1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines the parser class for .ll files.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "LLParser.h"
15 #include "llvm/AutoUpgrade.h"
16 #include "llvm/CallingConv.h"
17 #include "llvm/Constants.h"
18 #include "llvm/DerivedTypes.h"
19 #include "llvm/InlineAsm.h"
20 #include "llvm/Instructions.h"
21 #include "llvm/Module.h"
22 #include "llvm/Operator.h"
23 #include "llvm/ValueSymbolTable.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/raw_ostream.h"
27 using namespace llvm;
28 
29 /// Run: module ::= toplevelentity*
30 bool LLParser::Run() {
31   // Prime the lexer.
32   Lex.Lex();
33 
34   return ParseTopLevelEntities() ||
35          ValidateEndOfModule();
36 }
37 
38 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
39 /// module.
40 bool LLParser::ValidateEndOfModule() {
41   // Handle any instruction metadata forward references.
42   if (!ForwardRefInstMetadata.empty()) {
43     for (DenseMap<Instruction*, std::vector<MDRef> >::iterator
44          I = ForwardRefInstMetadata.begin(), E = ForwardRefInstMetadata.end();
45          I != E; ++I) {
46       Instruction *Inst = I->first;
47       const std::vector<MDRef> &MDList = I->second;
48 
49       for (unsigned i = 0, e = MDList.size(); i != e; ++i) {
50         unsigned SlotNo = MDList[i].MDSlot;
51 
52         if (SlotNo >= NumberedMetadata.size() || NumberedMetadata[SlotNo] == 0)
53           return Error(MDList[i].Loc, "use of undefined metadata '!" +
54                        Twine(SlotNo) + "'");
55         Inst->setMetadata(MDList[i].MDKind, NumberedMetadata[SlotNo]);
56       }
57     }
58     ForwardRefInstMetadata.clear();
59   }
60 
61 
62   // Update auto-upgraded malloc calls to "malloc".
63   // FIXME: Remove in LLVM 3.0.
64   if (MallocF) {
65     MallocF->setName("malloc");
66     // If setName() does not set the name to "malloc", then there is already a
67     // declaration of "malloc".  In that case, iterate over all calls to MallocF
68     // and get them to call the declared "malloc" instead.
69     if (MallocF->getName() != "malloc") {
70       Constant *RealMallocF = M->getFunction("malloc");
71       if (RealMallocF->getType() != MallocF->getType())
72         RealMallocF = ConstantExpr::getBitCast(RealMallocF, MallocF->getType());
73       MallocF->replaceAllUsesWith(RealMallocF);
74       MallocF->eraseFromParent();
75       MallocF = NULL;
76     }
77   }
78 
79 
80   // If there are entries in ForwardRefBlockAddresses at this point, they are
81   // references after the function was defined.  Resolve those now.
82   while (!ForwardRefBlockAddresses.empty()) {
83     // Okay, we are referencing an already-parsed function, resolve them now.
84     Function *TheFn = 0;
85     const ValID &Fn = ForwardRefBlockAddresses.begin()->first;
86     if (Fn.Kind == ValID::t_GlobalName)
87       TheFn = M->getFunction(Fn.StrVal);
88     else if (Fn.UIntVal < NumberedVals.size())
89       TheFn = dyn_cast<Function>(NumberedVals[Fn.UIntVal]);
90 
91     if (TheFn == 0)
92       return Error(Fn.Loc, "unknown function referenced by blockaddress");
93 
94     // Resolve all these references.
95     if (ResolveForwardRefBlockAddresses(TheFn,
96                                       ForwardRefBlockAddresses.begin()->second,
97                                         0))
98       return true;
99 
100     ForwardRefBlockAddresses.erase(ForwardRefBlockAddresses.begin());
101   }
102 
103 
104   if (!ForwardRefTypes.empty())
105     return Error(ForwardRefTypes.begin()->second.second,
106                  "use of undefined type named '" +
107                  ForwardRefTypes.begin()->first + "'");
108   if (!ForwardRefTypeIDs.empty())
109     return Error(ForwardRefTypeIDs.begin()->second.second,
110                  "use of undefined type '%" +
111                  Twine(ForwardRefTypeIDs.begin()->first) + "'");
112 
113   if (!ForwardRefVals.empty())
114     return Error(ForwardRefVals.begin()->second.second,
115                  "use of undefined value '@" + ForwardRefVals.begin()->first +
116                  "'");
117 
118   if (!ForwardRefValIDs.empty())
119     return Error(ForwardRefValIDs.begin()->second.second,
120                  "use of undefined value '@" +
121                  Twine(ForwardRefValIDs.begin()->first) + "'");
122 
123   if (!ForwardRefMDNodes.empty())
124     return Error(ForwardRefMDNodes.begin()->second.second,
125                  "use of undefined metadata '!" +
126                  Twine(ForwardRefMDNodes.begin()->first) + "'");
127 
128 
129   // Look for intrinsic functions and CallInst that need to be upgraded
130   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
131     UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
132 
133   // Check debug info intrinsics.
134   CheckDebugInfoIntrinsics(M);
135   return false;
136 }
137 
138 bool LLParser::ResolveForwardRefBlockAddresses(Function *TheFn,
139                              std::vector<std::pair<ValID, GlobalValue*> > &Refs,
140                                                PerFunctionState *PFS) {
141   // Loop over all the references, resolving them.
142   for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
143     BasicBlock *Res;
144     if (PFS) {
145       if (Refs[i].first.Kind == ValID::t_LocalName)
146         Res = PFS->GetBB(Refs[i].first.StrVal, Refs[i].first.Loc);
147       else
148         Res = PFS->GetBB(Refs[i].first.UIntVal, Refs[i].first.Loc);
149     } else if (Refs[i].first.Kind == ValID::t_LocalID) {
150       return Error(Refs[i].first.Loc,
151        "cannot take address of numeric label after the function is defined");
152     } else {
153       Res = dyn_cast_or_null<BasicBlock>(
154                      TheFn->getValueSymbolTable().lookup(Refs[i].first.StrVal));
155     }
156 
157     if (Res == 0)
158       return Error(Refs[i].first.Loc,
159                    "referenced value is not a basic block");
160 
161     // Get the BlockAddress for this and update references to use it.
162     BlockAddress *BA = BlockAddress::get(TheFn, Res);
163     Refs[i].second->replaceAllUsesWith(BA);
164     Refs[i].second->eraseFromParent();
165   }
166   return false;
167 }
168 
169 
170 //===----------------------------------------------------------------------===//
171 // Top-Level Entities
172 //===----------------------------------------------------------------------===//
173 
174 bool LLParser::ParseTopLevelEntities() {
175   while (1) {
176     switch (Lex.getKind()) {
177     default:         return TokError("expected top-level entity");
178     case lltok::Eof: return false;
179     //case lltok::kw_define:
180     case lltok::kw_declare: if (ParseDeclare()) return true; break;
181     case lltok::kw_define:  if (ParseDefine()) return true; break;
182     case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
183     case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
184     case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
185     case lltok::kw_type:    if (ParseUnnamedType()) return true; break;
186     case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
187     case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0
188     case lltok::LocalVar:   if (ParseNamedType()) return true; break;
189     case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
190     case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
191     case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
192     case lltok::MetadataVar: if (ParseNamedMetadata()) return true; break;
193 
194     // The Global variable production with no name can have many different
195     // optional leading prefixes, the production is:
196     // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
197     //               OptionalAddrSpace ('constant'|'global') ...
198     case lltok::kw_private:             // OptionalLinkage
199     case lltok::kw_linker_private:      // OptionalLinkage
200     case lltok::kw_linker_private_weak: // OptionalLinkage
201     case lltok::kw_linker_private_weak_def_auto: // OptionalLinkage
202     case lltok::kw_internal:            // OptionalLinkage
203     case lltok::kw_weak:                // OptionalLinkage
204     case lltok::kw_weak_odr:            // OptionalLinkage
205     case lltok::kw_linkonce:            // OptionalLinkage
206     case lltok::kw_linkonce_odr:        // OptionalLinkage
207     case lltok::kw_appending:           // OptionalLinkage
208     case lltok::kw_dllexport:           // OptionalLinkage
209     case lltok::kw_common:              // OptionalLinkage
210     case lltok::kw_dllimport:           // OptionalLinkage
211     case lltok::kw_extern_weak:         // OptionalLinkage
212     case lltok::kw_external: {          // OptionalLinkage
213       unsigned Linkage, Visibility;
214       if (ParseOptionalLinkage(Linkage) ||
215           ParseOptionalVisibility(Visibility) ||
216           ParseGlobal("", SMLoc(), Linkage, true, Visibility))
217         return true;
218       break;
219     }
220     case lltok::kw_default:       // OptionalVisibility
221     case lltok::kw_hidden:        // OptionalVisibility
222     case lltok::kw_protected: {   // OptionalVisibility
223       unsigned Visibility;
224       if (ParseOptionalVisibility(Visibility) ||
225           ParseGlobal("", SMLoc(), 0, false, Visibility))
226         return true;
227       break;
228     }
229 
230     case lltok::kw_thread_local:  // OptionalThreadLocal
231     case lltok::kw_addrspace:     // OptionalAddrSpace
232     case lltok::kw_constant:      // GlobalType
233     case lltok::kw_global:        // GlobalType
234       if (ParseGlobal("", SMLoc(), 0, false, 0)) return true;
235       break;
236     }
237   }
238 }
239 
240 
241 /// toplevelentity
242 ///   ::= 'module' 'asm' STRINGCONSTANT
243 bool LLParser::ParseModuleAsm() {
244   assert(Lex.getKind() == lltok::kw_module);
245   Lex.Lex();
246 
247   std::string AsmStr;
248   if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
249       ParseStringConstant(AsmStr)) return true;
250 
251   const std::string &AsmSoFar = M->getModuleInlineAsm();
252   if (AsmSoFar.empty())
253     M->setModuleInlineAsm(AsmStr);
254   else
255     M->setModuleInlineAsm(AsmSoFar+"\n"+AsmStr);
256   return false;
257 }
258 
259 /// toplevelentity
260 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
261 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
262 bool LLParser::ParseTargetDefinition() {
263   assert(Lex.getKind() == lltok::kw_target);
264   std::string Str;
265   switch (Lex.Lex()) {
266   default: return TokError("unknown target property");
267   case lltok::kw_triple:
268     Lex.Lex();
269     if (ParseToken(lltok::equal, "expected '=' after target triple") ||
270         ParseStringConstant(Str))
271       return true;
272     M->setTargetTriple(Str);
273     return false;
274   case lltok::kw_datalayout:
275     Lex.Lex();
276     if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
277         ParseStringConstant(Str))
278       return true;
279     M->setDataLayout(Str);
280     return false;
281   }
282 }
283 
284 /// toplevelentity
285 ///   ::= 'deplibs' '=' '[' ']'
286 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
287 bool LLParser::ParseDepLibs() {
288   assert(Lex.getKind() == lltok::kw_deplibs);
289   Lex.Lex();
290   if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
291       ParseToken(lltok::lsquare, "expected '=' after deplibs"))
292     return true;
293 
294   if (EatIfPresent(lltok::rsquare))
295     return false;
296 
297   std::string Str;
298   if (ParseStringConstant(Str)) return true;
299   M->addLibrary(Str);
300 
301   while (EatIfPresent(lltok::comma)) {
302     if (ParseStringConstant(Str)) return true;
303     M->addLibrary(Str);
304   }
305 
306   return ParseToken(lltok::rsquare, "expected ']' at end of list");
307 }
308 
309 /// ParseUnnamedType:
310 ///   ::= 'type' type
311 ///   ::= LocalVarID '=' 'type' type
312 bool LLParser::ParseUnnamedType() {
313   unsigned TypeID = NumberedTypes.size();
314 
315   // Handle the LocalVarID form.
316   if (Lex.getKind() == lltok::LocalVarID) {
317     if (Lex.getUIntVal() != TypeID)
318       return Error(Lex.getLoc(), "type expected to be numbered '%" +
319                    Twine(TypeID) + "'");
320     Lex.Lex(); // eat LocalVarID;
321 
322     if (ParseToken(lltok::equal, "expected '=' after name"))
323       return true;
324   }
325 
326   LocTy TypeLoc = Lex.getLoc();
327   if (ParseToken(lltok::kw_type, "expected 'type' after '='")) return true;
328 
329   PATypeHolder Ty(Type::getVoidTy(Context));
330   if (ParseType(Ty)) return true;
331 
332   // See if this type was previously referenced.
333   std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
334     FI = ForwardRefTypeIDs.find(TypeID);
335   if (FI != ForwardRefTypeIDs.end()) {
336     if (FI->second.first.get() == Ty)
337       return Error(TypeLoc, "self referential type is invalid");
338 
339     cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
340     Ty = FI->second.first.get();
341     ForwardRefTypeIDs.erase(FI);
342   }
343 
344   NumberedTypes.push_back(Ty);
345 
346   return false;
347 }
348 
349 /// toplevelentity
350 ///   ::= LocalVar '=' 'type' type
351 bool LLParser::ParseNamedType() {
352   std::string Name = Lex.getStrVal();
353   LocTy NameLoc = Lex.getLoc();
354   Lex.Lex();  // eat LocalVar.
355 
356   PATypeHolder Ty(Type::getVoidTy(Context));
357 
358   if (ParseToken(lltok::equal, "expected '=' after name") ||
359       ParseToken(lltok::kw_type, "expected 'type' after name") ||
360       ParseType(Ty))
361     return true;
362 
363   // Set the type name, checking for conflicts as we do so.
364   bool AlreadyExists = M->addTypeName(Name, Ty);
365   if (!AlreadyExists) return false;
366 
367   // See if this type is a forward reference.  We need to eagerly resolve
368   // types to allow recursive type redefinitions below.
369   std::map<std::string, std::pair<PATypeHolder, LocTy> >::iterator
370   FI = ForwardRefTypes.find(Name);
371   if (FI != ForwardRefTypes.end()) {
372     if (FI->second.first.get() == Ty)
373       return Error(NameLoc, "self referential type is invalid");
374 
375     cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
376     Ty = FI->second.first.get();
377     ForwardRefTypes.erase(FI);
378   }
379 
380   // Inserting a name that is already defined, get the existing name.
381   const Type *Existing = M->getTypeByName(Name);
382   assert(Existing && "Conflict but no matching type?!");
383 
384   // Otherwise, this is an attempt to redefine a type. That's okay if
385   // the redefinition is identical to the original.
386   // FIXME: REMOVE REDEFINITIONS IN LLVM 3.0
387   if (Existing == Ty) return false;
388 
389   // Any other kind of (non-equivalent) redefinition is an error.
390   return Error(NameLoc, "redefinition of type named '" + Name + "' of type '" +
391                Ty->getDescription() + "'");
392 }
393 
394 
395 /// toplevelentity
396 ///   ::= 'declare' FunctionHeader
397 bool LLParser::ParseDeclare() {
398   assert(Lex.getKind() == lltok::kw_declare);
399   Lex.Lex();
400 
401   Function *F;
402   return ParseFunctionHeader(F, false);
403 }
404 
405 /// toplevelentity
406 ///   ::= 'define' FunctionHeader '{' ...
407 bool LLParser::ParseDefine() {
408   assert(Lex.getKind() == lltok::kw_define);
409   Lex.Lex();
410 
411   Function *F;
412   return ParseFunctionHeader(F, true) ||
413          ParseFunctionBody(*F);
414 }
415 
416 /// ParseGlobalType
417 ///   ::= 'constant'
418 ///   ::= 'global'
419 bool LLParser::ParseGlobalType(bool &IsConstant) {
420   if (Lex.getKind() == lltok::kw_constant)
421     IsConstant = true;
422   else if (Lex.getKind() == lltok::kw_global)
423     IsConstant = false;
424   else {
425     IsConstant = false;
426     return TokError("expected 'global' or 'constant'");
427   }
428   Lex.Lex();
429   return false;
430 }
431 
432 /// ParseUnnamedGlobal:
433 ///   OptionalVisibility ALIAS ...
434 ///   OptionalLinkage OptionalVisibility ...   -> global variable
435 ///   GlobalID '=' OptionalVisibility ALIAS ...
436 ///   GlobalID '=' OptionalLinkage OptionalVisibility ...   -> global variable
437 bool LLParser::ParseUnnamedGlobal() {
438   unsigned VarID = NumberedVals.size();
439   std::string Name;
440   LocTy NameLoc = Lex.getLoc();
441 
442   // Handle the GlobalID form.
443   if (Lex.getKind() == lltok::GlobalID) {
444     if (Lex.getUIntVal() != VarID)
445       return Error(Lex.getLoc(), "variable expected to be numbered '%" +
446                    Twine(VarID) + "'");
447     Lex.Lex(); // eat GlobalID;
448 
449     if (ParseToken(lltok::equal, "expected '=' after name"))
450       return true;
451   }
452 
453   bool HasLinkage;
454   unsigned Linkage, Visibility;
455   if (ParseOptionalLinkage(Linkage, HasLinkage) ||
456       ParseOptionalVisibility(Visibility))
457     return true;
458 
459   if (HasLinkage || Lex.getKind() != lltok::kw_alias)
460     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
461   return ParseAlias(Name, NameLoc, Visibility);
462 }
463 
464 /// ParseNamedGlobal:
465 ///   GlobalVar '=' OptionalVisibility ALIAS ...
466 ///   GlobalVar '=' OptionalLinkage OptionalVisibility ...   -> global variable
467 bool LLParser::ParseNamedGlobal() {
468   assert(Lex.getKind() == lltok::GlobalVar);
469   LocTy NameLoc = Lex.getLoc();
470   std::string Name = Lex.getStrVal();
471   Lex.Lex();
472 
473   bool HasLinkage;
474   unsigned Linkage, Visibility;
475   if (ParseToken(lltok::equal, "expected '=' in global variable") ||
476       ParseOptionalLinkage(Linkage, HasLinkage) ||
477       ParseOptionalVisibility(Visibility))
478     return true;
479 
480   if (HasLinkage || Lex.getKind() != lltok::kw_alias)
481     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
482   return ParseAlias(Name, NameLoc, Visibility);
483 }
484 
485 // MDString:
486 //   ::= '!' STRINGCONSTANT
487 bool LLParser::ParseMDString(MDString *&Result) {
488   std::string Str;
489   if (ParseStringConstant(Str)) return true;
490   Result = MDString::get(Context, Str);
491   return false;
492 }
493 
494 // MDNode:
495 //   ::= '!' MDNodeNumber
496 //
497 /// This version of ParseMDNodeID returns the slot number and null in the case
498 /// of a forward reference.
