 3517 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 3518 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 3519 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 3520 }; 3521 3522 struct DwarfAttEncodingField : public MDUnsignedField { 3523 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 3524 }; 3525 3526 struct DwarfVirtualityField : public MDUnsignedField { 3527 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 3528 }; 3529 3530 struct DwarfLangField : public MDUnsignedField { 3531 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 3532 }; 3533 3534 struct DwarfCCField : public MDUnsignedField { 3535 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 3536 }; 3537 3538 struct EmissionKindField : public MDUnsignedField { 3539 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 3540 }; 3541 3542 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 3543 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 3544 }; 3545 3546 struct MDSignedField : public MDFieldImpl<int64_t> { 3547 int64_t Min; 3548 int64_t Max; 3549 3550 MDSignedField(int64_t Default = 0) 3551 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 3552 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 3553 : ImplTy(Default), Min(Min), Max(Max) {} 3554 }; 3555 3556 struct MDBoolField : public MDFieldImpl<bool> { 3557 MDBoolField(bool Default = false) : ImplTy(Default) {} 3558 }; 3559 3560 struct MDField : public MDFieldImpl<Metadata *> { 3561 bool AllowNull; 3562 3563 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 3564 }; 3565 3566 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> { 3567 MDConstant() : ImplTy(nullptr) {} 3568 }; 3569 3570 struct MDStringField : public MDFieldImpl<MDString *> { 3571 bool AllowEmpty; 3572 MDStringField(bool AllowEmpty = true) 3573 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 3574 }; 3575 3576 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 3577 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 3578 }; 3579 3580 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> { 3581 ChecksumKindField() : ImplTy(DIFile::CSK_None) {} 3582 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {} 3583 }; 3584 3585 } // end anonymous namespace 3586 3587 namespace llvm { 3588 3589 template <> 3590 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3591 MDUnsignedField &Result) { 3592 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 3593 return TokError("expected unsigned integer"); 3594 3595 auto &U = Lex.getAPSIntVal(); 3596 if (U.ugt(Result.Max)) 3597 return TokError("value for '" + Name + "' too large, limit is " + 3598 Twine(Result.Max)); 3599 Result.assign(U.getZExtValue()); 3600 assert(Result.Val <= Result.Max && "Expected value in range"); 3601 Lex.Lex(); 3602 return false; 3603 } 3604 3605 template <> 3606 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) { 3607 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3608 } 3609 template <> 3610 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 3611 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3612 } 3613 3614 template <> 3615 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 3616 if (Lex.getKind() == lltok::APSInt) 3617 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3618 3619 if (Lex.getKind() != lltok::DwarfTag) 3620 return TokError("expected DWARF tag"); 3621 3622 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 3623 if (Tag == dwarf::DW_TAG_invalid) 3624 return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 3625 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 3626 3627 Result.assign(Tag); 3628 Lex.Lex(); 3629 return false; 3630 } 3631 3632 template <> 3633 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3634 DwarfMacinfoTypeField &Result) { 3635 if (Lex.getKind() == lltok::APSInt) 3636 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3637 3638 if (Lex.getKind() != lltok::DwarfMacinfo) 3639 return TokError("expected DWARF macinfo type"); 3640 3641 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 3642 if (Macinfo == dwarf::DW_MACINFO_invalid) 3643 return TokError( 3644 "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'"); 3645 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 3646 3647 Result.assign(Macinfo); 3648 Lex.Lex(); 3649 return false; 3650 } 3651 3652 template <> 3653 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3654 DwarfVirtualityField &Result) { 3655 if (Lex.getKind() == lltok::APSInt) 3656 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3657 3658 if (Lex.getKind() != lltok::DwarfVirtuality) 3659 return TokError("expected DWARF virtuality code"); 3660 3661 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 3662 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 3663 return TokError("invalid DWARF virtuality code" + Twine(" '") + 3664 Lex.getStrVal() + "'"); 3665 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 3666 Result.assign(Virtuality); 3667 Lex.Lex(); 3668 return false; 3669 } 3670 3671 template <> 3672 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 3673 if (Lex.getKind() == lltok::APSInt) 3674 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3675 3676 if (Lex.getKind() != lltok::DwarfLang) 3677 return TokError("expected DWARF language"); 3678 3679 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 3680 if (!Lang) 3681 return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 3682 "'"); 3683 assert(Lang <= Result.Max && "Expected valid DWARF language"); 3684 Result.assign(Lang); 3685 Lex.Lex(); 3686 return false; 3687 } 3688 3689 template <> 3690 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 3691 if (Lex.getKind() == lltok::APSInt) 3692 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3693 3694 if (Lex.getKind() != lltok::DwarfCC) 3695 return TokError("expected DWARF calling convention"); 3696 3697 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 3698 if (!CC) 3699 return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() + 3700 "'"); 3701 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 3702 Result.assign(CC); 3703 Lex.Lex(); 3704 return false; 3705 } 3706 3707 template <> 3708 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) { 3709 if (Lex.getKind() == lltok::APSInt) 3710 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3711 3712 if (Lex.getKind() != lltok::EmissionKind) 3713 return TokError("expected emission kind"); 3714 3715 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 3716 if (!Kind) 3717 return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 3718 "'"); 3719 assert(*Kind <= Result.Max && "Expected valid emission kind"); 3720 Result.assign(*Kind); 3721 Lex.Lex(); 3722 return false; 3723 } 3724 3725 template <> 3726 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3727 DwarfAttEncodingField &Result) { 3728 if (Lex.getKind() == lltok::APSInt) 3729 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3730 3731 if (Lex.getKind() != lltok::DwarfAttEncoding) 3732 return TokError("expected DWARF type attribute encoding"); 3733 3734 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 3735 if (!Encoding) 3736 return TokError("invalid DWARF type attribute encoding" + Twine(" '") + 3737 Lex.getStrVal() + "'"); 3738 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 3739 Result.assign(Encoding); 3740 Lex.Lex(); 3741 return false; 3742 } 3743 3744 /// DIFlagField 3745 /// ::= uint32 3746 /// ::= DIFlagVector 3747 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 3748 template <> 3749 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 3750 3751 // Parser for a single flag. 3752 auto parseFlag = [&](DINode::DIFlags &Val) { 3753 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 3754 uint32_t TempVal = static_cast<uint32_t>(Val); 3755 bool Res = ParseUInt32(TempVal); 3756 Val = static_cast<DINode::DIFlags>(TempVal); 3757 return Res; 3758 } 3759 3760 if (Lex.getKind() != lltok::DIFlag) 3761 return TokError("expected debug info flag"); 3762 3763 Val = DINode::getFlag(Lex.getStrVal()); 3764 if (!Val) 3765 return TokError(Twine("invalid debug info flag flag '") + 3766 Lex.getStrVal() + "'"); 3767 Lex.Lex(); 3768 return false; 3769 }; 3770 3771 // Parse the flags and combine them together. 3772 DINode::DIFlags Combined = DINode::FlagZero; 3773 do { 3774 DINode::DIFlags Val; 3775 if (parseFlag(Val)) 3776 return true; 3777 Combined |= Val; 3778 } while (EatIfPresent(lltok::bar)); 3779 3780 Result.assign(Combined); 3781 return false; 3782 } 3783 3784 template <> 3785 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3786 MDSignedField &Result) { 3787 if (Lex.getKind() != lltok::APSInt) 3788 return TokError("expected signed integer"); 3789 3790 auto &S = Lex.getAPSIntVal(); 3791 if (S < Result.Min) 3792 return TokError("value for '" + Name + "' too small, limit is " + 3793 Twine(Result.Min)); 3794 if (S > Result.Max) 3795 return TokError("value for '" + Name + "' too large, limit is " + 3796 Twine(Result.Max)); 3797 Result.assign(S.getExtValue()); 3798 assert(Result.Val >= Result.Min && "Expected value in range"); 3799 assert(Result.Val <= Result.Max && "Expected value in range"); 3800 Lex.Lex(); 3801 return false; 3802 } 3803 3804 template <> 3805 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 3806 switch (Lex.getKind()) { 3807 default: 3808 return TokError("expected 'true' or 'false'"); 3809 case lltok::kw_true: 3810 Result.assign(true); 3811 break; 3812 case lltok::kw_false: 3813 Result.assign(false); 3814 break; 3815 } 3816 Lex.Lex(); 3817 return false; 3818 } 3819 3820 template <> 3821 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) { 3822 if (Lex.getKind() == lltok::kw_null) { 3823 if (!Result.AllowNull) 3824 return TokError("'" + Name + "' cannot be null"); 3825 Lex.Lex(); 3826 Result.assign(nullptr); 3827 return false; 3828 } 3829 3830 Metadata *MD; 3831 if (ParseMetadata(MD, nullptr)) 3832 return true; 3833 3834 Result.assign(MD); 3835 return false; 3836 } 3837 3838 template <> 3839 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 3840 LocTy ValueLoc = Lex.getLoc(); 3841 std::string S; 3842 if (ParseStringConstant(S)) 3843 return true; 3844 3845 if (!Result.AllowEmpty && S.empty()) 3846 return Error(ValueLoc, "'" + Name + "' cannot be empty"); 3847 3848 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 3849 return false; 3850 } 3851 3852 template <> 3853 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 3854 SmallVector<Metadata *, 4> MDs; 3855 if (ParseMDNodeVector(MDs)) 3856 return true; 3857 3858 Result.assign(std::move(MDs)); 3859 return false; 3860 } 3861 3862 template <> 3863 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3864 ChecksumKindField &Result) { 3865 if (Lex.getKind() != lltok::ChecksumKind) 3866 return TokError( 3867 "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'"); 3868 3869 DIFile::ChecksumKind CSKind = DIFile::getChecksumKind(Lex.getStrVal()); 3870 3871 Result.assign(CSKind); 3872 Lex.Lex(); 3873 return false; 3874 } 3875 3876 } // end namespace llvm 3877 3878 template <class ParserTy> 3879 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) { 3880 do { 3881 if (Lex.getKind() != lltok::LabelStr) 3882 return TokError("expected field label here"); 3883 3884 if (parseField()) 3885 return true; 3886 } while (EatIfPresent(lltok::comma)); 3887 3888 return false; 3889 } 3890 3891 template <class ParserTy> 3892 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) { 3893 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 3894 Lex.Lex(); 3895 3896 if (ParseToken(lltok::lparen, "expected '(' here")) 3897 return true; 3898 if (Lex.getKind() != lltok::rparen) 3899 if (ParseMDFieldsImplBody(parseField)) 3900 return true; 3901 3902 ClosingLoc = Lex.getLoc(); 3903 return ParseToken(lltok::rparen, "expected ')' here"); 3904 } 3905 3906 template <class FieldTy> 3907 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) { 3908 if (Result.Seen) 3909 return TokError("field '" + Name + "' cannot be specified more than once"); 3910 3911 LocTy Loc = Lex.getLoc(); 3912 Lex.Lex(); 3913 return ParseMDField(Loc, Name, Result); 3914 } 3915 3916 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 3917 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 3918 3919 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 3920 if (Lex.getStrVal() == #CLASS) \ 3921 return Parse##CLASS(N, IsDistinct); 3922 #include "llvm/IR/Metadata.def" 3923 3924 return TokError("expected metadata type"); 3925 } 3926 3927 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 3928 #define NOP_FIELD(NAME, TYPE, INIT) 3929 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 3930 if (!NAME.Seen) \ 3931 return Error(ClosingLoc, "missing required field '" #NAME "'"); 3932 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 3933 if (Lex.getStrVal() == #NAME) \ 3934 return ParseMDField(#NAME, NAME); 3935 #define PARSE_MD_FIELDS() \ 3936 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 3937 do { \ 3938 LocTy ClosingLoc; \ 3939 if (ParseMDFieldsImpl([&]() -> bool { \ 3940 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 3941 return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \ 3942 }, ClosingLoc)) \ 3943 return true; \ 3944 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 3945 } while (false) 3946 #define GET_OR_DISTINCT(CLASS, ARGS) \ 3947 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 3948 3949 /// ParseDILocationFields: 3950 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6) 3951 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) { 3952 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3953 OPTIONAL(line, LineField, ); \ 3954 OPTIONAL(column, ColumnField, ); \ 3955 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 3956 OPTIONAL(inlinedAt, MDField, ); 3957 PARSE_MD_FIELDS(); 