1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the parser class for .ll files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/AsmParser/LLParser.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/AsmParser/LLToken.h"
20 #include "llvm/AsmParser/SlotMapping.h"
21 #include "llvm/BinaryFormat/Dwarf.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/AutoUpgrade.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallingConv.h"
26 #include "llvm/IR/Comdat.h"
27 #include "llvm/IR/ConstantRange.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/GlobalIFunc.h"
33 #include "llvm/IR/GlobalObject.h"
34 #include "llvm/IR/InlineAsm.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/LLVMContext.h"
38 #include "llvm/IR/Metadata.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/IR/ValueSymbolTable.h"
42 #include "llvm/Support/Casting.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/MathExtras.h"
45 #include "llvm/Support/SaveAndRestore.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include <algorithm>
48 #include <cassert>
49 #include <cstring>
50 #include <iterator>
51 #include <vector>
52 
53 using namespace llvm;
54 
55 static std::string getTypeString(Type *T) {
56   std::string Result;
57   raw_string_ostream Tmp(Result);
58   Tmp << *T;
59   return Tmp.str();
60 }
61 
62 /// Run: module ::= toplevelentity*
63 bool LLParser::Run(bool UpgradeDebugInfo,
64                    DataLayoutCallbackTy DataLayoutCallback) {
65   // Prime the lexer.
66   Lex.Lex();
67 
68   if (Context.shouldDiscardValueNames())
69     return error(
70         Lex.getLoc(),
71         "Can't read textual IR with a Context that discards named Values");
72 
73   if (M) {
74     if (parseTargetDefinitions())
75       return true;
76 
77     if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple()))
78       M->setDataLayout(*LayoutOverride);
79   }
80 
81   return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) ||
82          validateEndOfIndex();
83 }
84 
85 bool LLParser::parseStandaloneConstantValue(Constant *&C,
86                                             const SlotMapping *Slots) {
87   restoreParsingState(Slots);
88   Lex.Lex();
89 
90   Type *Ty = nullptr;
91   if (parseType(Ty) || parseConstantValue(Ty, C))
92     return true;
93   if (Lex.getKind() != lltok::Eof)
94     return error(Lex.getLoc(), "expected end of string");
95   return false;
96 }
97 
98 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
99                                     const SlotMapping *Slots) {
100   restoreParsingState(Slots);
101   Lex.Lex();
102 
103   Read = 0;
104   SMLoc Start = Lex.getLoc();
105   Ty = nullptr;
106   if (parseType(Ty))
107     return true;
108   SMLoc End = Lex.getLoc();
109   Read = End.getPointer() - Start.getPointer();
110 
111   return false;
112 }
113 
114 void LLParser::restoreParsingState(const SlotMapping *Slots) {
115   if (!Slots)
116     return;
117   NumberedVals = Slots->GlobalValues;
118   NumberedMetadata = Slots->MetadataNodes;
119   for (const auto &I : Slots->NamedTypes)
120     NamedTypes.insert(
121         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
122   for (const auto &I : Slots->Types)
123     NumberedTypes.insert(
124         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
125 }
126 
127 /// validateEndOfModule - Do final validity and sanity checks at the end of the
128 /// module.
129 bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) {
130   if (!M)
131     return false;
132   // Handle any function attribute group forward references.
133   for (const auto &RAG : ForwardRefAttrGroups) {
134     Value *V = RAG.first;
135     const std::vector<unsigned> &Attrs = RAG.second;
136     AttrBuilder B;
137 
138     for (const auto &Attr : Attrs)
139       B.merge(NumberedAttrBuilders[Attr]);
140 
141     if (Function *Fn = dyn_cast<Function>(V)) {
142       AttributeList AS = Fn->getAttributes();
143       AttrBuilder FnAttrs(AS.getFnAttributes());
144       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
145 
146       FnAttrs.merge(B);
147 
148       // If the alignment was parsed as an attribute, move to the alignment
149       // field.
150       if (FnAttrs.hasAlignmentAttr()) {
151         Fn->setAlignment(FnAttrs.getAlignment());
152         FnAttrs.removeAttribute(Attribute::Alignment);
153       }
154 
155       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
156                             AttributeSet::get(Context, FnAttrs));
157       Fn->setAttributes(AS);
158     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
159       AttributeList AS = CI->getAttributes();
160       AttrBuilder FnAttrs(AS.getFnAttributes());
161       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
162       FnAttrs.merge(B);
163       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
164                             AttributeSet::get(Context, FnAttrs));
165       CI->setAttributes(AS);
166     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
167       AttributeList AS = II->getAttributes();
168       AttrBuilder FnAttrs(AS.getFnAttributes());
169       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
170       FnAttrs.merge(B);
171       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
172                             AttributeSet::get(Context, FnAttrs));
173       II->setAttributes(AS);
174     } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
175       AttributeList AS = CBI->getAttributes();
176       AttrBuilder FnAttrs(AS.getFnAttributes());
177       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
178       FnAttrs.merge(B);
179       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
180                             AttributeSet::get(Context, FnAttrs));
181       CBI->setAttributes(AS);
182     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
183       AttrBuilder Attrs(GV->getAttributes());
184       Attrs.merge(B);
185       GV->setAttributes(AttributeSet::get(Context,Attrs));
186     } else {
187       llvm_unreachable("invalid object with forward attribute group reference");
188     }
189   }
190 
191   // If there are entries in ForwardRefBlockAddresses at this point, the
192   // function was never defined.
193   if (!ForwardRefBlockAddresses.empty())
194     return error(ForwardRefBlockAddresses.begin()->first.Loc,
195                  "expected function name in blockaddress");
196 
197   for (const auto &NT : NumberedTypes)
198     if (NT.second.second.isValid())
199       return error(NT.second.second,
200                    "use of undefined type '%" + Twine(NT.first) + "'");
201 
202   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
203        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
204     if (I->second.second.isValid())
205       return error(I->second.second,
206                    "use of undefined type named '" + I->getKey() + "'");
207 
208   if (!ForwardRefComdats.empty())
209     return error(ForwardRefComdats.begin()->second,
210                  "use of undefined comdat '$" +
211                      ForwardRefComdats.begin()->first + "'");
212 
213   if (!ForwardRefVals.empty())
214     return error(ForwardRefVals.begin()->second.second,
215                  "use of undefined value '@" + ForwardRefVals.begin()->first +
216                      "'");
217 
218   if (!ForwardRefValIDs.empty())
219     return error(ForwardRefValIDs.begin()->second.second,
220                  "use of undefined value '@" +
221                      Twine(ForwardRefValIDs.begin()->first) + "'");
222 
223   if (!ForwardRefMDNodes.empty())
224     return error(ForwardRefMDNodes.begin()->second.second,
225                  "use of undefined metadata '!" +
226                      Twine(ForwardRefMDNodes.begin()->first) + "'");
227 
228   // Resolve metadata cycles.
229   for (auto &N : NumberedMetadata) {
230     if (N.second && !N.second->isResolved())
231       N.second->resolveCycles();
232   }
233 
234   for (auto *Inst : InstsWithTBAATag) {
235     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
236     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
237     auto *UpgradedMD = UpgradeTBAANode(*MD);
238     if (MD != UpgradedMD)
239       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
240   }
241 
242   // Look for intrinsic functions and CallInst that need to be upgraded
243   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
244     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
245 
246   // Some types could be renamed during loading if several modules are
247   // loaded in the same LLVMContext (LTO scenario). In this case we should
248   // remangle intrinsics names as well.
249   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
250     Function *F = &*FI++;
251     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
252       F->replaceAllUsesWith(Remangled.getValue());
253       F->eraseFromParent();
254     }
255   }
256 
257   if (UpgradeDebugInfo)
258     llvm::UpgradeDebugInfo(*M);
259 
260   UpgradeModuleFlags(*M);
261   UpgradeSectionAttributes(*M);
262 
263   if (!Slots)
264     return false;
265   // Initialize the slot mapping.
266   // Because by this point we've parsed and validated everything, we can "steal"
267   // the mapping from LLParser as it doesn't need it anymore.
268   Slots->GlobalValues = std::move(NumberedVals);
269   Slots->MetadataNodes = std::move(NumberedMetadata);
270   for (const auto &I : NamedTypes)
271     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
272   for (const auto &I : NumberedTypes)
273     Slots->Types.insert(std::make_pair(I.first, I.second.first));
274 
275   return false;
276 }
277 
278 /// Do final validity and sanity checks at the end of the index.
279 bool LLParser::validateEndOfIndex() {
280   if (!Index)
281     return false;
282 
283   if (!ForwardRefValueInfos.empty())
284     return error(ForwardRefValueInfos.begin()->second.front().second,
285                  "use of undefined summary '^" +
286                      Twine(ForwardRefValueInfos.begin()->first) + "'");
287 
288   if (!ForwardRefAliasees.empty())
289     return error(ForwardRefAliasees.begin()->second.front().second,
290                  "use of undefined summary '^" +
291                      Twine(ForwardRefAliasees.begin()->first) + "'");
292 
293   if (!ForwardRefTypeIds.empty())
294     return error(ForwardRefTypeIds.begin()->second.front().second,
295                  "use of undefined type id summary '^" +
296                      Twine(ForwardRefTypeIds.begin()->first) + "'");
297 
298   return false;
299 }
300 
301 //===----------------------------------------------------------------------===//
302 // Top-Level Entities
303 //===----------------------------------------------------------------------===//
304 
305 bool LLParser::parseTargetDefinitions() {
306   while (true) {
307     switch (Lex.getKind()) {
308     case lltok::kw_target:
309       if (parseTargetDefinition())
310         return true;
311       break;
312     case lltok::kw_source_filename:
313       if (parseSourceFileName())
314         return true;
315       break;
316     default:
317       return false;
318     }
319   }
320 }
321 
322 bool LLParser::parseTopLevelEntities() {
323   // If there is no Module, then parse just the summary index entries.
324   if (!M) {
325     while (true) {
326       switch (Lex.getKind()) {
327       case lltok::Eof:
328         return false;
329       case lltok::SummaryID:
330         if (parseSummaryEntry())
331           return true;
332         break;
333       case lltok::kw_source_filename:
334         if (parseSourceFileName())
335           return true;
336         break;
337       default:
338         // Skip everything else
339         Lex.Lex();
340       }
341     }
342   }
343   while (true) {
344     switch (Lex.getKind()) {
345     default:
346       return tokError("expected top-level entity");
347     case lltok::Eof: return false;
348     case lltok::kw_declare:
349       if (parseDeclare())
350         return true;
351       break;
352     case lltok::kw_define:
353       if (parseDefine())
354         return true;
355       break;
356     case lltok::kw_module:
357       if (parseModuleAsm())
358         return true;
359       break;
360     case lltok::LocalVarID:
361       if (parseUnnamedType())
362         return true;
363       break;
364     case lltok::LocalVar:
365       if (parseNamedType())
366         return true;
367       break;
368     case lltok::GlobalID:
369       if (parseUnnamedGlobal())
370         return true;
371       break;
372     case lltok::GlobalVar:
373       if (parseNamedGlobal())
374         return true;
375       break;
376     case lltok::ComdatVar:  if (parseComdat()) return true; break;
377     case lltok::exclaim:
378       if (parseStandaloneMetadata())
379         return true;
380       break;
381     case lltok::SummaryID:
382       if (parseSummaryEntry())
383         return true;
384       break;
385     case lltok::MetadataVar:
386       if (parseNamedMetadata())
387         return true;
388       break;
389     case lltok::kw_attributes:
390       if (parseUnnamedAttrGrp())
391         return true;
392       break;
393     case lltok::kw_uselistorder:
394       if (parseUseListOrder())
395         return true;
396       break;
397     case lltok::kw_uselistorder_bb:
398       if (parseUseListOrderBB())
399         return true;
400       break;
401     }
402   }
403 }
404 
405 /// toplevelentity
406 ///   ::= 'module' 'asm' STRINGCONSTANT
407 bool LLParser::parseModuleAsm() {
408   assert(Lex.getKind() == lltok::kw_module);
409   Lex.Lex();
410 
411   std::string AsmStr;
412   if (parseToken(lltok::kw_asm, "expected 'module asm'") ||
413       parseStringConstant(AsmStr))
414     return true;
415 
416   M->appendModuleInlineAsm(AsmStr);
417   return false;
418 }
419 
420 /// toplevelentity
421 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
422 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
423 bool LLParser::parseTargetDefinition() {
424   assert(Lex.getKind() == lltok::kw_target);
425   std::string Str;
426   switch (Lex.Lex()) {
427   default:
428     return tokError("unknown target property");
429   case lltok::kw_triple:
430     Lex.Lex();
431     if (parseToken(lltok::equal, "expected '=' after target triple") ||
432         parseStringConstant(Str))
433       return true;
434     M->setTargetTriple(Str);
435     return false;
436   case lltok::kw_datalayout:
437     Lex.Lex();
438     if (parseToken(lltok::equal, "expected '=' after target datalayout") ||
439         parseStringConstant(Str))
440       return true;
441     M->setDataLayout(Str);
442     return false;
443   }
444 }
445 
446 /// toplevelentity
447 ///   ::= 'source_filename' '=' STRINGCONSTANT
448 bool LLParser::parseSourceFileName() {
449   assert(Lex.getKind() == lltok::kw_source_filename);
450   Lex.Lex();
451   if (parseToken(lltok::equal, "expected '=' after source_filename") ||
452       parseStringConstant(SourceFileName))
453     return true;
454   if (M)
455     M->setSourceFileName(SourceFileName);
456   return false;
457 }
458 
459 /// parseUnnamedType:
460 ///   ::= LocalVarID '=' 'type' type
461 bool LLParser::parseUnnamedType() {
462   LocTy TypeLoc = Lex.getLoc();
463   unsigned TypeID = Lex.getUIntVal();
464   Lex.Lex(); // eat LocalVarID;
465 
466   if (parseToken(lltok::equal, "expected '=' after name") ||
467       parseToken(lltok::kw_type, "expected 'type' after '='"))
468     return true;
469 
470   Type *Result = nullptr;
471   if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result))
472     return true;
473 
474   if (!isa<StructType>(Result)) {
475     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
476     if (Entry.first)
477       return error(TypeLoc, "non-struct types may not be recursive");
478     Entry.first = Result;
479     Entry.second = SMLoc();
480   }
481 
482   return false;
483 }
484 
485 /// toplevelentity
486 ///   ::= LocalVar '=' 'type' type
487 bool LLParser::parseNamedType() {
488   std::string Name = Lex.getStrVal();
489   LocTy NameLoc = Lex.getLoc();
490   Lex.Lex();  // eat LocalVar.
491 
492   if (parseToken(lltok::equal, "expected '=' after name") ||
493       parseToken(lltok::kw_type, "expected 'type' after name"))
494     return true;
495 
496   Type *Result = nullptr;
497   if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result))
498     return true;
499 
500   if (!isa<StructType>(Result)) {
501     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
502     if (Entry.first)
503       return error(NameLoc, "non-struct types may not be recursive");
504     Entry.first = Result;
505     Entry.second = SMLoc();
506   }
507 
508   return false;
509 }
510 
511 /// toplevelentity
512 ///   ::= 'declare' FunctionHeader
513 bool LLParser::parseDeclare() {
514   assert(Lex.getKind() == lltok::kw_declare);
515   Lex.Lex();
516 
517   std::vector<std::pair<unsigned, MDNode *>> MDs;
518   while (Lex.getKind() == lltok::MetadataVar) {
519     unsigned MDK;
520     MDNode *N;
521     if (parseMetadataAttachment(MDK, N))
522       return true;
523     MDs.push_back({MDK, N});
524   }
525 
526   Function *F;
527   if (parseFunctionHeader(F, false))
528     return true;
529   for (auto &MD : MDs)
530     F->addMetadata(MD.first, *MD.second);
531   return false;
532 }
533 
534 /// toplevelentity
535 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
536 bool LLParser::parseDefine() {
537   assert(Lex.getKind() == lltok::kw_define);
538   Lex.Lex();
539 
540   Function *F;
541   return parseFunctionHeader(F, true) || parseOptionalFunctionMetadata(*F) ||
542          parseFunctionBody(*F);
543 }
544 
545 /// parseGlobalType
546 ///   ::= 'constant'
547 ///   ::= 'global'
548 bool LLParser::parseGlobalType(bool &IsConstant) {
549   if (Lex.getKind() == lltok::kw_constant)
550     IsConstant = true;
551   else if (Lex.getKind() == lltok::kw_global)
552     IsConstant = false;
553   else {
554     IsConstant = false;
555     return tokError("expected 'global' or 'constant'");
556   }
557   Lex.Lex();
558   return false;
559 }
560 
561 bool LLParser::parseOptionalUnnamedAddr(
562     GlobalVariable::UnnamedAddr &UnnamedAddr) {
563   if (EatIfPresent(lltok::kw_unnamed_addr))
564     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
565   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
566     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
567   else
568     UnnamedAddr = GlobalValue::UnnamedAddr::None;
569   return false;
570 }
571 
572 /// parseUnnamedGlobal:
573 ///   OptionalVisibility (ALIAS | IFUNC) ...
574 ///   OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
575 ///   OptionalDLLStorageClass
576 ///                                                     ...   -> global variable
577 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
578 ///   GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier
579 ///   OptionalVisibility
580 ///                OptionalDLLStorageClass
581 ///                                                     ...   -> global variable
582 bool LLParser::parseUnnamedGlobal() {
583   unsigned VarID = NumberedVals.size();
584   std::string Name;
585   LocTy NameLoc = Lex.getLoc();
586 
587   // Handle the GlobalID form.
588   if (Lex.getKind() == lltok::GlobalID) {
589     if (Lex.getUIntVal() != VarID)
590       return error(Lex.getLoc(),
591                    "variable expected to be numbered '%" + Twine(VarID) + "'");
592     Lex.Lex(); // eat GlobalID;
593 
594     if (parseToken(lltok::equal, "expected '=' after name"))
595       return true;
596   }
597 
598   bool HasLinkage;
599   unsigned Linkage, Visibility, DLLStorageClass;
600   bool DSOLocal;
601   GlobalVariable::ThreadLocalMode TLM;
602   GlobalVariable::UnnamedAddr UnnamedAddr;
603   if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
604                            DSOLocal) ||
605       parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
606     return true;
607 
608   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
609     return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
610                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
611 
612   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
613                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
614 }
615 
616 /// parseNamedGlobal:
617 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
618 ///   GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
619 ///                 OptionalVisibility OptionalDLLStorageClass
620 ///                                                     ...   -> global variable
621 bool LLParser::parseNamedGlobal() {
622   assert(Lex.getKind() == lltok::GlobalVar);
623   LocTy NameLoc = Lex.getLoc();
624   std::string Name = Lex.getStrVal();
625   Lex.Lex();
626 
627   bool HasLinkage;
628   unsigned Linkage, Visibility, DLLStorageClass;
629   bool DSOLocal;
630   GlobalVariable::ThreadLocalMode TLM;
631   GlobalVariable::UnnamedAddr UnnamedAddr;
632   if (parseToken(lltok::equal, "expected '=' in global variable") ||
633       parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
634                            DSOLocal) ||
635       parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
636     return true;
637 
638   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
639     return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
640                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
641 
642   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
643                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
644 }
645 
646 bool LLParser::parseComdat() {
647   assert(Lex.getKind() == lltok::ComdatVar);
648   std::string Name = Lex.getStrVal();
649   LocTy NameLoc = Lex.getLoc();
650   Lex.Lex();
651 
652   if (parseToken(lltok::equal, "expected '=' here"))
653     return true;
654 
655   if (parseToken(lltok::kw_comdat, "expected comdat keyword"))
656     return tokError("expected comdat type");
657 
658   Comdat::SelectionKind SK;
659   switch (Lex.getKind()) {
660   default:
661     return tokError("unknown selection kind");
662   case lltok::kw_any:
663     SK = Comdat::Any;
664     break;
665   case lltok::kw_exactmatch:
666     SK = Comdat::ExactMatch;
667     break;
668   case lltok::kw_largest:
669     SK = Comdat::Largest;
670     break;
671   case lltok::kw_noduplicates:
672     SK = Comdat::NoDuplicates;
673     break;
674   case lltok::kw_samesize:
675     SK = Comdat::SameSize;
676     break;
677   }
678   Lex.Lex();
679 
680   // See if the comdat was forward referenced, if so, use the comdat.
681   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
682   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
683   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
684     return error(NameLoc, "redefinition of comdat '$" + Name + "'");
685 
686   Comdat *C;
687   if (I != ComdatSymTab.end())
688     C = &I->second;
689   else
690     C = M->getOrInsertComdat(Name);
691   C->setSelectionKind(SK);
692 
693   return false;
694 }
695 
696 // MDString:
697 //   ::= '!' STRINGCONSTANT
698 bool LLParser::parseMDString(MDString *&Result) {
699   std::string Str;
700   if (parseStringConstant(Str))
701     return true;
702   Result = MDString::get(Context, Str);
703   return false;
704 }
705 
706 // MDNode:
707 //   ::= '!' MDNodeNumber
708 bool LLParser::parseMDNodeID(MDNode *&Result) {
709   // !{ ..., !42, ... }
710   LocTy IDLoc = Lex.getLoc();
711   unsigned MID = 0;
712   if (parseUInt32(MID))
713     return true;
714 
715   // If not a forward reference, just return it now.
716   if (NumberedMetadata.count(MID)) {
717     Result = NumberedMetadata[MID];
718     return false;
719   }
720 
721   // Otherwise, create MDNode forward reference.
722   auto &FwdRef = ForwardRefMDNodes[MID];
723   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
724 
725   Result = FwdRef.first.get();
726   NumberedMetadata[MID].reset(Result);
727   return false;
728 }
729 
730 /// parseNamedMetadata:
731 ///   !foo = !{ !1, !2 }
732 bool LLParser::parseNamedMetadata() {
733   assert(Lex.getKind() == lltok::MetadataVar);
734   std::string Name = Lex.getStrVal();
735   Lex.Lex();
736 
737   if (parseToken(lltok::equal, "expected '=' here") ||
738       parseToken(lltok::exclaim, "Expected '!' here") ||
739       parseToken(lltok::lbrace, "Expected '{' here"))
740     return true;
741 
742   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
743   if (Lex.getKind() != lltok::rbrace)
744     do {
745       MDNode *N = nullptr;
746       // parse DIExpressions inline as a special case. They are still MDNodes,
747       // so they can still appear in named metadata. Remove this logic if they
748       // become plain Metadata.
749       if (Lex.getKind() == lltok::MetadataVar &&
750           Lex.getStrVal() == "DIExpression") {
751         if (parseDIExpression(N, /*IsDistinct=*/false))
752           return true;
753         // DIArgLists should only appear inline in a function, as they may
754         // contain LocalAsMetadata arguments which require a function context.
755       } else if (Lex.getKind() == lltok::MetadataVar &&
756                  Lex.getStrVal() == "DIArgList") {
757         return tokError("found DIArgList outside of function");
758       } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
759                  parseMDNodeID(N)) {
760         return true;
761       }
762       NMD->addOperand(N);
763     } while (EatIfPresent(lltok::comma));
764 
765   return parseToken(lltok::rbrace, "expected end of metadata node");
766 }
767 
768 /// parseStandaloneMetadata:
769 ///   !42 = !{...}
770 bool LLParser::parseStandaloneMetadata() {
771   assert(Lex.getKind() == lltok::exclaim);
772   Lex.Lex();
773   unsigned MetadataID = 0;
774 
775   MDNode *Init;
776   if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here"))
777     return true;
778 
779   // Detect common error, from old metadata syntax.
780   if (Lex.getKind() == lltok::Type)
781     return tokError("unexpected type in metadata definition");
782 
783   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
784   if (Lex.getKind() == lltok::MetadataVar) {
785     if (parseSpecializedMDNode(Init, IsDistinct))
786       return true;
787   } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
788              parseMDTuple(Init, IsDistinct))
789     return true;
790 
791   // See if this was forward referenced, if so, handle it.
792   auto FI = ForwardRefMDNodes.find(MetadataID);
793   if (FI != ForwardRefMDNodes.end()) {
794     FI->second.first->replaceAllUsesWith(Init);
795     ForwardRefMDNodes.erase(FI);
796 
797     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
798   } else {
799     if (NumberedMetadata.count(MetadataID))
800       return tokError("Metadata id is already used");
801     NumberedMetadata[MetadataID].reset(Init);
802   }
803 
804   return false;
805 }
806 
807 // Skips a single module summary entry.
808 bool LLParser::skipModuleSummaryEntry() {
809   // Each module summary entry consists of a tag for the entry
810   // type, followed by a colon, then the fields which may be surrounded by
811   // nested sets of parentheses. The "tag:" looks like a Label. Once parsing
812   // support is in place we will look for the tokens corresponding to the
813   // expected tags.
814   if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
815       Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags &&
816       Lex.getKind() != lltok::kw_blockcount)
817     return tokError(
818         "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the "
819         "start of summary entry");
820   if (Lex.getKind() == lltok::kw_flags)
821     return parseSummaryIndexFlags();
822   if (Lex.getKind() == lltok::kw_blockcount)
823     return parseBlockCount();
824   Lex.Lex();
825   if (parseToken(lltok::colon, "expected ':' at start of summary entry") ||
826       parseToken(lltok::lparen, "expected '(' at start of summary entry"))
827     return true;
828   // Now walk through the parenthesized entry, until the number of open
829   // parentheses goes back down to 0 (the first '(' was parsed above).
830   unsigned NumOpenParen = 1;
831   do {
832     switch (Lex.getKind()) {
833     case lltok::lparen:
834       NumOpenParen++;
835       break;
836     case lltok::rparen:
837       NumOpenParen--;
838       break;
839     case lltok::Eof:
840       return tokError("found end of file while parsing summary entry");
841     default:
842       // Skip everything in between parentheses.
843       break;
844     }
845     Lex.Lex();
846   } while (NumOpenParen > 0);
847   return false;
848 }
849 
850 /// SummaryEntry
851 ///   ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
852 bool LLParser::parseSummaryEntry() {
853   assert(Lex.getKind() == lltok::SummaryID);
854   unsigned SummaryID = Lex.getUIntVal();
855 
856   // For summary entries, colons should be treated as distinct tokens,
857   // not an indication of the end of a label token.
858   Lex.setIgnoreColonInIdentifiers(true);
859 
860   Lex.Lex();
861   if (parseToken(lltok::equal, "expected '=' here"))
862     return true;
863 
864   // If we don't have an index object, skip the summary entry.
865   if (!Index)
866     return skipModuleSummaryEntry();
867 
868   bool result = false;
869   switch (Lex.getKind()) {
870   case lltok::kw_gv:
871     result = parseGVEntry(SummaryID);
872     break;
873   case lltok::kw_module:
874     result = parseModuleEntry(SummaryID);
875     break;
876   case lltok::kw_typeid:
877     result = parseTypeIdEntry(SummaryID);
878     break;
879   case lltok::kw_typeidCompatibleVTable:
880     result = parseTypeIdCompatibleVtableEntry(SummaryID);
881     break;
882   case lltok::kw_flags:
883     result = parseSummaryIndexFlags();
884     break;
885   case lltok::kw_blockcount:
886     result = parseBlockCount();
887     break;
888   default:
889     result = error(Lex.getLoc(), "unexpected summary kind");
890     break;
891   }
892   Lex.setIgnoreColonInIdentifiers(false);
893   return result;
894 }
895 
896 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
897   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
898          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
899 }
900 
901 // If there was an explicit dso_local, update GV. In the absence of an explicit
902 // dso_local we keep the default value.
903 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
904   if (DSOLocal)
905     GV.setDSOLocal(true);
906 }
907 
908 static std::string typeComparisonErrorMessage(StringRef Message, Type *Ty1,
909                                               Type *Ty2) {
910   std::string ErrString;
911   raw_string_ostream ErrOS(ErrString);
912   ErrOS << Message << " (" << *Ty1 << " vs " << *Ty2 << ")";
913   return ErrOS.str();
914 }
915 
916 /// parseIndirectSymbol:
917 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
918 ///                     OptionalVisibility OptionalDLLStorageClass
919 ///                     OptionalThreadLocal OptionalUnnamedAddr
920 ///                     'alias|ifunc' IndirectSymbol IndirectSymbolAttr*
921 ///
922 /// IndirectSymbol
923 ///   ::= TypeAndValue
924 ///
925 /// IndirectSymbolAttr
926 ///   ::= ',' 'partition' StringConstant
927 ///
928 /// Everything through OptionalUnnamedAddr has already been parsed.
929 ///
930 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
931                                    unsigned L, unsigned Visibility,
932                                    unsigned DLLStorageClass, bool DSOLocal,
933                                    GlobalVariable::ThreadLocalMode TLM,
934                                    GlobalVariable::UnnamedAddr UnnamedAddr) {
935   bool IsAlias;
936   if (Lex.getKind() == lltok::kw_alias)
937     IsAlias = true;
938   else if (Lex.getKind() == lltok::kw_ifunc)
939     IsAlias = false;
940   else
941     llvm_unreachable("Not an alias or ifunc!");
942   Lex.Lex();
943 
944   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
945 
946   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
947     return error(NameLoc, "invalid linkage type for alias");
948 
949   if (!isValidVisibilityForLinkage(Visibility, L))
950     return error(NameLoc,
951                  "symbol with local linkage must have default visibility");
952 
953   Type *Ty;
954   LocTy ExplicitTypeLoc = Lex.getLoc();
955   if (parseType(Ty) ||
956       parseToken(lltok::comma, "expected comma after alias or ifunc's type"))
957     return true;
958 
959   Constant *Aliasee;
960   LocTy AliaseeLoc = Lex.getLoc();
961   if (Lex.getKind() != lltok::kw_bitcast &&
962       Lex.getKind() != lltok::kw_getelementptr &&
963       Lex.getKind() != lltok::kw_addrspacecast &&
964       Lex.getKind() != lltok::kw_inttoptr) {
965     if (parseGlobalTypeAndValue(Aliasee))
966       return true;
967   } else {
968     // The bitcast dest type is not present, it is implied by the dest type.
969     ValID ID;
970     if (parseValID(ID, /*PFS=*/nullptr))
971       return true;
972     if (ID.Kind != ValID::t_Constant)
973       return error(AliaseeLoc, "invalid aliasee");
974     Aliasee = ID.ConstantVal;
975   }
976 
977   Type *AliaseeType = Aliasee->getType();
978   auto *PTy = dyn_cast<PointerType>(AliaseeType);
979   if (!PTy)
980     return error(AliaseeLoc, "An alias or ifunc must have pointer type");
981   unsigned AddrSpace = PTy->getAddressSpace();
982 
983   if (IsAlias && !PTy->isOpaqueOrPointeeTypeMatches(Ty)) {
984     return error(
985         ExplicitTypeLoc,
986         typeComparisonErrorMessage(
987             "explicit pointee type doesn't match operand's pointee type", Ty,
988             PTy->getElementType()));
989   }
990 
991   if (!IsAlias && !PTy->getElementType()->isFunctionTy()) {
992     return error(ExplicitTypeLoc,
993                  "explicit pointee type should be a function type");
994   }
995 
996   GlobalValue *GVal = nullptr;
997 
998   // See if the alias was forward referenced, if so, prepare to replace the
999   // forward reference.
1000   if (!Name.empty()) {
1001     auto I = ForwardRefVals.find(Name);
1002     if (I != ForwardRefVals.end()) {
1003       GVal = I->second.first;
1004       ForwardRefVals.erase(Name);
1005     } else if (M->getNamedValue(Name)) {
1006       return error(NameLoc, "redefinition of global '@" + Name + "'");
1007     }
1008   } else {
1009     auto I = ForwardRefValIDs.find(NumberedVals.size());
1010     if (I != ForwardRefValIDs.end()) {
1011       GVal = I->second.first;
1012       ForwardRefValIDs.erase(I);
1013     }
1014   }
1015 
1016   // Okay, create the alias but do not insert it into the module yet.
1017   std::unique_ptr<GlobalIndirectSymbol> GA;
1018   if (IsAlias)
1019     GA.reset(GlobalAlias::create(Ty, AddrSpace,
1020                                  (GlobalValue::LinkageTypes)Linkage, Name,
1021                                  Aliasee, /*Parent*/ nullptr));
1022   else
1023     GA.reset(GlobalIFunc::create(Ty, AddrSpace,
1024                                  (GlobalValue::LinkageTypes)Linkage, Name,
1025                                  Aliasee, /*Parent*/ nullptr));
1026   GA->setThreadLocalMode(TLM);
1027   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1028   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1029   GA->setUnnamedAddr(UnnamedAddr);
1030   maybeSetDSOLocal(DSOLocal, *GA);
1031 
1032   // At this point we've parsed everything except for the IndirectSymbolAttrs.
1033   // Now parse them if there are any.
1034   while (Lex.getKind() == lltok::comma) {
1035     Lex.Lex();
1036 
1037     if (Lex.getKind() == lltok::kw_partition) {
1038       Lex.Lex();
1039       GA->setPartition(Lex.getStrVal());
1040       if (parseToken(lltok::StringConstant, "expected partition string"))
1041         return true;
1042     } else {
1043       return tokError("unknown alias or ifunc property!");
1044     }
1045   }
1046 
1047   if (Name.empty())
1048     NumberedVals.push_back(GA.get());
1049 
1050   if (GVal) {
1051     // Verify that types agree.
1052     if (GVal->getType() != GA->getType())
1053       return error(
1054           ExplicitTypeLoc,
1055           "forward reference and definition of alias have different types");
1056 
1057     // If they agree, just RAUW the old value with the alias and remove the
1058     // forward ref info.
1059     GVal->replaceAllUsesWith(GA.get());
1060     GVal->eraseFromParent();
1061   }
1062 
1063   // Insert into the module, we know its name won't collide now.
1064   if (IsAlias)
1065     M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
1066   else
1067     M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
1068   assert(GA->getName() == Name && "Should not be a name conflict!");
1069 
1070   // The module owns this now
1071   GA.release();
1072 
1073   return false;
1074 }
1075 
1076 /// parseGlobal
1077 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1078 ///       OptionalVisibility OptionalDLLStorageClass
1079 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
1080 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
1081 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
1082 ///       OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
1083 ///       OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
1084 ///       Const OptionalAttrs
1085 ///
1086 /// Everything up to and including OptionalUnnamedAddr has been parsed
1087 /// already.
1088 ///
1089 bool LLParser::parseGlobal(const std::string &Name, LocTy NameLoc,
1090                            unsigned Linkage, bool HasLinkage,
1091                            unsigned Visibility, unsigned DLLStorageClass,
1092                            bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1093                            GlobalVariable::UnnamedAddr UnnamedAddr) {
1094   if (!isValidVisibilityForLinkage(Visibility, Linkage))
1095     return error(NameLoc,
1096                  "symbol with local linkage must have default visibility");
1097 
1098   unsigned AddrSpace;
1099   bool IsConstant, IsExternallyInitialized;
1100   LocTy IsExternallyInitializedLoc;
1101   LocTy TyLoc;
1102 
1103   Type *Ty = nullptr;
1104   if (parseOptionalAddrSpace(AddrSpace) ||
1105       parseOptionalToken(lltok::kw_externally_initialized,
1106                          IsExternallyInitialized,
1107                          &IsExternallyInitializedLoc) ||
1108       parseGlobalType(IsConstant) || parseType(Ty, TyLoc))
1109     return true;
1110 
1111   // If the linkage is specified and is external, then no initializer is
1112   // present.
1113   Constant *Init = nullptr;
1114   if (!HasLinkage ||
1115       !GlobalValue::isValidDeclarationLinkage(
1116           (GlobalValue::LinkageTypes)Linkage)) {
1117     if (parseGlobalValue(Ty, Init))
1118       return true;
1119   }
1120 
1121   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1122     return error(TyLoc, "invalid type for global variable");
1123 
1124   GlobalValue *GVal = nullptr;
1125 
1126   // See if the global was forward referenced, if so, use the global.
1127   if (!Name.empty()) {
1128     auto I = ForwardRefVals.find(Name);
1129     if (I != ForwardRefVals.end()) {
1130       GVal = I->second.first;
1131       ForwardRefVals.erase(I);
1132     } else if (M->getNamedValue(Name)) {
1133       return error(NameLoc, "redefinition of global '@" + Name + "'");
1134     }
1135   } else {
1136     auto I = ForwardRefValIDs.find(NumberedVals.size());
1137     if (I != ForwardRefValIDs.end()) {
1138       GVal = I->second.first;
1139       ForwardRefValIDs.erase(I);
1140     }
1141   }
1142 
1143   GlobalVariable *GV = new GlobalVariable(
1144       *M, Ty, false, GlobalValue::ExternalLinkage, nullptr, Name, nullptr,
1145       GlobalVariable::NotThreadLocal, AddrSpace);
1146 
1147   if (Name.empty())
1148     NumberedVals.push_back(GV);
1149 
1150   // Set the parsed properties on the global.
1151   if (Init)
1152     GV->setInitializer(Init);
1153   GV->setConstant(IsConstant);
1154   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1155   maybeSetDSOLocal(DSOLocal, *GV);
1156   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1157   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1158   GV->setExternallyInitialized(IsExternallyInitialized);
1159   GV->setThreadLocalMode(TLM);
1160   GV->setUnnamedAddr(UnnamedAddr);
1161 
1162   if (GVal) {
1163     if (!GVal->getType()->isOpaque() && GVal->getValueType() != Ty)
1164       return error(
1165           TyLoc,
1166           "forward reference and definition of global have different types");
1167 
1168     GVal->replaceAllUsesWith(GV);
1169     GVal->eraseFromParent();
1170   }
1171 
1172   // parse attributes on the global.
1173   while (Lex.getKind() == lltok::comma) {
1174     Lex.Lex();
1175 
1176     if (Lex.getKind() == lltok::kw_section) {
1177       Lex.Lex();
1178       GV->setSection(Lex.getStrVal());
1179       if (parseToken(lltok::StringConstant, "expected global section string"))
1180         return true;
1181     } else if (Lex.getKind() == lltok::kw_partition) {
1182       Lex.Lex();
1183       GV->setPartition(Lex.getStrVal());
1184       if (parseToken(lltok::StringConstant, "expected partition string"))
1185         return true;
1186     } else if (Lex.getKind() == lltok::kw_align) {
1187       MaybeAlign Alignment;
1188       if (parseOptionalAlignment(Alignment))
1189         return true;
1190       GV->setAlignment(Alignment);
1191     } else if (Lex.getKind() == lltok::MetadataVar) {
1192       if (parseGlobalObjectMetadataAttachment(*GV))
1193         return true;
1194     } else {
1195       Comdat *C;
1196       if (parseOptionalComdat(Name, C))
1197         return true;
1198       if (C)
1199         GV->setComdat(C);
1200       else
1201         return tokError("unknown global variable property!");
1202     }
1203   }
1204 
1205   AttrBuilder Attrs;
1206   LocTy BuiltinLoc;
1207   std::vector<unsigned> FwdRefAttrGrps;
1208   if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1209     return true;
1210   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1211     GV->setAttributes(AttributeSet::get(Context, Attrs));
1212     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1213   }
1214 
1215   return false;
1216 }
1217 
1218 /// parseUnnamedAttrGrp
1219 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1220 bool LLParser::parseUnnamedAttrGrp() {
1221   assert(Lex.getKind() == lltok::kw_attributes);
1222   LocTy AttrGrpLoc = Lex.getLoc();
1223   Lex.Lex();
1224 
1225   if (Lex.getKind() != lltok::AttrGrpID)
1226     return tokError("expected attribute group id");
1227 
1228   unsigned VarID = Lex.getUIntVal();
1229   std::vector<unsigned> unused;
1230   LocTy BuiltinLoc;
1231   Lex.Lex();
1232 
1233   if (parseToken(lltok::equal, "expected '=' here") ||
1234       parseToken(lltok::lbrace, "expected '{' here") ||
1235       parseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
1236                                  BuiltinLoc) ||
1237       parseToken(lltok::rbrace, "expected end of attribute group"))
1238     return true;
1239 
1240   if (!NumberedAttrBuilders[VarID].hasAttributes())
1241     return error(AttrGrpLoc, "attribute group has no attributes");
1242 
1243   return false;
1244 }
1245 
1246 /// parseFnAttributeValuePairs
1247 ///   ::= <attr> | <attr> '=' <value>
1248 bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B,
1249                                           std::vector<unsigned> &FwdRefAttrGrps,
1250                                           bool inAttrGrp, LocTy &BuiltinLoc) {
1251   bool HaveError = false;
1252 
1253   B.clear();
1254 
1255   while (true) {
1256     lltok::Kind Token = Lex.getKind();
1257     if (Token == lltok::kw_builtin)
1258       BuiltinLoc = Lex.getLoc();
1259     switch (Token) {
1260     default:
1261       if (!inAttrGrp) return HaveError;
1262       return error(Lex.getLoc(), "unterminated attribute group");
1263     case lltok::rbrace:
1264       // Finished.
1265       return false;
1266 
1267     case lltok::AttrGrpID: {
1268       // Allow a function to reference an attribute group:
1269       //
1270       //   define void @foo() #1 { ... }
1271       if (inAttrGrp)
1272         HaveError |= error(
1273             Lex.getLoc(),
1274             "cannot have an attribute group reference in an attribute group");
1275 
1276       unsigned AttrGrpNum = Lex.getUIntVal();
1277       if (inAttrGrp) break;
1278 
1279       // Save the reference to the attribute group. We'll fill it in later.
