1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines the parser class for .ll files.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "LLParser.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/AsmParser/SlotMapping.h"
21 #include "llvm/IR/Argument.h"
22 #include "llvm/IR/AttributeSetNode.h"
23 #include "llvm/IR/AutoUpgrade.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallingConv.h"
26 #include "llvm/IR/Comdat.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DebugInfoMetadata.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GlobalIFunc.h"
32 #include "llvm/IR/GlobalObject.h"
33 #include "llvm/IR/InlineAsm.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/LLVMContext.h"
38 #include "llvm/IR/Metadata.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/IR/Operator.h"
41 #include "llvm/IR/Type.h"
42 #include "llvm/IR/Value.h"
43 #include "llvm/IR/ValueSymbolTable.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/Dwarf.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include "llvm/Support/MathExtras.h"
48 #include "llvm/Support/SaveAndRestore.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include <algorithm>
51 #include <cassert>
52 #include <cstring>
53 #include <iterator>
54 #include <vector>
55 
56 using namespace llvm;
57 
58 static std::string getTypeString(Type *T) {
59   std::string Result;
60   raw_string_ostream Tmp(Result);
61   Tmp << *T;
62   return Tmp.str();
63 }
64 
65 /// Run: module ::= toplevelentity*
66 bool LLParser::Run() {
67   // Prime the lexer.
68   Lex.Lex();
69 
70   if (Context.shouldDiscardValueNames())
71     return Error(
72         Lex.getLoc(),
73         "Can't read textual IR with a Context that discards named Values");
74 
75   return ParseTopLevelEntities() ||
76          ValidateEndOfModule();
77 }
78 
79 bool LLParser::parseStandaloneConstantValue(Constant *&C,
80                                             const SlotMapping *Slots) {
81   restoreParsingState(Slots);
82   Lex.Lex();
83 
84   Type *Ty = nullptr;
85   if (ParseType(Ty) || parseConstantValue(Ty, C))
86     return true;
87   if (Lex.getKind() != lltok::Eof)
88     return Error(Lex.getLoc(), "expected end of string");
89   return false;
90 }
91 
92 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
93                                     const SlotMapping *Slots) {
94   restoreParsingState(Slots);
95   Lex.Lex();
96 
97   Read = 0;
98   SMLoc Start = Lex.getLoc();
99   Ty = nullptr;
100   if (ParseType(Ty))
101     return true;
102   SMLoc End = Lex.getLoc();
103   Read = End.getPointer() - Start.getPointer();
104 
105   return false;
106 }
107 
108 void LLParser::restoreParsingState(const SlotMapping *Slots) {
109   if (!Slots)
110     return;
111   NumberedVals = Slots->GlobalValues;
112   NumberedMetadata = Slots->MetadataNodes;
113   for (const auto &I : Slots->NamedTypes)
114     NamedTypes.insert(
115         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
116   for (const auto &I : Slots->Types)
117     NumberedTypes.insert(
118         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
119 }
120 
121 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
122 /// module.
123 bool LLParser::ValidateEndOfModule() {
124   // Handle any function attribute group forward references.
125   for (const auto &RAG : ForwardRefAttrGroups) {
126     Value *V = RAG.first;
127     const std::vector<unsigned> &Attrs = RAG.second;
128     AttrBuilder B;
129 
130     for (const auto &Attr : Attrs)
131       B.merge(NumberedAttrBuilders[Attr]);
132 
133     if (Function *Fn = dyn_cast<Function>(V)) {
134       AttributeList AS = Fn->getAttributes();
135       AttrBuilder FnAttrs(AS.getFnAttributes());
136       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
137 
138       FnAttrs.merge(B);
139 
140       // If the alignment was parsed as an attribute, move to the alignment
141       // field.
142       if (FnAttrs.hasAlignmentAttr()) {
143         Fn->setAlignment(FnAttrs.getAlignment());
144         FnAttrs.removeAttribute(Attribute::Alignment);
145       }
146 
147       AS = AS.addAttributes(
148           Context, AttributeList::FunctionIndex,
149           AttributeList::get(Context, AttributeList::FunctionIndex, FnAttrs));
150       Fn->setAttributes(AS);
151     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
152       AttributeList AS = CI->getAttributes();
153       AttrBuilder FnAttrs(AS.getFnAttributes());
154       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
155       FnAttrs.merge(B);
156       AS = AS.addAttributes(
157           Context, AttributeList::FunctionIndex,
158           AttributeList::get(Context, AttributeList::FunctionIndex, FnAttrs));
159       CI->setAttributes(AS);
160     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
161       AttributeList AS = II->getAttributes();
162       AttrBuilder FnAttrs(AS.getFnAttributes());
163       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
164       FnAttrs.merge(B);
165       AS = AS.addAttributes(
166           Context, AttributeList::FunctionIndex,
167           AttributeList::get(Context, AttributeList::FunctionIndex, FnAttrs));
168       II->setAttributes(AS);
169     } else {
170       llvm_unreachable("invalid object with forward attribute group reference");
171     }
172   }
173 
174   // If there are entries in ForwardRefBlockAddresses at this point, the
175   // function was never defined.
176   if (!ForwardRefBlockAddresses.empty())
177     return Error(ForwardRefBlockAddresses.begin()->first.Loc,
178                  "expected function name in blockaddress");
179 
180   for (const auto &NT : NumberedTypes)
181     if (NT.second.second.isValid())
182       return Error(NT.second.second,
183                    "use of undefined type '%" + Twine(NT.first) + "'");
184 
185   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
186        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
187     if (I->second.second.isValid())
188       return Error(I->second.second,
189                    "use of undefined type named '" + I->getKey() + "'");
190 
191   if (!ForwardRefComdats.empty())
192     return Error(ForwardRefComdats.begin()->second,
193                  "use of undefined comdat '$" +
194                      ForwardRefComdats.begin()->first + "'");
195 
196   if (!ForwardRefVals.empty())
197     return Error(ForwardRefVals.begin()->second.second,
198                  "use of undefined value '@" + ForwardRefVals.begin()->first +
199                  "'");
200 
201   if (!ForwardRefValIDs.empty())
202     return Error(ForwardRefValIDs.begin()->second.second,
203                  "use of undefined value '@" +
204                  Twine(ForwardRefValIDs.begin()->first) + "'");
205 
206   if (!ForwardRefMDNodes.empty())
207     return Error(ForwardRefMDNodes.begin()->second.second,
208                  "use of undefined metadata '!" +
209                  Twine(ForwardRefMDNodes.begin()->first) + "'");
210 
211   // Resolve metadata cycles.
212   for (auto &N : NumberedMetadata) {
213     if (N.second && !N.second->isResolved())
214       N.second->resolveCycles();
215   }
216 
217   for (auto *Inst : InstsWithTBAATag) {
218     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
219     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
220     auto *UpgradedMD = UpgradeTBAANode(*MD);
221     if (MD != UpgradedMD)
222       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
223   }
224 
225   // Look for intrinsic functions and CallInst that need to be upgraded
226   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
227     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
228 
229   // Some types could be renamed during loading if several modules are
230   // loaded in the same LLVMContext (LTO scenario). In this case we should
231   // remangle intrinsics names as well.
232   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
233     Function *F = &*FI++;
234     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
235       F->replaceAllUsesWith(Remangled.getValue());
236       F->eraseFromParent();
237     }
238   }
239 
240   UpgradeDebugInfo(*M);
241 
242   UpgradeModuleFlags(*M);
243 
244   if (!Slots)
245     return false;
246   // Initialize the slot mapping.
247   // Because by this point we've parsed and validated everything, we can "steal"
248   // the mapping from LLParser as it doesn't need it anymore.
249   Slots->GlobalValues = std::move(NumberedVals);
250   Slots->MetadataNodes = std::move(NumberedMetadata);
251   for (const auto &I : NamedTypes)
252     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
253   for (const auto &I : NumberedTypes)
254     Slots->Types.insert(std::make_pair(I.first, I.second.first));
255 
256   return false;
257 }
258 
259 //===----------------------------------------------------------------------===//
260 // Top-Level Entities
261 //===----------------------------------------------------------------------===//
262 
263 bool LLParser::ParseTopLevelEntities() {
264   while (true) {
265     switch (Lex.getKind()) {
266     default:         return TokError("expected top-level entity");
267     case lltok::Eof: return false;
268     case lltok::kw_declare: if (ParseDeclare()) return true; break;
269     case lltok::kw_define:  if (ParseDefine()) return true; break;
270     case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
271     case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
272     case lltok::kw_source_filename:
273       if (ParseSourceFileName())
274         return true;
275       break;
276     case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
277     case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
278     case lltok::LocalVar:   if (ParseNamedType()) return true; break;
279     case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
280     case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
281     case lltok::ComdatVar:  if (parseComdat()) return true; break;
282     case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
283     case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
284     case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
285     case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
286     case lltok::kw_uselistorder_bb:
287       if (ParseUseListOrderBB())
288         return true;
289       break;
290     }
291   }
292 }
293 
294 /// toplevelentity
295 ///   ::= 'module' 'asm' STRINGCONSTANT
296 bool LLParser::ParseModuleAsm() {
297   assert(Lex.getKind() == lltok::kw_module);
298   Lex.Lex();
299 
300   std::string AsmStr;
301   if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
302       ParseStringConstant(AsmStr)) return true;
303 
304   M->appendModuleInlineAsm(AsmStr);
305   return false;
306 }
307 
308 /// toplevelentity
309 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
310 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
311 bool LLParser::ParseTargetDefinition() {
312   assert(Lex.getKind() == lltok::kw_target);
313   std::string Str;
314   switch (Lex.Lex()) {
315   default: return TokError("unknown target property");
316   case lltok::kw_triple:
317     Lex.Lex();
318     if (ParseToken(lltok::equal, "expected '=' after target triple") ||
319         ParseStringConstant(Str))
320       return true;
321     M->setTargetTriple(Str);
322     return false;
323   case lltok::kw_datalayout:
324     Lex.Lex();
325     if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
326         ParseStringConstant(Str))
327       return true;
328     M->setDataLayout(Str);
329     return false;
330   }
331 }
332 
333 /// toplevelentity
334 ///   ::= 'source_filename' '=' STRINGCONSTANT
335 bool LLParser::ParseSourceFileName() {
336   assert(Lex.getKind() == lltok::kw_source_filename);
337   std::string Str;
338   Lex.Lex();
339   if (ParseToken(lltok::equal, "expected '=' after source_filename") ||
340       ParseStringConstant(Str))
341     return true;
342   M->setSourceFileName(Str);
343   return false;
344 }
345 
346 /// toplevelentity
347 ///   ::= 'deplibs' '=' '[' ']'
348 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
349 /// FIXME: Remove in 4.0. Currently parse, but ignore.
350 bool LLParser::ParseDepLibs() {
351   assert(Lex.getKind() == lltok::kw_deplibs);
352   Lex.Lex();
353   if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
354       ParseToken(lltok::lsquare, "expected '=' after deplibs"))
355     return true;
356 
357   if (EatIfPresent(lltok::rsquare))
358     return false;
359 
360   do {
361     std::string Str;
362     if (ParseStringConstant(Str)) return true;
363   } while (EatIfPresent(lltok::comma));
364 
365   return ParseToken(lltok::rsquare, "expected ']' at end of list");
366 }
367 
368 /// ParseUnnamedType:
369 ///   ::= LocalVarID '=' 'type' type
370 bool LLParser::ParseUnnamedType() {
371   LocTy TypeLoc = Lex.getLoc();
372   unsigned TypeID = Lex.getUIntVal();
373   Lex.Lex(); // eat LocalVarID;
374 
375   if (ParseToken(lltok::equal, "expected '=' after name") ||
376       ParseToken(lltok::kw_type, "expected 'type' after '='"))
377     return true;
378 
379   Type *Result = nullptr;
380   if (ParseStructDefinition(TypeLoc, "",
381                             NumberedTypes[TypeID], Result)) return true;
382 
383   if (!isa<StructType>(Result)) {
384     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
385     if (Entry.first)
386       return Error(TypeLoc, "non-struct types may not be recursive");
387     Entry.first = Result;
388     Entry.second = SMLoc();
389   }
390 
391   return false;
392 }
393 
394 /// toplevelentity
395 ///   ::= LocalVar '=' 'type' type
396 bool LLParser::ParseNamedType() {
397   std::string Name = Lex.getStrVal();
398   LocTy NameLoc = Lex.getLoc();
399   Lex.Lex();  // eat LocalVar.
400 
401   if (ParseToken(lltok::equal, "expected '=' after name") ||
402       ParseToken(lltok::kw_type, "expected 'type' after name"))
403     return true;
404 
405   Type *Result = nullptr;
406   if (ParseStructDefinition(NameLoc, Name,
407                             NamedTypes[Name], Result)) return true;
408 
409   if (!isa<StructType>(Result)) {
410     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
411     if (Entry.first)
412       return Error(NameLoc, "non-struct types may not be recursive");
413     Entry.first = Result;
414     Entry.second = SMLoc();
415   }
416 
417   return false;
418 }
419 
420 /// toplevelentity
421 ///   ::= 'declare' FunctionHeader
422 bool LLParser::ParseDeclare() {
423   assert(Lex.getKind() == lltok::kw_declare);
424   Lex.Lex();
425 
426   std::vector<std::pair<unsigned, MDNode *>> MDs;
427   while (Lex.getKind() == lltok::MetadataVar) {
428     unsigned MDK;
429     MDNode *N;
430     if (ParseMetadataAttachment(MDK, N))
431       return true;
432     MDs.push_back({MDK, N});
433   }
434 
435   Function *F;
436   if (ParseFunctionHeader(F, false))
437     return true;
438   for (auto &MD : MDs)
439     F->addMetadata(MD.first, *MD.second);
440   return false;
441 }
442 
443 /// toplevelentity
444 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
445 bool LLParser::ParseDefine() {
446   assert(Lex.getKind() == lltok::kw_define);
447   Lex.Lex();
448 
449   Function *F;
450   return ParseFunctionHeader(F, true) ||
451          ParseOptionalFunctionMetadata(*F) ||
452          ParseFunctionBody(*F);
453 }
454 
455 /// ParseGlobalType
456 ///   ::= 'constant'
457 ///   ::= 'global'
458 bool LLParser::ParseGlobalType(bool &IsConstant) {
459   if (Lex.getKind() == lltok::kw_constant)
460     IsConstant = true;
461   else if (Lex.getKind() == lltok::kw_global)
462     IsConstant = false;
463   else {
464     IsConstant = false;
465     return TokError("expected 'global' or 'constant'");
466   }
467   Lex.Lex();
468   return false;
469 }
470 
471 bool LLParser::ParseOptionalUnnamedAddr(
472     GlobalVariable::UnnamedAddr &UnnamedAddr) {
473   if (EatIfPresent(lltok::kw_unnamed_addr))
474     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
475   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
476     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
477   else
478     UnnamedAddr = GlobalValue::UnnamedAddr::None;
479   return false;
480 }
481 
482 /// ParseUnnamedGlobal:
483 ///   OptionalVisibility (ALIAS | IFUNC) ...
484 ///   OptionalLinkage OptionalVisibility OptionalDLLStorageClass
485 ///                                                     ...   -> global variable
486 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
487 ///   GlobalID '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
488 ///                                                     ...   -> global variable
489 bool LLParser::ParseUnnamedGlobal() {
490   unsigned VarID = NumberedVals.size();
491   std::string Name;
492   LocTy NameLoc = Lex.getLoc();
493 
494   // Handle the GlobalID form.
495   if (Lex.getKind() == lltok::GlobalID) {
496     if (Lex.getUIntVal() != VarID)
497       return Error(Lex.getLoc(), "variable expected to be numbered '%" +
498                    Twine(VarID) + "'");
499     Lex.Lex(); // eat GlobalID;
500 
501     if (ParseToken(lltok::equal, "expected '=' after name"))
502       return true;
503   }
504 
505   bool HasLinkage;
506   unsigned Linkage, Visibility, DLLStorageClass;
507   GlobalVariable::ThreadLocalMode TLM;
508   GlobalVariable::UnnamedAddr UnnamedAddr;
509   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) ||
510       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
511     return true;
512 
513   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
514     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
515                        DLLStorageClass, TLM, UnnamedAddr);
516 
517   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
518                              DLLStorageClass, TLM, UnnamedAddr);
519 }
520 
521 /// ParseNamedGlobal:
522 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
523 ///   GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
524 ///                                                     ...   -> global variable
525 bool LLParser::ParseNamedGlobal() {
526   assert(Lex.getKind() == lltok::GlobalVar);
527   LocTy NameLoc = Lex.getLoc();
528   std::string Name = Lex.getStrVal();
529   Lex.Lex();
530 
531   bool HasLinkage;
532   unsigned Linkage, Visibility, DLLStorageClass;
533   GlobalVariable::ThreadLocalMode TLM;
534   GlobalVariable::UnnamedAddr UnnamedAddr;
535   if (ParseToken(lltok::equal, "expected '=' in global variable") ||
536       ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) ||
537       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
538     return true;
539 
540   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
541     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
542                        DLLStorageClass, TLM, UnnamedAddr);
543 
544   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
545                              DLLStorageClass, TLM, UnnamedAddr);
546 }
547 
548 bool LLParser::parseComdat() {
549   assert(Lex.getKind() == lltok::ComdatVar);
550   std::string Name = Lex.getStrVal();
551   LocTy NameLoc = Lex.getLoc();
552   Lex.Lex();
553 
554   if (ParseToken(lltok::equal, "expected '=' here"))
555     return true;
556 
557   if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
558     return TokError("expected comdat type");
559 
560   Comdat::SelectionKind SK;
561   switch (Lex.getKind()) {
562   default:
563     return TokError("unknown selection kind");
564   case lltok::kw_any:
565     SK = Comdat::Any;
566     break;
567   case lltok::kw_exactmatch:
568     SK = Comdat::ExactMatch;
569     break;
570   case lltok::kw_largest:
571     SK = Comdat::Largest;
572     break;
573   case lltok::kw_noduplicates:
574     SK = Comdat::NoDuplicates;
575     break;
576   case lltok::kw_samesize:
577     SK = Comdat::SameSize;
578     break;
579   }
580   Lex.Lex();
581 
582   // See if the comdat was forward referenced, if so, use the comdat.
583   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
584   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
585   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
586     return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
587 
588   Comdat *C;
589   if (I != ComdatSymTab.end())
590     C = &I->second;
591   else
592     C = M->getOrInsertComdat(Name);
593   C->setSelectionKind(SK);
594 
595   return false;
596 }
597 
598 // MDString:
599 //   ::= '!' STRINGCONSTANT
600 bool LLParser::ParseMDString(MDString *&Result) {
601   std::string Str;
602   if (ParseStringConstant(Str)) return true;
603   Result = MDString::get(Context, Str);
604   return false;
605 }
606 
607 // MDNode:
608 //   ::= '!' MDNodeNumber
609 bool LLParser::ParseMDNodeID(MDNode *&Result) {
610   // !{ ..., !42, ... }
611   LocTy IDLoc = Lex.getLoc();
612   unsigned MID = 0;
613   if (ParseUInt32(MID))
614     return true;
615 
616   // If not a forward reference, just return it now.
617   if (NumberedMetadata.count(MID)) {
618     Result = NumberedMetadata[MID];
619     return false;
620   }
621 
622   // Otherwise, create MDNode forward reference.
623   auto &FwdRef = ForwardRefMDNodes[MID];
624   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
625 
626   Result = FwdRef.first.get();
627   NumberedMetadata[MID].reset(Result);
628   return false;
629 }
630 
631 /// ParseNamedMetadata:
632 ///   !foo = !{ !1, !2 }
633 bool LLParser::ParseNamedMetadata() {
634   assert(Lex.getKind() == lltok::MetadataVar);
635   std::string Name = Lex.getStrVal();
636   Lex.Lex();
637 
638   if (ParseToken(lltok::equal, "expected '=' here") ||
639       ParseToken(lltok::exclaim, "Expected '!' here") ||
640       ParseToken(lltok::lbrace, "Expected '{' here"))
641     return true;
642 
643   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
644   if (Lex.getKind() != lltok::rbrace)
645     do {
646       if (ParseToken(lltok::exclaim, "Expected '!' here"))
647         return true;
648 
649       MDNode *N = nullptr;
650       if (ParseMDNodeID(N)) return true;
651       NMD->addOperand(N);
652     } while (EatIfPresent(lltok::comma));
653 
654   return ParseToken(lltok::rbrace, "expected end of metadata node");
655 }
656 
657 /// ParseStandaloneMetadata:
658 ///   !42 = !{...}
659 bool LLParser::ParseStandaloneMetadata() {
660   assert(Lex.getKind() == lltok::exclaim);
661   Lex.Lex();
662   unsigned MetadataID = 0;
663 
664   MDNode *Init;
665   if (ParseUInt32(MetadataID) ||
666       ParseToken(lltok::equal, "expected '=' here"))
667     return true;
668 
669   // Detect common error, from old metadata syntax.
670   if (Lex.getKind() == lltok::Type)
671     return TokError("unexpected type in metadata definition");
672 
673   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
674   if (Lex.getKind() == lltok::MetadataVar) {
675     if (ParseSpecializedMDNode(Init, IsDistinct))
676       return true;
677   } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
678              ParseMDTuple(Init, IsDistinct))
679     return true;
680 
681   // See if this was forward referenced, if so, handle it.
682   auto FI = ForwardRefMDNodes.find(MetadataID);
683   if (FI != ForwardRefMDNodes.end()) {
684     FI->second.first->replaceAllUsesWith(Init);
685     ForwardRefMDNodes.erase(FI);
686 
687     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
688   } else {
689     if (NumberedMetadata.count(MetadataID))
690       return TokError("Metadata id is already used");
691     NumberedMetadata[MetadataID].reset(Init);
692   }
693 
694   return false;
695 }
696 
697 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
698   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
699          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
700 }
701 
702 /// parseIndirectSymbol:
703 ///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility
704 ///                     OptionalDLLStorageClass OptionalThreadLocal
705 ///                     OptionalUnnamedAddr 'alias|ifunc' IndirectSymbol
706 ///
707 /// IndirectSymbol
708 ///   ::= TypeAndValue
709 ///
710 /// Everything through OptionalUnnamedAddr has already been parsed.
711 ///
712 bool LLParser::parseIndirectSymbol(
713     const std::string &Name, LocTy NameLoc, unsigned L, unsigned Visibility,
714     unsigned DLLStorageClass, GlobalVariable::ThreadLocalMode TLM,
715     GlobalVariable::UnnamedAddr UnnamedAddr) {
716   bool IsAlias;
717   if (Lex.getKind() == lltok::kw_alias)
718     IsAlias = true;
719   else if (Lex.getKind() == lltok::kw_ifunc)
720     IsAlias = false;
721   else
722     llvm_unreachable("Not an alias or ifunc!");
723   Lex.Lex();
724 
725   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
726 
727   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
728     return Error(NameLoc, "invalid linkage type for alias");
729 
730   if (!isValidVisibilityForLinkage(Visibility, L))
731     return Error(NameLoc,
732                  "symbol with local linkage must have default visibility");
733 
734   Type *Ty;
735   LocTy ExplicitTypeLoc = Lex.getLoc();
736   if (ParseType(Ty) ||
737       ParseToken(lltok::comma, "expected comma after alias or ifunc's type"))
738     return true;
739 
740   Constant *Aliasee;
741   LocTy AliaseeLoc = Lex.getLoc();
742   if (Lex.getKind() != lltok::kw_bitcast &&
743       Lex.getKind() != lltok::kw_getelementptr &&
744       Lex.getKind() != lltok::kw_addrspacecast &&
745       Lex.getKind() != lltok::kw_inttoptr) {
746     if (ParseGlobalTypeAndValue(Aliasee))
747       return true;
748   } else {
749     // The bitcast dest type is not present, it is implied by the dest type.
750     ValID ID;
751     if (ParseValID(ID))
752       return true;
753     if (ID.Kind != ValID::t_Constant)
754       return Error(AliaseeLoc, "invalid aliasee");
755     Aliasee = ID.ConstantVal;
756   }
757 
758   Type *AliaseeType = Aliasee->getType();
759   auto *PTy = dyn_cast<PointerType>(AliaseeType);
760   if (!PTy)
761     return Error(AliaseeLoc, "An alias or ifunc must have pointer type");
762   unsigned AddrSpace = PTy->getAddressSpace();
763 
764   if (IsAlias && Ty != PTy->getElementType())
765     return Error(
766         ExplicitTypeLoc,
767         "explicit pointee type doesn't match operand's pointee type");
768 
769   if (!IsAlias && !PTy->getElementType()->isFunctionTy())
770     return Error(
771         ExplicitTypeLoc,
772         "explicit pointee type should be a function type");
773 
774   GlobalValue *GVal = nullptr;
775 
776   // See if the alias was forward referenced, if so, prepare to replace the
777   // forward reference.
778   if (!Name.empty()) {
779     GVal = M->getNamedValue(Name);
780     if (GVal) {
781       if (!ForwardRefVals.erase(Name))
782         return Error(NameLoc, "redefinition of global '@" + Name + "'");
783     }
784   } else {
785     auto I = ForwardRefValIDs.find(NumberedVals.size());
786     if (I != ForwardRefValIDs.end()) {
787       GVal = I->second.first;
788       ForwardRefValIDs.erase(I);
789     }
790   }
791 
792   // Okay, create the alias but do not insert it into the module yet.
793   std::unique_ptr<GlobalIndirectSymbol> GA;
794   if (IsAlias)
795     GA.reset(GlobalAlias::create(Ty, AddrSpace,
796                                  (GlobalValue::LinkageTypes)Linkage, Name,
797                                  Aliasee, /*Parent*/ nullptr));
798   else
799     GA.reset(GlobalIFunc::create(Ty, AddrSpace,
800                                  (GlobalValue::LinkageTypes)Linkage, Name,
801                                  Aliasee, /*Parent*/ nullptr));
802   GA->setThreadLocalMode(TLM);
803   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
804   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
805   GA->setUnnamedAddr(UnnamedAddr);
806 
807   if (Name.empty())
808     NumberedVals.push_back(GA.get());
809 
810   if (GVal) {
811     // Verify that types agree.
812     if (GVal->getType() != GA->getType())
813       return Error(
814           ExplicitTypeLoc,
815           "forward reference and definition of alias have different types");
816 
817     // If they agree, just RAUW the old value with the alias and remove the
818     // forward ref info.
819     GVal->replaceAllUsesWith(GA.get());
820     GVal->eraseFromParent();
821   }
822 
823   // Insert into the module, we know its name won't collide now.
824   if (IsAlias)
825     M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
826   else
827     M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
828   assert(GA->getName() == Name && "Should not be a name conflict!");
829 
830   // The module owns this now
831   GA.release();
832 
833   return false;
834 }
835 
836 /// ParseGlobal
837 ///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
838 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
839 ///       OptionalExternallyInitialized GlobalType Type Const
840 ///   ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass
841 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
842 ///       OptionalExternallyInitialized GlobalType Type Const
843 ///
844 /// Everything up to and including OptionalUnnamedAddr has been parsed
845 /// already.
846 ///
847 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
848                            unsigned Linkage, bool HasLinkage,
849                            unsigned Visibility, unsigned DLLStorageClass,
850                            GlobalVariable::ThreadLocalMode TLM,
851                            GlobalVariable::UnnamedAddr UnnamedAddr) {
852   if (!isValidVisibilityForLinkage(Visibility, Linkage))
853     return Error(NameLoc,
854                  "symbol with local linkage must have default visibility");
855 
856   unsigned AddrSpace;
857   bool IsConstant, IsExternallyInitialized;
858   LocTy IsExternallyInitializedLoc;
859   LocTy TyLoc;
860 
861   Type *Ty = nullptr;
862   if (ParseOptionalAddrSpace(AddrSpace) ||
863       ParseOptionalToken(lltok::kw_externally_initialized,
864                          IsExternallyInitialized,
865                          &IsExternallyInitializedLoc) ||
866       ParseGlobalType(IsConstant) ||
867       ParseType(Ty, TyLoc))
868     return true;
869 
870   // If the linkage is specified and is external, then no initializer is
871   // present.
