1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the parser class for .ll files. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LLParser.h" 15 #include "llvm/AutoUpgrade.h" 16 #include "llvm/CallingConv.h" 17 #include "llvm/Constants.h" 18 #include "llvm/DerivedTypes.h" 19 #include "llvm/InlineAsm.h" 20 #include "llvm/Instructions.h" 21 #include "llvm/Module.h" 22 #include "llvm/Operator.h" 23 #include "llvm/ValueSymbolTable.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/Support/ErrorHandling.h" 26 #include "llvm/Support/raw_ostream.h" 27 using namespace llvm; 28 29 /// Run: module ::= toplevelentity* 30 bool LLParser::Run() { 31 // Prime the lexer. 32 Lex.Lex(); 33 34 return ParseTopLevelEntities() || 35 ValidateEndOfModule(); 36 } 37 38 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the 39 /// module. 40 bool LLParser::ValidateEndOfModule() { 41 // Handle any instruction metadata forward references. 42 if (!ForwardRefInstMetadata.empty()) { 43 for (DenseMap<Instruction*, std::vector<MDRef> >::iterator 44 I = ForwardRefInstMetadata.begin(), E = ForwardRefInstMetadata.end(); 45 I != E; ++I) { 46 Instruction *Inst = I->first; 47 const std::vector<MDRef> &MDList = I->second; 48 49 for (unsigned i = 0, e = MDList.size(); i != e; ++i) { 50 unsigned SlotNo = MDList[i].MDSlot; 51 52 if (SlotNo >= NumberedMetadata.size() || NumberedMetadata[SlotNo] == 0) 53 return Error(MDList[i].Loc, "use of undefined metadata '!" + 54 Twine(SlotNo) + "'"); 55 Inst->setMetadata(MDList[i].MDKind, NumberedMetadata[SlotNo]); 56 } 57 } 58 ForwardRefInstMetadata.clear(); 59 } 60 61 62 // Update auto-upgraded malloc calls to "malloc". 63 // FIXME: Remove in LLVM 3.0. 64 if (MallocF) { 65 MallocF->setName("malloc"); 66 // If setName() does not set the name to "malloc", then there is already a 67 // declaration of "malloc". In that case, iterate over all calls to MallocF 68 // and get them to call the declared "malloc" instead. 69 if (MallocF->getName() != "malloc") { 70 Constant *RealMallocF = M->getFunction("malloc"); 71 if (RealMallocF->getType() != MallocF->getType()) 72 RealMallocF = ConstantExpr::getBitCast(RealMallocF, MallocF->getType()); 73 MallocF->replaceAllUsesWith(RealMallocF); 74 MallocF->eraseFromParent(); 75 MallocF = NULL; 76 } 77 } 78 79 80 // If there are entries in ForwardRefBlockAddresses at this point, they are 81 // references after the function was defined. Resolve those now. 82 while (!ForwardRefBlockAddresses.empty()) { 83 // Okay, we are referencing an already-parsed function, resolve them now. 84 Function *TheFn = 0; 85 const ValID &Fn = ForwardRefBlockAddresses.begin()->first; 86 if (Fn.Kind == ValID::t_GlobalName) 87 TheFn = M->getFunction(Fn.StrVal); 88 else if (Fn.UIntVal < NumberedVals.size()) 89 TheFn = dyn_cast<Function>(NumberedVals[Fn.UIntVal]); 90 91 if (TheFn == 0) 92 return Error(Fn.Loc, "unknown function referenced by blockaddress"); 93 94 // Resolve all these references. 95 if (ResolveForwardRefBlockAddresses(TheFn, 96 ForwardRefBlockAddresses.begin()->second, 97 0)) 98 return true; 99 100 ForwardRefBlockAddresses.erase(ForwardRefBlockAddresses.begin()); 101 } 102 103 104 if (!ForwardRefTypes.empty()) 105 return Error(ForwardRefTypes.begin()->second.second, 106 "use of undefined type named '" + 107 ForwardRefTypes.begin()->first + "'"); 108 if (!ForwardRefTypeIDs.empty()) 109 return Error(ForwardRefTypeIDs.begin()->second.second, 110 "use of undefined type '%" + 111 Twine(ForwardRefTypeIDs.begin()->first) + "'"); 112 113 if (!ForwardRefVals.empty()) 114 return Error(ForwardRefVals.begin()->second.second, 115 "use of undefined value '@" + ForwardRefVals.begin()->first + 116 "'"); 117 118 if (!ForwardRefValIDs.empty()) 119 return Error(ForwardRefValIDs.begin()->second.second, 120 "use of undefined value '@" + 121 Twine(ForwardRefValIDs.begin()->first) + "'"); 122 123 if (!ForwardRefMDNodes.empty()) 124 return Error(ForwardRefMDNodes.begin()->second.second, 125 "use of undefined metadata '!" + 126 Twine(ForwardRefMDNodes.begin()->first) + "'"); 127 128 129 // Look for intrinsic functions and CallInst that need to be upgraded 130 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 131 UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove 132 133 // Check debug info intrinsics. 134 CheckDebugInfoIntrinsics(M); 135 return false; 136 } 137 138 bool LLParser::ResolveForwardRefBlockAddresses(Function *TheFn, 139 std::vector<std::pair<ValID, GlobalValue*> > &Refs, 140 PerFunctionState *PFS) { 141 // Loop over all the references, resolving them. 142 for (unsigned i = 0, e = Refs.size(); i != e; ++i) { 143 BasicBlock *Res; 144 if (PFS) { 145 if (Refs[i].first.Kind == ValID::t_LocalName) 146 Res = PFS->GetBB(Refs[i].first.StrVal, Refs[i].first.Loc); 147 else 148 Res = PFS->GetBB(Refs[i].first.UIntVal, Refs[i].first.Loc); 149 } else if (Refs[i].first.Kind == ValID::t_LocalID) { 150 return Error(Refs[i].first.Loc, 151 "cannot take address of numeric label after the function is defined"); 152 } else { 153 Res = dyn_cast_or_null<BasicBlock>( 154 TheFn->getValueSymbolTable().lookup(Refs[i].first.StrVal)); 155 } 156 157 if (Res == 0) 158 return Error(Refs[i].first.Loc, 159 "referenced value is not a basic block"); 160 161 // Get the BlockAddress for this and update references to use it. 162 BlockAddress *BA = BlockAddress::get(TheFn, Res); 163 Refs[i].second->replaceAllUsesWith(BA); 164 Refs[i].second->eraseFromParent(); 165 } 166 return false; 167 } 168 169 170 //===----------------------------------------------------------------------===// 171 // Top-Level Entities 172 //===----------------------------------------------------------------------===// 173 174 bool LLParser::ParseTopLevelEntities() { 175 while (1) { 176 switch (Lex.getKind()) { 177 default: return TokError("expected top-level entity"); 178 case lltok::Eof: return false; 179 //case lltok::kw_define: 180 case lltok::kw_declare: if (ParseDeclare()) return true; break; 181 case lltok::kw_define: if (ParseDefine()) return true; break; 182 case lltok::kw_module: if (ParseModuleAsm()) return true; break; 183 case lltok::kw_target: if (ParseTargetDefinition()) return true; break; 184 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; 185 case lltok::kw_type: if (ParseUnnamedType()) return true; break; 186 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; 187 case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0 188 case lltok::LocalVar: if (ParseNamedType()) return true; break; 189 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; 190 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; 191 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break; 192 case lltok::MetadataVar: if (ParseNamedMetadata()) return true; break; 193 194 // The Global variable production with no name can have many different 195 // optional leading prefixes, the production is: 196 // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal 197 // OptionalAddrSpace ('constant'|'global') ... 198 case lltok::kw_private: // OptionalLinkage 199 case lltok::kw_linker_private: // OptionalLinkage 200 case lltok::kw_linker_private_weak: // OptionalLinkage 201 case lltok::kw_linker_private_weak_def_auto: // OptionalLinkage 202 case lltok::kw_internal: // OptionalLinkage 203 case lltok::kw_weak: // OptionalLinkage 204 case lltok::kw_weak_odr: // OptionalLinkage 205 case lltok::kw_linkonce: // OptionalLinkage 206 case lltok::kw_linkonce_odr: // OptionalLinkage 207 case lltok::kw_appending: // OptionalLinkage 208 case lltok::kw_dllexport: // OptionalLinkage 209 case lltok::kw_common: // OptionalLinkage 210 case lltok::kw_dllimport: // OptionalLinkage 211 case lltok::kw_extern_weak: // OptionalLinkage 212 case lltok::kw_external: { // OptionalLinkage 213 unsigned Linkage, Visibility; 214 if (ParseOptionalLinkage(Linkage) || 215 ParseOptionalVisibility(Visibility) || 216 ParseGlobal("", SMLoc(), Linkage, true, Visibility)) 217 return true; 218 break; 219 } 220 case lltok::kw_default: // OptionalVisibility 221 case lltok::kw_hidden: // OptionalVisibility 222 case lltok::kw_protected: { // OptionalVisibility 223 unsigned Visibility; 224 if (ParseOptionalVisibility(Visibility) || 225 ParseGlobal("", SMLoc(), 0, false, Visibility)) 226 return true; 227 break; 228 } 229 230 case lltok::kw_thread_local: // OptionalThreadLocal 231 case lltok::kw_addrspace: // OptionalAddrSpace 232 case lltok::kw_constant: // GlobalType 233 case lltok::kw_global: // GlobalType 234 if (ParseGlobal("", SMLoc(), 0, false, 0)) return true; 235 break; 236 } 237 } 238 } 239 240 241 /// toplevelentity 242 /// ::= 'module' 'asm' STRINGCONSTANT 243 bool LLParser::ParseModuleAsm() { 244 assert(Lex.getKind() == lltok::kw_module); 245 Lex.Lex(); 246 247 std::string AsmStr; 248 if (ParseToken(lltok::kw_asm, "expected 'module asm'") || 249 ParseStringConstant(AsmStr)) return true; 250 251 const std::string &AsmSoFar = M->getModuleInlineAsm(); 252 if (AsmSoFar.empty()) 253 M->setModuleInlineAsm(AsmStr); 254 else 255 M->setModuleInlineAsm(AsmSoFar+"\n"+AsmStr); 256 return false; 257 } 258 259 /// toplevelentity 260 /// ::= 'target' 'triple' '=' STRINGCONSTANT 261 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 262 bool LLParser::ParseTargetDefinition() { 263 assert(Lex.getKind() == lltok::kw_target); 264 std::string Str; 265 switch (Lex.Lex()) { 266 default: return TokError("unknown target property"); 267 case lltok::kw_triple: 268 Lex.Lex(); 269 if (ParseToken(lltok::equal, "expected '=' after target triple") || 270 ParseStringConstant(Str)) 271 return true; 272 M->setTargetTriple(Str); 273 return false; 274 case lltok::kw_datalayout: 275 Lex.Lex(); 276 if (ParseToken(lltok::equal, "expected '=' after target datalayout") || 277 ParseStringConstant(Str)) 278 return true; 279 M->setDataLayout(Str); 280 return false; 281 } 282 } 283 284 /// toplevelentity 285 /// ::= 'deplibs' '=' '[' ']' 286 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 287 bool LLParser::ParseDepLibs() { 288 assert(Lex.getKind() == lltok::kw_deplibs); 289 Lex.Lex(); 290 if (ParseToken(lltok::equal, "expected '=' after deplibs") || 291 ParseToken(lltok::lsquare, "expected '=' after deplibs")) 292 return true; 293 294 if (EatIfPresent(lltok::rsquare)) 295 return false; 296 297 std::string Str; 298 if (ParseStringConstant(Str)) return true; 299 M->addLibrary(Str); 300 301 while (EatIfPresent(lltok::comma)) { 302 if (ParseStringConstant(Str)) return true; 303 M->addLibrary(Str); 304 } 305 306 return ParseToken(lltok::rsquare, "expected ']' at end of list"); 307 } 308 309 /// ParseUnnamedType: 310 /// ::= 'type' type 311 /// ::= LocalVarID '=' 'type' type 312 bool LLParser::ParseUnnamedType() { 313 unsigned TypeID = NumberedTypes.size(); 314 315 // Handle the LocalVarID form. 316 if (Lex.getKind() == lltok::LocalVarID) { 317 if (Lex.getUIntVal() != TypeID) 318 return Error(Lex.getLoc(), "type expected to be numbered '%" + 319 Twine(TypeID) + "'"); 320 Lex.Lex(); // eat LocalVarID; 321 322 if (ParseToken(lltok::equal, "expected '=' after name")) 323 return true; 324 } 325 326 LocTy TypeLoc = Lex.getLoc(); 327 if (ParseToken(lltok::kw_type, "expected 'type' after '='")) return true; 328 329 PATypeHolder Ty(Type::getVoidTy(Context)); 330 if (ParseType(Ty)) return true; 331 332 // See if this type was previously referenced. 333 std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator 334 FI = ForwardRefTypeIDs.find(TypeID); 335 if (FI != ForwardRefTypeIDs.end()) { 336 if (FI->second.first.get() == Ty) 337 return Error(TypeLoc, "self referential type is invalid"); 338 339 cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty); 340 Ty = FI->second.first.get(); 341 ForwardRefTypeIDs.erase(FI); 342 } 343 344 NumberedTypes.push_back(Ty); 345 346 return false; 347 } 348 349 /// toplevelentity 350 /// ::= LocalVar '=' 'type' type 351 bool LLParser::ParseNamedType() { 352 std::string Name = Lex.getStrVal(); 353 LocTy NameLoc = Lex.getLoc(); 354 Lex.Lex(); // eat LocalVar. 355 356 PATypeHolder Ty(Type::getVoidTy(Context)); 357 358 if (ParseToken(lltok::equal, "expected '=' after name") || 359 ParseToken(lltok::kw_type, "expected 'type' after name") || 360 ParseType(Ty)) 361 return true; 362 363 // Set the type name, checking for conflicts as we do so. 364 bool AlreadyExists = M->addTypeName(Name, Ty); 365 if (!AlreadyExists) return false; 366 367 // See if this type is a forward reference. We need to eagerly resolve 368 // types to allow recursive type redefinitions below. 369 std::map<std::string, std::pair<PATypeHolder, LocTy> >::iterator 370 FI = ForwardRefTypes.find(Name); 371 if (FI != ForwardRefTypes.end()) { 372 if (FI->second.first.get() == Ty) 373 return Error(NameLoc, "self referential type is invalid"); 374 375 cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty); 376 Ty = FI->second.first.get(); 377 ForwardRefTypes.erase(FI); 378 } 379 380 // Inserting a name that is already defined, get the existing name. 381 const Type *Existing = M->getTypeByName(Name); 382 assert(Existing && "Conflict but no matching type?!"); 383 384 // Otherwise, this is an attempt to redefine a type. That's okay if 385 // the redefinition is identical to the original. 386 // FIXME: REMOVE REDEFINITIONS IN LLVM 3.0 387 if (Existing == Ty) return false; 388 389 // Any other kind of (non-equivalent) redefinition is an error. 390 return Error(NameLoc, "redefinition of type named '" + Name + "' of type '" + 391 Ty->getDescription() + "'"); 392 } 393 394 395 /// toplevelentity 396 /// ::= 'declare' FunctionHeader 397 bool LLParser::ParseDeclare() { 398 assert(Lex.getKind() == lltok::kw_declare); 399 Lex.Lex(); 400 401 Function *F; 402 return ParseFunctionHeader(F, false); 403 } 404 405 /// toplevelentity 406 /// ::= 'define' FunctionHeader '{' ... 407 bool LLParser::ParseDefine() { 408 assert(Lex.getKind() == lltok::kw_define); 409 Lex.Lex(); 410 411 Function *F; 412 return ParseFunctionHeader(F, true) || 413 ParseFunctionBody(*F); 414 } 415 416 /// ParseGlobalType 417 /// ::= 'constant' 418 /// ::= 'global' 419 bool LLParser::ParseGlobalType(bool &IsConstant) { 420 if (Lex.getKind() == lltok::kw_constant) 421 IsConstant = true; 422 else if (Lex.getKind() == lltok::kw_global) 423 IsConstant = false; 424 else { 425 IsConstant = false; 426 return TokError("expected 'global' or 'constant'"); 427 } 428 Lex.Lex(); 429 return false; 430 } 431 432 /// ParseUnnamedGlobal: 433 /// OptionalVisibility ALIAS ... 434 /// OptionalLinkage OptionalVisibility ... -> global variable 435 /// GlobalID '=' OptionalVisibility ALIAS ... 436 /// GlobalID '=' OptionalLinkage OptionalVisibility ... -> global variable 437 bool LLParser::ParseUnnamedGlobal() { 438 unsigned VarID = NumberedVals.size(); 439 std::string Name; 440 LocTy NameLoc = Lex.getLoc(); 441 442 // Handle the GlobalID form. 443 if (Lex.getKind() == lltok::GlobalID) { 444 if (Lex.getUIntVal() != VarID) 445 return Error(Lex.getLoc(), "variable expected to be numbered '%" + 446 Twine(VarID) + "'"); 447 Lex.Lex(); // eat GlobalID; 448 449 if (ParseToken(lltok::equal, "expected '=' after name")) 450 return true; 451 } 452 453 bool HasLinkage; 454 unsigned Linkage, Visibility; 455 if (ParseOptionalLinkage(Linkage, HasLinkage) || 456 ParseOptionalVisibility(Visibility)) 457 return true; 458 459 if (HasLinkage || Lex.getKind() != lltok::kw_alias) 460 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility); 461 return ParseAlias(Name, NameLoc, Visibility); 462 } 463 464 /// ParseNamedGlobal: 465 /// GlobalVar '=' OptionalVisibility ALIAS ... 466 /// GlobalVar '=' OptionalLinkage OptionalVisibility ... -> global variable 467 bool LLParser::ParseNamedGlobal() { 468 assert(Lex.getKind() == lltok::GlobalVar); 469 LocTy NameLoc = Lex.getLoc(); 470 std::string Name = Lex.getStrVal(); 471 Lex.Lex(); 472 473 bool HasLinkage; 474 unsigned Linkage, Visibility; 475 if (ParseToken(lltok::equal, "expected '=' in global variable") || 476 ParseOptionalLinkage(Linkage, HasLinkage) || 477 ParseOptionalVisibility(Visibility)) 478 return true; 479 480 if (HasLinkage || Lex.getKind() != lltok::kw_alias) 481 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility); 482 return ParseAlias(Name, NameLoc, Visibility); 483 } 484 485 // MDString: 486 // ::= '!' STRINGCONSTANT 487 bool LLParser::ParseMDString(MDString *&Result) { 488 std::string Str; 489 if (ParseStringConstant(Str)) return true; 490 Result = MDString::get(Context, Str); 491 return false; 492 } 493 494 // MDNode: 495 // ::= '!' MDNodeNumber 496 // 497 /// This version of ParseMDNodeID returns the slot number and null in the case 498 /// of a forward reference. 499 bool LLParser::ParseMDNodeID(MDNode *&Result, unsigned &SlotNo) { 500 // !{ ..., !42, ... } 501 if (ParseUInt32(SlotNo)) return true; 502 503 // Check existing MDNode. 504 if (SlotNo < NumberedMetadata.size() && NumberedMetadata[SlotNo] != 0) 505 Result = NumberedMetadata[SlotNo]; 506 else 507 Result = 0; 508 return false; 509 } 510 511 bool LLParser::ParseMDNodeID(MDNode *&Result) { 512 // !{ ..., !42, ... } 513 unsigned MID = 0; 514 if (ParseMDNodeID(Result, MID)) return true; 515 516 // If not a forward reference, just return it now. 517 if (Result) return false; 518 519 // Otherwise, create MDNode forward reference. 520 MDNode *FwdNode = MDNode::getTemporary(Context, 0, 0); 521 ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc()); 522 523 if (NumberedMetadata.size() <= MID) 524 NumberedMetadata.resize(MID+1); 525 NumberedMetadata[MID] = FwdNode; 526 Result = FwdNode; 527 return false; 528 } 529 530 /// ParseNamedMetadata: 531 /// !foo = !