1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the parser class for .ll files. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LLParser.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/AsmParser/SlotMapping.h" 18 #include "llvm/IR/AutoUpgrade.h" 19 #include "llvm/IR/CallingConv.h" 20 #include "llvm/IR/Constants.h" 21 #include "llvm/IR/DebugInfo.h" 22 #include "llvm/IR/DebugInfoMetadata.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/Operator.h" 29 #include "llvm/IR/ValueSymbolTable.h" 30 #include "llvm/Support/Dwarf.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/SaveAndRestore.h" 33 #include "llvm/Support/raw_ostream.h" 34 using namespace llvm; 35 36 static std::string getTypeString(Type *T) { 37 std::string Result; 38 raw_string_ostream Tmp(Result); 39 Tmp << *T; 40 return Tmp.str(); 41 } 42 43 /// Run: module ::= toplevelentity* 44 bool LLParser::Run() { 45 // Prime the lexer. 46 Lex.Lex(); 47 48 return ParseTopLevelEntities() || 49 ValidateEndOfModule(); 50 } 51 52 bool LLParser::parseStandaloneConstantValue(Constant *&C, 53 const SlotMapping *Slots) { 54 restoreParsingState(Slots); 55 Lex.Lex(); 56 57 Type *Ty = nullptr; 58 if (ParseType(Ty) || parseConstantValue(Ty, C)) 59 return true; 60 if (Lex.getKind() != lltok::Eof) 61 return Error(Lex.getLoc(), "expected end of string"); 62 return false; 63 } 64 65 void LLParser::restoreParsingState(const SlotMapping *Slots) { 66 if (!Slots) 67 return; 68 NumberedVals = Slots->GlobalValues; 69 NumberedMetadata = Slots->MetadataNodes; 70 for (const auto &I : Slots->NamedTypes) 71 NamedTypes.insert( 72 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 73 for (const auto &I : Slots->Types) 74 NumberedTypes.insert( 75 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 76 } 77 78 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the 79 /// module. 80 bool LLParser::ValidateEndOfModule() { 81 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 82 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 83 84 // Handle any function attribute group forward references. 85 for (std::map<Value*, std::vector<unsigned> >::iterator 86 I = ForwardRefAttrGroups.begin(), E = ForwardRefAttrGroups.end(); 87 I != E; ++I) { 88 Value *V = I->first; 89 std::vector<unsigned> &Vec = I->second; 90 AttrBuilder B; 91 92 for (std::vector<unsigned>::iterator VI = Vec.begin(), VE = Vec.end(); 93 VI != VE; ++VI) 94 B.merge(NumberedAttrBuilders[*VI]); 95 96 if (Function *Fn = dyn_cast<Function>(V)) { 97 AttributeSet AS = Fn->getAttributes(); 98 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex); 99 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex, 100 AS.getFnAttributes()); 101 102 FnAttrs.merge(B); 103 104 // If the alignment was parsed as an attribute, move to the alignment 105 // field. 106 if (FnAttrs.hasAlignmentAttr()) { 107 Fn->setAlignment(FnAttrs.getAlignment()); 108 FnAttrs.removeAttribute(Attribute::Alignment); 109 } 110 111 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex, 112 AttributeSet::get(Context, 113 AttributeSet::FunctionIndex, 114 FnAttrs)); 115 Fn->setAttributes(AS); 116 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 117 AttributeSet AS = CI->getAttributes(); 118 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex); 119 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex, 120 AS.getFnAttributes()); 121 FnAttrs.merge(B); 122 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex, 123 AttributeSet::get(Context, 124 AttributeSet::FunctionIndex, 125 FnAttrs)); 126 CI->setAttributes(AS); 127 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 128 AttributeSet AS = II->getAttributes(); 129 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex); 130 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex, 131 AS.getFnAttributes()); 132 FnAttrs.merge(B); 133 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex, 134 AttributeSet::get(Context, 135 AttributeSet::FunctionIndex, 136 FnAttrs)); 137 II->setAttributes(AS); 138 } else { 139 llvm_unreachable("invalid object with forward attribute group reference"); 140 } 141 } 142 143 // If there are entries in ForwardRefBlockAddresses at this point, the 144 // function was never defined. 145 if (!ForwardRefBlockAddresses.empty()) 146 return Error(ForwardRefBlockAddresses.begin()->first.Loc, 147 "expected function name in blockaddress"); 148 149 for (const auto &NT : NumberedTypes) 150 if (NT.second.second.isValid()) 151 return Error(NT.second.second, 152 "use of undefined type '%" + Twine(NT.first) + "'"); 153 154 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 155 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 156 if (I->second.second.isValid()) 157 return Error(I->second.second, 158 "use of undefined type named '" + I->getKey() + "'"); 159 160 if (!ForwardRefComdats.empty()) 161 return Error(ForwardRefComdats.begin()->second, 162 "use of undefined comdat '$" + 163 ForwardRefComdats.begin()->first + "'"); 164 165 if (!ForwardRefVals.empty()) 166 return Error(ForwardRefVals.begin()->second.second, 167 "use of undefined value '@" + ForwardRefVals.begin()->first + 168 "'"); 169 170 if (!ForwardRefValIDs.empty()) 171 return Error(ForwardRefValIDs.begin()->second.second, 172 "use of undefined value '@" + 173 Twine(ForwardRefValIDs.begin()->first) + "'"); 174 175 if (!ForwardRefMDNodes.empty()) 176 return Error(ForwardRefMDNodes.begin()->second.second, 177 "use of undefined metadata '!" + 178 Twine(ForwardRefMDNodes.begin()->first) + "'"); 179 180 // Resolve metadata cycles. 181 for (auto &N : NumberedMetadata) { 182 if (N.second && !N.second->isResolved()) 183 N.second->resolveCycles(); 184 } 185 186 // Look for intrinsic functions and CallInst that need to be upgraded 187 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 188 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove 189 190 UpgradeDebugInfo(*M); 191 192 if (!Slots) 193 return false; 194 // Initialize the slot mapping. 195 // Because by this point we've parsed and validated everything, we can "steal" 196 // the mapping from LLParser as it doesn't need it anymore. 197 Slots->GlobalValues = std::move(NumberedVals); 198 Slots->MetadataNodes = std::move(NumberedMetadata); 199 for (const auto &I : NamedTypes) 200 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 201 for (const auto &I : NumberedTypes) 202 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 203 204 return false; 205 } 206 207 //===----------------------------------------------------------------------===// 208 // Top-Level Entities 209 //===----------------------------------------------------------------------===// 210 211 bool LLParser::ParseTopLevelEntities() { 212 while (1) { 213 switch (Lex.getKind()) { 214 default: return TokError("expected top-level entity"); 215 case lltok::Eof: return false; 216 case lltok::kw_declare: if (ParseDeclare()) return true; break; 217 case lltok::kw_define: if (ParseDefine()) return true; break; 218 case lltok::kw_module: if (ParseModuleAsm()) return true; break; 219 case lltok::kw_target: if (ParseTargetDefinition()) return true; break; 220 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; 221 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; 222 case lltok::LocalVar: if (ParseNamedType()) return true; break; 223 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; 224 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; 225 case lltok::ComdatVar: if (parseComdat()) return true; break; 226 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break; 227 case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break; 228 229 // The Global variable production with no name can have many different 230 // optional leading prefixes, the production is: 231 // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass 232 // OptionalThreadLocal OptionalAddrSpace OptionalUnnamedAddr 233 // ('constant'|'global') ... 234 case lltok::kw_private: // OptionalLinkage 235 case lltok::kw_internal: // OptionalLinkage 236 case lltok::kw_weak: // OptionalLinkage 237 case lltok::kw_weak_odr: // OptionalLinkage 238 case lltok::kw_linkonce: // OptionalLinkage 239 case lltok::kw_linkonce_odr: // OptionalLinkage 240 case lltok::kw_appending: // OptionalLinkage 241 case lltok::kw_common: // OptionalLinkage 242 case lltok::kw_extern_weak: // OptionalLinkage 243 case lltok::kw_external: // OptionalLinkage 244 case lltok::kw_default: // OptionalVisibility 245 case lltok::kw_hidden: // OptionalVisibility 246 case lltok::kw_protected: // OptionalVisibility 247 case lltok::kw_dllimport: // OptionalDLLStorageClass 248 case lltok::kw_dllexport: // OptionalDLLStorageClass 249 case lltok::kw_thread_local: // OptionalThreadLocal 250 case lltok::kw_addrspace: // OptionalAddrSpace 251 case lltok::kw_constant: // GlobalType 252 case lltok::kw_global: { // GlobalType 253 unsigned Linkage, Visibility, DLLStorageClass; 254 bool UnnamedAddr; 255 GlobalVariable::ThreadLocalMode TLM; 256 bool HasLinkage; 257 if (ParseOptionalLinkage(Linkage, HasLinkage) || 258 ParseOptionalVisibility(Visibility) || 259 ParseOptionalDLLStorageClass(DLLStorageClass) || 260 ParseOptionalThreadLocal(TLM) || 261 parseOptionalUnnamedAddr(UnnamedAddr) || 262 ParseGlobal("", SMLoc(), Linkage, HasLinkage, Visibility, 263 DLLStorageClass, TLM, UnnamedAddr)) 264 return true; 265 break; 266 } 267 268 case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break; 269 case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break; 270 case lltok::kw_uselistorder_bb: 271 if (ParseUseListOrderBB()) return true; break; 272 } 273 } 274 } 275 276 277 /// toplevelentity 278 /// ::= 'module' 'asm' STRINGCONSTANT 279 bool LLParser::ParseModuleAsm() { 280 assert(Lex.getKind() == lltok::kw_module); 281 Lex.Lex(); 282 283 std::string AsmStr; 284 if (ParseToken(lltok::kw_asm, "expected 'module asm'") || 285 ParseStringConstant(AsmStr)) return true; 286 287 M->appendModuleInlineAsm(AsmStr); 288 return false; 289 } 290 291 /// toplevelentity 292 /// ::= 'target' 'triple' '=' STRINGCONSTANT 293 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 294 bool LLParser::ParseTargetDefinition() { 295 assert(Lex.getKind() == lltok::kw_target); 296 std::string Str; 297 switch (Lex.Lex()) { 298 default: return TokError("unknown target property"); 299 case lltok::kw_triple: 300 Lex.Lex(); 301 if (ParseToken(lltok::equal, "expected '=' after target triple") || 302 ParseStringConstant(Str)) 303 return true; 304 M->setTargetTriple(Str); 305 return false; 306 case lltok::kw_datalayout: 307 Lex.Lex(); 308 if (ParseToken(lltok::equal, "expected '=' after target datalayout") || 309 ParseStringConstant(Str)) 310 return true; 311 M->setDataLayout(Str); 312 return false; 313 } 314 } 315 316 /// toplevelentity 317 /// ::= 'deplibs' '=' '[' ']' 318 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 319 /// FIXME: Remove in 4.0. Currently parse, but ignore. 320 bool LLParser::ParseDepLibs() { 321 assert(Lex.getKind() == lltok::kw_deplibs); 322 Lex.Lex(); 323 if (ParseToken(lltok::equal, "expected '=' after deplibs") || 324 ParseToken(lltok::lsquare, "expected '=' after deplibs")) 325 return true; 326 327 if (EatIfPresent(lltok::rsquare)) 328 return false; 329 330 do { 331 std::string Str; 332 if (ParseStringConstant(Str)) return true; 333 } while (EatIfPresent(lltok::comma)); 334 335 return ParseToken(lltok::rsquare, "expected ']' at end of list"); 336 } 337 338 /// ParseUnnamedType: 339 /// ::= LocalVarID '=' 'type' type 340 bool LLParser::ParseUnnamedType() { 341 LocTy TypeLoc = Lex.getLoc(); 342 unsigned TypeID = Lex.getUIntVal(); 343 Lex.Lex(); // eat LocalVarID; 344 345 if (ParseToken(lltok::equal, "expected '=' after name") || 346 ParseToken(lltok::kw_type, "expected 'type' after '='")) 347 return true; 348 349 Type *Result = nullptr; 350 if (ParseStructDefinition(TypeLoc, "", 351 NumberedTypes[TypeID], Result)) return true; 352 353 if (!isa<StructType>(Result)) { 354 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 355 if (Entry.first) 356 return Error(TypeLoc, "non-struct types may not be recursive"); 357 Entry.first = Result; 358 Entry.second = SMLoc(); 359 } 360 361 return false; 362 } 363 364 365 /// toplevelentity 366 /// ::= LocalVar '=' 'type' type 367 bool LLParser::ParseNamedType() { 368 std::string Name = Lex.getStrVal(); 369 LocTy NameLoc = Lex.getLoc(); 370 Lex.Lex(); // eat LocalVar. 371 372 if (ParseToken(lltok::equal, "expected '=' after name") || 373 ParseToken(lltok::kw_type, "expected 'type' after name")) 374 return true; 375 376 Type *Result = nullptr; 377 if (ParseStructDefinition(NameLoc, Name, 378 NamedTypes[Name], Result)) return true; 379 380 if (!isa<StructType>(Result)) { 381 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 382 if (Entry.first) 383 return Error(NameLoc, "non-struct types may not be recursive"); 384 Entry.first = Result; 385 Entry.second = SMLoc(); 386 } 387 388 return false; 389 } 390 391 392 /// toplevelentity 393 /// ::= 'declare' FunctionHeader 394 bool LLParser::ParseDeclare() { 395 assert(Lex.getKind() == lltok::kw_declare); 396 Lex.Lex(); 397 398 Function *F; 399 return ParseFunctionHeader(F, false); 400 } 401 402 /// toplevelentity 403 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 404 bool LLParser::ParseDefine() { 405 assert(Lex.getKind() == lltok::kw_define); 406 Lex.Lex(); 407 408 Function *F; 409 return ParseFunctionHeader(F, true) || 410 ParseOptionalFunctionMetadata(*F) || 411 ParseFunctionBody(*F); 412 } 413 414 /// ParseGlobalType 415 /// ::= 'constant' 416 /// ::= 'global' 417 bool LLParser::ParseGlobalType(bool &IsConstant) { 418 if (Lex.getKind() == lltok::kw_constant) 419 IsConstant = true; 420 else if (Lex.getKind() == lltok::kw_global) 421 IsConstant = false; 422 else { 423 IsConstant = false; 424 return TokError("expected 'global' or 'constant'"); 425 } 426 Lex.Lex(); 427 return false; 428 } 429 430 /// ParseUnnamedGlobal: 431 /// OptionalVisibility ALIAS ... 432 /// OptionalLinkage OptionalVisibility OptionalDLLStorageClass 433 /// ... -> global variable 434 /// GlobalID '=' OptionalVisibility ALIAS ... 435 /// GlobalID '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 436 /// ... -> global variable 437 bool LLParser::ParseUnnamedGlobal() { 438 unsigned VarID = NumberedVals.size(); 439 std::string Name; 440 LocTy NameLoc = Lex.getLoc(); 441 442 // Handle the GlobalID form. 443 if (Lex.getKind() == lltok::GlobalID) { 444 if (Lex.getUIntVal() != VarID) 445 return Error(Lex.getLoc(), "variable expected to be numbered '%" + 446 Twine(VarID) + "'"); 447 Lex.Lex(); // eat GlobalID; 448 449 if (ParseToken(lltok::equal, "expected '=' after name")) 450 return true; 451 } 452 453 bool HasLinkage; 454 unsigned Linkage, Visibility, DLLStorageClass; 455 GlobalVariable::ThreadLocalMode TLM; 456 bool UnnamedAddr; 457 if (ParseOptionalLinkage(Linkage, HasLinkage) || 458 ParseOptionalVisibility(Visibility) || 459 ParseOptionalDLLStorageClass(DLLStorageClass) || 460 ParseOptionalThreadLocal(TLM) || 461 parseOptionalUnnamedAddr(UnnamedAddr)) 462 return true; 463 464 if (Lex.getKind() != lltok::kw_alias) 465 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 466 DLLStorageClass, TLM, UnnamedAddr); 467 return ParseAlias(Name, NameLoc, Linkage, Visibility, DLLStorageClass, TLM, 468 UnnamedAddr); 469 } 470 471 /// ParseNamedGlobal: 472 /// GlobalVar '=' OptionalVisibility ALIAS ... 473 /// GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 474 /// ... -> global variable 475 bool LLParser::ParseNamedGlobal() { 476 assert(Lex.getKind() == lltok::GlobalVar); 477 LocTy NameLoc = Lex.getLoc(); 478 std::string Name = Lex.getStrVal(); 479 Lex.Lex(); 480 481 bool HasLinkage; 482 unsigned Linkage, Visibility, DLLStorageClass; 483 GlobalVariable::ThreadLocalMode TLM; 484 bool UnnamedAddr; 485 if (ParseToken(lltok::equal, "expected '=' in global variable") || 486 ParseOptionalLinkage(Linkage, HasLinkage) || 487 ParseOptionalVisibility(Visibility) || 488 ParseOptionalDLLStorageClass(DLLStorageClass) || 489 ParseOptionalThreadLocal(TLM) || 490 parseOptionalUnnamedAddr(UnnamedAddr)) 491 return true; 492 493 if (Lex.getKind() != lltok::kw_alias) 494 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 495 DLLStorageClass, TLM, UnnamedAddr); 496 497 return ParseAlias(Name, NameLoc, Linkage, Visibility, DLLStorageClass, TLM, 498 UnnamedAddr); 499 } 500 501 bool LLParser::parseComdat() { 502 assert(Lex.getKind() == lltok::ComdatVar); 503 std::string Name = Lex.getStrVal(); 504 LocTy NameLoc = Lex.getLoc(); 505 Lex.Lex(); 506 507 if (ParseToken(lltok::equal, "expected '=' here")) 508 return true; 509 510 if (ParseToken(lltok::kw_comdat, "expected comdat keyword")) 511 return TokError("expected comdat type"); 512 513 Comdat::SelectionKind SK; 514 switch (Lex.getKind()) { 515 default: 516 return TokError("unknown selection kind"); 517 case lltok::kw_any: 518 SK = Comdat::Any; 519 break; 520 case lltok::kw_exactmatch: 521 SK = Comdat::ExactMatch; 522 break; 523 case lltok::kw_largest: 524 SK = Comdat::Largest; 525 break; 526 case lltok::kw_noduplicates: 527 SK = Comdat::NoDuplicates; 528 break; 529 case lltok::kw_samesize: 530 SK = Comdat::SameSize; 531 break; 532 } 533 Lex.Lex(); 534 535 // See if the comdat was forward referenced, if so, use the comdat. 536 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 537 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 538 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 539 return Error(NameLoc, "redefinition of comdat '$" + Name + "'"); 540 541 Comdat *C; 542 if (I != ComdatSymTab.end()) 543 C = &I->second; 544 else 545 C = M->getOrInsertComdat(Name); 546 C->setSelectionKind(SK); 547 548 return false; 549 } 550 551 // MDString: 552 // ::= '!' STRINGCONSTANT 553 bool LLParser::ParseMDString(MDString *&Result) { 554 std::string Str; 555 if (ParseStringConstant(Str)) return true; 556 llvm::UpgradeMDStringConstant(Str); 557 Result = MDString::get(Context, Str); 558 return false; 559 } 560 561 // MDNode: 562 // ::= '!' MDNodeNumber 563 bool LLParser::ParseMDNodeID(MDNode *&Result) { 564 // !{ ..., !42, ... } 565 unsigned MID = 0; 566 if (ParseUInt32(MID)) 567 return true; 568 569 // If not a forward reference, just return it now. 570 if (NumberedMetadata.count(MID)) { 571 Result = NumberedMetadata[MID]; 572 return false; 573 } 574 575 // Otherwise, create MDNode forward reference. 576 auto &FwdRef = ForwardRefMDNodes[MID]; 577 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), Lex.getLoc()); 578 579 Result = FwdRef.first.get(); 580 NumberedMetadata[MID].reset(Result); 581 return false; 582 } 583 584 /// ParseNamedMetadata: 585 /// !foo = !{ !1, !2 } 586 bool LLParser::ParseNamedMetadata() { 587 assert(Lex.getKind() == lltok::MetadataVar); 588 std::string Name = Lex.getStrVal(); 589 Lex.Lex(); 590 591 if (ParseToken(lltok::equal, "expected '=' here") || 592 ParseToken(lltok::exclaim, "Expected '!' here") || 593 ParseToken(lltok::lbrace, "Expected '{' here")) 594 return true; 595 596 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 597 if (Lex.getKind() != lltok::rbrace) 598 do { 599 if (ParseToken(lltok::exclaim, "Expected '!' here")) 600 return true; 601 602 MDNode *N = nullptr; 603 if (ParseMDNodeID(N)) return true; 604 NMD->addOperand(N); 605 } while (EatIfPresent(lltok::comma)); 606 607 return ParseToken(lltok::rbrace, "expected end of metadata node"); 608 } 609 610 /// ParseStandaloneMetadata: 611 /// !42 = !{...} 612 bool LLParser::ParseStandaloneMetadata() { 613 assert(Lex.getKind() == lltok::exclaim); 614 Lex.Lex(); 615 unsigned MetadataID = 0; 616 617 MDNode *Init; 618 if (ParseUInt32(MetadataID) || 619 ParseToken(lltok::equal, "expected '=' here")) 620 return true; 621 622 // Detect common error, from old metadata syntax. 623 if (Lex.getKind() == lltok::Type) 624 return TokError("unexpected type in metadata definition"); 625 626 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 627 if (Lex.getKind() == lltok::MetadataVar) { 628 if (ParseSpecializedMDNode(Init, IsDistinct)) 629 return true; 630 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 631 ParseMDTuple(Init, IsDistinct)) 632 return true; 633 634 // See if this was forward referenced, if so, handle it. 635 auto FI = ForwardRefMDNodes.find(MetadataID); 636 if (FI != ForwardRefMDNodes.end()) { 637 FI->second.first->replaceAllUsesWith(Init); 638 ForwardRefMDNodes.erase(FI); 639 640 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 641 } else { 642 if (NumberedMetadata.count(MetadataID)) 643 return TokError("Metadata id is already used"); 644 NumberedMetadata[MetadataID].reset(Init); 645 } 646 647 return false; 648 } 649 650 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 651 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 652 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 653 } 654 655 /// ParseAlias: 656 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility 657 /// OptionalDLLStorageClass OptionalThreadLocal 658 /// OptionalUnnamedAddr 'alias' Aliasee 659 /// 660 /// Aliasee 661 /// ::= TypeAndValue 662 /// 663 /// Everything through OptionalUnnamedAddr has already been parsed. 664 /// 665 bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc, unsigned L, 666 unsigned Visibility, unsigned DLLStorageClass, 667 GlobalVariable::ThreadLocalMode TLM, 668 bool UnnamedAddr) { 669 assert(Lex.getKind() == lltok::kw_alias); 670 Lex.Lex(); 671 672 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 673 674 if(!GlobalAlias::isValidLinkage(Linkage)) 675 return Error(NameLoc, "invalid linkage type for alias"); 676 677 if (!isValidVisibilityForLinkage(Visibility, L)) 678 return Error(NameLoc, 679 "symbol with local linkage must have default visibility"); 680 681 Type *Ty; 682 LocTy ExplicitTypeLoc = Lex.getLoc(); 683 if (ParseType(Ty) || 684 ParseToken(lltok::comma, "expected comma after alias's type")) 685 return true; 686 687 Constant *Aliasee; 688 LocTy AliaseeLoc = Lex.getLoc(); 689 if (Lex.getKind() != lltok::kw_bitcast && 690 Lex.getKind() != lltok::kw_getelementptr && 691 Lex.getKind() != lltok::kw_addrspacecast && 692 Lex.getKind() != lltok::kw_inttoptr) { 693 if (ParseGlobalTypeAndValue(Aliasee)) 694 return true; 695 } else { 696 // The bitcast dest type is not present, it is implied by the dest type. 697 ValID ID; 698 if (ParseValID(ID)) 699 return true; 700 if (ID.Kind != ValID::t_Constant) 701 return Error(AliaseeLoc, "invalid aliasee"); 702 Aliasee = ID.ConstantVal; 703 } 704 705 Type *AliaseeType = Aliasee->getType(); 706 auto *PTy = dyn_cast<PointerType>(AliaseeType); 707 if (!PTy) 708 return Error(AliaseeLoc, "An alias must have pointer type"); 709 unsigned AddrSpace = PTy->getAddressSpace(); 710 711 if (Ty != PTy->getElementType()) 712 return Error( 713 ExplicitTypeLoc, 714 "explicit pointee type doesn't match operand's pointee type"); 715 716 // Okay, create the alias but do not insert it into the module yet. 717 std::unique_ptr<GlobalAlias> GA( 718 GlobalAlias::create(Ty, AddrSpace, (GlobalValue::LinkageTypes)Linkage, 719 Name, Aliasee, /*Parent*/ nullptr)); 720 GA->setThreadLocalMode(TLM); 721 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 722 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 723 GA->setUnnamedAddr(UnnamedAddr); 724 725 if (Name.empty()) 726 NumberedVals.push_back(GA.get()); 727 728 // See if this value already exists in the symbol table. If so, it is either 729 // a redefinition or a definition of a forward reference. 730 if (GlobalValue *Val = M->getNamedValue(Name)) { 731 // See if this was a redefinition. If so, there is no entry in 732 // ForwardRefVals. 733 auto I = ForwardRefVals.find(Name); 734 if (I == ForwardRefVals.end()) 735 return Error(NameLoc, "redefinition of global named '@" + Name + "'"); 736 737 // Otherwise, this was a definition of forward ref. Verify that types 738 // agree. 739 if (Val->getType() != GA->getType()) 740 return Error(NameLoc, 741 "forward reference and definition of alias have different types"); 742 743 // If they agree, just RAUW the old value with the alias and remove the 744 // forward ref info. 745 Val->replaceAllUsesWith(GA.get()); 746 Val->eraseFromParent(); 747 ForwardRefVals.erase(I); 748 } 749 750 // Insert into the module, we know its name won't collide now. 751 M->getAliasList().push_back(GA.get()); 752 assert(GA->getName() == Name && "Should not be a name conflict!"); 753 754 // The module owns this now 755 GA.release(); 756 757 return false; 758 } 759 760 /// ParseGlobal 761 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 762 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 763 /// OptionalExternallyInitialized GlobalType Type Const 764 /// ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass 765 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 766 /// OptionalExternallyInitialized GlobalType Type Const 767 /// 768 /// Everything up to and including OptionalUnnamedAddr has been parsed 769 /// already. 770 /// 771 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, 772 unsigned Linkage, bool HasLinkage, 773 unsigned Visibility, unsigned DLLStorageClass, 774 GlobalVariable::ThreadLocalMode TLM, 775 bool UnnamedAddr) { 776 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 777 return Error(NameLoc, 778 "symbol with local linkage must have default visibility"); 779 780 unsigned AddrSpace; 781 bool IsConstant, IsExternallyInitialized; 782 LocTy IsExternallyInitializedLoc; 783 LocTy TyLoc; 784 785 Type *Ty = nullptr; 786 if (ParseOptionalAddrSpace(AddrSpace) || 787 ParseOptionalToken(lltok::kw_externally_initialized, 788 IsExternallyInitialized, 789 &IsExternallyInitializedLoc) || 790 ParseGlobalType(IsConstant) || 791 ParseType(Ty, TyLoc)) 792 return true; 793 794 // If the linkage is specified and is external, then no initializer is 795 // present. 796 Constant *Init = nullptr; 797 if (!HasLinkage || (Linkage != GlobalValue::ExternalWeakLinkage && 798 Linkage != GlobalValue::ExternalLinkage)) { 799 if (ParseGlobalValue(Ty, Init)) 800 return true; 801 } 802 803 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 804 return Error(TyLoc, "invalid type for global variable"); 805 806 GlobalValue *GVal = nullptr; 807 808 // See if the global was forward referenced, if so, use the global. 