3958 #undef VISIT_MD_FIELDS 3959 3960 Result = GET_OR_DISTINCT( 3961 DILocation, (Context, line.Val, column.Val, scope.Val, inlinedAt.Val)); 3962 return false; 3963 } 3964 3965 /// ParseGenericDINode: 3966 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 3967 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) { 3968 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3969 REQUIRED(tag, DwarfTagField, ); \ 3970 OPTIONAL(header, MDStringField, ); \ 3971 OPTIONAL(operands, MDFieldList, ); 3972 PARSE_MD_FIELDS(); 3973 #undef VISIT_MD_FIELDS 3974 3975 Result = GET_OR_DISTINCT(GenericDINode, 3976 (Context, tag.Val, header.Val, operands.Val)); 3977 return false; 3978 } 3979 3980 /// ParseDISubrange: 3981 /// ::= !DISubrange(count: 30, lowerBound: 2) 3982 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) { 3983 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3984 REQUIRED(count, MDSignedField, (-1, -1, INT64_MAX)); \ 3985 OPTIONAL(lowerBound, MDSignedField, ); 3986 PARSE_MD_FIELDS(); 3987 #undef VISIT_MD_FIELDS 3988 3989 Result = GET_OR_DISTINCT(DISubrange, (Context, count.Val, lowerBound.Val)); 3990 return false; 3991 } 3992 3993 /// ParseDIEnumerator: 3994 /// ::= !DIEnumerator(value: 30, name: "SomeKind") 3995 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) { 3996 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3997 REQUIRED(name, MDStringField, ); \ 3998 REQUIRED(value, MDSignedField, ); 3999 PARSE_MD_FIELDS(); 4000 #undef VISIT_MD_FIELDS 4001 4002 Result = GET_OR_DISTINCT(DIEnumerator, (Context, value.Val, name.Val)); 4003 return false; 4004 } 4005 4006 /// ParseDIBasicType: 4007 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32) 4008 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) { 4009 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4010 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 4011 OPTIONAL(name, MDStringField, ); \ 4012 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4013 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4014 OPTIONAL(encoding, DwarfAttEncodingField, ); 4015 PARSE_MD_FIELDS(); 4016 #undef VISIT_MD_FIELDS 4017 4018 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 4019 align.Val, encoding.Val)); 4020 return false; 4021 } 4022 4023 /// ParseDIDerivedType: 4024 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 4025 /// line: 7, scope: !1, baseType: !2, size: 32, 4026 /// align: 32, offset: 0, flags: 0, extraData: !3, 4027 /// dwarfAddressSpace: 3) 4028 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) { 4029 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4030 REQUIRED(tag, DwarfTagField, ); \ 4031 OPTIONAL(name, MDStringField, ); \ 4032 OPTIONAL(file, MDField, ); \ 4033 OPTIONAL(line, LineField, ); \ 4034 OPTIONAL(scope, MDField, ); \ 4035 REQUIRED(baseType, MDField, ); \ 4036 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4037 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4038 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4039 OPTIONAL(flags, DIFlagField, ); \ 4040 OPTIONAL(extraData, MDField, ); \ 4041 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); 4042 PARSE_MD_FIELDS(); 4043 #undef VISIT_MD_FIELDS 4044 4045 Optional<unsigned> DWARFAddressSpace; 4046 if (dwarfAddressSpace.Val != UINT32_MAX) 4047 DWARFAddressSpace = dwarfAddressSpace.Val; 4048 4049 Result = GET_OR_DISTINCT(DIDerivedType, 4050 (Context, tag.Val, name.Val, file.Val, line.Val, 4051 scope.Val, baseType.Val, size.Val, align.Val, 4052 offset.Val, DWARFAddressSpace, flags.Val, 4053 extraData.Val)); 4054 return false; 4055 } 4056 4057 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) { 4058 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4059 REQUIRED(tag, DwarfTagField, ); \ 4060 OPTIONAL(name, MDStringField, ); \ 4061 OPTIONAL(file, MDField, ); \ 4062 OPTIONAL(line, LineField, ); \ 4063 OPTIONAL(scope, MDField, ); \ 4064 OPTIONAL(baseType, MDField, ); \ 4065 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4066 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4067 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4068 OPTIONAL(flags, DIFlagField, ); \ 4069 OPTIONAL(elements, MDField, ); \ 4070 OPTIONAL(runtimeLang, DwarfLangField, ); \ 4071 OPTIONAL(vtableHolder, MDField, ); \ 4072 OPTIONAL(templateParams, MDField, ); \ 4073 OPTIONAL(identifier, MDStringField, ); 4074 PARSE_MD_FIELDS(); 4075 #undef VISIT_MD_FIELDS 4076 4077 // If this has an identifier try to build an ODR type. 4078 if (identifier.Val) 4079 if (auto *CT = DICompositeType::buildODRType( 4080 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 4081 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 4082 elements.Val, runtimeLang.Val, vtableHolder.Val, 4083 templateParams.Val)) { 4084 Result = CT; 4085 return false; 4086 } 4087 4088 // Create a new node, and save it in the context if it belongs in the type 4089 // map. 4090 Result = GET_OR_DISTINCT( 4091 DICompositeType, 4092 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 4093 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 4094 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val)); 4095 return false; 4096 } 4097 4098 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) { 4099 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4100 OPTIONAL(flags, DIFlagField, ); \ 4101 OPTIONAL(cc, DwarfCCField, ); \ 4102 REQUIRED(types, MDField, ); 4103 PARSE_MD_FIELDS(); 4104 #undef VISIT_MD_FIELDS 4105 4106 Result = GET_OR_DISTINCT(DISubroutineType, 4107 (Context, flags.Val, cc.Val, types.Val)); 4108 return false; 4109 } 4110 4111 /// ParseDIFileType: 4112 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir" 4113 /// checksumkind: CSK_MD5, 4114 /// checksum: "000102030405060708090a0b0c0d0e0f") 4115 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) { 4116 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4117 REQUIRED(filename, MDStringField, ); \ 4118 REQUIRED(directory, MDStringField, ); \ 4119 OPTIONAL(checksumkind, ChecksumKindField, ); \ 4120 OPTIONAL(checksum, MDStringField, ); 4121 PARSE_MD_FIELDS(); 4122 #undef VISIT_MD_FIELDS 4123 4124 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val, 4125 checksumkind.Val, checksum.Val)); 4126 return false; 4127 } 4128 4129 /// ParseDICompileUnit: 4130 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 4131 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 4132 /// splitDebugFilename: "abc.debug", 4133 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 4134 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd) 4135 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) { 4136 if (!IsDistinct) 4137 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 4138 4139 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4140 REQUIRED(language, DwarfLangField, ); \ 4141 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 4142 OPTIONAL(producer, MDStringField, ); \ 4143 OPTIONAL(isOptimized, MDBoolField, ); \ 4144 OPTIONAL(flags, MDStringField, ); \ 4145 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 4146 OPTIONAL(splitDebugFilename, MDStringField, ); \ 4147 OPTIONAL(emissionKind, EmissionKindField, ); \ 4148 OPTIONAL(enums, MDField, ); \ 4149 OPTIONAL(retainedTypes, MDField, ); \ 4150 OPTIONAL(globals, MDField, ); \ 4151 OPTIONAL(imports, MDField, ); \ 4152 OPTIONAL(macros, MDField, ); \ 4153 OPTIONAL(dwoId, MDUnsignedField, ); \ 4154 OPTIONAL(splitDebugInlining, MDBoolField, = true); \ 4155 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \ 4156 OPTIONAL(gnuPubnames, MDBoolField, = false); 4157 PARSE_MD_FIELDS(); 4158 #undef VISIT_MD_FIELDS 4159 4160 Result = DICompileUnit::getDistinct( 4161 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 4162 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 4163 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 4164 splitDebugInlining.Val, debugInfoForProfiling.Val, gnuPubnames.Val); 4165 return false; 4166 } 4167 4168 /// ParseDISubprogram: 4169 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 4170 /// file: !1, line: 7, type: !2, isLocal: false, 4171 /// isDefinition: true, scopeLine: 8, containingType: !3, 4172 /// virtuality: DW_VIRTUALTIY_pure_virtual, 4173 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 4174 /// isOptimized: false, templateParams: !4, declaration: !5, 4175 /// variables: !6, thrownTypes: !7) 4176 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) { 4177 auto Loc = Lex.getLoc(); 4178 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4179 OPTIONAL(scope, MDField, ); \ 4180 OPTIONAL(name, MDStringField, ); \ 4181 OPTIONAL(linkageName, MDStringField, ); \ 4182 OPTIONAL(file, MDField, ); \ 4183 OPTIONAL(line, LineField, ); \ 4184 OPTIONAL(type, MDField, ); \ 4185 OPTIONAL(isLocal, MDBoolField, ); \ 4186 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4187 OPTIONAL(scopeLine, LineField, ); \ 4188 OPTIONAL(containingType, MDField, ); \ 4189 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 4190 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 4191 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 4192 OPTIONAL(flags, DIFlagField, ); \ 4193 OPTIONAL(isOptimized, MDBoolField, ); \ 4194 OPTIONAL(unit, MDField, ); \ 4195 OPTIONAL(templateParams, MDField, ); \ 4196 OPTIONAL(declaration, MDField, ); \ 4197 OPTIONAL(variables, MDField, ); \ 4198 OPTIONAL(thrownTypes, MDField, ); 4199 PARSE_MD_FIELDS(); 4200 #undef VISIT_MD_FIELDS 4201 4202 if (isDefinition.Val && !IsDistinct) 4203 return Lex.Error( 4204 Loc, 4205 "missing 'distinct', required for !DISubprogram when 'isDefinition'"); 4206 4207 Result = GET_OR_DISTINCT( 4208 DISubprogram, 4209 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 4210 type.Val, isLocal.Val, isDefinition.Val, scopeLine.Val, 4211 containingType.Val, virtuality.Val, virtualIndex.Val, thisAdjustment.Val, 4212 flags.Val, isOptimized.Val, unit.Val, templateParams.Val, 4213 declaration.Val, variables.Val, thrownTypes.Val)); 4214 return false; 4215 } 4216 4217 /// ParseDILexicalBlock: 4218 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 4219 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 4220 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4221 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4222 OPTIONAL(file, MDField, ); \ 4223 OPTIONAL(line, LineField, ); \ 4224 OPTIONAL(column, ColumnField, ); 4225 PARSE_MD_FIELDS(); 4226 #undef VISIT_MD_FIELDS 4227 4228 Result = GET_OR_DISTINCT( 4229 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 4230 return false; 4231 } 4232 4233 /// ParseDILexicalBlockFile: 4234 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 4235 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 4236 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4237 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4238 OPTIONAL(file, MDField, ); \ 4239 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 4240 PARSE_MD_FIELDS(); 4241 #undef VISIT_MD_FIELDS 4242 4243 Result = GET_OR_DISTINCT(DILexicalBlockFile, 4244 (Context, scope.Val, file.Val, discriminator.Val)); 4245 return false; 4246 } 4247 4248 /// ParseDINamespace: 4249 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 4250 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) { 4251 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4252 REQUIRED(scope, MDField, ); \ 4253 OPTIONAL(name, MDStringField, ); \ 4254 OPTIONAL(exportSymbols, MDBoolField, ); 4255 PARSE_MD_FIELDS(); 4256 #undef VISIT_MD_FIELDS 4257 4258 Result = GET_OR_DISTINCT(DINamespace, 4259 (Context, scope.Val, name.Val, exportSymbols.Val)); 4260 return false; 4261 } 4262 4263 /// ParseDIMacro: 4264 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue") 4265 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) { 4266 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4267 REQUIRED(type, DwarfMacinfoTypeField, ); \ 4268 OPTIONAL(line, LineField, ); \ 4269 REQUIRED(name, MDStringField, ); \ 4270 OPTIONAL(value, MDStringField, ); 4271 PARSE_MD_FIELDS(); 4272 #undef VISIT_MD_FIELDS 4273 4274 Result = GET_OR_DISTINCT(DIMacro, 4275 (Context, type.Val, line.Val, name.Val, value.Val)); 4276 return false; 4277 } 4278 4279 /// ParseDIMacroFile: 4280 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 4281 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) { 4282 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4283 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 4284 OPTIONAL(line, LineField, ); \ 4285 REQUIRED(file, MDField, ); \ 4286 OPTIONAL(nodes, MDField, ); 4287 PARSE_MD_FIELDS(); 4288 #undef VISIT_MD_FIELDS 4289 4290 Result = GET_OR_DISTINCT(DIMacroFile, 4291 (Context, type.Val, line.Val, file.Val, nodes.Val)); 4292 return false; 4293 } 4294 4295 /// ParseDIModule: 4296 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG", 4297 /// includePath: "/usr/include", isysroot: "/") 4298 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) { 4299 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4300 REQUIRED(scope, MDField, ); \ 4301 REQUIRED(name, MDStringField, ); \ 4302 OPTIONAL(configMacros, MDStringField, ); \ 4303 OPTIONAL(includePath, MDStringField, ); \ 4304 OPTIONAL(isysroot, MDStringField, ); 4305 PARSE_MD_FIELDS(); 4306 #undef VISIT_MD_FIELDS 4307 4308 Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val, 4309 configMacros.Val, includePath.Val, isysroot.Val)); 4310 return false; 4311 } 4312 4313 /// ParseDITemplateTypeParameter: 4314 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1) 4315 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 4316 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4317 OPTIONAL(name, MDStringField, ); \ 4318 REQUIRED(type, MDField, ); 4319 PARSE_MD_FIELDS(); 4320 #undef VISIT_MD_FIELDS 4321 4322 Result = 4323 GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val)); 