1280       FwdRefAttrGrps.push_back(AttrGrpNum);
1281       break;
1282     }
1283     // Target-dependent attributes:
1284     case lltok::StringConstant: {
1285       if (parseStringAttribute(B))
1286         return true;
1287       continue;
1288     }
1289 
1290     // Target-independent attributes:
1291     case lltok::kw_align: {
1292       // As a hack, we allow function alignment to be initially parsed as an
1293       // attribute on a function declaration/definition or added to an attribute
1294       // group and later moved to the alignment field.
1295       MaybeAlign Alignment;
1296       if (inAttrGrp) {
1297         Lex.Lex();
1298         uint32_t Value = 0;
1299         if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value))
1300           return true;
1301         Alignment = Align(Value);
1302       } else {
1303         if (parseOptionalAlignment(Alignment))
1304           return true;
1305       }
1306       B.addAlignmentAttr(Alignment);
1307       continue;
1308     }
1309     case lltok::kw_alignstack: {
1310       unsigned Alignment;
1311       if (inAttrGrp) {
1312         Lex.Lex();
1313         if (parseToken(lltok::equal, "expected '=' here") ||
1314             parseUInt32(Alignment))
1315           return true;
1316       } else {
1317         if (parseOptionalStackAlignment(Alignment))
1318           return true;
1319       }
1320       B.addStackAlignmentAttr(Alignment);
1321       continue;
1322     }
1323     case lltok::kw_allocsize: {
1324       unsigned ElemSizeArg;
1325       Optional<unsigned> NumElemsArg;
1326       // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1327       if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1328         return true;
1329       B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1330       continue;
1331     }
1332     case lltok::kw_vscale_range: {
1333       unsigned MinValue, MaxValue;
1334       // inAttrGrp doesn't matter; we only support vscale_range(a[, b])
1335       if (parseVScaleRangeArguments(MinValue, MaxValue))
1336         return true;
1337       B.addVScaleRangeAttr(MinValue, MaxValue);
1338       continue;
1339     }
1340     case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1341     case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1342     case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1343     case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1344     case lltok::kw_hot: B.addAttribute(Attribute::Hot); break;
1345     case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1346     case lltok::kw_inaccessiblememonly:
1347       B.addAttribute(Attribute::InaccessibleMemOnly); break;
1348     case lltok::kw_inaccessiblemem_or_argmemonly:
1349       B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1350     case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1351     case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1352     case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1353     case lltok::kw_mustprogress:
1354       B.addAttribute(Attribute::MustProgress);
1355       break;
1356     case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1357     case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1358     case lltok::kw_nocallback:
1359       B.addAttribute(Attribute::NoCallback);
1360       break;
1361     case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1362     case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break;
1363     case lltok::kw_noimplicitfloat:
1364       B.addAttribute(Attribute::NoImplicitFloat); break;
1365     case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1366     case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1367     case lltok::kw_nomerge: B.addAttribute(Attribute::NoMerge); break;
1368     case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1369     case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1370     case lltok::kw_nosync: B.addAttribute(Attribute::NoSync); break;
1371     case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break;
1372     case lltok::kw_noprofile: B.addAttribute(Attribute::NoProfile); break;
1373     case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1374     case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1375     case lltok::kw_nosanitize_coverage:
1376       B.addAttribute(Attribute::NoSanitizeCoverage);
1377       break;
1378     case lltok::kw_null_pointer_is_valid:
1379       B.addAttribute(Attribute::NullPointerIsValid); break;
1380     case lltok::kw_optforfuzzing:
1381       B.addAttribute(Attribute::OptForFuzzing); break;
1382     case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1383     case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1384     case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1385     case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1386     case lltok::kw_returns_twice:
1387       B.addAttribute(Attribute::ReturnsTwice); break;
1388     case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break;
1389     case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1390     case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1391     case lltok::kw_sspstrong:
1392       B.addAttribute(Attribute::StackProtectStrong); break;
1393     case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1394     case lltok::kw_shadowcallstack:
1395       B.addAttribute(Attribute::ShadowCallStack); break;
1396     case lltok::kw_sanitize_address:
1397       B.addAttribute(Attribute::SanitizeAddress); break;
1398     case lltok::kw_sanitize_hwaddress:
1399       B.addAttribute(Attribute::SanitizeHWAddress); break;
1400     case lltok::kw_sanitize_memtag:
1401       B.addAttribute(Attribute::SanitizeMemTag); break;
1402     case lltok::kw_sanitize_thread:
1403       B.addAttribute(Attribute::SanitizeThread); break;
1404     case lltok::kw_sanitize_memory:
1405       B.addAttribute(Attribute::SanitizeMemory); break;
1406     case lltok::kw_speculative_load_hardening:
1407       B.addAttribute(Attribute::SpeculativeLoadHardening);
1408       break;
1409     case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break;
1410     case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1411     case lltok::kw_willreturn: B.addAttribute(Attribute::WillReturn); break;
1412     case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1413     case lltok::kw_preallocated: {
1414       Type *Ty;
1415       if (parsePreallocated(Ty))
1416         return true;
1417       B.addPreallocatedAttr(Ty);
1418       break;
1419     }
1420 
1421     // error handling.
1422     case lltok::kw_inreg:
1423     case lltok::kw_signext:
1424     case lltok::kw_zeroext:
1425       HaveError |=
1426           error(Lex.getLoc(), "invalid use of attribute on a function");
1427       break;
1428     case lltok::kw_byval:
1429     case lltok::kw_dereferenceable:
1430     case lltok::kw_dereferenceable_or_null:
1431     case lltok::kw_inalloca:
1432     case lltok::kw_nest:
1433     case lltok::kw_noalias:
1434     case lltok::kw_noundef:
1435     case lltok::kw_nocapture:
1436     case lltok::kw_nonnull:
1437     case lltok::kw_returned:
1438     case lltok::kw_sret:
1439     case lltok::kw_swifterror:
1440     case lltok::kw_swiftself:
1441     case lltok::kw_swiftasync:
1442     case lltok::kw_immarg:
1443     case lltok::kw_byref:
1444       HaveError |=
1445           error(Lex.getLoc(),
1446                 "invalid use of parameter-only attribute on a function");
1447       break;
1448     }
1449 
1450     // parsePreallocated() consumes token
1451     if (Token != lltok::kw_preallocated)
1452       Lex.Lex();
1453   }
1454 }
1455 
1456 //===----------------------------------------------------------------------===//
1457 // GlobalValue Reference/Resolution Routines.
1458 //===----------------------------------------------------------------------===//
1459 
1460 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy) {
1461   // For opaque pointers, the used global type does not matter. We will later
1462   // RAUW it with a global/function of the correct type.
1463   if (PTy->isOpaque())
1464     return new GlobalVariable(*M, Type::getInt8Ty(M->getContext()), false,
1465                               GlobalValue::ExternalWeakLinkage, nullptr, "",
1466                               nullptr, GlobalVariable::NotThreadLocal,
1467                               PTy->getAddressSpace());
1468 
1469   if (auto *FT = dyn_cast<FunctionType>(PTy->getPointerElementType()))
1470     return Function::Create(FT, GlobalValue::ExternalWeakLinkage,
1471                             PTy->getAddressSpace(), "", M);
1472   else
1473     return new GlobalVariable(*M, PTy->getPointerElementType(), false,
1474                               GlobalValue::ExternalWeakLinkage, nullptr, "",
1475                               nullptr, GlobalVariable::NotThreadLocal,
1476                               PTy->getAddressSpace());
1477 }
1478 
1479 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1480                                         Value *Val, bool IsCall) {
1481   Type *ValTy = Val->getType();
1482   if (ValTy == Ty)
1483     return Val;
1484   // For calls, we also allow opaque pointers.
1485   if (IsCall && ValTy == PointerType::get(Ty->getContext(),
1486                                           Ty->getPointerAddressSpace()))
1487     return Val;
1488   if (Ty->isLabelTy())
1489     error(Loc, "'" + Name + "' is not a basic block");
1490   else
1491     error(Loc, "'" + Name + "' defined with type '" +
1492                    getTypeString(Val->getType()) + "' but expected '" +
1493                    getTypeString(Ty) + "'");
1494   return nullptr;
1495 }
1496 
1497 /// getGlobalVal - Get a value with the specified name or ID, creating a
1498 /// forward reference record if needed.  This can return null if the value
1499 /// exists but does not have the right type.
1500 GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty,
1501                                     LocTy Loc, bool IsCall) {
1502   PointerType *PTy = dyn_cast<PointerType>(Ty);
1503   if (!PTy) {
1504     error(Loc, "global variable reference must have pointer type");
1505     return nullptr;
1506   }
1507 
1508   // Look this name up in the normal function symbol table.
1509   GlobalValue *Val =
1510     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1511 
1512   // If this is a forward reference for the value, see if we already created a
1513   // forward ref record.
1514   if (!Val) {
1515     auto I = ForwardRefVals.find(Name);
1516     if (I != ForwardRefVals.end())
1517       Val = I->second.first;
1518   }
1519 
1520   // If we have the value in the symbol table or fwd-ref table, return it.
1521   if (Val)
1522     return cast_or_null<GlobalValue>(
1523         checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall));
1524 
1525   // Otherwise, create a new forward reference for this value and remember it.
1526   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy);
1527   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1528   return FwdVal;
1529 }
1530 
1531 GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc,
1532                                     bool IsCall) {
1533   PointerType *PTy = dyn_cast<PointerType>(Ty);
1534   if (!PTy) {
1535     error(Loc, "global variable reference must have pointer type");
1536     return nullptr;
1537   }
1538 
1539   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1540 
1541   // If this is a forward reference for the value, see if we already created a
1542   // forward ref record.
1543   if (!Val) {
1544     auto I = ForwardRefValIDs.find(ID);
1545     if (I != ForwardRefValIDs.end())
1546       Val = I->second.first;
1547   }
1548 
1549   // If we have the value in the symbol table or fwd-ref table, return it.
1550   if (Val)
1551     return cast_or_null<GlobalValue>(
1552         checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall));
1553 
1554   // Otherwise, create a new forward reference for this value and remember it.
1555   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy);
1556   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1557   return FwdVal;
1558 }
1559 
1560 //===----------------------------------------------------------------------===//
1561 // Comdat Reference/Resolution Routines.
1562 //===----------------------------------------------------------------------===//
1563 
1564 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1565   // Look this name up in the comdat symbol table.
1566   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1567   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1568   if (I != ComdatSymTab.end())
1569     return &I->second;
1570 
1571   // Otherwise, create a new forward reference for this value and remember it.
1572   Comdat *C = M->getOrInsertComdat(Name);
1573   ForwardRefComdats[Name] = Loc;
1574   return C;
1575 }
1576 
1577 //===----------------------------------------------------------------------===//
1578 // Helper Routines.
1579 //===----------------------------------------------------------------------===//
1580 
1581 /// parseToken - If the current token has the specified kind, eat it and return
1582 /// success.  Otherwise, emit the specified error and return failure.
1583 bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) {
1584   if (Lex.getKind() != T)
1585     return tokError(ErrMsg);
1586   Lex.Lex();
1587   return false;
1588 }
1589 
1590 /// parseStringConstant
1591 ///   ::= StringConstant
1592 bool LLParser::parseStringConstant(std::string &Result) {
1593   if (Lex.getKind() != lltok::StringConstant)
1594     return tokError("expected string constant");
1595   Result = Lex.getStrVal();
1596   Lex.Lex();
1597   return false;
1598 }
1599 
1600 /// parseUInt32
1601 ///   ::= uint32
1602 bool LLParser::parseUInt32(uint32_t &Val) {
1603   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1604     return tokError("expected integer");
1605   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1606   if (Val64 != unsigned(Val64))
1607     return tokError("expected 32-bit integer (too large)");
1608   Val = Val64;
1609   Lex.Lex();
1610   return false;
1611 }
1612 
1613 /// parseUInt64
1614 ///   ::= uint64
1615 bool LLParser::parseUInt64(uint64_t &Val) {
1616   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1617     return tokError("expected integer");
1618   Val = Lex.getAPSIntVal().getLimitedValue();
1619   Lex.Lex();
1620   return false;
1621 }
1622 
1623 /// parseTLSModel
1624 ///   := 'localdynamic'
1625 ///   := 'initialexec'
1626 ///   := 'localexec'
1627 bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1628   switch (Lex.getKind()) {
1629     default:
1630       return tokError("expected localdynamic, initialexec or localexec");
1631     case lltok::kw_localdynamic:
1632       TLM = GlobalVariable::LocalDynamicTLSModel;
1633       break;
1634     case lltok::kw_initialexec:
1635       TLM = GlobalVariable::InitialExecTLSModel;
1636       break;
1637     case lltok::kw_localexec:
1638       TLM = GlobalVariable::LocalExecTLSModel;
1639       break;
1640   }
1641 
1642   Lex.Lex();
1643   return false;
1644 }
1645 
1646 /// parseOptionalThreadLocal
1647 ///   := /*empty*/
1648 ///   := 'thread_local'
1649 ///   := 'thread_local' '(' tlsmodel ')'
1650 bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1651   TLM = GlobalVariable::NotThreadLocal;
1652   if (!EatIfPresent(lltok::kw_thread_local))
1653     return false;
1654 
1655   TLM = GlobalVariable::GeneralDynamicTLSModel;
1656   if (Lex.getKind() == lltok::lparen) {
1657     Lex.Lex();
1658     return parseTLSModel(TLM) ||
1659            parseToken(lltok::rparen, "expected ')' after thread local model");
1660   }
1661   return false;
1662 }
1663 
1664 /// parseOptionalAddrSpace
1665 ///   := /*empty*/
1666 ///   := 'addrspace' '(' uint32 ')'
1667 bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1668   AddrSpace = DefaultAS;
1669   if (!EatIfPresent(lltok::kw_addrspace))
1670     return false;
1671   return parseToken(lltok::lparen, "expected '(' in address space") ||
1672          parseUInt32(AddrSpace) ||
1673          parseToken(lltok::rparen, "expected ')' in address space");
1674 }
1675 
1676 /// parseStringAttribute
1677 ///   := StringConstant
1678 ///   := StringConstant '=' StringConstant
1679 bool LLParser::parseStringAttribute(AttrBuilder &B) {
1680   std::string Attr = Lex.getStrVal();
1681   Lex.Lex();
1682   std::string Val;
1683   if (EatIfPresent(lltok::equal) && parseStringConstant(Val))
1684     return true;
1685   B.addAttribute(Attr, Val);
1686   return false;
1687 }
1688 
1689 /// parseOptionalParamAttrs - parse a potentially empty list of parameter
1690 /// attributes.
1691 bool LLParser::parseOptionalParamAttrs(AttrBuilder &B) {
1692   bool HaveError = false;
1693 
1694   B.clear();
1695 
1696   while (true) {
1697     lltok::Kind Token = Lex.getKind();
1698     switch (Token) {
1699     default:  // End of attributes.
1700       return HaveError;
1701     case lltok::StringConstant: {
1702       if (parseStringAttribute(B))
1703         return true;
1704       continue;
1705     }
1706     case lltok::kw_align: {
1707       MaybeAlign Alignment;
1708       if (parseOptionalAlignment(Alignment, true))
1709         return true;
1710       B.addAlignmentAttr(Alignment);
1711       continue;
1712     }
1713     case lltok::kw_alignstack: {
1714       unsigned Alignment;
1715       if (parseOptionalStackAlignment(Alignment))
1716         return true;
1717       B.addStackAlignmentAttr(Alignment);
1718       continue;
1719     }
1720     case lltok::kw_byval: {
1721       Type *Ty;
1722       if (parseRequiredTypeAttr(Ty, lltok::kw_byval))
1723         return true;
1724       B.addByValAttr(Ty);
1725       continue;
1726     }
1727     case lltok::kw_sret: {
1728       Type *Ty;
1729       if (parseRequiredTypeAttr(Ty, lltok::kw_sret))
1730         return true;
1731       B.addStructRetAttr(Ty);
1732       continue;
1733     }
1734     case lltok::kw_preallocated: {
1735       Type *Ty;
1736       if (parsePreallocated(Ty))
1737         return true;
1738       B.addPreallocatedAttr(Ty);
1739       continue;
1740     }
1741     case lltok::kw_inalloca: {
1742       Type *Ty;
1743       if (parseInalloca(Ty))
1744         return true;
1745       B.addInAllocaAttr(Ty);
1746       continue;
1747     }
1748     case lltok::kw_dereferenceable: {
1749       uint64_t Bytes;
1750       if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1751         return true;
1752       B.addDereferenceableAttr(Bytes);
1753       continue;
1754     }
1755     case lltok::kw_dereferenceable_or_null: {
1756       uint64_t Bytes;
1757       if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1758         return true;
1759       B.addDereferenceableOrNullAttr(Bytes);
1760       continue;
1761     }
1762     case lltok::kw_byref: {
1763       Type *Ty;
1764       if (parseByRef(Ty))
1765         return true;
1766       B.addByRefAttr(Ty);
1767       continue;
1768     }
1769     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1770     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1771     case lltok::kw_noundef:
1772       B.addAttribute(Attribute::NoUndef);
1773       break;
1774     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1775     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1776     case lltok::kw_nofree:          B.addAttribute(Attribute::NoFree); break;
1777     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1778     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1779     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1780     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1781     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1782     case lltok::kw_swifterror:      B.addAttribute(Attribute::SwiftError); break;
1783     case lltok::kw_swiftself:       B.addAttribute(Attribute::SwiftSelf); break;
1784     case lltok::kw_swiftasync:      B.addAttribute(Attribute::SwiftAsync); break;
1785     case lltok::kw_writeonly:       B.addAttribute(Attribute::WriteOnly); break;
1786     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1787     case lltok::kw_immarg:          B.addAttribute(Attribute::ImmArg); break;
1788 
1789     case lltok::kw_alwaysinline:
1790     case lltok::kw_argmemonly:
1791     case lltok::kw_builtin:
1792     case lltok::kw_inlinehint:
1793     case lltok::kw_jumptable:
1794     case lltok::kw_minsize:
1795     case lltok::kw_mustprogress:
1796     case lltok::kw_naked:
1797     case lltok::kw_nobuiltin:
1798     case lltok::kw_noduplicate:
1799     case lltok::kw_noimplicitfloat:
1800     case lltok::kw_noinline:
1801     case lltok::kw_nonlazybind:
1802     case lltok::kw_nomerge:
1803     case lltok::kw_noprofile:
1804     case lltok::kw_noredzone:
1805     case lltok::kw_noreturn:
1806     case lltok::kw_nocf_check:
1807     case lltok::kw_nounwind:
1808     case lltok::kw_nosanitize_coverage:
1809     case lltok::kw_optforfuzzing:
1810     case lltok::kw_optnone:
1811     case lltok::kw_optsize:
1812     case lltok::kw_returns_twice:
1813     case lltok::kw_sanitize_address:
1814     case lltok::kw_sanitize_hwaddress:
1815     case lltok::kw_sanitize_memtag:
1816     case lltok::kw_sanitize_memory:
1817     case lltok::kw_sanitize_thread:
1818     case lltok::kw_speculative_load_hardening:
1819     case lltok::kw_ssp:
1820     case lltok::kw_sspreq:
1821     case lltok::kw_sspstrong:
1822     case lltok::kw_safestack:
1823     case lltok::kw_shadowcallstack:
1824     case lltok::kw_strictfp:
1825     case lltok::kw_uwtable:
1826     case lltok::kw_vscale_range:
1827       HaveError |=
1828           error(Lex.getLoc(), "invalid use of function-only attribute");
1829       break;
1830     }
1831 
1832     Lex.Lex();
1833   }
1834 }
1835 
1836 /// parseOptionalReturnAttrs - parse a potentially empty list of return
1837 /// attributes.
1838 bool LLParser::parseOptionalReturnAttrs(AttrBuilder &B) {
1839   bool HaveError = false;
1840 
1841   B.clear();
1842 
1843   while (true) {
1844     lltok::Kind Token = Lex.getKind();
1845     switch (Token) {
1846     default:  // End of attributes.
1847       return HaveError;
1848     case lltok::StringConstant: {
1849       if (parseStringAttribute(B))
1850         return true;
1851       continue;
1852     }
1853     case lltok::kw_dereferenceable: {
1854       uint64_t Bytes;
1855       if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1856         return true;
1857       B.addDereferenceableAttr(Bytes);
1858       continue;
1859     }
1860     case lltok::kw_dereferenceable_or_null: {
1861       uint64_t Bytes;
1862       if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1863         return true;
1864       B.addDereferenceableOrNullAttr(Bytes);
1865       continue;
1866     }
1867     case lltok::kw_align: {
1868       MaybeAlign Alignment;
1869       if (parseOptionalAlignment(Alignment))
1870         return true;
1871       B.addAlignmentAttr(Alignment);
1872       continue;
1873     }
1874     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1875     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1876     case lltok::kw_noundef:
1877       B.addAttribute(Attribute::NoUndef);
1878       break;
1879     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1880     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1881     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1882 
1883     // error handling.
1884     case lltok::kw_byval:
1885     case lltok::kw_inalloca:
1886     case lltok::kw_nest:
1887     case lltok::kw_nocapture:
1888     case lltok::kw_returned:
1889     case lltok::kw_sret:
1890     case lltok::kw_swifterror:
1891     case lltok::kw_swiftself:
1892     case lltok::kw_swiftasync:
1893     case lltok::kw_immarg:
1894     case lltok::kw_byref:
1895       HaveError |=
1896           error(Lex.getLoc(), "invalid use of parameter-only attribute");
1897       break;
1898 
1899     case lltok::kw_alignstack:
1900     case lltok::kw_alwaysinline:
1901     case lltok::kw_argmemonly:
1902     case lltok::kw_builtin:
1903     case lltok::kw_cold:
1904     case lltok::kw_inlinehint:
1905     case lltok::kw_jumptable:
1906     case lltok::kw_minsize:
1907     case lltok::kw_mustprogress:
1908     case lltok::kw_naked:
1909     case lltok::kw_nobuiltin:
1910     case lltok::kw_noduplicate:
1911     case lltok::kw_noimplicitfloat:
1912     case lltok::kw_noinline:
1913     case lltok::kw_nonlazybind:
1914     case lltok::kw_nomerge:
1915     case lltok::kw_noprofile:
1916     case lltok::kw_noredzone:
1917     case lltok::kw_noreturn:
1918     case lltok::kw_nocf_check:
1919     case lltok::kw_nounwind:
1920     case lltok::kw_nosanitize_coverage:
1921     case lltok::kw_optforfuzzing:
1922     case lltok::kw_optnone:
1923     case lltok::kw_optsize:
1924     case lltok::kw_returns_twice:
1925     case lltok::kw_sanitize_address:
1926     case lltok::kw_sanitize_hwaddress:
1927     case lltok::kw_sanitize_memtag:
1928     case lltok::kw_sanitize_memory:
1929     case lltok::kw_sanitize_thread:
1930     case lltok::kw_speculative_load_hardening:
1931     case lltok::kw_ssp:
1932     case lltok::kw_sspreq:
1933     case lltok::kw_sspstrong:
1934     case lltok::kw_safestack:
1935     case lltok::kw_shadowcallstack:
1936     case lltok::kw_strictfp:
1937     case lltok::kw_uwtable:
1938     case lltok::kw_vscale_range:
1939       HaveError |=
1940           error(Lex.getLoc(), "invalid use of function-only attribute");
1941       break;
1942     case lltok::kw_readnone:
1943     case lltok::kw_readonly:
1944       HaveError |=
1945           error(Lex.getLoc(), "invalid use of attribute on return type");
1946       break;
1947     case lltok::kw_preallocated:
1948       HaveError |=
1949           error(Lex.getLoc(),
1950                 "invalid use of parameter-only/call site-only attribute");
1951       break;
1952     }
1953 
1954     Lex.Lex();
1955   }
1956 }
1957 
1958 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1959   HasLinkage = true;
1960   switch (Kind) {
1961   default:
1962     HasLinkage = false;
1963     return GlobalValue::ExternalLinkage;
1964   case lltok::kw_private:
1965     return GlobalValue::PrivateLinkage;
1966   case lltok::kw_internal:
1967     return GlobalValue::InternalLinkage;
1968   case lltok::kw_weak:
1969     return GlobalValue::WeakAnyLinkage;
1970   case lltok::kw_weak_odr:
1971     return GlobalValue::WeakODRLinkage;
1972   case lltok::kw_linkonce:
1973     return GlobalValue::LinkOnceAnyLinkage;
1974   case lltok::kw_linkonce_odr:
1975     return GlobalValue::LinkOnceODRLinkage;
1976   case lltok::kw_available_externally:
1977     return GlobalValue::AvailableExternallyLinkage;
1978   case lltok::kw_appending:
1979     return GlobalValue::AppendingLinkage;
1980   case lltok::kw_common:
1981     return GlobalValue::CommonLinkage;
1982   case lltok::kw_extern_weak:
1983     return GlobalValue::ExternalWeakLinkage;
1984   case lltok::kw_external:
1985     return GlobalValue::ExternalLinkage;
1986   }
1987 }
1988 
1989 /// parseOptionalLinkage
1990 ///   ::= /*empty*/
1991 ///   ::= 'private'
1992 ///   ::= 'internal'
1993 ///   ::= 'weak'
1994 ///   ::= 'weak_odr'
1995 ///   ::= 'linkonce'
1996 ///   ::= 'linkonce_odr'
1997 ///   ::= 'available_externally'
1998 ///   ::= 'appending'
1999 ///   ::= 'common'
2000 ///   ::= 'extern_weak'
2001 ///   ::= 'external'
2002 bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage,
2003                                     unsigned &Visibility,
2004                                     unsigned &DLLStorageClass, bool &DSOLocal) {
2005   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
2006   if (HasLinkage)
2007     Lex.Lex();
2008   parseOptionalDSOLocal(DSOLocal);
2009   parseOptionalVisibility(Visibility);
2010   parseOptionalDLLStorageClass(DLLStorageClass);
2011 
2012   if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
2013     return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
2014   }
2015 
2016   return false;
2017 }
2018 
2019 void LLParser::parseOptionalDSOLocal(bool &DSOLocal) {
2020   switch (Lex.getKind()) {
2021   default:
2022     DSOLocal = false;
2023     break;
2024   case lltok::kw_dso_local:
2025     DSOLocal = true;
2026     Lex.Lex();
2027     break;
2028   case lltok::kw_dso_preemptable:
2029     DSOLocal = false;
2030     Lex.Lex();
2031     break;
2032   }
2033 }
2034 
2035 /// parseOptionalVisibility
2036 ///   ::= /*empty*/
2037 ///   ::= 'default'
2038 ///   ::= 'hidden'
2039 ///   ::= 'protected'
2040 ///
2041 void LLParser::parseOptionalVisibility(unsigned &Res) {
2042   switch (Lex.getKind()) {
2043   default:
2044     Res = GlobalValue::DefaultVisibility;
2045     return;
2046   case lltok::kw_default:
2047     Res = GlobalValue::DefaultVisibility;
2048     break;
2049   case lltok::kw_hidden:
2050     Res = GlobalValue::HiddenVisibility;
2051     break;
2052   case lltok::kw_protected:
2053     Res = GlobalValue::ProtectedVisibility;
2054     break;
2055   }
2056   Lex.Lex();
2057 }
2058 
2059 /// parseOptionalDLLStorageClass
2060 ///   ::= /*empty*/
2061 ///   ::= 'dllimport'
2062 ///   ::= 'dllexport'
2063 ///
2064 void LLParser::parseOptionalDLLStorageClass(unsigned &Res) {
2065   switch (Lex.getKind()) {
2066   default:
2067     Res = GlobalValue::DefaultStorageClass;
2068     return;
2069   case lltok::kw_dllimport:
2070     Res = GlobalValue::DLLImportStorageClass;
2071     break;
2072   case lltok::kw_dllexport:
2073     Res = GlobalValue::DLLExportStorageClass;
2074     break;
2075   }
2076   Lex.Lex();
2077 }
2078 
2079 /// parseOptionalCallingConv
2080 ///   ::= /*empty*/
2081 ///   ::= 'ccc'
2082 ///   ::= 'fastcc'
2083 ///   ::= 'intel_ocl_bicc'
2084 ///   ::= 'coldcc'
2085 ///   ::= 'cfguard_checkcc'
2086 ///   ::= 'x86_stdcallcc'
2087 ///   ::= 'x86_fastcallcc'
2088 ///   ::= 'x86_thiscallcc'
2089 ///   ::= 'x86_vectorcallcc'
2090 ///   ::= 'arm_apcscc'
2091 ///   ::= 'arm_aapcscc'
2092 ///   ::= 'arm_aapcs_vfpcc'
2093 ///   ::= 'aarch64_vector_pcs'
2094 ///   ::= 'aarch64_sve_vector_pcs'
2095 ///   ::= 'msp430_intrcc'
2096 ///   ::= 'avr_intrcc'
2097 ///   ::= 'avr_signalcc'
2098 ///   ::= 'ptx_kernel'
2099 ///   ::= 'ptx_device'
2100 ///   ::= 'spir_func'
2101 ///   ::= 'spir_kernel'
2102 ///   ::= 'x86_64_sysvcc'
2103 ///   ::= 'win64cc'
2104 ///   ::= 'webkit_jscc'
2105 ///   ::= 'anyregcc'
2106 ///   ::= 'preserve_mostcc'
2107 ///   ::= 'preserve_allcc'
2108 ///   ::= 'ghccc'
2109 ///   ::= 'swiftcc'
2110 ///   ::= 'swifttailcc'
2111 ///   ::= 'x86_intrcc'
2112 ///   ::= 'hhvmcc'
2113 ///   ::= 'hhvm_ccc'
2114 ///   ::= 'cxx_fast_tlscc'
2115 ///   ::= 'amdgpu_vs'
2116 ///   ::= 'amdgpu_ls'
2117 ///   ::= 'amdgpu_hs'
2118 ///   ::= 'amdgpu_es'
2119 ///   ::= 'amdgpu_gs'
2120 ///   ::= 'amdgpu_ps'
2121 ///   ::= 'amdgpu_cs'
2122 ///   ::= 'amdgpu_kernel'
2123 ///   ::= 'tailcc'
2124 ///   ::= 'cc' UINT
2125 ///
2126 bool LLParser::parseOptionalCallingConv(unsigned &CC) {
2127   switch (Lex.getKind()) {
2128   default:                       CC = CallingConv::C; return false;
2129   case lltok::kw_ccc:            CC = CallingConv::C; break;
2130   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
2131   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
2132   case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break;
2133   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
2134   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
2135   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
2136   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
2137   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
2138   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
2139   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
2140   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
2141   case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
2142   case lltok::kw_aarch64_sve_vector_pcs:
2143     CC = CallingConv::AArch64_SVE_VectorCall;
2144     break;
2145   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
2146   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
2147   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
2148   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
2149   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
2150   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
2151   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
2152   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
2153   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
2154   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
2155   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
2156   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
2157   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
2158   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
2159   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
2160   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
2161   case lltok::kw_swifttailcc:    CC = CallingConv::SwiftTail; break;
2162   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
2163   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
2164   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
2165   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
2166   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
2167   case lltok::kw_amdgpu_gfx:     CC = CallingConv::AMDGPU_Gfx; break;
2168   case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
2169   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
2170   case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
2171   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
2172   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
2173   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
2174   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
2175   case lltok::kw_tailcc:         CC = CallingConv::Tail; break;
2176   case lltok::kw_cc: {
2177       Lex.Lex();
2178       return parseUInt32(CC);
2179     }
2180   }
2181 
2182   Lex.Lex();
2183   return false;
2184 }
2185 
2186 /// parseMetadataAttachment
2187 ///   ::= !dbg !42
2188 bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
2189   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
2190 
2191   std::string Name = Lex.getStrVal();
2192   Kind = M->getMDKindID(Name);
2193   Lex.Lex();
2194 
2195   return parseMDNode(MD);
2196 }
2197 
2198 /// parseInstructionMetadata
2199 ///   ::= !dbg !42 (',' !dbg !57)*
2200 bool LLParser::parseInstructionMetadata(Instruction &Inst) {
2201   do {
2202     if (Lex.getKind() != lltok::MetadataVar)
2203       return tokError("expected metadata after comma");
2204 
2205     unsigned MDK;
2206     MDNode *N;
2207     if (parseMetadataAttachment(MDK, N))
2208       return true;
2209 
2210     Inst.setMetadata(MDK, N);
2211     if (MDK == LLVMContext::MD_tbaa)
2212       InstsWithTBAATag.push_back(&Inst);
2213 
2214     // If this is the end of the list, we're done.
2215   } while (EatIfPresent(lltok::comma));
2216   return false;
2217 }
2218 
2219 /// parseGlobalObjectMetadataAttachment
2220 ///   ::= !dbg !57
2221 bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) {
2222   unsigned MDK;
2223   MDNode *N;
2224   if (parseMetadataAttachment(MDK, N))
2225     return true;
2226 
2227   GO.addMetadata(MDK, *N);
2228   return false;
2229 }
2230 
2231 /// parseOptionalFunctionMetadata
2232 ///   ::= (!dbg !57)*
2233 bool LLParser::parseOptionalFunctionMetadata(Function &F) {
2234   while (Lex.getKind() == lltok::MetadataVar)
2235     if (parseGlobalObjectMetadataAttachment(F))
2236       return true;
2237   return false;
2238 }
2239 
2240 /// parseOptionalAlignment
2241 ///   ::= /* empty */
2242 ///   ::= 'align' 4
2243 bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) {
2244   Alignment = None;
2245   if (!EatIfPresent(lltok::kw_align))
2246     return false;
2247   LocTy AlignLoc = Lex.getLoc();
2248   uint32_t Value = 0;
2249 
2250   LocTy ParenLoc = Lex.getLoc();
2251   bool HaveParens = false;
2252   if (AllowParens) {
2253     if (EatIfPresent(lltok::lparen))
2254       HaveParens = true;
2255   }
2256 
2257   if (parseUInt32(Value))
2258     return true;
2259 
2260   if (HaveParens && !EatIfPresent(lltok::rparen))
2261     return error(ParenLoc, "expected ')'");
2262 
2263   if (!isPowerOf2_32(Value))
2264     return error(AlignLoc, "alignment is not a power of two");
2265   if (Value > Value::MaximumAlignment)
2266     return error(AlignLoc, "huge alignments are not supported yet");
2267   Alignment = Align(Value);
2268   return false;
2269 }
2270 
2271 /// parseOptionalDerefAttrBytes
2272 ///   ::= /* empty */
2273 ///   ::= AttrKind '(' 4 ')'
2274 ///
2275 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
2276 bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2277                                            uint64_t &Bytes) {
2278   assert((AttrKind == lltok::kw_dereferenceable ||
2279           AttrKind == lltok::kw_dereferenceable_or_null) &&
2280          "contract!");
2281 
2282   Bytes = 0;
2283   if (!EatIfPresent(AttrKind))
2284     return false;
2285   LocTy ParenLoc = Lex.getLoc();
2286   if (!EatIfPresent(lltok::lparen))
2287     return error(ParenLoc, "expected '('");
2288   LocTy DerefLoc = Lex.getLoc();
2289   if (parseUInt64(Bytes))
2290     return true;
2291   ParenLoc = Lex.getLoc();
2292   if (!EatIfPresent(lltok::rparen))
2293     return error(ParenLoc, "expected ')'");
2294   if (!Bytes)
2295     return error(DerefLoc, "dereferenceable bytes must be non-zero");
2296   return false;
2297 }
2298 
2299 /// parseOptionalCommaAlign
2300 ///   ::=
2301 ///   ::= ',' align 4
2302 ///
2303 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2304 /// end.
2305 bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment,
2306                                        bool &AteExtraComma) {
2307   AteExtraComma = false;
2308   while (EatIfPresent(lltok::comma)) {
2309     // Metadata at the end is an early exit.
2310     if (Lex.getKind() == lltok::MetadataVar) {
2311       AteExtraComma = true;
2312       return false;
2313     }
2314 
2315     if (Lex.getKind() != lltok::kw_align)
2316       return error(Lex.getLoc(), "expected metadata or 'align'");
2317 
2318     if (parseOptionalAlignment(Alignment))
2319       return true;
2320   }
2321 
2322   return false;
2323 }
2324 
2325 /// parseOptionalCommaAddrSpace
2326 ///   ::=
2327 ///   ::= ',' addrspace(1)
2328 ///
2329 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2330 /// end.
2331 bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc,
2332                                            bool &AteExtraComma) {
2333   AteExtraComma = false;
2334   while (EatIfPresent(lltok::comma)) {
2335     // Metadata at the end is an early exit.
2336     if (Lex.getKind() == lltok::MetadataVar) {
2337       AteExtraComma = true;
2338       return false;
2339     }
2340 
2341     Loc = Lex.getLoc();
2342     if (Lex.getKind() != lltok::kw_addrspace)
2343       return error(Lex.getLoc(), "expected metadata or 'addrspace'");
2344 
2345     if (parseOptionalAddrSpace(AddrSpace))
2346       return true;
2347   }
2348 
2349   return false;
2350 }
2351 
2352 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2353                                        Optional<unsigned> &HowManyArg) {
2354   Lex.Lex();
2355 
2356   auto StartParen = Lex.getLoc();
2357   if (!EatIfPresent(lltok::lparen))
2358     return error(StartParen, "expected '('");
2359 
2360   if (parseUInt32(BaseSizeArg))
2361     return true;
2362 
2363   if (EatIfPresent(lltok::comma)) {
2364     auto HowManyAt = Lex.getLoc();
2365     unsigned HowMany;
2366     if (parseUInt32(HowMany))
2367       return true;
2368     if (HowMany == BaseSizeArg)
2369       return error(HowManyAt,
2370                    "'allocsize' indices can't refer to the same parameter");
2371     HowManyArg = HowMany;
2372   } else
2373     HowManyArg = None;
2374 
2375   auto EndParen = Lex.getLoc();
2376   if (!EatIfPresent(lltok::rparen))
2377     return error(EndParen, "expected ')'");
2378   return false;
2379 }
2380 
2381 bool LLParser::parseVScaleRangeArguments(unsigned &MinValue,
2382                                          unsigned &MaxValue) {
2383   Lex.Lex();
2384 
2385   auto StartParen = Lex.getLoc();
2386   if (!EatIfPresent(lltok::lparen))
2387     return error(StartParen, "expected '('");
2388 
2389   if (parseUInt32(MinValue))
2390     return true;
2391 
2392   if (EatIfPresent(lltok::comma)) {
2393     if (parseUInt32(MaxValue))
2394       return true;
2395   } else
2396     MaxValue = MinValue;
2397 
2398   auto EndParen = Lex.getLoc();
2399   if (!EatIfPresent(lltok::rparen))
2400     return error(EndParen, "expected ')'");
2401   return false;
2402 }
2403 
2404 /// parseScopeAndOrdering
2405 ///   if isAtomic: ::= SyncScope? AtomicOrdering
2406 ///   else: ::=
2407 ///
2408 /// This sets Scope and Ordering to the parsed values.
2409 bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID,
2410                                      AtomicOrdering &Ordering) {
2411   if (!IsAtomic)
2412     return false;
2413 
2414   return parseScope(SSID) || parseOrdering(Ordering);
2415 }
2416 
2417 /// parseScope
2418 ///   ::= syncscope("singlethread" | "<target scope>")?
2419 ///
2420 /// This sets synchronization scope ID to the ID of the parsed value.
2421 bool LLParser::parseScope(SyncScope::ID &SSID) {
2422   SSID = SyncScope::System;
2423   if (EatIfPresent(lltok::kw_syncscope)) {
2424     auto StartParenAt = Lex.getLoc();
2425     if (!EatIfPresent(lltok::lparen))
2426       return error(StartParenAt, "Expected '(' in syncscope");
2427 
2428     std::string SSN;
2429     auto SSNAt = Lex.getLoc();
2430     if (parseStringConstant(SSN))
2431       return error(SSNAt, "Expected synchronization scope name");
2432 
2433     auto EndParenAt = Lex.getLoc();
2434     if (!EatIfPresent(lltok::rparen))
2435       return error(EndParenAt, "Expected ')' in syncscope");
2436 
2437     SSID = Context.getOrInsertSyncScopeID(SSN);
2438   }
2439 
2440   return false;
2441 }
2442 
2443 /// parseOrdering
2444 ///   ::= AtomicOrdering
2445 ///
2446 /// This sets Ordering to the parsed value.
2447 bool LLParser::parseOrdering(AtomicOrdering &Ordering) {
2448   switch (Lex.getKind()) {
2449   default:
2450     return tokError("Expected ordering on atomic instruction");
2451   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2452   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2453   // Not specified yet:
2454   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2455   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2456   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2457   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2458   case lltok::kw_seq_cst:
2459     Ordering = AtomicOrdering::SequentiallyConsistent;
2460     break;
2461   }
2462   Lex.Lex();
2463   return false;
2464 }
2465 
2466 /// parseOptionalStackAlignment
2467 ///   ::= /* empty */
2468 ///   ::= 'alignstack' '(' 4 ')'
2469 bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) {
2470   Alignment = 0;
2471   if (!EatIfPresent(lltok::kw_alignstack))
2472     return false;
2473   LocTy ParenLoc = Lex.getLoc();
2474   if (!EatIfPresent(lltok::lparen))
2475     return error(ParenLoc, "expected '('");
2476   LocTy AlignLoc = Lex.getLoc();
2477   if (parseUInt32(Alignment))
2478     return true;
2479   ParenLoc = Lex.getLoc();
2480   if (!EatIfPresent(lltok::rparen))
2481     return error(ParenLoc, "expected ')'");
2482   if (!isPowerOf2_32(Alignment))
2483     return error(AlignLoc, "stack alignment is not a power of two");
2484   return false;
2485 }
2486 
2487 /// parseIndexList - This parses the index list for an insert/extractvalue
2488 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2489 /// comma at the end of the line and find that it is followed by metadata.
