1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the parser class for .ll files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "LLParser.h"
14 #include "LLToken.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/AsmParser/SlotMapping.h"
21 #include "llvm/BinaryFormat/Dwarf.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/AutoUpgrade.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallingConv.h"
26 #include "llvm/IR/Comdat.h"
27 #include "llvm/IR/ConstantRange.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/GlobalIFunc.h"
33 #include "llvm/IR/GlobalObject.h"
34 #include "llvm/IR/InlineAsm.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Value.h"
40 #include "llvm/IR/ValueSymbolTable.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/MathExtras.h"
44 #include "llvm/Support/SaveAndRestore.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include <algorithm>
47 #include <cassert>
48 #include <cstring>
49 #include <iterator>
50 #include <vector>
51 
52 using namespace llvm;
53 
54 static std::string getTypeString(Type *T) {
55   std::string Result;
56   raw_string_ostream Tmp(Result);
57   Tmp << *T;
58   return Tmp.str();
59 }
60 
61 /// Run: module ::= toplevelentity*
62 bool LLParser::Run(bool UpgradeDebugInfo,
63                    DataLayoutCallbackTy DataLayoutCallback) {
64   // Prime the lexer.
65   Lex.Lex();
66 
67   if (Context.shouldDiscardValueNames())
68     return error(
69         Lex.getLoc(),
70         "Can't read textual IR with a Context that discards named Values");
71 
72   if (M) {
73     if (parseTargetDefinitions())
74       return true;
75 
76     if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple()))
77       M->setDataLayout(*LayoutOverride);
78   }
79 
80   return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) ||
81          validateEndOfIndex();
82 }
83 
84 bool LLParser::parseStandaloneConstantValue(Constant *&C,
85                                             const SlotMapping *Slots) {
86   restoreParsingState(Slots);
87   Lex.Lex();
88 
89   Type *Ty = nullptr;
90   if (parseType(Ty) || parseConstantValue(Ty, C))
91     return true;
92   if (Lex.getKind() != lltok::Eof)
93     return error(Lex.getLoc(), "expected end of string");
94   return false;
95 }
96 
97 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
98                                     const SlotMapping *Slots) {
99   restoreParsingState(Slots);
100   Lex.Lex();
101 
102   Read = 0;
103   SMLoc Start = Lex.getLoc();
104   Ty = nullptr;
105   if (parseType(Ty))
106     return true;
107   SMLoc End = Lex.getLoc();
108   Read = End.getPointer() - Start.getPointer();
109 
110   return false;
111 }
112 
113 void LLParser::restoreParsingState(const SlotMapping *Slots) {
114   if (!Slots)
115     return;
116   NumberedVals = Slots->GlobalValues;
117   NumberedMetadata = Slots->MetadataNodes;
118   for (const auto &I : Slots->NamedTypes)
119     NamedTypes.insert(
120         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
121   for (const auto &I : Slots->Types)
122     NumberedTypes.insert(
123         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
124 }
125 
126 /// validateEndOfModule - Do final validity and sanity checks at the end of the
127 /// module.
128 bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) {
129   if (!M)
130     return false;
131   // Handle any function attribute group forward references.
132   for (const auto &RAG : ForwardRefAttrGroups) {
133     Value *V = RAG.first;
134     const std::vector<unsigned> &Attrs = RAG.second;
135     AttrBuilder B;
136 
137     for (const auto &Attr : Attrs)
138       B.merge(NumberedAttrBuilders[Attr]);
139 
140     if (Function *Fn = dyn_cast<Function>(V)) {
141       AttributeList AS = Fn->getAttributes();
142       AttrBuilder FnAttrs(AS.getFnAttributes());
143       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
144 
145       FnAttrs.merge(B);
146 
147       // If the alignment was parsed as an attribute, move to the alignment
148       // field.
149       if (FnAttrs.hasAlignmentAttr()) {
150         Fn->setAlignment(FnAttrs.getAlignment());
151         FnAttrs.removeAttribute(Attribute::Alignment);
152       }
153 
154       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
155                             AttributeSet::get(Context, FnAttrs));
156       Fn->setAttributes(AS);
157     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
158       AttributeList AS = CI->getAttributes();
159       AttrBuilder FnAttrs(AS.getFnAttributes());
160       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
161       FnAttrs.merge(B);
162       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
163                             AttributeSet::get(Context, FnAttrs));
164       CI->setAttributes(AS);
165     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
166       AttributeList AS = II->getAttributes();
167       AttrBuilder FnAttrs(AS.getFnAttributes());
168       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
169       FnAttrs.merge(B);
170       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
171                             AttributeSet::get(Context, FnAttrs));
172       II->setAttributes(AS);
173     } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
174       AttributeList AS = CBI->getAttributes();
175       AttrBuilder FnAttrs(AS.getFnAttributes());
176       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
177       FnAttrs.merge(B);
178       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
179                             AttributeSet::get(Context, FnAttrs));
180       CBI->setAttributes(AS);
181     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
182       AttrBuilder Attrs(GV->getAttributes());
183       Attrs.merge(B);
184       GV->setAttributes(AttributeSet::get(Context,Attrs));
185     } else {
186       llvm_unreachable("invalid object with forward attribute group reference");
187     }
188   }
189 
190   // If there are entries in ForwardRefBlockAddresses at this point, the
191   // function was never defined.
192   if (!ForwardRefBlockAddresses.empty())
193     return error(ForwardRefBlockAddresses.begin()->first.Loc,
194                  "expected function name in blockaddress");
195 
196   for (const auto &NT : NumberedTypes)
197     if (NT.second.second.isValid())
198       return error(NT.second.second,
199                    "use of undefined type '%" + Twine(NT.first) + "'");
200 
201   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
202        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
203     if (I->second.second.isValid())
204       return error(I->second.second,
205                    "use of undefined type named '" + I->getKey() + "'");
206 
207   if (!ForwardRefComdats.empty())
208     return error(ForwardRefComdats.begin()->second,
209                  "use of undefined comdat '$" +
210                      ForwardRefComdats.begin()->first + "'");
211 
212   if (!ForwardRefVals.empty())
213     return error(ForwardRefVals.begin()->second.second,
214                  "use of undefined value '@" + ForwardRefVals.begin()->first +
215                      "'");
216 
217   if (!ForwardRefValIDs.empty())
218     return error(ForwardRefValIDs.begin()->second.second,
219                  "use of undefined value '@" +
220                      Twine(ForwardRefValIDs.begin()->first) + "'");
221 
222   if (!ForwardRefMDNodes.empty())
223     return error(ForwardRefMDNodes.begin()->second.second,
224                  "use of undefined metadata '!" +
225                      Twine(ForwardRefMDNodes.begin()->first) + "'");
226 
227   // Resolve metadata cycles.
228   for (auto &N : NumberedMetadata) {
229     if (N.second && !N.second->isResolved())
230       N.second->resolveCycles();
231   }
232 
233   for (auto *Inst : InstsWithTBAATag) {
234     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
235     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
236     auto *UpgradedMD = UpgradeTBAANode(*MD);
237     if (MD != UpgradedMD)
238       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
239   }
240 
241   // Look for intrinsic functions and CallInst that need to be upgraded
242   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
243     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
244 
245   // Some types could be renamed during loading if several modules are
246   // loaded in the same LLVMContext (LTO scenario). In this case we should
247   // remangle intrinsics names as well.
248   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
249     Function *F = &*FI++;
250     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
251       F->replaceAllUsesWith(Remangled.getValue());
252       F->eraseFromParent();
253     }
254   }
255 
256   if (UpgradeDebugInfo)
257     llvm::UpgradeDebugInfo(*M);
258 
259   UpgradeModuleFlags(*M);
260   UpgradeSectionAttributes(*M);
261 
262   if (!Slots)
263     return false;
264   // Initialize the slot mapping.
265   // Because by this point we've parsed and validated everything, we can "steal"
266   // the mapping from LLParser as it doesn't need it anymore.
267   Slots->GlobalValues = std::move(NumberedVals);
268   Slots->MetadataNodes = std::move(NumberedMetadata);
269   for (const auto &I : NamedTypes)
270     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
271   for (const auto &I : NumberedTypes)
272     Slots->Types.insert(std::make_pair(I.first, I.second.first));
273 
274   return false;
275 }
276 
277 /// Do final validity and sanity checks at the end of the index.
278 bool LLParser::validateEndOfIndex() {
279   if (!Index)
280     return false;
281 
282   if (!ForwardRefValueInfos.empty())
283     return error(ForwardRefValueInfos.begin()->second.front().second,
284                  "use of undefined summary '^" +
285                      Twine(ForwardRefValueInfos.begin()->first) + "'");
286 
287   if (!ForwardRefAliasees.empty())
288     return error(ForwardRefAliasees.begin()->second.front().second,
289                  "use of undefined summary '^" +
290                      Twine(ForwardRefAliasees.begin()->first) + "'");
291 
292   if (!ForwardRefTypeIds.empty())
293     return error(ForwardRefTypeIds.begin()->second.front().second,
294                  "use of undefined type id summary '^" +
295                      Twine(ForwardRefTypeIds.begin()->first) + "'");
296 
297   return false;
298 }
299 
300 //===----------------------------------------------------------------------===//
301 // Top-Level Entities
302 //===----------------------------------------------------------------------===//
303 
304 bool LLParser::parseTargetDefinitions() {
305   while (true) {
306     switch (Lex.getKind()) {
307     case lltok::kw_target:
308       if (parseTargetDefinition())
309         return true;
310       break;
311     case lltok::kw_source_filename:
312       if (parseSourceFileName())
313         return true;
314       break;
315     default:
316       return false;
317     }
318   }
319 }
320 
321 bool LLParser::parseTopLevelEntities() {
322   // If there is no Module, then parse just the summary index entries.
323   if (!M) {
324     while (true) {
325       switch (Lex.getKind()) {
326       case lltok::Eof:
327         return false;
328       case lltok::SummaryID:
329         if (parseSummaryEntry())
330           return true;
331         break;
332       case lltok::kw_source_filename:
333         if (parseSourceFileName())
334           return true;
335         break;
336       default:
337         // Skip everything else
338         Lex.Lex();
339       }
340     }
341   }
342   while (true) {
343     switch (Lex.getKind()) {
344     default:
345       return tokError("expected top-level entity");
346     case lltok::Eof: return false;
347     case lltok::kw_declare:
348       if (parseDeclare())
349         return true;
350       break;
351     case lltok::kw_define:
352       if (parseDefine())
353         return true;
354       break;
355     case lltok::kw_module:
356       if (parseModuleAsm())
357         return true;
358       break;
359     case lltok::kw_deplibs:
360       if (parseDepLibs())
361         return true;
362       break;
363     case lltok::LocalVarID:
364       if (parseUnnamedType())
365         return true;
366       break;
367     case lltok::LocalVar:
368       if (parseNamedType())
369         return true;
370       break;
371     case lltok::GlobalID:
372       if (parseUnnamedGlobal())
373         return true;
374       break;
375     case lltok::GlobalVar:
376       if (parseNamedGlobal())
377         return true;
378       break;
379     case lltok::ComdatVar:  if (parseComdat()) return true; break;
380     case lltok::exclaim:
381       if (parseStandaloneMetadata())
382         return true;
383       break;
384     case lltok::SummaryID:
385       if (parseSummaryEntry())
386         return true;
387       break;
388     case lltok::MetadataVar:
389       if (parseNamedMetadata())
390         return true;
391       break;
392     case lltok::kw_attributes:
393       if (parseUnnamedAttrGrp())
394         return true;
395       break;
396     case lltok::kw_uselistorder:
397       if (parseUseListOrder())
398         return true;
399       break;
400     case lltok::kw_uselistorder_bb:
401       if (parseUseListOrderBB())
402         return true;
403       break;
404     }
405   }
406 }
407 
408 /// toplevelentity
409 ///   ::= 'module' 'asm' STRINGCONSTANT
410 bool LLParser::parseModuleAsm() {
411   assert(Lex.getKind() == lltok::kw_module);
412   Lex.Lex();
413 
414   std::string AsmStr;
415   if (parseToken(lltok::kw_asm, "expected 'module asm'") ||
416       parseStringConstant(AsmStr))
417     return true;
418 
419   M->appendModuleInlineAsm(AsmStr);
420   return false;
421 }
422 
423 /// toplevelentity
424 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
425 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
426 bool LLParser::parseTargetDefinition() {
427   assert(Lex.getKind() == lltok::kw_target);
428   std::string Str;
429   switch (Lex.Lex()) {
430   default:
431     return tokError("unknown target property");
432   case lltok::kw_triple:
433     Lex.Lex();
434     if (parseToken(lltok::equal, "expected '=' after target triple") ||
435         parseStringConstant(Str))
436       return true;
437     M->setTargetTriple(Str);
438     return false;
439   case lltok::kw_datalayout:
440     Lex.Lex();
441     if (parseToken(lltok::equal, "expected '=' after target datalayout") ||
442         parseStringConstant(Str))
443       return true;
444     M->setDataLayout(Str);
445     return false;
446   }
447 }
448 
449 /// toplevelentity
450 ///   ::= 'source_filename' '=' STRINGCONSTANT
451 bool LLParser::parseSourceFileName() {
452   assert(Lex.getKind() == lltok::kw_source_filename);
453   Lex.Lex();
454   if (parseToken(lltok::equal, "expected '=' after source_filename") ||
455       parseStringConstant(SourceFileName))
456     return true;
457   if (M)
458     M->setSourceFileName(SourceFileName);
459   return false;
460 }
461 
462 /// toplevelentity
463 ///   ::= 'deplibs' '=' '[' ']'
464 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
465 /// FIXME: Remove in 4.0. Currently parse, but ignore.
466 bool LLParser::parseDepLibs() {
467   assert(Lex.getKind() == lltok::kw_deplibs);
468   Lex.Lex();
469   if (parseToken(lltok::equal, "expected '=' after deplibs") ||
470       parseToken(lltok::lsquare, "expected '=' after deplibs"))
471     return true;
472 
473   if (EatIfPresent(lltok::rsquare))
474     return false;
475 
476   do {
477     std::string Str;
478     if (parseStringConstant(Str))
479       return true;
480   } while (EatIfPresent(lltok::comma));
481 
482   return parseToken(lltok::rsquare, "expected ']' at end of list");
483 }
484 
485 /// parseUnnamedType:
486 ///   ::= LocalVarID '=' 'type' type
487 bool LLParser::parseUnnamedType() {
488   LocTy TypeLoc = Lex.getLoc();
489   unsigned TypeID = Lex.getUIntVal();
490   Lex.Lex(); // eat LocalVarID;
491 
492   if (parseToken(lltok::equal, "expected '=' after name") ||
493       parseToken(lltok::kw_type, "expected 'type' after '='"))
494     return true;
495 
496   Type *Result = nullptr;
497   if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result))
498     return true;
499 
500   if (!isa<StructType>(Result)) {
501     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
502     if (Entry.first)
503       return error(TypeLoc, "non-struct types may not be recursive");
504     Entry.first = Result;
505     Entry.second = SMLoc();
506   }
507 
508   return false;
509 }
510 
511 /// toplevelentity
512 ///   ::= LocalVar '=' 'type' type
513 bool LLParser::parseNamedType() {
514   std::string Name = Lex.getStrVal();
515   LocTy NameLoc = Lex.getLoc();
516   Lex.Lex();  // eat LocalVar.
517 
518   if (parseToken(lltok::equal, "expected '=' after name") ||
519       parseToken(lltok::kw_type, "expected 'type' after name"))
520     return true;
521 
522   Type *Result = nullptr;
523   if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result))
524     return true;
525 
526   if (!isa<StructType>(Result)) {
527     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
528     if (Entry.first)
529       return error(NameLoc, "non-struct types may not be recursive");
530     Entry.first = Result;
531     Entry.second = SMLoc();
532   }
533 
534   return false;
535 }
536 
537 /// toplevelentity
538 ///   ::= 'declare' FunctionHeader
539 bool LLParser::parseDeclare() {
540   assert(Lex.getKind() == lltok::kw_declare);
541   Lex.Lex();
542 
543   std::vector<std::pair<unsigned, MDNode *>> MDs;
544   while (Lex.getKind() == lltok::MetadataVar) {
545     unsigned MDK;
546     MDNode *N;
547     if (parseMetadataAttachment(MDK, N))
548       return true;
549     MDs.push_back({MDK, N});
550   }
551 
552   Function *F;
553   if (parseFunctionHeader(F, false))
554     return true;
555   for (auto &MD : MDs)
556     F->addMetadata(MD.first, *MD.second);
557   return false;
558 }
559 
560 /// toplevelentity
561 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
562 bool LLParser::parseDefine() {
563   assert(Lex.getKind() == lltok::kw_define);
564   Lex.Lex();
565 
566   Function *F;
567   return parseFunctionHeader(F, true) || parseOptionalFunctionMetadata(*F) ||
568          parseFunctionBody(*F);
569 }
570 
571 /// parseGlobalType
572 ///   ::= 'constant'
573 ///   ::= 'global'
574 bool LLParser::parseGlobalType(bool &IsConstant) {
575   if (Lex.getKind() == lltok::kw_constant)
576     IsConstant = true;
577   else if (Lex.getKind() == lltok::kw_global)
578     IsConstant = false;
579   else {
580     IsConstant = false;
581     return tokError("expected 'global' or 'constant'");
582   }
583   Lex.Lex();
584   return false;
585 }
586 
587 bool LLParser::parseOptionalUnnamedAddr(
588     GlobalVariable::UnnamedAddr &UnnamedAddr) {
589   if (EatIfPresent(lltok::kw_unnamed_addr))
590     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
591   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
592     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
593   else
594     UnnamedAddr = GlobalValue::UnnamedAddr::None;
595   return false;
596 }
597 
598 /// parseUnnamedGlobal:
599 ///   OptionalVisibility (ALIAS | IFUNC) ...
600 ///   OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
601 ///   OptionalDLLStorageClass
602 ///                                                     ...   -> global variable
603 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
604 ///   GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier
605 ///   OptionalVisibility
606 ///                OptionalDLLStorageClass
607 ///                                                     ...   -> global variable
608 bool LLParser::parseUnnamedGlobal() {
609   unsigned VarID = NumberedVals.size();
610   std::string Name;
611   LocTy NameLoc = Lex.getLoc();
612 
613   // Handle the GlobalID form.
614   if (Lex.getKind() == lltok::GlobalID) {
615     if (Lex.getUIntVal() != VarID)
616       return error(Lex.getLoc(),
617                    "variable expected to be numbered '%" + Twine(VarID) + "'");
618     Lex.Lex(); // eat GlobalID;
619 
620     if (parseToken(lltok::equal, "expected '=' after name"))
621       return true;
622   }
623 
624   bool HasLinkage;
625   unsigned Linkage, Visibility, DLLStorageClass;
626   bool DSOLocal;
627   GlobalVariable::ThreadLocalMode TLM;
628   GlobalVariable::UnnamedAddr UnnamedAddr;
629   if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
630                            DSOLocal) ||
631       parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
632     return true;
633 
634   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
635     return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
636                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
637 
638   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
639                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
640 }
641 
642 /// parseNamedGlobal:
643 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
644 ///   GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
645 ///                 OptionalVisibility OptionalDLLStorageClass
646 ///                                                     ...   -> global variable
647 bool LLParser::parseNamedGlobal() {
648   assert(Lex.getKind() == lltok::GlobalVar);
649   LocTy NameLoc = Lex.getLoc();
650   std::string Name = Lex.getStrVal();
651   Lex.Lex();
652 
653   bool HasLinkage;
654   unsigned Linkage, Visibility, DLLStorageClass;
655   bool DSOLocal;
656   GlobalVariable::ThreadLocalMode TLM;
657   GlobalVariable::UnnamedAddr UnnamedAddr;
658   if (parseToken(lltok::equal, "expected '=' in global variable") ||
659       parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
660                            DSOLocal) ||
661       parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
662     return true;
663 
664   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
665     return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
666                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
667 
668   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
669                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
670 }
671 
672 bool LLParser::parseComdat() {
673   assert(Lex.getKind() == lltok::ComdatVar);
674   std::string Name = Lex.getStrVal();
675   LocTy NameLoc = Lex.getLoc();
676   Lex.Lex();
677 
678   if (parseToken(lltok::equal, "expected '=' here"))
679     return true;
680 
681   if (parseToken(lltok::kw_comdat, "expected comdat keyword"))
682     return tokError("expected comdat type");
683 
684   Comdat::SelectionKind SK;
685   switch (Lex.getKind()) {
686   default:
687     return tokError("unknown selection kind");
688   case lltok::kw_any:
689     SK = Comdat::Any;
690     break;
691   case lltok::kw_exactmatch:
692     SK = Comdat::ExactMatch;
693     break;
694   case lltok::kw_largest:
695     SK = Comdat::Largest;
696     break;
697   case lltok::kw_noduplicates:
698     SK = Comdat::NoDuplicates;
699     break;
700   case lltok::kw_samesize:
701     SK = Comdat::SameSize;
702     break;
703   }
704   Lex.Lex();
705 
706   // See if the comdat was forward referenced, if so, use the comdat.
707   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
708   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
709   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
710     return error(NameLoc, "redefinition of comdat '$" + Name + "'");
711 
712   Comdat *C;
713   if (I != ComdatSymTab.end())
714     C = &I->second;
715   else
716     C = M->getOrInsertComdat(Name);
717   C->setSelectionKind(SK);
718 
719   return false;
720 }
721 
722 // MDString:
723 //   ::= '!' STRINGCONSTANT
724 bool LLParser::parseMDString(MDString *&Result) {
725   std::string Str;
726   if (parseStringConstant(Str))
727     return true;
728   Result = MDString::get(Context, Str);
729   return false;
730 }
731 
732 // MDNode:
733 //   ::= '!' MDNodeNumber
734 bool LLParser::parseMDNodeID(MDNode *&Result) {
735   // !{ ..., !42, ... }
736   LocTy IDLoc = Lex.getLoc();
737   unsigned MID = 0;
738   if (parseUInt32(MID))
739     return true;
740 
741   // If not a forward reference, just return it now.
742   if (NumberedMetadata.count(MID)) {
743     Result = NumberedMetadata[MID];
744     return false;
745   }
746 
747   // Otherwise, create MDNode forward reference.
748   auto &FwdRef = ForwardRefMDNodes[MID];
749   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
750 
751   Result = FwdRef.first.get();
752   NumberedMetadata[MID].reset(Result);
753   return false;
754 }
755 
756 /// parseNamedMetadata:
757 ///   !foo = !{ !1, !2 }
758 bool LLParser::parseNamedMetadata() {
759   assert(Lex.getKind() == lltok::MetadataVar);
760   std::string Name = Lex.getStrVal();
761   Lex.Lex();
762 
763   if (parseToken(lltok::equal, "expected '=' here") ||
764       parseToken(lltok::exclaim, "Expected '!' here") ||
765       parseToken(lltok::lbrace, "Expected '{' here"))
766     return true;
767 
768   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
769   if (Lex.getKind() != lltok::rbrace)
770     do {
771       MDNode *N = nullptr;
772       // parse DIExpressions inline as a special case. They are still MDNodes,
773       // so they can still appear in named metadata. Remove this logic if they
774       // become plain Metadata.
775       if (Lex.getKind() == lltok::MetadataVar &&
776           Lex.getStrVal() == "DIExpression") {
777         if (parseDIExpression(N, /*IsDistinct=*/false))
778           return true;
779       } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
780                  parseMDNodeID(N)) {
781         return true;
782       }
783       NMD->addOperand(N);
784     } while (EatIfPresent(lltok::comma));
785 
786   return parseToken(lltok::rbrace, "expected end of metadata node");
787 }
788 
789 /// parseStandaloneMetadata:
790 ///   !42 = !{...}
791 bool LLParser::parseStandaloneMetadata() {
792   assert(Lex.getKind() == lltok::exclaim);
793   Lex.Lex();
794   unsigned MetadataID = 0;
795 
796   MDNode *Init;
797   if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here"))
798     return true;
799 
800   // Detect common error, from old metadata syntax.
801   if (Lex.getKind() == lltok::Type)
802     return tokError("unexpected type in metadata definition");
803 
804   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
805   if (Lex.getKind() == lltok::MetadataVar) {
806     if (parseSpecializedMDNode(Init, IsDistinct))
807       return true;
808   } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
809              parseMDTuple(Init, IsDistinct))
810     return true;
811 
812   // See if this was forward referenced, if so, handle it.
813   auto FI = ForwardRefMDNodes.find(MetadataID);
814   if (FI != ForwardRefMDNodes.end()) {
815     FI->second.first->replaceAllUsesWith(Init);
816     ForwardRefMDNodes.erase(FI);
817 
818     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
819   } else {
820     if (NumberedMetadata.count(MetadataID))
821       return tokError("Metadata id is already used");
822     NumberedMetadata[MetadataID].reset(Init);
823   }
824 
825   return false;
826 }
827 
828 // Skips a single module summary entry.
829 bool LLParser::skipModuleSummaryEntry() {
830   // Each module summary entry consists of a tag for the entry
831   // type, followed by a colon, then the fields which may be surrounded by
832   // nested sets of parentheses. The "tag:" looks like a Label. Once parsing
833   // support is in place we will look for the tokens corresponding to the
834   // expected tags.
835   if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
836       Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags &&
837       Lex.getKind() != lltok::kw_blockcount)
838     return tokError(
839         "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the "
840         "start of summary entry");
841   if (Lex.getKind() == lltok::kw_flags)
842     return parseSummaryIndexFlags();
843   if (Lex.getKind() == lltok::kw_blockcount)
844     return parseBlockCount();
845   Lex.Lex();
846   if (parseToken(lltok::colon, "expected ':' at start of summary entry") ||
847       parseToken(lltok::lparen, "expected '(' at start of summary entry"))
848     return true;
849   // Now walk through the parenthesized entry, until the number of open
850   // parentheses goes back down to 0 (the first '(' was parsed above).
851   unsigned NumOpenParen = 1;
852   do {
853     switch (Lex.getKind()) {
854     case lltok::lparen:
855       NumOpenParen++;
856       break;
857     case lltok::rparen:
858       NumOpenParen--;
859       break;
860     case lltok::Eof:
861       return tokError("found end of file while parsing summary entry");
862     default:
863       // Skip everything in between parentheses.
864       break;
865     }
866     Lex.Lex();
867   } while (NumOpenParen > 0);
868   return false;
869 }
870 
871 /// SummaryEntry
872 ///   ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
873 bool LLParser::parseSummaryEntry() {
874   assert(Lex.getKind() == lltok::SummaryID);
875   unsigned SummaryID = Lex.getUIntVal();
876 
877   // For summary entries, colons should be treated as distinct tokens,
878   // not an indication of the end of a label token.
879   Lex.setIgnoreColonInIdentifiers(true);
880 
881   Lex.Lex();
882   if (parseToken(lltok::equal, "expected '=' here"))
883     return true;
884 
885   // If we don't have an index object, skip the summary entry.
886   if (!Index)
887     return skipModuleSummaryEntry();
888 
889   bool result = false;
890   switch (Lex.getKind()) {
891   case lltok::kw_gv:
892     result = parseGVEntry(SummaryID);
893     break;
894   case lltok::kw_module:
895     result = parseModuleEntry(SummaryID);
896     break;
897   case lltok::kw_typeid:
898     result = parseTypeIdEntry(SummaryID);
899     break;
900   case lltok::kw_typeidCompatibleVTable:
901     result = parseTypeIdCompatibleVtableEntry(SummaryID);
902     break;
903   case lltok::kw_flags:
904     result = parseSummaryIndexFlags();
905     break;
906   case lltok::kw_blockcount:
907     result = parseBlockCount();
908     break;
909   default:
910     result = error(Lex.getLoc(), "unexpected summary kind");
911     break;
912   }
913   Lex.setIgnoreColonInIdentifiers(false);
914   return result;
915 }
916 
917 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
918   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
919          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
920 }
921 
922 // If there was an explicit dso_local, update GV. In the absence of an explicit
923 // dso_local we keep the default value.
924 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
925   if (DSOLocal)
926     GV.setDSOLocal(true);
927 }
928 
929 /// parseIndirectSymbol:
930 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
931 ///                     OptionalVisibility OptionalDLLStorageClass
932 ///                     OptionalThreadLocal OptionalUnnamedAddr
933 ///                     'alias|ifunc' IndirectSymbol IndirectSymbolAttr*
934 ///
935 /// IndirectSymbol
936 ///   ::= TypeAndValue
937 ///
938 /// IndirectSymbolAttr
939 ///   ::= ',' 'partition' StringConstant
940 ///
941 /// Everything through OptionalUnnamedAddr has already been parsed.
942 ///
943 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
944                                    unsigned L, unsigned Visibility,
945                                    unsigned DLLStorageClass, bool DSOLocal,
946                                    GlobalVariable::ThreadLocalMode TLM,
947                                    GlobalVariable::UnnamedAddr UnnamedAddr) {
948   bool IsAlias;
949   if (Lex.getKind() == lltok::kw_alias)
950     IsAlias = true;
951   else if (Lex.getKind() == lltok::kw_ifunc)
952     IsAlias = false;
953   else
954     llvm_unreachable("Not an alias or ifunc!");
955   Lex.Lex();
956 
957   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
958 
959   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
960     return error(NameLoc, "invalid linkage type for alias");
961 
962   if (!isValidVisibilityForLinkage(Visibility, L))
963     return error(NameLoc,
964                  "symbol with local linkage must have default visibility");
965 
966   Type *Ty;
967   LocTy ExplicitTypeLoc = Lex.getLoc();
968   if (parseType(Ty) ||
969       parseToken(lltok::comma, "expected comma after alias or ifunc's type"))
970     return true;
971 
972   Constant *Aliasee;
973   LocTy AliaseeLoc = Lex.getLoc();
974   if (Lex.getKind() != lltok::kw_bitcast &&
975       Lex.getKind() != lltok::kw_getelementptr &&
976       Lex.getKind() != lltok::kw_addrspacecast &&
977       Lex.getKind() != lltok::kw_inttoptr) {
978     if (parseGlobalTypeAndValue(Aliasee))
979       return true;
980   } else {
981     // The bitcast dest type is not present, it is implied by the dest type.
982     ValID ID;
983     if (parseValID(ID))
984       return true;
985     if (ID.Kind != ValID::t_Constant)
986       return error(AliaseeLoc, "invalid aliasee");
987     Aliasee = ID.ConstantVal;
988   }
989 
990   Type *AliaseeType = Aliasee->getType();
991   auto *PTy = dyn_cast<PointerType>(AliaseeType);
992   if (!PTy)
993     return error(AliaseeLoc, "An alias or ifunc must have pointer type");
994   unsigned AddrSpace = PTy->getAddressSpace();
995 
996   if (IsAlias && Ty != PTy->getElementType())
997     return error(ExplicitTypeLoc,
998                  "explicit pointee type doesn't match operand's pointee type");
999 
1000   if (!IsAlias && !PTy->getElementType()->isFunctionTy())
1001     return error(ExplicitTypeLoc,
1002                  "explicit pointee type should be a function type");
1003 
1004   GlobalValue *GVal = nullptr;
1005 
1006   // See if the alias was forward referenced, if so, prepare to replace the
1007   // forward reference.
1008   if (!Name.empty()) {
1009     GVal = M->getNamedValue(Name);
1010     if (GVal) {
1011       if (!ForwardRefVals.erase(Name))
1012         return error(NameLoc, "redefinition of global '@" + Name + "'");
1013     }
1014   } else {
1015     auto I = ForwardRefValIDs.find(NumberedVals.size());
1016     if (I != ForwardRefValIDs.end()) {
1017       GVal = I->second.first;
1018       ForwardRefValIDs.erase(I);
1019     }
1020   }
1021 
1022   // Okay, create the alias but do not insert it into the module yet.
1023   std::unique_ptr<GlobalIndirectSymbol> GA;
1024   if (IsAlias)
1025     GA.reset(GlobalAlias::create(Ty, AddrSpace,
1026                                  (GlobalValue::LinkageTypes)Linkage, Name,
1027                                  Aliasee, /*Parent*/ nullptr));
1028   else
1029     GA.reset(GlobalIFunc::create(Ty, AddrSpace,
1030                                  (GlobalValue::LinkageTypes)Linkage, Name,
1031                                  Aliasee, /*Parent*/ nullptr));
1032   GA->setThreadLocalMode(TLM);
1033   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1034   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1035   GA->setUnnamedAddr(UnnamedAddr);
1036   maybeSetDSOLocal(DSOLocal, *GA);
1037 
1038   // At this point we've parsed everything except for the IndirectSymbolAttrs.
1039   // Now parse them if there are any.
1040   while (Lex.getKind() == lltok::comma) {
1041     Lex.Lex();
1042 
1043     if (Lex.getKind() == lltok::kw_partition) {
1044       Lex.Lex();
1045       GA->setPartition(Lex.getStrVal());
1046       if (parseToken(lltok::StringConstant, "expected partition string"))
1047         return true;
1048     } else {
1049       return tokError("unknown alias or ifunc property!");
1050     }
1051   }
1052 
1053   if (Name.empty())
1054     NumberedVals.push_back(GA.get());
1055 
1056   if (GVal) {
1057     // Verify that types agree.
1058     if (GVal->getType() != GA->getType())
1059       return error(
1060           ExplicitTypeLoc,
1061           "forward reference and definition of alias have different types");
1062 
1063     // If they agree, just RAUW the old value with the alias and remove the
1064     // forward ref info.
1065     GVal->replaceAllUsesWith(GA.get());
1066     GVal->eraseFromParent();
1067   }
1068 
1069   // Insert into the module, we know its name won't collide now.
1070   if (IsAlias)
1071     M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
1072   else
1073     M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
1074   assert(GA->getName() == Name && "Should not be a name conflict!");
1075 
1076   // The module owns this now
1077   GA.release();
1078 
1079   return false;
1080 }
1081 
1082 /// parseGlobal
1083 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1084 ///       OptionalVisibility OptionalDLLStorageClass
1085 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
1086 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
1087 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
1088 ///       OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
1089 ///       OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
1090 ///       Const OptionalAttrs
1091 ///
1092 /// Everything up to and including OptionalUnnamedAddr has been parsed
1093 /// already.
1094 ///
1095 bool LLParser::parseGlobal(const std::string &Name, LocTy NameLoc,
1096                            unsigned Linkage, bool HasLinkage,
1097                            unsigned Visibility, unsigned DLLStorageClass,
1098                            bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1099                            GlobalVariable::UnnamedAddr UnnamedAddr) {
1100   if (!isValidVisibilityForLinkage(Visibility, Linkage))
1101     return error(NameLoc,
1102                  "symbol with local linkage must have default visibility");
1103 
1104   unsigned AddrSpace;
1105   bool IsConstant, IsExternallyInitialized;
1106   LocTy IsExternallyInitializedLoc;
1107   LocTy TyLoc;
1108 
1109   Type *Ty = nullptr;
1110   if (parseOptionalAddrSpace(AddrSpace) ||
1111       parseOptionalToken(lltok::kw_externally_initialized,
1112                          IsExternallyInitialized,
1113                          &IsExternallyInitializedLoc) ||
1114       parseGlobalType(IsConstant) || parseType(Ty, TyLoc))
1115     return true;
1116 
1117   // If the linkage is specified and is external, then no initializer is
1118   // present.
1119   Constant *Init = nullptr;
1120   if (!HasLinkage ||
1121       !GlobalValue::isValidDeclarationLinkage(
1122           (GlobalValue::LinkageTypes)Linkage)) {
1123     if (parseGlobalValue(Ty, Init))
1124       return true;
1125   }
1126 
1127   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1128     return error(TyLoc, "invalid type for global variable");
1129 
1130   GlobalValue *GVal = nullptr;
1131 
1132   // See if the global was forward referenced, if so, use the global.
1133   if (!Name.empty()) {
1134     GVal = M->getNamedValue(Name);
1135     if (GVal) {
1136       if (!ForwardRefVals.erase(Name))
1137         return error(NameLoc, "redefinition of global '@" + Name + "'");
1138     }
1139   } else {
1140     auto I = ForwardRefValIDs.find(NumberedVals.size());
1141     if (I != ForwardRefValIDs.end()) {
1142       GVal = I->second.first;
1143       ForwardRefValIDs.erase(I);
1144     }
1145   }
1146 
1147   GlobalVariable *GV;
1148   if (!GVal) {
1149     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
1150                             Name, nullptr, GlobalVariable::NotThreadLocal,
1151                             AddrSpace);
1152   } else {
1153     if (GVal->getValueType() != Ty)
1154       return error(
1155           TyLoc,
1156           "forward reference and definition of global have different types");
1157 
1158     GV = cast<GlobalVariable>(GVal);
1159 
1160     // Move the forward-reference to the correct spot in the module.
1161     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
1162   }
1163 
1164   if (Name.empty())
1165     NumberedVals.push_back(GV);
1166 
1167   // Set the parsed properties on the global.
1168   if (Init)
1169     GV->setInitializer(Init);
1170   GV->setConstant(IsConstant);
1171   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1172   maybeSetDSOLocal(DSOLocal, *GV);
1173   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1174   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1175   GV->setExternallyInitialized(IsExternallyInitialized);
1176   GV->setThreadLocalMode(TLM);
1177   GV->setUnnamedAddr(UnnamedAddr);
1178 
1179   // parse attributes on the global.
1180   while (Lex.getKind() == lltok::comma) {
1181     Lex.Lex();
1182 
1183     if (Lex.getKind() == lltok::kw_section) {
1184       Lex.Lex();
1185       GV->setSection(Lex.getStrVal());
1186       if (parseToken(lltok::StringConstant, "expected global section string"))
1187         return true;
1188     } else if (Lex.getKind() == lltok::kw_partition) {
1189       Lex.Lex();
1190       GV->setPartition(Lex.getStrVal());
1191       if (parseToken(lltok::StringConstant, "expected partition string"))
1192         return true;
1193     } else if (Lex.getKind() == lltok::kw_align) {
1194       MaybeAlign Alignment;
1195       if (parseOptionalAlignment(Alignment))
1196         return true;
1197       GV->setAlignment(Alignment);
1198     } else if (Lex.getKind() == lltok::MetadataVar) {
1199       if (parseGlobalObjectMetadataAttachment(*GV))
1200         return true;
1201     } else {
1202       Comdat *C;
1203       if (parseOptionalComdat(Name, C))
1204         return true;
1205       if (C)
1206         GV->setComdat(C);
1207       else
1208         return tokError("unknown global variable property!");
1209     }
1210   }
1211 
1212   AttrBuilder Attrs;
1213   LocTy BuiltinLoc;
1214   std::vector<unsigned> FwdRefAttrGrps;
1215   if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1216     return true;
1217   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1218     GV->setAttributes(AttributeSet::get(Context, Attrs));
1219     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1220   }
1221 
1222   return false;
1223 }
1224 
1225 /// parseUnnamedAttrGrp
1226 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1227 bool LLParser::parseUnnamedAttrGrp() {
1228   assert(Lex.getKind() == lltok::kw_attributes);
1229   LocTy AttrGrpLoc = Lex.getLoc();
1230   Lex.Lex();
1231 
1232   if (Lex.getKind() != lltok::AttrGrpID)
1233     return tokError("expected attribute group id");
1234 
1235   unsigned VarID = Lex.getUIntVal();
1236   std::vector<unsigned> unused;
1237   LocTy BuiltinLoc;
1238   Lex.Lex();
1239 
1240   if (parseToken(lltok::equal, "expected '=' here") ||
1241       parseToken(lltok::lbrace, "expected '{' here") ||
1242       parseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
1243                                  BuiltinLoc) ||
1244       parseToken(lltok::rbrace, "expected end of attribute group"))
1245     return true;
1246 
1247   if (!NumberedAttrBuilders[VarID].hasAttributes())
1248     return error(AttrGrpLoc, "attribute group has no attributes");
1249 
1250   return false;
1251 }
1252 
1253 /// parseFnAttributeValuePairs
1254 ///   ::= <attr> | <attr> '=' <value>
1255 bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B,
1256                                           std::vector<unsigned> &FwdRefAttrGrps,
1257                                           bool inAttrGrp, LocTy &BuiltinLoc) {
1258   bool HaveError = false;
1259 
1260   B.clear();
1261 
1262   while (true) {
1263     lltok::Kind Token = Lex.getKind();
1264     if (Token == lltok::kw_builtin)
1265       BuiltinLoc = Lex.getLoc();
1266     switch (Token) {
1267     default:
1268       if (!inAttrGrp) return HaveError;
1269       return error(Lex.getLoc(), "unterminated attribute group");
1270     case lltok::rbrace:
1271       // Finished.