{ !1, !2 } 532 bool LLParser::ParseNamedMetadata() { 533 assert(Lex.getKind() == lltok::MetadataVar); 534 std::string Name = Lex.getStrVal(); 535 Lex.Lex(); 536 537 if (ParseToken(lltok::equal, "expected '=' here") || 538 ParseToken(lltok::exclaim, "Expected '!' here") || 539 ParseToken(lltok::lbrace, "Expected '{' here")) 540 return true; 541 542 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 543 if (Lex.getKind() != lltok::rbrace) 544 do { 545 if (ParseToken(lltok::exclaim, "Expected '!' here")) 546 return true; 547 548 MDNode *N = 0; 549 if (ParseMDNodeID(N)) return true; 550 NMD->addOperand(N); 551 } while (EatIfPresent(lltok::comma)); 552 553 if (ParseToken(lltok::rbrace, "expected end of metadata node")) 554 return true; 555 556 return false; 557 } 558 559 /// ParseStandaloneMetadata: 560 /// !42 = !{...} 561 bool LLParser::ParseStandaloneMetadata() { 562 assert(Lex.getKind() == lltok::exclaim); 563 Lex.Lex(); 564 unsigned MetadataID = 0; 565 566 LocTy TyLoc; 567 PATypeHolder Ty(Type::getVoidTy(Context)); 568 SmallVector<Value *, 16> Elts; 569 if (ParseUInt32(MetadataID) || 570 ParseToken(lltok::equal, "expected '=' here") || 571 ParseType(Ty, TyLoc) || 572 ParseToken(lltok::exclaim, "Expected '!' here") || 573 ParseToken(lltok::lbrace, "Expected '{' here") || 574 ParseMDNodeVector(Elts, NULL) || 575 ParseToken(lltok::rbrace, "expected end of metadata node")) 576 return true; 577 578 MDNode *Init = MDNode::get(Context, Elts.data(), Elts.size()); 579 580 // See if this was forward referenced, if so, handle it. 581 std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator 582 FI = ForwardRefMDNodes.find(MetadataID); 583 if (FI != ForwardRefMDNodes.end()) { 584 MDNode *Temp = FI->second.first; 585 Temp->replaceAllUsesWith(Init); 586 MDNode::deleteTemporary(Temp); 587 ForwardRefMDNodes.erase(FI); 588 589 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 590 } else { 591 if (MetadataID >= NumberedMetadata.size()) 592 NumberedMetadata.resize(MetadataID+1); 593 594 if (NumberedMetadata[MetadataID] != 0) 595 return TokError("Metadata id is already used"); 596 NumberedMetadata[MetadataID] = Init; 597 } 598 599 return false; 600 } 601 602 /// ParseAlias: 603 /// ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee 604 /// Aliasee 605 /// ::= TypeAndValue 606 /// ::= 'bitcast' '(' TypeAndValue 'to' Type ')' 607 /// ::= 'getelementptr' 'inbounds'? '(' ... ')' 608 /// 609 /// Everything through visibility has already been parsed. 610 /// 611 bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc, 612 unsigned Visibility) { 613 assert(Lex.getKind() == lltok::kw_alias); 614 Lex.Lex(); 615 unsigned Linkage; 616 LocTy LinkageLoc = Lex.getLoc(); 617 if (ParseOptionalLinkage(Linkage)) 618 return true; 619 620 if (Linkage != GlobalValue::ExternalLinkage && 621 Linkage != GlobalValue::WeakAnyLinkage && 622 Linkage != GlobalValue::WeakODRLinkage && 623 Linkage != GlobalValue::InternalLinkage && 624 Linkage != GlobalValue::PrivateLinkage && 625 Linkage != GlobalValue::LinkerPrivateLinkage && 626 Linkage != GlobalValue::LinkerPrivateWeakLinkage && 627 Linkage != GlobalValue::LinkerPrivateWeakDefAutoLinkage) 628 return Error(LinkageLoc, "invalid linkage type for alias"); 629 630 Constant *Aliasee; 631 LocTy AliaseeLoc = Lex.getLoc(); 632 if (Lex.getKind() != lltok::kw_bitcast && 633 Lex.getKind() != lltok::kw_getelementptr) { 634 if (ParseGlobalTypeAndValue(Aliasee)) return true; 635 } else { 636 // The bitcast dest type is not present, it is implied by the dest type. 637 ValID ID; 638 if (ParseValID(ID)) return true; 639 if (ID.Kind != ValID::t_Constant) 640 return Error(AliaseeLoc, "invalid aliasee"); 641 Aliasee = ID.ConstantVal; 642 } 643 644 if (!Aliasee->getType()->isPointerTy()) 645 return Error(AliaseeLoc, "alias must have pointer type"); 646 647 // Okay, create the alias but do not insert it into the module yet. 648 GlobalAlias* GA = new GlobalAlias(Aliasee->getType(), 649 (GlobalValue::LinkageTypes)Linkage, Name, 650 Aliasee); 651 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 652 653 // See if this value already exists in the symbol table. If so, it is either 654 // a redefinition or a definition of a forward reference. 655 if (GlobalValue *Val = M->getNamedValue(Name)) { 656 // See if this was a redefinition. If so, there is no entry in 657 // ForwardRefVals. 658 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator 659 I = ForwardRefVals.find(Name); 660 if (I == ForwardRefVals.end()) 661 return Error(NameLoc, "redefinition of global named '@" + Name + "'"); 662 663 // Otherwise, this was a definition of forward ref. Verify that types 664 // agree. 665 if (Val->getType() != GA->getType()) 666 return Error(NameLoc, 667 "forward reference and definition of alias have different types"); 668 669 // If they agree, just RAUW the old value with the alias and remove the 670 // forward ref info. 671 Val->replaceAllUsesWith(GA); 672 Val->eraseFromParent(); 673 ForwardRefVals.erase(I); 674 } 675 676 // Insert into the module, we know its name won't collide now. 677 M->getAliasList().push_back(GA); 678 assert(GA->getName() == Name && "Should not be a name conflict!"); 679 680 return false; 681 } 682 683 /// ParseGlobal 684 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal 685 /// OptionalAddrSpace GlobalType Type Const 686 /// ::= OptionalLinkage OptionalVisibility OptionalThreadLocal 687 /// OptionalAddrSpace GlobalType Type Const 688 /// 689 /// Everything through visibility has been parsed already. 690 /// 691 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, 692 unsigned Linkage, bool HasLinkage, 693 unsigned Visibility) { 694 unsigned AddrSpace; 695 bool ThreadLocal, IsConstant; 696 LocTy TyLoc; 697 698 PATypeHolder Ty(Type::getVoidTy(Context)); 699 if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) || 700 ParseOptionalAddrSpace(AddrSpace) || 701 ParseGlobalType(IsConstant) || 702 ParseType(Ty, TyLoc)) 703 return true; 704 705 // If the linkage is specified and is external, then no initializer is 706 // present. 707 Constant *Init = 0; 708 if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage && 709 Linkage != GlobalValue::ExternalWeakLinkage && 710 Linkage != GlobalValue::ExternalLinkage)) { 711 if (ParseGlobalValue(Ty, Init)) 712 return true; 713 } 714 715 if (Ty->isFunctionTy() || Ty->isLabelTy()) 716 return Error(TyLoc, "invalid type for global variable"); 717 718 GlobalVariable *GV = 0; 719 720 // See if the global was forward referenced, if so, use the global. 721 if (!Name.empty()) { 722 if (GlobalValue *GVal = M->getNamedValue(Name)) { 723 if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal)) 724 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 725 GV = cast<GlobalVariable>(GVal); 726 } 727 } else { 728 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator 729 I = ForwardRefValIDs.find(NumberedVals.size()); 730 if (I != ForwardRefValIDs.end()) { 731 GV = cast<GlobalVariable>(I->second.first); 732 ForwardRefValIDs.erase(I); 733 } 734 } 735 736 if (GV == 0) { 737 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0, 738 Name, 0, false, AddrSpace); 739 } else { 740 if (GV->getType()->getElementType() != Ty) 741 return Error(TyLoc, 742 "forward reference and definition of global have different types"); 743 744 // Move the forward-reference to the correct spot in the module. 745 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 746 } 747 748 if (Name.empty()) 749 NumberedVals.push_back(GV); 750 751 // Set the parsed properties on the global. 752 if (Init) 753 GV->setInitializer(Init); 754 GV->setConstant(IsConstant); 755 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 756 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 757 GV->setThreadLocal(ThreadLocal); 758 759 // Parse attributes on the global. 760 while (Lex.getKind() == lltok::comma) { 761 Lex.Lex(); 762 763 if (Lex.getKind() == lltok::kw_section) { 764 Lex.Lex(); 765 GV->setSection(Lex.getStrVal()); 766 if (ParseToken(lltok::StringConstant, "expected global section string")) 767 return true; 768 } else if (Lex.getKind() == lltok::kw_align) { 769 unsigned Alignment; 770 if (ParseOptionalAlignment(Alignment)) return true; 771 GV->setAlignment(Alignment); 772 } else { 773 TokError("unknown global variable property!"); 774 } 775 } 776 777 return false; 778 } 779 780 781 //===----------------------------------------------------------------------===// 782 // GlobalValue Reference/Resolution Routines. 783 //===----------------------------------------------------------------------===// 784 785 /// GetGlobalVal - Get a value with the specified name or ID, creating a 786 /// forward reference record if needed. This can return null if the value 787 /// exists but does not have the right type. 788 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, const Type *Ty, 789 LocTy Loc) { 790 const PointerType *PTy = dyn_cast<PointerType>(Ty); 791 if (PTy == 0) { 792 Error(Loc, "global variable reference must have pointer type"); 793 return 0; 794 } 795 796 // Look this name up in the normal function symbol table. 797 GlobalValue *Val = 798 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 799 800 // If this is a forward reference for the value, see if we already created a 801 // forward ref record. 802 if (Val == 0) { 803 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator 804 I = ForwardRefVals.find(Name); 805 if (I != ForwardRefVals.end()) 806 Val = I->second.first; 807 } 808 809 // If we have the value in the symbol table or fwd-ref table, return it. 810 if (Val) { 811 if (Val->getType() == Ty) return Val; 812 Error(Loc, "'@" + Name + "' defined with type '" + 813 Val->getType()->getDescription() + "'"); 814 return 0; 815 } 816 817 // Otherwise, create a new forward reference for this value and remember it. 818 GlobalValue *FwdVal; 819 if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) { 820 // Function types can return opaque but functions can't. 821 if (FT->getReturnType()->isOpaqueTy()) { 822 Error(Loc, "function may not return opaque type"); 823 return 0; 824 } 825 826 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M); 827 } else { 828 FwdVal = new GlobalVariable(*M, PTy->getElementType(), false, 829 GlobalValue::ExternalWeakLinkage, 0, Name); 830 } 831 832 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 833 return FwdVal; 834 } 835 836 GlobalValue *LLParser::GetGlobalVal(unsigned ID, const Type *Ty, LocTy Loc) { 837 const PointerType *PTy = dyn_cast<PointerType>(Ty); 838 if (PTy == 0) { 839 Error(Loc, "global variable reference must have pointer type"); 840 return 0; 841 } 842 843 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0; 844 845 // If this is a forward reference for the value, see if we already created a 846 // forward ref record. 847 if (Val == 0) { 848 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator 849 I = ForwardRefValIDs.find(ID); 850 if (I != ForwardRefValIDs.end()) 851 Val = I->second.first; 852 } 853 854 // If we have the value in the symbol table or fwd-ref table, return it. 855 if (Val) { 856 if (Val->getType() == Ty) return Val; 857 Error(Loc, "'@" + Twine(ID) + "' defined with type '" + 858 Val->getType()->getDescription() + "'"); 859 return 0; 860 } 861 862 // Otherwise, create a new forward reference for this value and remember it. 863 GlobalValue *FwdVal; 864 if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) { 865 // Function types can return opaque but functions can't. 866 if (FT->getReturnType()->isOpaqueTy()) { 867 Error(Loc, "function may not return opaque type"); 868 return 0; 869 } 870 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M); 871 } else { 872 FwdVal = new GlobalVariable(*M, PTy->getElementType(), false, 873 GlobalValue::ExternalWeakLinkage, 0, ""); 874 } 875 876 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 877 return FwdVal; 878 } 879 880 881 //===----------------------------------------------------------------------===// 882 // Helper Routines. 883 //===----------------------------------------------------------------------===// 884 885 /// ParseToken - If the current token has the specified kind, eat it and return 886 /// success. Otherwise, emit the specified error and return failure. 887 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { 888 if (Lex.getKind() != T) 889 return TokError(ErrMsg); 890 Lex.Lex(); 891 return false; 892 } 893 894 /// ParseStringConstant 895 /// ::= StringConstant 896 bool LLParser::ParseStringConstant(std::string &Result) { 897 if (Lex.getKind() != lltok::StringConstant) 898 return TokError("expected string constant"); 899 Result = Lex.getStrVal(); 900 Lex.Lex(); 901 return false; 902 } 903 904 /// ParseUInt32 905 /// ::= uint32 906 bool LLParser::ParseUInt32(unsigned &Val) { 907 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 908 return TokError("expected integer"); 909 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 910 if (Val64 != unsigned(Val64)) 911 return TokError("expected 32-bit integer (too large)"); 912 Val = Val64; 913 Lex.Lex(); 914 return false; 915 } 916 917 918 /// ParseOptionalAddrSpace 919 /// := /*empty*/ 920 /// := 'addrspace' '(' uint32 ')' 921 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) { 922 AddrSpace = 0; 923 if (!EatIfPresent(lltok::kw_addrspace)) 924 return false; 925 return ParseToken(lltok::lparen, "expected '(' in address space") || 926 ParseUInt32(AddrSpace) || 927 ParseToken(lltok::rparen, "expected ')' in address space"); 928 } 929 930 /// ParseOptionalAttrs - Parse a potentially empty attribute list. AttrKind 931 /// indicates what kind of attribute list this is: 0: function arg, 1: result, 932 /// 2: function attr. 933 /// 3: function arg after value: FIXME: REMOVE IN LLVM 3.0 934 bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) { 935 Attrs = Attribute::None; 936 LocTy AttrLoc = Lex.getLoc(); 937 938 while (1) { 939 switch (Lex.getKind()) { 940 case lltok::kw_sext: 941 case lltok::kw_zext: 942 // Treat these as signext/zeroext if they occur in the argument list after 943 // the value, as in "call i8 @foo(i8 10 sext)". If they occur before the 944 // value, as in "call i8 @foo(i8 sext (" then it is part of a constant 945 // expr. 946 // FIXME: REMOVE THIS IN LLVM 3.0 947 if (AttrKind == 3) { 948 if (Lex.getKind() == lltok::kw_sext) 949 Attrs |= Attribute::SExt; 950 else 951 Attrs |= Attribute::ZExt; 952 break; 953 } 954 // FALL THROUGH. 955 default: // End of attributes. 956 if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly)) 957 return Error(AttrLoc, "invalid use of function-only attribute"); 958 959 if (AttrKind != 0 && AttrKind != 3 && (Attrs & Attribute::ParameterOnly)) 960 return Error(AttrLoc, "invalid use of parameter-only attribute"); 961 962 return false; 963 case lltok::kw_zeroext: Attrs |= Attribute::ZExt; break; 964 case lltok::kw_signext: Attrs |= Attribute::SExt; break; 965 case lltok::kw_inreg: Attrs |= Attribute::InReg; break; 966 case lltok::kw_sret: Attrs |= Attribute::StructRet; break; 967 case lltok::kw_noalias: Attrs |= Attribute::NoAlias; break; 968 case lltok::kw_nocapture: Attrs |= Attribute::NoCapture; break; 969 case lltok::kw_byval: Attrs |= Attribute::ByVal; break; 970 case lltok::kw_nest: Attrs |= Attribute::Nest; break; 971 972 case lltok::kw_noreturn: Attrs |= Attribute::NoReturn; break; 973 case lltok::kw_nounwind: Attrs |= Attribute::NoUnwind; break; 974 case lltok::kw_noinline: Attrs |= Attribute::NoInline; break; 975 case lltok::kw_readnone: Attrs |= Attribute::ReadNone; break; 976 case lltok::kw_readonly: Attrs |= Attribute::ReadOnly; break; 977 case lltok::kw_inlinehint: Attrs |= Attribute::InlineHint; break; 978 case lltok::kw_alwaysinline: Attrs |= Attribute::AlwaysInline; break; 979 case lltok::kw_optsize: Attrs |= Attribute::OptimizeForSize; break; 980 case lltok::kw_ssp: Attrs |= Attribute::StackProtect; break; 981 case lltok::kw_sspreq: Attrs |= Attribute::StackProtectReq; break; 982 case lltok::kw_noredzone: Attrs |= Attribute::NoRedZone; break; 983 case lltok::kw_noimplicitfloat: Attrs |= Attribute::NoImplicitFloat; break; 984 case lltok::kw_naked: Attrs |= Attribute::Naked; break; 985 986 case lltok::kw_alignstack: { 987 unsigned Alignment; 988 if (ParseOptionalStackAlignment(Alignment)) 989 return true; 990 Attrs |= Attribute::constructStackAlignmentFromInt(Alignment); 991 continue; 992 } 993 994 case lltok::kw_align: { 995 unsigned Alignment; 996 if (ParseOptionalAlignment(Alignment)) 997 return true; 998 Attrs |= Attribute::constructAlignmentFromInt(Alignment); 999 continue; 1000 } 1001 1002 } 1003 Lex.Lex(); 1004 } 1005 } 1006 1007 /// ParseOptionalLinkage 1008 /// ::= /*empty*/ 1009 /// ::= 'private' 1010 /// ::= 'linker_private' 1011 /// ::= 'linker_private_weak' 1012 /// ::= 'linker_private_weak_def_auto' 1013 /// ::= 'internal' 1014 /// ::= 'weak' 1015 /// ::= 'weak_odr' 1016 /// ::= 'linkonce' 1017 /// ::= 'linkonce_odr' 1018 /// ::= 'available_externally' 1019 /// ::= 'appending' 1020 /// ::= 'dllexport' 1021 /// ::= 'common' 1022 /// ::= 'dllimport' 1023 /// ::= 'extern_weak' 1024 /// ::= 'external' 1025 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) { 1026 HasLinkage = false; 1027 switch (Lex.getKind()) { 1028 default: Res=GlobalValue::ExternalLinkage; return false; 1029 case lltok::kw_private: Res = GlobalValue::PrivateLinkage; break; 1030 case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break; 1031 case lltok::kw_linker_private_weak: 1032 Res = GlobalValue::LinkerPrivateWeakLinkage; 1033 break; 