4324 return false; 4325 } 4326 4327 /// ParseDITemplateValueParameter: 4328 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 4329 /// name: "V", type: !1, value: i32 7) 4330 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 4331 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4332 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 4333 OPTIONAL(name, MDStringField, ); \ 4334 OPTIONAL(type, MDField, ); \ 4335 REQUIRED(value, MDField, ); 4336 PARSE_MD_FIELDS(); 4337 #undef VISIT_MD_FIELDS 4338 4339 Result = GET_OR_DISTINCT(DITemplateValueParameter, 4340 (Context, tag.Val, name.Val, type.Val, value.Val)); 4341 return false; 4342 } 4343 4344 /// ParseDIGlobalVariable: 4345 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 4346 /// file: !1, line: 7, type: !2, isLocal: false, 4347 /// isDefinition: true, declaration: !3, align: 8) 4348 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 4349 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4350 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 4351 OPTIONAL(scope, MDField, ); \ 4352 OPTIONAL(linkageName, MDStringField, ); \ 4353 OPTIONAL(file, MDField, ); \ 4354 OPTIONAL(line, LineField, ); \ 4355 OPTIONAL(type, MDField, ); \ 4356 OPTIONAL(isLocal, MDBoolField, ); \ 4357 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4358 OPTIONAL(declaration, MDField, ); \ 4359 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4360 PARSE_MD_FIELDS(); 4361 #undef VISIT_MD_FIELDS 4362 4363 Result = GET_OR_DISTINCT(DIGlobalVariable, 4364 (Context, scope.Val, name.Val, linkageName.Val, 4365 file.Val, line.Val, type.Val, isLocal.Val, 4366 isDefinition.Val, declaration.Val, align.Val)); 4367 return false; 4368 } 4369 4370 /// ParseDILocalVariable: 4371 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 4372 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4373 /// align: 8) 4374 /// ::= !DILocalVariable(scope: !0, name: "foo", 4375 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4376 /// align: 8) 4377 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) { 4378 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4379 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4380 OPTIONAL(name, MDStringField, ); \ 4381 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 4382 OPTIONAL(file, MDField, ); \ 4383 OPTIONAL(line, LineField, ); \ 4384 OPTIONAL(type, MDField, ); \ 4385 OPTIONAL(flags, DIFlagField, ); \ 4386 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4387 PARSE_MD_FIELDS(); 4388 #undef VISIT_MD_FIELDS 4389 4390 Result = GET_OR_DISTINCT(DILocalVariable, 4391 (Context, scope.Val, name.Val, file.Val, line.Val, 4392 type.Val, arg.Val, flags.Val, align.Val)); 4393 return false; 4394 } 4395 4396 /// ParseDIExpression: 4397 /// ::= !DIExpression(0, 7, -1) 4398 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) { 4399 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4400 Lex.Lex(); 4401 4402 if (ParseToken(lltok::lparen, "expected '(' here")) 4403 return true; 4404 4405 SmallVector<uint64_t, 8> Elements; 4406 if (Lex.getKind() != lltok::rparen) 4407 do { 4408 if (Lex.getKind() == lltok::DwarfOp) { 4409 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 4410 Lex.Lex(); 4411 Elements.push_back(Op); 4412 continue; 4413 } 4414 return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 4415 } 4416 4417 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4418 return TokError("expected unsigned integer"); 4419 4420 auto &U = Lex.getAPSIntVal(); 4421 if (U.ugt(UINT64_MAX)) 4422 return TokError("element too large, limit is " + Twine(UINT64_MAX)); 4423 Elements.push_back(U.getZExtValue()); 4424 Lex.Lex(); 4425 } while (EatIfPresent(lltok::comma)); 4426 4427 if (ParseToken(lltok::rparen, "expected ')' here")) 4428 return true; 4429 4430 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 4431 return false; 4432 } 4433 4434 /// ParseDIGlobalVariableExpression: 4435 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1) 4436 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result, 4437 bool IsDistinct) { 4438 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4439 REQUIRED(var, MDField, ); \ 4440 REQUIRED(expr, MDField, ); 4441 PARSE_MD_FIELDS(); 4442 #undef VISIT_MD_FIELDS 4443 4444 Result = 4445 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val)); 4446 return false; 4447 } 4448 4449 /// ParseDIObjCProperty: 4450 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 4451 /// getter: "getFoo", attributes: 7, type: !2) 4452 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 4453 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4454 OPTIONAL(name, MDStringField, ); \ 4455 OPTIONAL(file, MDField, ); \ 4456 OPTIONAL(line, LineField, ); \ 4457 OPTIONAL(setter, MDStringField, ); \ 4458 OPTIONAL(getter, MDStringField, ); \ 4459 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 4460 OPTIONAL(type, MDField, ); 4461 PARSE_MD_FIELDS(); 4462 #undef VISIT_MD_FIELDS 4463 4464 Result = GET_OR_DISTINCT(DIObjCProperty, 4465 (Context, name.Val, file.Val, line.Val, setter.Val, 4466 getter.Val, attributes.Val, type.Val)); 4467 return false; 4468 } 4469 4470 /// ParseDIImportedEntity: 4471 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 4472 /// line: 7, name: "foo") 4473 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 4474 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4475 REQUIRED(tag, DwarfTagField, ); \ 4476 REQUIRED(scope, MDField, ); \ 4477 OPTIONAL(entity, MDField, ); \ 4478 OPTIONAL(file, MDField, ); \ 4479 OPTIONAL(line, LineField, ); \ 4480 OPTIONAL(name, MDStringField, ); 4481 PARSE_MD_FIELDS(); 4482 #undef VISIT_MD_FIELDS 4483 4484 Result = GET_OR_DISTINCT( 4485 DIImportedEntity, 4486 (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val)); 4487 return false; 4488 } 4489 4490 #undef PARSE_MD_FIELD 4491 #undef NOP_FIELD 4492 #undef REQUIRE_FIELD 4493 #undef DECLARE_FIELD 4494 4495 /// ParseMetadataAsValue 4496 /// ::= metadata i32 %local 4497 /// ::= metadata i32 @global 4498 /// ::= metadata i32 7 4499 /// ::= metadata !0 4500 /// ::= metadata !{...} 4501 /// ::= metadata !"string" 4502 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 4503 // Note: the type 'metadata' has already been parsed. 4504 Metadata *MD; 4505 if (ParseMetadata(MD, &PFS)) 4506 return true; 4507 4508 V = MetadataAsValue::get(Context, MD); 4509 return false; 4510 } 4511 4512 /// ParseValueAsMetadata 4513 /// ::= i32 %local 4514 /// ::= i32 @global 4515 /// ::= i32 7 4516 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 4517 PerFunctionState *PFS) { 4518 Type *Ty; 4519 LocTy Loc; 4520 if (ParseType(Ty, TypeMsg, Loc)) 4521 return true; 4522 if (Ty->isMetadataTy()) 4523 return Error(Loc, "invalid metadata-value-metadata roundtrip"); 4524 4525 Value *V; 4526 if (ParseValue(Ty, V, PFS)) 4527 return true; 4528 4529 MD = ValueAsMetadata::get(V); 4530 return false; 4531 } 4532 4533 /// ParseMetadata 4534 /// ::= i32 %local 4535 /// ::= i32 @global 4536 /// ::= i32 7 4537 /// ::= !42 4538 /// ::= !{...} 4539 /// ::= !"string" 4540 /// ::= !DILocation(...) 4541 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) { 4542 if (Lex.getKind() == lltok::MetadataVar) { 4543 MDNode *N; 4544 if (ParseSpecializedMDNode(N)) 4545 return true; 4546 MD = N; 4547 return false; 4548 } 4549 4550 // ValueAsMetadata: 4551 // <type> <value> 4552 if (Lex.getKind() != lltok::exclaim) 4553 return ParseValueAsMetadata(MD, "expected metadata operand", PFS); 4554 4555 // '!'. 4556 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 4557 Lex.Lex(); 4558 4559 // MDString: 4560 // ::= '!' STRINGCONSTANT 4561 if (Lex.getKind() == lltok::StringConstant) { 4562 MDString *S; 4563 if (ParseMDString(S)) 4564 return true; 4565 MD = S; 4566 return false; 4567 } 4568 4569 // MDNode: 4570 // !{ ... } 4571 // !7 4572 MDNode *N; 4573 if (ParseMDNodeTail(N)) 4574 return true; 4575 MD = N; 4576 return false; 4577 } 4578 4579 //===----------------------------------------------------------------------===// 4580 // Function Parsing. 4581 //===----------------------------------------------------------------------===// 4582 4583 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, 4584 PerFunctionState *PFS) { 4585 if (Ty->isFunctionTy()) 4586 return Error(ID.Loc, "functions are not values, refer to them as pointers"); 4587 4588 switch (ID.Kind) { 4589 case ValID::t_LocalID: 4590 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 4591 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc); 4592 return V == nullptr; 4593 case ValID::t_LocalName: 4594 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 4595 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc); 4596 return V == nullptr; 4597 case ValID::t_InlineAsm: { 4598 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 4599 return Error(ID.Loc, "invalid type for inline asm constraint string"); 4600 V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, 4601 (ID.UIntVal >> 1) & 1, 4602 (InlineAsm::AsmDialect(ID.UIntVal >> 2))); 4603 return false; 4604 } 4605 case ValID::t_GlobalName: 4606 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc); 4607 return V == nullptr; 4608 case ValID::t_GlobalID: 4609 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc); 4610 return V == nullptr; 4611 case ValID::t_APSInt: 4612 if (!Ty->isIntegerTy()) 4613 return Error(ID.Loc, "integer constant must have integer type"); 4614 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 4615 V = ConstantInt::get(Context, ID.APSIntVal); 4616 return false; 4617 case ValID::t_APFloat: 4618 if (!Ty->isFloatingPointTy() || 4619 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 4620 return Error(ID.Loc, "floating point constant invalid for type"); 4621 4622 // The lexer has no type info, so builds all half, float, and double FP 4623 // constants as double. Fix this here. Long double does not need this. 4624 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) { 4625 bool Ignored; 4626 if (Ty->isHalfTy()) 4627 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, 4628 &Ignored); 4629 else if (Ty->isFloatTy()) 4630 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 4631 &Ignored); 4632 } 4633 V = ConstantFP::get(Context, ID.APFloatVal); 4634 4635 if (V->getType() != Ty) 4636 return Error(ID.Loc, "floating point constant does not have type '" + 4637 getTypeString(Ty) + "'"); 4638 4639 return false; 4640 case ValID::t_Null: 4641 if (!Ty->isPointerTy()) 4642 return Error(ID.Loc, "null must be a pointer type"); 4643 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 4644 return false; 4645 case ValID::t_Undef: 4646 // FIXME: LabelTy should not be a first-class type. 4647 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 4648 return Error(ID.Loc, "invalid type for undef constant"); 4649 V = UndefValue::get(Ty); 4650 return false; 4651 case ValID::t_EmptyArray: 4652 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 4653 return Error(ID.Loc, "invalid empty array initializer"); 4654 V = UndefValue::get(Ty); 4655 return false; 4656 case ValID::t_Zero: 4657 // FIXME: LabelTy should not be a first-class type. 4658 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 4659 return Error(ID.Loc, "invalid type for null constant"); 4660 V = Constant::getNullValue(Ty); 4661 return false; 4662 case ValID::t_None: 4663 if (!Ty->isTokenTy()) 4664 return Error(ID.Loc, "invalid type for none constant"); 4665 V = Constant::getNullValue(Ty); 4666 return false; 4667 case ValID::t_Constant: 4668 if (ID.ConstantVal->getType() != Ty) 4669 return Error(ID.Loc, "constant expression type mismatch"); 4670 4671 V = ID.ConstantVal; 4672 return false; 4673 case ValID::t_ConstantStruct: 4674 case ValID::t_PackedConstantStruct: 4675 if (StructType *ST = dyn_cast<StructType>(Ty)) { 4676 if (ST->getNumElements() != ID.UIntVal) 4677 return Error(ID.Loc, 4678 "initializer with struct type has wrong # elements"); 4679 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 4680 return Error(ID.Loc, "packed'ness of initializer and type don't match"); 4681 4682 // Verify that the elements are compatible with the structtype. 4683 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 4684 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 4685 return Error(ID.Loc, "element " + Twine(i) + 4686 " of struct initializer doesn't match struct element type"); 4687 4688 V = ConstantStruct::get( 4689 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 4690 } else 4691 return Error(ID.Loc, "constant expression type mismatch"); 4692 return false; 4693 } 4694 llvm_unreachable("Invalid ValID"); 4695 } 4696 4697 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 4698 C = nullptr; 4699 ValID ID; 4700 auto Loc = Lex.getLoc(); 4701 if (ParseValID(ID, /*PFS=*/nullptr)) 4702 return true; 4703 switch (ID.Kind) { 4704 case ValID::t_APSInt: 4705 case ValID::t_APFloat: 4706 case ValID::t_Undef: 4707 case ValID::t_Constant: 4708 case ValID::t_ConstantStruct: 4709 case ValID::t_PackedConstantStruct: { 4710 Value *V; 4711 if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr)) 4712 return true; 4713 assert(isa<Constant>(V) && "Expected a constant value"); 4714 C = cast<Constant>(V); 4715 return false; 4716 } 4717 case ValID::t_Null: 4718 C = Constant::getNullValue(Ty); 4719 return false; 4720 default: 4721 return Error(Loc, "expected a constant value"); 4722 } 4723 } 4724 4725 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 4726 V = nullptr; 4727 ValID ID; 4728 return ParseValID(ID, PFS) || ConvertValIDToValue(Ty, ID, V, PFS); 4729 } 4730 4731 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) { 4732 Type *Ty = nullptr; 4733 return ParseType(Ty) || 4734 ParseValue(Ty, V, PFS); 4735 } 4736 4737 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 4738 PerFunctionState &PFS) { 4739 Value *V; 4740 Loc = Lex.getLoc(); 4741 if (ParseTypeAndValue(V, PFS)) return true; 4742 if (!isa<BasicBlock>(V)) 4743 return Error(Loc, "expected a basic block"); 4744 BB = cast<BasicBlock>(V); 4745 return false; 4746 } 4747 4748 /// FunctionHeader 4749 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 4750 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName 4751 /// '(' ArgList ')' OptFuncAttrs OptSection OptionalAlign OptGC 4752 /// OptionalPrefix OptionalPrologue OptPersonalityFn 4753 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { 4754 // Parse the linkage. 