872   Constant *Init = nullptr;
873   if (!HasLinkage ||
874       !GlobalValue::isValidDeclarationLinkage(
875           (GlobalValue::LinkageTypes)Linkage)) {
876     if (ParseGlobalValue(Ty, Init))
877       return true;
878   }
879 
880   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
881     return Error(TyLoc, "invalid type for global variable");
882 
883   GlobalValue *GVal = nullptr;
884 
885   // See if the global was forward referenced, if so, use the global.
886   if (!Name.empty()) {
887     GVal = M->getNamedValue(Name);
888     if (GVal) {
889       if (!ForwardRefVals.erase(Name))
890         return Error(NameLoc, "redefinition of global '@" + Name + "'");
891     }
892   } else {
893     auto I = ForwardRefValIDs.find(NumberedVals.size());
894     if (I != ForwardRefValIDs.end()) {
895       GVal = I->second.first;
896       ForwardRefValIDs.erase(I);
897     }
898   }
899 
900   GlobalVariable *GV;
901   if (!GVal) {
902     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
903                             Name, nullptr, GlobalVariable::NotThreadLocal,
904                             AddrSpace);
905   } else {
906     if (GVal->getValueType() != Ty)
907       return Error(TyLoc,
908             "forward reference and definition of global have different types");
909 
910     GV = cast<GlobalVariable>(GVal);
911 
912     // Move the forward-reference to the correct spot in the module.
913     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
914   }
915 
916   if (Name.empty())
917     NumberedVals.push_back(GV);
918 
919   // Set the parsed properties on the global.
920   if (Init)
921     GV->setInitializer(Init);
922   GV->setConstant(IsConstant);
923   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
924   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
925   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
926   GV->setExternallyInitialized(IsExternallyInitialized);
927   GV->setThreadLocalMode(TLM);
928   GV->setUnnamedAddr(UnnamedAddr);
929 
930   // Parse attributes on the global.
931   while (Lex.getKind() == lltok::comma) {
932     Lex.Lex();
933 
934     if (Lex.getKind() == lltok::kw_section) {
935       Lex.Lex();
936       GV->setSection(Lex.getStrVal());
937       if (ParseToken(lltok::StringConstant, "expected global section string"))
938         return true;
939     } else if (Lex.getKind() == lltok::kw_align) {
940       unsigned Alignment;
941       if (ParseOptionalAlignment(Alignment)) return true;
942       GV->setAlignment(Alignment);
943     } else if (Lex.getKind() == lltok::MetadataVar) {
944       if (ParseGlobalObjectMetadataAttachment(*GV))
945         return true;
946     } else {
947       Comdat *C;
948       if (parseOptionalComdat(Name, C))
949         return true;
950       if (C)
951         GV->setComdat(C);
952       else
953         return TokError("unknown global variable property!");
954     }
955   }
956 
957   return false;
958 }
959 
960 /// ParseUnnamedAttrGrp
961 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
962 bool LLParser::ParseUnnamedAttrGrp() {
963   assert(Lex.getKind() == lltok::kw_attributes);
964   LocTy AttrGrpLoc = Lex.getLoc();
965   Lex.Lex();
966 
967   if (Lex.getKind() != lltok::AttrGrpID)
968     return TokError("expected attribute group id");
969 
970   unsigned VarID = Lex.getUIntVal();
971   std::vector<unsigned> unused;
972   LocTy BuiltinLoc;
973   Lex.Lex();
974 
975   if (ParseToken(lltok::equal, "expected '=' here") ||
976       ParseToken(lltok::lbrace, "expected '{' here") ||
977       ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
978                                  BuiltinLoc) ||
979       ParseToken(lltok::rbrace, "expected end of attribute group"))
980     return true;
981 
982   if (!NumberedAttrBuilders[VarID].hasAttributes())
983     return Error(AttrGrpLoc, "attribute group has no attributes");
984 
985   return false;
986 }
987 
988 /// ParseFnAttributeValuePairs
989 ///   ::= <attr> | <attr> '=' <value>
990 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
991                                           std::vector<unsigned> &FwdRefAttrGrps,
992                                           bool inAttrGrp, LocTy &BuiltinLoc) {
993   bool HaveError = false;
994 
995   B.clear();
996 
997   while (true) {
998     lltok::Kind Token = Lex.getKind();
999     if (Token == lltok::kw_builtin)
1000       BuiltinLoc = Lex.getLoc();
1001     switch (Token) {
1002     default:
1003       if (!inAttrGrp) return HaveError;
1004       return Error(Lex.getLoc(), "unterminated attribute group");
1005     case lltok::rbrace:
1006       // Finished.
1007       return false;
1008 
1009     case lltok::AttrGrpID: {
1010       // Allow a function to reference an attribute group:
1011       //
1012       //   define void @foo() #1 { ... }
1013       if (inAttrGrp)
1014         HaveError |=
1015           Error(Lex.getLoc(),
1016               "cannot have an attribute group reference in an attribute group");
1017 
1018       unsigned AttrGrpNum = Lex.getUIntVal();
1019       if (inAttrGrp) break;
1020 
1021       // Save the reference to the attribute group. We'll fill it in later.
1022       FwdRefAttrGrps.push_back(AttrGrpNum);
1023       break;
1024     }
1025     // Target-dependent attributes:
1026     case lltok::StringConstant: {
1027       if (ParseStringAttribute(B))
1028         return true;
1029       continue;
1030     }
1031 
1032     // Target-independent attributes:
1033     case lltok::kw_align: {
1034       // As a hack, we allow function alignment to be initially parsed as an
1035       // attribute on a function declaration/definition or added to an attribute
1036       // group and later moved to the alignment field.
1037       unsigned Alignment;
1038       if (inAttrGrp) {
1039         Lex.Lex();
1040         if (ParseToken(lltok::equal, "expected '=' here") ||
1041             ParseUInt32(Alignment))
1042           return true;
1043       } else {
1044         if (ParseOptionalAlignment(Alignment))
1045           return true;
1046       }
1047       B.addAlignmentAttr(Alignment);
1048       continue;
1049     }
1050     case lltok::kw_alignstack: {
1051       unsigned Alignment;
1052       if (inAttrGrp) {
1053         Lex.Lex();
1054         if (ParseToken(lltok::equal, "expected '=' here") ||
1055             ParseUInt32(Alignment))
1056           return true;
1057       } else {
1058         if (ParseOptionalStackAlignment(Alignment))
1059           return true;
1060       }
1061       B.addStackAlignmentAttr(Alignment);
1062       continue;
1063     }
1064     case lltok::kw_allocsize: {
1065       unsigned ElemSizeArg;
1066       Optional<unsigned> NumElemsArg;
1067       // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1068       if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1069         return true;
1070       B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1071       continue;
1072     }
1073     case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1074     case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1075     case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1076     case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1077     case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1078     case lltok::kw_inaccessiblememonly:
1079       B.addAttribute(Attribute::InaccessibleMemOnly); break;
1080     case lltok::kw_inaccessiblemem_or_argmemonly:
1081       B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1082     case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1083     case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1084     case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1085     case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1086     case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1087     case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1088     case lltok::kw_noimplicitfloat:
1089       B.addAttribute(Attribute::NoImplicitFloat); break;
1090     case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1091     case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1092     case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1093     case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1094     case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1095     case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1096     case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1097     case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1098     case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1099     case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1100     case lltok::kw_returns_twice:
1101       B.addAttribute(Attribute::ReturnsTwice); break;
1102     case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1103     case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1104     case lltok::kw_sspstrong:
1105       B.addAttribute(Attribute::StackProtectStrong); break;
1106     case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1107     case lltok::kw_sanitize_address:
1108       B.addAttribute(Attribute::SanitizeAddress); break;
1109     case lltok::kw_sanitize_thread:
1110       B.addAttribute(Attribute::SanitizeThread); break;
1111     case lltok::kw_sanitize_memory:
1112       B.addAttribute(Attribute::SanitizeMemory); break;
1113     case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1114     case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1115 
1116     // Error handling.
1117     case lltok::kw_inreg:
1118     case lltok::kw_signext:
1119     case lltok::kw_zeroext:
1120       HaveError |=
1121         Error(Lex.getLoc(),
1122               "invalid use of attribute on a function");
1123       break;
1124     case lltok::kw_byval:
1125     case lltok::kw_dereferenceable:
1126     case lltok::kw_dereferenceable_or_null:
1127     case lltok::kw_inalloca:
1128     case lltok::kw_nest:
1129     case lltok::kw_noalias:
1130     case lltok::kw_nocapture:
1131     case lltok::kw_nonnull:
1132     case lltok::kw_returned:
1133     case lltok::kw_sret:
1134     case lltok::kw_swifterror:
1135     case lltok::kw_swiftself:
1136       HaveError |=
1137         Error(Lex.getLoc(),
1138               "invalid use of parameter-only attribute on a function");
1139       break;
1140     }
1141 
1142     Lex.Lex();
1143   }
1144 }
1145 
1146 //===----------------------------------------------------------------------===//
1147 // GlobalValue Reference/Resolution Routines.
1148 //===----------------------------------------------------------------------===//
1149 
1150 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1151                                               const std::string &Name) {
1152   if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1153     return Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
1154   else
1155     return new GlobalVariable(*M, PTy->getElementType(), false,
1156                               GlobalValue::ExternalWeakLinkage, nullptr, Name,
1157                               nullptr, GlobalVariable::NotThreadLocal,
1158                               PTy->getAddressSpace());
1159 }
1160 
1161 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1162 /// forward reference record if needed.  This can return null if the value
1163 /// exists but does not have the right type.
1164 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
1165                                     LocTy Loc) {
1166   PointerType *PTy = dyn_cast<PointerType>(Ty);
1167   if (!PTy) {
1168     Error(Loc, "global variable reference must have pointer type");
1169     return nullptr;
1170   }
1171 
1172   // Look this name up in the normal function symbol table.
1173   GlobalValue *Val =
1174     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1175 
1176   // If this is a forward reference for the value, see if we already created a
1177   // forward ref record.
1178   if (!Val) {
1179     auto I = ForwardRefVals.find(Name);
1180     if (I != ForwardRefVals.end())
1181       Val = I->second.first;
1182   }
1183 
1184   // If we have the value in the symbol table or fwd-ref table, return it.
1185   if (Val) {
1186     if (Val->getType() == Ty) return Val;
1187     Error(Loc, "'@" + Name + "' defined with type '" +
1188           getTypeString(Val->getType()) + "'");
1189     return nullptr;
1190   }
1191 
1192   // Otherwise, create a new forward reference for this value and remember it.
1193   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1194   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1195   return FwdVal;
1196 }
1197 
1198 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
1199   PointerType *PTy = dyn_cast<PointerType>(Ty);
1200   if (!PTy) {
1201     Error(Loc, "global variable reference must have pointer type");
1202     return nullptr;
1203   }
1204 
1205   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1206 
1207   // If this is a forward reference for the value, see if we already created a
1208   // forward ref record.
1209   if (!Val) {
1210     auto I = ForwardRefValIDs.find(ID);
1211     if (I != ForwardRefValIDs.end())
1212       Val = I->second.first;
1213   }
1214 
1215   // If we have the value in the symbol table or fwd-ref table, return it.
1216   if (Val) {
1217     if (Val->getType() == Ty) return Val;
1218     Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
1219           getTypeString(Val->getType()) + "'");
1220     return nullptr;
1221   }
1222 
1223   // Otherwise, create a new forward reference for this value and remember it.
1224   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1225   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1226   return FwdVal;
1227 }
1228 
1229 //===----------------------------------------------------------------------===//
1230 // Comdat Reference/Resolution Routines.
1231 //===----------------------------------------------------------------------===//
1232 
1233 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1234   // Look this name up in the comdat symbol table.
1235   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1236   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1237   if (I != ComdatSymTab.end())
1238     return &I->second;
1239 
1240   // Otherwise, create a new forward reference for this value and remember it.
1241   Comdat *C = M->getOrInsertComdat(Name);
1242   ForwardRefComdats[Name] = Loc;
1243   return C;
1244 }
1245 
1246 //===----------------------------------------------------------------------===//
1247 // Helper Routines.
1248 //===----------------------------------------------------------------------===//
1249 
1250 /// ParseToken - If the current token has the specified kind, eat it and return
1251 /// success.  Otherwise, emit the specified error and return failure.
1252 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1253   if (Lex.getKind() != T)
1254     return TokError(ErrMsg);
1255   Lex.Lex();
1256   return false;
1257 }
1258 
1259 /// ParseStringConstant
1260 ///   ::= StringConstant
1261 bool LLParser::ParseStringConstant(std::string &Result) {
1262   if (Lex.getKind() != lltok::StringConstant)
1263     return TokError("expected string constant");
1264   Result = Lex.getStrVal();
1265   Lex.Lex();
1266   return false;
1267 }
1268 
1269 /// ParseUInt32
1270 ///   ::= uint32
1271 bool LLParser::ParseUInt32(uint32_t &Val) {
1272   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1273     return TokError("expected integer");
1274   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1275   if (Val64 != unsigned(Val64))
1276     return TokError("expected 32-bit integer (too large)");
1277   Val = Val64;
1278   Lex.Lex();
1279   return false;
1280 }
1281 
1282 /// ParseUInt64
1283 ///   ::= uint64
1284 bool LLParser::ParseUInt64(uint64_t &Val) {
1285   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1286     return TokError("expected integer");
1287   Val = Lex.getAPSIntVal().getLimitedValue();
1288   Lex.Lex();
1289   return false;
1290 }
1291 
1292 /// ParseTLSModel
1293 ///   := 'localdynamic'
1294 ///   := 'initialexec'
1295 ///   := 'localexec'
1296 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1297   switch (Lex.getKind()) {
1298     default:
1299       return TokError("expected localdynamic, initialexec or localexec");
1300     case lltok::kw_localdynamic:
1301       TLM = GlobalVariable::LocalDynamicTLSModel;
1302       break;
1303     case lltok::kw_initialexec:
1304       TLM = GlobalVariable::InitialExecTLSModel;
1305       break;
1306     case lltok::kw_localexec:
1307       TLM = GlobalVariable::LocalExecTLSModel;
1308       break;
1309   }
1310 
1311   Lex.Lex();
1312   return false;
1313 }
1314 
1315 /// ParseOptionalThreadLocal
1316 ///   := /*empty*/
1317 ///   := 'thread_local'
1318 ///   := 'thread_local' '(' tlsmodel ')'
1319 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1320   TLM = GlobalVariable::NotThreadLocal;
1321   if (!EatIfPresent(lltok::kw_thread_local))
1322     return false;
1323 
1324   TLM = GlobalVariable::GeneralDynamicTLSModel;
1325   if (Lex.getKind() == lltok::lparen) {
1326     Lex.Lex();
1327     return ParseTLSModel(TLM) ||
1328       ParseToken(lltok::rparen, "expected ')' after thread local model");
1329   }
1330   return false;
1331 }
1332 
1333 /// ParseOptionalAddrSpace
1334 ///   := /*empty*/
1335 ///   := 'addrspace' '(' uint32 ')'
1336 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
1337   AddrSpace = 0;
1338   if (!EatIfPresent(lltok::kw_addrspace))
1339     return false;
1340   return ParseToken(lltok::lparen, "expected '(' in address space") ||
1341          ParseUInt32(AddrSpace) ||
1342          ParseToken(lltok::rparen, "expected ')' in address space");
1343 }
1344 
1345 /// ParseStringAttribute
1346 ///   := StringConstant
1347 ///   := StringConstant '=' StringConstant
1348 bool LLParser::ParseStringAttribute(AttrBuilder &B) {
1349   std::string Attr = Lex.getStrVal();
1350   Lex.Lex();
1351   std::string Val;
1352   if (EatIfPresent(lltok::equal) && ParseStringConstant(Val))
1353     return true;
1354   B.addAttribute(Attr, Val);
1355   return false;
1356 }
1357 
1358 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1359 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1360   bool HaveError = false;
1361 
1362   B.clear();
1363 
1364   while (true) {
1365     lltok::Kind Token = Lex.getKind();
1366     switch (Token) {
1367     default:  // End of attributes.
1368       return HaveError;
1369     case lltok::StringConstant: {
1370       if (ParseStringAttribute(B))
1371         return true;
1372       continue;
1373     }
1374     case lltok::kw_align: {
1375       unsigned Alignment;
1376       if (ParseOptionalAlignment(Alignment))
1377         return true;
1378       B.addAlignmentAttr(Alignment);
1379       continue;
1380     }
1381     case lltok::kw_byval:           B.addAttribute(Attribute::ByVal); break;
1382     case lltok::kw_dereferenceable: {
1383       uint64_t Bytes;
1384       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1385         return true;
1386       B.addDereferenceableAttr(Bytes);
1387       continue;
1388     }
1389     case lltok::kw_dereferenceable_or_null: {
1390       uint64_t Bytes;
1391       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1392         return true;
1393       B.addDereferenceableOrNullAttr(Bytes);
1394       continue;
1395     }
1396     case lltok::kw_inalloca:        B.addAttribute(Attribute::InAlloca); break;
1397     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1398     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1399     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1400     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1401     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1402     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1403     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1404     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1405     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1406     case lltok::kw_sret:            B.addAttribute(Attribute::StructRet); break;
1407     case lltok::kw_swifterror:      B.addAttribute(Attribute::SwiftError); break;
1408     case lltok::kw_swiftself:       B.addAttribute(Attribute::SwiftSelf); break;
1409     case lltok::kw_writeonly:       B.addAttribute(Attribute::WriteOnly); break;
1410     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1411 
1412     case lltok::kw_alignstack:
1413     case lltok::kw_alwaysinline:
1414     case lltok::kw_argmemonly:
1415     case lltok::kw_builtin:
1416     case lltok::kw_inlinehint:
1417     case lltok::kw_jumptable:
1418     case lltok::kw_minsize:
1419     case lltok::kw_naked:
1420     case lltok::kw_nobuiltin:
1421     case lltok::kw_noduplicate:
1422     case lltok::kw_noimplicitfloat:
1423     case lltok::kw_noinline:
1424     case lltok::kw_nonlazybind:
1425     case lltok::kw_noredzone:
1426     case lltok::kw_noreturn:
1427     case lltok::kw_nounwind:
1428     case lltok::kw_optnone:
1429     case lltok::kw_optsize:
1430     case lltok::kw_returns_twice:
1431     case lltok::kw_sanitize_address:
1432     case lltok::kw_sanitize_memory:
1433     case lltok::kw_sanitize_thread:
1434     case lltok::kw_ssp:
1435     case lltok::kw_sspreq:
1436     case lltok::kw_sspstrong:
1437     case lltok::kw_safestack:
1438     case lltok::kw_uwtable:
1439       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1440       break;
1441     }
1442 
1443     Lex.Lex();
1444   }
1445 }
1446 
1447 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1448 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1449   bool HaveError = false;
1450 
1451   B.clear();
1452 
1453   while (true) {
1454     lltok::Kind Token = Lex.getKind();
1455     switch (Token) {
1456     default:  // End of attributes.
1457       return HaveError;
1458     case lltok::StringConstant: {
1459       if (ParseStringAttribute(B))
1460         return true;
1461       continue;
1462     }
1463     case lltok::kw_dereferenceable: {
1464       uint64_t Bytes;
1465       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1466         return true;
1467       B.addDereferenceableAttr(Bytes);
1468       continue;
1469     }
1470     case lltok::kw_dereferenceable_or_null: {
1471       uint64_t Bytes;
1472       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1473         return true;
1474       B.addDereferenceableOrNullAttr(Bytes);
1475       continue;
1476     }
1477     case lltok::kw_align: {
1478       unsigned Alignment;
1479       if (ParseOptionalAlignment(Alignment))
1480         return true;
1481       B.addAlignmentAttr(Alignment);
1482       continue;
1483     }
1484     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1485     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1486     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1487     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1488     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1489 
1490     // Error handling.
1491     case lltok::kw_byval:
1492     case lltok::kw_inalloca:
1493     case lltok::kw_nest:
1494     case lltok::kw_nocapture:
1495     case lltok::kw_returned:
1496     case lltok::kw_sret:
1497     case lltok::kw_swifterror:
1498     case lltok::kw_swiftself:
1499       HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1500       break;
1501 
1502     case lltok::kw_alignstack:
1503     case lltok::kw_alwaysinline:
1504     case lltok::kw_argmemonly:
1505     case lltok::kw_builtin:
1506     case lltok::kw_cold:
1507     case lltok::kw_inlinehint:
1508     case lltok::kw_jumptable:
1509     case lltok::kw_minsize:
1510     case lltok::kw_naked:
1511     case lltok::kw_nobuiltin:
1512     case lltok::kw_noduplicate:
1513     case lltok::kw_noimplicitfloat:
1514     case lltok::kw_noinline:
1515     case lltok::kw_nonlazybind:
1516     case lltok::kw_noredzone:
1517     case lltok::kw_noreturn:
1518     case lltok::kw_nounwind:
1519     case lltok::kw_optnone:
1520     case lltok::kw_optsize:
1521     case lltok::kw_returns_twice:
1522     case lltok::kw_sanitize_address:
1523     case lltok::kw_sanitize_memory:
1524     case lltok::kw_sanitize_thread:
1525     case lltok::kw_ssp:
1526     case lltok::kw_sspreq:
1527     case lltok::kw_sspstrong:
1528     case lltok::kw_safestack:
1529     case lltok::kw_uwtable:
1530       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1531       break;
1532 
1533     case lltok::kw_readnone:
1534     case lltok::kw_readonly:
1535       HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1536     }
1537 
1538     Lex.Lex();
1539   }
1540 }
1541 
1542 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1543   HasLinkage = true;
1544   switch (Kind) {
1545   default:
1546     HasLinkage = false;
1547     return GlobalValue::ExternalLinkage;
1548   case lltok::kw_private:
1549     return GlobalValue::PrivateLinkage;
1550   case lltok::kw_internal:
1551     return GlobalValue::InternalLinkage;
1552   case lltok::kw_weak:
1553     return GlobalValue::WeakAnyLinkage;
1554   case lltok::kw_weak_odr:
1555     return GlobalValue::WeakODRLinkage;
1556   case lltok::kw_linkonce:
1557     return GlobalValue::LinkOnceAnyLinkage;
1558   case lltok::kw_linkonce_odr:
1559     return GlobalValue::LinkOnceODRLinkage;
1560   case lltok::kw_available_externally:
1561     return GlobalValue::AvailableExternallyLinkage;
1562   case lltok::kw_appending:
1563     return GlobalValue::AppendingLinkage;
1564   case lltok::kw_common:
1565     return GlobalValue::CommonLinkage;
1566   case lltok::kw_extern_weak:
1567     return GlobalValue::ExternalWeakLinkage;
1568   case lltok::kw_external:
1569     return GlobalValue::ExternalLinkage;
1570   }
1571 }
1572 
1573 /// ParseOptionalLinkage
1574 ///   ::= /*empty*/
1575 ///   ::= 'private'
1576 ///   ::= 'internal'
1577 ///   ::= 'weak'
1578 ///   ::= 'weak_odr'
1579 ///   ::= 'linkonce'
1580 ///   ::= 'linkonce_odr'
1581 ///   ::= 'available_externally'
1582 ///   ::= 'appending'
1583 ///   ::= 'common'
1584 ///   ::= 'extern_weak'
1585 ///   ::= 'external'
1586 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1587                                     unsigned &Visibility,
1588                                     unsigned &DLLStorageClass) {
1589   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1590   if (HasLinkage)
1591     Lex.Lex();
1592   ParseOptionalVisibility(Visibility);
1593   ParseOptionalDLLStorageClass(DLLStorageClass);
1594   return false;
1595 }
1596 
1597 /// ParseOptionalVisibility
1598 ///   ::= /*empty*/
1599 ///   ::= 'default'
1600 ///   ::= 'hidden'
1601 ///   ::= 'protected'
1602 ///
1603 void LLParser::ParseOptionalVisibility(unsigned &Res) {
1604   switch (Lex.getKind()) {
1605   default:
1606     Res = GlobalValue::DefaultVisibility;
1607     return;
1608   case lltok::kw_default:
1609     Res = GlobalValue::DefaultVisibility;
1610     break;
1611   case lltok::kw_hidden:
1612     Res = GlobalValue::HiddenVisibility;
1613     break;
1614   case lltok::kw_protected:
1615     Res = GlobalValue::ProtectedVisibility;
1616     break;
1617   }
1618   Lex.Lex();
1619 }
1620 
1621 /// ParseOptionalDLLStorageClass
1622 ///   ::= /*empty*/
1623 ///   ::= 'dllimport'
1624 ///   ::= 'dllexport'
1625 ///
1626 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
1627   switch (Lex.getKind()) {
1628   default:
1629     Res = GlobalValue::DefaultStorageClass;
1630     return;
1631   case lltok::kw_dllimport:
1632     Res = GlobalValue::DLLImportStorageClass;
1633     break;
1634   case lltok::kw_dllexport:
1635     Res = GlobalValue::DLLExportStorageClass;
1636     break;
1637   }
1638   Lex.Lex();
1639 }
1640 
1641 /// ParseOptionalCallingConv
1642 ///   ::= /*empty*/
1643 ///   ::= 'ccc'
1644 ///   ::= 'fastcc'
1645 ///   ::= 'intel_ocl_bicc'
1646 ///   ::= 'coldcc'
1647 ///   ::= 'x86_stdcallcc'
1648 ///   ::= 'x86_fastcallcc'
1649 ///   ::= 'x86_thiscallcc'
1650 ///   ::= 'x86_vectorcallcc'
1651 ///   ::= 'arm_apcscc'
1652 ///   ::= 'arm_aapcscc'
1653 ///   ::= 'arm_aapcs_vfpcc'
1654 ///   ::= 'msp430_intrcc'
1655 ///   ::= 'avr_intrcc'
1656 ///   ::= 'avr_signalcc'
1657 ///   ::= 'ptx_kernel'
1658 ///   ::= 'ptx_device'
1659 ///   ::= 'spir_func'
1660 ///   ::= 'spir_kernel'
1661 ///   ::= 'x86_64_sysvcc'
1662 ///   ::= 'x86_64_win64cc'
1663 ///   ::= 'webkit_jscc'
1664 ///   ::= 'anyregcc'
1665 ///   ::= 'preserve_mostcc'
1666 ///   ::= 'preserve_allcc'
1667 ///   ::= 'ghccc'
1668 ///   ::= 'swiftcc'
1669 ///   ::= 'x86_intrcc'
1670 ///   ::= 'hhvmcc'
1671 ///   ::= 'hhvm_ccc'
1672 ///   ::= 'cxx_fast_tlscc'
1673 ///   ::= 'amdgpu_vs'
1674 ///   ::= 'amdgpu_tcs'
1675 ///   ::= 'amdgpu_tes'
1676 ///   ::= 'amdgpu_gs'
1677 ///   ::= 'amdgpu_ps'
1678 ///   ::= 'amdgpu_cs'
1679 ///   ::= 'amdgpu_kernel'
1680 ///   ::= 'cc' UINT
1681 ///
1682 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
1683   switch (Lex.getKind()) {
1684   default:                       CC = CallingConv::C; return false;
1685   case lltok::kw_ccc:            CC = CallingConv::C; break;
1686   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1687   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1688   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1689   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1690   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
1691   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1692   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
1693   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1694   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1695   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1696   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1697   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
1698   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
1699   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1700   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1701   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
1702   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
1703   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1704   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
1705   case lltok::kw_x86_64_win64cc: CC = CallingConv::X86_64_Win64; break;
1706   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
1707   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
1708   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
1709   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
1710   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
1711   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
1712   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
1713   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
1714   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
1715   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
1716   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
1717   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
1718   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
1719   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
1720   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
1721   case lltok::kw_cc: {
1722       Lex.Lex();
1723       return ParseUInt32(CC);
1724     }
1725   }
1726 
1727   Lex.Lex();
1728   return false;
1729 }
1730 
1731 /// ParseMetadataAttachment
1732 ///   ::= !dbg !42
1733 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
1734   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
1735 
1736   std::string Name = Lex.getStrVal();
1737   Kind = M->getMDKindID(Name);
1738   Lex.Lex();
1739 
1740   return ParseMDNode(MD);
1741 }
1742 
1743 /// ParseInstructionMetadata
1744 ///   ::= !dbg !42 (',' !dbg !57)*
1745 bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
1746   do {
1747     if (Lex.getKind() != lltok::MetadataVar)
1748       return TokError("expected metadata after comma");
1749 
1750     unsigned MDK;
1751     MDNode *N;
1752     if (ParseMetadataAttachment(MDK, N))
1753       return true;
1754 
1755     Inst.setMetadata(MDK, N);
1756     if (MDK == LLVMContext::MD_tbaa)
1757       InstsWithTBAATag.push_back(&Inst);
1758 
1759     // If this is the end of the list, we're done.