2490 /// Clients that don't allow metadata can call the version of this function that
2491 /// only takes one argument.
2492 ///
2493 /// parseIndexList
2494 ///    ::=  (',' uint32)+
2495 ///
2496 bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices,
2497                               bool &AteExtraComma) {
2498   AteExtraComma = false;
2499 
2500   if (Lex.getKind() != lltok::comma)
2501     return tokError("expected ',' as start of index list");
2502 
2503   while (EatIfPresent(lltok::comma)) {
2504     if (Lex.getKind() == lltok::MetadataVar) {
2505       if (Indices.empty())
2506         return tokError("expected index");
2507       AteExtraComma = true;
2508       return false;
2509     }
2510     unsigned Idx = 0;
2511     if (parseUInt32(Idx))
2512       return true;
2513     Indices.push_back(Idx);
2514   }
2515 
2516   return false;
2517 }
2518 
2519 //===----------------------------------------------------------------------===//
2520 // Type Parsing.
2521 //===----------------------------------------------------------------------===//
2522 
2523 /// parseType - parse a type.
2524 bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2525   SMLoc TypeLoc = Lex.getLoc();
2526   switch (Lex.getKind()) {
2527   default:
2528     return tokError(Msg);
2529   case lltok::Type:
2530     // Type ::= 'float' | 'void' (etc)
2531     Result = Lex.getTyVal();
2532     Lex.Lex();
2533     break;
2534   case lltok::lbrace:
2535     // Type ::= StructType
2536     if (parseAnonStructType(Result, false))
2537       return true;
2538     break;
2539   case lltok::lsquare:
2540     // Type ::= '[' ... ']'
2541     Lex.Lex(); // eat the lsquare.
2542     if (parseArrayVectorType(Result, false))
2543       return true;
2544     break;
2545   case lltok::less: // Either vector or packed struct.
2546     // Type ::= '<' ... '>'
2547     Lex.Lex();
2548     if (Lex.getKind() == lltok::lbrace) {
2549       if (parseAnonStructType(Result, true) ||
2550           parseToken(lltok::greater, "expected '>' at end of packed struct"))
2551         return true;
2552     } else if (parseArrayVectorType(Result, true))
2553       return true;
2554     break;
2555   case lltok::LocalVar: {
2556     // Type ::= %foo
2557     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2558 
2559     // If the type hasn't been defined yet, create a forward definition and
2560     // remember where that forward def'n was seen (in case it never is defined).
2561     if (!Entry.first) {
2562       Entry.first = StructType::create(Context, Lex.getStrVal());
2563       Entry.second = Lex.getLoc();
2564     }
2565     Result = Entry.first;
2566     Lex.Lex();
2567     break;
2568   }
2569 
2570   case lltok::LocalVarID: {
2571     // Type ::= %4
2572     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2573 
2574     // If the type hasn't been defined yet, create a forward definition and
2575     // remember where that forward def'n was seen (in case it never is defined).
2576     if (!Entry.first) {
2577       Entry.first = StructType::create(Context);
2578       Entry.second = Lex.getLoc();
2579     }
2580     Result = Entry.first;
2581     Lex.Lex();
2582     break;
2583   }
2584   }
2585 
2586   // Handle (explicit) opaque pointer types (not --force-opaque-pointers).
2587   //
2588   // Type ::= ptr ('addrspace' '(' uint32 ')')?
2589   if (Result->isOpaquePointerTy()) {
2590     unsigned AddrSpace;
2591     if (parseOptionalAddrSpace(AddrSpace))
2592       return true;
2593     Result = PointerType::get(getContext(), AddrSpace);
2594 
2595     // Give a nice error for 'ptr*'.
2596     if (Lex.getKind() == lltok::star)
2597       return tokError("ptr* is invalid - use ptr instead");
2598 
2599     // Fall through to parsing the type suffixes only if this 'ptr' is a
2600     // function return. Otherwise, return success, implicitly rejecting other
2601     // suffixes.
2602     if (Lex.getKind() != lltok::lparen)
2603       return false;
2604   }
2605 
2606   // parse the type suffixes.
2607   while (true) {
2608     switch (Lex.getKind()) {
2609     // End of type.
2610     default:
2611       if (!AllowVoid && Result->isVoidTy())
2612         return error(TypeLoc, "void type only allowed for function results");
2613       return false;
2614 
2615     // Type ::= Type '*'
2616     case lltok::star:
2617       if (Result->isLabelTy())
2618         return tokError("basic block pointers are invalid");
2619       if (Result->isVoidTy())
2620         return tokError("pointers to void are invalid - use i8* instead");
2621       if (!PointerType::isValidElementType(Result))
2622         return tokError("pointer to this type is invalid");
2623       Result = PointerType::getUnqual(Result);
2624       Lex.Lex();
2625       break;
2626 
2627     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2628     case lltok::kw_addrspace: {
2629       if (Result->isLabelTy())
2630         return tokError("basic block pointers are invalid");
2631       if (Result->isVoidTy())
2632         return tokError("pointers to void are invalid; use i8* instead");
2633       if (!PointerType::isValidElementType(Result))
2634         return tokError("pointer to this type is invalid");
2635       unsigned AddrSpace;
2636       if (parseOptionalAddrSpace(AddrSpace) ||
2637           parseToken(lltok::star, "expected '*' in address space"))
2638         return true;
2639 
2640       Result = PointerType::get(Result, AddrSpace);
2641       break;
2642     }
2643 
2644     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2645     case lltok::lparen:
2646       if (parseFunctionType(Result))
2647         return true;
2648       break;
2649     }
2650   }
2651 }
2652 
2653 /// parseParameterList
2654 ///    ::= '(' ')'
2655 ///    ::= '(' Arg (',' Arg)* ')'
2656 ///  Arg
2657 ///    ::= Type OptionalAttributes Value OptionalAttributes
2658 bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2659                                   PerFunctionState &PFS, bool IsMustTailCall,
2660                                   bool InVarArgsFunc) {
2661   if (parseToken(lltok::lparen, "expected '(' in call"))
2662     return true;
2663 
2664   while (Lex.getKind() != lltok::rparen) {
2665     // If this isn't the first argument, we need a comma.
2666     if (!ArgList.empty() &&
2667         parseToken(lltok::comma, "expected ',' in argument list"))
2668       return true;
2669 
2670     // parse an ellipsis if this is a musttail call in a variadic function.
2671     if (Lex.getKind() == lltok::dotdotdot) {
2672       const char *Msg = "unexpected ellipsis in argument list for ";
2673       if (!IsMustTailCall)
2674         return tokError(Twine(Msg) + "non-musttail call");
2675       if (!InVarArgsFunc)
2676         return tokError(Twine(Msg) + "musttail call in non-varargs function");
2677       Lex.Lex();  // Lex the '...', it is purely for readability.
2678       return parseToken(lltok::rparen, "expected ')' at end of argument list");
2679     }
2680 
2681     // parse the argument.
2682     LocTy ArgLoc;
2683     Type *ArgTy = nullptr;
2684     AttrBuilder ArgAttrs;
2685     Value *V;
2686     if (parseType(ArgTy, ArgLoc))
2687       return true;
2688 
2689     if (ArgTy->isMetadataTy()) {
2690       if (parseMetadataAsValue(V, PFS))
2691         return true;
2692     } else {
2693       // Otherwise, handle normal operands.
2694       if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS))
2695         return true;
2696     }
2697     ArgList.push_back(ParamInfo(
2698         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2699   }
2700 
2701   if (IsMustTailCall && InVarArgsFunc)
2702     return tokError("expected '...' at end of argument list for musttail call "
2703                     "in varargs function");
2704 
2705   Lex.Lex();  // Lex the ')'.
2706   return false;
2707 }
2708 
2709 /// parseRequiredTypeAttr
2710 ///   ::= attrname(<ty>)
2711 bool LLParser::parseRequiredTypeAttr(Type *&Result, lltok::Kind AttrName) {
2712   Result = nullptr;
2713   if (!EatIfPresent(AttrName))
2714     return true;
2715   if (!EatIfPresent(lltok::lparen))
2716     return error(Lex.getLoc(), "expected '('");
2717   if (parseType(Result))
2718     return true;
2719   if (!EatIfPresent(lltok::rparen))
2720     return error(Lex.getLoc(), "expected ')'");
2721   return false;
2722 }
2723 
2724 /// parsePreallocated
2725 ///   ::= preallocated(<ty>)
2726 bool LLParser::parsePreallocated(Type *&Result) {
2727   return parseRequiredTypeAttr(Result, lltok::kw_preallocated);
2728 }
2729 
2730 /// parseInalloca
2731 ///   ::= inalloca(<ty>)
2732 bool LLParser::parseInalloca(Type *&Result) {
2733   return parseRequiredTypeAttr(Result, lltok::kw_inalloca);
2734 }
2735 
2736 /// parseByRef
2737 ///   ::= byref(<type>)
2738 bool LLParser::parseByRef(Type *&Result) {
2739   return parseRequiredTypeAttr(Result, lltok::kw_byref);
2740 }
2741 
2742 /// parseOptionalOperandBundles
2743 ///    ::= /*empty*/
2744 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2745 ///
2746 /// OperandBundle
2747 ///    ::= bundle-tag '(' ')'
2748 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2749 ///
2750 /// bundle-tag ::= String Constant
2751 bool LLParser::parseOptionalOperandBundles(
2752     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2753   LocTy BeginLoc = Lex.getLoc();
2754   if (!EatIfPresent(lltok::lsquare))
2755     return false;
2756 
2757   while (Lex.getKind() != lltok::rsquare) {
2758     // If this isn't the first operand bundle, we need a comma.
2759     if (!BundleList.empty() &&
2760         parseToken(lltok::comma, "expected ',' in input list"))
2761       return true;
2762 
2763     std::string Tag;
2764     if (parseStringConstant(Tag))
2765       return true;
2766 
2767     if (parseToken(lltok::lparen, "expected '(' in operand bundle"))
2768       return true;
2769 
2770     std::vector<Value *> Inputs;
2771     while (Lex.getKind() != lltok::rparen) {
2772       // If this isn't the first input, we need a comma.
2773       if (!Inputs.empty() &&
2774           parseToken(lltok::comma, "expected ',' in input list"))
2775         return true;
2776 
2777       Type *Ty = nullptr;
2778       Value *Input = nullptr;
2779       if (parseType(Ty) || parseValue(Ty, Input, PFS))
2780         return true;
2781       Inputs.push_back(Input);
2782     }
2783 
2784     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2785 
2786     Lex.Lex(); // Lex the ')'.
2787   }
2788 
2789   if (BundleList.empty())
2790     return error(BeginLoc, "operand bundle set must not be empty");
2791 
2792   Lex.Lex(); // Lex the ']'.
2793   return false;
2794 }
2795 
2796 /// parseArgumentList - parse the argument list for a function type or function
2797 /// prototype.
2798 ///   ::= '(' ArgTypeListI ')'
2799 /// ArgTypeListI
2800 ///   ::= /*empty*/
2801 ///   ::= '...'
2802 ///   ::= ArgTypeList ',' '...'
2803 ///   ::= ArgType (',' ArgType)*
2804 ///
2805 bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2806                                  bool &IsVarArg) {
2807   unsigned CurValID = 0;
2808   IsVarArg = false;
2809   assert(Lex.getKind() == lltok::lparen);
2810   Lex.Lex(); // eat the (.
2811 
2812   if (Lex.getKind() == lltok::rparen) {
2813     // empty
2814   } else if (Lex.getKind() == lltok::dotdotdot) {
2815     IsVarArg = true;
2816     Lex.Lex();
2817   } else {
2818     LocTy TypeLoc = Lex.getLoc();
2819     Type *ArgTy = nullptr;
2820     AttrBuilder Attrs;
2821     std::string Name;
2822 
2823     if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
2824       return true;
2825 
2826     if (ArgTy->isVoidTy())
2827       return error(TypeLoc, "argument can not have void type");
2828 
2829     if (Lex.getKind() == lltok::LocalVar) {
2830       Name = Lex.getStrVal();
2831       Lex.Lex();
2832     } else if (Lex.getKind() == lltok::LocalVarID) {
2833       if (Lex.getUIntVal() != CurValID)
2834         return error(TypeLoc, "argument expected to be numbered '%" +
2835                                   Twine(CurValID) + "'");
2836       ++CurValID;
2837       Lex.Lex();
2838     }
2839 
2840     if (!FunctionType::isValidArgumentType(ArgTy))
2841       return error(TypeLoc, "invalid type for function argument");
2842 
2843     ArgList.emplace_back(TypeLoc, ArgTy,
2844                          AttributeSet::get(ArgTy->getContext(), Attrs),
2845                          std::move(Name));
2846 
2847     while (EatIfPresent(lltok::comma)) {
2848       // Handle ... at end of arg list.
2849       if (EatIfPresent(lltok::dotdotdot)) {
2850         IsVarArg = true;
2851         break;
2852       }
2853 
2854       // Otherwise must be an argument type.
2855       TypeLoc = Lex.getLoc();
2856       if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
2857         return true;
2858 
2859       if (ArgTy->isVoidTy())
2860         return error(TypeLoc, "argument can not have void type");
2861 
2862       if (Lex.getKind() == lltok::LocalVar) {
2863         Name = Lex.getStrVal();
2864         Lex.Lex();
2865       } else {
2866         if (Lex.getKind() == lltok::LocalVarID) {
2867           if (Lex.getUIntVal() != CurValID)
2868             return error(TypeLoc, "argument expected to be numbered '%" +
2869                                       Twine(CurValID) + "'");
2870           Lex.Lex();
2871         }
2872         ++CurValID;
2873         Name = "";
2874       }
2875 
2876       if (!ArgTy->isFirstClassType())
2877         return error(TypeLoc, "invalid type for function argument");
2878 
2879       ArgList.emplace_back(TypeLoc, ArgTy,
2880                            AttributeSet::get(ArgTy->getContext(), Attrs),
2881                            std::move(Name));
2882     }
2883   }
2884 
2885   return parseToken(lltok::rparen, "expected ')' at end of argument list");
2886 }
2887 
2888 /// parseFunctionType
2889 ///  ::= Type ArgumentList OptionalAttrs
2890 bool LLParser::parseFunctionType(Type *&Result) {
2891   assert(Lex.getKind() == lltok::lparen);
2892 
2893   if (!FunctionType::isValidReturnType(Result))
2894     return tokError("invalid function return type");
2895 
2896   SmallVector<ArgInfo, 8> ArgList;
2897   bool IsVarArg;
2898   if (parseArgumentList(ArgList, IsVarArg))
2899     return true;
2900 
2901   // Reject names on the arguments lists.
2902   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2903     if (!ArgList[i].Name.empty())
2904       return error(ArgList[i].Loc, "argument name invalid in function type");
2905     if (ArgList[i].Attrs.hasAttributes())
2906       return error(ArgList[i].Loc,
2907                    "argument attributes invalid in function type");
2908   }
2909 
2910   SmallVector<Type*, 16> ArgListTy;
2911   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2912     ArgListTy.push_back(ArgList[i].Ty);
2913 
2914   Result = FunctionType::get(Result, ArgListTy, IsVarArg);
2915   return false;
2916 }
2917 
2918 /// parseAnonStructType - parse an anonymous struct type, which is inlined into
2919 /// other structs.
2920 bool LLParser::parseAnonStructType(Type *&Result, bool Packed) {
2921   SmallVector<Type*, 8> Elts;
2922   if (parseStructBody(Elts))
2923     return true;
2924 
2925   Result = StructType::get(Context, Elts, Packed);
2926   return false;
2927 }
2928 
2929 /// parseStructDefinition - parse a struct in a 'type' definition.
2930 bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name,
2931                                      std::pair<Type *, LocTy> &Entry,
2932                                      Type *&ResultTy) {
2933   // If the type was already defined, diagnose the redefinition.
2934   if (Entry.first && !Entry.second.isValid())
2935     return error(TypeLoc, "redefinition of type");
2936 
2937   // If we have opaque, just return without filling in the definition for the
2938   // struct.  This counts as a definition as far as the .ll file goes.
2939   if (EatIfPresent(lltok::kw_opaque)) {
2940     // This type is being defined, so clear the location to indicate this.
2941     Entry.second = SMLoc();
2942 
2943     // If this type number has never been uttered, create it.
2944     if (!Entry.first)
2945       Entry.first = StructType::create(Context, Name);
2946     ResultTy = Entry.first;
2947     return false;
2948   }
2949 
2950   // If the type starts with '<', then it is either a packed struct or a vector.
2951   bool isPacked = EatIfPresent(lltok::less);
2952 
2953   // If we don't have a struct, then we have a random type alias, which we
2954   // accept for compatibility with old files.  These types are not allowed to be
2955   // forward referenced and not allowed to be recursive.
2956   if (Lex.getKind() != lltok::lbrace) {
2957     if (Entry.first)
2958       return error(TypeLoc, "forward references to non-struct type");
2959 
2960     ResultTy = nullptr;
2961     if (isPacked)
2962       return parseArrayVectorType(ResultTy, true);
2963     return parseType(ResultTy);
2964   }
2965 
2966   // This type is being defined, so clear the location to indicate this.
2967   Entry.second = SMLoc();
2968 
2969   // If this type number has never been uttered, create it.
2970   if (!Entry.first)
2971     Entry.first = StructType::create(Context, Name);
2972 
2973   StructType *STy = cast<StructType>(Entry.first);
2974 
2975   SmallVector<Type*, 8> Body;
2976   if (parseStructBody(Body) ||
2977       (isPacked && parseToken(lltok::greater, "expected '>' in packed struct")))
2978     return true;
2979 
2980   STy->setBody(Body, isPacked);
2981   ResultTy = STy;
2982   return false;
2983 }
2984 
2985 /// parseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2986 ///   StructType
2987 ///     ::= '{' '}'
2988 ///     ::= '{' Type (',' Type)* '}'
2989 ///     ::= '<' '{' '}' '>'
2990 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2991 bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) {
2992   assert(Lex.getKind() == lltok::lbrace);
2993   Lex.Lex(); // Consume the '{'
2994 
2995   // Handle the empty struct.
2996   if (EatIfPresent(lltok::rbrace))
2997     return false;
2998 
2999   LocTy EltTyLoc = Lex.getLoc();
3000   Type *Ty = nullptr;
3001   if (parseType(Ty))
3002     return true;
3003   Body.push_back(Ty);
3004 
3005   if (!StructType::isValidElementType(Ty))
3006     return error(EltTyLoc, "invalid element type for struct");
3007 
3008   while (EatIfPresent(lltok::comma)) {
3009     EltTyLoc = Lex.getLoc();
3010     if (parseType(Ty))
3011       return true;
3012 
3013     if (!StructType::isValidElementType(Ty))
3014       return error(EltTyLoc, "invalid element type for struct");
3015 
3016     Body.push_back(Ty);
3017   }
3018 
3019   return parseToken(lltok::rbrace, "expected '}' at end of struct");
3020 }
3021 
3022 /// parseArrayVectorType - parse an array or vector type, assuming the first
3023 /// token has already been consumed.
3024 ///   Type
3025 ///     ::= '[' APSINTVAL 'x' Types ']'
3026 ///     ::= '<' APSINTVAL 'x' Types '>'
3027 ///     ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>'
3028 bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) {
3029   bool Scalable = false;
3030 
3031   if (IsVector && Lex.getKind() == lltok::kw_vscale) {
3032     Lex.Lex(); // consume the 'vscale'
3033     if (parseToken(lltok::kw_x, "expected 'x' after vscale"))
3034       return true;
3035 
3036     Scalable = true;
3037   }
3038 
3039   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
3040       Lex.getAPSIntVal().getBitWidth() > 64)
3041     return tokError("expected number in address space");
3042 
3043   LocTy SizeLoc = Lex.getLoc();
3044   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
3045   Lex.Lex();
3046 
3047   if (parseToken(lltok::kw_x, "expected 'x' after element count"))
3048     return true;
3049 
3050   LocTy TypeLoc = Lex.getLoc();
3051   Type *EltTy = nullptr;
3052   if (parseType(EltTy))
3053     return true;
3054 
3055   if (parseToken(IsVector ? lltok::greater : lltok::rsquare,
3056                  "expected end of sequential type"))
3057     return true;
3058 
3059   if (IsVector) {
3060     if (Size == 0)
3061       return error(SizeLoc, "zero element vector is illegal");
3062     if ((unsigned)Size != Size)
3063       return error(SizeLoc, "size too large for vector");
3064     if (!VectorType::isValidElementType(EltTy))
3065       return error(TypeLoc, "invalid vector element type");
3066     Result = VectorType::get(EltTy, unsigned(Size), Scalable);
3067   } else {
3068     if (!ArrayType::isValidElementType(EltTy))
3069       return error(TypeLoc, "invalid array element type");
3070     Result = ArrayType::get(EltTy, Size);
3071   }
3072   return false;
3073 }
3074 
3075 //===----------------------------------------------------------------------===//
3076 // Function Semantic Analysis.
3077 //===----------------------------------------------------------------------===//
3078 
3079 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
3080                                              int functionNumber)
3081   : P(p), F(f), FunctionNumber(functionNumber) {
3082 
3083   // Insert unnamed arguments into the NumberedVals list.
3084   for (Argument &A : F.args())
3085     if (!A.hasName())
3086       NumberedVals.push_back(&A);
3087 }
3088 
3089 LLParser::PerFunctionState::~PerFunctionState() {
3090   // If there were any forward referenced non-basicblock values, delete them.
3091 
3092   for (const auto &P : ForwardRefVals) {
3093     if (isa<BasicBlock>(P.second.first))
3094       continue;
3095     P.second.first->replaceAllUsesWith(
3096         UndefValue::get(P.second.first->getType()));
3097     P.second.first->deleteValue();
3098   }
3099 
3100   for (const auto &P : ForwardRefValIDs) {
3101     if (isa<BasicBlock>(P.second.first))
3102       continue;
3103     P.second.first->replaceAllUsesWith(
3104         UndefValue::get(P.second.first->getType()));
3105     P.second.first->deleteValue();
3106   }
3107 }
3108 
3109 bool LLParser::PerFunctionState::finishFunction() {
3110   if (!ForwardRefVals.empty())
3111     return P.error(ForwardRefVals.begin()->second.second,
3112                    "use of undefined value '%" + ForwardRefVals.begin()->first +
3113                        "'");
3114   if (!ForwardRefValIDs.empty())
3115     return P.error(ForwardRefValIDs.begin()->second.second,
3116                    "use of undefined value '%" +
3117                        Twine(ForwardRefValIDs.begin()->first) + "'");
3118   return false;
3119 }
3120 
3121 /// getVal - Get a value with the specified name or ID, creating a
3122 /// forward reference record if needed.  This can return null if the value
3123 /// exists but does not have the right type.
3124 Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty,
3125                                           LocTy Loc, bool IsCall) {
3126   // Look this name up in the normal function symbol table.
3127   Value *Val = F.getValueSymbolTable()->lookup(Name);
3128 
3129   // If this is a forward reference for the value, see if we already created a
3130   // forward ref record.
3131   if (!Val) {
3132     auto I = ForwardRefVals.find(Name);
3133     if (I != ForwardRefVals.end())
3134       Val = I->second.first;
3135   }
3136 
3137   // If we have the value in the symbol table or fwd-ref table, return it.
3138   if (Val)
3139     return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall);
3140 
3141   // Don't make placeholders with invalid type.
3142   if (!Ty->isFirstClassType()) {
3143     P.error(Loc, "invalid use of a non-first-class type");
3144     return nullptr;
3145   }
3146 
3147   // Otherwise, create a new forward reference for this value and remember it.
3148   Value *FwdVal;
3149   if (Ty->isLabelTy()) {
3150     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
3151   } else {
3152     FwdVal = new Argument(Ty, Name);
3153   }
3154 
3155   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
3156   return FwdVal;
3157 }
3158 
3159 Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc,
3160                                           bool IsCall) {
3161   // Look this name up in the normal function symbol table.
3162   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
3163 
3164   // If this is a forward reference for the value, see if we already created a
3165   // forward ref record.
3166   if (!Val) {
3167     auto I = ForwardRefValIDs.find(ID);
3168     if (I != ForwardRefValIDs.end())
3169       Val = I->second.first;
3170   }
3171 
3172   // If we have the value in the symbol table or fwd-ref table, return it.
3173   if (Val)
3174     return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall);
3175 
3176   if (!Ty->isFirstClassType()) {
3177     P.error(Loc, "invalid use of a non-first-class type");
3178     return nullptr;
3179   }
3180 
3181   // Otherwise, create a new forward reference for this value and remember it.
3182   Value *FwdVal;
3183   if (Ty->isLabelTy()) {
3184     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
3185   } else {
3186     FwdVal = new Argument(Ty);
3187   }
3188 
3189   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
3190   return FwdVal;
3191 }
3192 
3193 /// setInstName - After an instruction is parsed and inserted into its
3194 /// basic block, this installs its name.
3195 bool LLParser::PerFunctionState::setInstName(int NameID,
3196                                              const std::string &NameStr,
3197                                              LocTy NameLoc, Instruction *Inst) {
3198   // If this instruction has void type, it cannot have a name or ID specified.
3199   if (Inst->getType()->isVoidTy()) {
3200     if (NameID != -1 || !NameStr.empty())
3201       return P.error(NameLoc, "instructions returning void cannot have a name");
3202     return false;
3203   }
3204 
3205   // If this was a numbered instruction, verify that the instruction is the
3206   // expected value and resolve any forward references.
3207   if (NameStr.empty()) {
3208     // If neither a name nor an ID was specified, just use the next ID.
3209     if (NameID == -1)
3210       NameID = NumberedVals.size();
3211 
3212     if (unsigned(NameID) != NumberedVals.size())
3213       return P.error(NameLoc, "instruction expected to be numbered '%" +
3214                                   Twine(NumberedVals.size()) + "'");
3215 
3216     auto FI = ForwardRefValIDs.find(NameID);
3217     if (FI != ForwardRefValIDs.end()) {
3218       Value *Sentinel = FI->second.first;
3219       if (Sentinel->getType() != Inst->getType())
3220         return P.error(NameLoc, "instruction forward referenced with type '" +
3221                                     getTypeString(FI->second.first->getType()) +
3222                                     "'");
3223 
3224       Sentinel->replaceAllUsesWith(Inst);
3225       Sentinel->deleteValue();
3226       ForwardRefValIDs.erase(FI);
3227     }
3228 
3229     NumberedVals.push_back(Inst);
3230     return false;
3231   }
3232 
3233   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
3234   auto FI = ForwardRefVals.find(NameStr);
3235   if (FI != ForwardRefVals.end()) {
3236     Value *Sentinel = FI->second.first;
3237     if (Sentinel->getType() != Inst->getType())
3238       return P.error(NameLoc, "instruction forward referenced with type '" +
3239                                   getTypeString(FI->second.first->getType()) +
3240                                   "'");
3241 
3242     Sentinel->replaceAllUsesWith(Inst);
3243     Sentinel->deleteValue();
3244     ForwardRefVals.erase(FI);
3245   }
3246 
3247   // Set the name on the instruction.
3248   Inst->setName(NameStr);
3249 
3250   if (Inst->getName() != NameStr)
3251     return P.error(NameLoc, "multiple definition of local value named '" +
3252                                 NameStr + "'");
3253   return false;
3254 }
3255 
3256 /// getBB - Get a basic block with the specified name or ID, creating a
3257 /// forward reference record if needed.
3258 BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name,
3259                                               LocTy Loc) {
3260   return dyn_cast_or_null<BasicBlock>(
3261       getVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
3262 }
3263 
3264 BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) {
3265   return dyn_cast_or_null<BasicBlock>(
3266       getVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
3267 }
3268 
3269 /// defineBB - Define the specified basic block, which is either named or
3270 /// unnamed.  If there is an error, this returns null otherwise it returns
3271 /// the block being defined.
3272 BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name,
3273                                                  int NameID, LocTy Loc) {
3274   BasicBlock *BB;
3275   if (Name.empty()) {
3276     if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) {
3277       P.error(Loc, "label expected to be numbered '" +
3278                        Twine(NumberedVals.size()) + "'");
3279       return nullptr;
3280     }
3281     BB = getBB(NumberedVals.size(), Loc);
3282     if (!BB) {
3283       P.error(Loc, "unable to create block numbered '" +
3284                        Twine(NumberedVals.size()) + "'");
3285       return nullptr;
3286     }
3287   } else {
3288     BB = getBB(Name, Loc);
3289     if (!BB) {
3290       P.error(Loc, "unable to create block named '" + Name + "'");
3291       return nullptr;
3292     }
3293   }
3294 
3295   // Move the block to the end of the function.  Forward ref'd blocks are
3296   // inserted wherever they happen to be referenced.
3297   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
3298 
3299   // Remove the block from forward ref sets.
3300   if (Name.empty()) {
3301     ForwardRefValIDs.erase(NumberedVals.size());
3302     NumberedVals.push_back(BB);
3303   } else {
3304     // BB forward references are already in the function symbol table.
3305     ForwardRefVals.erase(Name);
3306   }
3307 
3308   return BB;
3309 }
3310 
3311 //===----------------------------------------------------------------------===//
3312 // Constants.
3313 //===----------------------------------------------------------------------===//
3314 
3315 /// parseValID - parse an abstract value that doesn't necessarily have a
3316 /// type implied.  For example, if we parse "4" we don't know what integer type
3317 /// it has.  The value will later be combined with its type and checked for
3318 /// sanity.  PFS is used to convert function-local operands of metadata (since
3319 /// metadata operands are not just parsed here but also converted to values).
3320 /// PFS can be null when we are not parsing metadata values inside a function.
3321 bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS, Type *ExpectedTy) {
3322   ID.Loc = Lex.getLoc();
3323   switch (Lex.getKind()) {
3324   default:
3325     return tokError("expected value token");
3326   case lltok::GlobalID:  // @42
3327     ID.UIntVal = Lex.getUIntVal();
3328     ID.Kind = ValID::t_GlobalID;
3329     break;
3330   case lltok::GlobalVar:  // @foo
3331     ID.StrVal = Lex.getStrVal();
3332     ID.Kind = ValID::t_GlobalName;
3333     break;
3334   case lltok::LocalVarID:  // %42
3335     ID.UIntVal = Lex.getUIntVal();
3336     ID.Kind = ValID::t_LocalID;
3337     break;
3338   case lltok::LocalVar:  // %foo
3339     ID.StrVal = Lex.getStrVal();
3340     ID.Kind = ValID::t_LocalName;
3341     break;
3342   case lltok::APSInt:
3343     ID.APSIntVal = Lex.getAPSIntVal();
3344     ID.Kind = ValID::t_APSInt;
3345     break;
3346   case lltok::APFloat:
3347     ID.APFloatVal = Lex.getAPFloatVal();
3348     ID.Kind = ValID::t_APFloat;
3349     break;
3350   case lltok::kw_true:
3351     ID.ConstantVal = ConstantInt::getTrue(Context);
3352     ID.Kind = ValID::t_Constant;
3353     break;
3354   case lltok::kw_false:
3355     ID.ConstantVal = ConstantInt::getFalse(Context);
3356     ID.Kind = ValID::t_Constant;
3357     break;
3358   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3359   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3360   case lltok::kw_poison: ID.Kind = ValID::t_Poison; break;
3361   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3362   case lltok::kw_none: ID.Kind = ValID::t_None; break;
3363 
3364   case lltok::lbrace: {
3365     // ValID ::= '{' ConstVector '}'
3366     Lex.Lex();
3367     SmallVector<Constant*, 16> Elts;
3368     if (parseGlobalValueVector(Elts) ||
3369         parseToken(lltok::rbrace, "expected end of struct constant"))
3370       return true;
3371 
3372     ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3373     ID.UIntVal = Elts.size();
3374     memcpy(ID.ConstantStructElts.get(), Elts.data(),
3375            Elts.size() * sizeof(Elts[0]));
3376     ID.Kind = ValID::t_ConstantStruct;
3377     return false;
3378   }
3379   case lltok::less: {
3380     // ValID ::= '<' ConstVector '>'         --> Vector.
3381     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3382     Lex.Lex();
3383     bool isPackedStruct = EatIfPresent(lltok::lbrace);
3384 
3385     SmallVector<Constant*, 16> Elts;
3386     LocTy FirstEltLoc = Lex.getLoc();
3387     if (parseGlobalValueVector(Elts) ||
3388         (isPackedStruct &&
3389          parseToken(lltok::rbrace, "expected end of packed struct")) ||
3390         parseToken(lltok::greater, "expected end of constant"))
3391       return true;
3392 
3393     if (isPackedStruct) {
3394       ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3395       memcpy(ID.ConstantStructElts.get(), Elts.data(),
3396              Elts.size() * sizeof(Elts[0]));
3397       ID.UIntVal = Elts.size();
3398       ID.Kind = ValID::t_PackedConstantStruct;
3399       return false;
3400     }
3401 
3402     if (Elts.empty())
3403       return error(ID.Loc, "constant vector must not be empty");
3404 
3405     if (!Elts[0]->getType()->isIntegerTy() &&
3406         !Elts[0]->getType()->isFloatingPointTy() &&
3407         !Elts[0]->getType()->isPointerTy())
3408       return error(
3409           FirstEltLoc,
3410           "vector elements must have integer, pointer or floating point type");
3411 
3412     // Verify that all the vector elements have the same type.
3413     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3414       if (Elts[i]->getType() != Elts[0]->getType())
3415         return error(FirstEltLoc, "vector element #" + Twine(i) +
3416                                       " is not of type '" +
3417                                       getTypeString(Elts[0]->getType()));
3418 
3419     ID.ConstantVal = ConstantVector::get(Elts);
3420     ID.Kind = ValID::t_Constant;
3421     return false;
3422   }
3423   case lltok::lsquare: {   // Array Constant
3424     Lex.Lex();
3425     SmallVector<Constant*, 16> Elts;
3426     LocTy FirstEltLoc = Lex.getLoc();
3427     if (parseGlobalValueVector(Elts) ||
3428         parseToken(lltok::rsquare, "expected end of array constant"))
3429       return true;
3430 
3431     // Handle empty element.
3432     if (Elts.empty()) {
3433       // Use undef instead of an array because it's inconvenient to determine
3434       // the element type at this point, there being no elements to examine.
3435       ID.Kind = ValID::t_EmptyArray;
3436       return false;
3437     }
3438 
3439     if (!Elts[0]->getType()->isFirstClassType())
3440       return error(FirstEltLoc, "invalid array element type: " +
3441                                     getTypeString(Elts[0]->getType()));
3442 
3443     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3444 
3445     // Verify all elements are correct type!
3446     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3447       if (Elts[i]->getType() != Elts[0]->getType())
3448         return error(FirstEltLoc, "array element #" + Twine(i) +
3449                                       " is not of type '" +
3450                                       getTypeString(Elts[0]->getType()));
3451     }
3452 
3453     ID.ConstantVal = ConstantArray::get(ATy, Elts);
3454     ID.Kind = ValID::t_Constant;
3455     return false;
3456   }
3457   case lltok::kw_c:  // c "foo"
3458     Lex.Lex();
3459     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3460                                                   false);
3461     if (parseToken(lltok::StringConstant, "expected string"))
3462       return true;
3463     ID.Kind = ValID::t_Constant;
3464     return false;
3465 
3466   case lltok::kw_asm: {
3467     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3468     //             STRINGCONSTANT
3469     bool HasSideEffect, AlignStack, AsmDialect, CanThrow;
3470     Lex.Lex();
3471     if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3472         parseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3473         parseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3474         parseOptionalToken(lltok::kw_unwind, CanThrow) ||
3475         parseStringConstant(ID.StrVal) ||
3476         parseToken(lltok::comma, "expected comma in inline asm expression") ||
3477         parseToken(lltok::StringConstant, "expected constraint string"))
3478       return true;
3479     ID.StrVal2 = Lex.getStrVal();
3480     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack) << 1) |
3481                  (unsigned(AsmDialect) << 2) | (unsigned(CanThrow) << 3);
3482     ID.Kind = ValID::t_InlineAsm;
3483     return false;
3484   }
3485 
3486   case lltok::kw_blockaddress: {
3487     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3488     Lex.Lex();
3489 
3490     ValID Fn, Label;
3491 
3492     if (parseToken(lltok::lparen, "expected '(' in block address expression") ||
3493         parseValID(Fn, PFS) ||
3494         parseToken(lltok::comma,
3495                    "expected comma in block address expression") ||
3496         parseValID(Label, PFS) ||
3497         parseToken(lltok::rparen, "expected ')' in block address expression"))
3498       return true;
3499 
3500     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3501       return error(Fn.Loc, "expected function name in blockaddress");
3502     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3503       return error(Label.Loc, "expected basic block name in blockaddress");
3504 
3505     // Try to find the function (but skip it if it's forward-referenced).
3506     GlobalValue *GV = nullptr;
3507     if (Fn.Kind == ValID::t_GlobalID) {
3508       if (Fn.UIntVal < NumberedVals.size())
3509         GV = NumberedVals[Fn.UIntVal];
3510     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3511       GV = M->getNamedValue(Fn.StrVal);
3512     }
3513     Function *F = nullptr;
3514     if (GV) {
3515       // Confirm that it's actually a function with a definition.
3516       if (!isa<Function>(GV))
3517         return error(Fn.Loc, "expected function name in blockaddress");
3518       F = cast<Function>(GV);
3519       if (F->isDeclaration())
3520         return error(Fn.Loc, "cannot take blockaddress inside a declaration");
3521     }
3522 
3523     if (!F) {
3524       // Make a global variable as a placeholder for this reference.
3525       GlobalValue *&FwdRef =
3526           ForwardRefBlockAddresses.insert(std::make_pair(
3527                                               std::move(Fn),
3528                                               std::map<ValID, GlobalValue *>()))
3529               .first->second.insert(std::make_pair(std::move(Label), nullptr))
3530               .first->second;
3531       if (!FwdRef) {
3532         unsigned FwdDeclAS;
3533         if (ExpectedTy) {
3534           // If we know the type that the blockaddress is being assigned to,
3535           // we can use the address space of that type.
3536           if (!ExpectedTy->isPointerTy())
3537             return error(ID.Loc,
3538                          "type of blockaddress must be a pointer and not '" +
3539                              getTypeString(ExpectedTy) + "'");
3540           FwdDeclAS = ExpectedTy->getPointerAddressSpace();
3541         } else if (PFS) {
3542           // Otherwise, we default the address space of the current function.
3543           FwdDeclAS = PFS->getFunction().getAddressSpace();
3544         } else {
3545           llvm_unreachable("Unknown address space for blockaddress");
3546         }
3547         FwdRef = new GlobalVariable(
3548             *M, Type::getInt8Ty(Context), false, GlobalValue::InternalLinkage,
3549             nullptr, "", nullptr, GlobalValue::NotThreadLocal, FwdDeclAS);
3550       }
3551 
3552       ID.ConstantVal = FwdRef;
3553       ID.Kind = ValID::t_Constant;
3554       return false;
3555     }
3556 
3557     // We found the function; now find the basic block.  Don't use PFS, since we
3558     // might be inside a constant expression.
3559     BasicBlock *BB;
3560     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3561       if (Label.Kind == ValID::t_LocalID)
3562         BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc);
3563       else
3564         BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc);
3565       if (!BB)
3566         return error(Label.Loc, "referenced value is not a basic block");
3567     } else {
3568       if (Label.Kind == ValID::t_LocalID)
3569         return error(Label.Loc, "cannot take address of numeric label after "
3570                                 "the function is defined");
3571       BB = dyn_cast_or_null<BasicBlock>(
3572           F->getValueSymbolTable()->lookup(Label.StrVal));
3573       if (!BB)
3574         return error(Label.Loc, "referenced value is not a basic block");
3575     }
3576 
3577     ID.ConstantVal = BlockAddress::get(F, BB);
3578     ID.Kind = ValID::t_Constant;
3579     return false;
3580   }
3581 
3582   case lltok::kw_dso_local_equivalent: {
3583     // ValID ::= 'dso_local_equivalent' @foo
3584     Lex.Lex();
3585 
3586     ValID Fn;
3587 
3588     if (parseValID(Fn, PFS))
3589       return true;
3590 
3591     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3592       return error(Fn.Loc,
3593                    "expected global value name in dso_local_equivalent");
3594 
3595     // Try to find the function (but skip it if it's forward-referenced).