1272       return false;
1273 
1274     case lltok::AttrGrpID: {
1275       // Allow a function to reference an attribute group:
1276       //
1277       //   define void @foo() #1 { ... }
1278       if (inAttrGrp)
1279         HaveError |= error(
1280             Lex.getLoc(),
1281             "cannot have an attribute group reference in an attribute group");
1282 
1283       unsigned AttrGrpNum = Lex.getUIntVal();
1284       if (inAttrGrp) break;
1285 
1286       // Save the reference to the attribute group. We'll fill it in later.
1287       FwdRefAttrGrps.push_back(AttrGrpNum);
1288       break;
1289     }
1290     // Target-dependent attributes:
1291     case lltok::StringConstant: {
1292       if (parseStringAttribute(B))
1293         return true;
1294       continue;
1295     }
1296 
1297     // Target-independent attributes:
1298     case lltok::kw_align: {
1299       // As a hack, we allow function alignment to be initially parsed as an
1300       // attribute on a function declaration/definition or added to an attribute
1301       // group and later moved to the alignment field.
1302       MaybeAlign Alignment;
1303       if (inAttrGrp) {
1304         Lex.Lex();
1305         uint32_t Value = 0;
1306         if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value))
1307           return true;
1308         Alignment = Align(Value);
1309       } else {
1310         if (parseOptionalAlignment(Alignment))
1311           return true;
1312       }
1313       B.addAlignmentAttr(Alignment);
1314       continue;
1315     }
1316     case lltok::kw_alignstack: {
1317       unsigned Alignment;
1318       if (inAttrGrp) {
1319         Lex.Lex();
1320         if (parseToken(lltok::equal, "expected '=' here") ||
1321             parseUInt32(Alignment))
1322           return true;
1323       } else {
1324         if (parseOptionalStackAlignment(Alignment))
1325           return true;
1326       }
1327       B.addStackAlignmentAttr(Alignment);
1328       continue;
1329     }
1330     case lltok::kw_allocsize: {
1331       unsigned ElemSizeArg;
1332       Optional<unsigned> NumElemsArg;
1333       // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1334       if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1335         return true;
1336       B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1337       continue;
1338     }
1339     case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1340     case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1341     case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1342     case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1343     case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1344     case lltok::kw_inaccessiblememonly:
1345       B.addAttribute(Attribute::InaccessibleMemOnly); break;
1346     case lltok::kw_inaccessiblemem_or_argmemonly:
1347       B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1348     case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1349     case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1350     case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1351     case lltok::kw_mustprogress:
1352       B.addAttribute(Attribute::MustProgress);
1353       break;
1354     case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1355     case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1356     case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1357     case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break;
1358     case lltok::kw_noimplicitfloat:
1359       B.addAttribute(Attribute::NoImplicitFloat); break;
1360     case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1361     case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1362     case lltok::kw_nomerge: B.addAttribute(Attribute::NoMerge); break;
1363     case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1364     case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1365     case lltok::kw_nosync: B.addAttribute(Attribute::NoSync); break;
1366     case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break;
1367     case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1368     case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1369     case lltok::kw_null_pointer_is_valid:
1370       B.addAttribute(Attribute::NullPointerIsValid); break;
1371     case lltok::kw_optforfuzzing:
1372       B.addAttribute(Attribute::OptForFuzzing); break;
1373     case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1374     case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1375     case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1376     case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1377     case lltok::kw_returns_twice:
1378       B.addAttribute(Attribute::ReturnsTwice); break;
1379     case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break;
1380     case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1381     case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1382     case lltok::kw_sspstrong:
1383       B.addAttribute(Attribute::StackProtectStrong); break;
1384     case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1385     case lltok::kw_shadowcallstack:
1386       B.addAttribute(Attribute::ShadowCallStack); break;
1387     case lltok::kw_sanitize_address:
1388       B.addAttribute(Attribute::SanitizeAddress); break;
1389     case lltok::kw_sanitize_hwaddress:
1390       B.addAttribute(Attribute::SanitizeHWAddress); break;
1391     case lltok::kw_sanitize_memtag:
1392       B.addAttribute(Attribute::SanitizeMemTag); break;
1393     case lltok::kw_sanitize_thread:
1394       B.addAttribute(Attribute::SanitizeThread); break;
1395     case lltok::kw_sanitize_memory:
1396       B.addAttribute(Attribute::SanitizeMemory); break;
1397     case lltok::kw_speculative_load_hardening:
1398       B.addAttribute(Attribute::SpeculativeLoadHardening);
1399       break;
1400     case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break;
1401     case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1402     case lltok::kw_willreturn: B.addAttribute(Attribute::WillReturn); break;
1403     case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1404     case lltok::kw_preallocated: {
1405       Type *Ty;
1406       if (parsePreallocated(Ty))
1407         return true;
1408       B.addPreallocatedAttr(Ty);
1409       break;
1410     }
1411 
1412     // error handling.
1413     case lltok::kw_inreg:
1414     case lltok::kw_signext:
1415     case lltok::kw_zeroext:
1416       HaveError |=
1417           error(Lex.getLoc(), "invalid use of attribute on a function");
1418       break;
1419     case lltok::kw_byval:
1420     case lltok::kw_dereferenceable:
1421     case lltok::kw_dereferenceable_or_null:
1422     case lltok::kw_inalloca:
1423     case lltok::kw_nest:
1424     case lltok::kw_noalias:
1425     case lltok::kw_noundef:
1426     case lltok::kw_nocapture:
1427     case lltok::kw_nonnull:
1428     case lltok::kw_returned:
1429     case lltok::kw_sret:
1430     case lltok::kw_swifterror:
1431     case lltok::kw_swiftself:
1432     case lltok::kw_immarg:
1433     case lltok::kw_byref:
1434       HaveError |=
1435           error(Lex.getLoc(),
1436                 "invalid use of parameter-only attribute on a function");
1437       break;
1438     }
1439 
1440     // parsePreallocated() consumes token
1441     if (Token != lltok::kw_preallocated)
1442       Lex.Lex();
1443   }
1444 }
1445 
1446 //===----------------------------------------------------------------------===//
1447 // GlobalValue Reference/Resolution Routines.
1448 //===----------------------------------------------------------------------===//
1449 
1450 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1451                                               const std::string &Name) {
1452   if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1453     return Function::Create(FT, GlobalValue::ExternalWeakLinkage,
1454                             PTy->getAddressSpace(), Name, M);
1455   else
1456     return new GlobalVariable(*M, PTy->getElementType(), false,
1457                               GlobalValue::ExternalWeakLinkage, nullptr, Name,
1458                               nullptr, GlobalVariable::NotThreadLocal,
1459                               PTy->getAddressSpace());
1460 }
1461 
1462 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1463                                         Value *Val, bool IsCall) {
1464   if (Val->getType() == Ty)
1465     return Val;
1466   // For calls we also accept variables in the program address space.
1467   Type *SuggestedTy = Ty;
1468   if (IsCall && isa<PointerType>(Ty)) {
1469     Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo(
1470         M->getDataLayout().getProgramAddressSpace());
1471     SuggestedTy = TyInProgAS;
1472     if (Val->getType() == TyInProgAS)
1473       return Val;
1474   }
1475   if (Ty->isLabelTy())
1476     error(Loc, "'" + Name + "' is not a basic block");
1477   else
1478     error(Loc, "'" + Name + "' defined with type '" +
1479                    getTypeString(Val->getType()) + "' but expected '" +
1480                    getTypeString(SuggestedTy) + "'");
1481   return nullptr;
1482 }
1483 
1484 /// getGlobalVal - Get a value with the specified name or ID, creating a
1485 /// forward reference record if needed.  This can return null if the value
1486 /// exists but does not have the right type.
1487 GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty,
1488                                     LocTy Loc, bool IsCall) {
1489   PointerType *PTy = dyn_cast<PointerType>(Ty);
1490   if (!PTy) {
1491     error(Loc, "global variable reference must have pointer type");
1492     return nullptr;
1493   }
1494 
1495   // Look this name up in the normal function symbol table.
1496   GlobalValue *Val =
1497     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1498 
1499   // If this is a forward reference for the value, see if we already created a
1500   // forward ref record.
1501   if (!Val) {
1502     auto I = ForwardRefVals.find(Name);
1503     if (I != ForwardRefVals.end())
1504       Val = I->second.first;
1505   }
1506 
1507   // If we have the value in the symbol table or fwd-ref table, return it.
1508   if (Val)
1509     return cast_or_null<GlobalValue>(
1510         checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall));
1511 
1512   // Otherwise, create a new forward reference for this value and remember it.
1513   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1514   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1515   return FwdVal;
1516 }
1517 
1518 GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc,
1519                                     bool IsCall) {
1520   PointerType *PTy = dyn_cast<PointerType>(Ty);
1521   if (!PTy) {
1522     error(Loc, "global variable reference must have pointer type");
1523     return nullptr;
1524   }
1525 
1526   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1527 
1528   // If this is a forward reference for the value, see if we already created a
1529   // forward ref record.
1530   if (!Val) {
1531     auto I = ForwardRefValIDs.find(ID);
1532     if (I != ForwardRefValIDs.end())
1533       Val = I->second.first;
1534   }
1535 
1536   // If we have the value in the symbol table or fwd-ref table, return it.
1537   if (Val)
1538     return cast_or_null<GlobalValue>(
1539         checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall));
1540 
1541   // Otherwise, create a new forward reference for this value and remember it.
1542   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1543   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1544   return FwdVal;
1545 }
1546 
1547 //===----------------------------------------------------------------------===//
1548 // Comdat Reference/Resolution Routines.
1549 //===----------------------------------------------------------------------===//
1550 
1551 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1552   // Look this name up in the comdat symbol table.
1553   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1554   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1555   if (I != ComdatSymTab.end())
1556     return &I->second;
1557 
1558   // Otherwise, create a new forward reference for this value and remember it.
1559   Comdat *C = M->getOrInsertComdat(Name);
1560   ForwardRefComdats[Name] = Loc;
1561   return C;
1562 }
1563 
1564 //===----------------------------------------------------------------------===//
1565 // Helper Routines.
1566 //===----------------------------------------------------------------------===//
1567 
1568 /// parseToken - If the current token has the specified kind, eat it and return
1569 /// success.  Otherwise, emit the specified error and return failure.
1570 bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) {
1571   if (Lex.getKind() != T)
1572     return tokError(ErrMsg);
1573   Lex.Lex();
1574   return false;
1575 }
1576 
1577 /// parseStringConstant
1578 ///   ::= StringConstant
1579 bool LLParser::parseStringConstant(std::string &Result) {
1580   if (Lex.getKind() != lltok::StringConstant)
1581     return tokError("expected string constant");
1582   Result = Lex.getStrVal();
1583   Lex.Lex();
1584   return false;
1585 }
1586 
1587 /// parseUInt32
1588 ///   ::= uint32
1589 bool LLParser::parseUInt32(uint32_t &Val) {
1590   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1591     return tokError("expected integer");
1592   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1593   if (Val64 != unsigned(Val64))
1594     return tokError("expected 32-bit integer (too large)");
1595   Val = Val64;
1596   Lex.Lex();
1597   return false;
1598 }
1599 
1600 /// parseUInt64
1601 ///   ::= uint64
1602 bool LLParser::parseUInt64(uint64_t &Val) {
1603   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1604     return tokError("expected integer");
1605   Val = Lex.getAPSIntVal().getLimitedValue();
1606   Lex.Lex();
1607   return false;
1608 }
1609 
1610 /// parseTLSModel
1611 ///   := 'localdynamic'
1612 ///   := 'initialexec'
1613 ///   := 'localexec'
1614 bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1615   switch (Lex.getKind()) {
1616     default:
1617       return tokError("expected localdynamic, initialexec or localexec");
1618     case lltok::kw_localdynamic:
1619       TLM = GlobalVariable::LocalDynamicTLSModel;
1620       break;
1621     case lltok::kw_initialexec:
1622       TLM = GlobalVariable::InitialExecTLSModel;
1623       break;
1624     case lltok::kw_localexec:
1625       TLM = GlobalVariable::LocalExecTLSModel;
1626       break;
1627   }
1628 
1629   Lex.Lex();
1630   return false;
1631 }
1632 
1633 /// parseOptionalThreadLocal
1634 ///   := /*empty*/
1635 ///   := 'thread_local'
1636 ///   := 'thread_local' '(' tlsmodel ')'
1637 bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1638   TLM = GlobalVariable::NotThreadLocal;
1639   if (!EatIfPresent(lltok::kw_thread_local))
1640     return false;
1641 
1642   TLM = GlobalVariable::GeneralDynamicTLSModel;
1643   if (Lex.getKind() == lltok::lparen) {
1644     Lex.Lex();
1645     return parseTLSModel(TLM) ||
1646            parseToken(lltok::rparen, "expected ')' after thread local model");
1647   }
1648   return false;
1649 }
1650 
1651 /// parseOptionalAddrSpace
1652 ///   := /*empty*/
1653 ///   := 'addrspace' '(' uint32 ')'
1654 bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1655   AddrSpace = DefaultAS;
1656   if (!EatIfPresent(lltok::kw_addrspace))
1657     return false;
1658   return parseToken(lltok::lparen, "expected '(' in address space") ||
1659          parseUInt32(AddrSpace) ||
1660          parseToken(lltok::rparen, "expected ')' in address space");
1661 }
1662 
1663 /// parseStringAttribute
1664 ///   := StringConstant
1665 ///   := StringConstant '=' StringConstant
1666 bool LLParser::parseStringAttribute(AttrBuilder &B) {
1667   std::string Attr = Lex.getStrVal();
1668   Lex.Lex();
1669   std::string Val;
1670   if (EatIfPresent(lltok::equal) && parseStringConstant(Val))
1671     return true;
1672   B.addAttribute(Attr, Val);
1673   return false;
1674 }
1675 
1676 /// parseOptionalParamAttrs - parse a potentially empty list of parameter
1677 /// attributes.
1678 bool LLParser::parseOptionalParamAttrs(AttrBuilder &B) {
1679   bool HaveError = false;
1680 
1681   B.clear();
1682 
1683   while (true) {
1684     lltok::Kind Token = Lex.getKind();
1685     switch (Token) {
1686     default:  // End of attributes.
1687       return HaveError;
1688     case lltok::StringConstant: {
1689       if (parseStringAttribute(B))
1690         return true;
1691       continue;
1692     }
1693     case lltok::kw_align: {
1694       MaybeAlign Alignment;
1695       if (parseOptionalAlignment(Alignment, true))
1696         return true;
1697       B.addAlignmentAttr(Alignment);
1698       continue;
1699     }
1700     case lltok::kw_byval: {
1701       Type *Ty;
1702       if (parseRequiredTypeAttr(Ty, lltok::kw_byval))
1703         return true;
1704       B.addByValAttr(Ty);
1705       continue;
1706     }
1707     case lltok::kw_sret: {
1708       Type *Ty;
1709       if (parseRequiredTypeAttr(Ty, lltok::kw_sret))
1710         return true;
1711       B.addStructRetAttr(Ty);
1712       continue;
1713     }
1714     case lltok::kw_preallocated: {
1715       Type *Ty;
1716       if (parsePreallocated(Ty))
1717         return true;
1718       B.addPreallocatedAttr(Ty);
1719       continue;
1720     }
1721     case lltok::kw_dereferenceable: {
1722       uint64_t Bytes;
1723       if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1724         return true;
1725       B.addDereferenceableAttr(Bytes);
1726       continue;
1727     }
1728     case lltok::kw_dereferenceable_or_null: {
1729       uint64_t Bytes;
1730       if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1731         return true;
1732       B.addDereferenceableOrNullAttr(Bytes);
1733       continue;
1734     }
1735     case lltok::kw_byref: {
1736       Type *Ty;
1737       if (parseByRef(Ty))
1738         return true;
1739       B.addByRefAttr(Ty);
1740       continue;
1741     }
1742     case lltok::kw_inalloca:        B.addAttribute(Attribute::InAlloca); break;
1743     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1744     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1745     case lltok::kw_noundef:
1746       B.addAttribute(Attribute::NoUndef);
1747       break;
1748     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1749     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1750     case lltok::kw_nofree:          B.addAttribute(Attribute::NoFree); break;
1751     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1752     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1753     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1754     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1755     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1756     case lltok::kw_swifterror:      B.addAttribute(Attribute::SwiftError); break;
1757     case lltok::kw_swiftself:       B.addAttribute(Attribute::SwiftSelf); break;
1758     case lltok::kw_writeonly:       B.addAttribute(Attribute::WriteOnly); break;
1759     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1760     case lltok::kw_immarg:          B.addAttribute(Attribute::ImmArg); break;
1761 
1762     case lltok::kw_alignstack:
1763     case lltok::kw_alwaysinline:
1764     case lltok::kw_argmemonly:
1765     case lltok::kw_builtin:
1766     case lltok::kw_inlinehint:
1767     case lltok::kw_jumptable:
1768     case lltok::kw_minsize:
1769     case lltok::kw_mustprogress:
1770     case lltok::kw_naked:
1771     case lltok::kw_nobuiltin:
1772     case lltok::kw_noduplicate:
1773     case lltok::kw_noimplicitfloat:
1774     case lltok::kw_noinline:
1775     case lltok::kw_nonlazybind:
1776     case lltok::kw_nomerge:
1777     case lltok::kw_noredzone:
1778     case lltok::kw_noreturn:
1779     case lltok::kw_nocf_check:
1780     case lltok::kw_nounwind:
1781     case lltok::kw_optforfuzzing:
1782     case lltok::kw_optnone:
1783     case lltok::kw_optsize:
1784     case lltok::kw_returns_twice:
1785     case lltok::kw_sanitize_address:
1786     case lltok::kw_sanitize_hwaddress:
1787     case lltok::kw_sanitize_memtag:
1788     case lltok::kw_sanitize_memory:
1789     case lltok::kw_sanitize_thread:
1790     case lltok::kw_speculative_load_hardening:
1791     case lltok::kw_ssp:
1792     case lltok::kw_sspreq:
1793     case lltok::kw_sspstrong:
1794     case lltok::kw_safestack:
1795     case lltok::kw_shadowcallstack:
1796     case lltok::kw_strictfp:
1797     case lltok::kw_uwtable:
1798       HaveError |=
1799           error(Lex.getLoc(), "invalid use of function-only attribute");
1800       break;
1801     }
1802 
1803     Lex.Lex();
1804   }
1805 }
1806 
1807 /// parseOptionalReturnAttrs - parse a potentially empty list of return
1808 /// attributes.
1809 bool LLParser::parseOptionalReturnAttrs(AttrBuilder &B) {
1810   bool HaveError = false;
1811 
1812   B.clear();
1813 
1814   while (true) {
1815     lltok::Kind Token = Lex.getKind();
1816     switch (Token) {
1817     default:  // End of attributes.
1818       return HaveError;
1819     case lltok::StringConstant: {
1820       if (parseStringAttribute(B))
1821         return true;
1822       continue;
1823     }
1824     case lltok::kw_dereferenceable: {
1825       uint64_t Bytes;
1826       if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1827         return true;
1828       B.addDereferenceableAttr(Bytes);
1829       continue;
1830     }
1831     case lltok::kw_dereferenceable_or_null: {
1832       uint64_t Bytes;
1833       if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1834         return true;
1835       B.addDereferenceableOrNullAttr(Bytes);
1836       continue;
1837     }
1838     case lltok::kw_align: {
1839       MaybeAlign Alignment;
1840       if (parseOptionalAlignment(Alignment))
1841         return true;
1842       B.addAlignmentAttr(Alignment);
1843       continue;
1844     }
1845     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1846     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1847     case lltok::kw_noundef:
1848       B.addAttribute(Attribute::NoUndef);
1849       break;
1850     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1851     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1852     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1853 
1854     // error handling.
1855     case lltok::kw_byval:
1856     case lltok::kw_inalloca:
1857     case lltok::kw_nest:
1858     case lltok::kw_nocapture:
1859     case lltok::kw_returned:
1860     case lltok::kw_sret:
1861     case lltok::kw_swifterror:
1862     case lltok::kw_swiftself:
1863     case lltok::kw_immarg:
1864     case lltok::kw_byref:
1865       HaveError |=
1866           error(Lex.getLoc(), "invalid use of parameter-only attribute");
1867       break;
1868 
1869     case lltok::kw_alignstack:
1870     case lltok::kw_alwaysinline:
1871     case lltok::kw_argmemonly:
1872     case lltok::kw_builtin:
1873     case lltok::kw_cold:
1874     case lltok::kw_inlinehint:
1875     case lltok::kw_jumptable:
1876     case lltok::kw_minsize:
1877     case lltok::kw_mustprogress:
1878     case lltok::kw_naked:
1879     case lltok::kw_nobuiltin:
1880     case lltok::kw_noduplicate:
1881     case lltok::kw_noimplicitfloat:
1882     case lltok::kw_noinline:
1883     case lltok::kw_nonlazybind:
1884     case lltok::kw_nomerge:
1885     case lltok::kw_noredzone:
1886     case lltok::kw_noreturn:
1887     case lltok::kw_nocf_check:
1888     case lltok::kw_nounwind:
1889     case lltok::kw_optforfuzzing:
1890     case lltok::kw_optnone:
1891     case lltok::kw_optsize:
1892     case lltok::kw_returns_twice:
1893     case lltok::kw_sanitize_address:
1894     case lltok::kw_sanitize_hwaddress:
1895     case lltok::kw_sanitize_memtag:
1896     case lltok::kw_sanitize_memory:
1897     case lltok::kw_sanitize_thread:
1898     case lltok::kw_speculative_load_hardening:
1899     case lltok::kw_ssp:
1900     case lltok::kw_sspreq:
1901     case lltok::kw_sspstrong:
1902     case lltok::kw_safestack:
1903     case lltok::kw_shadowcallstack:
1904     case lltok::kw_strictfp:
1905     case lltok::kw_uwtable:
1906       HaveError |=
1907           error(Lex.getLoc(), "invalid use of function-only attribute");
1908       break;
1909     case lltok::kw_readnone:
1910     case lltok::kw_readonly:
1911       HaveError |=
1912           error(Lex.getLoc(), "invalid use of attribute on return type");
1913       break;
1914     case lltok::kw_preallocated:
1915       HaveError |=
1916           error(Lex.getLoc(),
1917                 "invalid use of parameter-only/call site-only attribute");
1918       break;
1919     }
1920 
1921     Lex.Lex();
1922   }
1923 }
1924 
1925 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1926   HasLinkage = true;
1927   switch (Kind) {
1928   default:
1929     HasLinkage = false;
1930     return GlobalValue::ExternalLinkage;
1931   case lltok::kw_private:
1932     return GlobalValue::PrivateLinkage;
1933   case lltok::kw_internal:
1934     return GlobalValue::InternalLinkage;
1935   case lltok::kw_weak:
1936     return GlobalValue::WeakAnyLinkage;
1937   case lltok::kw_weak_odr:
1938     return GlobalValue::WeakODRLinkage;
1939   case lltok::kw_linkonce:
1940     return GlobalValue::LinkOnceAnyLinkage;
1941   case lltok::kw_linkonce_odr:
1942     return GlobalValue::LinkOnceODRLinkage;
1943   case lltok::kw_available_externally:
1944     return GlobalValue::AvailableExternallyLinkage;
1945   case lltok::kw_appending:
1946     return GlobalValue::AppendingLinkage;
1947   case lltok::kw_common:
1948     return GlobalValue::CommonLinkage;
1949   case lltok::kw_extern_weak:
1950     return GlobalValue::ExternalWeakLinkage;
1951   case lltok::kw_external:
1952     return GlobalValue::ExternalLinkage;
1953   }
1954 }
1955 
1956 /// parseOptionalLinkage
1957 ///   ::= /*empty*/
1958 ///   ::= 'private'
1959 ///   ::= 'internal'
1960 ///   ::= 'weak'
1961 ///   ::= 'weak_odr'
1962 ///   ::= 'linkonce'
1963 ///   ::= 'linkonce_odr'
1964 ///   ::= 'available_externally'
1965 ///   ::= 'appending'
1966 ///   ::= 'common'
1967 ///   ::= 'extern_weak'
1968 ///   ::= 'external'
1969 bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1970                                     unsigned &Visibility,
1971                                     unsigned &DLLStorageClass, bool &DSOLocal) {
1972   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1973   if (HasLinkage)
1974     Lex.Lex();
1975   parseOptionalDSOLocal(DSOLocal);
1976   parseOptionalVisibility(Visibility);
1977   parseOptionalDLLStorageClass(DLLStorageClass);
1978 
1979   if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
1980     return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
1981   }
1982 
1983   return false;
1984 }
1985 
1986 void LLParser::parseOptionalDSOLocal(bool &DSOLocal) {
1987   switch (Lex.getKind()) {
1988   default:
1989     DSOLocal = false;
1990     break;
1991   case lltok::kw_dso_local:
1992     DSOLocal = true;
1993     Lex.Lex();
1994     break;
1995   case lltok::kw_dso_preemptable:
1996     DSOLocal = false;
1997     Lex.Lex();
1998     break;
1999   }
2000 }
2001 
2002 /// parseOptionalVisibility
2003 ///   ::= /*empty*/
2004 ///   ::= 'default'
2005 ///   ::= 'hidden'
2006 ///   ::= 'protected'
2007 ///
2008 void LLParser::parseOptionalVisibility(unsigned &Res) {
2009   switch (Lex.getKind()) {
2010   default:
2011     Res = GlobalValue::DefaultVisibility;
2012     return;
2013   case lltok::kw_default:
2014     Res = GlobalValue::DefaultVisibility;
2015     break;
2016   case lltok::kw_hidden:
2017     Res = GlobalValue::HiddenVisibility;
2018     break;
2019   case lltok::kw_protected:
2020     Res = GlobalValue::ProtectedVisibility;
2021     break;
2022   }
2023   Lex.Lex();
2024 }
2025 
2026 /// parseOptionalDLLStorageClass
2027 ///   ::= /*empty*/
2028 ///   ::= 'dllimport'
2029 ///   ::= 'dllexport'
2030 ///
2031 void LLParser::parseOptionalDLLStorageClass(unsigned &Res) {
2032   switch (Lex.getKind()) {
2033   default:
2034     Res = GlobalValue::DefaultStorageClass;
2035     return;
2036   case lltok::kw_dllimport:
2037     Res = GlobalValue::DLLImportStorageClass;
2038     break;
2039   case lltok::kw_dllexport:
2040     Res = GlobalValue::DLLExportStorageClass;
2041     break;
2042   }
2043   Lex.Lex();
2044 }
2045 
2046 /// parseOptionalCallingConv
2047 ///   ::= /*empty*/
2048 ///   ::= 'ccc'
2049 ///   ::= 'fastcc'
2050 ///   ::= 'intel_ocl_bicc'
2051 ///   ::= 'coldcc'
2052 ///   ::= 'cfguard_checkcc'
2053 ///   ::= 'x86_stdcallcc'
2054 ///   ::= 'x86_fastcallcc'
2055 ///   ::= 'x86_thiscallcc'
2056 ///   ::= 'x86_vectorcallcc'
2057 ///   ::= 'arm_apcscc'
2058 ///   ::= 'arm_aapcscc'
2059 ///   ::= 'arm_aapcs_vfpcc'
2060 ///   ::= 'aarch64_vector_pcs'
2061 ///   ::= 'aarch64_sve_vector_pcs'
2062 ///   ::= 'msp430_intrcc'
2063 ///   ::= 'avr_intrcc'
2064 ///   ::= 'avr_signalcc'
2065 ///   ::= 'ptx_kernel'
2066 ///   ::= 'ptx_device'
2067 ///   ::= 'spir_func'
2068 ///   ::= 'spir_kernel'
2069 ///   ::= 'x86_64_sysvcc'
2070 ///   ::= 'win64cc'
2071 ///   ::= 'webkit_jscc'
2072 ///   ::= 'anyregcc'
2073 ///   ::= 'preserve_mostcc'
2074 ///   ::= 'preserve_allcc'
2075 ///   ::= 'ghccc'
2076 ///   ::= 'swiftcc'
2077 ///   ::= 'x86_intrcc'
2078 ///   ::= 'hhvmcc'
2079 ///   ::= 'hhvm_ccc'
2080 ///   ::= 'cxx_fast_tlscc'
2081 ///   ::= 'amdgpu_vs'
2082 ///   ::= 'amdgpu_ls'
2083 ///   ::= 'amdgpu_hs'
2084 ///   ::= 'amdgpu_es'
2085 ///   ::= 'amdgpu_gs'
2086 ///   ::= 'amdgpu_ps'
2087 ///   ::= 'amdgpu_cs'
2088 ///   ::= 'amdgpu_kernel'
2089 ///   ::= 'tailcc'
2090 ///   ::= 'cc' UINT
2091 ///
2092 bool LLParser::parseOptionalCallingConv(unsigned &CC) {
2093   switch (Lex.getKind()) {
2094   default:                       CC = CallingConv::C; return false;
2095   case lltok::kw_ccc:            CC = CallingConv::C; break;
2096   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
2097   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
2098   case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break;
2099   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
2100   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
2101   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
2102   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
2103   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
2104   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
2105   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
2106   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
2107   case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
2108   case lltok::kw_aarch64_sve_vector_pcs:
2109     CC = CallingConv::AArch64_SVE_VectorCall;
2110     break;
2111   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
2112   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
2113   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
2114   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
2115   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
2116   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
2117   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
2118   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
2119   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
2120   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
2121   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
2122   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
2123   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
2124   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
2125   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
2126   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
2127   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
2128   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
2129   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
2130   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
2131   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
2132   case lltok::kw_amdgpu_gfx:     CC = CallingConv::AMDGPU_Gfx; break;
2133   case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
2134   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
2135   case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
2136   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
2137   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
2138   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
2139   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
2140   case lltok::kw_tailcc:         CC = CallingConv::Tail; break;
2141   case lltok::kw_cc: {
2142       Lex.Lex();
2143       return parseUInt32(CC);
2144     }
2145   }
2146 
2147   Lex.Lex();
2148   return false;
2149 }
2150 
2151 /// parseMetadataAttachment
2152 ///   ::= !dbg !42
2153 bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
2154   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
2155 
2156   std::string Name = Lex.getStrVal();
2157   Kind = M->getMDKindID(Name);
2158   Lex.Lex();
2159 
2160   return parseMDNode(MD);
2161 }
2162 
2163 /// parseInstructionMetadata
2164 ///   ::= !dbg !42 (',' !dbg !57)*
2165 bool LLParser::parseInstructionMetadata(Instruction &Inst) {
2166   do {
2167     if (Lex.getKind() != lltok::MetadataVar)
2168       return tokError("expected metadata after comma");
2169 
2170     unsigned MDK;
2171     MDNode *N;
2172     if (parseMetadataAttachment(MDK, N))
2173       return true;
2174 
2175     Inst.setMetadata(MDK, N);
2176     if (MDK == LLVMContext::MD_tbaa)
2177       InstsWithTBAATag.push_back(&Inst);
2178 
2179     // If this is the end of the list, we're done.
2180   } while (EatIfPresent(lltok::comma));
2181   return false;
2182 }
2183 
2184 /// parseGlobalObjectMetadataAttachment
2185 ///   ::= !dbg !57
2186 bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) {
2187   unsigned MDK;
2188   MDNode *N;
2189   if (parseMetadataAttachment(MDK, N))
2190     return true;
2191 
2192   GO.addMetadata(MDK, *N);
2193   return false;
2194 }
2195 
2196 /// parseOptionalFunctionMetadata
2197 ///   ::= (!dbg !57)*
2198 bool LLParser::parseOptionalFunctionMetadata(Function &F) {
2199   while (Lex.getKind() == lltok::MetadataVar)
2200     if (parseGlobalObjectMetadataAttachment(F))
2201       return true;
2202   return false;
2203 }
2204 
2205 /// parseOptionalAlignment
2206 ///   ::= /* empty */
2207 ///   ::= 'align' 4
2208 bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) {
2209   Alignment = None;
2210   if (!EatIfPresent(lltok::kw_align))
2211     return false;
2212   LocTy AlignLoc = Lex.getLoc();
2213   uint32_t Value = 0;
2214 
2215   LocTy ParenLoc = Lex.getLoc();
2216   bool HaveParens = false;
2217   if (AllowParens) {
2218     if (EatIfPresent(lltok::lparen))
2219       HaveParens = true;
2220   }
2221 
2222   if (parseUInt32(Value))
2223     return true;
2224 
2225   if (HaveParens && !EatIfPresent(lltok::rparen))
2226     return error(ParenLoc, "expected ')'");
2227 
2228   if (!isPowerOf2_32(Value))
2229     return error(AlignLoc, "alignment is not a power of two");
2230   if (Value > Value::MaximumAlignment)
2231     return error(AlignLoc, "huge alignments are not supported yet");
2232   Alignment = Align(Value);
2233   return false;
2234 }
2235 
2236 /// parseOptionalDerefAttrBytes
2237 ///   ::= /* empty */
2238 ///   ::= AttrKind '(' 4 ')'
2239 ///
2240 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
2241 bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2242                                            uint64_t &Bytes) {
2243   assert((AttrKind == lltok::kw_dereferenceable ||
2244           AttrKind == lltok::kw_dereferenceable_or_null) &&
2245          "contract!");
2246 
2247   Bytes = 0;
2248   if (!EatIfPresent(AttrKind))
2249     return false;
2250   LocTy ParenLoc = Lex.getLoc();
2251   if (!EatIfPresent(lltok::lparen))
2252     return error(ParenLoc, "expected '('");
2253   LocTy DerefLoc = Lex.getLoc();
2254   if (parseUInt64(Bytes))
2255     return true;
2256   ParenLoc = Lex.getLoc();
2257   if (!EatIfPresent(lltok::rparen))
2258     return error(ParenLoc, "expected ')'");
2259   if (!Bytes)
2260     return error(DerefLoc, "dereferenceable bytes must be non-zero");
2261   return false;
2262 }
2263 
2264 /// parseOptionalCommaAlign
2265 ///   ::=
2266 ///   ::= ',' align 4
2267 ///
2268 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2269 /// end.
2270 bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment,
2271                                        bool &AteExtraComma) {
2272   AteExtraComma = false;
2273   while (EatIfPresent(lltok::comma)) {
2274     // Metadata at the end is an early exit.
2275     if (Lex.getKind() == lltok::MetadataVar) {
2276       AteExtraComma = true;
2277       return false;
2278     }
2279 
2280     if (Lex.getKind() != lltok::kw_align)
2281       return error(Lex.getLoc(), "expected metadata or 'align'");
2282 
2283     if (parseOptionalAlignment(Alignment))
2284       return true;
2285   }
2286 
2287   return false;
2288 }
2289 
2290 /// parseOptionalCommaAddrSpace
2291 ///   ::=
2292 ///   ::= ',' addrspace(1)
2293 ///
2294 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2295 /// end.
2296 bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc,
2297                                            bool &AteExtraComma) {
2298   AteExtraComma = false;
2299   while (EatIfPresent(lltok::comma)) {
2300     // Metadata at the end is an early exit.
2301     if (Lex.getKind() == lltok::MetadataVar) {
2302       AteExtraComma = true;
2303       return false;
2304     }
2305 
2306     Loc = Lex.getLoc();
2307     if (Lex.getKind() != lltok::kw_addrspace)
2308       return error(Lex.getLoc(), "expected metadata or 'addrspace'");
2309 
2310     if (parseOptionalAddrSpace(AddrSpace))
2311       return true;
2312   }
2313 
2314   return false;
2315 }
2316 
2317 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2318                                        Optional<unsigned> &HowManyArg) {
2319   Lex.Lex();
2320 
2321   auto StartParen = Lex.getLoc();
2322   if (!EatIfPresent(lltok::lparen))
2323     return error(StartParen, "expected '('");
2324 
2325   if (parseUInt32(BaseSizeArg))
2326     return true;
2327 
2328   if (EatIfPresent(lltok::comma)) {
2329     auto HowManyAt = Lex.getLoc();
2330     unsigned HowMany;
2331     if (parseUInt32(HowMany))
2332       return true;
2333     if (HowMany == BaseSizeArg)
2334       return error(HowManyAt,
2335                    "'allocsize' indices can't refer to the same parameter");
2336     HowManyArg = HowMany;
2337   } else
2338     HowManyArg = None;
2339 
2340   auto EndParen = Lex.getLoc();
2341   if (!EatIfPresent(lltok::rparen))
2342     return error(EndParen, "expected ')'");
2343   return false;
2344 }
2345 
2346 /// parseScopeAndOrdering
2347 ///   if isAtomic: ::= SyncScope? AtomicOrdering
2348 ///   else: ::=
2349 ///
2350 /// This sets Scope and Ordering to the parsed values.
2351 bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID,
2352                                      AtomicOrdering &Ordering) {
2353   if (!IsAtomic)
2354     return false;
2355 
2356   return parseScope(SSID) || parseOrdering(Ordering);
2357 }
2358 
2359 /// parseScope
2360 ///   ::= syncscope("singlethread" | "<target scope>")?
2361 ///
2362 /// This sets synchronization scope ID to the ID of the parsed value.
2363 bool LLParser::parseScope(SyncScope::ID &SSID) {
2364   SSID = SyncScope::System;
2365   if (EatIfPresent(lltok::kw_syncscope)) {
2366     auto StartParenAt = Lex.getLoc();
2367     if (!EatIfPresent(lltok::lparen))
2368       return error(StartParenAt, "Expected '(' in syncscope");
2369 
2370     std::string SSN;
2371     auto SSNAt = Lex.getLoc();
2372     if (parseStringConstant(SSN))
2373       return error(SSNAt, "Expected synchronization scope name");
2374 
2375     auto EndParenAt = Lex.getLoc();
2376     if (!EatIfPresent(lltok::rparen))
2377       return error(EndParenAt, "Expected ')' in syncscope");
2378 
2379     SSID = Context.getOrInsertSyncScopeID(SSN);
2380   }
2381 
2382   return false;
2383 }
2384 
2385 /// parseOrdering
2386 ///   ::= AtomicOrdering
2387 ///
2388 /// This sets Ordering to the parsed value.
2389 bool LLParser::parseOrdering(AtomicOrdering &Ordering) {
2390   switch (Lex.getKind()) {
2391   default:
2392     return tokError("Expected ordering on atomic instruction");
2393   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2394   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2395   // Not specified yet:
2396   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2397   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2398   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2399   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2400   case lltok::kw_seq_cst:
2401     Ordering = AtomicOrdering::SequentiallyConsistent;
2402     break;
2403   }
2404   Lex.Lex();
2405   return false;
2406 }
2407 
2408 /// parseOptionalStackAlignment
2409 ///   ::= /* empty */
2410 ///   ::= 'alignstack' '(' 4 ')'
2411 bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) {
2412   Alignment = 0;
2413   if (!EatIfPresent(lltok::kw_alignstack))
2414     return false;
2415   LocTy ParenLoc = Lex.getLoc();
2416   if (!EatIfPresent(lltok::lparen))
2417     return error(ParenLoc, "expected '('");
2418   LocTy AlignLoc = Lex.getLoc();
2419   if (parseUInt32(Alignment))
2420     return true;
2421   ParenLoc = Lex.getLoc();
2422   if (!EatIfPresent(lltok::rparen))
2423     return error(ParenLoc, "expected ')'");
2424   if (!isPowerOf2_32(Alignment))
2425     return error(AlignLoc, "stack alignment is not a power of two");
2426   return false;
2427 }
2428 
2429 /// parseIndexList - This parses the index list for an insert/extractvalue
2430 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2431 /// comma at the end of the line and find that it is followed by metadata.
2432 /// Clients that don't allow metadata can call the version of this function that
2433 /// only takes one argument.
2434 ///
2435 /// parseIndexList
2436 ///    ::=  (',' uint32)+
2437 ///
2438 bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices,
2439                               bool &AteExtraComma) {
2440   AteExtraComma = false;
2441 
2442   if (Lex.getKind() != lltok::comma)
2443     return tokError("expected ',' as start of index list");
2444 
2445   while (EatIfPresent(lltok::comma)) {
2446     if (Lex.getKind() == lltok::MetadataVar) {
2447       if (Indices.empty())
2448         return tokError("expected index");
2449       AteExtraComma = true;
2450       return false;
2451     }
2452     unsigned Idx = 0;
2453     if (parseUInt32(Idx))
2454       return true;
2455     Indices.push_back(Idx);
2456   }
2457 
2458   return false;
2459 }
2460 
2461 //===----------------------------------------------------------------------===//
2462 // Type Parsing.