499 bool LLParser::ParseMDNodeID(MDNode *&Result, unsigned &SlotNo) {
500   // !{ ..., !42, ... }
501   if (ParseUInt32(SlotNo)) return true;
502 
503   // Check existing MDNode.
504   if (SlotNo < NumberedMetadata.size() && NumberedMetadata[SlotNo] != 0)
505     Result = NumberedMetadata[SlotNo];
506   else
507     Result = 0;
508   return false;
509 }
510 
511 bool LLParser::ParseMDNodeID(MDNode *&Result) {
512   // !{ ..., !42, ... }
513   unsigned MID = 0;
514   if (ParseMDNodeID(Result, MID)) return true;
515 
516   // If not a forward reference, just return it now.
517   if (Result) return false;
518 
519   // Otherwise, create MDNode forward reference.
520   MDNode *FwdNode = MDNode::getTemporary(Context, 0, 0);
521   ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc());
522 
523   if (NumberedMetadata.size() <= MID)
524     NumberedMetadata.resize(MID+1);
525   NumberedMetadata[MID] = FwdNode;
526   Result = FwdNode;
527   return false;
528 }
529 
530 /// ParseNamedMetadata:
531 ///   !foo = !{ !1, !2 }
532 bool LLParser::ParseNamedMetadata() {
533   assert(Lex.getKind() == lltok::MetadataVar);
534   std::string Name = Lex.getStrVal();
535   Lex.Lex();
536 
537   if (ParseToken(lltok::equal, "expected '=' here") ||
538       ParseToken(lltok::exclaim, "Expected '!' here") ||
539       ParseToken(lltok::lbrace, "Expected '{' here"))
540     return true;
541 
542   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
543   if (Lex.getKind() != lltok::rbrace)
544     do {
545       if (ParseToken(lltok::exclaim, "Expected '!' here"))
546         return true;
547 
548       MDNode *N = 0;
549       if (ParseMDNodeID(N)) return true;
550       NMD->addOperand(N);
551     } while (EatIfPresent(lltok::comma));
552 
553   if (ParseToken(lltok::rbrace, "expected end of metadata node"))
554     return true;
555 
556   return false;
557 }
558 
559 /// ParseStandaloneMetadata:
560 ///   !42 = !{...}
561 bool LLParser::ParseStandaloneMetadata() {
562   assert(Lex.getKind() == lltok::exclaim);
563   Lex.Lex();
564   unsigned MetadataID = 0;
565 
566   LocTy TyLoc;
567   PATypeHolder Ty(Type::getVoidTy(Context));
568   SmallVector<Value *, 16> Elts;
569   if (ParseUInt32(MetadataID) ||
570       ParseToken(lltok::equal, "expected '=' here") ||
571       ParseType(Ty, TyLoc) ||
572       ParseToken(lltok::exclaim, "Expected '!' here") ||
573       ParseToken(lltok::lbrace, "Expected '{' here") ||
574       ParseMDNodeVector(Elts, NULL) ||
575       ParseToken(lltok::rbrace, "expected end of metadata node"))
576     return true;
577 
578   MDNode *Init = MDNode::get(Context, Elts.data(), Elts.size());
579 
580   // See if this was forward referenced, if so, handle it.
581   std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator
582     FI = ForwardRefMDNodes.find(MetadataID);
583   if (FI != ForwardRefMDNodes.end()) {
584     MDNode *Temp = FI->second.first;
585     Temp->replaceAllUsesWith(Init);
586     MDNode::deleteTemporary(Temp);
587     ForwardRefMDNodes.erase(FI);
588 
589     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
590   } else {
591     if (MetadataID >= NumberedMetadata.size())
592       NumberedMetadata.resize(MetadataID+1);
593 
594     if (NumberedMetadata[MetadataID] != 0)
595       return TokError("Metadata id is already used");
596     NumberedMetadata[MetadataID] = Init;
597   }
598 
599   return false;
600 }
601 
602 /// ParseAlias:
603 ///   ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
604 /// Aliasee
605 ///   ::= TypeAndValue
606 ///   ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
607 ///   ::= 'getelementptr' 'inbounds'? '(' ... ')'
608 ///
609 /// Everything through visibility has already been parsed.
610 ///
611 bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
612                           unsigned Visibility) {
613   assert(Lex.getKind() == lltok::kw_alias);
614   Lex.Lex();
615   unsigned Linkage;
616   LocTy LinkageLoc = Lex.getLoc();
617   if (ParseOptionalLinkage(Linkage))
618     return true;
619 
620   if (Linkage != GlobalValue::ExternalLinkage &&
621       Linkage != GlobalValue::WeakAnyLinkage &&
622       Linkage != GlobalValue::WeakODRLinkage &&
623       Linkage != GlobalValue::InternalLinkage &&
624       Linkage != GlobalValue::PrivateLinkage &&
625       Linkage != GlobalValue::LinkerPrivateLinkage &&
626       Linkage != GlobalValue::LinkerPrivateWeakLinkage &&
627       Linkage != GlobalValue::LinkerPrivateWeakDefAutoLinkage)
628     return Error(LinkageLoc, "invalid linkage type for alias");
629 
630   Constant *Aliasee;
631   LocTy AliaseeLoc = Lex.getLoc();
632   if (Lex.getKind() != lltok::kw_bitcast &&
633       Lex.getKind() != lltok::kw_getelementptr) {
634     if (ParseGlobalTypeAndValue(Aliasee)) return true;
635   } else {
636     // The bitcast dest type is not present, it is implied by the dest type.
637     ValID ID;
638     if (ParseValID(ID)) return true;
639     if (ID.Kind != ValID::t_Constant)
640       return Error(AliaseeLoc, "invalid aliasee");
641     Aliasee = ID.ConstantVal;
642   }
643 
644   if (!Aliasee->getType()->isPointerTy())
645     return Error(AliaseeLoc, "alias must have pointer type");
646 
647   // Okay, create the alias but do not insert it into the module yet.
648   GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
649                                     (GlobalValue::LinkageTypes)Linkage, Name,
650                                     Aliasee);
651   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
652 
653   // See if this value already exists in the symbol table.  If so, it is either
654   // a redefinition or a definition of a forward reference.
655   if (GlobalValue *Val = M->getNamedValue(Name)) {
656     // See if this was a redefinition.  If so, there is no entry in
657     // ForwardRefVals.
658     std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
659       I = ForwardRefVals.find(Name);
660     if (I == ForwardRefVals.end())
661       return Error(NameLoc, "redefinition of global named '@" + Name + "'");
662 
663     // Otherwise, this was a definition of forward ref.  Verify that types
664     // agree.
665     if (Val->getType() != GA->getType())
666       return Error(NameLoc,
667               "forward reference and definition of alias have different types");
668 
669     // If they agree, just RAUW the old value with the alias and remove the
670     // forward ref info.
671     Val->replaceAllUsesWith(GA);
672     Val->eraseFromParent();
673     ForwardRefVals.erase(I);
674   }
675 
676   // Insert into the module, we know its name won't collide now.
677   M->getAliasList().push_back(GA);
678   assert(GA->getName() == Name && "Should not be a name conflict!");
679 
680   return false;
681 }
682 
683 /// ParseGlobal
684 ///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
685 ///       OptionalAddrSpace GlobalType Type Const
686 ///   ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
687 ///       OptionalAddrSpace GlobalType Type Const
688 ///
689 /// Everything through visibility has been parsed already.
690 ///
691 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
692                            unsigned Linkage, bool HasLinkage,
693                            unsigned Visibility) {
694   unsigned AddrSpace;
695   bool ThreadLocal, IsConstant;
696   LocTy TyLoc;
697 
698   PATypeHolder Ty(Type::getVoidTy(Context));
699   if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) ||
700       ParseOptionalAddrSpace(AddrSpace) ||
701       ParseGlobalType(IsConstant) ||
702       ParseType(Ty, TyLoc))
703     return true;
704 
705   // If the linkage is specified and is external, then no initializer is
706   // present.
707   Constant *Init = 0;
708   if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
709                       Linkage != GlobalValue::ExternalWeakLinkage &&
710                       Linkage != GlobalValue::ExternalLinkage)) {
711     if (ParseGlobalValue(Ty, Init))
712       return true;
713   }
714 
715   if (Ty->isFunctionTy() || Ty->isLabelTy())
716     return Error(TyLoc, "invalid type for global variable");
717 
718   GlobalVariable *GV = 0;
719 
720   // See if the global was forward referenced, if so, use the global.
721   if (!Name.empty()) {
722     if (GlobalValue *GVal = M->getNamedValue(Name)) {
723       if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal))
724         return Error(NameLoc, "redefinition of global '@" + Name + "'");
725       GV = cast<GlobalVariable>(GVal);
726     }
727   } else {
728     std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
729       I = ForwardRefValIDs.find(NumberedVals.size());
730     if (I != ForwardRefValIDs.end()) {
731       GV = cast<GlobalVariable>(I->second.first);
732       ForwardRefValIDs.erase(I);
733     }
734   }
735 
736   if (GV == 0) {
737     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0,
738                             Name, 0, false, AddrSpace);
739   } else {
740     if (GV->getType()->getElementType() != Ty)
741       return Error(TyLoc,
742             "forward reference and definition of global have different types");
743 
744     // Move the forward-reference to the correct spot in the module.
745     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
746   }
747 
748   if (Name.empty())
749     NumberedVals.push_back(GV);
750 
751   // Set the parsed properties on the global.
752   if (Init)
753     GV->setInitializer(Init);
754   GV->setConstant(IsConstant);
755   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
756   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
757   GV->setThreadLocal(ThreadLocal);
758 
759   // Parse attributes on the global.
760   while (Lex.getKind() == lltok::comma) {
761     Lex.Lex();
762 
763     if (Lex.getKind() == lltok::kw_section) {
764       Lex.Lex();
765       GV->setSection(Lex.getStrVal());
766       if (ParseToken(lltok::StringConstant, "expected global section string"))
767         return true;
768     } else if (Lex.getKind() == lltok::kw_align) {
769       unsigned Alignment;
770       if (ParseOptionalAlignment(Alignment)) return true;
771       GV->setAlignment(Alignment);
772     } else {
773       TokError("unknown global variable property!");
774     }
775   }
776 
777   return false;
778 }
779 
780 
781 //===----------------------------------------------------------------------===//
782 // GlobalValue Reference/Resolution Routines.
783 //===----------------------------------------------------------------------===//
784 
785 /// GetGlobalVal - Get a value with the specified name or ID, creating a
786 /// forward reference record if needed.  This can return null if the value
787 /// exists but does not have the right type.
788 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, const Type *Ty,
789                                     LocTy Loc) {
790   const PointerType *PTy = dyn_cast<PointerType>(Ty);
791   if (PTy == 0) {
792     Error(Loc, "global variable reference must have pointer type");
793     return 0;
794   }
795 
796   // Look this name up in the normal function symbol table.
797   GlobalValue *Val =
798     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
799 
800   // If this is a forward reference for the value, see if we already created a
801   // forward ref record.
802   if (Val == 0) {
803     std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
804       I = ForwardRefVals.find(Name);
805     if (I != ForwardRefVals.end())
806       Val = I->second.first;
807   }
808 
809   // If we have the value in the symbol table or fwd-ref table, return it.
810   if (Val) {
811     if (Val->getType() == Ty) return Val;
812     Error(Loc, "'@" + Name + "' defined with type '" +
813           Val->getType()->getDescription() + "'");
814     return 0;
815   }
816 
817   // Otherwise, create a new forward reference for this value and remember it.
818   GlobalValue *FwdVal;
819   if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
820     // Function types can return opaque but functions can't.
821     if (FT->getReturnType()->isOpaqueTy()) {
822       Error(Loc, "function may not return opaque type");
823       return 0;
824     }
825 
826     FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
827   } else {
828     FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
829                                 GlobalValue::ExternalWeakLinkage, 0, Name);
830   }
831 
832   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
833   return FwdVal;
834 }
835 
836 GlobalValue *LLParser::GetGlobalVal(unsigned ID, const Type *Ty, LocTy Loc) {
837   const PointerType *PTy = dyn_cast<PointerType>(Ty);
838   if (PTy == 0) {
839     Error(Loc, "global variable reference must have pointer type");
840     return 0;
841   }
842 
843   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
844 
845   // If this is a forward reference for the value, see if we already created a
846   // forward ref record.
847   if (Val == 0) {
848     std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
849       I = ForwardRefValIDs.find(ID);
850     if (I != ForwardRefValIDs.end())
851       Val = I->second.first;
852   }
853 
854   // If we have the value in the symbol table or fwd-ref table, return it.
855   if (Val) {
856     if (Val->getType() == Ty) return Val;
857     Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
858           Val->getType()->getDescription() + "'");
859     return 0;
860   }
861 
862   // Otherwise, create a new forward reference for this value and remember it.
863   GlobalValue *FwdVal;
864   if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
865     // Function types can return opaque but functions can't.
866     if (FT->getReturnType()->isOpaqueTy()) {
867       Error(Loc, "function may not return opaque type");
868       return 0;
869     }
870     FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
871   } else {
872     FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
873                                 GlobalValue::ExternalWeakLinkage, 0, "");
874   }
875 
876   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
877   return FwdVal;
878 }
879 
880 
881 //===----------------------------------------------------------------------===//
882 // Helper Routines.
883 //===----------------------------------------------------------------------===//
884 
885 /// ParseToken - If the current token has the specified kind, eat it and return
886 /// success.  Otherwise, emit the specified error and return failure.
887 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
888   if (Lex.getKind() != T)
889     return TokError(ErrMsg);
890   Lex.Lex();
891   return false;
892 }
893 
894 /// ParseStringConstant
895 ///   ::= StringConstant
896 bool LLParser::ParseStringConstant(std::string &Result) {
897   if (Lex.getKind() != lltok::StringConstant)
898     return TokError("expected string constant");
899   Result = Lex.getStrVal();
900   Lex.Lex();
901   return false;
902 }
903 
904 /// ParseUInt32
905 ///   ::= uint32
906 bool LLParser::ParseUInt32(unsigned &Val) {
907   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
908     return TokError("expected integer");
909   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
910   if (Val64 != unsigned(Val64))
911     return TokError("expected 32-bit integer (too large)");
912   Val = Val64;
913   Lex.Lex();
914   return false;
915 }
916 
917 
918 /// ParseOptionalAddrSpace
919 ///   := /*empty*/
920 ///   := 'addrspace' '(' uint32 ')'
921 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
922   AddrSpace = 0;
923   if (!EatIfPresent(lltok::kw_addrspace))
924     return false;
925   return ParseToken(lltok::lparen, "expected '(' in address space") ||
926          ParseUInt32(AddrSpace) ||
927          ParseToken(lltok::rparen, "expected ')' in address space");
928 }
929 
930 /// ParseOptionalAttrs - Parse a potentially empty attribute list.  AttrKind
931 /// indicates what kind of attribute list this is: 0: function arg, 1: result,
932 /// 2: function attr.
933 /// 3: function arg after value: FIXME: REMOVE IN LLVM 3.0
934 bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) {
935   Attrs = Attribute::None;
936   LocTy AttrLoc = Lex.getLoc();
937 
938   while (1) {
939     switch (Lex.getKind()) {
940     case lltok::kw_sext:
941     case lltok::kw_zext:
942       // Treat these as signext/zeroext if they occur in the argument list after
943       // the value, as in "call i8 @foo(i8 10 sext)".  If they occur before the
944       // value, as in "call i8 @foo(i8 sext (" then it is part of a constant
945       // expr.
946       // FIXME: REMOVE THIS IN LLVM 3.0
947       if (AttrKind == 3) {
948         if (Lex.getKind() == lltok::kw_sext)
949           Attrs |= Attribute::SExt;
950         else
951           Attrs |= Attribute::ZExt;
952         break;
953       }
954       // FALL THROUGH.
955     default:  // End of attributes.