1760   } while (EatIfPresent(lltok::comma));
1761   return false;
1762 }
1763 
1764 /// ParseGlobalObjectMetadataAttachment
1765 ///   ::= !dbg !57
1766 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) {
1767   unsigned MDK;
1768   MDNode *N;
1769   if (ParseMetadataAttachment(MDK, N))
1770     return true;
1771 
1772   GO.addMetadata(MDK, *N);
1773   return false;
1774 }
1775 
1776 /// ParseOptionalFunctionMetadata
1777 ///   ::= (!dbg !57)*
1778 bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
1779   while (Lex.getKind() == lltok::MetadataVar)
1780     if (ParseGlobalObjectMetadataAttachment(F))
1781       return true;
1782   return false;
1783 }
1784 
1785 /// ParseOptionalAlignment
1786 ///   ::= /* empty */
1787 ///   ::= 'align' 4
1788 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1789   Alignment = 0;
1790   if (!EatIfPresent(lltok::kw_align))
1791     return false;
1792   LocTy AlignLoc = Lex.getLoc();
1793   if (ParseUInt32(Alignment)) return true;
1794   if (!isPowerOf2_32(Alignment))
1795     return Error(AlignLoc, "alignment is not a power of two");
1796   if (Alignment > Value::MaximumAlignment)
1797     return Error(AlignLoc, "huge alignments are not supported yet");
1798   return false;
1799 }
1800 
1801 /// ParseOptionalDerefAttrBytes
1802 ///   ::= /* empty */
1803 ///   ::= AttrKind '(' 4 ')'
1804 ///
1805 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
1806 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
1807                                            uint64_t &Bytes) {
1808   assert((AttrKind == lltok::kw_dereferenceable ||
1809           AttrKind == lltok::kw_dereferenceable_or_null) &&
1810          "contract!");
1811 
1812   Bytes = 0;
1813   if (!EatIfPresent(AttrKind))
1814     return false;
1815   LocTy ParenLoc = Lex.getLoc();
1816   if (!EatIfPresent(lltok::lparen))
1817     return Error(ParenLoc, "expected '('");
1818   LocTy DerefLoc = Lex.getLoc();
1819   if (ParseUInt64(Bytes)) return true;
1820   ParenLoc = Lex.getLoc();
1821   if (!EatIfPresent(lltok::rparen))
1822     return Error(ParenLoc, "expected ')'");
1823   if (!Bytes)
1824     return Error(DerefLoc, "dereferenceable bytes must be non-zero");
1825   return false;
1826 }
1827 
1828 /// ParseOptionalCommaAlign
1829 ///   ::=
1830 ///   ::= ',' align 4
1831 ///
1832 /// This returns with AteExtraComma set to true if it ate an excess comma at the
1833 /// end.
1834 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
1835                                        bool &AteExtraComma) {
1836   AteExtraComma = false;
1837   while (EatIfPresent(lltok::comma)) {
1838     // Metadata at the end is an early exit.
1839     if (Lex.getKind() == lltok::MetadataVar) {
1840       AteExtraComma = true;
1841       return false;
1842     }
1843 
1844     if (Lex.getKind() != lltok::kw_align)
1845       return Error(Lex.getLoc(), "expected metadata or 'align'");
1846 
1847     if (ParseOptionalAlignment(Alignment)) return true;
1848   }
1849 
1850   return false;
1851 }
1852 
1853 /// ParseOptionalCommaAddrSpace
1854 ///   ::=
1855 ///   ::= ',' addrspace(1)
1856 ///
1857 /// This returns with AteExtraComma set to true if it ate an excess comma at the
1858 /// end.
1859 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace,
1860                                            LocTy &Loc,
1861                                            bool &AteExtraComma) {
1862   AteExtraComma = false;
1863   while (EatIfPresent(lltok::comma)) {
1864     // Metadata at the end is an early exit.
1865     if (Lex.getKind() == lltok::MetadataVar) {
1866       AteExtraComma = true;
1867       return false;
1868     }
1869 
1870     Loc = Lex.getLoc();
1871     if (Lex.getKind() != lltok::kw_addrspace)
1872       return Error(Lex.getLoc(), "expected metadata or 'addrspace'");
1873 
1874     if (ParseOptionalAddrSpace(AddrSpace))
1875       return true;
1876   }
1877 
1878   return false;
1879 }
1880 
1881 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
1882                                        Optional<unsigned> &HowManyArg) {
1883   Lex.Lex();
1884 
1885   auto StartParen = Lex.getLoc();
1886   if (!EatIfPresent(lltok::lparen))
1887     return Error(StartParen, "expected '('");
1888 
1889   if (ParseUInt32(BaseSizeArg))
1890     return true;
1891 
1892   if (EatIfPresent(lltok::comma)) {
1893     auto HowManyAt = Lex.getLoc();
1894     unsigned HowMany;
1895     if (ParseUInt32(HowMany))
1896       return true;
1897     if (HowMany == BaseSizeArg)
1898       return Error(HowManyAt,
1899                    "'allocsize' indices can't refer to the same parameter");
1900     HowManyArg = HowMany;
1901   } else
1902     HowManyArg = None;
1903 
1904   auto EndParen = Lex.getLoc();
1905   if (!EatIfPresent(lltok::rparen))
1906     return Error(EndParen, "expected ')'");
1907   return false;
1908 }
1909 
1910 /// ParseScopeAndOrdering
1911 ///   if isAtomic: ::= 'singlethread'? AtomicOrdering
1912 ///   else: ::=
1913 ///
1914 /// This sets Scope and Ordering to the parsed values.
1915 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope,
1916                                      AtomicOrdering &Ordering) {
1917   if (!isAtomic)
1918     return false;
1919 
1920   Scope = CrossThread;
1921   if (EatIfPresent(lltok::kw_singlethread))
1922     Scope = SingleThread;
1923 
1924   return ParseOrdering(Ordering);
1925 }
1926 
1927 /// ParseOrdering
1928 ///   ::= AtomicOrdering
1929 ///
1930 /// This sets Ordering to the parsed value.
1931 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
1932   switch (Lex.getKind()) {
1933   default: return TokError("Expected ordering on atomic instruction");
1934   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
1935   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
1936   // Not specified yet:
1937   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
1938   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
1939   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
1940   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
1941   case lltok::kw_seq_cst:
1942     Ordering = AtomicOrdering::SequentiallyConsistent;
1943     break;
1944   }
1945   Lex.Lex();
1946   return false;
1947 }
1948 
1949 /// ParseOptionalStackAlignment
1950 ///   ::= /* empty */
1951 ///   ::= 'alignstack' '(' 4 ')'
1952 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
1953   Alignment = 0;
1954   if (!EatIfPresent(lltok::kw_alignstack))
1955     return false;
1956   LocTy ParenLoc = Lex.getLoc();
1957   if (!EatIfPresent(lltok::lparen))
1958     return Error(ParenLoc, "expected '('");
1959   LocTy AlignLoc = Lex.getLoc();
1960   if (ParseUInt32(Alignment)) return true;
1961   ParenLoc = Lex.getLoc();
1962   if (!EatIfPresent(lltok::rparen))
1963     return Error(ParenLoc, "expected ')'");
1964   if (!isPowerOf2_32(Alignment))
1965     return Error(AlignLoc, "stack alignment is not a power of two");
1966   return false;
1967 }
1968 
1969 /// ParseIndexList - This parses the index list for an insert/extractvalue
1970 /// instruction.  This sets AteExtraComma in the case where we eat an extra
1971 /// comma at the end of the line and find that it is followed by metadata.
1972 /// Clients that don't allow metadata can call the version of this function that
1973 /// only takes one argument.
1974 ///
1975 /// ParseIndexList
1976 ///    ::=  (',' uint32)+
1977 ///
1978 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
1979                               bool &AteExtraComma) {
1980   AteExtraComma = false;
1981 
1982   if (Lex.getKind() != lltok::comma)
1983     return TokError("expected ',' as start of index list");
1984 
1985   while (EatIfPresent(lltok::comma)) {
1986     if (Lex.getKind() == lltok::MetadataVar) {
1987       if (Indices.empty()) return TokError("expected index");
1988       AteExtraComma = true;
1989       return false;
1990     }
1991     unsigned Idx = 0;
1992     if (ParseUInt32(Idx)) return true;
1993     Indices.push_back(Idx);
1994   }
1995 
1996   return false;
1997 }
1998 
1999 //===----------------------------------------------------------------------===//
2000 // Type Parsing.
2001 //===----------------------------------------------------------------------===//
2002 
2003 /// ParseType - Parse a type.
2004 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2005   SMLoc TypeLoc = Lex.getLoc();
2006   switch (Lex.getKind()) {
2007   default:
2008     return TokError(Msg);
2009   case lltok::Type:
2010     // Type ::= 'float' | 'void' (etc)
2011     Result = Lex.getTyVal();
2012     Lex.Lex();
2013     break;
2014   case lltok::lbrace:
2015     // Type ::= StructType
2016     if (ParseAnonStructType(Result, false))
2017       return true;
2018     break;
2019   case lltok::lsquare:
2020     // Type ::= '[' ... ']'
2021     Lex.Lex(); // eat the lsquare.
2022     if (ParseArrayVectorType(Result, false))
2023       return true;
2024     break;
2025   case lltok::less: // Either vector or packed struct.
2026     // Type ::= '<' ... '>'
2027     Lex.Lex();
2028     if (Lex.getKind() == lltok::lbrace) {
2029       if (ParseAnonStructType(Result, true) ||
2030           ParseToken(lltok::greater, "expected '>' at end of packed struct"))
2031         return true;
2032     } else if (ParseArrayVectorType(Result, true))
2033       return true;
2034     break;
2035   case lltok::LocalVar: {
2036     // Type ::= %foo
2037     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2038 
2039     // If the type hasn't been defined yet, create a forward definition and
2040     // remember where that forward def'n was seen (in case it never is defined).
2041     if (!Entry.first) {
2042       Entry.first = StructType::create(Context, Lex.getStrVal());
2043       Entry.second = Lex.getLoc();
2044     }
2045     Result = Entry.first;
2046     Lex.Lex();
2047     break;
2048   }
2049 
2050   case lltok::LocalVarID: {
2051     // Type ::= %4
2052     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2053 
2054     // If the type hasn't been defined yet, create a forward definition and
2055     // remember where that forward def'n was seen (in case it never is defined).
2056     if (!Entry.first) {
2057       Entry.first = StructType::create(Context);
2058       Entry.second = Lex.getLoc();
2059     }
2060     Result = Entry.first;
2061     Lex.Lex();
2062     break;
2063   }
2064   }
2065 
2066   // Parse the type suffixes.
2067   while (true) {
2068     switch (Lex.getKind()) {
2069     // End of type.
2070     default:
2071       if (!AllowVoid && Result->isVoidTy())
2072         return Error(TypeLoc, "void type only allowed for function results");
2073       return false;
2074 
2075     // Type ::= Type '*'
2076     case lltok::star:
2077       if (Result->isLabelTy())
2078         return TokError("basic block pointers are invalid");
2079       if (Result->isVoidTy())
2080         return TokError("pointers to void are invalid - use i8* instead");
2081       if (!PointerType::isValidElementType(Result))
2082         return TokError("pointer to this type is invalid");
2083       Result = PointerType::getUnqual(Result);
2084       Lex.Lex();
2085       break;
2086 
2087     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2088     case lltok::kw_addrspace: {
2089       if (Result->isLabelTy())
2090         return TokError("basic block pointers are invalid");
2091       if (Result->isVoidTy())
2092         return TokError("pointers to void are invalid; use i8* instead");
2093       if (!PointerType::isValidElementType(Result))
2094         return TokError("pointer to this type is invalid");
2095       unsigned AddrSpace;
2096       if (ParseOptionalAddrSpace(AddrSpace) ||
2097           ParseToken(lltok::star, "expected '*' in address space"))
2098         return true;
2099 
2100       Result = PointerType::get(Result, AddrSpace);
2101       break;
2102     }
2103 
2104     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2105     case lltok::lparen:
2106       if (ParseFunctionType(Result))
2107         return true;
2108       break;
2109     }
2110   }
2111 }
2112 
2113 /// ParseParameterList
2114 ///    ::= '(' ')'
2115 ///    ::= '(' Arg (',' Arg)* ')'
2116 ///  Arg
2117 ///    ::= Type OptionalAttributes Value OptionalAttributes
2118 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2119                                   PerFunctionState &PFS, bool IsMustTailCall,
2120                                   bool InVarArgsFunc) {
2121   if (ParseToken(lltok::lparen, "expected '(' in call"))
2122     return true;
2123 
2124   while (Lex.getKind() != lltok::rparen) {
2125     // If this isn't the first argument, we need a comma.
2126     if (!ArgList.empty() &&
2127         ParseToken(lltok::comma, "expected ',' in argument list"))
2128       return true;
2129 
2130     // Parse an ellipsis if this is a musttail call in a variadic function.
2131     if (Lex.getKind() == lltok::dotdotdot) {
2132       const char *Msg = "unexpected ellipsis in argument list for ";
2133       if (!IsMustTailCall)
2134         return TokError(Twine(Msg) + "non-musttail call");
2135       if (!InVarArgsFunc)
2136         return TokError(Twine(Msg) + "musttail call in non-varargs function");
2137       Lex.Lex();  // Lex the '...', it is purely for readability.
2138       return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2139     }
2140 
2141     // Parse the argument.
2142     LocTy ArgLoc;
2143     Type *ArgTy = nullptr;
2144     AttrBuilder ArgAttrs;
2145     Value *V;
2146     if (ParseType(ArgTy, ArgLoc))
2147       return true;
2148 
2149     if (ArgTy->isMetadataTy()) {
2150       if (ParseMetadataAsValue(V, PFS))
2151         return true;
2152     } else {
2153       // Otherwise, handle normal operands.
2154       if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
2155         return true;
2156     }
2157     ArgList.push_back(ParamInfo(
2158         ArgLoc, V, AttributeSetNode::get(V->getContext(), ArgAttrs)));
2159   }
2160 
2161   if (IsMustTailCall && InVarArgsFunc)
2162     return TokError("expected '...' at end of argument list for musttail call "
2163                     "in varargs function");
2164 
2165   Lex.Lex();  // Lex the ')'.
2166   return false;
2167 }
2168 
2169 /// ParseOptionalOperandBundles
2170 ///    ::= /*empty*/
2171 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2172 ///
2173 /// OperandBundle
2174 ///    ::= bundle-tag '(' ')'
2175 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2176 ///
2177 /// bundle-tag ::= String Constant
2178 bool LLParser::ParseOptionalOperandBundles(
2179     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2180   LocTy BeginLoc = Lex.getLoc();
2181   if (!EatIfPresent(lltok::lsquare))
2182     return false;
2183 
2184   while (Lex.getKind() != lltok::rsquare) {
2185     // If this isn't the first operand bundle, we need a comma.
2186     if (!BundleList.empty() &&
2187         ParseToken(lltok::comma, "expected ',' in input list"))
2188       return true;
2189 
2190     std::string Tag;
2191     if (ParseStringConstant(Tag))
2192       return true;
2193 
2194     if (ParseToken(lltok::lparen, "expected '(' in operand bundle"))
2195       return true;
2196 
2197     std::vector<Value *> Inputs;
2198     while (Lex.getKind() != lltok::rparen) {
2199       // If this isn't the first input, we need a comma.
2200       if (!Inputs.empty() &&
2201           ParseToken(lltok::comma, "expected ',' in input list"))
2202         return true;
2203 
2204       Type *Ty = nullptr;
2205       Value *Input = nullptr;
2206       if (ParseType(Ty) || ParseValue(Ty, Input, PFS))
2207         return true;
2208       Inputs.push_back(Input);
2209     }
2210 
2211     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2212 
2213     Lex.Lex(); // Lex the ')'.
2214   }
2215 
2216   if (BundleList.empty())
2217     return Error(BeginLoc, "operand bundle set must not be empty");
2218 
2219   Lex.Lex(); // Lex the ']'.
2220   return false;
2221 }
2222 
2223 /// ParseArgumentList - Parse the argument list for a function type or function
2224 /// prototype.
2225 ///   ::= '(' ArgTypeListI ')'
2226 /// ArgTypeListI
2227 ///   ::= /*empty*/
2228 ///   ::= '...'
2229 ///   ::= ArgTypeList ',' '...'
2230 ///   ::= ArgType (',' ArgType)*
2231 ///
2232 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2233                                  bool &isVarArg){
2234   isVarArg = false;
2235   assert(Lex.getKind() == lltok::lparen);
2236   Lex.Lex(); // eat the (.
2237 
2238   if (Lex.getKind() == lltok::rparen) {
2239     // empty
2240   } else if (Lex.getKind() == lltok::dotdotdot) {
2241     isVarArg = true;
2242     Lex.Lex();
2243   } else {
2244     LocTy TypeLoc = Lex.getLoc();
2245     Type *ArgTy = nullptr;
2246     AttrBuilder Attrs;
2247     std::string Name;
2248 
2249     if (ParseType(ArgTy) ||
2250         ParseOptionalParamAttrs(Attrs)) return true;
2251 
2252     if (ArgTy->isVoidTy())
2253       return Error(TypeLoc, "argument can not have void type");
2254 
2255     if (Lex.getKind() == lltok::LocalVar) {
2256       Name = Lex.getStrVal();
2257       Lex.Lex();
2258     }
2259 
2260     if (!FunctionType::isValidArgumentType(ArgTy))
2261       return Error(TypeLoc, "invalid type for function argument");
2262 
2263     ArgList.emplace_back(TypeLoc, ArgTy,
2264                          AttributeSetNode::get(ArgTy->getContext(), Attrs),
2265                          std::move(Name));
2266 
2267     while (EatIfPresent(lltok::comma)) {
2268       // Handle ... at end of arg list.
2269       if (EatIfPresent(lltok::dotdotdot)) {
2270         isVarArg = true;
2271         break;
2272       }
2273 
2274       // Otherwise must be an argument type.
2275       TypeLoc = Lex.getLoc();
2276       if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
2277 
2278       if (ArgTy->isVoidTy())
2279         return Error(TypeLoc, "argument can not have void type");
2280 
2281       if (Lex.getKind() == lltok::LocalVar) {
2282         Name = Lex.getStrVal();
2283         Lex.Lex();
2284       } else {
2285         Name = "";
2286       }
2287 
2288       if (!ArgTy->isFirstClassType())
2289         return Error(TypeLoc, "invalid type for function argument");
2290 
2291       ArgList.emplace_back(TypeLoc, ArgTy,
2292                            AttributeSetNode::get(ArgTy->getContext(), Attrs),
2293                            std::move(Name));
2294     }
2295   }
2296 
2297   return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2298 }
2299 
2300 /// ParseFunctionType
2301 ///  ::= Type ArgumentList OptionalAttrs
2302 bool LLParser::ParseFunctionType(Type *&Result) {
2303   assert(Lex.getKind() == lltok::lparen);
2304 
2305   if (!FunctionType::isValidReturnType(Result))
2306     return TokError("invalid function return type");
2307 
2308   SmallVector<ArgInfo, 8> ArgList;
2309   bool isVarArg;
2310   if (ParseArgumentList(ArgList, isVarArg))
2311     return true;
2312 
2313   // Reject names on the arguments lists.
2314   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2315     if (!ArgList[i].Name.empty())
2316       return Error(ArgList[i].Loc, "argument name invalid in function type");
2317     if (ArgList[i].Attrs)
2318       return Error(ArgList[i].Loc,
2319                    "argument attributes invalid in function type");
2320   }
2321 
2322   SmallVector<Type*, 16> ArgListTy;
2323   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2324     ArgListTy.push_back(ArgList[i].Ty);
2325 
2326   Result = FunctionType::get(Result, ArgListTy, isVarArg);
2327   return false;
2328 }
2329 
2330 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
2331 /// other structs.
2332 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
2333   SmallVector<Type*, 8> Elts;
2334   if (ParseStructBody(Elts)) return true;
2335 
2336   Result = StructType::get(Context, Elts, Packed);
2337   return false;
2338 }
2339 
2340 /// ParseStructDefinition - Parse a struct in a 'type' definition.
2341 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
2342                                      std::pair<Type*, LocTy> &Entry,
2343                                      Type *&ResultTy) {
2344   // If the type was already defined, diagnose the redefinition.
2345   if (Entry.first && !Entry.second.isValid())
2346     return Error(TypeLoc, "redefinition of type");
2347 
2348   // If we have opaque, just return without filling in the definition for the
2349   // struct.  This counts as a definition as far as the .ll file goes.
2350   if (EatIfPresent(lltok::kw_opaque)) {
2351     // This type is being defined, so clear the location to indicate this.
2352     Entry.second = SMLoc();
2353 
2354     // If this type number has never been uttered, create it.
2355     if (!Entry.first)
2356       Entry.first = StructType::create(Context, Name);
2357     ResultTy = Entry.first;
2358     return false;
2359   }
2360 
2361   // If the type starts with '<', then it is either a packed struct or a vector.
2362   bool isPacked = EatIfPresent(lltok::less);
2363 
2364   // If we don't have a struct, then we have a random type alias, which we
2365   // accept for compatibility with old files.  These types are not allowed to be
2366   // forward referenced and not allowed to be recursive.
2367   if (Lex.getKind() != lltok::lbrace) {
2368     if (Entry.first)
2369       return Error(TypeLoc, "forward references to non-struct type");
2370 
2371     ResultTy = nullptr;
2372     if (isPacked)
2373       return ParseArrayVectorType(ResultTy, true);
2374     return ParseType(ResultTy);
2375   }
2376 
2377   // This type is being defined, so clear the location to indicate this.
2378   Entry.second = SMLoc();
2379 
2380   // If this type number has never been uttered, create it.
2381   if (!Entry.first)
2382     Entry.first = StructType::create(Context, Name);
2383 
2384   StructType *STy = cast<StructType>(Entry.first);
2385 
2386   SmallVector<Type*, 8> Body;
2387   if (ParseStructBody(Body) ||
2388       (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
2389     return true;
2390 
2391   STy->setBody(Body, isPacked);
2392   ResultTy = STy;
2393   return false;
2394 }
2395 
2396 /// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2397 ///   StructType
2398 ///     ::= '{' '}'
2399 ///     ::= '{' Type (',' Type)* '}'
2400 ///     ::= '<' '{' '}' '>'
2401 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2402 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
2403   assert(Lex.getKind() == lltok::lbrace);
2404   Lex.Lex(); // Consume the '{'
2405 
2406   // Handle the empty struct.
2407   if (EatIfPresent(lltok::rbrace))
2408     return false;
2409 
2410   LocTy EltTyLoc = Lex.getLoc();
2411   Type *Ty = nullptr;
2412   if (ParseType(Ty)) return true;
2413   Body.push_back(Ty);
2414 
2415   if (!StructType::isValidElementType(Ty))
2416     return Error(EltTyLoc, "invalid element type for struct");
2417 
2418   while (EatIfPresent(lltok::comma)) {
2419     EltTyLoc = Lex.getLoc();
2420     if (ParseType(Ty)) return true;
2421 
2422     if (!StructType::isValidElementType(Ty))
2423       return Error(EltTyLoc, "invalid element type for struct");
2424 
2425     Body.push_back(Ty);
2426   }
2427 
2428   return ParseToken(lltok::rbrace, "expected '}' at end of struct");
2429 }
2430 
2431 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2432 /// token has already been consumed.
2433 ///   Type
2434 ///     ::= '[' APSINTVAL 'x' Types ']'
2435 ///     ::= '<' APSINTVAL 'x' Types '>'
2436 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
2437   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2438       Lex.getAPSIntVal().getBitWidth() > 64)
2439     return TokError("expected number in address space");
2440 
2441   LocTy SizeLoc = Lex.getLoc();
2442   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2443   Lex.Lex();
2444 
2445   if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
2446       return true;
2447 
2448   LocTy TypeLoc = Lex.getLoc();
2449   Type *EltTy = nullptr;
2450   if (ParseType(EltTy)) return true;
2451 
2452   if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
2453                  "expected end of sequential type"))
2454     return true;
2455 
2456   if (isVector) {
2457     if (Size == 0)
2458       return Error(SizeLoc, "zero element vector is illegal");
2459     if ((unsigned)Size != Size)
2460       return Error(SizeLoc, "size too large for vector");
2461     if (!VectorType::isValidElementType(EltTy))
2462       return Error(TypeLoc, "invalid vector element type");
2463     Result = VectorType::get(EltTy, unsigned(Size));
2464   } else {
2465     if (!ArrayType::isValidElementType(EltTy))
2466       return Error(TypeLoc, "invalid array element type");
2467     Result = ArrayType::get(EltTy, Size);
2468   }
2469   return false;
2470 }
2471 
2472 //===----------------------------------------------------------------------===//
2473 // Function Semantic Analysis.
2474 //===----------------------------------------------------------------------===//
2475 
2476 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2477                                              int functionNumber)
2478   : P(p), F(f), FunctionNumber(functionNumber) {
2479 
2480   // Insert unnamed arguments into the NumberedVals list.
2481   for (Argument &A : F.args())
2482     if (!A.hasName())
2483       NumberedVals.push_back(&A);
2484 }
2485 
2486 LLParser::PerFunctionState::~PerFunctionState() {
2487   // If there were any forward referenced non-basicblock values, delete them.
2488 
2489   for (const auto &P : ForwardRefVals) {
2490     if (isa<BasicBlock>(P.second.first))
2491       continue;
2492     P.second.first->replaceAllUsesWith(
2493         UndefValue::get(P.second.first->getType()));
2494     delete P.second.first;
2495   }
2496 
2497   for (const auto &P : ForwardRefValIDs) {
2498     if (isa<BasicBlock>(P.second.first))
2499       continue;
2500     P.second.first->replaceAllUsesWith(
2501         UndefValue::get(P.second.first->getType()));
2502     delete P.second.first;
2503   }
2504 }
2505 
2506 bool LLParser::PerFunctionState::FinishFunction() {
2507   if (!ForwardRefVals.empty())
2508     return P.Error(ForwardRefVals.begin()->second.second,
2509                    "use of undefined value '%" + ForwardRefVals.begin()->first +
2510                    "'");
2511   if (!ForwardRefValIDs.empty())
2512     return P.Error(ForwardRefValIDs.begin()->second.second,
2513                    "use of undefined value '%" +
2514                    Twine(ForwardRefValIDs.begin()->first) + "'");
2515   return false;
2516 }
2517 
2518 /// GetVal - Get a value with the specified name or ID, creating a
2519 /// forward reference record if needed.  This can return null if the value
2520 /// exists but does not have the right type.