2463 //===----------------------------------------------------------------------===//
2464 
2465 /// parseType - parse a type.
2466 bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2467   SMLoc TypeLoc = Lex.getLoc();
2468   switch (Lex.getKind()) {
2469   default:
2470     return tokError(Msg);
2471   case lltok::Type:
2472     // Type ::= 'float' | 'void' (etc)
2473     Result = Lex.getTyVal();
2474     Lex.Lex();
2475     break;
2476   case lltok::lbrace:
2477     // Type ::= StructType
2478     if (parseAnonStructType(Result, false))
2479       return true;
2480     break;
2481   case lltok::lsquare:
2482     // Type ::= '[' ... ']'
2483     Lex.Lex(); // eat the lsquare.
2484     if (parseArrayVectorType(Result, false))
2485       return true;
2486     break;
2487   case lltok::less: // Either vector or packed struct.
2488     // Type ::= '<' ... '>'
2489     Lex.Lex();
2490     if (Lex.getKind() == lltok::lbrace) {
2491       if (parseAnonStructType(Result, true) ||
2492           parseToken(lltok::greater, "expected '>' at end of packed struct"))
2493         return true;
2494     } else if (parseArrayVectorType(Result, true))
2495       return true;
2496     break;
2497   case lltok::LocalVar: {
2498     // Type ::= %foo
2499     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2500 
2501     // If the type hasn't been defined yet, create a forward definition and
2502     // remember where that forward def'n was seen (in case it never is defined).
2503     if (!Entry.first) {
2504       Entry.first = StructType::create(Context, Lex.getStrVal());
2505       Entry.second = Lex.getLoc();
2506     }
2507     Result = Entry.first;
2508     Lex.Lex();
2509     break;
2510   }
2511 
2512   case lltok::LocalVarID: {
2513     // Type ::= %4
2514     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2515 
2516     // If the type hasn't been defined yet, create a forward definition and
2517     // remember where that forward def'n was seen (in case it never is defined).
2518     if (!Entry.first) {
2519       Entry.first = StructType::create(Context);
2520       Entry.second = Lex.getLoc();
2521     }
2522     Result = Entry.first;
2523     Lex.Lex();
2524     break;
2525   }
2526   }
2527 
2528   // parse the type suffixes.
2529   while (true) {
2530     switch (Lex.getKind()) {
2531     // End of type.
2532     default:
2533       if (!AllowVoid && Result->isVoidTy())
2534         return error(TypeLoc, "void type only allowed for function results");
2535       return false;
2536 
2537     // Type ::= Type '*'
2538     case lltok::star:
2539       if (Result->isLabelTy())
2540         return tokError("basic block pointers are invalid");
2541       if (Result->isVoidTy())
2542         return tokError("pointers to void are invalid - use i8* instead");
2543       if (!PointerType::isValidElementType(Result))
2544         return tokError("pointer to this type is invalid");
2545       Result = PointerType::getUnqual(Result);
2546       Lex.Lex();
2547       break;
2548 
2549     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2550     case lltok::kw_addrspace: {
2551       if (Result->isLabelTy())
2552         return tokError("basic block pointers are invalid");
2553       if (Result->isVoidTy())
2554         return tokError("pointers to void are invalid; use i8* instead");
2555       if (!PointerType::isValidElementType(Result))
2556         return tokError("pointer to this type is invalid");
2557       unsigned AddrSpace;
2558       if (parseOptionalAddrSpace(AddrSpace) ||
2559           parseToken(lltok::star, "expected '*' in address space"))
2560         return true;
2561 
2562       Result = PointerType::get(Result, AddrSpace);
2563       break;
2564     }
2565 
2566     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2567     case lltok::lparen:
2568       if (parseFunctionType(Result))
2569         return true;
2570       break;
2571     }
2572   }
2573 }
2574 
2575 /// parseParameterList
2576 ///    ::= '(' ')'
2577 ///    ::= '(' Arg (',' Arg)* ')'
2578 ///  Arg
2579 ///    ::= Type OptionalAttributes Value OptionalAttributes
2580 bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2581                                   PerFunctionState &PFS, bool IsMustTailCall,
2582                                   bool InVarArgsFunc) {
2583   if (parseToken(lltok::lparen, "expected '(' in call"))
2584     return true;
2585 
2586   while (Lex.getKind() != lltok::rparen) {
2587     // If this isn't the first argument, we need a comma.
2588     if (!ArgList.empty() &&
2589         parseToken(lltok::comma, "expected ',' in argument list"))
2590       return true;
2591 
2592     // parse an ellipsis if this is a musttail call in a variadic function.
2593     if (Lex.getKind() == lltok::dotdotdot) {
2594       const char *Msg = "unexpected ellipsis in argument list for ";
2595       if (!IsMustTailCall)
2596         return tokError(Twine(Msg) + "non-musttail call");
2597       if (!InVarArgsFunc)
2598         return tokError(Twine(Msg) + "musttail call in non-varargs function");
2599       Lex.Lex();  // Lex the '...', it is purely for readability.
2600       return parseToken(lltok::rparen, "expected ')' at end of argument list");
2601     }
2602 
2603     // parse the argument.
2604     LocTy ArgLoc;
2605     Type *ArgTy = nullptr;
2606     AttrBuilder ArgAttrs;
2607     Value *V;
2608     if (parseType(ArgTy, ArgLoc))
2609       return true;
2610 
2611     if (ArgTy->isMetadataTy()) {
2612       if (parseMetadataAsValue(V, PFS))
2613         return true;
2614     } else {
2615       // Otherwise, handle normal operands.
2616       if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS))
2617         return true;
2618     }
2619     ArgList.push_back(ParamInfo(
2620         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2621   }
2622 
2623   if (IsMustTailCall && InVarArgsFunc)
2624     return tokError("expected '...' at end of argument list for musttail call "
2625                     "in varargs function");
2626 
2627   Lex.Lex();  // Lex the ')'.
2628   return false;
2629 }
2630 
2631 /// parseRequiredTypeAttr
2632 ///   ::= attrname(<ty>)
2633 bool LLParser::parseRequiredTypeAttr(Type *&Result, lltok::Kind AttrName) {
2634   Result = nullptr;
2635   if (!EatIfPresent(AttrName))
2636     return true;
2637   if (!EatIfPresent(lltok::lparen))
2638     return error(Lex.getLoc(), "expected '('");
2639   if (parseType(Result))
2640     return true;
2641   if (!EatIfPresent(lltok::rparen))
2642     return error(Lex.getLoc(), "expected ')'");
2643   return false;
2644 }
2645 
2646 /// parsePreallocated
2647 ///   ::= preallocated(<ty>)
2648 bool LLParser::parsePreallocated(Type *&Result) {
2649   return parseRequiredTypeAttr(Result, lltok::kw_preallocated);
2650 }
2651 
2652 /// parseByRef
2653 ///   ::= byref(<type>)
2654 bool LLParser::parseByRef(Type *&Result) {
2655   return parseRequiredTypeAttr(Result, lltok::kw_byref);
2656 }
2657 
2658 /// parseOptionalOperandBundles
2659 ///    ::= /*empty*/
2660 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2661 ///
2662 /// OperandBundle
2663 ///    ::= bundle-tag '(' ')'
2664 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2665 ///
2666 /// bundle-tag ::= String Constant
2667 bool LLParser::parseOptionalOperandBundles(
2668     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2669   LocTy BeginLoc = Lex.getLoc();
2670   if (!EatIfPresent(lltok::lsquare))
2671     return false;
2672 
2673   while (Lex.getKind() != lltok::rsquare) {
2674     // If this isn't the first operand bundle, we need a comma.
2675     if (!BundleList.empty() &&
2676         parseToken(lltok::comma, "expected ',' in input list"))
2677       return true;
2678 
2679     std::string Tag;
2680     if (parseStringConstant(Tag))
2681       return true;
2682 
2683     if (parseToken(lltok::lparen, "expected '(' in operand bundle"))
2684       return true;
2685 
2686     std::vector<Value *> Inputs;
2687     while (Lex.getKind() != lltok::rparen) {
2688       // If this isn't the first input, we need a comma.
2689       if (!Inputs.empty() &&
2690           parseToken(lltok::comma, "expected ',' in input list"))
2691         return true;
2692 
2693       Type *Ty = nullptr;
2694       Value *Input = nullptr;
2695       if (parseType(Ty) || parseValue(Ty, Input, PFS))
2696         return true;
2697       Inputs.push_back(Input);
2698     }
2699 
2700     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2701 
2702     Lex.Lex(); // Lex the ')'.
2703   }
2704 
2705   if (BundleList.empty())
2706     return error(BeginLoc, "operand bundle set must not be empty");
2707 
2708   Lex.Lex(); // Lex the ']'.
2709   return false;
2710 }
2711 
2712 /// parseArgumentList - parse the argument list for a function type or function
2713 /// prototype.
2714 ///   ::= '(' ArgTypeListI ')'
2715 /// ArgTypeListI
2716 ///   ::= /*empty*/
2717 ///   ::= '...'
2718 ///   ::= ArgTypeList ',' '...'
2719 ///   ::= ArgType (',' ArgType)*
2720 ///
2721 bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2722                                  bool &IsVarArg) {
2723   unsigned CurValID = 0;
2724   IsVarArg = false;
2725   assert(Lex.getKind() == lltok::lparen);
2726   Lex.Lex(); // eat the (.
2727 
2728   if (Lex.getKind() == lltok::rparen) {
2729     // empty
2730   } else if (Lex.getKind() == lltok::dotdotdot) {
2731     IsVarArg = true;
2732     Lex.Lex();
2733   } else {
2734     LocTy TypeLoc = Lex.getLoc();
2735     Type *ArgTy = nullptr;
2736     AttrBuilder Attrs;
2737     std::string Name;
2738 
2739     if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
2740       return true;
2741 
2742     if (ArgTy->isVoidTy())
2743       return error(TypeLoc, "argument can not have void type");
2744 
2745     if (Lex.getKind() == lltok::LocalVar) {
2746       Name = Lex.getStrVal();
2747       Lex.Lex();
2748     } else if (Lex.getKind() == lltok::LocalVarID) {
2749       if (Lex.getUIntVal() != CurValID)
2750         return error(TypeLoc, "argument expected to be numbered '%" +
2751                                   Twine(CurValID) + "'");
2752       ++CurValID;
2753       Lex.Lex();
2754     }
2755 
2756     if (!FunctionType::isValidArgumentType(ArgTy))
2757       return error(TypeLoc, "invalid type for function argument");
2758 
2759     ArgList.emplace_back(TypeLoc, ArgTy,
2760                          AttributeSet::get(ArgTy->getContext(), Attrs),
2761                          std::move(Name));
2762 
2763     while (EatIfPresent(lltok::comma)) {
2764       // Handle ... at end of arg list.
2765       if (EatIfPresent(lltok::dotdotdot)) {
2766         IsVarArg = true;
2767         break;
2768       }
2769 
2770       // Otherwise must be an argument type.
2771       TypeLoc = Lex.getLoc();
2772       if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
2773         return true;
2774 
2775       if (ArgTy->isVoidTy())
2776         return error(TypeLoc, "argument can not have void type");
2777 
2778       if (Lex.getKind() == lltok::LocalVar) {
2779         Name = Lex.getStrVal();
2780         Lex.Lex();
2781       } else {
2782         if (Lex.getKind() == lltok::LocalVarID) {
2783           if (Lex.getUIntVal() != CurValID)
2784             return error(TypeLoc, "argument expected to be numbered '%" +
2785                                       Twine(CurValID) + "'");
2786           Lex.Lex();
2787         }
2788         ++CurValID;
2789         Name = "";
2790       }
2791 
2792       if (!ArgTy->isFirstClassType())
2793         return error(TypeLoc, "invalid type for function argument");
2794 
2795       ArgList.emplace_back(TypeLoc, ArgTy,
2796                            AttributeSet::get(ArgTy->getContext(), Attrs),
2797                            std::move(Name));
2798     }
2799   }
2800 
2801   return parseToken(lltok::rparen, "expected ')' at end of argument list");
2802 }
2803 
2804 /// parseFunctionType
2805 ///  ::= Type ArgumentList OptionalAttrs
2806 bool LLParser::parseFunctionType(Type *&Result) {
2807   assert(Lex.getKind() == lltok::lparen);
2808 
2809   if (!FunctionType::isValidReturnType(Result))
2810     return tokError("invalid function return type");
2811 
2812   SmallVector<ArgInfo, 8> ArgList;
2813   bool IsVarArg;
2814   if (parseArgumentList(ArgList, IsVarArg))
2815     return true;
2816 
2817   // Reject names on the arguments lists.
2818   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2819     if (!ArgList[i].Name.empty())
2820       return error(ArgList[i].Loc, "argument name invalid in function type");
2821     if (ArgList[i].Attrs.hasAttributes())
2822       return error(ArgList[i].Loc,
2823                    "argument attributes invalid in function type");
2824   }
2825 
2826   SmallVector<Type*, 16> ArgListTy;
2827   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2828     ArgListTy.push_back(ArgList[i].Ty);
2829 
2830   Result = FunctionType::get(Result, ArgListTy, IsVarArg);
2831   return false;
2832 }
2833 
2834 /// parseAnonStructType - parse an anonymous struct type, which is inlined into
2835 /// other structs.
2836 bool LLParser::parseAnonStructType(Type *&Result, bool Packed) {
2837   SmallVector<Type*, 8> Elts;
2838   if (parseStructBody(Elts))
2839     return true;
2840 
2841   Result = StructType::get(Context, Elts, Packed);
2842   return false;
2843 }
2844 
2845 /// parseStructDefinition - parse a struct in a 'type' definition.
2846 bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name,
2847                                      std::pair<Type *, LocTy> &Entry,
2848                                      Type *&ResultTy) {
2849   // If the type was already defined, diagnose the redefinition.
2850   if (Entry.first && !Entry.second.isValid())
2851     return error(TypeLoc, "redefinition of type");
2852 
2853   // If we have opaque, just return without filling in the definition for the
2854   // struct.  This counts as a definition as far as the .ll file goes.
2855   if (EatIfPresent(lltok::kw_opaque)) {
2856     // This type is being defined, so clear the location to indicate this.
2857     Entry.second = SMLoc();
2858 
2859     // If this type number has never been uttered, create it.
2860     if (!Entry.first)
2861       Entry.first = StructType::create(Context, Name);
2862     ResultTy = Entry.first;
2863     return false;
2864   }
2865 
2866   // If the type starts with '<', then it is either a packed struct or a vector.
2867   bool isPacked = EatIfPresent(lltok::less);
2868 
2869   // If we don't have a struct, then we have a random type alias, which we
2870   // accept for compatibility with old files.  These types are not allowed to be
2871   // forward referenced and not allowed to be recursive.
2872   if (Lex.getKind() != lltok::lbrace) {
2873     if (Entry.first)
2874       return error(TypeLoc, "forward references to non-struct type");
2875 
2876     ResultTy = nullptr;
2877     if (isPacked)
2878       return parseArrayVectorType(ResultTy, true);
2879     return parseType(ResultTy);
2880   }
2881 
2882   // This type is being defined, so clear the location to indicate this.
2883   Entry.second = SMLoc();
2884 
2885   // If this type number has never been uttered, create it.
2886   if (!Entry.first)
2887     Entry.first = StructType::create(Context, Name);
2888 
2889   StructType *STy = cast<StructType>(Entry.first);
2890 
2891   SmallVector<Type*, 8> Body;
2892   if (parseStructBody(Body) ||
2893       (isPacked && parseToken(lltok::greater, "expected '>' in packed struct")))
2894     return true;
2895 
2896   STy->setBody(Body, isPacked);
2897   ResultTy = STy;
2898   return false;
2899 }
2900 
2901 /// parseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2902 ///   StructType
2903 ///     ::= '{' '}'
2904 ///     ::= '{' Type (',' Type)* '}'
2905 ///     ::= '<' '{' '}' '>'
2906 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2907 bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) {
2908   assert(Lex.getKind() == lltok::lbrace);
2909   Lex.Lex(); // Consume the '{'
2910 
2911   // Handle the empty struct.
2912   if (EatIfPresent(lltok::rbrace))
2913     return false;
2914 
2915   LocTy EltTyLoc = Lex.getLoc();
2916   Type *Ty = nullptr;
2917   if (parseType(Ty))
2918     return true;
2919   Body.push_back(Ty);
2920 
2921   if (!StructType::isValidElementType(Ty))
2922     return error(EltTyLoc, "invalid element type for struct");
2923 
2924   while (EatIfPresent(lltok::comma)) {
2925     EltTyLoc = Lex.getLoc();
2926     if (parseType(Ty))
2927       return true;
2928 
2929     if (!StructType::isValidElementType(Ty))
2930       return error(EltTyLoc, "invalid element type for struct");
2931 
2932     Body.push_back(Ty);
2933   }
2934 
2935   return parseToken(lltok::rbrace, "expected '}' at end of struct");
2936 }
2937 
2938 /// parseArrayVectorType - parse an array or vector type, assuming the first
2939 /// token has already been consumed.
2940 ///   Type
2941 ///     ::= '[' APSINTVAL 'x' Types ']'
2942 ///     ::= '<' APSINTVAL 'x' Types '>'
2943 ///     ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>'
2944 bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) {
2945   bool Scalable = false;
2946 
2947   if (IsVector && Lex.getKind() == lltok::kw_vscale) {
2948     Lex.Lex(); // consume the 'vscale'
2949     if (parseToken(lltok::kw_x, "expected 'x' after vscale"))
2950       return true;
2951 
2952     Scalable = true;
2953   }
2954 
2955   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2956       Lex.getAPSIntVal().getBitWidth() > 64)
2957     return tokError("expected number in address space");
2958 
2959   LocTy SizeLoc = Lex.getLoc();
2960   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2961   Lex.Lex();
2962 
2963   if (parseToken(lltok::kw_x, "expected 'x' after element count"))
2964     return true;
2965 
2966   LocTy TypeLoc = Lex.getLoc();
2967   Type *EltTy = nullptr;
2968   if (parseType(EltTy))
2969     return true;
2970 
2971   if (parseToken(IsVector ? lltok::greater : lltok::rsquare,
2972                  "expected end of sequential type"))
2973     return true;
2974 
2975   if (IsVector) {
2976     if (Size == 0)
2977       return error(SizeLoc, "zero element vector is illegal");
2978     if ((unsigned)Size != Size)
2979       return error(SizeLoc, "size too large for vector");
2980     if (!VectorType::isValidElementType(EltTy))
2981       return error(TypeLoc, "invalid vector element type");
2982     Result = VectorType::get(EltTy, unsigned(Size), Scalable);
2983   } else {
2984     if (!ArrayType::isValidElementType(EltTy))
2985       return error(TypeLoc, "invalid array element type");
2986     Result = ArrayType::get(EltTy, Size);
2987   }
2988   return false;
2989 }
2990 
2991 //===----------------------------------------------------------------------===//
2992 // Function Semantic Analysis.
2993 //===----------------------------------------------------------------------===//
2994 
2995 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2996                                              int functionNumber)
2997   : P(p), F(f), FunctionNumber(functionNumber) {
2998 
2999   // Insert unnamed arguments into the NumberedVals list.
3000   for (Argument &A : F.args())
3001     if (!A.hasName())
3002       NumberedVals.push_back(&A);
3003 }
3004 
3005 LLParser::PerFunctionState::~PerFunctionState() {
3006   // If there were any forward referenced non-basicblock values, delete them.
3007 
3008   for (const auto &P : ForwardRefVals) {
3009     if (isa<BasicBlock>(P.second.first))
3010       continue;
3011     P.second.first->replaceAllUsesWith(
3012         UndefValue::get(P.second.first->getType()));
3013     P.second.first->deleteValue();
3014   }
3015 
3016   for (const auto &P : ForwardRefValIDs) {
3017     if (isa<BasicBlock>(P.second.first))
3018       continue;
3019     P.second.first->replaceAllUsesWith(
3020         UndefValue::get(P.second.first->getType()));
3021     P.second.first->deleteValue();
3022   }
3023 }
3024 
3025 bool LLParser::PerFunctionState::finishFunction() {
3026   if (!ForwardRefVals.empty())
3027     return P.error(ForwardRefVals.begin()->second.second,
3028                    "use of undefined value '%" + ForwardRefVals.begin()->first +
3029                        "'");
3030   if (!ForwardRefValIDs.empty())
3031     return P.error(ForwardRefValIDs.begin()->second.second,
3032                    "use of undefined value '%" +
3033                        Twine(ForwardRefValIDs.begin()->first) + "'");
3034   return false;
3035 }
3036 
3037 /// getVal - Get a value with the specified name or ID, creating a
3038 /// forward reference record if needed.  This can return null if the value
3039 /// exists but does not have the right type.
3040 Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty,
3041                                           LocTy Loc, bool IsCall) {
3042   // Look this name up in the normal function symbol table.
3043   Value *Val = F.getValueSymbolTable()->lookup(Name);
3044 
3045   // If this is a forward reference for the value, see if we already created a
3046   // forward ref record.
3047   if (!Val) {
3048     auto I = ForwardRefVals.find(Name);
3049     if (I != ForwardRefVals.end())
3050       Val = I->second.first;
3051   }
3052 
3053   // If we have the value in the symbol table or fwd-ref table, return it.
3054   if (Val)
3055     return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall);
3056 
3057   // Don't make placeholders with invalid type.
3058   if (!Ty->isFirstClassType()) {
3059     P.error(Loc, "invalid use of a non-first-class type");
3060     return nullptr;
3061   }
3062 
3063   // Otherwise, create a new forward reference for this value and remember it.
3064   Value *FwdVal;
3065   if (Ty->isLabelTy()) {
3066     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
3067   } else {
3068     FwdVal = new Argument(Ty, Name);
3069   }
3070 
3071   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
3072   return FwdVal;
3073 }
3074 
3075 Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc,
3076                                           bool IsCall) {
3077   // Look this name up in the normal function symbol table.
3078   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
3079 
3080   // If this is a forward reference for the value, see if we already created a
3081   // forward ref record.
3082   if (!Val) {
3083     auto I = ForwardRefValIDs.find(ID);
3084     if (I != ForwardRefValIDs.end())
3085       Val = I->second.first;
3086   }
3087 
3088   // If we have the value in the symbol table or fwd-ref table, return it.
3089   if (Val)
3090     return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall);
3091 
3092   if (!Ty->isFirstClassType()) {
3093     P.error(Loc, "invalid use of a non-first-class type");
3094     return nullptr;
3095   }
3096 
3097   // Otherwise, create a new forward reference for this value and remember it.
3098   Value *FwdVal;
3099   if (Ty->isLabelTy()) {
3100     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
3101   } else {
3102     FwdVal = new Argument(Ty);
3103   }
3104 
3105   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
3106   return FwdVal;
3107 }
3108 
3109 /// setInstName - After an instruction is parsed and inserted into its
3110 /// basic block, this installs its name.
3111 bool LLParser::PerFunctionState::setInstName(int NameID,
3112                                              const std::string &NameStr,
3113                                              LocTy NameLoc, Instruction *Inst) {
3114   // If this instruction has void type, it cannot have a name or ID specified.
3115   if (Inst->getType()->isVoidTy()) {
3116     if (NameID != -1 || !NameStr.empty())
3117       return P.error(NameLoc, "instructions returning void cannot have a name");
3118     return false;
3119   }
3120 
3121   // If this was a numbered instruction, verify that the instruction is the
3122   // expected value and resolve any forward references.
3123   if (NameStr.empty()) {
3124     // If neither a name nor an ID was specified, just use the next ID.
3125     if (NameID == -1)
3126       NameID = NumberedVals.size();
3127 
3128     if (unsigned(NameID) != NumberedVals.size())
3129       return P.error(NameLoc, "instruction expected to be numbered '%" +
3130                                   Twine(NumberedVals.size()) + "'");
3131 
3132     auto FI = ForwardRefValIDs.find(NameID);
3133     if (FI != ForwardRefValIDs.end()) {
3134       Value *Sentinel = FI->second.first;
3135       if (Sentinel->getType() != Inst->getType())
3136         return P.error(NameLoc, "instruction forward referenced with type '" +
3137                                     getTypeString(FI->second.first->getType()) +
3138                                     "'");
3139 
3140       Sentinel->replaceAllUsesWith(Inst);
3141       Sentinel->deleteValue();
3142       ForwardRefValIDs.erase(FI);
3143     }
3144 
3145     NumberedVals.push_back(Inst);
3146     return false;
3147   }
3148 
3149   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
3150   auto FI = ForwardRefVals.find(NameStr);
3151   if (FI != ForwardRefVals.end()) {
3152     Value *Sentinel = FI->second.first;
3153     if (Sentinel->getType() != Inst->getType())
3154       return P.error(NameLoc, "instruction forward referenced with type '" +
3155                                   getTypeString(FI->second.first->getType()) +
3156                                   "'");
3157 
3158     Sentinel->replaceAllUsesWith(Inst);
3159     Sentinel->deleteValue();
3160     ForwardRefVals.erase(FI);
3161   }
3162 
3163   // Set the name on the instruction.
3164   Inst->setName(NameStr);
3165 
3166   if (Inst->getName() != NameStr)
3167     return P.error(NameLoc, "multiple definition of local value named '" +
3168                                 NameStr + "'");
3169   return false;
3170 }
3171 
3172 /// getBB - Get a basic block with the specified name or ID, creating a
3173 /// forward reference record if needed.
3174 BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name,
3175                                               LocTy Loc) {
3176   return dyn_cast_or_null<BasicBlock>(
3177       getVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
3178 }
3179 
3180 BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) {
3181   return dyn_cast_or_null<BasicBlock>(
3182       getVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
3183 }
3184 
3185 /// defineBB - Define the specified basic block, which is either named or
3186 /// unnamed.  If there is an error, this returns null otherwise it returns
3187 /// the block being defined.
3188 BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name,
3189                                                  int NameID, LocTy Loc) {
3190   BasicBlock *BB;
3191   if (Name.empty()) {
3192     if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) {
3193       P.error(Loc, "label expected to be numbered '" +
3194                        Twine(NumberedVals.size()) + "'");
3195       return nullptr;
3196     }
3197     BB = getBB(NumberedVals.size(), Loc);
3198     if (!BB) {
3199       P.error(Loc, "unable to create block numbered '" +
3200                        Twine(NumberedVals.size()) + "'");
3201       return nullptr;
3202     }
3203   } else {
3204     BB = getBB(Name, Loc);
3205     if (!BB) {
3206       P.error(Loc, "unable to create block named '" + Name + "'");
3207       return nullptr;
3208     }
3209   }
3210 
3211   // Move the block to the end of the function.  Forward ref'd blocks are
3212   // inserted wherever they happen to be referenced.
3213   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
3214 
3215   // Remove the block from forward ref sets.
3216   if (Name.empty()) {
3217     ForwardRefValIDs.erase(NumberedVals.size());
3218     NumberedVals.push_back(BB);
3219   } else {
3220     // BB forward references are already in the function symbol table.
3221     ForwardRefVals.erase(Name);
3222   }
3223 
3224   return BB;
3225 }
3226 
3227 //===----------------------------------------------------------------------===//
3228 // Constants.
3229 //===----------------------------------------------------------------------===//
3230 
3231 /// parseValID - parse an abstract value that doesn't necessarily have a
3232 /// type implied.  For example, if we parse "4" we don't know what integer type
3233 /// it has.  The value will later be combined with its type and checked for
3234 /// sanity.  PFS is used to convert function-local operands of metadata (since
3235 /// metadata operands are not just parsed here but also converted to values).
3236 /// PFS can be null when we are not parsing metadata values inside a function.
3237 bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS) {
3238   ID.Loc = Lex.getLoc();
3239   switch (Lex.getKind()) {
3240   default:
3241     return tokError("expected value token");
3242   case lltok::GlobalID:  // @42
3243     ID.UIntVal = Lex.getUIntVal();
3244     ID.Kind = ValID::t_GlobalID;
3245     break;
3246   case lltok::GlobalVar:  // @foo
3247     ID.StrVal = Lex.getStrVal();
3248     ID.Kind = ValID::t_GlobalName;
3249     break;
3250   case lltok::LocalVarID:  // %42
3251     ID.UIntVal = Lex.getUIntVal();
3252     ID.Kind = ValID::t_LocalID;
3253     break;
3254   case lltok::LocalVar:  // %foo
3255     ID.StrVal = Lex.getStrVal();
3256     ID.Kind = ValID::t_LocalName;
3257     break;
3258   case lltok::APSInt:
3259     ID.APSIntVal = Lex.getAPSIntVal();
3260     ID.Kind = ValID::t_APSInt;
3261     break;
3262   case lltok::APFloat:
3263     ID.APFloatVal = Lex.getAPFloatVal();
3264     ID.Kind = ValID::t_APFloat;
3265     break;
3266   case lltok::kw_true:
3267     ID.ConstantVal = ConstantInt::getTrue(Context);
3268     ID.Kind = ValID::t_Constant;
3269     break;
3270   case lltok::kw_false:
3271     ID.ConstantVal = ConstantInt::getFalse(Context);
3272     ID.Kind = ValID::t_Constant;
3273     break;
3274   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3275   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3276   case lltok::kw_poison: ID.Kind = ValID::t_Poison; break;
3277   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3278   case lltok::kw_none: ID.Kind = ValID::t_None; break;
3279 
3280   case lltok::lbrace: {
3281     // ValID ::= '{' ConstVector '}'
3282     Lex.Lex();
3283     SmallVector<Constant*, 16> Elts;
3284     if (parseGlobalValueVector(Elts) ||
3285         parseToken(lltok::rbrace, "expected end of struct constant"))
3286       return true;
3287 
3288     ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3289     ID.UIntVal = Elts.size();
3290     memcpy(ID.ConstantStructElts.get(), Elts.data(),
3291            Elts.size() * sizeof(Elts[0]));
3292     ID.Kind = ValID::t_ConstantStruct;
3293     return false;
3294   }
3295   case lltok::less: {
3296     // ValID ::= '<' ConstVector '>'         --> Vector.
3297     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3298     Lex.Lex();
3299     bool isPackedStruct = EatIfPresent(lltok::lbrace);
3300 
3301     SmallVector<Constant*, 16> Elts;
3302     LocTy FirstEltLoc = Lex.getLoc();
3303     if (parseGlobalValueVector(Elts) ||
3304         (isPackedStruct &&
3305          parseToken(lltok::rbrace, "expected end of packed struct")) ||
3306         parseToken(lltok::greater, "expected end of constant"))
3307       return true;
3308 
3309     if (isPackedStruct) {
3310       ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3311       memcpy(ID.ConstantStructElts.get(), Elts.data(),
3312              Elts.size() * sizeof(Elts[0]));
3313       ID.UIntVal = Elts.size();
3314       ID.Kind = ValID::t_PackedConstantStruct;
3315       return false;
3316     }
3317 
3318     if (Elts.empty())
3319       return error(ID.Loc, "constant vector must not be empty");
3320 
3321     if (!Elts[0]->getType()->isIntegerTy() &&
3322         !Elts[0]->getType()->isFloatingPointTy() &&
3323         !Elts[0]->getType()->isPointerTy())
3324       return error(
3325           FirstEltLoc,
3326           "vector elements must have integer, pointer or floating point type");
3327 
3328     // Verify that all the vector elements have the same type.
3329     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3330       if (Elts[i]->getType() != Elts[0]->getType())
3331         return error(FirstEltLoc, "vector element #" + Twine(i) +
3332                                       " is not of type '" +
3333                                       getTypeString(Elts[0]->getType()));
3334 
3335     ID.ConstantVal = ConstantVector::get(Elts);
3336     ID.Kind = ValID::t_Constant;
3337     return false;
3338   }
3339   case lltok::lsquare: {   // Array Constant
3340     Lex.Lex();
3341     SmallVector<Constant*, 16> Elts;
3342     LocTy FirstEltLoc = Lex.getLoc();
3343     if (parseGlobalValueVector(Elts) ||
3344         parseToken(lltok::rsquare, "expected end of array constant"))
3345       return true;
3346 
3347     // Handle empty element.
3348     if (Elts.empty()) {
3349       // Use undef instead of an array because it's inconvenient to determine
3350       // the element type at this point, there being no elements to examine.
3351       ID.Kind = ValID::t_EmptyArray;
3352       return false;
3353     }
3354 
3355     if (!Elts[0]->getType()->isFirstClassType())
3356       return error(FirstEltLoc, "invalid array element type: " +
3357                                     getTypeString(Elts[0]->getType()));
3358 
3359     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3360 
3361     // Verify all elements are correct type!
3362     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3363       if (Elts[i]->getType() != Elts[0]->getType())
3364         return error(FirstEltLoc, "array element #" + Twine(i) +
3365                                       " is not of type '" +
3366                                       getTypeString(Elts[0]->getType()));
3367     }
3368 
3369     ID.ConstantVal = ConstantArray::get(ATy, Elts);
3370     ID.Kind = ValID::t_Constant;
3371     return false;
3372   }
3373   case lltok::kw_c:  // c "foo"
3374     Lex.Lex();
3375     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3376                                                   false);
3377     if (parseToken(lltok::StringConstant, "expected string"))
3378       return true;
3379     ID.Kind = ValID::t_Constant;
3380     return false;
3381 
3382   case lltok::kw_asm: {
3383     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3384     //             STRINGCONSTANT
3385     bool HasSideEffect, AlignStack, AsmDialect;
3386     Lex.Lex();
3387     if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3388         parseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3389         parseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3390         parseStringConstant(ID.StrVal) ||
3391         parseToken(lltok::comma, "expected comma in inline asm expression") ||
3392         parseToken(lltok::StringConstant, "expected constraint string"))
3393       return true;
3394     ID.StrVal2 = Lex.getStrVal();
3395     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
3396       (unsigned(AsmDialect)<<2);
3397     ID.Kind = ValID::t_InlineAsm;
3398     return false;
3399   }
3400 
3401   case lltok::kw_blockaddress: {
3402     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3403     Lex.Lex();
3404 
3405     ValID Fn, Label;
3406 
3407     if (parseToken(lltok::lparen, "expected '(' in block address expression") ||
3408         parseValID(Fn) ||
3409         parseToken(lltok::comma,
3410                    "expected comma in block address expression") ||
3411         parseValID(Label) ||
3412         parseToken(lltok::rparen, "expected ')' in block address expression"))
3413       return true;
3414 
3415     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3416       return error(Fn.Loc, "expected function name in blockaddress");
3417     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3418       return error(Label.Loc, "expected basic block name in blockaddress");
3419 
3420     // Try to find the function (but skip it if it's forward-referenced).
3421     GlobalValue *GV = nullptr;
3422     if (Fn.Kind == ValID::t_GlobalID) {
3423       if (Fn.UIntVal < NumberedVals.size())
3424         GV = NumberedVals[Fn.UIntVal];
3425     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3426       GV = M->getNamedValue(Fn.StrVal);
3427     }
3428     Function *F = nullptr;
3429     if (GV) {
3430       // Confirm that it's actually a function with a definition.
3431       if (!isa<Function>(GV))
3432         return error(Fn.Loc, "expected function name in blockaddress");
3433       F = cast<Function>(GV);
3434       if (F->isDeclaration())
3435         return error(Fn.Loc, "cannot take blockaddress inside a declaration");
3436     }
3437 
3438     if (!F) {
3439       // Make a global variable as a placeholder for this reference.
3440       GlobalValue *&FwdRef =
3441           ForwardRefBlockAddresses.insert(std::make_pair(
3442                                               std::move(Fn),
3443                                               std::map<ValID, GlobalValue *>()))
3444               .first->second.insert(std::make_pair(std::move(Label), nullptr))
3445               .first->second;
3446       if (!FwdRef)
3447         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
3448                                     GlobalValue::InternalLinkage, nullptr, "");
3449       ID.ConstantVal = FwdRef;
3450       ID.Kind = ValID::t_Constant;
3451       return false;
3452     }
3453 
3454     // We found the function; now find the basic block.  Don't use PFS, since we
3455     // might be inside a constant expression.
3456     BasicBlock *BB;
3457     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3458       if (Label.Kind == ValID::t_LocalID)
3459         BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc);
3460       else
3461         BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc);
3462       if (!BB)
3463         return error(Label.Loc, "referenced value is not a basic block");
3464     } else {
3465       if (Label.Kind == ValID::t_LocalID)
3466         return error(Label.Loc, "cannot take address of numeric label after "
3467                                 "the function is defined");
3468       BB = dyn_cast_or_null<BasicBlock>(
3469           F->getValueSymbolTable()->lookup(Label.StrVal));
3470       if (!BB)
3471         return error(Label.Loc, "referenced value is not a basic block");
3472     }
3473 
3474     ID.ConstantVal = BlockAddress::get(F, BB);
3475     ID.Kind = ValID::t_Constant;
3476     return false;
3477   }
3478 
3479   case lltok::kw_dso_local_equivalent: {
3480     // ValID ::= 'dso_local_equivalent' @foo
3481     Lex.Lex();
3482 
3483     ValID Fn;
3484 
3485     if (parseValID(Fn))
3486       return true;
3487 
3488     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3489       return error(Fn.Loc,
3490                    "expected global value name in dso_local_equivalent");
3491 
3492     // Try to find the function (but skip it if it's forward-referenced).
3493     GlobalValue *GV = nullptr;
3494     if (Fn.Kind == ValID::t_GlobalID) {
3495       if (Fn.UIntVal < NumberedVals.size())
3496         GV = NumberedVals[Fn.UIntVal];
3497     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3498       GV = M->getNamedValue(Fn.StrVal);
3499     }
3500 
3501     assert(GV && "Could not find a corresponding global variable");
3502 
3503     if (!GV->getValueType()->isFunctionTy())
3504       return error(Fn.Loc, "expected a function, alias to function, or ifunc "
3505                            "in dso_local_equivalent");
3506 
3507     ID.ConstantVal = DSOLocalEquivalent::get(GV);
3508     ID.Kind = ValID::t_Constant;
3509     return false;
3510   }
3511 
3512   case lltok::kw_trunc:
3513   case lltok::kw_zext:
3514   case lltok::kw_sext:
3515   case lltok::kw_fptrunc:
3516   case lltok::kw_fpext:
3517   case lltok::kw_bitcast:
3518   case lltok::kw_addrspacecast:
3519   case lltok::kw_uitofp:
3520   case lltok::kw_sitofp:
3521   case lltok::kw_fptoui:
3522   case lltok::kw_fptosi:
3523   case lltok::kw_inttoptr:
3524   case lltok::kw_ptrtoint: {
3525     unsigned Opc = Lex.getUIntVal();
3526     Type *DestTy = nullptr;
3527     Constant *SrcVal;
3528     Lex.Lex();
3529     if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3530         parseGlobalTypeAndValue(SrcVal) ||
3531         parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3532         parseType(DestTy) ||
3533         parseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3534       return true;
3535     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3536       return error(ID.Loc, "invalid cast opcode for cast from '" +
3537                                getTypeString(SrcVal->getType()) + "' to '" +
3538                                getTypeString(DestTy) + "'");
3539     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3540                                                  SrcVal, DestTy);
3541     ID.Kind = ValID::t_Constant;
3542     return false;
3543   }
3544   case lltok::kw_extractvalue: {
3545     Lex.Lex();
3546     Constant *Val;
3547     SmallVector<unsigned, 4> Indices;
3548     if (parseToken(lltok::lparen,
3549                    "expected '(' in extractvalue constantexpr") ||
3550         parseGlobalTypeAndValue(Val) || parseIndexList(Indices) ||
3551         parseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3552       return true;
3553 
3554     if (!Val->getType()->isAggregateType())
3555       return error(ID.Loc, "extractvalue operand must be aggregate type");
3556     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3557       return error(ID.Loc, "invalid indices for extractvalue");
3558     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3559     ID.Kind = ValID::t_Constant;
3560     return false;
3561   }
3562   case lltok::kw_insertvalue: {
3563     Lex.Lex();
3564     Constant *Val0, *Val1;
3565     SmallVector<unsigned, 4> Indices;
3566     if (parseToken(lltok::lparen, "expected '(' in insertvalue constantexpr") ||
3567         parseGlobalTypeAndValue(Val0) ||
3568         parseToken(lltok::comma,
3569                    "expected comma in insertvalue constantexpr") ||
3570         parseGlobalTypeAndValue(Val1) || parseIndexList(Indices) ||
3571         parseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3572       return true;
3573     if (!Val0->getType()->isAggregateType())
3574       return error(ID.Loc, "insertvalue operand must be aggregate type");
3575     Type *IndexedType =
3576         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3577     if (!IndexedType)
3578       return error(ID.Loc, "invalid indices for insertvalue");
3579     if (IndexedType != Val1->getType())
3580       return error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3581                                getTypeString(Val1->getType()) +
3582                                "' instead of '" + getTypeString(IndexedType) +
3583                                "'");
3584     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3585     ID.Kind = ValID::t_Constant;
3586     return false;
3587   }
3588   case lltok::kw_icmp:
3589   case lltok::kw_fcmp: {
3590     unsigned PredVal, Opc = Lex.getUIntVal();
3591     Constant *Val0, *Val1;
3592     Lex.Lex();
3593     if (parseCmpPredicate(PredVal, Opc) ||
3594         parseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3595         parseGlobalTypeAndValue(Val0) ||
3596         parseToken(lltok::comma, "expected comma in compare constantexpr") ||
3597         parseGlobalTypeAndValue(Val1) ||
3598         parseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3599       return true;
3600 
3601     if (Val0->getType() != Val1->getType())
3602       return error(ID.Loc, "compare operands must have the same type");
3603 
3604     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3605 
3606     if (Opc == Instruction::FCmp) {
3607       if (!Val0->getType()->isFPOrFPVectorTy())
3608         return error(ID.Loc, "fcmp requires floating point operands");
3609       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3610     } else {
3611       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3612       if (!Val0->getType()->isIntOrIntVectorTy() &&
3613           !Val0->getType()->isPtrOrPtrVectorTy())
3614         return error(ID.Loc, "icmp requires pointer or integer operands");
3615       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3616     }
3617     ID.Kind = ValID::t_Constant;
3618     return false;
3619   }
3620 
3621   // Unary Operators.