4755 LocTy LinkageLoc = Lex.getLoc(); 4756 unsigned Linkage; 4757 unsigned Visibility; 4758 unsigned DLLStorageClass; 4759 bool DSOLocal; 4760 AttrBuilder RetAttrs; 4761 unsigned CC; 4762 bool HasLinkage; 4763 Type *RetType = nullptr; 4764 LocTy RetTypeLoc = Lex.getLoc(); 4765 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 4766 DSOLocal) || 4767 ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 4768 ParseType(RetType, RetTypeLoc, true /*void allowed*/)) 4769 return true; 4770 4771 // Verify that the linkage is ok. 4772 switch ((GlobalValue::LinkageTypes)Linkage) { 4773 case GlobalValue::ExternalLinkage: 4774 break; // always ok. 4775 case GlobalValue::ExternalWeakLinkage: 4776 if (isDefine) 4777 return Error(LinkageLoc, "invalid linkage for function definition"); 4778 break; 4779 case GlobalValue::PrivateLinkage: 4780 case GlobalValue::InternalLinkage: 4781 case GlobalValue::AvailableExternallyLinkage: 4782 case GlobalValue::LinkOnceAnyLinkage: 4783 case GlobalValue::LinkOnceODRLinkage: 4784 case GlobalValue::WeakAnyLinkage: 4785 case GlobalValue::WeakODRLinkage: 4786 if (!isDefine) 4787 return Error(LinkageLoc, "invalid linkage for function declaration"); 4788 break; 4789 case GlobalValue::AppendingLinkage: 4790 case GlobalValue::CommonLinkage: 4791 return Error(LinkageLoc, "invalid function linkage type"); 4792 } 4793 4794 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 4795 return Error(LinkageLoc, 4796 "symbol with local linkage must have default visibility"); 4797 4798 if (!FunctionType::isValidReturnType(RetType)) 4799 return Error(RetTypeLoc, "invalid function return type"); 4800 4801 LocTy NameLoc = Lex.getLoc(); 4802 4803 std::string FunctionName; 4804 if (Lex.getKind() == lltok::GlobalVar) { 4805 FunctionName = Lex.getStrVal(); 4806 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 4807 unsigned NameID = Lex.getUIntVal(); 4808 4809 if (NameID != NumberedVals.size()) 4810 return TokError("function expected to be numbered '%" + 4811 Twine(NumberedVals.size()) + "'"); 4812 } else { 4813 return TokError("expected function name"); 4814 } 4815 4816 Lex.Lex(); 4817 4818 if (Lex.getKind() != lltok::lparen) 4819 return TokError("expected '(' in function argument list"); 4820 4821 SmallVector<ArgInfo, 8> ArgList; 4822 bool isVarArg; 4823 AttrBuilder FuncAttrs; 4824 std::vector<unsigned> FwdRefAttrGrps; 4825 LocTy BuiltinLoc; 4826 std::string Section; 4827 unsigned Alignment; 4828 std::string GC; 4829 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4830 Constant *Prefix = nullptr; 4831 Constant *Prologue = nullptr; 4832 Constant *PersonalityFn = nullptr; 4833 Comdat *C; 4834 4835 if (ParseArgumentList(ArgList, isVarArg) || 4836 ParseOptionalUnnamedAddr(UnnamedAddr) || 4837 ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 4838 BuiltinLoc) || 4839 (EatIfPresent(lltok::kw_section) && 4840 ParseStringConstant(Section)) || 4841 parseOptionalComdat(FunctionName, C) || 4842 ParseOptionalAlignment(Alignment) || 4843 (EatIfPresent(lltok::kw_gc) && 4844 ParseStringConstant(GC)) || 4845 (EatIfPresent(lltok::kw_prefix) && 4846 ParseGlobalTypeAndValue(Prefix)) || 4847 (EatIfPresent(lltok::kw_prologue) && 4848 ParseGlobalTypeAndValue(Prologue)) || 4849 (EatIfPresent(lltok::kw_personality) && 4850 ParseGlobalTypeAndValue(PersonalityFn))) 4851 return true; 4852 4853 if (FuncAttrs.contains(Attribute::Builtin)) 4854 return Error(BuiltinLoc, "'builtin' attribute not valid on function"); 4855 4856 // If the alignment was parsed as an attribute, move to the alignment field. 4857 if (FuncAttrs.hasAlignmentAttr()) { 4858 Alignment = FuncAttrs.getAlignment(); 4859 FuncAttrs.removeAttribute(Attribute::Alignment); 4860 } 4861 4862 // Okay, if we got here, the function is syntactically valid. Convert types 4863 // and do semantic checks. 4864 std::vector<Type*> ParamTypeList; 4865 SmallVector<AttributeSet, 8> Attrs; 4866 4867 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 4868 ParamTypeList.push_back(ArgList[i].Ty); 4869 Attrs.push_back(ArgList[i].Attrs); 4870 } 4871 4872 AttributeList PAL = 4873 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs), 4874 AttributeSet::get(Context, RetAttrs), Attrs); 4875 4876 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy()) 4877 return Error(RetTypeLoc, "functions with 'sret' argument must return void"); 4878 4879 FunctionType *FT = 4880 FunctionType::get(RetType, ParamTypeList, isVarArg); 4881 PointerType *PFT = PointerType::getUnqual(FT); 4882 4883 Fn = nullptr; 4884 if (!FunctionName.empty()) { 4885 // If this was a definition of a forward reference, remove the definition 4886 // from the forward reference table and fill in the forward ref. 4887 auto FRVI = ForwardRefVals.find(FunctionName); 4888 if (FRVI != ForwardRefVals.end()) { 4889 Fn = M->getFunction(FunctionName); 4890 if (!Fn) 4891 return Error(FRVI->second.second, "invalid forward reference to " 4892 "function as global value!"); 4893 if (Fn->getType() != PFT) 4894 return Error(FRVI->second.second, "invalid forward reference to " 4895 "function '" + FunctionName + "' with wrong type!"); 4896 4897 ForwardRefVals.erase(FRVI); 4898 } else if ((Fn = M->getFunction(FunctionName))) { 4899 // Reject redefinitions. 4900 return Error(NameLoc, "invalid redefinition of function '" + 4901 FunctionName + "'"); 4902 } else if (M->getNamedValue(FunctionName)) { 4903 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 4904 } 4905 4906 } else { 4907 // If this is a definition of a forward referenced function, make sure the 4908 // types agree. 4909 auto I = ForwardRefValIDs.find(NumberedVals.size()); 4910 if (I != ForwardRefValIDs.end()) { 4911 Fn = cast<Function>(I->second.first); 4912 if (Fn->getType() != PFT) 4913 return Error(NameLoc, "type of definition and forward reference of '@" + 4914 Twine(NumberedVals.size()) + "' disagree"); 4915 ForwardRefValIDs.erase(I); 4916 } 4917 } 4918 4919 if (!Fn) 4920 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M); 4921 else // Move the forward-reference to the correct spot in the module. 4922 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 4923 4924 if (FunctionName.empty()) 4925 NumberedVals.push_back(Fn); 4926 4927 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 4928 maybeSetDSOLocal(DSOLocal, *Fn); 4929 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 4930 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 4931 Fn->setCallingConv(CC); 4932 Fn->setAttributes(PAL); 4933 Fn->setUnnamedAddr(UnnamedAddr); 4934 Fn->setAlignment(Alignment); 4935 Fn->setSection(Section); 4936 Fn->setComdat(C); 4937 Fn->setPersonalityFn(PersonalityFn); 4938 if (!GC.empty()) Fn->setGC(GC); 4939 Fn->setPrefixData(Prefix); 4940 Fn->setPrologueData(Prologue); 4941 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 4942 4943 // Add all of the arguments we parsed to the function. 4944 Function::arg_iterator ArgIt = Fn->arg_begin(); 4945 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 4946 // If the argument has a name, insert it into the argument symbol table. 4947 if (ArgList[i].Name.empty()) continue; 4948 4949 // Set the name, if it conflicted, it will be auto-renamed. 4950 ArgIt->setName(ArgList[i].Name); 4951 4952 if (ArgIt->getName() != ArgList[i].Name) 4953 return Error(ArgList[i].Loc, "redefinition of argument '%" + 4954 ArgList[i].Name + "'"); 4955 } 4956 4957 if (isDefine) 4958 return false; 4959 4960 // Check the declaration has no block address forward references. 4961 ValID ID; 4962 if (FunctionName.empty()) { 4963 ID.Kind = ValID::t_GlobalID; 4964 ID.UIntVal = NumberedVals.size() - 1; 4965 } else { 4966 ID.Kind = ValID::t_GlobalName; 4967 ID.StrVal = FunctionName; 4968 } 4969 auto Blocks = ForwardRefBlockAddresses.find(ID); 4970 if (Blocks != ForwardRefBlockAddresses.end()) 4971 return Error(Blocks->first.Loc, 4972 "cannot take blockaddress inside a declaration"); 4973 return false; 4974 } 4975 4976 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 4977 ValID ID; 4978 if (FunctionNumber == -1) { 4979 ID.Kind = ValID::t_GlobalName; 4980 ID.StrVal = F.getName(); 4981 } else { 4982 ID.Kind = ValID::t_GlobalID; 4983 ID.UIntVal = FunctionNumber; 4984 } 4985 4986 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 4987 if (Blocks == P.ForwardRefBlockAddresses.end()) 4988 return false; 4989 4990 for (const auto &I : Blocks->second) { 4991 const ValID &BBID = I.first; 4992 GlobalValue *GV = I.second; 4993 4994 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 4995 "Expected local id or name"); 4996 BasicBlock *BB; 4997 if (BBID.Kind == ValID::t_LocalName) 4998 BB = GetBB(BBID.StrVal, BBID.Loc); 4999 else 5000 BB = GetBB(BBID.UIntVal, BBID.Loc); 5001 if (!BB) 5002 return P.Error(BBID.Loc, "referenced value is not a basic block"); 5003 5004 GV->replaceAllUsesWith(BlockAddress::get(&F, BB)); 5005 GV->eraseFromParent(); 5006 } 5007 5008 P.ForwardRefBlockAddresses.erase(Blocks); 5009 return false; 5010 } 5011 5012 /// ParseFunctionBody 5013 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 5014 bool LLParser::ParseFunctionBody(Function &Fn) { 5015 if (Lex.getKind() != lltok::lbrace) 5016 return TokError("expected '{' in function body"); 5017 Lex.Lex(); // eat the {. 5018 5019 int FunctionNumber = -1; 5020 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 5021 5022 PerFunctionState PFS(*this, Fn, FunctionNumber); 5023 5024 // Resolve block addresses and allow basic blocks to be forward-declared 5025 // within this function. 5026 if (PFS.resolveForwardRefBlockAddresses()) 5027 return true; 5028 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 5029 5030 // We need at least one basic block. 5031 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 5032 return TokError("function body requires at least one basic block"); 5033 5034 while (Lex.getKind() != lltok::rbrace && 5035 Lex.getKind() != lltok::kw_uselistorder) 5036 if (ParseBasicBlock(PFS)) return true; 5037 5038 while (Lex.getKind() != lltok::rbrace) 5039 if (ParseUseListOrder(&PFS)) 5040 return true; 5041 5042 // Eat the }. 5043 Lex.Lex(); 5044 5045 // Verify function is ok. 5046 return PFS.FinishFunction(); 5047 } 5048 5049 /// ParseBasicBlock 5050 /// ::= LabelStr? Instruction* 5051 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { 5052 // If this basic block starts out with a name, remember it. 5053 std::string Name; 5054 LocTy NameLoc = Lex.getLoc(); 5055 if (Lex.getKind() == lltok::LabelStr) { 5056 Name = Lex.getStrVal(); 5057 Lex.Lex(); 5058 } 5059 5060 BasicBlock *BB = PFS.DefineBB(Name, NameLoc); 5061 if (!BB) 5062 return Error(NameLoc, 5063 "unable to create block named '" + Name + "'"); 5064 5065 std::string NameStr; 5066 5067 // Parse the instructions in this block until we get a terminator. 5068 Instruction *Inst; 5069 do { 5070 // This instruction may have three possibilities for a name: a) none 5071 // specified, b) name specified "%foo =", c) number specified: "%4 =". 5072 LocTy NameLoc = Lex.getLoc(); 5073 int NameID = -1; 5074 NameStr = ""; 5075 5076 if (Lex.getKind() == lltok::LocalVarID) { 5077 NameID = Lex.getUIntVal(); 5078 Lex.Lex(); 5079 if (ParseToken(lltok::equal, "expected '=' after instruction id")) 5080 return true; 5081 } else if (Lex.getKind() == lltok::LocalVar) { 5082 NameStr = Lex.getStrVal(); 5083 Lex.Lex(); 5084 if (ParseToken(lltok::equal, "expected '=' after instruction name")) 5085 return true; 5086 } 5087 5088 switch (ParseInstruction(Inst, BB, PFS)) { 5089 default: llvm_unreachable("Unknown ParseInstruction result!"); 5090 case InstError: return true; 5091 case InstNormal: 5092 BB->getInstList().push_back(Inst); 5093 5094 // With a normal result, we check to see if the instruction is followed by 5095 // a comma and metadata. 5096 if (EatIfPresent(lltok::comma)) 5097 if (ParseInstructionMetadata(*Inst)) 5098 return true; 5099 break; 5100 case InstExtraComma: 5101 BB->getInstList().push_back(Inst); 5102 5103 // If the instruction parser ate an extra comma at the end of it, it 5104 // *must* be followed by metadata. 5105 if (ParseInstructionMetadata(*Inst)) 5106 return true; 5107 break; 5108 } 5109 5110 // Set the name on the instruction. 5111 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; 5112 } while (!isa<TerminatorInst>(Inst)); 5113 5114 return false; 5115 } 5116 5117 //===----------------------------------------------------------------------===// 5118 // Instruction Parsing. 5119 //===----------------------------------------------------------------------===// 5120 5121 /// ParseInstruction - Parse one of the many different instructions. 5122 /// 5123 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, 5124 PerFunctionState &PFS) { 5125 lltok::Kind Token = Lex.getKind(); 5126 if (Token == lltok::Eof) 5127 return TokError("found end of file when expecting more instructions"); 5128 LocTy Loc = Lex.getLoc(); 5129 unsigned KeywordVal = Lex.getUIntVal(); 5130 Lex.Lex(); // Eat the keyword. 5131 5132 switch (Token) { 5133 default: return Error(Loc, "expected instruction opcode"); 5134 // Terminator Instructions. 