2521 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty,
2522                                           LocTy Loc) {
2523   // Look this name up in the normal function symbol table.
2524   Value *Val = F.getValueSymbolTable()->lookup(Name);
2525 
2526   // If this is a forward reference for the value, see if we already created a
2527   // forward ref record.
2528   if (!Val) {
2529     auto I = ForwardRefVals.find(Name);
2530     if (I != ForwardRefVals.end())
2531       Val = I->second.first;
2532   }
2533 
2534   // If we have the value in the symbol table or fwd-ref table, return it.
2535   if (Val) {
2536     if (Val->getType() == Ty) return Val;
2537     if (Ty->isLabelTy())
2538       P.Error(Loc, "'%" + Name + "' is not a basic block");
2539     else
2540       P.Error(Loc, "'%" + Name + "' defined with type '" +
2541               getTypeString(Val->getType()) + "'");
2542     return nullptr;
2543   }
2544 
2545   // Don't make placeholders with invalid type.
2546   if (!Ty->isFirstClassType()) {
2547     P.Error(Loc, "invalid use of a non-first-class type");
2548     return nullptr;
2549   }
2550 
2551   // Otherwise, create a new forward reference for this value and remember it.
2552   Value *FwdVal;
2553   if (Ty->isLabelTy()) {
2554     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2555   } else {
2556     FwdVal = new Argument(Ty, Name);
2557   }
2558 
2559   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2560   return FwdVal;
2561 }
2562 
2563 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc) {
2564   // Look this name up in the normal function symbol table.
2565   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2566 
2567   // If this is a forward reference for the value, see if we already created a
2568   // forward ref record.
2569   if (!Val) {
2570     auto I = ForwardRefValIDs.find(ID);
2571     if (I != ForwardRefValIDs.end())
2572       Val = I->second.first;
2573   }
2574 
2575   // If we have the value in the symbol table or fwd-ref table, return it.
2576   if (Val) {
2577     if (Val->getType() == Ty) return Val;
2578     if (Ty->isLabelTy())
2579       P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
2580     else
2581       P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
2582               getTypeString(Val->getType()) + "'");
2583     return nullptr;
2584   }
2585 
2586   if (!Ty->isFirstClassType()) {
2587     P.Error(Loc, "invalid use of a non-first-class type");
2588     return nullptr;
2589   }
2590 
2591   // Otherwise, create a new forward reference for this value and remember it.
2592   Value *FwdVal;
2593   if (Ty->isLabelTy()) {
2594     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2595   } else {
2596     FwdVal = new Argument(Ty);
2597   }
2598 
2599   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2600   return FwdVal;
2601 }
2602 
2603 /// SetInstName - After an instruction is parsed and inserted into its
2604 /// basic block, this installs its name.
2605 bool LLParser::PerFunctionState::SetInstName(int NameID,
2606                                              const std::string &NameStr,
2607                                              LocTy NameLoc, Instruction *Inst) {
2608   // If this instruction has void type, it cannot have a name or ID specified.
2609   if (Inst->getType()->isVoidTy()) {
2610     if (NameID != -1 || !NameStr.empty())
2611       return P.Error(NameLoc, "instructions returning void cannot have a name");
2612     return false;
2613   }
2614 
2615   // If this was a numbered instruction, verify that the instruction is the
2616   // expected value and resolve any forward references.
2617   if (NameStr.empty()) {
2618     // If neither a name nor an ID was specified, just use the next ID.
2619     if (NameID == -1)
2620       NameID = NumberedVals.size();
2621 
2622     if (unsigned(NameID) != NumberedVals.size())
2623       return P.Error(NameLoc, "instruction expected to be numbered '%" +
2624                      Twine(NumberedVals.size()) + "'");
2625 
2626     auto FI = ForwardRefValIDs.find(NameID);
2627     if (FI != ForwardRefValIDs.end()) {
2628       Value *Sentinel = FI->second.first;
2629       if (Sentinel->getType() != Inst->getType())
2630         return P.Error(NameLoc, "instruction forward referenced with type '" +
2631                        getTypeString(FI->second.first->getType()) + "'");
2632 
2633       Sentinel->replaceAllUsesWith(Inst);
2634       delete Sentinel;
2635       ForwardRefValIDs.erase(FI);
2636     }
2637 
2638     NumberedVals.push_back(Inst);
2639     return false;
2640   }
2641 
2642   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
2643   auto FI = ForwardRefVals.find(NameStr);
2644   if (FI != ForwardRefVals.end()) {
2645     Value *Sentinel = FI->second.first;
2646     if (Sentinel->getType() != Inst->getType())
2647       return P.Error(NameLoc, "instruction forward referenced with type '" +
2648                      getTypeString(FI->second.first->getType()) + "'");
2649 
2650     Sentinel->replaceAllUsesWith(Inst);
2651     delete Sentinel;
2652     ForwardRefVals.erase(FI);
2653   }
2654 
2655   // Set the name on the instruction.
2656   Inst->setName(NameStr);
2657 
2658   if (Inst->getName() != NameStr)
2659     return P.Error(NameLoc, "multiple definition of local value named '" +
2660                    NameStr + "'");
2661   return false;
2662 }
2663 
2664 /// GetBB - Get a basic block with the specified name or ID, creating a
2665 /// forward reference record if needed.
2666 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
2667                                               LocTy Loc) {
2668   return dyn_cast_or_null<BasicBlock>(GetVal(Name,
2669                                       Type::getLabelTy(F.getContext()), Loc));
2670 }
2671 
2672 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
2673   return dyn_cast_or_null<BasicBlock>(GetVal(ID,
2674                                       Type::getLabelTy(F.getContext()), Loc));
2675 }
2676 
2677 /// DefineBB - Define the specified basic block, which is either named or
2678 /// unnamed.  If there is an error, this returns null otherwise it returns
2679 /// the block being defined.
2680 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
2681                                                  LocTy Loc) {
2682   BasicBlock *BB;
2683   if (Name.empty())
2684     BB = GetBB(NumberedVals.size(), Loc);
2685   else
2686     BB = GetBB(Name, Loc);
2687   if (!BB) return nullptr; // Already diagnosed error.
2688 
2689   // Move the block to the end of the function.  Forward ref'd blocks are
2690   // inserted wherever they happen to be referenced.
2691   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
2692 
2693   // Remove the block from forward ref sets.
2694   if (Name.empty()) {
2695     ForwardRefValIDs.erase(NumberedVals.size());
2696     NumberedVals.push_back(BB);
2697   } else {
2698     // BB forward references are already in the function symbol table.
2699     ForwardRefVals.erase(Name);
2700   }
2701 
2702   return BB;
2703 }
2704 
2705 //===----------------------------------------------------------------------===//
2706 // Constants.
2707 //===----------------------------------------------------------------------===//
2708 
2709 /// ParseValID - Parse an abstract value that doesn't necessarily have a
2710 /// type implied.  For example, if we parse "4" we don't know what integer type
2711 /// it has.  The value will later be combined with its type and checked for
2712 /// sanity.  PFS is used to convert function-local operands of metadata (since
2713 /// metadata operands are not just parsed here but also converted to values).
2714 /// PFS can be null when we are not parsing metadata values inside a function.
2715 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
2716   ID.Loc = Lex.getLoc();
2717   switch (Lex.getKind()) {
2718   default: return TokError("expected value token");
2719   case lltok::GlobalID:  // @42
2720     ID.UIntVal = Lex.getUIntVal();
2721     ID.Kind = ValID::t_GlobalID;
2722     break;
2723   case lltok::GlobalVar:  // @foo
2724     ID.StrVal = Lex.getStrVal();
2725     ID.Kind = ValID::t_GlobalName;
2726     break;
2727   case lltok::LocalVarID:  // %42
2728     ID.UIntVal = Lex.getUIntVal();
2729     ID.Kind = ValID::t_LocalID;
2730     break;
2731   case lltok::LocalVar:  // %foo
2732     ID.StrVal = Lex.getStrVal();
2733     ID.Kind = ValID::t_LocalName;
2734     break;
2735   case lltok::APSInt:
2736     ID.APSIntVal = Lex.getAPSIntVal();
2737     ID.Kind = ValID::t_APSInt;
2738     break;
2739   case lltok::APFloat:
2740     ID.APFloatVal = Lex.getAPFloatVal();
2741     ID.Kind = ValID::t_APFloat;
2742     break;
2743   case lltok::kw_true:
2744     ID.ConstantVal = ConstantInt::getTrue(Context);
2745     ID.Kind = ValID::t_Constant;
2746     break;
2747   case lltok::kw_false:
2748     ID.ConstantVal = ConstantInt::getFalse(Context);
2749     ID.Kind = ValID::t_Constant;
2750     break;
2751   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
2752   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
2753   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
2754   case lltok::kw_none: ID.Kind = ValID::t_None; break;
2755 
2756   case lltok::lbrace: {
2757     // ValID ::= '{' ConstVector '}'
2758     Lex.Lex();
2759     SmallVector<Constant*, 16> Elts;
2760     if (ParseGlobalValueVector(Elts) ||
2761         ParseToken(lltok::rbrace, "expected end of struct constant"))
2762       return true;
2763 
2764     ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
2765     ID.UIntVal = Elts.size();
2766     memcpy(ID.ConstantStructElts.get(), Elts.data(),
2767            Elts.size() * sizeof(Elts[0]));
2768     ID.Kind = ValID::t_ConstantStruct;
2769     return false;
2770   }
2771   case lltok::less: {
2772     // ValID ::= '<' ConstVector '>'         --> Vector.
2773     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
2774     Lex.Lex();
2775     bool isPackedStruct = EatIfPresent(lltok::lbrace);
2776 
2777     SmallVector<Constant*, 16> Elts;
2778     LocTy FirstEltLoc = Lex.getLoc();
2779     if (ParseGlobalValueVector(Elts) ||
2780         (isPackedStruct &&
2781          ParseToken(lltok::rbrace, "expected end of packed struct")) ||
2782         ParseToken(lltok::greater, "expected end of constant"))
2783       return true;
2784 
2785     if (isPackedStruct) {
2786       ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
2787       memcpy(ID.ConstantStructElts.get(), Elts.data(),
2788              Elts.size() * sizeof(Elts[0]));
2789       ID.UIntVal = Elts.size();
2790       ID.Kind = ValID::t_PackedConstantStruct;
2791       return false;
2792     }
2793 
2794     if (Elts.empty())
2795       return Error(ID.Loc, "constant vector must not be empty");
2796 
2797     if (!Elts[0]->getType()->isIntegerTy() &&
2798         !Elts[0]->getType()->isFloatingPointTy() &&
2799         !Elts[0]->getType()->isPointerTy())
2800       return Error(FirstEltLoc,
2801             "vector elements must have integer, pointer or floating point type");
2802 
2803     // Verify that all the vector elements have the same type.
2804     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
2805       if (Elts[i]->getType() != Elts[0]->getType())
2806         return Error(FirstEltLoc,
2807                      "vector element #" + Twine(i) +
2808                     " is not of type '" + getTypeString(Elts[0]->getType()));
2809 
2810     ID.ConstantVal = ConstantVector::get(Elts);
2811     ID.Kind = ValID::t_Constant;
2812     return false;
2813   }
2814   case lltok::lsquare: {   // Array Constant
2815     Lex.Lex();
2816     SmallVector<Constant*, 16> Elts;
2817     LocTy FirstEltLoc = Lex.getLoc();
2818     if (ParseGlobalValueVector(Elts) ||
2819         ParseToken(lltok::rsquare, "expected end of array constant"))
2820       return true;
2821 
2822     // Handle empty element.
2823     if (Elts.empty()) {
2824       // Use undef instead of an array because it's inconvenient to determine
2825       // the element type at this point, there being no elements to examine.
2826       ID.Kind = ValID::t_EmptyArray;
2827       return false;
2828     }
2829 
2830     if (!Elts[0]->getType()->isFirstClassType())
2831       return Error(FirstEltLoc, "invalid array element type: " +
2832                    getTypeString(Elts[0]->getType()));
2833 
2834     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2835 
2836     // Verify all elements are correct type!
2837     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2838       if (Elts[i]->getType() != Elts[0]->getType())
2839         return Error(FirstEltLoc,
2840                      "array element #" + Twine(i) +
2841                      " is not of type '" + getTypeString(Elts[0]->getType()));
2842     }
2843 
2844     ID.ConstantVal = ConstantArray::get(ATy, Elts);
2845     ID.Kind = ValID::t_Constant;
2846     return false;
2847   }
2848   case lltok::kw_c:  // c "foo"
2849     Lex.Lex();
2850     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
2851                                                   false);
2852     if (ParseToken(lltok::StringConstant, "expected string")) return true;
2853     ID.Kind = ValID::t_Constant;
2854     return false;
2855 
2856   case lltok::kw_asm: {
2857     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
2858     //             STRINGCONSTANT
2859     bool HasSideEffect, AlignStack, AsmDialect;
2860     Lex.Lex();
2861     if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2862         ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2863         ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
2864         ParseStringConstant(ID.StrVal) ||
2865         ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2866         ParseToken(lltok::StringConstant, "expected constraint string"))
2867       return true;
2868     ID.StrVal2 = Lex.getStrVal();
2869     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
2870       (unsigned(AsmDialect)<<2);
2871     ID.Kind = ValID::t_InlineAsm;
2872     return false;
2873   }
2874 
2875   case lltok::kw_blockaddress: {
2876     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2877     Lex.Lex();
2878 
2879     ValID Fn, Label;
2880 
2881     if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2882         ParseValID(Fn) ||
2883         ParseToken(lltok::comma, "expected comma in block address expression")||
2884         ParseValID(Label) ||
2885         ParseToken(lltok::rparen, "expected ')' in block address expression"))
2886       return true;
2887 
2888     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
2889       return Error(Fn.Loc, "expected function name in blockaddress");
2890     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
2891       return Error(Label.Loc, "expected basic block name in blockaddress");
2892 
2893     // Try to find the function (but skip it if it's forward-referenced).
2894     GlobalValue *GV = nullptr;
2895     if (Fn.Kind == ValID::t_GlobalID) {
2896       if (Fn.UIntVal < NumberedVals.size())
2897         GV = NumberedVals[Fn.UIntVal];
2898     } else if (!ForwardRefVals.count(Fn.StrVal)) {
2899       GV = M->getNamedValue(Fn.StrVal);
2900     }
2901     Function *F = nullptr;
2902     if (GV) {
2903       // Confirm that it's actually a function with a definition.
2904       if (!isa<Function>(GV))
2905         return Error(Fn.Loc, "expected function name in blockaddress");
2906       F = cast<Function>(GV);
2907       if (F->isDeclaration())
2908         return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
2909     }
2910 
2911     if (!F) {
2912       // Make a global variable as a placeholder for this reference.
2913       GlobalValue *&FwdRef =
2914           ForwardRefBlockAddresses.insert(std::make_pair(
2915                                               std::move(Fn),
2916                                               std::map<ValID, GlobalValue *>()))
2917               .first->second.insert(std::make_pair(std::move(Label), nullptr))
2918               .first->second;
2919       if (!FwdRef)
2920         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
2921                                     GlobalValue::InternalLinkage, nullptr, "");
2922       ID.ConstantVal = FwdRef;
2923       ID.Kind = ValID::t_Constant;
2924       return false;
2925     }
2926 
2927     // We found the function; now find the basic block.  Don't use PFS, since we
2928     // might be inside a constant expression.
2929     BasicBlock *BB;
2930     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
2931       if (Label.Kind == ValID::t_LocalID)
2932         BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
2933       else
2934         BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
2935       if (!BB)
2936         return Error(Label.Loc, "referenced value is not a basic block");
2937     } else {
2938       if (Label.Kind == ValID::t_LocalID)
2939         return Error(Label.Loc, "cannot take address of numeric label after "
2940                                 "the function is defined");
2941       BB = dyn_cast_or_null<BasicBlock>(
2942           F->getValueSymbolTable()->lookup(Label.StrVal));
2943       if (!BB)
2944         return Error(Label.Loc, "referenced value is not a basic block");
2945     }
2946 
2947     ID.ConstantVal = BlockAddress::get(F, BB);
2948     ID.Kind = ValID::t_Constant;
2949     return false;
2950   }
2951 
2952   case lltok::kw_trunc:
2953   case lltok::kw_zext:
2954   case lltok::kw_sext:
2955   case lltok::kw_fptrunc:
2956   case lltok::kw_fpext:
2957   case lltok::kw_bitcast:
2958   case lltok::kw_addrspacecast:
2959   case lltok::kw_uitofp:
2960   case lltok::kw_sitofp:
2961   case lltok::kw_fptoui:
2962   case lltok::kw_fptosi:
2963   case lltok::kw_inttoptr:
2964   case lltok::kw_ptrtoint: {
2965     unsigned Opc = Lex.getUIntVal();
2966     Type *DestTy = nullptr;
2967     Constant *SrcVal;
2968     Lex.Lex();
2969     if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
2970         ParseGlobalTypeAndValue(SrcVal) ||
2971         ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
2972         ParseType(DestTy) ||
2973         ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
2974       return true;
2975     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
2976       return Error(ID.Loc, "invalid cast opcode for cast from '" +
2977                    getTypeString(SrcVal->getType()) + "' to '" +
2978                    getTypeString(DestTy) + "'");
2979     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
2980                                                  SrcVal, DestTy);
2981     ID.Kind = ValID::t_Constant;
2982     return false;
2983   }
2984   case lltok::kw_extractvalue: {
2985     Lex.Lex();
2986     Constant *Val;
2987     SmallVector<unsigned, 4> Indices;
2988     if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
2989         ParseGlobalTypeAndValue(Val) ||
2990         ParseIndexList(Indices) ||
2991         ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
2992       return true;
2993 
2994     if (!Val->getType()->isAggregateType())
2995       return Error(ID.Loc, "extractvalue operand must be aggregate type");
2996     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
2997       return Error(ID.Loc, "invalid indices for extractvalue");
2998     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
2999     ID.Kind = ValID::t_Constant;
3000     return false;
3001   }
3002   case lltok::kw_insertvalue: {
3003     Lex.Lex();
3004     Constant *Val0, *Val1;
3005     SmallVector<unsigned, 4> Indices;
3006     if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
3007         ParseGlobalTypeAndValue(Val0) ||
3008         ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
3009         ParseGlobalTypeAndValue(Val1) ||
3010         ParseIndexList(Indices) ||
3011         ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3012       return true;
3013     if (!Val0->getType()->isAggregateType())
3014       return Error(ID.Loc, "insertvalue operand must be aggregate type");
3015     Type *IndexedType =
3016         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3017     if (!IndexedType)
3018       return Error(ID.Loc, "invalid indices for insertvalue");
3019     if (IndexedType != Val1->getType())
3020       return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3021                                getTypeString(Val1->getType()) +
3022                                "' instead of '" + getTypeString(IndexedType) +
3023                                "'");
3024     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3025     ID.Kind = ValID::t_Constant;
3026     return false;
3027   }
3028   case lltok::kw_icmp:
3029   case lltok::kw_fcmp: {
3030     unsigned PredVal, Opc = Lex.getUIntVal();
3031     Constant *Val0, *Val1;
3032     Lex.Lex();
3033     if (ParseCmpPredicate(PredVal, Opc) ||
3034         ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3035         ParseGlobalTypeAndValue(Val0) ||
3036         ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
3037         ParseGlobalTypeAndValue(Val1) ||
3038         ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3039       return true;
3040 
3041     if (Val0->getType() != Val1->getType())
3042       return Error(ID.Loc, "compare operands must have the same type");
3043 
3044     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3045 
3046     if (Opc == Instruction::FCmp) {
3047       if (!Val0->getType()->isFPOrFPVectorTy())
3048         return Error(ID.Loc, "fcmp requires floating point operands");
3049       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3050     } else {
3051       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3052       if (!Val0->getType()->isIntOrIntVectorTy() &&
3053           !Val0->getType()->getScalarType()->isPointerTy())
3054         return Error(ID.Loc, "icmp requires pointer or integer operands");
3055       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3056     }
3057     ID.Kind = ValID::t_Constant;
3058     return false;
3059   }
3060 
3061   // Binary Operators.
3062   case lltok::kw_add:
3063   case lltok::kw_fadd:
3064   case lltok::kw_sub:
3065   case lltok::kw_fsub:
3066   case lltok::kw_mul:
3067   case lltok::kw_fmul:
3068   case lltok::kw_udiv:
3069   case lltok::kw_sdiv:
3070   case lltok::kw_fdiv:
3071   case lltok::kw_urem:
3072   case lltok::kw_srem:
3073   case lltok::kw_frem:
3074   case lltok::kw_shl:
3075   case lltok::kw_lshr:
3076   case lltok::kw_ashr: {
3077     bool NUW = false;
3078     bool NSW = false;
3079     bool Exact = false;
3080     unsigned Opc = Lex.getUIntVal();
3081     Constant *Val0, *Val1;
3082     Lex.Lex();
3083     LocTy ModifierLoc = Lex.getLoc();
3084     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3085         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3086       if (EatIfPresent(lltok::kw_nuw))
3087         NUW = true;
3088       if (EatIfPresent(lltok::kw_nsw)) {
3089         NSW = true;
3090         if (EatIfPresent(lltok::kw_nuw))
3091           NUW = true;
3092       }
3093     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3094                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3095       if (EatIfPresent(lltok::kw_exact))
3096         Exact = true;
3097     }
3098     if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3099         ParseGlobalTypeAndValue(Val0) ||
3100         ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
3101         ParseGlobalTypeAndValue(Val1) ||
3102         ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3103       return true;
3104     if (Val0->getType() != Val1->getType())
3105       return Error(ID.Loc, "operands of constexpr must have same type");
3106     if (!Val0->getType()->isIntOrIntVectorTy()) {
3107       if (NUW)
3108         return Error(ModifierLoc, "nuw only applies to integer operations");
3109       if (NSW)
3110         return Error(ModifierLoc, "nsw only applies to integer operations");
3111     }
3112     // Check that the type is valid for the operator.
3113     switch (Opc) {
3114     case Instruction::Add:
3115     case Instruction::Sub:
3116     case Instruction::Mul:
3117     case Instruction::UDiv:
3118     case Instruction::SDiv:
3119     case Instruction::URem:
3120     case Instruction::SRem:
3121     case Instruction::Shl:
3122     case Instruction::AShr:
3123     case Instruction::LShr:
3124       if (!Val0->getType()->isIntOrIntVectorTy())
3125         return Error(ID.Loc, "constexpr requires integer operands");
3126       break;
3127     case Instruction::FAdd:
3128     case Instruction::FSub:
3129     case Instruction::FMul:
3130     case Instruction::FDiv:
3131     case Instruction::FRem:
3132       if (!Val0->getType()->isFPOrFPVectorTy())
3133         return Error(ID.Loc, "constexpr requires fp operands");
3134       break;
3135     default: llvm_unreachable("Unknown binary operator!");
3136     }
3137     unsigned Flags = 0;
3138     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3139     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3140     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3141     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3142     ID.ConstantVal = C;
3143     ID.Kind = ValID::t_Constant;
3144     return false;
3145   }
3146 
3147   // Logical Operations
3148   case lltok::kw_and:
3149   case lltok::kw_or:
3150   case lltok::kw_xor: {
3151     unsigned Opc = Lex.getUIntVal();
3152     Constant *Val0, *Val1;
3153     Lex.Lex();
3154     if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3155         ParseGlobalTypeAndValue(Val0) ||
3156         ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
3157         ParseGlobalTypeAndValue(Val1) ||
3158         ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3159       return true;
3160     if (Val0->getType() != Val1->getType())
3161       return Error(ID.Loc, "operands of constexpr must have same type");
3162     if (!Val0->getType()->isIntOrIntVectorTy())
3163       return Error(ID.Loc,
3164                    "constexpr requires integer or integer vector operands");
3165     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3166     ID.Kind = ValID::t_Constant;
3167     return false;
3168   }
3169 
3170   case lltok::kw_getelementptr:
3171   case lltok::kw_shufflevector:
3172   case lltok::kw_insertelement:
3173   case lltok::kw_extractelement:
3174   case lltok::kw_select: {
3175     unsigned Opc = Lex.getUIntVal();
3176     SmallVector<Constant*, 16> Elts;
3177     bool InBounds = false;
3178     Type *Ty;
3179     Lex.Lex();
3180 
3181     if (Opc == Instruction::GetElementPtr)
3182       InBounds = EatIfPresent(lltok::kw_inbounds);
3183 
3184     if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
3185       return true;
3186 
3187     LocTy ExplicitTypeLoc = Lex.getLoc();
3188     if (Opc == Instruction::GetElementPtr) {
3189       if (ParseType(Ty) ||
3190           ParseToken(lltok::comma, "expected comma after getelementptr's type"))
3191         return true;
3192     }
3193 
3194     Optional<unsigned> InRangeOp;
3195     if (ParseGlobalValueVector(
3196             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3197         ParseToken(lltok::rparen, "expected ')' in constantexpr"))
3198       return true;
3199 
3200     if (Opc == Instruction::GetElementPtr) {
3201       if (Elts.size() == 0 ||
3202           !Elts[0]->getType()->getScalarType()->isPointerTy())
3203         return Error(ID.Loc, "base of getelementptr must be a pointer");
3204 
3205       Type *BaseType = Elts[0]->getType();
3206       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3207       if (Ty != BasePointerType->getElementType())
3208         return Error(
3209             ExplicitTypeLoc,
3210             "explicit pointee type doesn't match operand's pointee type");
3211 
3212       unsigned GEPWidth =
3213           BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0;
3214 
3215       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3216       for (Constant *Val : Indices) {
3217         Type *ValTy = Val->getType();
3218         if (!ValTy->getScalarType()->isIntegerTy())
3219           return Error(ID.Loc, "getelementptr index must be an integer");
3220         if (ValTy->isVectorTy()) {
3221           unsigned ValNumEl = ValTy->getVectorNumElements();
3222           if (GEPWidth && (ValNumEl != GEPWidth))
3223             return Error(
3224                 ID.Loc,
3225                 "getelementptr vector index has a wrong number of elements");
3226           // GEPWidth may have been unknown because the base is a scalar,
3227           // but it is known now.