3622   case lltok::kw_fneg: {
3623     unsigned Opc = Lex.getUIntVal();
3624     Constant *Val;
3625     Lex.Lex();
3626     if (parseToken(lltok::lparen, "expected '(' in unary constantexpr") ||
3627         parseGlobalTypeAndValue(Val) ||
3628         parseToken(lltok::rparen, "expected ')' in unary constantexpr"))
3629       return true;
3630 
3631     // Check that the type is valid for the operator.
3632     switch (Opc) {
3633     case Instruction::FNeg:
3634       if (!Val->getType()->isFPOrFPVectorTy())
3635         return error(ID.Loc, "constexpr requires fp operands");
3636       break;
3637     default: llvm_unreachable("Unknown unary operator!");
3638     }
3639     unsigned Flags = 0;
3640     Constant *C = ConstantExpr::get(Opc, Val, Flags);
3641     ID.ConstantVal = C;
3642     ID.Kind = ValID::t_Constant;
3643     return false;
3644   }
3645   // Binary Operators.
3646   case lltok::kw_add:
3647   case lltok::kw_fadd:
3648   case lltok::kw_sub:
3649   case lltok::kw_fsub:
3650   case lltok::kw_mul:
3651   case lltok::kw_fmul:
3652   case lltok::kw_udiv:
3653   case lltok::kw_sdiv:
3654   case lltok::kw_fdiv:
3655   case lltok::kw_urem:
3656   case lltok::kw_srem:
3657   case lltok::kw_frem:
3658   case lltok::kw_shl:
3659   case lltok::kw_lshr:
3660   case lltok::kw_ashr: {
3661     bool NUW = false;
3662     bool NSW = false;
3663     bool Exact = false;
3664     unsigned Opc = Lex.getUIntVal();
3665     Constant *Val0, *Val1;
3666     Lex.Lex();
3667     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3668         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3669       if (EatIfPresent(lltok::kw_nuw))
3670         NUW = true;
3671       if (EatIfPresent(lltok::kw_nsw)) {
3672         NSW = true;
3673         if (EatIfPresent(lltok::kw_nuw))
3674           NUW = true;
3675       }
3676     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3677                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3678       if (EatIfPresent(lltok::kw_exact))
3679         Exact = true;
3680     }
3681     if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3682         parseGlobalTypeAndValue(Val0) ||
3683         parseToken(lltok::comma, "expected comma in binary constantexpr") ||
3684         parseGlobalTypeAndValue(Val1) ||
3685         parseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3686       return true;
3687     if (Val0->getType() != Val1->getType())
3688       return error(ID.Loc, "operands of constexpr must have same type");
3689     // Check that the type is valid for the operator.
3690     switch (Opc) {
3691     case Instruction::Add:
3692     case Instruction::Sub:
3693     case Instruction::Mul:
3694     case Instruction::UDiv:
3695     case Instruction::SDiv:
3696     case Instruction::URem:
3697     case Instruction::SRem:
3698     case Instruction::Shl:
3699     case Instruction::AShr:
3700     case Instruction::LShr:
3701       if (!Val0->getType()->isIntOrIntVectorTy())
3702         return error(ID.Loc, "constexpr requires integer operands");
3703       break;
3704     case Instruction::FAdd:
3705     case Instruction::FSub:
3706     case Instruction::FMul:
3707     case Instruction::FDiv:
3708     case Instruction::FRem:
3709       if (!Val0->getType()->isFPOrFPVectorTy())
3710         return error(ID.Loc, "constexpr requires fp operands");
3711       break;
3712     default: llvm_unreachable("Unknown binary operator!");
3713     }
3714     unsigned Flags = 0;
3715     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3716     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3717     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3718     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3719     ID.ConstantVal = C;
3720     ID.Kind = ValID::t_Constant;
3721     return false;
3722   }
3723 
3724   // Logical Operations
3725   case lltok::kw_and:
3726   case lltok::kw_or:
3727   case lltok::kw_xor: {
3728     unsigned Opc = Lex.getUIntVal();
3729     Constant *Val0, *Val1;
3730     Lex.Lex();
3731     if (parseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3732         parseGlobalTypeAndValue(Val0) ||
3733         parseToken(lltok::comma, "expected comma in logical constantexpr") ||
3734         parseGlobalTypeAndValue(Val1) ||
3735         parseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3736       return true;
3737     if (Val0->getType() != Val1->getType())
3738       return error(ID.Loc, "operands of constexpr must have same type");
3739     if (!Val0->getType()->isIntOrIntVectorTy())
3740       return error(ID.Loc,
3741                    "constexpr requires integer or integer vector operands");
3742     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3743     ID.Kind = ValID::t_Constant;
3744     return false;
3745   }
3746 
3747   case lltok::kw_getelementptr:
3748   case lltok::kw_shufflevector:
3749   case lltok::kw_insertelement:
3750   case lltok::kw_extractelement:
3751   case lltok::kw_select: {
3752     unsigned Opc = Lex.getUIntVal();
3753     SmallVector<Constant*, 16> Elts;
3754     bool InBounds = false;
3755     Type *Ty;
3756     Lex.Lex();
3757 
3758     if (Opc == Instruction::GetElementPtr)
3759       InBounds = EatIfPresent(lltok::kw_inbounds);
3760 
3761     if (parseToken(lltok::lparen, "expected '(' in constantexpr"))
3762       return true;
3763 
3764     LocTy ExplicitTypeLoc = Lex.getLoc();
3765     if (Opc == Instruction::GetElementPtr) {
3766       if (parseType(Ty) ||
3767           parseToken(lltok::comma, "expected comma after getelementptr's type"))
3768         return true;
3769     }
3770 
3771     Optional<unsigned> InRangeOp;
3772     if (parseGlobalValueVector(
3773             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3774         parseToken(lltok::rparen, "expected ')' in constantexpr"))
3775       return true;
3776 
3777     if (Opc == Instruction::GetElementPtr) {
3778       if (Elts.size() == 0 ||
3779           !Elts[0]->getType()->isPtrOrPtrVectorTy())
3780         return error(ID.Loc, "base of getelementptr must be a pointer");
3781 
3782       Type *BaseType = Elts[0]->getType();
3783       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3784       if (Ty != BasePointerType->getElementType())
3785         return error(
3786             ExplicitTypeLoc,
3787             "explicit pointee type doesn't match operand's pointee type");
3788 
3789       unsigned GEPWidth =
3790           BaseType->isVectorTy()
3791               ? cast<FixedVectorType>(BaseType)->getNumElements()
3792               : 0;
3793 
3794       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3795       for (Constant *Val : Indices) {
3796         Type *ValTy = Val->getType();
3797         if (!ValTy->isIntOrIntVectorTy())
3798           return error(ID.Loc, "getelementptr index must be an integer");
3799         if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) {
3800           unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements();
3801           if (GEPWidth && (ValNumEl != GEPWidth))
3802             return error(
3803                 ID.Loc,
3804                 "getelementptr vector index has a wrong number of elements");
3805           // GEPWidth may have been unknown because the base is a scalar,
3806           // but it is known now.
3807           GEPWidth = ValNumEl;
3808         }
3809       }
3810 
3811       SmallPtrSet<Type*, 4> Visited;
3812       if (!Indices.empty() && !Ty->isSized(&Visited))
3813         return error(ID.Loc, "base element of getelementptr must be sized");
3814 
3815       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3816         return error(ID.Loc, "invalid getelementptr indices");
3817 
3818       if (InRangeOp) {
3819         if (*InRangeOp == 0)
3820           return error(ID.Loc,
3821                        "inrange keyword may not appear on pointer operand");
3822         --*InRangeOp;
3823       }
3824 
3825       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3826                                                       InBounds, InRangeOp);
3827     } else if (Opc == Instruction::Select) {
3828       if (Elts.size() != 3)
3829         return error(ID.Loc, "expected three operands to select");
3830       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3831                                                               Elts[2]))
3832         return error(ID.Loc, Reason);
3833       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3834     } else if (Opc == Instruction::ShuffleVector) {
3835       if (Elts.size() != 3)
3836         return error(ID.Loc, "expected three operands to shufflevector");
3837       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3838         return error(ID.Loc, "invalid operands to shufflevector");
3839       SmallVector<int, 16> Mask;
3840       ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask);
3841       ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask);
3842     } else if (Opc == Instruction::ExtractElement) {
3843       if (Elts.size() != 2)
3844         return error(ID.Loc, "expected two operands to extractelement");
3845       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3846         return error(ID.Loc, "invalid extractelement operands");
3847       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3848     } else {
3849       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3850       if (Elts.size() != 3)
3851         return error(ID.Loc, "expected three operands to insertelement");
3852       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3853         return error(ID.Loc, "invalid insertelement operands");
3854       ID.ConstantVal =
3855                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3856     }
3857 
3858     ID.Kind = ValID::t_Constant;
3859     return false;
3860   }
3861   }
3862 
3863   Lex.Lex();
3864   return false;
3865 }
3866 
3867 /// parseGlobalValue - parse a global value with the specified type.
3868 bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) {
3869   C = nullptr;
3870   ValID ID;
3871   Value *V = nullptr;
3872   bool Parsed = parseValID(ID) ||
3873                 convertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false);
3874   if (V && !(C = dyn_cast<Constant>(V)))
3875     return error(ID.Loc, "global values must be constants");
3876   return Parsed;
3877 }
3878 
3879 bool LLParser::parseGlobalTypeAndValue(Constant *&V) {
3880   Type *Ty = nullptr;
3881   return parseType(Ty) || parseGlobalValue(Ty, V);
3882 }
3883 
3884 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3885   C = nullptr;
3886 
3887   LocTy KwLoc = Lex.getLoc();
3888   if (!EatIfPresent(lltok::kw_comdat))
3889     return false;
3890 
3891   if (EatIfPresent(lltok::lparen)) {
3892     if (Lex.getKind() != lltok::ComdatVar)
3893       return tokError("expected comdat variable");
3894     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3895     Lex.Lex();
3896     if (parseToken(lltok::rparen, "expected ')' after comdat var"))
3897       return true;
3898   } else {
3899     if (GlobalName.empty())
3900       return tokError("comdat cannot be unnamed");
3901     C = getComdat(std::string(GlobalName), KwLoc);
3902   }
3903 
3904   return false;
3905 }
3906 
3907 /// parseGlobalValueVector
3908 ///   ::= /*empty*/
3909 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3910 bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3911                                       Optional<unsigned> *InRangeOp) {
3912   // Empty list.
3913   if (Lex.getKind() == lltok::rbrace ||
3914       Lex.getKind() == lltok::rsquare ||
3915       Lex.getKind() == lltok::greater ||
3916       Lex.getKind() == lltok::rparen)
3917     return false;
3918 
3919   do {
3920     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3921       *InRangeOp = Elts.size();
3922 
3923     Constant *C;
3924     if (parseGlobalTypeAndValue(C))
3925       return true;
3926     Elts.push_back(C);
3927   } while (EatIfPresent(lltok::comma));
3928 
3929   return false;
3930 }
3931 
3932 bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) {
3933   SmallVector<Metadata *, 16> Elts;
3934   if (parseMDNodeVector(Elts))
3935     return true;
3936 
3937   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3938   return false;
3939 }
3940 
3941 /// MDNode:
3942 ///  ::= !{ ... }
3943 ///  ::= !7
3944 ///  ::= !DILocation(...)
3945 bool LLParser::parseMDNode(MDNode *&N) {
3946   if (Lex.getKind() == lltok::MetadataVar)
3947     return parseSpecializedMDNode(N);
3948 
3949   return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N);
3950 }
3951 
3952 bool LLParser::parseMDNodeTail(MDNode *&N) {
3953   // !{ ... }
3954   if (Lex.getKind() == lltok::lbrace)
3955     return parseMDTuple(N);
3956 
3957   // !42
3958   return parseMDNodeID(N);
3959 }
3960 
3961 namespace {
3962 
3963 /// Structure to represent an optional metadata field.
3964 template <class FieldTy> struct MDFieldImpl {
3965   typedef MDFieldImpl ImplTy;
3966   FieldTy Val;
3967   bool Seen;
3968 
3969   void assign(FieldTy Val) {
3970     Seen = true;
3971     this->Val = std::move(Val);
3972   }
3973 
3974   explicit MDFieldImpl(FieldTy Default)
3975       : Val(std::move(Default)), Seen(false) {}
3976 };
3977 
3978 /// Structure to represent an optional metadata field that
3979 /// can be of either type (A or B) and encapsulates the
3980 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
3981 /// to reimplement the specifics for representing each Field.
3982 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
3983   typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
3984   FieldTypeA A;
3985   FieldTypeB B;
3986   bool Seen;
3987 
3988   enum {
3989     IsInvalid = 0,
3990     IsTypeA = 1,
3991     IsTypeB = 2
3992   } WhatIs;
3993 
3994   void assign(FieldTypeA A) {
3995     Seen = true;
3996     this->A = std::move(A);
3997     WhatIs = IsTypeA;
3998   }
3999 
4000   void assign(FieldTypeB B) {
4001     Seen = true;
4002     this->B = std::move(B);
4003     WhatIs = IsTypeB;
4004   }
4005 
4006   explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
4007       : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
4008         WhatIs(IsInvalid) {}
4009 };
4010 
4011 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
4012   uint64_t Max;
4013 
4014   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
4015       : ImplTy(Default), Max(Max) {}
4016 };
4017 
4018 struct LineField : public MDUnsignedField {
4019   LineField() : MDUnsignedField(0, UINT32_MAX) {}
4020 };
4021 
4022 struct ColumnField : public MDUnsignedField {
4023   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
4024 };
4025 
4026 struct DwarfTagField : public MDUnsignedField {
4027   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
4028   DwarfTagField(dwarf::Tag DefaultTag)
4029       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
4030 };
4031 
4032 struct DwarfMacinfoTypeField : public MDUnsignedField {
4033   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
4034   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
4035     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
4036 };
4037 
4038 struct DwarfAttEncodingField : public MDUnsignedField {
4039   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
4040 };
4041 
4042 struct DwarfVirtualityField : public MDUnsignedField {
4043   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
4044 };
4045 
4046 struct DwarfLangField : public MDUnsignedField {
4047   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
4048 };
4049 
4050 struct DwarfCCField : public MDUnsignedField {
4051   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
4052 };
4053 
4054 struct EmissionKindField : public MDUnsignedField {
4055   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
4056 };
4057 
4058 struct NameTableKindField : public MDUnsignedField {
4059   NameTableKindField()
4060       : MDUnsignedField(
4061             0, (unsigned)
4062                    DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
4063 };
4064 
4065 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
4066   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
4067 };
4068 
4069 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
4070   DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
4071 };
4072 
4073 struct MDAPSIntField : public MDFieldImpl<APSInt> {
4074   MDAPSIntField() : ImplTy(APSInt()) {}
4075 };
4076 
4077 struct MDSignedField : public MDFieldImpl<int64_t> {
4078   int64_t Min;
4079   int64_t Max;
4080 
4081   MDSignedField(int64_t Default = 0)
4082       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
4083   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
4084       : ImplTy(Default), Min(Min), Max(Max) {}
4085 };
4086 
4087 struct MDBoolField : public MDFieldImpl<bool> {
4088   MDBoolField(bool Default = false) : ImplTy(Default) {}
4089 };
4090 
4091 struct MDField : public MDFieldImpl<Metadata *> {
4092   bool AllowNull;
4093 
4094   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
4095 };
4096 
4097 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
4098   MDConstant() : ImplTy(nullptr) {}
4099 };
4100 
4101 struct MDStringField : public MDFieldImpl<MDString *> {
4102   bool AllowEmpty;
4103   MDStringField(bool AllowEmpty = true)
4104       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
4105 };
4106 
4107 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
4108   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
4109 };
4110 
4111 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
4112   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
4113 };
4114 
4115 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
4116   MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
4117       : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
4118 
4119   MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
4120                     bool AllowNull = true)
4121       : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
4122 
4123   bool isMDSignedField() const { return WhatIs == IsTypeA; }
4124   bool isMDField() const { return WhatIs == IsTypeB; }
4125   int64_t getMDSignedValue() const {
4126     assert(isMDSignedField() && "Wrong field type");
4127     return A.Val;
4128   }
4129   Metadata *getMDFieldValue() const {
4130     assert(isMDField() && "Wrong field type");
4131     return B.Val;
4132   }
4133 };
4134 
4135 struct MDSignedOrUnsignedField
4136     : MDEitherFieldImpl<MDSignedField, MDUnsignedField> {
4137   MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {}
4138 
4139   bool isMDSignedField() const { return WhatIs == IsTypeA; }
4140   bool isMDUnsignedField() const { return WhatIs == IsTypeB; }
4141   int64_t getMDSignedValue() const {
4142     assert(isMDSignedField() && "Wrong field type");
4143     return A.Val;
4144   }
4145   uint64_t getMDUnsignedValue() const {
4146     assert(isMDUnsignedField() && "Wrong field type");
4147     return B.Val;
4148   }
4149 };
4150 
4151 } // end anonymous namespace
4152 
4153 namespace llvm {
4154 
4155 template <>
4156 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) {
4157   if (Lex.getKind() != lltok::APSInt)
4158     return tokError("expected integer");
4159 
4160   Result.assign(Lex.getAPSIntVal());
4161   Lex.Lex();
4162   return false;
4163 }
4164 
4165 template <>
4166 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4167                             MDUnsignedField &Result) {
4168   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4169     return tokError("expected unsigned integer");
4170 
4171   auto &U = Lex.getAPSIntVal();
4172   if (U.ugt(Result.Max))
4173     return tokError("value for '" + Name + "' too large, limit is " +
4174                     Twine(Result.Max));
4175   Result.assign(U.getZExtValue());
4176   assert(Result.Val <= Result.Max && "Expected value in range");
4177   Lex.Lex();
4178   return false;
4179 }
4180 
4181 template <>
4182 bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) {
4183   return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4184 }
4185 template <>
4186 bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
4187   return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4188 }
4189 
4190 template <>
4191 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
4192   if (Lex.getKind() == lltok::APSInt)
4193     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4194 
4195   if (Lex.getKind() != lltok::DwarfTag)
4196     return tokError("expected DWARF tag");
4197 
4198   unsigned Tag = dwarf::getTag(Lex.getStrVal());
4199   if (Tag == dwarf::DW_TAG_invalid)
4200     return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
4201   assert(Tag <= Result.Max && "Expected valid DWARF tag");
4202 
4203   Result.assign(Tag);
4204   Lex.Lex();
4205   return false;
4206 }
4207 
4208 template <>
4209 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4210                             DwarfMacinfoTypeField &Result) {
4211   if (Lex.getKind() == lltok::APSInt)
4212     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4213 
4214   if (Lex.getKind() != lltok::DwarfMacinfo)
4215     return tokError("expected DWARF macinfo type");
4216 
4217   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
4218   if (Macinfo == dwarf::DW_MACINFO_invalid)
4219     return tokError("invalid DWARF macinfo type" + Twine(" '") +
4220                     Lex.getStrVal() + "'");
4221   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
4222 
4223   Result.assign(Macinfo);
4224   Lex.Lex();
4225   return false;
4226 }
4227 
4228 template <>
4229 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4230                             DwarfVirtualityField &Result) {
4231   if (Lex.getKind() == lltok::APSInt)
4232     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4233 
4234   if (Lex.getKind() != lltok::DwarfVirtuality)
4235     return tokError("expected DWARF virtuality code");
4236 
4237   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
4238   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
4239     return tokError("invalid DWARF virtuality code" + Twine(" '") +
4240                     Lex.getStrVal() + "'");
4241   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
4242   Result.assign(Virtuality);
4243   Lex.Lex();
4244   return false;
4245 }
4246 
4247 template <>
4248 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
4249   if (Lex.getKind() == lltok::APSInt)
4250     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4251 
4252   if (Lex.getKind() != lltok::DwarfLang)
4253     return tokError("expected DWARF language");
4254 
4255   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
4256   if (!Lang)
4257     return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
4258                     "'");
4259   assert(Lang <= Result.Max && "Expected valid DWARF language");
4260   Result.assign(Lang);
4261   Lex.Lex();
4262   return false;
4263 }
4264 
4265 template <>
4266 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
4267   if (Lex.getKind() == lltok::APSInt)
4268     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4269 
4270   if (Lex.getKind() != lltok::DwarfCC)
4271     return tokError("expected DWARF calling convention");
4272 
4273   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
4274   if (!CC)
4275     return tokError("invalid DWARF calling convention" + Twine(" '") +
4276                     Lex.getStrVal() + "'");
4277   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
4278   Result.assign(CC);
4279   Lex.Lex();
4280   return false;
4281 }
4282 
4283 template <>
4284 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4285                             EmissionKindField &Result) {
4286   if (Lex.getKind() == lltok::APSInt)
4287     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4288 
4289   if (Lex.getKind() != lltok::EmissionKind)
4290     return tokError("expected emission kind");
4291 
4292   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
4293   if (!Kind)
4294     return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
4295                     "'");
4296   assert(*Kind <= Result.Max && "Expected valid emission kind");
4297   Result.assign(*Kind);
4298   Lex.Lex();
4299   return false;
4300 }
4301 
4302 template <>
4303 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4304                             NameTableKindField &Result) {
4305   if (Lex.getKind() == lltok::APSInt)
4306     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4307 
4308   if (Lex.getKind() != lltok::NameTableKind)
4309     return tokError("expected nameTable kind");
4310 
4311   auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
4312   if (!Kind)
4313     return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
4314                     "'");
4315   assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
4316   Result.assign((unsigned)*Kind);
4317   Lex.Lex();
4318   return false;
4319 }
4320 
4321 template <>
4322 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4323                             DwarfAttEncodingField &Result) {
4324   if (Lex.getKind() == lltok::APSInt)
4325     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4326 
4327   if (Lex.getKind() != lltok::DwarfAttEncoding)
4328     return tokError("expected DWARF type attribute encoding");
4329 
4330   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4331   if (!Encoding)
4332     return tokError("invalid DWARF type attribute encoding" + Twine(" '") +
4333                     Lex.getStrVal() + "'");
4334   assert(Encoding <= Result.Max && "Expected valid DWARF language");
4335   Result.assign(Encoding);
4336   Lex.Lex();
4337   return false;
4338 }
4339 
4340 /// DIFlagField
4341 ///  ::= uint32
4342 ///  ::= DIFlagVector
4343 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4344 template <>
4345 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4346 
4347   // parser for a single flag.
4348   auto parseFlag = [&](DINode::DIFlags &Val) {
4349     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4350       uint32_t TempVal = static_cast<uint32_t>(Val);
4351       bool Res = parseUInt32(TempVal);
4352       Val = static_cast<DINode::DIFlags>(TempVal);
4353       return Res;
4354     }
4355 
4356     if (Lex.getKind() != lltok::DIFlag)
4357       return tokError("expected debug info flag");
4358 
4359     Val = DINode::getFlag(Lex.getStrVal());
4360     if (!Val)
4361       return tokError(Twine("invalid debug info flag flag '") +
4362                       Lex.getStrVal() + "'");
4363     Lex.Lex();
4364     return false;
4365   };
4366 
4367   // parse the flags and combine them together.
4368   DINode::DIFlags Combined = DINode::FlagZero;
4369   do {
4370     DINode::DIFlags Val;
4371     if (parseFlag(Val))
4372       return true;
4373     Combined |= Val;
4374   } while (EatIfPresent(lltok::bar));
4375 
4376   Result.assign(Combined);
4377   return false;
4378 }
4379 
4380 /// DISPFlagField
4381 ///  ::= uint32
4382 ///  ::= DISPFlagVector
4383 ///  ::= DISPFlagVector '|' DISPFlag* '|' uint32
4384 template <>
4385 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4386 
4387   // parser for a single flag.
4388   auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4389     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4390       uint32_t TempVal = static_cast<uint32_t>(Val);
4391       bool Res = parseUInt32(TempVal);
4392       Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4393       return Res;
4394     }
4395 
4396     if (Lex.getKind() != lltok::DISPFlag)
4397       return tokError("expected debug info flag");
4398 
4399     Val = DISubprogram::getFlag(Lex.getStrVal());
4400     if (!Val)
4401       return tokError(Twine("invalid subprogram debug info flag '") +
4402                       Lex.getStrVal() + "'");
4403     Lex.Lex();
4404     return false;
4405   };
4406 
4407   // parse the flags and combine them together.
4408   DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4409   do {
4410     DISubprogram::DISPFlags Val;
4411     if (parseFlag(Val))
4412       return true;
4413     Combined |= Val;
4414   } while (EatIfPresent(lltok::bar));
4415 
4416   Result.assign(Combined);
4417   return false;
4418 }
4419 
4420 template <>
4421 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) {
4422   if (Lex.getKind() != lltok::APSInt)
4423     return tokError("expected signed integer");
4424 
4425   auto &S = Lex.getAPSIntVal();
4426   if (S < Result.Min)
4427     return tokError("value for '" + Name + "' too small, limit is " +
4428                     Twine(Result.Min));
4429   if (S > Result.Max)
4430     return tokError("value for '" + Name + "' too large, limit is " +
4431                     Twine(Result.Max));
4432   Result.assign(S.getExtValue());
4433   assert(Result.Val >= Result.Min && "Expected value in range");
4434   assert(Result.Val <= Result.Max && "Expected value in range");
4435   Lex.Lex();
4436   return false;
4437 }
4438 
4439 template <>
4440 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4441   switch (Lex.getKind()) {
4442   default:
4443     return tokError("expected 'true' or 'false'");
4444   case lltok::kw_true:
4445     Result.assign(true);
4446     break;
4447   case lltok::kw_false:
4448     Result.assign(false);
4449     break;
4450   }
4451   Lex.Lex();
4452   return false;
4453 }
4454 
4455 template <>
4456 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4457   if (Lex.getKind() == lltok::kw_null) {
4458     if (!Result.AllowNull)
4459       return tokError("'" + Name + "' cannot be null");
4460     Lex.Lex();
4461     Result.assign(nullptr);
4462     return false;
4463   }
4464 
4465   Metadata *MD;
4466   if (parseMetadata(MD, nullptr))
4467     return true;
4468 
4469   Result.assign(MD);
4470   return false;
4471 }
4472 
4473 template <>
4474 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4475                             MDSignedOrMDField &Result) {
4476   // Try to parse a signed int.
4477   if (Lex.getKind() == lltok::APSInt) {
4478     MDSignedField Res = Result.A;
4479     if (!parseMDField(Loc, Name, Res)) {
4480       Result.assign(Res);
4481       return false;
4482     }
4483     return true;
4484   }
4485 
4486   // Otherwise, try to parse as an MDField.
4487   MDField Res = Result.B;
4488   if (!parseMDField(Loc, Name, Res)) {
4489     Result.assign(Res);
4490     return false;
4491   }
4492 
4493   return true;
4494 }
4495 
4496 template <>
4497 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4498   LocTy ValueLoc = Lex.getLoc();
4499   std::string S;
4500   if (parseStringConstant(S))
4501     return true;
4502 
4503   if (!Result.AllowEmpty && S.empty())
4504     return error(ValueLoc, "'" + Name + "' cannot be empty");
4505 
4506   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4507   return false;
4508 }
4509 
4510 template <>
4511 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4512   SmallVector<Metadata *, 4> MDs;
4513   if (parseMDNodeVector(MDs))
4514     return true;
4515 
4516   Result.assign(std::move(MDs));
4517   return false;
4518 }
4519 
4520 template <>
4521 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4522                             ChecksumKindField &Result) {
4523   Optional<DIFile::ChecksumKind> CSKind =
4524       DIFile::getChecksumKind(Lex.getStrVal());
4525 
4526   if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4527     return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() +
4528                     "'");
4529 
4530   Result.assign(*CSKind);
4531   Lex.Lex();
4532   return false;
4533 }
4534 
4535 } // end namespace llvm
4536 
4537 template <class ParserTy>
4538 bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) {
4539   do {
4540     if (Lex.getKind() != lltok::LabelStr)
4541       return tokError("expected field label here");
4542 
4543     if (ParseField())
4544       return true;
4545   } while (EatIfPresent(lltok::comma));
4546 
4547   return false;
4548 }
4549 
4550 template <class ParserTy>
4551 bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) {
4552   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4553   Lex.Lex();
4554 
4555   if (parseToken(lltok::lparen, "expected '(' here"))
4556     return true;
4557   if (Lex.getKind() != lltok::rparen)
4558     if (parseMDFieldsImplBody(ParseField))
4559       return true;
4560 
4561   ClosingLoc = Lex.getLoc();
4562   return parseToken(lltok::rparen, "expected ')' here");
4563 }
4564 
4565 template <class FieldTy>
4566 bool LLParser::parseMDField(StringRef Name, FieldTy &Result) {
4567   if (Result.Seen)
4568     return tokError("field '" + Name + "' cannot be specified more than once");
4569 
4570   LocTy Loc = Lex.getLoc();
4571   Lex.Lex();
4572   return parseMDField(Loc, Name, Result);
4573 }
4574 
4575 bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4576   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4577 
4578 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
4579   if (Lex.getStrVal() == #CLASS)                                               \
4580     return parse##CLASS(N, IsDistinct);
4581 #include "llvm/IR/Metadata.def"
4582 
4583   return tokError("expected metadata type");
4584 }
4585 
4586 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4587 #define NOP_FIELD(NAME, TYPE, INIT)
4588 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
4589   if (!NAME.Seen)                                                              \
4590     return error(ClosingLoc, "missing required field '" #NAME "'");
4591 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
4592   if (Lex.getStrVal() == #NAME)                                                \
4593     return parseMDField(#NAME, NAME);
4594 #define PARSE_MD_FIELDS()                                                      \
4595   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
4596   do {                                                                         \
4597     LocTy ClosingLoc;                                                          \
4598     if (parseMDFieldsImpl(                                                     \
4599             [&]() -> bool {                                                    \
4600               VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                  \
4601               return tokError(Twine("invalid field '") + Lex.getStrVal() +     \
4602                               "'");                                            \
4603             },                                                                 \
4604             ClosingLoc))                                                       \
4605       return true;                                                             \
4606     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
4607   } while (false)
4608 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
4609   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4610 
4611 /// parseDILocationFields:
4612 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4613 ///   isImplicitCode: true)
4614 bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) {
4615 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4616   OPTIONAL(line, LineField, );                                                 \
4617   OPTIONAL(column, ColumnField, );                                             \
4618   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4619   OPTIONAL(inlinedAt, MDField, );                                              \
4620   OPTIONAL(isImplicitCode, MDBoolField, (false));
4621   PARSE_MD_FIELDS();
4622 #undef VISIT_MD_FIELDS
4623 
4624   Result =
4625       GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4626                                    inlinedAt.Val, isImplicitCode.Val));
4627   return false;
4628 }
4629 
4630 /// parseGenericDINode:
4631 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4632 bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) {
4633 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4634   REQUIRED(tag, DwarfTagField, );                                              \
4635   OPTIONAL(header, MDStringField, );                                           \
4636   OPTIONAL(operands, MDFieldList, );
4637   PARSE_MD_FIELDS();
4638 #undef VISIT_MD_FIELDS
4639 
4640   Result = GET_OR_DISTINCT(GenericDINode,
4641                            (Context, tag.Val, header.Val, operands.Val));
4642   return false;
4643 }
4644 
4645 /// parseDISubrange:
4646 ///   ::= !DISubrange(count: 30, lowerBound: 2)
4647 ///   ::= !DISubrange(count: !node, lowerBound: 2)
4648 ///   ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3)
4649 bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) {
4650 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4651   OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false));              \
4652   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
4653   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
4654   OPTIONAL(stride, MDSignedOrMDField, );
4655   PARSE_MD_FIELDS();
4656 #undef VISIT_MD_FIELDS
4657 
4658   Metadata *Count = nullptr;
4659   Metadata *LowerBound = nullptr;
4660   Metadata *UpperBound = nullptr;
4661   Metadata *Stride = nullptr;
4662   if (count.isMDSignedField())
4663     Count = ConstantAsMetadata::get(ConstantInt::getSigned(
4664         Type::getInt64Ty(Context), count.getMDSignedValue()));
4665   else if (count.isMDField())
4666     Count = count.getMDFieldValue();
4667 
4668   auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4669     if (Bound.isMDSignedField())
4670       return ConstantAsMetadata::get(ConstantInt::getSigned(
4671           Type::getInt64Ty(Context), Bound.getMDSignedValue()));
4672     if (Bound.isMDField())
4673       return Bound.getMDFieldValue();
4674     return nullptr;
4675   };
4676 
4677   LowerBound = convToMetadata(lowerBound);
4678   UpperBound = convToMetadata(upperBound);
4679   Stride = convToMetadata(stride);
4680 
4681   Result = GET_OR_DISTINCT(DISubrange,
4682                            (Context, Count, LowerBound, UpperBound, Stride));
4683 
4684   return false;
4685 }
4686 
4687 /// parseDIGenericSubrange:
4688 ///   ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride:
4689 ///   !node3)
4690 bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) {
4691 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4692   OPTIONAL(count, MDSignedOrMDField, );                                        \
4693   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
4694   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
4695   OPTIONAL(stride, MDSignedOrMDField, );
4696   PARSE_MD_FIELDS();
4697 #undef VISIT_MD_FIELDS
4698 
4699   auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4700     if (Bound.isMDSignedField())
4701       return DIExpression::get(
4702           Context, {dwarf::DW_OP_consts,
4703                     static_cast<uint64_t>(Bound.getMDSignedValue())});
4704     if (Bound.isMDField())
4705       return Bound.getMDFieldValue();
4706     return nullptr;
4707   };
4708 
4709   Metadata *Count = ConvToMetadata(count);
4710   Metadata *LowerBound = ConvToMetadata(lowerBound);
4711   Metadata *UpperBound = ConvToMetadata(upperBound);
4712   Metadata *Stride = ConvToMetadata(stride);
4713 
4714   Result = GET_OR_DISTINCT(DIGenericSubrange,
4715                            (Context, Count, LowerBound, UpperBound, Stride));
4716 
4717   return false;
4718 }
4719 
4720 /// parseDIEnumerator:
4721 ///   ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4722 bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4723 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4724   REQUIRED(name, MDStringField, );                                             \
4725   REQUIRED(value, MDAPSIntField, );                                            \
4726   OPTIONAL(isUnsigned, MDBoolField, (false));
4727   PARSE_MD_FIELDS();
4728 #undef VISIT_MD_FIELDS
4729 
4730   if (isUnsigned.Val && value.Val.isNegative())
4731     return tokError("unsigned enumerator with negative value");
4732 
4733   APSInt Value(value.Val);
4734   // Add a leading zero so that unsigned values with the msb set are not
4735   // mistaken for negative values when used for signed enumerators.
4736   if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet())
4737     Value = Value.zext(Value.getBitWidth() + 1);
4738 
4739   Result =
4740       GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4741 
4742   return false;
4743 }
4744 
4745 /// parseDIBasicType:
4746 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4747 ///                    encoding: DW_ATE_encoding, flags: 0)
4748 bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) {
4749 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4750   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
4751   OPTIONAL(name, MDStringField, );                                             \
4752   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4753   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4754   OPTIONAL(encoding, DwarfAttEncodingField, );                                 \
4755   OPTIONAL(flags, DIFlagField, );
4756   PARSE_MD_FIELDS();
4757 #undef VISIT_MD_FIELDS
4758 
4759   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4760                                          align.Val, encoding.Val, flags.Val));
4761   return false;
4762 }
4763 
4764 /// parseDIStringType:
4765 ///   ::= !DIStringType(name: "character(4)", size: 32, align: 32)
4766 bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) {
4767 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4768   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type));                   \
4769   OPTIONAL(name, MDStringField, );                                             \
4770   OPTIONAL(stringLength, MDField, );                                           \
4771   OPTIONAL(stringLengthExpression, MDField, );                                 \
4772   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4773   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4774   OPTIONAL(encoding, DwarfAttEncodingField, );
4775   PARSE_MD_FIELDS();
4776 #undef VISIT_MD_FIELDS
4777 
4778   Result = GET_OR_DISTINCT(DIStringType,
4779                            (Context, tag.Val, name.Val, stringLength.Val,
4780                             stringLengthExpression.Val, size.Val, align.Val,
4781                             encoding.Val));
4782   return false;
4783 }
4784 
4785 /// parseDIDerivedType:
4786 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4787 ///                      line: 7, scope: !1, baseType: !2, size: 32,
4788 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
4789 ///                      dwarfAddressSpace: 3)
4790 bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4791 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4792   REQUIRED(tag, DwarfTagField, );                                              \
4793   OPTIONAL(name, MDStringField, );                                             \
4794   OPTIONAL(file, MDField, );                                                   \
4795   OPTIONAL(line, LineField, );                                                 \
4796   OPTIONAL(scope, MDField, );                                                  \
4797   REQUIRED(baseType, MDField, );                                               \
4798   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4799   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4800   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4801   OPTIONAL(flags, DIFlagField, );                                              \
4802   OPTIONAL(extraData, MDField, );                                              \
4803   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
4804   PARSE_MD_FIELDS();
4805 #undef VISIT_MD_FIELDS
4806 
4807   Optional<unsigned> DWARFAddressSpace;
4808   if (dwarfAddressSpace.Val != UINT32_MAX)
4809     DWARFAddressSpace = dwarfAddressSpace.Val;
4810 
4811   Result = GET_OR_DISTINCT(DIDerivedType,
4812                            (Context, tag.Val, name.Val, file.Val, line.Val,
4813                             scope.Val, baseType.Val, size.Val, align.Val,
4814                             offset.Val, DWARFAddressSpace, flags.Val,
4815                             extraData.Val));
4816   return false;
4817 }
4818 
4819 bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) {
4820 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4821   REQUIRED(tag, DwarfTagField, );                                              \
4822   OPTIONAL(name, MDStringField, );                                             \
4823   OPTIONAL(file, MDField, );                                                   \
4824   OPTIONAL(line, LineField, );                                                 \
4825   OPTIONAL(scope, MDField, );                                                  \
4826   OPTIONAL(baseType, MDField, );                                               \
4827   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4828   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4829   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4830   OPTIONAL(flags, DIFlagField, );                                              \
4831   OPTIONAL(elements, MDField, );                                               \
4832   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
4833   OPTIONAL(vtableHolder, MDField, );                                           \
4834   OPTIONAL(templateParams, MDField, );                                         \
4835   OPTIONAL(identifier, MDStringField, );                                       \
4836   OPTIONAL(discriminator, MDField, );                                          \
4837   OPTIONAL(dataLocation, MDField, );                                           \
4838   OPTIONAL(associated, MDField, );                                             \
4839   OPTIONAL(allocated, MDField, );                                              \
4840   OPTIONAL(rank, MDSignedOrMDField, );
4841   PARSE_MD_FIELDS();
4842 #undef VISIT_MD_FIELDS
4843 
4844   Metadata *Rank = nullptr;
4845   if (rank.isMDSignedField())
4846     Rank = ConstantAsMetadata::get(ConstantInt::getSigned(
4847         Type::getInt64Ty(Context), rank.getMDSignedValue()));
4848   else if (rank.isMDField())
4849     Rank = rank.getMDFieldValue();
4850 
4851   // If this has an identifier try to build an ODR type.