1034 case lltok::kw_linker_private_weak_def_auto: 1035 Res = GlobalValue::LinkerPrivateWeakDefAutoLinkage; 1036 break; 1037 case lltok::kw_internal: Res = GlobalValue::InternalLinkage; break; 1038 case lltok::kw_weak: Res = GlobalValue::WeakAnyLinkage; break; 1039 case lltok::kw_weak_odr: Res = GlobalValue::WeakODRLinkage; break; 1040 case lltok::kw_linkonce: Res = GlobalValue::LinkOnceAnyLinkage; break; 1041 case lltok::kw_linkonce_odr: Res = GlobalValue::LinkOnceODRLinkage; break; 1042 case lltok::kw_available_externally: 1043 Res = GlobalValue::AvailableExternallyLinkage; 1044 break; 1045 case lltok::kw_appending: Res = GlobalValue::AppendingLinkage; break; 1046 case lltok::kw_dllexport: Res = GlobalValue::DLLExportLinkage; break; 1047 case lltok::kw_common: Res = GlobalValue::CommonLinkage; break; 1048 case lltok::kw_dllimport: Res = GlobalValue::DLLImportLinkage; break; 1049 case lltok::kw_extern_weak: Res = GlobalValue::ExternalWeakLinkage; break; 1050 case lltok::kw_external: Res = GlobalValue::ExternalLinkage; break; 1051 } 1052 Lex.Lex(); 1053 HasLinkage = true; 1054 return false; 1055 } 1056 1057 /// ParseOptionalVisibility 1058 /// ::= /*empty*/ 1059 /// ::= 'default' 1060 /// ::= 'hidden' 1061 /// ::= 'protected' 1062 /// 1063 bool LLParser::ParseOptionalVisibility(unsigned &Res) { 1064 switch (Lex.getKind()) { 1065 default: Res = GlobalValue::DefaultVisibility; return false; 1066 case lltok::kw_default: Res = GlobalValue::DefaultVisibility; break; 1067 case lltok::kw_hidden: Res = GlobalValue::HiddenVisibility; break; 1068 case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break; 1069 } 1070 Lex.Lex(); 1071 return false; 1072 } 1073 1074 /// ParseOptionalCallingConv 1075 /// ::= /*empty*/ 1076 /// ::= 'ccc' 1077 /// ::= 'fastcc' 1078 /// ::= 'coldcc' 1079 /// ::= 'x86_stdcallcc' 1080 /// ::= 'x86_fastcallcc' 1081 /// ::= 'x86_thiscallcc' 1082 /// ::= 'arm_apcscc' 1083 /// ::= 'arm_aapcscc' 1084 /// ::= 'arm_aapcs_vfpcc' 1085 /// ::= 'msp430_intrcc' 1086 /// ::= 'ptx_kernel' 1087 /// ::= 'ptx_device' 1088 /// ::= 'cc' UINT 1089 /// 1090 bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) { 1091 switch (Lex.getKind()) { 1092 default: CC = CallingConv::C; return false; 1093 case lltok::kw_ccc: CC = CallingConv::C; break; 1094 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1095 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1096 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1097 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1098 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1099 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1100 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1101 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1102 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1103 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1104 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1105 case lltok::kw_cc: { 1106 unsigned ArbitraryCC; 1107 Lex.Lex(); 1108 if (ParseUInt32(ArbitraryCC)) { 1109 return true; 1110 } else 1111 CC = static_cast<CallingConv::ID>(ArbitraryCC); 1112 return false; 1113 } 1114 break; 1115 } 1116 1117 Lex.Lex(); 1118 return false; 1119 } 1120 1121 /// ParseInstructionMetadata 1122 /// ::= !dbg !42 (',' !dbg !57)* 1123 bool LLParser::ParseInstructionMetadata(Instruction *Inst, 1124 PerFunctionState *PFS) { 1125 do { 1126 if (Lex.getKind() != lltok::MetadataVar) 1127 return TokError("expected metadata after comma"); 1128 1129 std::string Name = Lex.getStrVal(); 1130 unsigned MDK = M->getMDKindID(Name.c_str()); 1131 Lex.Lex(); 1132 1133 MDNode *Node; 1134 SMLoc Loc = Lex.getLoc(); 1135 1136 if (ParseToken(lltok::exclaim, "expected '!' here")) 1137 return true; 1138 1139 // This code is similar to that of ParseMetadataValue, however it needs to 1140 // have special-case code for a forward reference; see the comments on 1141 // ForwardRefInstMetadata for details. Also, MDStrings are not supported 1142 // at the top level here. 1143 if (Lex.getKind() == lltok::lbrace) { 1144 ValID ID; 1145 if (ParseMetadataListValue(ID, PFS)) 1146 return true; 1147 assert(ID.Kind == ValID::t_MDNode); 1148 Inst->setMetadata(MDK, ID.MDNodeVal); 1149 } else { 1150 unsigned NodeID = 0; 1151 if (ParseMDNodeID(Node, NodeID)) 1152 return true; 1153 if (Node) { 1154 // If we got the node, add it to the instruction. 1155 Inst->setMetadata(MDK, Node); 1156 } else { 1157 MDRef R = { Loc, MDK, NodeID }; 1158 // Otherwise, remember that this should be resolved later. 1159 ForwardRefInstMetadata[Inst].push_back(R); 1160 } 1161 } 1162 1163 // If this is the end of the list, we're done. 1164 } while (EatIfPresent(lltok::comma)); 1165 return false; 1166 } 1167 1168 /// ParseOptionalAlignment 1169 /// ::= /* empty */ 1170 /// ::= 'align' 4 1171 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) { 1172 Alignment = 0; 1173 if (!EatIfPresent(lltok::kw_align)) 1174 return false; 1175 LocTy AlignLoc = Lex.getLoc(); 1176 if (ParseUInt32(Alignment)) return true; 1177 if (!isPowerOf2_32(Alignment)) 1178 return Error(AlignLoc, "alignment is not a power of two"); 1179 if (Alignment > Value::MaximumAlignment) 1180 return Error(AlignLoc, "huge alignments are not supported yet"); 1181 return false; 1182 } 1183 1184 /// ParseOptionalCommaAlign 1185 /// ::= 1186 /// ::= ',' align 4 1187 /// 1188 /// This returns with AteExtraComma set to true if it ate an excess comma at the 1189 /// end. 1190 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment, 1191 bool &AteExtraComma) { 1192 AteExtraComma = false; 1193 while (EatIfPresent(lltok::comma)) { 1194 // Metadata at the end is an early exit. 1195 if (Lex.getKind() == lltok::MetadataVar) { 1196 AteExtraComma = true; 1197 return false; 1198 } 1199 1200 if (Lex.getKind() != lltok::kw_align) 1201 return Error(Lex.getLoc(), "expected metadata or 'align'"); 1202 1203 if (ParseOptionalAlignment(Alignment)) return true; 1204 } 1205 1206 return false; 1207 } 1208 1209 /// ParseOptionalStackAlignment 1210 /// ::= /* empty */ 1211 /// ::= 'alignstack' '(' 4 ')' 1212 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { 1213 Alignment = 0; 1214 if (!EatIfPresent(lltok::kw_alignstack)) 1215 return false; 1216 LocTy ParenLoc = Lex.getLoc(); 1217 if (!EatIfPresent(lltok::lparen)) 1218 return Error(ParenLoc, "expected '('"); 1219 LocTy AlignLoc = Lex.getLoc(); 1220 if (ParseUInt32(Alignment)) return true; 1221 ParenLoc = Lex.getLoc(); 1222 if (!EatIfPresent(lltok::rparen)) 1223 return Error(ParenLoc, "expected ')'"); 1224 if (!isPowerOf2_32(Alignment)) 1225 return Error(AlignLoc, "stack alignment is not a power of two"); 1226 return false; 1227 } 1228 1229 /// ParseIndexList - This parses the index list for an insert/extractvalue 1230 /// instruction. This sets AteExtraComma in the case where we eat an extra 1231 /// comma at the end of the line and find that it is followed by metadata. 1232 /// Clients that don't allow metadata can call the version of this function that 1233 /// only takes one argument. 1234 /// 1235 /// ParseIndexList 1236 /// ::= (',' uint32)+ 1237 /// 1238 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, 1239 bool &AteExtraComma) { 1240 AteExtraComma = false; 1241 1242 if (Lex.getKind() != lltok::comma) 1243 return TokError("expected ',' as start of index list"); 1244 1245 while (EatIfPresent(lltok::comma)) { 1246 if (Lex.getKind() == lltok::MetadataVar) { 1247 AteExtraComma = true; 1248 return false; 1249 } 1250 unsigned Idx = 0; 1251 if (ParseUInt32(Idx)) return true; 1252 Indices.push_back(Idx); 1253 } 1254 1255 return false; 1256 } 1257 1258 //===----------------------------------------------------------------------===// 1259 // Type Parsing. 1260 //===----------------------------------------------------------------------===// 1261 1262 /// ParseType - Parse and resolve a full type. 1263 bool LLParser::ParseType(PATypeHolder &Result, bool AllowVoid) { 1264 LocTy TypeLoc = Lex.getLoc(); 1265 if (ParseTypeRec(Result)) return true; 1266 1267 // Verify no unresolved uprefs. 1268 if (!UpRefs.empty()) 1269 return Error(UpRefs.back().Loc, "invalid unresolved type up reference"); 1270 1271 if (!AllowVoid && Result.get()->isVoidTy()) 1272 return Error(TypeLoc, "void type only allowed for function results"); 1273 1274 return false; 1275 } 1276 1277 /// HandleUpRefs - Every time we finish a new layer of types, this function is 1278 /// called. It loops through the UpRefs vector, which is a list of the 1279 /// currently active types. For each type, if the up-reference is contained in 1280 /// the newly completed type, we decrement the level count. When the level 1281 /// count reaches zero, the up-referenced type is the type that is passed in: 1282 /// thus we can complete the cycle. 1283 /// 1284 PATypeHolder LLParser::HandleUpRefs(const Type *ty) { 1285 // If Ty isn't abstract, or if there are no up-references in it, then there is 1286 // nothing to resolve here. 1287 if (!ty->isAbstract() || UpRefs.empty()) return ty; 1288 1289 PATypeHolder Ty(ty); 1290 #if 0 1291 dbgs() << "Type '" << Ty->getDescription() 1292 << "' newly formed. Resolving upreferences.\n" 1293 << UpRefs.size() << " upreferences active!\n"; 1294 #endif 1295 1296 // If we find any resolvable upreferences (i.e., those whose NestingLevel goes 1297 // to zero), we resolve them all together before we resolve them to Ty. At 1298 // the end of the loop, if there is anything to resolve to Ty, it will be in 1299 // this variable. 1300 OpaqueType *TypeToResolve = 0; 1301 1302 for (unsigned i = 0; i != UpRefs.size(); ++i) { 1303 // Determine if 'Ty' directly contains this up-references 'LastContainedTy'. 1304 bool ContainsType = 1305 std::find(Ty->subtype_begin(), Ty->subtype_end(), 1306 UpRefs[i].LastContainedTy) != Ty->subtype_end(); 1307 1308 #if 0 1309 dbgs() << " UR#" << i << " - TypeContains(" << Ty->getDescription() << ", " 1310 << UpRefs[i].LastContainedTy->getDescription() << ") = " 1311 << (ContainsType ? "true" : "false") 1312 << " level=" << UpRefs[i].NestingLevel << "\n"; 1313 #endif 1314 if (!ContainsType) 1315 continue; 1316 1317 // Decrement level of upreference 1318 unsigned Level = --UpRefs[i].NestingLevel; 1319 UpRefs[i].LastContainedTy = Ty; 1320 1321 // If the Up-reference has a non-zero level, it shouldn't be resolved yet. 1322 if (Level != 0) 1323 continue; 1324 1325 #if 0 1326 dbgs() << " * Resolving upreference for " << UpRefs[i].UpRefTy << "\n"; 1327 #endif 1328 if (!TypeToResolve) 1329 TypeToResolve = UpRefs[i].UpRefTy; 1330 else 1331 UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve); 1332 UpRefs.erase(UpRefs.begin()+i); // Remove from upreference list. 1333 --i; // Do not skip the next element. 1334 } 1335 1336 if (TypeToResolve) 1337 TypeToResolve->refineAbstractTypeTo(Ty); 1338 1339 return Ty; 1340 } 1341 1342 1343 /// ParseTypeRec - The recursive function used to process the internal 1344 /// implementation details of types. 1345 bool LLParser::ParseTypeRec(PATypeHolder &Result) { 1346 switch (Lex.getKind()) { 1347 default: 1348 return TokError("expected type"); 1349 case lltok::Type: 1350 // TypeRec ::= 'float' | 'void' (etc) 1351 Result = Lex.getTyVal(); 1352 Lex.Lex(); 1353 break; 1354 case lltok::kw_opaque: 1355 // TypeRec ::= 'opaque' 1356 Result = OpaqueType::get(Context); 1357 Lex.Lex(); 1358 break; 1359 case lltok::lbrace: 1360 // TypeRec ::= '{' ... '}' 1361 if (ParseStructType(Result, false)) 1362 return true; 1363 break; 1364 case lltok::lsquare: 1365 // TypeRec ::= '[' ... ']' 1366 Lex.Lex(); // eat the lsquare. 1367 if (ParseArrayVectorType(Result, false)) 1368 return true; 1369 break; 1370 case lltok::less: // Either vector or packed struct. 1371 // TypeRec ::= '<' ... '>' 1372 Lex.Lex(); 1373 if (Lex.getKind() == lltok::lbrace) { 1374 if (ParseStructType(Result, true) || 1375 ParseToken(lltok::greater, "expected '>' at end of packed struct")) 1376 return true; 1377 } else if (ParseArrayVectorType(Result, true)) 1378 return true; 1379 break; 1380 case lltok::LocalVar: 1381 case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0 1382 // TypeRec ::= %foo 1383 if (const Type *T = M->getTypeByName(Lex.getStrVal())) { 1384 Result = T; 1385 } else { 1386 Result = OpaqueType::get(Context); 1387 ForwardRefTypes.insert(std::make_pair(Lex.getStrVal(), 1388 std::make_pair(Result, 1389 Lex.getLoc()))); 1390 M->addTypeName(Lex.getStrVal(), Result.get()); 1391 } 1392 Lex.Lex(); 1393 break; 1394 1395 case lltok::LocalVarID: 1396 // TypeRec ::= %4 1397 if (Lex.getUIntVal() < NumberedTypes.size()) 1398 Result = NumberedTypes[Lex.getUIntVal()]; 1399 else { 1400 std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator 1401 I = ForwardRefTypeIDs.find(Lex.getUIntVal()); 1402 if (I != ForwardRefTypeIDs.end()) 1403 Result = I->second.first; 1404 else { 1405 Result = OpaqueType::get(Context); 1406 ForwardRefTypeIDs.insert(std::make_pair(Lex.getUIntVal(), 1407 std::make_pair(Result, 1408 Lex.getLoc()))); 1409 } 1410 } 1411 Lex.Lex(); 1412 break; 1413 case lltok::backslash: { 1414 // TypeRec ::= '\' 4 1415 Lex.Lex(); 1416 unsigned Val; 1417 if (ParseUInt32(Val)) return true; 1418 OpaqueType *OT = OpaqueType::get(Context); //Use temporary placeholder. 1419 UpRefs.push_back(UpRefRecord(Lex.getLoc(), Val, OT)); 1420 Result = OT; 1421 break; 1422 } 1423 } 1424 1425 // Parse the type suffixes. 1426 while (1) { 1427 switch (Lex.getKind()) { 1428 // End of type. 1429 default: return false; 1430 1431 // TypeRec ::= TypeRec '*' 1432 case lltok::star: 1433 if (Result.get()->isLabelTy()) 1434 return TokError("basic block pointers are invalid"); 1435 if (Result.get()->isVoidTy()) 1436 return TokError("pointers to void are invalid; use i8* instead"); 1437 if (!PointerType::isValidElementType(Result.get())) 1438 return TokError("pointer to this type is invalid"); 1439 Result = HandleUpRefs(PointerType::getUnqual(Result.get())); 1440 Lex.Lex(); 1441 break; 1442 1443 // TypeRec ::= TypeRec 'addrspace' '(' uint32 ')' '*' 1444 case lltok::kw_addrspace: { 1445 if (Result.get()->isLabelTy()) 1446 return TokError("basic block pointers are invalid"); 1447 if (Result.get()->isVoidTy()) 1448 return TokError("pointers to void are invalid; use i8* instead"); 1449 if (!PointerType::isValidElementType(Result.get())) 1450 return TokError("pointer to this type is invalid"); 1451 unsigned AddrSpace; 1452 if (ParseOptionalAddrSpace(AddrSpace) || 1453 ParseToken(lltok::star, "expected '*' in address space")) 1454 return true; 1455 1456 Result = HandleUpRefs(PointerType::get(Result.get(), AddrSpace)); 1457 break; 1458 } 1459 1460 /// Types '(' ArgTypeListI ')' OptFuncAttrs 1461 case lltok::lparen: 1462 if (ParseFunctionType(Result)) 1463 return true; 1464 break; 1465 } 1466 } 1467 } 1468 1469 /// ParseParameterList 1470 /// ::= '(' ')' 1471 /// ::= '(' Arg (',' Arg)* ')' 1472 /// Arg 1473 /// ::= Type OptionalAttributes Value OptionalAttributes 1474 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 1475 PerFunctionState &PFS) { 1476 if (ParseToken(lltok::lparen, "expected '(' in call")) 1477 return true; 1478 1479 while (Lex.getKind() != lltok::rparen) { 1480 // If this isn't the first argument, we need a comma. 1481 if (!ArgList.empty() && 1482 ParseToken(lltok::comma, "expected ',' in argument list")) 1483 return true; 1484 1485 // Parse the argument. 1486 LocTy ArgLoc; 1487 PATypeHolder ArgTy(Type::getVoidTy(Context)); 1488 unsigned ArgAttrs1 = Attribute::None; 1489 unsigned ArgAttrs2 = Attribute::None; 1490 Value *V; 1491 if (ParseType(ArgTy, ArgLoc)) 1492 return true; 1493 1494 // Otherwise, handle normal operands. 1495 if (ParseOptionalAttrs(ArgAttrs1, 0) || 1496 ParseValue(ArgTy, V, PFS) || 1497 // FIXME: Should not allow attributes after the argument, remove this 1498 // in LLVM 3.0. 1499 ParseOptionalAttrs(ArgAttrs2, 3)) 1500 return true; 1501 ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2)); 1502 } 1503 1504 Lex.Lex(); // Lex the ')'. 1505 return false; 1506 } 1507 1508 1509 1510 /// ParseArgumentList - Parse the argument list for a function type or function 1511 /// prototype. If 'inType' is true then we are parsing a FunctionType. 1512 /// ::= '(' ArgTypeListI ')' 1513 /// ArgTypeListI 1514 /// ::= /*empty*/ 1515 /// ::= '...' 1516 /// ::= ArgTypeList ',' '...' 1517 /// ::= ArgType (',' ArgType)* 1518 /// 1519 bool LLParser::ParseArgumentList(std::vector<ArgInfo> &ArgList, 1520 bool &isVarArg, bool inType) { 1521 isVarArg = false; 1522 assert(Lex.getKind() == lltok::lparen); 1523 Lex.Lex(); // eat the (. 1524 1525 if (Lex.getKind() == lltok::rparen) { 1526 // empty 1527 } else if (Lex.getKind() == lltok::dotdotdot) { 1528 isVarArg = true; 1529 Lex.Lex(); 1530 } else { 1531 LocTy TypeLoc = Lex.getLoc(); 1532 PATypeHolder ArgTy(Type::getVoidTy(Context)); 1533 unsigned Attrs; 1534 std::string Name; 1535 1536 // If we're parsing a type, use ParseTypeRec, because we allow recursive 1537 // types (such as a function returning a pointer to itself). If parsing a 1538 // function prototype, we require fully resolved types. 