5135 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 5136 case lltok::kw_ret: return ParseRet(Inst, BB, PFS); 5137 case lltok::kw_br: return ParseBr(Inst, PFS); 5138 case lltok::kw_switch: return ParseSwitch(Inst, PFS); 5139 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS); 5140 case lltok::kw_invoke: return ParseInvoke(Inst, PFS); 5141 case lltok::kw_resume: return ParseResume(Inst, PFS); 5142 case lltok::kw_cleanupret: return ParseCleanupRet(Inst, PFS); 5143 case lltok::kw_catchret: return ParseCatchRet(Inst, PFS); 5144 case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS); 5145 case lltok::kw_catchpad: return ParseCatchPad(Inst, PFS); 5146 case lltok::kw_cleanuppad: return ParseCleanupPad(Inst, PFS); 5147 // Binary Operators. 5148 case lltok::kw_add: 5149 case lltok::kw_sub: 5150 case lltok::kw_mul: 5151 case lltok::kw_shl: { 5152 bool NUW = EatIfPresent(lltok::kw_nuw); 5153 bool NSW = EatIfPresent(lltok::kw_nsw); 5154 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 5155 5156 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 5157 5158 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 5159 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 5160 return false; 5161 } 5162 case lltok::kw_fadd: 5163 case lltok::kw_fsub: 5164 case lltok::kw_fmul: 5165 case lltok::kw_fdiv: 5166 case lltok::kw_frem: { 5167 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5168 int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2); 5169 if (Res != 0) 5170 return Res; 5171 if (FMF.any()) 5172 Inst->setFastMathFlags(FMF); 5173 return 0; 5174 } 5175 5176 case lltok::kw_sdiv: 5177 case lltok::kw_udiv: 5178 case lltok::kw_lshr: 5179 case lltok::kw_ashr: { 5180 bool Exact = EatIfPresent(lltok::kw_exact); 5181 5182 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 5183 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 5184 return false; 5185 } 5186 5187 case lltok::kw_urem: 5188 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1); 5189 case lltok::kw_and: 5190 case lltok::kw_or: 5191 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); 5192 case lltok::kw_icmp: return ParseCompare(Inst, PFS, KeywordVal); 5193 case lltok::kw_fcmp: { 5194 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5195 int Res = ParseCompare(Inst, PFS, KeywordVal); 5196 if (Res != 0) 5197 return Res; 5198 if (FMF.any()) 5199 Inst->setFastMathFlags(FMF); 5200 return 0; 5201 } 5202 5203 // Casts. 5204 case lltok::kw_trunc: 5205 case lltok::kw_zext: 5206 case lltok::kw_sext: 5207 case lltok::kw_fptrunc: 5208 case lltok::kw_fpext: 5209 case lltok::kw_bitcast: 5210 case lltok::kw_addrspacecast: 5211 case lltok::kw_uitofp: 5212 case lltok::kw_sitofp: 5213 case lltok::kw_fptoui: 5214 case lltok::kw_fptosi: 5215 case lltok::kw_inttoptr: 5216 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); 5217 // Other. 5218 case lltok::kw_select: return ParseSelect(Inst, PFS); 5219 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); 5220 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); 5221 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); 5222 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); 5223 case lltok::kw_phi: return ParsePHI(Inst, PFS); 5224 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS); 5225 // Call. 5226 case lltok::kw_call: return ParseCall(Inst, PFS, CallInst::TCK_None); 5227 case lltok::kw_tail: return ParseCall(Inst, PFS, CallInst::TCK_Tail); 5228 case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail); 5229 case lltok::kw_notail: return ParseCall(Inst, PFS, CallInst::TCK_NoTail); 5230 // Memory. 5231 case lltok::kw_alloca: return ParseAlloc(Inst, PFS); 5232 case lltok::kw_load: return ParseLoad(Inst, PFS); 5233 case lltok::kw_store: return ParseStore(Inst, PFS); 5234 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS); 5235 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS); 5236 case lltok::kw_fence: return ParseFence(Inst, PFS); 5237 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); 5238 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); 5239 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); 5240 } 5241 } 5242 5243 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. 5244 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { 5245 if (Opc == Instruction::FCmp) { 5246 switch (Lex.getKind()) { 5247 default: return TokError("expected fcmp predicate (e.g. 'oeq')"); 5248 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 5249 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 5250 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 5251 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 5252 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 5253 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 5254 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 5255 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 5256 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 5257 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 5258 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 5259 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 5260 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 5261 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 5262 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 5263 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 5264 } 5265 } else { 5266 switch (Lex.getKind()) { 5267 default: return TokError("expected icmp predicate (e.g. 'eq')"); 5268 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 5269 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 5270 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 5271 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 5272 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 5273 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 5274 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 5275 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 5276 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 5277 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 5278 } 5279 } 5280 Lex.Lex(); 5281 return false; 5282 } 5283 5284 //===----------------------------------------------------------------------===// 5285 // Terminator Instructions. 5286 //===----------------------------------------------------------------------===// 5287 5288 /// ParseRet - Parse a return instruction. 5289 /// ::= 'ret' void (',' !dbg, !1)* 5290 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 5291 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, 5292 PerFunctionState &PFS) { 5293 SMLoc TypeLoc = Lex.getLoc(); 5294 Type *Ty = nullptr; 5295 if (ParseType(Ty, true /*void allowed*/)) return true; 5296 5297 Type *ResType = PFS.getFunction().getReturnType(); 5298 5299 if (Ty->isVoidTy()) { 5300 if (!ResType->isVoidTy()) 5301 return Error(TypeLoc, "value doesn't match function result type '" + 5302 getTypeString(ResType) + "'"); 5303 5304 Inst = ReturnInst::Create(Context); 5305 return false; 5306 } 5307 5308 Value *RV; 5309 if (ParseValue(Ty, RV, PFS)) return true; 5310 5311 if (ResType != RV->getType()) 5312 return Error(TypeLoc, "value doesn't match function result type '" + 5313 getTypeString(ResType) + "'"); 5314 5315 Inst = ReturnInst::Create(Context, RV); 5316 return false; 5317 } 5318 5319 /// ParseBr 5320 /// ::= 'br' TypeAndValue 5321 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5322 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { 5323 LocTy Loc, Loc2; 5324 Value *Op0; 5325 BasicBlock *Op1, *Op2; 5326 if (ParseTypeAndValue(Op0, Loc, PFS)) return true; 5327 5328 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 5329 Inst = BranchInst::Create(BB); 5330 return false; 5331 } 5332 5333 if (Op0->getType() != Type::getInt1Ty(Context)) 5334 return Error(Loc, "branch condition must have 'i1' type"); 5335 5336 if (ParseToken(lltok::comma, "expected ',' after branch condition") || 5337 ParseTypeAndBasicBlock(Op1, Loc, PFS) || 5338 ParseToken(lltok::comma, "expected ',' after true destination") || 5339 ParseTypeAndBasicBlock(Op2, Loc2, PFS)) 5340 return true; 5341 5342 Inst = BranchInst::Create(Op1, Op2, Op0); 5343 return false; 5344 } 5345 5346 /// ParseSwitch 5347 /// Instruction 5348 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 5349 /// JumpTable 5350 /// ::= (TypeAndValue ',' TypeAndValue)* 5351 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 5352 LocTy CondLoc, BBLoc; 5353 Value *Cond; 5354 BasicBlock *DefaultBB; 5355 if (ParseTypeAndValue(Cond, CondLoc, PFS) || 5356 ParseToken(lltok::comma, "expected ',' after switch condition") || 5357 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 5358 ParseToken(lltok::lsquare, "expected '[' with switch table")) 5359 return true; 5360 5361 if (!Cond->getType()->isIntegerTy()) 5362 return Error(CondLoc, "switch condition must have integer type"); 5363 5364 // Parse the jump table pairs. 5365 SmallPtrSet<Value*, 32> SeenCases; 5366 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 5367 while (Lex.getKind() != lltok::rsquare) { 5368 Value *Constant; 5369 BasicBlock *DestBB; 5370 5371 if (ParseTypeAndValue(Constant, CondLoc, PFS) || 5372 ParseToken(lltok::comma, "expected ',' after case value") || 5373 ParseTypeAndBasicBlock(DestBB, PFS)) 5374 return true; 5375 5376 if (!SeenCases.insert(Constant).second) 5377 return Error(CondLoc, "duplicate case value in switch"); 5378 if (!isa<ConstantInt>(Constant)) 5379 return Error(CondLoc, "case value is not a constant integer"); 5380 5381 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 5382 } 5383 5384 Lex.Lex(); // Eat the ']'. 5385 5386 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 5387 for (unsigned i = 0, e = Table.size(); i != e; ++i) 5388 SI->addCase(Table[i].first, Table[i].second); 5389 Inst = SI; 5390 return false; 5391 } 5392 5393 /// ParseIndirectBr 5394 /// Instruction 5395 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 5396 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 5397 LocTy AddrLoc; 5398 Value *Address; 5399 if (ParseTypeAndValue(Address, AddrLoc, PFS) || 5400 ParseToken(lltok::comma, "expected ',' after indirectbr address") || 5401 ParseToken(lltok::lsquare, "expected '[' with indirectbr")) 5402 return true; 5403 5404 if (!Address->getType()->isPointerTy()) 5405 return Error(AddrLoc, "indirectbr address must have pointer type"); 5406 5407 // Parse the destination list. 5408 SmallVector<BasicBlock*, 16> DestList; 5409 5410 if (Lex.getKind() != lltok::rsquare) { 5411 BasicBlock *DestBB; 5412 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5413 return true; 5414 DestList.push_back(DestBB); 5415 5416 while (EatIfPresent(lltok::comma)) { 5417 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5418 return true; 5419 DestList.push_back(DestBB); 5420 } 5421 } 5422 5423 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 5424 return true; 5425 5426 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 5427 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 5428 IBI->addDestination(DestList[i]); 5429 Inst = IBI; 5430 return false; 5431 } 5432 5433 /// ParseInvoke 5434 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 5435 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 5436 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 5437 LocTy CallLoc = Lex.getLoc(); 5438 AttrBuilder RetAttrs, FnAttrs; 5439 std::vector<unsigned> FwdRefAttrGrps; 5440 LocTy NoBuiltinLoc; 5441 unsigned CC; 5442 Type *RetType = nullptr; 5443 LocTy RetTypeLoc; 5444 ValID CalleeID; 5445 SmallVector<ParamInfo, 16> ArgList; 5446 SmallVector<OperandBundleDef, 2> BundleList; 5447 5448 BasicBlock *NormalBB, *UnwindBB; 5449 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5450 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 5451 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || 5452 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 5453 NoBuiltinLoc) || 5454 ParseOptionalOperandBundles(BundleList, PFS) || 5455 ParseToken(lltok::kw_to, "expected 'to' in invoke") || 5456 ParseTypeAndBasicBlock(NormalBB, PFS) || 5457 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 5458 ParseTypeAndBasicBlock(UnwindBB, PFS)) 5459 return true; 5460 5461 // If RetType is a non-function pointer type, then this is the short syntax 5462 // for the call, which means that RetType is just the return type. Infer the 5463 // rest of the function argument types from the arguments that are present. 5464 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 5465 if (!Ty) { 5466 // Pull out the types of all of the arguments... 5467 std::vector<Type*> ParamTypes; 5468 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 5469 ParamTypes.push_back(ArgList[i].V->getType()); 5470 5471 if (!FunctionType::isValidReturnType(RetType)) 5472 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 5473 5474 Ty = FunctionType::get(RetType, ParamTypes, false); 5475 } 5476 5477 CalleeID.FTy = Ty; 5478 5479 // Look up the callee. 5480 Value *Callee; 5481 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS)) 5482 return true; 5483 5484 // Set up the Attribute for the function. 5485 SmallVector<Value *, 8> Args; 5486 SmallVector<AttributeSet, 8> ArgAttrs; 5487 5488 // Loop through FunctionType's arguments and ensure they are specified 5489 // correctly. Also, gather any parameter attributes. 