4852   if (identifier.Val)
4853     if (auto *CT = DICompositeType::buildODRType(
4854             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4855             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4856             elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val,
4857             discriminator.Val, dataLocation.Val, associated.Val, allocated.Val,
4858             Rank)) {
4859       Result = CT;
4860       return false;
4861     }
4862 
4863   // Create a new node, and save it in the context if it belongs in the type
4864   // map.
4865   Result = GET_OR_DISTINCT(
4866       DICompositeType,
4867       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4868        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4869        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4870        discriminator.Val, dataLocation.Val, associated.Val, allocated.Val,
4871        Rank));
4872   return false;
4873 }
4874 
4875 bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4876 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4877   OPTIONAL(flags, DIFlagField, );                                              \
4878   OPTIONAL(cc, DwarfCCField, );                                                \
4879   REQUIRED(types, MDField, );
4880   PARSE_MD_FIELDS();
4881 #undef VISIT_MD_FIELDS
4882 
4883   Result = GET_OR_DISTINCT(DISubroutineType,
4884                            (Context, flags.Val, cc.Val, types.Val));
4885   return false;
4886 }
4887 
4888 /// parseDIFileType:
4889 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4890 ///                   checksumkind: CSK_MD5,
4891 ///                   checksum: "000102030405060708090a0b0c0d0e0f",
4892 ///                   source: "source file contents")
4893 bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) {
4894   // The default constructed value for checksumkind is required, but will never
4895   // be used, as the parser checks if the field was actually Seen before using
4896   // the Val.
4897 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4898   REQUIRED(filename, MDStringField, );                                         \
4899   REQUIRED(directory, MDStringField, );                                        \
4900   OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5));                \
4901   OPTIONAL(checksum, MDStringField, );                                         \
4902   OPTIONAL(source, MDStringField, );
4903   PARSE_MD_FIELDS();
4904 #undef VISIT_MD_FIELDS
4905 
4906   Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
4907   if (checksumkind.Seen && checksum.Seen)
4908     OptChecksum.emplace(checksumkind.Val, checksum.Val);
4909   else if (checksumkind.Seen || checksum.Seen)
4910     return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4911 
4912   Optional<MDString *> OptSource;
4913   if (source.Seen)
4914     OptSource = source.Val;
4915   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4916                                     OptChecksum, OptSource));
4917   return false;
4918 }
4919 
4920 /// parseDICompileUnit:
4921 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4922 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
4923 ///                      splitDebugFilename: "abc.debug",
4924 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4925 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd,
4926 ///                      sysroot: "/", sdk: "MacOSX.sdk")
4927 bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4928   if (!IsDistinct)
4929     return Lex.Error("missing 'distinct', required for !DICompileUnit");
4930 
4931 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4932   REQUIRED(language, DwarfLangField, );                                        \
4933   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
4934   OPTIONAL(producer, MDStringField, );                                         \
4935   OPTIONAL(isOptimized, MDBoolField, );                                        \
4936   OPTIONAL(flags, MDStringField, );                                            \
4937   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
4938   OPTIONAL(splitDebugFilename, MDStringField, );                               \
4939   OPTIONAL(emissionKind, EmissionKindField, );                                 \
4940   OPTIONAL(enums, MDField, );                                                  \
4941   OPTIONAL(retainedTypes, MDField, );                                          \
4942   OPTIONAL(globals, MDField, );                                                \
4943   OPTIONAL(imports, MDField, );                                                \
4944   OPTIONAL(macros, MDField, );                                                 \
4945   OPTIONAL(dwoId, MDUnsignedField, );                                          \
4946   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
4947   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
4948   OPTIONAL(nameTableKind, NameTableKindField, );                               \
4949   OPTIONAL(rangesBaseAddress, MDBoolField, = false);                           \
4950   OPTIONAL(sysroot, MDStringField, );                                          \
4951   OPTIONAL(sdk, MDStringField, );
4952   PARSE_MD_FIELDS();
4953 #undef VISIT_MD_FIELDS
4954 
4955   Result = DICompileUnit::getDistinct(
4956       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4957       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4958       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4959       splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
4960       rangesBaseAddress.Val, sysroot.Val, sdk.Val);
4961   return false;
4962 }
4963 
4964 /// parseDISubprogram:
4965 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4966 ///                     file: !1, line: 7, type: !2, isLocal: false,
4967 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
4968 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
4969 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
4970 ///                     spFlags: 10, isOptimized: false, templateParams: !4,
4971 ///                     declaration: !5, retainedNodes: !6, thrownTypes: !7)
4972 bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) {
4973   auto Loc = Lex.getLoc();
4974 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4975   OPTIONAL(scope, MDField, );                                                  \
4976   OPTIONAL(name, MDStringField, );                                             \
4977   OPTIONAL(linkageName, MDStringField, );                                      \
4978   OPTIONAL(file, MDField, );                                                   \
4979   OPTIONAL(line, LineField, );                                                 \
4980   OPTIONAL(type, MDField, );                                                   \
4981   OPTIONAL(isLocal, MDBoolField, );                                            \
4982   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4983   OPTIONAL(scopeLine, LineField, );                                            \
4984   OPTIONAL(containingType, MDField, );                                         \
4985   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
4986   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
4987   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
4988   OPTIONAL(flags, DIFlagField, );                                              \
4989   OPTIONAL(spFlags, DISPFlagField, );                                          \
4990   OPTIONAL(isOptimized, MDBoolField, );                                        \
4991   OPTIONAL(unit, MDField, );                                                   \
4992   OPTIONAL(templateParams, MDField, );                                         \
4993   OPTIONAL(declaration, MDField, );                                            \
4994   OPTIONAL(retainedNodes, MDField, );                                          \
4995   OPTIONAL(thrownTypes, MDField, );
4996   PARSE_MD_FIELDS();
4997 #undef VISIT_MD_FIELDS
4998 
4999   // An explicit spFlags field takes precedence over individual fields in
5000   // older IR versions.
5001   DISubprogram::DISPFlags SPFlags =
5002       spFlags.Seen ? spFlags.Val
5003                    : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
5004                                              isOptimized.Val, virtuality.Val);
5005   if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
5006     return Lex.Error(
5007         Loc,
5008         "missing 'distinct', required for !DISubprogram that is a Definition");
5009   Result = GET_OR_DISTINCT(
5010       DISubprogram,
5011       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
5012        type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
5013        thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
5014        declaration.Val, retainedNodes.Val, thrownTypes.Val));
5015   return false;
5016 }
5017 
5018 /// parseDILexicalBlock:
5019 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
5020 bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
5021 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5022   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5023   OPTIONAL(file, MDField, );                                                   \
5024   OPTIONAL(line, LineField, );                                                 \
5025   OPTIONAL(column, ColumnField, );
5026   PARSE_MD_FIELDS();
5027 #undef VISIT_MD_FIELDS
5028 
5029   Result = GET_OR_DISTINCT(
5030       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
5031   return false;
5032 }
5033 
5034 /// parseDILexicalBlockFile:
5035 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
5036 bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
5037 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5038   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5039   OPTIONAL(file, MDField, );                                                   \
5040   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
5041   PARSE_MD_FIELDS();
5042 #undef VISIT_MD_FIELDS
5043 
5044   Result = GET_OR_DISTINCT(DILexicalBlockFile,
5045                            (Context, scope.Val, file.Val, discriminator.Val));
5046   return false;
5047 }
5048 
5049 /// parseDICommonBlock:
5050 ///   ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9)
5051 bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) {
5052 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5053   REQUIRED(scope, MDField, );                                                  \
5054   OPTIONAL(declaration, MDField, );                                            \
5055   OPTIONAL(name, MDStringField, );                                             \
5056   OPTIONAL(file, MDField, );                                                   \
5057   OPTIONAL(line, LineField, );
5058   PARSE_MD_FIELDS();
5059 #undef VISIT_MD_FIELDS
5060 
5061   Result = GET_OR_DISTINCT(DICommonBlock,
5062                            (Context, scope.Val, declaration.Val, name.Val,
5063                             file.Val, line.Val));
5064   return false;
5065 }
5066 
5067 /// parseDINamespace:
5068 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
5069 bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) {
5070 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5071   REQUIRED(scope, MDField, );                                                  \
5072   OPTIONAL(name, MDStringField, );                                             \
5073   OPTIONAL(exportSymbols, MDBoolField, );
5074   PARSE_MD_FIELDS();
5075 #undef VISIT_MD_FIELDS
5076 
5077   Result = GET_OR_DISTINCT(DINamespace,
5078                            (Context, scope.Val, name.Val, exportSymbols.Val));
5079   return false;
5080 }
5081 
5082 /// parseDIMacro:
5083 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value:
5084 ///   "SomeValue")
5085 bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) {
5086 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5087   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
5088   OPTIONAL(line, LineField, );                                                 \
5089   REQUIRED(name, MDStringField, );                                             \
5090   OPTIONAL(value, MDStringField, );
5091   PARSE_MD_FIELDS();
5092 #undef VISIT_MD_FIELDS
5093 
5094   Result = GET_OR_DISTINCT(DIMacro,
5095                            (Context, type.Val, line.Val, name.Val, value.Val));
5096   return false;
5097 }
5098 
5099 /// parseDIMacroFile:
5100 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
5101 bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) {
5102 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5103   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
5104   OPTIONAL(line, LineField, );                                                 \
5105   REQUIRED(file, MDField, );                                                   \
5106   OPTIONAL(nodes, MDField, );
5107   PARSE_MD_FIELDS();
5108 #undef VISIT_MD_FIELDS
5109 
5110   Result = GET_OR_DISTINCT(DIMacroFile,
5111                            (Context, type.Val, line.Val, file.Val, nodes.Val));
5112   return false;
5113 }
5114 
5115 /// parseDIModule:
5116 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros:
5117 ///   "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes",
5118 ///   file: !1, line: 4)
5119 bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) {
5120 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5121   REQUIRED(scope, MDField, );                                                  \
5122   REQUIRED(name, MDStringField, );                                             \
5123   OPTIONAL(configMacros, MDStringField, );                                     \
5124   OPTIONAL(includePath, MDStringField, );                                      \
5125   OPTIONAL(apinotes, MDStringField, );                                         \
5126   OPTIONAL(file, MDField, );                                                   \
5127   OPTIONAL(line, LineField, );
5128   PARSE_MD_FIELDS();
5129 #undef VISIT_MD_FIELDS
5130 
5131   Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val,
5132                                       configMacros.Val, includePath.Val,
5133                                       apinotes.Val, line.Val));
5134   return false;
5135 }
5136 
5137 /// parseDITemplateTypeParameter:
5138 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false)
5139 bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
5140 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5141   OPTIONAL(name, MDStringField, );                                             \
5142   REQUIRED(type, MDField, );                                                   \
5143   OPTIONAL(defaulted, MDBoolField, );
5144   PARSE_MD_FIELDS();
5145 #undef VISIT_MD_FIELDS
5146 
5147   Result = GET_OR_DISTINCT(DITemplateTypeParameter,
5148                            (Context, name.Val, type.Val, defaulted.Val));
5149   return false;
5150 }
5151 
5152 /// parseDITemplateValueParameter:
5153 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
5154 ///                                 name: "V", type: !1, defaulted: false,
5155 ///                                 value: i32 7)
5156 bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
5157 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5158   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
5159   OPTIONAL(name, MDStringField, );                                             \
5160   OPTIONAL(type, MDField, );                                                   \
5161   OPTIONAL(defaulted, MDBoolField, );                                          \
5162   REQUIRED(value, MDField, );
5163 
5164   PARSE_MD_FIELDS();
5165 #undef VISIT_MD_FIELDS
5166 
5167   Result = GET_OR_DISTINCT(
5168       DITemplateValueParameter,
5169       (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val));
5170   return false;
5171 }
5172 
5173 /// parseDIGlobalVariable:
5174 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
5175 ///                         file: !1, line: 7, type: !2, isLocal: false,
5176 ///                         isDefinition: true, templateParams: !3,
5177 ///                         declaration: !4, align: 8)
5178 bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
5179 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5180   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
5181   OPTIONAL(scope, MDField, );                                                  \
5182   OPTIONAL(linkageName, MDStringField, );                                      \
5183   OPTIONAL(file, MDField, );                                                   \
5184   OPTIONAL(line, LineField, );                                                 \
5185   OPTIONAL(type, MDField, );                                                   \
5186   OPTIONAL(isLocal, MDBoolField, );                                            \
5187   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
5188   OPTIONAL(templateParams, MDField, );                                         \
5189   OPTIONAL(declaration, MDField, );                                            \
5190   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
5191   PARSE_MD_FIELDS();
5192 #undef VISIT_MD_FIELDS
5193 
5194   Result =
5195       GET_OR_DISTINCT(DIGlobalVariable,
5196                       (Context, scope.Val, name.Val, linkageName.Val, file.Val,
5197                        line.Val, type.Val, isLocal.Val, isDefinition.Val,
5198                        declaration.Val, templateParams.Val, align.Val));
5199   return false;
5200 }
5201 
5202 /// parseDILocalVariable:
5203 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
5204 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
5205 ///                        align: 8)
5206 ///   ::= !DILocalVariable(scope: !0, name: "foo",
5207 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
5208 ///                        align: 8)
5209 bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) {
5210 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5211   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5212   OPTIONAL(name, MDStringField, );                                             \
5213   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
5214   OPTIONAL(file, MDField, );                                                   \
5215   OPTIONAL(line, LineField, );                                                 \
5216   OPTIONAL(type, MDField, );                                                   \
5217   OPTIONAL(flags, DIFlagField, );                                              \
5218   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
5219   PARSE_MD_FIELDS();
5220 #undef VISIT_MD_FIELDS
5221 
5222   Result = GET_OR_DISTINCT(DILocalVariable,
5223                            (Context, scope.Val, name.Val, file.Val, line.Val,
5224                             type.Val, arg.Val, flags.Val, align.Val));
5225   return false;
5226 }
5227 
5228 /// parseDILabel:
5229 ///   ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
5230 bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) {
5231 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5232   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5233   REQUIRED(name, MDStringField, );                                             \
5234   REQUIRED(file, MDField, );                                                   \
5235   REQUIRED(line, LineField, );
5236   PARSE_MD_FIELDS();
5237 #undef VISIT_MD_FIELDS
5238 
5239   Result = GET_OR_DISTINCT(DILabel,
5240                            (Context, scope.Val, name.Val, file.Val, line.Val));
5241   return false;
5242 }
5243 
5244 /// parseDIExpression:
5245 ///   ::= !DIExpression(0, 7, -1)
5246 bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) {
5247   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5248   Lex.Lex();
5249 
5250   if (parseToken(lltok::lparen, "expected '(' here"))
5251     return true;
5252 
5253   SmallVector<uint64_t, 8> Elements;
5254   if (Lex.getKind() != lltok::rparen)
5255     do {
5256       if (Lex.getKind() == lltok::DwarfOp) {
5257         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
5258           Lex.Lex();
5259           Elements.push_back(Op);
5260           continue;
5261         }
5262         return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
5263       }
5264 
5265       if (Lex.getKind() == lltok::DwarfAttEncoding) {
5266         if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) {
5267           Lex.Lex();
5268           Elements.push_back(Op);
5269           continue;
5270         }
5271         return tokError(Twine("invalid DWARF attribute encoding '") +
5272                         Lex.getStrVal() + "'");
5273       }
5274 
5275       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
5276         return tokError("expected unsigned integer");
5277 
5278       auto &U = Lex.getAPSIntVal();
5279       if (U.ugt(UINT64_MAX))
5280         return tokError("element too large, limit is " + Twine(UINT64_MAX));
5281       Elements.push_back(U.getZExtValue());
5282       Lex.Lex();
5283     } while (EatIfPresent(lltok::comma));
5284 
5285   if (parseToken(lltok::rparen, "expected ')' here"))
5286     return true;
5287 
5288   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
5289   return false;
5290 }
5291 
5292 /// parseDIGlobalVariableExpression:
5293 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
5294 bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result,
5295                                                bool IsDistinct) {
5296 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5297   REQUIRED(var, MDField, );                                                    \
5298   REQUIRED(expr, MDField, );
5299   PARSE_MD_FIELDS();
5300 #undef VISIT_MD_FIELDS
5301 
5302   Result =
5303       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
5304   return false;
5305 }
5306 
5307 /// parseDIObjCProperty:
5308 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
5309 ///                       getter: "getFoo", attributes: 7, type: !2)
5310 bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
5311 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5312   OPTIONAL(name, MDStringField, );                                             \
5313   OPTIONAL(file, MDField, );                                                   \
5314   OPTIONAL(line, LineField, );                                                 \
5315   OPTIONAL(setter, MDStringField, );                                           \
5316   OPTIONAL(getter, MDStringField, );                                           \
5317   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
5318   OPTIONAL(type, MDField, );
5319   PARSE_MD_FIELDS();
5320 #undef VISIT_MD_FIELDS
5321 
5322   Result = GET_OR_DISTINCT(DIObjCProperty,
5323                            (Context, name.Val, file.Val, line.Val, setter.Val,
5324                             getter.Val, attributes.Val, type.Val));
5325   return false;
5326 }
5327 
5328 /// parseDIImportedEntity:
5329 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
5330 ///                         line: 7, name: "foo")
5331 bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
5332 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5333   REQUIRED(tag, DwarfTagField, );                                              \
5334   REQUIRED(scope, MDField, );                                                  \
5335   OPTIONAL(entity, MDField, );                                                 \
5336   OPTIONAL(file, MDField, );                                                   \
5337   OPTIONAL(line, LineField, );                                                 \
5338   OPTIONAL(name, MDStringField, );
5339   PARSE_MD_FIELDS();
5340 #undef VISIT_MD_FIELDS
5341 
5342   Result = GET_OR_DISTINCT(
5343       DIImportedEntity,
5344       (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
5345   return false;
5346 }
5347 
5348 #undef PARSE_MD_FIELD
5349 #undef NOP_FIELD
5350 #undef REQUIRE_FIELD
5351 #undef DECLARE_FIELD
5352 
5353 /// parseMetadataAsValue
5354 ///  ::= metadata i32 %local
5355 ///  ::= metadata i32 @global
5356 ///  ::= metadata i32 7
5357 ///  ::= metadata !0
5358 ///  ::= metadata !{...}
5359 ///  ::= metadata !"string"
5360 bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
5361   // Note: the type 'metadata' has already been parsed.
5362   Metadata *MD;
5363   if (parseMetadata(MD, &PFS))
5364     return true;
5365 
5366   V = MetadataAsValue::get(Context, MD);
5367   return false;
5368 }
5369 
5370 /// parseValueAsMetadata
5371 ///  ::= i32 %local
5372 ///  ::= i32 @global
5373 ///  ::= i32 7
5374 bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
5375                                     PerFunctionState *PFS) {
5376   Type *Ty;
5377   LocTy Loc;
5378   if (parseType(Ty, TypeMsg, Loc))
5379     return true;
5380   if (Ty->isMetadataTy())
5381     return error(Loc, "invalid metadata-value-metadata roundtrip");
5382 
5383   Value *V;
5384   if (parseValue(Ty, V, PFS))
5385     return true;
5386 
5387   MD = ValueAsMetadata::get(V);
5388   return false;
5389 }
5390 
5391 /// parseMetadata
5392 ///  ::= i32 %local
5393 ///  ::= i32 @global
5394 ///  ::= i32 7
5395 ///  ::= !42
5396 ///  ::= !{...}
5397 ///  ::= !"string"
5398 ///  ::= !DILocation(...)
5399 bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) {
5400   if (Lex.getKind() == lltok::MetadataVar) {
5401     MDNode *N;
5402     if (parseSpecializedMDNode(N))
5403       return true;
5404     MD = N;
5405     return false;
5406   }
5407 
5408   // ValueAsMetadata:
5409   // <type> <value>
5410   if (Lex.getKind() != lltok::exclaim)
5411     return parseValueAsMetadata(MD, "expected metadata operand", PFS);
5412 
5413   // '!'.
5414   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
5415   Lex.Lex();
5416 
5417   // MDString:
5418   //   ::= '!' STRINGCONSTANT
5419   if (Lex.getKind() == lltok::StringConstant) {
5420     MDString *S;
5421     if (parseMDString(S))
5422       return true;
5423     MD = S;
5424     return false;
5425   }
5426 
5427   // MDNode:
5428   // !{ ... }
5429   // !7
5430   MDNode *N;
5431   if (parseMDNodeTail(N))
5432     return true;
5433   MD = N;
5434   return false;
5435 }
5436 
5437 //===----------------------------------------------------------------------===//
5438 // Function Parsing.
5439 //===----------------------------------------------------------------------===//
5440 
5441 bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V,
5442                                    PerFunctionState *PFS, bool IsCall) {
5443   if (Ty->isFunctionTy())
5444     return error(ID.Loc, "functions are not values, refer to them as pointers");
5445 
5446   switch (ID.Kind) {
5447   case ValID::t_LocalID:
5448     if (!PFS)
5449       return error(ID.Loc, "invalid use of function-local name");
5450     V = PFS->getVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5451     return V == nullptr;
5452   case ValID::t_LocalName:
5453     if (!PFS)
5454       return error(ID.Loc, "invalid use of function-local name");
5455     V = PFS->getVal(ID.StrVal, Ty, ID.Loc, IsCall);
5456     return V == nullptr;
5457   case ValID::t_InlineAsm: {
5458     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
5459       return error(ID.Loc, "invalid type for inline asm constraint string");
5460     V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
5461                        (ID.UIntVal >> 1) & 1,
5462                        (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
5463     return false;
5464   }
5465   case ValID::t_GlobalName:
5466     V = getGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall);
5467     return V == nullptr;
5468   case ValID::t_GlobalID:
5469     V = getGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5470     return V == nullptr;
5471   case ValID::t_APSInt:
5472     if (!Ty->isIntegerTy())
5473       return error(ID.Loc, "integer constant must have integer type");
5474     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
5475     V = ConstantInt::get(Context, ID.APSIntVal);
5476     return false;
5477   case ValID::t_APFloat:
5478     if (!Ty->isFloatingPointTy() ||
5479         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
5480       return error(ID.Loc, "floating point constant invalid for type");
5481 
5482     // The lexer has no type info, so builds all half, bfloat, float, and double
5483     // FP constants as double.  Fix this here.  Long double does not need this.
5484     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
5485       // Check for signaling before potentially converting and losing that info.
5486       bool IsSNAN = ID.APFloatVal.isSignaling();
5487       bool Ignored;
5488       if (Ty->isHalfTy())
5489         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
5490                               &Ignored);
5491       else if (Ty->isBFloatTy())
5492         ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven,
5493                               &Ignored);
5494       else if (Ty->isFloatTy())
5495         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
5496                               &Ignored);
5497       if (IsSNAN) {
5498         // The convert call above may quiet an SNaN, so manufacture another
5499         // SNaN. The bitcast works because the payload (significand) parameter
5500         // is truncated to fit.
5501         APInt Payload = ID.APFloatVal.bitcastToAPInt();
5502         ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(),
5503                                          ID.APFloatVal.isNegative(), &Payload);
5504       }
5505     }
5506     V = ConstantFP::get(Context, ID.APFloatVal);
5507 
5508     if (V->getType() != Ty)
5509       return error(ID.Loc, "floating point constant does not have type '" +
5510                                getTypeString(Ty) + "'");
5511 
5512     return false;
5513   case ValID::t_Null:
5514     if (!Ty->isPointerTy())
5515       return error(ID.Loc, "null must be a pointer type");
5516     V = ConstantPointerNull::get(cast<PointerType>(Ty));
5517     return false;
5518   case ValID::t_Undef:
5519     // FIXME: LabelTy should not be a first-class type.
5520     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5521       return error(ID.Loc, "invalid type for undef constant");
5522     V = UndefValue::get(Ty);
5523     return false;
5524   case ValID::t_EmptyArray:
5525     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
5526       return error(ID.Loc, "invalid empty array initializer");
5527     V = UndefValue::get(Ty);
5528     return false;
5529   case ValID::t_Zero:
5530     // FIXME: LabelTy should not be a first-class type.
5531     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5532       return error(ID.Loc, "invalid type for null constant");
5533     V = Constant::getNullValue(Ty);
5534     return false;
5535   case ValID::t_None:
5536     if (!Ty->isTokenTy())
5537       return error(ID.Loc, "invalid type for none constant");
5538     V = Constant::getNullValue(Ty);
5539     return false;
5540   case ValID::t_Poison:
5541     // FIXME: LabelTy should not be a first-class type.
5542     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5543       return error(ID.Loc, "invalid type for poison constant");
5544     V = PoisonValue::get(Ty);
5545     return false;
5546   case ValID::t_Constant:
5547     if (ID.ConstantVal->getType() != Ty)
5548       return error(ID.Loc, "constant expression type mismatch");
5549     V = ID.ConstantVal;
5550     return false;
5551   case ValID::t_ConstantStruct:
5552   case ValID::t_PackedConstantStruct:
5553     if (StructType *ST = dyn_cast<StructType>(Ty)) {
5554       if (ST->getNumElements() != ID.UIntVal)
5555         return error(ID.Loc,
5556                      "initializer with struct type has wrong # elements");
5557       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5558         return error(ID.Loc, "packed'ness of initializer and type don't match");
5559 
5560       // Verify that the elements are compatible with the structtype.
5561       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5562         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5563           return error(
5564               ID.Loc,
5565               "element " + Twine(i) +
5566                   " of struct initializer doesn't match struct element type");
5567 
5568       V = ConstantStruct::get(
5569           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5570     } else
5571       return error(ID.Loc, "constant expression type mismatch");
5572     return false;
5573   }
5574   llvm_unreachable("Invalid ValID");
5575 }
5576 
5577 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5578   C = nullptr;
5579   ValID ID;
5580   auto Loc = Lex.getLoc();
5581   if (parseValID(ID, /*PFS=*/nullptr))
5582     return true;
5583   switch (ID.Kind) {
5584   case ValID::t_APSInt:
5585   case ValID::t_APFloat:
5586   case ValID::t_Undef:
5587   case ValID::t_Constant:
5588   case ValID::t_ConstantStruct:
5589   case ValID::t_PackedConstantStruct: {
5590     Value *V;
5591     if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false))
5592       return true;
5593     assert(isa<Constant>(V) && "Expected a constant value");
5594     C = cast<Constant>(V);
5595     return false;
5596   }
5597   case ValID::t_Null:
5598     C = Constant::getNullValue(Ty);
5599     return false;
5600   default:
5601     return error(Loc, "expected a constant value");
5602   }
5603 }
5604 
5605 bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5606   V = nullptr;
5607   ValID ID;
5608   return parseValID(ID, PFS) ||
5609          convertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false);
5610 }
5611 
5612 bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5613   Type *Ty = nullptr;
5614   return parseType(Ty) || parseValue(Ty, V, PFS);
5615 }
5616 
5617 bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5618                                       PerFunctionState &PFS) {
5619   Value *V;
5620   Loc = Lex.getLoc();
5621   if (parseTypeAndValue(V, PFS))
5622     return true;
5623   if (!isa<BasicBlock>(V))
5624     return error(Loc, "expected a basic block");
5625   BB = cast<BasicBlock>(V);
5626   return false;
5627 }
5628 
5629 /// FunctionHeader
5630 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5631 ///       OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5632 ///       '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5633 ///       OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
5634 bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine) {
5635   // parse the linkage.
5636   LocTy LinkageLoc = Lex.getLoc();
5637   unsigned Linkage;
5638   unsigned Visibility;
5639   unsigned DLLStorageClass;
5640   bool DSOLocal;
5641   AttrBuilder RetAttrs;
5642   unsigned CC;
5643   bool HasLinkage;
5644   Type *RetType = nullptr;
5645   LocTy RetTypeLoc = Lex.getLoc();
5646   if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5647                            DSOLocal) ||
5648       parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
5649       parseType(RetType, RetTypeLoc, true /*void allowed*/))
5650     return true;
5651 
5652   // Verify that the linkage is ok.
5653   switch ((GlobalValue::LinkageTypes)Linkage) {
5654   case GlobalValue::ExternalLinkage:
5655     break; // always ok.
5656   case GlobalValue::ExternalWeakLinkage:
5657     if (IsDefine)
5658       return error(LinkageLoc, "invalid linkage for function definition");
5659     break;
5660   case GlobalValue::PrivateLinkage:
5661   case GlobalValue::InternalLinkage:
5662   case GlobalValue::AvailableExternallyLinkage:
5663   case GlobalValue::LinkOnceAnyLinkage:
5664   case GlobalValue::LinkOnceODRLinkage:
5665   case GlobalValue::WeakAnyLinkage:
5666   case GlobalValue::WeakODRLinkage:
5667     if (!IsDefine)
5668       return error(LinkageLoc, "invalid linkage for function declaration");
5669     break;
5670   case GlobalValue::AppendingLinkage:
5671   case GlobalValue::CommonLinkage:
5672     return error(LinkageLoc, "invalid function linkage type");
5673   }
5674 
5675   if (!isValidVisibilityForLinkage(Visibility, Linkage))
5676     return error(LinkageLoc,
5677                  "symbol with local linkage must have default visibility");
5678 
5679   if (!FunctionType::isValidReturnType(RetType))
5680     return error(RetTypeLoc, "invalid function return type");
5681 
5682   LocTy NameLoc = Lex.getLoc();
5683 
5684   std::string FunctionName;
5685   if (Lex.getKind() == lltok::GlobalVar) {
5686     FunctionName = Lex.getStrVal();
5687   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
5688     unsigned NameID = Lex.getUIntVal();
5689 
5690     if (NameID != NumberedVals.size())
5691       return tokError("function expected to be numbered '%" +
5692                       Twine(NumberedVals.size()) + "'");
5693   } else {
5694     return tokError("expected function name");
5695   }
5696 
5697   Lex.Lex();
5698 
5699   if (Lex.getKind() != lltok::lparen)
5700     return tokError("expected '(' in function argument list");
5701 
5702   SmallVector<ArgInfo, 8> ArgList;
5703   bool IsVarArg;
5704   AttrBuilder FuncAttrs;
5705   std::vector<unsigned> FwdRefAttrGrps;
5706   LocTy BuiltinLoc;
5707   std::string Section;
5708   std::string Partition;
5709   MaybeAlign Alignment;
5710   std::string GC;
5711   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
5712   unsigned AddrSpace = 0;
5713   Constant *Prefix = nullptr;
5714   Constant *Prologue = nullptr;
5715   Constant *PersonalityFn = nullptr;
5716   Comdat *C;
5717 
5718   if (parseArgumentList(ArgList, IsVarArg) ||
5719       parseOptionalUnnamedAddr(UnnamedAddr) ||
5720       parseOptionalProgramAddrSpace(AddrSpace) ||
5721       parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5722                                  BuiltinLoc) ||
5723       (EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) ||
5724       (EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) ||
5725       parseOptionalComdat(FunctionName, C) ||
5726       parseOptionalAlignment(Alignment) ||
5727       (EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) ||
5728       (EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) ||
5729       (EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) ||
5730       (EatIfPresent(lltok::kw_personality) &&
5731        parseGlobalTypeAndValue(PersonalityFn)))
5732     return true;
5733 
5734   if (FuncAttrs.contains(Attribute::Builtin))
5735     return error(BuiltinLoc, "'builtin' attribute not valid on function");
5736 
5737   // If the alignment was parsed as an attribute, move to the alignment field.
5738   if (FuncAttrs.hasAlignmentAttr()) {
5739     Alignment = FuncAttrs.getAlignment();
5740     FuncAttrs.removeAttribute(Attribute::Alignment);
5741   }
5742 
5743   // Okay, if we got here, the function is syntactically valid.  Convert types
5744   // and do semantic checks.
5745   std::vector<Type*> ParamTypeList;
5746   SmallVector<AttributeSet, 8> Attrs;
5747 
5748   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5749     ParamTypeList.push_back(ArgList[i].Ty);
5750     Attrs.push_back(ArgList[i].Attrs);
5751   }
5752 
5753   AttributeList PAL =
5754       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5755                          AttributeSet::get(Context, RetAttrs), Attrs);
5756 
5757   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
5758     return error(RetTypeLoc, "functions with 'sret' argument must return void");
5759 
5760   FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg);
5761   PointerType *PFT = PointerType::get(FT, AddrSpace);
5762 
5763   Fn = nullptr;
5764   if (!FunctionName.empty()) {
5765     // If this was a definition of a forward reference, remove the definition
5766     // from the forward reference table and fill in the forward ref.
5767     auto FRVI = ForwardRefVals.find(FunctionName);
5768     if (FRVI != ForwardRefVals.end()) {
5769       Fn = M->getFunction(FunctionName);
5770       if (!Fn)
5771         return error(FRVI->second.second, "invalid forward reference to "
5772                                           "function as global value!");
5773       if (Fn->getType() != PFT)
5774         return error(FRVI->second.second,
5775                      "invalid forward reference to "
5776                      "function '" +
5777                          FunctionName +
5778                          "' with wrong type: "
5779                          "expected '" +
5780                          getTypeString(PFT) + "' but was '" +
5781                          getTypeString(Fn->getType()) + "'");
5782       ForwardRefVals.erase(FRVI);
5783     } else if ((Fn = M->getFunction(FunctionName))) {
5784       // Reject redefinitions.
5785       return error(NameLoc,
5786                    "invalid redefinition of function '" + FunctionName + "'");
5787     } else if (M->getNamedValue(FunctionName)) {
5788       return error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5789     }
5790 
5791   } else {
5792     // If this is a definition of a forward referenced function, make sure the
5793     // types agree.
5794     auto I = ForwardRefValIDs.find(NumberedVals.size());
5795     if (I != ForwardRefValIDs.end()) {
5796       Fn = cast<Function>(I->second.first);
5797       if (Fn->getType() != PFT)
5798         return error(NameLoc, "type of definition and forward reference of '@" +
5799                                   Twine(NumberedVals.size()) +
5800                                   "' disagree: "
5801                                   "expected '" +
5802                                   getTypeString(PFT) + "' but was '" +
5803                                   getTypeString(Fn->getType()) + "'");
5804       ForwardRefValIDs.erase(I);
5805     }
5806   }
5807 
5808   if (!Fn)
5809     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
5810                           FunctionName, M);
5811   else // Move the forward-reference to the correct spot in the module.
5812     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
5813 
5814   assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
5815 
5816   if (FunctionName.empty())
5817     NumberedVals.push_back(Fn);
5818 
5819   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5820   maybeSetDSOLocal(DSOLocal, *Fn);
5821   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5822   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5823   Fn->setCallingConv(CC);
5824   Fn->setAttributes(PAL);
5825   Fn->setUnnamedAddr(UnnamedAddr);
5826   Fn->setAlignment(MaybeAlign(Alignment));
5827   Fn->setSection(Section);
5828   Fn->setPartition(Partition);
5829   Fn->setComdat(C);
5830   Fn->setPersonalityFn(PersonalityFn);
5831   if (!GC.empty()) Fn->setGC(GC);
5832   Fn->setPrefixData(Prefix);
5833   Fn->setPrologueData(Prologue);
5834   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5835 
5836   // Add all of the arguments we parsed to the function.
5837   Function::arg_iterator ArgIt = Fn->arg_begin();
5838   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5839     // If the argument has a name, insert it into the argument symbol table.
5840     if (ArgList[i].Name.empty()) continue;
5841 
5842     // Set the name, if it conflicted, it will be auto-renamed.
5843     ArgIt->setName(ArgList[i].Name);
5844 
5845     if (ArgIt->getName() != ArgList[i].Name)
5846       return error(ArgList[i].Loc,
5847                    "redefinition of argument '%" + ArgList[i].Name + "'");
5848   }
5849 
5850   if (IsDefine)
5851     return false;
5852 
5853   // Check the declaration has no block address forward references.
5854   ValID ID;
5855   if (FunctionName.empty()) {
5856     ID.Kind = ValID::t_GlobalID;
5857     ID.UIntVal = NumberedVals.size() - 1;
5858   } else {
5859     ID.Kind = ValID::t_GlobalName;
5860     ID.StrVal = FunctionName;
5861   }
5862   auto Blocks = ForwardRefBlockAddresses.find(ID);
5863   if (Blocks != ForwardRefBlockAddresses.end())
5864     return error(Blocks->first.Loc,
5865                  "cannot take blockaddress inside a declaration");
5866   return false;
5867 }
5868 
5869 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5870   ValID ID;
5871   if (FunctionNumber == -1) {
5872     ID.Kind = ValID::t_GlobalName;
5873     ID.StrVal = std::string(F.getName());
5874   } else {
5875     ID.Kind = ValID::t_GlobalID;
5876     ID.UIntVal = FunctionNumber;
5877   }
5878 
5879   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
5880   if (Blocks == P.ForwardRefBlockAddresses.end())
5881     return false;
5882 
5883   for (const auto &I : Blocks->second) {
5884     const ValID &BBID = I.first;
5885     GlobalValue *GV = I.second;
5886 
5887     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
5888            "Expected local id or name");
5889     BasicBlock *BB;
5890     if (BBID.Kind == ValID::t_LocalName)
5891       BB = getBB(BBID.StrVal, BBID.Loc);
5892     else
5893       BB = getBB(BBID.UIntVal, BBID.Loc);
5894     if (!BB)
5895       return P.error(BBID.Loc, "referenced value is not a basic block");
5896 
5897     GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
5898     GV->eraseFromParent();
5899   }
5900 
5901   P.ForwardRefBlockAddresses.erase(Blocks);
5902   return false;
5903 }
5904 
5905 /// parseFunctionBody
5906 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
5907 bool LLParser::parseFunctionBody(Function &Fn) {
5908   if (Lex.getKind() != lltok::lbrace)
5909     return tokError("expected '{' in function body");
5910   Lex.Lex();  // eat the {.
5911 
5912   int FunctionNumber = -1;
5913   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
5914 
5915   PerFunctionState PFS(*this, Fn, FunctionNumber);
5916 
5917   // Resolve block addresses and allow basic blocks to be forward-declared
5918   // within this function.
5919   if (PFS.resolveForwardRefBlockAddresses())
5920     return true;
5921   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
5922 
5923   // We need at least one basic block.
5924   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
5925     return tokError("function body requires at least one basic block");
5926 
5927   while (Lex.getKind() != lltok::rbrace &&
5928          Lex.getKind() != lltok::kw_uselistorder)
5929     if (parseBasicBlock(PFS))
5930       return true;
5931 
5932   while (Lex.getKind() != lltok::rbrace)
5933     if (parseUseListOrder(&PFS))
5934       return true;
5935 
5936   // Eat the }.
5937   Lex.Lex();
5938 
5939   // Verify function is ok.
5940   return PFS.finishFunction();
5941 }
5942 
5943 /// parseBasicBlock
5944 ///   ::= (LabelStr|LabelID)? Instruction*
5945 bool LLParser::parseBasicBlock(PerFunctionState &PFS) {
5946   // If this basic block starts out with a name, remember it.
5947   std::string Name;
5948   int NameID = -1;
5949   LocTy NameLoc = Lex.getLoc();
5950   if (Lex.getKind() == lltok::LabelStr) {
5951     Name = Lex.getStrVal();
5952     Lex.Lex();
5953   } else if (Lex.getKind() == lltok::LabelID) {
5954     NameID = Lex.getUIntVal();
5955     Lex.Lex();
5956   }
5957 
5958   BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc);
5959   if (!BB)
5960     return true;
5961 
5962   std::string NameStr;
5963 
5964   // parse the instructions in this block until we get a terminator.
5965   Instruction *Inst;
5966   do {
5967     // This instruction may have three possibilities for a name: a) none
5968     // specified, b) name specified "%foo =", c) number specified: "%4 =".