1539 if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) || 1540 ParseOptionalAttrs(Attrs, 0)) return true; 1541 1542 if (ArgTy->isVoidTy()) 1543 return Error(TypeLoc, "argument can not have void type"); 1544 1545 if (Lex.getKind() == lltok::LocalVar || 1546 Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0 1547 Name = Lex.getStrVal(); 1548 Lex.Lex(); 1549 } 1550 1551 if (!FunctionType::isValidArgumentType(ArgTy)) 1552 return Error(TypeLoc, "invalid type for function argument"); 1553 1554 ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name)); 1555 1556 while (EatIfPresent(lltok::comma)) { 1557 // Handle ... at end of arg list. 1558 if (EatIfPresent(lltok::dotdotdot)) { 1559 isVarArg = true; 1560 break; 1561 } 1562 1563 // Otherwise must be an argument type. 1564 TypeLoc = Lex.getLoc(); 1565 if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) || 1566 ParseOptionalAttrs(Attrs, 0)) return true; 1567 1568 if (ArgTy->isVoidTy()) 1569 return Error(TypeLoc, "argument can not have void type"); 1570 1571 if (Lex.getKind() == lltok::LocalVar || 1572 Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0 1573 Name = Lex.getStrVal(); 1574 Lex.Lex(); 1575 } else { 1576 Name = ""; 1577 } 1578 1579 if (!ArgTy->isFirstClassType() && !ArgTy->isOpaqueTy()) 1580 return Error(TypeLoc, "invalid type for function argument"); 1581 1582 ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name)); 1583 } 1584 } 1585 1586 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 1587 } 1588 1589 /// ParseFunctionType 1590 /// ::= Type ArgumentList OptionalAttrs 1591 bool LLParser::ParseFunctionType(PATypeHolder &Result) { 1592 assert(Lex.getKind() == lltok::lparen); 1593 1594 if (!FunctionType::isValidReturnType(Result)) 1595 return TokError("invalid function return type"); 1596 1597 std::vector<ArgInfo> ArgList; 1598 bool isVarArg; 1599 unsigned Attrs; 1600 if (ParseArgumentList(ArgList, isVarArg, true) || 1601 // FIXME: Allow, but ignore attributes on function types! 1602 // FIXME: Remove in LLVM 3.0 1603 ParseOptionalAttrs(Attrs, 2)) 1604 return true; 1605 1606 // Reject names on the arguments lists. 1607 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 1608 if (!ArgList[i].Name.empty()) 1609 return Error(ArgList[i].Loc, "argument name invalid in function type"); 1610 if (!ArgList[i].Attrs != 0) { 1611 // Allow but ignore attributes on function types; this permits 1612 // auto-upgrade. 1613 // FIXME: REJECT ATTRIBUTES ON FUNCTION TYPES in LLVM 3.0 1614 } 1615 } 1616 1617 std::vector<const Type*> ArgListTy; 1618 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 1619 ArgListTy.push_back(ArgList[i].Type); 1620 1621 Result = HandleUpRefs(FunctionType::get(Result.get(), 1622 ArgListTy, isVarArg)); 1623 return false; 1624 } 1625 1626 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. 1627 /// TypeRec 1628 /// ::= '{' '}' 1629 /// ::= '{' TypeRec (',' TypeRec)* '}' 1630 /// ::= '<' '{' '}' '>' 1631 /// ::= '<' '{' TypeRec (',' TypeRec)* '}' '>' 1632 bool LLParser::ParseStructType(PATypeHolder &Result, bool Packed) { 1633 assert(Lex.getKind() == lltok::lbrace); 1634 Lex.Lex(); // Consume the '{' 1635 1636 if (EatIfPresent(lltok::rbrace)) { 1637 Result = StructType::get(Context, Packed); 1638 return false; 1639 } 1640 1641 std::vector<PATypeHolder> ParamsList; 1642 LocTy EltTyLoc = Lex.getLoc(); 1643 if (ParseTypeRec(Result)) return true; 1644 ParamsList.push_back(Result); 1645 1646 if (Result->isVoidTy()) 1647 return Error(EltTyLoc, "struct element can not have void type"); 1648 if (!StructType::isValidElementType(Result)) 1649 return Error(EltTyLoc, "invalid element type for struct"); 1650 1651 while (EatIfPresent(lltok::comma)) { 1652 EltTyLoc = Lex.getLoc(); 1653 if (ParseTypeRec(Result)) return true; 1654 1655 if (Result->isVoidTy()) 1656 return Error(EltTyLoc, "struct element can not have void type"); 1657 if (!StructType::isValidElementType(Result)) 1658 return Error(EltTyLoc, "invalid element type for struct"); 1659 1660 ParamsList.push_back(Result); 1661 } 1662 1663 if (ParseToken(lltok::rbrace, "expected '}' at end of struct")) 1664 return true; 1665 1666 std::vector<const Type*> ParamsListTy; 1667 for (unsigned i = 0, e = ParamsList.size(); i != e; ++i) 1668 ParamsListTy.push_back(ParamsList[i].get()); 1669 Result = HandleUpRefs(StructType::get(Context, ParamsListTy, Packed)); 1670 return false; 1671 } 1672 1673 /// ParseArrayVectorType - Parse an array or vector type, assuming the first 1674 /// token has already been consumed. 1675 /// TypeRec 1676 /// ::= '[' APSINTVAL 'x' Types ']' 1677 /// ::= '<' APSINTVAL 'x' Types '>' 1678 bool LLParser::ParseArrayVectorType(PATypeHolder &Result, bool isVector) { 1679 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 1680 Lex.getAPSIntVal().getBitWidth() > 64) 1681 return TokError("expected number in address space"); 1682 1683 LocTy SizeLoc = Lex.getLoc(); 1684 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 1685 Lex.Lex(); 1686 1687 if (ParseToken(lltok::kw_x, "expected 'x' after element count")) 1688 return true; 1689 1690 LocTy TypeLoc = Lex.getLoc(); 1691 PATypeHolder EltTy(Type::getVoidTy(Context)); 1692 if (ParseTypeRec(EltTy)) return true; 1693 1694 if (EltTy->isVoidTy()) 1695 return Error(TypeLoc, "array and vector element type cannot be void"); 1696 1697 if (ParseToken(isVector ? lltok::greater : lltok::rsquare, 1698 "expected end of sequential type")) 1699 return true; 1700 1701 if (isVector) { 1702 if (Size == 0) 1703 return Error(SizeLoc, "zero element vector is illegal"); 1704 if ((unsigned)Size != Size) 1705 return Error(SizeLoc, "size too large for vector"); 1706 if (!VectorType::isValidElementType(EltTy)) 1707 return Error(TypeLoc, "vector element type must be fp or integer"); 1708 Result = VectorType::get(EltTy, unsigned(Size)); 1709 } else { 1710 if (!ArrayType::isValidElementType(EltTy)) 1711 return Error(TypeLoc, "invalid array element type"); 1712 Result = HandleUpRefs(ArrayType::get(EltTy, Size)); 1713 } 1714 return false; 1715 } 1716 1717 //===----------------------------------------------------------------------===// 1718 // Function Semantic Analysis. 1719 //===----------------------------------------------------------------------===// 1720 1721 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 1722 int functionNumber) 1723 : P(p), F(f), FunctionNumber(functionNumber) { 1724 1725 // Insert unnamed arguments into the NumberedVals list. 1726 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); 1727 AI != E; ++AI) 1728 if (!AI->hasName()) 1729 NumberedVals.push_back(AI); 1730 } 1731 1732 LLParser::PerFunctionState::~PerFunctionState() { 1733 // If there were any forward referenced non-basicblock values, delete them. 1734 for (std::map<std::string, std::pair<Value*, LocTy> >::iterator 1735 I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I) 1736 if (!isa<BasicBlock>(I->second.first)) { 1737 I->second.first->replaceAllUsesWith( 1738 UndefValue::get(I->second.first->getType())); 1739 delete I->second.first; 1740 I->second.first = 0; 1741 } 1742 1743 for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator 1744 I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I) 1745 if (!isa<BasicBlock>(I->second.first)) { 1746 I->second.first->replaceAllUsesWith( 1747 UndefValue::get(I->second.first->getType())); 1748 delete I->second.first; 1749 I->second.first = 0; 1750 } 1751 } 1752 1753 bool LLParser::PerFunctionState::FinishFunction() { 1754 // Check to see if someone took the address of labels in this block. 1755 if (!P.ForwardRefBlockAddresses.empty()) { 1756 ValID FunctionID; 1757 if (!F.getName().empty()) { 1758 FunctionID.Kind = ValID::t_GlobalName; 1759 FunctionID.StrVal = F.getName(); 1760 } else { 1761 FunctionID.Kind = ValID::t_GlobalID; 1762 FunctionID.UIntVal = FunctionNumber; 1763 } 1764 1765 std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >::iterator 1766 FRBAI = P.ForwardRefBlockAddresses.find(FunctionID); 1767 if (FRBAI != P.ForwardRefBlockAddresses.end()) { 1768 // Resolve all these references. 1769 if (P.ResolveForwardRefBlockAddresses(&F, FRBAI->second, this)) 1770 return true; 1771 1772 P.ForwardRefBlockAddresses.erase(FRBAI); 1773 } 1774 } 1775 1776 if (!ForwardRefVals.empty()) 1777 return P.Error(ForwardRefVals.begin()->second.second, 1778 "use of undefined value '%" + ForwardRefVals.begin()->first + 1779 "'"); 1780 if (!ForwardRefValIDs.empty()) 1781 return P.Error(ForwardRefValIDs.begin()->second.second, 1782 "use of undefined value '%" + 1783 Twine(ForwardRefValIDs.begin()->first) + "'"); 1784 return false; 1785 } 1786 1787 1788 /// GetVal - Get a value with the specified name or ID, creating a 1789 /// forward reference record if needed. This can return null if the value 1790 /// exists but does not have the right type. 1791 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, 1792 const Type *Ty, LocTy Loc) { 1793 // Look this name up in the normal function symbol table. 1794 Value *Val = F.getValueSymbolTable().lookup(Name); 1795 1796 // If this is a forward reference for the value, see if we already created a 1797 // forward ref record. 1798 if (Val == 0) { 1799 std::map<std::string, std::pair<Value*, LocTy> >::iterator 1800 I = ForwardRefVals.find(Name); 1801 if (I != ForwardRefVals.end()) 1802 Val = I->second.first; 1803 } 1804 1805 // If we have the value in the symbol table or fwd-ref table, return it. 1806 if (Val) { 1807 if (Val->getType() == Ty) return Val; 1808 if (Ty->isLabelTy()) 1809 P.Error(Loc, "'%" + Name + "' is not a basic block"); 1810 else 1811 P.Error(Loc, "'%" + Name + "' defined with type '" + 1812 Val->getType()->getDescription() + "'"); 1813 return 0; 1814 } 1815 1816 // Don't make placeholders with invalid type. 1817 if (!Ty->isFirstClassType() && !Ty->isOpaqueTy() && !Ty->isLabelTy()) { 1818 P.Error(Loc, "invalid use of a non-first-class type"); 1819 return 0; 1820 } 1821 1822 // Otherwise, create a new forward reference for this value and remember it. 1823 Value *FwdVal; 1824 if (Ty->isLabelTy()) 1825 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 1826 else 1827 FwdVal = new Argument(Ty, Name); 1828 1829 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1830 return FwdVal; 1831 } 1832 1833 Value *LLParser::PerFunctionState::GetVal(unsigned ID, const Type *Ty, 1834 LocTy Loc) { 1835 // Look this name up in the normal function symbol table. 1836 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0; 1837 1838 // If this is a forward reference for the value, see if we already created a 1839 // forward ref record. 1840 if (Val == 0) { 1841 std::map<unsigned, std::pair<Value*, LocTy> >::iterator 1842 I = ForwardRefValIDs.find(ID); 1843 if (I != ForwardRefValIDs.end()) 1844 Val = I->second.first; 1845 } 1846 1847 // If we have the value in the symbol table or fwd-ref table, return it. 1848 if (Val) { 1849 if (Val->getType() == Ty) return Val; 1850 if (Ty->isLabelTy()) 1851 P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block"); 1852 else 1853 P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" + 1854 Val->getType()->getDescription() + "'"); 1855 return 0; 1856 } 1857 1858 if (!Ty->isFirstClassType() && !Ty->isOpaqueTy() && !Ty->isLabelTy()) { 1859 P.Error(Loc, "invalid use of a non-first-class type"); 1860 return 0; 1861 } 1862 1863 // Otherwise, create a new forward reference for this value and remember it. 1864 Value *FwdVal; 1865 if (Ty->isLabelTy()) 1866 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 1867 else 1868 FwdVal = new Argument(Ty); 1869 1870 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1871 return FwdVal; 1872 } 1873 1874 /// SetInstName - After an instruction is parsed and inserted into its 1875 /// basic block, this installs its name. 1876 bool LLParser::PerFunctionState::SetInstName(int NameID, 1877 const std::string &NameStr, 1878 LocTy NameLoc, Instruction *Inst) { 1879 // If this instruction has void type, it cannot have a name or ID specified. 1880 if (Inst->getType()->isVoidTy()) { 1881 if (NameID != -1 || !NameStr.empty()) 1882 return P.Error(NameLoc, "instructions returning void cannot have a name"); 1883 return false; 1884 } 1885 1886 // If this was a numbered instruction, verify that the instruction is the 1887 // expected value and resolve any forward references. 1888 if (NameStr.empty()) { 1889 // If neither a name nor an ID was specified, just use the next ID. 1890 if (NameID == -1) 1891 NameID = NumberedVals.size(); 1892 1893 if (unsigned(NameID) != NumberedVals.size()) 1894 return P.Error(NameLoc, "instruction expected to be numbered '%" + 1895 Twine(NumberedVals.size()) + "'"); 1896 1897 std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI = 1898 ForwardRefValIDs.find(NameID); 1899 if (FI != ForwardRefValIDs.end()) { 1900 if (FI->second.first->getType() != Inst->getType()) 1901 return P.Error(NameLoc, "instruction forward referenced with type '" + 1902 FI->second.first->getType()->getDescription() + "'"); 1903 FI->second.first->replaceAllUsesWith(Inst); 1904 delete FI->second.first; 1905 ForwardRefValIDs.erase(FI); 1906 } 1907 1908 NumberedVals.push_back(Inst); 1909 return false; 1910 } 1911 1912 // Otherwise, the instruction had a name. Resolve forward refs and set it. 1913 std::map<std::string, std::pair<Value*, LocTy> >::iterator 1914 FI = ForwardRefVals.find(NameStr); 1915 if (FI != ForwardRefVals.end()) { 1916 if (FI->second.first->getType() != Inst->getType()) 1917 return P.Error(NameLoc, "instruction forward referenced with type '" + 1918 FI->second.first->getType()->getDescription() + "'"); 1919 FI->second.first->replaceAllUsesWith(Inst); 1920 delete FI->second.first; 1921 ForwardRefVals.erase(FI); 1922 } 1923 1924 // Set the name on the instruction. 1925 Inst->setName(NameStr); 1926 1927 if (Inst->getName() != NameStr) 1928 return P.Error(NameLoc, "multiple definition of local value named '" + 1929 NameStr + "'"); 1930 return false; 1931 } 1932 1933 /// GetBB - Get a basic block with the specified name or ID, creating a 1934 /// forward reference record if needed. 1935 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, 1936 LocTy Loc) { 1937 return cast_or_null<BasicBlock>(GetVal(Name, 1938 Type::getLabelTy(F.getContext()), Loc)); 1939 } 1940 1941 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { 1942 return cast_or_null<BasicBlock>(GetVal(ID, 1943 Type::getLabelTy(F.getContext()), Loc)); 1944 } 1945 1946 /// DefineBB - Define the specified basic block, which is either named or 1947 /// unnamed. If there is an error, this returns null otherwise it returns 1948 /// the block being defined. 1949 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, 1950 LocTy Loc) { 1951 BasicBlock *BB; 1952 if (Name.empty()) 1953 BB = GetBB(NumberedVals.size(), Loc); 1954 else 1955 BB = GetBB(Name, Loc); 1956 if (BB == 0) return 0; // Already diagnosed error. 1957 1958 // Move the block to the end of the function. Forward ref'd blocks are 1959 // inserted wherever they happen to be referenced. 1960 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 1961 1962 // Remove the block from forward ref sets. 1963 if (Name.empty()) { 1964 ForwardRefValIDs.erase(NumberedVals.size()); 1965 NumberedVals.push_back(BB); 1966 } else { 1967 // BB forward references are already in the function symbol table. 1968 ForwardRefVals.erase(Name); 1969 } 1970 1971 return BB; 1972 } 1973 1974 //===----------------------------------------------------------------------===// 1975 // Constants. 1976 //===----------------------------------------------------------------------===// 1977 1978 /// ParseValID - Parse an abstract value that doesn't necessarily have a 1979 /// type implied. For example, if we parse "4" we don't know what integer type 1980 /// it has. The value will later be combined with its type and checked for 1981 /// sanity. PFS is used to convert function-local operands of metadata (since 1982 /// metadata operands are not just parsed here but also converted to values). 1983 /// PFS can be null when we are not parsing metadata values inside a function. 1984 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { 1985 ID.Loc = Lex.getLoc(); 1986 switch (Lex.getKind()) { 1987 default: return TokError("expected value token"); 1988 case lltok::GlobalID: // @42 1989 ID.UIntVal = Lex.getUIntVal(); 1990 ID.Kind = ValID::t_GlobalID; 1991 break; 1992 case lltok::GlobalVar: // @foo 1993 ID.StrVal = Lex.getStrVal(); 1994 ID.Kind = ValID::t_GlobalName; 1995 break; 1996 case lltok::LocalVarID: // %42 1997 ID.UIntVal = Lex.getUIntVal(); 1998 ID.Kind = ValID::t_LocalID; 1999 break; 2000 case lltok::LocalVar: // %foo 2001 case lltok::StringConstant: // "foo" - FIXME: REMOVE IN LLVM 3.0 2002 ID.StrVal = Lex.getStrVal(); 2003 ID.Kind = ValID::t_LocalName; 2004 break; 2005 case lltok::exclaim: // !42, !{...}, or !"foo" 2006 return ParseMetadataValue(ID, PFS); 2007 case lltok::APSInt: 2008 ID.APSIntVal = Lex.getAPSIntVal(); 2009 ID.Kind = ValID::t_APSInt; 2010 break; 2011 case lltok::APFloat: 2012 ID.APFloatVal = Lex.getAPFloatVal(); 2013 ID.Kind = ValID::t_APFloat; 2014 break; 2015 case lltok::kw_true: 2016 ID.ConstantVal = ConstantInt::getTrue(Context); 2017 ID.Kind = ValID::t_Constant; 2018 break; 2019 case lltok::kw_false: 2020 ID.ConstantVal = ConstantInt::getFalse(Context); 2021 ID.Kind = ValID::t_Constant; 2022 break; 2023 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 2024 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 2025 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 2026 2027 case lltok::lbrace: { 2028 // ValID ::= '{' ConstVector '}' 2029 Lex.Lex(); 2030 SmallVector<Constant*, 16> Elts; 2031 if (ParseGlobalValueVector(Elts) || 2032 ParseToken(lltok::rbrace, "expected end of struct constant")) 2033 return true; 2034 2035 ID.ConstantVal = ConstantStruct::get(Context, Elts.data(), 2036 Elts.size(), false); 2037 ID.Kind = ValID::t_Constant; 2038 return false; 2039 } 2040 case lltok::less: { 2041 // ValID ::= '<' ConstVector '>' --> Vector. 