809 if (!Name.empty()) { 810 GVal = M->getNamedValue(Name); 811 if (GVal) { 812 if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal)) 813 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 814 } 815 } else { 816 auto I = ForwardRefValIDs.find(NumberedVals.size()); 817 if (I != ForwardRefValIDs.end()) { 818 GVal = I->second.first; 819 ForwardRefValIDs.erase(I); 820 } 821 } 822 823 GlobalVariable *GV; 824 if (!GVal) { 825 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, 826 Name, nullptr, GlobalVariable::NotThreadLocal, 827 AddrSpace); 828 } else { 829 if (GVal->getValueType() != Ty) 830 return Error(TyLoc, 831 "forward reference and definition of global have different types"); 832 833 GV = cast<GlobalVariable>(GVal); 834 835 // Move the forward-reference to the correct spot in the module. 836 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 837 } 838 839 if (Name.empty()) 840 NumberedVals.push_back(GV); 841 842 // Set the parsed properties on the global. 843 if (Init) 844 GV->setInitializer(Init); 845 GV->setConstant(IsConstant); 846 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 847 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 848 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 849 GV->setExternallyInitialized(IsExternallyInitialized); 850 GV->setThreadLocalMode(TLM); 851 GV->setUnnamedAddr(UnnamedAddr); 852 853 // Parse attributes on the global. 854 while (Lex.getKind() == lltok::comma) { 855 Lex.Lex(); 856 857 if (Lex.getKind() == lltok::kw_section) { 858 Lex.Lex(); 859 GV->setSection(Lex.getStrVal()); 860 if (ParseToken(lltok::StringConstant, "expected global section string")) 861 return true; 862 } else if (Lex.getKind() == lltok::kw_align) { 863 unsigned Alignment; 864 if (ParseOptionalAlignment(Alignment)) return true; 865 GV->setAlignment(Alignment); 866 } else { 867 Comdat *C; 868 if (parseOptionalComdat(Name, C)) 869 return true; 870 if (C) 871 GV->setComdat(C); 872 else 873 return TokError("unknown global variable property!"); 874 } 875 } 876 877 return false; 878 } 879 880 /// ParseUnnamedAttrGrp 881 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 882 bool LLParser::ParseUnnamedAttrGrp() { 883 assert(Lex.getKind() == lltok::kw_attributes); 884 LocTy AttrGrpLoc = Lex.getLoc(); 885 Lex.Lex(); 886 887 if (Lex.getKind() != lltok::AttrGrpID) 888 return TokError("expected attribute group id"); 889 890 unsigned VarID = Lex.getUIntVal(); 891 std::vector<unsigned> unused; 892 LocTy BuiltinLoc; 893 Lex.Lex(); 894 895 if (ParseToken(lltok::equal, "expected '=' here") || 896 ParseToken(lltok::lbrace, "expected '{' here") || 897 ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 898 BuiltinLoc) || 899 ParseToken(lltok::rbrace, "expected end of attribute group")) 900 return true; 901 902 if (!NumberedAttrBuilders[VarID].hasAttributes()) 903 return Error(AttrGrpLoc, "attribute group has no attributes"); 904 905 return false; 906 } 907 908 /// ParseFnAttributeValuePairs 909 /// ::= <attr> | <attr> '=' <value> 910 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B, 911 std::vector<unsigned> &FwdRefAttrGrps, 912 bool inAttrGrp, LocTy &BuiltinLoc) { 913 bool HaveError = false; 914 915 B.clear(); 916 917 while (true) { 918 lltok::Kind Token = Lex.getKind(); 919 if (Token == lltok::kw_builtin) 920 BuiltinLoc = Lex.getLoc(); 921 switch (Token) { 922 default: 923 if (!inAttrGrp) return HaveError; 924 return Error(Lex.getLoc(), "unterminated attribute group"); 925 case lltok::rbrace: 926 // Finished. 927 return false; 928 929 case lltok::AttrGrpID: { 930 // Allow a function to reference an attribute group: 931 // 932 // define void @foo() #1 { ... } 933 if (inAttrGrp) 934 HaveError |= 935 Error(Lex.getLoc(), 936 "cannot have an attribute group reference in an attribute group"); 937 938 unsigned AttrGrpNum = Lex.getUIntVal(); 939 if (inAttrGrp) break; 940 941 // Save the reference to the attribute group. We'll fill it in later. 942 FwdRefAttrGrps.push_back(AttrGrpNum); 943 break; 944 } 945 // Target-dependent attributes: 946 case lltok::StringConstant: { 947 if (ParseStringAttribute(B)) 948 return true; 949 continue; 950 } 951 952 // Target-independent attributes: 953 case lltok::kw_align: { 954 // As a hack, we allow function alignment to be initially parsed as an 955 // attribute on a function declaration/definition or added to an attribute 956 // group and later moved to the alignment field. 957 unsigned Alignment; 958 if (inAttrGrp) { 959 Lex.Lex(); 960 if (ParseToken(lltok::equal, "expected '=' here") || 961 ParseUInt32(Alignment)) 962 return true; 963 } else { 964 if (ParseOptionalAlignment(Alignment)) 965 return true; 966 } 967 B.addAlignmentAttr(Alignment); 968 continue; 969 } 970 case lltok::kw_alignstack: { 971 unsigned Alignment; 972 if (inAttrGrp) { 973 Lex.Lex(); 974 if (ParseToken(lltok::equal, "expected '=' here") || 975 ParseUInt32(Alignment)) 976 return true; 977 } else { 978 if (ParseOptionalStackAlignment(Alignment)) 979 return true; 980 } 981 B.addStackAlignmentAttr(Alignment); 982 continue; 983 } 984 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break; 985 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break; 986 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break; 987 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break; 988 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break; 989 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break; 990 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break; 991 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break; 992 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break; 993 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break; 994 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break; 995 case lltok::kw_noimplicitfloat: 996 B.addAttribute(Attribute::NoImplicitFloat); break; 997 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break; 998 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break; 999 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break; 1000 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break; 1001 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break; 1002 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break; 1003 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break; 1004 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break; 1005 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1006 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1007 case lltok::kw_returns_twice: 1008 B.addAttribute(Attribute::ReturnsTwice); break; 1009 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break; 1010 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break; 1011 case lltok::kw_sspstrong: 1012 B.addAttribute(Attribute::StackProtectStrong); break; 1013 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break; 1014 case lltok::kw_sanitize_address: 1015 B.addAttribute(Attribute::SanitizeAddress); break; 1016 case lltok::kw_sanitize_thread: 1017 B.addAttribute(Attribute::SanitizeThread); break; 1018 case lltok::kw_sanitize_memory: 1019 B.addAttribute(Attribute::SanitizeMemory); break; 1020 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break; 1021 1022 // Error handling. 1023 case lltok::kw_inreg: 1024 case lltok::kw_signext: 1025 case lltok::kw_zeroext: 1026 HaveError |= 1027 Error(Lex.getLoc(), 1028 "invalid use of attribute on a function"); 1029 break; 1030 case lltok::kw_byval: 1031 case lltok::kw_dereferenceable: 1032 case lltok::kw_dereferenceable_or_null: 1033 case lltok::kw_inalloca: 1034 case lltok::kw_nest: 1035 case lltok::kw_noalias: 1036 case lltok::kw_nocapture: 1037 case lltok::kw_nonnull: 1038 case lltok::kw_returned: 1039 case lltok::kw_sret: 1040 HaveError |= 1041 Error(Lex.getLoc(), 1042 "invalid use of parameter-only attribute on a function"); 1043 break; 1044 } 1045 1046 Lex.Lex(); 1047 } 1048 } 1049 1050 //===----------------------------------------------------------------------===// 1051 // GlobalValue Reference/Resolution Routines. 1052 //===----------------------------------------------------------------------===// 1053 1054 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy, 1055 const std::string &Name) { 1056 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType())) 1057 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M); 1058 else 1059 return new GlobalVariable(*M, PTy->getElementType(), false, 1060 GlobalValue::ExternalWeakLinkage, nullptr, Name, 1061 nullptr, GlobalVariable::NotThreadLocal, 1062 PTy->getAddressSpace()); 1063 } 1064 1065 /// GetGlobalVal - Get a value with the specified name or ID, creating a 1066 /// forward reference record if needed. This can return null if the value 1067 /// exists but does not have the right type. 1068 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty, 1069 LocTy Loc) { 1070 PointerType *PTy = dyn_cast<PointerType>(Ty); 1071 if (!PTy) { 1072 Error(Loc, "global variable reference must have pointer type"); 1073 return nullptr; 1074 } 1075 1076 // Look this name up in the normal function symbol table. 1077 GlobalValue *Val = 1078 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1079 1080 // If this is a forward reference for the value, see if we already created a 1081 // forward ref record. 1082 if (!Val) { 1083 auto I = ForwardRefVals.find(Name); 1084 if (I != ForwardRefVals.end()) 1085 Val = I->second.first; 1086 } 1087 1088 // If we have the value in the symbol table or fwd-ref table, return it. 1089 if (Val) { 1090 if (Val->getType() == Ty) return Val; 1091 Error(Loc, "'@" + Name + "' defined with type '" + 1092 getTypeString(Val->getType()) + "'"); 1093 return nullptr; 1094 } 1095 1096 // Otherwise, create a new forward reference for this value and remember it. 1097 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name); 1098 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1099 return FwdVal; 1100 } 1101 1102 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) { 1103 PointerType *PTy = dyn_cast<PointerType>(Ty); 1104 if (!PTy) { 1105 Error(Loc, "global variable reference must have pointer type"); 1106 return nullptr; 1107 } 1108 1109 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1110 1111 // If this is a forward reference for the value, see if we already created a 1112 // forward ref record. 1113 if (!Val) { 1114 auto I = ForwardRefValIDs.find(ID); 1115 if (I != ForwardRefValIDs.end()) 1116 Val = I->second.first; 1117 } 1118 1119 // If we have the value in the symbol table or fwd-ref table, return it. 1120 if (Val) { 1121 if (Val->getType() == Ty) return Val; 1122 Error(Loc, "'@" + Twine(ID) + "' defined with type '" + 1123 getTypeString(Val->getType()) + "'"); 1124 return nullptr; 1125 } 1126 1127 // Otherwise, create a new forward reference for this value and remember it. 1128 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, ""); 1129 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1130 return FwdVal; 1131 } 1132 1133 1134 //===----------------------------------------------------------------------===// 1135 // Comdat Reference/Resolution Routines. 1136 //===----------------------------------------------------------------------===// 1137 1138 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1139 // Look this name up in the comdat symbol table. 1140 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1141 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1142 if (I != ComdatSymTab.end()) 1143 return &I->second; 1144 1145 // Otherwise, create a new forward reference for this value and remember it. 1146 Comdat *C = M->getOrInsertComdat(Name); 1147 ForwardRefComdats[Name] = Loc; 1148 return C; 1149 } 1150 1151 1152 //===----------------------------------------------------------------------===// 1153 // Helper Routines. 1154 //===----------------------------------------------------------------------===// 1155 1156 /// ParseToken - If the current token has the specified kind, eat it and return 1157 /// success. Otherwise, emit the specified error and return failure. 1158 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { 1159 if (Lex.getKind() != T) 1160 return TokError(ErrMsg); 1161 Lex.Lex(); 1162 return false; 1163 } 1164 1165 /// ParseStringConstant 1166 /// ::= StringConstant 1167 bool LLParser::ParseStringConstant(std::string &Result) { 1168 if (Lex.getKind() != lltok::StringConstant) 1169 return TokError("expected string constant"); 1170 Result = Lex.getStrVal(); 1171 Lex.Lex(); 1172 return false; 1173 } 1174 1175 /// ParseUInt32 1176 /// ::= uint32 1177 bool LLParser::ParseUInt32(unsigned &Val) { 1178 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1179 return TokError("expected integer"); 1180 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1181 if (Val64 != unsigned(Val64)) 1182 return TokError("expected 32-bit integer (too large)"); 1183 Val = Val64; 1184 Lex.Lex(); 1185 return false; 1186 } 1187 1188 /// ParseUInt64 1189 /// ::= uint64 1190 bool LLParser::ParseUInt64(uint64_t &Val) { 1191 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1192 return TokError("expected integer"); 1193 Val = Lex.getAPSIntVal().getLimitedValue(); 1194 Lex.Lex(); 1195 return false; 1196 } 1197 1198 /// ParseTLSModel 1199 /// := 'localdynamic' 1200 /// := 'initialexec' 1201 /// := 'localexec' 1202 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1203 switch (Lex.getKind()) { 1204 default: 1205 return TokError("expected localdynamic, initialexec or localexec"); 1206 case lltok::kw_localdynamic: 1207 TLM = GlobalVariable::LocalDynamicTLSModel; 1208 break; 1209 case lltok::kw_initialexec: 1210 TLM = GlobalVariable::InitialExecTLSModel; 1211 break; 1212 case lltok::kw_localexec: 1213 TLM = GlobalVariable::LocalExecTLSModel; 1214 break; 1215 } 1216 1217 Lex.Lex(); 1218 return false; 1219 } 1220 1221 /// ParseOptionalThreadLocal 1222 /// := /*empty*/ 1223 /// := 'thread_local' 1224 /// := 'thread_local' '(' tlsmodel ')' 1225 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1226 TLM = GlobalVariable::NotThreadLocal; 1227 if (!EatIfPresent(lltok::kw_thread_local)) 1228 return false; 1229 1230 TLM = GlobalVariable::GeneralDynamicTLSModel; 1231 if (Lex.getKind() == lltok::lparen) { 1232 Lex.Lex(); 1233 return ParseTLSModel(TLM) || 1234 ParseToken(lltok::rparen, "expected ')' after thread local model"); 1235 } 1236 return false; 1237 } 1238 1239 /// ParseOptionalAddrSpace 1240 /// := /*empty*/ 1241 /// := 'addrspace' '(' uint32 ')' 1242 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) { 1243 AddrSpace = 0; 1244 if (!EatIfPresent(lltok::kw_addrspace)) 1245 return false; 1246 return ParseToken(lltok::lparen, "expected '(' in address space") || 1247 ParseUInt32(AddrSpace) || 1248 ParseToken(lltok::rparen, "expected ')' in address space"); 1249 } 1250 1251 /// ParseStringAttribute 1252 /// := StringConstant 1253 /// := StringConstant '=' StringConstant 1254 bool LLParser::ParseStringAttribute(AttrBuilder &B) { 1255 std::string Attr = Lex.getStrVal(); 1256 Lex.Lex(); 1257 std::string Val; 1258 if (EatIfPresent(lltok::equal) && ParseStringConstant(Val)) 1259 return true; 1260 B.addAttribute(Attr, Val); 1261 return false; 1262 } 1263 1264 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes. 1265 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) { 1266 bool HaveError = false; 1267 1268 B.clear(); 1269 1270 while (1) { 1271 lltok::Kind Token = Lex.getKind(); 1272 switch (Token) { 1273 default: // End of attributes. 1274 return HaveError; 1275 case lltok::StringConstant: { 1276 if (ParseStringAttribute(B)) 1277 return true; 1278 continue; 1279 } 1280 case lltok::kw_align: { 1281 unsigned Alignment; 1282 if (ParseOptionalAlignment(Alignment)) 1283 return true; 1284 B.addAlignmentAttr(Alignment); 1285 continue; 1286 } 1287 case lltok::kw_byval: B.addAttribute(Attribute::ByVal); break; 1288 case lltok::kw_dereferenceable: { 1289 uint64_t Bytes; 1290 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1291 return true; 1292 B.addDereferenceableAttr(Bytes); 1293 continue; 1294 } 1295 case lltok::kw_dereferenceable_or_null: { 1296 uint64_t Bytes; 1297 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1298 return true; 1299 B.addDereferenceableOrNullAttr(Bytes); 1300 continue; 1301 } 1302 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break; 1303 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1304 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break; 1305 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1306 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break; 1307 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1308 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1309 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1310 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break; 1311 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1312 case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break; 1313 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1314 1315 case lltok::kw_alignstack: 1316 case lltok::kw_alwaysinline: 1317 case lltok::kw_argmemonly: 1318 case lltok::kw_builtin: 1319 case lltok::kw_inlinehint: 1320 case lltok::kw_jumptable: 1321 case lltok::kw_minsize: 1322 case lltok::kw_naked: 1323 case lltok::kw_nobuiltin: 1324 case lltok::kw_noduplicate: 1325 case lltok::kw_noimplicitfloat: 1326 case lltok::kw_noinline: 1327 case lltok::kw_nonlazybind: 1328 case lltok::kw_noredzone: 1329 case lltok::kw_noreturn: 1330 case lltok::kw_nounwind: 1331 case lltok::kw_optnone: 1332 case lltok::kw_optsize: 1333 case lltok::kw_returns_twice: 1334 case lltok::kw_sanitize_address: 1335 case lltok::kw_sanitize_memory: 1336 case lltok::kw_sanitize_thread: 1337 case lltok::kw_ssp: 1338 case lltok::kw_sspreq: 1339 case lltok::kw_sspstrong: 1340 case lltok::kw_safestack: 1341 case lltok::kw_uwtable: 1342 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1343 break; 1344 } 1345 1346 Lex.Lex(); 1347 } 1348 } 1349 1350 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes. 1351 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) { 1352 bool HaveError = false; 1353 1354 B.clear(); 1355 1356 while (1) { 1357 lltok::Kind Token = Lex.getKind(); 1358 switch (Token) { 1359 default: // End of attributes. 1360 return HaveError; 1361 case lltok::StringConstant: { 1362 if (ParseStringAttribute(B)) 1363 return true; 1364 continue; 1365 } 1366 case lltok::kw_dereferenceable: { 1367 uint64_t Bytes; 1368 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1369 return true; 1370 B.addDereferenceableAttr(Bytes); 1371 continue; 1372 } 1373 case lltok::kw_dereferenceable_or_null: { 1374 uint64_t Bytes; 1375 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1376 return true; 1377 B.addDereferenceableOrNullAttr(Bytes); 1378 continue; 1379 } 1380 case lltok::kw_align: { 1381 unsigned Alignment; 1382 if (ParseOptionalAlignment(Alignment)) 1383 return true; 1384 B.addAlignmentAttr(Alignment); 1385 continue; 1386 } 1387 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1388 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1389 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1390 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1391 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1392 1393 // Error handling. 1394 case lltok::kw_byval: 1395 case lltok::kw_inalloca: 1396 case lltok::kw_nest: 1397 case lltok::kw_nocapture: 1398 case lltok::kw_returned: 1399 case lltok::kw_sret: 1400 HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute"); 1401 break; 1402 1403 case lltok::kw_alignstack: 1404 case lltok::kw_alwaysinline: 1405 case lltok::kw_argmemonly: 1406 case lltok::kw_builtin: 1407 case lltok::kw_cold: 1408 case lltok::kw_inlinehint: 1409 case lltok::kw_jumptable: 1410 case lltok::kw_minsize: 1411 case lltok::kw_naked: 1412 case lltok::kw_nobuiltin: 1413 case lltok::kw_noduplicate: 1414 case lltok::kw_noimplicitfloat: 1415 case lltok::kw_noinline: 1416 case lltok::kw_nonlazybind: 1417 case lltok::kw_noredzone: 1418 case lltok::kw_noreturn: 1419 case lltok::kw_nounwind: 1420 case lltok::kw_optnone: 1421 case lltok::kw_optsize: 1422 case lltok::kw_returns_twice: 1423 case lltok::kw_sanitize_address: 1424 case lltok::kw_sanitize_memory: 1425 case lltok::kw_sanitize_thread: 1426 case lltok::kw_ssp: 1427 case lltok::kw_sspreq: 1428 case lltok::kw_sspstrong: 1429 case lltok::kw_safestack: 1430 case lltok::kw_uwtable: 1431 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1432 break; 1433 1434 case lltok::kw_readnone: 1435 case lltok::kw_readonly: 1436 HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type"); 1437 } 1438 1439 Lex.Lex(); 1440 } 1441 } 1442 1443 /// ParseOptionalLinkage 1444 /// ::= /*empty*/ 1445 /// ::= 'private' 1446 /// ::= 'internal' 1447 /// ::= 'weak' 1448 /// ::= 'weak_odr' 1449 /// ::= 'linkonce' 1450 /// ::= 'linkonce_odr' 1451 /// ::= 'available_externally' 1452 /// ::= 'appending' 1453 /// ::= 'common' 1454 /// ::= 'extern_weak' 1455 /// ::= 'external' 1456 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) { 1457 HasLinkage = false; 1458 switch (Lex.getKind()) { 1459 default: Res=GlobalValue::ExternalLinkage; return false; 1460 case lltok::kw_private: Res = GlobalValue::PrivateLinkage; break; 1461 case lltok::kw_internal: Res = GlobalValue::InternalLinkage; break; 1462 case lltok::kw_weak: Res = GlobalValue::WeakAnyLinkage; break; 1463 case lltok::kw_weak_odr: Res = GlobalValue::WeakODRLinkage; break; 1464 case lltok::kw_linkonce: Res = GlobalValue::LinkOnceAnyLinkage; break; 1465 case lltok::kw_linkonce_odr: Res = GlobalValue::LinkOnceODRLinkage; break; 1466 case lltok::kw_available_externally: 1467 Res = GlobalValue::AvailableExternallyLinkage; 1468 break; 1469 case lltok::kw_appending: Res = GlobalValue::AppendingLinkage; break; 1470 case lltok::kw_common: Res = GlobalValue::CommonLinkage; break; 1471 case lltok::kw_extern_weak: Res = GlobalValue::ExternalWeakLinkage; break; 1472 case lltok::kw_external: Res = GlobalValue::ExternalLinkage; break; 1473 } 1474 Lex.Lex(); 1475 HasLinkage = true; 1476 return false; 1477 } 1478 1479 /// ParseOptionalVisibility 1480 /// ::= /*empty*/ 1481 /// ::= 'default' 1482 /// ::= 'hidden' 1483 /// ::= 'protected' 1484 /// 1485 bool LLParser::ParseOptionalVisibility(unsigned &Res) { 1486 switch (Lex.getKind()) { 1487 default: Res = GlobalValue::DefaultVisibility; return false; 1488 case lltok::kw_default: Res = GlobalValue::DefaultVisibility; break; 1489 case lltok::kw_hidden: Res = GlobalValue::HiddenVisibility; break; 1490 case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break; 1491 } 1492 Lex.Lex(); 1493 return false; 1494 } 1495 1496 /// ParseOptionalDLLStorageClass 1497 /// ::= /*empty*/ 1498 /// ::= 'dllimport' 1499 /// ::= 'dllexport' 1500 /// 1501 bool LLParser::ParseOptionalDLLStorageClass(unsigned &Res) { 1502 switch (Lex.getKind()) { 1503 default: Res = GlobalValue::DefaultStorageClass; return false; 1504 case lltok::kw_dllimport: Res = GlobalValue::DLLImportStorageClass; break; 1505 case lltok::kw_dllexport: Res = GlobalValue::DLLExportStorageClass; break; 1506 } 1507 Lex.Lex(); 1508 return false; 1509 } 1510 1511 /// ParseOptionalCallingConv 1512 /// ::= /*empty*/ 1513 /// ::= 'ccc' 1514 /// ::= 'fastcc' 1515 /// ::= 'intel_ocl_bicc' 1516 /// ::= 'coldcc' 1517 /// ::= 'x86_stdcallcc' 1518 /// ::= 'x86_fastcallcc' 1519 /// ::= 'x86_thiscallcc' 1520 /// ::= 'x86_vectorcallcc' 1521 /// ::= 'arm_apcscc' 1522 /// ::= 'arm_aapcscc' 1523 /// ::= 'arm_aapcs_vfpcc' 1524 /// ::= 'msp430_intrcc' 1525 /// ::= 'ptx_kernel' 1526 /// ::= 'ptx_device' 1527 /// ::= 'spir_func' 1528 /// ::= 'spir_kernel' 1529 /// ::= 'x86_64_sysvcc' 1530 /// ::= 'x86_64_win64cc' 1531 /// ::= 'webkit_jscc' 1532 /// ::= 'anyregcc' 1533 /// ::= 'preserve_mostcc' 1534 /// ::= 'preserve_allcc' 1535 /// ::= 'ghccc' 1536 /// ::= 'hhvmcc' 1537 /// ::= 'hhvm_ccc' 1538 /// ::= 'cc' UINT 1539 /// 1540 bool LLParser::ParseOptionalCallingConv(unsigned &CC) { 1541 switch (Lex.getKind()) { 1542 default: CC = CallingConv::C; return false; 1543 case lltok::kw_ccc: CC = CallingConv::C; break; 1544 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1545 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1546 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1547 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1548 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1549 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 1550 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1551 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1552 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1553 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1554 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1555 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1556 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 1557 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 1558 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 1559 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 1560 case lltok::kw_x86_64_win64cc: CC = CallingConv::X86_64_Win64; break; 1561 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 1562 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 1563 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 1564 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 1565 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 1566 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 1567 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 1568 case lltok::kw_cc: { 1569 Lex.Lex(); 1570 return ParseUInt32(CC); 1571 } 1572 } 1573 1574 Lex.Lex(); 1575 return false; 1576 } 1577 1578 /// ParseMetadataAttachment 1579 /// ::= !dbg !42 1580 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 1581 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 1582 1583 std::string Name = Lex.getStrVal(); 1584 Kind = M->getMDKindID(Name); 1585 Lex.Lex(); 1586 1587 return ParseMDNode(MD); 1588 } 1589 1590 /// ParseInstructionMetadata 1591 /// ::= !dbg !42 (',' !dbg !57)* 1592 bool LLParser::ParseInstructionMetadata(Instruction &Inst) { 1593 do { 1594 if (Lex.getKind() != lltok::MetadataVar) 1595 return TokError("expected metadata after comma"); 1596 1597 unsigned MDK; 1598 MDNode *N; 1599 if (ParseMetadataAttachment(MDK, N)) 1600 return true; 1601 1602 Inst.setMetadata(MDK, N); 1603 if (MDK == LLVMContext::MD_tbaa) 1604 InstsWithTBAATag.push_back(&Inst); 1605 1606 // If this is the end of the list, we're done. 1607 } while (EatIfPresent(lltok::comma)); 1608 return false; 1609 } 1610 1611 /// ParseOptionalFunctionMetadata 1612 /// ::= (!dbg !57)* 1613 bool LLParser::ParseOptionalFunctionMetadata(Function &F) { 1614 while (Lex.getKind() == lltok::MetadataVar) { 1615 unsigned MDK; 1616 MDNode *N; 1617 if (ParseMetadataAttachment(MDK, N)) 1618 return true; 1619 1620 F.setMetadata(MDK, N); 1621 } 1622 return false; 1623 } 1624 1625 /// ParseOptionalAlignment 1626 /// ::= /* empty */ 1627 /// ::= 'align' 4 1628 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) { 1629 Alignment = 0; 1630 if (!EatIfPresent(lltok::kw_align)) 1631 return false; 1632 LocTy AlignLoc = Lex.getLoc(); 1633 if (ParseUInt32(Alignment)) return true; 1634 if (!isPowerOf2_32(Alignment)) 1635 return Error(AlignLoc, "alignment is not a power of two"); 1636 if (Alignment > Value::MaximumAlignment) 1637 return Error(AlignLoc, "huge alignments are not supported yet"); 1638 return false; 1639 } 1640 1641 /// ParseOptionalDerefAttrBytes 1642 /// ::= /* empty */ 1643 /// ::= AttrKind '(' 4 ')' 1644 /// 1645 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 1646 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind, 1647 uint64_t &Bytes) { 1648 assert((AttrKind == lltok::kw_dereferenceable || 1649 AttrKind == lltok::kw_dereferenceable_or_null) && 1650 "contract!"); 1651 1652 Bytes = 0; 1653 if (!EatIfPresent(AttrKind)) 1654 return false; 1655 LocTy ParenLoc = Lex.getLoc(); 1656 if (!EatIfPresent(lltok::lparen)) 1657 return Error(ParenLoc, "expected '('"); 1658 LocTy DerefLoc = Lex.getLoc(); 1659 if (ParseUInt64(Bytes)) return true; 1660 ParenLoc = Lex.getLoc(); 1661 if (!EatIfPresent(lltok::rparen)) 1662 return Error(ParenLoc, "expected ')'"); 1663 if (!Bytes) 1664 return Error(DerefLoc, "dereferenceable bytes must be non-zero"); 1665 return false; 1666 } 1667 1668 /// ParseOptionalCommaAlign 1669 /// ::= 1670 /// ::= ',' align 4 1671 /// 1672 /// This returns with AteExtraComma set to true if it ate an excess comma at the 1673 /// end. 1674 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment, 1675 bool &AteExtraComma) { 1676 AteExtraComma = false; 1677 while (EatIfPresent(lltok::comma)) { 1678 // Metadata at the end is an early exit. 1679 if (Lex.getKind() == lltok::MetadataVar) { 1680 AteExtraComma = true; 1681 return false; 1682 } 1683 1684 if (Lex.getKind() != lltok::kw_align) 1685 return Error(Lex.getLoc(), "expected metadata or 'align'"); 1686 1687 if (ParseOptionalAlignment(Alignment)) return true; 1688 } 1689 1690 return false; 1691 } 1692 1693 /// ParseScopeAndOrdering 1694 /// if isAtomic: ::= 'singlethread'? AtomicOrdering 1695 /// else: ::= 1696 /// 1697 /// This sets Scope and Ordering to the parsed values. 