5490 FunctionType::param_iterator I = Ty->param_begin(); 5491 FunctionType::param_iterator E = Ty->param_end(); 5492 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5493 Type *ExpectedTy = nullptr; 5494 if (I != E) { 5495 ExpectedTy = *I++; 5496 } else if (!Ty->isVarArg()) { 5497 return Error(ArgList[i].Loc, "too many arguments specified"); 5498 } 5499 5500 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 5501 return Error(ArgList[i].Loc, "argument is not of expected type '" + 5502 getTypeString(ExpectedTy) + "'"); 5503 Args.push_back(ArgList[i].V); 5504 ArgAttrs.push_back(ArgList[i].Attrs); 5505 } 5506 5507 if (I != E) 5508 return Error(CallLoc, "not enough parameters specified for call"); 5509 5510 if (FnAttrs.hasAlignmentAttr()) 5511 return Error(CallLoc, "invoke instructions may not have an alignment"); 5512 5513 // Finish off the Attribute and check them 5514 AttributeList PAL = 5515 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 5516 AttributeSet::get(Context, RetAttrs), ArgAttrs); 5517 5518 InvokeInst *II = 5519 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 5520 II->setCallingConv(CC); 5521 II->setAttributes(PAL); 5522 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 5523 Inst = II; 5524 return false; 5525 } 5526 5527 /// ParseResume 5528 /// ::= 'resume' TypeAndValue 5529 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) { 5530 Value *Exn; LocTy ExnLoc; 5531 if (ParseTypeAndValue(Exn, ExnLoc, PFS)) 5532 return true; 5533 5534 ResumeInst *RI = ResumeInst::Create(Exn); 5535 Inst = RI; 5536 return false; 5537 } 5538 5539 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args, 5540 PerFunctionState &PFS) { 5541 if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 5542 return true; 5543 5544 while (Lex.getKind() != lltok::rsquare) { 5545 // If this isn't the first argument, we need a comma. 5546 if (!Args.empty() && 5547 ParseToken(lltok::comma, "expected ',' in argument list")) 5548 return true; 5549 5550 // Parse the argument. 5551 LocTy ArgLoc; 5552 Type *ArgTy = nullptr; 5553 if (ParseType(ArgTy, ArgLoc)) 5554 return true; 5555 5556 Value *V; 5557 if (ArgTy->isMetadataTy()) { 5558 if (ParseMetadataAsValue(V, PFS)) 5559 return true; 5560 } else { 5561 if (ParseValue(ArgTy, V, PFS)) 5562 return true; 5563 } 5564 Args.push_back(V); 5565 } 5566 5567 Lex.Lex(); // Lex the ']'. 5568 return false; 5569 } 5570 5571 /// ParseCleanupRet 5572 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 5573 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 5574 Value *CleanupPad = nullptr; 5575 5576 if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret")) 5577 return true; 5578 5579 if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 5580 return true; 5581 5582 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 5583 return true; 5584 5585 BasicBlock *UnwindBB = nullptr; 5586 if (Lex.getKind() == lltok::kw_to) { 5587 Lex.Lex(); 5588 if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 5589 return true; 5590 } else { 5591 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 5592 return true; 5593 } 5594 } 5595 5596 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 5597 return false; 5598 } 5599 5600 /// ParseCatchRet 5601 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 5602 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 5603 Value *CatchPad = nullptr; 5604 5605 if (ParseToken(lltok::kw_from, "expected 'from' after catchret")) 5606 return true; 5607 5608 if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS)) 5609 return true; 5610 5611 BasicBlock *BB; 5612 if (ParseToken(lltok::kw_to, "expected 'to' in catchret") || 5613 ParseTypeAndBasicBlock(BB, PFS)) 5614 return true; 5615 5616 Inst = CatchReturnInst::Create(CatchPad, BB); 5617 return false; 5618 } 5619 5620 /// ParseCatchSwitch 5621 /// ::= 'catchswitch' within Parent 5622 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 5623 Value *ParentPad; 5624 5625 if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch")) 5626 return true; 5627 5628 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 5629 Lex.getKind() != lltok::LocalVarID) 5630 return TokError("expected scope value for catchswitch"); 5631 5632 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 5633 return true; 5634 5635 if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 5636 return true; 5637 5638 SmallVector<BasicBlock *, 32> Table; 5639 do { 5640 BasicBlock *DestBB; 5641 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5642 return true; 5643 Table.push_back(DestBB); 5644 } while (EatIfPresent(lltok::comma)); 5645 5646 if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 5647 return true; 5648 5649 if (ParseToken(lltok::kw_unwind, 5650 "expected 'unwind' after catchswitch scope")) 5651 return true; 5652 5653 BasicBlock *UnwindBB = nullptr; 5654 if (EatIfPresent(lltok::kw_to)) { 5655 if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 5656 return true; 5657 } else { 5658 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) 5659 return true; 5660 } 5661 5662 auto *CatchSwitch = 5663 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 5664 for (BasicBlock *DestBB : Table) 5665 CatchSwitch->addHandler(DestBB); 5666 Inst = CatchSwitch; 5667 return false; 5668 } 5669 5670 /// ParseCatchPad 5671 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 5672 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 5673 Value *CatchSwitch = nullptr; 5674 5675 if (ParseToken(lltok::kw_within, "expected 'within' after catchpad")) 5676 return true; 5677 5678 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 5679 return TokError("expected scope value for catchpad"); 5680 5681 if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 5682 return true; 5683 5684 SmallVector<Value *, 8> Args; 5685 if (ParseExceptionArgs(Args, PFS)) 5686 return true; 5687 5688 Inst = CatchPadInst::Create(CatchSwitch, Args); 5689 return false; 5690 } 5691 5692 /// ParseCleanupPad 5693 /// ::= 'cleanuppad' within Parent ParamList 5694 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 5695 Value *ParentPad = nullptr; 5696 5697 if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 5698 return true; 5699 5700 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 5701 Lex.getKind() != lltok::LocalVarID) 5702 return TokError("expected scope value for cleanuppad"); 5703 5704 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 5705 return true; 5706 5707 SmallVector<Value *, 8> Args; 5708 if (ParseExceptionArgs(Args, PFS)) 5709 return true; 5710 5711 Inst = CleanupPadInst::Create(ParentPad, Args); 5712 return false; 5713 } 5714 5715 //===----------------------------------------------------------------------===// 5716 // Binary Operators. 5717 //===----------------------------------------------------------------------===// 5718 5719 /// ParseArithmetic 5720 /// ::= ArithmeticOps TypeAndValue ',' Value 5721 /// 5722 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1, 5723 /// then any integer operand is allowed, if it is 2, any fp operand is allowed. 5724 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 5725 unsigned Opc, unsigned OperandType) { 5726 LocTy Loc; Value *LHS, *RHS; 5727 if (ParseTypeAndValue(LHS, Loc, PFS) || 5728 ParseToken(lltok::comma, "expected ',' in arithmetic operation") || 5729 ParseValue(LHS->getType(), RHS, PFS)) 5730 return true; 5731 5732 bool Valid; 5733 switch (OperandType) { 5734 default: llvm_unreachable("Unknown operand type!"); 5735 case 0: // int or FP. 5736 Valid = LHS->getType()->isIntOrIntVectorTy() || 5737 LHS->getType()->isFPOrFPVectorTy(); 5738 break; 5739 case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break; 5740 case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break; 5741 } 5742 5743 if (!Valid) 5744 return Error(Loc, "invalid operand type for instruction"); 5745 5746 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 5747 return false; 5748 } 5749 5750 /// ParseLogical 5751 /// ::= ArithmeticOps TypeAndValue ',' Value { 5752 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, 5753 unsigned Opc) { 5754 LocTy Loc; Value *LHS, *RHS; 5755 if (ParseTypeAndValue(LHS, Loc, PFS) || 5756 ParseToken(lltok::comma, "expected ',' in logical operation") || 5757 ParseValue(LHS->getType(), RHS, PFS)) 5758 return true; 5759 5760 if (!LHS->getType()->isIntOrIntVectorTy()) 5761 return Error(Loc,"instruction requires integer or integer vector operands"); 5762 5763 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 5764 return false; 5765 } 5766 5767 /// ParseCompare 5768 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 5769 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 5770 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, 5771 unsigned Opc) { 5772 // Parse the integer/fp comparison predicate. 5773 LocTy Loc; 5774 unsigned Pred; 5775 Value *LHS, *RHS; 5776 if (ParseCmpPredicate(Pred, Opc) || 5777 ParseTypeAndValue(LHS, Loc, PFS) || 5778 ParseToken(lltok::comma, "expected ',' after compare value") || 5779 ParseValue(LHS->getType(), RHS, PFS)) 5780 return true; 5781 5782 if (Opc == Instruction::FCmp) { 5783 if (!LHS->getType()->isFPOrFPVectorTy()) 5784 return Error(Loc, "fcmp requires floating point operands"); 5785 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 5786 } else { 5787 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 5788 if (!LHS->getType()->isIntOrIntVectorTy() && 5789 !LHS->getType()->isPtrOrPtrVectorTy()) 5790 return Error(Loc, "icmp requires integer operands"); 5791 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 5792 } 5793 return false; 5794 } 5795 5796 //===----------------------------------------------------------------------===// 5797 // Other Instructions. 5798 //===----------------------------------------------------------------------===// 5799 5800 5801 /// ParseCast 5802 /// ::= CastOpc TypeAndValue 'to' Type 5803 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, 5804 unsigned Opc) { 5805 LocTy Loc; 5806 Value *Op; 5807 Type *DestTy = nullptr; 5808 if (ParseTypeAndValue(Op, Loc, PFS) || 5809 ParseToken(lltok::kw_to, "expected 'to' after cast value") || 5810 ParseType(DestTy)) 5811 return true; 5812 5813 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 5814 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 5815 return Error(Loc, "invalid cast opcode for cast from '" + 5816 getTypeString(Op->getType()) + "' to '" + 5817 getTypeString(DestTy) + "'"); 5818 } 5819 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 5820 return false; 5821 } 5822 5823 /// ParseSelect 5824 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5825 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { 5826 LocTy Loc; 5827 Value *Op0, *Op1, *Op2; 5828 if (ParseTypeAndValue(Op0, Loc, PFS) || 5829 ParseToken(lltok::comma, "expected ',' after select condition") || 5830 ParseTypeAndValue(Op1, PFS) || 5831 ParseToken(lltok::comma, "expected ',' after select value") || 5832 ParseTypeAndValue(Op2, PFS)) 5833 return true; 5834 5835 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 5836 return Error(Loc, Reason); 5837 5838 Inst = SelectInst::Create(Op0, Op1, Op2); 5839 return false; 5840 } 5841 5842 /// ParseVA_Arg 5843 /// ::= 'va_arg' TypeAndValue ',' Type 5844 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { 5845 Value *Op; 5846 Type *EltTy = nullptr; 5847 LocTy TypeLoc; 5848 if (ParseTypeAndValue(Op, PFS) || 5849 ParseToken(lltok::comma, "expected ',' after vaarg operand") || 5850 ParseType(EltTy, TypeLoc)) 5851 return true; 5852 5853 if (!EltTy->isFirstClassType()) 5854 return Error(TypeLoc, "va_arg requires operand with first class type"); 5855 5856 Inst = new VAArgInst(Op, EltTy); 5857 return false; 5858 } 5859 5860 /// ParseExtractElement 5861 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 5862 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 5863 LocTy Loc; 5864 Value *Op0, *Op1; 5865 if (ParseTypeAndValue(Op0, Loc, PFS) || 5866 ParseToken(lltok::comma, "expected ',' after extract value") || 5867 ParseTypeAndValue(Op1, PFS)) 5868 return true; 5869 5870 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 5871 return Error(Loc, "invalid extractelement operands"); 5872 5873 Inst = ExtractElementInst::Create(Op0, Op1); 5874 return false; 5875 } 5876 5877 /// ParseInsertElement 5878 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5879 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 5880 LocTy Loc; 5881 Value *Op0, *Op1, *Op2; 5882 if (ParseTypeAndValue(Op0, Loc, PFS) || 5883 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5884 ParseTypeAndValue(Op1, PFS) || 5885 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5886 ParseTypeAndValue(Op2, PFS)) 5887 return true; 5888 5889 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 5890 return Error(Loc, "invalid insertelement operands"); 5891 5892 Inst = InsertElementInst::Create(Op0, Op1, Op2); 5893 return false; 5894 } 5895 5896 /// ParseShuffleVector 5897 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5898 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 5899 LocTy Loc; 5900 Value *Op0, *Op1, *Op2; 5901 if (ParseTypeAndValue(Op0, Loc, PFS) || 5902 ParseToken(lltok::comma, "expected ',' after shuffle mask") || 5903 ParseTypeAndValue(Op1, PFS) || 5904 ParseToken(lltok::comma, "expected ',' after shuffle value") || 5905 ParseTypeAndValue(Op2, PFS)) 5906 return true; 5907 5908 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 5909 return Error(Loc, "invalid shufflevector operands"); 5910 5911 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 5912 return false; 5913 } 5914 5915 /// ParsePHI 5916 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 5917 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { 5918 Type *Ty = nullptr; LocTy TypeLoc; 5919 Value *Op0, *Op1; 5920 5921 if (ParseType(Ty, TypeLoc) || 5922 ParseToken(lltok::lsquare, "expected '[' in phi value list") || 5923 ParseValue(Ty, Op0, PFS) || 5924 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5925 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 5926 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 5927 return true; 5928 5929 bool AteExtraComma = false; 5930 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 5931 5932 while (true) { 5933 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 5934 5935 if (!EatIfPresent(lltok::comma)) 5936 break; 5937 5938 if (Lex.getKind() == lltok::MetadataVar) { 5939 AteExtraComma = true; 5940 break; 5941 } 5942 5943 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || 5944 ParseValue(Ty, Op0, PFS) || 5945 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5946 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 5947 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 5948 return true; 5949 } 5950 5951 if (!Ty->isFirstClassType()) 5952 return Error(TypeLoc, "phi node must have first class type"); 5953 5954 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 5955 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 5956 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 5957 Inst = PN; 5958 return AteExtraComma ? InstExtraComma : InstNormal; 5959 } 5960 5961 /// ParseLandingPad 5962 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 5963 /// Clause 5964 /// ::= 'catch' TypeAndValue 5965 /// ::= 'filter' 5966 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 5967 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 5968 Type *Ty = nullptr; LocTy TyLoc; 5969 5970 if (ParseType(Ty, TyLoc)) 5971 return true; 5972 5973 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 5974 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 5975 5976 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 5977 LandingPadInst::ClauseType CT; 5978 if (EatIfPresent(lltok::kw_catch)) 5979 CT = LandingPadInst::Catch; 5980 else if (EatIfPresent(lltok::kw_filter)) 5981 CT = LandingPadInst::Filter; 5982 else 5983 return TokError("expected 'catch' or 'filter' clause type"); 5984 5985 Value *V; 5986 LocTy VLoc; 5987 if (ParseTypeAndValue(V, VLoc, PFS)) 5988 return true; 5989 5990 // A 'catch' type expects a non-array constant. A filter clause expects an 5991 // array constant. 