956       if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly))
957         return Error(AttrLoc, "invalid use of function-only attribute");
958 
959       if (AttrKind != 0 && AttrKind != 3 && (Attrs & Attribute::ParameterOnly))
960         return Error(AttrLoc, "invalid use of parameter-only attribute");
961 
962       return false;
963     case lltok::kw_zeroext:         Attrs |= Attribute::ZExt; break;
964     case lltok::kw_signext:         Attrs |= Attribute::SExt; break;
965     case lltok::kw_inreg:           Attrs |= Attribute::InReg; break;
966     case lltok::kw_sret:            Attrs |= Attribute::StructRet; break;
967     case lltok::kw_noalias:         Attrs |= Attribute::NoAlias; break;
968     case lltok::kw_nocapture:       Attrs |= Attribute::NoCapture; break;
969     case lltok::kw_byval:           Attrs |= Attribute::ByVal; break;
970     case lltok::kw_nest:            Attrs |= Attribute::Nest; break;
971 
972     case lltok::kw_noreturn:        Attrs |= Attribute::NoReturn; break;
973     case lltok::kw_nounwind:        Attrs |= Attribute::NoUnwind; break;
974     case lltok::kw_noinline:        Attrs |= Attribute::NoInline; break;
975     case lltok::kw_readnone:        Attrs |= Attribute::ReadNone; break;
976     case lltok::kw_readonly:        Attrs |= Attribute::ReadOnly; break;
977     case lltok::kw_inlinehint:      Attrs |= Attribute::InlineHint; break;
978     case lltok::kw_alwaysinline:    Attrs |= Attribute::AlwaysInline; break;
979     case lltok::kw_optsize:         Attrs |= Attribute::OptimizeForSize; break;
980     case lltok::kw_ssp:             Attrs |= Attribute::StackProtect; break;
981     case lltok::kw_sspreq:          Attrs |= Attribute::StackProtectReq; break;
982     case lltok::kw_noredzone:       Attrs |= Attribute::NoRedZone; break;
983     case lltok::kw_noimplicitfloat: Attrs |= Attribute::NoImplicitFloat; break;
984     case lltok::kw_naked:           Attrs |= Attribute::Naked; break;
985 
986     case lltok::kw_alignstack: {
987       unsigned Alignment;
988       if (ParseOptionalStackAlignment(Alignment))
989         return true;
990       Attrs |= Attribute::constructStackAlignmentFromInt(Alignment);
991       continue;
992     }
993 
994     case lltok::kw_align: {
995       unsigned Alignment;
996       if (ParseOptionalAlignment(Alignment))
997         return true;
998       Attrs |= Attribute::constructAlignmentFromInt(Alignment);
999       continue;
1000     }
1001 
1002     }
1003     Lex.Lex();
1004   }
1005 }
1006 
1007 /// ParseOptionalLinkage
1008 ///   ::= /*empty*/
1009 ///   ::= 'private'
1010 ///   ::= 'linker_private'
1011 ///   ::= 'linker_private_weak'
1012 ///   ::= 'linker_private_weak_def_auto'
1013 ///   ::= 'internal'
1014 ///   ::= 'weak'
1015 ///   ::= 'weak_odr'
1016 ///   ::= 'linkonce'
1017 ///   ::= 'linkonce_odr'
1018 ///   ::= 'available_externally'
1019 ///   ::= 'appending'
1020 ///   ::= 'dllexport'
1021 ///   ::= 'common'
1022 ///   ::= 'dllimport'
1023 ///   ::= 'extern_weak'
1024 ///   ::= 'external'
1025 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
1026   HasLinkage = false;
1027   switch (Lex.getKind()) {
1028   default:                       Res=GlobalValue::ExternalLinkage; return false;
1029   case lltok::kw_private:        Res = GlobalValue::PrivateLinkage;       break;
1030   case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break;
1031   case lltok::kw_linker_private_weak:
1032     Res = GlobalValue::LinkerPrivateWeakLinkage;
1033     break;
1034   case lltok::kw_linker_private_weak_def_auto:
1035     Res = GlobalValue::LinkerPrivateWeakDefAutoLinkage;
1036     break;
1037   case lltok::kw_internal:       Res = GlobalValue::InternalLinkage;      break;
1038   case lltok::kw_weak:           Res = GlobalValue::WeakAnyLinkage;       break;
1039   case lltok::kw_weak_odr:       Res = GlobalValue::WeakODRLinkage;       break;
1040   case lltok::kw_linkonce:       Res = GlobalValue::LinkOnceAnyLinkage;   break;
1041   case lltok::kw_linkonce_odr:   Res = GlobalValue::LinkOnceODRLinkage;   break;
1042   case lltok::kw_available_externally:
1043     Res = GlobalValue::AvailableExternallyLinkage;
1044     break;
1045   case lltok::kw_appending:      Res = GlobalValue::AppendingLinkage;     break;
1046   case lltok::kw_dllexport:      Res = GlobalValue::DLLExportLinkage;     break;
1047   case lltok::kw_common:         Res = GlobalValue::CommonLinkage;        break;
1048   case lltok::kw_dllimport:      Res = GlobalValue::DLLImportLinkage;     break;
1049   case lltok::kw_extern_weak:    Res = GlobalValue::ExternalWeakLinkage;  break;
1050   case lltok::kw_external:       Res = GlobalValue::ExternalLinkage;      break;
1051   }
1052   Lex.Lex();
1053   HasLinkage = true;
1054   return false;
1055 }
1056 
1057 /// ParseOptionalVisibility
1058 ///   ::= /*empty*/
1059 ///   ::= 'default'
1060 ///   ::= 'hidden'
1061 ///   ::= 'protected'
1062 ///
1063 bool LLParser::ParseOptionalVisibility(unsigned &Res) {
1064   switch (Lex.getKind()) {
1065   default:                  Res = GlobalValue::DefaultVisibility; return false;
1066   case lltok::kw_default:   Res = GlobalValue::DefaultVisibility; break;
1067   case lltok::kw_hidden:    Res = GlobalValue::HiddenVisibility; break;
1068   case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
1069   }
1070   Lex.Lex();
1071   return false;
1072 }
1073 
1074 /// ParseOptionalCallingConv
1075 ///   ::= /*empty*/
1076 ///   ::= 'ccc'
1077 ///   ::= 'fastcc'
1078 ///   ::= 'coldcc'
1079 ///   ::= 'x86_stdcallcc'
1080 ///   ::= 'x86_fastcallcc'
1081 ///   ::= 'x86_thiscallcc'
1082 ///   ::= 'arm_apcscc'
1083 ///   ::= 'arm_aapcscc'
1084 ///   ::= 'arm_aapcs_vfpcc'
1085 ///   ::= 'msp430_intrcc'
1086 ///   ::= 'ptx_kernel'
1087 ///   ::= 'ptx_device'
1088 ///   ::= 'cc' UINT
1089 ///
1090 bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) {
1091   switch (Lex.getKind()) {
1092   default:                       CC = CallingConv::C; return false;
1093   case lltok::kw_ccc:            CC = CallingConv::C; break;
1094   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1095   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1096   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1097   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1098   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1099   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1100   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1101   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1102   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1103   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1104   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1105   case lltok::kw_cc: {
1106       unsigned ArbitraryCC;
1107       Lex.Lex();
1108       if (ParseUInt32(ArbitraryCC)) {
1109         return true;
1110       } else
1111         CC = static_cast<CallingConv::ID>(ArbitraryCC);
1112         return false;
1113     }
1114     break;
1115   }
1116 
1117   Lex.Lex();
1118   return false;
1119 }
1120 
1121 /// ParseInstructionMetadata
1122 ///   ::= !dbg !42 (',' !dbg !57)*
1123 bool LLParser::ParseInstructionMetadata(Instruction *Inst,
1124                                         PerFunctionState *PFS) {
1125   do {
1126     if (Lex.getKind() != lltok::MetadataVar)
1127       return TokError("expected metadata after comma");
1128 
1129     std::string Name = Lex.getStrVal();
1130     unsigned MDK = M->getMDKindID(Name.c_str());
1131     Lex.Lex();
1132 
1133     MDNode *Node;
1134     SMLoc Loc = Lex.getLoc();
1135 
1136     if (ParseToken(lltok::exclaim, "expected '!' here"))
1137       return true;
1138 
1139     // This code is similar to that of ParseMetadataValue, however it needs to
1140     // have special-case code for a forward reference; see the comments on
1141     // ForwardRefInstMetadata for details. Also, MDStrings are not supported
1142     // at the top level here.
1143     if (Lex.getKind() == lltok::lbrace) {
1144       ValID ID;
1145       if (ParseMetadataListValue(ID, PFS))
1146         return true;
1147       assert(ID.Kind == ValID::t_MDNode);
1148       Inst->setMetadata(MDK, ID.MDNodeVal);
1149     } else {
1150       unsigned NodeID = 0;
1151       if (ParseMDNodeID(Node, NodeID))
1152         return true;
1153       if (Node) {
1154         // If we got the node, add it to the instruction.
1155         Inst->setMetadata(MDK, Node);
1156       } else {
1157         MDRef R = { Loc, MDK, NodeID };
1158         // Otherwise, remember that this should be resolved later.
1159         ForwardRefInstMetadata[Inst].push_back(R);
1160       }
1161     }
1162 
1163     // If this is the end of the list, we're done.
1164   } while (EatIfPresent(lltok::comma));
1165   return false;
1166 }
1167 
1168 /// ParseOptionalAlignment
1169 ///   ::= /* empty */
1170 ///   ::= 'align' 4
1171 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1172   Alignment = 0;
1173   if (!EatIfPresent(lltok::kw_align))
1174     return false;
1175   LocTy AlignLoc = Lex.getLoc();
1176   if (ParseUInt32(Alignment)) return true;
1177   if (!isPowerOf2_32(Alignment))
1178     return Error(AlignLoc, "alignment is not a power of two");
1179   if (Alignment > Value::MaximumAlignment)
1180     return Error(AlignLoc, "huge alignments are not supported yet");
1181   return false;
1182 }
1183 
1184 /// ParseOptionalCommaAlign
1185 ///   ::=
1186 ///   ::= ',' align 4
1187 ///
1188 /// This returns with AteExtraComma set to true if it ate an excess comma at the
1189 /// end.
1190 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
1191                                        bool &AteExtraComma) {
1192   AteExtraComma = false;
1193   while (EatIfPresent(lltok::comma)) {
1194     // Metadata at the end is an early exit.
1195     if (Lex.getKind() == lltok::MetadataVar) {
1196       AteExtraComma = true;
1197       return false;
1198     }
1199 
1200     if (Lex.getKind() != lltok::kw_align)
1201       return Error(Lex.getLoc(), "expected metadata or 'align'");
1202 
1203     if (ParseOptionalAlignment(Alignment)) return true;
1204   }
1205 
1206   return false;
1207 }
1208 
1209 /// ParseOptionalStackAlignment
1210 ///   ::= /* empty */
1211 ///   ::= 'alignstack' '(' 4 ')'
1212 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
1213   Alignment = 0;
1214   if (!EatIfPresent(lltok::kw_alignstack))
1215     return false;
1216   LocTy ParenLoc = Lex.getLoc();
1217   if (!EatIfPresent(lltok::lparen))
1218     return Error(ParenLoc, "expected '('");
1219   LocTy AlignLoc = Lex.getLoc();
1220   if (ParseUInt32(Alignment)) return true;
1221   ParenLoc = Lex.getLoc();
1222   if (!EatIfPresent(lltok::rparen))
1223     return Error(ParenLoc, "expected ')'");
1224   if (!isPowerOf2_32(Alignment))
1225     return Error(AlignLoc, "stack alignment is not a power of two");
1226   return false;
1227 }
1228 
1229 /// ParseIndexList - This parses the index list for an insert/extractvalue
1230 /// instruction.  This sets AteExtraComma in the case where we eat an extra
1231 /// comma at the end of the line and find that it is followed by metadata.
1232 /// Clients that don't allow metadata can call the version of this function that
1233 /// only takes one argument.
1234 ///
1235 /// ParseIndexList
1236 ///    ::=  (',' uint32)+
1237 ///
1238 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
1239                               bool &AteExtraComma) {
1240   AteExtraComma = false;
1241 
1242   if (Lex.getKind() != lltok::comma)
1243     return TokError("expected ',' as start of index list");
1244 
1245   while (EatIfPresent(lltok::comma)) {
1246     if (Lex.getKind() == lltok::MetadataVar) {
1247       AteExtraComma = true;
1248       return false;
1249     }
1250     unsigned Idx = 0;
1251     if (ParseUInt32(Idx)) return true;
1252     Indices.push_back(Idx);
1253   }
1254 
1255   return false;
1256 }
1257 
1258 //===----------------------------------------------------------------------===//
1259 // Type Parsing.
1260 //===----------------------------------------------------------------------===//
1261 
1262 /// ParseType - Parse and resolve a full type.
1263 bool LLParser::ParseType(PATypeHolder &Result, bool AllowVoid) {
1264   LocTy TypeLoc = Lex.getLoc();
1265   if (ParseTypeRec(Result)) return true;
1266 
1267   // Verify no unresolved uprefs.
1268   if (!UpRefs.empty())
1269     return Error(UpRefs.back().Loc, "invalid unresolved type up reference");
1270 
1271   if (!AllowVoid && Result.get()->isVoidTy())
1272     return Error(TypeLoc, "void type only allowed for function results");
1273 
1274   return false;
1275 }
1276 
1277 /// HandleUpRefs - Every time we finish a new layer of types, this function is
1278 /// called.  It loops through the UpRefs vector, which is a list of the
1279 /// currently active types.  For each type, if the up-reference is contained in
1280 /// the newly completed type, we decrement the level count.  When the level
1281 /// count reaches zero, the up-referenced type is the type that is passed in:
1282 /// thus we can complete the cycle.
1283 ///
1284 PATypeHolder LLParser::HandleUpRefs(const Type *ty) {
1285   // If Ty isn't abstract, or if there are no up-references in it, then there is
1286   // nothing to resolve here.
1287   if (!ty->isAbstract() || UpRefs.empty()) return ty;
1288 
1289   PATypeHolder Ty(ty);
1290 #if 0
1291   dbgs() << "Type '" << Ty->getDescription()
1292          << "' newly formed.  Resolving upreferences.\n"
1293          << UpRefs.size() << " upreferences active!\n";
1294 #endif
1295 
1296   // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
1297   // to zero), we resolve them all together before we resolve them to Ty.  At
1298   // the end of the loop, if there is anything to resolve to Ty, it will be in
1299   // this variable.
1300   OpaqueType *TypeToResolve = 0;
1301 
1302   for (unsigned i = 0; i != UpRefs.size(); ++i) {
1303     // Determine if 'Ty' directly contains this up-references 'LastContainedTy'.
1304     bool ContainsType =
1305       std::find(Ty->subtype_begin(), Ty->subtype_end(),
1306                 UpRefs[i].LastContainedTy) != Ty->subtype_end();
1307 
1308 #if 0
1309     dbgs() << "  UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
1310            << UpRefs[i].LastContainedTy->getDescription() << ") = "
1311            << (ContainsType ? "true" : "false")
1312            << " level=" << UpRefs[i].NestingLevel << "\n";
1313 #endif
1314     if (!ContainsType)
1315       continue;
1316 
1317     // Decrement level of upreference
1318     unsigned Level = --UpRefs[i].NestingLevel;
1319     UpRefs[i].LastContainedTy = Ty;
1320 
1321     // If the Up-reference has a non-zero level, it shouldn't be resolved yet.
1322     if (Level != 0)
1323       continue;
1324 
1325 #if 0
1326     dbgs() << "  * Resolving upreference for " << UpRefs[i].UpRefTy << "\n";
1327 #endif
1328     if (!TypeToResolve)
1329       TypeToResolve = UpRefs[i].UpRefTy;
1330     else
1331       UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
1332     UpRefs.erase(UpRefs.begin()+i);     // Remove from upreference list.
1333     --i;                                // Do not skip the next element.
1334   }
1335 
1336   if (TypeToResolve)
1337     TypeToResolve->refineAbstractTypeTo(Ty);
1338 
1339   return Ty;
1340 }
1341 
1342 
1343 /// ParseTypeRec - The recursive function used to process the internal
1344 /// implementation details of types.
1345 bool LLParser::ParseTypeRec(PATypeHolder &Result) {
1346   switch (Lex.getKind()) {
1347   default:
1348     return TokError("expected type");
1349   case lltok::Type:
1350     // TypeRec ::= 'float' | 'void' (etc)
1351     Result = Lex.getTyVal();
1352     Lex.Lex();
1353     break;
1354   case lltok::kw_opaque:
1355     // TypeRec ::= 'opaque'
1356     Result = OpaqueType::get(Context);
1357     Lex.Lex();
1358     break;
1359   case lltok::lbrace:
1360     // TypeRec ::= '{' ... '}'
1361     if (ParseStructType(Result, false))
1362       return true;
1363     break;
1364   case lltok::lsquare:
1365     // TypeRec ::= '[' ... ']'
1366     Lex.Lex(); // eat the lsquare.
1367     if (ParseArrayVectorType(Result, false))
1368       return true;
1369     break;
1370   case lltok::less: // Either vector or packed struct.
1371     // TypeRec ::= '<' ... '>'
1372     Lex.Lex();
1373     if (Lex.getKind() == lltok::lbrace) {
1374       if (ParseStructType(Result, true) ||
1375           ParseToken(lltok::greater, "expected '>' at end of packed struct"))
1376         return true;
1377     } else if (ParseArrayVectorType(Result, true))
1378       return true;
1379     break;
1380   case lltok::LocalVar:
1381   case lltok::StringConstant:  // FIXME: REMOVE IN LLVM 3.0
1382     // TypeRec ::= %foo
1383     if (const Type *T = M->getTypeByName(Lex.getStrVal())) {
1384       Result = T;
1385     } else {
1386       Result = OpaqueType::get(Context);
1387       ForwardRefTypes.insert(std::make_pair(Lex.getStrVal(),
1388                                             std::make_pair(Result,
1389                                                            Lex.getLoc())));
1390       M->addTypeName(Lex.getStrVal(), Result.get());
1391     }
1392     Lex.Lex();
1393     break;
1394 
1395   case lltok::LocalVarID:
1396     // TypeRec ::= %4
1397     if (Lex.getUIntVal() < NumberedTypes.size())
1398       Result = NumberedTypes[Lex.getUIntVal()];
1399     else {
1400       std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
1401         I = ForwardRefTypeIDs.find(Lex.getUIntVal());
1402       if (I != ForwardRefTypeIDs.end())
1403         Result = I->second.first;
1404       else {
1405         Result = OpaqueType::get(Context);
1406         ForwardRefTypeIDs.insert(std::make_pair(Lex.getUIntVal(),
1407                                                 std::make_pair(Result,
1408                                                                Lex.getLoc())));
1409       }
1410     }
1411     Lex.Lex();
1412     break;
1413   case lltok::backslash: {
1414     // TypeRec ::= '\' 4
1415     Lex.Lex();
1416     unsigned Val;
1417     if (ParseUInt32(Val)) return true;
1418     OpaqueType *OT = OpaqueType::get(Context); //Use temporary placeholder.
1419     UpRefs.push_back(UpRefRecord(Lex.getLoc(), Val, OT));
1420     Result = OT;
1421     break;
1422   }
1423   }
1424 
1425   // Parse the type suffixes.
1426   while (1) {
1427     switch (Lex.getKind()) {
1428     // End of type.
1429     default: return false;
1430 
1431     // TypeRec ::= TypeRec '*'
1432     case lltok::star:
1433       if (Result.get()->isLabelTy())
1434         return TokError("basic block pointers are invalid");
1435       if (Result.get()->isVoidTy())
1436         return TokError("pointers to void are invalid; use i8* instead");
1437       if (!PointerType::isValidElementType(Result.get()))
1438         return TokError("pointer to this type is invalid");
1439       Result = HandleUpRefs(PointerType::getUnqual(Result.get()));
1440       Lex.Lex();
1441       break;
1442 
1443     // TypeRec ::= TypeRec 'addrspace' '(' uint32 ')' '*'
1444     case lltok::kw_addrspace: {
1445       if (Result.get()->isLabelTy())
1446         return TokError("basic block pointers are invalid");
1447       if (Result.get()->isVoidTy())
1448         return TokError("pointers to void are invalid; use i8* instead");
1449       if (!PointerType::isValidElementType(Result.get()))
1450         return TokError("pointer to this type is invalid");
1451       unsigned AddrSpace;
1452       if (ParseOptionalAddrSpace(AddrSpace) ||
1453           ParseToken(lltok::star, "expected '*' in address space"))
1454         return true;
1455 
1456       Result = HandleUpRefs(PointerType::get(Result.get(), AddrSpace));
1457       break;
1458     }
1459 
1460     /// Types '(' ArgTypeListI ')' OptFuncAttrs
1461     case lltok::lparen:
1462       if (ParseFunctionType(Result))
1463         return true;
1464       break;
1465     }
1466   }
1467 }
1468 
1469 /// ParseParameterList
1470 ///    ::= '(' ')'
1471 ///    ::= '(' Arg (',' Arg)* ')'
1472 ///  Arg
1473 ///    ::= Type OptionalAttributes Value OptionalAttributes
1474 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1475                                   PerFunctionState &PFS) {
1476   if (ParseToken(lltok::lparen, "expected '(' in call"))
1477     return true;
1478 
1479   while (Lex.getKind() != lltok::rparen) {
1480     // If this isn't the first argument, we need a comma.