2042 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 2043 Lex.Lex(); 2044 bool isPackedStruct = EatIfPresent(lltok::lbrace); 2045 2046 SmallVector<Constant*, 16> Elts; 2047 LocTy FirstEltLoc = Lex.getLoc(); 2048 if (ParseGlobalValueVector(Elts) || 2049 (isPackedStruct && 2050 ParseToken(lltok::rbrace, "expected end of packed struct")) || 2051 ParseToken(lltok::greater, "expected end of constant")) 2052 return true; 2053 2054 if (isPackedStruct) { 2055 ID.ConstantVal = 2056 ConstantStruct::get(Context, Elts.data(), Elts.size(), true); 2057 ID.Kind = ValID::t_Constant; 2058 return false; 2059 } 2060 2061 if (Elts.empty()) 2062 return Error(ID.Loc, "constant vector must not be empty"); 2063 2064 if (!Elts[0]->getType()->isIntegerTy() && 2065 !Elts[0]->getType()->isFloatingPointTy()) 2066 return Error(FirstEltLoc, 2067 "vector elements must have integer or floating point type"); 2068 2069 // Verify that all the vector elements have the same type. 2070 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 2071 if (Elts[i]->getType() != Elts[0]->getType()) 2072 return Error(FirstEltLoc, 2073 "vector element #" + Twine(i) + 2074 " is not of type '" + Elts[0]->getType()->getDescription()); 2075 2076 ID.ConstantVal = ConstantVector::get(Elts.data(), Elts.size()); 2077 ID.Kind = ValID::t_Constant; 2078 return false; 2079 } 2080 case lltok::lsquare: { // Array Constant 2081 Lex.Lex(); 2082 SmallVector<Constant*, 16> Elts; 2083 LocTy FirstEltLoc = Lex.getLoc(); 2084 if (ParseGlobalValueVector(Elts) || 2085 ParseToken(lltok::rsquare, "expected end of array constant")) 2086 return true; 2087 2088 // Handle empty element. 2089 if (Elts.empty()) { 2090 // Use undef instead of an array because it's inconvenient to determine 2091 // the element type at this point, there being no elements to examine. 2092 ID.Kind = ValID::t_EmptyArray; 2093 return false; 2094 } 2095 2096 if (!Elts[0]->getType()->isFirstClassType()) 2097 return Error(FirstEltLoc, "invalid array element type: " + 2098 Elts[0]->getType()->getDescription()); 2099 2100 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 2101 2102 // Verify all elements are correct type! 2103 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 2104 if (Elts[i]->getType() != Elts[0]->getType()) 2105 return Error(FirstEltLoc, 2106 "array element #" + Twine(i) + 2107 " is not of type '" +Elts[0]->getType()->getDescription()); 2108 } 2109 2110 ID.ConstantVal = ConstantArray::get(ATy, Elts.data(), Elts.size()); 2111 ID.Kind = ValID::t_Constant; 2112 return false; 2113 } 2114 case lltok::kw_c: // c "foo" 2115 Lex.Lex(); 2116 ID.ConstantVal = ConstantArray::get(Context, Lex.getStrVal(), false); 2117 if (ParseToken(lltok::StringConstant, "expected string")) return true; 2118 ID.Kind = ValID::t_Constant; 2119 return false; 2120 2121 case lltok::kw_asm: { 2122 // ValID ::= 'asm' SideEffect? AlignStack? STRINGCONSTANT ',' STRINGCONSTANT 2123 bool HasSideEffect, AlignStack; 2124 Lex.Lex(); 2125 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 2126 ParseOptionalToken(lltok::kw_alignstack, AlignStack) || 2127 ParseStringConstant(ID.StrVal) || 2128 ParseToken(lltok::comma, "expected comma in inline asm expression") || 2129 ParseToken(lltok::StringConstant, "expected constraint string")) 2130 return true; 2131 ID.StrVal2 = Lex.getStrVal(); 2132 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1); 2133 ID.Kind = ValID::t_InlineAsm; 2134 return false; 2135 } 2136 2137 case lltok::kw_blockaddress: { 2138 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 2139 Lex.Lex(); 2140 2141 ValID Fn, Label; 2142 LocTy FnLoc, LabelLoc; 2143 2144 if (ParseToken(lltok::lparen, "expected '(' in block address expression") || 2145 ParseValID(Fn) || 2146 ParseToken(lltok::comma, "expected comma in block address expression")|| 2147 ParseValID(Label) || 2148 ParseToken(lltok::rparen, "expected ')' in block address expression")) 2149 return true; 2150 2151 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 2152 return Error(Fn.Loc, "expected function name in blockaddress"); 2153 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 2154 return Error(Label.Loc, "expected basic block name in blockaddress"); 2155 2156 // Make a global variable as a placeholder for this reference. 2157 GlobalVariable *FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), 2158 false, GlobalValue::InternalLinkage, 2159 0, ""); 2160 ForwardRefBlockAddresses[Fn].push_back(std::make_pair(Label, FwdRef)); 2161 ID.ConstantVal = FwdRef; 2162 ID.Kind = ValID::t_Constant; 2163 return false; 2164 } 2165 2166 case lltok::kw_trunc: 2167 case lltok::kw_zext: 2168 case lltok::kw_sext: 2169 case lltok::kw_fptrunc: 2170 case lltok::kw_fpext: 2171 case lltok::kw_bitcast: 2172 case lltok::kw_uitofp: 2173 case lltok::kw_sitofp: 2174 case lltok::kw_fptoui: 2175 case lltok::kw_fptosi: 2176 case lltok::kw_inttoptr: 2177 case lltok::kw_ptrtoint: { 2178 unsigned Opc = Lex.getUIntVal(); 2179 PATypeHolder DestTy(Type::getVoidTy(Context)); 2180 Constant *SrcVal; 2181 Lex.Lex(); 2182 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || 2183 ParseGlobalTypeAndValue(SrcVal) || 2184 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 2185 ParseType(DestTy) || 2186 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 2187 return true; 2188 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 2189 return Error(ID.Loc, "invalid cast opcode for cast from '" + 2190 SrcVal->getType()->getDescription() + "' to '" + 2191 DestTy->getDescription() + "'"); 2192 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 2193 SrcVal, DestTy); 2194 ID.Kind = ValID::t_Constant; 2195 return false; 2196 } 2197 case lltok::kw_extractvalue: { 2198 Lex.Lex(); 2199 Constant *Val; 2200 SmallVector<unsigned, 4> Indices; 2201 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| 2202 ParseGlobalTypeAndValue(Val) || 2203 ParseIndexList(Indices) || 2204 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 2205 return true; 2206 2207 if (!Val->getType()->isAggregateType()) 2208 return Error(ID.Loc, "extractvalue operand must be aggregate type"); 2209 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(), 2210 Indices.end())) 2211 return Error(ID.Loc, "invalid indices for extractvalue"); 2212 ID.ConstantVal = 2213 ConstantExpr::getExtractValue(Val, Indices.data(), Indices.size()); 2214 ID.Kind = ValID::t_Constant; 2215 return false; 2216 } 2217 case lltok::kw_insertvalue: { 2218 Lex.Lex(); 2219 Constant *Val0, *Val1; 2220 SmallVector<unsigned, 4> Indices; 2221 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| 2222 ParseGlobalTypeAndValue(Val0) || 2223 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| 2224 ParseGlobalTypeAndValue(Val1) || 2225 ParseIndexList(Indices) || 2226 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 2227 return true; 2228 if (!Val0->getType()->isAggregateType()) 2229 return Error(ID.Loc, "insertvalue operand must be aggregate type"); 2230 if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(), 2231 Indices.end())) 2232 return Error(ID.Loc, "invalid indices for insertvalue"); 2233 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, 2234 Indices.data(), Indices.size()); 2235 ID.Kind = ValID::t_Constant; 2236 return false; 2237 } 2238 case lltok::kw_icmp: 2239 case lltok::kw_fcmp: { 2240 unsigned PredVal, Opc = Lex.getUIntVal(); 2241 Constant *Val0, *Val1; 2242 Lex.Lex(); 2243 if (ParseCmpPredicate(PredVal, Opc) || 2244 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || 2245 ParseGlobalTypeAndValue(Val0) || 2246 ParseToken(lltok::comma, "expected comma in compare constantexpr") || 2247 ParseGlobalTypeAndValue(Val1) || 2248 ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) 2249 return true; 2250 2251 if (Val0->getType() != Val1->getType()) 2252 return Error(ID.Loc, "compare operands must have the same type"); 2253 2254 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 2255 2256 if (Opc == Instruction::FCmp) { 2257 if (!Val0->getType()->isFPOrFPVectorTy()) 2258 return Error(ID.Loc, "fcmp requires floating point operands"); 2259 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 2260 } else { 2261 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 2262 if (!Val0->getType()->isIntOrIntVectorTy() && 2263 !Val0->getType()->isPointerTy()) 2264 return Error(ID.Loc, "icmp requires pointer or integer operands"); 2265 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 2266 } 2267 ID.Kind = ValID::t_Constant; 2268 return false; 2269 } 2270 2271 // Binary Operators. 2272 case lltok::kw_add: 2273 case lltok::kw_fadd: 2274 case lltok::kw_sub: 2275 case lltok::kw_fsub: 2276 case lltok::kw_mul: 2277 case lltok::kw_fmul: 2278 case lltok::kw_udiv: 2279 case lltok::kw_sdiv: 2280 case lltok::kw_fdiv: 2281 case lltok::kw_urem: 2282 case lltok::kw_srem: 2283 case lltok::kw_frem: { 2284 bool NUW = false; 2285 bool NSW = false; 2286 bool Exact = false; 2287 unsigned Opc = Lex.getUIntVal(); 2288 Constant *Val0, *Val1; 2289 Lex.Lex(); 2290 LocTy ModifierLoc = Lex.getLoc(); 2291 if (Opc == Instruction::Add || 2292 Opc == Instruction::Sub || 2293 Opc == Instruction::Mul) { 2294 if (EatIfPresent(lltok::kw_nuw)) 2295 NUW = true; 2296 if (EatIfPresent(lltok::kw_nsw)) { 2297 NSW = true; 2298 if (EatIfPresent(lltok::kw_nuw)) 2299 NUW = true; 2300 } 2301 } else if (Opc == Instruction::SDiv) { 2302 if (EatIfPresent(lltok::kw_exact)) 2303 Exact = true; 2304 } 2305 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || 2306 ParseGlobalTypeAndValue(Val0) || 2307 ParseToken(lltok::comma, "expected comma in binary constantexpr") || 2308 ParseGlobalTypeAndValue(Val1) || 2309 ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) 2310 return true; 2311 if (Val0->getType() != Val1->getType()) 2312 return Error(ID.Loc, "operands of constexpr must have same type"); 2313 if (!Val0->getType()->isIntOrIntVectorTy()) { 2314 if (NUW) 2315 return Error(ModifierLoc, "nuw only applies to integer operations"); 2316 if (NSW) 2317 return Error(ModifierLoc, "nsw only applies to integer operations"); 2318 } 2319 // Check that the type is valid for the operator. 2320 switch (Opc) { 2321 case Instruction::Add: 2322 case Instruction::Sub: 2323 case Instruction::Mul: 2324 case Instruction::UDiv: 2325 case Instruction::SDiv: 2326 case Instruction::URem: 2327 case Instruction::SRem: 2328 if (!Val0->getType()->isIntOrIntVectorTy()) 2329 return Error(ID.Loc, "constexpr requires integer operands"); 2330 break; 2331 case Instruction::FAdd: 2332 case Instruction::FSub: 2333 case Instruction::FMul: 2334 case Instruction::FDiv: 2335 case Instruction::FRem: 2336 if (!Val0->getType()->isFPOrFPVectorTy()) 2337 return Error(ID.Loc, "constexpr requires fp operands"); 2338 break; 2339 default: llvm_unreachable("Unknown binary operator!"); 2340 } 2341 unsigned Flags = 0; 2342 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2343 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 2344 if (Exact) Flags |= SDivOperator::IsExact; 2345 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 2346 ID.ConstantVal = C; 2347 ID.Kind = ValID::t_Constant; 2348 return false; 2349 } 2350 2351 // Logical Operations 2352 case lltok::kw_shl: 2353 case lltok::kw_lshr: 2354 case lltok::kw_ashr: 2355 case lltok::kw_and: 2356 case lltok::kw_or: 2357 case lltok::kw_xor: { 2358 unsigned Opc = Lex.getUIntVal(); 2359 Constant *Val0, *Val1; 2360 Lex.Lex(); 2361 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || 2362 ParseGlobalTypeAndValue(Val0) || 2363 ParseToken(lltok::comma, "expected comma in logical constantexpr") || 2364 ParseGlobalTypeAndValue(Val1) || 2365 ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) 2366 return true; 2367 if (Val0->getType() != Val1->getType()) 2368 return Error(ID.Loc, "operands of constexpr must have same type"); 2369 if (!Val0->getType()->isIntOrIntVectorTy()) 2370 return Error(ID.Loc, 2371 "constexpr requires integer or integer vector operands"); 2372 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 2373 ID.Kind = ValID::t_Constant; 2374 return false; 2375 } 2376 2377 case lltok::kw_getelementptr: 2378 case lltok::kw_shufflevector: 2379 case lltok::kw_insertelement: 2380 case lltok::kw_extractelement: 2381 case lltok::kw_select: { 2382 unsigned Opc = Lex.getUIntVal(); 2383 SmallVector<Constant*, 16> Elts; 2384 bool InBounds = false; 2385 Lex.Lex(); 2386 if (Opc == Instruction::GetElementPtr) 2387 InBounds = EatIfPresent(lltok::kw_inbounds); 2388 if (ParseToken(lltok::lparen, "expected '(' in constantexpr") || 2389 ParseGlobalValueVector(Elts) || 2390 ParseToken(lltok::rparen, "expected ')' in constantexpr")) 2391 return true; 2392 2393 if (Opc == Instruction::GetElementPtr) { 2394 if (Elts.size() == 0 || !Elts[0]->getType()->isPointerTy()) 2395 return Error(ID.Loc, "getelementptr requires pointer operand"); 2396 2397 if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(), 2398 (Value**)(Elts.data() + 1), 2399 Elts.size() - 1)) 2400 return Error(ID.Loc, "invalid indices for getelementptr"); 2401 ID.ConstantVal = InBounds ? 2402 ConstantExpr::getInBoundsGetElementPtr(Elts[0], 2403 Elts.data() + 1, 2404 Elts.size() - 1) : 2405 ConstantExpr::getGetElementPtr(Elts[0], 2406 Elts.data() + 1, Elts.size() - 1); 2407 } else if (Opc == Instruction::Select) { 2408 if (Elts.size() != 3) 2409 return Error(ID.Loc, "expected three operands to select"); 2410 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 2411 Elts[2])) 2412 return Error(ID.Loc, Reason); 2413 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 2414 } else if (Opc == Instruction::ShuffleVector) { 2415 if (Elts.size() != 3) 2416 return Error(ID.Loc, "expected three operands to shufflevector"); 2417 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 2418 return Error(ID.Loc, "invalid operands to shufflevector"); 2419 ID.ConstantVal = 2420 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); 2421 } else if (Opc == Instruction::ExtractElement) { 2422 if (Elts.size() != 2) 2423 return Error(ID.Loc, "expected two operands to extractelement"); 2424 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 2425 return Error(ID.Loc, "invalid extractelement operands"); 2426 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 2427 } else { 2428 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 2429 if (Elts.size() != 3) 2430 return Error(ID.Loc, "expected three operands to insertelement"); 2431 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 2432 return Error(ID.Loc, "invalid insertelement operands"); 2433 ID.ConstantVal = 2434 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 2435 } 2436 2437 ID.Kind = ValID::t_Constant; 2438 return false; 2439 } 2440 } 2441 2442 Lex.Lex(); 2443 return false; 2444 } 2445 2446 /// ParseGlobalValue - Parse a global value with the specified type. 2447 bool LLParser::ParseGlobalValue(const Type *Ty, Constant *&C) { 2448 C = 0; 2449 ValID ID; 2450 Value *V = NULL; 2451 bool Parsed = ParseValID(ID) || 2452 ConvertValIDToValue(Ty, ID, V, NULL); 2453 if (V && !(C = dyn_cast<Constant>(V))) 2454 return Error(ID.Loc, "global values must be constants"); 2455 return Parsed; 2456 } 2457 2458 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { 2459 PATypeHolder Type(Type::getVoidTy(Context)); 2460 return ParseType(Type) || 2461 ParseGlobalValue(Type, V); 2462 } 2463 2464 /// ParseGlobalValueVector 2465 /// ::= /*empty*/ 2466 /// ::= TypeAndValue (',' TypeAndValue)* 2467 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) { 2468 // Empty list. 2469 if (Lex.getKind() == lltok::rbrace || 2470 Lex.getKind() == lltok::rsquare || 2471 Lex.getKind() == lltok::greater || 2472 Lex.getKind() == lltok::rparen) 2473 return false; 2474 2475 Constant *C; 2476 if (ParseGlobalTypeAndValue(C)) return true; 2477 Elts.push_back(C); 2478 2479 while (EatIfPresent(lltok::comma)) { 2480 if (ParseGlobalTypeAndValue(C)) return true; 2481 Elts.push_back(C); 2482 } 2483 2484 return false; 2485 } 2486 2487 bool LLParser::ParseMetadataListValue(ValID &ID, PerFunctionState *PFS) { 2488 assert(Lex.getKind() == lltok::lbrace); 2489 Lex.Lex(); 2490 2491 SmallVector<Value*, 16> Elts; 2492 if (ParseMDNodeVector(Elts, PFS) || 2493 ParseToken(lltok::rbrace, "expected end of metadata node")) 2494 return true; 2495 2496 ID.MDNodeVal = MDNode::get(Context, Elts.data(), Elts.size()); 2497 ID.Kind = ValID::t_MDNode; 2498 return false; 2499 } 2500 2501 /// ParseMetadataValue 2502 /// ::= !42 2503 /// ::= !{...} 2504 /// ::= !"string" 2505 bool LLParser::ParseMetadataValue(ValID &ID, PerFunctionState *PFS) { 2506 assert(Lex.getKind() == lltok::exclaim); 2507 Lex.Lex(); 2508 2509 // MDNode: 2510 // !{ ... } 2511 if (Lex.getKind() == lltok::lbrace) 2512 return ParseMetadataListValue(ID, PFS); 2513 2514 // Standalone metadata reference 2515 // !42 2516 if (Lex.getKind() == lltok::APSInt) { 2517 if (ParseMDNodeID(ID.MDNodeVal)) return true; 2518 ID.Kind = ValID::t_MDNode; 2519 return false; 2520 } 2521 2522 // MDString: 2523 // ::= '!' STRINGCONSTANT 2524 if (ParseMDString(ID.MDStringVal)) return true; 2525 ID.Kind = ValID::t_MDString; 2526 return false; 2527 } 2528 2529 2530 //===----------------------------------------------------------------------===// 2531 // Function Parsing. 