5992 if (CT == LandingPadInst::Catch) { 5993 if (isa<ArrayType>(V->getType())) 5994 Error(VLoc, "'catch' clause has an invalid type"); 5995 } else { 5996 if (!isa<ArrayType>(V->getType())) 5997 Error(VLoc, "'filter' clause has an invalid type"); 5998 } 5999 6000 Constant *CV = dyn_cast<Constant>(V); 6001 if (!CV) 6002 return Error(VLoc, "clause argument must be a constant"); 6003 LP->addClause(CV); 6004 } 6005 6006 Inst = LP.release(); 6007 return false; 6008 } 6009 6010 /// ParseCall 6011 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 6012 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6013 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 6014 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6015 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 6016 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6017 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 6018 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6019 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, 6020 CallInst::TailCallKind TCK) { 6021 AttrBuilder RetAttrs, FnAttrs; 6022 std::vector<unsigned> FwdRefAttrGrps; 6023 LocTy BuiltinLoc; 6024 unsigned CC; 6025 Type *RetType = nullptr; 6026 LocTy RetTypeLoc; 6027 ValID CalleeID; 6028 SmallVector<ParamInfo, 16> ArgList; 6029 SmallVector<OperandBundleDef, 2> BundleList; 6030 LocTy CallLoc = Lex.getLoc(); 6031 6032 if (TCK != CallInst::TCK_None && 6033 ParseToken(lltok::kw_call, 6034 "expected 'tail call', 'musttail call', or 'notail call'")) 6035 return true; 6036 6037 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6038 6039 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 6040 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 6041 ParseValID(CalleeID) || 6042 ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 6043 PFS.getFunction().isVarArg()) || 6044 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 6045 ParseOptionalOperandBundles(BundleList, PFS)) 6046 return true; 6047 6048 if (FMF.any() && !RetType->isFPOrFPVectorTy()) 6049 return Error(CallLoc, "fast-math-flags specified for call without " 6050 "floating-point scalar or vector return type"); 6051 6052 // If RetType is a non-function pointer type, then this is the short syntax 6053 // for the call, which means that RetType is just the return type. Infer the 6054 // rest of the function argument types from the arguments that are present. 6055 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6056 if (!Ty) { 6057 // Pull out the types of all of the arguments... 6058 std::vector<Type*> ParamTypes; 6059 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6060 ParamTypes.push_back(ArgList[i].V->getType()); 6061 6062 if (!FunctionType::isValidReturnType(RetType)) 6063 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 6064 6065 Ty = FunctionType::get(RetType, ParamTypes, false); 6066 } 6067 6068 CalleeID.FTy = Ty; 6069 6070 // Look up the callee. 6071 Value *Callee; 6072 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS)) 6073 return true; 6074 6075 // Set up the Attribute for the function. 6076 SmallVector<AttributeSet, 8> Attrs; 6077 6078 SmallVector<Value*, 8> Args; 6079 6080 // Loop through FunctionType's arguments and ensure they are specified 6081 // correctly. Also, gather any parameter attributes. 6082 FunctionType::param_iterator I = Ty->param_begin(); 6083 FunctionType::param_iterator E = Ty->param_end(); 6084 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6085 Type *ExpectedTy = nullptr; 6086 if (I != E) { 6087 ExpectedTy = *I++; 6088 } else if (!Ty->isVarArg()) { 6089 return Error(ArgList[i].Loc, "too many arguments specified"); 6090 } 6091 6092 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6093 return Error(ArgList[i].Loc, "argument is not of expected type '" + 6094 getTypeString(ExpectedTy) + "'"); 6095 Args.push_back(ArgList[i].V); 6096 Attrs.push_back(ArgList[i].Attrs); 6097 } 6098 6099 if (I != E) 6100 return Error(CallLoc, "not enough parameters specified for call"); 6101 6102 if (FnAttrs.hasAlignmentAttr()) 6103 return Error(CallLoc, "call instructions may not have an alignment"); 6104 6105 // Finish off the Attribute and check them 6106 AttributeList PAL = 6107 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6108 AttributeSet::get(Context, RetAttrs), Attrs); 6109 6110 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 6111 CI->setTailCallKind(TCK); 6112 CI->setCallingConv(CC); 6113 if (FMF.any()) 6114 CI->setFastMathFlags(FMF); 6115 CI->setAttributes(PAL); 6116 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 6117 Inst = CI; 6118 return false; 6119 } 6120 6121 //===----------------------------------------------------------------------===// 6122 // Memory Instructions. 6123 //===----------------------------------------------------------------------===// 6124 6125 /// ParseAlloc 6126 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 6127 /// (',' 'align' i32)? (',', 'addrspace(n))? 6128 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 6129 Value *Size = nullptr; 6130 LocTy SizeLoc, TyLoc, ASLoc; 6131 unsigned Alignment = 0; 6132 unsigned AddrSpace = 0; 6133 Type *Ty = nullptr; 6134 6135 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 6136 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 6137 6138 if (ParseType(Ty, TyLoc)) return true; 6139 6140 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 6141 return Error(TyLoc, "invalid type for alloca"); 6142 6143 bool AteExtraComma = false; 6144 if (EatIfPresent(lltok::comma)) { 6145 if (Lex.getKind() == lltok::kw_align) { 6146 if (ParseOptionalAlignment(Alignment)) 6147 return true; 6148 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 6149 return true; 6150 } else if (Lex.getKind() == lltok::kw_addrspace) { 6151 ASLoc = Lex.getLoc(); 6152 if (ParseOptionalAddrSpace(AddrSpace)) 6153 return true; 6154 } else if (Lex.getKind() == lltok::MetadataVar) { 6155 AteExtraComma = true; 6156 } else { 6157 if (ParseTypeAndValue(Size, SizeLoc, PFS)) 6158 return true; 6159 if (EatIfPresent(lltok::comma)) { 6160 if (Lex.getKind() == lltok::kw_align) { 6161 if (ParseOptionalAlignment(Alignment)) 6162 return true; 6163 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 6164 return true; 6165 } else if (Lex.getKind() == lltok::kw_addrspace) { 6166 ASLoc = Lex.getLoc(); 6167 if (ParseOptionalAddrSpace(AddrSpace)) 6168 return true; 6169 } else if (Lex.getKind() == lltok::MetadataVar) { 6170 AteExtraComma = true; 6171 } 6172 } 6173 } 6174 } 6175 6176 if (Size && !Size->getType()->isIntegerTy()) 6177 return Error(SizeLoc, "element count must have integer type"); 6178 6179 const DataLayout &DL = M->getDataLayout(); 6180 unsigned AS = DL.getAllocaAddrSpace(); 6181 if (AS != AddrSpace) { 6182 // TODO: In the future it should be possible to specify addrspace per-alloca. 6183 return Error(ASLoc, "address space must match datalayout"); 6184 } 6185 6186 AllocaInst *AI = new AllocaInst(Ty, AS, Size, Alignment); 6187 AI->setUsedWithInAlloca(IsInAlloca); 6188 AI->setSwiftError(IsSwiftError); 6189 Inst = AI; 6190 return AteExtraComma ? InstExtraComma : InstNormal; 6191 } 6192 6193 /// ParseLoad 6194 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 6195 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 6196 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6197 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) { 6198 Value *Val; LocTy Loc; 6199 unsigned Alignment = 0; 6200 bool AteExtraComma = false; 6201 bool isAtomic = false; 6202 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6203 SyncScope::ID SSID = SyncScope::System; 6204 6205 if (Lex.getKind() == lltok::kw_atomic) { 6206 isAtomic = true; 6207 Lex.Lex(); 6208 } 6209 6210 bool isVolatile = false; 6211 if (Lex.getKind() == lltok::kw_volatile) { 6212 isVolatile = true; 6213 Lex.Lex(); 6214 } 6215 6216 Type *Ty; 6217 LocTy ExplicitTypeLoc = Lex.getLoc(); 6218 if (ParseType(Ty) || 6219 ParseToken(lltok::comma, "expected comma after load's type") || 6220 ParseTypeAndValue(Val, Loc, PFS) || 6221 ParseScopeAndOrdering(isAtomic, SSID, Ordering) || 6222 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6223 return true; 6224 6225 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 6226 return Error(Loc, "load operand must be a pointer to a first class type"); 6227 if (isAtomic && !Alignment) 6228 return Error(Loc, "atomic load must have explicit non-zero alignment"); 6229 if (Ordering == AtomicOrdering::Release || 6230 Ordering == AtomicOrdering::AcquireRelease) 6231 return Error(Loc, "atomic load cannot use Release ordering"); 6232 6233 if (Ty != cast<PointerType>(Val->getType())->getElementType()) 6234 return Error(ExplicitTypeLoc, 6235 "explicit pointee type doesn't match operand's pointee type"); 6236 6237 Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, SSID); 6238 return AteExtraComma ? InstExtraComma : InstNormal; 6239 } 6240 6241 /// ParseStore 6242 6243 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 6244 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 6245 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6246 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) { 6247 Value *Val, *Ptr; LocTy Loc, PtrLoc; 6248 unsigned Alignment = 0; 6249 bool AteExtraComma = false; 6250 bool isAtomic = false; 6251 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6252 SyncScope::ID SSID = SyncScope::System; 6253 6254 if (Lex.getKind() == lltok::kw_atomic) { 6255 isAtomic = true; 6256 Lex.Lex(); 6257 } 6258 6259 bool isVolatile = false; 6260 if (Lex.getKind() == lltok::kw_volatile) { 6261 isVolatile = true; 6262 Lex.Lex(); 6263 } 6264 6265 if (ParseTypeAndValue(Val, Loc, PFS) || 6266 ParseToken(lltok::comma, "expected ',' after store operand") || 6267 ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6268 ParseScopeAndOrdering(isAtomic, SSID, Ordering) || 6269 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6270 return true; 6271 6272 if (!Ptr->getType()->isPointerTy()) 6273 return Error(PtrLoc, "store operand must be a pointer"); 6274 if (!Val->getType()->isFirstClassType()) 6275 return Error(Loc, "store operand must be a first class value"); 6276 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 6277 return Error(Loc, "stored value and pointer type do not match"); 6278 if (isAtomic && !Alignment) 6279 return Error(Loc, "atomic store must have explicit non-zero alignment"); 6280 if (Ordering == AtomicOrdering::Acquire || 6281 Ordering == AtomicOrdering::AcquireRelease) 6282 return Error(Loc, "atomic store cannot use Acquire ordering"); 6283 6284 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, SSID); 6285 return AteExtraComma ? InstExtraComma : InstNormal; 6286 } 6287 6288 /// ParseCmpXchg 6289 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 6290 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering 6291 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 6292 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 6293 bool AteExtraComma = false; 6294 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 6295 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 6296 SyncScope::ID SSID = SyncScope::System; 6297 bool isVolatile = false; 6298 bool isWeak = false; 6299 6300 if (EatIfPresent(lltok::kw_weak)) 6301 isWeak = true; 6302 6303 if (EatIfPresent(lltok::kw_volatile)) 6304 isVolatile = true; 6305 6306 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6307 ParseToken(lltok::comma, "expected ',' after cmpxchg address") || 6308 ParseTypeAndValue(Cmp, CmpLoc, PFS) || 6309 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 6310 ParseTypeAndValue(New, NewLoc, PFS) || 6311 ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) || 6312 ParseOrdering(FailureOrdering)) 6313 return true; 6314 6315 if (SuccessOrdering == AtomicOrdering::Unordered || 6316 FailureOrdering == AtomicOrdering::Unordered) 6317 return TokError("cmpxchg cannot be unordered"); 6318 if (isStrongerThan(FailureOrdering, SuccessOrdering)) 6319 return TokError("cmpxchg failure