1481     if (!ArgList.empty() &&
1482         ParseToken(lltok::comma, "expected ',' in argument list"))
1483       return true;
1484 
1485     // Parse the argument.
1486     LocTy ArgLoc;
1487     PATypeHolder ArgTy(Type::getVoidTy(Context));
1488     unsigned ArgAttrs1 = Attribute::None;
1489     unsigned ArgAttrs2 = Attribute::None;
1490     Value *V;
1491     if (ParseType(ArgTy, ArgLoc))
1492       return true;
1493 
1494     // Otherwise, handle normal operands.
1495     if (ParseOptionalAttrs(ArgAttrs1, 0) ||
1496         ParseValue(ArgTy, V, PFS) ||
1497         // FIXME: Should not allow attributes after the argument, remove this
1498         // in LLVM 3.0.
1499         ParseOptionalAttrs(ArgAttrs2, 3))
1500       return true;
1501     ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2));
1502   }
1503 
1504   Lex.Lex();  // Lex the ')'.
1505   return false;
1506 }
1507 
1508 
1509 
1510 /// ParseArgumentList - Parse the argument list for a function type or function
1511 /// prototype.  If 'inType' is true then we are parsing a FunctionType.
1512 ///   ::= '(' ArgTypeListI ')'
1513 /// ArgTypeListI
1514 ///   ::= /*empty*/
1515 ///   ::= '...'
1516 ///   ::= ArgTypeList ',' '...'
1517 ///   ::= ArgType (',' ArgType)*
1518 ///
1519 bool LLParser::ParseArgumentList(std::vector<ArgInfo> &ArgList,
1520                                  bool &isVarArg, bool inType) {
1521   isVarArg = false;
1522   assert(Lex.getKind() == lltok::lparen);
1523   Lex.Lex(); // eat the (.
1524 
1525   if (Lex.getKind() == lltok::rparen) {
1526     // empty
1527   } else if (Lex.getKind() == lltok::dotdotdot) {
1528     isVarArg = true;
1529     Lex.Lex();
1530   } else {
1531     LocTy TypeLoc = Lex.getLoc();
1532     PATypeHolder ArgTy(Type::getVoidTy(Context));
1533     unsigned Attrs;
1534     std::string Name;
1535 
1536     // If we're parsing a type, use ParseTypeRec, because we allow recursive
1537     // types (such as a function returning a pointer to itself).  If parsing a
1538     // function prototype, we require fully resolved types.
1539     if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1540         ParseOptionalAttrs(Attrs, 0)) return true;
1541 
1542     if (ArgTy->isVoidTy())
1543       return Error(TypeLoc, "argument can not have void type");
1544 
1545     if (Lex.getKind() == lltok::LocalVar ||
1546         Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1547       Name = Lex.getStrVal();
1548       Lex.Lex();
1549     }
1550 
1551     if (!FunctionType::isValidArgumentType(ArgTy))
1552       return Error(TypeLoc, "invalid type for function argument");
1553 
1554     ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1555 
1556     while (EatIfPresent(lltok::comma)) {
1557       // Handle ... at end of arg list.
1558       if (EatIfPresent(lltok::dotdotdot)) {
1559         isVarArg = true;
1560         break;
1561       }
1562 
1563       // Otherwise must be an argument type.
1564       TypeLoc = Lex.getLoc();
1565       if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1566           ParseOptionalAttrs(Attrs, 0)) return true;
1567 
1568       if (ArgTy->isVoidTy())
1569         return Error(TypeLoc, "argument can not have void type");
1570 
1571       if (Lex.getKind() == lltok::LocalVar ||
1572           Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1573         Name = Lex.getStrVal();
1574         Lex.Lex();
1575       } else {
1576         Name = "";
1577       }
1578 
1579       if (!ArgTy->isFirstClassType() && !ArgTy->isOpaqueTy())
1580         return Error(TypeLoc, "invalid type for function argument");
1581 
1582       ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1583     }
1584   }
1585 
1586   return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1587 }
1588 
1589 /// ParseFunctionType
1590 ///  ::= Type ArgumentList OptionalAttrs
1591 bool LLParser::ParseFunctionType(PATypeHolder &Result) {
1592   assert(Lex.getKind() == lltok::lparen);
1593 
1594   if (!FunctionType::isValidReturnType(Result))
1595     return TokError("invalid function return type");
1596 
1597   std::vector<ArgInfo> ArgList;
1598   bool isVarArg;
1599   unsigned Attrs;
1600   if (ParseArgumentList(ArgList, isVarArg, true) ||
1601       // FIXME: Allow, but ignore attributes on function types!
1602       // FIXME: Remove in LLVM 3.0
1603       ParseOptionalAttrs(Attrs, 2))
1604     return true;
1605 
1606   // Reject names on the arguments lists.
1607   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1608     if (!ArgList[i].Name.empty())
1609       return Error(ArgList[i].Loc, "argument name invalid in function type");
1610     if (!ArgList[i].Attrs != 0) {
1611       // Allow but ignore attributes on function types; this permits
1612       // auto-upgrade.
1613       // FIXME: REJECT ATTRIBUTES ON FUNCTION TYPES in LLVM 3.0
1614     }
1615   }
1616 
1617   std::vector<const Type*> ArgListTy;
1618   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1619     ArgListTy.push_back(ArgList[i].Type);
1620 
1621   Result = HandleUpRefs(FunctionType::get(Result.get(),
1622                                                 ArgListTy, isVarArg));
1623   return false;
1624 }
1625 
1626 /// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
1627 ///   TypeRec
1628 ///     ::= '{' '}'
1629 ///     ::= '{' TypeRec (',' TypeRec)* '}'
1630 ///     ::= '<' '{' '}' '>'
1631 ///     ::= '<' '{' TypeRec (',' TypeRec)* '}' '>'
1632 bool LLParser::ParseStructType(PATypeHolder &Result, bool Packed) {
1633   assert(Lex.getKind() == lltok::lbrace);
1634   Lex.Lex(); // Consume the '{'
1635 
1636   if (EatIfPresent(lltok::rbrace)) {
1637     Result = StructType::get(Context, Packed);
1638     return false;
1639   }
1640 
1641   std::vector<PATypeHolder> ParamsList;
1642   LocTy EltTyLoc = Lex.getLoc();
1643   if (ParseTypeRec(Result)) return true;
1644   ParamsList.push_back(Result);
1645 
1646   if (Result->isVoidTy())
1647     return Error(EltTyLoc, "struct element can not have void type");
1648   if (!StructType::isValidElementType(Result))
1649     return Error(EltTyLoc, "invalid element type for struct");
1650 
1651   while (EatIfPresent(lltok::comma)) {
1652     EltTyLoc = Lex.getLoc();
1653     if (ParseTypeRec(Result)) return true;
1654 
1655     if (Result->isVoidTy())
1656       return Error(EltTyLoc, "struct element can not have void type");
1657     if (!StructType::isValidElementType(Result))
1658       return Error(EltTyLoc, "invalid element type for struct");
1659 
1660     ParamsList.push_back(Result);
1661   }
1662 
1663   if (ParseToken(lltok::rbrace, "expected '}' at end of struct"))
1664     return true;
1665 
1666   std::vector<const Type*> ParamsListTy;
1667   for (unsigned i = 0, e = ParamsList.size(); i != e; ++i)
1668     ParamsListTy.push_back(ParamsList[i].get());
1669   Result = HandleUpRefs(StructType::get(Context, ParamsListTy, Packed));
1670   return false;
1671 }
1672 
1673 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
1674 /// token has already been consumed.
1675 ///   TypeRec
1676 ///     ::= '[' APSINTVAL 'x' Types ']'
1677 ///     ::= '<' APSINTVAL 'x' Types '>'
1678 bool LLParser::ParseArrayVectorType(PATypeHolder &Result, bool isVector) {
1679   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1680       Lex.getAPSIntVal().getBitWidth() > 64)
1681     return TokError("expected number in address space");
1682 
1683   LocTy SizeLoc = Lex.getLoc();
1684   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
1685   Lex.Lex();
1686 
1687   if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1688       return true;
1689 
1690   LocTy TypeLoc = Lex.getLoc();
1691   PATypeHolder EltTy(Type::getVoidTy(Context));
1692   if (ParseTypeRec(EltTy)) return true;
1693 
1694   if (EltTy->isVoidTy())
1695     return Error(TypeLoc, "array and vector element type cannot be void");
1696 
1697   if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1698                  "expected end of sequential type"))
1699     return true;
1700 
1701   if (isVector) {
1702     if (Size == 0)
1703       return Error(SizeLoc, "zero element vector is illegal");
1704     if ((unsigned)Size != Size)
1705       return Error(SizeLoc, "size too large for vector");
1706     if (!VectorType::isValidElementType(EltTy))
1707       return Error(TypeLoc, "vector element type must be fp or integer");
1708     Result = VectorType::get(EltTy, unsigned(Size));
1709   } else {
1710     if (!ArrayType::isValidElementType(EltTy))
1711       return Error(TypeLoc, "invalid array element type");
1712     Result = HandleUpRefs(ArrayType::get(EltTy, Size));
1713   }
1714   return false;
1715 }
1716 
1717 //===----------------------------------------------------------------------===//
1718 // Function Semantic Analysis.
1719 //===----------------------------------------------------------------------===//
1720 
1721 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
1722                                              int functionNumber)
1723   : P(p), F(f), FunctionNumber(functionNumber) {
1724 
1725   // Insert unnamed arguments into the NumberedVals list.
1726   for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1727        AI != E; ++AI)
1728     if (!AI->hasName())
1729       NumberedVals.push_back(AI);
1730 }
1731 
1732 LLParser::PerFunctionState::~PerFunctionState() {
1733   // If there were any forward referenced non-basicblock values, delete them.
1734   for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1735        I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1736     if (!isa<BasicBlock>(I->second.first)) {
1737       I->second.first->replaceAllUsesWith(
1738                            UndefValue::get(I->second.first->getType()));
1739       delete I->second.first;
1740       I->second.first = 0;
1741     }
1742 
1743   for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1744        I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1745     if (!isa<BasicBlock>(I->second.first)) {
1746       I->second.first->replaceAllUsesWith(
1747                            UndefValue::get(I->second.first->getType()));
1748       delete I->second.first;
1749       I->second.first = 0;
1750     }
1751 }
1752 
1753 bool LLParser::PerFunctionState::FinishFunction() {
1754   // Check to see if someone took the address of labels in this block.
1755   if (!P.ForwardRefBlockAddresses.empty()) {
1756     ValID FunctionID;
1757     if (!F.getName().empty()) {
1758       FunctionID.Kind = ValID::t_GlobalName;
1759       FunctionID.StrVal = F.getName();
1760     } else {
1761       FunctionID.Kind = ValID::t_GlobalID;
1762       FunctionID.UIntVal = FunctionNumber;
1763     }
1764 
1765     std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >::iterator
1766       FRBAI = P.ForwardRefBlockAddresses.find(FunctionID);
1767     if (FRBAI != P.ForwardRefBlockAddresses.end()) {
1768       // Resolve all these references.
1769       if (P.ResolveForwardRefBlockAddresses(&F, FRBAI->second, this))
1770         return true;
1771 
1772       P.ForwardRefBlockAddresses.erase(FRBAI);
1773     }
1774   }
1775 
1776   if (!ForwardRefVals.empty())
1777     return P.Error(ForwardRefVals.begin()->second.second,
1778                    "use of undefined value '%" + ForwardRefVals.begin()->first +
1779                    "'");
1780   if (!ForwardRefValIDs.empty())
1781     return P.Error(ForwardRefValIDs.begin()->second.second,
1782                    "use of undefined value '%" +
1783                    Twine(ForwardRefValIDs.begin()->first) + "'");
1784   return false;
1785 }
1786 
1787 
1788 /// GetVal - Get a value with the specified name or ID, creating a
1789 /// forward reference record if needed.  This can return null if the value
1790 /// exists but does not have the right type.
1791 Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
1792                                           const Type *Ty, LocTy Loc) {
1793   // Look this name up in the normal function symbol table.
1794   Value *Val = F.getValueSymbolTable().lookup(Name);
1795 
1796   // If this is a forward reference for the value, see if we already created a
1797   // forward ref record.
1798   if (Val == 0) {
1799     std::map<std::string, std::pair<Value*, LocTy> >::iterator
1800       I = ForwardRefVals.find(Name);
1801     if (I != ForwardRefVals.end())
1802       Val = I->second.first;
1803   }
1804 
1805   // If we have the value in the symbol table or fwd-ref table, return it.
1806   if (Val) {
1807     if (Val->getType() == Ty) return Val;
1808     if (Ty->isLabelTy())
1809       P.Error(Loc, "'%" + Name + "' is not a basic block");
1810     else
1811       P.Error(Loc, "'%" + Name + "' defined with type '" +
1812               Val->getType()->getDescription() + "'");
1813     return 0;
1814   }
1815 
1816   // Don't make placeholders with invalid type.
1817   if (!Ty->isFirstClassType() && !Ty->isOpaqueTy() && !Ty->isLabelTy()) {
1818     P.Error(Loc, "invalid use of a non-first-class type");
1819     return 0;
1820   }
1821 
1822   // Otherwise, create a new forward reference for this value and remember it.
1823   Value *FwdVal;
1824   if (Ty->isLabelTy())
1825     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
1826   else
1827     FwdVal = new Argument(Ty, Name);
1828 
1829   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1830   return FwdVal;
1831 }
1832 
1833 Value *LLParser::PerFunctionState::GetVal(unsigned ID, const Type *Ty,
1834                                           LocTy Loc) {
1835   // Look this name up in the normal function symbol table.
1836   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1837 
1838   // If this is a forward reference for the value, see if we already created a
1839   // forward ref record.
1840   if (Val == 0) {
1841     std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1842       I = ForwardRefValIDs.find(ID);
1843     if (I != ForwardRefValIDs.end())
1844       Val = I->second.first;
1845   }
1846 
1847   // If we have the value in the symbol table or fwd-ref table, return it.
1848   if (Val) {
1849     if (Val->getType() == Ty) return Val;
1850     if (Ty->isLabelTy())
1851       P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
1852     else
1853       P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
1854               Val->getType()->getDescription() + "'");
1855     return 0;
1856   }
1857 
1858   if (!Ty->isFirstClassType() && !Ty->isOpaqueTy() && !Ty->isLabelTy()) {
1859     P.Error(Loc, "invalid use of a non-first-class type");
1860     return 0;
1861   }
1862 
1863   // Otherwise, create a new forward reference for this value and remember it.
1864   Value *FwdVal;
1865   if (Ty->isLabelTy())
1866     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
1867   else
1868     FwdVal = new Argument(Ty);
1869 
1870   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1871   return FwdVal;
1872 }
1873 
1874 /// SetInstName - After an instruction is parsed and inserted into its
1875 /// basic block, this installs its name.
1876 bool LLParser::PerFunctionState::SetInstName(int NameID,
1877                                              const std::string &NameStr,
1878                                              LocTy NameLoc, Instruction *Inst) {
1879   // If this instruction has void type, it cannot have a name or ID specified.
1880   if (Inst->getType()->isVoidTy()) {
1881     if (NameID != -1 || !NameStr.empty())
1882       return P.Error(NameLoc, "instructions returning void cannot have a name");
1883     return false;
1884   }
1885 
1886   // If this was a numbered instruction, verify that the instruction is the
1887   // expected value and resolve any forward references.
1888   if (NameStr.empty()) {
1889     // If neither a name nor an ID was specified, just use the next ID.
1890     if (NameID == -1)
1891       NameID = NumberedVals.size();
1892 
1893     if (unsigned(NameID) != NumberedVals.size())
1894       return P.Error(NameLoc, "instruction expected to be numbered '%" +
1895                      Twine(NumberedVals.size()) + "'");
1896 
1897     std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
1898       ForwardRefValIDs.find(NameID);
1899     if (FI != ForwardRefValIDs.end()) {
1900       if (FI->second.first->getType() != Inst->getType())
1901         return P.Error(NameLoc, "instruction forward referenced with type '" +
1902                        FI->second.first->getType()->getDescription() + "'");
1903       FI->second.first->replaceAllUsesWith(Inst);
1904       delete FI->second.first;
1905       ForwardRefValIDs.erase(FI);
1906     }
1907 
1908     NumberedVals.push_back(Inst);
1909     return false;
1910   }
1911 
1912   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
1913   std::map<std::string, std::pair<Value*, LocTy> >::iterator
1914     FI = ForwardRefVals.find(NameStr);
1915   if (FI != ForwardRefVals.end()) {
1916     if (FI->second.first->getType() != Inst->getType())
1917       return P.Error(NameLoc, "instruction forward referenced with type '" +
1918                      FI->second.first->getType()->getDescription() + "'");
1919     FI->second.first->replaceAllUsesWith(Inst);
1920     delete FI->second.first;
1921     ForwardRefVals.erase(FI);
1922   }
1923 
1924   // Set the name on the instruction.
1925   Inst->setName(NameStr);
1926 
1927   if (Inst->getName() != NameStr)
1928     return P.Error(NameLoc, "multiple definition of local value named '" +
1929                    NameStr + "'");
1930   return false;
1931 }
1932 
1933 /// GetBB - Get a basic block with the specified name or ID, creating a
1934 /// forward reference record if needed.
1935 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
1936                                               LocTy Loc) {
1937   return cast_or_null<BasicBlock>(GetVal(Name,
1938                                         Type::getLabelTy(F.getContext()), Loc));
1939 }
1940 
1941 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
1942   return cast_or_null<BasicBlock>(GetVal(ID,
1943                                         Type::getLabelTy(F.getContext()), Loc));
1944 }
1945 
1946 /// DefineBB - Define the specified basic block, which is either named or
1947 /// unnamed.  If there is an error, this returns null otherwise it returns
1948 /// the block being defined.
1949 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
1950                                                  LocTy Loc) {
1951   BasicBlock *BB;
1952   if (Name.empty())
1953     BB = GetBB(NumberedVals.size(), Loc);
1954   else
1955     BB = GetBB(Name, Loc);
1956   if (BB == 0) return 0; // Already diagnosed error.
1957 
1958   // Move the block to the end of the function.  Forward ref'd blocks are
1959   // inserted wherever they happen to be referenced.
1960   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
1961 
1962   // Remove the block from forward ref sets.
1963   if (Name.empty()) {
1964     ForwardRefValIDs.erase(NumberedVals.size());
1965     NumberedVals.push_back(BB);
1966   } else {
1967     // BB forward references are already in the function symbol table.
1968     ForwardRefVals.erase(Name);
1969   }
1970 
1971   return BB;
1972 }
1973 
1974 //===----------------------------------------------------------------------===//
1975 // Constants.