5969     LocTy NameLoc = Lex.getLoc();
5970     int NameID = -1;
5971     NameStr = "";
5972 
5973     if (Lex.getKind() == lltok::LocalVarID) {
5974       NameID = Lex.getUIntVal();
5975       Lex.Lex();
5976       if (parseToken(lltok::equal, "expected '=' after instruction id"))
5977         return true;
5978     } else if (Lex.getKind() == lltok::LocalVar) {
5979       NameStr = Lex.getStrVal();
5980       Lex.Lex();
5981       if (parseToken(lltok::equal, "expected '=' after instruction name"))
5982         return true;
5983     }
5984 
5985     switch (parseInstruction(Inst, BB, PFS)) {
5986     default:
5987       llvm_unreachable("Unknown parseInstruction result!");
5988     case InstError: return true;
5989     case InstNormal:
5990       BB->getInstList().push_back(Inst);
5991 
5992       // With a normal result, we check to see if the instruction is followed by
5993       // a comma and metadata.
5994       if (EatIfPresent(lltok::comma))
5995         if (parseInstructionMetadata(*Inst))
5996           return true;
5997       break;
5998     case InstExtraComma:
5999       BB->getInstList().push_back(Inst);
6000 
6001       // If the instruction parser ate an extra comma at the end of it, it
6002       // *must* be followed by metadata.
6003       if (parseInstructionMetadata(*Inst))
6004         return true;
6005       break;
6006     }
6007 
6008     // Set the name on the instruction.
6009     if (PFS.setInstName(NameID, NameStr, NameLoc, Inst))
6010       return true;
6011   } while (!Inst->isTerminator());
6012 
6013   return false;
6014 }
6015 
6016 //===----------------------------------------------------------------------===//
6017 // Instruction Parsing.
6018 //===----------------------------------------------------------------------===//
6019 
6020 /// parseInstruction - parse one of the many different instructions.
6021 ///
6022 int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB,
6023                                PerFunctionState &PFS) {
6024   lltok::Kind Token = Lex.getKind();
6025   if (Token == lltok::Eof)
6026     return tokError("found end of file when expecting more instructions");
6027   LocTy Loc = Lex.getLoc();
6028   unsigned KeywordVal = Lex.getUIntVal();
6029   Lex.Lex();  // Eat the keyword.
6030 
6031   switch (Token) {
6032   default:
6033     return error(Loc, "expected instruction opcode");
6034   // Terminator Instructions.
6035   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
6036   case lltok::kw_ret:
6037     return parseRet(Inst, BB, PFS);
6038   case lltok::kw_br:
6039     return parseBr(Inst, PFS);
6040   case lltok::kw_switch:
6041     return parseSwitch(Inst, PFS);
6042   case lltok::kw_indirectbr:
6043     return parseIndirectBr(Inst, PFS);
6044   case lltok::kw_invoke:
6045     return parseInvoke(Inst, PFS);
6046   case lltok::kw_resume:
6047     return parseResume(Inst, PFS);
6048   case lltok::kw_cleanupret:
6049     return parseCleanupRet(Inst, PFS);
6050   case lltok::kw_catchret:
6051     return parseCatchRet(Inst, PFS);
6052   case lltok::kw_catchswitch:
6053     return parseCatchSwitch(Inst, PFS);
6054   case lltok::kw_catchpad:
6055     return parseCatchPad(Inst, PFS);
6056   case lltok::kw_cleanuppad:
6057     return parseCleanupPad(Inst, PFS);
6058   case lltok::kw_callbr:
6059     return parseCallBr(Inst, PFS);
6060   // Unary Operators.
6061   case lltok::kw_fneg: {
6062     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6063     int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true);
6064     if (Res != 0)
6065       return Res;
6066     if (FMF.any())
6067       Inst->setFastMathFlags(FMF);
6068     return false;
6069   }
6070   // Binary Operators.
6071   case lltok::kw_add:
6072   case lltok::kw_sub:
6073   case lltok::kw_mul:
6074   case lltok::kw_shl: {
6075     bool NUW = EatIfPresent(lltok::kw_nuw);
6076     bool NSW = EatIfPresent(lltok::kw_nsw);
6077     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
6078 
6079     if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
6080       return true;
6081 
6082     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
6083     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
6084     return false;
6085   }
6086   case lltok::kw_fadd:
6087   case lltok::kw_fsub:
6088   case lltok::kw_fmul:
6089   case lltok::kw_fdiv:
6090   case lltok::kw_frem: {
6091     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6092     int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true);
6093     if (Res != 0)
6094       return Res;
6095     if (FMF.any())
6096       Inst->setFastMathFlags(FMF);
6097     return 0;
6098   }
6099 
6100   case lltok::kw_sdiv:
6101   case lltok::kw_udiv:
6102   case lltok::kw_lshr:
6103   case lltok::kw_ashr: {
6104     bool Exact = EatIfPresent(lltok::kw_exact);
6105 
6106     if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
6107       return true;
6108     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
6109     return false;
6110   }
6111 
6112   case lltok::kw_urem:
6113   case lltok::kw_srem:
6114     return parseArithmetic(Inst, PFS, KeywordVal,
6115                            /*IsFP*/ false);
6116   case lltok::kw_and:
6117   case lltok::kw_or:
6118   case lltok::kw_xor:
6119     return parseLogical(Inst, PFS, KeywordVal);
6120   case lltok::kw_icmp:
6121     return parseCompare(Inst, PFS, KeywordVal);
6122   case lltok::kw_fcmp: {
6123     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6124     int Res = parseCompare(Inst, PFS, KeywordVal);
6125     if (Res != 0)
6126       return Res;
6127     if (FMF.any())
6128       Inst->setFastMathFlags(FMF);
6129     return 0;
6130   }
6131 
6132   // Casts.
6133   case lltok::kw_trunc:
6134   case lltok::kw_zext:
6135   case lltok::kw_sext:
6136   case lltok::kw_fptrunc:
6137   case lltok::kw_fpext:
6138   case lltok::kw_bitcast:
6139   case lltok::kw_addrspacecast:
6140   case lltok::kw_uitofp:
6141   case lltok::kw_sitofp:
6142   case lltok::kw_fptoui:
6143   case lltok::kw_fptosi:
6144   case lltok::kw_inttoptr:
6145   case lltok::kw_ptrtoint:
6146     return parseCast(Inst, PFS, KeywordVal);
6147   // Other.
6148   case lltok::kw_select: {
6149     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6150     int Res = parseSelect(Inst, PFS);
6151     if (Res != 0)
6152       return Res;
6153     if (FMF.any()) {
6154       if (!isa<FPMathOperator>(Inst))
6155         return error(Loc, "fast-math-flags specified for select without "
6156                           "floating-point scalar or vector return type");
6157       Inst->setFastMathFlags(FMF);
6158     }
6159     return 0;
6160   }
6161   case lltok::kw_va_arg:
6162     return parseVAArg(Inst, PFS);
6163   case lltok::kw_extractelement:
6164     return parseExtractElement(Inst, PFS);
6165   case lltok::kw_insertelement:
6166     return parseInsertElement(Inst, PFS);
6167   case lltok::kw_shufflevector:
6168     return parseShuffleVector(Inst, PFS);
6169   case lltok::kw_phi: {
6170     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6171     int Res = parsePHI(Inst, PFS);
6172     if (Res != 0)
6173       return Res;
6174     if (FMF.any()) {
6175       if (!isa<FPMathOperator>(Inst))
6176         return error(Loc, "fast-math-flags specified for phi without "
6177                           "floating-point scalar or vector return type");
6178       Inst->setFastMathFlags(FMF);
6179     }
6180     return 0;
6181   }
6182   case lltok::kw_landingpad:
6183     return parseLandingPad(Inst, PFS);
6184   case lltok::kw_freeze:
6185     return parseFreeze(Inst, PFS);
6186   // Call.
6187   case lltok::kw_call:
6188     return parseCall(Inst, PFS, CallInst::TCK_None);
6189   case lltok::kw_tail:
6190     return parseCall(Inst, PFS, CallInst::TCK_Tail);
6191   case lltok::kw_musttail:
6192     return parseCall(Inst, PFS, CallInst::TCK_MustTail);
6193   case lltok::kw_notail:
6194     return parseCall(Inst, PFS, CallInst::TCK_NoTail);
6195   // Memory.
6196   case lltok::kw_alloca:
6197     return parseAlloc(Inst, PFS);
6198   case lltok::kw_load:
6199     return parseLoad(Inst, PFS);
6200   case lltok::kw_store:
6201     return parseStore(Inst, PFS);
6202   case lltok::kw_cmpxchg:
6203     return parseCmpXchg(Inst, PFS);
6204   case lltok::kw_atomicrmw:
6205     return parseAtomicRMW(Inst, PFS);
6206   case lltok::kw_fence:
6207     return parseFence(Inst, PFS);
6208   case lltok::kw_getelementptr:
6209     return parseGetElementPtr(Inst, PFS);
6210   case lltok::kw_extractvalue:
6211     return parseExtractValue(Inst, PFS);
6212   case lltok::kw_insertvalue:
6213     return parseInsertValue(Inst, PFS);
6214   }
6215 }
6216 
6217 /// parseCmpPredicate - parse an integer or fp predicate, based on Kind.
6218 bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) {
6219   if (Opc == Instruction::FCmp) {
6220     switch (Lex.getKind()) {
6221     default:
6222       return tokError("expected fcmp predicate (e.g. 'oeq')");
6223     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
6224     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
6225     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
6226     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
6227     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
6228     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
6229     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
6230     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
6231     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
6232     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
6233     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
6234     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
6235     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
6236     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
6237     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
6238     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
6239     }
6240   } else {
6241     switch (Lex.getKind()) {
6242     default:
6243       return tokError("expected icmp predicate (e.g. 'eq')");
6244     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
6245     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
6246     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
6247     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
6248     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
6249     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
6250     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
6251     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
6252     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
6253     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
6254     }
6255   }
6256   Lex.Lex();
6257   return false;
6258 }
6259 
6260 //===----------------------------------------------------------------------===//
6261 // Terminator Instructions.
6262 //===----------------------------------------------------------------------===//
6263 
6264 /// parseRet - parse a return instruction.
6265 ///   ::= 'ret' void (',' !dbg, !1)*
6266 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
6267 bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB,
6268                         PerFunctionState &PFS) {
6269   SMLoc TypeLoc = Lex.getLoc();
6270   Type *Ty = nullptr;
6271   if (parseType(Ty, true /*void allowed*/))
6272     return true;
6273 
6274   Type *ResType = PFS.getFunction().getReturnType();
6275 
6276   if (Ty->isVoidTy()) {
6277     if (!ResType->isVoidTy())
6278       return error(TypeLoc, "value doesn't match function result type '" +
6279                                 getTypeString(ResType) + "'");
6280 
6281     Inst = ReturnInst::Create(Context);
6282     return false;
6283   }
6284 
6285   Value *RV;
6286   if (parseValue(Ty, RV, PFS))
6287     return true;
6288 
6289   if (ResType != RV->getType())
6290     return error(TypeLoc, "value doesn't match function result type '" +
6291                               getTypeString(ResType) + "'");
6292 
6293   Inst = ReturnInst::Create(Context, RV);
6294   return false;
6295 }
6296 
6297 /// parseBr
6298 ///   ::= 'br' TypeAndValue
6299 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6300 bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) {
6301   LocTy Loc, Loc2;
6302   Value *Op0;
6303   BasicBlock *Op1, *Op2;
6304   if (parseTypeAndValue(Op0, Loc, PFS))
6305     return true;
6306 
6307   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
6308     Inst = BranchInst::Create(BB);
6309     return false;
6310   }
6311 
6312   if (Op0->getType() != Type::getInt1Ty(Context))
6313     return error(Loc, "branch condition must have 'i1' type");
6314 
6315   if (parseToken(lltok::comma, "expected ',' after branch condition") ||
6316       parseTypeAndBasicBlock(Op1, Loc, PFS) ||
6317       parseToken(lltok::comma, "expected ',' after true destination") ||
6318       parseTypeAndBasicBlock(Op2, Loc2, PFS))
6319     return true;
6320 
6321   Inst = BranchInst::Create(Op1, Op2, Op0);
6322   return false;
6323 }
6324 
6325 /// parseSwitch
6326 ///  Instruction
6327 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
6328 ///  JumpTable
6329 ///    ::= (TypeAndValue ',' TypeAndValue)*
6330 bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6331   LocTy CondLoc, BBLoc;
6332   Value *Cond;
6333   BasicBlock *DefaultBB;
6334   if (parseTypeAndValue(Cond, CondLoc, PFS) ||
6335       parseToken(lltok::comma, "expected ',' after switch condition") ||
6336       parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
6337       parseToken(lltok::lsquare, "expected '[' with switch table"))
6338     return true;
6339 
6340   if (!Cond->getType()->isIntegerTy())
6341     return error(CondLoc, "switch condition must have integer type");
6342 
6343   // parse the jump table pairs.
6344   SmallPtrSet<Value*, 32> SeenCases;
6345   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
6346   while (Lex.getKind() != lltok::rsquare) {
6347     Value *Constant;
6348     BasicBlock *DestBB;
6349 
6350     if (parseTypeAndValue(Constant, CondLoc, PFS) ||
6351         parseToken(lltok::comma, "expected ',' after case value") ||
6352         parseTypeAndBasicBlock(DestBB, PFS))
6353       return true;
6354 
6355     if (!SeenCases.insert(Constant).second)
6356       return error(CondLoc, "duplicate case value in switch");
6357     if (!isa<ConstantInt>(Constant))
6358       return error(CondLoc, "case value is not a constant integer");
6359 
6360     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
6361   }
6362 
6363   Lex.Lex();  // Eat the ']'.
6364 
6365   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
6366   for (unsigned i = 0, e = Table.size(); i != e; ++i)
6367     SI->addCase(Table[i].first, Table[i].second);
6368   Inst = SI;
6369   return false;
6370 }
6371 
6372 /// parseIndirectBr
6373 ///  Instruction
6374 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
6375 bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
6376   LocTy AddrLoc;
6377   Value *Address;
6378   if (parseTypeAndValue(Address, AddrLoc, PFS) ||
6379       parseToken(lltok::comma, "expected ',' after indirectbr address") ||
6380       parseToken(lltok::lsquare, "expected '[' with indirectbr"))
6381     return true;
6382 
6383   if (!Address->getType()->isPointerTy())
6384     return error(AddrLoc, "indirectbr address must have pointer type");
6385 
6386   // parse the destination list.
6387   SmallVector<BasicBlock*, 16> DestList;
6388 
6389   if (Lex.getKind() != lltok::rsquare) {
6390     BasicBlock *DestBB;
6391     if (parseTypeAndBasicBlock(DestBB, PFS))
6392       return true;
6393     DestList.push_back(DestBB);
6394 
6395     while (EatIfPresent(lltok::comma)) {
6396       if (parseTypeAndBasicBlock(DestBB, PFS))
6397         return true;
6398       DestList.push_back(DestBB);
6399     }
6400   }
6401 
6402   if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
6403     return true;
6404 
6405   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
6406   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
6407     IBI->addDestination(DestList[i]);
6408   Inst = IBI;
6409   return false;
6410 }
6411 
6412 /// parseInvoke
6413 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
6414 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
6415 bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
6416   LocTy CallLoc = Lex.getLoc();
6417   AttrBuilder RetAttrs, FnAttrs;
6418   std::vector<unsigned> FwdRefAttrGrps;
6419   LocTy NoBuiltinLoc;
6420   unsigned CC;
6421   unsigned InvokeAddrSpace;
6422   Type *RetType = nullptr;
6423   LocTy RetTypeLoc;
6424   ValID CalleeID;
6425   SmallVector<ParamInfo, 16> ArgList;
6426   SmallVector<OperandBundleDef, 2> BundleList;
6427 
6428   BasicBlock *NormalBB, *UnwindBB;
6429   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6430       parseOptionalProgramAddrSpace(InvokeAddrSpace) ||
6431       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6432       parseValID(CalleeID) || parseParameterList(ArgList, PFS) ||
6433       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6434                                  NoBuiltinLoc) ||
6435       parseOptionalOperandBundles(BundleList, PFS) ||
6436       parseToken(lltok::kw_to, "expected 'to' in invoke") ||
6437       parseTypeAndBasicBlock(NormalBB, PFS) ||
6438       parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
6439       parseTypeAndBasicBlock(UnwindBB, PFS))
6440     return true;
6441 
6442   // If RetType is a non-function pointer type, then this is the short syntax
6443   // for the call, which means that RetType is just the return type.  Infer the
6444   // rest of the function argument types from the arguments that are present.
6445   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6446   if (!Ty) {
6447     // Pull out the types of all of the arguments...
6448     std::vector<Type*> ParamTypes;
6449     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6450       ParamTypes.push_back(ArgList[i].V->getType());
6451 
6452     if (!FunctionType::isValidReturnType(RetType))
6453       return error(RetTypeLoc, "Invalid result type for LLVM function");
6454 
6455     Ty = FunctionType::get(RetType, ParamTypes, false);
6456   }
6457 
6458   CalleeID.FTy = Ty;
6459 
6460   // Look up the callee.
6461   Value *Callee;
6462   if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
6463                           Callee, &PFS, /*IsCall=*/true))
6464     return true;
6465 
6466   // Set up the Attribute for the function.
6467   SmallVector<Value *, 8> Args;
6468   SmallVector<AttributeSet, 8> ArgAttrs;
6469 
6470   // Loop through FunctionType's arguments and ensure they are specified
6471   // correctly.  Also, gather any parameter attributes.
6472   FunctionType::param_iterator I = Ty->param_begin();
6473   FunctionType::param_iterator E = Ty->param_end();
6474   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6475     Type *ExpectedTy = nullptr;
6476     if (I != E) {
6477       ExpectedTy = *I++;
6478     } else if (!Ty->isVarArg()) {
6479       return error(ArgList[i].Loc, "too many arguments specified");
6480     }
6481 
6482     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6483       return error(ArgList[i].Loc, "argument is not of expected type '" +
6484                                        getTypeString(ExpectedTy) + "'");
6485     Args.push_back(ArgList[i].V);
6486     ArgAttrs.push_back(ArgList[i].Attrs);
6487   }
6488 
6489   if (I != E)
6490     return error(CallLoc, "not enough parameters specified for call");
6491 
6492   if (FnAttrs.hasAlignmentAttr())
6493     return error(CallLoc, "invoke instructions may not have an alignment");
6494 
6495   // Finish off the Attribute and check them
6496   AttributeList PAL =
6497       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6498                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6499 
6500   InvokeInst *II =
6501       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
6502   II->setCallingConv(CC);
6503   II->setAttributes(PAL);
6504   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
6505   Inst = II;
6506   return false;
6507 }
6508 
6509 /// parseResume
6510 ///   ::= 'resume' TypeAndValue
6511 bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) {
6512   Value *Exn; LocTy ExnLoc;
6513   if (parseTypeAndValue(Exn, ExnLoc, PFS))
6514     return true;
6515 
6516   ResumeInst *RI = ResumeInst::Create(Exn);
6517   Inst = RI;
6518   return false;
6519 }
6520 
6521 bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args,
6522                                   PerFunctionState &PFS) {
6523   if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
6524     return true;
6525 
6526   while (Lex.getKind() != lltok::rsquare) {
6527     // If this isn't the first argument, we need a comma.
6528     if (!Args.empty() &&
6529         parseToken(lltok::comma, "expected ',' in argument list"))
6530       return true;
6531 
6532     // parse the argument.
6533     LocTy ArgLoc;
6534     Type *ArgTy = nullptr;
6535     if (parseType(ArgTy, ArgLoc))
6536       return true;
6537 
6538     Value *V;
6539     if (ArgTy->isMetadataTy()) {
6540       if (parseMetadataAsValue(V, PFS))
6541         return true;
6542     } else {
6543       if (parseValue(ArgTy, V, PFS))
6544         return true;
6545     }
6546     Args.push_back(V);
6547   }
6548 
6549   Lex.Lex();  // Lex the ']'.
6550   return false;
6551 }
6552 
6553 /// parseCleanupRet
6554 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
6555 bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
6556   Value *CleanupPad = nullptr;
6557 
6558   if (parseToken(lltok::kw_from, "expected 'from' after cleanupret"))
6559     return true;
6560 
6561   if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS))
6562     return true;
6563 
6564   if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
6565     return true;
6566 
6567   BasicBlock *UnwindBB = nullptr;
6568   if (Lex.getKind() == lltok::kw_to) {
6569     Lex.Lex();
6570     if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
6571       return true;
6572   } else {
6573     if (parseTypeAndBasicBlock(UnwindBB, PFS)) {
6574       return true;
6575     }
6576   }
6577 
6578   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
6579   return false;
6580 }
6581 
6582 /// parseCatchRet
6583 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
6584 bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
6585   Value *CatchPad = nullptr;
6586 
6587   if (parseToken(lltok::kw_from, "expected 'from' after catchret"))
6588     return true;
6589 
6590   if (parseValue(Type::getTokenTy(Context), CatchPad, PFS))
6591     return true;
6592 
6593   BasicBlock *BB;
6594   if (parseToken(lltok::kw_to, "expected 'to' in catchret") ||
6595       parseTypeAndBasicBlock(BB, PFS))
6596     return true;
6597 
6598   Inst = CatchReturnInst::Create(CatchPad, BB);
6599   return false;
6600 }
6601 
6602 /// parseCatchSwitch
6603 ///   ::= 'catchswitch' within Parent
6604 bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6605   Value *ParentPad;
6606 
6607   if (parseToken(lltok::kw_within, "expected 'within' after catchswitch"))
6608     return true;
6609 
6610   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6611       Lex.getKind() != lltok::LocalVarID)
6612     return tokError("expected scope value for catchswitch");
6613 
6614   if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
6615     return true;
6616 
6617   if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
6618     return true;
6619 
6620   SmallVector<BasicBlock *, 32> Table;
6621   do {
6622     BasicBlock *DestBB;
6623     if (parseTypeAndBasicBlock(DestBB, PFS))
6624       return true;
6625     Table.push_back(DestBB);
6626   } while (EatIfPresent(lltok::comma));
6627 
6628   if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
6629     return true;
6630 
6631   if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope"))
6632     return true;
6633 
6634   BasicBlock *UnwindBB = nullptr;
6635   if (EatIfPresent(lltok::kw_to)) {
6636     if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
6637       return true;
6638   } else {
6639     if (parseTypeAndBasicBlock(UnwindBB, PFS))
6640       return true;
6641   }
6642 
6643   auto *CatchSwitch =
6644       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
6645   for (BasicBlock *DestBB : Table)
6646     CatchSwitch->addHandler(DestBB);
6647   Inst = CatchSwitch;
6648   return false;
6649 }
6650 
6651 /// parseCatchPad
6652 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
6653 bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
6654   Value *CatchSwitch = nullptr;
6655 
6656   if (parseToken(lltok::kw_within, "expected 'within' after catchpad"))
6657     return true;
6658 
6659   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
6660     return tokError("expected scope value for catchpad");
6661 
6662   if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
6663     return true;
6664 
6665   SmallVector<Value *, 8> Args;
6666   if (parseExceptionArgs(Args, PFS))
6667     return true;
6668 
6669   Inst = CatchPadInst::Create(CatchSwitch, Args);
6670   return false;
6671 }
6672 
6673 /// parseCleanupPad
6674 ///   ::= 'cleanuppad' within Parent ParamList
6675 bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
6676   Value *ParentPad = nullptr;
6677 
6678   if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
6679     return true;
6680 
6681   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6682       Lex.getKind() != lltok::LocalVarID)
6683     return tokError("expected scope value for cleanuppad");
6684 
6685   if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
6686     return true;
6687 
6688   SmallVector<Value *, 8> Args;
6689   if (parseExceptionArgs(Args, PFS))
6690     return true;
6691 
6692   Inst = CleanupPadInst::Create(ParentPad, Args);
6693   return false;
6694 }
6695 
6696 //===----------------------------------------------------------------------===//
6697 // Unary Operators.
6698 //===----------------------------------------------------------------------===//
6699 
6700 /// parseUnaryOp
6701 ///  ::= UnaryOp TypeAndValue ',' Value
6702 ///
6703 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6704 /// operand is allowed.
6705 bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
6706                             unsigned Opc, bool IsFP) {
6707   LocTy Loc; Value *LHS;
6708   if (parseTypeAndValue(LHS, Loc, PFS))
6709     return true;
6710 
6711   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6712                     : LHS->getType()->isIntOrIntVectorTy();
6713 
6714   if (!Valid)
6715     return error(Loc, "invalid operand type for instruction");
6716 
6717   Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
6718   return false;
6719 }
6720 
6721 /// parseCallBr
6722 ///   ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
6723 ///       OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
6724 ///       '[' LabelList ']'
6725 bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
6726   LocTy CallLoc = Lex.getLoc();
6727   AttrBuilder RetAttrs, FnAttrs;
6728   std::vector<unsigned> FwdRefAttrGrps;
6729   LocTy NoBuiltinLoc;
6730   unsigned CC;
6731   Type *RetType = nullptr;
6732   LocTy RetTypeLoc;
6733   ValID CalleeID;
6734   SmallVector<ParamInfo, 16> ArgList;
6735   SmallVector<OperandBundleDef, 2> BundleList;
6736 
6737   BasicBlock *DefaultDest;
6738   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6739       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6740       parseValID(CalleeID) || parseParameterList(ArgList, PFS) ||
6741       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6742                                  NoBuiltinLoc) ||
6743       parseOptionalOperandBundles(BundleList, PFS) ||
6744       parseToken(lltok::kw_to, "expected 'to' in callbr") ||
6745       parseTypeAndBasicBlock(DefaultDest, PFS) ||
6746       parseToken(lltok::lsquare, "expected '[' in callbr"))
6747     return true;
6748 
6749   // parse the destination list.
6750   SmallVector<BasicBlock *, 16> IndirectDests;
6751 
6752   if (Lex.getKind() != lltok::rsquare) {
6753     BasicBlock *DestBB;
6754     if (parseTypeAndBasicBlock(DestBB, PFS))
6755       return true;
6756     IndirectDests.push_back(DestBB);
6757 
6758     while (EatIfPresent(lltok::comma)) {
6759       if (parseTypeAndBasicBlock(DestBB, PFS))
6760         return true;
6761       IndirectDests.push_back(DestBB);
6762     }
6763   }
6764 
6765   if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
6766     return true;
6767 
6768   // If RetType is a non-function pointer type, then this is the short syntax
6769   // for the call, which means that RetType is just the return type.  Infer the
6770   // rest of the function argument types from the arguments that are present.
6771   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6772   if (!Ty) {
6773     // Pull out the types of all of the arguments...
6774     std::vector<Type *> ParamTypes;
6775     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6776       ParamTypes.push_back(ArgList[i].V->getType());
6777 
6778     if (!FunctionType::isValidReturnType(RetType))
6779       return error(RetTypeLoc, "Invalid result type for LLVM function");
6780 
6781     Ty = FunctionType::get(RetType, ParamTypes, false);
6782   }
6783 
6784   CalleeID.FTy = Ty;
6785 
6786   // Look up the callee.
6787   Value *Callee;
6788   if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS,
6789                           /*IsCall=*/true))
6790     return true;
6791 
6792   // Set up the Attribute for the function.
6793   SmallVector<Value *, 8> Args;
6794   SmallVector<AttributeSet, 8> ArgAttrs;
6795 
6796   // Loop through FunctionType's arguments and ensure they are specified
6797   // correctly.  Also, gather any parameter attributes.
6798   FunctionType::param_iterator I = Ty->param_begin();
6799   FunctionType::param_iterator E = Ty->param_end();
6800   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6801     Type *ExpectedTy = nullptr;
6802     if (I != E) {
6803       ExpectedTy = *I++;
6804     } else if (!Ty->isVarArg()) {
6805       return error(ArgList[i].Loc, "too many arguments specified");
6806     }
6807 
6808     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6809       return error(ArgList[i].Loc, "argument is not of expected type '" +
6810                                        getTypeString(ExpectedTy) + "'");
6811     Args.push_back(ArgList[i].V);
6812     ArgAttrs.push_back(ArgList[i].Attrs);
6813   }
6814 
6815   if (I != E)
6816     return error(CallLoc, "not enough parameters specified for call");
6817 
6818   if (FnAttrs.hasAlignmentAttr())
6819     return error(CallLoc, "callbr instructions may not have an alignment");
6820 
6821   // Finish off the Attribute and check them
6822   AttributeList PAL =
6823       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6824                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6825 
6826   CallBrInst *CBI =
6827       CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
6828                          BundleList);
6829   CBI->setCallingConv(CC);
6830   CBI->setAttributes(PAL);
6831   ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
6832   Inst = CBI;
6833   return false;
6834 }
6835 
6836 //===----------------------------------------------------------------------===//
6837 // Binary Operators.
6838 //===----------------------------------------------------------------------===//
6839 
6840 /// parseArithmetic
6841 ///  ::= ArithmeticOps TypeAndValue ',' Value
6842 ///
6843 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6844 /// operand is allowed.
6845 bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
6846                                unsigned Opc, bool IsFP) {
6847   LocTy Loc; Value *LHS, *RHS;
6848   if (parseTypeAndValue(LHS, Loc, PFS) ||
6849       parseToken(lltok::comma, "expected ',' in arithmetic operation") ||
6850       parseValue(LHS->getType(), RHS, PFS))
6851     return true;
6852 
6853   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6854                     : LHS->getType()->isIntOrIntVectorTy();
6855 
6856   if (!Valid)
6857     return error(Loc, "invalid operand type for instruction");
6858 
6859   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6860   return false;
6861 }
6862 
6863 /// parseLogical
6864 ///  ::= ArithmeticOps TypeAndValue ',' Value {
6865 bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS,
6866                             unsigned Opc) {
6867   LocTy Loc; Value *LHS, *RHS;
6868   if (parseTypeAndValue(LHS, Loc, PFS) ||
6869       parseToken(lltok::comma, "expected ',' in logical operation") ||
6870       parseValue(LHS->getType(), RHS, PFS))
6871     return true;
6872 
6873   if (!LHS->getType()->isIntOrIntVectorTy())
6874     return error(Loc,
6875                  "instruction requires integer or integer vector operands");
6876 
6877   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6878   return false;
6879 }
6880 
6881 /// parseCompare
6882 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
6883 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
6884 bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS,
6885                             unsigned Opc) {
6886   // parse the integer/fp comparison predicate.
6887   LocTy Loc;
6888   unsigned Pred;
6889   Value *LHS, *RHS;
6890   if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) ||
6891       parseToken(lltok::comma, "expected ',' after compare value") ||
6892       parseValue(LHS->getType(), RHS, PFS))
6893     return true;
6894 
6895   if (Opc == Instruction::FCmp) {
6896     if (!LHS->getType()->isFPOrFPVectorTy())
6897       return error(Loc, "fcmp requires floating point operands");
6898     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6899   } else {
6900     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
6901     if (!LHS->getType()->isIntOrIntVectorTy() &&
6902         !LHS->getType()->isPtrOrPtrVectorTy())
6903       return error(Loc, "icmp requires integer operands");
6904     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6905   }
6906   return false;
6907 }
6908 
6909 //===----------------------------------------------------------------------===//
6910 // Other Instructions.
6911 //===----------------------------------------------------------------------===//
6912 
6913 /// parseCast
6914 ///   ::= CastOpc TypeAndValue 'to' Type
6915 bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS,
6916                          unsigned Opc) {
6917   LocTy Loc;
6918   Value *Op;
6919   Type *DestTy = nullptr;
6920   if (parseTypeAndValue(Op, Loc, PFS) ||
6921       parseToken(lltok::kw_to, "expected 'to' after cast value") ||
6922       parseType(DestTy))
6923     return true;
6924 
6925   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
6926     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
6927     return error(Loc, "invalid cast opcode for cast from '" +
6928                           getTypeString(Op->getType()) + "' to '" +
6929                           getTypeString(DestTy) + "'");
6930   }
6931   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
6932   return false;
6933 }
6934 
6935 /// parseSelect
6936 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6937 bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) {
6938   LocTy Loc;
6939   Value *Op0, *Op1, *Op2;
6940   if (parseTypeAndValue(Op0, Loc, PFS) ||
6941       parseToken(lltok::comma, "expected ',' after select condition") ||
6942       parseTypeAndValue(Op1, PFS) ||
6943       parseToken(lltok::comma, "expected ',' after select value") ||
6944       parseTypeAndValue(Op2, PFS))
6945     return true;
6946 
6947   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
6948     return error(Loc, Reason);
6949 
6950   Inst = SelectInst::Create(Op0, Op1, Op2);
6951   return false;
6952 }
6953 
6954 /// parseVAArg
6955 ///   ::= 'va_arg' TypeAndValue ',' Type
6956 bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) {
6957   Value *Op;
6958   Type *EltTy = nullptr;
6959   LocTy TypeLoc;
6960   if (parseTypeAndValue(Op, PFS) ||
6961       parseToken(lltok::comma, "expected ',' after vaarg operand") ||
6962       parseType(EltTy, TypeLoc))
6963     return true;
6964 
6965   if (!EltTy->isFirstClassType())
6966     return error(TypeLoc, "va_arg requires operand with first class type");
6967 
6968   Inst = new VAArgInst(Op, EltTy);
6969   return false;
6970 }
6971 
6972 /// parseExtractElement
6973 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
6974 bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
6975   LocTy Loc;
6976   Value *Op0, *Op1;
6977   if (parseTypeAndValue(Op0, Loc, PFS) ||
6978       parseToken(lltok::comma, "expected ',' after extract value") ||
6979       parseTypeAndValue(Op1, PFS))
6980     return true;
6981 
6982   if (!ExtractElementInst::isValidOperands(Op0, Op1))
6983     return error(Loc, "invalid extractelement operands");
6984 
6985   Inst = ExtractElementInst::Create(Op0, Op1);
6986   return false;
6987 }
6988 
6989 /// parseInsertElement
6990 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6991 bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
6992   LocTy Loc;
6993   Value *Op0, *Op1, *Op2;
6994   if (parseTypeAndValue(Op0, Loc, PFS) ||
6995       parseToken(lltok::comma, "expected ',' after insertelement value") ||
6996       parseTypeAndValue(Op1, PFS) ||
6997       parseToken(lltok::comma, "expected ',' after insertelement value") ||
6998       parseTypeAndValue(Op2, PFS))
6999     return true;
7000 
7001   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
7002     return error(Loc, "invalid insertelement operands");
7003 
7004   Inst = InsertElementInst::Create(Op0, Op1, Op2);
7005   return false;
7006 }
7007 
7008 /// parseShuffleVector
7009 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
7010 bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
7011   LocTy Loc;
7012   Value *Op0, *Op1, *Op2;
7013   if (parseTypeAndValue(Op0, Loc, PFS) ||
7014       parseToken(lltok::comma, "expected ',' after shuffle mask") ||
7015       parseTypeAndValue(Op1, PFS) ||
7016       parseToken(lltok::comma, "expected ',' after shuffle value") ||
7017       parseTypeAndValue(Op2, PFS))
7018     return true;
7019 
7020   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
7021     return error(Loc, "invalid shufflevector operands");
7022 
7023   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
7024   return false;
7025 }
7026 
7027 /// parsePHI
7028 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
7029 int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) {
7030   Type *Ty = nullptr;  LocTy TypeLoc;
7031   Value *Op0, *Op1;
7032 
7033   if (parseType(Ty, TypeLoc) ||
7034       parseToken(lltok::lsquare, "expected '[' in phi value list") ||
7035       parseValue(Ty, Op0, PFS) ||
7036       parseToken(lltok::comma, "expected ',' after insertelement value") ||
7037       parseValue(Type::getLabelTy(Context), Op1, PFS) ||
7038       parseToken(lltok::rsquare, "expected ']' in phi value list"))
7039     return true;
7040 
7041   bool AteExtraComma = false;
7042   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
7043 
7044   while (true) {
7045     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
7046 
7047     if (!EatIfPresent(lltok::comma))
7048       break;
7049 
7050     if (Lex.getKind() == lltok::MetadataVar) {
7051       AteExtraComma = true;
7052       break;
7053     }
7054 
7055     if (parseToken(lltok::lsquare, "expected '[' in phi value list") ||
7056         parseValue(Ty, Op0, PFS) ||
7057         parseToken(lltok::comma, "expected ',' after insertelement value") ||
7058         parseValue(Type::getLabelTy(Context), Op1, PFS) ||
7059         parseToken(lltok::rsquare, "expected ']' in phi value list"))
7060       return true;
7061   }
7062 
7063   if (!Ty->isFirstClassType())
7064     return error(TypeLoc, "phi node must have first class type");
7065 
7066   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
7067   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
7068     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
7069   Inst = PN;
7070   return AteExtraComma ? InstExtraComma : InstNormal;
7071 }
7072 
7073 /// parseLandingPad
7074 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
7075 /// Clause
7076 ///   ::= 'catch' TypeAndValue
7077 ///   ::= 'filter'
7078 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
7079 bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
7080   Type *Ty = nullptr; LocTy TyLoc;
7081 
7082   if (parseType(Ty, TyLoc))
7083     return true;
7084 
7085   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
7086   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
7087 
7088   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
7089     LandingPadInst::ClauseType CT;
7090     if (EatIfPresent(lltok::kw_catch))
7091       CT = LandingPadInst::Catch;
7092     else if (EatIfPresent(lltok::kw_filter))
7093       CT = LandingPadInst::Filter;
7094     else
7095       return tokError("expected 'catch' or 'filter' clause type");
7096 
7097     Value *V;
7098     LocTy VLoc;
7099     if (parseTypeAndValue(V, VLoc, PFS))
7100       return true;
7101 
7102     // A 'catch' type expects a non-array constant. A filter clause expects an
7103     // array constant.
7104     if (CT == LandingPadInst::Catch) {
7105       if (isa<ArrayType>(V->getType()))
7106         error(VLoc, "'catch' clause has an invalid type");
7107     } else {
7108       if (!isa<ArrayType>(V->getType()))
7109         error(VLoc, "'filter' clause has an invalid type");
7110     }
7111 
7112     Constant *CV = dyn_cast<Constant>(V);
7113     if (!CV)
7114       return error(VLoc, "clause argument must be a constant");
7115     LP->addClause(CV);
7116   }
7117 
7118   Inst = LP.release();
7119   return false;
7120 }
7121 
7122 /// parseFreeze
7123 ///   ::= 'freeze' Type Value
7124 bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) {
7125   LocTy Loc;
7126   Value *Op;
7127   if (parseTypeAndValue(Op, Loc, PFS))
7128     return true;
7129 
7130   Inst = new FreezeInst(Op);
7131   return false;
7132 }
7133 
7134 /// parseCall
7135 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
7136 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7137 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
7138 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7139 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
7140 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7141 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
7142 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7143 bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS,
7144                          CallInst::TailCallKind TCK) {
7145   AttrBuilder RetAttrs, FnAttrs;
7146   std::vector<unsigned> FwdRefAttrGrps;
7147   LocTy BuiltinLoc;
7148   unsigned CallAddrSpace;
7149   unsigned CC;
7150   Type *RetType = nullptr;
7151   LocTy RetTypeLoc;
7152   ValID CalleeID;
7153   SmallVector<ParamInfo, 16> ArgList;
7154   SmallVector<OperandBundleDef, 2> BundleList;
7155   LocTy CallLoc = Lex.getLoc();
7156 
7157   if (TCK != CallInst::TCK_None &&
7158       parseToken(lltok::kw_call,
7159                  "expected 'tail call', 'musttail call', or 'notail call'"))
7160     return true;
7161 
7162   FastMathFlags FMF = EatFastMathFlagsIfPresent();
7163 
7164   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
7165       parseOptionalProgramAddrSpace(CallAddrSpace) ||
7166       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
7167       parseValID(CalleeID) ||
7168       parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
7169                          PFS.getFunction().isVarArg()) ||
7170       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
7171       parseOptionalOperandBundles(BundleList, PFS))
7172     return true;
7173 
7174   // If RetType is a non-function pointer type, then this is the short syntax
7175   // for the call, which means that RetType is just the return type.  Infer the
7176   // rest of the function argument types from the arguments that are present.
7177   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
7178   if (!Ty) {
7179     // Pull out the types of all of the arguments...
7180     std::vector<Type*> ParamTypes;
7181     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
7182       ParamTypes.push_back(ArgList[i].V->getType());
7183 
7184     if (!FunctionType::isValidReturnType(RetType))
7185       return error(RetTypeLoc, "Invalid result type for LLVM function");
7186 
7187     Ty = FunctionType::get(RetType, ParamTypes, false);
7188   }
7189 
7190   CalleeID.FTy = Ty;
7191 
7192   // Look up the callee.