argument shall be no stronger than the " 6320 "success argument"); 6321 if (FailureOrdering == AtomicOrdering::Release || 6322 FailureOrdering == AtomicOrdering::AcquireRelease) 6323 return TokError( 6324 "cmpxchg failure ordering cannot include release semantics"); 6325 if (!Ptr->getType()->isPointerTy()) 6326 return Error(PtrLoc, "cmpxchg operand must be a pointer"); 6327 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 6328 return Error(CmpLoc, "compare value and pointer type do not match"); 6329 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 6330 return Error(NewLoc, "new value and pointer type do not match"); 6331 if (!New->getType()->isFirstClassType()) 6332 return Error(NewLoc, "cmpxchg operand must be a first class value"); 6333 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 6334 Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID); 6335 CXI->setVolatile(isVolatile); 6336 CXI->setWeak(isWeak); 6337 Inst = CXI; 6338 return AteExtraComma ? InstExtraComma : InstNormal; 6339 } 6340 6341 /// ParseAtomicRMW 6342 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 6343 /// 'singlethread'? AtomicOrdering 6344 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 6345 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 6346 bool AteExtraComma = false; 6347 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6348 SyncScope::ID SSID = SyncScope::System; 6349 bool isVolatile = false; 6350 AtomicRMWInst::BinOp Operation; 6351 6352 if (EatIfPresent(lltok::kw_volatile)) 6353 isVolatile = true; 6354 6355 switch (Lex.getKind()) { 6356 default: return TokError("expected binary operation in atomicrmw"); 6357 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 6358 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 6359 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 6360 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 6361 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 6362 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 6363 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 6364 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 6365 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 6366 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 6367 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 6368 } 6369 Lex.Lex(); // Eat the operation. 6370 6371 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6372 ParseToken(lltok::comma, "expected ',' after atomicrmw address") || 6373 ParseTypeAndValue(Val, ValLoc, PFS) || 6374 ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 6375 return true; 6376 6377 if (Ordering == AtomicOrdering::Unordered) 6378 return TokError("atomicrmw cannot be unordered"); 6379 if (!Ptr->getType()->isPointerTy()) 6380 return Error(PtrLoc, "atomicrmw operand must be a pointer"); 6381 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 6382 return Error(ValLoc, "atomicrmw value and pointer type do not match"); 6383 if (!Val->getType()->isIntegerTy()) 6384 return Error(ValLoc, "atomicrmw operand must be an integer"); 6385 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 6386 if (Size < 8 || (Size & (Size - 1))) 6387 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 6388 " integer"); 6389 6390 AtomicRMWInst *RMWI = 6391 new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 6392 RMWI->setVolatile(isVolatile); 6393 Inst = RMWI; 6394 return AteExtraComma ? InstExtraComma : InstNormal; 6395 } 6396 6397 /// ParseFence 6398 /// ::= 'fence' 'singlethread'? AtomicOrdering 6399 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) { 6400 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6401 SyncScope::ID SSID = SyncScope::System; 6402 if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 6403 return true; 6404 6405 if (Ordering == AtomicOrdering::Unordered) 6406 return TokError("fence cannot be unordered"); 6407 if (Ordering == AtomicOrdering::Monotonic) 6408 return TokError("fence cannot be monotonic"); 6409 6410 Inst = new FenceInst(Context, Ordering, SSID); 6411 return InstNormal; 6412 } 6413 6414 /// ParseGetElementPtr 6415 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 6416 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 6417 Value *Ptr = nullptr; 6418 Value *Val = nullptr; 6419 LocTy Loc, EltLoc; 6420 6421 bool InBounds = EatIfPresent(lltok::kw_inbounds); 6422 6423 Type *Ty = nullptr; 6424 LocTy ExplicitTypeLoc = Lex.getLoc(); 6425 if (ParseType(Ty) || 6426 ParseToken(lltok::comma, "expected comma after getelementptr's type") || 6427 ParseTypeAndValue(Ptr, Loc, PFS)) 6428 return true; 6429 6430 Type *BaseType = Ptr->getType(); 6431 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 6432 if (!BasePointerType) 6433 return Error(Loc, "base of getelementptr must be a pointer"); 6434 6435 if (Ty != BasePointerType->getElementType()) 6436 return Error(ExplicitTypeLoc, 6437 "explicit pointee type doesn't match operand's pointee type"); 6438 6439 SmallVector<Value*, 16> Indices; 6440 bool AteExtraComma = false; 6441 // GEP returns a vector of pointers if at least one of parameters is a vector. 6442 // All vector parameters should have the same vector width. 6443 unsigned GEPWidth = BaseType->isVectorTy() ? 6444 BaseType->getVectorNumElements() : 0; 6445 6446 while (EatIfPresent(lltok::comma)) { 6447 if (Lex.getKind() == lltok::MetadataVar) { 6448 AteExtraComma = true; 6449 break; 6450 } 6451 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; 6452 if (!Val->getType()->isIntOrIntVectorTy()) 6453 return Error(EltLoc, "getelementptr index must be an integer"); 6454 6455 if (Val->getType()->isVectorTy()) { 6456 unsigned ValNumEl = Val->getType()->getVectorNumElements(); 6457 if (GEPWidth && GEPWidth != ValNumEl) 6458 return Error(EltLoc, 6459 "getelementptr vector index has a wrong number of elements"); 6460 GEPWidth = ValNumEl; 6461 } 6462 Indices.push_back(Val); 6463 } 6464 6465 SmallPtrSet<Type*, 4> Visited; 6466 if (!Indices.empty() && !Ty->isSized(&Visited)) 6467 return Error(Loc, "base element of getelementptr must be sized"); 6468 6469 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 6470 return Error(Loc, "invalid getelementptr indices"); 6471 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 6472 if (InBounds) 6473 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 6474 return AteExtraComma ? InstExtraComma : InstNormal; 6475 } 6476 6477 /// ParseExtractValue 6478 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 6479 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 6480 Value *Val; LocTy Loc; 6481 SmallVector<unsigned, 4> Indices; 6482 bool AteExtraComma; 6483 if (ParseTypeAndValue(Val, Loc, PFS) || 6484 ParseIndexList(Indices, AteExtraComma)) 6485 return true; 6486 6487 if (!Val->getType()->isAggregateType()) 6488 return Error(Loc, "extractvalue operand must be aggregate type"); 6489 6490 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 6491 return Error(Loc, "invalid indices for extractvalue"); 6492 Inst = ExtractValueInst::Create(Val, Indices); 6493 return AteExtraComma ? InstExtraComma : InstNormal; 6494 } 6495 6496 /// ParseInsertValue 6497 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 6498 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 6499 Value *Val0, *Val1; LocTy Loc0, Loc1; 6500 SmallVector<unsigned, 4> Indices; 6501 bool AteExtraComma; 6502 if (ParseTypeAndValue(Val0, Loc0, PFS) || 6503 ParseToken(lltok::comma, "expected comma after insertvalue operand") || 6504 ParseTypeAndValue(Val1, Loc1, PFS) || 6505 ParseIndexList(Indices, AteExtraComma)) 6506 return true; 6507 6508 if (!Val0->getType()->isAggregateType()) 6509 return Error(Loc0, "insertvalue operand must be aggregate type"); 6510 6511 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 6512 if (!IndexedType) 6513 return Error(Loc0, "invalid indices for insertvalue"); 6514 if (IndexedType != Val1->getType()) 6515 return Error(Loc1, "insertvalue operand and field disagree in type: '" + 6516 getTypeString(Val1->getType()) + "' instead of '" + 6517 getTypeString(IndexedType) + "'"); 6518 Inst = InsertValueInst::Create(Val0, Val1, Indices); 6519 return AteExtraComma ? InstExtraComma : InstNormal; 6520 } 6521 6522 //===----------------------------------------------------------------------===// 6523 // Embedded metadata. 6524 //===----------------------------------------------------------------------===// 6525 6526 /// ParseMDNodeVector 6527 /// ::= { Element (',' Element)* } 6528 /// Element 6529 /// ::= 'null' | TypeAndValue 6530 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 6531 if (ParseToken(lltok::lbrace, "expected '{' here")) 6532 return true; 6533 6534 // Check for an empty list. 6535 if (EatIfPresent(lltok::rbrace)) 6536 return false; 6537 6538 do { 6539 // Null is a special case since it is typeless. 6540 if (EatIfPresent(lltok::kw_null)) { 6541 Elts.push_back(nullptr); 6542 continue; 6543 } 6544 6545 Metadata *MD; 6546 if (ParseMetadata(MD, nullptr)) 6547 return true; 6548 Elts.push_back(MD); 6549 } while (EatIfPresent(lltok::comma)); 6550 6551 return ParseToken(lltok::rbrace, "expected end of metadata node"); 6552 } 6553 6554 //===----------------------------------------------------------------------===// 6555 // Use-list order directives. 6556 //===----------------------------------------------------------------------===// 6557 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 6558 SMLoc Loc) { 6559 if (V->use_empty()) 6560 return Error(Loc, "value has no uses"); 6561 6562 unsigned NumUses = 0; 6563 SmallDenseMap<const Use *, unsigned, 16> Order; 6564 for (const Use &U : V->uses()) { 6565 if (++NumUses > Indexes.size()) 6566 break; 6567 Order[&U] = Indexes[NumUses - 1]; 6568 } 6569 if (NumUses < 2) 6570 return Error(Loc, "value only has one use"); 6571 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 6572 return Error(Loc, "wrong number of indexes, expected " + 6573 Twine(std::distance(V->use_begin(), V->use_end()))); 6574 6575 V->sortUseList([&](const Use &L, const Use &R) { 6576 return Order.lookup(&L) < Order.lookup(&R); 6577 }); 6578 return false; 6579 } 6580 6581 /// ParseUseListOrderIndexes 6582 /// ::= '{' uint32 (',' uint32)+ '}' 6583 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 6584 SMLoc Loc = Lex.getLoc(); 6585 if (ParseToken(lltok::lbrace, "expected '{' here")) 6586 return true; 6587 if (Lex.getKind() == lltok::rbrace) 6588 return Lex.Error("expected non-empty list of uselistorder indexes"); 6589 6590 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 6591 // indexes should be distinct numbers in the range [0, size-1], and should 6592 // not be in order. 6593 unsigned Offset = 0; 6594 unsigned Max = 0; 6595 bool IsOrdered = true; 6596 assert(Indexes.empty() && "Expected empty order vector"); 6597 do { 6598 unsigned Index; 6599 if (ParseUInt32(Index)) 6600 return true; 6601 6602 // Update consistency checks. 6603 Offset += Index - Indexes.size(); 6604 Max = std::max(Max, Index); 6605 IsOrdered &= Index == Indexes.size(); 6606 6607 Indexes.push_back(Index); 6608 } while (EatIfPresent(lltok::comma)); 6609 6610 if (ParseToken(lltok::rbrace, "expected '}' here")) 6611 return true; 6612 6613 if (Indexes.size() < 2) 6614 return Error(Loc, "expected >= 2 uselistorder indexes"); 6615 if (Offset != 0 || Max >= Indexes.size()) 6616 return Error(Loc, "expected distinct uselistorder indexes in range [0, size)"); 6617 if (IsOrdered) 6618 return Error(Loc, "expected uselistorder indexes to change the order"); 6619 6620 return false; 6621 } 6622 6623 /// ParseUseListOrder 6624 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 6625 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) { 6626 SMLoc Loc = Lex.getLoc(); 6627 if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 6628 return true; 6629 6630 Value *V; 6631 SmallVector<unsigned, 16> Indexes; 6632 if (ParseTypeAndValue(V, PFS) || 6633 ParseToken(lltok::comma, "expected comma in uselistorder directive") || 6634 ParseUseListOrderIndexes(Indexes)) 6635 return true; 6636 6637 return sortUseListOrder(V, Indexes, Loc); 6638 } 6639 6640 /// ParseUseListOrderBB 6641 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 6642 bool LLParser::ParseUseListOrderBB() { 6643 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 6644 SMLoc Loc = Lex.getLoc(); 6645 Lex.Lex(); 6646 6647 ValID Fn, Label; 6648 SmallVector<unsigned, 16> Indexes; 6649 if (ParseValID(Fn) || 6650 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 6651 ParseValID(Label) || 6652 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 6653 ParseUseListOrderIndexes(Indexes)) 6654 return true; 6655 6656 // Check the function. 6657 GlobalValue *GV; 6658 if (Fn.Kind == ValID::t_GlobalName) 6659 GV = M->getNamedValue(Fn.StrVal); 6660 else if (Fn.Kind == ValID::t_GlobalID) 6661 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 6662 else 6663 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 6664 if (!GV) 6665 return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb"); 6666 auto *F = dyn_cast<Function>(GV); 6667 if (!F) 6668 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 6669 if (F->isDeclaration()) 6670 return Error(Fn.Loc, "invalid declaration in uselistorder_bb"); 6671 6672 // Check the basic block. 6673 if (Label.Kind == ValID::t_LocalID) 6674 return Error(Label.Loc, "invalid numeric label in uselistorder_bb"); 6675 if (Label.Kind != ValID::t_LocalName) 6676 return Error(Label.Loc, "expected basic block name in uselistorder_bb"); 6677 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); 6678 if (!V) 6679 return Error(Label.Loc, "invalid basic block in uselistorder_bb"); 6680 if (!isa<BasicBlock>(V)) 6681 return Error(Label.Loc, "expected basic block in uselistorder_bb"); 6682 6683 return sortUseListOrder(V, Indexes, Loc); 6684 } 6685