1698 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope, 1699 AtomicOrdering &Ordering) { 1700 if (!isAtomic) 1701 return false; 1702 1703 Scope = CrossThread; 1704 if (EatIfPresent(lltok::kw_singlethread)) 1705 Scope = SingleThread; 1706 1707 return ParseOrdering(Ordering); 1708 } 1709 1710 /// ParseOrdering 1711 /// ::= AtomicOrdering 1712 /// 1713 /// This sets Ordering to the parsed value. 1714 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) { 1715 switch (Lex.getKind()) { 1716 default: return TokError("Expected ordering on atomic instruction"); 1717 case lltok::kw_unordered: Ordering = Unordered; break; 1718 case lltok::kw_monotonic: Ordering = Monotonic; break; 1719 case lltok::kw_acquire: Ordering = Acquire; break; 1720 case lltok::kw_release: Ordering = Release; break; 1721 case lltok::kw_acq_rel: Ordering = AcquireRelease; break; 1722 case lltok::kw_seq_cst: Ordering = SequentiallyConsistent; break; 1723 } 1724 Lex.Lex(); 1725 return false; 1726 } 1727 1728 /// ParseOptionalStackAlignment 1729 /// ::= /* empty */ 1730 /// ::= 'alignstack' '(' 4 ')' 1731 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { 1732 Alignment = 0; 1733 if (!EatIfPresent(lltok::kw_alignstack)) 1734 return false; 1735 LocTy ParenLoc = Lex.getLoc(); 1736 if (!EatIfPresent(lltok::lparen)) 1737 return Error(ParenLoc, "expected '('"); 1738 LocTy AlignLoc = Lex.getLoc(); 1739 if (ParseUInt32(Alignment)) return true; 1740 ParenLoc = Lex.getLoc(); 1741 if (!EatIfPresent(lltok::rparen)) 1742 return Error(ParenLoc, "expected ')'"); 1743 if (!isPowerOf2_32(Alignment)) 1744 return Error(AlignLoc, "stack alignment is not a power of two"); 1745 return false; 1746 } 1747 1748 /// ParseIndexList - This parses the index list for an insert/extractvalue 1749 /// instruction. This sets AteExtraComma in the case where we eat an extra 1750 /// comma at the end of the line and find that it is followed by metadata. 1751 /// Clients that don't allow metadata can call the version of this function that 1752 /// only takes one argument. 1753 /// 1754 /// ParseIndexList 1755 /// ::= (',' uint32)+ 1756 /// 1757 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, 1758 bool &AteExtraComma) { 1759 AteExtraComma = false; 1760 1761 if (Lex.getKind() != lltok::comma) 1762 return TokError("expected ',' as start of index list"); 1763 1764 while (EatIfPresent(lltok::comma)) { 1765 if (Lex.getKind() == lltok::MetadataVar) { 1766 if (Indices.empty()) return TokError("expected index"); 1767 AteExtraComma = true; 1768 return false; 1769 } 1770 unsigned Idx = 0; 1771 if (ParseUInt32(Idx)) return true; 1772 Indices.push_back(Idx); 1773 } 1774 1775 return false; 1776 } 1777 1778 //===----------------------------------------------------------------------===// 1779 // Type Parsing. 1780 //===----------------------------------------------------------------------===// 1781 1782 /// ParseType - Parse a type. 1783 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 1784 SMLoc TypeLoc = Lex.getLoc(); 1785 switch (Lex.getKind()) { 1786 default: 1787 return TokError(Msg); 1788 case lltok::Type: 1789 // Type ::= 'float' | 'void' (etc) 1790 Result = Lex.getTyVal(); 1791 Lex.Lex(); 1792 break; 1793 case lltok::lbrace: 1794 // Type ::= StructType 1795 if (ParseAnonStructType(Result, false)) 1796 return true; 1797 break; 1798 case lltok::lsquare: 1799 // Type ::= '[' ... ']' 1800 Lex.Lex(); // eat the lsquare. 1801 if (ParseArrayVectorType(Result, false)) 1802 return true; 1803 break; 1804 case lltok::less: // Either vector or packed struct. 1805 // Type ::= '<' ... '>' 1806 Lex.Lex(); 1807 if (Lex.getKind() == lltok::lbrace) { 1808 if (ParseAnonStructType(Result, true) || 1809 ParseToken(lltok::greater, "expected '>' at end of packed struct")) 1810 return true; 1811 } else if (ParseArrayVectorType(Result, true)) 1812 return true; 1813 break; 1814 case lltok::LocalVar: { 1815 // Type ::= %foo 1816 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 1817 1818 // If the type hasn't been defined yet, create a forward definition and 1819 // remember where that forward def'n was seen (in case it never is defined). 1820 if (!Entry.first) { 1821 Entry.first = StructType::create(Context, Lex.getStrVal()); 1822 Entry.second = Lex.getLoc(); 1823 } 1824 Result = Entry.first; 1825 Lex.Lex(); 1826 break; 1827 } 1828 1829 case lltok::LocalVarID: { 1830 // Type ::= %4 1831 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 1832 1833 // If the type hasn't been defined yet, create a forward definition and 1834 // remember where that forward def'n was seen (in case it never is defined). 1835 if (!Entry.first) { 1836 Entry.first = StructType::create(Context); 1837 Entry.second = Lex.getLoc(); 1838 } 1839 Result = Entry.first; 1840 Lex.Lex(); 1841 break; 1842 } 1843 } 1844 1845 // Parse the type suffixes. 1846 while (1) { 1847 switch (Lex.getKind()) { 1848 // End of type. 1849 default: 1850 if (!AllowVoid && Result->isVoidTy()) 1851 return Error(TypeLoc, "void type only allowed for function results"); 1852 return false; 1853 1854 // Type ::= Type '*' 1855 case lltok::star: 1856 if (Result->isLabelTy()) 1857 return TokError("basic block pointers are invalid"); 1858 if (Result->isVoidTy()) 1859 return TokError("pointers to void are invalid - use i8* instead"); 1860 if (!PointerType::isValidElementType(Result)) 1861 return TokError("pointer to this type is invalid"); 1862 Result = PointerType::getUnqual(Result); 1863 Lex.Lex(); 1864 break; 1865 1866 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 1867 case lltok::kw_addrspace: { 1868 if (Result->isLabelTy()) 1869 return TokError("basic block pointers are invalid"); 1870 if (Result->isVoidTy()) 1871 return TokError("pointers to void are invalid; use i8* instead"); 1872 if (!PointerType::isValidElementType(Result)) 1873 return TokError("pointer to this type is invalid"); 1874 unsigned AddrSpace; 1875 if (ParseOptionalAddrSpace(AddrSpace) || 1876 ParseToken(lltok::star, "expected '*' in address space")) 1877 return true; 1878 1879 Result = PointerType::get(Result, AddrSpace); 1880 break; 1881 } 1882 1883 /// Types '(' ArgTypeListI ')' OptFuncAttrs 1884 case lltok::lparen: 1885 if (ParseFunctionType(Result)) 1886 return true; 1887 break; 1888 } 1889 } 1890 } 1891 1892 /// ParseParameterList 1893 /// ::= '(' ')' 1894 /// ::= '(' Arg (',' Arg)* ')' 1895 /// Arg 1896 /// ::= Type OptionalAttributes Value OptionalAttributes 1897 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 1898 PerFunctionState &PFS, bool IsMustTailCall, 1899 bool InVarArgsFunc) { 1900 if (ParseToken(lltok::lparen, "expected '(' in call")) 1901 return true; 1902 1903 unsigned AttrIndex = 1; 1904 while (Lex.getKind() != lltok::rparen) { 1905 // If this isn't the first argument, we need a comma. 1906 if (!ArgList.empty() && 1907 ParseToken(lltok::comma, "expected ',' in argument list")) 1908 return true; 1909 1910 // Parse an ellipsis if this is a musttail call in a variadic function. 1911 if (Lex.getKind() == lltok::dotdotdot) { 1912 const char *Msg = "unexpected ellipsis in argument list for "; 1913 if (!IsMustTailCall) 1914 return TokError(Twine(Msg) + "non-musttail call"); 1915 if (!InVarArgsFunc) 1916 return TokError(Twine(Msg) + "musttail call in non-varargs function"); 1917 Lex.Lex(); // Lex the '...', it is purely for readability. 1918 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 1919 } 1920 1921 // Parse the argument. 1922 LocTy ArgLoc; 1923 Type *ArgTy = nullptr; 1924 AttrBuilder ArgAttrs; 1925 Value *V; 1926 if (ParseType(ArgTy, ArgLoc)) 1927 return true; 1928 1929 if (ArgTy->isMetadataTy()) { 1930 if (ParseMetadataAsValue(V, PFS)) 1931 return true; 1932 } else { 1933 // Otherwise, handle normal operands. 1934 if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS)) 1935 return true; 1936 } 1937 ArgList.push_back(ParamInfo(ArgLoc, V, AttributeSet::get(V->getContext(), 1938 AttrIndex++, 1939 ArgAttrs))); 1940 } 1941 1942 if (IsMustTailCall && InVarArgsFunc) 1943 return TokError("expected '...' at end of argument list for musttail call " 1944 "in varargs function"); 1945 1946 Lex.Lex(); // Lex the ')'. 1947 return false; 1948 } 1949 1950 /// ParseOptionalOperandBundles 1951 /// ::= /*empty*/ 1952 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 1953 /// 1954 /// OperandBundle 1955 /// ::= bundle-tag '(' ')' 1956 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 1957 /// 1958 /// bundle-tag ::= String Constant 1959 bool LLParser::ParseOptionalOperandBundles( 1960 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 1961 LocTy BeginLoc = Lex.getLoc(); 1962 if (!EatIfPresent(lltok::lsquare)) 1963 return false; 1964 1965 while (Lex.getKind() != lltok::rsquare) { 1966 // If this isn't the first operand bundle, we need a comma. 1967 if (!BundleList.empty() && 1968 ParseToken(lltok::comma, "expected ',' in input list")) 1969 return true; 1970 1971 std::string Tag; 1972 if (ParseStringConstant(Tag)) 1973 return true; 1974 1975 BundleList.emplace_back(); 1976 auto &OBI = BundleList.back(); 1977 1978 OBI.Tag = std::move(Tag); 1979 1980 if (ParseToken(lltok::lparen, "expected '(' in operand bundle")) 1981 return true; 1982 1983 while (Lex.getKind() != lltok::rparen) { 1984 // If this isn't the first input, we need a comma. 1985 if (!OBI.Inputs.empty() && 1986 ParseToken(lltok::comma, "expected ',' in input list")) 1987 return true; 1988 1989 Type *Ty = nullptr; 1990 Value *Input = nullptr; 1991 if (ParseType(Ty) || ParseValue(Ty, Input, PFS)) 1992 return true; 1993 OBI.Inputs.push_back(Input); 1994 } 1995 1996 Lex.Lex(); // Lex the ')'. 1997 } 1998 1999 if (BundleList.empty()) 2000 return Error(BeginLoc, "operand bundle set must not be empty"); 2001 2002 Lex.Lex(); // Lex the ']'. 2003 return false; 2004 } 2005 2006 /// ParseArgumentList - Parse the argument list for a function type or function 2007 /// prototype. 2008 /// ::= '(' ArgTypeListI ')' 2009 /// ArgTypeListI 2010 /// ::= /*empty*/ 2011 /// ::= '...' 2012 /// ::= ArgTypeList ',' '...' 2013 /// ::= ArgType (',' ArgType)* 2014 /// 2015 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2016 bool &isVarArg){ 2017 isVarArg = false; 2018 assert(Lex.getKind() == lltok::lparen); 2019 Lex.Lex(); // eat the (. 2020 2021 if (Lex.getKind() == lltok::rparen) { 2022 // empty 2023 } else if (Lex.getKind() == lltok::dotdotdot) { 2024 isVarArg = true; 2025 Lex.Lex(); 2026 } else { 2027 LocTy TypeLoc = Lex.getLoc(); 2028 Type *ArgTy = nullptr; 2029 AttrBuilder Attrs; 2030 std::string Name; 2031 2032 if (ParseType(ArgTy) || 2033 ParseOptionalParamAttrs(Attrs)) return true; 2034 2035 if (ArgTy->isVoidTy()) 2036 return Error(TypeLoc, "argument can not have void type"); 2037 2038 if (Lex.getKind() == lltok::LocalVar) { 2039 Name = Lex.getStrVal(); 2040 Lex.Lex(); 2041 } 2042 2043 if (!FunctionType::isValidArgumentType(ArgTy)) 2044 return Error(TypeLoc, "invalid type for function argument"); 2045 2046 unsigned AttrIndex = 1; 2047 ArgList.emplace_back(TypeLoc, ArgTy, AttributeSet::get(ArgTy->getContext(), 2048 AttrIndex++, Attrs), 2049 std::move(Name)); 2050 2051 while (EatIfPresent(lltok::comma)) { 2052 // Handle ... at end of arg list. 2053 if (EatIfPresent(lltok::dotdotdot)) { 2054 isVarArg = true; 2055 break; 2056 } 2057 2058 // Otherwise must be an argument type. 2059 TypeLoc = Lex.getLoc(); 2060 if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true; 2061 2062 if (ArgTy->isVoidTy()) 2063 return Error(TypeLoc, "argument can not have void type"); 2064 2065 if (Lex.getKind() == lltok::LocalVar) { 2066 Name = Lex.getStrVal(); 2067 Lex.Lex(); 2068 } else { 2069 Name = ""; 2070 } 2071 2072 if (!ArgTy->isFirstClassType()) 2073 return Error(TypeLoc, "invalid type for function argument"); 2074 2075 ArgList.emplace_back( 2076 TypeLoc, ArgTy, 2077 AttributeSet::get(ArgTy->getContext(), AttrIndex++, Attrs), 2078 std::move(Name)); 2079 } 2080 } 2081 2082 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2083 } 2084 2085 /// ParseFunctionType 2086 /// ::= Type ArgumentList OptionalAttrs 2087 bool LLParser::ParseFunctionType(Type *&Result) { 2088 assert(Lex.getKind() == lltok::lparen); 2089 2090 if (!FunctionType::isValidReturnType(Result)) 2091 return TokError("invalid function return type"); 2092 2093 SmallVector<ArgInfo, 8> ArgList; 2094 bool isVarArg; 2095 if (ParseArgumentList(ArgList, isVarArg)) 2096 return true; 2097 2098 // Reject names on the arguments lists. 2099 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2100 if (!ArgList[i].Name.empty()) 2101 return Error(ArgList[i].Loc, "argument name invalid in function type"); 2102 if (ArgList[i].Attrs.hasAttributes(i + 1)) 2103 return Error(ArgList[i].Loc, 2104 "argument attributes invalid in function type"); 2105 } 2106 2107 SmallVector<Type*, 16> ArgListTy; 2108 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2109 ArgListTy.push_back(ArgList[i].Ty); 2110 2111 Result = FunctionType::get(Result, ArgListTy, isVarArg); 2112 return false; 2113 } 2114 2115 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into 2116 /// other structs. 2117 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) { 2118 SmallVector<Type*, 8> Elts; 2119 if (ParseStructBody(Elts)) return true; 2120 2121 Result = StructType::get(Context, Elts, Packed); 2122 return false; 2123 } 2124 2125 /// ParseStructDefinition - Parse a struct in a 'type' definition. 2126 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name, 2127 std::pair<Type*, LocTy> &Entry, 2128 Type *&ResultTy) { 2129 // If the type was already defined, diagnose the redefinition. 2130 if (Entry.first && !Entry.second.isValid()) 2131 return Error(TypeLoc, "redefinition of type"); 2132 2133 // If we have opaque, just return without filling in the definition for the 2134 // struct. This counts as a definition as far as the .ll file goes. 2135 if (EatIfPresent(lltok::kw_opaque)) { 2136 // This type is being defined, so clear the location to indicate this. 2137 Entry.second = SMLoc(); 2138 2139 // If this type number has never been uttered, create it. 2140 if (!Entry.first) 2141 Entry.first = StructType::create(Context, Name); 2142 ResultTy = Entry.first; 2143 return false; 2144 } 2145 2146 // If the type starts with '<', then it is either a packed struct or a vector. 2147 bool isPacked = EatIfPresent(lltok::less); 2148 2149 // If we don't have a struct, then we have a random type alias, which we 2150 // accept for compatibility with old files. These types are not allowed to be 2151 // forward referenced and not allowed to be recursive. 2152 if (Lex.getKind() != lltok::lbrace) { 2153 if (Entry.first) 2154 return Error(TypeLoc, "forward references to non-struct type"); 2155 2156 ResultTy = nullptr; 2157 if (isPacked) 2158 return ParseArrayVectorType(ResultTy, true); 2159 return ParseType(ResultTy); 2160 } 2161 2162 // This type is being defined, so clear the location to indicate this. 2163 Entry.second = SMLoc(); 2164 2165 // If this type number has never been uttered, create it. 2166 if (!Entry.first) 2167 Entry.first = StructType::create(Context, Name); 2168 2169 StructType *STy = cast<StructType>(Entry.first); 2170 2171 SmallVector<Type*, 8> Body; 2172 if (ParseStructBody(Body) || 2173 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct"))) 2174 return true; 2175 2176 STy->setBody(Body, isPacked); 2177 ResultTy = STy; 2178 return false; 2179 } 2180 2181 2182 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2183 /// StructType 2184 /// ::= '{' '}' 2185 /// ::= '{' Type (',' Type)* '}' 2186 /// ::= '<' '{' '}' '>' 2187 /// ::= '<' '{' Type (',' Type)* '}' '>' 2188 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) { 2189 assert(Lex.getKind() == lltok::lbrace); 2190 Lex.Lex(); // Consume the '{' 2191 2192 // Handle the empty struct. 2193 if (EatIfPresent(lltok::rbrace)) 2194 return false; 2195 2196 LocTy EltTyLoc = Lex.getLoc(); 2197 Type *Ty = nullptr; 2198 if (ParseType(Ty)) return true; 2199 Body.push_back(Ty); 2200 2201 if (!StructType::isValidElementType(Ty)) 2202 return Error(EltTyLoc, "invalid element type for struct"); 2203 2204 while (EatIfPresent(lltok::comma)) { 2205 EltTyLoc = Lex.getLoc(); 2206 if (ParseType(Ty)) return true; 2207 2208 if (!StructType::isValidElementType(Ty)) 2209 return Error(EltTyLoc, "invalid element type for struct"); 2210 2211 Body.push_back(Ty); 2212 } 2213 2214 return ParseToken(lltok::rbrace, "expected '}' at end of struct"); 2215 } 2216 2217 /// ParseArrayVectorType - Parse an array or vector type, assuming the first 2218 /// token has already been consumed. 2219 /// Type 2220 /// ::= '[' APSINTVAL 'x' Types ']' 2221 /// ::= '<' APSINTVAL 'x' Types '>' 2222 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) { 2223 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2224 Lex.getAPSIntVal().getBitWidth() > 64) 2225 return TokError("expected number in address space"); 2226 2227 LocTy SizeLoc = Lex.getLoc(); 2228 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2229 Lex.Lex(); 2230 2231 if (ParseToken(lltok::kw_x, "expected 'x' after element count")) 2232 return true; 2233 2234 LocTy TypeLoc = Lex.getLoc(); 2235 Type *EltTy = nullptr; 2236 if (ParseType(EltTy)) return true; 2237 2238 if (ParseToken(isVector ? lltok::greater : lltok::rsquare, 2239 "expected end of sequential type")) 2240 return true; 2241 2242 if (isVector) { 2243 if (Size == 0) 2244 return Error(SizeLoc, "zero element vector is illegal"); 2245 if ((unsigned)Size != Size) 2246 return Error(SizeLoc, "size too large for vector"); 2247 if (!VectorType::isValidElementType(EltTy)) 2248 return Error(TypeLoc, "invalid vector element type"); 2249 Result = VectorType::get(EltTy, unsigned(Size)); 2250 } else { 2251 if (!ArrayType::isValidElementType(EltTy)) 2252 return Error(TypeLoc, "invalid array element type"); 2253 Result = ArrayType::get(EltTy, Size); 2254 } 2255 return false; 2256 } 2257 2258 //===----------------------------------------------------------------------===// 2259 // Function Semantic Analysis. 2260 //===----------------------------------------------------------------------===// 2261 2262 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 2263 int functionNumber) 2264 : P(p), F(f), FunctionNumber(functionNumber) { 2265 2266 // Insert unnamed arguments into the NumberedVals list. 2267 for (Argument &A : F.args()) 2268 if (!A.hasName()) 2269 NumberedVals.push_back(&A); 2270 } 2271 2272 LLParser::PerFunctionState::~PerFunctionState() { 2273 // If there were any forward referenced non-basicblock values, delete them. 2274 2275 for (const auto &P : ForwardRefVals) { 2276 if (isa<BasicBlock>(P.second.first)) 2277 continue; 2278 P.second.first->replaceAllUsesWith( 2279 UndefValue::get(P.second.first->getType())); 2280 delete P.second.first; 2281 } 2282 2283 for (const auto &P : ForwardRefValIDs) { 2284 if (isa<BasicBlock>(P.second.first)) 2285 continue; 2286 P.second.first->replaceAllUsesWith( 2287 UndefValue::get(P.second.first->getType())); 2288 delete P.second.first; 2289 } 2290 } 2291 2292 bool LLParser::PerFunctionState::FinishFunction() { 2293 if (!ForwardRefVals.empty()) 2294 return P.Error(ForwardRefVals.begin()->second.second, 2295 "use of undefined value '%" + ForwardRefVals.begin()->first + 2296 "'"); 2297 if (!ForwardRefValIDs.empty()) 2298 return P.Error(ForwardRefValIDs.begin()->second.second, 2299 "use of undefined value '%" + 2300 Twine(ForwardRefValIDs.begin()->first) + "'"); 2301 return false; 2302 } 2303 2304 2305 /// GetVal - Get a value with the specified name or ID, creating a 2306 /// forward reference record if needed. This can return null if the value 2307 /// exists but does not have the right type. 2308 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty, 2309 LocTy Loc, OperatorConstraint OC) { 2310 // Look this name up in the normal function symbol table. 2311 Value *Val = F.getValueSymbolTable().lookup(Name); 2312 2313 // If this is a forward reference for the value, see if we already created a 2314 // forward ref record. 2315 if (!Val) { 2316 auto I = ForwardRefVals.find(Name); 2317 if (I != ForwardRefVals.end()) 2318 Val = I->second.first; 2319 } 2320 2321 // If we have the value in the symbol table or fwd-ref table, return it. 2322 if (Val) { 2323 // Check operator constraints. 2324 switch (OC) { 2325 case OC_None: 2326 // no constraint 2327 break; 2328 case OC_CatchPad: 2329 if (!isa<CatchPadInst>(Val)) { 2330 P.Error(Loc, "'%" + Name + "' is not a catchpad"); 2331 return nullptr; 2332 } 2333 break; 2334 case OC_CleanupPad: 2335 if (!isa<CleanupPadInst>(Val)) { 2336 P.Error(Loc, "'%" + Name + "' is not a cleanuppad"); 2337 return nullptr; 2338 } 2339 break; 2340 } 2341 if (Val->getType() == Ty) return Val; 2342 if (Ty->isLabelTy()) 2343 P.Error(Loc, "'%" + Name + "' is not a basic block"); 2344 else 2345 P.Error(Loc, "'%" + Name + "' defined with type '" + 2346 getTypeString(Val->getType()) + "'"); 2347 return nullptr; 2348 } 2349 2350 // Don't make placeholders with invalid type. 2351 if (!Ty->isFirstClassType()) { 2352 P.Error(Loc, "invalid use of a non-first-class type"); 2353 return nullptr; 2354 } 2355 2356 // Otherwise, create a new forward reference for this value and remember it. 2357 Value *FwdVal; 2358 if (Ty->isLabelTy()) { 2359 assert(!OC); 2360 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 2361 } else if (!OC) { 2362 FwdVal = new Argument(Ty, Name); 2363 } else { 2364 switch (OC) { 2365 case OC_CatchPad: 2366 FwdVal = CatchPadInst::Create(&F.getEntryBlock(), &F.getEntryBlock(), {}, 2367 Name); 2368 break; 2369 case OC_CleanupPad: 2370 FwdVal = CleanupPadInst::Create(F.getContext(), {}, Name); 2371 break; 2372 default: 2373 llvm_unreachable("unexpected constraint"); 2374 } 2375 } 2376 2377 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 2378 return FwdVal; 2379 } 2380 2381 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc, 2382 OperatorConstraint OC) { 2383 // Look this name up in the normal function symbol table. 2384 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 2385 2386 // If this is a forward reference for the value, see if we already created a 2387 // forward ref record. 2388 if (!Val) { 2389 auto I = ForwardRefValIDs.find(ID); 2390 if (I != ForwardRefValIDs.end()) 2391 Val = I->second.first; 2392 } 2393 2394 // If we have the value in the symbol table or fwd-ref table, return it. 2395 if (Val) { 2396 // Check operator constraint. 2397 switch (OC) { 2398 case OC_None: 2399 // no constraint 2400 break; 2401 case OC_CatchPad: 2402 if (!isa<CatchPadInst>(Val)) { 2403 P.Error(Loc, "'%" + Twine(ID) + "' is not a catchpad"); 2404 return nullptr; 2405 } 2406 break; 2407 case OC_CleanupPad: 2408 if (!isa<CleanupPadInst>(Val)) { 2409 P.Error(Loc, "'%" + Twine(ID) + "' is not a cleanuppad"); 2410 return nullptr; 2411 } 2412 break; 2413 } 2414 if (Val->getType() == Ty) return Val; 2415 if (Ty->isLabelTy()) 2416 P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block"); 2417 else 2418 P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" + 2419 getTypeString(Val->getType()) + "'"); 2420 return nullptr; 2421 } 2422 2423 if (!Ty->isFirstClassType()) { 2424 P.Error(Loc, "invalid use of a non-first-class type"); 2425 return nullptr; 2426 } 2427 2428 // Otherwise, create a new forward reference for this value and remember it. 2429 Value *FwdVal; 2430 if (Ty->isLabelTy()) { 2431 assert(!OC); 2432 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 2433 } else if (!OC) { 2434 FwdVal = new Argument(Ty); 2435 } else { 2436 switch (OC) { 2437 case OC_CatchPad: 2438 FwdVal = CatchPadInst::Create(&F.getEntryBlock(), &F.getEntryBlock(), {}); 2439 break; 2440 case OC_CleanupPad: 2441 FwdVal = CleanupPadInst::Create(F.getContext(), {}); 2442 break; 2443 default: 2444 llvm_unreachable("unexpected constraint"); 2445 } 2446 } 2447 2448 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 2449 return FwdVal; 2450 } 2451 2452 /// SetInstName - After an instruction is parsed and inserted into its 2453 /// basic block, this installs its name. 2454 bool LLParser::PerFunctionState::SetInstName(int NameID, 2455 const std::string &NameStr, 2456 LocTy NameLoc, Instruction *Inst) { 2457 // If this instruction has void type, it cannot have a name or ID specified. 2458 if (Inst->getType()->isVoidTy()) { 2459 if (NameID != -1 || !NameStr.empty()) 2460 return P.Error(NameLoc, "instructions returning void cannot have a name"); 2461 return false; 2462 } 2463 2464 // If this was a numbered instruction, verify that the instruction is the 2465 // expected value and resolve any forward references. 