3228           GEPWidth = ValNumEl;
3229         }
3230       }
3231 
3232       SmallPtrSet<Type*, 4> Visited;
3233       if (!Indices.empty() && !Ty->isSized(&Visited))
3234         return Error(ID.Loc, "base element of getelementptr must be sized");
3235 
3236       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3237         return Error(ID.Loc, "invalid getelementptr indices");
3238 
3239       if (InRangeOp) {
3240         if (*InRangeOp == 0)
3241           return Error(ID.Loc,
3242                        "inrange keyword may not appear on pointer operand");
3243         --*InRangeOp;
3244       }
3245 
3246       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3247                                                       InBounds, InRangeOp);
3248     } else if (Opc == Instruction::Select) {
3249       if (Elts.size() != 3)
3250         return Error(ID.Loc, "expected three operands to select");
3251       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3252                                                               Elts[2]))
3253         return Error(ID.Loc, Reason);
3254       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3255     } else if (Opc == Instruction::ShuffleVector) {
3256       if (Elts.size() != 3)
3257         return Error(ID.Loc, "expected three operands to shufflevector");
3258       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3259         return Error(ID.Loc, "invalid operands to shufflevector");
3260       ID.ConstantVal =
3261                  ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
3262     } else if (Opc == Instruction::ExtractElement) {
3263       if (Elts.size() != 2)
3264         return Error(ID.Loc, "expected two operands to extractelement");
3265       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3266         return Error(ID.Loc, "invalid extractelement operands");
3267       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3268     } else {
3269       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3270       if (Elts.size() != 3)
3271       return Error(ID.Loc, "expected three operands to insertelement");
3272       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3273         return Error(ID.Loc, "invalid insertelement operands");
3274       ID.ConstantVal =
3275                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3276     }
3277 
3278     ID.Kind = ValID::t_Constant;
3279     return false;
3280   }
3281   }
3282 
3283   Lex.Lex();
3284   return false;
3285 }
3286 
3287 /// ParseGlobalValue - Parse a global value with the specified type.
3288 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
3289   C = nullptr;
3290   ValID ID;
3291   Value *V = nullptr;
3292   bool Parsed = ParseValID(ID) ||
3293                 ConvertValIDToValue(Ty, ID, V, nullptr);
3294   if (V && !(C = dyn_cast<Constant>(V)))
3295     return Error(ID.Loc, "global values must be constants");
3296   return Parsed;
3297 }
3298 
3299 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
3300   Type *Ty = nullptr;
3301   return ParseType(Ty) ||
3302          ParseGlobalValue(Ty, V);
3303 }
3304 
3305 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3306   C = nullptr;
3307 
3308   LocTy KwLoc = Lex.getLoc();
3309   if (!EatIfPresent(lltok::kw_comdat))
3310     return false;
3311 
3312   if (EatIfPresent(lltok::lparen)) {
3313     if (Lex.getKind() != lltok::ComdatVar)
3314       return TokError("expected comdat variable");
3315     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3316     Lex.Lex();
3317     if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
3318       return true;
3319   } else {
3320     if (GlobalName.empty())
3321       return TokError("comdat cannot be unnamed");
3322     C = getComdat(GlobalName, KwLoc);
3323   }
3324 
3325   return false;
3326 }
3327 
3328 /// ParseGlobalValueVector
3329 ///   ::= /*empty*/
3330 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3331 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3332                                       Optional<unsigned> *InRangeOp) {
3333   // Empty list.
3334   if (Lex.getKind() == lltok::rbrace ||
3335       Lex.getKind() == lltok::rsquare ||
3336       Lex.getKind() == lltok::greater ||
3337       Lex.getKind() == lltok::rparen)
3338     return false;
3339 
3340   do {
3341     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3342       *InRangeOp = Elts.size();
3343 
3344     Constant *C;
3345     if (ParseGlobalTypeAndValue(C)) return true;
3346     Elts.push_back(C);
3347   } while (EatIfPresent(lltok::comma));
3348 
3349   return false;
3350 }
3351 
3352 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
3353   SmallVector<Metadata *, 16> Elts;
3354   if (ParseMDNodeVector(Elts))
3355     return true;
3356 
3357   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3358   return false;
3359 }
3360 
3361 /// MDNode:
3362 ///  ::= !{ ... }
3363 ///  ::= !7
3364 ///  ::= !DILocation(...)
3365 bool LLParser::ParseMDNode(MDNode *&N) {
3366   if (Lex.getKind() == lltok::MetadataVar)
3367     return ParseSpecializedMDNode(N);
3368 
3369   return ParseToken(lltok::exclaim, "expected '!' here") ||
3370          ParseMDNodeTail(N);
3371 }
3372 
3373 bool LLParser::ParseMDNodeTail(MDNode *&N) {
3374   // !{ ... }
3375   if (Lex.getKind() == lltok::lbrace)
3376     return ParseMDTuple(N);
3377 
3378   // !42
3379   return ParseMDNodeID(N);
3380 }
3381 
3382 namespace {
3383 
3384 /// Structure to represent an optional metadata field.
3385 template <class FieldTy> struct MDFieldImpl {
3386   typedef MDFieldImpl ImplTy;
3387   FieldTy Val;
3388   bool Seen;
3389 
3390   void assign(FieldTy Val) {
3391     Seen = true;
3392     this->Val = std::move(Val);
3393   }
3394 
3395   explicit MDFieldImpl(FieldTy Default)
3396       : Val(std::move(Default)), Seen(false) {}
3397 };
3398 
3399 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3400   uint64_t Max;
3401 
3402   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3403       : ImplTy(Default), Max(Max) {}
3404 };
3405 
3406 struct LineField : public MDUnsignedField {
3407   LineField() : MDUnsignedField(0, UINT32_MAX) {}
3408 };
3409 
3410 struct ColumnField : public MDUnsignedField {
3411   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3412 };
3413 
3414 struct DwarfTagField : public MDUnsignedField {
3415   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3416   DwarfTagField(dwarf::Tag DefaultTag)
3417       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3418 };
3419 
3420 struct DwarfMacinfoTypeField : public MDUnsignedField {
3421   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3422   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3423     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3424 };
3425 
3426 struct DwarfAttEncodingField : public MDUnsignedField {
3427   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3428 };
3429 
3430 struct DwarfVirtualityField : public MDUnsignedField {
3431   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3432 };
3433 
3434 struct DwarfLangField : public MDUnsignedField {
3435   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3436 };
3437 
3438 struct DwarfCCField : public MDUnsignedField {
3439   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3440 };
3441 
3442 struct EmissionKindField : public MDUnsignedField {
3443   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3444 };
3445 
3446 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
3447   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3448 };
3449 
3450 struct MDSignedField : public MDFieldImpl<int64_t> {
3451   int64_t Min;
3452   int64_t Max;
3453 
3454   MDSignedField(int64_t Default = 0)
3455       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3456   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3457       : ImplTy(Default), Min(Min), Max(Max) {}
3458 };
3459 
3460 struct MDBoolField : public MDFieldImpl<bool> {
3461   MDBoolField(bool Default = false) : ImplTy(Default) {}
3462 };
3463 
3464 struct MDField : public MDFieldImpl<Metadata *> {
3465   bool AllowNull;
3466 
3467   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3468 };
3469 
3470 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
3471   MDConstant() : ImplTy(nullptr) {}
3472 };
3473 
3474 struct MDStringField : public MDFieldImpl<MDString *> {
3475   bool AllowEmpty;
3476   MDStringField(bool AllowEmpty = true)
3477       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3478 };
3479 
3480 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3481   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3482 };
3483 
3484 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
3485   ChecksumKindField() : ImplTy(DIFile::CSK_None) {}
3486   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
3487 };
3488 
3489 } // end anonymous namespace
3490 
3491 namespace llvm {
3492 
3493 template <>
3494 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3495                             MDUnsignedField &Result) {
3496   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3497     return TokError("expected unsigned integer");
3498 
3499   auto &U = Lex.getAPSIntVal();
3500   if (U.ugt(Result.Max))
3501     return TokError("value for '" + Name + "' too large, limit is " +
3502                     Twine(Result.Max));
3503   Result.assign(U.getZExtValue());
3504   assert(Result.Val <= Result.Max && "Expected value in range");
3505   Lex.Lex();
3506   return false;
3507 }
3508 
3509 template <>
3510 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
3511   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3512 }
3513 template <>
3514 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
3515   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3516 }
3517 
3518 template <>
3519 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
3520   if (Lex.getKind() == lltok::APSInt)
3521     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3522 
3523   if (Lex.getKind() != lltok::DwarfTag)
3524     return TokError("expected DWARF tag");
3525 
3526   unsigned Tag = dwarf::getTag(Lex.getStrVal());
3527   if (Tag == dwarf::DW_TAG_invalid)
3528     return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
3529   assert(Tag <= Result.Max && "Expected valid DWARF tag");
3530 
3531   Result.assign(Tag);
3532   Lex.Lex();
3533   return false;
3534 }
3535 
3536 template <>
3537 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3538                             DwarfMacinfoTypeField &Result) {
3539   if (Lex.getKind() == lltok::APSInt)
3540     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3541 
3542   if (Lex.getKind() != lltok::DwarfMacinfo)
3543     return TokError("expected DWARF macinfo type");
3544 
3545   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
3546   if (Macinfo == dwarf::DW_MACINFO_invalid)
3547     return TokError(
3548         "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'");
3549   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
3550 
3551   Result.assign(Macinfo);
3552   Lex.Lex();
3553   return false;
3554 }
3555 
3556 template <>
3557 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3558                             DwarfVirtualityField &Result) {
3559   if (Lex.getKind() == lltok::APSInt)
3560     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3561 
3562   if (Lex.getKind() != lltok::DwarfVirtuality)
3563     return TokError("expected DWARF virtuality code");
3564 
3565   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
3566   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
3567     return TokError("invalid DWARF virtuality code" + Twine(" '") +
3568                     Lex.getStrVal() + "'");
3569   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
3570   Result.assign(Virtuality);
3571   Lex.Lex();
3572   return false;
3573 }
3574 
3575 template <>
3576 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
3577   if (Lex.getKind() == lltok::APSInt)
3578     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3579 
3580   if (Lex.getKind() != lltok::DwarfLang)
3581     return TokError("expected DWARF language");
3582 
3583   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
3584   if (!Lang)
3585     return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
3586                     "'");
3587   assert(Lang <= Result.Max && "Expected valid DWARF language");
3588   Result.assign(Lang);
3589   Lex.Lex();
3590   return false;
3591 }
3592 
3593 template <>
3594 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
3595   if (Lex.getKind() == lltok::APSInt)
3596     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3597 
3598   if (Lex.getKind() != lltok::DwarfCC)
3599     return TokError("expected DWARF calling convention");
3600 
3601   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
3602   if (!CC)
3603     return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() +
3604                     "'");
3605   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
3606   Result.assign(CC);
3607   Lex.Lex();
3608   return false;
3609 }
3610 
3611 template <>
3612 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) {
3613   if (Lex.getKind() == lltok::APSInt)
3614     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3615 
3616   if (Lex.getKind() != lltok::EmissionKind)
3617     return TokError("expected emission kind");
3618 
3619   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
3620   if (!Kind)
3621     return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
3622                     "'");
3623   assert(*Kind <= Result.Max && "Expected valid emission kind");
3624   Result.assign(*Kind);
3625   Lex.Lex();
3626   return false;
3627 }
3628 
3629 template <>
3630 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3631                             DwarfAttEncodingField &Result) {
3632   if (Lex.getKind() == lltok::APSInt)
3633     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3634 
3635   if (Lex.getKind() != lltok::DwarfAttEncoding)
3636     return TokError("expected DWARF type attribute encoding");
3637 
3638   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
3639   if (!Encoding)
3640     return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
3641                     Lex.getStrVal() + "'");
3642   assert(Encoding <= Result.Max && "Expected valid DWARF language");
3643   Result.assign(Encoding);
3644   Lex.Lex();
3645   return false;
3646 }
3647 
3648 /// DIFlagField
3649 ///  ::= uint32
3650 ///  ::= DIFlagVector
3651 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
3652 template <>
3653 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
3654 
3655   // Parser for a single flag.
3656   auto parseFlag = [&](DINode::DIFlags &Val) {
3657     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
3658       uint32_t TempVal = static_cast<uint32_t>(Val);
3659       bool Res = ParseUInt32(TempVal);
3660       Val = static_cast<DINode::DIFlags>(TempVal);
3661       return Res;
3662     }
3663 
3664     if (Lex.getKind() != lltok::DIFlag)
3665       return TokError("expected debug info flag");
3666 
3667     Val = DINode::getFlag(Lex.getStrVal());
3668     if (!Val)
3669       return TokError(Twine("invalid debug info flag flag '") +
3670                       Lex.getStrVal() + "'");
3671     Lex.Lex();
3672     return false;
3673   };
3674 
3675   // Parse the flags and combine them together.
3676   DINode::DIFlags Combined = DINode::FlagZero;
3677   do {
3678     DINode::DIFlags Val;
3679     if (parseFlag(Val))
3680       return true;
3681     Combined |= Val;
3682   } while (EatIfPresent(lltok::bar));
3683 
3684   Result.assign(Combined);
3685   return false;
3686 }
3687 
3688 template <>
3689 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3690                             MDSignedField &Result) {
3691   if (Lex.getKind() != lltok::APSInt)
3692     return TokError("expected signed integer");
3693 
3694   auto &S = Lex.getAPSIntVal();
3695   if (S < Result.Min)
3696     return TokError("value for '" + Name + "' too small, limit is " +
3697                     Twine(Result.Min));
3698   if (S > Result.Max)
3699     return TokError("value for '" + Name + "' too large, limit is " +
3700                     Twine(Result.Max));
3701   Result.assign(S.getExtValue());
3702   assert(Result.Val >= Result.Min && "Expected value in range");
3703   assert(Result.Val <= Result.Max && "Expected value in range");
3704   Lex.Lex();
3705   return false;
3706 }
3707 
3708 template <>
3709 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
3710   switch (Lex.getKind()) {
3711   default:
3712     return TokError("expected 'true' or 'false'");
3713   case lltok::kw_true:
3714     Result.assign(true);
3715     break;
3716   case lltok::kw_false:
3717     Result.assign(false);
3718     break;
3719   }
3720   Lex.Lex();
3721   return false;
3722 }
3723 
3724 template <>
3725 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
3726   if (Lex.getKind() == lltok::kw_null) {
3727     if (!Result.AllowNull)
3728       return TokError("'" + Name + "' cannot be null");
3729     Lex.Lex();
3730     Result.assign(nullptr);
3731     return false;
3732   }
3733 
3734   Metadata *MD;
3735   if (ParseMetadata(MD, nullptr))
3736     return true;
3737 
3738   Result.assign(MD);
3739   return false;
3740 }
3741 
3742 template <>
3743 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
3744   LocTy ValueLoc = Lex.getLoc();
3745   std::string S;
3746   if (ParseStringConstant(S))
3747     return true;
3748 
3749   if (!Result.AllowEmpty && S.empty())
3750     return Error(ValueLoc, "'" + Name + "' cannot be empty");
3751 
3752   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
3753   return false;
3754 }
3755 
3756 template <>
3757 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
3758   SmallVector<Metadata *, 4> MDs;
3759   if (ParseMDNodeVector(MDs))
3760     return true;
3761 
3762   Result.assign(std::move(MDs));
3763   return false;
3764 }
3765 
3766 template <>
3767 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3768                             ChecksumKindField &Result) {
3769   if (Lex.getKind() != lltok::ChecksumKind)
3770     return TokError(
3771         "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'");
3772 
3773   DIFile::ChecksumKind CSKind = DIFile::getChecksumKind(Lex.getStrVal());
3774 
3775   Result.assign(CSKind);
3776   Lex.Lex();
3777   return false;
3778 }
3779 
3780 } // end namespace llvm
3781 
3782 template <class ParserTy>
3783 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
3784   do {
3785     if (Lex.getKind() != lltok::LabelStr)
3786       return TokError("expected field label here");
3787 
3788     if (parseField())
3789       return true;
3790   } while (EatIfPresent(lltok::comma));
3791 
3792   return false;
3793 }
3794 
3795 template <class ParserTy>
3796 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
3797   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
3798   Lex.Lex();
3799 
3800   if (ParseToken(lltok::lparen, "expected '(' here"))
3801     return true;
3802   if (Lex.getKind() != lltok::rparen)
3803     if (ParseMDFieldsImplBody(parseField))
3804       return true;
3805 
3806   ClosingLoc = Lex.getLoc();
3807   return ParseToken(lltok::rparen, "expected ')' here");
3808 }
3809 
3810 template <class FieldTy>
3811 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
3812   if (Result.Seen)
3813     return TokError("field '" + Name + "' cannot be specified more than once");
3814 
3815   LocTy Loc = Lex.getLoc();
3816   Lex.Lex();
3817   return ParseMDField(Loc, Name, Result);
3818 }
3819 
3820 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
3821   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
3822 
3823 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
3824   if (Lex.getStrVal() == #CLASS)                                               \
3825     return Parse##CLASS(N, IsDistinct);
3826 #include "llvm/IR/Metadata.def"
3827 
3828   return TokError("expected metadata type");
3829 }
3830 
3831 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
3832 #define NOP_FIELD(NAME, TYPE, INIT)
3833 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
3834   if (!NAME.Seen)                                                              \
3835     return Error(ClosingLoc, "missing required field '" #NAME "'");
3836 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
3837   if (Lex.getStrVal() == #NAME)                                                \
3838     return ParseMDField(#NAME, NAME);
3839 #define PARSE_MD_FIELDS()                                                      \
3840   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
3841   do {                                                                         \
3842     LocTy ClosingLoc;                                                          \
3843     if (ParseMDFieldsImpl([&]() -> bool {                                      \
3844       VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                          \
3845       return TokError(Twine("invalid field '") + Lex.getStrVal() + "'");       \
3846     }, ClosingLoc))                                                            \
3847       return true;                                                             \
3848     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
3849   } while (false)
3850 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
3851   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
3852 
3853 /// ParseDILocationFields:
3854 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6)
3855 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
3856 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3857   OPTIONAL(line, LineField, );                                                 \
3858   OPTIONAL(column, ColumnField, );                                             \
3859   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
3860   OPTIONAL(inlinedAt, MDField, );
3861   PARSE_MD_FIELDS();
3862 #undef VISIT_MD_FIELDS
3863 
3864   Result = GET_OR_DISTINCT(
3865       DILocation, (Context, line.Val, column.Val, scope.Val, inlinedAt.Val));
3866   return false;
3867 }
3868 
3869 /// ParseGenericDINode:
3870 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
3871 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
3872 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3873   REQUIRED(tag, DwarfTagField, );                                              \
3874   OPTIONAL(header, MDStringField, );                                           \
3875   OPTIONAL(operands, MDFieldList, );
3876   PARSE_MD_FIELDS();
3877 #undef VISIT_MD_FIELDS
3878 
3879   Result = GET_OR_DISTINCT(GenericDINode,
3880                            (Context, tag.Val, header.Val, operands.Val));
3881   return false;
3882 }
3883 
3884 /// ParseDISubrange:
3885 ///   ::= !DISubrange(count: 30, lowerBound: 2)
3886 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
3887 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3888   REQUIRED(count, MDSignedField, (-1, -1, INT64_MAX));                         \
3889   OPTIONAL(lowerBound, MDSignedField, );
3890   PARSE_MD_FIELDS();
3891 #undef VISIT_MD_FIELDS
3892 
3893   Result = GET_OR_DISTINCT(DISubrange, (Context, count.Val, lowerBound.Val));
3894   return false;
3895 }
3896 
3897 /// ParseDIEnumerator:
3898 ///   ::= !DIEnumerator(value: 30, name: "SomeKind")
3899 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
3900 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3901   REQUIRED(name, MDStringField, );                                             \
3902   REQUIRED(value, MDSignedField, );
3903   PARSE_MD_FIELDS();
3904 #undef VISIT_MD_FIELDS
3905 
3906   Result = GET_OR_DISTINCT(DIEnumerator, (Context, value.Val, name.Val));
3907   return false;
3908 }
3909 
3910 /// ParseDIBasicType:
3911 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32)
3912 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
3913 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3914   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
3915   OPTIONAL(name, MDStringField, );                                             \
3916   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
3917   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
3918   OPTIONAL(encoding, DwarfAttEncodingField, );
3919   PARSE_MD_FIELDS();
3920 #undef VISIT_MD_FIELDS
3921 
3922   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
3923                                          align.Val, encoding.Val));
3924   return false;
3925 }
3926 
3927 /// ParseDIDerivedType:
3928 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
3929 ///                      line: 7, scope: !1, baseType: !2, size: 32,
3930 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
3931 ///                      dwarfAddressSpace: 3)
3932 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
3933 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3934   REQUIRED(tag, DwarfTagField, );                                              \
3935   OPTIONAL(name, MDStringField, );                                             \
3936   OPTIONAL(file, MDField, );                                                   \
3937   OPTIONAL(line, LineField, );                                                 \
3938   OPTIONAL(scope, MDField, );                                                  \
3939   REQUIRED(baseType, MDField, );                                               \
3940   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
3941   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
3942   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
3943   OPTIONAL(flags, DIFlagField, );                                              \
3944   OPTIONAL(extraData, MDField, );                                              \
3945   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
3946   PARSE_MD_FIELDS();
3947 #undef VISIT_MD_FIELDS
3948 
3949   Optional<unsigned> DWARFAddressSpace;
3950   if (dwarfAddressSpace.Val != UINT32_MAX)
3951     DWARFAddressSpace = dwarfAddressSpace.Val;
3952 
3953   Result = GET_OR_DISTINCT(DIDerivedType,
3954                            (Context, tag.Val, name.Val, file.Val, line.Val,
3955                             scope.Val, baseType.Val, size.Val, align.Val,
3956                             offset.Val, DWARFAddressSpace, flags.Val,
3957                             extraData.Val));
3958   return false;
3959 }
3960 
3961 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
3962 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3963   REQUIRED(tag, DwarfTagField, );                                              \
3964   OPTIONAL(name, MDStringField, );                                             \
3965   OPTIONAL(file, MDField, );                                                   \
3966   OPTIONAL(line, LineField, );                                                 \
3967   OPTIONAL(scope, MDField, );                                                  \
3968   OPTIONAL(baseType, MDField, );                                               \
3969   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
3970   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
3971   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
3972   OPTIONAL(flags, DIFlagField, );                                              \
3973   OPTIONAL(elements, MDField, );                                               \
3974   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
3975   OPTIONAL(vtableHolder, MDField, );                                           \
3976   OPTIONAL(templateParams, MDField, );                                         \
3977   OPTIONAL(identifier, MDStringField, );
3978   PARSE_MD_FIELDS();
3979 #undef VISIT_MD_FIELDS
3980 
3981   // If this has an identifier try to build an ODR type.
3982   if (identifier.Val)
3983     if (auto *CT = DICompositeType::buildODRType(
3984             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
3985             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
3986             elements.Val, runtimeLang.Val, vtableHolder.Val,
3987             templateParams.Val)) {
3988       Result = CT;
3989       return false;
3990     }
3991 
3992   // Create a new node, and save it in the context if it belongs in the type
3993   // map.