2532 //===----------------------------------------------------------------------===// 2533 2534 bool LLParser::ConvertValIDToValue(const Type *Ty, ValID &ID, Value *&V, 2535 PerFunctionState *PFS) { 2536 if (Ty->isFunctionTy()) 2537 return Error(ID.Loc, "functions are not values, refer to them as pointers"); 2538 2539 switch (ID.Kind) { 2540 default: llvm_unreachable("Unknown ValID!"); 2541 case ValID::t_LocalID: 2542 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 2543 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc); 2544 return (V == 0); 2545 case ValID::t_LocalName: 2546 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 2547 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc); 2548 return (V == 0); 2549 case ValID::t_InlineAsm: { 2550 const PointerType *PTy = dyn_cast<PointerType>(Ty); 2551 const FunctionType *FTy = 2552 PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0; 2553 if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2)) 2554 return Error(ID.Loc, "invalid type for inline asm constraint string"); 2555 V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1, ID.UIntVal>>1); 2556 return false; 2557 } 2558 case ValID::t_MDNode: 2559 if (!Ty->isMetadataTy()) 2560 return Error(ID.Loc, "metadata value must have metadata type"); 2561 V = ID.MDNodeVal; 2562 return false; 2563 case ValID::t_MDString: 2564 if (!Ty->isMetadataTy()) 2565 return Error(ID.Loc, "metadata value must have metadata type"); 2566 V = ID.MDStringVal; 2567 return false; 2568 case ValID::t_GlobalName: 2569 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc); 2570 return V == 0; 2571 case ValID::t_GlobalID: 2572 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc); 2573 return V == 0; 2574 case ValID::t_APSInt: 2575 if (!Ty->isIntegerTy()) 2576 return Error(ID.Loc, "integer constant must have integer type"); 2577 ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 2578 V = ConstantInt::get(Context, ID.APSIntVal); 2579 return false; 2580 case ValID::t_APFloat: 2581 if (!Ty->isFloatingPointTy() || 2582 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 2583 return Error(ID.Loc, "floating point constant invalid for type"); 2584 2585 // The lexer has no type info, so builds all float and double FP constants 2586 // as double. Fix this here. Long double does not need this. 2587 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble && 2588 Ty->isFloatTy()) { 2589 bool Ignored; 2590 ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, 2591 &Ignored); 2592 } 2593 V = ConstantFP::get(Context, ID.APFloatVal); 2594 2595 if (V->getType() != Ty) 2596 return Error(ID.Loc, "floating point constant does not have type '" + 2597 Ty->getDescription() + "'"); 2598 2599 return false; 2600 case ValID::t_Null: 2601 if (!Ty->isPointerTy()) 2602 return Error(ID.Loc, "null must be a pointer type"); 2603 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 2604 return false; 2605 case ValID::t_Undef: 2606 // FIXME: LabelTy should not be a first-class type. 2607 if ((!Ty->isFirstClassType() || Ty->isLabelTy()) && 2608 !Ty->isOpaqueTy()) 2609 return Error(ID.Loc, "invalid type for undef constant"); 2610 V = UndefValue::get(Ty); 2611 return false; 2612 case ValID::t_EmptyArray: 2613 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 2614 return Error(ID.Loc, "invalid empty array initializer"); 2615 V = UndefValue::get(Ty); 2616 return false; 2617 case ValID::t_Zero: 2618 // FIXME: LabelTy should not be a first-class type. 2619 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 2620 return Error(ID.Loc, "invalid type for null constant"); 2621 V = Constant::getNullValue(Ty); 2622 return false; 2623 case ValID::t_Constant: 2624 if (ID.ConstantVal->getType() != Ty) 2625 return Error(ID.Loc, "constant expression type mismatch"); 2626 2627 V = ID.ConstantVal; 2628 return false; 2629 } 2630 } 2631 2632 bool LLParser::ParseValue(const Type *Ty, Value *&V, PerFunctionState &PFS) { 2633 V = 0; 2634 ValID ID; 2635 return ParseValID(ID, &PFS) || 2636 ConvertValIDToValue(Ty, ID, V, &PFS); 2637 } 2638 2639 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState &PFS) { 2640 PATypeHolder T(Type::getVoidTy(Context)); 2641 return ParseType(T) || 2642 ParseValue(T, V, PFS); 2643 } 2644 2645 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 2646 PerFunctionState &PFS) { 2647 Value *V; 2648 Loc = Lex.getLoc(); 2649 if (ParseTypeAndValue(V, PFS)) return true; 2650 if (!isa<BasicBlock>(V)) 2651 return Error(Loc, "expected a basic block"); 2652 BB = cast<BasicBlock>(V); 2653 return false; 2654 } 2655 2656 2657 /// FunctionHeader 2658 /// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs 2659 /// Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection 2660 /// OptionalAlign OptGC 2661 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { 2662 // Parse the linkage. 2663 LocTy LinkageLoc = Lex.getLoc(); 2664 unsigned Linkage; 2665 2666 unsigned Visibility, RetAttrs; 2667 CallingConv::ID CC; 2668 PATypeHolder RetType(Type::getVoidTy(Context)); 2669 LocTy RetTypeLoc = Lex.getLoc(); 2670 if (ParseOptionalLinkage(Linkage) || 2671 ParseOptionalVisibility(Visibility) || 2672 ParseOptionalCallingConv(CC) || 2673 ParseOptionalAttrs(RetAttrs, 1) || 2674 ParseType(RetType, RetTypeLoc, true /*void allowed*/)) 2675 return true; 2676 2677 // Verify that the linkage is ok. 2678 switch ((GlobalValue::LinkageTypes)Linkage) { 2679 case GlobalValue::ExternalLinkage: 2680 break; // always ok. 2681 case GlobalValue::DLLImportLinkage: 2682 case GlobalValue::ExternalWeakLinkage: 2683 if (isDefine) 2684 return Error(LinkageLoc, "invalid linkage for function definition"); 2685 break; 2686 case GlobalValue::PrivateLinkage: 2687 case GlobalValue::LinkerPrivateLinkage: 2688 case GlobalValue::LinkerPrivateWeakLinkage: 2689 case GlobalValue::LinkerPrivateWeakDefAutoLinkage: 2690 case GlobalValue::InternalLinkage: 2691 case GlobalValue::AvailableExternallyLinkage: 2692 case GlobalValue::LinkOnceAnyLinkage: 2693 case GlobalValue::LinkOnceODRLinkage: 2694 case GlobalValue::WeakAnyLinkage: 2695 case GlobalValue::WeakODRLinkage: 2696 case GlobalValue::DLLExportLinkage: 2697 if (!isDefine) 2698 return Error(LinkageLoc, "invalid linkage for function declaration"); 2699 break; 2700 case GlobalValue::AppendingLinkage: 2701 case GlobalValue::CommonLinkage: 2702 return Error(LinkageLoc, "invalid function linkage type"); 2703 } 2704 2705 if (!FunctionType::isValidReturnType(RetType) || 2706 RetType->isOpaqueTy()) 2707 return Error(RetTypeLoc, "invalid function return type"); 2708 2709 LocTy NameLoc = Lex.getLoc(); 2710 2711 std::string FunctionName; 2712 if (Lex.getKind() == lltok::GlobalVar) { 2713 FunctionName = Lex.getStrVal(); 2714 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 2715 unsigned NameID = Lex.getUIntVal(); 2716 2717 if (NameID != NumberedVals.size()) 2718 return TokError("function expected to be numbered '%" + 2719 Twine(NumberedVals.size()) + "'"); 2720 } else { 2721 return TokError("expected function name"); 2722 } 2723 2724 Lex.Lex(); 2725 2726 if (Lex.getKind() != lltok::lparen) 2727 return TokError("expected '(' in function argument list"); 2728 2729 std::vector<ArgInfo> ArgList; 2730 bool isVarArg; 2731 unsigned FuncAttrs; 2732 std::string Section; 2733 unsigned Alignment; 2734 std::string GC; 2735 2736 if (ParseArgumentList(ArgList, isVarArg, false) || 2737 ParseOptionalAttrs(FuncAttrs, 2) || 2738 (EatIfPresent(lltok::kw_section) && 2739 ParseStringConstant(Section)) || 2740 ParseOptionalAlignment(Alignment) || 2741 (EatIfPresent(lltok::kw_gc) && 2742 ParseStringConstant(GC))) 2743 return true; 2744 2745 // If the alignment was parsed as an attribute, move to the alignment field. 2746 if (FuncAttrs & Attribute::Alignment) { 2747 Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs); 2748 FuncAttrs &= ~Attribute::Alignment; 2749 } 2750 2751 // Okay, if we got here, the function is syntactically valid. Convert types 2752 // and do semantic checks. 2753 std::vector<const Type*> ParamTypeList; 2754 SmallVector<AttributeWithIndex, 8> Attrs; 2755 // FIXME : In 3.0, stop accepting zext, sext and inreg as optional function 2756 // attributes. 2757 unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg; 2758 if (FuncAttrs & ObsoleteFuncAttrs) { 2759 RetAttrs |= FuncAttrs & ObsoleteFuncAttrs; 2760 FuncAttrs &= ~ObsoleteFuncAttrs; 2761 } 2762 2763 if (RetAttrs != Attribute::None) 2764 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs)); 2765 2766 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2767 ParamTypeList.push_back(ArgList[i].Type); 2768 if (ArgList[i].Attrs != Attribute::None) 2769 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs)); 2770 } 2771 2772 if (FuncAttrs != Attribute::None) 2773 Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs)); 2774 2775 AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end()); 2776 2777 if (PAL.paramHasAttr(1, Attribute::StructRet) && !RetType->isVoidTy()) 2778 return Error(RetTypeLoc, "functions with 'sret' argument must return void"); 2779 2780 const FunctionType *FT = 2781 FunctionType::get(RetType, ParamTypeList, isVarArg); 2782 const PointerType *PFT = PointerType::getUnqual(FT); 2783 2784 Fn = 0; 2785 if (!FunctionName.empty()) { 2786 // If this was a definition of a forward reference, remove the definition 2787 // from the forward reference table and fill in the forward ref. 2788 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI = 2789 ForwardRefVals.find(FunctionName); 2790 if (FRVI != ForwardRefVals.end()) { 2791 Fn = M->getFunction(FunctionName); 2792 if (Fn->getType() != PFT) 2793 return Error(FRVI->second.second, "invalid forward reference to " 2794 "function '" + FunctionName + "' with wrong type!"); 2795 2796 ForwardRefVals.erase(FRVI); 2797 } else if ((Fn = M->getFunction(FunctionName))) { 2798 // If this function already exists in the symbol table, then it is 2799 // multiply defined. We accept a few cases for old backwards compat. 2800 // FIXME: Remove this stuff for LLVM 3.0. 2801 if (Fn->getType() != PFT || Fn->getAttributes() != PAL || 2802 (!Fn->isDeclaration() && isDefine)) { 2803 // If the redefinition has different type or different attributes, 2804 // reject it. If both have bodies, reject it. 2805 return Error(NameLoc, "invalid redefinition of function '" + 2806 FunctionName + "'"); 2807 } else if (Fn->isDeclaration()) { 2808 // Make sure to strip off any argument names so we can't get conflicts. 2809 for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end(); 2810 AI != AE; ++AI) 2811 AI->setName(""); 2812 } 2813 } else if (M->getNamedValue(FunctionName)) { 2814 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 2815 } 2816 2817 } else { 2818 // If this is a definition of a forward referenced function, make sure the 2819 // types agree. 2820 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I 2821 = ForwardRefValIDs.find(NumberedVals.size()); 2822 if (I != ForwardRefValIDs.end()) { 2823 Fn = cast<Function>(I->second.first); 2824 if (Fn->getType() != PFT) 2825 return Error(NameLoc, "type of definition and forward reference of '@" + 2826 Twine(NumberedVals.size()) + "' disagree"); 2827 ForwardRefValIDs.erase(I); 2828 } 2829 } 2830 2831 if (Fn == 0) 2832 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M); 2833 else // Move the forward-reference to the correct spot in the module. 2834 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 2835 2836 if (FunctionName.empty()) 2837 NumberedVals.push_back(Fn); 2838 2839 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 2840 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 2841 Fn->setCallingConv(CC); 2842 Fn->setAttributes(PAL); 2843 Fn->setAlignment(Alignment); 2844 Fn->setSection(Section); 2845 if (!GC.empty()) Fn->setGC(GC.c_str()); 2846 2847 // Add all of the arguments we parsed to the function. 2848 Function::arg_iterator ArgIt = Fn->arg_begin(); 2849 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 2850 // If we run out of arguments in the Function prototype, exit early. 2851 // FIXME: REMOVE THIS IN LLVM 3.0, this is just for the mismatch case above. 2852 if (ArgIt == Fn->arg_end()) break; 2853 2854 // If the argument has a name, insert it into the argument symbol table. 2855 if (ArgList[i].Name.empty()) continue; 2856 2857 // Set the name, if it conflicted, it will be auto-renamed. 2858 ArgIt->setName(ArgList[i].Name); 2859 2860 if (ArgIt->getName() != ArgList[i].Name) 2861 return Error(ArgList[i].Loc, "redefinition of argument '%" + 2862 ArgList[i].Name + "'"); 2863 } 2864 2865 return false; 2866 } 2867 2868 2869 /// ParseFunctionBody 2870 /// ::= '{' BasicBlock+ '}' 2871 /// ::= 'begin' BasicBlock+ 'end' // FIXME: remove in LLVM 3.0 2872 /// 2873 bool LLParser::ParseFunctionBody(Function &Fn) { 2874 if (Lex.getKind() != lltok::lbrace && Lex.getKind() != lltok::kw_begin) 2875 return TokError("expected '{' in function body"); 2876 Lex.Lex(); // eat the {. 2877 2878 int FunctionNumber = -1; 2879 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 2880 2881 PerFunctionState PFS(*this, Fn, FunctionNumber); 2882 2883 // We need at least one basic block. 2884 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_end) 2885 return TokError("function body requires at least one basic block"); 2886 2887 while (Lex.getKind() != lltok::rbrace && Lex.getKind() != lltok::kw_end) 2888 if (ParseBasicBlock(PFS)) return true; 2889 2890 // Eat the }. 2891 Lex.Lex(); 2892 2893 // Verify function is ok. 2894 return PFS.FinishFunction(); 2895 } 2896 2897 /// ParseBasicBlock 2898 /// ::= LabelStr? Instruction* 2899 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { 2900 // If this basic block starts out with a name, remember it. 2901 std::string Name; 2902 LocTy NameLoc = Lex.getLoc(); 2903 if (Lex.getKind() == lltok::LabelStr) { 2904 Name = Lex.getStrVal(); 2905 Lex.Lex(); 2906 } 2907 2908 BasicBlock *BB = PFS.DefineBB(Name, NameLoc); 2909 if (BB == 0) return true; 2910 2911 std::string NameStr; 2912 2913 // Parse the instructions in this block until we get a terminator. 2914 Instruction *Inst; 2915 SmallVector<std::pair<unsigned, MDNode *>, 4> MetadataOnInst; 2916 do { 2917 // This instruction may have three possibilities for a name: a) none 2918 // specified, b) name specified "%foo =", c) number specified: "%4 =". 2919 LocTy NameLoc = Lex.getLoc(); 2920 int NameID = -1; 2921 NameStr = ""; 2922 2923 if (Lex.getKind() == lltok::LocalVarID) { 2924 NameID = Lex.getUIntVal(); 2925 Lex.Lex(); 2926 if (ParseToken(lltok::equal, "expected '=' after instruction id")) 2927 return true; 2928 } else if (Lex.getKind() == lltok::LocalVar || 2929 // FIXME: REMOVE IN LLVM 3.0 2930 Lex.getKind() == lltok::StringConstant) { 2931 NameStr = Lex.getStrVal(); 2932 Lex.Lex(); 2933 if (ParseToken(lltok::equal, "expected '=' after instruction name")) 2934 return true; 2935 } 2936 2937 switch (ParseInstruction(Inst, BB, PFS)) { 2938 default: assert(0 && "Unknown ParseInstruction result!"); 2939 case InstError: return true; 2940 case InstNormal: 2941 BB->getInstList().push_back(Inst); 2942 2943 // With a normal result, we check to see if the instruction is followed by 2944 // a comma and metadata. 2945 if (EatIfPresent(lltok::comma)) 2946 if (ParseInstructionMetadata(Inst, &PFS)) 2947 return true; 2948 break; 2949 case InstExtraComma: 2950 BB->getInstList().push_back(Inst); 2951 2952 // If the instruction parser ate an extra comma at the end of it, it 2953 // *must* be followed by metadata. 2954 if (ParseInstructionMetadata(Inst, &PFS)) 2955 return true; 2956 break; 2957 } 2958 2959 // Set the name on the instruction. 2960 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; 2961 } while (!isa<TerminatorInst>(Inst)); 2962 2963 return false; 2964 } 2965 2966 //===----------------------------------------------------------------------===// 2967 // Instruction Parsing. 2968 //===----------------------------------------------------------------------===// 2969 2970 /// ParseInstruction - Parse one of the many different instructions. 2971 /// 2972 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, 2973 PerFunctionState &PFS) { 2974 lltok::Kind Token = Lex.getKind(); 2975 if (Token == lltok::Eof) 2976 return TokError("found end of file when expecting more instructions"); 2977 LocTy Loc = Lex.getLoc(); 2978 unsigned KeywordVal = Lex.getUIntVal(); 2979 Lex.Lex(); // Eat the keyword. 2980 2981 switch (Token) { 2982 default: return Error(Loc, "expected instruction opcode"); 2983 // Terminator Instructions. 2984 case lltok::kw_unwind: Inst = new UnwindInst(Context); return false; 2985 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 2986 case lltok::kw_ret: return ParseRet(Inst, BB, PFS); 2987 case lltok::kw_br: return ParseBr(Inst, PFS); 2988 case lltok::kw_switch: return ParseSwitch(Inst, PFS); 2989 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS); 2990 case lltok::kw_invoke: return ParseInvoke(Inst, PFS); 2991 // Binary Operators. 2992 case lltok::kw_add: 2993 case lltok::kw_sub: 2994 case lltok::kw_mul: { 2995 bool NUW = false; 2996 bool NSW = false; 2997 LocTy ModifierLoc = Lex.getLoc(); 2998 if (EatIfPresent(lltok::kw_nuw)) 2999 NUW = true; 3000 if (EatIfPresent(lltok::kw_nsw)) { 3001 NSW = true; 3002 if (EatIfPresent(lltok::kw_nuw)) 3003 NUW = true; 3004 } 3005 bool Result = ParseArithmetic(Inst, PFS, KeywordVal, 1); 3006 if (!Result) { 3007 if (!Inst->getType()->isIntOrIntVectorTy()) { 3008 if (NUW) 3009 return Error(ModifierLoc, "nuw only applies to integer operations"); 3010 if (NSW) 3011 return Error(ModifierLoc, "nsw only applies to integer operations"); 3012 } 3013 if (NUW) 3014 cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 3015 if (NSW) 3016 cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 3017 } 3018 return Result; 3019 } 3020 case lltok::kw_fadd: 3021 case lltok::kw_fsub: 3022 case lltok::kw_fmul: return ParseArithmetic(Inst, PFS, KeywordVal, 2); 3023 3024 case lltok::kw_sdiv: { 3025 bool Exact = false; 3026 if (EatIfPresent(lltok::kw_exact)) 3027 Exact = true; 3028 bool Result = ParseArithmetic(Inst, PFS, KeywordVal, 1); 3029 if (!Result) 3030 if (Exact) 3031 cast<BinaryOperator>(Inst)->setIsExact(true); 3032 return Result; 3033 } 3034 3035 case lltok::kw_udiv: 3036 case lltok::kw_urem: 3037 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1); 3038 case lltok::kw_fdiv: 3039 case lltok::kw_frem: return ParseArithmetic(Inst, PFS, KeywordVal, 2); 3040 case lltok::kw_shl: 3041 case lltok::kw_lshr: 3042 case lltok::kw_ashr: 3043 case lltok::kw_and: 3044 case lltok::kw_or: 3045 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); 3046 case lltok::kw_icmp: 3047 case lltok::kw_fcmp: return ParseCompare(Inst, PFS, KeywordVal); 3048 // Casts. 