2466 if (NameStr.empty()) { 2467 // If neither a name nor an ID was specified, just use the next ID. 2468 if (NameID == -1) 2469 NameID = NumberedVals.size(); 2470 2471 if (unsigned(NameID) != NumberedVals.size()) 2472 return P.Error(NameLoc, "instruction expected to be numbered '%" + 2473 Twine(NumberedVals.size()) + "'"); 2474 2475 auto FI = ForwardRefValIDs.find(NameID); 2476 if (FI != ForwardRefValIDs.end()) { 2477 Value *Sentinel = FI->second.first; 2478 if (Sentinel->getType() != Inst->getType()) 2479 return P.Error(NameLoc, "instruction forward referenced with type '" + 2480 getTypeString(FI->second.first->getType()) + "'"); 2481 // Check operator constraints. We only put cleanuppads or catchpads in 2482 // the forward value map if the value is constrained to match. 2483 if (isa<CatchPadInst>(Sentinel)) { 2484 if (!isa<CatchPadInst>(Inst)) 2485 return P.Error(FI->second.second, 2486 "'%" + Twine(NameID) + "' is not a catchpad"); 2487 } else if (isa<CleanupPadInst>(Sentinel)) { 2488 if (!isa<CleanupPadInst>(Inst)) 2489 return P.Error(FI->second.second, 2490 "'%" + Twine(NameID) + "' is not a cleanuppad"); 2491 } 2492 2493 Sentinel->replaceAllUsesWith(Inst); 2494 delete Sentinel; 2495 ForwardRefValIDs.erase(FI); 2496 } 2497 2498 NumberedVals.push_back(Inst); 2499 return false; 2500 } 2501 2502 // Otherwise, the instruction had a name. Resolve forward refs and set it. 2503 auto FI = ForwardRefVals.find(NameStr); 2504 if (FI != ForwardRefVals.end()) { 2505 Value *Sentinel = FI->second.first; 2506 if (Sentinel->getType() != Inst->getType()) 2507 return P.Error(NameLoc, "instruction forward referenced with type '" + 2508 getTypeString(FI->second.first->getType()) + "'"); 2509 // Check operator constraints. We only put cleanuppads or catchpads in 2510 // the forward value map if the value is constrained to match. 2511 if (isa<CatchPadInst>(Sentinel)) { 2512 if (!isa<CatchPadInst>(Inst)) 2513 return P.Error(FI->second.second, 2514 "'%" + NameStr + "' is not a catchpad"); 2515 } else if (isa<CleanupPadInst>(Sentinel)) { 2516 if (!isa<CleanupPadInst>(Inst)) 2517 return P.Error(FI->second.second, 2518 "'%" + NameStr + "' is not a cleanuppad"); 2519 } 2520 2521 Sentinel->replaceAllUsesWith(Inst); 2522 delete Sentinel; 2523 ForwardRefVals.erase(FI); 2524 } 2525 2526 // Set the name on the instruction. 2527 Inst->setName(NameStr); 2528 2529 if (Inst->getName() != NameStr) 2530 return P.Error(NameLoc, "multiple definition of local value named '" + 2531 NameStr + "'"); 2532 return false; 2533 } 2534 2535 /// GetBB - Get a basic block with the specified name or ID, creating a 2536 /// forward reference record if needed. 2537 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, 2538 LocTy Loc) { 2539 return dyn_cast_or_null<BasicBlock>(GetVal(Name, 2540 Type::getLabelTy(F.getContext()), Loc)); 2541 } 2542 2543 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { 2544 return dyn_cast_or_null<BasicBlock>(GetVal(ID, 2545 Type::getLabelTy(F.getContext()), Loc)); 2546 } 2547 2548 /// DefineBB - Define the specified basic block, which is either named or 2549 /// unnamed. If there is an error, this returns null otherwise it returns 2550 /// the block being defined. 2551 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, 2552 LocTy Loc) { 2553 BasicBlock *BB; 2554 if (Name.empty()) 2555 BB = GetBB(NumberedVals.size(), Loc); 2556 else 2557 BB = GetBB(Name, Loc); 2558 if (!BB) return nullptr; // Already diagnosed error. 2559 2560 // Move the block to the end of the function. Forward ref'd blocks are 2561 // inserted wherever they happen to be referenced. 2562 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 2563 2564 // Remove the block from forward ref sets. 2565 if (Name.empty()) { 2566 ForwardRefValIDs.erase(NumberedVals.size()); 2567 NumberedVals.push_back(BB); 2568 } else { 2569 // BB forward references are already in the function symbol table. 2570 ForwardRefVals.erase(Name); 2571 } 2572 2573 return BB; 2574 } 2575 2576 //===----------------------------------------------------------------------===// 2577 // Constants. 2578 //===----------------------------------------------------------------------===// 2579 2580 /// ParseValID - Parse an abstract value that doesn't necessarily have a 2581 /// type implied. For example, if we parse "4" we don't know what integer type 2582 /// it has. The value will later be combined with its type and checked for 2583 /// sanity. PFS is used to convert function-local operands of metadata (since 2584 /// metadata operands are not just parsed here but also converted to values). 2585 /// PFS can be null when we are not parsing metadata values inside a function. 2586 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { 2587 ID.Loc = Lex.getLoc(); 2588 switch (Lex.getKind()) { 2589 default: return TokError("expected value token"); 2590 case lltok::GlobalID: // @42 2591 ID.UIntVal = Lex.getUIntVal(); 2592 ID.Kind = ValID::t_GlobalID; 2593 break; 2594 case lltok::GlobalVar: // @foo 2595 ID.StrVal = Lex.getStrVal(); 2596 ID.Kind = ValID::t_GlobalName; 2597 break; 2598 case lltok::LocalVarID: // %42 2599 ID.UIntVal = Lex.getUIntVal(); 2600 ID.Kind = ValID::t_LocalID; 2601 break; 2602 case lltok::LocalVar: // %foo 2603 ID.StrVal = Lex.getStrVal(); 2604 ID.Kind = ValID::t_LocalName; 2605 break; 2606 case lltok::APSInt: 2607 ID.APSIntVal = Lex.getAPSIntVal(); 2608 ID.Kind = ValID::t_APSInt; 2609 break; 2610 case lltok::APFloat: 2611 ID.APFloatVal = Lex.getAPFloatVal(); 2612 ID.Kind = ValID::t_APFloat; 2613 break; 2614 case lltok::kw_true: 2615 ID.ConstantVal = ConstantInt::getTrue(Context); 2616 ID.Kind = ValID::t_Constant; 2617 break; 2618 case lltok::kw_false: 2619 ID.ConstantVal = ConstantInt::getFalse(Context); 2620 ID.Kind = ValID::t_Constant; 2621 break; 2622 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 2623 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 2624 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 2625 case lltok::kw_none: ID.Kind = ValID::t_None; break; 2626 2627 case lltok::lbrace: { 2628 // ValID ::= '{' ConstVector '}' 2629 Lex.Lex(); 2630 SmallVector<Constant*, 16> Elts; 2631 if (ParseGlobalValueVector(Elts) || 2632 ParseToken(lltok::rbrace, "expected end of struct constant")) 2633 return true; 2634 2635 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 2636 ID.UIntVal = Elts.size(); 2637 memcpy(ID.ConstantStructElts.get(), Elts.data(), 2638 Elts.size() * sizeof(Elts[0])); 2639 ID.Kind = ValID::t_ConstantStruct; 2640 return false; 2641 } 2642 case lltok::less: { 2643 // ValID ::= '<' ConstVector '>' --> Vector. 2644 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 2645 Lex.Lex(); 2646 bool isPackedStruct = EatIfPresent(lltok::lbrace); 2647 2648 SmallVector<Constant*, 16> Elts; 2649 LocTy FirstEltLoc = Lex.getLoc(); 2650 if (ParseGlobalValueVector(Elts) || 2651 (isPackedStruct && 2652 ParseToken(lltok::rbrace, "expected end of packed struct")) || 2653 ParseToken(lltok::greater, "expected end of constant")) 2654 return true; 2655 2656 if (isPackedStruct) { 2657 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 2658 memcpy(ID.ConstantStructElts.get(), Elts.data(), 2659 Elts.size() * sizeof(Elts[0])); 2660 ID.UIntVal = Elts.size(); 2661 ID.Kind = ValID::t_PackedConstantStruct; 2662 return false; 2663 } 2664 2665 if (Elts.empty()) 2666 return Error(ID.Loc, "constant vector must not be empty"); 2667 2668 if (!Elts[0]->getType()->isIntegerTy() && 2669 !Elts[0]->getType()->isFloatingPointTy() && 2670 !Elts[0]->getType()->isPointerTy()) 2671 return Error(FirstEltLoc, 2672 "vector elements must have integer, pointer or floating point type"); 2673 2674 // Verify that all the vector elements have the same type. 2675 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 2676 if (Elts[i]->getType() != Elts[0]->getType()) 2677 return Error(FirstEltLoc, 2678 "vector element #" + Twine(i) + 2679 " is not of type '" + getTypeString(Elts[0]->getType())); 2680 2681 ID.ConstantVal = ConstantVector::get(Elts); 2682 ID.Kind = ValID::t_Constant; 2683 return false; 2684 } 2685 case lltok::lsquare: { // Array Constant 2686 Lex.Lex(); 2687 SmallVector<Constant*, 16> Elts; 2688 LocTy FirstEltLoc = Lex.getLoc(); 2689 if (ParseGlobalValueVector(Elts) || 2690 ParseToken(lltok::rsquare, "expected end of array constant")) 2691 return true; 2692 2693 // Handle empty element. 2694 if (Elts.empty()) { 2695 // Use undef instead of an array because it's inconvenient to determine 2696 // the element type at this point, there being no elements to examine. 2697 ID.Kind = ValID::t_EmptyArray; 2698 return false; 2699 } 2700 2701 if (!Elts[0]->getType()->isFirstClassType()) 2702 return Error(FirstEltLoc, "invalid array element type: " + 2703 getTypeString(Elts[0]->getType())); 2704 2705 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 2706 2707 // Verify all elements are correct type! 2708 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 2709 if (Elts[i]->getType() != Elts[0]->getType()) 2710 return Error(FirstEltLoc, 2711 "array element #" + Twine(i) + 2712 " is not of type '" + getTypeString(Elts[0]->getType())); 2713 } 2714 2715 ID.ConstantVal = ConstantArray::get(ATy, Elts); 2716 ID.Kind = ValID::t_Constant; 2717 return false; 2718 } 2719 case lltok::kw_c: // c "foo" 2720 Lex.Lex(); 2721 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 2722 false); 2723 if (ParseToken(lltok::StringConstant, "expected string")) return true; 2724 ID.Kind = ValID::t_Constant; 2725 return false; 2726 2727 case lltok::kw_asm: { 2728 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 2729 // STRINGCONSTANT 2730 bool HasSideEffect, AlignStack, AsmDialect; 2731 Lex.Lex(); 2732 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 2733 ParseOptionalToken(lltok::kw_alignstack, AlignStack) || 2734 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 2735 ParseStringConstant(ID.StrVal) || 2736 ParseToken(lltok::comma, "expected comma in inline asm expression") || 2737 ParseToken(lltok::StringConstant, "expected constraint string")) 2738 return true; 2739 ID.StrVal2 = Lex.getStrVal(); 2740 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) | 2741 (unsigned(AsmDialect)<<2); 2742 ID.Kind = ValID::t_InlineAsm; 2743 return false; 2744 } 2745 2746 case lltok::kw_blockaddress: { 2747 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 2748 Lex.Lex(); 2749 2750 ValID Fn, Label; 2751 2752 if (ParseToken(lltok::lparen, "expected '(' in block address expression") || 2753 ParseValID(Fn) || 2754 ParseToken(lltok::comma, "expected comma in block address expression")|| 2755 ParseValID(Label) || 2756 ParseToken(lltok::rparen, "expected ')' in block address expression")) 2757 return true; 2758 2759 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 2760 return Error(Fn.Loc, "expected function name in blockaddress"); 2761 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 2762 return Error(Label.Loc, "expected basic block name in blockaddress"); 2763 2764 // Try to find the function (but skip it if it's forward-referenced). 2765 GlobalValue *GV = nullptr; 2766 if (Fn.Kind == ValID::t_GlobalID) { 2767 if (Fn.UIntVal < NumberedVals.size()) 2768 GV = NumberedVals[Fn.UIntVal]; 2769 } else if (!ForwardRefVals.count(Fn.StrVal)) { 2770 GV = M->getNamedValue(Fn.StrVal); 2771 } 2772 Function *F = nullptr; 2773 if (GV) { 2774 // Confirm that it's actually a function with a definition. 2775 if (!isa<Function>(GV)) 2776 return Error(Fn.Loc, "expected function name in blockaddress"); 2777 F = cast<Function>(GV); 2778 if (F->isDeclaration()) 2779 return Error(Fn.Loc, "cannot take blockaddress inside a declaration"); 2780 } 2781 2782 if (!F) { 2783 // Make a global variable as a placeholder for this reference. 2784 GlobalValue *&FwdRef = 2785 ForwardRefBlockAddresses.insert(std::make_pair( 2786 std::move(Fn), 2787 std::map<ValID, GlobalValue *>())) 2788 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 2789 .first->second; 2790 if (!FwdRef) 2791 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 2792 GlobalValue::InternalLinkage, nullptr, ""); 2793 ID.ConstantVal = FwdRef; 2794 ID.Kind = ValID::t_Constant; 2795 return false; 2796 } 2797 2798 // We found the function; now find the basic block. Don't use PFS, since we 2799 // might be inside a constant expression. 2800 BasicBlock *BB; 2801 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 2802 if (Label.Kind == ValID::t_LocalID) 2803 BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc); 2804 else 2805 BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc); 2806 if (!BB) 2807 return Error(Label.Loc, "referenced value is not a basic block"); 2808 } else { 2809 if (Label.Kind == ValID::t_LocalID) 2810 return Error(Label.Loc, "cannot take address of numeric label after " 2811 "the function is defined"); 2812 BB = dyn_cast_or_null<BasicBlock>( 2813 F->getValueSymbolTable().lookup(Label.StrVal)); 2814 if (!BB) 2815 return Error(Label.Loc, "referenced value is not a basic block"); 2816 } 2817 2818 ID.ConstantVal = BlockAddress::get(F, BB); 2819 ID.Kind = ValID::t_Constant; 2820 return false; 2821 } 2822 2823 case lltok::kw_trunc: 2824 case lltok::kw_zext: 2825 case lltok::kw_sext: 2826 case lltok::kw_fptrunc: 2827 case lltok::kw_fpext: 2828 case lltok::kw_bitcast: 2829 case lltok::kw_addrspacecast: 2830 case lltok::kw_uitofp: 2831 case lltok::kw_sitofp: 2832 case lltok::kw_fptoui: 2833 case lltok::kw_fptosi: 2834 case lltok::kw_inttoptr: 2835 case lltok::kw_ptrtoint: { 2836 unsigned Opc = Lex.getUIntVal(); 2837 Type *DestTy = nullptr; 2838 Constant *SrcVal; 2839 Lex.Lex(); 2840 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || 2841 ParseGlobalTypeAndValue(SrcVal) || 2842 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 2843 ParseType(DestTy) || 2844 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 2845 return true; 2846 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 2847 return Error(ID.Loc, "invalid cast opcode for cast from '" + 2848 getTypeString(SrcVal->getType()) + "' to '" + 2849 getTypeString(DestTy) + "'"); 2850 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 2851 SrcVal, DestTy); 2852 ID.Kind = ValID::t_Constant; 2853 return false; 2854 } 2855 case lltok::kw_extractvalue: { 2856 Lex.Lex(); 2857 Constant *Val; 2858 SmallVector<unsigned, 4> Indices; 2859 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| 2860 ParseGlobalTypeAndValue(Val) || 2861 ParseIndexList(Indices) || 2862 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 2863 return true; 2864 2865 if (!Val->getType()->isAggregateType()) 2866 return Error(ID.Loc, "extractvalue operand must be aggregate type"); 2867 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 2868 return Error(ID.Loc, "invalid indices for extractvalue"); 2869 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 2870 ID.Kind = ValID::t_Constant; 2871 return false; 2872 } 2873 case lltok::kw_insertvalue: { 2874 Lex.Lex(); 2875 Constant *Val0, *Val1; 2876 SmallVector<unsigned, 4> Indices; 2877 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| 2878 ParseGlobalTypeAndValue(Val0) || 2879 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| 2880 ParseGlobalTypeAndValue(Val1) || 2881 ParseIndexList(Indices) || 2882 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 2883 return true; 2884 if (!Val0->getType()->isAggregateType()) 2885 return Error(ID.Loc, "insertvalue operand must be aggregate type"); 2886 Type *IndexedType = 2887 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 2888 if (!IndexedType) 2889 return Error(ID.Loc, "invalid indices for insertvalue"); 2890 if (IndexedType != Val1->getType()) 2891 return Error(ID.Loc, "insertvalue operand and field disagree in type: '" + 2892 getTypeString(Val1->getType()) + 2893 "' instead of '" + getTypeString(IndexedType) + 2894 "'"); 2895 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 2896 ID.Kind = ValID::t_Constant; 2897 return false; 2898 } 2899 case lltok::kw_icmp: 2900 case lltok::kw_fcmp: { 2901 unsigned PredVal, Opc = Lex.getUIntVal(); 2902 Constant *Val0, *Val1; 2903 Lex.Lex(); 2904 if (ParseCmpPredicate(PredVal, Opc) || 2905 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || 2906 ParseGlobalTypeAndValue(Val0) || 2907 ParseToken(lltok::comma, "expected comma in compare constantexpr") || 2908 ParseGlobalTypeAndValue(Val1) || 2909 ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) 2910 return true; 2911 2912 if (Val0->getType() != Val1->getType()) 2913 return Error(ID.Loc, "compare operands must have the same type"); 2914 2915 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 2916 2917 if (Opc == Instruction::FCmp) { 2918 if (!Val0->getType()->isFPOrFPVectorTy()) 2919 return Error(ID.Loc, "fcmp requires floating point operands"); 2920 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 2921 } else { 2922 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 2923 if (!Val0->getType()->isIntOrIntVectorTy() && 2924 !Val0->getType()->getScalarType()->isPointerTy()) 2925 return Error(ID.Loc, "icmp requires pointer or integer operands"); 2926 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 2927 } 2928 ID.Kind = ValID::t_Constant; 2929 return false; 2930 } 2931 2932 // Binary Operators. 2933 case lltok::kw_add: 2934 case lltok::kw_fadd: 2935 case lltok::kw_sub: 2936 case lltok::kw_fsub: 2937 case lltok::kw_mul: 2938 case lltok::kw_fmul: 2939 case lltok::kw_udiv: 2940 case lltok::kw_sdiv: 2941 case lltok::kw_fdiv: 2942 case lltok::kw_urem: 2943 case lltok::kw_srem: 2944 case lltok::kw_frem: 2945 case lltok::kw_shl: 2946 case lltok::kw_lshr: 2947 case lltok::kw_ashr: { 2948 bool NUW = false; 2949 bool NSW = false; 2950 bool Exact = false; 2951 unsigned Opc = Lex.getUIntVal(); 2952 Constant *Val0, *Val1; 2953 Lex.Lex(); 2954 LocTy ModifierLoc = Lex.getLoc(); 2955 if (Opc == Instruction::Add || Opc == Instruction::Sub || 2956 Opc == Instruction::Mul || Opc == Instruction::Shl) { 2957 if (EatIfPresent(lltok::kw_nuw)) 2958 NUW = true; 2959 if (EatIfPresent(lltok::kw_nsw)) { 2960 NSW = true; 2961 if (EatIfPresent(lltok::kw_nuw)) 2962 NUW = true; 2963 } 2964 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 2965 Opc == Instruction::LShr || Opc == Instruction::AShr) { 2966 if (EatIfPresent(lltok::kw_exact)) 2967 Exact = true; 2968 } 2969 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || 2970 ParseGlobalTypeAndValue(Val0) || 2971 ParseToken(lltok::comma, "expected comma in binary constantexpr") || 2972 ParseGlobalTypeAndValue(Val1) || 2973 ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) 2974 return true; 2975 if (Val0->getType() != Val1->getType()) 2976 return Error(ID.Loc, "operands of constexpr must have same type"); 2977 if (!Val0->getType()->isIntOrIntVectorTy()) { 2978 if (NUW) 2979 return Error(ModifierLoc, "nuw only applies to integer operations"); 2980 if (NSW) 2981 return Error(ModifierLoc, "nsw only applies to integer operations"); 2982 } 2983 // Check that the type is valid for the operator. 2984 switch (Opc) { 2985 case Instruction::Add: 2986 case Instruction::Sub: 2987 case Instruction::Mul: 2988 case Instruction::UDiv: 2989 case Instruction::SDiv: 2990 case Instruction::URem: 2991 case Instruction::SRem: 2992 case Instruction::Shl: 2993 case Instruction::AShr: 2994 case Instruction::LShr: 2995 if (!Val0->getType()->isIntOrIntVectorTy()) 2996 return Error(ID.Loc, "constexpr requires integer operands"); 2997 break; 2998 case Instruction::FAdd: 2999 case Instruction::FSub: 3000 case Instruction::FMul: 3001 case Instruction::FDiv: 3002 case Instruction::FRem: 3003 if (!Val0->getType()->isFPOrFPVectorTy()) 3004 return Error(ID.Loc, "constexpr requires fp operands"); 3005 break; 3006 default: llvm_unreachable("Unknown binary operator!"); 3007 } 3008 unsigned Flags = 0; 3009 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3010 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3011 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3012 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3013 ID.ConstantVal = C; 3014 ID.Kind = ValID::t_Constant; 3015 return false; 3016 } 3017 3018 // Logical Operations 3019 case lltok::kw_and: 3020 case lltok::kw_or: 3021 case lltok::kw_xor: { 3022 unsigned Opc = Lex.getUIntVal(); 3023 Constant *Val0, *Val1; 3024 Lex.Lex(); 3025 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3026 ParseGlobalTypeAndValue(Val0) || 3027 ParseToken(lltok::comma, "expected comma in logical constantexpr") || 3028 ParseGlobalTypeAndValue(Val1) || 3029 ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3030 return true; 3031 if (Val0->getType() != Val1->getType()) 3032 return Error(ID.Loc, "operands of constexpr must have same type"); 3033 if (!Val0->getType()->isIntOrIntVectorTy()) 3034 return Error(ID.Loc, 3035 "constexpr requires integer or integer vector operands"); 3036 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3037 ID.Kind = ValID::t_Constant; 3038 return false; 3039 } 3040 3041 case lltok::kw_getelementptr: 3042 case lltok::kw_shufflevector: 3043 case lltok::kw_insertelement: 3044 case lltok::kw_extractelement: 3045 case lltok::kw_select: { 3046 unsigned Opc = Lex.getUIntVal(); 3047 SmallVector<Constant*, 16> Elts; 3048 bool InBounds = false; 3049 Type *Ty; 3050 Lex.Lex(); 3051 3052 if (Opc == Instruction::GetElementPtr) 3053 InBounds = EatIfPresent(lltok::kw_inbounds); 3054 3055 if (ParseToken(lltok::lparen, "expected '(' in constantexpr")) 3056 return true; 3057 3058 LocTy ExplicitTypeLoc = Lex.getLoc(); 3059 if (Opc == Instruction::GetElementPtr) { 3060 if (ParseType(Ty) || 3061 ParseToken(lltok::comma, "expected comma after getelementptr's type")) 3062 return true; 3063 } 3064 3065 if (ParseGlobalValueVector(Elts) || 3066 ParseToken(lltok::rparen, "expected ')' in constantexpr")) 3067 return true; 3068 3069 if (Opc == Instruction::GetElementPtr) { 3070 if (Elts.size() == 0 || 3071 !Elts[0]->getType()->getScalarType()->isPointerTy()) 3072 return Error(ID.Loc, "base of getelementptr must be a pointer"); 3073 3074 Type *BaseType = Elts[0]->getType(); 3075 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3076 if (Ty != BasePointerType->getElementType()) 3077 return Error( 3078 ExplicitTypeLoc, 3079 "explicit pointee type doesn't match operand's pointee type"); 3080 3081 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3082 for (Constant *Val : Indices) { 3083 Type *ValTy = Val->getType(); 3084 if (!ValTy->getScalarType()->isIntegerTy()) 3085 return Error(ID.Loc, "getelementptr index must be an integer"); 3086 if (ValTy->isVectorTy() != BaseType->isVectorTy()) 3087 return Error(ID.Loc, "getelementptr index type missmatch"); 3088 if (ValTy->isVectorTy()) { 3089 unsigned ValNumEl = ValTy->getVectorNumElements(); 3090 unsigned PtrNumEl = BaseType->getVectorNumElements(); 3091 if (ValNumEl != PtrNumEl) 3092 return Error( 3093 ID.Loc, 3094 "getelementptr vector index has a wrong number of elements"); 3095 } 3096 } 3097 3098 SmallPtrSet<Type*, 4> Visited; 3099 if (!Indices.empty() && !Ty->isSized(&Visited)) 3100 return Error(ID.Loc, "base element of getelementptr must be sized"); 3101 3102 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3103 return Error(ID.Loc, "invalid getelementptr indices"); 3104 ID.ConstantVal = 3105 ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, InBounds); 3106 } else if (Opc == Instruction::Select) { 3107 if (Elts.size() != 3) 3108 return Error(ID.Loc, "expected three operands to select"); 3109 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3110 Elts[2])) 3111 return Error(ID.Loc, Reason); 3112 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3113 } else if (Opc == Instruction::ShuffleVector) { 3114 if (Elts.size() != 3) 3115 return Error(ID.Loc, "expected three operands to shufflevector"); 3116 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3117 return Error(ID.Loc, "invalid operands to shufflevector"); 3118 ID.ConstantVal = 3119 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); 3120 } else if (Opc == Instruction::ExtractElement) { 3121 if (Elts.size() != 2) 3122 return Error(ID.Loc, "expected two operands to extractelement"); 3123 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3124 return Error(ID.Loc, "invalid extractelement operands"); 3125 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3126 } else { 3127 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3128 if (Elts.size() != 3) 3129 return Error(ID.Loc, "expected three operands to insertelement"); 3130 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3131 return Error(ID.Loc, "invalid insertelement operands"); 3132 ID.ConstantVal = 3133 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3134 } 3135 3136 ID.Kind = ValID::t_Constant; 3137 return false; 3138 } 3139 } 3140 3141 Lex.Lex(); 3142 return false; 3143 } 3144 3145 /// ParseGlobalValue - Parse a global value with the specified type. 3146 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) { 3147 C = nullptr; 3148 ValID ID; 3149 Value *V = nullptr; 3150 bool Parsed = ParseValID(ID) || 3151 ConvertValIDToValue(Ty, ID, V, nullptr); 3152 if (V && !(C = dyn_cast<Constant>(V))) 3153 return Error(ID.Loc, "global values must be constants"); 3154 return Parsed; 3155 } 3156 3157 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { 3158 Type *Ty = nullptr; 3159 return ParseType(Ty) || 3160 ParseGlobalValue(Ty, V); 3161 } 3162 3163 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3164 C = nullptr; 3165 3166 LocTy KwLoc = Lex.getLoc(); 3167 if (!EatIfPresent(lltok::kw_comdat)) 3168 return false; 3169 3170 if (EatIfPresent(lltok::lparen)) { 3171 if (Lex.getKind() != lltok::ComdatVar) 3172 return TokError("expected comdat variable"); 3173 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3174 Lex.Lex(); 3175 if (ParseToken(lltok::rparen, "expected ')' after comdat var")) 3176 return true; 3177 } else { 3178 if (GlobalName.empty()) 3179 return TokError("comdat cannot be unnamed"); 3180 C = getComdat(GlobalName, KwLoc); 3181 } 3182 3183 return false; 3184 } 3185 3186 /// ParseGlobalValueVector 3187 /// ::= /*empty*/ 3188 /// ::= TypeAndValue (',' TypeAndValue)* 3189 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts) { 3190 // Empty list. 3191 if (Lex.getKind() == lltok::rbrace || 3192 Lex.getKind() == lltok::rsquare || 3193 Lex.getKind() == lltok::greater || 3194 Lex.getKind() == lltok::rparen) 3195 return false; 3196 3197 Constant *C; 3198 if (ParseGlobalTypeAndValue(C)) return true; 3199 Elts.push_back(C); 3200 3201 while (EatIfPresent(lltok::comma)) { 3202 if (ParseGlobalTypeAndValue(C)) return true; 3203 Elts.push_back(C); 3204 } 3205 3206 return false; 3207 } 3208 3209 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) { 3210 SmallVector<Metadata *, 16> Elts; 3211 if (ParseMDNodeVector(Elts)) 3212 return true; 3213 3214 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3215 return false; 3216 } 3217 3218 /// MDNode: 3219 /// ::= !