3596     GlobalValue *GV = nullptr;
3597     if (Fn.Kind == ValID::t_GlobalID) {
3598       if (Fn.UIntVal < NumberedVals.size())
3599         GV = NumberedVals[Fn.UIntVal];
3600     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3601       GV = M->getNamedValue(Fn.StrVal);
3602     }
3603 
3604     assert(GV && "Could not find a corresponding global variable");
3605 
3606     if (!GV->getValueType()->isFunctionTy())
3607       return error(Fn.Loc, "expected a function, alias to function, or ifunc "
3608                            "in dso_local_equivalent");
3609 
3610     ID.ConstantVal = DSOLocalEquivalent::get(GV);
3611     ID.Kind = ValID::t_Constant;
3612     return false;
3613   }
3614 
3615   case lltok::kw_trunc:
3616   case lltok::kw_zext:
3617   case lltok::kw_sext:
3618   case lltok::kw_fptrunc:
3619   case lltok::kw_fpext:
3620   case lltok::kw_bitcast:
3621   case lltok::kw_addrspacecast:
3622   case lltok::kw_uitofp:
3623   case lltok::kw_sitofp:
3624   case lltok::kw_fptoui:
3625   case lltok::kw_fptosi:
3626   case lltok::kw_inttoptr:
3627   case lltok::kw_ptrtoint: {
3628     unsigned Opc = Lex.getUIntVal();
3629     Type *DestTy = nullptr;
3630     Constant *SrcVal;
3631     Lex.Lex();
3632     if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3633         parseGlobalTypeAndValue(SrcVal) ||
3634         parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3635         parseType(DestTy) ||
3636         parseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3637       return true;
3638     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3639       return error(ID.Loc, "invalid cast opcode for cast from '" +
3640                                getTypeString(SrcVal->getType()) + "' to '" +
3641                                getTypeString(DestTy) + "'");
3642     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3643                                                  SrcVal, DestTy);
3644     ID.Kind = ValID::t_Constant;
3645     return false;
3646   }
3647   case lltok::kw_extractvalue: {
3648     Lex.Lex();
3649     Constant *Val;
3650     SmallVector<unsigned, 4> Indices;
3651     if (parseToken(lltok::lparen,
3652                    "expected '(' in extractvalue constantexpr") ||
3653         parseGlobalTypeAndValue(Val) || parseIndexList(Indices) ||
3654         parseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3655       return true;
3656 
3657     if (!Val->getType()->isAggregateType())
3658       return error(ID.Loc, "extractvalue operand must be aggregate type");
3659     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3660       return error(ID.Loc, "invalid indices for extractvalue");
3661     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3662     ID.Kind = ValID::t_Constant;
3663     return false;
3664   }
3665   case lltok::kw_insertvalue: {
3666     Lex.Lex();
3667     Constant *Val0, *Val1;
3668     SmallVector<unsigned, 4> Indices;
3669     if (parseToken(lltok::lparen, "expected '(' in insertvalue constantexpr") ||
3670         parseGlobalTypeAndValue(Val0) ||
3671         parseToken(lltok::comma,
3672                    "expected comma in insertvalue constantexpr") ||
3673         parseGlobalTypeAndValue(Val1) || parseIndexList(Indices) ||
3674         parseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3675       return true;
3676     if (!Val0->getType()->isAggregateType())
3677       return error(ID.Loc, "insertvalue operand must be aggregate type");
3678     Type *IndexedType =
3679         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3680     if (!IndexedType)
3681       return error(ID.Loc, "invalid indices for insertvalue");
3682     if (IndexedType != Val1->getType())
3683       return error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3684                                getTypeString(Val1->getType()) +
3685                                "' instead of '" + getTypeString(IndexedType) +
3686                                "'");
3687     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3688     ID.Kind = ValID::t_Constant;
3689     return false;
3690   }
3691   case lltok::kw_icmp:
3692   case lltok::kw_fcmp: {
3693     unsigned PredVal, Opc = Lex.getUIntVal();
3694     Constant *Val0, *Val1;
3695     Lex.Lex();
3696     if (parseCmpPredicate(PredVal, Opc) ||
3697         parseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3698         parseGlobalTypeAndValue(Val0) ||
3699         parseToken(lltok::comma, "expected comma in compare constantexpr") ||
3700         parseGlobalTypeAndValue(Val1) ||
3701         parseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3702       return true;
3703 
3704     if (Val0->getType() != Val1->getType())
3705       return error(ID.Loc, "compare operands must have the same type");
3706 
3707     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3708 
3709     if (Opc == Instruction::FCmp) {
3710       if (!Val0->getType()->isFPOrFPVectorTy())
3711         return error(ID.Loc, "fcmp requires floating point operands");
3712       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3713     } else {
3714       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3715       if (!Val0->getType()->isIntOrIntVectorTy() &&
3716           !Val0->getType()->isPtrOrPtrVectorTy())
3717         return error(ID.Loc, "icmp requires pointer or integer operands");
3718       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3719     }
3720     ID.Kind = ValID::t_Constant;
3721     return false;
3722   }
3723 
3724   // Unary Operators.
3725   case lltok::kw_fneg: {
3726     unsigned Opc = Lex.getUIntVal();
3727     Constant *Val;
3728     Lex.Lex();
3729     if (parseToken(lltok::lparen, "expected '(' in unary constantexpr") ||
3730         parseGlobalTypeAndValue(Val) ||
3731         parseToken(lltok::rparen, "expected ')' in unary constantexpr"))
3732       return true;
3733 
3734     // Check that the type is valid for the operator.
3735     switch (Opc) {
3736     case Instruction::FNeg:
3737       if (!Val->getType()->isFPOrFPVectorTy())
3738         return error(ID.Loc, "constexpr requires fp operands");
3739       break;
3740     default: llvm_unreachable("Unknown unary operator!");
3741     }
3742     unsigned Flags = 0;
3743     Constant *C = ConstantExpr::get(Opc, Val, Flags);
3744     ID.ConstantVal = C;
3745     ID.Kind = ValID::t_Constant;
3746     return false;
3747   }
3748   // Binary Operators.
3749   case lltok::kw_add:
3750   case lltok::kw_fadd:
3751   case lltok::kw_sub:
3752   case lltok::kw_fsub:
3753   case lltok::kw_mul:
3754   case lltok::kw_fmul:
3755   case lltok::kw_udiv:
3756   case lltok::kw_sdiv:
3757   case lltok::kw_fdiv:
3758   case lltok::kw_urem:
3759   case lltok::kw_srem:
3760   case lltok::kw_frem:
3761   case lltok::kw_shl:
3762   case lltok::kw_lshr:
3763   case lltok::kw_ashr: {
3764     bool NUW = false;
3765     bool NSW = false;
3766     bool Exact = false;
3767     unsigned Opc = Lex.getUIntVal();
3768     Constant *Val0, *Val1;
3769     Lex.Lex();
3770     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3771         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3772       if (EatIfPresent(lltok::kw_nuw))
3773         NUW = true;
3774       if (EatIfPresent(lltok::kw_nsw)) {
3775         NSW = true;
3776         if (EatIfPresent(lltok::kw_nuw))
3777           NUW = true;
3778       }
3779     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3780                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3781       if (EatIfPresent(lltok::kw_exact))
3782         Exact = true;
3783     }
3784     if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3785         parseGlobalTypeAndValue(Val0) ||
3786         parseToken(lltok::comma, "expected comma in binary constantexpr") ||
3787         parseGlobalTypeAndValue(Val1) ||
3788         parseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3789       return true;
3790     if (Val0->getType() != Val1->getType())
3791       return error(ID.Loc, "operands of constexpr must have same type");
3792     // Check that the type is valid for the operator.
3793     switch (Opc) {
3794     case Instruction::Add:
3795     case Instruction::Sub:
3796     case Instruction::Mul:
3797     case Instruction::UDiv:
3798     case Instruction::SDiv:
3799     case Instruction::URem:
3800     case Instruction::SRem:
3801     case Instruction::Shl:
3802     case Instruction::AShr:
3803     case Instruction::LShr:
3804       if (!Val0->getType()->isIntOrIntVectorTy())
3805         return error(ID.Loc, "constexpr requires integer operands");
3806       break;
3807     case Instruction::FAdd:
3808     case Instruction::FSub:
3809     case Instruction::FMul:
3810     case Instruction::FDiv:
3811     case Instruction::FRem:
3812       if (!Val0->getType()->isFPOrFPVectorTy())
3813         return error(ID.Loc, "constexpr requires fp operands");
3814       break;
3815     default: llvm_unreachable("Unknown binary operator!");
3816     }
3817     unsigned Flags = 0;
3818     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3819     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3820     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3821     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3822     ID.ConstantVal = C;
3823     ID.Kind = ValID::t_Constant;
3824     return false;
3825   }
3826 
3827   // Logical Operations
3828   case lltok::kw_and:
3829   case lltok::kw_or:
3830   case lltok::kw_xor: {
3831     unsigned Opc = Lex.getUIntVal();
3832     Constant *Val0, *Val1;
3833     Lex.Lex();
3834     if (parseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3835         parseGlobalTypeAndValue(Val0) ||
3836         parseToken(lltok::comma, "expected comma in logical constantexpr") ||
3837         parseGlobalTypeAndValue(Val1) ||
3838         parseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3839       return true;
3840     if (Val0->getType() != Val1->getType())
3841       return error(ID.Loc, "operands of constexpr must have same type");
3842     if (!Val0->getType()->isIntOrIntVectorTy())
3843       return error(ID.Loc,
3844                    "constexpr requires integer or integer vector operands");
3845     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3846     ID.Kind = ValID::t_Constant;
3847     return false;
3848   }
3849 
3850   case lltok::kw_getelementptr:
3851   case lltok::kw_shufflevector:
3852   case lltok::kw_insertelement:
3853   case lltok::kw_extractelement:
3854   case lltok::kw_select: {
3855     unsigned Opc = Lex.getUIntVal();
3856     SmallVector<Constant*, 16> Elts;
3857     bool InBounds = false;
3858     Type *Ty;
3859     Lex.Lex();
3860 
3861     if (Opc == Instruction::GetElementPtr)
3862       InBounds = EatIfPresent(lltok::kw_inbounds);
3863 
3864     if (parseToken(lltok::lparen, "expected '(' in constantexpr"))
3865       return true;
3866 
3867     LocTy ExplicitTypeLoc = Lex.getLoc();
3868     if (Opc == Instruction::GetElementPtr) {
3869       if (parseType(Ty) ||
3870           parseToken(lltok::comma, "expected comma after getelementptr's type"))
3871         return true;
3872     }
3873 
3874     Optional<unsigned> InRangeOp;
3875     if (parseGlobalValueVector(
3876             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3877         parseToken(lltok::rparen, "expected ')' in constantexpr"))
3878       return true;
3879 
3880     if (Opc == Instruction::GetElementPtr) {
3881       if (Elts.size() == 0 ||
3882           !Elts[0]->getType()->isPtrOrPtrVectorTy())
3883         return error(ID.Loc, "base of getelementptr must be a pointer");
3884 
3885       Type *BaseType = Elts[0]->getType();
3886       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3887       if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) {
3888         return error(
3889             ExplicitTypeLoc,
3890             typeComparisonErrorMessage(
3891                 "explicit pointee type doesn't match operand's pointee type",
3892                 Ty, BasePointerType->getElementType()));
3893       }
3894 
3895       unsigned GEPWidth =
3896           BaseType->isVectorTy()
3897               ? cast<FixedVectorType>(BaseType)->getNumElements()
3898               : 0;
3899 
3900       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3901       for (Constant *Val : Indices) {
3902         Type *ValTy = Val->getType();
3903         if (!ValTy->isIntOrIntVectorTy())
3904           return error(ID.Loc, "getelementptr index must be an integer");
3905         if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) {
3906           unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements();
3907           if (GEPWidth && (ValNumEl != GEPWidth))
3908             return error(
3909                 ID.Loc,
3910                 "getelementptr vector index has a wrong number of elements");
3911           // GEPWidth may have been unknown because the base is a scalar,
3912           // but it is known now.
3913           GEPWidth = ValNumEl;
3914         }
3915       }
3916 
3917       SmallPtrSet<Type*, 4> Visited;
3918       if (!Indices.empty() && !Ty->isSized(&Visited))
3919         return error(ID.Loc, "base element of getelementptr must be sized");
3920 
3921       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3922         return error(ID.Loc, "invalid getelementptr indices");
3923 
3924       if (InRangeOp) {
3925         if (*InRangeOp == 0)
3926           return error(ID.Loc,
3927                        "inrange keyword may not appear on pointer operand");
3928         --*InRangeOp;
3929       }
3930 
3931       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3932                                                       InBounds, InRangeOp);
3933     } else if (Opc == Instruction::Select) {
3934       if (Elts.size() != 3)
3935         return error(ID.Loc, "expected three operands to select");
3936       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3937                                                               Elts[2]))
3938         return error(ID.Loc, Reason);
3939       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3940     } else if (Opc == Instruction::ShuffleVector) {
3941       if (Elts.size() != 3)
3942         return error(ID.Loc, "expected three operands to shufflevector");
3943       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3944         return error(ID.Loc, "invalid operands to shufflevector");
3945       SmallVector<int, 16> Mask;
3946       ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask);
3947       ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask);
3948     } else if (Opc == Instruction::ExtractElement) {
3949       if (Elts.size() != 2)
3950         return error(ID.Loc, "expected two operands to extractelement");
3951       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3952         return error(ID.Loc, "invalid extractelement operands");
3953       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3954     } else {
3955       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3956       if (Elts.size() != 3)
3957         return error(ID.Loc, "expected three operands to insertelement");
3958       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3959         return error(ID.Loc, "invalid insertelement operands");
3960       ID.ConstantVal =
3961                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3962     }
3963 
3964     ID.Kind = ValID::t_Constant;
3965     return false;
3966   }
3967   }
3968 
3969   Lex.Lex();
3970   return false;
3971 }
3972 
3973 /// parseGlobalValue - parse a global value with the specified type.
3974 bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) {
3975   C = nullptr;
3976   ValID ID;
3977   Value *V = nullptr;
3978   bool Parsed = parseValID(ID, /*PFS=*/nullptr, Ty) ||
3979                 convertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false);
3980   if (V && !(C = dyn_cast<Constant>(V)))
3981     return error(ID.Loc, "global values must be constants");
3982   return Parsed;
3983 }
3984 
3985 bool LLParser::parseGlobalTypeAndValue(Constant *&V) {
3986   Type *Ty = nullptr;
3987   return parseType(Ty) || parseGlobalValue(Ty, V);
3988 }
3989 
3990 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3991   C = nullptr;
3992 
3993   LocTy KwLoc = Lex.getLoc();
3994   if (!EatIfPresent(lltok::kw_comdat))
3995     return false;
3996 
3997   if (EatIfPresent(lltok::lparen)) {
3998     if (Lex.getKind() != lltok::ComdatVar)
3999       return tokError("expected comdat variable");
4000     C = getComdat(Lex.getStrVal(), Lex.getLoc());
4001     Lex.Lex();
4002     if (parseToken(lltok::rparen, "expected ')' after comdat var"))
4003       return true;
4004   } else {
4005     if (GlobalName.empty())
4006       return tokError("comdat cannot be unnamed");
4007     C = getComdat(std::string(GlobalName), KwLoc);
4008   }
4009 
4010   return false;
4011 }
4012 
4013 /// parseGlobalValueVector
4014 ///   ::= /*empty*/
4015 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
4016 bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
4017                                       Optional<unsigned> *InRangeOp) {
4018   // Empty list.
4019   if (Lex.getKind() == lltok::rbrace ||
4020       Lex.getKind() == lltok::rsquare ||
4021       Lex.getKind() == lltok::greater ||
4022       Lex.getKind() == lltok::rparen)
4023     return false;
4024 
4025   do {
4026     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
4027       *InRangeOp = Elts.size();
4028 
4029     Constant *C;
4030     if (parseGlobalTypeAndValue(C))
4031       return true;
4032     Elts.push_back(C);
4033   } while (EatIfPresent(lltok::comma));
4034 
4035   return false;
4036 }
4037 
4038 bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) {
4039   SmallVector<Metadata *, 16> Elts;
4040   if (parseMDNodeVector(Elts))
4041     return true;
4042 
4043   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
4044   return false;
4045 }
4046 
4047 /// MDNode:
4048 ///  ::= !{ ... }
4049 ///  ::= !7
4050 ///  ::= !DILocation(...)
4051 bool LLParser::parseMDNode(MDNode *&N) {
4052   if (Lex.getKind() == lltok::MetadataVar)
4053     return parseSpecializedMDNode(N);
4054 
4055   return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N);
4056 }
4057 
4058 bool LLParser::parseMDNodeTail(MDNode *&N) {
4059   // !{ ... }
4060   if (Lex.getKind() == lltok::lbrace)
4061     return parseMDTuple(N);
4062 
4063   // !42
4064   return parseMDNodeID(N);
4065 }
4066 
4067 namespace {
4068 
4069 /// Structure to represent an optional metadata field.
4070 template <class FieldTy> struct MDFieldImpl {
4071   typedef MDFieldImpl ImplTy;
4072   FieldTy Val;
4073   bool Seen;
4074 
4075   void assign(FieldTy Val) {
4076     Seen = true;
4077     this->Val = std::move(Val);
4078   }
4079 
4080   explicit MDFieldImpl(FieldTy Default)
4081       : Val(std::move(Default)), Seen(false) {}
4082 };
4083 
4084 /// Structure to represent an optional metadata field that
4085 /// can be of either type (A or B) and encapsulates the
4086 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
4087 /// to reimplement the specifics for representing each Field.
4088 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
4089   typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
4090   FieldTypeA A;
4091   FieldTypeB B;
4092   bool Seen;
4093 
4094   enum {
4095     IsInvalid = 0,
4096     IsTypeA = 1,
4097     IsTypeB = 2
4098   } WhatIs;
4099 
4100   void assign(FieldTypeA A) {
4101     Seen = true;
4102     this->A = std::move(A);
4103     WhatIs = IsTypeA;
4104   }
4105 
4106   void assign(FieldTypeB B) {
4107     Seen = true;
4108     this->B = std::move(B);
4109     WhatIs = IsTypeB;
4110   }
4111 
4112   explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
4113       : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
4114         WhatIs(IsInvalid) {}
4115 };
4116 
4117 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
4118   uint64_t Max;
4119 
4120   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
4121       : ImplTy(Default), Max(Max) {}
4122 };
4123 
4124 struct LineField : public MDUnsignedField {
4125   LineField() : MDUnsignedField(0, UINT32_MAX) {}
4126 };
4127 
4128 struct ColumnField : public MDUnsignedField {
4129   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
4130 };
4131 
4132 struct DwarfTagField : public MDUnsignedField {
4133   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
4134   DwarfTagField(dwarf::Tag DefaultTag)
4135       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
4136 };
4137 
4138 struct DwarfMacinfoTypeField : public MDUnsignedField {
4139   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
4140   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
4141     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
4142 };
4143 
4144 struct DwarfAttEncodingField : public MDUnsignedField {
4145   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
4146 };
4147 
4148 struct DwarfVirtualityField : public MDUnsignedField {
4149   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
4150 };
4151 
4152 struct DwarfLangField : public MDUnsignedField {
4153   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
4154 };
4155 
4156 struct DwarfCCField : public MDUnsignedField {
4157   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
4158 };
4159 
4160 struct EmissionKindField : public MDUnsignedField {
4161   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
4162 };
4163 
4164 struct NameTableKindField : public MDUnsignedField {
4165   NameTableKindField()
4166       : MDUnsignedField(
4167             0, (unsigned)
4168                    DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
4169 };
4170 
4171 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
4172   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
4173 };
4174 
4175 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
4176   DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
4177 };
4178 
4179 struct MDAPSIntField : public MDFieldImpl<APSInt> {
4180   MDAPSIntField() : ImplTy(APSInt()) {}
4181 };
4182 
4183 struct MDSignedField : public MDFieldImpl<int64_t> {
4184   int64_t Min;
4185   int64_t Max;
4186 
4187   MDSignedField(int64_t Default = 0)
4188       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
4189   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
4190       : ImplTy(Default), Min(Min), Max(Max) {}
4191 };
4192 
4193 struct MDBoolField : public MDFieldImpl<bool> {
4194   MDBoolField(bool Default = false) : ImplTy(Default) {}
4195 };
4196 
4197 struct MDField : public MDFieldImpl<Metadata *> {
4198   bool AllowNull;
4199 
4200   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
4201 };
4202 
4203 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
4204   MDConstant() : ImplTy(nullptr) {}
4205 };
4206 
4207 struct MDStringField : public MDFieldImpl<MDString *> {
4208   bool AllowEmpty;
4209   MDStringField(bool AllowEmpty = true)
4210       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
4211 };
4212 
4213 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
4214   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
4215 };
4216 
4217 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
4218   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
4219 };
4220 
4221 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
4222   MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
4223       : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
4224 
4225   MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
4226                     bool AllowNull = true)
4227       : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
4228 
4229   bool isMDSignedField() const { return WhatIs == IsTypeA; }
4230   bool isMDField() const { return WhatIs == IsTypeB; }
4231   int64_t getMDSignedValue() const {
4232     assert(isMDSignedField() && "Wrong field type");
4233     return A.Val;
4234   }
4235   Metadata *getMDFieldValue() const {
4236     assert(isMDField() && "Wrong field type");
4237     return B.Val;
4238   }
4239 };
4240 
4241 struct MDSignedOrUnsignedField
4242     : MDEitherFieldImpl<MDSignedField, MDUnsignedField> {
4243   MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {}
4244 
4245   bool isMDSignedField() const { return WhatIs == IsTypeA; }
4246   bool isMDUnsignedField() const { return WhatIs == IsTypeB; }
4247   int64_t getMDSignedValue() const {
4248     assert(isMDSignedField() && "Wrong field type");
4249     return A.Val;
4250   }
4251   uint64_t getMDUnsignedValue() const {
4252     assert(isMDUnsignedField() && "Wrong field type");
4253     return B.Val;
4254   }
4255 };
4256 
4257 } // end anonymous namespace
4258 
4259 namespace llvm {
4260 
4261 template <>
4262 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) {
4263   if (Lex.getKind() != lltok::APSInt)
4264     return tokError("expected integer");
4265 
4266   Result.assign(Lex.getAPSIntVal());
4267   Lex.Lex();
4268   return false;
4269 }
4270 
4271 template <>
4272 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4273                             MDUnsignedField &Result) {
4274   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4275     return tokError("expected unsigned integer");
4276 
4277   auto &U = Lex.getAPSIntVal();
4278   if (U.ugt(Result.Max))
4279     return tokError("value for '" + Name + "' too large, limit is " +
4280                     Twine(Result.Max));
4281   Result.assign(U.getZExtValue());
4282   assert(Result.Val <= Result.Max && "Expected value in range");
4283   Lex.Lex();
4284   return false;
4285 }
4286 
4287 template <>
4288 bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) {
4289   return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4290 }
4291 template <>
4292 bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
4293   return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4294 }
4295 
4296 template <>
4297 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
4298   if (Lex.getKind() == lltok::APSInt)
4299     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4300 
4301   if (Lex.getKind() != lltok::DwarfTag)
4302     return tokError("expected DWARF tag");
4303 
4304   unsigned Tag = dwarf::getTag(Lex.getStrVal());
4305   if (Tag == dwarf::DW_TAG_invalid)
4306     return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
4307   assert(Tag <= Result.Max && "Expected valid DWARF tag");
4308 
4309   Result.assign(Tag);
4310   Lex.Lex();
4311   return false;
4312 }
4313 
4314 template <>
4315 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4316                             DwarfMacinfoTypeField &Result) {
4317   if (Lex.getKind() == lltok::APSInt)
4318     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4319 
4320   if (Lex.getKind() != lltok::DwarfMacinfo)
4321     return tokError("expected DWARF macinfo type");
4322 
4323   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
4324   if (Macinfo == dwarf::DW_MACINFO_invalid)
4325     return tokError("invalid DWARF macinfo type" + Twine(" '") +
4326                     Lex.getStrVal() + "'");
4327   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
4328 
4329   Result.assign(Macinfo);
4330   Lex.Lex();
4331   return false;
4332 }
4333 
4334 template <>
4335 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4336                             DwarfVirtualityField &Result) {
4337   if (Lex.getKind() == lltok::APSInt)
4338     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4339 
4340   if (Lex.getKind() != lltok::DwarfVirtuality)
4341     return tokError("expected DWARF virtuality code");
4342 
4343   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
4344   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
4345     return tokError("invalid DWARF virtuality code" + Twine(" '") +
4346                     Lex.getStrVal() + "'");
4347   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
4348   Result.assign(Virtuality);
4349   Lex.Lex();
4350   return false;
4351 }
4352 
4353 template <>
4354 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
4355   if (Lex.getKind() == lltok::APSInt)
4356     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4357 
4358   if (Lex.getKind() != lltok::DwarfLang)
4359     return tokError("expected DWARF language");
4360 
4361   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
4362   if (!Lang)
4363     return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
4364                     "'");
4365   assert(Lang <= Result.Max && "Expected valid DWARF language");
4366   Result.assign(Lang);
4367   Lex.Lex();
4368   return false;
4369 }
4370 
4371 template <>
4372 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
4373   if (Lex.getKind() == lltok::APSInt)
4374     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4375 
4376   if (Lex.getKind() != lltok::DwarfCC)
4377     return tokError("expected DWARF calling convention");
4378 
4379   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
4380   if (!CC)
4381     return tokError("invalid DWARF calling convention" + Twine(" '") +
4382                     Lex.getStrVal() + "'");
4383   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
4384   Result.assign(CC);
4385   Lex.Lex();
4386   return false;
4387 }
4388 
4389 template <>
4390 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4391                             EmissionKindField &Result) {
4392   if (Lex.getKind() == lltok::APSInt)
4393     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4394 
4395   if (Lex.getKind() != lltok::EmissionKind)
4396     return tokError("expected emission kind");
4397 
4398   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
4399   if (!Kind)
4400     return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
4401                     "'");
4402   assert(*Kind <= Result.Max && "Expected valid emission kind");
4403   Result.assign(*Kind);
4404   Lex.Lex();
4405   return false;
4406 }
4407 
4408 template <>
4409 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4410                             NameTableKindField &Result) {
4411   if (Lex.getKind() == lltok::APSInt)
4412     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4413 
4414   if (Lex.getKind() != lltok::NameTableKind)
4415     return tokError("expected nameTable kind");
4416 
4417   auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
4418   if (!Kind)
4419     return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
4420                     "'");
4421   assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
4422   Result.assign((unsigned)*Kind);
4423   Lex.Lex();
4424   return false;
4425 }
4426 
4427 template <>
4428 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4429                             DwarfAttEncodingField &Result) {
4430   if (Lex.getKind() == lltok::APSInt)
4431     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4432 
4433   if (Lex.getKind() != lltok::DwarfAttEncoding)
4434     return tokError("expected DWARF type attribute encoding");
4435 
4436   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4437   if (!Encoding)
4438     return tokError("invalid DWARF type attribute encoding" + Twine(" '") +
4439                     Lex.getStrVal() + "'");
4440   assert(Encoding <= Result.Max && "Expected valid DWARF language");
4441   Result.assign(Encoding);
4442   Lex.Lex();
4443   return false;
4444 }
4445 
4446 /// DIFlagField
4447 ///  ::= uint32
4448 ///  ::= DIFlagVector
4449 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4450 template <>
4451 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4452 
4453   // parser for a single flag.
4454   auto parseFlag = [&](DINode::DIFlags &Val) {
4455     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4456       uint32_t TempVal = static_cast<uint32_t>(Val);
4457       bool Res = parseUInt32(TempVal);
4458       Val = static_cast<DINode::DIFlags>(TempVal);
4459       return Res;
4460     }
4461 
4462     if (Lex.getKind() != lltok::DIFlag)
4463       return tokError("expected debug info flag");
4464 
4465     Val = DINode::getFlag(Lex.getStrVal());
4466     if (!Val)
4467       return tokError(Twine("invalid debug info flag flag '") +
4468                       Lex.getStrVal() + "'");
4469     Lex.Lex();
4470     return false;
4471   };
4472 
4473   // parse the flags and combine them together.
4474   DINode::DIFlags Combined = DINode::FlagZero;
4475   do {
4476     DINode::DIFlags Val;
4477     if (parseFlag(Val))
4478       return true;
4479     Combined |= Val;
4480   } while (EatIfPresent(lltok::bar));
4481 
4482   Result.assign(Combined);
4483   return false;
4484 }
4485 
4486 /// DISPFlagField
4487 ///  ::= uint32
4488 ///  ::= DISPFlagVector
4489 ///  ::= DISPFlagVector '|' DISPFlag* '|' uint32
4490 template <>
4491 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4492 
4493   // parser for a single flag.
4494   auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4495     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4496       uint32_t TempVal = static_cast<uint32_t>(Val);
4497       bool Res = parseUInt32(TempVal);
4498       Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4499       return Res;
4500     }
4501 
4502     if (Lex.getKind() != lltok::DISPFlag)
4503       return tokError("expected debug info flag");
4504 
4505     Val = DISubprogram::getFlag(Lex.getStrVal());
4506     if (!Val)
4507       return tokError(Twine("invalid subprogram debug info flag '") +
4508                       Lex.getStrVal() + "'");
4509     Lex.Lex();
4510     return false;
4511   };
4512 
4513   // parse the flags and combine them together.
4514   DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4515   do {
4516     DISubprogram::DISPFlags Val;
4517     if (parseFlag(Val))
4518       return true;
4519     Combined |= Val;
4520   } while (EatIfPresent(lltok::bar));
4521 
4522   Result.assign(Combined);
4523   return false;
4524 }
4525 
4526 template <>
4527 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) {
4528   if (Lex.getKind() != lltok::APSInt)
4529     return tokError("expected signed integer");
4530 
4531   auto &S = Lex.getAPSIntVal();
4532   if (S < Result.Min)
4533     return tokError("value for '" + Name + "' too small, limit is " +
4534                     Twine(Result.Min));
4535   if (S > Result.Max)
4536     return tokError("value for '" + Name + "' too large, limit is " +
4537                     Twine(Result.Max));
4538   Result.assign(S.getExtValue());
4539   assert(Result.Val >= Result.Min && "Expected value in range");
4540   assert(Result.Val <= Result.Max && "Expected value in range");
4541   Lex.Lex();
4542   return false;
4543 }
4544 
4545 template <>
4546 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4547   switch (Lex.getKind()) {
4548   default:
4549     return tokError("expected 'true' or 'false'");
4550   case lltok::kw_true:
4551     Result.assign(true);
4552     break;
4553   case lltok::kw_false:
4554     Result.assign(false);
4555     break;
4556   }
4557   Lex.Lex();
4558   return false;
4559 }
4560 
4561 template <>
4562 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4563   if (Lex.getKind() == lltok::kw_null) {
4564     if (!Result.AllowNull)
4565       return tokError("'" + Name + "' cannot be null");
4566     Lex.Lex();
4567     Result.assign(nullptr);
4568     return false;
4569   }
4570 
4571   Metadata *MD;
4572   if (parseMetadata(MD, nullptr))
4573     return true;
4574 
4575   Result.assign(MD);
4576   return false;
4577 }
4578 
4579 template <>
4580 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4581                             MDSignedOrMDField &Result) {
4582   // Try to parse a signed int.
4583   if (Lex.getKind() == lltok::APSInt) {
4584     MDSignedField Res = Result.A;
4585     if (!parseMDField(Loc, Name, Res)) {
4586       Result.assign(Res);
4587       return false;
4588     }
4589     return true;
4590   }
4591 
4592   // Otherwise, try to parse as an MDField.
4593   MDField Res = Result.B;
4594   if (!parseMDField(Loc, Name, Res)) {
4595     Result.assign(Res);
4596     return false;
4597   }
4598 
4599   return true;
4600 }
4601 
4602 template <>
4603 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4604   LocTy ValueLoc = Lex.getLoc();
4605   std::string S;
4606   if (parseStringConstant(S))
4607     return true;
4608 
4609   if (!Result.AllowEmpty && S.empty())
4610     return error(ValueLoc, "'" + Name + "' cannot be empty");
4611 
4612   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4613   return false;
4614 }
4615 
4616 template <>
4617 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4618   SmallVector<Metadata *, 4> MDs;
4619   if (parseMDNodeVector(MDs))
4620     return true;
4621 
4622   Result.assign(std::move(MDs));
4623   return false;
4624 }
4625 
4626 template <>
4627 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4628                             ChecksumKindField &Result) {
4629   Optional<DIFile::ChecksumKind> CSKind =
4630       DIFile::getChecksumKind(Lex.getStrVal());
4631 
4632   if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4633     return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() +
4634                     "'");
4635 
4636   Result.assign(*CSKind);
4637   Lex.Lex();
4638   return false;
4639 }
4640 
4641 } // end namespace llvm
4642 
4643 template <class ParserTy>
4644 bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) {
4645   do {
4646     if (Lex.getKind() != lltok::LabelStr)
4647       return tokError("expected field label here");
4648 
4649     if (ParseField())
4650       return true;
4651   } while (EatIfPresent(lltok::comma));
4652 
4653   return false;
4654 }
4655 
4656 template <class ParserTy>
4657 bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) {
4658   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4659   Lex.Lex();
4660 
4661   if (parseToken(lltok::lparen, "expected '(' here"))
4662     return true;
4663   if (Lex.getKind() != lltok::rparen)
4664     if (parseMDFieldsImplBody(ParseField))
4665       return true;
4666 
4667   ClosingLoc = Lex.getLoc();
4668   return parseToken(lltok::rparen, "expected ')' here");
4669 }
4670 
4671 template <class FieldTy>
4672 bool LLParser::parseMDField(StringRef Name, FieldTy &Result) {
4673   if (Result.Seen)
4674     return tokError("field '" + Name + "' cannot be specified more than once");
4675 
4676   LocTy Loc = Lex.getLoc();
4677   Lex.Lex();
4678   return parseMDField(Loc, Name, Result);
4679 }
4680 
4681 bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4682   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4683 
4684 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
4685   if (Lex.getStrVal() == #CLASS)                                               \
4686     return parse##CLASS(N, IsDistinct);
4687 #include "llvm/IR/Metadata.def"
4688 
4689   return tokError("expected metadata type");
4690 }
4691 
4692 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4693 #define NOP_FIELD(NAME, TYPE, INIT)
4694 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
4695   if (!NAME.Seen)                                                              \
4696     return error(ClosingLoc, "missing required field '" #NAME "'");
4697 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
4698   if (Lex.getStrVal() == #NAME)                                                \
4699     return parseMDField(#NAME, NAME);
4700 #define PARSE_MD_FIELDS()                                                      \
4701   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
4702   do {                                                                         \
4703     LocTy ClosingLoc;                                                          \
4704     if (parseMDFieldsImpl(                                                     \
4705             [&]() -> bool {                                                    \
4706               VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                  \
4707               return tokError(Twine("invalid field '") + Lex.getStrVal() +     \
4708                               "'");                                            \
4709             },                                                                 \
4710             ClosingLoc))                                                       \
4711       return true;                                                             \
4712     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
4713   } while (false)
4714 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
4715   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4716 
4717 /// parseDILocationFields:
4718 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4719 ///   isImplicitCode: true)
4720 bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) {
4721 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4722   OPTIONAL(line, LineField, );                                                 \
4723   OPTIONAL(column, ColumnField, );                                             \
4724   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4725   OPTIONAL(inlinedAt, MDField, );                                              \
4726   OPTIONAL(isImplicitCode, MDBoolField, (false));
4727   PARSE_MD_FIELDS();
4728 #undef VISIT_MD_FIELDS
4729 
4730   Result =
4731       GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4732                                    inlinedAt.Val, isImplicitCode.Val));
4733   return false;
4734 }
4735 
4736 /// parseGenericDINode:
4737 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4738 bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) {
4739 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4740   REQUIRED(tag, DwarfTagField, );                                              \
4741   OPTIONAL(header, MDStringField, );                                           \
4742   OPTIONAL(operands, MDFieldList, );
4743   PARSE_MD_FIELDS();
4744 #undef VISIT_MD_FIELDS
4745 
4746   Result = GET_OR_DISTINCT(GenericDINode,
4747                            (Context, tag.Val, header.Val, operands.Val));
4748   return false;
4749 }
4750 
4751 /// parseDISubrange:
4752 ///   ::= !DISubrange(count: 30, lowerBound: 2)
4753 ///   ::= !DISubrange(count: !node, lowerBound: 2)
4754 ///   ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3)
4755 bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) {
4756 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4757   OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false));              \
4758   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
4759   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
4760   OPTIONAL(stride, MDSignedOrMDField, );
4761   PARSE_MD_FIELDS();
4762 #undef VISIT_MD_FIELDS
4763 
4764   Metadata *Count = nullptr;
4765   Metadata *LowerBound = nullptr;
4766   Metadata *UpperBound = nullptr;
4767   Metadata *Stride = nullptr;
4768 
4769   auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4770     if (Bound.isMDSignedField())
4771       return ConstantAsMetadata::get(ConstantInt::getSigned(
4772           Type::getInt64Ty(Context), Bound.getMDSignedValue()));
4773     if (Bound.isMDField())
4774       return Bound.getMDFieldValue();
4775     return nullptr;
4776   };
4777 
4778   Count = convToMetadata(count);
4779   LowerBound = convToMetadata(lowerBound);
4780   UpperBound = convToMetadata(upperBound);
4781   Stride = convToMetadata(stride);
4782 
4783   Result = GET_OR_DISTINCT(DISubrange,
4784                            (Context, Count, LowerBound, UpperBound, Stride));
4785 
4786   return false;
4787 }
4788 
4789 /// parseDIGenericSubrange:
4790 ///   ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride:
4791 ///   !node3)
4792 bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) {
4793 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4794   OPTIONAL(count, MDSignedOrMDField, );                                        \
4795   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
4796   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
4797   OPTIONAL(stride, MDSignedOrMDField, );
4798   PARSE_MD_FIELDS();
4799 #undef VISIT_MD_FIELDS
4800 
4801   auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4802     if (Bound.isMDSignedField())
4803       return DIExpression::get(
4804           Context, {dwarf::DW_OP_consts,
4805                     static_cast<uint64_t>(Bound.getMDSignedValue())});
4806     if (Bound.isMDField())
4807       return Bound.getMDFieldValue();
4808     return nullptr;
4809   };
4810 
4811   Metadata *Count = ConvToMetadata(count);
4812   Metadata *LowerBound = ConvToMetadata(lowerBound);
4813   Metadata *UpperBound = ConvToMetadata(upperBound);
4814   Metadata *Stride = ConvToMetadata(stride);
4815 
4816   Result = GET_OR_DISTINCT(DIGenericSubrange,
4817                            (Context, Count, LowerBound, UpperBound, Stride));
4818 
4819   return false;
4820 }
4821 
4822 /// parseDIEnumerator:
4823 ///   ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4824 bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4825 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4826   REQUIRED(name, MDStringField, );                                             \
4827   REQUIRED(value, MDAPSIntField, );                                            \
4828   OPTIONAL(isUnsigned, MDBoolField, (false));
4829   PARSE_MD_FIELDS();
4830 #undef VISIT_MD_FIELDS
4831 
4832   if (isUnsigned.Val && value.Val.isNegative())
4833     return tokError("unsigned enumerator with negative value");
4834 
4835   APSInt Value(value.Val);
4836   // Add a leading zero so that unsigned values with the msb set are not
4837   // mistaken for negative values when used for signed enumerators.
4838   if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet())
4839     Value = Value.zext(Value.getBitWidth() + 1);
4840 
4841   Result =
4842       GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4843 
4844   return false;
4845 }
4846 
4847 /// parseDIBasicType:
4848 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4849 ///                    encoding: DW_ATE_encoding, flags: 0)
4850 bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) {
4851 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4852   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
4853   OPTIONAL(name, MDStringField, );                                             \
4854   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4855   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4856   OPTIONAL(encoding, DwarfAttEncodingField, );                                 \
4857   OPTIONAL(flags, DIFlagField, );
4858   PARSE_MD_FIELDS();
4859 #undef VISIT_MD_FIELDS
4860 
4861   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4862                                          align.Val, encoding.Val, flags.Val));
4863   return false;
4864 }
4865 
4866 /// parseDIStringType:
4867 ///   ::= !DIStringType(name: "character(4)", size: 32, align: 32)
4868 bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) {
4869 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4870   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type));                   \
4871   OPTIONAL(name, MDStringField, );                                             \
4872   OPTIONAL(stringLength, MDField, );                                           \
4873   OPTIONAL(stringLengthExpression, MDField, );                                 \
4874   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4875   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4876   OPTIONAL(encoding, DwarfAttEncodingField, );
4877   PARSE_MD_FIELDS();
4878 #undef VISIT_MD_FIELDS
4879 
4880   Result = GET_OR_DISTINCT(DIStringType,
4881                            (Context, tag.Val, name.Val, stringLength.Val,
4882                             stringLengthExpression.Val, size.Val, align.Val,
4883                             encoding.Val));
4884   return false;
4885 }
4886 
4887 /// parseDIDerivedType:
4888 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4889 ///                      line: 7, scope: !1, baseType: !2, size: 32,
4890 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
4891 ///                      dwarfAddressSpace: 3)
4892 bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4893 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4894   REQUIRED(tag, DwarfTagField, );                                              \
4895   OPTIONAL(name, MDStringField, );                                             \
4896   OPTIONAL(file, MDField, );                                                   \
4897   OPTIONAL(line, LineField, );                                                 \
4898   OPTIONAL(scope, MDField, );                                                  \
4899   REQUIRED(baseType, MDField, );                                               \
4900   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4901   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4902   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4903   OPTIONAL(flags, DIFlagField, );                                              \
4904   OPTIONAL(extraData, MDField, );                                              \
4905   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
4906   PARSE_MD_FIELDS();
4907 #undef VISIT_MD_FIELDS
4908 
4909   Optional<unsigned> DWARFAddressSpace;
4910   if (dwarfAddressSpace.Val != UINT32_MAX)
4911     DWARFAddressSpace = dwarfAddressSpace.Val;
4912 
4913   Result = GET_OR_DISTINCT(DIDerivedType,
4914                            (Context, tag.Val, name.Val, file.Val, line.Val,
4915                             scope.Val, baseType.Val, size.Val, align.Val,
4916                             offset.Val, DWARFAddressSpace, flags.Val,
4917                             extraData.Val));
4918   return false;
4919 }
4920 
4921 bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) {
4922 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4923   REQUIRED(tag, DwarfTagField, );                                              \
4924   OPTIONAL(name, MDStringField, );                                             \
4925   OPTIONAL(file, MDField, );                                                   \
4926   OPTIONAL(line, LineField, );                                                 \
4927   OPTIONAL(scope, MDField, );                                                  \
4928   OPTIONAL(baseType, MDField, );                                               \
4929   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4930   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4931   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4932   OPTIONAL(flags, DIFlagField, );                                              \
4933   OPTIONAL(elements, MDField, );                                               \
4934   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
4935   OPTIONAL(vtableHolder, MDField, );                                           \
4936   OPTIONAL(templateParams, MDField, );                                         \
4937   OPTIONAL(identifier, MDStringField, );                                       \
4938   OPTIONAL(discriminator, MDField, );                                          \
4939   OPTIONAL(dataLocation, MDField, );                                           \
4940   OPTIONAL(associated, MDField, );                                             \
4941   OPTIONAL(allocated, MDField, );                                              \
4942   OPTIONAL(rank, MDSignedOrMDField, );
4943   PARSE_MD_FIELDS();
4944 #undef VISIT_MD_FIELDS
4945 
4946   Metadata *Rank = nullptr;
4947   if (rank.isMDSignedField())
4948     Rank = ConstantAsMetadata::get(ConstantInt::getSigned(
4949         Type::getInt64Ty(Context), rank.getMDSignedValue()));
4950   else if (rank.isMDField())
4951     Rank = rank.getMDFieldValue();
4952 
4953   // If this has an identifier try to build an ODR type.