7193   Value *Callee;
7194   if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
7195                           &PFS, /*IsCall=*/true))
7196     return true;
7197 
7198   // Set up the Attribute for the function.
7199   SmallVector<AttributeSet, 8> Attrs;
7200 
7201   SmallVector<Value*, 8> Args;
7202 
7203   // Loop through FunctionType's arguments and ensure they are specified
7204   // correctly.  Also, gather any parameter attributes.
7205   FunctionType::param_iterator I = Ty->param_begin();
7206   FunctionType::param_iterator E = Ty->param_end();
7207   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
7208     Type *ExpectedTy = nullptr;
7209     if (I != E) {
7210       ExpectedTy = *I++;
7211     } else if (!Ty->isVarArg()) {
7212       return error(ArgList[i].Loc, "too many arguments specified");
7213     }
7214 
7215     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
7216       return error(ArgList[i].Loc, "argument is not of expected type '" +
7217                                        getTypeString(ExpectedTy) + "'");
7218     Args.push_back(ArgList[i].V);
7219     Attrs.push_back(ArgList[i].Attrs);
7220   }
7221 
7222   if (I != E)
7223     return error(CallLoc, "not enough parameters specified for call");
7224 
7225   if (FnAttrs.hasAlignmentAttr())
7226     return error(CallLoc, "call instructions may not have an alignment");
7227 
7228   // Finish off the Attribute and check them
7229   AttributeList PAL =
7230       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
7231                          AttributeSet::get(Context, RetAttrs), Attrs);
7232 
7233   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
7234   CI->setTailCallKind(TCK);
7235   CI->setCallingConv(CC);
7236   if (FMF.any()) {
7237     if (!isa<FPMathOperator>(CI)) {
7238       CI->deleteValue();
7239       return error(CallLoc, "fast-math-flags specified for call without "
7240                             "floating-point scalar or vector return type");
7241     }
7242     CI->setFastMathFlags(FMF);
7243   }
7244   CI->setAttributes(PAL);
7245   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
7246   Inst = CI;
7247   return false;
7248 }
7249 
7250 //===----------------------------------------------------------------------===//
7251 // Memory Instructions.
7252 //===----------------------------------------------------------------------===//
7253 
7254 /// parseAlloc
7255 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
7256 ///       (',' 'align' i32)? (',', 'addrspace(n))?
7257 int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
7258   Value *Size = nullptr;
7259   LocTy SizeLoc, TyLoc, ASLoc;
7260   MaybeAlign Alignment;
7261   unsigned AddrSpace = 0;
7262   Type *Ty = nullptr;
7263 
7264   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
7265   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
7266 
7267   if (parseType(Ty, TyLoc))
7268     return true;
7269 
7270   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
7271     return error(TyLoc, "invalid type for alloca");
7272 
7273   bool AteExtraComma = false;
7274   if (EatIfPresent(lltok::comma)) {
7275     if (Lex.getKind() == lltok::kw_align) {
7276       if (parseOptionalAlignment(Alignment))
7277         return true;
7278       if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7279         return true;
7280     } else if (Lex.getKind() == lltok::kw_addrspace) {
7281       ASLoc = Lex.getLoc();
7282       if (parseOptionalAddrSpace(AddrSpace))
7283         return true;
7284     } else if (Lex.getKind() == lltok::MetadataVar) {
7285       AteExtraComma = true;
7286     } else {
7287       if (parseTypeAndValue(Size, SizeLoc, PFS))
7288         return true;
7289       if (EatIfPresent(lltok::comma)) {
7290         if (Lex.getKind() == lltok::kw_align) {
7291           if (parseOptionalAlignment(Alignment))
7292             return true;
7293           if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7294             return true;
7295         } else if (Lex.getKind() == lltok::kw_addrspace) {
7296           ASLoc = Lex.getLoc();
7297           if (parseOptionalAddrSpace(AddrSpace))
7298             return true;
7299         } else if (Lex.getKind() == lltok::MetadataVar) {
7300           AteExtraComma = true;
7301         }
7302       }
7303     }
7304   }
7305 
7306   if (Size && !Size->getType()->isIntegerTy())
7307     return error(SizeLoc, "element count must have integer type");
7308 
7309   SmallPtrSet<Type *, 4> Visited;
7310   if (!Alignment && !Ty->isSized(&Visited))
7311     return error(TyLoc, "Cannot allocate unsized type");
7312   if (!Alignment)
7313     Alignment = M->getDataLayout().getPrefTypeAlign(Ty);
7314   AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment);
7315   AI->setUsedWithInAlloca(IsInAlloca);
7316   AI->setSwiftError(IsSwiftError);
7317   Inst = AI;
7318   return AteExtraComma ? InstExtraComma : InstNormal;
7319 }
7320 
7321 /// parseLoad
7322 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
7323 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
7324 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7325 int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) {
7326   Value *Val; LocTy Loc;
7327   MaybeAlign Alignment;
7328   bool AteExtraComma = false;
7329   bool isAtomic = false;
7330   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7331   SyncScope::ID SSID = SyncScope::System;
7332 
7333   if (Lex.getKind() == lltok::kw_atomic) {
7334     isAtomic = true;
7335     Lex.Lex();
7336   }
7337 
7338   bool isVolatile = false;
7339   if (Lex.getKind() == lltok::kw_volatile) {
7340     isVolatile = true;
7341     Lex.Lex();
7342   }
7343 
7344   Type *Ty;
7345   LocTy ExplicitTypeLoc = Lex.getLoc();
7346   if (parseType(Ty) ||
7347       parseToken(lltok::comma, "expected comma after load's type") ||
7348       parseTypeAndValue(Val, Loc, PFS) ||
7349       parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7350       parseOptionalCommaAlign(Alignment, AteExtraComma))
7351     return true;
7352 
7353   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
7354     return error(Loc, "load operand must be a pointer to a first class type");
7355   if (isAtomic && !Alignment)
7356     return error(Loc, "atomic load must have explicit non-zero alignment");
7357   if (Ordering == AtomicOrdering::Release ||
7358       Ordering == AtomicOrdering::AcquireRelease)
7359     return error(Loc, "atomic load cannot use Release ordering");
7360 
7361   if (Ty != cast<PointerType>(Val->getType())->getElementType())
7362     return error(ExplicitTypeLoc,
7363                  "explicit pointee type doesn't match operand's pointee type");
7364   SmallPtrSet<Type *, 4> Visited;
7365   if (!Alignment && !Ty->isSized(&Visited))
7366     return error(ExplicitTypeLoc, "loading unsized types is not allowed");
7367   if (!Alignment)
7368     Alignment = M->getDataLayout().getABITypeAlign(Ty);
7369   Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID);
7370   return AteExtraComma ? InstExtraComma : InstNormal;
7371 }
7372 
7373 /// parseStore
7374 
7375 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
7376 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
7377 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7378 int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) {
7379   Value *Val, *Ptr; LocTy Loc, PtrLoc;
7380   MaybeAlign Alignment;
7381   bool AteExtraComma = false;
7382   bool isAtomic = false;
7383   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7384   SyncScope::ID SSID = SyncScope::System;
7385 
7386   if (Lex.getKind() == lltok::kw_atomic) {
7387     isAtomic = true;
7388     Lex.Lex();
7389   }
7390 
7391   bool isVolatile = false;
7392   if (Lex.getKind() == lltok::kw_volatile) {
7393     isVolatile = true;
7394     Lex.Lex();
7395   }
7396 
7397   if (parseTypeAndValue(Val, Loc, PFS) ||
7398       parseToken(lltok::comma, "expected ',' after store operand") ||
7399       parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7400       parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7401       parseOptionalCommaAlign(Alignment, AteExtraComma))
7402     return true;
7403 
7404   if (!Ptr->getType()->isPointerTy())
7405     return error(PtrLoc, "store operand must be a pointer");
7406   if (!Val->getType()->isFirstClassType())
7407     return error(Loc, "store operand must be a first class value");
7408   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
7409     return error(Loc, "stored value and pointer type do not match");
7410   if (isAtomic && !Alignment)
7411     return error(Loc, "atomic store must have explicit non-zero alignment");
7412   if (Ordering == AtomicOrdering::Acquire ||
7413       Ordering == AtomicOrdering::AcquireRelease)
7414     return error(Loc, "atomic store cannot use Acquire ordering");
7415   SmallPtrSet<Type *, 4> Visited;
7416   if (!Alignment && !Val->getType()->isSized(&Visited))
7417     return error(Loc, "storing unsized types is not allowed");
7418   if (!Alignment)
7419     Alignment = M->getDataLayout().getABITypeAlign(Val->getType());
7420 
7421   Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID);
7422   return AteExtraComma ? InstExtraComma : InstNormal;
7423 }
7424 
7425 /// parseCmpXchg
7426 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
7427 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
7428 int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
7429   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
7430   bool AteExtraComma = false;
7431   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
7432   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
7433   SyncScope::ID SSID = SyncScope::System;
7434   bool isVolatile = false;
7435   bool isWeak = false;
7436 
7437   if (EatIfPresent(lltok::kw_weak))
7438     isWeak = true;
7439 
7440   if (EatIfPresent(lltok::kw_volatile))
7441     isVolatile = true;
7442 
7443   if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7444       parseToken(lltok::comma, "expected ',' after cmpxchg address") ||
7445       parseTypeAndValue(Cmp, CmpLoc, PFS) ||
7446       parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
7447       parseTypeAndValue(New, NewLoc, PFS) ||
7448       parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
7449       parseOrdering(FailureOrdering))
7450     return true;
7451 
7452   if (SuccessOrdering == AtomicOrdering::Unordered ||
7453       FailureOrdering == AtomicOrdering::Unordered)
7454     return tokError("cmpxchg cannot be unordered");
7455   if (isStrongerThan(FailureOrdering, SuccessOrdering))
7456     return tokError("cmpxchg failure argument shall be no stronger than the "
7457                     "success argument");
7458   if (FailureOrdering == AtomicOrdering::Release ||
7459       FailureOrdering == AtomicOrdering::AcquireRelease)
7460     return tokError(
7461         "cmpxchg failure ordering cannot include release semantics");
7462   if (!Ptr->getType()->isPointerTy())
7463     return error(PtrLoc, "cmpxchg operand must be a pointer");
7464   if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
7465     return error(CmpLoc, "compare value and pointer type do not match");
7466   if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
7467     return error(NewLoc, "new value and pointer type do not match");
7468   if (!New->getType()->isFirstClassType())
7469     return error(NewLoc, "cmpxchg operand must be a first class value");
7470 
7471   Align Alignment(
7472       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7473           Cmp->getType()));
7474 
7475   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
7476       Ptr, Cmp, New, Alignment, SuccessOrdering, FailureOrdering, SSID);
7477   CXI->setVolatile(isVolatile);
7478   CXI->setWeak(isWeak);
7479   Inst = CXI;
7480   return AteExtraComma ? InstExtraComma : InstNormal;
7481 }
7482 
7483 /// parseAtomicRMW
7484 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
7485 ///       'singlethread'? AtomicOrdering
7486 int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
7487   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
7488   bool AteExtraComma = false;
7489   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7490   SyncScope::ID SSID = SyncScope::System;
7491   bool isVolatile = false;
7492   bool IsFP = false;
7493   AtomicRMWInst::BinOp Operation;
7494 
7495   if (EatIfPresent(lltok::kw_volatile))
7496     isVolatile = true;
7497 
7498   switch (Lex.getKind()) {
7499   default:
7500     return tokError("expected binary operation in atomicrmw");
7501   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
7502   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
7503   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
7504   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
7505   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
7506   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
7507   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
7508   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
7509   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
7510   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
7511   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
7512   case lltok::kw_fadd:
7513     Operation = AtomicRMWInst::FAdd;
7514     IsFP = true;
7515     break;
7516   case lltok::kw_fsub:
7517     Operation = AtomicRMWInst::FSub;
7518     IsFP = true;
7519     break;
7520   }
7521   Lex.Lex();  // Eat the operation.
7522 
7523   if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7524       parseToken(lltok::comma, "expected ',' after atomicrmw address") ||
7525       parseTypeAndValue(Val, ValLoc, PFS) ||
7526       parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7527     return true;
7528 
7529   if (Ordering == AtomicOrdering::Unordered)
7530     return tokError("atomicrmw cannot be unordered");
7531   if (!Ptr->getType()->isPointerTy())
7532     return error(PtrLoc, "atomicrmw operand must be a pointer");
7533   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
7534     return error(ValLoc, "atomicrmw value and pointer type do not match");
7535 
7536   if (Operation == AtomicRMWInst::Xchg) {
7537     if (!Val->getType()->isIntegerTy() &&
7538         !Val->getType()->isFloatingPointTy()) {
7539       return error(ValLoc,
7540                    "atomicrmw " + AtomicRMWInst::getOperationName(Operation) +
7541                        " operand must be an integer or floating point type");
7542     }
7543   } else if (IsFP) {
7544     if (!Val->getType()->isFloatingPointTy()) {
7545       return error(ValLoc, "atomicrmw " +
7546                                AtomicRMWInst::getOperationName(Operation) +
7547                                " operand must be a floating point type");
7548     }
7549   } else {
7550     if (!Val->getType()->isIntegerTy()) {
7551       return error(ValLoc, "atomicrmw " +
7552                                AtomicRMWInst::getOperationName(Operation) +
7553                                " operand must be an integer");
7554     }
7555   }
7556 
7557   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
7558   if (Size < 8 || (Size & (Size - 1)))
7559     return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
7560                          " integer");
7561   Align Alignment(
7562       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7563           Val->getType()));
7564   AtomicRMWInst *RMWI =
7565       new AtomicRMWInst(Operation, Ptr, Val, Alignment, Ordering, SSID);
7566   RMWI->setVolatile(isVolatile);
7567   Inst = RMWI;
7568   return AteExtraComma ? InstExtraComma : InstNormal;
7569 }
7570 
7571 /// parseFence
7572 ///   ::= 'fence' 'singlethread'? AtomicOrdering
7573 int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) {
7574   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7575   SyncScope::ID SSID = SyncScope::System;
7576   if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7577     return true;
7578 
7579   if (Ordering == AtomicOrdering::Unordered)
7580     return tokError("fence cannot be unordered");
7581   if (Ordering == AtomicOrdering::Monotonic)
7582     return tokError("fence cannot be monotonic");
7583 
7584   Inst = new FenceInst(Context, Ordering, SSID);
7585   return InstNormal;
7586 }
7587 
7588 /// parseGetElementPtr
7589 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
7590 int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
7591   Value *Ptr = nullptr;
7592   Value *Val = nullptr;
7593   LocTy Loc, EltLoc;
7594 
7595   bool InBounds = EatIfPresent(lltok::kw_inbounds);
7596 
7597   Type *Ty = nullptr;
7598   LocTy ExplicitTypeLoc = Lex.getLoc();
7599   if (parseType(Ty) ||
7600       parseToken(lltok::comma, "expected comma after getelementptr's type") ||
7601       parseTypeAndValue(Ptr, Loc, PFS))
7602     return true;
7603 
7604   Type *BaseType = Ptr->getType();
7605   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
7606   if (!BasePointerType)
7607     return error(Loc, "base of getelementptr must be a pointer");
7608 
7609   if (Ty != BasePointerType->getElementType())
7610     return error(ExplicitTypeLoc,
7611                  "explicit pointee type doesn't match operand's pointee type");
7612 
7613   SmallVector<Value*, 16> Indices;
7614   bool AteExtraComma = false;
7615   // GEP returns a vector of pointers if at least one of parameters is a vector.
7616   // All vector parameters should have the same vector width.
7617   ElementCount GEPWidth = BaseType->isVectorTy()
7618                               ? cast<VectorType>(BaseType)->getElementCount()
7619                               : ElementCount::getFixed(0);
7620 
7621   while (EatIfPresent(lltok::comma)) {
7622     if (Lex.getKind() == lltok::MetadataVar) {
7623       AteExtraComma = true;
7624       break;
7625     }
7626     if (parseTypeAndValue(Val, EltLoc, PFS))
7627       return true;
7628     if (!Val->getType()->isIntOrIntVectorTy())
7629       return error(EltLoc, "getelementptr index must be an integer");
7630 
7631     if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) {
7632       ElementCount ValNumEl = ValVTy->getElementCount();
7633       if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl)
7634         return error(
7635             EltLoc,
7636             "getelementptr vector index has a wrong number of elements");
7637       GEPWidth = ValNumEl;
7638     }
7639     Indices.push_back(Val);
7640   }
7641 
7642   SmallPtrSet<Type*, 4> Visited;
7643   if (!Indices.empty() && !Ty->isSized(&Visited))
7644     return error(Loc, "base element of getelementptr must be sized");
7645 
7646   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
7647     return error(Loc, "invalid getelementptr indices");
7648   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
7649   if (InBounds)
7650     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
7651   return AteExtraComma ? InstExtraComma : InstNormal;
7652 }
7653 
7654 /// parseExtractValue
7655 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
7656 int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
7657   Value *Val; LocTy Loc;
7658   SmallVector<unsigned, 4> Indices;
7659   bool AteExtraComma;
7660   if (parseTypeAndValue(Val, Loc, PFS) ||
7661       parseIndexList(Indices, AteExtraComma))
7662     return true;
7663 
7664   if (!Val->getType()->isAggregateType())
7665     return error(Loc, "extractvalue operand must be aggregate type");
7666 
7667   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
7668     return error(Loc, "invalid indices for extractvalue");
7669   Inst = ExtractValueInst::Create(Val, Indices);
7670   return AteExtraComma ? InstExtraComma : InstNormal;
7671 }
7672 
7673 /// parseInsertValue
7674 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
7675 int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
7676   Value *Val0, *Val1; LocTy Loc0, Loc1;
7677   SmallVector<unsigned, 4> Indices;
7678   bool AteExtraComma;
7679   if (parseTypeAndValue(Val0, Loc0, PFS) ||
7680       parseToken(lltok::comma, "expected comma after insertvalue operand") ||
7681       parseTypeAndValue(Val1, Loc1, PFS) ||
7682       parseIndexList(Indices, AteExtraComma))
7683     return true;
7684 
7685   if (!Val0->getType()->isAggregateType())
7686     return error(Loc0, "insertvalue operand must be aggregate type");
7687 
7688   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
7689   if (!IndexedType)
7690     return error(Loc0, "invalid indices for insertvalue");
7691   if (IndexedType != Val1->getType())
7692     return error(Loc1, "insertvalue operand and field disagree in type: '" +
7693                            getTypeString(Val1->getType()) + "' instead of '" +
7694                            getTypeString(IndexedType) + "'");
7695   Inst = InsertValueInst::Create(Val0, Val1, Indices);
7696   return AteExtraComma ? InstExtraComma : InstNormal;
7697 }
7698 
7699 //===----------------------------------------------------------------------===//
7700 // Embedded metadata.
7701 //===----------------------------------------------------------------------===//
7702 
7703 /// parseMDNodeVector
7704 ///   ::= { Element (',' Element)* }
7705 /// Element
7706 ///   ::= 'null' | TypeAndValue
7707 bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
7708   if (parseToken(lltok::lbrace, "expected '{' here"))
7709     return true;
7710 
7711   // Check for an empty list.
7712   if (EatIfPresent(lltok::rbrace))
7713     return false;
7714 
7715   do {
7716     // Null is a special case since it is typeless.
7717     if (EatIfPresent(lltok::kw_null)) {
7718       Elts.push_back(nullptr);
7719       continue;
7720     }
7721 
7722     Metadata *MD;
7723     if (parseMetadata(MD, nullptr))
7724       return true;
7725     Elts.push_back(MD);
7726   } while (EatIfPresent(lltok::comma));
7727 
7728   return parseToken(lltok::rbrace, "expected end of metadata node");
7729 }
7730 
7731 //===----------------------------------------------------------------------===//
7732 // Use-list order directives.
7733 //===----------------------------------------------------------------------===//
7734 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
7735                                 SMLoc Loc) {
7736   if (V->use_empty())
7737     return error(Loc, "value has no uses");
7738 
7739   unsigned NumUses = 0;
7740   SmallDenseMap<const Use *, unsigned, 16> Order;
7741   for (const Use &U : V->uses()) {
7742     if (++NumUses > Indexes.size())
7743       break;
7744     Order[&U] = Indexes[NumUses - 1];
7745   }
7746   if (NumUses < 2)
7747     return error(Loc, "value only has one use");
7748   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
7749     return error(Loc,
7750                  "wrong number of indexes, expected " + Twine(V->getNumUses()));
7751 
7752   V->sortUseList([&](const Use &L, const Use &R) {
7753     return Order.lookup(&L) < Order.lookup(&R);
7754   });
7755   return false;
7756 }
7757 
7758 /// parseUseListOrderIndexes
7759 ///   ::= '{' uint32 (',' uint32)+ '}'
7760 bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
7761   SMLoc Loc = Lex.getLoc();
7762   if (parseToken(lltok::lbrace, "expected '{' here"))
7763     return true;
7764   if (Lex.getKind() == lltok::rbrace)
7765     return Lex.Error("expected non-empty list of uselistorder indexes");
7766 
7767   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
7768   // indexes should be distinct numbers in the range [0, size-1], and should
7769   // not be in order.
7770   unsigned Offset = 0;
7771   unsigned Max = 0;
7772   bool IsOrdered = true;
7773   assert(Indexes.empty() && "Expected empty order vector");
7774   do {
7775     unsigned Index;
7776     if (parseUInt32(Index))
7777       return true;
7778 
7779     // Update consistency checks.
7780     Offset += Index - Indexes.size();
7781     Max = std::max(Max, Index);
7782     IsOrdered &= Index == Indexes.size();
7783 
7784     Indexes.push_back(Index);
7785   } while (EatIfPresent(lltok::comma));
7786 
7787   if (parseToken(lltok::rbrace, "expected '}' here"))
7788     return true;
7789 
7790   if (Indexes.size() < 2)
7791     return error(Loc, "expected >= 2 uselistorder indexes");
7792   if (Offset != 0 || Max >= Indexes.size())
7793     return error(Loc,
7794                  "expected distinct uselistorder indexes in range [0, size)");
7795   if (IsOrdered)
7796     return error(Loc, "expected uselistorder indexes to change the order");
7797 
7798   return false;
7799 }
7800 
7801 /// parseUseListOrder
7802 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
7803 bool LLParser::parseUseListOrder(PerFunctionState *PFS) {
7804   SMLoc Loc = Lex.getLoc();
7805   if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
7806     return true;
7807 
7808   Value *V;
7809   SmallVector<unsigned, 16> Indexes;
7810   if (parseTypeAndValue(V, PFS) ||
7811       parseToken(lltok::comma, "expected comma in uselistorder directive") ||
7812       parseUseListOrderIndexes(Indexes))
7813     return true;
7814 
7815   return sortUseListOrder(V, Indexes, Loc);
7816 }
7817 
7818 /// parseUseListOrderBB
7819 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
7820 bool LLParser::parseUseListOrderBB() {
7821   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
7822   SMLoc Loc = Lex.getLoc();
7823   Lex.Lex();
7824 
7825   ValID Fn, Label;
7826   SmallVector<unsigned, 16> Indexes;
7827   if (parseValID(Fn) ||
7828       parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7829       parseValID(Label) ||
7830       parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7831       parseUseListOrderIndexes(Indexes))
7832     return true;
7833 
7834   // Check the function.
7835   GlobalValue *GV;
7836   if (Fn.Kind == ValID::t_GlobalName)
7837     GV = M->getNamedValue(Fn.StrVal);
7838   else if (Fn.Kind == ValID::t_GlobalID)
7839     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
7840   else
7841     return error(Fn.Loc, "expected function name in uselistorder_bb");
7842   if (!GV)
7843     return error(Fn.Loc,
7844                  "invalid function forward reference in uselistorder_bb");
7845   auto *F = dyn_cast<Function>(GV);
7846   if (!F)
7847     return error(Fn.Loc, "expected function name in uselistorder_bb");
7848   if (F->isDeclaration())
7849     return error(Fn.Loc, "invalid declaration in uselistorder_bb");
7850 
7851   // Check the basic block.
7852   if (Label.Kind == ValID::t_LocalID)
7853     return error(Label.Loc, "invalid numeric label in uselistorder_bb");
7854   if (Label.Kind != ValID::t_LocalName)
7855     return error(Label.Loc, "expected basic block name in uselistorder_bb");
7856   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
7857   if (!V)
7858     return error(Label.Loc, "invalid basic block in uselistorder_bb");
7859   if (!isa<BasicBlock>(V))
7860     return error(Label.Loc, "expected basic block in uselistorder_bb");
7861 
7862   return sortUseListOrder(V, Indexes, Loc);
7863 }
7864 
7865 /// ModuleEntry
7866 ///   ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
7867 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
7868 bool LLParser::parseModuleEntry(unsigned ID) {
7869   assert(Lex.getKind() == lltok::kw_module);
7870   Lex.Lex();
7871 
7872   std::string Path;
7873   if (parseToken(lltok::colon, "expected ':' here") ||
7874       parseToken(lltok::lparen, "expected '(' here") ||
7875       parseToken(lltok::kw_path, "expected 'path' here") ||
7876       parseToken(lltok::colon, "expected ':' here") ||
7877       parseStringConstant(Path) ||
7878       parseToken(lltok::comma, "expected ',' here") ||
7879       parseToken(lltok::kw_hash, "expected 'hash' here") ||
7880       parseToken(lltok::colon, "expected ':' here") ||
7881       parseToken(lltok::lparen, "expected '(' here"))
7882     return true;
7883 
7884   ModuleHash Hash;
7885   if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") ||
7886       parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") ||
7887       parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") ||
7888       parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") ||
7889       parseUInt32(Hash[4]))
7890     return true;
7891 
7892   if (parseToken(lltok::rparen, "expected ')' here") ||
7893       parseToken(lltok::rparen, "expected ')' here"))
7894     return true;
7895 
7896   auto ModuleEntry = Index->addModule(Path, ID, Hash);
7897   ModuleIdMap[ID] = ModuleEntry->first();
7898 
7899   return false;
7900 }
7901 
7902 /// TypeIdEntry
7903 ///   ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
7904 bool LLParser::parseTypeIdEntry(unsigned ID) {
7905   assert(Lex.getKind() == lltok::kw_typeid);
7906   Lex.Lex();
7907 
7908   std::string Name;
7909   if (parseToken(lltok::colon, "expected ':' here") ||
7910       parseToken(lltok::lparen, "expected '(' here") ||
7911       parseToken(lltok::kw_name, "expected 'name' here") ||
7912       parseToken(lltok::colon, "expected ':' here") ||
7913       parseStringConstant(Name))
7914     return true;
7915 
7916   TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
7917   if (parseToken(lltok::comma, "expected ',' here") ||
7918       parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here"))
7919     return true;
7920 
7921   // Check if this ID was forward referenced, and if so, update the
7922   // corresponding GUIDs.
7923   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7924   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7925     for (auto TIDRef : FwdRefTIDs->second) {
7926       assert(!*TIDRef.first &&
7927              "Forward referenced type id GUID expected to be 0");
7928       *TIDRef.first = GlobalValue::getGUID(Name);
7929     }
7930     ForwardRefTypeIds.erase(FwdRefTIDs);
7931   }
7932 
7933   return false;
7934 }
7935 
7936 /// TypeIdSummary
7937 ///   ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
7938 bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) {
7939   if (parseToken(lltok::kw_summary, "expected 'summary' here") ||
7940       parseToken(lltok::colon, "expected ':' here") ||
7941       parseToken(lltok::lparen, "expected '(' here") ||
7942       parseTypeTestResolution(TIS.TTRes))
7943     return true;
7944 
7945   if (EatIfPresent(lltok::comma)) {
7946     // Expect optional wpdResolutions field
7947     if (parseOptionalWpdResolutions(TIS.WPDRes))
7948       return true;
7949   }
7950 
7951   if (parseToken(lltok::rparen, "expected ')' here"))
7952     return true;
7953 
7954   return false;
7955 }
7956 
7957 static ValueInfo EmptyVI =
7958     ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
7959 
7960 /// TypeIdCompatibleVtableEntry
7961 ///   ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ','
7962 ///   TypeIdCompatibleVtableInfo
7963 ///   ')'
7964 bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) {
7965   assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable);
7966   Lex.Lex();
7967 
7968   std::string Name;
7969   if (parseToken(lltok::colon, "expected ':' here") ||
7970       parseToken(lltok::lparen, "expected '(' here") ||
7971       parseToken(lltok::kw_name, "expected 'name' here") ||
7972       parseToken(lltok::colon, "expected ':' here") ||
7973       parseStringConstant(Name))
7974     return true;
7975 
7976   TypeIdCompatibleVtableInfo &TI =
7977       Index->getOrInsertTypeIdCompatibleVtableSummary(Name);
7978   if (parseToken(lltok::comma, "expected ',' here") ||
7979       parseToken(lltok::kw_summary, "expected 'summary' here") ||
7980       parseToken(lltok::colon, "expected ':' here") ||
7981       parseToken(lltok::lparen, "expected '(' here"))
7982     return true;
7983 
7984   IdToIndexMapType IdToIndexMap;
7985   // parse each call edge
7986   do {
7987     uint64_t Offset;
7988     if (parseToken(lltok::lparen, "expected '(' here") ||
7989         parseToken(lltok::kw_offset, "expected 'offset' here") ||
7990         parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
7991         parseToken(lltok::comma, "expected ',' here"))
7992       return true;
7993 
7994     LocTy Loc = Lex.getLoc();
7995     unsigned GVId;
7996     ValueInfo VI;
7997     if (parseGVReference(VI, GVId))
7998       return true;
7999 
8000     // Keep track of the TypeIdCompatibleVtableInfo array index needing a
8001     // forward reference. We will save the location of the ValueInfo needing an
8002     // update, but can only do so once the std::vector is finalized.
8003     if (VI == EmptyVI)
8004       IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc));
8005     TI.push_back({Offset, VI});
8006 
8007     if (parseToken(lltok::rparen, "expected ')' in call"))
8008       return true;
8009   } while (EatIfPresent(lltok::comma));
8010 
8011   // Now that the TI vector is finalized, it is safe to save the locations
8012   // of any forward GV references that need updating later.
8013   for (auto I : IdToIndexMap) {
8014     auto &Infos = ForwardRefValueInfos[I.first];
8015     for (auto P : I.second) {
8016       assert(TI[P.first].VTableVI == EmptyVI &&
8017              "Forward referenced ValueInfo expected to be empty");
8018       Infos.emplace_back(&TI[P.first].VTableVI, P.second);
8019     }
8020   }
8021 
8022   if (parseToken(lltok::rparen, "expected ')' here") ||
8023       parseToken(lltok::rparen, "expected ')' here"))
8024     return true;
8025 
8026   // Check if this ID was forward referenced, and if so, update the
8027   // corresponding GUIDs.
8028   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
8029   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
8030     for (auto TIDRef : FwdRefTIDs->second) {
8031       assert(!*TIDRef.first &&
8032              "Forward referenced type id GUID expected to be 0");
8033       *TIDRef.first = GlobalValue::getGUID(Name);
8034     }
8035     ForwardRefTypeIds.erase(FwdRefTIDs);
8036   }
8037 
8038   return false;
8039 }
8040 
8041 /// TypeTestResolution
8042 ///   ::= 'typeTestRes' ':' '(' 'kind' ':'
8043 ///         ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
8044 ///         'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
8045 ///         [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
8046 ///         [',' 'inlinesBits' ':' UInt64]? ')'
8047 bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) {
8048   if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
8049       parseToken(lltok::colon, "expected ':' here") ||
8050       parseToken(lltok::lparen, "expected '(' here") ||
8051       parseToken(lltok::kw_kind, "expected 'kind' here") ||
8052       parseToken(lltok::colon, "expected ':' here"))
8053     return true;
8054 
8055   switch (Lex.getKind()) {
8056   case lltok::kw_unknown:
8057     TTRes.TheKind = TypeTestResolution::Unknown;
8058     break;
8059   case lltok::kw_unsat:
8060     TTRes.TheKind = TypeTestResolution::Unsat;
8061     break;
8062   case lltok::kw_byteArray:
8063     TTRes.TheKind = TypeTestResolution::ByteArray;
8064     break;
8065   case lltok::kw_inline:
8066     TTRes.TheKind = TypeTestResolution::Inline;
8067     break;
8068   case lltok::kw_single:
8069     TTRes.TheKind = TypeTestResolution::Single;
8070     break;
8071   case lltok::kw_allOnes:
8072     TTRes.TheKind = TypeTestResolution::AllOnes;
8073     break;
8074   default:
8075     return error(Lex.getLoc(), "unexpected TypeTestResolution kind");
8076   }
8077   Lex.Lex();
8078 
8079   if (parseToken(lltok::comma, "expected ',' here") ||
8080       parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
8081       parseToken(lltok::colon, "expected ':' here") ||
8082       parseUInt32(TTRes.SizeM1BitWidth))
8083     return true;
8084 
8085   // parse optional fields
8086   while (EatIfPresent(lltok::comma)) {
8087     switch (Lex.getKind()) {
8088     case lltok::kw_alignLog2:
8089       Lex.Lex();
8090       if (parseToken(lltok::colon, "expected ':'") ||
8091           parseUInt64(TTRes.AlignLog2))
8092         return true;
8093       break;
8094     case lltok::kw_sizeM1:
8095       Lex.Lex();
8096       if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1))
8097         return true;
8098       break;
8099     case lltok::kw_bitMask: {
8100       unsigned Val;
8101       Lex.Lex();
8102       if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val))
8103         return true;
8104       assert(Val <= 0xff);
8105       TTRes.BitMask = (uint8_t)Val;
8106       break;
8107     }
8108     case lltok::kw_inlineBits:
8109       Lex.Lex();
8110       if (parseToken(lltok::colon, "expected ':'") ||
8111           parseUInt64(TTRes.InlineBits))
8112         return true;
8113       break;
8114     default:
8115       return error(Lex.getLoc(), "expected optional TypeTestResolution field");
8116     }
8117   }
8118 
8119   if (parseToken(lltok::rparen, "expected ')' here"))
8120     return true;
8121 
8122   return false;
8123 }
8124 
8125 /// OptionalWpdResolutions
8126 ///   ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
8127 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
8128 bool LLParser::parseOptionalWpdResolutions(
8129     std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
8130   if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
8131       parseToken(lltok::colon, "expected ':' here") ||
8132       parseToken(lltok::lparen, "expected '(' here"))
8133     return true;
8134 
8135   do {
8136     uint64_t Offset;
8137     WholeProgramDevirtResolution WPDRes;
8138     if (parseToken(lltok::lparen, "expected '(' here") ||
8139         parseToken(lltok::kw_offset, "expected 'offset' here") ||
8140         parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
8141         parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) ||
8142         parseToken(lltok::rparen, "expected ')' here"))
8143       return true;
8144     WPDResMap[Offset] = WPDRes;
8145   } while (EatIfPresent(lltok::comma));
8146 
8147   if (parseToken(lltok::rparen, "expected ')' here"))
8148     return true;
8149 
8150   return false;
8151 }
8152 
8153 /// WpdRes
8154 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
8155 ///         [',' OptionalResByArg]? ')'
8156 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
8157 ///         ',' 'singleImplName' ':' STRINGCONSTANT ','
8158 ///         [',' OptionalResByArg]? ')'
8159 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
8160 ///         [',' OptionalResByArg]? ')'
8161 bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) {
8162   if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
8163       parseToken(lltok::colon, "expected ':' here") ||
8164       parseToken(lltok::lparen, "expected '(' here") ||
8165       parseToken(lltok::kw_kind, "expected 'kind' here") ||
8166       parseToken(lltok::colon, "expected ':' here"))
8167     return true;
8168 
8169   switch (Lex.getKind()) {
8170   case lltok::kw_indir:
8171     WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
8172     break;
8173   case lltok::kw_singleImpl:
8174     WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
8175     break;
8176   case lltok::kw_branchFunnel:
8177     WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
8178     break;
8179   default:
8180     return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
8181   }
8182   Lex.Lex();
8183 
8184   // parse optional fields
8185   while (EatIfPresent(lltok::comma)) {
8186     switch (Lex.getKind()) {
8187     case lltok::kw_singleImplName:
8188       Lex.Lex();
8189       if (parseToken(lltok::colon, "expected ':' here") ||
8190           parseStringConstant(WPDRes.SingleImplName))
8191         return true;
8192       break;
8193     case lltok::kw_resByArg:
8194       if (parseOptionalResByArg(WPDRes.ResByArg))
8195         return true;
8196       break;
8197     default:
8198       return error(Lex.getLoc(),
8199                    "expected optional WholeProgramDevirtResolution field");
8200     }
8201   }
8202 
8203   if (parseToken(lltok::rparen, "expected ')' here"))
8204     return true;
8205 
8206   return false;
8207 }
8208 
8209 /// OptionalResByArg
8210 ///   ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
8211 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
8212 ///                ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
8213 ///                  'virtualConstProp' )
8214 ///                [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
8215 ///                [',' 'bit' ':' UInt32]? ')'
8216 bool LLParser::parseOptionalResByArg(
8217     std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
8218         &ResByArg) {
8219   if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
8220       parseToken(lltok::colon, "expected ':' here") ||
8221       parseToken(lltok::lparen, "expected '(' here"))
8222     return true;
8223 
8224   do {
8225     std::vector<uint64_t> Args;
8226     if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") ||
8227         parseToken(lltok::kw_byArg, "expected 'byArg here") ||
8228         parseToken(lltok::colon, "expected ':' here") ||
8229         parseToken(lltok::lparen, "expected '(' here") ||
8230         parseToken(lltok::kw_kind, "expected 'kind' here") ||
8231         parseToken(lltok::colon, "expected ':' here"))
8232       return true;
8233 
8234     WholeProgramDevirtResolution::ByArg ByArg;
8235     switch (Lex.getKind()) {
8236     case lltok::kw_indir:
8237       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
8238       break;
8239     case lltok::kw_uniformRetVal:
8240       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
8241       break;
8242     case lltok::kw_uniqueRetVal:
8243       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
8244       break;
8245     case lltok::kw_virtualConstProp:
8246       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
8247       break;
8248     default:
8249       return error(Lex.getLoc(),
8250                    "unexpected WholeProgramDevirtResolution::ByArg kind");
8251     }
8252     Lex.Lex();
8253 
8254     // parse optional fields
8255     while (EatIfPresent(lltok::comma)) {
8256       switch (Lex.getKind()) {
8257       case lltok::kw_info:
8258         Lex.Lex();
8259         if (parseToken(lltok::colon, "expected ':' here") ||
8260             parseUInt64(ByArg.Info))
8261           return true;
8262         break;
8263       case lltok::kw_byte:
8264         Lex.Lex();
8265         if (parseToken(lltok::colon, "expected ':' here") ||
8266             parseUInt32(ByArg.Byte))
8267           return true;
8268         break;
8269       case lltok::kw_bit:
8270         Lex.Lex();
8271         if (parseToken(lltok::colon, "expected ':' here") ||
8272             parseUInt32(ByArg.Bit))
8273           return true;
8274         break;
8275       default:
8276         return error(Lex.getLoc(),
8277                      "expected optional whole program devirt field");
8278       }
8279     }
8280 
8281     if (parseToken(lltok::rparen, "expected ')' here"))
8282       return true;
8283 
8284     ResByArg[Args] = ByArg;
8285   } while (EatIfPresent(lltok::comma));
8286 
8287   if (parseToken(lltok::rparen, "expected ')' here"))
8288     return true;
8289 
8290   return false;
8291 }
8292 
8293 /// OptionalResByArg
8294 ///   ::= 'args' ':' '(' UInt64[, UInt64]* ')'
8295 bool LLParser::parseArgs(std::vector<uint64_t> &Args) {
8296   if (parseToken(lltok::kw_args, "expected 'args' here") ||
8297       parseToken(lltok::colon, "expected ':' here") ||
8298       parseToken(lltok::lparen, "expected '(' here"))
8299     return true;
8300 
8301   do {
8302     uint64_t Val;
8303     if (parseUInt64(Val))
8304       return true;
8305     Args.push_back(Val);
8306   } while (EatIfPresent(lltok::comma));
8307 
8308   if (parseToken(lltok::rparen, "expected ')' here"))
8309     return true;
8310 
8311   return false;
8312 }
8313 
8314 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
8315 
8316 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
8317   bool ReadOnly = Fwd->isReadOnly();
8318   bool WriteOnly = Fwd->isWriteOnly();
8319   assert(!(ReadOnly && WriteOnly));
8320   *Fwd = Resolved;
8321   if (ReadOnly)
8322     Fwd->setReadOnly();
8323   if (WriteOnly)
8324     Fwd->setWriteOnly();
8325 }
8326 
8327 /// Stores the given Name/GUID and associated summary into the Index.