{ ... } 3220 /// ::= !7 3221 /// ::= !DILocation(...) 3222 bool LLParser::ParseMDNode(MDNode *&N) { 3223 if (Lex.getKind() == lltok::MetadataVar) 3224 return ParseSpecializedMDNode(N); 3225 3226 return ParseToken(lltok::exclaim, "expected '!' here") || 3227 ParseMDNodeTail(N); 3228 } 3229 3230 bool LLParser::ParseMDNodeTail(MDNode *&N) { 3231 // !{ ... } 3232 if (Lex.getKind() == lltok::lbrace) 3233 return ParseMDTuple(N); 3234 3235 // !42 3236 return ParseMDNodeID(N); 3237 } 3238 3239 namespace { 3240 3241 /// Structure to represent an optional metadata field. 3242 template <class FieldTy> struct MDFieldImpl { 3243 typedef MDFieldImpl ImplTy; 3244 FieldTy Val; 3245 bool Seen; 3246 3247 void assign(FieldTy Val) { 3248 Seen = true; 3249 this->Val = std::move(Val); 3250 } 3251 3252 explicit MDFieldImpl(FieldTy Default) 3253 : Val(std::move(Default)), Seen(false) {} 3254 }; 3255 3256 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 3257 uint64_t Max; 3258 3259 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 3260 : ImplTy(Default), Max(Max) {} 3261 }; 3262 struct LineField : public MDUnsignedField { 3263 LineField() : MDUnsignedField(0, UINT32_MAX) {} 3264 }; 3265 struct ColumnField : public MDUnsignedField { 3266 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 3267 }; 3268 struct DwarfTagField : public MDUnsignedField { 3269 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 3270 DwarfTagField(dwarf::Tag DefaultTag) 3271 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 3272 }; 3273 struct DwarfAttEncodingField : public MDUnsignedField { 3274 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 3275 }; 3276 struct DwarfVirtualityField : public MDUnsignedField { 3277 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 3278 }; 3279 struct DwarfLangField : public MDUnsignedField { 3280 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 3281 }; 3282 3283 struct DIFlagField : public MDUnsignedField { 3284 DIFlagField() : MDUnsignedField(0, UINT32_MAX) {} 3285 }; 3286 3287 struct MDSignedField : public MDFieldImpl<int64_t> { 3288 int64_t Min; 3289 int64_t Max; 3290 3291 MDSignedField(int64_t Default = 0) 3292 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 3293 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 3294 : ImplTy(Default), Min(Min), Max(Max) {} 3295 }; 3296 3297 struct MDBoolField : public MDFieldImpl<bool> { 3298 MDBoolField(bool Default = false) : ImplTy(Default) {} 3299 }; 3300 struct MDField : public MDFieldImpl<Metadata *> { 3301 bool AllowNull; 3302 3303 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 3304 }; 3305 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> { 3306 MDConstant() : ImplTy(nullptr) {} 3307 }; 3308 struct MDStringField : public MDFieldImpl<MDString *> { 3309 bool AllowEmpty; 3310 MDStringField(bool AllowEmpty = true) 3311 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 3312 }; 3313 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 3314 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 3315 }; 3316 3317 } // end namespace 3318 3319 namespace llvm { 3320 3321 template <> 3322 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3323 MDUnsignedField &Result) { 3324 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 3325 return TokError("expected unsigned integer"); 3326 3327 auto &U = Lex.getAPSIntVal(); 3328 if (U.ugt(Result.Max)) 3329 return TokError("value for '" + Name + "' too large, limit is " + 3330 Twine(Result.Max)); 3331 Result.assign(U.getZExtValue()); 3332 assert(Result.Val <= Result.Max && "Expected value in range"); 3333 Lex.Lex(); 3334 return false; 3335 } 3336 3337 template <> 3338 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) { 3339 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3340 } 3341 template <> 3342 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 3343 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3344 } 3345 3346 template <> 3347 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 3348 if (Lex.getKind() == lltok::APSInt) 3349 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3350 3351 if (Lex.getKind() != lltok::DwarfTag) 3352 return TokError("expected DWARF tag"); 3353 3354 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 3355 if (Tag == dwarf::DW_TAG_invalid) 3356 return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 3357 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 3358 3359 Result.assign(Tag); 3360 Lex.Lex(); 3361 return false; 3362 } 3363 3364 template <> 3365 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3366 DwarfVirtualityField &Result) { 3367 if (Lex.getKind() == lltok::APSInt) 3368 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3369 3370 if (Lex.getKind() != lltok::DwarfVirtuality) 3371 return TokError("expected DWARF virtuality code"); 3372 3373 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 3374 if (!Virtuality) 3375 return TokError("invalid DWARF virtuality code" + Twine(" '") + 3376 Lex.getStrVal() + "'"); 3377 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 3378 Result.assign(Virtuality); 3379 Lex.Lex(); 3380 return false; 3381 } 3382 3383 template <> 3384 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 3385 if (Lex.getKind() == lltok::APSInt) 3386 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3387 3388 if (Lex.getKind() != lltok::DwarfLang) 3389 return TokError("expected DWARF language"); 3390 3391 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 3392 if (!Lang) 3393 return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 3394 "'"); 3395 assert(Lang <= Result.Max && "Expected valid DWARF language"); 3396 Result.assign(Lang); 3397 Lex.Lex(); 3398 return false; 3399 } 3400 3401 template <> 3402 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3403 DwarfAttEncodingField &Result) { 3404 if (Lex.getKind() == lltok::APSInt) 3405 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3406 3407 if (Lex.getKind() != lltok::DwarfAttEncoding) 3408 return TokError("expected DWARF type attribute encoding"); 3409 3410 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 3411 if (!Encoding) 3412 return TokError("invalid DWARF type attribute encoding" + Twine(" '") + 3413 Lex.getStrVal() + "'"); 3414 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 3415 Result.assign(Encoding); 3416 Lex.Lex(); 3417 return false; 3418 } 3419 3420 /// DIFlagField 3421 /// ::= uint32 3422 /// ::= DIFlagVector 3423 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 3424 template <> 3425 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 3426 assert(Result.Max == UINT32_MAX && "Expected only 32-bits"); 3427 3428 // Parser for a single flag. 3429 auto parseFlag = [&](unsigned &Val) { 3430 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) 3431 return ParseUInt32(Val); 3432 3433 if (Lex.getKind() != lltok::DIFlag) 3434 return TokError("expected debug info flag"); 3435 3436 Val = DINode::getFlag(Lex.getStrVal()); 3437 if (!Val) 3438 return TokError(Twine("invalid debug info flag flag '") + 3439 Lex.getStrVal() + "'"); 3440 Lex.Lex(); 3441 return false; 3442 }; 3443 3444 // Parse the flags and combine them together. 3445 unsigned Combined = 0; 3446 do { 3447 unsigned Val; 3448 if (parseFlag(Val)) 3449 return true; 3450 Combined |= Val; 3451 } while (EatIfPresent(lltok::bar)); 3452 3453 Result.assign(Combined); 3454 return false; 3455 } 3456 3457 template <> 3458 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3459 MDSignedField &Result) { 3460 if (Lex.getKind() != lltok::APSInt) 3461 return TokError("expected signed integer"); 3462 3463 auto &S = Lex.getAPSIntVal(); 3464 if (S < Result.Min) 3465 return TokError("value for '" + Name + "' too small, limit is " + 3466 Twine(Result.Min)); 3467 if (S > Result.Max) 3468 return TokError("value for '" + Name + "' too large, limit is " + 3469 Twine(Result.Max)); 3470 Result.assign(S.getExtValue()); 3471 assert(Result.Val >= Result.Min && "Expected value in range"); 3472 assert(Result.Val <= Result.Max && "Expected value in range"); 3473 Lex.Lex(); 3474 return false; 3475 } 3476 3477 template <> 3478 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 3479 switch (Lex.getKind()) { 3480 default: 3481 return TokError("expected 'true' or 'false'"); 3482 case lltok::kw_true: 3483 Result.assign(true); 3484 break; 3485 case lltok::kw_false: 3486 Result.assign(false); 3487 break; 3488 } 3489 Lex.Lex(); 3490 return false; 3491 } 3492 3493 template <> 3494 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) { 3495 if (Lex.getKind() == lltok::kw_null) { 3496 if (!Result.AllowNull) 3497 return TokError("'" + Name + "' cannot be null"); 3498 Lex.Lex(); 3499 Result.assign(nullptr); 3500 return false; 3501 } 3502 3503 Metadata *MD; 3504 if (ParseMetadata(MD, nullptr)) 3505 return true; 3506 3507 Result.assign(MD); 3508 return false; 3509 } 3510 3511 template <> 3512 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDConstant &Result) { 3513 Metadata *MD; 3514 if (ParseValueAsMetadata(MD, "expected constant", nullptr)) 3515 return true; 3516 3517 Result.assign(cast<ConstantAsMetadata>(MD)); 3518 return false; 3519 } 3520 3521 template <> 3522 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 3523 LocTy ValueLoc = Lex.getLoc(); 3524 std::string S; 3525 if (ParseStringConstant(S)) 3526 return true; 3527 3528 if (!Result.AllowEmpty && S.empty()) 3529 return Error(ValueLoc, "'" + Name + "' cannot be empty"); 3530 3531 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 3532 return false; 3533 } 3534 3535 template <> 3536 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 3537 SmallVector<Metadata *, 4> MDs; 3538 if (ParseMDNodeVector(MDs)) 3539 return true; 3540 3541 Result.assign(std::move(MDs)); 3542 return false; 3543 } 3544 3545 } // end namespace llvm 3546 3547 template <class ParserTy> 3548 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) { 3549 do { 3550 if (Lex.getKind() != lltok::LabelStr) 3551 return TokError("expected field label here"); 3552 3553 if (parseField()) 3554 return true; 3555 } while (EatIfPresent(lltok::comma)); 3556 3557 return false; 3558 } 3559 3560 template <class ParserTy> 3561 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) { 3562 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 3563 Lex.Lex(); 3564 3565 if (ParseToken(lltok::lparen, "expected '(' here")) 3566 return true; 3567 if (Lex.getKind() != lltok::rparen) 3568 if (ParseMDFieldsImplBody(parseField)) 3569 return true; 3570 3571 ClosingLoc = Lex.getLoc(); 3572 return ParseToken(lltok::rparen, "expected ')' here"); 3573 } 3574 3575 template <class FieldTy> 3576 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) { 3577 if (Result.Seen) 3578 return TokError("field '" + Name + "' cannot be specified more than once"); 3579 3580 LocTy Loc = Lex.getLoc(); 3581 Lex.Lex(); 3582 return ParseMDField(Loc, Name, Result); 3583 } 3584 3585 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 3586 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 3587 3588 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 3589 if (Lex.getStrVal() == #CLASS) \ 3590 return Parse##CLASS(N, IsDistinct); 3591 #include "llvm/IR/Metadata.def" 3592 3593 return TokError("expected metadata type"); 3594 } 3595 3596 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 3597 #define NOP_FIELD(NAME, TYPE, INIT) 3598 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 3599 if (!NAME.Seen) \ 3600 return Error(ClosingLoc, "missing required field '" #NAME "'"); 3601 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 3602 if (Lex.getStrVal() == #NAME) \ 3603 return ParseMDField(#NAME, NAME); 3604 #define PARSE_MD_FIELDS() \ 3605 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 3606 do { \ 3607 LocTy ClosingLoc; \ 3608 if (ParseMDFieldsImpl([&]() -> bool { \ 3609 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 3610 return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \ 3611 }, ClosingLoc)) \ 3612 return true; \ 3613 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 3614 } while (false) 3615 #define GET_OR_DISTINCT(CLASS, ARGS) \ 3616 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 3617 3618 /// ParseDILocationFields: 3619 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6) 3620 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) { 3621 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3622 OPTIONAL(line, LineField, ); \ 3623 OPTIONAL(column, ColumnField, ); \ 3624 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 3625 OPTIONAL(inlinedAt, MDField, ); 3626 PARSE_MD_FIELDS(); 3627 #undef VISIT_MD_FIELDS 3628 3629 Result = GET_OR_DISTINCT( 3630 DILocation, (Context, line.Val, column.Val, scope.Val, inlinedAt.Val)); 3631 return false; 3632 } 3633 3634 /// ParseGenericDINode: 3635 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 3636 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) { 3637 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3638 REQUIRED(tag, DwarfTagField, ); \ 3639 OPTIONAL(header, MDStringField, ); \ 3640 OPTIONAL(operands, MDFieldList, ); 3641 PARSE_MD_FIELDS(); 3642 #undef VISIT_MD_FIELDS 3643 3644 Result = GET_OR_DISTINCT(GenericDINode, 3645 (Context, tag.Val, header.Val, operands.Val)); 3646 return false; 3647 } 3648 3649 /// ParseDISubrange: 3650 /// ::= !DISubrange(count: 30, lowerBound: 2) 3651 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) { 3652 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3653 REQUIRED(count, MDSignedField, (-1, -1, INT64_MAX)); \ 3654 OPTIONAL(lowerBound, MDSignedField, ); 3655 PARSE_MD_FIELDS(); 3656 #undef VISIT_MD_FIELDS 3657 3658 Result = GET_OR_DISTINCT(DISubrange, (Context, count.Val, lowerBound.Val)); 3659 return false; 3660 } 3661 3662 /// ParseDIEnumerator: 3663 /// ::= !DIEnumerator(value: 30, name: "SomeKind") 3664 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) { 3665 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3666 REQUIRED(name, MDStringField, ); \ 3667 REQUIRED(value, MDSignedField, ); 3668 PARSE_MD_FIELDS(); 3669 #undef VISIT_MD_FIELDS 3670 3671 Result = GET_OR_DISTINCT(DIEnumerator, (Context, value.Val, name.Val)); 3672 return false; 3673 } 3674 3675 /// ParseDIBasicType: 3676 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32) 3677 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) { 3678 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3679 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 3680 OPTIONAL(name, MDStringField, ); \ 3681 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 3682 OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX)); \ 3683 OPTIONAL(encoding, DwarfAttEncodingField, ); 3684 PARSE_MD_FIELDS(); 3685 #undef VISIT_MD_FIELDS 3686 3687 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 3688 align.Val, encoding.Val)); 3689 return false; 3690 } 3691 3692 /// ParseDIDerivedType: 3693 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 3694 /// line: 7, scope: !1, baseType: !2, size: 32, 3695 /// align: 32, offset: 0, flags: 0, extraData: !3) 3696 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) { 3697 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3698 REQUIRED(tag, DwarfTagField, ); \ 3699 OPTIONAL(name, MDStringField, ); \ 3700 OPTIONAL(file, MDField, ); \ 3701 OPTIONAL(line, LineField, ); \ 3702 OPTIONAL(scope, MDField, ); \ 3703 REQUIRED(baseType, MDField, ); \ 3704 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 3705 OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX)); \ 3706 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 3707 OPTIONAL(flags, DIFlagField, ); \ 3708 OPTIONAL(extraData, MDField, ); 3709 PARSE_MD_FIELDS(); 3710 #undef VISIT_MD_FIELDS 3711 3712 Result = GET_OR_DISTINCT(DIDerivedType, 3713 (Context, tag.Val, name.Val, file.Val, line.Val, 3714 scope.Val, baseType.Val, size.Val, align.Val, 3715 offset.Val, flags.Val, extraData.Val)); 3716 return false; 3717 } 3718 3719 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) { 3720 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3721 REQUIRED(tag, DwarfTagField, ); \ 3722 OPTIONAL(name, MDStringField, ); \ 3723 OPTIONAL(file, MDField, ); \ 3724 OPTIONAL(line, LineField, ); \ 3725 OPTIONAL(scope, MDField, ); \ 3726 OPTIONAL(baseType, MDField, ); \ 3727 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 3728 OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX)); \ 3729 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 3730 OPTIONAL(flags, DIFlagField, ); \ 3731 OPTIONAL(elements, MDField, ); \ 3732 OPTIONAL(runtimeLang, DwarfLangField, ); \ 3733 OPTIONAL(vtableHolder, MDField, ); \ 3734 OPTIONAL(templateParams, MDField, ); \ 3735 OPTIONAL(identifier, MDStringField, ); 3736 PARSE_MD_FIELDS(); 3737 #undef VISIT_MD_FIELDS 3738 3739 Result = GET_OR_DISTINCT( 3740 DICompositeType, 3741 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 3742 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 3743 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val)); 3744 return false; 3745 } 3746 3747 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) { 3748 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3749 OPTIONAL(flags, DIFlagField, ); \ 3750 REQUIRED(types, MDField, ); 3751 PARSE_MD_FIELDS(); 3752 #undef VISIT_MD_FIELDS 3753 3754 Result = GET_OR_DISTINCT(DISubroutineType, (Context, flags.Val, types.Val)); 3755 return false; 3756 } 3757 3758 /// ParseDIFileType: 3759 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir") 3760 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) { 3761 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3762 REQUIRED(filename, MDStringField, ); \ 3763 REQUIRED(directory, MDStringField, ); 3764 PARSE_MD_FIELDS(); 3765 #undef VISIT_MD_FIELDS 3766 3767 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val)); 3768 return false; 3769 } 3770 3771 /// ParseDICompileUnit: 3772 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 3773 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 3774 /// splitDebugFilename: "abc.debug", emissionKind: 1, 3775 /// enums: !1, retainedTypes: !2, subprograms: !3, 3776 /// globals: !4, imports: !5, dwoId: 0x0abcd) 3777 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) { 3778 if (!IsDistinct) 3779 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 3780 3781 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3782 REQUIRED(language, DwarfLangField, ); \ 3783 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 3784 OPTIONAL(producer, MDStringField, ); \ 3785 OPTIONAL(isOptimized, MDBoolField, ); \ 3786 OPTIONAL(flags, MDStringField, ); \ 3787 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 3788 OPTIONAL(splitDebugFilename, MDStringField, ); \ 3789 OPTIONAL(emissionKind, MDUnsignedField, (0, UINT32_MAX)); \ 3790 OPTIONAL(enums, MDField, ); \ 3791 OPTIONAL(retainedTypes, MDField, ); \ 3792 OPTIONAL(subprograms, MDField, ); \ 3793 OPTIONAL(globals, MDField, ); \ 3794 OPTIONAL(imports, MDField, ); \ 3795 OPTIONAL(dwoId, MDUnsignedField, ); 3796 PARSE_MD_FIELDS(); 3797 #undef VISIT_MD_FIELDS 3798 3799 Result = DICompileUnit::getDistinct( 3800 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 3801 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 3802 retainedTypes.Val, subprograms.Val, globals.Val, imports.Val, dwoId.Val); 3803 return false; 3804 } 3805 3806 /// ParseDISubprogram: 3807 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 3808 /// file: !1, line: 7, type: !2, isLocal: false, 3809 /// isDefinition: true, scopeLine: 8, containingType: !3, 3810 /// virtuality: DW_VIRTUALTIY_pure_virtual, 3811 /// virtualIndex: 10, flags: 11, 3812 /// isOptimized: false, templateParams: !4, declaration: !5, 3813 /// variables: !6) 3814 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) { 3815 auto Loc = Lex.getLoc(); 3816 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3817 OPTIONAL(scope, MDField, ); \ 3818 OPTIONAL(name, MDStringField, ); \ 3819 OPTIONAL(linkageName, MDStringField, ); \ 3820 OPTIONAL(file, MDField, ); \ 3821 OPTIONAL(line, LineField, ); \ 3822 OPTIONAL(type, MDField, ); \ 3823 OPTIONAL(isLocal, MDBoolField, ); \ 3824 OPTIONAL(isDefinition, MDBoolField, (true)); \ 3825 OPTIONAL(scopeLine, LineField, ); \ 3826 OPTIONAL(containingType, MDField, ); \ 3827 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 3828 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 3829 OPTIONAL(flags, DIFlagField, ); \ 3830 OPTIONAL(isOptimized, MDBoolField, ); \ 3831 OPTIONAL(templateParams, MDField, ); \ 3832 OPTIONAL(declaration, MDField, ); \ 3833 OPTIONAL(variables, MDField, ); 3834 PARSE_MD_FIELDS(); 3835 #undef VISIT_MD_FIELDS 3836 3837 if (isDefinition.Val && !IsDistinct) 3838 return Lex.Error( 3839 Loc, 3840 "missing 'distinct', required for !DISubprogram when 'isDefinition'"); 3841 3842 Result = GET_OR_DISTINCT( 3843 DISubprogram, 3844 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 3845 type.Val, isLocal.Val, isDefinition.Val, scopeLine.Val, 3846 containingType.Val, virtuality.Val, virtualIndex.Val, flags.Val, 3847 isOptimized.Val, templateParams.Val, declaration.Val, variables.Val)); 3848 return false; 3849 } 3850 3851 /// ParseDILexicalBlock: 3852 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 3853 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 3854 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3855 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 3856 OPTIONAL(file, MDField, ); \ 3857 OPTIONAL(line, LineField, ); \ 3858 OPTIONAL(column, ColumnField, ); 3859 PARSE_MD_FIELDS(); 3860 #undef VISIT_MD_FIELDS 3861 3862 Result = GET_OR_DISTINCT( 3863 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 3864 return false; 3865 } 3866 3867 /// ParseDILexicalBlockFile: 3868 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 3869 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 3870 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3871 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 3872 OPTIONAL(file, MDField, ); \ 3873 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 3874 PARSE_MD_FIELDS(); 3875 #undef VISIT_MD_FIELDS 3876 3877 Result = GET_OR_DISTINCT(DILexicalBlockFile, 3878 (Context, scope.Val, file.Val, discriminator.Val)); 3879 return false; 3880 } 3881 3882 /// ParseDINamespace: 3883 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 3884 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) { 3885 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3886 REQUIRED(scope, MDField, ); \ 3887 OPTIONAL(file, MDField, ); \ 3888 OPTIONAL(name, MDStringField, ); \ 3889 OPTIONAL(line, LineField, ); 3890 PARSE_MD_FIELDS(); 3891 #undef VISIT_MD_FIELDS 3892 3893 Result = GET_OR_DISTINCT(DINamespace, 3894 (Context, scope.Val, file.Val, name.Val, line.Val)); 3895 return false; 3896 } 3897 3898 /// ParseDIModule: 3899 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG", 3900 /// includePath: "/usr/include", isysroot: "/") 3901 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) { 3902 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3903 REQUIRED(scope, MDField, ); \ 3904 REQUIRED(name, MDStringField, ); \ 3905 OPTIONAL(configMacros, MDStringField, ); \ 3906 OPTIONAL(includePath, MDStringField, ); \ 3907 OPTIONAL(isysroot, MDStringField, ); 3908 PARSE_MD_FIELDS(); 3909 #undef VISIT_MD_FIELDS 3910 3911 Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val, 3912 configMacros.Val, includePath.Val, isysroot.Val)); 3913 return false; 3914 } 3915 3916 /// ParseDITemplateTypeParameter: 3917 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1) 3918 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 3919 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3920 OPTIONAL(name, MDStringField, ); \ 3921 REQUIRED(type, MDField, ); 3922 PARSE_MD_FIELDS(); 3923 #undef VISIT_MD_FIELDS 3924 3925 Result = 3926 GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val)); 3927 return false; 3928 } 3929 3930 /// ParseDITemplateValueParameter: 3931 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 3932 /// name: "V", type: !1, value: i32 7) 3933 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 3934 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3935 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 3936 OPTIONAL(name, MDStringField, ); \ 3937 OPTIONAL(type, MDField, ); \ 3938 REQUIRED(value, MDField, ); 3939 PARSE_MD_FIELDS(); 3940 #undef VISIT_MD_FIELDS 3941 3942 Result = GET_OR_DISTINCT(DITemplateValueParameter, 3943 (Context, tag.Val, name.Val, type.Val, value.Val)); 3944 return false; 3945 } 3946 3947 /// ParseDIGlobalVariable: 3948 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 3949 /// file: !1, line: 7, type: !2, isLocal: false, 3950 /// isDefinition: true, variable: i32* @foo, 3951 /// declaration: !3) 3952 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 3953 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3954 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 3955 OPTIONAL(scope, MDField, ); \ 3956 OPTIONAL(linkageName, MDStringField, ); \ 3957 OPTIONAL(file, MDField, ); \ 3958 OPTIONAL(line, LineField, ); \ 3959 OPTIONAL(type, MDField, ); \ 3960 OPTIONAL(isLocal, MDBoolField, ); \ 3961 OPTIONAL(isDefinition, MDBoolField, (true)); \ 3962 OPTIONAL(variable, MDConstant, ); \ 3963 OPTIONAL(declaration, MDField, ); 3964 PARSE_MD_FIELDS(); 3965 #undef VISIT_MD_FIELDS 3966 3967 Result = GET_OR_DISTINCT(DIGlobalVariable, 3968 (Context, scope.Val, name.Val, linkageName.Val, 3969 file.Val, line.Val, type.Val, isLocal.Val, 3970 isDefinition.Val, variable.Val, declaration.Val)); 3971 return false; 3972 } 3973 3974 /// ParseDILocalVariable: 3975 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 3976 /// file: !1, line: 7, type: !2, arg: 2, flags: 7) 3977 /// ::= !DILocalVariable(scope: !0, name: "foo", 3978 /// file: !1, line: 7, type: !2, arg: 2, flags: 7) 3979 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) { 3980 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3981 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 3982 OPTIONAL(name, MDStringField, ); \ 3983 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 3984 OPTIONAL(file, MDField, ); \ 3985 OPTIONAL(line, LineField, ); \ 3986 OPTIONAL(type, MDField, ); \ 3987 OPTIONAL(flags, DIFlagField, ); 3988 PARSE_MD_FIELDS(); 3989 #undef VISIT_MD_FIELDS 3990 3991 Result = GET_OR_DISTINCT(DILocalVariable, 3992 (Context, scope.Val, name.Val, file.Val, line.Val, 3993 type.Val, arg.Val, flags.Val)); 3994 return false; 3995 } 3996 3997 /// ParseDIExpression: 3998 /// ::= !DIExpression(0, 7, -1) 3999 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) { 4000 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4001 Lex.Lex(); 4002 4003 if (ParseToken(lltok::lparen, "expected '(' here")) 4004 return true; 4005 4006 SmallVector<uint64_t, 8> Elements; 4007 if (Lex.getKind() != lltok::rparen) 4008 do { 4009 if (Lex.getKind() == lltok::DwarfOp) { 4010 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 4011 Lex.Lex(); 4012 Elements.push_back(Op); 4013 continue; 4014 } 4015 return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 4016 } 4017 4018 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4019 return TokError("expected unsigned integer"); 4020 4021 auto &U = Lex.getAPSIntVal(); 4022 if (U.ugt(UINT64_MAX)) 4023 return TokError("element too large, limit is " + Twine(UINT64_MAX)); 4024 Elements.push_back(U.getZExtValue()); 4025 Lex.Lex(); 4026 } while (EatIfPresent(lltok::comma)); 4027 4028 if (ParseToken(lltok::rparen, "expected ')' here")) 4029 return true; 4030 4031 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 4032 return false; 4033 } 4034 4035 /// ParseDIObjCProperty: 4036 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 4037 /// getter: "getFoo", attributes: 7, type: !2) 4038 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 4039 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4040 OPTIONAL(name, MDStringField, ); \ 4041 OPTIONAL(file, MDField, ); \ 4042 OPTIONAL(line, LineField, ); \ 4043 OPTIONAL(setter, MDStringField, ); \ 4044 OPTIONAL(getter, MDStringField, ); \ 4045 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 4046 OPTIONAL(type, MDField, ); 4047 PARSE_MD_FIELDS(); 4048 #undef VISIT_MD_FIELDS 4049 4050 Result = GET_OR_DISTINCT(DIObjCProperty, 4051 (Context, name.Val, file.Val, line.Val, setter.Val, 4052 getter.Val, attributes.Val, type.Val)); 4053 return false; 4054 } 4055 4056 /// ParseDIImportedEntity: 4057 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 4058 /// line: 7, name: "foo") 4059 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 4060 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4061 REQUIRED(tag, DwarfTagField, ); \ 4062 REQUIRED(scope, MDField, ); \ 4063 OPTIONAL(entity, MDField, ); \ 4064 OPTIONAL(line, LineField, ); \ 4065 OPTIONAL(name, MDStringField, ); 4066 PARSE_MD_FIELDS(); 4067 #undef VISIT_MD_FIELDS 4068 4069 Result = GET_OR_DISTINCT(DIImportedEntity, (Context, tag.Val, scope.Val, 4070 entity.Val, line.Val, name.Val)); 4071 return false; 4072 } 4073 4074 #undef PARSE_MD_FIELD 4075 #undef NOP_FIELD 4076 #undef REQUIRE_FIELD 4077 #undef DECLARE_FIELD 4078 4079 /// ParseMetadataAsValue 4080 /// ::= metadata i32 %local 4081 /// ::= metadata i32 @global 4082 /// ::= metadata i32 7 4083 /// ::= metadata !0 4084 /// ::= metadata !