4954   if (identifier.Val)
4955     if (auto *CT = DICompositeType::buildODRType(
4956             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4957             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4958             elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val,
4959             discriminator.Val, dataLocation.Val, associated.Val, allocated.Val,
4960             Rank)) {
4961       Result = CT;
4962       return false;
4963     }
4964 
4965   // Create a new node, and save it in the context if it belongs in the type
4966   // map.
4967   Result = GET_OR_DISTINCT(
4968       DICompositeType,
4969       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4970        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4971        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4972        discriminator.Val, dataLocation.Val, associated.Val, allocated.Val,
4973        Rank));
4974   return false;
4975 }
4976 
4977 bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4978 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4979   OPTIONAL(flags, DIFlagField, );                                              \
4980   OPTIONAL(cc, DwarfCCField, );                                                \
4981   REQUIRED(types, MDField, );
4982   PARSE_MD_FIELDS();
4983 #undef VISIT_MD_FIELDS
4984 
4985   Result = GET_OR_DISTINCT(DISubroutineType,
4986                            (Context, flags.Val, cc.Val, types.Val));
4987   return false;
4988 }
4989 
4990 /// parseDIFileType:
4991 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4992 ///                   checksumkind: CSK_MD5,
4993 ///                   checksum: "000102030405060708090a0b0c0d0e0f",
4994 ///                   source: "source file contents")
4995 bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) {
4996   // The default constructed value for checksumkind is required, but will never
4997   // be used, as the parser checks if the field was actually Seen before using
4998   // the Val.
4999 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5000   REQUIRED(filename, MDStringField, );                                         \
5001   REQUIRED(directory, MDStringField, );                                        \
5002   OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5));                \
5003   OPTIONAL(checksum, MDStringField, );                                         \
5004   OPTIONAL(source, MDStringField, );
5005   PARSE_MD_FIELDS();
5006 #undef VISIT_MD_FIELDS
5007 
5008   Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
5009   if (checksumkind.Seen && checksum.Seen)
5010     OptChecksum.emplace(checksumkind.Val, checksum.Val);
5011   else if (checksumkind.Seen || checksum.Seen)
5012     return Lex.Error("'checksumkind' and 'checksum' must be provided together");
5013 
5014   Optional<MDString *> OptSource;
5015   if (source.Seen)
5016     OptSource = source.Val;
5017   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
5018                                     OptChecksum, OptSource));
5019   return false;
5020 }
5021 
5022 /// parseDICompileUnit:
5023 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
5024 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
5025 ///                      splitDebugFilename: "abc.debug",
5026 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
5027 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd,
5028 ///                      sysroot: "/", sdk: "MacOSX.sdk")
5029 bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) {
5030   if (!IsDistinct)
5031     return Lex.Error("missing 'distinct', required for !DICompileUnit");
5032 
5033 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5034   REQUIRED(language, DwarfLangField, );                                        \
5035   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
5036   OPTIONAL(producer, MDStringField, );                                         \
5037   OPTIONAL(isOptimized, MDBoolField, );                                        \
5038   OPTIONAL(flags, MDStringField, );                                            \
5039   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
5040   OPTIONAL(splitDebugFilename, MDStringField, );                               \
5041   OPTIONAL(emissionKind, EmissionKindField, );                                 \
5042   OPTIONAL(enums, MDField, );                                                  \
5043   OPTIONAL(retainedTypes, MDField, );                                          \
5044   OPTIONAL(globals, MDField, );                                                \
5045   OPTIONAL(imports, MDField, );                                                \
5046   OPTIONAL(macros, MDField, );                                                 \
5047   OPTIONAL(dwoId, MDUnsignedField, );                                          \
5048   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
5049   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
5050   OPTIONAL(nameTableKind, NameTableKindField, );                               \
5051   OPTIONAL(rangesBaseAddress, MDBoolField, = false);                           \
5052   OPTIONAL(sysroot, MDStringField, );                                          \
5053   OPTIONAL(sdk, MDStringField, );
5054   PARSE_MD_FIELDS();
5055 #undef VISIT_MD_FIELDS
5056 
5057   Result = DICompileUnit::getDistinct(
5058       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
5059       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
5060       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
5061       splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
5062       rangesBaseAddress.Val, sysroot.Val, sdk.Val);
5063   return false;
5064 }
5065 
5066 /// parseDISubprogram:
5067 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
5068 ///                     file: !1, line: 7, type: !2, isLocal: false,
5069 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
5070 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
5071 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
5072 ///                     spFlags: 10, isOptimized: false, templateParams: !4,
5073 ///                     declaration: !5, retainedNodes: !6, thrownTypes: !7)
5074 bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) {
5075   auto Loc = Lex.getLoc();
5076 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5077   OPTIONAL(scope, MDField, );                                                  \
5078   OPTIONAL(name, MDStringField, );                                             \
5079   OPTIONAL(linkageName, MDStringField, );                                      \
5080   OPTIONAL(file, MDField, );                                                   \
5081   OPTIONAL(line, LineField, );                                                 \
5082   OPTIONAL(type, MDField, );                                                   \
5083   OPTIONAL(isLocal, MDBoolField, );                                            \
5084   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
5085   OPTIONAL(scopeLine, LineField, );                                            \
5086   OPTIONAL(containingType, MDField, );                                         \
5087   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
5088   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
5089   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
5090   OPTIONAL(flags, DIFlagField, );                                              \
5091   OPTIONAL(spFlags, DISPFlagField, );                                          \
5092   OPTIONAL(isOptimized, MDBoolField, );                                        \
5093   OPTIONAL(unit, MDField, );                                                   \
5094   OPTIONAL(templateParams, MDField, );                                         \
5095   OPTIONAL(declaration, MDField, );                                            \
5096   OPTIONAL(retainedNodes, MDField, );                                          \
5097   OPTIONAL(thrownTypes, MDField, );
5098   PARSE_MD_FIELDS();
5099 #undef VISIT_MD_FIELDS
5100 
5101   // An explicit spFlags field takes precedence over individual fields in
5102   // older IR versions.
5103   DISubprogram::DISPFlags SPFlags =
5104       spFlags.Seen ? spFlags.Val
5105                    : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
5106                                              isOptimized.Val, virtuality.Val);
5107   if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
5108     return Lex.Error(
5109         Loc,
5110         "missing 'distinct', required for !DISubprogram that is a Definition");
5111   Result = GET_OR_DISTINCT(
5112       DISubprogram,
5113       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
5114        type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
5115        thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
5116        declaration.Val, retainedNodes.Val, thrownTypes.Val));
5117   return false;
5118 }
5119 
5120 /// parseDILexicalBlock:
5121 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
5122 bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
5123 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5124   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5125   OPTIONAL(file, MDField, );                                                   \
5126   OPTIONAL(line, LineField, );                                                 \
5127   OPTIONAL(column, ColumnField, );
5128   PARSE_MD_FIELDS();
5129 #undef VISIT_MD_FIELDS
5130 
5131   Result = GET_OR_DISTINCT(
5132       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
5133   return false;
5134 }
5135 
5136 /// parseDILexicalBlockFile:
5137 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
5138 bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
5139 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5140   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5141   OPTIONAL(file, MDField, );                                                   \
5142   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
5143   PARSE_MD_FIELDS();
5144 #undef VISIT_MD_FIELDS
5145 
5146   Result = GET_OR_DISTINCT(DILexicalBlockFile,
5147                            (Context, scope.Val, file.Val, discriminator.Val));
5148   return false;
5149 }
5150 
5151 /// parseDICommonBlock:
5152 ///   ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9)
5153 bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) {
5154 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5155   REQUIRED(scope, MDField, );                                                  \
5156   OPTIONAL(declaration, MDField, );                                            \
5157   OPTIONAL(name, MDStringField, );                                             \
5158   OPTIONAL(file, MDField, );                                                   \
5159   OPTIONAL(line, LineField, );
5160   PARSE_MD_FIELDS();
5161 #undef VISIT_MD_FIELDS
5162 
5163   Result = GET_OR_DISTINCT(DICommonBlock,
5164                            (Context, scope.Val, declaration.Val, name.Val,
5165                             file.Val, line.Val));
5166   return false;
5167 }
5168 
5169 /// parseDINamespace:
5170 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
5171 bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) {
5172 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5173   REQUIRED(scope, MDField, );                                                  \
5174   OPTIONAL(name, MDStringField, );                                             \
5175   OPTIONAL(exportSymbols, MDBoolField, );
5176   PARSE_MD_FIELDS();
5177 #undef VISIT_MD_FIELDS
5178 
5179   Result = GET_OR_DISTINCT(DINamespace,
5180                            (Context, scope.Val, name.Val, exportSymbols.Val));
5181   return false;
5182 }
5183 
5184 /// parseDIMacro:
5185 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value:
5186 ///   "SomeValue")
5187 bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) {
5188 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5189   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
5190   OPTIONAL(line, LineField, );                                                 \
5191   REQUIRED(name, MDStringField, );                                             \
5192   OPTIONAL(value, MDStringField, );
5193   PARSE_MD_FIELDS();
5194 #undef VISIT_MD_FIELDS
5195 
5196   Result = GET_OR_DISTINCT(DIMacro,
5197                            (Context, type.Val, line.Val, name.Val, value.Val));
5198   return false;
5199 }
5200 
5201 /// parseDIMacroFile:
5202 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
5203 bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) {
5204 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5205   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
5206   OPTIONAL(line, LineField, );                                                 \
5207   REQUIRED(file, MDField, );                                                   \
5208   OPTIONAL(nodes, MDField, );
5209   PARSE_MD_FIELDS();
5210 #undef VISIT_MD_FIELDS
5211 
5212   Result = GET_OR_DISTINCT(DIMacroFile,
5213                            (Context, type.Val, line.Val, file.Val, nodes.Val));
5214   return false;
5215 }
5216 
5217 /// parseDIModule:
5218 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros:
5219 ///   "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes",
5220 ///   file: !1, line: 4, isDecl: false)
5221 bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) {
5222 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5223   REQUIRED(scope, MDField, );                                                  \
5224   REQUIRED(name, MDStringField, );                                             \
5225   OPTIONAL(configMacros, MDStringField, );                                     \
5226   OPTIONAL(includePath, MDStringField, );                                      \
5227   OPTIONAL(apinotes, MDStringField, );                                         \
5228   OPTIONAL(file, MDField, );                                                   \
5229   OPTIONAL(line, LineField, );                                                 \
5230   OPTIONAL(isDecl, MDBoolField, );
5231   PARSE_MD_FIELDS();
5232 #undef VISIT_MD_FIELDS
5233 
5234   Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val,
5235                                       configMacros.Val, includePath.Val,
5236                                       apinotes.Val, line.Val, isDecl.Val));
5237   return false;
5238 }
5239 
5240 /// parseDITemplateTypeParameter:
5241 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false)
5242 bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
5243 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5244   OPTIONAL(name, MDStringField, );                                             \
5245   REQUIRED(type, MDField, );                                                   \
5246   OPTIONAL(defaulted, MDBoolField, );
5247   PARSE_MD_FIELDS();
5248 #undef VISIT_MD_FIELDS
5249 
5250   Result = GET_OR_DISTINCT(DITemplateTypeParameter,
5251                            (Context, name.Val, type.Val, defaulted.Val));
5252   return false;
5253 }
5254 
5255 /// parseDITemplateValueParameter:
5256 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
5257 ///                                 name: "V", type: !1, defaulted: false,
5258 ///                                 value: i32 7)
5259 bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
5260 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5261   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
5262   OPTIONAL(name, MDStringField, );                                             \
5263   OPTIONAL(type, MDField, );                                                   \
5264   OPTIONAL(defaulted, MDBoolField, );                                          \
5265   REQUIRED(value, MDField, );
5266 
5267   PARSE_MD_FIELDS();
5268 #undef VISIT_MD_FIELDS
5269 
5270   Result = GET_OR_DISTINCT(
5271       DITemplateValueParameter,
5272       (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val));
5273   return false;
5274 }
5275 
5276 /// parseDIGlobalVariable:
5277 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
5278 ///                         file: !1, line: 7, type: !2, isLocal: false,
5279 ///                         isDefinition: true, templateParams: !3,
5280 ///                         declaration: !4, align: 8)
5281 bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
5282 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5283   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
5284   OPTIONAL(scope, MDField, );                                                  \
5285   OPTIONAL(linkageName, MDStringField, );                                      \
5286   OPTIONAL(file, MDField, );                                                   \
5287   OPTIONAL(line, LineField, );                                                 \
5288   OPTIONAL(type, MDField, );                                                   \
5289   OPTIONAL(isLocal, MDBoolField, );                                            \
5290   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
5291   OPTIONAL(templateParams, MDField, );                                         \
5292   OPTIONAL(declaration, MDField, );                                            \
5293   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
5294   PARSE_MD_FIELDS();
5295 #undef VISIT_MD_FIELDS
5296 
5297   Result =
5298       GET_OR_DISTINCT(DIGlobalVariable,
5299                       (Context, scope.Val, name.Val, linkageName.Val, file.Val,
5300                        line.Val, type.Val, isLocal.Val, isDefinition.Val,
5301                        declaration.Val, templateParams.Val, align.Val));
5302   return false;
5303 }
5304 
5305 /// parseDILocalVariable:
5306 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
5307 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
5308 ///                        align: 8)
5309 ///   ::= !DILocalVariable(scope: !0, name: "foo",
5310 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
5311 ///                        align: 8)
5312 bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) {
5313 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5314   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5315   OPTIONAL(name, MDStringField, );                                             \
5316   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
5317   OPTIONAL(file, MDField, );                                                   \
5318   OPTIONAL(line, LineField, );                                                 \
5319   OPTIONAL(type, MDField, );                                                   \
5320   OPTIONAL(flags, DIFlagField, );                                              \
5321   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
5322   PARSE_MD_FIELDS();
5323 #undef VISIT_MD_FIELDS
5324 
5325   Result = GET_OR_DISTINCT(DILocalVariable,
5326                            (Context, scope.Val, name.Val, file.Val, line.Val,
5327                             type.Val, arg.Val, flags.Val, align.Val));
5328   return false;
5329 }
5330 
5331 /// parseDILabel:
5332 ///   ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
5333 bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) {
5334 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5335   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5336   REQUIRED(name, MDStringField, );                                             \
5337   REQUIRED(file, MDField, );                                                   \
5338   REQUIRED(line, LineField, );
5339   PARSE_MD_FIELDS();
5340 #undef VISIT_MD_FIELDS
5341 
5342   Result = GET_OR_DISTINCT(DILabel,
5343                            (Context, scope.Val, name.Val, file.Val, line.Val));
5344   return false;
5345 }
5346 
5347 /// parseDIExpression:
5348 ///   ::= !DIExpression(0, 7, -1)
5349 bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) {
5350   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5351   Lex.Lex();
5352 
5353   if (parseToken(lltok::lparen, "expected '(' here"))
5354     return true;
5355 
5356   SmallVector<uint64_t, 8> Elements;
5357   if (Lex.getKind() != lltok::rparen)
5358     do {
5359       if (Lex.getKind() == lltok::DwarfOp) {
5360         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
5361           Lex.Lex();
5362           Elements.push_back(Op);
5363           continue;
5364         }
5365         return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
5366       }
5367 
5368       if (Lex.getKind() == lltok::DwarfAttEncoding) {
5369         if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) {
5370           Lex.Lex();
5371           Elements.push_back(Op);
5372           continue;
5373         }
5374         return tokError(Twine("invalid DWARF attribute encoding '") +
5375                         Lex.getStrVal() + "'");
5376       }
5377 
5378       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
5379         return tokError("expected unsigned integer");
5380 
5381       auto &U = Lex.getAPSIntVal();
5382       if (U.ugt(UINT64_MAX))
5383         return tokError("element too large, limit is " + Twine(UINT64_MAX));
5384       Elements.push_back(U.getZExtValue());
5385       Lex.Lex();
5386     } while (EatIfPresent(lltok::comma));
5387 
5388   if (parseToken(lltok::rparen, "expected ')' here"))
5389     return true;
5390 
5391   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
5392   return false;
5393 }
5394 
5395 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct) {
5396   return parseDIArgList(Result, IsDistinct, nullptr);
5397 }
5398 /// ParseDIArgList:
5399 ///   ::= !DIArgList(i32 7, i64 %0)
5400 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct,
5401                               PerFunctionState *PFS) {
5402   assert(PFS && "Expected valid function state");
5403   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5404   Lex.Lex();
5405 
5406   if (parseToken(lltok::lparen, "expected '(' here"))
5407     return true;
5408 
5409   SmallVector<ValueAsMetadata *, 4> Args;
5410   if (Lex.getKind() != lltok::rparen)
5411     do {
5412       Metadata *MD;
5413       if (parseValueAsMetadata(MD, "expected value-as-metadata operand", PFS))
5414         return true;
5415       Args.push_back(dyn_cast<ValueAsMetadata>(MD));
5416     } while (EatIfPresent(lltok::comma));
5417 
5418   if (parseToken(lltok::rparen, "expected ')' here"))
5419     return true;
5420 
5421   Result = GET_OR_DISTINCT(DIArgList, (Context, Args));
5422   return false;
5423 }
5424 
5425 /// parseDIGlobalVariableExpression:
5426 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
5427 bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result,
5428                                                bool IsDistinct) {
5429 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5430   REQUIRED(var, MDField, );                                                    \
5431   REQUIRED(expr, MDField, );
5432   PARSE_MD_FIELDS();
5433 #undef VISIT_MD_FIELDS
5434 
5435   Result =
5436       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
5437   return false;
5438 }
5439 
5440 /// parseDIObjCProperty:
5441 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
5442 ///                       getter: "getFoo", attributes: 7, type: !2)
5443 bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
5444 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5445   OPTIONAL(name, MDStringField, );                                             \
5446   OPTIONAL(file, MDField, );                                                   \
5447   OPTIONAL(line, LineField, );                                                 \
5448   OPTIONAL(setter, MDStringField, );                                           \
5449   OPTIONAL(getter, MDStringField, );                                           \
5450   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
5451   OPTIONAL(type, MDField, );
5452   PARSE_MD_FIELDS();
5453 #undef VISIT_MD_FIELDS
5454 
5455   Result = GET_OR_DISTINCT(DIObjCProperty,
5456                            (Context, name.Val, file.Val, line.Val, setter.Val,
5457                             getter.Val, attributes.Val, type.Val));
5458   return false;
5459 }
5460 
5461 /// parseDIImportedEntity:
5462 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
5463 ///                         line: 7, name: "foo")
5464 bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
5465 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5466   REQUIRED(tag, DwarfTagField, );                                              \
5467   REQUIRED(scope, MDField, );                                                  \
5468   OPTIONAL(entity, MDField, );                                                 \
5469   OPTIONAL(file, MDField, );                                                   \
5470   OPTIONAL(line, LineField, );                                                 \
5471   OPTIONAL(name, MDStringField, );
5472   PARSE_MD_FIELDS();
5473 #undef VISIT_MD_FIELDS
5474 
5475   Result = GET_OR_DISTINCT(
5476       DIImportedEntity,
5477       (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
5478   return false;
5479 }
5480 
5481 #undef PARSE_MD_FIELD
5482 #undef NOP_FIELD
5483 #undef REQUIRE_FIELD
5484 #undef DECLARE_FIELD
5485 
5486 /// parseMetadataAsValue
5487 ///  ::= metadata i32 %local
5488 ///  ::= metadata i32 @global
5489 ///  ::= metadata i32 7
5490 ///  ::= metadata !0
5491 ///  ::= metadata !{...}
5492 ///  ::= metadata !"string"
5493 bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
5494   // Note: the type 'metadata' has already been parsed.
5495   Metadata *MD;
5496   if (parseMetadata(MD, &PFS))
5497     return true;
5498 
5499   V = MetadataAsValue::get(Context, MD);
5500   return false;
5501 }
5502 
5503 /// parseValueAsMetadata
5504 ///  ::= i32 %local
5505 ///  ::= i32 @global
5506 ///  ::= i32 7
5507 bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
5508                                     PerFunctionState *PFS) {
5509   Type *Ty;
5510   LocTy Loc;
5511   if (parseType(Ty, TypeMsg, Loc))
5512     return true;
5513   if (Ty->isMetadataTy())
5514     return error(Loc, "invalid metadata-value-metadata roundtrip");
5515 
5516   Value *V;
5517   if (parseValue(Ty, V, PFS))
5518     return true;
5519 
5520   MD = ValueAsMetadata::get(V);
5521   return false;
5522 }
5523 
5524 /// parseMetadata
5525 ///  ::= i32 %local
5526 ///  ::= i32 @global
5527 ///  ::= i32 7
5528 ///  ::= !42
5529 ///  ::= !{...}
5530 ///  ::= !"string"
5531 ///  ::= !DILocation(...)
5532 bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) {
5533   if (Lex.getKind() == lltok::MetadataVar) {
5534     MDNode *N;
5535     // DIArgLists are a special case, as they are a list of ValueAsMetadata and
5536     // so parsing this requires a Function State.
5537     if (Lex.getStrVal() == "DIArgList") {
5538       if (parseDIArgList(N, false, PFS))
5539         return true;
5540     } else if (parseSpecializedMDNode(N)) {
5541       return true;
5542     }
5543     MD = N;
5544     return false;
5545   }
5546 
5547   // ValueAsMetadata:
5548   // <type> <value>
5549   if (Lex.getKind() != lltok::exclaim)
5550     return parseValueAsMetadata(MD, "expected metadata operand", PFS);
5551 
5552   // '!'.
5553   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
5554   Lex.Lex();
5555 
5556   // MDString:
5557   //   ::= '!' STRINGCONSTANT
5558   if (Lex.getKind() == lltok::StringConstant) {
5559     MDString *S;
5560     if (parseMDString(S))
5561       return true;
5562     MD = S;
5563     return false;
5564   }
5565 
5566   // MDNode:
5567   // !{ ... }
5568   // !7
5569   MDNode *N;
5570   if (parseMDNodeTail(N))
5571     return true;
5572   MD = N;
5573   return false;
5574 }
5575 
5576 //===----------------------------------------------------------------------===//
5577 // Function Parsing.
5578 //===----------------------------------------------------------------------===//
5579 
5580 bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V,
5581                                    PerFunctionState *PFS, bool IsCall) {
5582   if (Ty->isFunctionTy())
5583     return error(ID.Loc, "functions are not values, refer to them as pointers");
5584 
5585   switch (ID.Kind) {
5586   case ValID::t_LocalID:
5587     if (!PFS)
5588       return error(ID.Loc, "invalid use of function-local name");
5589     V = PFS->getVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5590     return V == nullptr;
5591   case ValID::t_LocalName:
5592     if (!PFS)
5593       return error(ID.Loc, "invalid use of function-local name");
5594     V = PFS->getVal(ID.StrVal, Ty, ID.Loc, IsCall);
5595     return V == nullptr;
5596   case ValID::t_InlineAsm: {
5597     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
5598       return error(ID.Loc, "invalid type for inline asm constraint string");
5599     V = InlineAsm::get(
5600         ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, (ID.UIntVal >> 1) & 1,
5601         InlineAsm::AsmDialect((ID.UIntVal >> 2) & 1), (ID.UIntVal >> 3) & 1);
5602     return false;
5603   }
5604   case ValID::t_GlobalName:
5605     V = getGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall);
5606     return V == nullptr;
5607   case ValID::t_GlobalID:
5608     V = getGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5609     return V == nullptr;
5610   case ValID::t_APSInt:
5611     if (!Ty->isIntegerTy())
5612       return error(ID.Loc, "integer constant must have integer type");
5613     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
5614     V = ConstantInt::get(Context, ID.APSIntVal);
5615     return false;
5616   case ValID::t_APFloat:
5617     if (!Ty->isFloatingPointTy() ||
5618         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
5619       return error(ID.Loc, "floating point constant invalid for type");
5620 
5621     // The lexer has no type info, so builds all half, bfloat, float, and double
5622     // FP constants as double.  Fix this here.  Long double does not need this.
5623     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
5624       // Check for signaling before potentially converting and losing that info.
5625       bool IsSNAN = ID.APFloatVal.isSignaling();
5626       bool Ignored;
5627       if (Ty->isHalfTy())
5628         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
5629                               &Ignored);
5630       else if (Ty->isBFloatTy())
5631         ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven,
5632                               &Ignored);
5633       else if (Ty->isFloatTy())
5634         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
5635                               &Ignored);
5636       if (IsSNAN) {
5637         // The convert call above may quiet an SNaN, so manufacture another
5638         // SNaN. The bitcast works because the payload (significand) parameter
5639         // is truncated to fit.
5640         APInt Payload = ID.APFloatVal.bitcastToAPInt();
5641         ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(),
5642                                          ID.APFloatVal.isNegative(), &Payload);
5643       }
5644     }
5645     V = ConstantFP::get(Context, ID.APFloatVal);
5646 
5647     if (V->getType() != Ty)
5648       return error(ID.Loc, "floating point constant does not have type '" +
5649                                getTypeString(Ty) + "'");
5650 
5651     return false;
5652   case ValID::t_Null:
5653     if (!Ty->isPointerTy())
5654       return error(ID.Loc, "null must be a pointer type");
5655     V = ConstantPointerNull::get(cast<PointerType>(Ty));
5656     return false;
5657   case ValID::t_Undef:
5658     // FIXME: LabelTy should not be a first-class type.
5659     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5660       return error(ID.Loc, "invalid type for undef constant");
5661     V = UndefValue::get(Ty);
5662     return false;
5663   case ValID::t_EmptyArray:
5664     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
5665       return error(ID.Loc, "invalid empty array initializer");
5666     V = UndefValue::get(Ty);
5667     return false;
5668   case ValID::t_Zero:
5669     // FIXME: LabelTy should not be a first-class type.
5670     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5671       return error(ID.Loc, "invalid type for null constant");
5672     V = Constant::getNullValue(Ty);
5673     return false;
5674   case ValID::t_None:
5675     if (!Ty->isTokenTy())
5676       return error(ID.Loc, "invalid type for none constant");
5677     V = Constant::getNullValue(Ty);
5678     return false;
5679   case ValID::t_Poison:
5680     // FIXME: LabelTy should not be a first-class type.
5681     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5682       return error(ID.Loc, "invalid type for poison constant");
5683     V = PoisonValue::get(Ty);
5684     return false;
5685   case ValID::t_Constant:
5686     if (ID.ConstantVal->getType() != Ty)
5687       return error(ID.Loc, "constant expression type mismatch: got type '" +
5688                                getTypeString(ID.ConstantVal->getType()) +
5689                                "' but expected '" + getTypeString(Ty) + "'");
5690     V = ID.ConstantVal;
5691     return false;
5692   case ValID::t_ConstantStruct:
5693   case ValID::t_PackedConstantStruct:
5694     if (StructType *ST = dyn_cast<StructType>(Ty)) {
5695       if (ST->getNumElements() != ID.UIntVal)
5696         return error(ID.Loc,
5697                      "initializer with struct type has wrong # elements");
5698       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5699         return error(ID.Loc, "packed'ness of initializer and type don't match");
5700 
5701       // Verify that the elements are compatible with the structtype.
5702       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5703         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5704           return error(
5705               ID.Loc,
5706               "element " + Twine(i) +
5707                   " of struct initializer doesn't match struct element type");
5708 
5709       V = ConstantStruct::get(
5710           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5711     } else
5712       return error(ID.Loc, "constant expression type mismatch");
5713     return false;
5714   }
5715   llvm_unreachable("Invalid ValID");
5716 }
5717 
5718 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5719   C = nullptr;
5720   ValID ID;
5721   auto Loc = Lex.getLoc();
5722   if (parseValID(ID, /*PFS=*/nullptr))
5723     return true;
5724   switch (ID.Kind) {
5725   case ValID::t_APSInt:
5726   case ValID::t_APFloat:
5727   case ValID::t_Undef:
5728   case ValID::t_Constant:
5729   case ValID::t_ConstantStruct:
5730   case ValID::t_PackedConstantStruct: {
5731     Value *V;
5732     if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false))
5733       return true;
5734     assert(isa<Constant>(V) && "Expected a constant value");
5735     C = cast<Constant>(V);
5736     return false;
5737   }
5738   case ValID::t_Null:
5739     C = Constant::getNullValue(Ty);
5740     return false;
5741   default:
5742     return error(Loc, "expected a constant value");
5743   }
5744 }
5745 
5746 bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5747   V = nullptr;
5748   ValID ID;
5749   return parseValID(ID, PFS, Ty) ||
5750          convertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false);
5751 }
5752 
5753 bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5754   Type *Ty = nullptr;
5755   return parseType(Ty) || parseValue(Ty, V, PFS);
5756 }
5757 
5758 bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5759                                       PerFunctionState &PFS) {
5760   Value *V;
5761   Loc = Lex.getLoc();
5762   if (parseTypeAndValue(V, PFS))
5763     return true;
5764   if (!isa<BasicBlock>(V))
5765     return error(Loc, "expected a basic block");
5766   BB = cast<BasicBlock>(V);
5767   return false;
5768 }
5769 
5770 /// FunctionHeader
5771 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5772 ///       OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5773 ///       '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5774 ///       OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
5775 bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine) {
5776   // parse the linkage.
5777   LocTy LinkageLoc = Lex.getLoc();
5778   unsigned Linkage;
5779   unsigned Visibility;
5780   unsigned DLLStorageClass;
5781   bool DSOLocal;
5782   AttrBuilder RetAttrs;
5783   unsigned CC;
5784   bool HasLinkage;
5785   Type *RetType = nullptr;
5786   LocTy RetTypeLoc = Lex.getLoc();
5787   if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5788                            DSOLocal) ||
5789       parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
5790       parseType(RetType, RetTypeLoc, true /*void allowed*/))
5791     return true;
5792 
5793   // Verify that the linkage is ok.
5794   switch ((GlobalValue::LinkageTypes)Linkage) {
5795   case GlobalValue::ExternalLinkage:
5796     break; // always ok.
5797   case GlobalValue::ExternalWeakLinkage:
5798     if (IsDefine)
5799       return error(LinkageLoc, "invalid linkage for function definition");
5800     break;
5801   case GlobalValue::PrivateLinkage:
5802   case GlobalValue::InternalLinkage:
5803   case GlobalValue::AvailableExternallyLinkage:
5804   case GlobalValue::LinkOnceAnyLinkage:
5805   case GlobalValue::LinkOnceODRLinkage:
5806   case GlobalValue::WeakAnyLinkage:
5807   case GlobalValue::WeakODRLinkage:
5808     if (!IsDefine)
5809       return error(LinkageLoc, "invalid linkage for function declaration");
5810     break;
5811   case GlobalValue::AppendingLinkage:
5812   case GlobalValue::CommonLinkage:
5813     return error(LinkageLoc, "invalid function linkage type");
5814   }
5815 
5816   if (!isValidVisibilityForLinkage(Visibility, Linkage))
5817     return error(LinkageLoc,
5818                  "symbol with local linkage must have default visibility");
5819 
5820   if (!FunctionType::isValidReturnType(RetType))
5821     return error(RetTypeLoc, "invalid function return type");
5822 
5823   LocTy NameLoc = Lex.getLoc();
5824 
5825   std::string FunctionName;
5826   if (Lex.getKind() == lltok::GlobalVar) {
5827     FunctionName = Lex.getStrVal();
5828   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
5829     unsigned NameID = Lex.getUIntVal();
5830 
5831     if (NameID != NumberedVals.size())
5832       return tokError("function expected to be numbered '%" +
5833                       Twine(NumberedVals.size()) + "'");
5834   } else {
5835     return tokError("expected function name");
5836   }
5837 
5838   Lex.Lex();
5839 
5840   if (Lex.getKind() != lltok::lparen)
5841     return tokError("expected '(' in function argument list");
5842 
5843   SmallVector<ArgInfo, 8> ArgList;
5844   bool IsVarArg;
5845   AttrBuilder FuncAttrs;
5846   std::vector<unsigned> FwdRefAttrGrps;
5847   LocTy BuiltinLoc;
5848   std::string Section;
5849   std::string Partition;
5850   MaybeAlign Alignment;
5851   std::string GC;
5852   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
5853   unsigned AddrSpace = 0;
5854   Constant *Prefix = nullptr;
5855   Constant *Prologue = nullptr;
5856   Constant *PersonalityFn = nullptr;
5857   Comdat *C;
5858 
5859   if (parseArgumentList(ArgList, IsVarArg) ||
5860       parseOptionalUnnamedAddr(UnnamedAddr) ||
5861       parseOptionalProgramAddrSpace(AddrSpace) ||
5862       parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5863                                  BuiltinLoc) ||
5864       (EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) ||
5865       (EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) ||
5866       parseOptionalComdat(FunctionName, C) ||
5867       parseOptionalAlignment(Alignment) ||
5868       (EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) ||
5869       (EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) ||
5870       (EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) ||
5871       (EatIfPresent(lltok::kw_personality) &&
5872        parseGlobalTypeAndValue(PersonalityFn)))
5873     return true;
5874 
5875   if (FuncAttrs.contains(Attribute::Builtin))
5876     return error(BuiltinLoc, "'builtin' attribute not valid on function");
5877 
5878   // If the alignment was parsed as an attribute, move to the alignment field.
5879   if (FuncAttrs.hasAlignmentAttr()) {
5880     Alignment = FuncAttrs.getAlignment();
5881     FuncAttrs.removeAttribute(Attribute::Alignment);
5882   }
5883 
5884   // Okay, if we got here, the function is syntactically valid.  Convert types
5885   // and do semantic checks.
5886   std::vector<Type*> ParamTypeList;
5887   SmallVector<AttributeSet, 8> Attrs;
5888 
5889   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5890     ParamTypeList.push_back(ArgList[i].Ty);
5891     Attrs.push_back(ArgList[i].Attrs);
5892   }
5893 
5894   AttributeList PAL =
5895       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5896                          AttributeSet::get(Context, RetAttrs), Attrs);
5897 
5898   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
5899     return error(RetTypeLoc, "functions with 'sret' argument must return void");
5900 
5901   FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg);
5902   PointerType *PFT = PointerType::get(FT, AddrSpace);
5903 
5904   Fn = nullptr;
5905   GlobalValue *FwdFn = nullptr;
5906   if (!FunctionName.empty()) {
5907     // If this was a definition of a forward reference, remove the definition
5908     // from the forward reference table and fill in the forward ref.
5909     auto FRVI = ForwardRefVals.find(FunctionName);
5910     if (FRVI != ForwardRefVals.end()) {
5911       FwdFn = FRVI->second.first;
5912       if (!FwdFn->getType()->isOpaque()) {
5913         if (!FwdFn->getType()->getPointerElementType()->isFunctionTy())
5914           return error(FRVI->second.second, "invalid forward reference to "
5915                                             "function as global value!");
5916         if (FwdFn->getType() != PFT)
5917           return error(FRVI->second.second,
5918                        "invalid forward reference to "
5919                        "function '" +
5920                            FunctionName +
5921                            "' with wrong type: "
5922                            "expected '" +
5923                            getTypeString(PFT) + "' but was '" +
5924                            getTypeString(FwdFn->getType()) + "'");
5925       }
5926       ForwardRefVals.erase(FRVI);
5927     } else if ((Fn = M->getFunction(FunctionName))) {
5928       // Reject redefinitions.
5929       return error(NameLoc,
5930                    "invalid redefinition of function '" + FunctionName + "'");
5931     } else if (M->getNamedValue(FunctionName)) {
5932       return error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5933     }
5934 
5935   } else {
5936     // If this is a definition of a forward referenced function, make sure the
5937     // types agree.
5938     auto I = ForwardRefValIDs.find(NumberedVals.size());
5939     if (I != ForwardRefValIDs.end()) {
5940       FwdFn = cast<Function>(I->second.first);
5941       if (!FwdFn->getType()->isOpaque() && FwdFn->getType() != PFT)
5942         return error(NameLoc, "type of definition and forward reference of '@" +
5943                                   Twine(NumberedVals.size()) +
5944                                   "' disagree: "
5945                                   "expected '" +
5946                                   getTypeString(PFT) + "' but was '" +
5947                                   getTypeString(FwdFn->getType()) + "'");
5948       ForwardRefValIDs.erase(I);
5949     }
5950   }
5951 
5952   Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
5953                         FunctionName, M);
5954 
5955   assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
5956 
5957   if (FunctionName.empty())
5958     NumberedVals.push_back(Fn);
5959 
5960   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5961   maybeSetDSOLocal(DSOLocal, *Fn);
5962   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5963   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5964   Fn->setCallingConv(CC);
5965   Fn->setAttributes(PAL);
5966   Fn->setUnnamedAddr(UnnamedAddr);
5967   Fn->setAlignment(MaybeAlign(Alignment));
5968   Fn->setSection(Section);
5969   Fn->setPartition(Partition);
5970   Fn->setComdat(C);
5971   Fn->setPersonalityFn(PersonalityFn);
5972   if (!GC.empty()) Fn->setGC(GC);
5973   Fn->setPrefixData(Prefix);
5974   Fn->setPrologueData(Prologue);
5975   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5976 
5977   // Add all of the arguments we parsed to the function.
5978   Function::arg_iterator ArgIt = Fn->arg_begin();
5979   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5980     // If the argument has a name, insert it into the argument symbol table.
5981     if (ArgList[i].Name.empty()) continue;
5982 
5983     // Set the name, if it conflicted, it will be auto-renamed.
5984     ArgIt->setName(ArgList[i].Name);
5985 
5986     if (ArgIt->getName() != ArgList[i].Name)
5987       return error(ArgList[i].Loc,
5988                    "redefinition of argument '%" + ArgList[i].Name + "'");
5989   }
5990 
5991   if (FwdFn) {
5992     FwdFn->replaceAllUsesWith(Fn);
5993     FwdFn->eraseFromParent();
5994   }
5995 
5996   if (IsDefine)
5997     return false;
5998 
5999   // Check the declaration has no block address forward references.
6000   ValID ID;
6001   if (FunctionName.empty()) {
6002     ID.Kind = ValID::t_GlobalID;
6003     ID.UIntVal = NumberedVals.size() - 1;
6004   } else {
6005     ID.Kind = ValID::t_GlobalName;
6006     ID.StrVal = FunctionName;
6007   }
6008   auto Blocks = ForwardRefBlockAddresses.find(ID);
6009   if (Blocks != ForwardRefBlockAddresses.end())
6010     return error(Blocks->first.Loc,
6011                  "cannot take blockaddress inside a declaration");
6012   return false;
6013 }
6014 
6015 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
6016   ValID ID;
6017   if (FunctionNumber == -1) {
6018     ID.Kind = ValID::t_GlobalName;
6019     ID.StrVal = std::string(F.getName());
6020   } else {
6021     ID.Kind = ValID::t_GlobalID;
6022     ID.UIntVal = FunctionNumber;
6023   }
6024 
6025   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
6026   if (Blocks == P.ForwardRefBlockAddresses.end())
6027     return false;
6028 
6029   for (const auto &I : Blocks->second) {
6030     const ValID &BBID = I.first;
6031     GlobalValue *GV = I.second;
6032 
6033     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
6034            "Expected local id or name");
6035     BasicBlock *BB;
6036     if (BBID.Kind == ValID::t_LocalName)
6037       BB = getBB(BBID.StrVal, BBID.Loc);
6038     else
6039       BB = getBB(BBID.UIntVal, BBID.Loc);
6040     if (!BB)
6041       return P.error(BBID.Loc, "referenced value is not a basic block");
6042 
6043     Value *ResolvedVal = BlockAddress::get(&F, BB);
6044     ResolvedVal = P.checkValidVariableType(BBID.Loc, BBID.StrVal, GV->getType(),
6045                                            ResolvedVal, false);
6046     if (!ResolvedVal)
6047       return true;
6048     GV->replaceAllUsesWith(ResolvedVal);
6049     GV->eraseFromParent();
6050   }
6051 
6052   P.ForwardRefBlockAddresses.erase(Blocks);
6053   return false;
6054 }
6055 
6056 /// parseFunctionBody
6057 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
6058 bool LLParser::parseFunctionBody(Function &Fn) {
6059   if (Lex.getKind() != lltok::lbrace)
6060     return tokError("expected '{' in function body");
6061   Lex.Lex();  // eat the {.
6062 
6063   int FunctionNumber = -1;
6064   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
6065 
6066   PerFunctionState PFS(*this, Fn, FunctionNumber);
6067 
6068   // Resolve block addresses and allow basic blocks to be forward-declared
6069   // within this function.