1976 //===----------------------------------------------------------------------===//
1977 
1978 /// ParseValID - Parse an abstract value that doesn't necessarily have a
1979 /// type implied.  For example, if we parse "4" we don't know what integer type
1980 /// it has.  The value will later be combined with its type and checked for
1981 /// sanity.  PFS is used to convert function-local operands of metadata (since
1982 /// metadata operands are not just parsed here but also converted to values).
1983 /// PFS can be null when we are not parsing metadata values inside a function.
1984 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
1985   ID.Loc = Lex.getLoc();
1986   switch (Lex.getKind()) {
1987   default: return TokError("expected value token");
1988   case lltok::GlobalID:  // @42
1989     ID.UIntVal = Lex.getUIntVal();
1990     ID.Kind = ValID::t_GlobalID;
1991     break;
1992   case lltok::GlobalVar:  // @foo
1993     ID.StrVal = Lex.getStrVal();
1994     ID.Kind = ValID::t_GlobalName;
1995     break;
1996   case lltok::LocalVarID:  // %42
1997     ID.UIntVal = Lex.getUIntVal();
1998     ID.Kind = ValID::t_LocalID;
1999     break;
2000   case lltok::LocalVar:  // %foo
2001   case lltok::StringConstant:  // "foo" - FIXME: REMOVE IN LLVM 3.0
2002     ID.StrVal = Lex.getStrVal();
2003     ID.Kind = ValID::t_LocalName;
2004     break;
2005   case lltok::exclaim:   // !42, !{...}, or !"foo"
2006     return ParseMetadataValue(ID, PFS);
2007   case lltok::APSInt:
2008     ID.APSIntVal = Lex.getAPSIntVal();
2009     ID.Kind = ValID::t_APSInt;
2010     break;
2011   case lltok::APFloat:
2012     ID.APFloatVal = Lex.getAPFloatVal();
2013     ID.Kind = ValID::t_APFloat;
2014     break;
2015   case lltok::kw_true:
2016     ID.ConstantVal = ConstantInt::getTrue(Context);
2017     ID.Kind = ValID::t_Constant;
2018     break;
2019   case lltok::kw_false:
2020     ID.ConstantVal = ConstantInt::getFalse(Context);
2021     ID.Kind = ValID::t_Constant;
2022     break;
2023   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
2024   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
2025   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
2026 
2027   case lltok::lbrace: {
2028     // ValID ::= '{' ConstVector '}'
2029     Lex.Lex();
2030     SmallVector<Constant*, 16> Elts;
2031     if (ParseGlobalValueVector(Elts) ||
2032         ParseToken(lltok::rbrace, "expected end of struct constant"))
2033       return true;
2034 
2035     ID.ConstantVal = ConstantStruct::get(Context, Elts.data(),
2036                                          Elts.size(), false);
2037     ID.Kind = ValID::t_Constant;
2038     return false;
2039   }
2040   case lltok::less: {
2041     // ValID ::= '<' ConstVector '>'         --> Vector.
2042     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
2043     Lex.Lex();
2044     bool isPackedStruct = EatIfPresent(lltok::lbrace);
2045 
2046     SmallVector<Constant*, 16> Elts;
2047     LocTy FirstEltLoc = Lex.getLoc();
2048     if (ParseGlobalValueVector(Elts) ||
2049         (isPackedStruct &&
2050          ParseToken(lltok::rbrace, "expected end of packed struct")) ||
2051         ParseToken(lltok::greater, "expected end of constant"))
2052       return true;
2053 
2054     if (isPackedStruct) {
2055       ID.ConstantVal =
2056         ConstantStruct::get(Context, Elts.data(), Elts.size(), true);
2057       ID.Kind = ValID::t_Constant;
2058       return false;
2059     }
2060 
2061     if (Elts.empty())
2062       return Error(ID.Loc, "constant vector must not be empty");
2063 
2064     if (!Elts[0]->getType()->isIntegerTy() &&
2065         !Elts[0]->getType()->isFloatingPointTy())
2066       return Error(FirstEltLoc,
2067                    "vector elements must have integer or floating point type");
2068 
2069     // Verify that all the vector elements have the same type.
2070     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
2071       if (Elts[i]->getType() != Elts[0]->getType())
2072         return Error(FirstEltLoc,
2073                      "vector element #" + Twine(i) +
2074                     " is not of type '" + Elts[0]->getType()->getDescription());
2075 
2076     ID.ConstantVal = ConstantVector::get(Elts.data(), Elts.size());
2077     ID.Kind = ValID::t_Constant;
2078     return false;
2079   }
2080   case lltok::lsquare: {   // Array Constant
2081     Lex.Lex();
2082     SmallVector<Constant*, 16> Elts;
2083     LocTy FirstEltLoc = Lex.getLoc();
2084     if (ParseGlobalValueVector(Elts) ||
2085         ParseToken(lltok::rsquare, "expected end of array constant"))
2086       return true;
2087 
2088     // Handle empty element.
2089     if (Elts.empty()) {
2090       // Use undef instead of an array because it's inconvenient to determine
2091       // the element type at this point, there being no elements to examine.
2092       ID.Kind = ValID::t_EmptyArray;
2093       return false;
2094     }
2095 
2096     if (!Elts[0]->getType()->isFirstClassType())
2097       return Error(FirstEltLoc, "invalid array element type: " +
2098                    Elts[0]->getType()->getDescription());
2099 
2100     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2101 
2102     // Verify all elements are correct type!
2103     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2104       if (Elts[i]->getType() != Elts[0]->getType())
2105         return Error(FirstEltLoc,
2106                      "array element #" + Twine(i) +
2107                      " is not of type '" +Elts[0]->getType()->getDescription());
2108     }
2109 
2110     ID.ConstantVal = ConstantArray::get(ATy, Elts.data(), Elts.size());
2111     ID.Kind = ValID::t_Constant;
2112     return false;
2113   }
2114   case lltok::kw_c:  // c "foo"
2115     Lex.Lex();
2116     ID.ConstantVal = ConstantArray::get(Context, Lex.getStrVal(), false);
2117     if (ParseToken(lltok::StringConstant, "expected string")) return true;
2118     ID.Kind = ValID::t_Constant;
2119     return false;
2120 
2121   case lltok::kw_asm: {
2122     // ValID ::= 'asm' SideEffect? AlignStack? STRINGCONSTANT ',' STRINGCONSTANT
2123     bool HasSideEffect, AlignStack;
2124     Lex.Lex();
2125     if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2126         ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2127         ParseStringConstant(ID.StrVal) ||
2128         ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2129         ParseToken(lltok::StringConstant, "expected constraint string"))
2130       return true;
2131     ID.StrVal2 = Lex.getStrVal();
2132     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1);
2133     ID.Kind = ValID::t_InlineAsm;
2134     return false;
2135   }
2136 
2137   case lltok::kw_blockaddress: {
2138     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2139     Lex.Lex();
2140 
2141     ValID Fn, Label;
2142     LocTy FnLoc, LabelLoc;
2143 
2144     if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2145         ParseValID(Fn) ||
2146         ParseToken(lltok::comma, "expected comma in block address expression")||
2147         ParseValID(Label) ||
2148         ParseToken(lltok::rparen, "expected ')' in block address expression"))
2149       return true;
2150 
2151     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
2152       return Error(Fn.Loc, "expected function name in blockaddress");
2153     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
2154       return Error(Label.Loc, "expected basic block name in blockaddress");
2155 
2156     // Make a global variable as a placeholder for this reference.
2157     GlobalVariable *FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context),
2158                                            false, GlobalValue::InternalLinkage,
2159                                                 0, "");
2160     ForwardRefBlockAddresses[Fn].push_back(std::make_pair(Label, FwdRef));
2161     ID.ConstantVal = FwdRef;
2162     ID.Kind = ValID::t_Constant;
2163     return false;
2164   }
2165 
2166   case lltok::kw_trunc:
2167   case lltok::kw_zext:
2168   case lltok::kw_sext:
2169   case lltok::kw_fptrunc:
2170   case lltok::kw_fpext:
2171   case lltok::kw_bitcast:
2172   case lltok::kw_uitofp:
2173   case lltok::kw_sitofp:
2174   case lltok::kw_fptoui:
2175   case lltok::kw_fptosi:
2176   case lltok::kw_inttoptr:
2177   case lltok::kw_ptrtoint: {
2178     unsigned Opc = Lex.getUIntVal();
2179     PATypeHolder DestTy(Type::getVoidTy(Context));
2180     Constant *SrcVal;
2181     Lex.Lex();
2182     if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
2183         ParseGlobalTypeAndValue(SrcVal) ||
2184         ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
2185         ParseType(DestTy) ||
2186         ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
2187       return true;
2188     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
2189       return Error(ID.Loc, "invalid cast opcode for cast from '" +
2190                    SrcVal->getType()->getDescription() + "' to '" +
2191                    DestTy->getDescription() + "'");
2192     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
2193                                                  SrcVal, DestTy);
2194     ID.Kind = ValID::t_Constant;
2195     return false;
2196   }
2197   case lltok::kw_extractvalue: {
2198     Lex.Lex();
2199     Constant *Val;
2200     SmallVector<unsigned, 4> Indices;
2201     if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
2202         ParseGlobalTypeAndValue(Val) ||
2203         ParseIndexList(Indices) ||
2204         ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
2205       return true;
2206 
2207     if (!Val->getType()->isAggregateType())
2208       return Error(ID.Loc, "extractvalue operand must be aggregate type");
2209     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
2210                                           Indices.end()))
2211       return Error(ID.Loc, "invalid indices for extractvalue");
2212     ID.ConstantVal =
2213       ConstantExpr::getExtractValue(Val, Indices.data(), Indices.size());
2214     ID.Kind = ValID::t_Constant;
2215     return false;
2216   }
2217   case lltok::kw_insertvalue: {
2218     Lex.Lex();
2219     Constant *Val0, *Val1;
2220     SmallVector<unsigned, 4> Indices;
2221     if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
2222         ParseGlobalTypeAndValue(Val0) ||
2223         ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
2224         ParseGlobalTypeAndValue(Val1) ||
2225         ParseIndexList(Indices) ||
2226         ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
2227       return true;
2228     if (!Val0->getType()->isAggregateType())
2229       return Error(ID.Loc, "insertvalue operand must be aggregate type");
2230     if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
2231                                           Indices.end()))
2232       return Error(ID.Loc, "invalid indices for insertvalue");
2233     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1,
2234                        Indices.data(), Indices.size());
2235     ID.Kind = ValID::t_Constant;
2236     return false;
2237   }
2238   case lltok::kw_icmp:
2239   case lltok::kw_fcmp: {
2240     unsigned PredVal, Opc = Lex.getUIntVal();
2241     Constant *Val0, *Val1;
2242     Lex.Lex();
2243     if (ParseCmpPredicate(PredVal, Opc) ||
2244         ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
2245         ParseGlobalTypeAndValue(Val0) ||
2246         ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
2247         ParseGlobalTypeAndValue(Val1) ||
2248         ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
2249       return true;
2250 
2251     if (Val0->getType() != Val1->getType())
2252       return Error(ID.Loc, "compare operands must have the same type");
2253 
2254     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
2255 
2256     if (Opc == Instruction::FCmp) {
2257       if (!Val0->getType()->isFPOrFPVectorTy())
2258         return Error(ID.Loc, "fcmp requires floating point operands");
2259       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
2260     } else {
2261       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
2262       if (!Val0->getType()->isIntOrIntVectorTy() &&
2263           !Val0->getType()->isPointerTy())
2264         return Error(ID.Loc, "icmp requires pointer or integer operands");
2265       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
2266     }
2267     ID.Kind = ValID::t_Constant;
2268     return false;
2269   }
2270 
2271   // Binary Operators.
2272   case lltok::kw_add:
2273   case lltok::kw_fadd:
2274   case lltok::kw_sub:
2275   case lltok::kw_fsub:
2276   case lltok::kw_mul:
2277   case lltok::kw_fmul:
2278   case lltok::kw_udiv:
2279   case lltok::kw_sdiv:
2280   case lltok::kw_fdiv:
2281   case lltok::kw_urem:
2282   case lltok::kw_srem:
2283   case lltok::kw_frem: {
2284     bool NUW = false;
2285     bool NSW = false;
2286     bool Exact = false;
2287     unsigned Opc = Lex.getUIntVal();
2288     Constant *Val0, *Val1;
2289     Lex.Lex();
2290     LocTy ModifierLoc = Lex.getLoc();
2291     if (Opc == Instruction::Add ||
2292         Opc == Instruction::Sub ||
2293         Opc == Instruction::Mul) {
2294       if (EatIfPresent(lltok::kw_nuw))
2295         NUW = true;
2296       if (EatIfPresent(lltok::kw_nsw)) {
2297         NSW = true;
2298         if (EatIfPresent(lltok::kw_nuw))
2299           NUW = true;
2300       }
2301     } else if (Opc == Instruction::SDiv) {
2302       if (EatIfPresent(lltok::kw_exact))
2303         Exact = true;
2304     }
2305     if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
2306         ParseGlobalTypeAndValue(Val0) ||
2307         ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
2308         ParseGlobalTypeAndValue(Val1) ||
2309         ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
2310       return true;
2311     if (Val0->getType() != Val1->getType())
2312       return Error(ID.Loc, "operands of constexpr must have same type");
2313     if (!Val0->getType()->isIntOrIntVectorTy()) {
2314       if (NUW)
2315         return Error(ModifierLoc, "nuw only applies to integer operations");
2316       if (NSW)
2317         return Error(ModifierLoc, "nsw only applies to integer operations");
2318     }
2319     // Check that the type is valid for the operator.
2320     switch (Opc) {
2321     case Instruction::Add:
2322     case Instruction::Sub:
2323     case Instruction::Mul:
2324     case Instruction::UDiv:
2325     case Instruction::SDiv:
2326     case Instruction::URem:
2327     case Instruction::SRem:
2328       if (!Val0->getType()->isIntOrIntVectorTy())
2329         return Error(ID.Loc, "constexpr requires integer operands");
2330       break;
2331     case Instruction::FAdd:
2332     case Instruction::FSub:
2333     case Instruction::FMul:
2334     case Instruction::FDiv:
2335     case Instruction::FRem:
2336       if (!Val0->getType()->isFPOrFPVectorTy())
2337         return Error(ID.Loc, "constexpr requires fp operands");
2338       break;
2339     default: llvm_unreachable("Unknown binary operator!");
2340     }
2341     unsigned Flags = 0;
2342     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2343     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
2344     if (Exact) Flags |= SDivOperator::IsExact;
2345     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
2346     ID.ConstantVal = C;
2347     ID.Kind = ValID::t_Constant;
2348     return false;
2349   }
2350 
2351   // Logical Operations
2352   case lltok::kw_shl:
2353   case lltok::kw_lshr:
2354   case lltok::kw_ashr:
2355   case lltok::kw_and:
2356   case lltok::kw_or:
2357   case lltok::kw_xor: {
2358     unsigned Opc = Lex.getUIntVal();
2359     Constant *Val0, *Val1;
2360     Lex.Lex();
2361     if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
2362         ParseGlobalTypeAndValue(Val0) ||
2363         ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
2364         ParseGlobalTypeAndValue(Val1) ||
2365         ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
2366       return true;
2367     if (Val0->getType() != Val1->getType())
2368       return Error(ID.Loc, "operands of constexpr must have same type");
2369     if (!Val0->getType()->isIntOrIntVectorTy())
2370       return Error(ID.Loc,
2371                    "constexpr requires integer or integer vector operands");
2372     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
2373     ID.Kind = ValID::t_Constant;
2374     return false;
2375   }
2376 
2377   case lltok::kw_getelementptr:
2378   case lltok::kw_shufflevector:
2379   case lltok::kw_insertelement:
2380   case lltok::kw_extractelement:
2381   case lltok::kw_select: {
2382     unsigned Opc = Lex.getUIntVal();
2383     SmallVector<Constant*, 16> Elts;
2384     bool InBounds = false;
2385     Lex.Lex();
2386     if (Opc == Instruction::GetElementPtr)
2387       InBounds = EatIfPresent(lltok::kw_inbounds);
2388     if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
2389         ParseGlobalValueVector(Elts) ||
2390         ParseToken(lltok::rparen, "expected ')' in constantexpr"))
2391       return true;
2392 
2393     if (Opc == Instruction::GetElementPtr) {
2394       if (Elts.size() == 0 || !Elts[0]->getType()->isPointerTy())
2395         return Error(ID.Loc, "getelementptr requires pointer operand");
2396 
2397       if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(),
2398                                              (Value**)(Elts.data() + 1),
2399                                              Elts.size() - 1))
2400         return Error(ID.Loc, "invalid indices for getelementptr");
2401       ID.ConstantVal = InBounds ?
2402         ConstantExpr::getInBoundsGetElementPtr(Elts[0],
2403                                                Elts.data() + 1,
2404                                                Elts.size() - 1) :
2405         ConstantExpr::getGetElementPtr(Elts[0],
2406                                        Elts.data() + 1, Elts.size() - 1);
2407     } else if (Opc == Instruction::Select) {
2408       if (Elts.size() != 3)
2409         return Error(ID.Loc, "expected three operands to select");
2410       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
2411                                                               Elts[2]))
2412         return Error(ID.Loc, Reason);
2413       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
2414     } else if (Opc == Instruction::ShuffleVector) {
2415       if (Elts.size() != 3)
2416         return Error(ID.Loc, "expected three operands to shufflevector");
2417       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2418         return Error(ID.Loc, "invalid operands to shufflevector");
2419       ID.ConstantVal =
2420                  ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
2421     } else if (Opc == Instruction::ExtractElement) {
2422       if (Elts.size() != 2)
2423         return Error(ID.Loc, "expected two operands to extractelement");
2424       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
2425         return Error(ID.Loc, "invalid extractelement operands");
2426       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
2427     } else {
2428       assert(Opc == Instruction::InsertElement && "Unknown opcode");
2429       if (Elts.size() != 3)
2430       return Error(ID.Loc, "expected three operands to insertelement");
2431       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2432         return Error(ID.Loc, "invalid insertelement operands");
2433       ID.ConstantVal =
2434                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
2435     }
2436 
2437     ID.Kind = ValID::t_Constant;
2438     return false;
2439   }
2440   }
2441 
2442   Lex.Lex();
2443   return false;
2444 }
2445 
2446 /// ParseGlobalValue - Parse a global value with the specified type.