3994   Result = GET_OR_DISTINCT(
3995       DICompositeType,
3996       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
3997        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
3998        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val));
3999   return false;
4000 }
4001 
4002 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4003 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4004   OPTIONAL(flags, DIFlagField, );                                              \
4005   OPTIONAL(cc, DwarfCCField, );                                                \
4006   REQUIRED(types, MDField, );
4007   PARSE_MD_FIELDS();
4008 #undef VISIT_MD_FIELDS
4009 
4010   Result = GET_OR_DISTINCT(DISubroutineType,
4011                            (Context, flags.Val, cc.Val, types.Val));
4012   return false;
4013 }
4014 
4015 /// ParseDIFileType:
4016 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir"
4017 ///                   checksumkind: CSK_MD5,
4018 ///                   checksum: "000102030405060708090a0b0c0d0e0f")
4019 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
4020 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4021   REQUIRED(filename, MDStringField, );                                         \
4022   REQUIRED(directory, MDStringField, );                                        \
4023   OPTIONAL(checksumkind, ChecksumKindField, );                                 \
4024   OPTIONAL(checksum, MDStringField, );
4025   PARSE_MD_FIELDS();
4026 #undef VISIT_MD_FIELDS
4027 
4028   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4029                                     checksumkind.Val, checksum.Val));
4030   return false;
4031 }
4032 
4033 /// ParseDICompileUnit:
4034 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4035 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
4036 ///                      splitDebugFilename: "abc.debug",
4037 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4038 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd)
4039 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4040   if (!IsDistinct)
4041     return Lex.Error("missing 'distinct', required for !DICompileUnit");
4042 
4043 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4044   REQUIRED(language, DwarfLangField, );                                        \
4045   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
4046   OPTIONAL(producer, MDStringField, );                                         \
4047   OPTIONAL(isOptimized, MDBoolField, );                                        \
4048   OPTIONAL(flags, MDStringField, );                                            \
4049   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
4050   OPTIONAL(splitDebugFilename, MDStringField, );                               \
4051   OPTIONAL(emissionKind, EmissionKindField, );                                 \
4052   OPTIONAL(enums, MDField, );                                                  \
4053   OPTIONAL(retainedTypes, MDField, );                                          \
4054   OPTIONAL(globals, MDField, );                                                \
4055   OPTIONAL(imports, MDField, );                                                \
4056   OPTIONAL(macros, MDField, );                                                 \
4057   OPTIONAL(dwoId, MDUnsignedField, );                                          \
4058   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
4059   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);
4060   PARSE_MD_FIELDS();
4061 #undef VISIT_MD_FIELDS
4062 
4063   Result = DICompileUnit::getDistinct(
4064       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4065       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4066       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4067       splitDebugInlining.Val, debugInfoForProfiling.Val);
4068   return false;
4069 }
4070 
4071 /// ParseDISubprogram:
4072 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4073 ///                     file: !1, line: 7, type: !2, isLocal: false,
4074 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
4075 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
4076 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
4077 ///                     isOptimized: false, templateParams: !4, declaration: !5,
4078 ///                     variables: !6)
4079 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
4080   auto Loc = Lex.getLoc();
4081 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4082   OPTIONAL(scope, MDField, );                                                  \
4083   OPTIONAL(name, MDStringField, );                                             \
4084   OPTIONAL(linkageName, MDStringField, );                                      \
4085   OPTIONAL(file, MDField, );                                                   \
4086   OPTIONAL(line, LineField, );                                                 \
4087   OPTIONAL(type, MDField, );                                                   \
4088   OPTIONAL(isLocal, MDBoolField, );                                            \
4089   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4090   OPTIONAL(scopeLine, LineField, );                                            \
4091   OPTIONAL(containingType, MDField, );                                         \
4092   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
4093   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
4094   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
4095   OPTIONAL(flags, DIFlagField, );                                              \
4096   OPTIONAL(isOptimized, MDBoolField, );                                        \
4097   OPTIONAL(unit, MDField, );                                                   \
4098   OPTIONAL(templateParams, MDField, );                                         \
4099   OPTIONAL(declaration, MDField, );                                            \
4100   OPTIONAL(variables, MDField, );
4101   PARSE_MD_FIELDS();
4102 #undef VISIT_MD_FIELDS
4103 
4104   if (isDefinition.Val && !IsDistinct)
4105     return Lex.Error(
4106         Loc,
4107         "missing 'distinct', required for !DISubprogram when 'isDefinition'");
4108 
4109   Result = GET_OR_DISTINCT(
4110       DISubprogram, (Context, scope.Val, name.Val, linkageName.Val, file.Val,
4111                      line.Val, type.Val, isLocal.Val, isDefinition.Val,
4112                      scopeLine.Val, containingType.Val, virtuality.Val,
4113                      virtualIndex.Val, thisAdjustment.Val, flags.Val,
4114                      isOptimized.Val, unit.Val, templateParams.Val,
4115                      declaration.Val, variables.Val));
4116   return false;
4117 }
4118 
4119 /// ParseDILexicalBlock:
4120 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4121 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4122 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4123   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4124   OPTIONAL(file, MDField, );                                                   \
4125   OPTIONAL(line, LineField, );                                                 \
4126   OPTIONAL(column, ColumnField, );
4127   PARSE_MD_FIELDS();
4128 #undef VISIT_MD_FIELDS
4129 
4130   Result = GET_OR_DISTINCT(
4131       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4132   return false;
4133 }
4134 
4135 /// ParseDILexicalBlockFile:
4136 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4137 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4138 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4139   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4140   OPTIONAL(file, MDField, );                                                   \
4141   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4142   PARSE_MD_FIELDS();
4143 #undef VISIT_MD_FIELDS
4144 
4145   Result = GET_OR_DISTINCT(DILexicalBlockFile,
4146                            (Context, scope.Val, file.Val, discriminator.Val));
4147   return false;
4148 }
4149 
4150 /// ParseDINamespace:
4151 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4152 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
4153 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4154   REQUIRED(scope, MDField, );                                                  \
4155   OPTIONAL(file, MDField, );                                                   \
4156   OPTIONAL(name, MDStringField, );                                             \
4157   OPTIONAL(line, LineField, );                                                 \
4158   OPTIONAL(exportSymbols, MDBoolField, );
4159   PARSE_MD_FIELDS();
4160 #undef VISIT_MD_FIELDS
4161 
4162   Result = GET_OR_DISTINCT(DINamespace,
4163   (Context, scope.Val, file.Val, name.Val, line.Val, exportSymbols.Val));
4164   return false;
4165 }
4166 
4167 /// ParseDIMacro:
4168 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
4169 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) {
4170 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4171   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
4172   OPTIONAL(line, LineField, );                                                 \
4173   REQUIRED(name, MDStringField, );                                             \
4174   OPTIONAL(value, MDStringField, );
4175   PARSE_MD_FIELDS();
4176 #undef VISIT_MD_FIELDS
4177 
4178   Result = GET_OR_DISTINCT(DIMacro,
4179                            (Context, type.Val, line.Val, name.Val, value.Val));
4180   return false;
4181 }
4182 
4183 /// ParseDIMacroFile:
4184 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4185 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4186 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4187   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
4188   OPTIONAL(line, LineField, );                                                 \
4189   REQUIRED(file, MDField, );                                                   \
4190   OPTIONAL(nodes, MDField, );
4191   PARSE_MD_FIELDS();
4192 #undef VISIT_MD_FIELDS
4193 
4194   Result = GET_OR_DISTINCT(DIMacroFile,
4195                            (Context, type.Val, line.Val, file.Val, nodes.Val));
4196   return false;
4197 }
4198 
4199 /// ParseDIModule:
4200 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG",
4201 ///                 includePath: "/usr/include", isysroot: "/")
4202 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
4203 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4204   REQUIRED(scope, MDField, );                                                  \
4205   REQUIRED(name, MDStringField, );                                             \
4206   OPTIONAL(configMacros, MDStringField, );                                     \
4207   OPTIONAL(includePath, MDStringField, );                                      \
4208   OPTIONAL(isysroot, MDStringField, );
4209   PARSE_MD_FIELDS();
4210 #undef VISIT_MD_FIELDS
4211 
4212   Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val,
4213                            configMacros.Val, includePath.Val, isysroot.Val));
4214   return false;
4215 }
4216 
4217 /// ParseDITemplateTypeParameter:
4218 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1)
4219 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4220 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4221   OPTIONAL(name, MDStringField, );                                             \
4222   REQUIRED(type, MDField, );
4223   PARSE_MD_FIELDS();
4224 #undef VISIT_MD_FIELDS
4225 
4226   Result =
4227       GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val));
4228   return false;
4229 }
4230 
4231 /// ParseDITemplateValueParameter:
4232 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4233 ///                                 name: "V", type: !1, value: i32 7)
4234 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4235 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4236   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
4237   OPTIONAL(name, MDStringField, );                                             \
4238   OPTIONAL(type, MDField, );                                                   \
4239   REQUIRED(value, MDField, );
4240   PARSE_MD_FIELDS();
4241 #undef VISIT_MD_FIELDS
4242 
4243   Result = GET_OR_DISTINCT(DITemplateValueParameter,
4244                            (Context, tag.Val, name.Val, type.Val, value.Val));
4245   return false;
4246 }
4247 
4248 /// ParseDIGlobalVariable:
4249 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
4250 ///                         file: !1, line: 7, type: !2, isLocal: false,
4251 ///                         isDefinition: true, declaration: !3, align: 8)
4252 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
4253 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4254   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
4255   OPTIONAL(scope, MDField, );                                                  \
4256   OPTIONAL(linkageName, MDStringField, );                                      \
4257   OPTIONAL(file, MDField, );                                                   \
4258   OPTIONAL(line, LineField, );                                                 \
4259   OPTIONAL(type, MDField, );                                                   \
4260   OPTIONAL(isLocal, MDBoolField, );                                            \
4261   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4262   OPTIONAL(declaration, MDField, );                                            \
4263   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4264   PARSE_MD_FIELDS();
4265 #undef VISIT_MD_FIELDS
4266 
4267   Result = GET_OR_DISTINCT(DIGlobalVariable,
4268                            (Context, scope.Val, name.Val, linkageName.Val,
4269                             file.Val, line.Val, type.Val, isLocal.Val,
4270                             isDefinition.Val, declaration.Val, align.Val));
4271   return false;
4272 }
4273 
4274 /// ParseDILocalVariable:
4275 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
4276 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4277 ///                        align: 8)
4278 ///   ::= !DILocalVariable(scope: !0, name: "foo",
4279 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4280 ///                        align: 8)
4281 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
4282 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4283   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4284   OPTIONAL(name, MDStringField, );                                             \
4285   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
4286   OPTIONAL(file, MDField, );                                                   \
4287   OPTIONAL(line, LineField, );                                                 \
4288   OPTIONAL(type, MDField, );                                                   \
4289   OPTIONAL(flags, DIFlagField, );                                              \
4290   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4291   PARSE_MD_FIELDS();
4292 #undef VISIT_MD_FIELDS
4293 
4294   Result = GET_OR_DISTINCT(DILocalVariable,
4295                            (Context, scope.Val, name.Val, file.Val, line.Val,
4296                             type.Val, arg.Val, flags.Val, align.Val));
4297   return false;
4298 }
4299 
4300 /// ParseDIExpression:
4301 ///   ::= !DIExpression(0, 7, -1)
4302 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
4303   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4304   Lex.Lex();
4305 
4306   if (ParseToken(lltok::lparen, "expected '(' here"))
4307     return true;
4308 
4309   SmallVector<uint64_t, 8> Elements;
4310   if (Lex.getKind() != lltok::rparen)
4311     do {
4312       if (Lex.getKind() == lltok::DwarfOp) {
4313         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
4314           Lex.Lex();
4315           Elements.push_back(Op);
4316           continue;
4317         }
4318         return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
4319       }
4320 
4321       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4322         return TokError("expected unsigned integer");
4323 
4324       auto &U = Lex.getAPSIntVal();
4325       if (U.ugt(UINT64_MAX))
4326         return TokError("element too large, limit is " + Twine(UINT64_MAX));
4327       Elements.push_back(U.getZExtValue());
4328       Lex.Lex();
4329     } while (EatIfPresent(lltok::comma));
4330 
4331   if (ParseToken(lltok::rparen, "expected ')' here"))
4332     return true;
4333 
4334   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
4335   return false;
4336 }
4337 
4338 /// ParseDIGlobalVariableExpression:
4339 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
4340 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result,
4341                                                bool IsDistinct) {
4342 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4343   REQUIRED(var, MDField, );                                                    \
4344   OPTIONAL(expr, MDField, );
4345   PARSE_MD_FIELDS();
4346 #undef VISIT_MD_FIELDS
4347 
4348   Result =
4349       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
4350   return false;
4351 }
4352 
4353 /// ParseDIObjCProperty:
4354 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
4355 ///                       getter: "getFoo", attributes: 7, type: !2)
4356 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
4357 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4358   OPTIONAL(name, MDStringField, );                                             \
4359   OPTIONAL(file, MDField, );                                                   \
4360   OPTIONAL(line, LineField, );                                                 \
4361   OPTIONAL(setter, MDStringField, );                                           \
4362   OPTIONAL(getter, MDStringField, );                                           \
4363   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
4364   OPTIONAL(type, MDField, );
4365   PARSE_MD_FIELDS();
4366 #undef VISIT_MD_FIELDS
4367 
4368   Result = GET_OR_DISTINCT(DIObjCProperty,
4369                            (Context, name.Val, file.Val, line.Val, setter.Val,
4370                             getter.Val, attributes.Val, type.Val));
4371   return false;
4372 }
4373 
4374 /// ParseDIImportedEntity:
4375 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
4376 ///                         line: 7, name: "foo")
4377 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
4378 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4379   REQUIRED(tag, DwarfTagField, );                                              \
4380   REQUIRED(scope, MDField, );                                                  \
4381   OPTIONAL(entity, MDField, );                                                 \
4382   OPTIONAL(line, LineField, );                                                 \
4383   OPTIONAL(name, MDStringField, );
4384   PARSE_MD_FIELDS();
4385 #undef VISIT_MD_FIELDS
4386 
4387   Result = GET_OR_DISTINCT(DIImportedEntity, (Context, tag.Val, scope.Val,
4388                                               entity.Val, line.Val, name.Val));
4389   return false;
4390 }
4391 
4392 #undef PARSE_MD_FIELD
4393 #undef NOP_FIELD
4394 #undef REQUIRE_FIELD
4395 #undef DECLARE_FIELD
4396 
4397 /// ParseMetadataAsValue
4398 ///  ::= metadata i32 %local
4399 ///  ::= metadata i32 @global
4400 ///  ::= metadata i32 7
4401 ///  ::= metadata !0
4402 ///  ::= metadata !{...}
4403 ///  ::= metadata !"string"
4404 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
4405   // Note: the type 'metadata' has already been parsed.
4406   Metadata *MD;
4407   if (ParseMetadata(MD, &PFS))
4408     return true;
4409 
4410   V = MetadataAsValue::get(Context, MD);
4411   return false;
4412 }
4413 
4414 /// ParseValueAsMetadata
4415 ///  ::= i32 %local
4416 ///  ::= i32 @global
4417 ///  ::= i32 7
4418 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
4419                                     PerFunctionState *PFS) {
4420   Type *Ty;
4421   LocTy Loc;
4422   if (ParseType(Ty, TypeMsg, Loc))
4423     return true;
4424   if (Ty->isMetadataTy())
4425     return Error(Loc, "invalid metadata-value-metadata roundtrip");
4426 
4427   Value *V;
4428   if (ParseValue(Ty, V, PFS))
4429     return true;
4430 
4431   MD = ValueAsMetadata::get(V);
4432   return false;
4433 }
4434 
4435 /// ParseMetadata
4436 ///  ::= i32 %local
4437 ///  ::= i32 @global
4438 ///  ::= i32 7
4439 ///  ::= !42
4440 ///  ::= !{...}
4441 ///  ::= !"string"
4442 ///  ::= !DILocation(...)
4443 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
4444   if (Lex.getKind() == lltok::MetadataVar) {
4445     MDNode *N;
4446     if (ParseSpecializedMDNode(N))
4447       return true;
4448     MD = N;
4449     return false;
4450   }
4451 
4452   // ValueAsMetadata:
4453   // <type> <value>
4454   if (Lex.getKind() != lltok::exclaim)
4455     return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
4456 
4457   // '!'.
4458   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
4459   Lex.Lex();
4460 
4461   // MDString:
4462   //   ::= '!' STRINGCONSTANT
4463   if (Lex.getKind() == lltok::StringConstant) {
4464     MDString *S;
4465     if (ParseMDString(S))
4466       return true;
4467     MD = S;
4468     return false;
4469   }
4470 
4471   // MDNode:
4472   // !{ ... }
4473   // !7
4474   MDNode *N;
4475   if (ParseMDNodeTail(N))
4476     return true;
4477   MD = N;
4478   return false;
4479 }
4480 
4481 //===----------------------------------------------------------------------===//
4482 // Function Parsing.
4483 //===----------------------------------------------------------------------===//
4484 
4485 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
4486                                    PerFunctionState *PFS) {
4487   if (Ty->isFunctionTy())
4488     return Error(ID.Loc, "functions are not values, refer to them as pointers");
4489 
4490   switch (ID.Kind) {
4491   case ValID::t_LocalID:
4492     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
4493     V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
4494     return V == nullptr;
4495   case ValID::t_LocalName:
4496     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
4497     V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
4498     return V == nullptr;
4499   case ValID::t_InlineAsm: {
4500     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
4501       return Error(ID.Loc, "invalid type for inline asm constraint string");
4502     V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
4503                        (ID.UIntVal >> 1) & 1,
4504                        (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
4505     return false;
4506   }
4507   case ValID::t_GlobalName:
4508     V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
4509     return V == nullptr;
4510   case ValID::t_GlobalID:
4511     V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
4512     return V == nullptr;
4513   case ValID::t_APSInt:
4514     if (!Ty->isIntegerTy())
4515       return Error(ID.Loc, "integer constant must have integer type");
4516     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
4517     V = ConstantInt::get(Context, ID.APSIntVal);
4518     return false;
4519   case ValID::t_APFloat:
4520     if (!Ty->isFloatingPointTy() ||
4521         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
4522       return Error(ID.Loc, "floating point constant invalid for type");
4523 
4524     // The lexer has no type info, so builds all half, float, and double FP
4525     // constants as double.  Fix this here.  Long double does not need this.
4526     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
4527       bool Ignored;
4528       if (Ty->isHalfTy())
4529         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
4530                               &Ignored);
4531       else if (Ty->isFloatTy())
4532         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
4533                               &Ignored);
4534     }
4535     V = ConstantFP::get(Context, ID.APFloatVal);
4536 
4537     if (V->getType() != Ty)
4538       return Error(ID.Loc, "floating point constant does not have type '" +
4539                    getTypeString(Ty) + "'");
4540 
4541     return false;
4542   case ValID::t_Null:
4543     if (!Ty->isPointerTy())
4544       return Error(ID.Loc, "null must be a pointer type");
4545     V = ConstantPointerNull::get(cast<PointerType>(Ty));
4546     return false;
4547   case ValID::t_Undef:
4548     // FIXME: LabelTy should not be a first-class type.
4549     if (!Ty->isFirstClassType() || Ty->isLabelTy())
4550       return Error(ID.Loc, "invalid type for undef constant");
4551     V = UndefValue::get(Ty);
4552     return false;
4553   case ValID::t_EmptyArray:
4554     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
4555       return Error(ID.Loc, "invalid empty array initializer");
4556     V = UndefValue::get(Ty);
4557     return false;
4558   case ValID::t_Zero:
4559     // FIXME: LabelTy should not be a first-class type.
4560     if (!Ty->isFirstClassType() || Ty->isLabelTy())
4561       return Error(ID.Loc, "invalid type for null constant");
4562     V = Constant::getNullValue(Ty);
4563     return false;
4564   case ValID::t_None:
4565     if (!Ty->isTokenTy())
4566       return Error(ID.Loc, "invalid type for none constant");
4567     V = Constant::getNullValue(Ty);
4568     return false;
4569   case ValID::t_Constant:
4570     if (ID.ConstantVal->getType() != Ty)
4571       return Error(ID.Loc, "constant expression type mismatch");
4572 
4573     V = ID.ConstantVal;
4574     return false;
4575   case ValID::t_ConstantStruct:
4576   case ValID::t_PackedConstantStruct:
4577     if (StructType *ST = dyn_cast<StructType>(Ty)) {
4578       if (ST->getNumElements() != ID.UIntVal)
4579         return Error(ID.Loc,
4580                      "initializer with struct type has wrong # elements");
4581       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
4582         return Error(ID.Loc, "packed'ness of initializer and type don't match");
4583 
4584       // Verify that the elements are compatible with the structtype.
4585       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
4586         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
4587           return Error(ID.Loc, "element " + Twine(i) +
4588                     " of struct initializer doesn't match struct element type");
4589 
4590       V = ConstantStruct::get(
4591           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
4592     } else
4593       return Error(ID.Loc, "constant expression type mismatch");
4594     return false;
4595   }
4596   llvm_unreachable("Invalid ValID");
4597 }
4598 
4599 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
4600   C = nullptr;
4601   ValID ID;
4602   auto Loc = Lex.getLoc();
4603   if (ParseValID(ID, /*PFS=*/nullptr))
4604     return true;
4605   switch (ID.Kind) {
4606   case ValID::t_APSInt:
4607   case ValID::t_APFloat:
4608   case ValID::t_Undef:
4609   case ValID::t_Constant:
4610   case ValID::t_ConstantStruct:
4611   case ValID::t_PackedConstantStruct: {
4612     Value *V;
4613     if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr))
4614       return true;
4615     assert(isa<Constant>(V) && "Expected a constant value");
4616     C = cast<Constant>(V);
4617     return false;
4618   }
4619   case ValID::t_Null:
4620     C = Constant::getNullValue(Ty);
4621     return false;
4622   default:
4623     return Error(Loc, "expected a constant value");
4624   }
4625 }
4626 
4627 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
4628   V = nullptr;
4629   ValID ID;
4630   return ParseValID(ID, PFS) || ConvertValIDToValue(Ty, ID, V, PFS);
4631 }
4632 
4633 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
4634   Type *Ty = nullptr;
4635   return ParseType(Ty) ||
4636          ParseValue(Ty, V, PFS);
4637 }
4638 
4639 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
4640                                       PerFunctionState &PFS) {
4641   Value *V;
4642   Loc = Lex.getLoc();
4643   if (ParseTypeAndValue(V, PFS)) return true;
4644   if (!isa<BasicBlock>(V))
4645     return Error(Loc, "expected a basic block");
4646   BB = cast<BasicBlock>(V);
4647   return false;
4648 }
4649 
4650 /// FunctionHeader
4651 ///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
4652 ///       OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
4653 ///       OptionalAlign OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
4654 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
4655   // Parse the linkage.
4656   LocTy LinkageLoc = Lex.getLoc();
4657   unsigned Linkage;
4658 
4659   unsigned Visibility;
4660   unsigned DLLStorageClass;
4661   AttrBuilder RetAttrs;
4662   unsigned CC;
4663   bool HasLinkage;
4664   Type *RetType = nullptr;
4665   LocTy RetTypeLoc = Lex.getLoc();
4666   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) ||
4667       ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
4668       ParseType(RetType, RetTypeLoc, true /*void allowed*/))
4669     return true;
4670 
4671   // Verify that the linkage is ok.
4672   switch ((GlobalValue::LinkageTypes)Linkage) {
4673   case GlobalValue::ExternalLinkage:
4674     break; // always ok.
4675   case GlobalValue::ExternalWeakLinkage:
4676     if (isDefine)
4677       return Error(LinkageLoc, "invalid linkage for function definition");
4678     break;
4679   case GlobalValue::PrivateLinkage:
4680   case GlobalValue::InternalLinkage:
4681   case GlobalValue::AvailableExternallyLinkage:
4682   case GlobalValue::LinkOnceAnyLinkage:
4683   case GlobalValue::LinkOnceODRLinkage:
4684   case GlobalValue::WeakAnyLinkage:
4685   case GlobalValue::WeakODRLinkage:
4686     if (!isDefine)
4687       return Error(LinkageLoc, "invalid linkage for function declaration");
4688     break;
4689   case GlobalValue::AppendingLinkage:
4690   case GlobalValue::CommonLinkage:
4691     return Error(LinkageLoc, "invalid function linkage type");
4692   }
4693 
4694   if (!isValidVisibilityForLinkage(Visibility, Linkage))
4695     return Error(LinkageLoc,
4696                  "symbol with local linkage must have default visibility");
4697 
4698   if (!FunctionType::isValidReturnType(RetType))
4699     return Error(RetTypeLoc, "invalid function return type");
4700 
4701   LocTy NameLoc = Lex.getLoc();
4702 
4703   std::string FunctionName;
4704   if (Lex.getKind() == lltok::GlobalVar) {
4705     FunctionName = Lex.getStrVal();
4706   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
4707     unsigned NameID = Lex.getUIntVal();
4708 
4709     if (NameID != NumberedVals.size())
4710       return TokError("function expected to be numbered '%" +
4711                       Twine(NumberedVals.size()) + "'");
4712   } else {
4713     return TokError("expected function name");
4714   }
4715 
4716   Lex.Lex();
4717 
4718   if (Lex.getKind() != lltok::lparen)
4719     return TokError("expected '(' in function argument list");
4720 
4721   SmallVector<ArgInfo, 8> ArgList;
4722   bool isVarArg;
4723   AttrBuilder FuncAttrs;
4724   std::vector<unsigned> FwdRefAttrGrps;
4725   LocTy BuiltinLoc;
4726   std::string Section;
4727   unsigned Alignment;
4728   std::string GC;
4729   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4730   LocTy UnnamedAddrLoc;
4731   Constant *Prefix = nullptr;
4732   Constant *Prologue = nullptr;
4733   Constant *PersonalityFn = nullptr;
4734   Comdat *C;
4735 
4736   if (ParseArgumentList(ArgList, isVarArg) ||
4737       ParseOptionalUnnamedAddr(UnnamedAddr) ||
4738       ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
4739                                  BuiltinLoc) ||
4740       (EatIfPresent(lltok::kw_section) &&
4741        ParseStringConstant(Section)) ||
4742       parseOptionalComdat(FunctionName, C) ||
4743       ParseOptionalAlignment(Alignment) ||
4744       (EatIfPresent(lltok::kw_gc) &&
4745        ParseStringConstant(GC)) ||
4746       (EatIfPresent(lltok::kw_prefix) &&
4747        ParseGlobalTypeAndValue(Prefix)) ||
4748       (EatIfPresent(lltok::kw_prologue) &&
4749        ParseGlobalTypeAndValue(Prologue)) ||
4750       (EatIfPresent(lltok::kw_personality) &&
4751        ParseGlobalTypeAndValue(PersonalityFn)))
4752     return true;
4753 
4754   if (FuncAttrs.contains(Attribute::Builtin))
4755     return Error(BuiltinLoc, "'builtin' attribute not valid on function");
4756 
4757   // If the alignment was parsed as an attribute, move to the alignment field.
4758   if (FuncAttrs.hasAlignmentAttr()) {
4759     Alignment = FuncAttrs.getAlignment();
4760     FuncAttrs.removeAttribute(Attribute::Alignment);
4761   }
4762 
4763   // Okay, if we got here, the function is syntactically valid.  Convert types
4764   // and do semantic checks.
4765   std::vector<Type*> ParamTypeList;
4766   SmallVector<AttributeSetNode *, 8> Attrs;
4767 
4768   Attrs.push_back(AttributeSetNode::get(Context, RetAttrs));
4769 
4770   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
4771     ParamTypeList.push_back(ArgList[i].Ty);
4772     Attrs.push_back(ArgList[i].Attrs);
4773   }
4774 
4775   Attrs.push_back(AttributeSetNode::get(Context, FuncAttrs));
4776 
4777   AttributeList PAL = AttributeList::get(Context, Attrs);
4778 
4779   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
4780     return Error(RetTypeLoc, "functions with 'sret' argument must return void");
4781 
4782   FunctionType *FT =
4783     FunctionType::get(RetType, ParamTypeList, isVarArg);
4784   PointerType *PFT = PointerType::getUnqual(FT);
4785 
4786   Fn = nullptr;
4787   if (!FunctionName.empty()) {
4788     // If this was a definition of a forward reference, remove the definition
4789     // from the forward reference table and fill in the forward ref.
4790     auto FRVI = ForwardRefVals.find(FunctionName);
4791     if (FRVI != ForwardRefVals.end()) {
4792       Fn = M->getFunction(FunctionName);
4793       if (!Fn)
4794         return Error(FRVI->second.second, "invalid forward reference to "
4795                      "function as global value!");
4796       if (Fn->getType() != PFT)
4797         return Error(FRVI->second.second, "invalid forward reference to "
4798                      "function '" + FunctionName + "' with wrong type!");
4799 
4800       ForwardRefVals.erase(FRVI);
4801     } else if ((Fn = M->getFunction(FunctionName))) {
4802       // Reject redefinitions.
4803       return Error(NameLoc, "invalid redefinition of function '" +
4804                    FunctionName + "'");
4805     } else if (M->getNamedValue(FunctionName)) {
4806       return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
4807     }
4808 
4809   } else {
4810     // If this is a definition of a forward referenced function, make sure the
4811     // types agree.
4812     auto I = ForwardRefValIDs.find(NumberedVals.size());
4813     if (I != ForwardRefValIDs.end()) {
4814       Fn = cast<Function>(I->second.first);
4815       if (Fn->getType() != PFT)
4816         return Error(NameLoc, "type of definition and forward reference of '@" +
4817                      Twine(NumberedVals.size()) + "' disagree");
4818       ForwardRefValIDs.erase(I);
4819     }
4820   }
4821 
4822   if (!Fn)
4823     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
4824   else // Move the forward-reference to the correct spot in the module.
4825     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
4826 
4827   if (FunctionName.empty())
4828     NumberedVals.push_back(Fn);
4829 
4830   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
4831   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
4832   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
4833   Fn->setCallingConv(CC);
4834   Fn->setAttributes(PAL);
4835   Fn->setUnnamedAddr(UnnamedAddr);
4836   Fn->setAlignment(Alignment);
4837   Fn->setSection(Section);
4838   Fn->setComdat(C);
4839   Fn->setPersonalityFn(PersonalityFn);
4840   if (!GC.empty()) Fn->setGC(GC);
4841   Fn->setPrefixData(Prefix);
4842   Fn->setPrologueData(Prologue);
4843   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
4844 
4845   // Add all of the arguments we parsed to the function.
4846   Function::arg_iterator ArgIt = Fn->arg_begin();
4847   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
4848     // If the argument has a name, insert it into the argument symbol table.
4849     if (ArgList[i].Name.empty()) continue;
4850 
4851     // Set the name, if it conflicted, it will be auto-renamed.
4852     ArgIt->setName(ArgList[i].Name);
4853 
4854     if (ArgIt->getName() != ArgList[i].Name)
4855       return Error(ArgList[i].Loc, "redefinition of argument '%" +
4856                    ArgList[i].Name + "'");
4857   }
4858 
4859   if (isDefine)
4860     return false;
4861 
4862   // Check the declaration has no block address forward references.
4863   ValID ID;
4864   if (FunctionName.empty()) {
4865     ID.Kind = ValID::t_GlobalID;
4866     ID.UIntVal = NumberedVals.size() - 1;
4867   } else {
4868     ID.Kind = ValID::t_GlobalName;
4869     ID.StrVal = FunctionName;
4870   }
4871   auto Blocks = ForwardRefBlockAddresses.find(ID);
4872   if (Blocks != ForwardRefBlockAddresses.end())
4873     return Error(Blocks->first.Loc,
4874                  "cannot take blockaddress inside a declaration");
4875   return false;
4876 }
4877 
4878 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
4879   ValID ID;
4880   if (FunctionNumber == -1) {
4881     ID.Kind = ValID::t_GlobalName;
4882     ID.StrVal = F.getName();
4883   } else {
4884     ID.Kind = ValID::t_GlobalID;
4885     ID.UIntVal = FunctionNumber;
4886   }
4887 
4888   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
4889   if (Blocks == P.ForwardRefBlockAddresses.end())
4890     return false;
4891 
4892   for (const auto &I : Blocks->second) {
4893     const ValID &BBID = I.first;
4894     GlobalValue *GV = I.second;
4895 
4896     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
4897            "Expected local id or name");
4898     BasicBlock *BB;
4899     if (BBID.Kind == ValID::t_LocalName)
4900       BB = GetBB(BBID.StrVal, BBID.Loc);
4901     else
4902       BB = GetBB(BBID.UIntVal, BBID.Loc);
4903     if (!BB)
4904       return P.Error(BBID.Loc, "referenced value is not a basic block");
4905 
4906     GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
4907     GV->eraseFromParent();
4908   }
4909 
4910   P.ForwardRefBlockAddresses.erase(Blocks);
4911   return false;
4912 }
4913 
4914 /// ParseFunctionBody
4915 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
4916 bool LLParser::ParseFunctionBody(Function &Fn) {
4917   if (Lex.getKind() != lltok::lbrace)
4918     return TokError("expected '{' in function body");
4919   Lex.Lex();  // eat the {.
4920 
4921   int FunctionNumber = -1;
4922   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
4923 
4924   PerFunctionState PFS(*this, Fn, FunctionNumber);
4925 
4926   // Resolve block addresses and allow basic blocks to be forward-declared
4927   // within this function.