6070   if (PFS.resolveForwardRefBlockAddresses())
6071     return true;
6072   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
6073 
6074   // We need at least one basic block.
6075   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
6076     return tokError("function body requires at least one basic block");
6077 
6078   while (Lex.getKind() != lltok::rbrace &&
6079          Lex.getKind() != lltok::kw_uselistorder)
6080     if (parseBasicBlock(PFS))
6081       return true;
6082 
6083   while (Lex.getKind() != lltok::rbrace)
6084     if (parseUseListOrder(&PFS))
6085       return true;
6086 
6087   // Eat the }.
6088   Lex.Lex();
6089 
6090   // Verify function is ok.
6091   return PFS.finishFunction();
6092 }
6093 
6094 /// parseBasicBlock
6095 ///   ::= (LabelStr|LabelID)? Instruction*
6096 bool LLParser::parseBasicBlock(PerFunctionState &PFS) {
6097   // If this basic block starts out with a name, remember it.
6098   std::string Name;
6099   int NameID = -1;
6100   LocTy NameLoc = Lex.getLoc();
6101   if (Lex.getKind() == lltok::LabelStr) {
6102     Name = Lex.getStrVal();
6103     Lex.Lex();
6104   } else if (Lex.getKind() == lltok::LabelID) {
6105     NameID = Lex.getUIntVal();
6106     Lex.Lex();
6107   }
6108 
6109   BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc);
6110   if (!BB)
6111     return true;
6112 
6113   std::string NameStr;
6114 
6115   // parse the instructions in this block until we get a terminator.
6116   Instruction *Inst;
6117   do {
6118     // This instruction may have three possibilities for a name: a) none
6119     // specified, b) name specified "%foo =", c) number specified: "%4 =".
6120     LocTy NameLoc = Lex.getLoc();
6121     int NameID = -1;
6122     NameStr = "";
6123 
6124     if (Lex.getKind() == lltok::LocalVarID) {
6125       NameID = Lex.getUIntVal();
6126       Lex.Lex();
6127       if (parseToken(lltok::equal, "expected '=' after instruction id"))
6128         return true;
6129     } else if (Lex.getKind() == lltok::LocalVar) {
6130       NameStr = Lex.getStrVal();
6131       Lex.Lex();
6132       if (parseToken(lltok::equal, "expected '=' after instruction name"))
6133         return true;
6134     }
6135 
6136     switch (parseInstruction(Inst, BB, PFS)) {
6137     default:
6138       llvm_unreachable("Unknown parseInstruction result!");
6139     case InstError: return true;
6140     case InstNormal:
6141       BB->getInstList().push_back(Inst);
6142 
6143       // With a normal result, we check to see if the instruction is followed by
6144       // a comma and metadata.
6145       if (EatIfPresent(lltok::comma))
6146         if (parseInstructionMetadata(*Inst))
6147           return true;
6148       break;
6149     case InstExtraComma:
6150       BB->getInstList().push_back(Inst);
6151 
6152       // If the instruction parser ate an extra comma at the end of it, it
6153       // *must* be followed by metadata.
6154       if (parseInstructionMetadata(*Inst))
6155         return true;
6156       break;
6157     }
6158 
6159     // Set the name on the instruction.
6160     if (PFS.setInstName(NameID, NameStr, NameLoc, Inst))
6161       return true;
6162   } while (!Inst->isTerminator());
6163 
6164   return false;
6165 }
6166 
6167 //===----------------------------------------------------------------------===//
6168 // Instruction Parsing.
6169 //===----------------------------------------------------------------------===//
6170 
6171 /// parseInstruction - parse one of the many different instructions.
6172 ///
6173 int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB,
6174                                PerFunctionState &PFS) {
6175   lltok::Kind Token = Lex.getKind();
6176   if (Token == lltok::Eof)
6177     return tokError("found end of file when expecting more instructions");
6178   LocTy Loc = Lex.getLoc();
6179   unsigned KeywordVal = Lex.getUIntVal();
6180   Lex.Lex();  // Eat the keyword.
6181 
6182   switch (Token) {
6183   default:
6184     return error(Loc, "expected instruction opcode");
6185   // Terminator Instructions.
6186   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
6187   case lltok::kw_ret:
6188     return parseRet(Inst, BB, PFS);
6189   case lltok::kw_br:
6190     return parseBr(Inst, PFS);
6191   case lltok::kw_switch:
6192     return parseSwitch(Inst, PFS);
6193   case lltok::kw_indirectbr:
6194     return parseIndirectBr(Inst, PFS);
6195   case lltok::kw_invoke:
6196     return parseInvoke(Inst, PFS);
6197   case lltok::kw_resume:
6198     return parseResume(Inst, PFS);
6199   case lltok::kw_cleanupret:
6200     return parseCleanupRet(Inst, PFS);
6201   case lltok::kw_catchret:
6202     return parseCatchRet(Inst, PFS);
6203   case lltok::kw_catchswitch:
6204     return parseCatchSwitch(Inst, PFS);
6205   case lltok::kw_catchpad:
6206     return parseCatchPad(Inst, PFS);
6207   case lltok::kw_cleanuppad:
6208     return parseCleanupPad(Inst, PFS);
6209   case lltok::kw_callbr:
6210     return parseCallBr(Inst, PFS);
6211   // Unary Operators.
6212   case lltok::kw_fneg: {
6213     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6214     int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true);
6215     if (Res != 0)
6216       return Res;
6217     if (FMF.any())
6218       Inst->setFastMathFlags(FMF);
6219     return false;
6220   }
6221   // Binary Operators.
6222   case lltok::kw_add:
6223   case lltok::kw_sub:
6224   case lltok::kw_mul:
6225   case lltok::kw_shl: {
6226     bool NUW = EatIfPresent(lltok::kw_nuw);
6227     bool NSW = EatIfPresent(lltok::kw_nsw);
6228     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
6229 
6230     if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
6231       return true;
6232 
6233     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
6234     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
6235     return false;
6236   }
6237   case lltok::kw_fadd:
6238   case lltok::kw_fsub:
6239   case lltok::kw_fmul:
6240   case lltok::kw_fdiv:
6241   case lltok::kw_frem: {
6242     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6243     int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true);
6244     if (Res != 0)
6245       return Res;
6246     if (FMF.any())
6247       Inst->setFastMathFlags(FMF);
6248     return 0;
6249   }
6250 
6251   case lltok::kw_sdiv:
6252   case lltok::kw_udiv:
6253   case lltok::kw_lshr:
6254   case lltok::kw_ashr: {
6255     bool Exact = EatIfPresent(lltok::kw_exact);
6256 
6257     if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
6258       return true;
6259     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
6260     return false;
6261   }
6262 
6263   case lltok::kw_urem:
6264   case lltok::kw_srem:
6265     return parseArithmetic(Inst, PFS, KeywordVal,
6266                            /*IsFP*/ false);
6267   case lltok::kw_and:
6268   case lltok::kw_or:
6269   case lltok::kw_xor:
6270     return parseLogical(Inst, PFS, KeywordVal);
6271   case lltok::kw_icmp:
6272     return parseCompare(Inst, PFS, KeywordVal);
6273   case lltok::kw_fcmp: {
6274     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6275     int Res = parseCompare(Inst, PFS, KeywordVal);
6276     if (Res != 0)
6277       return Res;
6278     if (FMF.any())
6279       Inst->setFastMathFlags(FMF);
6280     return 0;
6281   }
6282 
6283   // Casts.
6284   case lltok::kw_trunc:
6285   case lltok::kw_zext:
6286   case lltok::kw_sext:
6287   case lltok::kw_fptrunc:
6288   case lltok::kw_fpext:
6289   case lltok::kw_bitcast:
6290   case lltok::kw_addrspacecast:
6291   case lltok::kw_uitofp:
6292   case lltok::kw_sitofp:
6293   case lltok::kw_fptoui:
6294   case lltok::kw_fptosi:
6295   case lltok::kw_inttoptr:
6296   case lltok::kw_ptrtoint:
6297     return parseCast(Inst, PFS, KeywordVal);
6298   // Other.
6299   case lltok::kw_select: {
6300     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6301     int Res = parseSelect(Inst, PFS);
6302     if (Res != 0)
6303       return Res;
6304     if (FMF.any()) {
6305       if (!isa<FPMathOperator>(Inst))
6306         return error(Loc, "fast-math-flags specified for select without "
6307                           "floating-point scalar or vector return type");
6308       Inst->setFastMathFlags(FMF);
6309     }
6310     return 0;
6311   }
6312   case lltok::kw_va_arg:
6313     return parseVAArg(Inst, PFS);
6314   case lltok::kw_extractelement:
6315     return parseExtractElement(Inst, PFS);
6316   case lltok::kw_insertelement:
6317     return parseInsertElement(Inst, PFS);
6318   case lltok::kw_shufflevector:
6319     return parseShuffleVector(Inst, PFS);
6320   case lltok::kw_phi: {
6321     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6322     int Res = parsePHI(Inst, PFS);
6323     if (Res != 0)
6324       return Res;
6325     if (FMF.any()) {
6326       if (!isa<FPMathOperator>(Inst))
6327         return error(Loc, "fast-math-flags specified for phi without "
6328                           "floating-point scalar or vector return type");
6329       Inst->setFastMathFlags(FMF);
6330     }
6331     return 0;
6332   }
6333   case lltok::kw_landingpad:
6334     return parseLandingPad(Inst, PFS);
6335   case lltok::kw_freeze:
6336     return parseFreeze(Inst, PFS);
6337   // Call.
6338   case lltok::kw_call:
6339     return parseCall(Inst, PFS, CallInst::TCK_None);
6340   case lltok::kw_tail:
6341     return parseCall(Inst, PFS, CallInst::TCK_Tail);
6342   case lltok::kw_musttail:
6343     return parseCall(Inst, PFS, CallInst::TCK_MustTail);
6344   case lltok::kw_notail:
6345     return parseCall(Inst, PFS, CallInst::TCK_NoTail);
6346   // Memory.
6347   case lltok::kw_alloca:
6348     return parseAlloc(Inst, PFS);
6349   case lltok::kw_load:
6350     return parseLoad(Inst, PFS);
6351   case lltok::kw_store:
6352     return parseStore(Inst, PFS);
6353   case lltok::kw_cmpxchg:
6354     return parseCmpXchg(Inst, PFS);
6355   case lltok::kw_atomicrmw:
6356     return parseAtomicRMW(Inst, PFS);
6357   case lltok::kw_fence:
6358     return parseFence(Inst, PFS);
6359   case lltok::kw_getelementptr:
6360     return parseGetElementPtr(Inst, PFS);
6361   case lltok::kw_extractvalue:
6362     return parseExtractValue(Inst, PFS);
6363   case lltok::kw_insertvalue:
6364     return parseInsertValue(Inst, PFS);
6365   }
6366 }
6367 
6368 /// parseCmpPredicate - parse an integer or fp predicate, based on Kind.
6369 bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) {
6370   if (Opc == Instruction::FCmp) {
6371     switch (Lex.getKind()) {
6372     default:
6373       return tokError("expected fcmp predicate (e.g. 'oeq')");
6374     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
6375     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
6376     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
6377     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
6378     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
6379     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
6380     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
6381     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
6382     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
6383     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
6384     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
6385     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
6386     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
6387     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
6388     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
6389     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
6390     }
6391   } else {
6392     switch (Lex.getKind()) {
6393     default:
6394       return tokError("expected icmp predicate (e.g. 'eq')");
6395     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
6396     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
6397     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
6398     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
6399     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
6400     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
6401     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
6402     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
6403     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
6404     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
6405     }
6406   }
6407   Lex.Lex();
6408   return false;
6409 }
6410 
6411 //===----------------------------------------------------------------------===//
6412 // Terminator Instructions.
6413 //===----------------------------------------------------------------------===//
6414 
6415 /// parseRet - parse a return instruction.
6416 ///   ::= 'ret' void (',' !dbg, !1)*
6417 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
6418 bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB,
6419                         PerFunctionState &PFS) {
6420   SMLoc TypeLoc = Lex.getLoc();
6421   Type *Ty = nullptr;
6422   if (parseType(Ty, true /*void allowed*/))
6423     return true;
6424 
6425   Type *ResType = PFS.getFunction().getReturnType();
6426 
6427   if (Ty->isVoidTy()) {
6428     if (!ResType->isVoidTy())
6429       return error(TypeLoc, "value doesn't match function result type '" +
6430                                 getTypeString(ResType) + "'");
6431 
6432     Inst = ReturnInst::Create(Context);
6433     return false;
6434   }
6435 
6436   Value *RV;
6437   if (parseValue(Ty, RV, PFS))
6438     return true;
6439 
6440   if (ResType != RV->getType())
6441     return error(TypeLoc, "value doesn't match function result type '" +
6442                               getTypeString(ResType) + "'");
6443 
6444   Inst = ReturnInst::Create(Context, RV);
6445   return false;
6446 }
6447 
6448 /// parseBr
6449 ///   ::= 'br' TypeAndValue
6450 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6451 bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) {
6452   LocTy Loc, Loc2;
6453   Value *Op0;
6454   BasicBlock *Op1, *Op2;
6455   if (parseTypeAndValue(Op0, Loc, PFS))
6456     return true;
6457 
6458   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
6459     Inst = BranchInst::Create(BB);
6460     return false;
6461   }
6462 
6463   if (Op0->getType() != Type::getInt1Ty(Context))
6464     return error(Loc, "branch condition must have 'i1' type");
6465 
6466   if (parseToken(lltok::comma, "expected ',' after branch condition") ||
6467       parseTypeAndBasicBlock(Op1, Loc, PFS) ||
6468       parseToken(lltok::comma, "expected ',' after true destination") ||
6469       parseTypeAndBasicBlock(Op2, Loc2, PFS))
6470     return true;
6471 
6472   Inst = BranchInst::Create(Op1, Op2, Op0);
6473   return false;
6474 }
6475 
6476 /// parseSwitch
6477 ///  Instruction
6478 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
6479 ///  JumpTable
6480 ///    ::= (TypeAndValue ',' TypeAndValue)*
6481 bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6482   LocTy CondLoc, BBLoc;
6483   Value *Cond;
6484   BasicBlock *DefaultBB;
6485   if (parseTypeAndValue(Cond, CondLoc, PFS) ||
6486       parseToken(lltok::comma, "expected ',' after switch condition") ||
6487       parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
6488       parseToken(lltok::lsquare, "expected '[' with switch table"))
6489     return true;
6490 
6491   if (!Cond->getType()->isIntegerTy())
6492     return error(CondLoc, "switch condition must have integer type");
6493 
6494   // parse the jump table pairs.
6495   SmallPtrSet<Value*, 32> SeenCases;
6496   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
6497   while (Lex.getKind() != lltok::rsquare) {
6498     Value *Constant;
6499     BasicBlock *DestBB;
6500 
6501     if (parseTypeAndValue(Constant, CondLoc, PFS) ||
6502         parseToken(lltok::comma, "expected ',' after case value") ||
6503         parseTypeAndBasicBlock(DestBB, PFS))
6504       return true;
6505 
6506     if (!SeenCases.insert(Constant).second)
6507       return error(CondLoc, "duplicate case value in switch");
6508     if (!isa<ConstantInt>(Constant))
6509       return error(CondLoc, "case value is not a constant integer");
6510 
6511     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
6512   }
6513 
6514   Lex.Lex();  // Eat the ']'.
6515 
6516   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
6517   for (unsigned i = 0, e = Table.size(); i != e; ++i)
6518     SI->addCase(Table[i].first, Table[i].second);
6519   Inst = SI;
6520   return false;
6521 }
6522 
6523 /// parseIndirectBr
6524 ///  Instruction
6525 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
6526 bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
6527   LocTy AddrLoc;
6528   Value *Address;
6529   if (parseTypeAndValue(Address, AddrLoc, PFS) ||
6530       parseToken(lltok::comma, "expected ',' after indirectbr address") ||
6531       parseToken(lltok::lsquare, "expected '[' with indirectbr"))
6532     return true;
6533 
6534   if (!Address->getType()->isPointerTy())
6535     return error(AddrLoc, "indirectbr address must have pointer type");
6536 
6537   // parse the destination list.
6538   SmallVector<BasicBlock*, 16> DestList;
6539 
6540   if (Lex.getKind() != lltok::rsquare) {
6541     BasicBlock *DestBB;
6542     if (parseTypeAndBasicBlock(DestBB, PFS))
6543       return true;
6544     DestList.push_back(DestBB);
6545 
6546     while (EatIfPresent(lltok::comma)) {
6547       if (parseTypeAndBasicBlock(DestBB, PFS))
6548         return true;
6549       DestList.push_back(DestBB);
6550     }
6551   }
6552 
6553   if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
6554     return true;
6555 
6556   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
6557   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
6558     IBI->addDestination(DestList[i]);
6559   Inst = IBI;
6560   return false;
6561 }
6562 
6563 /// parseInvoke
6564 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
6565 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
6566 bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
6567   LocTy CallLoc = Lex.getLoc();
6568   AttrBuilder RetAttrs, FnAttrs;
6569   std::vector<unsigned> FwdRefAttrGrps;
6570   LocTy NoBuiltinLoc;
6571   unsigned CC;
6572   unsigned InvokeAddrSpace;
6573   Type *RetType = nullptr;
6574   LocTy RetTypeLoc;
6575   ValID CalleeID;
6576   SmallVector<ParamInfo, 16> ArgList;
6577   SmallVector<OperandBundleDef, 2> BundleList;
6578 
6579   BasicBlock *NormalBB, *UnwindBB;
6580   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6581       parseOptionalProgramAddrSpace(InvokeAddrSpace) ||
6582       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6583       parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) ||
6584       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6585                                  NoBuiltinLoc) ||
6586       parseOptionalOperandBundles(BundleList, PFS) ||
6587       parseToken(lltok::kw_to, "expected 'to' in invoke") ||
6588       parseTypeAndBasicBlock(NormalBB, PFS) ||
6589       parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
6590       parseTypeAndBasicBlock(UnwindBB, PFS))
6591     return true;
6592 
6593   // If RetType is a non-function pointer type, then this is the short syntax
6594   // for the call, which means that RetType is just the return type.  Infer the
6595   // rest of the function argument types from the arguments that are present.
6596   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6597   if (!Ty) {
6598     // Pull out the types of all of the arguments...
6599     std::vector<Type*> ParamTypes;
6600     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6601       ParamTypes.push_back(ArgList[i].V->getType());
6602 
6603     if (!FunctionType::isValidReturnType(RetType))
6604       return error(RetTypeLoc, "Invalid result type for LLVM function");
6605 
6606     Ty = FunctionType::get(RetType, ParamTypes, false);
6607   }
6608 
6609   CalleeID.FTy = Ty;
6610 
6611   // Look up the callee.
6612   Value *Callee;
6613   if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
6614                           Callee, &PFS, /*IsCall=*/true))
6615     return true;
6616 
6617   // Set up the Attribute for the function.
6618   SmallVector<Value *, 8> Args;
6619   SmallVector<AttributeSet, 8> ArgAttrs;
6620 
6621   // Loop through FunctionType's arguments and ensure they are specified
6622   // correctly.  Also, gather any parameter attributes.
6623   FunctionType::param_iterator I = Ty->param_begin();
6624   FunctionType::param_iterator E = Ty->param_end();
6625   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6626     Type *ExpectedTy = nullptr;
6627     if (I != E) {
6628       ExpectedTy = *I++;
6629     } else if (!Ty->isVarArg()) {
6630       return error(ArgList[i].Loc, "too many arguments specified");
6631     }
6632 
6633     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6634       return error(ArgList[i].Loc, "argument is not of expected type '" +
6635                                        getTypeString(ExpectedTy) + "'");
6636     Args.push_back(ArgList[i].V);
6637     ArgAttrs.push_back(ArgList[i].Attrs);
6638   }
6639 
6640   if (I != E)
6641     return error(CallLoc, "not enough parameters specified for call");
6642 
6643   if (FnAttrs.hasAlignmentAttr())
6644     return error(CallLoc, "invoke instructions may not have an alignment");
6645 
6646   // Finish off the Attribute and check them
6647   AttributeList PAL =
6648       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6649                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6650 
6651   InvokeInst *II =
6652       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
6653   II->setCallingConv(CC);
6654   II->setAttributes(PAL);
6655   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
6656   Inst = II;
6657   return false;
6658 }
6659 
6660 /// parseResume
6661 ///   ::= 'resume' TypeAndValue
6662 bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) {
6663   Value *Exn; LocTy ExnLoc;
6664   if (parseTypeAndValue(Exn, ExnLoc, PFS))
6665     return true;
6666 
6667   ResumeInst *RI = ResumeInst::Create(Exn);
6668   Inst = RI;
6669   return false;
6670 }
6671 
6672 bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args,
6673                                   PerFunctionState &PFS) {
6674   if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
6675     return true;
6676 
6677   while (Lex.getKind() != lltok::rsquare) {
6678     // If this isn't the first argument, we need a comma.
6679     if (!Args.empty() &&
6680         parseToken(lltok::comma, "expected ',' in argument list"))
6681       return true;
6682 
6683     // parse the argument.
6684     LocTy ArgLoc;
6685     Type *ArgTy = nullptr;
6686     if (parseType(ArgTy, ArgLoc))
6687       return true;
6688 
6689     Value *V;
6690     if (ArgTy->isMetadataTy()) {
6691       if (parseMetadataAsValue(V, PFS))
6692         return true;
6693     } else {
6694       if (parseValue(ArgTy, V, PFS))
6695         return true;
6696     }
6697     Args.push_back(V);
6698   }
6699 
6700   Lex.Lex();  // Lex the ']'.
6701   return false;
6702 }
6703 
6704 /// parseCleanupRet
6705 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
6706 bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
6707   Value *CleanupPad = nullptr;
6708 
6709   if (parseToken(lltok::kw_from, "expected 'from' after cleanupret"))
6710     return true;
6711 
6712   if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS))
6713     return true;
6714 
6715   if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
6716     return true;
6717 
6718   BasicBlock *UnwindBB = nullptr;
6719   if (Lex.getKind() == lltok::kw_to) {
6720     Lex.Lex();
6721     if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
6722       return true;
6723   } else {
6724     if (parseTypeAndBasicBlock(UnwindBB, PFS)) {
6725       return true;
6726     }
6727   }
6728 
6729   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
6730   return false;
6731 }
6732 
6733 /// parseCatchRet
6734 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
6735 bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
6736   Value *CatchPad = nullptr;
6737 
6738   if (parseToken(lltok::kw_from, "expected 'from' after catchret"))
6739     return true;
6740 
6741   if (parseValue(Type::getTokenTy(Context), CatchPad, PFS))
6742     return true;
6743 
6744   BasicBlock *BB;
6745   if (parseToken(lltok::kw_to, "expected 'to' in catchret") ||
6746       parseTypeAndBasicBlock(BB, PFS))
6747     return true;
6748 
6749   Inst = CatchReturnInst::Create(CatchPad, BB);
6750   return false;
6751 }
6752 
6753 /// parseCatchSwitch
6754 ///   ::= 'catchswitch' within Parent
6755 bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6756   Value *ParentPad;
6757 
6758   if (parseToken(lltok::kw_within, "expected 'within' after catchswitch"))
6759     return true;
6760 
6761   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6762       Lex.getKind() != lltok::LocalVarID)
6763     return tokError("expected scope value for catchswitch");
6764 
6765   if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
6766     return true;
6767 
6768   if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
6769     return true;
6770 
6771   SmallVector<BasicBlock *, 32> Table;
6772   do {
6773     BasicBlock *DestBB;
6774     if (parseTypeAndBasicBlock(DestBB, PFS))
6775       return true;
6776     Table.push_back(DestBB);
6777   } while (EatIfPresent(lltok::comma));
6778 
6779   if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
6780     return true;
6781 
6782   if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope"))
6783     return true;
6784 
6785   BasicBlock *UnwindBB = nullptr;
6786   if (EatIfPresent(lltok::kw_to)) {
6787     if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
6788       return true;
6789   } else {
6790     if (parseTypeAndBasicBlock(UnwindBB, PFS))
6791       return true;
6792   }
6793 
6794   auto *CatchSwitch =
6795       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
6796   for (BasicBlock *DestBB : Table)
6797     CatchSwitch->addHandler(DestBB);
6798   Inst = CatchSwitch;
6799   return false;
6800 }
6801 
6802 /// parseCatchPad
6803 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
6804 bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
6805   Value *CatchSwitch = nullptr;
6806 
6807   if (parseToken(lltok::kw_within, "expected 'within' after catchpad"))
6808     return true;
6809 
6810   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
6811     return tokError("expected scope value for catchpad");
6812 
6813   if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
6814     return true;
6815 
6816   SmallVector<Value *, 8> Args;
6817   if (parseExceptionArgs(Args, PFS))
6818     return true;
6819 
6820   Inst = CatchPadInst::Create(CatchSwitch, Args);
6821   return false;
6822 }
6823 
6824 /// parseCleanupPad
6825 ///   ::= 'cleanuppad' within Parent ParamList
6826 bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
6827   Value *ParentPad = nullptr;
6828 
6829   if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
6830     return true;
6831 
6832   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6833       Lex.getKind() != lltok::LocalVarID)
6834     return tokError("expected scope value for cleanuppad");
6835 
6836   if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
6837     return true;
6838 
6839   SmallVector<Value *, 8> Args;
6840   if (parseExceptionArgs(Args, PFS))
6841     return true;
6842 
6843   Inst = CleanupPadInst::Create(ParentPad, Args);
6844   return false;
6845 }
6846 
6847 //===----------------------------------------------------------------------===//
6848 // Unary Operators.
6849 //===----------------------------------------------------------------------===//
6850 
6851 /// parseUnaryOp
6852 ///  ::= UnaryOp TypeAndValue ',' Value
6853 ///
6854 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6855 /// operand is allowed.
6856 bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
6857                             unsigned Opc, bool IsFP) {
6858   LocTy Loc; Value *LHS;
6859   if (parseTypeAndValue(LHS, Loc, PFS))
6860     return true;
6861 
6862   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6863                     : LHS->getType()->isIntOrIntVectorTy();
6864 
6865   if (!Valid)
6866     return error(Loc, "invalid operand type for instruction");
6867 
6868   Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
6869   return false;
6870 }
6871 
6872 /// parseCallBr
6873 ///   ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
6874 ///       OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
6875 ///       '[' LabelList ']'
6876 bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
6877   LocTy CallLoc = Lex.getLoc();
6878   AttrBuilder RetAttrs, FnAttrs;
6879   std::vector<unsigned> FwdRefAttrGrps;
6880   LocTy NoBuiltinLoc;
6881   unsigned CC;
6882   Type *RetType = nullptr;
6883   LocTy RetTypeLoc;
6884   ValID CalleeID;
6885   SmallVector<ParamInfo, 16> ArgList;
6886   SmallVector<OperandBundleDef, 2> BundleList;
6887 
6888   BasicBlock *DefaultDest;
6889   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6890       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6891       parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) ||
6892       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6893                                  NoBuiltinLoc) ||
6894       parseOptionalOperandBundles(BundleList, PFS) ||
6895       parseToken(lltok::kw_to, "expected 'to' in callbr") ||
6896       parseTypeAndBasicBlock(DefaultDest, PFS) ||
6897       parseToken(lltok::lsquare, "expected '[' in callbr"))
6898     return true;
6899 
6900   // parse the destination list.
6901   SmallVector<BasicBlock *, 16> IndirectDests;
6902 
6903   if (Lex.getKind() != lltok::rsquare) {
6904     BasicBlock *DestBB;
6905     if (parseTypeAndBasicBlock(DestBB, PFS))
6906       return true;
6907     IndirectDests.push_back(DestBB);
6908 
6909     while (EatIfPresent(lltok::comma)) {
6910       if (parseTypeAndBasicBlock(DestBB, PFS))
6911         return true;
6912       IndirectDests.push_back(DestBB);
6913     }
6914   }
6915 
6916   if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
6917     return true;
6918 
6919   // If RetType is a non-function pointer type, then this is the short syntax
6920   // for the call, which means that RetType is just the return type.  Infer the
6921   // rest of the function argument types from the arguments that are present.
6922   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6923   if (!Ty) {
6924     // Pull out the types of all of the arguments...
6925     std::vector<Type *> ParamTypes;
6926     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6927       ParamTypes.push_back(ArgList[i].V->getType());
6928 
6929     if (!FunctionType::isValidReturnType(RetType))
6930       return error(RetTypeLoc, "Invalid result type for LLVM function");
6931 
6932     Ty = FunctionType::get(RetType, ParamTypes, false);
6933   }
6934 
6935   CalleeID.FTy = Ty;
6936 
6937   // Look up the callee.
6938   Value *Callee;
6939   if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS,
6940                           /*IsCall=*/true))
6941     return true;
6942 
6943   // Set up the Attribute for the function.
6944   SmallVector<Value *, 8> Args;
6945   SmallVector<AttributeSet, 8> ArgAttrs;
6946 
6947   // Loop through FunctionType's arguments and ensure they are specified
6948   // correctly.  Also, gather any parameter attributes.
6949   FunctionType::param_iterator I = Ty->param_begin();
6950   FunctionType::param_iterator E = Ty->param_end();
6951   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6952     Type *ExpectedTy = nullptr;
6953     if (I != E) {
6954       ExpectedTy = *I++;
6955     } else if (!Ty->isVarArg()) {
6956       return error(ArgList[i].Loc, "too many arguments specified");
6957     }
6958 
6959     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6960       return error(ArgList[i].Loc, "argument is not of expected type '" +
6961                                        getTypeString(ExpectedTy) + "'");
6962     Args.push_back(ArgList[i].V);
6963     ArgAttrs.push_back(ArgList[i].Attrs);
6964   }
6965 
6966   if (I != E)
6967     return error(CallLoc, "not enough parameters specified for call");
6968 
6969   if (FnAttrs.hasAlignmentAttr())
6970     return error(CallLoc, "callbr instructions may not have an alignment");
6971 
6972   // Finish off the Attribute and check them
6973   AttributeList PAL =
6974       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6975                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6976 
6977   CallBrInst *CBI =
6978       CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
6979                          BundleList);
6980   CBI->setCallingConv(CC);
6981   CBI->setAttributes(PAL);
6982   ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
6983   Inst = CBI;
6984   return false;
6985 }
6986 
6987 //===----------------------------------------------------------------------===//
6988 // Binary Operators.
6989 //===----------------------------------------------------------------------===//
6990 
6991 /// parseArithmetic
6992 ///  ::= ArithmeticOps TypeAndValue ',' Value
6993 ///
6994 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6995 /// operand is allowed.
6996 bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
6997                                unsigned Opc, bool IsFP) {
6998   LocTy Loc; Value *LHS, *RHS;
6999   if (parseTypeAndValue(LHS, Loc, PFS) ||
7000       parseToken(lltok::comma, "expected ',' in arithmetic operation") ||
7001       parseValue(LHS->getType(), RHS, PFS))
7002     return true;
7003 
7004   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
7005                     : LHS->getType()->isIntOrIntVectorTy();
7006 
7007   if (!Valid)
7008     return error(Loc, "invalid operand type for instruction");
7009 
7010   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
7011   return false;
7012 }
7013 
7014 /// parseLogical
7015 ///  ::= ArithmeticOps TypeAndValue ',' Value {
7016 bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS,
7017                             unsigned Opc) {
7018   LocTy Loc; Value *LHS, *RHS;
7019   if (parseTypeAndValue(LHS, Loc, PFS) ||
7020       parseToken(lltok::comma, "expected ',' in logical operation") ||
7021       parseValue(LHS->getType(), RHS, PFS))
7022     return true;
7023 
7024   if (!LHS->getType()->isIntOrIntVectorTy())
7025     return error(Loc,
7026                  "instruction requires integer or integer vector operands");
7027 
7028   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
7029   return false;
7030 }
7031 
7032 /// parseCompare
7033 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
7034 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
7035 bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS,
7036                             unsigned Opc) {
7037   // parse the integer/fp comparison predicate.
7038   LocTy Loc;
7039   unsigned Pred;
7040   Value *LHS, *RHS;
7041   if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) ||
7042       parseToken(lltok::comma, "expected ',' after compare value") ||
7043       parseValue(LHS->getType(), RHS, PFS))
7044     return true;
7045 
7046   if (Opc == Instruction::FCmp) {
7047     if (!LHS->getType()->isFPOrFPVectorTy())
7048       return error(Loc, "fcmp requires floating point operands");
7049     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
7050   } else {
7051     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
7052     if (!LHS->getType()->isIntOrIntVectorTy() &&
7053         !LHS->getType()->isPtrOrPtrVectorTy())
7054       return error(Loc, "icmp requires integer operands");
7055     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
7056   }
7057   return false;
7058 }
7059 
7060 //===----------------------------------------------------------------------===//
7061 // Other Instructions.
7062 //===----------------------------------------------------------------------===//
7063 
7064 /// parseCast
7065 ///   ::= CastOpc TypeAndValue 'to' Type
7066 bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS,
7067                          unsigned Opc) {
7068   LocTy Loc;
7069   Value *Op;
7070   Type *DestTy = nullptr;
7071   if (parseTypeAndValue(Op, Loc, PFS) ||
7072       parseToken(lltok::kw_to, "expected 'to' after cast value") ||
7073       parseType(DestTy))
7074     return true;
7075 
7076   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
7077     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
7078     return error(Loc, "invalid cast opcode for cast from '" +
7079                           getTypeString(Op->getType()) + "' to '" +
7080                           getTypeString(DestTy) + "'");
7081   }
7082   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
7083   return false;
7084 }
7085 
7086 /// parseSelect
7087 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
7088 bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) {
7089   LocTy Loc;
7090   Value *Op0, *Op1, *Op2;
7091   if (parseTypeAndValue(Op0, Loc, PFS) ||
7092       parseToken(lltok::comma, "expected ',' after select condition") ||
7093       parseTypeAndValue(Op1, PFS) ||
7094       parseToken(lltok::comma, "expected ',' after select value") ||
7095       parseTypeAndValue(Op2, PFS))
7096     return true;
7097 
7098   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
7099     return error(Loc, Reason);
7100 
7101   Inst = SelectInst::Create(Op0, Op1, Op2);
7102   return false;
7103 }
7104 
7105 /// parseVAArg
7106 ///   ::= 'va_arg' TypeAndValue ',' Type
7107 bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) {
7108   Value *Op;
7109   Type *EltTy = nullptr;
7110   LocTy TypeLoc;
7111   if (parseTypeAndValue(Op, PFS) ||
7112       parseToken(lltok::comma, "expected ',' after vaarg operand") ||
7113       parseType(EltTy, TypeLoc))
7114     return true;
7115 
7116   if (!EltTy->isFirstClassType())
7117     return error(TypeLoc, "va_arg requires operand with first class type");
7118 
7119   Inst = new VAArgInst(Op, EltTy);
7120   return false;
7121 }
7122 
7123 /// parseExtractElement
7124 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
7125 bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
7126   LocTy Loc;
7127   Value *Op0, *Op1;
7128   if (parseTypeAndValue(Op0, Loc, PFS) ||
7129       parseToken(lltok::comma, "expected ',' after extract value") ||
7130       parseTypeAndValue(Op1, PFS))
7131     return true;
7132 
7133   if (!ExtractElementInst::isValidOperands(Op0, Op1))
7134     return error(Loc, "invalid extractelement operands");
7135 
7136   Inst = ExtractElementInst::Create(Op0, Op1);
7137   return false;
7138 }
7139 
7140 /// parseInsertElement
7141 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
7142 bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
7143   LocTy Loc;
7144   Value *Op0, *Op1, *Op2;
7145   if (parseTypeAndValue(Op0, Loc, PFS) ||
7146       parseToken(lltok::comma, "expected ',' after insertelement value") ||
7147       parseTypeAndValue(Op1, PFS) ||
7148       parseToken(lltok::comma, "expected ',' after insertelement value") ||
7149       parseTypeAndValue(Op2, PFS))
7150     return true;
7151 
7152   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
7153     return error(Loc, "invalid insertelement operands");
7154 
7155   Inst = InsertElementInst::Create(Op0, Op1, Op2);
7156   return false;
7157 }
7158 
7159 /// parseShuffleVector
7160 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
7161 bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
7162   LocTy Loc;
7163   Value *Op0, *Op1, *Op2;
7164   if (parseTypeAndValue(Op0, Loc, PFS) ||
7165       parseToken(lltok::comma, "expected ',' after shuffle mask") ||
7166       parseTypeAndValue(Op1, PFS) ||
7167       parseToken(lltok::comma, "expected ',' after shuffle value") ||
7168       parseTypeAndValue(Op2, PFS))
7169     return true;
7170 
7171   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
7172     return error(Loc, "invalid shufflevector operands");
7173 
7174   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
7175   return false;
7176 }
7177 
7178 /// parsePHI
7179 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
7180 int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) {
7181   Type *Ty = nullptr;  LocTy TypeLoc;
7182   Value *Op0, *Op1;
7183 
7184   if (parseType(Ty, TypeLoc) ||
7185       parseToken(lltok::lsquare, "expected '[' in phi value list") ||
7186       parseValue(Ty, Op0, PFS) ||
7187       parseToken(lltok::comma, "expected ',' after insertelement value") ||
7188       parseValue(Type::getLabelTy(Context), Op1, PFS) ||
7189       parseToken(lltok::rsquare, "expected ']' in phi value list"))
7190     return true;
7191 
7192   bool AteExtraComma = false;
7193   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
7194 
7195   while (true) {
7196     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
7197 
7198     if (!EatIfPresent(lltok::comma))
7199       break;
7200 
7201     if (Lex.getKind() == lltok::MetadataVar) {
7202       AteExtraComma = true;
7203       break;
7204     }
7205 
7206     if (parseToken(lltok::lsquare, "expected '[' in phi value list") ||
7207         parseValue(Ty, Op0, PFS) ||
7208         parseToken(lltok::comma, "expected ',' after insertelement value") ||
7209         parseValue(Type::getLabelTy(Context), Op1, PFS) ||
7210         parseToken(lltok::rsquare, "expected ']' in phi value list"))
7211       return true;
7212   }
7213 
7214   if (!Ty->isFirstClassType())
7215     return error(TypeLoc, "phi node must have first class type");
7216 
7217   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
7218   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
7219     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
7220   Inst = PN;
7221   return AteExtraComma ? InstExtraComma : InstNormal;
7222 }
7223 
7224 /// parseLandingPad
7225 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
7226 /// Clause
7227 ///   ::= 'catch' TypeAndValue
7228 ///   ::= 'filter'
7229 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
7230 bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
7231   Type *Ty = nullptr; LocTy TyLoc;
7232 
7233   if (parseType(Ty, TyLoc))
7234     return true;
7235 
7236   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
7237   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
7238 
7239   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
7240     LandingPadInst::ClauseType CT;
7241     if (EatIfPresent(lltok::kw_catch))
7242       CT = LandingPadInst::Catch;
7243     else if (EatIfPresent(lltok::kw_filter))
7244       CT = LandingPadInst::Filter;
7245     else
7246       return tokError("expected 'catch' or 'filter' clause type");
7247 
7248     Value *V;
7249     LocTy VLoc;
7250     if (parseTypeAndValue(V, VLoc, PFS))
7251       return true;
7252 
7253     // A 'catch' type expects a non-array constant. A filter clause expects an
7254     // array constant.
7255     if (CT == LandingPadInst::Catch) {
7256       if (isa<ArrayType>(V->getType()))
7257         error(VLoc, "'catch' clause has an invalid type");
7258     } else {
7259       if (!isa<ArrayType>(V->getType()))
7260         error(VLoc, "'filter' clause has an invalid type");
7261     }
7262 
7263     Constant *CV = dyn_cast<Constant>(V);
7264     if (!CV)
7265       return error(VLoc, "clause argument must be a constant");
7266     LP->addClause(CV);
7267   }
7268 
7269   Inst = LP.release();
7270   return false;
7271 }
7272 
7273 /// parseFreeze
7274 ///   ::= 'freeze' Type Value
7275 bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) {
7276   LocTy Loc;
7277   Value *Op;
7278   if (parseTypeAndValue(Op, Loc, PFS))
7279     return true;
7280 
7281   Inst = new FreezeInst(Op);
7282   return false;
7283 }
7284 
7285 /// parseCall
7286 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
7287 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7288 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
7289 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7290 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
7291 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7292 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
7293 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7294 bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS,
7295                          CallInst::TailCallKind TCK) {
7296   AttrBuilder RetAttrs, FnAttrs;
7297   std::vector<unsigned> FwdRefAttrGrps;
7298   LocTy BuiltinLoc;
7299   unsigned CallAddrSpace;
7300   unsigned CC;
7301   Type *RetType = nullptr;
7302   LocTy RetTypeLoc;
7303   ValID CalleeID;
7304   SmallVector<ParamInfo, 16> ArgList;
7305   SmallVector<OperandBundleDef, 2> BundleList;
7306   LocTy CallLoc = Lex.getLoc();
7307 
7308   if (TCK != CallInst::TCK_None &&
7309       parseToken(lltok::kw_call,
7310                  "expected 'tail call', 'musttail call', or 'notail call'"))
7311     return true;
7312 
7313   FastMathFlags FMF = EatFastMathFlagsIfPresent();
7314 
7315   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
7316       parseOptionalProgramAddrSpace(CallAddrSpace) ||
7317       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
7318       parseValID(CalleeID, &PFS) ||
7319       parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
7320                          PFS.getFunction().isVarArg()) ||
7321       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
7322       parseOptionalOperandBundles(BundleList, PFS))
7323     return true;
7324 
7325   // If RetType is a non-function pointer type, then this is the short syntax
7326   // for the call, which means that RetType is just the return type.  Infer the
7327   // rest of the function argument types from the arguments that are present.