2447 bool LLParser::ParseGlobalValue(const Type *Ty, Constant *&C) {
2448   C = 0;
2449   ValID ID;
2450   Value *V = NULL;
2451   bool Parsed = ParseValID(ID) ||
2452                 ConvertValIDToValue(Ty, ID, V, NULL);
2453   if (V && !(C = dyn_cast<Constant>(V)))
2454     return Error(ID.Loc, "global values must be constants");
2455   return Parsed;
2456 }
2457 
2458 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
2459   PATypeHolder Type(Type::getVoidTy(Context));
2460   return ParseType(Type) ||
2461          ParseGlobalValue(Type, V);
2462 }
2463 
2464 /// ParseGlobalValueVector
2465 ///   ::= /*empty*/
2466 ///   ::= TypeAndValue (',' TypeAndValue)*
2467 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
2468   // Empty list.
2469   if (Lex.getKind() == lltok::rbrace ||
2470       Lex.getKind() == lltok::rsquare ||
2471       Lex.getKind() == lltok::greater ||
2472       Lex.getKind() == lltok::rparen)
2473     return false;
2474 
2475   Constant *C;
2476   if (ParseGlobalTypeAndValue(C)) return true;
2477   Elts.push_back(C);
2478 
2479   while (EatIfPresent(lltok::comma)) {
2480     if (ParseGlobalTypeAndValue(C)) return true;
2481     Elts.push_back(C);
2482   }
2483 
2484   return false;
2485 }
2486 
2487 bool LLParser::ParseMetadataListValue(ValID &ID, PerFunctionState *PFS) {
2488   assert(Lex.getKind() == lltok::lbrace);
2489   Lex.Lex();
2490 
2491   SmallVector<Value*, 16> Elts;
2492   if (ParseMDNodeVector(Elts, PFS) ||
2493       ParseToken(lltok::rbrace, "expected end of metadata node"))
2494     return true;
2495 
2496   ID.MDNodeVal = MDNode::get(Context, Elts.data(), Elts.size());
2497   ID.Kind = ValID::t_MDNode;
2498   return false;
2499 }
2500 
2501 /// ParseMetadataValue
2502 ///  ::= !42
2503 ///  ::= !{...}
2504 ///  ::= !"string"
2505 bool LLParser::ParseMetadataValue(ValID &ID, PerFunctionState *PFS) {
2506   assert(Lex.getKind() == lltok::exclaim);
2507   Lex.Lex();
2508 
2509   // MDNode:
2510   // !{ ... }
2511   if (Lex.getKind() == lltok::lbrace)
2512     return ParseMetadataListValue(ID, PFS);
2513 
2514   // Standalone metadata reference
2515   // !42
2516   if (Lex.getKind() == lltok::APSInt) {
2517     if (ParseMDNodeID(ID.MDNodeVal)) return true;
2518     ID.Kind = ValID::t_MDNode;
2519     return false;
2520   }
2521 
2522   // MDString:
2523   //   ::= '!' STRINGCONSTANT
2524   if (ParseMDString(ID.MDStringVal)) return true;
2525   ID.Kind = ValID::t_MDString;
2526   return false;
2527 }
2528 
2529 
2530 //===----------------------------------------------------------------------===//
2531 // Function Parsing.
2532 //===----------------------------------------------------------------------===//
2533 
2534 bool LLParser::ConvertValIDToValue(const Type *Ty, ValID &ID, Value *&V,
2535                                    PerFunctionState *PFS) {
2536   if (Ty->isFunctionTy())
2537     return Error(ID.Loc, "functions are not values, refer to them as pointers");
2538 
2539   switch (ID.Kind) {
2540   default: llvm_unreachable("Unknown ValID!");
2541   case ValID::t_LocalID:
2542     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2543     V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
2544     return (V == 0);
2545   case ValID::t_LocalName:
2546     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2547     V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
2548     return (V == 0);
2549   case ValID::t_InlineAsm: {
2550     const PointerType *PTy = dyn_cast<PointerType>(Ty);
2551     const FunctionType *FTy =
2552       PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
2553     if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
2554       return Error(ID.Loc, "invalid type for inline asm constraint string");
2555     V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1, ID.UIntVal>>1);
2556     return false;
2557   }
2558   case ValID::t_MDNode:
2559     if (!Ty->isMetadataTy())
2560       return Error(ID.Loc, "metadata value must have metadata type");
2561     V = ID.MDNodeVal;
2562     return false;
2563   case ValID::t_MDString:
2564     if (!Ty->isMetadataTy())
2565       return Error(ID.Loc, "metadata value must have metadata type");
2566     V = ID.MDStringVal;
2567     return false;
2568   case ValID::t_GlobalName:
2569     V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
2570     return V == 0;
2571   case ValID::t_GlobalID:
2572     V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
2573     return V == 0;
2574   case ValID::t_APSInt:
2575     if (!Ty->isIntegerTy())
2576       return Error(ID.Loc, "integer constant must have integer type");
2577     ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
2578     V = ConstantInt::get(Context, ID.APSIntVal);
2579     return false;
2580   case ValID::t_APFloat:
2581     if (!Ty->isFloatingPointTy() ||
2582         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
2583       return Error(ID.Loc, "floating point constant invalid for type");
2584 
2585     // The lexer has no type info, so builds all float and double FP constants
2586     // as double.  Fix this here.  Long double does not need this.
2587     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble &&
2588         Ty->isFloatTy()) {
2589       bool Ignored;
2590       ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
2591                             &Ignored);
2592     }
2593     V = ConstantFP::get(Context, ID.APFloatVal);
2594 
2595     if (V->getType() != Ty)
2596       return Error(ID.Loc, "floating point constant does not have type '" +
2597                    Ty->getDescription() + "'");
2598 
2599     return false;
2600   case ValID::t_Null:
2601     if (!Ty->isPointerTy())
2602       return Error(ID.Loc, "null must be a pointer type");
2603     V = ConstantPointerNull::get(cast<PointerType>(Ty));
2604     return false;
2605   case ValID::t_Undef:
2606     // FIXME: LabelTy should not be a first-class type.
2607     if ((!Ty->isFirstClassType() || Ty->isLabelTy()) &&
2608         !Ty->isOpaqueTy())
2609       return Error(ID.Loc, "invalid type for undef constant");
2610     V = UndefValue::get(Ty);
2611     return false;
2612   case ValID::t_EmptyArray:
2613     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
2614       return Error(ID.Loc, "invalid empty array initializer");
2615     V = UndefValue::get(Ty);
2616     return false;
2617   case ValID::t_Zero:
2618     // FIXME: LabelTy should not be a first-class type.
2619     if (!Ty->isFirstClassType() || Ty->isLabelTy())
2620       return Error(ID.Loc, "invalid type for null constant");
2621     V = Constant::getNullValue(Ty);
2622     return false;
2623   case ValID::t_Constant:
2624     if (ID.ConstantVal->getType() != Ty)
2625       return Error(ID.Loc, "constant expression type mismatch");
2626 
2627     V = ID.ConstantVal;
2628     return false;
2629   }
2630 }
2631 
2632 bool LLParser::ParseValue(const Type *Ty, Value *&V, PerFunctionState &PFS) {
2633   V = 0;
2634   ValID ID;
2635   return ParseValID(ID, &PFS) ||
2636          ConvertValIDToValue(Ty, ID, V, &PFS);
2637 }
2638 
2639 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState &PFS) {
2640   PATypeHolder T(Type::getVoidTy(Context));
2641   return ParseType(T) ||
2642          ParseValue(T, V, PFS);
2643 }
2644 
2645 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
2646                                       PerFunctionState &PFS) {
2647   Value *V;
2648   Loc = Lex.getLoc();
2649   if (ParseTypeAndValue(V, PFS)) return true;
2650   if (!isa<BasicBlock>(V))
2651     return Error(Loc, "expected a basic block");
2652   BB = cast<BasicBlock>(V);
2653   return false;
2654 }
2655 
2656 
2657 /// FunctionHeader
2658 ///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2659 ///       Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2660 ///       OptionalAlign OptGC
2661 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
2662   // Parse the linkage.
2663   LocTy LinkageLoc = Lex.getLoc();
2664   unsigned Linkage;
2665 
2666   unsigned Visibility, RetAttrs;
2667   CallingConv::ID CC;
2668   PATypeHolder RetType(Type::getVoidTy(Context));
2669   LocTy RetTypeLoc = Lex.getLoc();
2670   if (ParseOptionalLinkage(Linkage) ||
2671       ParseOptionalVisibility(Visibility) ||
2672       ParseOptionalCallingConv(CC) ||
2673       ParseOptionalAttrs(RetAttrs, 1) ||
2674       ParseType(RetType, RetTypeLoc, true /*void allowed*/))
2675     return true;
2676 
2677   // Verify that the linkage is ok.
2678   switch ((GlobalValue::LinkageTypes)Linkage) {
2679   case GlobalValue::ExternalLinkage:
2680     break; // always ok.
2681   case GlobalValue::DLLImportLinkage:
2682   case GlobalValue::ExternalWeakLinkage:
2683     if (isDefine)
2684       return Error(LinkageLoc, "invalid linkage for function definition");
2685     break;
2686   case GlobalValue::PrivateLinkage:
2687   case GlobalValue::LinkerPrivateLinkage:
2688   case GlobalValue::LinkerPrivateWeakLinkage:
2689   case GlobalValue::LinkerPrivateWeakDefAutoLinkage:
2690   case GlobalValue::InternalLinkage:
2691   case GlobalValue::AvailableExternallyLinkage:
2692   case GlobalValue::LinkOnceAnyLinkage:
2693   case GlobalValue::LinkOnceODRLinkage:
2694   case GlobalValue::WeakAnyLinkage:
2695   case GlobalValue::WeakODRLinkage:
2696   case GlobalValue::DLLExportLinkage:
2697     if (!isDefine)
2698       return Error(LinkageLoc, "invalid linkage for function declaration");
2699     break;
2700   case GlobalValue::AppendingLinkage:
2701   case GlobalValue::CommonLinkage:
2702     return Error(LinkageLoc, "invalid function linkage type");
2703   }
2704 
2705   if (!FunctionType::isValidReturnType(RetType) ||
2706       RetType->isOpaqueTy())
2707     return Error(RetTypeLoc, "invalid function return type");
2708 
2709   LocTy NameLoc = Lex.getLoc();
2710 
2711   std::string FunctionName;
2712   if (Lex.getKind() == lltok::GlobalVar) {
2713     FunctionName = Lex.getStrVal();
2714   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
2715     unsigned NameID = Lex.getUIntVal();
2716 
2717     if (NameID != NumberedVals.size())
2718       return TokError("function expected to be numbered '%" +
2719                       Twine(NumberedVals.size()) + "'");
2720   } else {
2721     return TokError("expected function name");
2722   }
2723 
2724   Lex.Lex();
2725 
2726   if (Lex.getKind() != lltok::lparen)
2727     return TokError("expected '(' in function argument list");
2728 
2729   std::vector<ArgInfo> ArgList;
2730   bool isVarArg;
2731   unsigned FuncAttrs;
2732   std::string Section;
2733   unsigned Alignment;
2734   std::string GC;
2735 
2736   if (ParseArgumentList(ArgList, isVarArg, false) ||
2737       ParseOptionalAttrs(FuncAttrs, 2) ||
2738       (EatIfPresent(lltok::kw_section) &&
2739        ParseStringConstant(Section)) ||
2740       ParseOptionalAlignment(Alignment) ||
2741       (EatIfPresent(lltok::kw_gc) &&
2742        ParseStringConstant(GC)))
2743     return true;
2744 
2745   // If the alignment was parsed as an attribute, move to the alignment field.
2746   if (FuncAttrs & Attribute::Alignment) {
2747     Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs);
2748     FuncAttrs &= ~Attribute::Alignment;
2749   }
2750 
2751   // Okay, if we got here, the function is syntactically valid.  Convert types
2752   // and do semantic checks.
2753   std::vector<const Type*> ParamTypeList;
2754   SmallVector<AttributeWithIndex, 8> Attrs;
2755   // FIXME : In 3.0, stop accepting zext, sext and inreg as optional function
2756   // attributes.
2757   unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2758   if (FuncAttrs & ObsoleteFuncAttrs) {
2759     RetAttrs |= FuncAttrs & ObsoleteFuncAttrs;
2760     FuncAttrs &= ~ObsoleteFuncAttrs;
2761   }
2762 
2763   if (RetAttrs != Attribute::None)
2764     Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2765 
2766   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2767     ParamTypeList.push_back(ArgList[i].Type);
2768     if (ArgList[i].Attrs != Attribute::None)
2769       Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2770   }
2771 
2772   if (FuncAttrs != Attribute::None)
2773     Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs));
2774 
2775   AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2776 
2777   if (PAL.paramHasAttr(1, Attribute::StructRet) && !RetType->isVoidTy())
2778     return Error(RetTypeLoc, "functions with 'sret' argument must return void");
2779 
2780   const FunctionType *FT =
2781     FunctionType::get(RetType, ParamTypeList, isVarArg);
2782   const PointerType *PFT = PointerType::getUnqual(FT);
2783 
2784   Fn = 0;
2785   if (!FunctionName.empty()) {
2786     // If this was a definition of a forward reference, remove the definition
2787     // from the forward reference table and fill in the forward ref.
2788     std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
2789       ForwardRefVals.find(FunctionName);
2790     if (FRVI != ForwardRefVals.end()) {
2791       Fn = M->getFunction(FunctionName);
2792       if (Fn->getType() != PFT)
2793         return Error(FRVI->second.second, "invalid forward reference to "
2794                      "function '" + FunctionName + "' with wrong type!");
2795 
2796       ForwardRefVals.erase(FRVI);
2797     } else if ((Fn = M->getFunction(FunctionName))) {
2798       // If this function already exists in the symbol table, then it is
2799       // multiply defined.  We accept a few cases for old backwards compat.
2800       // FIXME: Remove this stuff for LLVM 3.0.
2801       if (Fn->getType() != PFT || Fn->getAttributes() != PAL ||
2802           (!Fn->isDeclaration() && isDefine)) {
2803         // If the redefinition has different type or different attributes,
2804         // reject it.  If both have bodies, reject it.
2805         return Error(NameLoc, "invalid redefinition of function '" +
2806                      FunctionName + "'");
2807       } else if (Fn->isDeclaration()) {
2808         // Make sure to strip off any argument names so we can't get conflicts.
2809         for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
2810              AI != AE; ++AI)
2811           AI->setName("");
2812       }
2813     } else if (M->getNamedValue(FunctionName)) {
2814       return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
2815     }
2816 
2817   } else {
2818     // If this is a definition of a forward referenced function, make sure the
2819     // types agree.
2820     std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
2821       = ForwardRefValIDs.find(NumberedVals.size());
2822     if (I != ForwardRefValIDs.end()) {
2823       Fn = cast<Function>(I->second.first);
2824       if (Fn->getType() != PFT)
2825         return Error(NameLoc, "type of definition and forward reference of '@" +
2826                      Twine(NumberedVals.size()) + "' disagree");
2827       ForwardRefValIDs.erase(I);
2828     }
2829   }
2830 
2831   if (Fn == 0)
2832     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
2833   else // Move the forward-reference to the correct spot in the module.
2834     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
2835 
2836   if (FunctionName.empty())
2837     NumberedVals.push_back(Fn);
2838 
2839   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
2840   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
2841   Fn->setCallingConv(CC);
2842   Fn->setAttributes(PAL);
2843   Fn->setAlignment(Alignment);
2844   Fn->setSection(Section);
2845   if (!GC.empty()) Fn->setGC(GC.c_str());
2846 
2847   // Add all of the arguments we parsed to the function.
2848   Function::arg_iterator ArgIt = Fn->arg_begin();
2849   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
2850     // If we run out of arguments in the Function prototype, exit early.
2851     // FIXME: REMOVE THIS IN LLVM 3.0, this is just for the mismatch case above.
2852     if (ArgIt == Fn->arg_end()) break;
2853 
2854     // If the argument has a name, insert it into the argument symbol table.
2855     if (ArgList[i].Name.empty()) continue;
2856 
2857     // Set the name, if it conflicted, it will be auto-renamed.
2858     ArgIt->setName(ArgList[i].Name);
2859 
2860     if (ArgIt->getName() != ArgList[i].Name)
2861       return Error(ArgList[i].Loc, "redefinition of argument '%" +
2862                    ArgList[i].Name + "'");
2863   }
2864 
2865   return false;
2866 }
2867 
2868 
2869 /// ParseFunctionBody
2870 ///   ::= '{' BasicBlock+ '}'
2871 ///   ::= 'begin' BasicBlock+ 'end'  // FIXME: remove in LLVM 3.0
2872 ///
2873 bool LLParser::ParseFunctionBody(Function &Fn) {
2874   if (Lex.getKind() != lltok::lbrace && Lex.getKind() != lltok::kw_begin)
2875     return TokError("expected '{' in function body");
2876   Lex.Lex();  // eat the {.
2877 
2878   int FunctionNumber = -1;
2879   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
2880 
2881   PerFunctionState PFS(*this, Fn, FunctionNumber);
2882 
2883   // We need at least one basic block.
2884   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_end)
2885     return TokError("function body requires at least one basic block");
2886 
2887   while (Lex.getKind() != lltok::rbrace && Lex.getKind() != lltok::kw_end)
2888     if (ParseBasicBlock(PFS)) return true;
2889 
2890   // Eat the }.
2891   Lex.Lex();
2892 
2893   // Verify function is ok.
2894   return PFS.FinishFunction();
2895 }
2896 
2897 /// ParseBasicBlock
2898 ///   ::= LabelStr? Instruction*
2899 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
2900   // If this basic block starts out with a name, remember it.
2901   std::string Name;
2902   LocTy NameLoc = Lex.getLoc();
2903   if (Lex.getKind() == lltok::LabelStr) {
2904     Name = Lex.getStrVal();
2905     Lex.Lex();
2906   }
2907 
2908   BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
2909   if (BB == 0) return true;
2910 
2911   std::string NameStr;
2912 
2913   // Parse the instructions in this block until we get a terminator.
2914   Instruction *Inst;
2915   SmallVector<std::pair<unsigned, MDNode *>, 4> MetadataOnInst;
2916   do {
2917     // This instruction may have three possibilities for a name: a) none
2918     // specified, b) name specified "%foo =", c) number specified: "%4 =".
2919     LocTy NameLoc = Lex.getLoc();
2920     int NameID = -1;
2921     NameStr = "";
2922 
2923     if (Lex.getKind() == lltok::LocalVarID) {
2924       NameID = Lex.getUIntVal();
2925       Lex.Lex();
2926       if (ParseToken(lltok::equal, "expected '=' after instruction id"))
2927         return true;
2928     } else if (Lex.getKind() == lltok::LocalVar ||
2929                // FIXME: REMOVE IN LLVM 3.0
2930                Lex.getKind() == lltok::StringConstant) {
2931       NameStr = Lex.getStrVal();
2932       Lex.Lex();
2933       if (ParseToken(lltok::equal, "expected '=' after instruction name"))
2934         return true;
2935     }
2936 
2937     switch (ParseInstruction(Inst, BB, PFS)) {
2938     default: assert(0 && "Unknown ParseInstruction result!");
2939     case InstError: return true;
2940     case InstNormal:
2941       BB->getInstList().push_back(Inst);
2942 
2943       // With a normal result, we check to see if the instruction is followed by
2944       // a comma and metadata.