{...} 4085 /// ::= metadata !"string" 4086 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 4087 // Note: the type 'metadata' has already been parsed. 4088 Metadata *MD; 4089 if (ParseMetadata(MD, &PFS)) 4090 return true; 4091 4092 V = MetadataAsValue::get(Context, MD); 4093 return false; 4094 } 4095 4096 /// ParseValueAsMetadata 4097 /// ::= i32 %local 4098 /// ::= i32 @global 4099 /// ::= i32 7 4100 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 4101 PerFunctionState *PFS) { 4102 Type *Ty; 4103 LocTy Loc; 4104 if (ParseType(Ty, TypeMsg, Loc)) 4105 return true; 4106 if (Ty->isMetadataTy()) 4107 return Error(Loc, "invalid metadata-value-metadata roundtrip"); 4108 4109 Value *V; 4110 if (ParseValue(Ty, V, PFS)) 4111 return true; 4112 4113 MD = ValueAsMetadata::get(V); 4114 return false; 4115 } 4116 4117 /// ParseMetadata 4118 /// ::= i32 %local 4119 /// ::= i32 @global 4120 /// ::= i32 7 4121 /// ::= !42 4122 /// ::= !{...} 4123 /// ::= !"string" 4124 /// ::= !DILocation(...) 4125 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) { 4126 if (Lex.getKind() == lltok::MetadataVar) { 4127 MDNode *N; 4128 if (ParseSpecializedMDNode(N)) 4129 return true; 4130 MD = N; 4131 return false; 4132 } 4133 4134 // ValueAsMetadata: 4135 // <type> <value> 4136 if (Lex.getKind() != lltok::exclaim) 4137 return ParseValueAsMetadata(MD, "expected metadata operand", PFS); 4138 4139 // '!'. 4140 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 4141 Lex.Lex(); 4142 4143 // MDString: 4144 // ::= '!' STRINGCONSTANT 4145 if (Lex.getKind() == lltok::StringConstant) { 4146 MDString *S; 4147 if (ParseMDString(S)) 4148 return true; 4149 MD = S; 4150 return false; 4151 } 4152 4153 // MDNode: 4154 // !{ ... } 4155 // !7 4156 MDNode *N; 4157 if (ParseMDNodeTail(N)) 4158 return true; 4159 MD = N; 4160 return false; 4161 } 4162 4163 4164 //===----------------------------------------------------------------------===// 4165 // Function Parsing. 4166 //===----------------------------------------------------------------------===// 4167 4168 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, 4169 PerFunctionState *PFS, 4170 OperatorConstraint OC) { 4171 if (Ty->isFunctionTy()) 4172 return Error(ID.Loc, "functions are not values, refer to them as pointers"); 4173 4174 if (OC && ID.Kind != ValID::t_LocalID && ID.Kind != ValID::t_LocalName) { 4175 switch (OC) { 4176 case OC_CatchPad: 4177 return Error(ID.Loc, "Catchpad value required in this position"); 4178 case OC_CleanupPad: 4179 return Error(ID.Loc, "Cleanuppad value required in this position"); 4180 default: 4181 llvm_unreachable("Unexpected constraint kind"); 4182 } 4183 } 4184 4185 switch (ID.Kind) { 4186 case ValID::t_LocalID: 4187 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 4188 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, OC); 4189 return V == nullptr; 4190 case ValID::t_LocalName: 4191 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 4192 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, OC); 4193 return V == nullptr; 4194 case ValID::t_InlineAsm: { 4195 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 4196 return Error(ID.Loc, "invalid type for inline asm constraint string"); 4197 V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, 4198 (ID.UIntVal >> 1) & 1, 4199 (InlineAsm::AsmDialect(ID.UIntVal >> 2))); 4200 return false; 4201 } 4202 case ValID::t_GlobalName: 4203 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc); 4204 return V == nullptr; 4205 case ValID::t_GlobalID: 4206 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc); 4207 return V == nullptr; 4208 case ValID::t_APSInt: 4209 if (!Ty->isIntegerTy()) 4210 return Error(ID.Loc, "integer constant must have integer type"); 4211 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 4212 V = ConstantInt::get(Context, ID.APSIntVal); 4213 return false; 4214 case ValID::t_APFloat: 4215 if (!Ty->isFloatingPointTy() || 4216 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 4217 return Error(ID.Loc, "floating point constant invalid for type"); 4218 4219 // The lexer has no type info, so builds all half, float, and double FP 4220 // constants as double. Fix this here. Long double does not need this. 4221 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) { 4222 bool Ignored; 4223 if (Ty->isHalfTy()) 4224 ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, 4225 &Ignored); 4226 else if (Ty->isFloatTy()) 4227 ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, 4228 &Ignored); 4229 } 4230 V = ConstantFP::get(Context, ID.APFloatVal); 4231 4232 if (V->getType() != Ty) 4233 return Error(ID.Loc, "floating point constant does not have type '" + 4234 getTypeString(Ty) + "'"); 4235 4236 return false; 4237 case ValID::t_Null: 4238 if (!Ty->isPointerTy()) 4239 return Error(ID.Loc, "null must be a pointer type"); 4240 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 4241 return false; 4242 case ValID::t_Undef: 4243 // FIXME: LabelTy should not be a first-class type. 4244 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 4245 return Error(ID.Loc, "invalid type for undef constant"); 4246 V = UndefValue::get(Ty); 4247 return false; 4248 case ValID::t_EmptyArray: 4249 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 4250 return Error(ID.Loc, "invalid empty array initializer"); 4251 V = UndefValue::get(Ty); 4252 return false; 4253 case ValID::t_Zero: 4254 // FIXME: LabelTy should not be a first-class type. 4255 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 4256 return Error(ID.Loc, "invalid type for null constant"); 4257 V = Constant::getNullValue(Ty); 4258 return false; 4259 case ValID::t_None: 4260 if (!Ty->isTokenTy()) 4261 return Error(ID.Loc, "invalid type for none constant"); 4262 V = Constant::getNullValue(Ty); 4263 return false; 4264 case ValID::t_Constant: 4265 if (ID.ConstantVal->getType() != Ty) 4266 return Error(ID.Loc, "constant expression type mismatch"); 4267 4268 V = ID.ConstantVal; 4269 return false; 4270 case ValID::t_ConstantStruct: 4271 case ValID::t_PackedConstantStruct: 4272 if (StructType *ST = dyn_cast<StructType>(Ty)) { 4273 if (ST->getNumElements() != ID.UIntVal) 4274 return Error(ID.Loc, 4275 "initializer with struct type has wrong # elements"); 4276 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 4277 return Error(ID.Loc, "packed'ness of initializer and type don't match"); 4278 4279 // Verify that the elements are compatible with the structtype. 4280 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 4281 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 4282 return Error(ID.Loc, "element " + Twine(i) + 4283 " of struct initializer doesn't match struct element type"); 4284 4285 V = ConstantStruct::get( 4286 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 4287 } else 4288 return Error(ID.Loc, "constant expression type mismatch"); 4289 return false; 4290 } 4291 llvm_unreachable("Invalid ValID"); 4292 } 4293 4294 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 4295 C = nullptr; 4296 ValID ID; 4297 auto Loc = Lex.getLoc(); 4298 if (ParseValID(ID, /*PFS=*/nullptr)) 4299 return true; 4300 switch (ID.Kind) { 4301 case ValID::t_APSInt: 4302 case ValID::t_APFloat: 4303 case ValID::t_Undef: 4304 case ValID::t_Constant: 4305 case ValID::t_ConstantStruct: 4306 case ValID::t_PackedConstantStruct: { 4307 Value *V; 4308 if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr)) 4309 return true; 4310 assert(isa<Constant>(V) && "Expected a constant value"); 4311 C = cast<Constant>(V); 4312 return false; 4313 } 4314 default: 4315 return Error(Loc, "expected a constant value"); 4316 } 4317 } 4318 4319 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS, 4320 OperatorConstraint OC) { 4321 V = nullptr; 4322 ValID ID; 4323 return ParseValID(ID, PFS) || ConvertValIDToValue(Ty, ID, V, PFS, OC); 4324 } 4325 4326 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) { 4327 Type *Ty = nullptr; 4328 return ParseType(Ty) || 4329 ParseValue(Ty, V, PFS); 4330 } 4331 4332 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 4333 PerFunctionState &PFS) { 4334 Value *V; 4335 Loc = Lex.getLoc(); 4336 if (ParseTypeAndValue(V, PFS)) return true; 4337 if (!isa<BasicBlock>(V)) 4338 return Error(Loc, "expected a basic block"); 4339 BB = cast<BasicBlock>(V); 4340 return false; 4341 } 4342 4343 4344 /// FunctionHeader 4345 /// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs 4346 /// OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection 4347 /// OptionalAlign OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 4348 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { 4349 // Parse the linkage. 4350 LocTy LinkageLoc = Lex.getLoc(); 4351 unsigned Linkage; 4352 4353 unsigned Visibility; 4354 unsigned DLLStorageClass; 4355 AttrBuilder RetAttrs; 4356 unsigned CC; 4357 Type *RetType = nullptr; 4358 LocTy RetTypeLoc = Lex.getLoc(); 4359 if (ParseOptionalLinkage(Linkage) || 4360 ParseOptionalVisibility(Visibility) || 4361 ParseOptionalDLLStorageClass(DLLStorageClass) || 4362 ParseOptionalCallingConv(CC) || 4363 ParseOptionalReturnAttrs(RetAttrs) || 4364 ParseType(RetType, RetTypeLoc, true /*void allowed*/)) 4365 return true; 4366 4367 // Verify that the linkage is ok. 4368 switch ((GlobalValue::LinkageTypes)Linkage) { 4369 case GlobalValue::ExternalLinkage: 4370 break; // always ok. 4371 case GlobalValue::ExternalWeakLinkage: 4372 if (isDefine) 4373 return Error(LinkageLoc, "invalid linkage for function definition"); 4374 break; 4375 case GlobalValue::PrivateLinkage: 4376 case GlobalValue::InternalLinkage: 4377 case GlobalValue::AvailableExternallyLinkage: 4378 case GlobalValue::LinkOnceAnyLinkage: 4379 case GlobalValue::LinkOnceODRLinkage: 4380 case GlobalValue::WeakAnyLinkage: 4381 case GlobalValue::WeakODRLinkage: 4382 if (!isDefine) 4383 return Error(LinkageLoc, "invalid linkage for function declaration"); 4384 break; 4385 case GlobalValue::AppendingLinkage: 4386 case GlobalValue::CommonLinkage: 4387 return Error(LinkageLoc, "invalid function linkage type"); 4388 } 4389 4390 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 4391 return Error(LinkageLoc, 4392 "symbol with local linkage must have default visibility"); 4393 4394 if (!FunctionType::isValidReturnType(RetType)) 4395 return Error(RetTypeLoc, "invalid function return type"); 4396 4397 LocTy NameLoc = Lex.getLoc(); 4398 4399 std::string FunctionName; 4400 if (Lex.getKind() == lltok::GlobalVar) { 4401 FunctionName = Lex.getStrVal(); 4402 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 4403 unsigned NameID = Lex.getUIntVal(); 4404 4405 if (NameID != NumberedVals.size()) 4406 return TokError("function expected to be numbered '%" + 4407 Twine(NumberedVals.size()) + "'"); 4408 } else { 4409 return TokError("expected function name"); 4410 } 4411 4412 Lex.Lex(); 4413 4414 if (Lex.getKind() != lltok::lparen) 4415 return TokError("expected '(' in function argument list"); 4416 4417 SmallVector<ArgInfo, 8> ArgList; 4418 bool isVarArg; 4419 AttrBuilder FuncAttrs; 4420 std::vector<unsigned> FwdRefAttrGrps; 4421 LocTy BuiltinLoc; 4422 std::string Section; 4423 unsigned Alignment; 4424 std::string GC; 4425 bool UnnamedAddr; 4426 LocTy UnnamedAddrLoc; 4427 Constant *Prefix = nullptr; 4428 Constant *Prologue = nullptr; 4429 Constant *PersonalityFn = nullptr; 4430 Comdat *C; 4431 4432 if (ParseArgumentList(ArgList, isVarArg) || 4433 ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr, 4434 &UnnamedAddrLoc) || 4435 ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 4436 BuiltinLoc) || 4437 (EatIfPresent(lltok::kw_section) && 4438 ParseStringConstant(Section)) || 4439 parseOptionalComdat(FunctionName, C) || 4440 ParseOptionalAlignment(Alignment) || 4441 (EatIfPresent(lltok::kw_gc) && 4442 ParseStringConstant(GC)) || 4443 (EatIfPresent(lltok::kw_prefix) && 4444 ParseGlobalTypeAndValue(Prefix)) || 4445 (EatIfPresent(lltok::kw_prologue) && 4446 ParseGlobalTypeAndValue(Prologue)) || 4447 (EatIfPresent(lltok::kw_personality) && 4448 ParseGlobalTypeAndValue(PersonalityFn))) 4449 return true; 4450 4451 if (FuncAttrs.contains(Attribute::Builtin)) 4452 return Error(BuiltinLoc, "'builtin' attribute not valid on function"); 4453 4454 // If the alignment was parsed as an attribute, move to the alignment field. 4455 if (FuncAttrs.hasAlignmentAttr()) { 4456 Alignment = FuncAttrs.getAlignment(); 4457 FuncAttrs.removeAttribute(Attribute::Alignment); 4458 } 4459 4460 // Okay, if we got here, the function is syntactically valid. Convert types 4461 // and do semantic checks. 4462 std::vector<Type*> ParamTypeList; 4463 SmallVector<AttributeSet, 8> Attrs; 4464 4465 if (RetAttrs.hasAttributes()) 4466 Attrs.push_back(AttributeSet::get(RetType->getContext(), 4467 AttributeSet::ReturnIndex, 4468 RetAttrs)); 4469 4470 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 4471 ParamTypeList.push_back(ArgList[i].Ty); 4472 if (ArgList[i].Attrs.hasAttributes(i + 1)) { 4473 AttrBuilder B(ArgList[i].Attrs, i + 1); 4474 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B)); 4475 } 4476 } 4477 4478 if (FuncAttrs.hasAttributes()) 4479 Attrs.push_back(AttributeSet::get(RetType->getContext(), 4480 AttributeSet::FunctionIndex, 4481 FuncAttrs)); 4482 4483 AttributeSet PAL = AttributeSet::get(Context, Attrs); 4484 4485 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy()) 4486 return Error(RetTypeLoc, "functions with 'sret' argument must return void"); 4487 4488 FunctionType *FT = 4489 FunctionType::get(RetType, ParamTypeList, isVarArg); 4490 PointerType *PFT = PointerType::getUnqual(FT); 4491 4492 Fn = nullptr; 4493 if (!FunctionName.empty()) { 4494 // If this was a definition of a forward reference, remove the definition 4495 // from the forward reference table and fill in the forward ref. 4496 auto FRVI = ForwardRefVals.find(FunctionName); 4497 if (FRVI != ForwardRefVals.end()) { 4498 Fn = M->getFunction(FunctionName); 4499 if (!Fn) 4500 return Error(FRVI->second.second, "invalid forward reference to " 4501 "function as global value!"); 4502 if (Fn->getType() != PFT) 4503 return Error(FRVI->second.second, "invalid forward reference to " 4504 "function '" + FunctionName + "' with wrong type!"); 4505 4506 ForwardRefVals.erase(FRVI); 4507 } else if ((Fn = M->getFunction(FunctionName))) { 4508 // Reject redefinitions. 4509 return Error(NameLoc, "invalid redefinition of function '" + 4510 FunctionName + "'"); 4511 } else if (M->getNamedValue(FunctionName)) { 4512 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 4513 } 4514 4515 } else { 4516 // If this is a definition of a forward referenced function, make sure the 4517 // types agree. 4518 auto I = ForwardRefValIDs.find(NumberedVals.size()); 4519 if (I != ForwardRefValIDs.end()) { 4520 Fn = cast<Function>(I->second.first); 4521 if (Fn->getType() != PFT) 4522 return Error(NameLoc, "type of definition and forward reference of '@" + 4523 Twine(NumberedVals.size()) + "' disagree"); 4524 ForwardRefValIDs.erase(I); 4525 } 4526 } 4527 4528 if (!Fn) 4529 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M); 4530 else // Move the forward-reference to the correct spot in the module. 4531 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 4532 4533 if (FunctionName.empty()) 4534 NumberedVals.push_back(Fn); 4535 4536 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 4537 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 4538 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 4539 Fn->setCallingConv(CC); 4540 Fn->setAttributes(PAL); 4541 Fn->setUnnamedAddr(UnnamedAddr); 4542 Fn->setAlignment(Alignment); 4543 Fn->setSection(Section); 4544 Fn->setComdat(C); 4545 Fn->setPersonalityFn(PersonalityFn); 4546 if (!GC.empty()) Fn->setGC(GC.c_str()); 4547 Fn->setPrefixData(Prefix); 4548 Fn->setPrologueData(Prologue); 4549 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 4550 4551 // Add all of the arguments we parsed to the function. 4552 Function::arg_iterator ArgIt = Fn->arg_begin(); 4553 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 4554 // If the argument has a name, insert it into the argument symbol table. 4555 if (ArgList[i].Name.empty()) continue; 4556 4557 // Set the name, if it conflicted, it will be auto-renamed. 4558 ArgIt->setName(ArgList[i].Name); 4559 4560 if (ArgIt->getName() != ArgList[i].Name) 4561 return Error(ArgList[i].Loc, "redefinition of argument '%" + 4562 ArgList[i].Name + "'"); 4563 } 4564 4565 if (isDefine) 4566 return false; 4567 4568 // Check the declaration has no block address forward references. 4569 ValID ID; 4570 if (FunctionName.empty()) { 4571 ID.Kind = ValID::t_GlobalID; 4572 ID.UIntVal = NumberedVals.size() - 1; 4573 } else { 4574 ID.Kind = ValID::t_GlobalName; 4575 ID.StrVal = FunctionName; 4576 } 4577 auto Blocks = ForwardRefBlockAddresses.find(ID); 4578 if (Blocks != ForwardRefBlockAddresses.end()) 4579 return Error(Blocks->first.Loc, 4580 "cannot take blockaddress inside a declaration"); 4581 return false; 4582 } 4583 4584 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 4585 ValID ID; 4586 if (FunctionNumber == -1) { 4587 ID.Kind = ValID::t_GlobalName; 4588 ID.StrVal = F.getName(); 4589 } else { 4590 ID.Kind = ValID::t_GlobalID; 4591 ID.UIntVal = FunctionNumber; 4592 } 4593 4594 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 4595 if (Blocks == P.ForwardRefBlockAddresses.end()) 4596 return false; 4597 4598 for (const auto &I : Blocks->second) { 4599 const ValID &BBID = I.first; 4600 GlobalValue *GV = I.second; 4601 4602 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 4603 "Expected local id or name"); 4604 BasicBlock *BB; 4605 if (BBID.Kind == ValID::t_LocalName) 4606 BB = GetBB(BBID.StrVal, BBID.Loc); 4607 else 4608 BB = GetBB(BBID.UIntVal, BBID.Loc); 4609 if (!BB) 4610 return P.Error(BBID.Loc, "referenced value is not a basic block"); 4611 4612 GV->replaceAllUsesWith(BlockAddress::get(&F, BB)); 4613 GV->eraseFromParent(); 4614 } 4615 4616 P.ForwardRefBlockAddresses.erase(Blocks); 4617 return false; 4618 } 4619 4620 /// ParseFunctionBody 4621 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 4622 bool LLParser::ParseFunctionBody(Function &Fn) { 4623 if (Lex.getKind() != lltok::lbrace) 4624 return TokError("expected '{' in function body"); 4625 Lex.Lex(); // eat the {. 4626 4627 int FunctionNumber = -1; 4628 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 4629 4630 PerFunctionState PFS(*this, Fn, FunctionNumber); 4631 4632 // Resolve block addresses and allow basic blocks to be forward-declared 4633 // within this function. 4634 if (PFS.resolveForwardRefBlockAddresses()) 4635 return true; 4636 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 4637 4638 // We need at least one basic block. 4639 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 4640 return TokError("function body requires at least one basic block"); 4641 4642 while (Lex.getKind() != lltok::rbrace && 4643 Lex.getKind() != lltok::kw_uselistorder) 4644 if (ParseBasicBlock(PFS)) return true; 4645 4646 while (Lex.getKind() != lltok::rbrace) 4647 if (ParseUseListOrder(&PFS)) 4648 return true; 4649 4650 // Eat the }. 4651 Lex.Lex(); 4652 4653 // Verify function is ok. 4654 return PFS.FinishFunction(); 4655 } 4656 4657 /// ParseBasicBlock 4658 /// ::= LabelStr? Instruction* 4659 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { 4660 // If this basic block starts out with a name, remember it. 4661 std::string Name; 4662 LocTy NameLoc = Lex.getLoc(); 4663 if (Lex.getKind() == lltok::LabelStr) { 4664 Name = Lex.getStrVal(); 4665 Lex.Lex(); 4666 } 4667 4668 BasicBlock *BB = PFS.DefineBB(Name, NameLoc); 4669 if (!BB) 4670 return Error(NameLoc, 4671 "unable to create block named '" + Name + "'"); 4672 4673 std::string NameStr; 4674 4675 // Parse the instructions in this block until we get a terminator. 4676 Instruction *Inst; 4677 do { 4678 // This instruction may have three possibilities for a name: a) none 4679 // specified, b) name specified "%foo =", c) number specified: "%4 =". 4680 LocTy NameLoc = Lex.getLoc(); 4681 int NameID = -1; 4682 NameStr = ""; 4683 4684 if (Lex.getKind() == lltok::LocalVarID) { 4685 NameID = Lex.getUIntVal(); 4686 Lex.Lex(); 4687 if (ParseToken(lltok::equal, "expected '=' after instruction id")) 4688 return true; 4689 } else if (Lex.getKind() == lltok::LocalVar) { 4690 NameStr = Lex.getStrVal(); 4691 Lex.Lex(); 4692 if (ParseToken(lltok::equal, "expected '=' after instruction name")) 4693 return true; 4694 } 4695 4696 switch (ParseInstruction(Inst, BB, PFS)) { 4697 default: llvm_unreachable("Unknown ParseInstruction result!"); 4698 case InstError: return true; 4699 case InstNormal: 4700 BB->getInstList().push_back(Inst); 4701 4702 // With a normal result, we check to see if the instruction is followed by 4703 // a comma and metadata. 4704 if (EatIfPresent(lltok::comma)) 4705 if (ParseInstructionMetadata(*Inst)) 4706 return true; 4707 break; 4708 case InstExtraComma: 4709 BB->getInstList().push_back(Inst); 4710 4711 // If the instruction parser ate an extra comma at the end of it, it 4712 // *must* be followed by metadata. 4713 if (ParseInstructionMetadata(*Inst)) 4714 return true; 4715 break; 4716 } 4717 4718 // Set the name on the instruction. 4719 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; 4720 } while (!isa<TerminatorInst>(Inst)); 4721 4722 return false; 4723 } 4724 4725 //===----------------------------------------------------------------------===// 4726 // Instruction Parsing. 4727 //===----------------------------------------------------------------------===// 4728 4729 /// ParseInstruction - Parse one of the many different instructions. 4730 /// 4731 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, 4732 PerFunctionState &PFS) { 4733 lltok::Kind Token = Lex.getKind(); 4734 if (Token == lltok::Eof) 4735 return TokError("found end of file when expecting more instructions"); 4736 LocTy Loc = Lex.getLoc(); 4737 unsigned KeywordVal = Lex.getUIntVal(); 4738 Lex.Lex(); // Eat the keyword. 4739 4740 switch (Token) { 4741 default: return Error(Loc, "expected instruction opcode"); 4742 // Terminator Instructions. 4743 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 4744 case lltok::kw_ret: return ParseRet(Inst, BB, PFS); 4745 case lltok::kw_br: return ParseBr(Inst, PFS); 4746 case lltok::kw_switch: return ParseSwitch(Inst, PFS); 4747 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS); 4748 case lltok::kw_invoke: return ParseInvoke(Inst, PFS); 4749 case lltok::kw_resume: return ParseResume(Inst, PFS); 4750 case lltok::kw_cleanupret: return ParseCleanupRet(Inst, PFS); 4751 case lltok::kw_catchret: return ParseCatchRet(Inst, PFS); 4752 case lltok::kw_catchpad: return ParseCatchPad(Inst, PFS); 4753 case lltok::kw_terminatepad: return ParseTerminatePad(Inst, PFS); 4754 case lltok::kw_cleanuppad: return ParseCleanupPad(Inst, PFS); 4755 case lltok::kw_catchendpad: return ParseCatchEndPad(Inst, PFS); 4756 case lltok::kw_cleanupendpad: return ParseCleanupEndPad(Inst, PFS); 4757 // Binary Operators. 