3049 case lltok::kw_trunc: 3050 case lltok::kw_zext: 3051 case lltok::kw_sext: 3052 case lltok::kw_fptrunc: 3053 case lltok::kw_fpext: 3054 case lltok::kw_bitcast: 3055 case lltok::kw_uitofp: 3056 case lltok::kw_sitofp: 3057 case lltok::kw_fptoui: 3058 case lltok::kw_fptosi: 3059 case lltok::kw_inttoptr: 3060 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); 3061 // Other. 3062 case lltok::kw_select: return ParseSelect(Inst, PFS); 3063 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); 3064 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); 3065 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); 3066 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); 3067 case lltok::kw_phi: return ParsePHI(Inst, PFS); 3068 case lltok::kw_call: return ParseCall(Inst, PFS, false); 3069 case lltok::kw_tail: return ParseCall(Inst, PFS, true); 3070 // Memory. 3071 case lltok::kw_alloca: return ParseAlloc(Inst, PFS); 3072 case lltok::kw_malloc: return ParseAlloc(Inst, PFS, BB, false); 3073 case lltok::kw_free: return ParseFree(Inst, PFS, BB); 3074 case lltok::kw_load: return ParseLoad(Inst, PFS, false); 3075 case lltok::kw_store: return ParseStore(Inst, PFS, false); 3076 case lltok::kw_volatile: 3077 if (EatIfPresent(lltok::kw_load)) 3078 return ParseLoad(Inst, PFS, true); 3079 else if (EatIfPresent(lltok::kw_store)) 3080 return ParseStore(Inst, PFS, true); 3081 else 3082 return TokError("expected 'load' or 'store'"); 3083 case lltok::kw_getresult: return ParseGetResult(Inst, PFS); 3084 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); 3085 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); 3086 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); 3087 } 3088 } 3089 3090 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. 3091 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { 3092 if (Opc == Instruction::FCmp) { 3093 switch (Lex.getKind()) { 3094 default: TokError("expected fcmp predicate (e.g. 'oeq')"); 3095 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 3096 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 3097 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 3098 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 3099 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 3100 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 3101 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 3102 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 3103 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 3104 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 3105 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 3106 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 3107 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 3108 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 3109 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 3110 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 3111 } 3112 } else { 3113 switch (Lex.getKind()) { 3114 default: TokError("expected icmp predicate (e.g. 'eq')"); 3115 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 3116 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 3117 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 3118 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 3119 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 3120 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 3121 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 3122 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 3123 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 3124 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 3125 } 3126 } 3127 Lex.Lex(); 3128 return false; 3129 } 3130 3131 //===----------------------------------------------------------------------===// 3132 // Terminator Instructions. 3133 //===----------------------------------------------------------------------===// 3134 3135 /// ParseRet - Parse a return instruction. 3136 /// ::= 'ret' void (',' !dbg, !1)* 3137 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 3138 /// ::= 'ret' TypeAndValue (',' TypeAndValue)+ (',' !dbg, !1)* 3139 /// [[obsolete: LLVM 3.0]] 3140 int LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, 3141 PerFunctionState &PFS) { 3142 PATypeHolder Ty(Type::getVoidTy(Context)); 3143 if (ParseType(Ty, true /*void allowed*/)) return true; 3144 3145 if (Ty->isVoidTy()) { 3146 Inst = ReturnInst::Create(Context); 3147 return false; 3148 } 3149 3150 Value *RV; 3151 if (ParseValue(Ty, RV, PFS)) return true; 3152 3153 bool ExtraComma = false; 3154 if (EatIfPresent(lltok::comma)) { 3155 // Parse optional custom metadata, e.g. !dbg 3156 if (Lex.getKind() == lltok::MetadataVar) { 3157 ExtraComma = true; 3158 } else { 3159 // The normal case is one return value. 3160 // FIXME: LLVM 3.0 remove MRV support for 'ret i32 1, i32 2', requiring 3161 // use of 'ret {i32,i32} {i32 1, i32 2}' 3162 SmallVector<Value*, 8> RVs; 3163 RVs.push_back(RV); 3164 3165 do { 3166 // If optional custom metadata, e.g. !dbg is seen then this is the 3167 // end of MRV. 3168 if (Lex.getKind() == lltok::MetadataVar) 3169 break; 3170 if (ParseTypeAndValue(RV, PFS)) return true; 3171 RVs.push_back(RV); 3172 } while (EatIfPresent(lltok::comma)); 3173 3174 RV = UndefValue::get(PFS.getFunction().getReturnType()); 3175 for (unsigned i = 0, e = RVs.size(); i != e; ++i) { 3176 Instruction *I = InsertValueInst::Create(RV, RVs[i], i, "mrv"); 3177 BB->getInstList().push_back(I); 3178 RV = I; 3179 } 3180 } 3181 } 3182 3183 Inst = ReturnInst::Create(Context, RV); 3184 return ExtraComma ? InstExtraComma : InstNormal; 3185 } 3186 3187 3188 /// ParseBr 3189 /// ::= 'br' TypeAndValue 3190 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 3191 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { 3192 LocTy Loc, Loc2; 3193 Value *Op0; 3194 BasicBlock *Op1, *Op2; 3195 if (ParseTypeAndValue(Op0, Loc, PFS)) return true; 3196 3197 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 3198 Inst = BranchInst::Create(BB); 3199 return false; 3200 } 3201 3202 if (Op0->getType() != Type::getInt1Ty(Context)) 3203 return Error(Loc, "branch condition must have 'i1' type"); 3204 3205 if (ParseToken(lltok::comma, "expected ',' after branch condition") || 3206 ParseTypeAndBasicBlock(Op1, Loc, PFS) || 3207 ParseToken(lltok::comma, "expected ',' after true destination") || 3208 ParseTypeAndBasicBlock(Op2, Loc2, PFS)) 3209 return true; 3210 3211 Inst = BranchInst::Create(Op1, Op2, Op0); 3212 return false; 3213 } 3214 3215 /// ParseSwitch 3216 /// Instruction 3217 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 3218 /// JumpTable 3219 /// ::= (TypeAndValue ',' TypeAndValue)* 3220 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 3221 LocTy CondLoc, BBLoc; 3222 Value *Cond; 3223 BasicBlock *DefaultBB; 3224 if (ParseTypeAndValue(Cond, CondLoc, PFS) || 3225 ParseToken(lltok::comma, "expected ',' after switch condition") || 3226 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 3227 ParseToken(lltok::lsquare, "expected '[' with switch table")) 3228 return true; 3229 3230 if (!Cond->getType()->isIntegerTy()) 3231 return Error(CondLoc, "switch condition must have integer type"); 3232 3233 // Parse the jump table pairs. 3234 SmallPtrSet<Value*, 32> SeenCases; 3235 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 3236 while (Lex.getKind() != lltok::rsquare) { 3237 Value *Constant; 3238 BasicBlock *DestBB; 3239 3240 if (ParseTypeAndValue(Constant, CondLoc, PFS) || 3241 ParseToken(lltok::comma, "expected ',' after case value") || 3242 ParseTypeAndBasicBlock(DestBB, PFS)) 3243 return true; 3244 3245 if (!SeenCases.insert(Constant)) 3246 return Error(CondLoc, "duplicate case value in switch"); 3247 if (!isa<ConstantInt>(Constant)) 3248 return Error(CondLoc, "case value is not a constant integer"); 3249 3250 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 3251 } 3252 3253 Lex.Lex(); // Eat the ']'. 3254 3255 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 3256 for (unsigned i = 0, e = Table.size(); i != e; ++i) 3257 SI->addCase(Table[i].first, Table[i].second); 3258 Inst = SI; 3259 return false; 3260 } 3261 3262 /// ParseIndirectBr 3263 /// Instruction 3264 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 3265 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 3266 LocTy AddrLoc; 3267 Value *Address; 3268 if (ParseTypeAndValue(Address, AddrLoc, PFS) || 3269 ParseToken(lltok::comma, "expected ',' after indirectbr address") || 3270 ParseToken(lltok::lsquare, "expected '[' with indirectbr")) 3271 return true; 3272 3273 if (!Address->getType()->isPointerTy()) 3274 return Error(AddrLoc, "indirectbr address must have pointer type"); 3275 3276 // Parse the destination list. 3277 SmallVector<BasicBlock*, 16> DestList; 3278 3279 if (Lex.getKind() != lltok::rsquare) { 3280 BasicBlock *DestBB; 3281 if (ParseTypeAndBasicBlock(DestBB, PFS)) 3282 return true; 3283 DestList.push_back(DestBB); 3284 3285 while (EatIfPresent(lltok::comma)) { 3286 if (ParseTypeAndBasicBlock(DestBB, PFS)) 3287 return true; 3288 DestList.push_back(DestBB); 3289 } 3290 } 3291 3292 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 3293 return true; 3294 3295 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 3296 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 3297 IBI->addDestination(DestList[i]); 3298 Inst = IBI; 3299 return false; 3300 } 3301 3302 3303 /// ParseInvoke 3304 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 3305 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 3306 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 3307 LocTy CallLoc = Lex.getLoc(); 3308 unsigned RetAttrs, FnAttrs; 3309 CallingConv::ID CC; 3310 PATypeHolder RetType(Type::getVoidTy(Context)); 3311 LocTy RetTypeLoc; 3312 ValID CalleeID; 3313 SmallVector<ParamInfo, 16> ArgList; 3314 3315 BasicBlock *NormalBB, *UnwindBB; 3316 if (ParseOptionalCallingConv(CC) || 3317 ParseOptionalAttrs(RetAttrs, 1) || 3318 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 3319 ParseValID(CalleeID) || 3320 ParseParameterList(ArgList, PFS) || 3321 ParseOptionalAttrs(FnAttrs, 2) || 3322 ParseToken(lltok::kw_to, "expected 'to' in invoke") || 3323 ParseTypeAndBasicBlock(NormalBB, PFS) || 3324 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 3325 ParseTypeAndBasicBlock(UnwindBB, PFS)) 3326 return true; 3327 3328 // If RetType is a non-function pointer type, then this is the short syntax 3329 // for the call, which means that RetType is just the return type. Infer the 3330 // rest of the function argument types from the arguments that are present. 3331 const PointerType *PFTy = 0; 3332 const FunctionType *Ty = 0; 3333 if (!(PFTy = dyn_cast<PointerType>(RetType)) || 3334 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) { 3335 // Pull out the types of all of the arguments... 3336 std::vector<const Type*> ParamTypes; 3337 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 3338 ParamTypes.push_back(ArgList[i].V->getType()); 3339 3340 if (!FunctionType::isValidReturnType(RetType)) 3341 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 3342 3343 Ty = FunctionType::get(RetType, ParamTypes, false); 3344 PFTy = PointerType::getUnqual(Ty); 3345 } 3346 3347 // Look up the callee. 3348 Value *Callee; 3349 if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true; 3350 3351 // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional 3352 // function attributes. 3353 unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg; 3354 if (FnAttrs & ObsoleteFuncAttrs) { 3355 RetAttrs |= FnAttrs & ObsoleteFuncAttrs; 3356 FnAttrs &= ~ObsoleteFuncAttrs; 3357 } 3358 3359 // Set up the Attributes for the function. 3360 SmallVector<AttributeWithIndex, 8> Attrs; 3361 if (RetAttrs != Attribute::None) 3362 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs)); 3363 3364 SmallVector<Value*, 8> Args; 3365 3366 // Loop through FunctionType's arguments and ensure they are specified 3367 // correctly. Also, gather any parameter attributes. 3368 FunctionType::param_iterator I = Ty->param_begin(); 3369 FunctionType::param_iterator E = Ty->param_end(); 3370 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 3371 const Type *ExpectedTy = 0; 3372 if (I != E) { 3373 ExpectedTy = *I++; 3374 } else if (!Ty->isVarArg()) { 3375 return Error(ArgList[i].Loc, "too many arguments specified"); 3376 } 3377 3378 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 3379 return Error(ArgList[i].Loc, "argument is not of expected type '" + 3380 ExpectedTy->getDescription() + "'"); 3381 Args.push_back(ArgList[i].V); 3382 if (ArgList[i].Attrs != Attribute::None) 3383 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs)); 3384 } 3385 3386 if (I != E) 3387 return Error(CallLoc, "not enough parameters specified for call"); 3388 3389 if (FnAttrs != Attribute::None) 3390 Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs)); 3391 3392 // Finish off the Attributes and check them 3393 AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end()); 3394 3395 InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB, 3396 Args.begin(), Args.end()); 3397 II->setCallingConv(CC); 3398 II->setAttributes(PAL); 3399 Inst = II; 3400 return false; 3401 } 3402 3403 3404 3405 //===----------------------------------------------------------------------===// 3406 // Binary Operators. 3407 //===----------------------------------------------------------------------===// 3408 3409 /// ParseArithmetic 3410 /// ::= ArithmeticOps TypeAndValue ',' Value 3411 /// 3412 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1, 3413 /// then any integer operand is allowed, if it is 2, any fp operand is allowed. 3414 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 3415 unsigned Opc, unsigned OperandType) { 3416 LocTy Loc; Value *LHS, *RHS; 3417 if (ParseTypeAndValue(LHS, Loc, PFS) || 3418 ParseToken(lltok::comma, "expected ',' in arithmetic operation") || 3419 ParseValue(LHS->getType(), RHS, PFS)) 3420 return true; 3421 3422 bool Valid; 3423 switch (OperandType) { 3424 default: llvm_unreachable("Unknown operand type!"); 3425 case 0: // int or FP. 3426 Valid = LHS->getType()->isIntOrIntVectorTy() || 3427 LHS->getType()->isFPOrFPVectorTy(); 3428 break; 3429 case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break; 3430 case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break; 3431 } 3432 3433 if (!Valid) 3434 return Error(Loc, "invalid operand type for instruction"); 3435 3436 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3437 return false; 3438 } 3439 3440 /// ParseLogical 3441 /// ::= ArithmeticOps TypeAndValue ',' Value { 3442 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, 3443 unsigned Opc) { 3444 LocTy Loc; Value *LHS, *RHS; 3445 if (ParseTypeAndValue(LHS, Loc, PFS) || 3446 ParseToken(lltok::comma, "expected ',' in logical operation") || 3447 ParseValue(LHS->getType(), RHS, PFS)) 3448 return true; 3449 3450 if (!LHS->getType()->isIntOrIntVectorTy()) 3451 return Error(Loc,"instruction requires integer or integer vector operands"); 3452 3453 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3454 return false; 3455 } 3456 3457 3458 /// ParseCompare 3459 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 3460 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 3461 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, 3462 unsigned Opc) { 3463 // Parse the integer/fp comparison predicate. 3464 LocTy Loc; 3465 unsigned Pred; 3466 Value *LHS, *RHS; 3467 if (ParseCmpPredicate(Pred, Opc) || 3468 ParseTypeAndValue(LHS, Loc, PFS) || 3469 ParseToken(lltok::comma, "expected ',' after compare value") || 3470 ParseValue(LHS->getType(), RHS, PFS)) 3471 return true; 3472 3473 if (Opc == Instruction::FCmp) { 3474 if (!LHS->getType()->isFPOrFPVectorTy()) 3475 return Error(Loc, "fcmp requires floating point operands"); 3476 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 3477 } else { 3478 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 3479 if (!LHS->getType()->isIntOrIntVectorTy() && 3480 !LHS->getType()->isPointerTy()) 3481 return Error(Loc, "icmp requires integer operands"); 3482 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 3483 } 3484 return false; 3485 } 3486 3487 //===----------------------------------------------------------------------===// 3488 // Other Instructions. 