2945       if (EatIfPresent(lltok::comma))
2946         if (ParseInstructionMetadata(Inst, &PFS))
2947           return true;
2948       break;
2949     case InstExtraComma:
2950       BB->getInstList().push_back(Inst);
2951 
2952       // If the instruction parser ate an extra comma at the end of it, it
2953       // *must* be followed by metadata.
2954       if (ParseInstructionMetadata(Inst, &PFS))
2955         return true;
2956       break;
2957     }
2958 
2959     // Set the name on the instruction.
2960     if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
2961   } while (!isa<TerminatorInst>(Inst));
2962 
2963   return false;
2964 }
2965 
2966 //===----------------------------------------------------------------------===//
2967 // Instruction Parsing.
2968 //===----------------------------------------------------------------------===//
2969 
2970 /// ParseInstruction - Parse one of the many different instructions.
2971 ///
2972 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
2973                                PerFunctionState &PFS) {
2974   lltok::Kind Token = Lex.getKind();
2975   if (Token == lltok::Eof)
2976     return TokError("found end of file when expecting more instructions");
2977   LocTy Loc = Lex.getLoc();
2978   unsigned KeywordVal = Lex.getUIntVal();
2979   Lex.Lex();  // Eat the keyword.
2980 
2981   switch (Token) {
2982   default:                    return Error(Loc, "expected instruction opcode");
2983   // Terminator Instructions.
2984   case lltok::kw_unwind:      Inst = new UnwindInst(Context); return false;
2985   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
2986   case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
2987   case lltok::kw_br:          return ParseBr(Inst, PFS);
2988   case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
2989   case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
2990   case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
2991   // Binary Operators.
2992   case lltok::kw_add:
2993   case lltok::kw_sub:
2994   case lltok::kw_mul: {
2995     bool NUW = false;
2996     bool NSW = false;
2997     LocTy ModifierLoc = Lex.getLoc();
2998     if (EatIfPresent(lltok::kw_nuw))
2999       NUW = true;
3000     if (EatIfPresent(lltok::kw_nsw)) {
3001       NSW = true;
3002       if (EatIfPresent(lltok::kw_nuw))
3003         NUW = true;
3004     }
3005     bool Result = ParseArithmetic(Inst, PFS, KeywordVal, 1);
3006     if (!Result) {
3007       if (!Inst->getType()->isIntOrIntVectorTy()) {
3008         if (NUW)
3009           return Error(ModifierLoc, "nuw only applies to integer operations");
3010         if (NSW)
3011           return Error(ModifierLoc, "nsw only applies to integer operations");
3012       }
3013       if (NUW)
3014         cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
3015       if (NSW)
3016         cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
3017     }
3018     return Result;
3019   }
3020   case lltok::kw_fadd:
3021   case lltok::kw_fsub:
3022   case lltok::kw_fmul:    return ParseArithmetic(Inst, PFS, KeywordVal, 2);
3023 
3024   case lltok::kw_sdiv: {
3025     bool Exact = false;
3026     if (EatIfPresent(lltok::kw_exact))
3027       Exact = true;
3028     bool Result = ParseArithmetic(Inst, PFS, KeywordVal, 1);
3029     if (!Result)
3030       if (Exact)
3031         cast<BinaryOperator>(Inst)->setIsExact(true);
3032     return Result;
3033   }
3034 
3035   case lltok::kw_udiv:
3036   case lltok::kw_urem:
3037   case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
3038   case lltok::kw_fdiv:
3039   case lltok::kw_frem:   return ParseArithmetic(Inst, PFS, KeywordVal, 2);
3040   case lltok::kw_shl:
3041   case lltok::kw_lshr:
3042   case lltok::kw_ashr:
3043   case lltok::kw_and:
3044   case lltok::kw_or:
3045   case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
3046   case lltok::kw_icmp:
3047   case lltok::kw_fcmp:   return ParseCompare(Inst, PFS, KeywordVal);
3048   // Casts.
3049   case lltok::kw_trunc:
3050   case lltok::kw_zext:
3051   case lltok::kw_sext:
3052   case lltok::kw_fptrunc:
3053   case lltok::kw_fpext:
3054   case lltok::kw_bitcast:
3055   case lltok::kw_uitofp:
3056   case lltok::kw_sitofp:
3057   case lltok::kw_fptoui:
3058   case lltok::kw_fptosi:
3059   case lltok::kw_inttoptr:
3060   case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
3061   // Other.
3062   case lltok::kw_select:         return ParseSelect(Inst, PFS);
3063   case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
3064   case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
3065   case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
3066   case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
3067   case lltok::kw_phi:            return ParsePHI(Inst, PFS);
3068   case lltok::kw_call:           return ParseCall(Inst, PFS, false);
3069   case lltok::kw_tail:           return ParseCall(Inst, PFS, true);
3070   // Memory.
3071   case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
3072   case lltok::kw_malloc:         return ParseAlloc(Inst, PFS, BB, false);
3073   case lltok::kw_free:           return ParseFree(Inst, PFS, BB);
3074   case lltok::kw_load:           return ParseLoad(Inst, PFS, false);
3075   case lltok::kw_store:          return ParseStore(Inst, PFS, false);
3076   case lltok::kw_volatile:
3077     if (EatIfPresent(lltok::kw_load))
3078       return ParseLoad(Inst, PFS, true);
3079     else if (EatIfPresent(lltok::kw_store))
3080       return ParseStore(Inst, PFS, true);
3081     else
3082       return TokError("expected 'load' or 'store'");
3083   case lltok::kw_getresult:     return ParseGetResult(Inst, PFS);
3084   case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
3085   case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
3086   case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
3087   }
3088 }
3089 
3090 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
3091 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
3092   if (Opc == Instruction::FCmp) {
3093     switch (Lex.getKind()) {
3094     default: TokError("expected fcmp predicate (e.g. 'oeq')");
3095     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
3096     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
3097     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
3098     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
3099     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
3100     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
3101     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
3102     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
3103     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
3104     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
3105     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
3106     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
3107     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
3108     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
3109     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
3110     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
3111     }
3112   } else {
3113     switch (Lex.getKind()) {
3114     default: TokError("expected icmp predicate (e.g. 'eq')");
3115     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
3116     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
3117     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
3118     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
3119     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
3120     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
3121     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
3122     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
3123     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
3124     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
3125     }
3126   }
3127   Lex.Lex();
3128   return false;
3129 }
3130 
3131 //===----------------------------------------------------------------------===//
3132 // Terminator Instructions.
3133 //===----------------------------------------------------------------------===//
3134 
3135 /// ParseRet - Parse a return instruction.
3136 ///   ::= 'ret' void (',' !dbg, !1)*
3137 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
3138 ///   ::= 'ret' TypeAndValue (',' TypeAndValue)+  (',' !dbg, !1)*
3139 ///         [[obsolete: LLVM 3.0]]
3140 int LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
3141                        PerFunctionState &PFS) {
3142   PATypeHolder Ty(Type::getVoidTy(Context));
3143   if (ParseType(Ty, true /*void allowed*/)) return true;
3144 
3145   if (Ty->isVoidTy()) {
3146     Inst = ReturnInst::Create(Context);
3147     return false;
3148   }
3149 
3150   Value *RV;
3151   if (ParseValue(Ty, RV, PFS)) return true;
3152 
3153   bool ExtraComma = false;
3154   if (EatIfPresent(lltok::comma)) {
3155     // Parse optional custom metadata, e.g. !dbg
3156     if (Lex.getKind() == lltok::MetadataVar) {
3157       ExtraComma = true;
3158     } else {
3159       // The normal case is one return value.
3160       // FIXME: LLVM 3.0 remove MRV support for 'ret i32 1, i32 2', requiring
3161       // use of 'ret {i32,i32} {i32 1, i32 2}'
3162       SmallVector<Value*, 8> RVs;
3163       RVs.push_back(RV);
3164 
3165       do {
3166         // If optional custom metadata, e.g. !dbg is seen then this is the
3167         // end of MRV.
3168         if (Lex.getKind() == lltok::MetadataVar)
3169           break;
3170         if (ParseTypeAndValue(RV, PFS)) return true;
3171         RVs.push_back(RV);
3172       } while (EatIfPresent(lltok::comma));
3173 
3174       RV = UndefValue::get(PFS.getFunction().getReturnType());
3175       for (unsigned i = 0, e = RVs.size(); i != e; ++i) {
3176         Instruction *I = InsertValueInst::Create(RV, RVs[i], i, "mrv");
3177         BB->getInstList().push_back(I);
3178         RV = I;
3179       }
3180     }
3181   }
3182 
3183   Inst = ReturnInst::Create(Context, RV);
3184   return ExtraComma ? InstExtraComma : InstNormal;
3185 }
3186 
3187 
3188 /// ParseBr
3189 ///   ::= 'br' TypeAndValue
3190 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3191 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
3192   LocTy Loc, Loc2;
3193   Value *Op0;
3194   BasicBlock *Op1, *Op2;
3195   if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
3196 
3197   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
3198     Inst = BranchInst::Create(BB);
3199     return false;
3200   }
3201 
3202   if (Op0->getType() != Type::getInt1Ty(Context))
3203     return Error(Loc, "branch condition must have 'i1' type");
3204 
3205   if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
3206       ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
3207       ParseToken(lltok::comma, "expected ',' after true destination") ||
3208       ParseTypeAndBasicBlock(Op2, Loc2, PFS))
3209     return true;
3210 
3211   Inst = BranchInst::Create(Op1, Op2, Op0);
3212   return false;
3213 }
3214 
3215 /// ParseSwitch
3216 ///  Instruction
3217 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
3218 ///  JumpTable
3219 ///    ::= (TypeAndValue ',' TypeAndValue)*
3220 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
3221   LocTy CondLoc, BBLoc;
3222   Value *Cond;
3223   BasicBlock *DefaultBB;
3224   if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
3225       ParseToken(lltok::comma, "expected ',' after switch condition") ||
3226       ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
3227       ParseToken(lltok::lsquare, "expected '[' with switch table"))
3228     return true;
3229 
3230   if (!Cond->getType()->isIntegerTy())
3231     return Error(CondLoc, "switch condition must have integer type");
3232 
3233   // Parse the jump table pairs.
3234   SmallPtrSet<Value*, 32> SeenCases;
3235   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
3236   while (Lex.getKind() != lltok::rsquare) {
3237     Value *Constant;
3238     BasicBlock *DestBB;
3239 
3240     if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
3241         ParseToken(lltok::comma, "expected ',' after case value") ||
3242         ParseTypeAndBasicBlock(DestBB, PFS))
3243       return true;
3244 
3245     if (!SeenCases.insert(Constant))
3246       return Error(CondLoc, "duplicate case value in switch");
3247     if (!isa<ConstantInt>(Constant))
3248       return Error(CondLoc, "case value is not a constant integer");
3249 
3250     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
3251   }
3252 
3253   Lex.Lex();  // Eat the ']'.
3254 
3255   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
3256   for (unsigned i = 0, e = Table.size(); i != e; ++i)
3257     SI->addCase(Table[i].first, Table[i].second);
3258   Inst = SI;
3259   return false;
3260 }
3261 
3262 /// ParseIndirectBr
3263 ///  Instruction
3264 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
3265 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
3266   LocTy AddrLoc;
3267   Value *Address;
3268   if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
3269       ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
3270       ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
3271     return true;
3272 
3273   if (!Address->getType()->isPointerTy())
3274     return Error(AddrLoc, "indirectbr address must have pointer type");
3275 
3276   // Parse the destination list.
3277   SmallVector<BasicBlock*, 16> DestList;
3278 
3279   if (Lex.getKind() != lltok::rsquare) {
3280     BasicBlock *DestBB;
3281     if (ParseTypeAndBasicBlock(DestBB, PFS))
3282       return true;
3283     DestList.push_back(DestBB);
3284 
3285     while (EatIfPresent(lltok::comma)) {
3286       if (ParseTypeAndBasicBlock(DestBB, PFS))
3287         return true;
3288       DestList.push_back(DestBB);
3289     }
3290   }
3291 
3292   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
3293     return true;
3294 
3295   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
3296   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
3297     IBI->addDestination(DestList[i]);
3298   Inst = IBI;
3299   return false;
3300 }
3301 
3302 
3303 /// ParseInvoke
3304 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
3305 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
3306 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
3307   LocTy CallLoc = Lex.getLoc();
3308   unsigned RetAttrs, FnAttrs;
3309   CallingConv::ID CC;
3310   PATypeHolder RetType(Type::getVoidTy(Context));
3311   LocTy RetTypeLoc;
3312   ValID CalleeID;
3313   SmallVector<ParamInfo, 16> ArgList;
3314 
3315   BasicBlock *NormalBB, *UnwindBB;
3316   if (ParseOptionalCallingConv(CC) ||
3317       ParseOptionalAttrs(RetAttrs, 1) ||
3318       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3319       ParseValID(CalleeID) ||
3320       ParseParameterList(ArgList, PFS) ||
3321       ParseOptionalAttrs(FnAttrs, 2) ||
3322       ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
3323       ParseTypeAndBasicBlock(NormalBB, PFS) ||
3324       ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
3325       ParseTypeAndBasicBlock(UnwindBB, PFS))
3326     return true;
3327 
3328   // If RetType is a non-function pointer type, then this is the short syntax
3329   // for the call, which means that RetType is just the return type.  Infer the
3330   // rest of the function argument types from the arguments that are present.
3331   const PointerType *PFTy = 0;
3332   const FunctionType *Ty = 0;
3333   if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3334       !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3335     // Pull out the types of all of the arguments...
3336     std::vector<const Type*> ParamTypes;
3337     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3338       ParamTypes.push_back(ArgList[i].V->getType());
3339 
3340     if (!FunctionType::isValidReturnType(RetType))
3341       return Error(RetTypeLoc, "Invalid result type for LLVM function");
3342 
3343     Ty = FunctionType::get(RetType, ParamTypes, false);
3344     PFTy = PointerType::getUnqual(Ty);
3345   }
3346 
3347   // Look up the callee.
3348   Value *Callee;
3349   if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3350 
3351   // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
3352   // function attributes.
3353   unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
3354   if (FnAttrs & ObsoleteFuncAttrs) {
3355     RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
3356     FnAttrs &= ~ObsoleteFuncAttrs;
3357   }
3358 
3359   // Set up the Attributes for the function.
3360   SmallVector<AttributeWithIndex, 8> Attrs;
3361   if (RetAttrs != Attribute::None)
3362     Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3363 
3364   SmallVector<Value*, 8> Args;
3365 
3366   // Loop through FunctionType's arguments and ensure they are specified
3367   // correctly.  Also, gather any parameter attributes.
3368   FunctionType::param_iterator I = Ty->param_begin();
3369   FunctionType::param_iterator E = Ty->param_end();
3370   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3371     const Type *ExpectedTy = 0;
3372     if (I != E) {
3373       ExpectedTy = *I++;
3374     } else if (!Ty->isVarArg()) {
3375       return Error(ArgList[i].Loc, "too many arguments specified");
3376     }
3377 
3378     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3379       return Error(ArgList[i].Loc, "argument is not of expected type '" +
3380                    ExpectedTy->getDescription() + "'");
3381     Args.push_back(ArgList[i].V);
3382     if (ArgList[i].Attrs != Attribute::None)
3383       Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3384   }
3385 
3386   if (I != E)
3387     return Error(CallLoc, "not enough parameters specified for call");
3388 
3389   if (FnAttrs != Attribute::None)
3390     Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3391 
3392   // Finish off the Attributes and check them
3393   AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3394 
3395   InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB,
3396                                       Args.begin(), Args.end());
3397   II->setCallingConv(CC);
3398   II->setAttributes(PAL);
3399   Inst = II;
3400   return false;
3401 }
3402 
3403 
3404 
3405 //===----------------------------------------------------------------------===//
3406 // Binary Operators.
3407 //===----------------------------------------------------------------------===//
3408 
3409 /// ParseArithmetic
3410 ///  ::= ArithmeticOps TypeAndValue ',' Value
3411 ///
3412 /// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
3413 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
3414 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
3415                                unsigned Opc, unsigned OperandType) {
3416   LocTy Loc; Value *LHS, *RHS;
3417   if (ParseTypeAndValue(LHS, Loc, PFS) ||
3418       ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
3419       ParseValue(LHS->getType(), RHS, PFS))
3420     return true;
3421 
3422   bool Valid;
3423   switch (OperandType) {
3424   default: llvm_unreachable("Unknown operand type!");
3425   case 0: // int or FP.
3426     Valid = LHS->getType()->isIntOrIntVectorTy() ||
3427             LHS->getType()->isFPOrFPVectorTy();
3428     break;
3429   case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
3430   case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
3431   }
3432 
3433   if (!Valid)
3434     return Error(Loc, "invalid operand type for instruction");
3435 
3436   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3437   return false;
3438 }
3439 
3440 /// ParseLogical
3441 ///  ::= ArithmeticOps TypeAndValue ',' Value {
3442 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
3443                             unsigned Opc) {
3444   LocTy Loc; Value *LHS, *RHS;
3445   if (ParseTypeAndValue(LHS, Loc, PFS) ||
3446       ParseToken(lltok::comma, "expected ',' in logical operation") ||
3447       ParseValue(LHS->getType(), RHS, PFS))
3448     return true;
3449 
3450   if (!LHS->getType()->isIntOrIntVectorTy())
3451     return Error(Loc,"instruction requires integer or integer vector operands");
3452 
3453   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3454   return false;
3455 }
3456 
3457 
3458 /// ParseCompare
3459 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
3460 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
3461 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
3462                             unsigned Opc) {
3463   // Parse the integer/fp comparison predicate.
3464   LocTy Loc;
3465   unsigned Pred;
3466   Value *LHS, *RHS;
3467   if (ParseCmpPredicate(Pred, Opc) ||
3468       ParseTypeAndValue(LHS, Loc, PFS) ||
3469       ParseToken(lltok::comma, "expected ',' after compare value") ||
3470       ParseValue(LHS->getType(), RHS, PFS))
3471     return true;
3472 
3473   if (Opc == Instruction::FCmp) {
3474     if (!LHS->getType()->isFPOrFPVectorTy())
3475       return Error(Loc, "fcmp requires floating point operands");
3476     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3477   } else {
3478     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
3479     if (!LHS->getType()->isIntOrIntVectorTy() &&
3480         !LHS->getType()->isPointerTy())
3481       return Error(Loc, "icmp requires integer operands");
3482     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3483   }
3484   return false;
3485 }
3486 
3487 //===----------------------------------------------------------------------===//
3488 // Other Instructions.