4758 case lltok::kw_add: 4759 case lltok::kw_sub: 4760 case lltok::kw_mul: 4761 case lltok::kw_shl: { 4762 bool NUW = EatIfPresent(lltok::kw_nuw); 4763 bool NSW = EatIfPresent(lltok::kw_nsw); 4764 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 4765 4766 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 4767 4768 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 4769 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 4770 return false; 4771 } 4772 case lltok::kw_fadd: 4773 case lltok::kw_fsub: 4774 case lltok::kw_fmul: 4775 case lltok::kw_fdiv: 4776 case lltok::kw_frem: { 4777 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 4778 int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2); 4779 if (Res != 0) 4780 return Res; 4781 if (FMF.any()) 4782 Inst->setFastMathFlags(FMF); 4783 return 0; 4784 } 4785 4786 case lltok::kw_sdiv: 4787 case lltok::kw_udiv: 4788 case lltok::kw_lshr: 4789 case lltok::kw_ashr: { 4790 bool Exact = EatIfPresent(lltok::kw_exact); 4791 4792 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 4793 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 4794 return false; 4795 } 4796 4797 case lltok::kw_urem: 4798 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1); 4799 case lltok::kw_and: 4800 case lltok::kw_or: 4801 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); 4802 case lltok::kw_icmp: return ParseCompare(Inst, PFS, KeywordVal); 4803 case lltok::kw_fcmp: { 4804 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 4805 int Res = ParseCompare(Inst, PFS, KeywordVal); 4806 if (Res != 0) 4807 return Res; 4808 if (FMF.any()) 4809 Inst->setFastMathFlags(FMF); 4810 return 0; 4811 } 4812 4813 // Casts. 4814 case lltok::kw_trunc: 4815 case lltok::kw_zext: 4816 case lltok::kw_sext: 4817 case lltok::kw_fptrunc: 4818 case lltok::kw_fpext: 4819 case lltok::kw_bitcast: 4820 case lltok::kw_addrspacecast: 4821 case lltok::kw_uitofp: 4822 case lltok::kw_sitofp: 4823 case lltok::kw_fptoui: 4824 case lltok::kw_fptosi: 4825 case lltok::kw_inttoptr: 4826 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); 4827 // Other. 4828 case lltok::kw_select: return ParseSelect(Inst, PFS); 4829 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); 4830 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); 4831 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); 4832 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); 4833 case lltok::kw_phi: return ParsePHI(Inst, PFS); 4834 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS); 4835 // Call. 4836 case lltok::kw_call: return ParseCall(Inst, PFS, CallInst::TCK_None); 4837 case lltok::kw_tail: return ParseCall(Inst, PFS, CallInst::TCK_Tail); 4838 case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail); 4839 case lltok::kw_notail: return ParseCall(Inst, PFS, CallInst::TCK_NoTail); 4840 // Memory. 4841 case lltok::kw_alloca: return ParseAlloc(Inst, PFS); 4842 case lltok::kw_load: return ParseLoad(Inst, PFS); 4843 case lltok::kw_store: return ParseStore(Inst, PFS); 4844 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS); 4845 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS); 4846 case lltok::kw_fence: return ParseFence(Inst, PFS); 4847 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); 4848 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); 4849 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); 4850 } 4851 } 4852 4853 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. 4854 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { 4855 if (Opc == Instruction::FCmp) { 4856 switch (Lex.getKind()) { 4857 default: return TokError("expected fcmp predicate (e.g. 'oeq')"); 4858 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 4859 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 4860 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 4861 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 4862 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 4863 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 4864 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 4865 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 4866 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 4867 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 4868 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 4869 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 4870 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 4871 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 4872 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 4873 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 4874 } 4875 } else { 4876 switch (Lex.getKind()) { 4877 default: return TokError("expected icmp predicate (e.g. 'eq')"); 4878 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 4879 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 4880 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 4881 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 4882 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 4883 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 4884 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 4885 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 4886 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 4887 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 4888 } 4889 } 4890 Lex.Lex(); 4891 return false; 4892 } 4893 4894 //===----------------------------------------------------------------------===// 4895 // Terminator Instructions. 4896 //===----------------------------------------------------------------------===// 4897 4898 /// ParseRet - Parse a return instruction. 4899 /// ::= 'ret' void (',' !dbg, !1)* 4900 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 4901 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, 4902 PerFunctionState &PFS) { 4903 SMLoc TypeLoc = Lex.getLoc(); 4904 Type *Ty = nullptr; 4905 if (ParseType(Ty, true /*void allowed*/)) return true; 4906 4907 Type *ResType = PFS.getFunction().getReturnType(); 4908 4909 if (Ty->isVoidTy()) { 4910 if (!ResType->isVoidTy()) 4911 return Error(TypeLoc, "value doesn't match function result type '" + 4912 getTypeString(ResType) + "'"); 4913 4914 Inst = ReturnInst::Create(Context); 4915 return false; 4916 } 4917 4918 Value *RV; 4919 if (ParseValue(Ty, RV, PFS)) return true; 4920 4921 if (ResType != RV->getType()) 4922 return Error(TypeLoc, "value doesn't match function result type '" + 4923 getTypeString(ResType) + "'"); 4924 4925 Inst = ReturnInst::Create(Context, RV); 4926 return false; 4927 } 4928 4929 4930 /// ParseBr 4931 /// ::= 'br' TypeAndValue 4932 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 4933 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { 4934 LocTy Loc, Loc2; 4935 Value *Op0; 4936 BasicBlock *Op1, *Op2; 4937 if (ParseTypeAndValue(Op0, Loc, PFS)) return true; 4938 4939 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 4940 Inst = BranchInst::Create(BB); 4941 return false; 4942 } 4943 4944 if (Op0->getType() != Type::getInt1Ty(Context)) 4945 return Error(Loc, "branch condition must have 'i1' type"); 4946 4947 if (ParseToken(lltok::comma, "expected ',' after branch condition") || 4948 ParseTypeAndBasicBlock(Op1, Loc, PFS) || 4949 ParseToken(lltok::comma, "expected ',' after true destination") || 4950 ParseTypeAndBasicBlock(Op2, Loc2, PFS)) 4951 return true; 4952 4953 Inst = BranchInst::Create(Op1, Op2, Op0); 4954 return false; 4955 } 4956 4957 /// ParseSwitch 4958 /// Instruction 4959 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 4960 /// JumpTable 4961 /// ::= (TypeAndValue ',' TypeAndValue)* 4962 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 4963 LocTy CondLoc, BBLoc; 4964 Value *Cond; 4965 BasicBlock *DefaultBB; 4966 if (ParseTypeAndValue(Cond, CondLoc, PFS) || 4967 ParseToken(lltok::comma, "expected ',' after switch condition") || 4968 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 4969 ParseToken(lltok::lsquare, "expected '[' with switch table")) 4970 return true; 4971 4972 if (!Cond->getType()->isIntegerTy()) 4973 return Error(CondLoc, "switch condition must have integer type"); 4974 4975 // Parse the jump table pairs. 4976 SmallPtrSet<Value*, 32> SeenCases; 4977 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 4978 while (Lex.getKind() != lltok::rsquare) { 4979 Value *Constant; 4980 BasicBlock *DestBB; 4981 4982 if (ParseTypeAndValue(Constant, CondLoc, PFS) || 4983 ParseToken(lltok::comma, "expected ',' after case value") || 4984 ParseTypeAndBasicBlock(DestBB, PFS)) 4985 return true; 4986 4987 if (!SeenCases.insert(Constant).second) 4988 return Error(CondLoc, "duplicate case value in switch"); 4989 if (!isa<ConstantInt>(Constant)) 4990 return Error(CondLoc, "case value is not a constant integer"); 4991 4992 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 4993 } 4994 4995 Lex.Lex(); // Eat the ']'. 4996 4997 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 4998 for (unsigned i = 0, e = Table.size(); i != e; ++i) 4999 SI->addCase(Table[i].first, Table[i].second); 5000 Inst = SI; 5001 return false; 5002 } 5003 5004 /// ParseIndirectBr 5005 /// Instruction 5006 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 5007 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 5008 LocTy AddrLoc; 5009 Value *Address; 5010 if (ParseTypeAndValue(Address, AddrLoc, PFS) || 5011 ParseToken(lltok::comma, "expected ',' after indirectbr address") || 5012 ParseToken(lltok::lsquare, "expected '[' with indirectbr")) 5013 return true; 5014 5015 if (!Address->getType()->isPointerTy()) 5016 return Error(AddrLoc, "indirectbr address must have pointer type"); 5017 5018 // Parse the destination list. 5019 SmallVector<BasicBlock*, 16> DestList; 5020 5021 if (Lex.getKind() != lltok::rsquare) { 5022 BasicBlock *DestBB; 5023 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5024 return true; 5025 DestList.push_back(DestBB); 5026 5027 while (EatIfPresent(lltok::comma)) { 5028 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5029 return true; 5030 DestList.push_back(DestBB); 5031 } 5032 } 5033 5034 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 5035 return true; 5036 5037 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 5038 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 5039 IBI->addDestination(DestList[i]); 5040 Inst = IBI; 5041 return false; 5042 } 5043 5044 5045 /// ParseInvoke 5046 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 5047 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 5048 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 5049 LocTy CallLoc = Lex.getLoc(); 5050 AttrBuilder RetAttrs, FnAttrs; 5051 std::vector<unsigned> FwdRefAttrGrps; 5052 LocTy NoBuiltinLoc; 5053 unsigned CC; 5054 Type *RetType = nullptr; 5055 LocTy RetTypeLoc; 5056 ValID CalleeID; 5057 SmallVector<ParamInfo, 16> ArgList; 5058 SmallVector<OperandBundleDef, 2> BundleList; 5059 5060 BasicBlock *NormalBB, *UnwindBB; 5061 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5062 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 5063 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || 5064 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 5065 NoBuiltinLoc) || 5066 ParseOptionalOperandBundles(BundleList, PFS) || 5067 ParseToken(lltok::kw_to, "expected 'to' in invoke") || 5068 ParseTypeAndBasicBlock(NormalBB, PFS) || 5069 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 5070 ParseTypeAndBasicBlock(UnwindBB, PFS)) 5071 return true; 5072 5073 // If RetType is a non-function pointer type, then this is the short syntax 5074 // for the call, which means that RetType is just the return type. Infer the 5075 // rest of the function argument types from the arguments that are present. 5076 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 5077 if (!Ty) { 5078 // Pull out the types of all of the arguments... 5079 std::vector<Type*> ParamTypes; 5080 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 5081 ParamTypes.push_back(ArgList[i].V->getType()); 5082 5083 if (!FunctionType::isValidReturnType(RetType)) 5084 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 5085 5086 Ty = FunctionType::get(RetType, ParamTypes, false); 5087 } 5088 5089 CalleeID.FTy = Ty; 5090 5091 // Look up the callee. 5092 Value *Callee; 5093 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS)) 5094 return true; 5095 5096 // Set up the Attribute for the function. 5097 SmallVector<AttributeSet, 8> Attrs; 5098 if (RetAttrs.hasAttributes()) 5099 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5100 AttributeSet::ReturnIndex, 5101 RetAttrs)); 5102 5103 SmallVector<Value*, 8> Args; 5104 5105 // Loop through FunctionType's arguments and ensure they are specified 5106 // correctly. Also, gather any parameter attributes. 5107 FunctionType::param_iterator I = Ty->param_begin(); 5108 FunctionType::param_iterator E = Ty->param_end(); 5109 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5110 Type *ExpectedTy = nullptr; 5111 if (I != E) { 5112 ExpectedTy = *I++; 5113 } else if (!Ty->isVarArg()) { 5114 return Error(ArgList[i].Loc, "too many arguments specified"); 5115 } 5116 5117 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 5118 return Error(ArgList[i].Loc, "argument is not of expected type '" + 5119 getTypeString(ExpectedTy) + "'"); 5120 Args.push_back(ArgList[i].V); 5121 if (ArgList[i].Attrs.hasAttributes(i + 1)) { 5122 AttrBuilder B(ArgList[i].Attrs, i + 1); 5123 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B)); 5124 } 5125 } 5126 5127 if (I != E) 5128 return Error(CallLoc, "not enough parameters specified for call"); 5129 5130 if (FnAttrs.hasAttributes()) { 5131 if (FnAttrs.hasAlignmentAttr()) 5132 return Error(CallLoc, "invoke instructions may not have an alignment"); 5133 5134 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5135 AttributeSet::FunctionIndex, 5136 FnAttrs)); 5137 } 5138 5139 // Finish off the Attribute and check them 5140 AttributeSet PAL = AttributeSet::get(Context, Attrs); 5141 5142 InvokeInst *II = 5143 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 5144 II->setCallingConv(CC); 5145 II->setAttributes(PAL); 5146 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 5147 Inst = II; 5148 return false; 5149 } 5150 5151 /// ParseResume 5152 /// ::= 'resume' TypeAndValue 5153 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) { 5154 Value *Exn; LocTy ExnLoc; 5155 if (ParseTypeAndValue(Exn, ExnLoc, PFS)) 5156 return true; 5157 5158 ResumeInst *RI = ResumeInst::Create(Exn); 5159 Inst = RI; 5160 return false; 5161 } 5162 5163 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args, 5164 PerFunctionState &PFS) { 5165 if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 5166 return true; 5167 5168 while (Lex.getKind() != lltok::rsquare) { 5169 // If this isn't the first argument, we need a comma. 5170 if (!Args.empty() && 5171 ParseToken(lltok::comma, "expected ',' in argument list")) 5172 return true; 5173 5174 // Parse the argument. 5175 LocTy ArgLoc; 5176 Type *ArgTy = nullptr; 5177 if (ParseType(ArgTy, ArgLoc)) 5178 return true; 5179 5180 Value *V; 5181 if (ArgTy->isMetadataTy()) { 5182 if (ParseMetadataAsValue(V, PFS)) 5183 return true; 5184 } else { 5185 if (ParseValue(ArgTy, V, PFS)) 5186 return true; 5187 } 5188 Args.push_back(V); 5189 } 5190 5191 Lex.Lex(); // Lex the ']'. 5192 return false; 5193 } 5194 5195 /// ParseCleanupRet 5196 /// ::= 'cleanupret' Value unwind ('to' 'caller' | TypeAndValue) 5197 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 5198 Value *CleanupPad = nullptr; 5199 5200 if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS, OC_CleanupPad)) 5201 return true; 5202 5203 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 5204 return true; 5205 5206 BasicBlock *UnwindBB = nullptr; 5207 if (Lex.getKind() == lltok::kw_to) { 5208 Lex.Lex(); 5209 if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 5210 return true; 5211 } else { 5212 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 5213 return true; 5214 } 5215 } 5216 5217 Inst = CleanupReturnInst::Create(cast<CleanupPadInst>(CleanupPad), UnwindBB); 5218 return false; 5219 } 5220 5221 /// ParseCatchRet 5222 /// ::= 'catchret' Value 'to' TypeAndValue 5223 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 5224 Value *CatchPad = nullptr; 5225 5226 if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS, OC_CatchPad)) 5227 return true; 5228 5229 BasicBlock *BB; 5230 if (ParseToken(lltok::kw_to, "expected 'to' in catchret") || 5231 ParseTypeAndBasicBlock(BB, PFS)) 5232 return true; 5233 5234 Inst = CatchReturnInst::Create(cast<CatchPadInst>(CatchPad), BB); 5235 return false; 5236 } 5237 5238 /// ParseCatchPad 5239 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 5240 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 5241 SmallVector<Value *, 8> Args; 5242 if (ParseExceptionArgs(Args, PFS)) 5243 return true; 5244 5245 BasicBlock *NormalBB, *UnwindBB; 5246 if (ParseToken(lltok::kw_to, "expected 'to' in catchpad") || 5247 ParseTypeAndBasicBlock(NormalBB, PFS) || 5248 ParseToken(lltok::kw_unwind, "expected 'unwind' in catchpad") || 5249 ParseTypeAndBasicBlock(UnwindBB, PFS)) 5250 return true; 5251 5252 Inst = CatchPadInst::Create(NormalBB, UnwindBB, Args); 5253 return false; 5254 } 5255 5256 /// ParseTerminatePad 5257 /// ::= 'terminatepad' ParamList 'to' TypeAndValue 5258 bool LLParser::ParseTerminatePad(Instruction *&Inst, PerFunctionState &PFS) { 5259 SmallVector<Value *, 8> Args; 5260 if (ParseExceptionArgs(Args, PFS)) 5261 return true; 5262 5263 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in terminatepad")) 5264 return true; 5265 5266 BasicBlock *UnwindBB = nullptr; 5267 if (Lex.getKind() == lltok::kw_to) { 5268 Lex.Lex(); 5269 if (ParseToken(lltok::kw_caller, "expected 'caller' in terminatepad")) 5270 return true; 5271 } else { 5272 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 5273 return true; 5274 } 5275 } 5276 5277 Inst = TerminatePadInst::Create(Context, UnwindBB, Args); 5278 return false; 5279 } 5280 5281 /// ParseCleanupPad 5282 /// ::= 'cleanuppad' ParamList 5283 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 5284 SmallVector<Value *, 8> Args; 5285 if (ParseExceptionArgs(Args, PFS)) 5286 return true; 5287 5288 Inst = CleanupPadInst::Create(Context, Args); 5289 return false; 5290 } 5291 5292 /// ParseCatchEndPad 5293 /// ::= 'catchendpad' unwind ('to' 'caller' | TypeAndValue) 5294 bool LLParser::ParseCatchEndPad(Instruction *&Inst, PerFunctionState &PFS) { 5295 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in catchendpad")) 5296 return true; 5297 5298 BasicBlock *UnwindBB = nullptr; 5299 if (Lex.getKind() == lltok::kw_to) { 5300 Lex.Lex(); 5301 if (Lex.getKind() == lltok::kw_caller) { 5302 Lex.Lex(); 5303 } else { 5304 return true; 5305 } 5306 } else { 5307 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 5308 return true; 5309 } 5310 } 5311 5312 Inst = CatchEndPadInst::Create(Context, UnwindBB); 5313 return false; 5314 } 5315 5316 /// ParseCatchEndPad 5317 /// ::= 'cleanupendpad' Value unwind ('to' 'caller' | TypeAndValue) 5318 bool LLParser::ParseCleanupEndPad(Instruction *&Inst, PerFunctionState &PFS) { 5319 Value *CleanupPad = nullptr; 5320 5321 if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS, OC_CleanupPad)) 5322 return true; 5323 5324 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in catchendpad")) 5325 return true; 5326 5327 BasicBlock *UnwindBB = nullptr; 5328 if (Lex.getKind() == lltok::kw_to) { 5329 Lex.Lex(); 5330 if (Lex.getKind() == lltok::kw_caller) { 5331 Lex.Lex(); 5332 } else { 5333 return true; 5334 } 5335 } else { 5336 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 5337 return true; 5338 } 5339 } 5340 5341 Inst = CleanupEndPadInst::Create(cast<CleanupPadInst>(CleanupPad), UnwindBB); 5342 return false; 5343 } 5344 5345 //===----------------------------------------------------------------------===// 5346 // Binary Operators. 5347 //===----------------------------------------------------------------------===// 5348 5349 /// ParseArithmetic 5350 /// ::= ArithmeticOps TypeAndValue ',' Value 5351 /// 5352 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1, 5353 /// then any integer operand is allowed, if it is 2, any fp operand is allowed. 5354 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 5355 unsigned Opc, unsigned OperandType) { 5356 LocTy Loc; Value *LHS, *RHS; 5357 if (ParseTypeAndValue(LHS, Loc, PFS) || 5358 ParseToken(lltok::comma, "expected ',' in arithmetic operation") || 5359 ParseValue(LHS->getType(), RHS, PFS)) 5360 return true; 5361 5362 bool Valid; 5363 switch (OperandType) { 5364 default: llvm_unreachable("Unknown operand type!"); 5365 case 0: // int or FP. 5366 Valid = LHS->getType()->isIntOrIntVectorTy() || 5367 LHS->getType()->isFPOrFPVectorTy(); 5368 break; 5369 case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break; 5370 case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break; 5371 } 5372 5373 if (!Valid) 5374 return Error(Loc, "invalid operand type for instruction"); 5375 5376 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 5377 return false; 5378 } 5379 5380 /// ParseLogical 5381 /// ::= ArithmeticOps TypeAndValue ',' Value { 5382 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, 5383 unsigned Opc) { 5384 LocTy Loc; Value *LHS, *RHS; 5385 if (ParseTypeAndValue(LHS, Loc, PFS) || 5386 ParseToken(lltok::comma, "expected ',' in logical operation") || 5387 ParseValue(LHS->getType(), RHS, PFS)) 5388 return true; 5389 5390 if (!LHS->getType()->isIntOrIntVectorTy()) 5391 return Error(Loc,"instruction requires integer or integer vector operands"); 5392 5393 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 5394 return false; 5395 } 5396 5397 5398 /// ParseCompare 5399 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 5400 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 5401 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, 5402 unsigned Opc) { 5403 // Parse the integer/fp comparison predicate. 5404 LocTy Loc; 5405 unsigned Pred; 5406 Value *LHS, *RHS; 5407 if (ParseCmpPredicate(Pred, Opc) || 5408 ParseTypeAndValue(LHS, Loc, PFS) || 5409 ParseToken(lltok::comma, "expected ',' after compare value") || 5410 ParseValue(LHS->getType(), RHS, PFS)) 5411 return true; 5412 5413 if (Opc == Instruction::FCmp) { 5414 if (!LHS->getType()->isFPOrFPVectorTy()) 5415 return Error(Loc, "fcmp requires floating point operands"); 5416 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 5417 } else { 5418 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 5419 if (!LHS->getType()->isIntOrIntVectorTy() && 5420 !LHS->getType()->getScalarType()->isPointerTy()) 5421 return Error(Loc, "icmp requires integer operands"); 5422 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 5423 } 5424 return false; 5425 } 5426 5427 //===----------------------------------------------------------------------===// 5428 // Other Instructions. 5429 //===----------------------------------------------------------------------===// 5430 5431 5432 /// ParseCast 5433 /// ::= CastOpc TypeAndValue 'to' Type 5434 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, 5435 unsigned Opc) { 5436 LocTy Loc; 5437 Value *Op; 5438 Type *DestTy = nullptr; 5439 if (ParseTypeAndValue(Op, Loc, PFS) || 5440 ParseToken(lltok::kw_to, "expected 'to' after cast value") || 5441 ParseType(DestTy)) 5442 return true; 5443 5444 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 5445 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 5446 return Error(Loc, "invalid cast opcode for cast from '" + 5447 getTypeString(Op->getType()) + "' to '" + 5448 getTypeString(DestTy) + "'"); 5449 } 5450 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 5451 return false; 5452 } 5453 5454 /// ParseSelect 5455 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5456 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { 5457 LocTy Loc; 5458 Value *Op0, *Op1, *Op2; 5459 if (ParseTypeAndValue(Op0, Loc, PFS) || 5460 ParseToken(lltok::comma, "expected ',' after select condition") || 5461 ParseTypeAndValue(Op1, PFS) || 5462 ParseToken(lltok::comma, "expected ',' after select value") || 5463 ParseTypeAndValue(Op2, PFS)) 5464 return true; 5465 5466 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 5467 return Error(Loc, Reason); 5468 5469 Inst = SelectInst::Create(Op0, Op1, Op2); 5470 return false; 5471 } 5472 5473 /// ParseVA_Arg 5474 /// ::= 'va_arg' TypeAndValue ',' Type 5475 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { 5476 Value *Op; 5477 Type *EltTy = nullptr; 5478 LocTy TypeLoc; 5479 if (ParseTypeAndValue(Op, PFS) || 5480 ParseToken(lltok::comma, "expected ',' after vaarg operand") || 5481 ParseType(EltTy, TypeLoc)) 5482 return true; 5483 5484 if (!EltTy->isFirstClassType()) 5485 return Error(TypeLoc, "va_arg requires operand with first class type"); 5486 5487 Inst = new VAArgInst(Op, EltTy); 5488 return false; 5489 } 5490 5491 /// ParseExtractElement 5492 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 5493 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 5494 LocTy Loc; 5495 Value *Op0, *Op1; 5496 if (ParseTypeAndValue(Op0, Loc, PFS) || 5497 ParseToken(lltok::comma, "expected ',' after extract value") || 5498 ParseTypeAndValue(Op1, PFS)) 5499 return true; 5500 5501 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 5502 return Error(Loc, "invalid extractelement operands"); 5503 5504 Inst = ExtractElementInst::Create(Op0, Op1); 5505 return false; 5506 } 5507 5508 /// ParseInsertElement 5509 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5510 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 5511 LocTy Loc; 5512 Value *Op0, *Op1, *Op2; 5513 if (ParseTypeAndValue(Op0, Loc, PFS) || 5514 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5515 ParseTypeAndValue(Op1, PFS) || 5516 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5517 ParseTypeAndValue(Op2, PFS)) 5518 return true; 5519 5520 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 5521 return Error(Loc, "invalid insertelement operands"); 5522 5523 Inst = InsertElementInst::Create(Op0, Op1, Op2); 5524 return false; 5525 } 5526 5527 /// ParseShuffleVector 5528 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5529 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 5530 LocTy Loc; 5531 Value *Op0, *Op1, *Op2; 5532 if (ParseTypeAndValue(Op0, Loc, PFS) || 5533 ParseToken(lltok::comma, "expected ',' after shuffle mask") || 5534 ParseTypeAndValue(Op1, PFS) || 5535 ParseToken(lltok::comma, "expected ',' after shuffle value") || 5536 ParseTypeAndValue(Op2, PFS)) 5537 return true; 5538 5539 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 5540 return Error(Loc, "invalid shufflevector operands"); 5541 5542 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 5543 return false; 5544 } 5545 5546 /// ParsePHI 5547 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 5548 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { 5549 Type *Ty = nullptr; LocTy TypeLoc; 5550 Value *Op0, *Op1; 5551 5552 if (ParseType(Ty, TypeLoc) || 5553 ParseToken(lltok::lsquare, "expected '[' in phi value list") || 5554 ParseValue(Ty, Op0, PFS) || 5555 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5556 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 5557 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 5558 return true; 5559 5560 bool AteExtraComma = false; 5561 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 5562 while (1) { 5563 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 5564 5565 if (!EatIfPresent(lltok::comma)) 5566 break; 5567 5568 if (Lex.getKind() == lltok::MetadataVar) { 5569 AteExtraComma = true; 5570 break; 5571 } 5572 5573 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || 5574 ParseValue(Ty, Op0, PFS) || 5575 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5576 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 5577 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 5578 return true; 5579 } 5580 5581 if (!Ty->isFirstClassType()) 5582 return Error(TypeLoc, "phi node must have first class type"); 5583 5584 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 5585 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 5586 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 5587 Inst = PN; 5588 return AteExtraComma ? InstExtraComma : InstNormal; 5589 } 5590 5591 /// ParseLandingPad 5592 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 5593 /// Clause 5594 /// ::= 'catch' TypeAndValue 5595 /// ::= 'filter' 5596 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 5597 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 5598 Type *Ty = nullptr; LocTy TyLoc; 5599 5600 if (ParseType(Ty, TyLoc)) 5601 return true; 5602 5603 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 5604 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 5605 5606 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 5607 LandingPadInst::ClauseType CT; 5608 if (EatIfPresent(lltok::kw_catch)) 5609 CT = LandingPadInst::Catch; 5610 else if (EatIfPresent(lltok::kw_filter)) 5611 CT = LandingPadInst::Filter; 5612 else 5613 return TokError("expected 'catch' or 'filter' clause type"); 5614 5615 Value *V; 5616 LocTy VLoc; 5617 if (ParseTypeAndValue(V, VLoc, PFS)) 5618 return true; 5619 5620 // A 'catch' type expects a non-array constant. A filter clause expects an 5621 // array constant. 