7328   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
7329   if (!Ty) {
7330     // Pull out the types of all of the arguments...
7331     std::vector<Type*> ParamTypes;
7332     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
7333       ParamTypes.push_back(ArgList[i].V->getType());
7334 
7335     if (!FunctionType::isValidReturnType(RetType))
7336       return error(RetTypeLoc, "Invalid result type for LLVM function");
7337 
7338     Ty = FunctionType::get(RetType, ParamTypes, false);
7339   }
7340 
7341   CalleeID.FTy = Ty;
7342 
7343   // Look up the callee.
7344   Value *Callee;
7345   if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
7346                           &PFS, /*IsCall=*/true))
7347     return true;
7348 
7349   // Set up the Attribute for the function.
7350   SmallVector<AttributeSet, 8> Attrs;
7351 
7352   SmallVector<Value*, 8> Args;
7353 
7354   // Loop through FunctionType's arguments and ensure they are specified
7355   // correctly.  Also, gather any parameter attributes.
7356   FunctionType::param_iterator I = Ty->param_begin();
7357   FunctionType::param_iterator E = Ty->param_end();
7358   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
7359     Type *ExpectedTy = nullptr;
7360     if (I != E) {
7361       ExpectedTy = *I++;
7362     } else if (!Ty->isVarArg()) {
7363       return error(ArgList[i].Loc, "too many arguments specified");
7364     }
7365 
7366     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
7367       return error(ArgList[i].Loc, "argument is not of expected type '" +
7368                                        getTypeString(ExpectedTy) + "'");
7369     Args.push_back(ArgList[i].V);
7370     Attrs.push_back(ArgList[i].Attrs);
7371   }
7372 
7373   if (I != E)
7374     return error(CallLoc, "not enough parameters specified for call");
7375 
7376   if (FnAttrs.hasAlignmentAttr())
7377     return error(CallLoc, "call instructions may not have an alignment");
7378 
7379   // Finish off the Attribute and check them
7380   AttributeList PAL =
7381       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
7382                          AttributeSet::get(Context, RetAttrs), Attrs);
7383 
7384   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
7385   CI->setTailCallKind(TCK);
7386   CI->setCallingConv(CC);
7387   if (FMF.any()) {
7388     if (!isa<FPMathOperator>(CI)) {
7389       CI->deleteValue();
7390       return error(CallLoc, "fast-math-flags specified for call without "
7391                             "floating-point scalar or vector return type");
7392     }
7393     CI->setFastMathFlags(FMF);
7394   }
7395   CI->setAttributes(PAL);
7396   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
7397   Inst = CI;
7398   return false;
7399 }
7400 
7401 //===----------------------------------------------------------------------===//
7402 // Memory Instructions.
7403 //===----------------------------------------------------------------------===//
7404 
7405 /// parseAlloc
7406 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
7407 ///       (',' 'align' i32)? (',', 'addrspace(n))?
7408 int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
7409   Value *Size = nullptr;
7410   LocTy SizeLoc, TyLoc, ASLoc;
7411   MaybeAlign Alignment;
7412   unsigned AddrSpace = 0;
7413   Type *Ty = nullptr;
7414 
7415   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
7416   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
7417 
7418   if (parseType(Ty, TyLoc))
7419     return true;
7420 
7421   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
7422     return error(TyLoc, "invalid type for alloca");
7423 
7424   bool AteExtraComma = false;
7425   if (EatIfPresent(lltok::comma)) {
7426     if (Lex.getKind() == lltok::kw_align) {
7427       if (parseOptionalAlignment(Alignment))
7428         return true;
7429       if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7430         return true;
7431     } else if (Lex.getKind() == lltok::kw_addrspace) {
7432       ASLoc = Lex.getLoc();
7433       if (parseOptionalAddrSpace(AddrSpace))
7434         return true;
7435     } else if (Lex.getKind() == lltok::MetadataVar) {
7436       AteExtraComma = true;
7437     } else {
7438       if (parseTypeAndValue(Size, SizeLoc, PFS))
7439         return true;
7440       if (EatIfPresent(lltok::comma)) {
7441         if (Lex.getKind() == lltok::kw_align) {
7442           if (parseOptionalAlignment(Alignment))
7443             return true;
7444           if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7445             return true;
7446         } else if (Lex.getKind() == lltok::kw_addrspace) {
7447           ASLoc = Lex.getLoc();
7448           if (parseOptionalAddrSpace(AddrSpace))
7449             return true;
7450         } else if (Lex.getKind() == lltok::MetadataVar) {
7451           AteExtraComma = true;
7452         }
7453       }
7454     }
7455   }
7456 
7457   if (Size && !Size->getType()->isIntegerTy())
7458     return error(SizeLoc, "element count must have integer type");
7459 
7460   SmallPtrSet<Type *, 4> Visited;
7461   if (!Alignment && !Ty->isSized(&Visited))
7462     return error(TyLoc, "Cannot allocate unsized type");
7463   if (!Alignment)
7464     Alignment = M->getDataLayout().getPrefTypeAlign(Ty);
7465   AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment);
7466   AI->setUsedWithInAlloca(IsInAlloca);
7467   AI->setSwiftError(IsSwiftError);
7468   Inst = AI;
7469   return AteExtraComma ? InstExtraComma : InstNormal;
7470 }
7471 
7472 /// parseLoad
7473 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
7474 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
7475 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7476 int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) {
7477   Value *Val; LocTy Loc;
7478   MaybeAlign Alignment;
7479   bool AteExtraComma = false;
7480   bool isAtomic = false;
7481   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7482   SyncScope::ID SSID = SyncScope::System;
7483 
7484   if (Lex.getKind() == lltok::kw_atomic) {
7485     isAtomic = true;
7486     Lex.Lex();
7487   }
7488 
7489   bool isVolatile = false;
7490   if (Lex.getKind() == lltok::kw_volatile) {
7491     isVolatile = true;
7492     Lex.Lex();
7493   }
7494 
7495   Type *Ty;
7496   LocTy ExplicitTypeLoc = Lex.getLoc();
7497   if (parseType(Ty) ||
7498       parseToken(lltok::comma, "expected comma after load's type") ||
7499       parseTypeAndValue(Val, Loc, PFS) ||
7500       parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7501       parseOptionalCommaAlign(Alignment, AteExtraComma))
7502     return true;
7503 
7504   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
7505     return error(Loc, "load operand must be a pointer to a first class type");
7506   if (isAtomic && !Alignment)
7507     return error(Loc, "atomic load must have explicit non-zero alignment");
7508   if (Ordering == AtomicOrdering::Release ||
7509       Ordering == AtomicOrdering::AcquireRelease)
7510     return error(Loc, "atomic load cannot use Release ordering");
7511 
7512   if (!cast<PointerType>(Val->getType())->isOpaqueOrPointeeTypeMatches(Ty)) {
7513     return error(
7514         ExplicitTypeLoc,
7515         typeComparisonErrorMessage(
7516             "explicit pointee type doesn't match operand's pointee type", Ty,
7517             cast<PointerType>(Val->getType())->getElementType()));
7518   }
7519   SmallPtrSet<Type *, 4> Visited;
7520   if (!Alignment && !Ty->isSized(&Visited))
7521     return error(ExplicitTypeLoc, "loading unsized types is not allowed");
7522   if (!Alignment)
7523     Alignment = M->getDataLayout().getABITypeAlign(Ty);
7524   Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID);
7525   return AteExtraComma ? InstExtraComma : InstNormal;
7526 }
7527 
7528 /// parseStore
7529 
7530 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
7531 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
7532 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7533 int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) {
7534   Value *Val, *Ptr; LocTy Loc, PtrLoc;
7535   MaybeAlign Alignment;
7536   bool AteExtraComma = false;
7537   bool isAtomic = false;
7538   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7539   SyncScope::ID SSID = SyncScope::System;
7540 
7541   if (Lex.getKind() == lltok::kw_atomic) {
7542     isAtomic = true;
7543     Lex.Lex();
7544   }
7545 
7546   bool isVolatile = false;
7547   if (Lex.getKind() == lltok::kw_volatile) {
7548     isVolatile = true;
7549     Lex.Lex();
7550   }
7551 
7552   if (parseTypeAndValue(Val, Loc, PFS) ||
7553       parseToken(lltok::comma, "expected ',' after store operand") ||
7554       parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7555       parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7556       parseOptionalCommaAlign(Alignment, AteExtraComma))
7557     return true;
7558 
7559   if (!Ptr->getType()->isPointerTy())
7560     return error(PtrLoc, "store operand must be a pointer");
7561   if (!Val->getType()->isFirstClassType())
7562     return error(Loc, "store operand must be a first class value");
7563   if (!cast<PointerType>(Ptr->getType())
7564            ->isOpaqueOrPointeeTypeMatches(Val->getType()))
7565     return error(Loc, "stored value and pointer type do not match");
7566   if (isAtomic && !Alignment)
7567     return error(Loc, "atomic store must have explicit non-zero alignment");
7568   if (Ordering == AtomicOrdering::Acquire ||
7569       Ordering == AtomicOrdering::AcquireRelease)
7570     return error(Loc, "atomic store cannot use Acquire ordering");
7571   SmallPtrSet<Type *, 4> Visited;
7572   if (!Alignment && !Val->getType()->isSized(&Visited))
7573     return error(Loc, "storing unsized types is not allowed");
7574   if (!Alignment)
7575     Alignment = M->getDataLayout().getABITypeAlign(Val->getType());
7576 
7577   Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID);
7578   return AteExtraComma ? InstExtraComma : InstNormal;
7579 }
7580 
7581 /// parseCmpXchg
7582 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
7583 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering ','
7584 ///       'Align'?
7585 int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
7586   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
7587   bool AteExtraComma = false;
7588   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
7589   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
7590   SyncScope::ID SSID = SyncScope::System;
7591   bool isVolatile = false;
7592   bool isWeak = false;
7593   MaybeAlign Alignment;
7594 
7595   if (EatIfPresent(lltok::kw_weak))
7596     isWeak = true;
7597 
7598   if (EatIfPresent(lltok::kw_volatile))
7599     isVolatile = true;
7600 
7601   if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7602       parseToken(lltok::comma, "expected ',' after cmpxchg address") ||
7603       parseTypeAndValue(Cmp, CmpLoc, PFS) ||
7604       parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
7605       parseTypeAndValue(New, NewLoc, PFS) ||
7606       parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
7607       parseOrdering(FailureOrdering) ||
7608       parseOptionalCommaAlign(Alignment, AteExtraComma))
7609     return true;
7610 
7611   if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
7612     return tokError("invalid cmpxchg success ordering");
7613   if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
7614     return tokError("invalid cmpxchg failure ordering");
7615   if (!Ptr->getType()->isPointerTy())
7616     return error(PtrLoc, "cmpxchg operand must be a pointer");
7617   if (!cast<PointerType>(Ptr->getType())
7618            ->isOpaqueOrPointeeTypeMatches(Cmp->getType()))
7619     return error(CmpLoc, "compare value and pointer type do not match");
7620   if (!cast<PointerType>(Ptr->getType())
7621            ->isOpaqueOrPointeeTypeMatches(New->getType()))
7622     return error(NewLoc, "new value and pointer type do not match");
7623   if (Cmp->getType() != New->getType())
7624     return error(NewLoc, "compare value and new value type do not match");
7625   if (!New->getType()->isFirstClassType())
7626     return error(NewLoc, "cmpxchg operand must be a first class value");
7627 
7628   const Align DefaultAlignment(
7629       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7630           Cmp->getType()));
7631 
7632   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
7633       Ptr, Cmp, New, Alignment.getValueOr(DefaultAlignment), SuccessOrdering,
7634       FailureOrdering, SSID);
7635   CXI->setVolatile(isVolatile);
7636   CXI->setWeak(isWeak);
7637 
7638   Inst = CXI;
7639   return AteExtraComma ? InstExtraComma : InstNormal;
7640 }
7641 
7642 /// parseAtomicRMW
7643 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
7644 ///       'singlethread'? AtomicOrdering
7645 int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
7646   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
7647   bool AteExtraComma = false;
7648   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7649   SyncScope::ID SSID = SyncScope::System;
7650   bool isVolatile = false;
7651   bool IsFP = false;
7652   AtomicRMWInst::BinOp Operation;
7653   MaybeAlign Alignment;
7654 
7655   if (EatIfPresent(lltok::kw_volatile))
7656     isVolatile = true;
7657 
7658   switch (Lex.getKind()) {
7659   default:
7660     return tokError("expected binary operation in atomicrmw");
7661   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
7662   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
7663   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
7664   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
7665   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
7666   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
7667   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
7668   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
7669   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
7670   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
7671   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
7672   case lltok::kw_fadd:
7673     Operation = AtomicRMWInst::FAdd;
7674     IsFP = true;
7675     break;
7676   case lltok::kw_fsub:
7677     Operation = AtomicRMWInst::FSub;
7678     IsFP = true;
7679     break;
7680   }
7681   Lex.Lex();  // Eat the operation.
7682 
7683   if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7684       parseToken(lltok::comma, "expected ',' after atomicrmw address") ||
7685       parseTypeAndValue(Val, ValLoc, PFS) ||
7686       parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering) ||
7687       parseOptionalCommaAlign(Alignment, AteExtraComma))
7688     return true;
7689 
7690   if (Ordering == AtomicOrdering::Unordered)
7691     return tokError("atomicrmw cannot be unordered");
7692   if (!Ptr->getType()->isPointerTy())
7693     return error(PtrLoc, "atomicrmw operand must be a pointer");
7694   if (!cast<PointerType>(Ptr->getType())
7695            ->isOpaqueOrPointeeTypeMatches(Val->getType()))
7696     return error(ValLoc, "atomicrmw value and pointer type do not match");
7697 
7698   if (Operation == AtomicRMWInst::Xchg) {
7699     if (!Val->getType()->isIntegerTy() &&
7700         !Val->getType()->isFloatingPointTy()) {
7701       return error(ValLoc,
7702                    "atomicrmw " + AtomicRMWInst::getOperationName(Operation) +
7703                        " operand must be an integer or floating point type");
7704     }
7705   } else if (IsFP) {
7706     if (!Val->getType()->isFloatingPointTy()) {
7707       return error(ValLoc, "atomicrmw " +
7708                                AtomicRMWInst::getOperationName(Operation) +
7709                                " operand must be a floating point type");
7710     }
7711   } else {
7712     if (!Val->getType()->isIntegerTy()) {
7713       return error(ValLoc, "atomicrmw " +
7714                                AtomicRMWInst::getOperationName(Operation) +
7715                                " operand must be an integer");
7716     }
7717   }
7718 
7719   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
7720   if (Size < 8 || (Size & (Size - 1)))
7721     return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
7722                          " integer");
7723   const Align DefaultAlignment(
7724       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7725           Val->getType()));
7726   AtomicRMWInst *RMWI =
7727       new AtomicRMWInst(Operation, Ptr, Val,
7728                         Alignment.getValueOr(DefaultAlignment), Ordering, SSID);
7729   RMWI->setVolatile(isVolatile);
7730   Inst = RMWI;
7731   return AteExtraComma ? InstExtraComma : InstNormal;
7732 }
7733 
7734 /// parseFence
7735 ///   ::= 'fence' 'singlethread'? AtomicOrdering
7736 int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) {
7737   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7738   SyncScope::ID SSID = SyncScope::System;
7739   if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7740     return true;
7741 
7742   if (Ordering == AtomicOrdering::Unordered)
7743     return tokError("fence cannot be unordered");
7744   if (Ordering == AtomicOrdering::Monotonic)
7745     return tokError("fence cannot be monotonic");
7746 
7747   Inst = new FenceInst(Context, Ordering, SSID);
7748   return InstNormal;
7749 }
7750 
7751 /// parseGetElementPtr
7752 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
7753 int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
7754   Value *Ptr = nullptr;
7755   Value *Val = nullptr;
7756   LocTy Loc, EltLoc;
7757 
7758   bool InBounds = EatIfPresent(lltok::kw_inbounds);
7759 
7760   Type *Ty = nullptr;
7761   LocTy ExplicitTypeLoc = Lex.getLoc();
7762   if (parseType(Ty) ||
7763       parseToken(lltok::comma, "expected comma after getelementptr's type") ||
7764       parseTypeAndValue(Ptr, Loc, PFS))
7765     return true;
7766 
7767   Type *BaseType = Ptr->getType();
7768   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
7769   if (!BasePointerType)
7770     return error(Loc, "base of getelementptr must be a pointer");
7771 
7772   if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) {
7773     return error(
7774         ExplicitTypeLoc,
7775         typeComparisonErrorMessage(
7776             "explicit pointee type doesn't match operand's pointee type", Ty,
7777             BasePointerType->getElementType()));
7778   }
7779 
7780   SmallVector<Value*, 16> Indices;
7781   bool AteExtraComma = false;
7782   // GEP returns a vector of pointers if at least one of parameters is a vector.
7783   // All vector parameters should have the same vector width.
7784   ElementCount GEPWidth = BaseType->isVectorTy()
7785                               ? cast<VectorType>(BaseType)->getElementCount()
7786                               : ElementCount::getFixed(0);
7787 
7788   while (EatIfPresent(lltok::comma)) {
7789     if (Lex.getKind() == lltok::MetadataVar) {
7790       AteExtraComma = true;
7791       break;
7792     }
7793     if (parseTypeAndValue(Val, EltLoc, PFS))
7794       return true;
7795     if (!Val->getType()->isIntOrIntVectorTy())
7796       return error(EltLoc, "getelementptr index must be an integer");
7797 
7798     if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) {
7799       ElementCount ValNumEl = ValVTy->getElementCount();
7800       if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl)
7801         return error(
7802             EltLoc,
7803             "getelementptr vector index has a wrong number of elements");
7804       GEPWidth = ValNumEl;
7805     }
7806     Indices.push_back(Val);
7807   }
7808 
7809   SmallPtrSet<Type*, 4> Visited;
7810   if (!Indices.empty() && !Ty->isSized(&Visited))
7811     return error(Loc, "base element of getelementptr must be sized");
7812 
7813   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
7814     return error(Loc, "invalid getelementptr indices");
7815   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
7816   if (InBounds)
7817     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
7818   return AteExtraComma ? InstExtraComma : InstNormal;
7819 }
7820 
7821 /// parseExtractValue
7822 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
7823 int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
7824   Value *Val; LocTy Loc;
7825   SmallVector<unsigned, 4> Indices;
7826   bool AteExtraComma;
7827   if (parseTypeAndValue(Val, Loc, PFS) ||
7828       parseIndexList(Indices, AteExtraComma))
7829     return true;
7830 
7831   if (!Val->getType()->isAggregateType())
7832     return error(Loc, "extractvalue operand must be aggregate type");
7833 
7834   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
7835     return error(Loc, "invalid indices for extractvalue");
7836   Inst = ExtractValueInst::Create(Val, Indices);
7837   return AteExtraComma ? InstExtraComma : InstNormal;
7838 }
7839 
7840 /// parseInsertValue
7841 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
7842 int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
7843   Value *Val0, *Val1; LocTy Loc0, Loc1;
7844   SmallVector<unsigned, 4> Indices;
7845   bool AteExtraComma;
7846   if (parseTypeAndValue(Val0, Loc0, PFS) ||
7847       parseToken(lltok::comma, "expected comma after insertvalue operand") ||
7848       parseTypeAndValue(Val1, Loc1, PFS) ||
7849       parseIndexList(Indices, AteExtraComma))
7850     return true;
7851 
7852   if (!Val0->getType()->isAggregateType())
7853     return error(Loc0, "insertvalue operand must be aggregate type");
7854 
7855   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
7856   if (!IndexedType)
7857     return error(Loc0, "invalid indices for insertvalue");
7858   if (IndexedType != Val1->getType())
7859     return error(Loc1, "insertvalue operand and field disagree in type: '" +
7860                            getTypeString(Val1->getType()) + "' instead of '" +
7861                            getTypeString(IndexedType) + "'");
7862   Inst = InsertValueInst::Create(Val0, Val1, Indices);
7863   return AteExtraComma ? InstExtraComma : InstNormal;
7864 }
7865 
7866 //===----------------------------------------------------------------------===//
7867 // Embedded metadata.
7868 //===----------------------------------------------------------------------===//
7869 
7870 /// parseMDNodeVector
7871 ///   ::= { Element (',' Element)* }
7872 /// Element
7873 ///   ::= 'null' | TypeAndValue
7874 bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
7875   if (parseToken(lltok::lbrace, "expected '{' here"))
7876     return true;
7877 
7878   // Check for an empty list.
7879   if (EatIfPresent(lltok::rbrace))
7880     return false;
7881 
7882   do {
7883     // Null is a special case since it is typeless.
7884     if (EatIfPresent(lltok::kw_null)) {
7885       Elts.push_back(nullptr);
7886       continue;
7887     }
7888 
7889     Metadata *MD;
7890     if (parseMetadata(MD, nullptr))
7891       return true;
7892     Elts.push_back(MD);
7893   } while (EatIfPresent(lltok::comma));
7894 
7895   return parseToken(lltok::rbrace, "expected end of metadata node");
7896 }
7897 
7898 //===----------------------------------------------------------------------===//
7899 // Use-list order directives.
7900 //===----------------------------------------------------------------------===//
7901 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
7902                                 SMLoc Loc) {
7903   if (V->use_empty())
7904     return error(Loc, "value has no uses");
7905 
7906   unsigned NumUses = 0;
7907   SmallDenseMap<const Use *, unsigned, 16> Order;
7908   for (const Use &U : V->uses()) {
7909     if (++NumUses > Indexes.size())
7910       break;
7911     Order[&U] = Indexes[NumUses - 1];
7912   }
7913   if (NumUses < 2)
7914     return error(Loc, "value only has one use");
7915   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
7916     return error(Loc,
7917                  "wrong number of indexes, expected " + Twine(V->getNumUses()));
7918 
7919   V->sortUseList([&](const Use &L, const Use &R) {
7920     return Order.lookup(&L) < Order.lookup(&R);
7921   });
7922   return false;
7923 }
7924 
7925 /// parseUseListOrderIndexes
7926 ///   ::= '{' uint32 (',' uint32)+ '}'
7927 bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
7928   SMLoc Loc = Lex.getLoc();
7929   if (parseToken(lltok::lbrace, "expected '{' here"))
7930     return true;
7931   if (Lex.getKind() == lltok::rbrace)
7932     return Lex.Error("expected non-empty list of uselistorder indexes");
7933 
7934   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
7935   // indexes should be distinct numbers in the range [0, size-1], and should
7936   // not be in order.
7937   unsigned Offset = 0;
7938   unsigned Max = 0;
7939   bool IsOrdered = true;
7940   assert(Indexes.empty() && "Expected empty order vector");
7941   do {
7942     unsigned Index;
7943     if (parseUInt32(Index))
7944       return true;
7945 
7946     // Update consistency checks.
7947     Offset += Index - Indexes.size();
7948     Max = std::max(Max, Index);
7949     IsOrdered &= Index == Indexes.size();
7950 
7951     Indexes.push_back(Index);
7952   } while (EatIfPresent(lltok::comma));
7953 
7954   if (parseToken(lltok::rbrace, "expected '}' here"))
7955     return true;
7956 
7957   if (Indexes.size() < 2)
7958     return error(Loc, "expected >= 2 uselistorder indexes");
7959   if (Offset != 0 || Max >= Indexes.size())
7960     return error(Loc,
7961                  "expected distinct uselistorder indexes in range [0, size)");
7962   if (IsOrdered)
7963     return error(Loc, "expected uselistorder indexes to change the order");
7964 
7965   return false;
7966 }
7967 
7968 /// parseUseListOrder
7969 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
7970 bool LLParser::parseUseListOrder(PerFunctionState *PFS) {
7971   SMLoc Loc = Lex.getLoc();
7972   if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
7973     return true;
7974 
7975   Value *V;
7976   SmallVector<unsigned, 16> Indexes;
7977   if (parseTypeAndValue(V, PFS) ||
7978       parseToken(lltok::comma, "expected comma in uselistorder directive") ||
7979       parseUseListOrderIndexes(Indexes))
7980     return true;
7981 
7982   return sortUseListOrder(V, Indexes, Loc);
7983 }
7984 
7985 /// parseUseListOrderBB
7986 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
7987 bool LLParser::parseUseListOrderBB() {
7988   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
7989   SMLoc Loc = Lex.getLoc();
7990   Lex.Lex();
7991 
7992   ValID Fn, Label;
7993   SmallVector<unsigned, 16> Indexes;
7994   if (parseValID(Fn, /*PFS=*/nullptr) ||
7995       parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7996       parseValID(Label, /*PFS=*/nullptr) ||
7997       parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7998       parseUseListOrderIndexes(Indexes))
7999     return true;
8000 
8001   // Check the function.
8002   GlobalValue *GV;
8003   if (Fn.Kind == ValID::t_GlobalName)
8004     GV = M->getNamedValue(Fn.StrVal);
8005   else if (Fn.Kind == ValID::t_GlobalID)
8006     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
8007   else
8008     return error(Fn.Loc, "expected function name in uselistorder_bb");
8009   if (!GV)
8010     return error(Fn.Loc,
8011                  "invalid function forward reference in uselistorder_bb");
8012   auto *F = dyn_cast<Function>(GV);
8013   if (!F)
8014     return error(Fn.Loc, "expected function name in uselistorder_bb");
8015   if (F->isDeclaration())
8016     return error(Fn.Loc, "invalid declaration in uselistorder_bb");
8017 
8018   // Check the basic block.
8019   if (Label.Kind == ValID::t_LocalID)
8020     return error(Label.Loc, "invalid numeric label in uselistorder_bb");
8021   if (Label.Kind != ValID::t_LocalName)
8022     return error(Label.Loc, "expected basic block name in uselistorder_bb");
8023   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
8024   if (!V)
8025     return error(Label.Loc, "invalid basic block in uselistorder_bb");
8026   if (!isa<BasicBlock>(V))
8027     return error(Label.Loc, "expected basic block in uselistorder_bb");
8028 
8029   return sortUseListOrder(V, Indexes, Loc);
8030 }
8031 
8032 /// ModuleEntry
8033 ///   ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
8034 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
8035 bool LLParser::parseModuleEntry(unsigned ID) {
8036   assert(Lex.getKind() == lltok::kw_module);
8037   Lex.Lex();
8038 
8039   std::string Path;
8040   if (parseToken(lltok::colon, "expected ':' here") ||
8041       parseToken(lltok::lparen, "expected '(' here") ||
8042       parseToken(lltok::kw_path, "expected 'path' here") ||
8043       parseToken(lltok::colon, "expected ':' here") ||
8044       parseStringConstant(Path) ||
8045       parseToken(lltok::comma, "expected ',' here") ||
8046       parseToken(lltok::kw_hash, "expected 'hash' here") ||
8047       parseToken(lltok::colon, "expected ':' here") ||
8048       parseToken(lltok::lparen, "expected '(' here"))
8049     return true;
8050 
8051   ModuleHash Hash;
8052   if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") ||
8053       parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") ||
8054       parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") ||
8055       parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") ||
8056       parseUInt32(Hash[4]))
8057     return true;
8058 
8059   if (parseToken(lltok::rparen, "expected ')' here") ||
8060       parseToken(lltok::rparen, "expected ')' here"))
8061     return true;
8062 
8063   auto ModuleEntry = Index->addModule(Path, ID, Hash);
8064   ModuleIdMap[ID] = ModuleEntry->first();
8065 
8066   return false;
8067 }
8068 
8069 /// TypeIdEntry
8070 ///   ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
8071 bool LLParser::parseTypeIdEntry(unsigned ID) {
8072   assert(Lex.getKind() == lltok::kw_typeid);
8073   Lex.Lex();
8074 
8075   std::string Name;
8076   if (parseToken(lltok::colon, "expected ':' here") ||
8077       parseToken(lltok::lparen, "expected '(' here") ||
8078       parseToken(lltok::kw_name, "expected 'name' here") ||
8079       parseToken(lltok::colon, "expected ':' here") ||
8080       parseStringConstant(Name))
8081     return true;
8082 
8083   TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
8084   if (parseToken(lltok::comma, "expected ',' here") ||
8085       parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here"))
8086     return true;
8087 
8088   // Check if this ID was forward referenced, and if so, update the
8089   // corresponding GUIDs.
8090   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
8091   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
8092     for (auto TIDRef : FwdRefTIDs->second) {
8093       assert(!*TIDRef.first &&
8094              "Forward referenced type id GUID expected to be 0");
8095       *TIDRef.first = GlobalValue::getGUID(Name);
8096     }
8097     ForwardRefTypeIds.erase(FwdRefTIDs);
8098   }
8099 
8100   return false;
8101 }
8102 
8103 /// TypeIdSummary
8104 ///   ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
8105 bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) {
8106   if (parseToken(lltok::kw_summary, "expected 'summary' here") ||
8107       parseToken(lltok::colon, "expected ':' here") ||
8108       parseToken(lltok::lparen, "expected '(' here") ||
8109       parseTypeTestResolution(TIS.TTRes))
8110     return true;
8111 
8112   if (EatIfPresent(lltok::comma)) {
8113     // Expect optional wpdResolutions field
8114     if (parseOptionalWpdResolutions(TIS.WPDRes))
8115       return true;
8116   }
8117 
8118   if (parseToken(lltok::rparen, "expected ')' here"))
8119     return true;
8120 
8121   return false;
8122 }
8123 
8124 static ValueInfo EmptyVI =
8125     ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
8126 
8127 /// TypeIdCompatibleVtableEntry
8128 ///   ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ','
8129 ///   TypeIdCompatibleVtableInfo
8130 ///   ')'
8131 bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) {
8132   assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable);
8133   Lex.Lex();
8134 
8135   std::string Name;
8136   if (parseToken(lltok::colon, "expected ':' here") ||
8137       parseToken(lltok::lparen, "expected '(' here") ||
8138       parseToken(lltok::kw_name, "expected 'name' here") ||
8139       parseToken(lltok::colon, "expected ':' here") ||
8140       parseStringConstant(Name))
8141     return true;
8142 
8143   TypeIdCompatibleVtableInfo &TI =
8144       Index->getOrInsertTypeIdCompatibleVtableSummary(Name);
8145   if (parseToken(lltok::comma, "expected ',' here") ||
8146       parseToken(lltok::kw_summary, "expected 'summary' here") ||
8147       parseToken(lltok::colon, "expected ':' here") ||
8148       parseToken(lltok::lparen, "expected '(' here"))
8149     return true;
8150 
8151   IdToIndexMapType IdToIndexMap;
8152   // parse each call edge
8153   do {
8154     uint64_t Offset;
8155     if (parseToken(lltok::lparen, "expected '(' here") ||
8156         parseToken(lltok::kw_offset, "expected 'offset' here") ||
8157         parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
8158         parseToken(lltok::comma, "expected ',' here"))
8159       return true;
8160 
8161     LocTy Loc = Lex.getLoc();
8162     unsigned GVId;
8163     ValueInfo VI;
8164     if (parseGVReference(VI, GVId))
8165       return true;
8166 
8167     // Keep track of the TypeIdCompatibleVtableInfo array index needing a
8168     // forward reference. We will save the location of the ValueInfo needing an
8169     // update, but can only do so once the std::vector is finalized.
8170     if (VI == EmptyVI)
8171       IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc));
8172     TI.push_back({Offset, VI});
8173 
8174     if (parseToken(lltok::rparen, "expected ')' in call"))
8175       return true;
8176   } while (EatIfPresent(lltok::comma));
8177 
8178   // Now that the TI vector is finalized, it is safe to save the locations
8179   // of any forward GV references that need updating later.
8180   for (auto I : IdToIndexMap) {
8181     auto &Infos = ForwardRefValueInfos[I.first];
8182     for (auto P : I.second) {
8183       assert(TI[P.first].VTableVI == EmptyVI &&
8184              "Forward referenced ValueInfo expected to be empty");
8185       Infos.emplace_back(&TI[P.first].VTableVI, P.second);
8186     }
8187   }
8188 
8189   if (parseToken(lltok::rparen, "expected ')' here") ||
8190       parseToken(lltok::rparen, "expected ')' here"))
8191     return true;
8192 
8193   // Check if this ID was forward referenced, and if so, update the
8194   // corresponding GUIDs.
8195   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
8196   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
8197     for (auto TIDRef : FwdRefTIDs->second) {
8198       assert(!*TIDRef.first &&
8199              "Forward referenced type id GUID expected to be 0");
8200       *TIDRef.first = GlobalValue::getGUID(Name);
8201     }
8202     ForwardRefTypeIds.erase(FwdRefTIDs);
8203   }
8204 
8205   return false;
8206 }
8207 
8208 /// TypeTestResolution
8209 ///   ::= 'typeTestRes' ':' '(' 'kind' ':'
8210 ///         ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
8211 ///         'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
8212 ///         [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
8213 ///         [',' 'inlinesBits' ':' UInt64]? ')'
8214 bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) {
8215   if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
8216       parseToken(lltok::colon, "expected ':' here") ||
8217       parseToken(lltok::lparen, "expected '(' here") ||
8218       parseToken(lltok::kw_kind, "expected 'kind' here") ||
8219       parseToken(lltok::colon, "expected ':' here"))
8220     return true;
8221 
8222   switch (Lex.getKind()) {
8223   case lltok::kw_unknown:
8224     TTRes.TheKind = TypeTestResolution::Unknown;
8225     break;
8226   case lltok::kw_unsat:
8227     TTRes.TheKind = TypeTestResolution::Unsat;
8228     break;
8229   case lltok::kw_byteArray:
8230     TTRes.TheKind = TypeTestResolution::ByteArray;
8231     break;
8232   case lltok::kw_inline:
8233     TTRes.TheKind = TypeTestResolution::Inline;
8234     break;
8235   case lltok::kw_single:
8236     TTRes.TheKind = TypeTestResolution::Single;
8237     break;
8238   case lltok::kw_allOnes:
8239     TTRes.TheKind = TypeTestResolution::AllOnes;
8240     break;
8241   default:
8242     return error(Lex.getLoc(), "unexpected TypeTestResolution kind");
8243   }
8244   Lex.Lex();
8245 
8246   if (parseToken(lltok::comma, "expected ',' here") ||
8247       parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
8248       parseToken(lltok::colon, "expected ':' here") ||
8249       parseUInt32(TTRes.SizeM1BitWidth))
8250     return true;
8251 
8252   // parse optional fields
8253   while (EatIfPresent(lltok::comma)) {
8254     switch (Lex.getKind()) {
8255     case lltok::kw_alignLog2:
8256       Lex.Lex();
8257       if (parseToken(lltok::colon, "expected ':'") ||
8258           parseUInt64(TTRes.AlignLog2))
8259         return true;
8260       break;
8261     case lltok::kw_sizeM1:
8262       Lex.Lex();
8263       if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1))
8264         return true;
8265       break;
8266     case lltok::kw_bitMask: {
8267       unsigned Val;
8268       Lex.Lex();
8269       if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val))
8270         return true;
8271       assert(Val <= 0xff);
8272       TTRes.BitMask = (uint8_t)Val;
8273       break;
8274     }
8275     case lltok::kw_inlineBits:
8276       Lex.Lex();
8277       if (parseToken(lltok::colon, "expected ':'") ||
8278           parseUInt64(TTRes.InlineBits))
8279         return true;
8280       break;
8281     default:
8282       return error(Lex.getLoc(), "expected optional TypeTestResolution field");
8283     }
8284   }
8285 
8286   if (parseToken(lltok::rparen, "expected ')' here"))
8287     return true;
8288 
8289   return false;
8290 }
8291 
8292 /// OptionalWpdResolutions
8293 ///   ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
8294 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
8295 bool LLParser::parseOptionalWpdResolutions(
8296     std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
8297   if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
8298       parseToken(lltok::colon, "expected ':' here") ||
8299       parseToken(lltok::lparen, "expected '(' here"))
8300     return true;
8301 
8302   do {
8303     uint64_t Offset;
8304     WholeProgramDevirtResolution WPDRes;
8305     if (parseToken(lltok::lparen, "expected '(' here") ||
8306         parseToken(lltok::kw_offset, "expected 'offset' here") ||
8307         parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
8308         parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) ||
8309         parseToken(lltok::rparen, "expected ')' here"))
8310       return true;
8311     WPDResMap[Offset] = WPDRes;
8312   } while (EatIfPresent(lltok::comma));
8313 
8314   if (parseToken(lltok::rparen, "expected ')' here"))
8315     return true;
8316 
8317   return false;
8318 }
8319 
8320 /// WpdRes
8321 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
8322 ///         [',' OptionalResByArg]? ')'
8323 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
8324 ///         ',' 'singleImplName' ':' STRINGCONSTANT ','
8325 ///         [',' OptionalResByArg]? ')'
8326 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
8327 ///         [',' OptionalResByArg]? ')'
8328 bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) {
8329   if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
8330       parseToken(lltok::colon, "expected ':' here") ||
8331       parseToken(lltok::lparen, "expected '(' here") ||
8332       parseToken(lltok::kw_kind, "expected 'kind' here") ||
8333       parseToken(lltok::colon, "expected ':' here"))
8334     return true;
8335 
8336   switch (Lex.getKind()) {
8337   case lltok::kw_indir:
8338     WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
8339     break;
8340   case lltok::kw_singleImpl:
8341     WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
8342     break;
8343   case lltok::kw_branchFunnel:
8344     WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
8345     break;
8346   default:
8347     return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
8348   }
8349   Lex.Lex();
8350 
8351   // parse optional fields
8352   while (EatIfPresent(lltok::comma)) {
8353     switch (Lex.getKind()) {
8354     case lltok::kw_singleImplName:
8355       Lex.Lex();
8356       if (parseToken(lltok::colon, "expected ':' here") ||
8357           parseStringConstant(WPDRes.SingleImplName))
8358         return true;
8359       break;
8360     case lltok::kw_resByArg:
8361       if (parseOptionalResByArg(WPDRes.ResByArg))
8362         return true;
8363       break;
8364     default:
8365       return error(Lex.getLoc(),
8366                    "expected optional WholeProgramDevirtResolution field");
8367     }
8368   }
8369 
8370   if (parseToken(lltok::rparen, "expected ')' here"))
8371     return true;
8372 
8373   return false;
8374 }
8375 
8376 /// OptionalResByArg
8377 ///   ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
8378 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
8379 ///                ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
8380 ///                  'virtualConstProp' )
8381 ///                [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
8382 ///                [',' 'bit' ':' UInt32]? ')'
8383 bool LLParser::parseOptionalResByArg(
8384     std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
8385         &ResByArg) {
8386   if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
8387       parseToken(lltok::colon, "expected ':' here") ||
8388       parseToken(lltok::lparen, "expected '(' here"))
8389     return true;
8390 
8391   do {
8392     std::vector<uint64_t> Args;
8393     if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") ||
8394         parseToken(lltok::kw_byArg, "expected 'byArg here") ||
8395         parseToken(lltok::colon, "expected ':' here") ||
8396         parseToken(lltok::lparen, "expected '(' here") ||
8397         parseToken(lltok::kw_kind, "expected 'kind' here") ||
8398         parseToken(lltok::colon, "expected ':' here"))
8399       return true;
8400 
8401     WholeProgramDevirtResolution::ByArg ByArg;
8402     switch (Lex.getKind()) {
8403     case lltok::kw_indir:
8404       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
8405       break;
8406     case lltok::kw_uniformRetVal:
8407       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
8408       break;
8409     case lltok::kw_uniqueRetVal:
8410       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
8411       break;
8412     case lltok::kw_virtualConstProp:
8413       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
8414       break;
8415     default:
8416       return error(Lex.getLoc(),
8417                    "unexpected WholeProgramDevirtResolution::ByArg kind");
8418     }
8419     Lex.Lex();
8420 
8421     // parse optional fields
8422     while (EatIfPresent(lltok::comma)) {
8423       switch (Lex.getKind()) {
8424       case lltok::kw_info:
8425         Lex.Lex();
8426         if (parseToken(lltok::colon, "expected ':' here") ||
8427             parseUInt64(ByArg.Info))
8428           return true;
8429         break;
8430       case lltok::kw_byte:
8431         Lex.Lex();
8432         if (parseToken(lltok::colon, "expected ':' here") ||
8433             parseUInt32(ByArg.Byte))
8434           return true;
8435         break;
8436       case lltok::kw_bit:
8437         Lex.Lex();
8438         if (parseToken(lltok::colon, "expected ':' here") ||
8439             parseUInt32(ByArg.Bit))
8440           return true;
8441         break;
8442       default:
8443         return error(Lex.getLoc(),
8444                      "expected optional whole program devirt field");
8445       }
8446     }
8447 
8448     if (parseToken(lltok::rparen, "expected ')' here"))
8449       return true;
8450 
8451     ResByArg[Args] = ByArg;
8452   } while (EatIfPresent(lltok::comma));
8453 
8454   if (parseToken(lltok::rparen, "expected ')' here"))
8455     return true;
8456 
8457   return false;
8458 }
8459 
8460 /// OptionalResByArg
8461 ///   ::= 'args' ':' '(' UInt64[, UInt64]* ')'
8462 bool LLParser::parseArgs(std::vector<uint64_t> &Args) {
8463   if (parseToken(lltok::kw_args, "expected 'args' here") ||
8464       parseToken(lltok::colon, "expected ':' here") ||
8465       parseToken(lltok::lparen, "expected '(' here"))
8466     return true;
8467 
8468   do {
8469     uint64_t Val;
8470     if (parseUInt64(Val))
8471       return true;
8472     Args.push_back(Val);
8473   } while (EatIfPresent(lltok::comma));
8474 
8475   if (parseToken(lltok::rparen, "expected ')' here"))
8476     return true;
8477 
8478   return false;
8479 }
8480 
8481 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
8482 
8483 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
8484   bool ReadOnly = Fwd->isReadOnly();
8485   bool WriteOnly = Fwd->isWriteOnly();
8486   assert(!(ReadOnly && WriteOnly));
8487   *Fwd = Resolved;
8488   if (ReadOnly)
8489     Fwd->setReadOnly();
8490   if (WriteOnly)
8491     Fwd->setWriteOnly();
8492 }
8493 
8494 /// Stores the given Name/GUID and associated summary into the Index.