3489 //===----------------------------------------------------------------------===//
3490 
3491 
3492 /// ParseCast
3493 ///   ::= CastOpc TypeAndValue 'to' Type
3494 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
3495                          unsigned Opc) {
3496   LocTy Loc;  Value *Op;
3497   PATypeHolder DestTy(Type::getVoidTy(Context));
3498   if (ParseTypeAndValue(Op, Loc, PFS) ||
3499       ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
3500       ParseType(DestTy))
3501     return true;
3502 
3503   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
3504     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
3505     return Error(Loc, "invalid cast opcode for cast from '" +
3506                  Op->getType()->getDescription() + "' to '" +
3507                  DestTy->getDescription() + "'");
3508   }
3509   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
3510   return false;
3511 }
3512 
3513 /// ParseSelect
3514 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3515 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
3516   LocTy Loc;
3517   Value *Op0, *Op1, *Op2;
3518   if (ParseTypeAndValue(Op0, Loc, PFS) ||
3519       ParseToken(lltok::comma, "expected ',' after select condition") ||
3520       ParseTypeAndValue(Op1, PFS) ||
3521       ParseToken(lltok::comma, "expected ',' after select value") ||
3522       ParseTypeAndValue(Op2, PFS))
3523     return true;
3524 
3525   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
3526     return Error(Loc, Reason);
3527 
3528   Inst = SelectInst::Create(Op0, Op1, Op2);
3529   return false;
3530 }
3531 
3532 /// ParseVA_Arg
3533 ///   ::= 'va_arg' TypeAndValue ',' Type
3534 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
3535   Value *Op;
3536   PATypeHolder EltTy(Type::getVoidTy(Context));
3537   LocTy TypeLoc;
3538   if (ParseTypeAndValue(Op, PFS) ||
3539       ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
3540       ParseType(EltTy, TypeLoc))
3541     return true;
3542 
3543   if (!EltTy->isFirstClassType())
3544     return Error(TypeLoc, "va_arg requires operand with first class type");
3545 
3546   Inst = new VAArgInst(Op, EltTy);
3547   return false;
3548 }
3549 
3550 /// ParseExtractElement
3551 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
3552 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
3553   LocTy Loc;
3554   Value *Op0, *Op1;
3555   if (ParseTypeAndValue(Op0, Loc, PFS) ||
3556       ParseToken(lltok::comma, "expected ',' after extract value") ||
3557       ParseTypeAndValue(Op1, PFS))
3558     return true;
3559 
3560   if (!ExtractElementInst::isValidOperands(Op0, Op1))
3561     return Error(Loc, "invalid extractelement operands");
3562 
3563   Inst = ExtractElementInst::Create(Op0, Op1);
3564   return false;
3565 }
3566 
3567 /// ParseInsertElement
3568 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3569 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
3570   LocTy Loc;
3571   Value *Op0, *Op1, *Op2;
3572   if (ParseTypeAndValue(Op0, Loc, PFS) ||
3573       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3574       ParseTypeAndValue(Op1, PFS) ||
3575       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3576       ParseTypeAndValue(Op2, PFS))
3577     return true;
3578 
3579   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
3580     return Error(Loc, "invalid insertelement operands");
3581 
3582   Inst = InsertElementInst::Create(Op0, Op1, Op2);
3583   return false;
3584 }
3585 
3586 /// ParseShuffleVector
3587 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3588 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
3589   LocTy Loc;
3590   Value *Op0, *Op1, *Op2;
3591   if (ParseTypeAndValue(Op0, Loc, PFS) ||
3592       ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
3593       ParseTypeAndValue(Op1, PFS) ||
3594       ParseToken(lltok::comma, "expected ',' after shuffle value") ||
3595       ParseTypeAndValue(Op2, PFS))
3596     return true;
3597 
3598   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
3599     return Error(Loc, "invalid extractelement operands");
3600 
3601   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
3602   return false;
3603 }
3604 
3605 /// ParsePHI
3606 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
3607 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
3608   PATypeHolder Ty(Type::getVoidTy(Context));
3609   Value *Op0, *Op1;
3610   LocTy TypeLoc = Lex.getLoc();
3611 
3612   if (ParseType(Ty) ||
3613       ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3614       ParseValue(Ty, Op0, PFS) ||
3615       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3616       ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3617       ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3618     return true;
3619 
3620   bool AteExtraComma = false;
3621   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
3622   while (1) {
3623     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
3624 
3625     if (!EatIfPresent(lltok::comma))
3626       break;
3627 
3628     if (Lex.getKind() == lltok::MetadataVar) {
3629       AteExtraComma = true;
3630       break;
3631     }
3632 
3633     if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3634         ParseValue(Ty, Op0, PFS) ||
3635         ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3636         ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3637         ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3638       return true;
3639   }
3640 
3641   if (!Ty->isFirstClassType())
3642     return Error(TypeLoc, "phi node must have first class type");
3643 
3644   PHINode *PN = PHINode::Create(Ty);
3645   PN->reserveOperandSpace(PHIVals.size());
3646   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
3647     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
3648   Inst = PN;
3649   return AteExtraComma ? InstExtraComma : InstNormal;
3650 }
3651 
3652 /// ParseCall
3653 ///   ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
3654 ///       ParameterList OptionalAttrs
3655 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
3656                          bool isTail) {
3657   unsigned RetAttrs, FnAttrs;
3658   CallingConv::ID CC;
3659   PATypeHolder RetType(Type::getVoidTy(Context));
3660   LocTy RetTypeLoc;
3661   ValID CalleeID;
3662   SmallVector<ParamInfo, 16> ArgList;
3663   LocTy CallLoc = Lex.getLoc();
3664 
3665   if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
3666       ParseOptionalCallingConv(CC) ||
3667       ParseOptionalAttrs(RetAttrs, 1) ||
3668       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3669       ParseValID(CalleeID) ||
3670       ParseParameterList(ArgList, PFS) ||
3671       ParseOptionalAttrs(FnAttrs, 2))
3672     return true;
3673 
3674   // If RetType is a non-function pointer type, then this is the short syntax
3675   // for the call, which means that RetType is just the return type.  Infer the
3676   // rest of the function argument types from the arguments that are present.
3677   const PointerType *PFTy = 0;
3678   const FunctionType *Ty = 0;
3679   if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3680       !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3681     // Pull out the types of all of the arguments...
3682     std::vector<const Type*> ParamTypes;
3683     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3684       ParamTypes.push_back(ArgList[i].V->getType());
3685 
3686     if (!FunctionType::isValidReturnType(RetType))
3687       return Error(RetTypeLoc, "Invalid result type for LLVM function");
3688 
3689     Ty = FunctionType::get(RetType, ParamTypes, false);
3690     PFTy = PointerType::getUnqual(Ty);
3691   }
3692 
3693   // Look up the callee.
3694   Value *Callee;
3695   if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3696 
3697   // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
3698   // function attributes.
3699   unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
3700   if (FnAttrs & ObsoleteFuncAttrs) {
3701     RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
3702     FnAttrs &= ~ObsoleteFuncAttrs;
3703   }
3704 
3705   // Set up the Attributes for the function.
3706   SmallVector<AttributeWithIndex, 8> Attrs;
3707   if (RetAttrs != Attribute::None)
3708     Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3709 
3710   SmallVector<Value*, 8> Args;
3711 
3712   // Loop through FunctionType's arguments and ensure they are specified
3713   // correctly.  Also, gather any parameter attributes.
3714   FunctionType::param_iterator I = Ty->param_begin();
3715   FunctionType::param_iterator E = Ty->param_end();
3716   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3717     const Type *ExpectedTy = 0;
3718     if (I != E) {
3719       ExpectedTy = *I++;
3720     } else if (!Ty->isVarArg()) {
3721       return Error(ArgList[i].Loc, "too many arguments specified");
3722     }
3723 
3724     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3725       return Error(ArgList[i].Loc, "argument is not of expected type '" +
3726                    ExpectedTy->getDescription() + "'");
3727     Args.push_back(ArgList[i].V);
3728     if (ArgList[i].Attrs != Attribute::None)
3729       Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3730   }
3731 
3732   if (I != E)
3733     return Error(CallLoc, "not enough parameters specified for call");
3734 
3735   if (FnAttrs != Attribute::None)
3736     Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3737 
3738   // Finish off the Attributes and check them
3739   AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3740 
3741   CallInst *CI = CallInst::Create(Callee, Args.begin(), Args.end());
3742   CI->setTailCall(isTail);
3743   CI->setCallingConv(CC);
3744   CI->setAttributes(PAL);
3745   Inst = CI;
3746   return false;
3747 }
3748 
3749 //===----------------------------------------------------------------------===//
3750 // Memory Instructions.
3751 //===----------------------------------------------------------------------===//
3752 
3753 /// ParseAlloc
3754 ///   ::= 'malloc' Type (',' TypeAndValue)? (',' OptionalInfo)?
3755 ///   ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)?
3756 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS,
3757                          BasicBlock* BB, bool isAlloca) {
3758   PATypeHolder Ty(Type::getVoidTy(Context));
3759   Value *Size = 0;
3760   LocTy SizeLoc;
3761   unsigned Alignment = 0;
3762   if (ParseType(Ty)) return true;
3763 
3764   bool AteExtraComma = false;
3765   if (EatIfPresent(lltok::comma)) {
3766     if (Lex.getKind() == lltok::kw_align) {
3767       if (ParseOptionalAlignment(Alignment)) return true;
3768     } else if (Lex.getKind() == lltok::MetadataVar) {
3769       AteExtraComma = true;
3770     } else {
3771       if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
3772           ParseOptionalCommaAlign(Alignment, AteExtraComma))
3773         return true;
3774     }
3775   }
3776 
3777   if (Size && !Size->getType()->isIntegerTy())
3778     return Error(SizeLoc, "element count must have integer type");
3779 
3780   if (isAlloca) {
3781     Inst = new AllocaInst(Ty, Size, Alignment);
3782     return AteExtraComma ? InstExtraComma : InstNormal;
3783   }
3784 
3785   // Autoupgrade old malloc instruction to malloc call.
3786   // FIXME: Remove in LLVM 3.0.
3787   if (Size && !Size->getType()->isIntegerTy(32))
3788     return Error(SizeLoc, "element count must be i32");
3789   const Type *IntPtrTy = Type::getInt32Ty(Context);
3790   Constant *AllocSize = ConstantExpr::getSizeOf(Ty);
3791   AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, IntPtrTy);
3792   if (!MallocF)
3793     // Prototype malloc as "void *(int32)".
3794     // This function is renamed as "malloc" in ValidateEndOfModule().
3795     MallocF = cast<Function>(
3796        M->getOrInsertFunction("", Type::getInt8PtrTy(Context), IntPtrTy, NULL));
3797   Inst = CallInst::CreateMalloc(BB, IntPtrTy, Ty, AllocSize, Size, MallocF);
3798 return AteExtraComma ? InstExtraComma : InstNormal;
3799 }
3800 
3801 /// ParseFree
3802 ///   ::= 'free' TypeAndValue
3803 bool LLParser::ParseFree(Instruction *&Inst, PerFunctionState &PFS,
3804                          BasicBlock* BB) {
3805   Value *Val; LocTy Loc;
3806   if (ParseTypeAndValue(Val, Loc, PFS)) return true;
3807   if (!Val->getType()->isPointerTy())
3808     return Error(Loc, "operand to free must be a pointer");
3809   Inst = CallInst::CreateFree(Val, BB);
3810   return false;
3811 }
3812 
3813 /// ParseLoad
3814 ///   ::= 'volatile'? 'load' TypeAndValue (',' OptionalInfo)?
3815 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS,
3816                         bool isVolatile) {
3817   Value *Val; LocTy Loc;
3818   unsigned Alignment = 0;
3819   bool AteExtraComma = false;
3820   if (ParseTypeAndValue(Val, Loc, PFS) ||
3821       ParseOptionalCommaAlign(Alignment, AteExtraComma))
3822     return true;
3823 
3824   if (!Val->getType()->isPointerTy() ||
3825       !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
3826     return Error(Loc, "load operand must be a pointer to a first class type");
3827 
3828   Inst = new LoadInst(Val, "", isVolatile, Alignment);
3829   return AteExtraComma ? InstExtraComma : InstNormal;
3830 }
3831 
3832 /// ParseStore
3833 ///   ::= 'volatile'? 'store' TypeAndValue ',' TypeAndValue (',' 'align' i32)?
3834 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS,
3835                          bool isVolatile) {
3836   Value *Val, *Ptr; LocTy Loc, PtrLoc;
3837   unsigned Alignment = 0;
3838   bool AteExtraComma = false;
3839   if (ParseTypeAndValue(Val, Loc, PFS) ||
3840       ParseToken(lltok::comma, "expected ',' after store operand") ||
3841       ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3842       ParseOptionalCommaAlign(Alignment, AteExtraComma))
3843     return true;
3844 
3845   if (!Ptr->getType()->isPointerTy())
3846     return Error(PtrLoc, "store operand must be a pointer");
3847   if (!Val->getType()->isFirstClassType())
3848     return Error(Loc, "store operand must be a first class value");
3849   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3850     return Error(Loc, "stored value and pointer type do not match");
3851 
3852   Inst = new StoreInst(Val, Ptr, isVolatile, Alignment);
3853   return AteExtraComma ? InstExtraComma : InstNormal;
3854 }
3855 
3856 /// ParseGetResult
3857 ///   ::= 'getresult' TypeAndValue ',' i32
3858 /// FIXME: Remove support for getresult in LLVM 3.0
3859 bool LLParser::ParseGetResult(Instruction *&Inst, PerFunctionState &PFS) {
3860   Value *Val; LocTy ValLoc, EltLoc;
3861   unsigned Element;
3862   if (ParseTypeAndValue(Val, ValLoc, PFS) ||
3863       ParseToken(lltok::comma, "expected ',' after getresult operand") ||
3864       ParseUInt32(Element, EltLoc))
3865     return true;
3866 
3867   if (!Val->getType()->isStructTy() && !Val->getType()->isArrayTy())
3868     return Error(ValLoc, "getresult inst requires an aggregate operand");
3869   if (!ExtractValueInst::getIndexedType(Val->getType(), Element))
3870     return Error(EltLoc, "invalid getresult index for value");
3871   Inst = ExtractValueInst::Create(Val, Element);
3872   return false;
3873 }
3874 
3875 /// ParseGetElementPtr
3876 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
3877 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
3878   Value *Ptr, *Val; LocTy Loc, EltLoc;
3879 
3880   bool InBounds = EatIfPresent(lltok::kw_inbounds);
3881 
3882   if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
3883 
3884   if (!Ptr->getType()->isPointerTy())
3885     return Error(Loc, "base of getelementptr must be a pointer");
3886 
3887   SmallVector<Value*, 16> Indices;
3888   bool AteExtraComma = false;
3889   while (EatIfPresent(lltok::comma)) {
3890     if (Lex.getKind() == lltok::MetadataVar) {
3891       AteExtraComma = true;
3892       break;
3893     }
3894     if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
3895     if (!Val->getType()->isIntegerTy())
3896       return Error(EltLoc, "getelementptr index must be an integer");
3897     Indices.push_back(Val);
3898   }
3899 
3900   if (!GetElementPtrInst::getIndexedType(Ptr->getType(),
3901                                          Indices.begin(), Indices.end()))
3902     return Error(Loc, "invalid getelementptr indices");
3903   Inst = GetElementPtrInst::Create(Ptr, Indices.begin(), Indices.end());
3904   if (InBounds)
3905     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
3906   return AteExtraComma ? InstExtraComma : InstNormal;
3907 }
3908 
3909 /// ParseExtractValue
3910 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
3911 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
3912   Value *Val; LocTy Loc;
3913   SmallVector<unsigned, 4> Indices;
3914   bool AteExtraComma;
3915   if (ParseTypeAndValue(Val, Loc, PFS) ||
3916       ParseIndexList(Indices, AteExtraComma))
3917     return true;
3918 
3919   if (!Val->getType()->isAggregateType())
3920     return Error(Loc, "extractvalue operand must be aggregate type");
3921 
3922   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
3923                                         Indices.end()))
3924     return Error(Loc, "invalid indices for extractvalue");
3925   Inst = ExtractValueInst::Create(Val, Indices.begin(), Indices.end());
3926   return AteExtraComma ? InstExtraComma : InstNormal;
3927 }
3928 
3929 /// ParseInsertValue
3930 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
3931 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
3932   Value *Val0, *Val1; LocTy Loc0, Loc1;
3933   SmallVector<unsigned, 4> Indices;
3934   bool AteExtraComma;
3935   if (ParseTypeAndValue(Val0, Loc0, PFS) ||
3936       ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
3937       ParseTypeAndValue(Val1, Loc1, PFS) ||
3938       ParseIndexList(Indices, AteExtraComma))
3939     return true;
3940 
3941   if (!Val0->getType()->isAggregateType())
3942     return Error(Loc0, "insertvalue operand must be aggregate type");
3943 
3944   if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
3945                                         Indices.end()))
3946     return Error(Loc0, "invalid indices for insertvalue");
3947   Inst = InsertValueInst::Create(Val0, Val1, Indices.begin(), Indices.end());
3948   return AteExtraComma ? InstExtraComma : InstNormal;
3949 }
3950 
3951 //===----------------------------------------------------------------------===//
3952 // Embedded metadata.
3953 //===----------------------------------------------------------------------===//
3954 
3955 /// ParseMDNodeVector
3956 ///   ::= Element (',' Element)*
3957 /// Element
3958 ///   ::= 'null' | TypeAndValue
3959 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts,
3960                                  PerFunctionState *PFS) {
3961   // Check for an empty list.
3962   if (Lex.getKind() == lltok::rbrace)
3963     return false;
3964 
3965   do {
3966     // Null is a special case since it is typeless.
3967     if (EatIfPresent(lltok::kw_null)) {
3968       Elts.push_back(0);
3969       continue;
3970     }
3971 
3972     Value *V = 0;
3973     PATypeHolder Ty(Type::getVoidTy(Context));
3974     ValID ID;
3975     if (ParseType(Ty) || ParseValID(ID, PFS) ||
3976         ConvertValIDToValue(Ty, ID, V, PFS))
3977       return true;
3978 
3979     Elts.push_back(V);
3980   } while (EatIfPresent(lltok::comma));
3981 
3982   return false;
3983 }
3984