4928   if (PFS.resolveForwardRefBlockAddresses())
4929     return true;
4930   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
4931 
4932   // We need at least one basic block.
4933   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
4934     return TokError("function body requires at least one basic block");
4935 
4936   while (Lex.getKind() != lltok::rbrace &&
4937          Lex.getKind() != lltok::kw_uselistorder)
4938     if (ParseBasicBlock(PFS)) return true;
4939 
4940   while (Lex.getKind() != lltok::rbrace)
4941     if (ParseUseListOrder(&PFS))
4942       return true;
4943 
4944   // Eat the }.
4945   Lex.Lex();
4946 
4947   // Verify function is ok.
4948   return PFS.FinishFunction();
4949 }
4950 
4951 /// ParseBasicBlock
4952 ///   ::= LabelStr? Instruction*
4953 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
4954   // If this basic block starts out with a name, remember it.
4955   std::string Name;
4956   LocTy NameLoc = Lex.getLoc();
4957   if (Lex.getKind() == lltok::LabelStr) {
4958     Name = Lex.getStrVal();
4959     Lex.Lex();
4960   }
4961 
4962   BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
4963   if (!BB)
4964     return Error(NameLoc,
4965                  "unable to create block named '" + Name + "'");
4966 
4967   std::string NameStr;
4968 
4969   // Parse the instructions in this block until we get a terminator.
4970   Instruction *Inst;
4971   do {
4972     // This instruction may have three possibilities for a name: a) none
4973     // specified, b) name specified "%foo =", c) number specified: "%4 =".
4974     LocTy NameLoc = Lex.getLoc();
4975     int NameID = -1;
4976     NameStr = "";
4977 
4978     if (Lex.getKind() == lltok::LocalVarID) {
4979       NameID = Lex.getUIntVal();
4980       Lex.Lex();
4981       if (ParseToken(lltok::equal, "expected '=' after instruction id"))
4982         return true;
4983     } else if (Lex.getKind() == lltok::LocalVar) {
4984       NameStr = Lex.getStrVal();
4985       Lex.Lex();
4986       if (ParseToken(lltok::equal, "expected '=' after instruction name"))
4987         return true;
4988     }
4989 
4990     switch (ParseInstruction(Inst, BB, PFS)) {
4991     default: llvm_unreachable("Unknown ParseInstruction result!");
4992     case InstError: return true;
4993     case InstNormal:
4994       BB->getInstList().push_back(Inst);
4995 
4996       // With a normal result, we check to see if the instruction is followed by
4997       // a comma and metadata.
4998       if (EatIfPresent(lltok::comma))
4999         if (ParseInstructionMetadata(*Inst))
5000           return true;
5001       break;
5002     case InstExtraComma:
5003       BB->getInstList().push_back(Inst);
5004 
5005       // If the instruction parser ate an extra comma at the end of it, it
5006       // *must* be followed by metadata.
5007       if (ParseInstructionMetadata(*Inst))
5008         return true;
5009       break;
5010     }
5011 
5012     // Set the name on the instruction.
5013     if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
5014   } while (!isa<TerminatorInst>(Inst));
5015 
5016   return false;
5017 }
5018 
5019 //===----------------------------------------------------------------------===//
5020 // Instruction Parsing.
5021 //===----------------------------------------------------------------------===//
5022 
5023 /// ParseInstruction - Parse one of the many different instructions.
5024 ///
5025 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
5026                                PerFunctionState &PFS) {
5027   lltok::Kind Token = Lex.getKind();
5028   if (Token == lltok::Eof)
5029     return TokError("found end of file when expecting more instructions");
5030   LocTy Loc = Lex.getLoc();
5031   unsigned KeywordVal = Lex.getUIntVal();
5032   Lex.Lex();  // Eat the keyword.
5033 
5034   switch (Token) {
5035   default:                    return Error(Loc, "expected instruction opcode");
5036   // Terminator Instructions.
5037   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
5038   case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
5039   case lltok::kw_br:          return ParseBr(Inst, PFS);
5040   case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
5041   case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
5042   case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
5043   case lltok::kw_resume:      return ParseResume(Inst, PFS);
5044   case lltok::kw_cleanupret:  return ParseCleanupRet(Inst, PFS);
5045   case lltok::kw_catchret:    return ParseCatchRet(Inst, PFS);
5046   case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS);
5047   case lltok::kw_catchpad:    return ParseCatchPad(Inst, PFS);
5048   case lltok::kw_cleanuppad:  return ParseCleanupPad(Inst, PFS);
5049   // Binary Operators.
5050   case lltok::kw_add:
5051   case lltok::kw_sub:
5052   case lltok::kw_mul:
5053   case lltok::kw_shl: {
5054     bool NUW = EatIfPresent(lltok::kw_nuw);
5055     bool NSW = EatIfPresent(lltok::kw_nsw);
5056     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
5057 
5058     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
5059 
5060     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
5061     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
5062     return false;
5063   }
5064   case lltok::kw_fadd:
5065   case lltok::kw_fsub:
5066   case lltok::kw_fmul:
5067   case lltok::kw_fdiv:
5068   case lltok::kw_frem: {
5069     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5070     int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2);
5071     if (Res != 0)
5072       return Res;
5073     if (FMF.any())
5074       Inst->setFastMathFlags(FMF);
5075     return 0;
5076   }
5077 
5078   case lltok::kw_sdiv:
5079   case lltok::kw_udiv:
5080   case lltok::kw_lshr:
5081   case lltok::kw_ashr: {
5082     bool Exact = EatIfPresent(lltok::kw_exact);
5083 
5084     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
5085     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
5086     return false;
5087   }
5088 
5089   case lltok::kw_urem:
5090   case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
5091   case lltok::kw_and:
5092   case lltok::kw_or:
5093   case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
5094   case lltok::kw_icmp:   return ParseCompare(Inst, PFS, KeywordVal);
5095   case lltok::kw_fcmp: {
5096     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5097     int Res = ParseCompare(Inst, PFS, KeywordVal);
5098     if (Res != 0)
5099       return Res;
5100     if (FMF.any())
5101       Inst->setFastMathFlags(FMF);
5102     return 0;
5103   }
5104 
5105   // Casts.
5106   case lltok::kw_trunc:
5107   case lltok::kw_zext:
5108   case lltok::kw_sext:
5109   case lltok::kw_fptrunc:
5110   case lltok::kw_fpext:
5111   case lltok::kw_bitcast:
5112   case lltok::kw_addrspacecast:
5113   case lltok::kw_uitofp:
5114   case lltok::kw_sitofp:
5115   case lltok::kw_fptoui:
5116   case lltok::kw_fptosi:
5117   case lltok::kw_inttoptr:
5118   case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
5119   // Other.
5120   case lltok::kw_select:         return ParseSelect(Inst, PFS);
5121   case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
5122   case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
5123   case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
5124   case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
5125   case lltok::kw_phi:            return ParsePHI(Inst, PFS);
5126   case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
5127   // Call.
5128   case lltok::kw_call:     return ParseCall(Inst, PFS, CallInst::TCK_None);
5129   case lltok::kw_tail:     return ParseCall(Inst, PFS, CallInst::TCK_Tail);
5130   case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail);
5131   case lltok::kw_notail:   return ParseCall(Inst, PFS, CallInst::TCK_NoTail);
5132   // Memory.
5133   case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
5134   case lltok::kw_load:           return ParseLoad(Inst, PFS);
5135   case lltok::kw_store:          return ParseStore(Inst, PFS);
5136   case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
5137   case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
5138   case lltok::kw_fence:          return ParseFence(Inst, PFS);
5139   case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
5140   case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
5141   case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
5142   }
5143 }
5144 
5145 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
5146 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
5147   if (Opc == Instruction::FCmp) {
5148     switch (Lex.getKind()) {
5149     default: return TokError("expected fcmp predicate (e.g. 'oeq')");
5150     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
5151     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
5152     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
5153     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
5154     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
5155     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
5156     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
5157     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
5158     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
5159     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
5160     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
5161     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
5162     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
5163     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
5164     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
5165     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
5166     }
5167   } else {
5168     switch (Lex.getKind()) {
5169     default: return TokError("expected icmp predicate (e.g. 'eq')");
5170     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
5171     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
5172     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
5173     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
5174     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
5175     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
5176     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
5177     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
5178     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
5179     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
5180     }
5181   }
5182   Lex.Lex();
5183   return false;
5184 }
5185 
5186 //===----------------------------------------------------------------------===//
5187 // Terminator Instructions.
5188 //===----------------------------------------------------------------------===//
5189 
5190 /// ParseRet - Parse a return instruction.
5191 ///   ::= 'ret' void (',' !dbg, !1)*
5192 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
5193 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
5194                         PerFunctionState &PFS) {
5195   SMLoc TypeLoc = Lex.getLoc();
5196   Type *Ty = nullptr;
5197   if (ParseType(Ty, true /*void allowed*/)) return true;
5198 
5199   Type *ResType = PFS.getFunction().getReturnType();
5200 
5201   if (Ty->isVoidTy()) {
5202     if (!ResType->isVoidTy())
5203       return Error(TypeLoc, "value doesn't match function result type '" +
5204                    getTypeString(ResType) + "'");
5205 
5206     Inst = ReturnInst::Create(Context);
5207     return false;
5208   }
5209 
5210   Value *RV;
5211   if (ParseValue(Ty, RV, PFS)) return true;
5212 
5213   if (ResType != RV->getType())
5214     return Error(TypeLoc, "value doesn't match function result type '" +
5215                  getTypeString(ResType) + "'");
5216 
5217   Inst = ReturnInst::Create(Context, RV);
5218   return false;
5219 }
5220 
5221 /// ParseBr
5222 ///   ::= 'br' TypeAndValue
5223 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5224 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
5225   LocTy Loc, Loc2;
5226   Value *Op0;
5227   BasicBlock *Op1, *Op2;
5228   if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
5229 
5230   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
5231     Inst = BranchInst::Create(BB);
5232     return false;
5233   }
5234 
5235   if (Op0->getType() != Type::getInt1Ty(Context))
5236     return Error(Loc, "branch condition must have 'i1' type");
5237 
5238   if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
5239       ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
5240       ParseToken(lltok::comma, "expected ',' after true destination") ||
5241       ParseTypeAndBasicBlock(Op2, Loc2, PFS))
5242     return true;
5243 
5244   Inst = BranchInst::Create(Op1, Op2, Op0);
5245   return false;
5246 }
5247 
5248 /// ParseSwitch
5249 ///  Instruction
5250 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
5251 ///  JumpTable
5252 ///    ::= (TypeAndValue ',' TypeAndValue)*
5253 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5254   LocTy CondLoc, BBLoc;
5255   Value *Cond;
5256   BasicBlock *DefaultBB;
5257   if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
5258       ParseToken(lltok::comma, "expected ',' after switch condition") ||
5259       ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
5260       ParseToken(lltok::lsquare, "expected '[' with switch table"))
5261     return true;
5262 
5263   if (!Cond->getType()->isIntegerTy())
5264     return Error(CondLoc, "switch condition must have integer type");
5265 
5266   // Parse the jump table pairs.
5267   SmallPtrSet<Value*, 32> SeenCases;
5268   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
5269   while (Lex.getKind() != lltok::rsquare) {
5270     Value *Constant;
5271     BasicBlock *DestBB;
5272 
5273     if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
5274         ParseToken(lltok::comma, "expected ',' after case value") ||
5275         ParseTypeAndBasicBlock(DestBB, PFS))
5276       return true;
5277 
5278     if (!SeenCases.insert(Constant).second)
5279       return Error(CondLoc, "duplicate case value in switch");
5280     if (!isa<ConstantInt>(Constant))
5281       return Error(CondLoc, "case value is not a constant integer");
5282 
5283     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
5284   }
5285 
5286   Lex.Lex();  // Eat the ']'.
5287 
5288   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
5289   for (unsigned i = 0, e = Table.size(); i != e; ++i)
5290     SI->addCase(Table[i].first, Table[i].second);
5291   Inst = SI;
5292   return false;
5293 }
5294 
5295 /// ParseIndirectBr
5296 ///  Instruction
5297 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
5298 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
5299   LocTy AddrLoc;
5300   Value *Address;
5301   if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
5302       ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
5303       ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
5304     return true;
5305 
5306   if (!Address->getType()->isPointerTy())
5307     return Error(AddrLoc, "indirectbr address must have pointer type");
5308 
5309   // Parse the destination list.
5310   SmallVector<BasicBlock*, 16> DestList;
5311 
5312   if (Lex.getKind() != lltok::rsquare) {
5313     BasicBlock *DestBB;
5314     if (ParseTypeAndBasicBlock(DestBB, PFS))
5315       return true;
5316     DestList.push_back(DestBB);
5317 
5318     while (EatIfPresent(lltok::comma)) {
5319       if (ParseTypeAndBasicBlock(DestBB, PFS))
5320         return true;
5321       DestList.push_back(DestBB);
5322     }
5323   }
5324 
5325   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
5326     return true;
5327 
5328   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
5329   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
5330     IBI->addDestination(DestList[i]);
5331   Inst = IBI;
5332   return false;
5333 }
5334 
5335 /// ParseInvoke
5336 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
5337 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
5338 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
5339   LocTy CallLoc = Lex.getLoc();
5340   AttrBuilder RetAttrs, FnAttrs;
5341   std::vector<unsigned> FwdRefAttrGrps;
5342   LocTy NoBuiltinLoc;
5343   unsigned CC;
5344   Type *RetType = nullptr;
5345   LocTy RetTypeLoc;
5346   ValID CalleeID;
5347   SmallVector<ParamInfo, 16> ArgList;
5348   SmallVector<OperandBundleDef, 2> BundleList;
5349 
5350   BasicBlock *NormalBB, *UnwindBB;
5351   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5352       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
5353       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
5354       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
5355                                  NoBuiltinLoc) ||
5356       ParseOptionalOperandBundles(BundleList, PFS) ||
5357       ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
5358       ParseTypeAndBasicBlock(NormalBB, PFS) ||
5359       ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
5360       ParseTypeAndBasicBlock(UnwindBB, PFS))
5361     return true;
5362 
5363   // If RetType is a non-function pointer type, then this is the short syntax
5364   // for the call, which means that RetType is just the return type.  Infer the
5365   // rest of the function argument types from the arguments that are present.
5366   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
5367   if (!Ty) {
5368     // Pull out the types of all of the arguments...
5369     std::vector<Type*> ParamTypes;
5370     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
5371       ParamTypes.push_back(ArgList[i].V->getType());
5372 
5373     if (!FunctionType::isValidReturnType(RetType))
5374       return Error(RetTypeLoc, "Invalid result type for LLVM function");
5375 
5376     Ty = FunctionType::get(RetType, ParamTypes, false);
5377   }
5378 
5379   CalleeID.FTy = Ty;
5380 
5381   // Look up the callee.
5382   Value *Callee;
5383   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS))
5384     return true;
5385 
5386   // Set up the Attribute for the function.
5387   SmallVector<AttributeSetNode *, 8> Attrs;
5388   Attrs.push_back(AttributeSetNode::get(Context, RetAttrs));
5389 
5390   SmallVector<Value*, 8> Args;
5391 
5392   // Loop through FunctionType's arguments and ensure they are specified
5393   // correctly.  Also, gather any parameter attributes.
5394   FunctionType::param_iterator I = Ty->param_begin();
5395   FunctionType::param_iterator E = Ty->param_end();
5396   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5397     Type *ExpectedTy = nullptr;
5398     if (I != E) {
5399       ExpectedTy = *I++;
5400     } else if (!Ty->isVarArg()) {
5401       return Error(ArgList[i].Loc, "too many arguments specified");
5402     }
5403 
5404     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
5405       return Error(ArgList[i].Loc, "argument is not of expected type '" +
5406                    getTypeString(ExpectedTy) + "'");
5407     Args.push_back(ArgList[i].V);
5408     Attrs.push_back(ArgList[i].Attrs);
5409   }
5410 
5411   if (I != E)
5412     return Error(CallLoc, "not enough parameters specified for call");
5413 
5414   if (FnAttrs.hasAlignmentAttr())
5415     return Error(CallLoc, "invoke instructions may not have an alignment");
5416 
5417   Attrs.push_back(AttributeSetNode::get(Context, FnAttrs));
5418 
5419   // Finish off the Attribute and check them
5420   AttributeList PAL = AttributeList::get(Context, Attrs);
5421 
5422   InvokeInst *II =
5423       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
5424   II->setCallingConv(CC);
5425   II->setAttributes(PAL);
5426   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
5427   Inst = II;
5428   return false;
5429 }
5430 
5431 /// ParseResume
5432 ///   ::= 'resume' TypeAndValue
5433 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
5434   Value *Exn; LocTy ExnLoc;
5435   if (ParseTypeAndValue(Exn, ExnLoc, PFS))
5436     return true;
5437 
5438   ResumeInst *RI = ResumeInst::Create(Exn);
5439   Inst = RI;
5440   return false;
5441 }
5442 
5443 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args,
5444                                   PerFunctionState &PFS) {
5445   if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
5446     return true;
5447 
5448   while (Lex.getKind() != lltok::rsquare) {
5449     // If this isn't the first argument, we need a comma.
5450     if (!Args.empty() &&
5451         ParseToken(lltok::comma, "expected ',' in argument list"))
5452       return true;
5453 
5454     // Parse the argument.
5455     LocTy ArgLoc;
5456     Type *ArgTy = nullptr;
5457     if (ParseType(ArgTy, ArgLoc))
5458       return true;
5459 
5460     Value *V;
5461     if (ArgTy->isMetadataTy()) {
5462       if (ParseMetadataAsValue(V, PFS))
5463         return true;
5464     } else {
5465       if (ParseValue(ArgTy, V, PFS))
5466         return true;
5467     }
5468     Args.push_back(V);
5469   }
5470 
5471   Lex.Lex();  // Lex the ']'.
5472   return false;
5473 }
5474 
5475 /// ParseCleanupRet
5476 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
5477 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
5478   Value *CleanupPad = nullptr;
5479 
5480   if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret"))
5481     return true;
5482 
5483   if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS))
5484     return true;
5485 
5486   if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
5487     return true;
5488 
5489   BasicBlock *UnwindBB = nullptr;
5490   if (Lex.getKind() == lltok::kw_to) {
5491     Lex.Lex();
5492     if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
5493       return true;
5494   } else {
5495     if (ParseTypeAndBasicBlock(UnwindBB, PFS)) {
5496       return true;
5497     }
5498   }
5499 
5500   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
5501   return false;
5502 }
5503 
5504 /// ParseCatchRet
5505 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
5506 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
5507   Value *CatchPad = nullptr;
5508 
5509   if (ParseToken(lltok::kw_from, "expected 'from' after catchret"))
5510     return true;
5511 
5512   if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS))
5513     return true;
5514 
5515   BasicBlock *BB;
5516   if (ParseToken(lltok::kw_to, "expected 'to' in catchret") ||
5517       ParseTypeAndBasicBlock(BB, PFS))
5518       return true;
5519 
5520   Inst = CatchReturnInst::Create(CatchPad, BB);
5521   return false;
5522 }
5523 
5524 /// ParseCatchSwitch
5525 ///   ::= 'catchswitch' within Parent
5526 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5527   Value *ParentPad;
5528   LocTy BBLoc;
5529 
5530   if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch"))
5531     return true;
5532 
5533   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
5534       Lex.getKind() != lltok::LocalVarID)
5535     return TokError("expected scope value for catchswitch");
5536 
5537   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
5538     return true;
5539 
5540   if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
5541     return true;
5542 
5543   SmallVector<BasicBlock *, 32> Table;
5544   do {
5545     BasicBlock *DestBB;
5546     if (ParseTypeAndBasicBlock(DestBB, PFS))
5547       return true;
5548     Table.push_back(DestBB);
5549   } while (EatIfPresent(lltok::comma));
5550 
5551   if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
5552     return true;
5553 
5554   if (ParseToken(lltok::kw_unwind,
5555                  "expected 'unwind' after catchswitch scope"))
5556     return true;
5557 
5558   BasicBlock *UnwindBB = nullptr;
5559   if (EatIfPresent(lltok::kw_to)) {
5560     if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
5561       return true;
5562   } else {
5563     if (ParseTypeAndBasicBlock(UnwindBB, PFS))
5564       return true;
5565   }
5566 
5567   auto *CatchSwitch =
5568       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
5569   for (BasicBlock *DestBB : Table)
5570     CatchSwitch->addHandler(DestBB);
5571   Inst = CatchSwitch;
5572   return false;
5573 }
5574 
5575 /// ParseCatchPad
5576 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
5577 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
5578   Value *CatchSwitch = nullptr;
5579 
5580   if (ParseToken(lltok::kw_within, "expected 'within' after catchpad"))
5581     return true;
5582 
5583   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
5584     return TokError("expected scope value for catchpad");
5585 
5586   if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
5587     return true;
5588 
5589   SmallVector<Value *, 8> Args;
5590   if (ParseExceptionArgs(Args, PFS))
5591     return true;
5592 
5593   Inst = CatchPadInst::Create(CatchSwitch, Args);
5594   return false;
5595 }
5596 
5597 /// ParseCleanupPad
5598 ///   ::= 'cleanuppad' within Parent ParamList
5599 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
5600   Value *ParentPad = nullptr;
5601 
5602   if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
5603     return true;
5604 
5605   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
5606       Lex.getKind() != lltok::LocalVarID)
5607     return TokError("expected scope value for cleanuppad");
5608 
5609   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
5610     return true;
5611 
5612   SmallVector<Value *, 8> Args;
5613   if (ParseExceptionArgs(Args, PFS))
5614     return true;
5615 
5616   Inst = CleanupPadInst::Create(ParentPad, Args);
5617   return false;
5618 }
5619 
5620 //===----------------------------------------------------------------------===//
5621 // Binary Operators.
5622 //===----------------------------------------------------------------------===//
5623 
5624 /// ParseArithmetic
5625 ///  ::= ArithmeticOps TypeAndValue ',' Value
5626 ///
5627 /// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
5628 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
5629 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
5630                                unsigned Opc, unsigned OperandType) {
5631   LocTy Loc; Value *LHS, *RHS;
5632   if (ParseTypeAndValue(LHS, Loc, PFS) ||
5633       ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
5634       ParseValue(LHS->getType(), RHS, PFS))
5635     return true;
5636 
5637   bool Valid;
5638   switch (OperandType) {
5639   default: llvm_unreachable("Unknown operand type!");
5640   case 0: // int or FP.
5641     Valid = LHS->getType()->isIntOrIntVectorTy() ||
5642             LHS->getType()->isFPOrFPVectorTy();
5643     break;
5644   case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
5645   case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
5646   }
5647 
5648   if (!Valid)
5649     return Error(Loc, "invalid operand type for instruction");
5650 
5651   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
5652   return false;
5653 }
5654 
5655 /// ParseLogical
5656 ///  ::= ArithmeticOps TypeAndValue ',' Value {
5657 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
5658                             unsigned Opc) {
5659   LocTy Loc; Value *LHS, *RHS;
5660   if (ParseTypeAndValue(LHS, Loc, PFS) ||
5661       ParseToken(lltok::comma, "expected ',' in logical operation") ||
5662       ParseValue(LHS->getType(), RHS, PFS))
5663     return true;
5664 
5665   if (!LHS->getType()->isIntOrIntVectorTy())
5666     return Error(Loc,"instruction requires integer or integer vector operands");
5667 
5668   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
5669   return false;
5670 }
5671 
5672 /// ParseCompare
5673 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
5674 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
5675 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
5676                             unsigned Opc) {
5677   // Parse the integer/fp comparison predicate.
5678   LocTy Loc;
5679   unsigned Pred;
5680   Value *LHS, *RHS;
5681   if (ParseCmpPredicate(Pred, Opc) ||
5682       ParseTypeAndValue(LHS, Loc, PFS) ||
5683       ParseToken(lltok::comma, "expected ',' after compare value") ||
5684       ParseValue(LHS->getType(), RHS, PFS))
5685     return true;
5686 
5687   if (Opc == Instruction::FCmp) {
5688     if (!LHS->getType()->isFPOrFPVectorTy())
5689       return Error(Loc, "fcmp requires floating point operands");
5690     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
5691   } else {
5692     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
5693     if (!LHS->getType()->isIntOrIntVectorTy() &&
5694         !LHS->getType()->getScalarType()->isPointerTy())
5695       return Error(Loc, "icmp requires integer operands");
5696     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
5697   }
5698   return false;
5699 }
5700 
5701 //===----------------------------------------------------------------------===//
5702 // Other Instructions.