5622 if (CT == LandingPadInst::Catch) { 5623 if (isa<ArrayType>(V->getType())) 5624 Error(VLoc, "'catch' clause has an invalid type"); 5625 } else { 5626 if (!isa<ArrayType>(V->getType())) 5627 Error(VLoc, "'filter' clause has an invalid type"); 5628 } 5629 5630 Constant *CV = dyn_cast<Constant>(V); 5631 if (!CV) 5632 return Error(VLoc, "clause argument must be a constant"); 5633 LP->addClause(CV); 5634 } 5635 5636 Inst = LP.release(); 5637 return false; 5638 } 5639 5640 /// ParseCall 5641 /// ::= 'call' OptionalCallingConv OptionalAttrs Type Value 5642 /// ParameterList OptionalAttrs 5643 /// ::= 'tail' 'call' OptionalCallingConv OptionalAttrs Type Value 5644 /// ParameterList OptionalAttrs 5645 /// ::= 'musttail' 'call' OptionalCallingConv OptionalAttrs Type Value 5646 /// ParameterList OptionalAttrs 5647 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, 5648 CallInst::TailCallKind TCK) { 5649 AttrBuilder RetAttrs, FnAttrs; 5650 std::vector<unsigned> FwdRefAttrGrps; 5651 LocTy BuiltinLoc; 5652 unsigned CC; 5653 Type *RetType = nullptr; 5654 LocTy RetTypeLoc; 5655 ValID CalleeID; 5656 SmallVector<ParamInfo, 16> ArgList; 5657 SmallVector<OperandBundleDef, 2> BundleList; 5658 LocTy CallLoc = Lex.getLoc(); 5659 5660 if ((TCK != CallInst::TCK_None && 5661 ParseToken(lltok::kw_call, "expected 'tail call'")) || 5662 ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5663 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 5664 ParseValID(CalleeID) || 5665 ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 5666 PFS.getFunction().isVarArg()) || 5667 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 5668 ParseOptionalOperandBundles(BundleList, PFS)) 5669 return true; 5670 5671 // If RetType is a non-function pointer type, then this is the short syntax 5672 // for the call, which means that RetType is just the return type. Infer the 5673 // rest of the function argument types from the arguments that are present. 5674 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 5675 if (!Ty) { 5676 // Pull out the types of all of the arguments... 5677 std::vector<Type*> ParamTypes; 5678 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 5679 ParamTypes.push_back(ArgList[i].V->getType()); 5680 5681 if (!FunctionType::isValidReturnType(RetType)) 5682 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 5683 5684 Ty = FunctionType::get(RetType, ParamTypes, false); 5685 } 5686 5687 CalleeID.FTy = Ty; 5688 5689 // Look up the callee. 5690 Value *Callee; 5691 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS)) 5692 return true; 5693 5694 // Set up the Attribute for the function. 5695 SmallVector<AttributeSet, 8> Attrs; 5696 if (RetAttrs.hasAttributes()) 5697 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5698 AttributeSet::ReturnIndex, 5699 RetAttrs)); 5700 5701 SmallVector<Value*, 8> Args; 5702 5703 // Loop through FunctionType's arguments and ensure they are specified 5704 // correctly. Also, gather any parameter attributes. 5705 FunctionType::param_iterator I = Ty->param_begin(); 5706 FunctionType::param_iterator E = Ty->param_end(); 5707 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5708 Type *ExpectedTy = nullptr; 5709 if (I != E) { 5710 ExpectedTy = *I++; 5711 } else if (!Ty->isVarArg()) { 5712 return Error(ArgList[i].Loc, "too many arguments specified"); 5713 } 5714 5715 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 5716 return Error(ArgList[i].Loc, "argument is not of expected type '" + 5717 getTypeString(ExpectedTy) + "'"); 5718 Args.push_back(ArgList[i].V); 5719 if (ArgList[i].Attrs.hasAttributes(i + 1)) { 5720 AttrBuilder B(ArgList[i].Attrs, i + 1); 5721 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B)); 5722 } 5723 } 5724 5725 if (I != E) 5726 return Error(CallLoc, "not enough parameters specified for call"); 5727 5728 if (FnAttrs.hasAttributes()) { 5729 if (FnAttrs.hasAlignmentAttr()) 5730 return Error(CallLoc, "call instructions may not have an alignment"); 5731 5732 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5733 AttributeSet::FunctionIndex, 5734 FnAttrs)); 5735 } 5736 5737 // Finish off the Attribute and check them 5738 AttributeSet PAL = AttributeSet::get(Context, Attrs); 5739 5740 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 5741 CI->setTailCallKind(TCK); 5742 CI->setCallingConv(CC); 5743 CI->setAttributes(PAL); 5744 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 5745 Inst = CI; 5746 return false; 5747 } 5748 5749 //===----------------------------------------------------------------------===// 5750 // Memory Instructions. 5751 //===----------------------------------------------------------------------===// 5752 5753 /// ParseAlloc 5754 /// ::= 'alloca' 'inalloca'? Type (',' TypeAndValue)? (',' 'align' i32)? 5755 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 5756 Value *Size = nullptr; 5757 LocTy SizeLoc, TyLoc; 5758 unsigned Alignment = 0; 5759 Type *Ty = nullptr; 5760 5761 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 5762 5763 if (ParseType(Ty, TyLoc)) return true; 5764 5765 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 5766 return Error(TyLoc, "invalid type for alloca"); 5767 5768 bool AteExtraComma = false; 5769 if (EatIfPresent(lltok::comma)) { 5770 if (Lex.getKind() == lltok::kw_align) { 5771 if (ParseOptionalAlignment(Alignment)) return true; 5772 } else if (Lex.getKind() == lltok::MetadataVar) { 5773 AteExtraComma = true; 5774 } else { 5775 if (ParseTypeAndValue(Size, SizeLoc, PFS) || 5776 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 5777 return true; 5778 } 5779 } 5780 5781 if (Size && !Size->getType()->isIntegerTy()) 5782 return Error(SizeLoc, "element count must have integer type"); 5783 5784 AllocaInst *AI = new AllocaInst(Ty, Size, Alignment); 5785 AI->setUsedWithInAlloca(IsInAlloca); 5786 Inst = AI; 5787 return AteExtraComma ? InstExtraComma : InstNormal; 5788 } 5789 5790 /// ParseLoad 5791 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 5792 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 5793 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 5794 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) { 5795 Value *Val; LocTy Loc; 5796 unsigned Alignment = 0; 5797 bool AteExtraComma = false; 5798 bool isAtomic = false; 5799 AtomicOrdering Ordering = NotAtomic; 5800 SynchronizationScope Scope = CrossThread; 5801 5802 if (Lex.getKind() == lltok::kw_atomic) { 5803 isAtomic = true; 5804 Lex.Lex(); 5805 } 5806 5807 bool isVolatile = false; 5808 if (Lex.getKind() == lltok::kw_volatile) { 5809 isVolatile = true; 5810 Lex.Lex(); 5811 } 5812 5813 Type *Ty; 5814 LocTy ExplicitTypeLoc = Lex.getLoc(); 5815 if (ParseType(Ty) || 5816 ParseToken(lltok::comma, "expected comma after load's type") || 5817 ParseTypeAndValue(Val, Loc, PFS) || 5818 ParseScopeAndOrdering(isAtomic, Scope, Ordering) || 5819 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 5820 return true; 5821 5822 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 5823 return Error(Loc, "load operand must be a pointer to a first class type"); 5824 if (isAtomic && !Alignment) 5825 return Error(Loc, "atomic load must have explicit non-zero alignment"); 5826 if (Ordering == Release || Ordering == AcquireRelease) 5827 return Error(Loc, "atomic load cannot use Release ordering"); 5828 5829 if (Ty != cast<PointerType>(Val->getType())->getElementType()) 5830 return Error(ExplicitTypeLoc, 5831 "explicit pointee type doesn't match operand's pointee type"); 5832 5833 Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, Scope); 5834 return AteExtraComma ? InstExtraComma : InstNormal; 5835 } 5836 5837 /// ParseStore 5838 5839 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 5840 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 5841 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 5842 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) { 5843 Value *Val, *Ptr; LocTy Loc, PtrLoc; 5844 unsigned Alignment = 0; 5845 bool AteExtraComma = false; 5846 bool isAtomic = false; 5847 AtomicOrdering Ordering = NotAtomic; 5848 SynchronizationScope Scope = CrossThread; 5849 5850 if (Lex.getKind() == lltok::kw_atomic) { 5851 isAtomic = true; 5852 Lex.Lex(); 5853 } 5854 5855 bool isVolatile = false; 5856 if (Lex.getKind() == lltok::kw_volatile) { 5857 isVolatile = true; 5858 Lex.Lex(); 5859 } 5860 5861 if (ParseTypeAndValue(Val, Loc, PFS) || 5862 ParseToken(lltok::comma, "expected ',' after store operand") || 5863 ParseTypeAndValue(Ptr, PtrLoc, PFS) || 5864 ParseScopeAndOrdering(isAtomic, Scope, Ordering) || 5865 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 5866 return true; 5867 5868 if (!Ptr->getType()->isPointerTy()) 5869 return Error(PtrLoc, "store operand must be a pointer"); 5870 if (!Val->getType()->isFirstClassType()) 5871 return Error(Loc, "store operand must be a first class value"); 5872 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 5873 return Error(Loc, "stored value and pointer type do not match"); 5874 if (isAtomic && !Alignment) 5875 return Error(Loc, "atomic store must have explicit non-zero alignment"); 5876 if (Ordering == Acquire || Ordering == AcquireRelease) 5877 return Error(Loc, "atomic store cannot use Acquire ordering"); 5878 5879 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope); 5880 return AteExtraComma ? InstExtraComma : InstNormal; 5881 } 5882 5883 /// ParseCmpXchg 5884 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 5885 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering 5886 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 5887 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 5888 bool AteExtraComma = false; 5889 AtomicOrdering SuccessOrdering = NotAtomic; 5890 AtomicOrdering FailureOrdering = NotAtomic; 5891 SynchronizationScope Scope = CrossThread; 5892 bool isVolatile = false; 5893 bool isWeak = false; 5894 5895 if (EatIfPresent(lltok::kw_weak)) 5896 isWeak = true; 5897 5898 if (EatIfPresent(lltok::kw_volatile)) 5899 isVolatile = true; 5900 5901 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 5902 ParseToken(lltok::comma, "expected ',' after cmpxchg address") || 5903 ParseTypeAndValue(Cmp, CmpLoc, PFS) || 5904 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 5905 ParseTypeAndValue(New, NewLoc, PFS) || 5906 ParseScopeAndOrdering(true /*Always atomic*/, Scope, SuccessOrdering) || 5907 ParseOrdering(FailureOrdering)) 5908 return true; 5909 5910 if (SuccessOrdering == Unordered || FailureOrdering == Unordered) 5911 return TokError("cmpxchg cannot be unordered"); 5912 if (SuccessOrdering < FailureOrdering) 5913 return TokError("cmpxchg must be at least as ordered on success as failure"); 5914 if (FailureOrdering == Release || FailureOrdering == AcquireRelease) 5915 return TokError("cmpxchg failure ordering cannot include release semantics"); 5916 if (!Ptr->getType()->isPointerTy()) 5917 return Error(PtrLoc, "cmpxchg operand must be a pointer"); 5918 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 5919 return Error(CmpLoc, "compare value and pointer type do not match"); 5920 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 5921 return Error(NewLoc, "new value and pointer type do not match"); 5922 if (!New->getType()->isIntegerTy()) 5923 return Error(NewLoc, "cmpxchg operand must be an integer"); 5924 unsigned Size = New->getType()->getPrimitiveSizeInBits(); 5925 if (Size < 8 || (Size & (Size - 1))) 5926 return Error(NewLoc, "cmpxchg operand must be power-of-two byte-sized" 5927 " integer"); 5928 5929 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 5930 Ptr, Cmp, New, SuccessOrdering, FailureOrdering, Scope); 5931 CXI->setVolatile(isVolatile); 5932 CXI->setWeak(isWeak); 5933 Inst = CXI; 5934 return AteExtraComma ? InstExtraComma : InstNormal; 5935 } 5936 5937 /// ParseAtomicRMW 5938 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 5939 /// 'singlethread'? AtomicOrdering 5940 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 5941 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 5942 bool AteExtraComma = false; 5943 AtomicOrdering Ordering = NotAtomic; 5944 SynchronizationScope Scope = CrossThread; 5945 bool isVolatile = false; 5946 AtomicRMWInst::BinOp Operation; 5947 5948 if (EatIfPresent(lltok::kw_volatile)) 5949 isVolatile = true; 5950 5951 switch (Lex.getKind()) { 5952 default: return TokError("expected binary operation in atomicrmw"); 5953 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 5954 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 5955 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 5956 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 5957 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 5958 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 5959 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 5960 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 5961 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 5962 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 5963 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 5964 } 5965 Lex.Lex(); // Eat the operation. 5966 5967 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 5968 ParseToken(lltok::comma, "expected ',' after atomicrmw address") || 5969 ParseTypeAndValue(Val, ValLoc, PFS) || 5970 ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 5971 return true; 5972 5973 if (Ordering == Unordered) 5974 return TokError("atomicrmw cannot be unordered"); 5975 if (!Ptr->getType()->isPointerTy()) 5976 return Error(PtrLoc, "atomicrmw operand must be a pointer"); 5977 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 5978 return Error(ValLoc, "atomicrmw value and pointer type do not match"); 5979 if (!Val->getType()->isIntegerTy()) 5980 return Error(ValLoc, "atomicrmw operand must be an integer"); 5981 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 5982 if (Size < 8 || (Size & (Size - 1))) 5983 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 5984 " integer"); 5985 5986 AtomicRMWInst *RMWI = 5987 new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope); 5988 RMWI->setVolatile(isVolatile); 5989 Inst = RMWI; 5990 return AteExtraComma ? InstExtraComma : InstNormal; 5991 } 5992 5993 /// ParseFence 5994 /// ::= 'fence' 'singlethread'? AtomicOrdering 5995 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) { 5996 AtomicOrdering Ordering = NotAtomic; 5997 SynchronizationScope Scope = CrossThread; 5998 if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 5999 return true; 6000 6001 if (Ordering == Unordered) 6002 return TokError("fence cannot be unordered"); 6003 if (Ordering == Monotonic) 6004 return TokError("fence cannot be monotonic"); 6005 6006 Inst = new FenceInst(Context, Ordering, Scope); 6007 return InstNormal; 6008 } 6009 6010 /// ParseGetElementPtr 6011 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 6012 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 6013 Value *Ptr = nullptr; 6014 Value *Val = nullptr; 6015 LocTy Loc, EltLoc; 6016 6017 bool InBounds = EatIfPresent(lltok::kw_inbounds); 6018 6019 Type *Ty = nullptr; 6020 LocTy ExplicitTypeLoc = Lex.getLoc(); 6021 if (ParseType(Ty) || 6022 ParseToken(lltok::comma, "expected comma after getelementptr's type") || 6023 ParseTypeAndValue(Ptr, Loc, PFS)) 6024 return true; 6025 6026 Type *BaseType = Ptr->getType(); 6027 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 6028 if (!BasePointerType) 6029 return Error(Loc, "base of getelementptr must be a pointer"); 6030 6031 if (Ty != BasePointerType->getElementType()) 6032 return Error(ExplicitTypeLoc, 6033 "explicit pointee type doesn't match operand's pointee type"); 6034 6035 SmallVector<Value*, 16> Indices; 6036 bool AteExtraComma = false; 6037 // GEP returns a vector of pointers if at least one of parameters is a vector. 6038 // All vector parameters should have the same vector width. 6039 unsigned GEPWidth = BaseType->isVectorTy() ? 6040 BaseType->getVectorNumElements() : 0; 6041 6042 while (EatIfPresent(lltok::comma)) { 6043 if (Lex.getKind() == lltok::MetadataVar) { 6044 AteExtraComma = true; 6045 break; 6046 } 6047 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; 6048 if (!Val->getType()->getScalarType()->isIntegerTy()) 6049 return Error(EltLoc, "getelementptr index must be an integer"); 6050 6051 if (Val->getType()->isVectorTy()) { 6052 unsigned ValNumEl = Val->getType()->getVectorNumElements(); 6053 if (GEPWidth && GEPWidth != ValNumEl) 6054 return Error(EltLoc, 6055 "getelementptr vector index has a wrong number of elements"); 6056 GEPWidth = ValNumEl; 6057 } 6058 Indices.push_back(Val); 6059 } 6060 6061 SmallPtrSet<Type*, 4> Visited; 6062 if (!Indices.empty() && !Ty->isSized(&Visited)) 6063 return Error(Loc, "base element of getelementptr must be sized"); 6064 6065 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 6066 return Error(Loc, "invalid getelementptr indices"); 6067 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 6068 if (InBounds) 6069 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 6070 return AteExtraComma ? InstExtraComma : InstNormal; 6071 } 6072 6073 /// ParseExtractValue 6074 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 6075 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 6076 Value *Val; LocTy Loc; 6077 SmallVector<unsigned, 4> Indices; 6078 bool AteExtraComma; 6079 if (ParseTypeAndValue(Val, Loc, PFS) || 6080 ParseIndexList(Indices, AteExtraComma)) 6081 return true; 6082 6083 if (!Val->getType()->isAggregateType()) 6084 return Error(Loc, "extractvalue operand must be aggregate type"); 6085 6086 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 6087 return Error(Loc, "invalid indices for extractvalue"); 6088 Inst = ExtractValueInst::Create(Val, Indices); 6089 return AteExtraComma ? InstExtraComma : InstNormal; 6090 } 6091 6092 /// ParseInsertValue 6093 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 6094 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 6095 Value *Val0, *Val1; LocTy Loc0, Loc1; 6096 SmallVector<unsigned, 4> Indices; 6097 bool AteExtraComma; 6098 if (ParseTypeAndValue(Val0, Loc0, PFS) || 6099 ParseToken(lltok::comma, "expected comma after insertvalue operand") || 6100 ParseTypeAndValue(Val1, Loc1, PFS) || 6101 ParseIndexList(Indices, AteExtraComma)) 6102 return true; 6103 6104 if (!Val0->getType()->isAggregateType()) 6105 return Error(Loc0, "insertvalue operand must be aggregate type"); 6106 6107 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 6108 if (!IndexedType) 6109 return Error(Loc0, "invalid indices for insertvalue"); 6110 if (IndexedType != Val1->getType()) 6111 return Error(Loc1, "insertvalue operand and field disagree in type: '" + 6112 getTypeString(Val1->getType()) + "' instead of '" + 6113 getTypeString(IndexedType) + "'"); 6114 Inst = InsertValueInst::Create(Val0, Val1, Indices); 6115 return AteExtraComma ? InstExtraComma : InstNormal; 6116 } 6117 6118 //===----------------------------------------------------------------------===// 6119 // Embedded metadata. 6120 //===----------------------------------------------------------------------===// 6121 6122 /// ParseMDNodeVector 6123 /// ::= { Element (',' Element)* } 6124 /// Element 6125 /// ::= 'null' | TypeAndValue 6126 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 6127 if (ParseToken(lltok::lbrace, "expected '{' here")) 6128 return true; 6129 6130 // Check for an empty list. 6131 if (EatIfPresent(lltok::rbrace)) 6132 return false; 6133 6134 do { 6135 // Null is a special case since it is typeless. 6136 if (EatIfPresent(lltok::kw_null)) { 6137 Elts.push_back(nullptr); 6138 continue; 6139 } 6140 6141 Metadata *MD; 6142 if (ParseMetadata(MD, nullptr)) 6143 return true; 6144 Elts.push_back(MD); 6145 } while (EatIfPresent(lltok::comma)); 6146 6147 return ParseToken(lltok::rbrace, "expected end of metadata node"); 6148 } 6149 6150 //===----------------------------------------------------------------------===// 6151 // Use-list order directives. 6152 //===----------------------------------------------------------------------===// 6153 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 6154 SMLoc Loc) { 6155 if (V->use_empty()) 6156 return Error(Loc, "value has no uses"); 6157 6158 unsigned NumUses = 0; 6159 SmallDenseMap<const Use *, unsigned, 16> Order; 6160 for (const Use &U : V->uses()) { 6161 if (++NumUses > Indexes.size()) 6162 break; 6163 Order[&U] = Indexes[NumUses - 1]; 6164 } 6165 if (NumUses < 2) 6166 return Error(Loc, "value only has one use"); 6167 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 6168 return Error(Loc, "wrong number of indexes, expected " + 6169 Twine(std::distance(V->use_begin(), V->use_end()))); 6170 6171 V->sortUseList([&](const Use &L, const Use &R) { 6172 return Order.lookup(&L) < Order.lookup(&R); 6173 }); 6174 return false; 6175 } 6176 6177 /// ParseUseListOrderIndexes 6178 /// ::= '{' uint32 (',' uint32)+ '}' 6179 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 6180 SMLoc Loc = Lex.getLoc(); 6181 if (ParseToken(lltok::lbrace, "expected '{' here")) 6182 return true; 6183 if (Lex.getKind() == lltok::rbrace) 6184 return Lex.Error("expected non-empty list of uselistorder indexes"); 6185 6186 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 6187 // indexes should be distinct numbers in the range [0, size-1], and should 6188 // not be in order. 6189 unsigned Offset = 0; 6190 unsigned Max = 0; 6191 bool IsOrdered = true; 6192 assert(Indexes.empty() && "Expected empty order vector"); 6193 do { 6194 unsigned Index; 6195 if (ParseUInt32(Index)) 6196 return true; 6197 6198 // Update consistency checks. 6199 Offset += Index - Indexes.size(); 6200 Max = std::max(Max, Index); 6201 IsOrdered &= Index == Indexes.size(); 6202 6203 Indexes.push_back(Index); 6204 } while (EatIfPresent(lltok::comma)); 6205 6206 if (ParseToken(lltok::rbrace, "expected '}' here")) 6207 return true; 6208 6209 if (Indexes.size() < 2) 6210 return Error(Loc, "expected >= 2 uselistorder indexes"); 6211 if (Offset != 0 || Max >= Indexes.size()) 6212 return Error(Loc, "expected distinct uselistorder indexes in range [0, size)"); 6213 if (IsOrdered) 6214 return Error(Loc, "expected uselistorder indexes to change the order"); 6215 6216 return false; 6217 } 6218 6219 /// ParseUseListOrder 6220 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 6221 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) { 6222 SMLoc Loc = Lex.getLoc(); 6223 if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 6224 return true; 6225 6226 Value *V; 6227 SmallVector<unsigned, 16> Indexes; 6228 if (ParseTypeAndValue(V, PFS) || 6229 ParseToken(lltok::comma, "expected comma in uselistorder directive") || 6230 ParseUseListOrderIndexes(Indexes)) 6231 return true; 6232 6233 return sortUseListOrder(V, Indexes, Loc); 6234 } 6235 6236 /// ParseUseListOrderBB 6237 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 6238 bool LLParser::ParseUseListOrderBB() { 6239 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 6240 SMLoc Loc = Lex.getLoc(); 6241 Lex.Lex(); 6242 6243 ValID Fn, Label; 6244 SmallVector<unsigned, 16> Indexes; 6245 if (ParseValID(Fn) || 6246 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 6247 ParseValID(Label) || 6248 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 6249 ParseUseListOrderIndexes(Indexes)) 6250 return true; 6251 6252 // Check the function. 6253 GlobalValue *GV; 6254 if (Fn.Kind == ValID::t_GlobalName) 6255 GV = M->getNamedValue(Fn.StrVal); 6256 else if (Fn.Kind == ValID::t_GlobalID) 6257 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 6258 else 6259 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 6260 if (!GV) 6261 return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb"); 6262 auto *F = dyn_cast<Function>(GV); 6263 if (!F) 6264 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 6265 if (F->isDeclaration()) 6266 return Error(Fn.Loc, "invalid declaration in uselistorder_bb"); 6267 6268 // Check the basic block. 6269 if (Label.Kind == ValID::t_LocalID) 6270 return Error(Label.Loc, "invalid numeric label in uselistorder_bb"); 6271 if (Label.Kind != ValID::t_LocalName) 6272 return Error(Label.Loc, "expected basic block name in uselistorder_bb"); 6273 Value *V = F->getValueSymbolTable().lookup(Label.StrVal); 6274 if (!V) 6275 return Error(Label.Loc, "invalid basic block in uselistorder_bb"); 6276 if (!isa<BasicBlock>(V)) 6277 return Error(Label.Loc, "expected basic block in uselistorder_bb"); 6278 6279 return sortUseListOrder(V, Indexes, Loc); 6280 } 6281