3489 //===----------------------------------------------------------------------===// 3490 3491 3492 /// ParseCast 3493 /// ::= CastOpc TypeAndValue 'to' Type 3494 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, 3495 unsigned Opc) { 3496 LocTy Loc; Value *Op; 3497 PATypeHolder DestTy(Type::getVoidTy(Context)); 3498 if (ParseTypeAndValue(Op, Loc, PFS) || 3499 ParseToken(lltok::kw_to, "expected 'to' after cast value") || 3500 ParseType(DestTy)) 3501 return true; 3502 3503 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 3504 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 3505 return Error(Loc, "invalid cast opcode for cast from '" + 3506 Op->getType()->getDescription() + "' to '" + 3507 DestTy->getDescription() + "'"); 3508 } 3509 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 3510 return false; 3511 } 3512 3513 /// ParseSelect 3514 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 3515 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { 3516 LocTy Loc; 3517 Value *Op0, *Op1, *Op2; 3518 if (ParseTypeAndValue(Op0, Loc, PFS) || 3519 ParseToken(lltok::comma, "expected ',' after select condition") || 3520 ParseTypeAndValue(Op1, PFS) || 3521 ParseToken(lltok::comma, "expected ',' after select value") || 3522 ParseTypeAndValue(Op2, PFS)) 3523 return true; 3524 3525 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 3526 return Error(Loc, Reason); 3527 3528 Inst = SelectInst::Create(Op0, Op1, Op2); 3529 return false; 3530 } 3531 3532 /// ParseVA_Arg 3533 /// ::= 'va_arg' TypeAndValue ',' Type 3534 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { 3535 Value *Op; 3536 PATypeHolder EltTy(Type::getVoidTy(Context)); 3537 LocTy TypeLoc; 3538 if (ParseTypeAndValue(Op, PFS) || 3539 ParseToken(lltok::comma, "expected ',' after vaarg operand") || 3540 ParseType(EltTy, TypeLoc)) 3541 return true; 3542 3543 if (!EltTy->isFirstClassType()) 3544 return Error(TypeLoc, "va_arg requires operand with first class type"); 3545 3546 Inst = new VAArgInst(Op, EltTy); 3547 return false; 3548 } 3549 3550 /// ParseExtractElement 3551 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 3552 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 3553 LocTy Loc; 3554 Value *Op0, *Op1; 3555 if (ParseTypeAndValue(Op0, Loc, PFS) || 3556 ParseToken(lltok::comma, "expected ',' after extract value") || 3557 ParseTypeAndValue(Op1, PFS)) 3558 return true; 3559 3560 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 3561 return Error(Loc, "invalid extractelement operands"); 3562 3563 Inst = ExtractElementInst::Create(Op0, Op1); 3564 return false; 3565 } 3566 3567 /// ParseInsertElement 3568 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 3569 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 3570 LocTy Loc; 3571 Value *Op0, *Op1, *Op2; 3572 if (ParseTypeAndValue(Op0, Loc, PFS) || 3573 ParseToken(lltok::comma, "expected ',' after insertelement value") || 3574 ParseTypeAndValue(Op1, PFS) || 3575 ParseToken(lltok::comma, "expected ',' after insertelement value") || 3576 ParseTypeAndValue(Op2, PFS)) 3577 return true; 3578 3579 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 3580 return Error(Loc, "invalid insertelement operands"); 3581 3582 Inst = InsertElementInst::Create(Op0, Op1, Op2); 3583 return false; 3584 } 3585 3586 /// ParseShuffleVector 3587 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 3588 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 3589 LocTy Loc; 3590 Value *Op0, *Op1, *Op2; 3591 if (ParseTypeAndValue(Op0, Loc, PFS) || 3592 ParseToken(lltok::comma, "expected ',' after shuffle mask") || 3593 ParseTypeAndValue(Op1, PFS) || 3594 ParseToken(lltok::comma, "expected ',' after shuffle value") || 3595 ParseTypeAndValue(Op2, PFS)) 3596 return true; 3597 3598 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 3599 return Error(Loc, "invalid extractelement operands"); 3600 3601 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 3602 return false; 3603 } 3604 3605 /// ParsePHI 3606 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 3607 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { 3608 PATypeHolder Ty(Type::getVoidTy(Context)); 3609 Value *Op0, *Op1; 3610 LocTy TypeLoc = Lex.getLoc(); 3611 3612 if (ParseType(Ty) || 3613 ParseToken(lltok::lsquare, "expected '[' in phi value list") || 3614 ParseValue(Ty, Op0, PFS) || 3615 ParseToken(lltok::comma, "expected ',' after insertelement value") || 3616 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 3617 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 3618 return true; 3619 3620 bool AteExtraComma = false; 3621 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 3622 while (1) { 3623 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 3624 3625 if (!EatIfPresent(lltok::comma)) 3626 break; 3627 3628 if (Lex.getKind() == lltok::MetadataVar) { 3629 AteExtraComma = true; 3630 break; 3631 } 3632 3633 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || 3634 ParseValue(Ty, Op0, PFS) || 3635 ParseToken(lltok::comma, "expected ',' after insertelement value") || 3636 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 3637 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 3638 return true; 3639 } 3640 3641 if (!Ty->isFirstClassType()) 3642 return Error(TypeLoc, "phi node must have first class type"); 3643 3644 PHINode *PN = PHINode::Create(Ty); 3645 PN->reserveOperandSpace(PHIVals.size()); 3646 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 3647 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 3648 Inst = PN; 3649 return AteExtraComma ? InstExtraComma : InstNormal; 3650 } 3651 3652 /// ParseCall 3653 /// ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value 3654 /// ParameterList OptionalAttrs 3655 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, 3656 bool isTail) { 3657 unsigned RetAttrs, FnAttrs; 3658 CallingConv::ID CC; 3659 PATypeHolder RetType(Type::getVoidTy(Context)); 3660 LocTy RetTypeLoc; 3661 ValID CalleeID; 3662 SmallVector<ParamInfo, 16> ArgList; 3663 LocTy CallLoc = Lex.getLoc(); 3664 3665 if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) || 3666 ParseOptionalCallingConv(CC) || 3667 ParseOptionalAttrs(RetAttrs, 1) || 3668 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 3669 ParseValID(CalleeID) || 3670 ParseParameterList(ArgList, PFS) || 3671 ParseOptionalAttrs(FnAttrs, 2)) 3672 return true; 3673 3674 // If RetType is a non-function pointer type, then this is the short syntax 3675 // for the call, which means that RetType is just the return type. Infer the 3676 // rest of the function argument types from the arguments that are present. 3677 const PointerType *PFTy = 0; 3678 const FunctionType *Ty = 0; 3679 if (!(PFTy = dyn_cast<PointerType>(RetType)) || 3680 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) { 3681 // Pull out the types of all of the arguments... 3682 std::vector<const Type*> ParamTypes; 3683 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 3684 ParamTypes.push_back(ArgList[i].V->getType()); 3685 3686 if (!FunctionType::isValidReturnType(RetType)) 3687 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 3688 3689 Ty = FunctionType::get(RetType, ParamTypes, false); 3690 PFTy = PointerType::getUnqual(Ty); 3691 } 3692 3693 // Look up the callee. 3694 Value *Callee; 3695 if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true; 3696 3697 // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional 3698 // function attributes. 3699 unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg; 3700 if (FnAttrs & ObsoleteFuncAttrs) { 3701 RetAttrs |= FnAttrs & ObsoleteFuncAttrs; 3702 FnAttrs &= ~ObsoleteFuncAttrs; 3703 } 3704 3705 // Set up the Attributes for the function. 3706 SmallVector<AttributeWithIndex, 8> Attrs; 3707 if (RetAttrs != Attribute::None) 3708 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs)); 3709 3710 SmallVector<Value*, 8> Args; 3711 3712 // Loop through FunctionType's arguments and ensure they are specified 3713 // correctly. Also, gather any parameter attributes. 3714 FunctionType::param_iterator I = Ty->param_begin(); 3715 FunctionType::param_iterator E = Ty->param_end(); 3716 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 3717 const Type *ExpectedTy = 0; 3718 if (I != E) { 3719 ExpectedTy = *I++; 3720 } else if (!Ty->isVarArg()) { 3721 return Error(ArgList[i].Loc, "too many arguments specified"); 3722 } 3723 3724 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 3725 return Error(ArgList[i].Loc, "argument is not of expected type '" + 3726 ExpectedTy->getDescription() + "'"); 3727 Args.push_back(ArgList[i].V); 3728 if (ArgList[i].Attrs != Attribute::None) 3729 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs)); 3730 } 3731 3732 if (I != E) 3733 return Error(CallLoc, "not enough parameters specified for call"); 3734 3735 if (FnAttrs != Attribute::None) 3736 Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs)); 3737 3738 // Finish off the Attributes and check them 3739 AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end()); 3740 3741 CallInst *CI = CallInst::Create(Callee, Args.begin(), Args.end()); 3742 CI->setTailCall(isTail); 3743 CI->setCallingConv(CC); 3744 CI->setAttributes(PAL); 3745 Inst = CI; 3746 return false; 3747 } 3748 3749 //===----------------------------------------------------------------------===// 3750 // Memory Instructions. 3751 //===----------------------------------------------------------------------===// 3752 3753 /// ParseAlloc 3754 /// ::= 'malloc' Type (',' TypeAndValue)? (',' OptionalInfo)? 3755 /// ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)? 3756 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS, 3757 BasicBlock* BB, bool isAlloca) { 3758 PATypeHolder Ty(Type::getVoidTy(Context)); 3759 Value *Size = 0; 3760 LocTy SizeLoc; 3761 unsigned Alignment = 0; 3762 if (ParseType(Ty)) return true; 3763 3764 bool AteExtraComma = false; 3765 if (EatIfPresent(lltok::comma)) { 3766 if (Lex.getKind() == lltok::kw_align) { 3767 if (ParseOptionalAlignment(Alignment)) return true; 3768 } else if (Lex.getKind() == lltok::MetadataVar) { 3769 AteExtraComma = true; 3770 } else { 3771 if (ParseTypeAndValue(Size, SizeLoc, PFS) || 3772 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 3773 return true; 3774 } 3775 } 3776 3777 if (Size && !Size->getType()->isIntegerTy()) 3778 return Error(SizeLoc, "element count must have integer type"); 3779 3780 if (isAlloca) { 3781 Inst = new AllocaInst(Ty, Size, Alignment); 3782 return AteExtraComma ? InstExtraComma : InstNormal; 3783 } 3784 3785 // Autoupgrade old malloc instruction to malloc call. 3786 // FIXME: Remove in LLVM 3.0. 3787 if (Size && !Size->getType()->isIntegerTy(32)) 3788 return Error(SizeLoc, "element count must be i32"); 3789 const Type *IntPtrTy = Type::getInt32Ty(Context); 3790 Constant *AllocSize = ConstantExpr::getSizeOf(Ty); 3791 AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, IntPtrTy); 3792 if (!MallocF) 3793 // Prototype malloc as "void *(int32)". 3794 // This function is renamed as "malloc" in ValidateEndOfModule(). 3795 MallocF = cast<Function>( 3796 M->getOrInsertFunction("", Type::getInt8PtrTy(Context), IntPtrTy, NULL)); 3797 Inst = CallInst::CreateMalloc(BB, IntPtrTy, Ty, AllocSize, Size, MallocF); 3798 return AteExtraComma ? InstExtraComma : InstNormal; 3799 } 3800 3801 /// ParseFree 3802 /// ::= 'free' TypeAndValue 3803 bool LLParser::ParseFree(Instruction *&Inst, PerFunctionState &PFS, 3804 BasicBlock* BB) { 3805 Value *Val; LocTy Loc; 3806 if (ParseTypeAndValue(Val, Loc, PFS)) return true; 3807 if (!Val->getType()->isPointerTy()) 3808 return Error(Loc, "operand to free must be a pointer"); 3809 Inst = CallInst::CreateFree(Val, BB); 3810 return false; 3811 } 3812 3813 /// ParseLoad 3814 /// ::= 'volatile'? 'load' TypeAndValue (',' OptionalInfo)? 3815 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS, 3816 bool isVolatile) { 3817 Value *Val; LocTy Loc; 3818 unsigned Alignment = 0; 3819 bool AteExtraComma = false; 3820 if (ParseTypeAndValue(Val, Loc, PFS) || 3821 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 3822 return true; 3823 3824 if (!Val->getType()->isPointerTy() || 3825 !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType()) 3826 return Error(Loc, "load operand must be a pointer to a first class type"); 3827 3828 Inst = new LoadInst(Val, "", isVolatile, Alignment); 3829 return AteExtraComma ? InstExtraComma : InstNormal; 3830 } 3831 3832 /// ParseStore 3833 /// ::= 'volatile'? 'store' TypeAndValue ',' TypeAndValue (',' 'align' i32)? 3834 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS, 3835 bool isVolatile) { 3836 Value *Val, *Ptr; LocTy Loc, PtrLoc; 3837 unsigned Alignment = 0; 3838 bool AteExtraComma = false; 3839 if (ParseTypeAndValue(Val, Loc, PFS) || 3840 ParseToken(lltok::comma, "expected ',' after store operand") || 3841 ParseTypeAndValue(Ptr, PtrLoc, PFS) || 3842 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 3843 return true; 3844 3845 if (!Ptr->getType()->isPointerTy()) 3846 return Error(PtrLoc, "store operand must be a pointer"); 3847 if (!Val->getType()->isFirstClassType()) 3848 return Error(Loc, "store operand must be a first class value"); 3849 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 3850 return Error(Loc, "stored value and pointer type do not match"); 3851 3852 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment); 3853 return AteExtraComma ? InstExtraComma : InstNormal; 3854 } 3855 3856 /// ParseGetResult 3857 /// ::= 'getresult' TypeAndValue ',' i32 3858 /// FIXME: Remove support for getresult in LLVM 3.0 3859 bool LLParser::ParseGetResult(Instruction *&Inst, PerFunctionState &PFS) { 3860 Value *Val; LocTy ValLoc, EltLoc; 3861 unsigned Element; 3862 if (ParseTypeAndValue(Val, ValLoc, PFS) || 3863 ParseToken(lltok::comma, "expected ',' after getresult operand") || 3864 ParseUInt32(Element, EltLoc)) 3865 return true; 3866 3867 if (!Val->getType()->isStructTy() && !Val->getType()->isArrayTy()) 3868 return Error(ValLoc, "getresult inst requires an aggregate operand"); 3869 if (!ExtractValueInst::getIndexedType(Val->getType(), Element)) 3870 return Error(EltLoc, "invalid getresult index for value"); 3871 Inst = ExtractValueInst::Create(Val, Element); 3872 return false; 3873 } 3874 3875 /// ParseGetElementPtr 3876 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 3877 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 3878 Value *Ptr, *Val; LocTy Loc, EltLoc; 3879 3880 bool InBounds = EatIfPresent(lltok::kw_inbounds); 3881 3882 if (ParseTypeAndValue(Ptr, Loc, PFS)) return true; 3883 3884 if (!Ptr->getType()->isPointerTy()) 3885 return Error(Loc, "base of getelementptr must be a pointer"); 3886 3887 SmallVector<Value*, 16> Indices; 3888 bool AteExtraComma = false; 3889 while (EatIfPresent(lltok::comma)) { 3890 if (Lex.getKind() == lltok::MetadataVar) { 3891 AteExtraComma = true; 3892 break; 3893 } 3894 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; 3895 if (!Val->getType()->isIntegerTy()) 3896 return Error(EltLoc, "getelementptr index must be an integer"); 3897 Indices.push_back(Val); 3898 } 3899 3900 if (!GetElementPtrInst::getIndexedType(Ptr->getType(), 3901 Indices.begin(), Indices.end())) 3902 return Error(Loc, "invalid getelementptr indices"); 3903 Inst = GetElementPtrInst::Create(Ptr, Indices.begin(), Indices.end()); 3904 if (InBounds) 3905 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 3906 return AteExtraComma ? InstExtraComma : InstNormal; 3907 } 3908 3909 /// ParseExtractValue 3910 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 3911 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 3912 Value *Val; LocTy Loc; 3913 SmallVector<unsigned, 4> Indices; 3914 bool AteExtraComma; 3915 if (ParseTypeAndValue(Val, Loc, PFS) || 3916 ParseIndexList(Indices, AteExtraComma)) 3917 return true; 3918 3919 if (!Val->getType()->isAggregateType()) 3920 return Error(Loc, "extractvalue operand must be aggregate type"); 3921 3922 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(), 3923 Indices.end())) 3924 return Error(Loc, "invalid indices for extractvalue"); 3925 Inst = ExtractValueInst::Create(Val, Indices.begin(), Indices.end()); 3926 return AteExtraComma ? InstExtraComma : InstNormal; 3927 } 3928 3929 /// ParseInsertValue 3930 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 3931 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 3932 Value *Val0, *Val1; LocTy Loc0, Loc1; 3933 SmallVector<unsigned, 4> Indices; 3934 bool AteExtraComma; 3935 if (ParseTypeAndValue(Val0, Loc0, PFS) || 3936 ParseToken(lltok::comma, "expected comma after insertvalue operand") || 3937 ParseTypeAndValue(Val1, Loc1, PFS) || 3938 ParseIndexList(Indices, AteExtraComma)) 3939 return true; 3940 3941 if (!Val0->getType()->isAggregateType()) 3942 return Error(Loc0, "insertvalue operand must be aggregate type"); 3943 3944 if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(), 3945 Indices.end())) 3946 return Error(Loc0, "invalid indices for insertvalue"); 3947 Inst = InsertValueInst::Create(Val0, Val1, Indices.begin(), Indices.end()); 3948 return AteExtraComma ? InstExtraComma : InstNormal; 3949 } 3950 3951 //===----------------------------------------------------------------------===// 3952 // Embedded metadata. 3953 //===----------------------------------------------------------------------===// 3954 3955 /// ParseMDNodeVector 3956 /// ::= Element (',' Element)* 3957 /// Element 3958 /// ::= 'null' | TypeAndValue 3959 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts, 3960 PerFunctionState *PFS) { 3961 // Check for an empty list. 3962 if (Lex.getKind() == lltok::rbrace) 3963 return false; 3964 3965 do { 3966 // Null is a special case since it is typeless. 3967 if (EatIfPresent(lltok::kw_null)) { 3968 Elts.push_back(0); 3969 continue; 3970 } 3971 3972 Value *V = 0; 3973 PATypeHolder Ty(Type::getVoidTy(Context)); 3974 ValID ID; 3975 if (ParseType(Ty) || ParseValID(ID, PFS) || 3976 ConvertValIDToValue(Ty, ID, V, PFS)) 3977 return true; 3978 3979 Elts.push_back(V); 3980 } while (EatIfPresent(lltok::comma)); 3981 3982 return false; 3983 } 3984