5703 //===----------------------------------------------------------------------===//
5704 
5705 
5706 /// ParseCast
5707 ///   ::= CastOpc TypeAndValue 'to' Type
5708 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
5709                          unsigned Opc) {
5710   LocTy Loc;
5711   Value *Op;
5712   Type *DestTy = nullptr;
5713   if (ParseTypeAndValue(Op, Loc, PFS) ||
5714       ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
5715       ParseType(DestTy))
5716     return true;
5717 
5718   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
5719     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
5720     return Error(Loc, "invalid cast opcode for cast from '" +
5721                  getTypeString(Op->getType()) + "' to '" +
5722                  getTypeString(DestTy) + "'");
5723   }
5724   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
5725   return false;
5726 }
5727 
5728 /// ParseSelect
5729 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5730 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
5731   LocTy Loc;
5732   Value *Op0, *Op1, *Op2;
5733   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5734       ParseToken(lltok::comma, "expected ',' after select condition") ||
5735       ParseTypeAndValue(Op1, PFS) ||
5736       ParseToken(lltok::comma, "expected ',' after select value") ||
5737       ParseTypeAndValue(Op2, PFS))
5738     return true;
5739 
5740   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
5741     return Error(Loc, Reason);
5742 
5743   Inst = SelectInst::Create(Op0, Op1, Op2);
5744   return false;
5745 }
5746 
5747 /// ParseVA_Arg
5748 ///   ::= 'va_arg' TypeAndValue ',' Type
5749 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
5750   Value *Op;
5751   Type *EltTy = nullptr;
5752   LocTy TypeLoc;
5753   if (ParseTypeAndValue(Op, PFS) ||
5754       ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
5755       ParseType(EltTy, TypeLoc))
5756     return true;
5757 
5758   if (!EltTy->isFirstClassType())
5759     return Error(TypeLoc, "va_arg requires operand with first class type");
5760 
5761   Inst = new VAArgInst(Op, EltTy);
5762   return false;
5763 }
5764 
5765 /// ParseExtractElement
5766 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
5767 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
5768   LocTy Loc;
5769   Value *Op0, *Op1;
5770   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5771       ParseToken(lltok::comma, "expected ',' after extract value") ||
5772       ParseTypeAndValue(Op1, PFS))
5773     return true;
5774 
5775   if (!ExtractElementInst::isValidOperands(Op0, Op1))
5776     return Error(Loc, "invalid extractelement operands");
5777 
5778   Inst = ExtractElementInst::Create(Op0, Op1);
5779   return false;
5780 }
5781 
5782 /// ParseInsertElement
5783 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5784 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
5785   LocTy Loc;
5786   Value *Op0, *Op1, *Op2;
5787   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5788       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5789       ParseTypeAndValue(Op1, PFS) ||
5790       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5791       ParseTypeAndValue(Op2, PFS))
5792     return true;
5793 
5794   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
5795     return Error(Loc, "invalid insertelement operands");
5796 
5797   Inst = InsertElementInst::Create(Op0, Op1, Op2);
5798   return false;
5799 }
5800 
5801 /// ParseShuffleVector
5802 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5803 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
5804   LocTy Loc;
5805   Value *Op0, *Op1, *Op2;
5806   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5807       ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
5808       ParseTypeAndValue(Op1, PFS) ||
5809       ParseToken(lltok::comma, "expected ',' after shuffle value") ||
5810       ParseTypeAndValue(Op2, PFS))
5811     return true;
5812 
5813   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
5814     return Error(Loc, "invalid shufflevector operands");
5815 
5816   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
5817   return false;
5818 }
5819 
5820 /// ParsePHI
5821 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
5822 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
5823   Type *Ty = nullptr;  LocTy TypeLoc;
5824   Value *Op0, *Op1;
5825 
5826   if (ParseType(Ty, TypeLoc) ||
5827       ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
5828       ParseValue(Ty, Op0, PFS) ||
5829       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5830       ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
5831       ParseToken(lltok::rsquare, "expected ']' in phi value list"))
5832     return true;
5833 
5834   bool AteExtraComma = false;
5835   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
5836 
5837   while (true) {
5838     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
5839 
5840     if (!EatIfPresent(lltok::comma))
5841       break;
5842 
5843     if (Lex.getKind() == lltok::MetadataVar) {
5844       AteExtraComma = true;
5845       break;
5846     }
5847 
5848     if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
5849         ParseValue(Ty, Op0, PFS) ||
5850         ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5851         ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
5852         ParseToken(lltok::rsquare, "expected ']' in phi value list"))
5853       return true;
5854   }
5855 
5856   if (!Ty->isFirstClassType())
5857     return Error(TypeLoc, "phi node must have first class type");
5858 
5859   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
5860   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
5861     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
5862   Inst = PN;
5863   return AteExtraComma ? InstExtraComma : InstNormal;
5864 }
5865 
5866 /// ParseLandingPad
5867 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
5868 /// Clause
5869 ///   ::= 'catch' TypeAndValue
5870 ///   ::= 'filter'
5871 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
5872 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
5873   Type *Ty = nullptr; LocTy TyLoc;
5874 
5875   if (ParseType(Ty, TyLoc))
5876     return true;
5877 
5878   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
5879   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
5880 
5881   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
5882     LandingPadInst::ClauseType CT;
5883     if (EatIfPresent(lltok::kw_catch))
5884       CT = LandingPadInst::Catch;
5885     else if (EatIfPresent(lltok::kw_filter))
5886       CT = LandingPadInst::Filter;
5887     else
5888       return TokError("expected 'catch' or 'filter' clause type");
5889 
5890     Value *V;
5891     LocTy VLoc;
5892     if (ParseTypeAndValue(V, VLoc, PFS))
5893       return true;
5894 
5895     // A 'catch' type expects a non-array constant. A filter clause expects an
5896     // array constant.
5897     if (CT == LandingPadInst::Catch) {
5898       if (isa<ArrayType>(V->getType()))
5899         Error(VLoc, "'catch' clause has an invalid type");
5900     } else {
5901       if (!isa<ArrayType>(V->getType()))
5902         Error(VLoc, "'filter' clause has an invalid type");
5903     }
5904 
5905     Constant *CV = dyn_cast<Constant>(V);
5906     if (!CV)
5907       return Error(VLoc, "clause argument must be a constant");
5908     LP->addClause(CV);
5909   }
5910 
5911   Inst = LP.release();
5912   return false;
5913 }
5914 
5915 /// ParseCall
5916 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
5917 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
5918 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
5919 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
5920 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
5921 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
5922 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
5923 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
5924 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
5925                          CallInst::TailCallKind TCK) {
5926   AttrBuilder RetAttrs, FnAttrs;
5927   std::vector<unsigned> FwdRefAttrGrps;
5928   LocTy BuiltinLoc;
5929   unsigned CC;
5930   Type *RetType = nullptr;
5931   LocTy RetTypeLoc;
5932   ValID CalleeID;
5933   SmallVector<ParamInfo, 16> ArgList;
5934   SmallVector<OperandBundleDef, 2> BundleList;
5935   LocTy CallLoc = Lex.getLoc();
5936 
5937   if (TCK != CallInst::TCK_None &&
5938       ParseToken(lltok::kw_call,
5939                  "expected 'tail call', 'musttail call', or 'notail call'"))
5940     return true;
5941 
5942   FastMathFlags FMF = EatFastMathFlagsIfPresent();
5943 
5944   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5945       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
5946       ParseValID(CalleeID) ||
5947       ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
5948                          PFS.getFunction().isVarArg()) ||
5949       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
5950       ParseOptionalOperandBundles(BundleList, PFS))
5951     return true;
5952 
5953   if (FMF.any() && !RetType->isFPOrFPVectorTy())
5954     return Error(CallLoc, "fast-math-flags specified for call without "
5955                           "floating-point scalar or vector return type");
5956 
5957   // If RetType is a non-function pointer type, then this is the short syntax
5958   // for the call, which means that RetType is just the return type.  Infer the
5959   // rest of the function argument types from the arguments that are present.
5960   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
5961   if (!Ty) {
5962     // Pull out the types of all of the arguments...
5963     std::vector<Type*> ParamTypes;
5964     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
5965       ParamTypes.push_back(ArgList[i].V->getType());
5966 
5967     if (!FunctionType::isValidReturnType(RetType))
5968       return Error(RetTypeLoc, "Invalid result type for LLVM function");
5969 
5970     Ty = FunctionType::get(RetType, ParamTypes, false);
5971   }
5972 
5973   CalleeID.FTy = Ty;
5974 
5975   // Look up the callee.
5976   Value *Callee;
5977   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS))
5978     return true;
5979 
5980   // Set up the Attribute for the function.
5981   SmallVector<AttributeSetNode *, 8> Attrs;
5982   Attrs.push_back(AttributeSetNode::get(Context, RetAttrs));
5983 
5984   SmallVector<Value*, 8> Args;
5985 
5986   // Loop through FunctionType's arguments and ensure they are specified
5987   // correctly.  Also, gather any parameter attributes.
5988   FunctionType::param_iterator I = Ty->param_begin();
5989   FunctionType::param_iterator E = Ty->param_end();
5990   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5991     Type *ExpectedTy = nullptr;
5992     if (I != E) {
5993       ExpectedTy = *I++;
5994     } else if (!Ty->isVarArg()) {
5995       return Error(ArgList[i].Loc, "too many arguments specified");
5996     }
5997 
5998     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
5999       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6000                    getTypeString(ExpectedTy) + "'");
6001     Args.push_back(ArgList[i].V);
6002     Attrs.push_back(ArgList[i].Attrs);
6003   }
6004 
6005   if (I != E)
6006     return Error(CallLoc, "not enough parameters specified for call");
6007 
6008   if (FnAttrs.hasAlignmentAttr())
6009     return Error(CallLoc, "call instructions may not have an alignment");
6010 
6011   Attrs.push_back(AttributeSetNode::get(Context, FnAttrs));
6012 
6013   // Finish off the Attribute and check them
6014   AttributeList PAL = AttributeList::get(Context, Attrs);
6015 
6016   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
6017   CI->setTailCallKind(TCK);
6018   CI->setCallingConv(CC);
6019   if (FMF.any())
6020     CI->setFastMathFlags(FMF);
6021   CI->setAttributes(PAL);
6022   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
6023   Inst = CI;
6024   return false;
6025 }
6026 
6027 //===----------------------------------------------------------------------===//
6028 // Memory Instructions.
6029 //===----------------------------------------------------------------------===//
6030 
6031 /// ParseAlloc
6032 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
6033 ///       (',' 'align' i32)?
6034 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
6035   Value *Size = nullptr;
6036   LocTy SizeLoc, TyLoc, ASLoc;
6037   unsigned Alignment = 0;
6038   unsigned AddrSpace = 0;
6039   Type *Ty = nullptr;
6040 
6041   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
6042   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
6043 
6044   if (ParseType(Ty, TyLoc)) return true;
6045 
6046   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
6047     return Error(TyLoc, "invalid type for alloca");
6048 
6049   bool AteExtraComma = false;
6050   if (EatIfPresent(lltok::comma)) {
6051     if (Lex.getKind() == lltok::kw_align) {
6052       if (ParseOptionalAlignment(Alignment))
6053         return true;
6054       if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6055         return true;
6056     } else if (Lex.getKind() == lltok::kw_addrspace) {
6057       ASLoc = Lex.getLoc();
6058       if (ParseOptionalAddrSpace(AddrSpace))
6059         return true;
6060     } else if (Lex.getKind() == lltok::MetadataVar) {
6061       AteExtraComma = true;
6062     } else {
6063       if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
6064           ParseOptionalCommaAlign(Alignment, AteExtraComma) ||
6065           (!AteExtraComma &&
6066            ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)))
6067         return true;
6068     }
6069   }
6070 
6071   if (Size && !Size->getType()->isIntegerTy())
6072     return Error(SizeLoc, "element count must have integer type");
6073 
6074   const DataLayout &DL = M->getDataLayout();
6075   unsigned AS = DL.getAllocaAddrSpace();
6076   if (AS != AddrSpace) {
6077     // TODO: In the future it should be possible to specify addrspace per-alloca.
6078     return Error(ASLoc, "address space must match datalayout");
6079   }
6080 
6081   AllocaInst *AI = new AllocaInst(Ty, AS, Size, Alignment);
6082   AI->setUsedWithInAlloca(IsInAlloca);
6083   AI->setSwiftError(IsSwiftError);
6084   Inst = AI;
6085   return AteExtraComma ? InstExtraComma : InstNormal;
6086 }
6087 
6088 /// ParseLoad
6089 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
6090 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
6091 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
6092 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
6093   Value *Val; LocTy Loc;
6094   unsigned Alignment = 0;
6095   bool AteExtraComma = false;
6096   bool isAtomic = false;
6097   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6098   SynchronizationScope Scope = CrossThread;
6099 
6100   if (Lex.getKind() == lltok::kw_atomic) {
6101     isAtomic = true;
6102     Lex.Lex();
6103   }
6104 
6105   bool isVolatile = false;
6106   if (Lex.getKind() == lltok::kw_volatile) {
6107     isVolatile = true;
6108     Lex.Lex();
6109   }
6110 
6111   Type *Ty;
6112   LocTy ExplicitTypeLoc = Lex.getLoc();
6113   if (ParseType(Ty) ||
6114       ParseToken(lltok::comma, "expected comma after load's type") ||
6115       ParseTypeAndValue(Val, Loc, PFS) ||
6116       ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
6117       ParseOptionalCommaAlign(Alignment, AteExtraComma))
6118     return true;
6119 
6120   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
6121     return Error(Loc, "load operand must be a pointer to a first class type");
6122   if (isAtomic && !Alignment)
6123     return Error(Loc, "atomic load must have explicit non-zero alignment");
6124   if (Ordering == AtomicOrdering::Release ||
6125       Ordering == AtomicOrdering::AcquireRelease)
6126     return Error(Loc, "atomic load cannot use Release ordering");
6127 
6128   if (Ty != cast<PointerType>(Val->getType())->getElementType())
6129     return Error(ExplicitTypeLoc,
6130                  "explicit pointee type doesn't match operand's pointee type");
6131 
6132   Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, Scope);
6133   return AteExtraComma ? InstExtraComma : InstNormal;
6134 }
6135 
6136 /// ParseStore
6137 
6138 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
6139 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
6140 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
6141 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
6142   Value *Val, *Ptr; LocTy Loc, PtrLoc;
6143   unsigned Alignment = 0;
6144   bool AteExtraComma = false;
6145   bool isAtomic = false;
6146   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6147   SynchronizationScope Scope = CrossThread;
6148 
6149   if (Lex.getKind() == lltok::kw_atomic) {
6150     isAtomic = true;
6151     Lex.Lex();
6152   }
6153 
6154   bool isVolatile = false;
6155   if (Lex.getKind() == lltok::kw_volatile) {
6156     isVolatile = true;
6157     Lex.Lex();
6158   }
6159 
6160   if (ParseTypeAndValue(Val, Loc, PFS) ||
6161       ParseToken(lltok::comma, "expected ',' after store operand") ||
6162       ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6163       ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
6164       ParseOptionalCommaAlign(Alignment, AteExtraComma))
6165     return true;
6166 
6167   if (!Ptr->getType()->isPointerTy())
6168     return Error(PtrLoc, "store operand must be a pointer");
6169   if (!Val->getType()->isFirstClassType())
6170     return Error(Loc, "store operand must be a first class value");
6171   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
6172     return Error(Loc, "stored value and pointer type do not match");
6173   if (isAtomic && !Alignment)
6174     return Error(Loc, "atomic store must have explicit non-zero alignment");
6175   if (Ordering == AtomicOrdering::Acquire ||
6176       Ordering == AtomicOrdering::AcquireRelease)
6177     return Error(Loc, "atomic store cannot use Acquire ordering");
6178 
6179   Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope);
6180   return AteExtraComma ? InstExtraComma : InstNormal;
6181 }
6182 
6183 /// ParseCmpXchg
6184 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
6185 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
6186 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
6187   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
6188   bool AteExtraComma = false;
6189   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
6190   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
6191   SynchronizationScope Scope = CrossThread;
6192   bool isVolatile = false;
6193   bool isWeak = false;
6194 
6195   if (EatIfPresent(lltok::kw_weak))
6196     isWeak = true;
6197 
6198   if (EatIfPresent(lltok::kw_volatile))
6199     isVolatile = true;
6200 
6201   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6202       ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
6203       ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
6204       ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
6205       ParseTypeAndValue(New, NewLoc, PFS) ||
6206       ParseScopeAndOrdering(true /*Always atomic*/, Scope, SuccessOrdering) ||
6207       ParseOrdering(FailureOrdering))
6208     return true;
6209 
6210   if (SuccessOrdering == AtomicOrdering::Unordered ||
6211       FailureOrdering == AtomicOrdering::Unordered)
6212     return TokError("cmpxchg cannot be unordered");
6213   if (isStrongerThan(FailureOrdering, SuccessOrdering))
6214     return TokError("cmpxchg failure argument shall be no stronger than the "
6215                     "success argument");
6216   if (FailureOrdering == AtomicOrdering::Release ||
6217       FailureOrdering == AtomicOrdering::AcquireRelease)
6218     return TokError(
6219         "cmpxchg failure ordering cannot include release semantics");
6220   if (!Ptr->getType()->isPointerTy())
6221     return Error(PtrLoc, "cmpxchg operand must be a pointer");
6222   if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
6223     return Error(CmpLoc, "compare value and pointer type do not match");
6224   if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
6225     return Error(NewLoc, "new value and pointer type do not match");
6226   if (!New->getType()->isFirstClassType())
6227     return Error(NewLoc, "cmpxchg operand must be a first class value");
6228   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
6229       Ptr, Cmp, New, SuccessOrdering, FailureOrdering, Scope);
6230   CXI->setVolatile(isVolatile);
6231   CXI->setWeak(isWeak);
6232   Inst = CXI;
6233   return AteExtraComma ? InstExtraComma : InstNormal;
6234 }
6235 
6236 /// ParseAtomicRMW
6237 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
6238 ///       'singlethread'? AtomicOrdering
6239 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
6240   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
6241   bool AteExtraComma = false;
6242   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6243   SynchronizationScope Scope = CrossThread;
6244   bool isVolatile = false;
6245   AtomicRMWInst::BinOp Operation;
6246 
6247   if (EatIfPresent(lltok::kw_volatile))
6248     isVolatile = true;
6249 
6250   switch (Lex.getKind()) {
6251   default: return TokError("expected binary operation in atomicrmw");
6252   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
6253   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
6254   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
6255   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
6256   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
6257   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
6258   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
6259   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
6260   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
6261   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
6262   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
6263   }
6264   Lex.Lex();  // Eat the operation.
6265 
6266   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6267       ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
6268       ParseTypeAndValue(Val, ValLoc, PFS) ||
6269       ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
6270     return true;
6271 
6272   if (Ordering == AtomicOrdering::Unordered)
6273     return TokError("atomicrmw cannot be unordered");
6274   if (!Ptr->getType()->isPointerTy())
6275     return Error(PtrLoc, "atomicrmw operand must be a pointer");
6276   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
6277     return Error(ValLoc, "atomicrmw value and pointer type do not match");
6278   if (!Val->getType()->isIntegerTy())
6279     return Error(ValLoc, "atomicrmw operand must be an integer");
6280   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
6281   if (Size < 8 || (Size & (Size - 1)))
6282     return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
6283                          " integer");
6284 
6285   AtomicRMWInst *RMWI =
6286     new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope);
6287   RMWI->setVolatile(isVolatile);
6288   Inst = RMWI;
6289   return AteExtraComma ? InstExtraComma : InstNormal;
6290 }
6291 
6292 /// ParseFence
6293 ///   ::= 'fence' 'singlethread'? AtomicOrdering
6294 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
6295   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6296   SynchronizationScope Scope = CrossThread;
6297   if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
6298     return true;
6299 
6300   if (Ordering == AtomicOrdering::Unordered)
6301     return TokError("fence cannot be unordered");
6302   if (Ordering == AtomicOrdering::Monotonic)
6303     return TokError("fence cannot be monotonic");
6304 
6305   Inst = new FenceInst(Context, Ordering, Scope);
6306   return InstNormal;
6307 }
6308 
6309 /// ParseGetElementPtr
6310 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
6311 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
6312   Value *Ptr = nullptr;
6313   Value *Val = nullptr;
6314   LocTy Loc, EltLoc;
6315 
6316   bool InBounds = EatIfPresent(lltok::kw_inbounds);
6317 
6318   Type *Ty = nullptr;
6319   LocTy ExplicitTypeLoc = Lex.getLoc();
6320   if (ParseType(Ty) ||
6321       ParseToken(lltok::comma, "expected comma after getelementptr's type") ||
6322       ParseTypeAndValue(Ptr, Loc, PFS))
6323     return true;
6324 
6325   Type *BaseType = Ptr->getType();
6326   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
6327   if (!BasePointerType)
6328     return Error(Loc, "base of getelementptr must be a pointer");
6329 
6330   if (Ty != BasePointerType->getElementType())
6331     return Error(ExplicitTypeLoc,
6332                  "explicit pointee type doesn't match operand's pointee type");
6333 
6334   SmallVector<Value*, 16> Indices;
6335   bool AteExtraComma = false;
6336   // GEP returns a vector of pointers if at least one of parameters is a vector.
6337   // All vector parameters should have the same vector width.
6338   unsigned GEPWidth = BaseType->isVectorTy() ?
6339     BaseType->getVectorNumElements() : 0;
6340 
6341   while (EatIfPresent(lltok::comma)) {
6342     if (Lex.getKind() == lltok::MetadataVar) {
6343       AteExtraComma = true;
6344       break;
6345     }
6346     if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
6347     if (!Val->getType()->getScalarType()->isIntegerTy())
6348       return Error(EltLoc, "getelementptr index must be an integer");
6349 
6350     if (Val->getType()->isVectorTy()) {
6351       unsigned ValNumEl = Val->getType()->getVectorNumElements();
6352       if (GEPWidth && GEPWidth != ValNumEl)
6353         return Error(EltLoc,
6354           "getelementptr vector index has a wrong number of elements");
6355       GEPWidth = ValNumEl;
6356     }
6357     Indices.push_back(Val);
6358   }
6359 
6360   SmallPtrSet<Type*, 4> Visited;
6361   if (!Indices.empty() && !Ty->isSized(&Visited))
6362     return Error(Loc, "base element of getelementptr must be sized");
6363 
6364   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
6365     return Error(Loc, "invalid getelementptr indices");
6366   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
6367   if (InBounds)
6368     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
6369   return AteExtraComma ? InstExtraComma : InstNormal;
6370 }
6371 
6372 /// ParseExtractValue
6373 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
6374 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
6375   Value *Val; LocTy Loc;
6376   SmallVector<unsigned, 4> Indices;
6377   bool AteExtraComma;
6378   if (ParseTypeAndValue(Val, Loc, PFS) ||
6379       ParseIndexList(Indices, AteExtraComma))
6380     return true;
6381 
6382   if (!Val->getType()->isAggregateType())
6383     return Error(Loc, "extractvalue operand must be aggregate type");
6384 
6385   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
6386     return Error(Loc, "invalid indices for extractvalue");
6387   Inst = ExtractValueInst::Create(Val, Indices);
6388   return AteExtraComma ? InstExtraComma : InstNormal;
6389 }
6390 
6391 /// ParseInsertValue
6392 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
6393 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
6394   Value *Val0, *Val1; LocTy Loc0, Loc1;
6395   SmallVector<unsigned, 4> Indices;
6396   bool AteExtraComma;
6397   if (ParseTypeAndValue(Val0, Loc0, PFS) ||
6398       ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
6399       ParseTypeAndValue(Val1, Loc1, PFS) ||
6400       ParseIndexList(Indices, AteExtraComma))
6401     return true;
6402 
6403   if (!Val0->getType()->isAggregateType())
6404     return Error(Loc0, "insertvalue operand must be aggregate type");
6405 
6406   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
6407   if (!IndexedType)
6408     return Error(Loc0, "invalid indices for insertvalue");
6409   if (IndexedType != Val1->getType())
6410     return Error(Loc1, "insertvalue operand and field disagree in type: '" +
6411                            getTypeString(Val1->getType()) + "' instead of '" +
6412                            getTypeString(IndexedType) + "'");
6413   Inst = InsertValueInst::Create(Val0, Val1, Indices);
6414   return AteExtraComma ? InstExtraComma : InstNormal;
6415 }
6416 
6417 //===----------------------------------------------------------------------===//
6418 // Embedded metadata.
6419 //===----------------------------------------------------------------------===//
6420 
6421 /// ParseMDNodeVector
6422 ///   ::= { Element (',' Element)* }
6423 /// Element
6424 ///   ::= 'null' | TypeAndValue
6425 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
6426   if (ParseToken(lltok::lbrace, "expected '{' here"))
6427     return true;
6428 
6429   // Check for an empty list.
6430   if (EatIfPresent(lltok::rbrace))
6431     return false;
6432 
6433   do {
6434     // Null is a special case since it is typeless.
6435     if (EatIfPresent(lltok::kw_null)) {
6436       Elts.push_back(nullptr);
6437       continue;
6438     }
6439 
6440     Metadata *MD;
6441     if (ParseMetadata(MD, nullptr))
6442       return true;
6443     Elts.push_back(MD);
6444   } while (EatIfPresent(lltok::comma));
6445 
6446   return ParseToken(lltok::rbrace, "expected end of metadata node");
6447 }
6448 
6449 //===----------------------------------------------------------------------===//
6450 // Use-list order directives.
6451 //===----------------------------------------------------------------------===//
6452 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
6453                                 SMLoc Loc) {
6454   if (V->use_empty())
6455     return Error(Loc, "value has no uses");
6456 
6457   unsigned NumUses = 0;
6458   SmallDenseMap<const Use *, unsigned, 16> Order;
6459   for (const Use &U : V->uses()) {
6460     if (++NumUses > Indexes.size())
6461       break;
6462     Order[&U] = Indexes[NumUses - 1];
6463   }
6464   if (NumUses < 2)
6465     return Error(Loc, "value only has one use");
6466   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
6467     return Error(Loc, "wrong number of indexes, expected " +
6468                           Twine(std::distance(V->use_begin(), V->use_end())));
6469 
6470   V->sortUseList([&](const Use &L, const Use &R) {
6471     return Order.lookup(&L) < Order.lookup(&R);
6472   });
6473   return false;
6474 }
6475 
6476 /// ParseUseListOrderIndexes
6477 ///   ::= '{' uint32 (',' uint32)+ '}'
6478 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
6479   SMLoc Loc = Lex.getLoc();
6480   if (ParseToken(lltok::lbrace, "expected '{' here"))
6481     return true;
6482   if (Lex.getKind() == lltok::rbrace)
6483     return Lex.Error("expected non-empty list of uselistorder indexes");
6484 
6485   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
6486   // indexes should be distinct numbers in the range [0, size-1], and should
6487   // not be in order.
6488   unsigned Offset = 0;
6489   unsigned Max = 0;
6490   bool IsOrdered = true;
6491   assert(Indexes.empty() && "Expected empty order vector");
6492   do {
6493     unsigned Index;
6494     if (ParseUInt32(Index))
6495       return true;
6496 
6497     // Update consistency checks.
6498     Offset += Index - Indexes.size();
6499     Max = std::max(Max, Index);
6500     IsOrdered &= Index == Indexes.size();
6501 
6502     Indexes.push_back(Index);
6503   } while (EatIfPresent(lltok::comma));
6504 
6505   if (ParseToken(lltok::rbrace, "expected '}' here"))
6506     return true;
6507 
6508   if (Indexes.size() < 2)
6509     return Error(Loc, "expected >= 2 uselistorder indexes");
6510   if (Offset != 0 || Max >= Indexes.size())
6511     return Error(Loc, "expected distinct uselistorder indexes in range [0, size)");
6512   if (IsOrdered)
6513     return Error(Loc, "expected uselistorder indexes to change the order");
6514 
6515   return false;
6516 }
6517 
6518 /// ParseUseListOrder
6519 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
6520 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) {
6521   SMLoc Loc = Lex.getLoc();
6522   if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
6523     return true;
6524 
6525   Value *V;
6526   SmallVector<unsigned, 16> Indexes;
6527   if (ParseTypeAndValue(V, PFS) ||
6528       ParseToken(lltok::comma, "expected comma in uselistorder directive") ||
6529       ParseUseListOrderIndexes(Indexes))
6530     return true;
6531 
6532   return sortUseListOrder(V, Indexes, Loc);
6533 }
6534 
6535 /// ParseUseListOrderBB
6536 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
6537 bool LLParser::ParseUseListOrderBB() {
6538   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
6539   SMLoc Loc = Lex.getLoc();
6540   Lex.Lex();
6541 
6542   ValID Fn, Label;
6543   SmallVector<unsigned, 16> Indexes;
6544   if (ParseValID(Fn) ||
6545       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
6546       ParseValID(Label) ||
6547       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
6548       ParseUseListOrderIndexes(Indexes))
6549     return true;
6550 
6551   // Check the function.
6552   GlobalValue *GV;
6553   if (Fn.Kind == ValID::t_GlobalName)
6554     GV = M->getNamedValue(Fn.StrVal);
6555   else if (Fn.Kind == ValID::t_GlobalID)
6556     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
6557   else
6558     return Error(Fn.Loc, "expected function name in uselistorder_bb");
6559   if (!GV)
6560     return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb");
6561   auto *F = dyn_cast<Function>(GV);
6562   if (!F)
6563     return Error(Fn.Loc, "expected function name in uselistorder_bb");
6564   if (F->isDeclaration())
6565     return Error(Fn.Loc, "invalid declaration in uselistorder_bb");
6566 
6567   // Check the basic block.
6568   if (Label.Kind == ValID::t_LocalID)
6569     return Error(Label.Loc, "invalid numeric label in uselistorder_bb");
6570   if (Label.Kind != ValID::t_LocalName)
6571     return Error(Label.Loc, "expected basic block name in uselistorder_bb");
6572   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
6573   if (!V)
6574     return Error(Label.Loc, "invalid basic block in uselistorder_bb");
6575   if (!isa<BasicBlock>(V))
6576     return Error(Label.Loc, "expected basic block in uselistorder_bb");
6577 
6578   return sortUseListOrder(V, Indexes, Loc);
6579 }
6580