8495 /// Also updates any forward references to the associated entry ID.
8496 void LLParser::addGlobalValueToIndex(
8497     std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
8498     unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) {
8499   // First create the ValueInfo utilizing the Name or GUID.
8500   ValueInfo VI;
8501   if (GUID != 0) {
8502     assert(Name.empty());
8503     VI = Index->getOrInsertValueInfo(GUID);
8504   } else {
8505     assert(!Name.empty());
8506     if (M) {
8507       auto *GV = M->getNamedValue(Name);
8508       assert(GV);
8509       VI = Index->getOrInsertValueInfo(GV);
8510     } else {
8511       assert(
8512           (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
8513           "Need a source_filename to compute GUID for local");
8514       GUID = GlobalValue::getGUID(
8515           GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
8516       VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
8517     }
8518   }
8519 
8520   // Resolve forward references from calls/refs
8521   auto FwdRefVIs = ForwardRefValueInfos.find(ID);
8522   if (FwdRefVIs != ForwardRefValueInfos.end()) {
8523     for (auto VIRef : FwdRefVIs->second) {
8524       assert(VIRef.first->getRef() == FwdVIRef &&
8525              "Forward referenced ValueInfo expected to be empty");
8526       resolveFwdRef(VIRef.first, VI);
8527     }
8528     ForwardRefValueInfos.erase(FwdRefVIs);
8529   }
8530 
8531   // Resolve forward references from aliases
8532   auto FwdRefAliasees = ForwardRefAliasees.find(ID);
8533   if (FwdRefAliasees != ForwardRefAliasees.end()) {
8534     for (auto AliaseeRef : FwdRefAliasees->second) {
8535       assert(!AliaseeRef.first->hasAliasee() &&
8536              "Forward referencing alias already has aliasee");
8537       assert(Summary && "Aliasee must be a definition");
8538       AliaseeRef.first->setAliasee(VI, Summary.get());
8539     }
8540     ForwardRefAliasees.erase(FwdRefAliasees);
8541   }
8542 
8543   // Add the summary if one was provided.
8544   if (Summary)
8545     Index->addGlobalValueSummary(VI, std::move(Summary));
8546 
8547   // Save the associated ValueInfo for use in later references by ID.
8548   if (ID == NumberedValueInfos.size())
8549     NumberedValueInfos.push_back(VI);
8550   else {
8551     // Handle non-continuous numbers (to make test simplification easier).
8552     if (ID > NumberedValueInfos.size())
8553       NumberedValueInfos.resize(ID + 1);
8554     NumberedValueInfos[ID] = VI;
8555   }
8556 }
8557 
8558 /// parseSummaryIndexFlags
8559 ///   ::= 'flags' ':' UInt64
8560 bool LLParser::parseSummaryIndexFlags() {
8561   assert(Lex.getKind() == lltok::kw_flags);
8562   Lex.Lex();
8563 
8564   if (parseToken(lltok::colon, "expected ':' here"))
8565     return true;
8566   uint64_t Flags;
8567   if (parseUInt64(Flags))
8568     return true;
8569   if (Index)
8570     Index->setFlags(Flags);
8571   return false;
8572 }
8573 
8574 /// parseBlockCount
8575 ///   ::= 'blockcount' ':' UInt64
8576 bool LLParser::parseBlockCount() {
8577   assert(Lex.getKind() == lltok::kw_blockcount);
8578   Lex.Lex();
8579 
8580   if (parseToken(lltok::colon, "expected ':' here"))
8581     return true;
8582   uint64_t BlockCount;
8583   if (parseUInt64(BlockCount))
8584     return true;
8585   if (Index)
8586     Index->setBlockCount(BlockCount);
8587   return false;
8588 }
8589 
8590 /// parseGVEntry
8591 ///   ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
8592 ///         [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
8593 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
8594 bool LLParser::parseGVEntry(unsigned ID) {
8595   assert(Lex.getKind() == lltok::kw_gv);
8596   Lex.Lex();
8597 
8598   if (parseToken(lltok::colon, "expected ':' here") ||
8599       parseToken(lltok::lparen, "expected '(' here"))
8600     return true;
8601 
8602   std::string Name;
8603   GlobalValue::GUID GUID = 0;
8604   switch (Lex.getKind()) {
8605   case lltok::kw_name:
8606     Lex.Lex();
8607     if (parseToken(lltok::colon, "expected ':' here") ||
8608         parseStringConstant(Name))
8609       return true;
8610     // Can't create GUID/ValueInfo until we have the linkage.
8611     break;
8612   case lltok::kw_guid:
8613     Lex.Lex();
8614     if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID))
8615       return true;
8616     break;
8617   default:
8618     return error(Lex.getLoc(), "expected name or guid tag");
8619   }
8620 
8621   if (!EatIfPresent(lltok::comma)) {
8622     // No summaries. Wrap up.
8623     if (parseToken(lltok::rparen, "expected ')' here"))
8624       return true;
8625     // This was created for a call to an external or indirect target.
8626     // A GUID with no summary came from a VALUE_GUID record, dummy GUID
8627     // created for indirect calls with VP. A Name with no GUID came from
8628     // an external definition. We pass ExternalLinkage since that is only
8629     // used when the GUID must be computed from Name, and in that case
8630     // the symbol must have external linkage.
8631     addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
8632                           nullptr);
8633     return false;
8634   }
8635 
8636   // Have a list of summaries
8637   if (parseToken(lltok::kw_summaries, "expected 'summaries' here") ||
8638       parseToken(lltok::colon, "expected ':' here") ||
8639       parseToken(lltok::lparen, "expected '(' here"))
8640     return true;
8641   do {
8642     switch (Lex.getKind()) {
8643     case lltok::kw_function:
8644       if (parseFunctionSummary(Name, GUID, ID))
8645         return true;
8646       break;
8647     case lltok::kw_variable:
8648       if (parseVariableSummary(Name, GUID, ID))
8649         return true;
8650       break;
8651     case lltok::kw_alias:
8652       if (parseAliasSummary(Name, GUID, ID))
8653         return true;
8654       break;
8655     default:
8656       return error(Lex.getLoc(), "expected summary type");
8657     }
8658   } while (EatIfPresent(lltok::comma));
8659 
8660   if (parseToken(lltok::rparen, "expected ')' here") ||
8661       parseToken(lltok::rparen, "expected ')' here"))
8662     return true;
8663 
8664   return false;
8665 }
8666 
8667 /// FunctionSummary
8668 ///   ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8669 ///         ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
8670 ///         [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]?
8671 ///         [',' OptionalRefs]? ')'
8672 bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
8673                                     unsigned ID) {
8674   assert(Lex.getKind() == lltok::kw_function);
8675   Lex.Lex();
8676 
8677   StringRef ModulePath;
8678   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8679       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8680       /*NotEligibleToImport=*/false,
8681       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8682   unsigned InstCount;
8683   std::vector<FunctionSummary::EdgeTy> Calls;
8684   FunctionSummary::TypeIdInfo TypeIdInfo;
8685   std::vector<FunctionSummary::ParamAccess> ParamAccesses;
8686   std::vector<ValueInfo> Refs;
8687   // Default is all-zeros (conservative values).
8688   FunctionSummary::FFlags FFlags = {};
8689   if (parseToken(lltok::colon, "expected ':' here") ||
8690       parseToken(lltok::lparen, "expected '(' here") ||
8691       parseModuleReference(ModulePath) ||
8692       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8693       parseToken(lltok::comma, "expected ',' here") ||
8694       parseToken(lltok::kw_insts, "expected 'insts' here") ||
8695       parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount))
8696     return true;
8697 
8698   // parse optional fields
8699   while (EatIfPresent(lltok::comma)) {
8700     switch (Lex.getKind()) {
8701     case lltok::kw_funcFlags:
8702       if (parseOptionalFFlags(FFlags))
8703         return true;
8704       break;
8705     case lltok::kw_calls:
8706       if (parseOptionalCalls(Calls))
8707         return true;
8708       break;
8709     case lltok::kw_typeIdInfo:
8710       if (parseOptionalTypeIdInfo(TypeIdInfo))
8711         return true;
8712       break;
8713     case lltok::kw_refs:
8714       if (parseOptionalRefs(Refs))
8715         return true;
8716       break;
8717     case lltok::kw_params:
8718       if (parseOptionalParamAccesses(ParamAccesses))
8719         return true;
8720       break;
8721     default:
8722       return error(Lex.getLoc(), "expected optional function summary field");
8723     }
8724   }
8725 
8726   if (parseToken(lltok::rparen, "expected ')' here"))
8727     return true;
8728 
8729   auto FS = std::make_unique<FunctionSummary>(
8730       GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
8731       std::move(Calls), std::move(TypeIdInfo.TypeTests),
8732       std::move(TypeIdInfo.TypeTestAssumeVCalls),
8733       std::move(TypeIdInfo.TypeCheckedLoadVCalls),
8734       std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
8735       std::move(TypeIdInfo.TypeCheckedLoadConstVCalls),
8736       std::move(ParamAccesses));
8737 
8738   FS->setModulePath(ModulePath);
8739 
8740   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8741                         ID, std::move(FS));
8742 
8743   return false;
8744 }
8745 
8746 /// VariableSummary
8747 ///   ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8748 ///         [',' OptionalRefs]? ')'
8749 bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID,
8750                                     unsigned ID) {
8751   assert(Lex.getKind() == lltok::kw_variable);
8752   Lex.Lex();
8753 
8754   StringRef ModulePath;
8755   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8756       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8757       /*NotEligibleToImport=*/false,
8758       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8759   GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false,
8760                                         /* WriteOnly */ false,
8761                                         /* Constant */ false,
8762                                         GlobalObject::VCallVisibilityPublic);
8763   std::vector<ValueInfo> Refs;
8764   VTableFuncList VTableFuncs;
8765   if (parseToken(lltok::colon, "expected ':' here") ||
8766       parseToken(lltok::lparen, "expected '(' here") ||
8767       parseModuleReference(ModulePath) ||
8768       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8769       parseToken(lltok::comma, "expected ',' here") ||
8770       parseGVarFlags(GVarFlags))
8771     return true;
8772 
8773   // parse optional fields
8774   while (EatIfPresent(lltok::comma)) {
8775     switch (Lex.getKind()) {
8776     case lltok::kw_vTableFuncs:
8777       if (parseOptionalVTableFuncs(VTableFuncs))
8778         return true;
8779       break;
8780     case lltok::kw_refs:
8781       if (parseOptionalRefs(Refs))
8782         return true;
8783       break;
8784     default:
8785       return error(Lex.getLoc(), "expected optional variable summary field");
8786     }
8787   }
8788 
8789   if (parseToken(lltok::rparen, "expected ')' here"))
8790     return true;
8791 
8792   auto GS =
8793       std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
8794 
8795   GS->setModulePath(ModulePath);
8796   GS->setVTableFuncs(std::move(VTableFuncs));
8797 
8798   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8799                         ID, std::move(GS));
8800 
8801   return false;
8802 }
8803 
8804 /// AliasSummary
8805 ///   ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
8806 ///         'aliasee' ':' GVReference ')'
8807 bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID,
8808                                  unsigned ID) {
8809   assert(Lex.getKind() == lltok::kw_alias);
8810   LocTy Loc = Lex.getLoc();
8811   Lex.Lex();
8812 
8813   StringRef ModulePath;
8814   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8815       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8816       /*NotEligibleToImport=*/false,
8817       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8818   if (parseToken(lltok::colon, "expected ':' here") ||
8819       parseToken(lltok::lparen, "expected '(' here") ||
8820       parseModuleReference(ModulePath) ||
8821       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8822       parseToken(lltok::comma, "expected ',' here") ||
8823       parseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
8824       parseToken(lltok::colon, "expected ':' here"))
8825     return true;
8826 
8827   ValueInfo AliaseeVI;
8828   unsigned GVId;
8829   if (parseGVReference(AliaseeVI, GVId))
8830     return true;
8831 
8832   if (parseToken(lltok::rparen, "expected ')' here"))
8833     return true;
8834 
8835   auto AS = std::make_unique<AliasSummary>(GVFlags);
8836 
8837   AS->setModulePath(ModulePath);
8838 
8839   // Record forward reference if the aliasee is not parsed yet.
8840   if (AliaseeVI.getRef() == FwdVIRef) {
8841     ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc);
8842   } else {
8843     auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath);
8844     assert(Summary && "Aliasee must be a definition");
8845     AS->setAliasee(AliaseeVI, Summary);
8846   }
8847 
8848   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8849                         ID, std::move(AS));
8850 
8851   return false;
8852 }
8853 
8854 /// Flag
8855 ///   ::= [0|1]
8856 bool LLParser::parseFlag(unsigned &Val) {
8857   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
8858     return tokError("expected integer");
8859   Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
8860   Lex.Lex();
8861   return false;
8862 }
8863 
8864 /// OptionalFFlags
8865 ///   := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
8866 ///        [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
8867 ///        [',' 'returnDoesNotAlias' ':' Flag]? ')'
8868 ///        [',' 'noInline' ':' Flag]? ')'
8869 ///        [',' 'alwaysInline' ':' Flag]? ')'
8870 
8871 bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
8872   assert(Lex.getKind() == lltok::kw_funcFlags);
8873   Lex.Lex();
8874 
8875   if (parseToken(lltok::colon, "expected ':' in funcFlags") |
8876       parseToken(lltok::lparen, "expected '(' in funcFlags"))
8877     return true;
8878 
8879   do {
8880     unsigned Val = 0;
8881     switch (Lex.getKind()) {
8882     case lltok::kw_readNone:
8883       Lex.Lex();
8884       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8885         return true;
8886       FFlags.ReadNone = Val;
8887       break;
8888     case lltok::kw_readOnly:
8889       Lex.Lex();
8890       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8891         return true;
8892       FFlags.ReadOnly = Val;
8893       break;
8894     case lltok::kw_noRecurse:
8895       Lex.Lex();
8896       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8897         return true;
8898       FFlags.NoRecurse = Val;
8899       break;
8900     case lltok::kw_returnDoesNotAlias:
8901       Lex.Lex();
8902       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8903         return true;
8904       FFlags.ReturnDoesNotAlias = Val;
8905       break;
8906     case lltok::kw_noInline:
8907       Lex.Lex();
8908       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8909         return true;
8910       FFlags.NoInline = Val;
8911       break;
8912     case lltok::kw_alwaysInline:
8913       Lex.Lex();
8914       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8915         return true;
8916       FFlags.AlwaysInline = Val;
8917       break;
8918     default:
8919       return error(Lex.getLoc(), "expected function flag type");
8920     }
8921   } while (EatIfPresent(lltok::comma));
8922 
8923   if (parseToken(lltok::rparen, "expected ')' in funcFlags"))
8924     return true;
8925 
8926   return false;
8927 }
8928 
8929 /// OptionalCalls
8930 ///   := 'calls' ':' '(' Call [',' Call]* ')'
8931 /// Call ::= '(' 'callee' ':' GVReference
8932 ///            [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
8933 bool LLParser::parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
8934   assert(Lex.getKind() == lltok::kw_calls);
8935   Lex.Lex();
8936 
8937   if (parseToken(lltok::colon, "expected ':' in calls") |
8938       parseToken(lltok::lparen, "expected '(' in calls"))
8939     return true;
8940 
8941   IdToIndexMapType IdToIndexMap;
8942   // parse each call edge
8943   do {
8944     ValueInfo VI;
8945     if (parseToken(lltok::lparen, "expected '(' in call") ||
8946         parseToken(lltok::kw_callee, "expected 'callee' in call") ||
8947         parseToken(lltok::colon, "expected ':'"))
8948       return true;
8949 
8950     LocTy Loc = Lex.getLoc();
8951     unsigned GVId;
8952     if (parseGVReference(VI, GVId))
8953       return true;
8954 
8955     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
8956     unsigned RelBF = 0;
8957     if (EatIfPresent(lltok::comma)) {
8958       // Expect either hotness or relbf
8959       if (EatIfPresent(lltok::kw_hotness)) {
8960         if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness))
8961           return true;
8962       } else {
8963         if (parseToken(lltok::kw_relbf, "expected relbf") ||
8964             parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF))
8965           return true;
8966       }
8967     }
8968     // Keep track of the Call array index needing a forward reference.
8969     // We will save the location of the ValueInfo needing an update, but
8970     // can only do so once the std::vector is finalized.
8971     if (VI.getRef() == FwdVIRef)
8972       IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
8973     Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)});
8974 
8975     if (parseToken(lltok::rparen, "expected ')' in call"))
8976       return true;
8977   } while (EatIfPresent(lltok::comma));
8978 
8979   // Now that the Calls vector is finalized, it is safe to save the locations
8980   // of any forward GV references that need updating later.
8981   for (auto I : IdToIndexMap) {
8982     auto &Infos = ForwardRefValueInfos[I.first];
8983     for (auto P : I.second) {
8984       assert(Calls[P.first].first.getRef() == FwdVIRef &&
8985              "Forward referenced ValueInfo expected to be empty");
8986       Infos.emplace_back(&Calls[P.first].first, P.second);
8987     }
8988   }
8989 
8990   if (parseToken(lltok::rparen, "expected ')' in calls"))
8991     return true;
8992 
8993   return false;
8994 }
8995 
8996 /// Hotness
8997 ///   := ('unknown'|'cold'|'none'|'hot'|'critical')
8998 bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) {
8999   switch (Lex.getKind()) {
9000   case lltok::kw_unknown:
9001     Hotness = CalleeInfo::HotnessType::Unknown;
9002     break;
9003   case lltok::kw_cold:
9004     Hotness = CalleeInfo::HotnessType::Cold;
9005     break;
9006   case lltok::kw_none:
9007     Hotness = CalleeInfo::HotnessType::None;
9008     break;
9009   case lltok::kw_hot:
9010     Hotness = CalleeInfo::HotnessType::Hot;
9011     break;
9012   case lltok::kw_critical:
9013     Hotness = CalleeInfo::HotnessType::Critical;
9014     break;
9015   default:
9016     return error(Lex.getLoc(), "invalid call edge hotness");
9017   }
9018   Lex.Lex();
9019   return false;
9020 }
9021 
9022 /// OptionalVTableFuncs
9023 ///   := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')'
9024 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')'
9025 bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) {
9026   assert(Lex.getKind() == lltok::kw_vTableFuncs);
9027   Lex.Lex();
9028 
9029   if (parseToken(lltok::colon, "expected ':' in vTableFuncs") |
9030       parseToken(lltok::lparen, "expected '(' in vTableFuncs"))
9031     return true;
9032 
9033   IdToIndexMapType IdToIndexMap;
9034   // parse each virtual function pair
9035   do {
9036     ValueInfo VI;
9037     if (parseToken(lltok::lparen, "expected '(' in vTableFunc") ||
9038         parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") ||
9039         parseToken(lltok::colon, "expected ':'"))
9040       return true;
9041 
9042     LocTy Loc = Lex.getLoc();
9043     unsigned GVId;
9044     if (parseGVReference(VI, GVId))
9045       return true;
9046 
9047     uint64_t Offset;
9048     if (parseToken(lltok::comma, "expected comma") ||
9049         parseToken(lltok::kw_offset, "expected offset") ||
9050         parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset))
9051       return true;
9052 
9053     // Keep track of the VTableFuncs array index needing a forward reference.
9054     // We will save the location of the ValueInfo needing an update, but
9055     // can only do so once the std::vector is finalized.
9056     if (VI == EmptyVI)
9057       IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc));
9058     VTableFuncs.push_back({VI, Offset});
9059 
9060     if (parseToken(lltok::rparen, "expected ')' in vTableFunc"))
9061       return true;
9062   } while (EatIfPresent(lltok::comma));
9063 
9064   // Now that the VTableFuncs vector is finalized, it is safe to save the
9065   // locations of any forward GV references that need updating later.
9066   for (auto I : IdToIndexMap) {
9067     auto &Infos = ForwardRefValueInfos[I.first];
9068     for (auto P : I.second) {
9069       assert(VTableFuncs[P.first].FuncVI == EmptyVI &&
9070              "Forward referenced ValueInfo expected to be empty");
9071       Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second);
9072     }
9073   }
9074 
9075   if (parseToken(lltok::rparen, "expected ')' in vTableFuncs"))
9076     return true;
9077 
9078   return false;
9079 }
9080 
9081 /// ParamNo := 'param' ':' UInt64
9082 bool LLParser::parseParamNo(uint64_t &ParamNo) {
9083   if (parseToken(lltok::kw_param, "expected 'param' here") ||
9084       parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo))
9085     return true;
9086   return false;
9087 }
9088 
9089 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']'
9090 bool LLParser::parseParamAccessOffset(ConstantRange &Range) {
9091   APSInt Lower;
9092   APSInt Upper;
9093   auto ParseAPSInt = [&](APSInt &Val) {
9094     if (Lex.getKind() != lltok::APSInt)
9095       return tokError("expected integer");
9096     Val = Lex.getAPSIntVal();
9097     Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth);
9098     Val.setIsSigned(true);
9099     Lex.Lex();
9100     return false;
9101   };
9102   if (parseToken(lltok::kw_offset, "expected 'offset' here") ||
9103       parseToken(lltok::colon, "expected ':' here") ||
9104       parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) ||
9105       parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) ||
9106       parseToken(lltok::rsquare, "expected ']' here"))
9107     return true;
9108 
9109   ++Upper;
9110   Range =
9111       (Lower == Upper && !Lower.isMaxValue())
9112           ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth)
9113           : ConstantRange(Lower, Upper);
9114 
9115   return false;
9116 }
9117 
9118 /// ParamAccessCall
9119 ///   := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')'
9120 bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call,
9121                                     IdLocListType &IdLocList) {
9122   if (parseToken(lltok::lparen, "expected '(' here") ||
9123       parseToken(lltok::kw_callee, "expected 'callee' here") ||
9124       parseToken(lltok::colon, "expected ':' here"))
9125     return true;
9126 
9127   unsigned GVId;
9128   ValueInfo VI;
9129   LocTy Loc = Lex.getLoc();
9130   if (parseGVReference(VI, GVId))
9131     return true;
9132 
9133   Call.Callee = VI;
9134   IdLocList.emplace_back(GVId, Loc);
9135 
9136   if (parseToken(lltok::comma, "expected ',' here") ||
9137       parseParamNo(Call.ParamNo) ||
9138       parseToken(lltok::comma, "expected ',' here") ||
9139       parseParamAccessOffset(Call.Offsets))
9140     return true;
9141 
9142   if (parseToken(lltok::rparen, "expected ')' here"))
9143     return true;
9144 
9145   return false;
9146 }
9147 
9148 /// ParamAccess
9149 ///   := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')'
9150 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')'
9151 bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param,
9152                                 IdLocListType &IdLocList) {
9153   if (parseToken(lltok::lparen, "expected '(' here") ||
9154       parseParamNo(Param.ParamNo) ||
9155       parseToken(lltok::comma, "expected ',' here") ||
9156       parseParamAccessOffset(Param.Use))
9157     return true;
9158 
9159   if (EatIfPresent(lltok::comma)) {
9160     if (parseToken(lltok::kw_calls, "expected 'calls' here") ||
9161         parseToken(lltok::colon, "expected ':' here") ||
9162         parseToken(lltok::lparen, "expected '(' here"))
9163       return true;
9164     do {
9165       FunctionSummary::ParamAccess::Call Call;
9166       if (parseParamAccessCall(Call, IdLocList))
9167         return true;
9168       Param.Calls.push_back(Call);
9169     } while (EatIfPresent(lltok::comma));
9170 
9171     if (parseToken(lltok::rparen, "expected ')' here"))
9172       return true;
9173   }
9174 
9175   if (parseToken(lltok::rparen, "expected ')' here"))
9176     return true;
9177 
9178   return false;
9179 }
9180 
9181 /// OptionalParamAccesses
9182 ///   := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')'
9183 bool LLParser::parseOptionalParamAccesses(
9184     std::vector<FunctionSummary::ParamAccess> &Params) {
9185   assert(Lex.getKind() == lltok::kw_params);
9186   Lex.Lex();
9187 
9188   if (parseToken(lltok::colon, "expected ':' here") ||
9189       parseToken(lltok::lparen, "expected '(' here"))
9190     return true;
9191 
9192   IdLocListType VContexts;
9193   size_t CallsNum = 0;
9194   do {
9195     FunctionSummary::ParamAccess ParamAccess;
9196     if (parseParamAccess(ParamAccess, VContexts))
9197       return true;
9198     CallsNum += ParamAccess.Calls.size();
9199     assert(VContexts.size() == CallsNum);
9200     (void)CallsNum;
9201     Params.emplace_back(std::move(ParamAccess));
9202   } while (EatIfPresent(lltok::comma));
9203 
9204   if (parseToken(lltok::rparen, "expected ')' here"))
9205     return true;
9206 
9207   // Now that the Params is finalized, it is safe to save the locations
9208   // of any forward GV references that need updating later.
9209   IdLocListType::const_iterator ItContext = VContexts.begin();
9210   for (auto &PA : Params) {
9211     for (auto &C : PA.Calls) {
9212       if (C.Callee.getRef() == FwdVIRef)
9213         ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee,
9214                                                             ItContext->second);
9215       ++ItContext;
9216     }
9217   }
9218   assert(ItContext == VContexts.end());
9219 
9220   return false;
9221 }
9222 
9223 /// OptionalRefs
9224 ///   := 'refs' ':' '(' GVReference [',' GVReference]* ')'
9225 bool LLParser::parseOptionalRefs(std::vector<ValueInfo> &Refs) {
9226   assert(Lex.getKind() == lltok::kw_refs);
9227   Lex.Lex();
9228 
9229   if (parseToken(lltok::colon, "expected ':' in refs") ||
9230       parseToken(lltok::lparen, "expected '(' in refs"))
9231     return true;
9232 
9233   struct ValueContext {
9234     ValueInfo VI;
9235     unsigned GVId;
9236     LocTy Loc;
9237   };
9238   std::vector<ValueContext> VContexts;
9239   // parse each ref edge
9240   do {
9241     ValueContext VC;
9242     VC.Loc = Lex.getLoc();
9243     if (parseGVReference(VC.VI, VC.GVId))
9244       return true;
9245     VContexts.push_back(VC);
9246   } while (EatIfPresent(lltok::comma));
9247 
9248   // Sort value contexts so that ones with writeonly
9249   // and readonly ValueInfo  are at the end of VContexts vector.
9250   // See FunctionSummary::specialRefCounts()
9251   llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
9252     return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier();
9253   });
9254 
9255   IdToIndexMapType IdToIndexMap;
9256   for (auto &VC : VContexts) {
9257     // Keep track of the Refs array index needing a forward reference.
9258     // We will save the location of the ValueInfo needing an update, but
9259     // can only do so once the std::vector is finalized.
9260     if (VC.VI.getRef() == FwdVIRef)
9261       IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
9262     Refs.push_back(VC.VI);
9263   }
9264 
9265   // Now that the Refs vector is finalized, it is safe to save the locations
9266   // of any forward GV references that need updating later.
9267   for (auto I : IdToIndexMap) {
9268     auto &Infos = ForwardRefValueInfos[I.first];
9269     for (auto P : I.second) {
9270       assert(Refs[P.first].getRef() == FwdVIRef &&
9271              "Forward referenced ValueInfo expected to be empty");
9272       Infos.emplace_back(&Refs[P.first], P.second);
9273     }
9274   }
9275 
9276   if (parseToken(lltok::rparen, "expected ')' in refs"))
9277     return true;
9278 
9279   return false;
9280 }
9281 
9282 /// OptionalTypeIdInfo
9283 ///   := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
9284 ///         [',' TypeCheckedLoadVCalls]?  [',' TypeTestAssumeConstVCalls]?
9285 ///         [',' TypeCheckedLoadConstVCalls]? ')'
9286 bool LLParser::parseOptionalTypeIdInfo(
9287     FunctionSummary::TypeIdInfo &TypeIdInfo) {
9288   assert(Lex.getKind() == lltok::kw_typeIdInfo);
9289   Lex.Lex();
9290 
9291   if (parseToken(lltok::colon, "expected ':' here") ||
9292       parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
9293     return true;
9294 
9295   do {
9296     switch (Lex.getKind()) {
9297     case lltok::kw_typeTests:
9298       if (parseTypeTests(TypeIdInfo.TypeTests))
9299         return true;
9300       break;
9301     case lltok::kw_typeTestAssumeVCalls:
9302       if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
9303                            TypeIdInfo.TypeTestAssumeVCalls))
9304         return true;
9305       break;
9306     case lltok::kw_typeCheckedLoadVCalls:
9307       if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
9308                            TypeIdInfo.TypeCheckedLoadVCalls))
9309         return true;
9310       break;
9311     case lltok::kw_typeTestAssumeConstVCalls:
9312       if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
9313                               TypeIdInfo.TypeTestAssumeConstVCalls))
9314         return true;
9315       break;
9316     case lltok::kw_typeCheckedLoadConstVCalls:
9317       if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
9318                               TypeIdInfo.TypeCheckedLoadConstVCalls))
9319         return true;
9320       break;
9321     default:
9322       return error(Lex.getLoc(), "invalid typeIdInfo list type");
9323     }
9324   } while (EatIfPresent(lltok::comma));
9325 
9326   if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
9327     return true;
9328 
9329   return false;
9330 }
9331 
9332 /// TypeTests
9333 ///   ::= 'typeTests' ':' '(' (SummaryID | UInt64)
9334 ///         [',' (SummaryID | UInt64)]* ')'
9335 bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
9336   assert(Lex.getKind() == lltok::kw_typeTests);
9337   Lex.Lex();
9338 
9339   if (parseToken(lltok::colon, "expected ':' here") ||
9340       parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
9341     return true;
9342 
9343   IdToIndexMapType IdToIndexMap;
9344   do {
9345     GlobalValue::GUID GUID = 0;
9346     if (Lex.getKind() == lltok::SummaryID) {
9347       unsigned ID = Lex.getUIntVal();
9348       LocTy Loc = Lex.getLoc();
9349       // Keep track of the TypeTests array index needing a forward reference.
9350       // We will save the location of the GUID needing an update, but
9351       // can only do so once the std::vector is finalized.
9352       IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
9353       Lex.Lex();
9354     } else if (parseUInt64(GUID))
9355       return true;
9356     TypeTests.push_back(GUID);
9357   } while (EatIfPresent(lltok::comma));
9358 
9359   // Now that the TypeTests vector is finalized, it is safe to save the
9360   // locations of any forward GV references that need updating later.
9361   for (auto I : IdToIndexMap) {
9362     auto &Ids = ForwardRefTypeIds[I.first];
9363     for (auto P : I.second) {
9364       assert(TypeTests[P.first] == 0 &&
9365              "Forward referenced type id GUID expected to be 0");
9366       Ids.emplace_back(&TypeTests[P.first], P.second);
9367     }
9368   }
9369 
9370   if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
9371     return true;
9372 
9373   return false;
9374 }
9375 
9376 /// VFuncIdList
9377 ///   ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
9378 bool LLParser::parseVFuncIdList(
9379     lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
9380   assert(Lex.getKind() == Kind);
9381   Lex.Lex();
9382 
9383   if (parseToken(lltok::colon, "expected ':' here") ||
9384       parseToken(lltok::lparen, "expected '(' here"))
9385     return true;
9386 
9387   IdToIndexMapType IdToIndexMap;
9388   do {
9389     FunctionSummary::VFuncId VFuncId;
9390     if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
9391       return true;
9392     VFuncIdList.push_back(VFuncId);
9393   } while (EatIfPresent(lltok::comma));
9394 
9395   if (parseToken(lltok::rparen, "expected ')' here"))
9396     return true;
9397 
9398   // Now that the VFuncIdList vector is finalized, it is safe to save the
9399   // locations of any forward GV references that need updating later.
9400   for (auto I : IdToIndexMap) {
9401     auto &Ids = ForwardRefTypeIds[I.first];
9402     for (auto P : I.second) {
9403       assert(VFuncIdList[P.first].GUID == 0 &&
9404              "Forward referenced type id GUID expected to be 0");
9405       Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second);
9406     }
9407   }
9408 
9409   return false;
9410 }
9411 
9412 /// ConstVCallList
9413 ///   ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
9414 bool LLParser::parseConstVCallList(
9415     lltok::Kind Kind,
9416     std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
9417   assert(Lex.getKind() == Kind);
9418   Lex.Lex();
9419 
9420   if (parseToken(lltok::colon, "expected ':' here") ||
9421       parseToken(lltok::lparen, "expected '(' here"))
9422     return true;
9423 
9424   IdToIndexMapType IdToIndexMap;
9425   do {
9426     FunctionSummary::ConstVCall ConstVCall;
9427     if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
9428       return true;
9429     ConstVCallList.push_back(ConstVCall);
9430   } while (EatIfPresent(lltok::comma));
9431 
9432   if (parseToken(lltok::rparen, "expected ')' here"))
9433     return true;
9434 
9435   // Now that the ConstVCallList vector is finalized, it is safe to save the
9436   // locations of any forward GV references that need updating later.
9437   for (auto I : IdToIndexMap) {
9438     auto &Ids = ForwardRefTypeIds[I.first];
9439     for (auto P : I.second) {
9440       assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
9441              "Forward referenced type id GUID expected to be 0");
9442       Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second);
9443     }
9444   }
9445 
9446   return false;
9447 }
9448 
9449 /// ConstVCall
9450 ///   ::= '(' VFuncId ',' Args ')'
9451 bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
9452                                IdToIndexMapType &IdToIndexMap, unsigned Index) {
9453   if (parseToken(lltok::lparen, "expected '(' here") ||
9454       parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
9455     return true;
9456 
9457   if (EatIfPresent(lltok::comma))
9458     if (parseArgs(ConstVCall.Args))
9459       return true;
9460 
9461   if (parseToken(lltok::rparen, "expected ')' here"))
9462     return true;
9463 
9464   return false;
9465 }
9466 
9467 /// VFuncId
9468 ///   ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
9469 ///         'offset' ':' UInt64 ')'
9470 bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId,
9471                             IdToIndexMapType &IdToIndexMap, unsigned Index) {
9472   assert(Lex.getKind() == lltok::kw_vFuncId);
9473   Lex.Lex();
9474 
9475   if (parseToken(lltok::colon, "expected ':' here") ||
9476       parseToken(lltok::lparen, "expected '(' here"))
9477     return true;
9478 
9479   if (Lex.getKind() == lltok::SummaryID) {
9480     VFuncId.GUID = 0;
9481     unsigned ID = Lex.getUIntVal();
9482     LocTy Loc = Lex.getLoc();
9483     // Keep track of the array index needing a forward reference.
9484     // We will save the location of the GUID needing an update, but
9485     // can only do so once the caller's std::vector is finalized.
9486     IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
9487     Lex.Lex();
9488   } else if (parseToken(lltok::kw_guid, "expected 'guid' here") ||
9489              parseToken(lltok::colon, "expected ':' here") ||
9490              parseUInt64(VFuncId.GUID))
9491     return true;
9492 
9493   if (parseToken(lltok::comma, "expected ',' here") ||
9494       parseToken(lltok::kw_offset, "expected 'offset' here") ||
9495       parseToken(lltok::colon, "expected ':' here") ||
9496       parseUInt64(VFuncId.Offset) ||
9497       parseToken(lltok::rparen, "expected ')' here"))
9498     return true;
9499 
9500   return false;
9501 }
9502 
9503 /// GVFlags
9504 ///   ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
9505 ///         'visibility' ':' Flag 'notEligibleToImport' ':' Flag ','
9506 ///         'live' ':' Flag ',' 'dsoLocal' ':' Flag ','
9507 ///         'canAutoHide' ':' Flag ',' ')'
9508 bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
9509   assert(Lex.getKind() == lltok::kw_flags);
9510   Lex.Lex();
9511 
9512   if (parseToken(lltok::colon, "expected ':' here") ||
9513       parseToken(lltok::lparen, "expected '(' here"))
9514     return true;
9515 
9516   do {
9517     unsigned Flag = 0;
9518     switch (Lex.getKind()) {
9519     case lltok::kw_linkage:
9520       Lex.Lex();
9521       if (parseToken(lltok::colon, "expected ':'"))
9522         return true;
9523       bool HasLinkage;
9524       GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
9525       assert(HasLinkage && "Linkage not optional in summary entry");
9526       Lex.Lex();
9527       break;
9528     case lltok::kw_visibility:
9529       Lex.Lex();
9530       if (parseToken(lltok::colon, "expected ':'"))
9531         return true;
9532       parseOptionalVisibility(Flag);
9533       GVFlags.Visibility = Flag;
9534       break;
9535     case lltok::kw_notEligibleToImport:
9536       Lex.Lex();
9537       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9538         return true;
9539       GVFlags.NotEligibleToImport = Flag;
9540       break;
9541     case lltok::kw_live:
9542       Lex.Lex();
9543       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9544         return true;
9545       GVFlags.Live = Flag;
9546       break;
9547     case lltok::kw_dsoLocal:
9548       Lex.Lex();
9549       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9550         return true;
9551       GVFlags.DSOLocal = Flag;
9552       break;
9553     case lltok::kw_canAutoHide:
9554       Lex.Lex();
9555       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9556         return true;
9557       GVFlags.CanAutoHide = Flag;
9558       break;
9559     default:
9560       return error(Lex.getLoc(), "expected gv flag type");
9561     }
9562   } while (EatIfPresent(lltok::comma));
9563 
9564   if (parseToken(lltok::rparen, "expected ')' here"))
9565     return true;
9566 
9567   return false;
9568 }
9569 
9570 /// GVarFlags
9571 ///   ::= 'varFlags' ':' '(' 'readonly' ':' Flag
9572 ///                      ',' 'writeonly' ':' Flag
9573 ///                      ',' 'constant' ':' Flag ')'
9574 bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
9575   assert(Lex.getKind() == lltok::kw_varFlags);
9576   Lex.Lex();
9577 
9578   if (parseToken(lltok::colon, "expected ':' here") ||
9579       parseToken(lltok::lparen, "expected '(' here"))
9580     return true;
9581 
9582   auto ParseRest = [this](unsigned int &Val) {
9583     Lex.Lex();
9584     if (parseToken(lltok::colon, "expected ':'"))
9585       return true;
9586     return parseFlag(Val);
9587   };
9588 
9589   do {
9590     unsigned Flag = 0;
9591     switch (Lex.getKind()) {
9592     case lltok::kw_readonly:
9593       if (ParseRest(Flag))
9594         return true;
9595       GVarFlags.MaybeReadOnly = Flag;
9596       break;
9597     case lltok::kw_writeonly:
9598       if (ParseRest(Flag))
9599         return true;
9600       GVarFlags.MaybeWriteOnly = Flag;
9601       break;
9602     case lltok::kw_constant:
9603       if (ParseRest(Flag))
9604         return true;
9605       GVarFlags.Constant = Flag;
9606       break;
9607     case lltok::kw_vcall_visibility:
9608       if (ParseRest(Flag))
9609         return true;
9610       GVarFlags.VCallVisibility = Flag;
9611       break;
9612     default:
9613       return error(Lex.getLoc(), "expected gvar flag type");
9614     }
9615   } while (EatIfPresent(lltok::comma));
9616   return parseToken(lltok::rparen, "expected ')' here");
9617 }
9618 
9619 /// ModuleReference
9620 ///   ::= 'module' ':' UInt
9621 bool LLParser::parseModuleReference(StringRef &ModulePath) {
9622   // parse module id.
9623   if (parseToken(lltok::kw_module, "expected 'module' here") ||
9624       parseToken(lltok::colon, "expected ':' here") ||
9625       parseToken(lltok::SummaryID, "expected module ID"))
9626     return true;
9627 
9628   unsigned ModuleID = Lex.getUIntVal();
9629   auto I = ModuleIdMap.find(ModuleID);
9630   // We should have already parsed all module IDs
9631   assert(I != ModuleIdMap.end());
9632   ModulePath = I->second;
9633   return false;
9634 }
9635 
9636 /// GVReference
9637 ///   ::= SummaryID
9638 bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) {
9639   bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly);
9640   if (!ReadOnly)
9641     WriteOnly = EatIfPresent(lltok::kw_writeonly);
9642   if (parseToken(lltok::SummaryID, "expected GV ID"))
9643     return true;
9644 
9645   GVId = Lex.getUIntVal();
9646   // Check if we already have a VI for this GV
9647   if (GVId < NumberedValueInfos.size()) {
9648     assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
9649     VI = NumberedValueInfos[GVId];
9650   } else
9651     // We will create a forward reference to the stored location.
9652     VI = ValueInfo(false, FwdVIRef);
9653 
9654   if (ReadOnly)
9655     VI.setReadOnly();
9656   if (WriteOnly)
9657     VI.setWriteOnly();
9658   return false;
9659 }
9660