8328 /// Also updates any forward references to the associated entry ID.
8329 void LLParser::addGlobalValueToIndex(
8330     std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
8331     unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) {
8332   // First create the ValueInfo utilizing the Name or GUID.
8333   ValueInfo VI;
8334   if (GUID != 0) {
8335     assert(Name.empty());
8336     VI = Index->getOrInsertValueInfo(GUID);
8337   } else {
8338     assert(!Name.empty());
8339     if (M) {
8340       auto *GV = M->getNamedValue(Name);
8341       assert(GV);
8342       VI = Index->getOrInsertValueInfo(GV);
8343     } else {
8344       assert(
8345           (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
8346           "Need a source_filename to compute GUID for local");
8347       GUID = GlobalValue::getGUID(
8348           GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
8349       VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
8350     }
8351   }
8352 
8353   // Resolve forward references from calls/refs
8354   auto FwdRefVIs = ForwardRefValueInfos.find(ID);
8355   if (FwdRefVIs != ForwardRefValueInfos.end()) {
8356     for (auto VIRef : FwdRefVIs->second) {
8357       assert(VIRef.first->getRef() == FwdVIRef &&
8358              "Forward referenced ValueInfo expected to be empty");
8359       resolveFwdRef(VIRef.first, VI);
8360     }
8361     ForwardRefValueInfos.erase(FwdRefVIs);
8362   }
8363 
8364   // Resolve forward references from aliases
8365   auto FwdRefAliasees = ForwardRefAliasees.find(ID);
8366   if (FwdRefAliasees != ForwardRefAliasees.end()) {
8367     for (auto AliaseeRef : FwdRefAliasees->second) {
8368       assert(!AliaseeRef.first->hasAliasee() &&
8369              "Forward referencing alias already has aliasee");
8370       assert(Summary && "Aliasee must be a definition");
8371       AliaseeRef.first->setAliasee(VI, Summary.get());
8372     }
8373     ForwardRefAliasees.erase(FwdRefAliasees);
8374   }
8375 
8376   // Add the summary if one was provided.
8377   if (Summary)
8378     Index->addGlobalValueSummary(VI, std::move(Summary));
8379 
8380   // Save the associated ValueInfo for use in later references by ID.
8381   if (ID == NumberedValueInfos.size())
8382     NumberedValueInfos.push_back(VI);
8383   else {
8384     // Handle non-continuous numbers (to make test simplification easier).
8385     if (ID > NumberedValueInfos.size())
8386       NumberedValueInfos.resize(ID + 1);
8387     NumberedValueInfos[ID] = VI;
8388   }
8389 }
8390 
8391 /// parseSummaryIndexFlags
8392 ///   ::= 'flags' ':' UInt64
8393 bool LLParser::parseSummaryIndexFlags() {
8394   assert(Lex.getKind() == lltok::kw_flags);
8395   Lex.Lex();
8396 
8397   if (parseToken(lltok::colon, "expected ':' here"))
8398     return true;
8399   uint64_t Flags;
8400   if (parseUInt64(Flags))
8401     return true;
8402   if (Index)
8403     Index->setFlags(Flags);
8404   return false;
8405 }
8406 
8407 /// parseBlockCount
8408 ///   ::= 'blockcount' ':' UInt64
8409 bool LLParser::parseBlockCount() {
8410   assert(Lex.getKind() == lltok::kw_blockcount);
8411   Lex.Lex();
8412 
8413   if (parseToken(lltok::colon, "expected ':' here"))
8414     return true;
8415   uint64_t BlockCount;
8416   if (parseUInt64(BlockCount))
8417     return true;
8418   if (Index)
8419     Index->setBlockCount(BlockCount);
8420   return false;
8421 }
8422 
8423 /// parseGVEntry
8424 ///   ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
8425 ///         [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
8426 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
8427 bool LLParser::parseGVEntry(unsigned ID) {
8428   assert(Lex.getKind() == lltok::kw_gv);
8429   Lex.Lex();
8430 
8431   if (parseToken(lltok::colon, "expected ':' here") ||
8432       parseToken(lltok::lparen, "expected '(' here"))
8433     return true;
8434 
8435   std::string Name;
8436   GlobalValue::GUID GUID = 0;
8437   switch (Lex.getKind()) {
8438   case lltok::kw_name:
8439     Lex.Lex();
8440     if (parseToken(lltok::colon, "expected ':' here") ||
8441         parseStringConstant(Name))
8442       return true;
8443     // Can't create GUID/ValueInfo until we have the linkage.
8444     break;
8445   case lltok::kw_guid:
8446     Lex.Lex();
8447     if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID))
8448       return true;
8449     break;
8450   default:
8451     return error(Lex.getLoc(), "expected name or guid tag");
8452   }
8453 
8454   if (!EatIfPresent(lltok::comma)) {
8455     // No summaries. Wrap up.
8456     if (parseToken(lltok::rparen, "expected ')' here"))
8457       return true;
8458     // This was created for a call to an external or indirect target.
8459     // A GUID with no summary came from a VALUE_GUID record, dummy GUID
8460     // created for indirect calls with VP. A Name with no GUID came from
8461     // an external definition. We pass ExternalLinkage since that is only
8462     // used when the GUID must be computed from Name, and in that case
8463     // the symbol must have external linkage.
8464     addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
8465                           nullptr);
8466     return false;
8467   }
8468 
8469   // Have a list of summaries
8470   if (parseToken(lltok::kw_summaries, "expected 'summaries' here") ||
8471       parseToken(lltok::colon, "expected ':' here") ||
8472       parseToken(lltok::lparen, "expected '(' here"))
8473     return true;
8474   do {
8475     switch (Lex.getKind()) {
8476     case lltok::kw_function:
8477       if (parseFunctionSummary(Name, GUID, ID))
8478         return true;
8479       break;
8480     case lltok::kw_variable:
8481       if (parseVariableSummary(Name, GUID, ID))
8482         return true;
8483       break;
8484     case lltok::kw_alias:
8485       if (parseAliasSummary(Name, GUID, ID))
8486         return true;
8487       break;
8488     default:
8489       return error(Lex.getLoc(), "expected summary type");
8490     }
8491   } while (EatIfPresent(lltok::comma));
8492 
8493   if (parseToken(lltok::rparen, "expected ')' here") ||
8494       parseToken(lltok::rparen, "expected ')' here"))
8495     return true;
8496 
8497   return false;
8498 }
8499 
8500 /// FunctionSummary
8501 ///   ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8502 ///         ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
8503 ///         [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]?
8504 ///         [',' OptionalRefs]? ')'
8505 bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
8506                                     unsigned ID) {
8507   assert(Lex.getKind() == lltok::kw_function);
8508   Lex.Lex();
8509 
8510   StringRef ModulePath;
8511   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8512       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8513       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8514   unsigned InstCount;
8515   std::vector<FunctionSummary::EdgeTy> Calls;
8516   FunctionSummary::TypeIdInfo TypeIdInfo;
8517   std::vector<FunctionSummary::ParamAccess> ParamAccesses;
8518   std::vector<ValueInfo> Refs;
8519   // Default is all-zeros (conservative values).
8520   FunctionSummary::FFlags FFlags = {};
8521   if (parseToken(lltok::colon, "expected ':' here") ||
8522       parseToken(lltok::lparen, "expected '(' here") ||
8523       parseModuleReference(ModulePath) ||
8524       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8525       parseToken(lltok::comma, "expected ',' here") ||
8526       parseToken(lltok::kw_insts, "expected 'insts' here") ||
8527       parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount))
8528     return true;
8529 
8530   // parse optional fields
8531   while (EatIfPresent(lltok::comma)) {
8532     switch (Lex.getKind()) {
8533     case lltok::kw_funcFlags:
8534       if (parseOptionalFFlags(FFlags))
8535         return true;
8536       break;
8537     case lltok::kw_calls:
8538       if (parseOptionalCalls(Calls))
8539         return true;
8540       break;
8541     case lltok::kw_typeIdInfo:
8542       if (parseOptionalTypeIdInfo(TypeIdInfo))
8543         return true;
8544       break;
8545     case lltok::kw_refs:
8546       if (parseOptionalRefs(Refs))
8547         return true;
8548       break;
8549     case lltok::kw_params:
8550       if (parseOptionalParamAccesses(ParamAccesses))
8551         return true;
8552       break;
8553     default:
8554       return error(Lex.getLoc(), "expected optional function summary field");
8555     }
8556   }
8557 
8558   if (parseToken(lltok::rparen, "expected ')' here"))
8559     return true;
8560 
8561   auto FS = std::make_unique<FunctionSummary>(
8562       GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
8563       std::move(Calls), std::move(TypeIdInfo.TypeTests),
8564       std::move(TypeIdInfo.TypeTestAssumeVCalls),
8565       std::move(TypeIdInfo.TypeCheckedLoadVCalls),
8566       std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
8567       std::move(TypeIdInfo.TypeCheckedLoadConstVCalls),
8568       std::move(ParamAccesses));
8569 
8570   FS->setModulePath(ModulePath);
8571 
8572   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8573                         ID, std::move(FS));
8574 
8575   return false;
8576 }
8577 
8578 /// VariableSummary
8579 ///   ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8580 ///         [',' OptionalRefs]? ')'
8581 bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID,
8582                                     unsigned ID) {
8583   assert(Lex.getKind() == lltok::kw_variable);
8584   Lex.Lex();
8585 
8586   StringRef ModulePath;
8587   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8588       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8589       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8590   GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false,
8591                                         /* WriteOnly */ false,
8592                                         /* Constant */ false,
8593                                         GlobalObject::VCallVisibilityPublic);
8594   std::vector<ValueInfo> Refs;
8595   VTableFuncList VTableFuncs;
8596   if (parseToken(lltok::colon, "expected ':' here") ||
8597       parseToken(lltok::lparen, "expected '(' here") ||
8598       parseModuleReference(ModulePath) ||
8599       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8600       parseToken(lltok::comma, "expected ',' here") ||
8601       parseGVarFlags(GVarFlags))
8602     return true;
8603 
8604   // parse optional fields
8605   while (EatIfPresent(lltok::comma)) {
8606     switch (Lex.getKind()) {
8607     case lltok::kw_vTableFuncs:
8608       if (parseOptionalVTableFuncs(VTableFuncs))
8609         return true;
8610       break;
8611     case lltok::kw_refs:
8612       if (parseOptionalRefs(Refs))
8613         return true;
8614       break;
8615     default:
8616       return error(Lex.getLoc(), "expected optional variable summary field");
8617     }
8618   }
8619 
8620   if (parseToken(lltok::rparen, "expected ')' here"))
8621     return true;
8622 
8623   auto GS =
8624       std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
8625 
8626   GS->setModulePath(ModulePath);
8627   GS->setVTableFuncs(std::move(VTableFuncs));
8628 
8629   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8630                         ID, std::move(GS));
8631 
8632   return false;
8633 }
8634 
8635 /// AliasSummary
8636 ///   ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
8637 ///         'aliasee' ':' GVReference ')'
8638 bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID,
8639                                  unsigned ID) {
8640   assert(Lex.getKind() == lltok::kw_alias);
8641   LocTy Loc = Lex.getLoc();
8642   Lex.Lex();
8643 
8644   StringRef ModulePath;
8645   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8646       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8647       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8648   if (parseToken(lltok::colon, "expected ':' here") ||
8649       parseToken(lltok::lparen, "expected '(' here") ||
8650       parseModuleReference(ModulePath) ||
8651       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8652       parseToken(lltok::comma, "expected ',' here") ||
8653       parseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
8654       parseToken(lltok::colon, "expected ':' here"))
8655     return true;
8656 
8657   ValueInfo AliaseeVI;
8658   unsigned GVId;
8659   if (parseGVReference(AliaseeVI, GVId))
8660     return true;
8661 
8662   if (parseToken(lltok::rparen, "expected ')' here"))
8663     return true;
8664 
8665   auto AS = std::make_unique<AliasSummary>(GVFlags);
8666 
8667   AS->setModulePath(ModulePath);
8668 
8669   // Record forward reference if the aliasee is not parsed yet.
8670   if (AliaseeVI.getRef() == FwdVIRef) {
8671     ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc);
8672   } else {
8673     auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath);
8674     assert(Summary && "Aliasee must be a definition");
8675     AS->setAliasee(AliaseeVI, Summary);
8676   }
8677 
8678   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8679                         ID, std::move(AS));
8680 
8681   return false;
8682 }
8683 
8684 /// Flag
8685 ///   ::= [0|1]
8686 bool LLParser::parseFlag(unsigned &Val) {
8687   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
8688     return tokError("expected integer");
8689   Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
8690   Lex.Lex();
8691   return false;
8692 }
8693 
8694 /// OptionalFFlags
8695 ///   := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
8696 ///        [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
8697 ///        [',' 'returnDoesNotAlias' ':' Flag]? ')'
8698 ///        [',' 'noInline' ':' Flag]? ')'
8699 ///        [',' 'alwaysInline' ':' Flag]? ')'
8700 
8701 bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
8702   assert(Lex.getKind() == lltok::kw_funcFlags);
8703   Lex.Lex();
8704 
8705   if (parseToken(lltok::colon, "expected ':' in funcFlags") |
8706       parseToken(lltok::lparen, "expected '(' in funcFlags"))
8707     return true;
8708 
8709   do {
8710     unsigned Val = 0;
8711     switch (Lex.getKind()) {
8712     case lltok::kw_readNone:
8713       Lex.Lex();
8714       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8715         return true;
8716       FFlags.ReadNone = Val;
8717       break;
8718     case lltok::kw_readOnly:
8719       Lex.Lex();
8720       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8721         return true;
8722       FFlags.ReadOnly = Val;
8723       break;
8724     case lltok::kw_noRecurse:
8725       Lex.Lex();
8726       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8727         return true;
8728       FFlags.NoRecurse = Val;
8729       break;
8730     case lltok::kw_returnDoesNotAlias:
8731       Lex.Lex();
8732       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8733         return true;
8734       FFlags.ReturnDoesNotAlias = Val;
8735       break;
8736     case lltok::kw_noInline:
8737       Lex.Lex();
8738       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8739         return true;
8740       FFlags.NoInline = Val;
8741       break;
8742     case lltok::kw_alwaysInline:
8743       Lex.Lex();
8744       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8745         return true;
8746       FFlags.AlwaysInline = Val;
8747       break;
8748     default:
8749       return error(Lex.getLoc(), "expected function flag type");
8750     }
8751   } while (EatIfPresent(lltok::comma));
8752 
8753   if (parseToken(lltok::rparen, "expected ')' in funcFlags"))
8754     return true;
8755 
8756   return false;
8757 }
8758 
8759 /// OptionalCalls
8760 ///   := 'calls' ':' '(' Call [',' Call]* ')'
8761 /// Call ::= '(' 'callee' ':' GVReference
8762 ///            [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
8763 bool LLParser::parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
8764   assert(Lex.getKind() == lltok::kw_calls);
8765   Lex.Lex();
8766 
8767   if (parseToken(lltok::colon, "expected ':' in calls") |
8768       parseToken(lltok::lparen, "expected '(' in calls"))
8769     return true;
8770 
8771   IdToIndexMapType IdToIndexMap;
8772   // parse each call edge
8773   do {
8774     ValueInfo VI;
8775     if (parseToken(lltok::lparen, "expected '(' in call") ||
8776         parseToken(lltok::kw_callee, "expected 'callee' in call") ||
8777         parseToken(lltok::colon, "expected ':'"))
8778       return true;
8779 
8780     LocTy Loc = Lex.getLoc();
8781     unsigned GVId;
8782     if (parseGVReference(VI, GVId))
8783       return true;
8784 
8785     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
8786     unsigned RelBF = 0;
8787     if (EatIfPresent(lltok::comma)) {
8788       // Expect either hotness or relbf
8789       if (EatIfPresent(lltok::kw_hotness)) {
8790         if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness))
8791           return true;
8792       } else {
8793         if (parseToken(lltok::kw_relbf, "expected relbf") ||
8794             parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF))
8795           return true;
8796       }
8797     }
8798     // Keep track of the Call array index needing a forward reference.
8799     // We will save the location of the ValueInfo needing an update, but
8800     // can only do so once the std::vector is finalized.
8801     if (VI.getRef() == FwdVIRef)
8802       IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
8803     Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)});
8804 
8805     if (parseToken(lltok::rparen, "expected ')' in call"))
8806       return true;
8807   } while (EatIfPresent(lltok::comma));
8808 
8809   // Now that the Calls vector is finalized, it is safe to save the locations
8810   // of any forward GV references that need updating later.
8811   for (auto I : IdToIndexMap) {
8812     auto &Infos = ForwardRefValueInfos[I.first];
8813     for (auto P : I.second) {
8814       assert(Calls[P.first].first.getRef() == FwdVIRef &&
8815              "Forward referenced ValueInfo expected to be empty");
8816       Infos.emplace_back(&Calls[P.first].first, P.second);
8817     }
8818   }
8819 
8820   if (parseToken(lltok::rparen, "expected ')' in calls"))
8821     return true;
8822 
8823   return false;
8824 }
8825 
8826 /// Hotness
8827 ///   := ('unknown'|'cold'|'none'|'hot'|'critical')
8828 bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) {
8829   switch (Lex.getKind()) {
8830   case lltok::kw_unknown:
8831     Hotness = CalleeInfo::HotnessType::Unknown;
8832     break;
8833   case lltok::kw_cold:
8834     Hotness = CalleeInfo::HotnessType::Cold;
8835     break;
8836   case lltok::kw_none:
8837     Hotness = CalleeInfo::HotnessType::None;
8838     break;
8839   case lltok::kw_hot:
8840     Hotness = CalleeInfo::HotnessType::Hot;
8841     break;
8842   case lltok::kw_critical:
8843     Hotness = CalleeInfo::HotnessType::Critical;
8844     break;
8845   default:
8846     return error(Lex.getLoc(), "invalid call edge hotness");
8847   }
8848   Lex.Lex();
8849   return false;
8850 }
8851 
8852 /// OptionalVTableFuncs
8853 ///   := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')'
8854 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')'
8855 bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) {
8856   assert(Lex.getKind() == lltok::kw_vTableFuncs);
8857   Lex.Lex();
8858 
8859   if (parseToken(lltok::colon, "expected ':' in vTableFuncs") |
8860       parseToken(lltok::lparen, "expected '(' in vTableFuncs"))
8861     return true;
8862 
8863   IdToIndexMapType IdToIndexMap;
8864   // parse each virtual function pair
8865   do {
8866     ValueInfo VI;
8867     if (parseToken(lltok::lparen, "expected '(' in vTableFunc") ||
8868         parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") ||
8869         parseToken(lltok::colon, "expected ':'"))
8870       return true;
8871 
8872     LocTy Loc = Lex.getLoc();
8873     unsigned GVId;
8874     if (parseGVReference(VI, GVId))
8875       return true;
8876 
8877     uint64_t Offset;
8878     if (parseToken(lltok::comma, "expected comma") ||
8879         parseToken(lltok::kw_offset, "expected offset") ||
8880         parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset))
8881       return true;
8882 
8883     // Keep track of the VTableFuncs array index needing a forward reference.
8884     // We will save the location of the ValueInfo needing an update, but
8885     // can only do so once the std::vector is finalized.
8886     if (VI == EmptyVI)
8887       IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc));
8888     VTableFuncs.push_back({VI, Offset});
8889 
8890     if (parseToken(lltok::rparen, "expected ')' in vTableFunc"))
8891       return true;
8892   } while (EatIfPresent(lltok::comma));
8893 
8894   // Now that the VTableFuncs vector is finalized, it is safe to save the
8895   // locations of any forward GV references that need updating later.
8896   for (auto I : IdToIndexMap) {
8897     auto &Infos = ForwardRefValueInfos[I.first];
8898     for (auto P : I.second) {
8899       assert(VTableFuncs[P.first].FuncVI == EmptyVI &&
8900              "Forward referenced ValueInfo expected to be empty");
8901       Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second);
8902     }
8903   }
8904 
8905   if (parseToken(lltok::rparen, "expected ')' in vTableFuncs"))
8906     return true;
8907 
8908   return false;
8909 }
8910 
8911 /// ParamNo := 'param' ':' UInt64
8912 bool LLParser::parseParamNo(uint64_t &ParamNo) {
8913   if (parseToken(lltok::kw_param, "expected 'param' here") ||
8914       parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo))
8915     return true;
8916   return false;
8917 }
8918 
8919 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']'
8920 bool LLParser::parseParamAccessOffset(ConstantRange &Range) {
8921   APSInt Lower;
8922   APSInt Upper;
8923   auto ParseAPSInt = [&](APSInt &Val) {
8924     if (Lex.getKind() != lltok::APSInt)
8925       return tokError("expected integer");
8926     Val = Lex.getAPSIntVal();
8927     Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth);
8928     Val.setIsSigned(true);
8929     Lex.Lex();
8930     return false;
8931   };
8932   if (parseToken(lltok::kw_offset, "expected 'offset' here") ||
8933       parseToken(lltok::colon, "expected ':' here") ||
8934       parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) ||
8935       parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) ||
8936       parseToken(lltok::rsquare, "expected ']' here"))
8937     return true;
8938 
8939   ++Upper;
8940   Range =
8941       (Lower == Upper && !Lower.isMaxValue())
8942           ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth)
8943           : ConstantRange(Lower, Upper);
8944 
8945   return false;
8946 }
8947 
8948 /// ParamAccessCall
8949 ///   := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')'
8950 bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call,
8951                                     IdLocListType &IdLocList) {
8952   if (parseToken(lltok::lparen, "expected '(' here") ||
8953       parseToken(lltok::kw_callee, "expected 'callee' here") ||
8954       parseToken(lltok::colon, "expected ':' here"))
8955     return true;
8956 
8957   unsigned GVId;
8958   ValueInfo VI;
8959   LocTy Loc = Lex.getLoc();
8960   if (parseGVReference(VI, GVId))
8961     return true;
8962 
8963   Call.Callee = VI;
8964   IdLocList.emplace_back(GVId, Loc);
8965 
8966   if (parseToken(lltok::comma, "expected ',' here") ||
8967       parseParamNo(Call.ParamNo) ||
8968       parseToken(lltok::comma, "expected ',' here") ||
8969       parseParamAccessOffset(Call.Offsets))
8970     return true;
8971 
8972   if (parseToken(lltok::rparen, "expected ')' here"))
8973     return true;
8974 
8975   return false;
8976 }
8977 
8978 /// ParamAccess
8979 ///   := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')'
8980 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')'
8981 bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param,
8982                                 IdLocListType &IdLocList) {
8983   if (parseToken(lltok::lparen, "expected '(' here") ||
8984       parseParamNo(Param.ParamNo) ||
8985       parseToken(lltok::comma, "expected ',' here") ||
8986       parseParamAccessOffset(Param.Use))
8987     return true;
8988 
8989   if (EatIfPresent(lltok::comma)) {
8990     if (parseToken(lltok::kw_calls, "expected 'calls' here") ||
8991         parseToken(lltok::colon, "expected ':' here") ||
8992         parseToken(lltok::lparen, "expected '(' here"))
8993       return true;
8994     do {
8995       FunctionSummary::ParamAccess::Call Call;
8996       if (parseParamAccessCall(Call, IdLocList))
8997         return true;
8998       Param.Calls.push_back(Call);
8999     } while (EatIfPresent(lltok::comma));
9000 
9001     if (parseToken(lltok::rparen, "expected ')' here"))
9002       return true;
9003   }
9004 
9005   if (parseToken(lltok::rparen, "expected ')' here"))
9006     return true;
9007 
9008   return false;
9009 }
9010 
9011 /// OptionalParamAccesses
9012 ///   := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')'
9013 bool LLParser::parseOptionalParamAccesses(
9014     std::vector<FunctionSummary::ParamAccess> &Params) {
9015   assert(Lex.getKind() == lltok::kw_params);
9016   Lex.Lex();
9017 
9018   if (parseToken(lltok::colon, "expected ':' here") ||
9019       parseToken(lltok::lparen, "expected '(' here"))
9020     return true;
9021 
9022   IdLocListType VContexts;
9023   size_t CallsNum = 0;
9024   do {
9025     FunctionSummary::ParamAccess ParamAccess;
9026     if (parseParamAccess(ParamAccess, VContexts))
9027       return true;
9028     CallsNum += ParamAccess.Calls.size();
9029     assert(VContexts.size() == CallsNum);
9030     Params.emplace_back(std::move(ParamAccess));
9031   } while (EatIfPresent(lltok::comma));
9032 
9033   if (parseToken(lltok::rparen, "expected ')' here"))
9034     return true;
9035 
9036   // Now that the Params is finalized, it is safe to save the locations
9037   // of any forward GV references that need updating later.
9038   IdLocListType::const_iterator ItContext = VContexts.begin();
9039   for (auto &PA : Params) {
9040     for (auto &C : PA.Calls) {
9041       if (C.Callee.getRef() == FwdVIRef)
9042         ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee,
9043                                                             ItContext->second);
9044       ++ItContext;
9045     }
9046   }
9047   assert(ItContext == VContexts.end());
9048 
9049   return false;
9050 }
9051 
9052 /// OptionalRefs
9053 ///   := 'refs' ':' '(' GVReference [',' GVReference]* ')'
9054 bool LLParser::parseOptionalRefs(std::vector<ValueInfo> &Refs) {
9055   assert(Lex.getKind() == lltok::kw_refs);
9056   Lex.Lex();
9057 
9058   if (parseToken(lltok::colon, "expected ':' in refs") ||
9059       parseToken(lltok::lparen, "expected '(' in refs"))
9060     return true;
9061 
9062   struct ValueContext {
9063     ValueInfo VI;
9064     unsigned GVId;
9065     LocTy Loc;
9066   };
9067   std::vector<ValueContext> VContexts;
9068   // parse each ref edge
9069   do {
9070     ValueContext VC;
9071     VC.Loc = Lex.getLoc();
9072     if (parseGVReference(VC.VI, VC.GVId))
9073       return true;
9074     VContexts.push_back(VC);
9075   } while (EatIfPresent(lltok::comma));
9076 
9077   // Sort value contexts so that ones with writeonly
9078   // and readonly ValueInfo  are at the end of VContexts vector.
9079   // See FunctionSummary::specialRefCounts()
9080   llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
9081     return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier();
9082   });
9083 
9084   IdToIndexMapType IdToIndexMap;
9085   for (auto &VC : VContexts) {
9086     // Keep track of the Refs array index needing a forward reference.
9087     // We will save the location of the ValueInfo needing an update, but
9088     // can only do so once the std::vector is finalized.
9089     if (VC.VI.getRef() == FwdVIRef)
9090       IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
9091     Refs.push_back(VC.VI);
9092   }
9093 
9094   // Now that the Refs vector is finalized, it is safe to save the locations
9095   // of any forward GV references that need updating later.
9096   for (auto I : IdToIndexMap) {
9097     auto &Infos = ForwardRefValueInfos[I.first];
9098     for (auto P : I.second) {
9099       assert(Refs[P.first].getRef() == FwdVIRef &&
9100              "Forward referenced ValueInfo expected to be empty");
9101       Infos.emplace_back(&Refs[P.first], P.second);
9102     }
9103   }
9104 
9105   if (parseToken(lltok::rparen, "expected ')' in refs"))
9106     return true;
9107 
9108   return false;
9109 }
9110 
9111 /// OptionalTypeIdInfo
9112 ///   := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
9113 ///         [',' TypeCheckedLoadVCalls]?  [',' TypeTestAssumeConstVCalls]?
9114 ///         [',' TypeCheckedLoadConstVCalls]? ')'
9115 bool LLParser::parseOptionalTypeIdInfo(
9116     FunctionSummary::TypeIdInfo &TypeIdInfo) {
9117   assert(Lex.getKind() == lltok::kw_typeIdInfo);
9118   Lex.Lex();
9119 
9120   if (parseToken(lltok::colon, "expected ':' here") ||
9121       parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
9122     return true;
9123 
9124   do {
9125     switch (Lex.getKind()) {
9126     case lltok::kw_typeTests:
9127       if (parseTypeTests(TypeIdInfo.TypeTests))
9128         return true;
9129       break;
9130     case lltok::kw_typeTestAssumeVCalls:
9131       if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
9132                            TypeIdInfo.TypeTestAssumeVCalls))
9133         return true;
9134       break;
9135     case lltok::kw_typeCheckedLoadVCalls:
9136       if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
9137                            TypeIdInfo.TypeCheckedLoadVCalls))
9138         return true;
9139       break;
9140     case lltok::kw_typeTestAssumeConstVCalls:
9141       if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
9142                               TypeIdInfo.TypeTestAssumeConstVCalls))
9143         return true;
9144       break;
9145     case lltok::kw_typeCheckedLoadConstVCalls:
9146       if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
9147                               TypeIdInfo.TypeCheckedLoadConstVCalls))
9148         return true;
9149       break;
9150     default:
9151       return error(Lex.getLoc(), "invalid typeIdInfo list type");
9152     }
9153   } while (EatIfPresent(lltok::comma));
9154 
9155   if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
9156     return true;
9157 
9158   return false;
9159 }
9160 
9161 /// TypeTests
9162 ///   ::= 'typeTests' ':' '(' (SummaryID | UInt64)
9163 ///         [',' (SummaryID | UInt64)]* ')'
9164 bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
9165   assert(Lex.getKind() == lltok::kw_typeTests);
9166   Lex.Lex();
9167 
9168   if (parseToken(lltok::colon, "expected ':' here") ||
9169       parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
9170     return true;
9171 
9172   IdToIndexMapType IdToIndexMap;
9173   do {
9174     GlobalValue::GUID GUID = 0;
9175     if (Lex.getKind() == lltok::SummaryID) {
9176       unsigned ID = Lex.getUIntVal();
9177       LocTy Loc = Lex.getLoc();
9178       // Keep track of the TypeTests array index needing a forward reference.
9179       // We will save the location of the GUID needing an update, but
9180       // can only do so once the std::vector is finalized.
9181       IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
9182       Lex.Lex();
9183     } else if (parseUInt64(GUID))
9184       return true;
9185     TypeTests.push_back(GUID);
9186   } while (EatIfPresent(lltok::comma));
9187 
9188   // Now that the TypeTests vector is finalized, it is safe to save the
9189   // locations of any forward GV references that need updating later.
9190   for (auto I : IdToIndexMap) {
9191     auto &Ids = ForwardRefTypeIds[I.first];
9192     for (auto P : I.second) {
9193       assert(TypeTests[P.first] == 0 &&
9194              "Forward referenced type id GUID expected to be 0");
9195       Ids.emplace_back(&TypeTests[P.first], P.second);
9196     }
9197   }
9198 
9199   if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
9200     return true;
9201 
9202   return false;
9203 }
9204 
9205 /// VFuncIdList
9206 ///   ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
9207 bool LLParser::parseVFuncIdList(
9208     lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
9209   assert(Lex.getKind() == Kind);
9210   Lex.Lex();
9211 
9212   if (parseToken(lltok::colon, "expected ':' here") ||
9213       parseToken(lltok::lparen, "expected '(' here"))
9214     return true;
9215 
9216   IdToIndexMapType IdToIndexMap;
9217   do {
9218     FunctionSummary::VFuncId VFuncId;
9219     if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
9220       return true;
9221     VFuncIdList.push_back(VFuncId);
9222   } while (EatIfPresent(lltok::comma));
9223 
9224   if (parseToken(lltok::rparen, "expected ')' here"))
9225     return true;
9226 
9227   // Now that the VFuncIdList vector is finalized, it is safe to save the
9228   // locations of any forward GV references that need updating later.
9229   for (auto I : IdToIndexMap) {
9230     auto &Ids = ForwardRefTypeIds[I.first];
9231     for (auto P : I.second) {
9232       assert(VFuncIdList[P.first].GUID == 0 &&
9233              "Forward referenced type id GUID expected to be 0");
9234       Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second);
9235     }
9236   }
9237 
9238   return false;
9239 }
9240 
9241 /// ConstVCallList
9242 ///   ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
9243 bool LLParser::parseConstVCallList(
9244     lltok::Kind Kind,
9245     std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
9246   assert(Lex.getKind() == Kind);
9247   Lex.Lex();
9248 
9249   if (parseToken(lltok::colon, "expected ':' here") ||
9250       parseToken(lltok::lparen, "expected '(' here"))
9251     return true;
9252 
9253   IdToIndexMapType IdToIndexMap;
9254   do {
9255     FunctionSummary::ConstVCall ConstVCall;
9256     if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
9257       return true;
9258     ConstVCallList.push_back(ConstVCall);
9259   } while (EatIfPresent(lltok::comma));
9260 
9261   if (parseToken(lltok::rparen, "expected ')' here"))
9262     return true;
9263 
9264   // Now that the ConstVCallList vector is finalized, it is safe to save the
9265   // locations of any forward GV references that need updating later.
9266   for (auto I : IdToIndexMap) {
9267     auto &Ids = ForwardRefTypeIds[I.first];
9268     for (auto P : I.second) {
9269       assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
9270              "Forward referenced type id GUID expected to be 0");
9271       Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second);
9272     }
9273   }
9274 
9275   return false;
9276 }
9277 
9278 /// ConstVCall
9279 ///   ::= '(' VFuncId ',' Args ')'
9280 bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
9281                                IdToIndexMapType &IdToIndexMap, unsigned Index) {
9282   if (parseToken(lltok::lparen, "expected '(' here") ||
9283       parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
9284     return true;
9285 
9286   if (EatIfPresent(lltok::comma))
9287     if (parseArgs(ConstVCall.Args))
9288       return true;
9289 
9290   if (parseToken(lltok::rparen, "expected ')' here"))
9291     return true;
9292 
9293   return false;
9294 }
9295 
9296 /// VFuncId
9297 ///   ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
9298 ///         'offset' ':' UInt64 ')'
9299 bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId,
9300                             IdToIndexMapType &IdToIndexMap, unsigned Index) {
9301   assert(Lex.getKind() == lltok::kw_vFuncId);
9302   Lex.Lex();
9303 
9304   if (parseToken(lltok::colon, "expected ':' here") ||
9305       parseToken(lltok::lparen, "expected '(' here"))
9306     return true;
9307 
9308   if (Lex.getKind() == lltok::SummaryID) {
9309     VFuncId.GUID = 0;
9310     unsigned ID = Lex.getUIntVal();
9311     LocTy Loc = Lex.getLoc();
9312     // Keep track of the array index needing a forward reference.
9313     // We will save the location of the GUID needing an update, but
9314     // can only do so once the caller's std::vector is finalized.
9315     IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
9316     Lex.Lex();
9317   } else if (parseToken(lltok::kw_guid, "expected 'guid' here") ||
9318              parseToken(lltok::colon, "expected ':' here") ||
9319              parseUInt64(VFuncId.GUID))
9320     return true;
9321 
9322   if (parseToken(lltok::comma, "expected ',' here") ||
9323       parseToken(lltok::kw_offset, "expected 'offset' here") ||
9324       parseToken(lltok::colon, "expected ':' here") ||
9325       parseUInt64(VFuncId.Offset) ||
9326       parseToken(lltok::rparen, "expected ')' here"))
9327     return true;
9328 
9329   return false;
9330 }
9331 
9332 /// GVFlags
9333 ///   ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
9334 ///         'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ','
9335 ///         'dsoLocal' ':' Flag ',' 'canAutoHide' ':' Flag ')'
9336 bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
9337   assert(Lex.getKind() == lltok::kw_flags);
9338   Lex.Lex();
9339 
9340   if (parseToken(lltok::colon, "expected ':' here") ||
9341       parseToken(lltok::lparen, "expected '(' here"))
9342     return true;
9343 
9344   do {
9345     unsigned Flag = 0;
9346     switch (Lex.getKind()) {
9347     case lltok::kw_linkage:
9348       Lex.Lex();
9349       if (parseToken(lltok::colon, "expected ':'"))
9350         return true;
9351       bool HasLinkage;
9352       GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
9353       assert(HasLinkage && "Linkage not optional in summary entry");
9354       Lex.Lex();
9355       break;
9356     case lltok::kw_notEligibleToImport:
9357       Lex.Lex();
9358       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9359         return true;
9360       GVFlags.NotEligibleToImport = Flag;
9361       break;
9362     case lltok::kw_live:
9363       Lex.Lex();
9364       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9365         return true;
9366       GVFlags.Live = Flag;
9367       break;
9368     case lltok::kw_dsoLocal:
9369       Lex.Lex();
9370       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9371         return true;
9372       GVFlags.DSOLocal = Flag;
9373       break;
9374     case lltok::kw_canAutoHide:
9375       Lex.Lex();
9376       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9377         return true;
9378       GVFlags.CanAutoHide = Flag;
9379       break;
9380     default:
9381       return error(Lex.getLoc(), "expected gv flag type");
9382     }
9383   } while (EatIfPresent(lltok::comma));
9384 
9385   if (parseToken(lltok::rparen, "expected ')' here"))
9386     return true;
9387 
9388   return false;
9389 }
9390 
9391 /// GVarFlags
9392 ///   ::= 'varFlags' ':' '(' 'readonly' ':' Flag
9393 ///                      ',' 'writeonly' ':' Flag
9394 ///                      ',' 'constant' ':' Flag ')'
9395 bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
9396   assert(Lex.getKind() == lltok::kw_varFlags);
9397   Lex.Lex();
9398 
9399   if (parseToken(lltok::colon, "expected ':' here") ||
9400       parseToken(lltok::lparen, "expected '(' here"))
9401     return true;
9402 
9403   auto ParseRest = [this](unsigned int &Val) {
9404     Lex.Lex();
9405     if (parseToken(lltok::colon, "expected ':'"))
9406       return true;
9407     return parseFlag(Val);
9408   };
9409 
9410   do {
9411     unsigned Flag = 0;
9412     switch (Lex.getKind()) {
9413     case lltok::kw_readonly:
9414       if (ParseRest(Flag))
9415         return true;
9416       GVarFlags.MaybeReadOnly = Flag;
9417       break;
9418     case lltok::kw_writeonly:
9419       if (ParseRest(Flag))
9420         return true;
9421       GVarFlags.MaybeWriteOnly = Flag;
9422       break;
9423     case lltok::kw_constant:
9424       if (ParseRest(Flag))
9425         return true;
9426       GVarFlags.Constant = Flag;
9427       break;
9428     case lltok::kw_vcall_visibility:
9429       if (ParseRest(Flag))
9430         return true;
9431       GVarFlags.VCallVisibility = Flag;
9432       break;
9433     default:
9434       return error(Lex.getLoc(), "expected gvar flag type");
9435     }
9436   } while (EatIfPresent(lltok::comma));
9437   return parseToken(lltok::rparen, "expected ')' here");
9438 }
9439 
9440 /// ModuleReference
9441 ///   ::= 'module' ':' UInt
9442 bool LLParser::parseModuleReference(StringRef &ModulePath) {
9443   // parse module id.
9444   if (parseToken(lltok::kw_module, "expected 'module' here") ||
9445       parseToken(lltok::colon, "expected ':' here") ||
9446       parseToken(lltok::SummaryID, "expected module ID"))
9447     return true;
9448 
9449   unsigned ModuleID = Lex.getUIntVal();
9450   auto I = ModuleIdMap.find(ModuleID);
9451   // We should have already parsed all module IDs
9452   assert(I != ModuleIdMap.end());
9453   ModulePath = I->second;
9454   return false;
9455 }
9456 
9457 /// GVReference
9458 ///   ::= SummaryID
9459 bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) {
9460   bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly);
9461   if (!ReadOnly)
9462     WriteOnly = EatIfPresent(lltok::kw_writeonly);
9463   if (parseToken(lltok::SummaryID, "expected GV ID"))
9464     return true;
9465 
9466   GVId = Lex.getUIntVal();
9467   // Check if we already have a VI for this GV
9468   if (GVId < NumberedValueInfos.size()) {
9469     assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
9470     VI = NumberedValueInfos[GVId];
9471   } else
9472     // We will create a forward reference to the stored location.
9473     VI = ValueInfo(false, FwdVIRef);
9474 
9475   if (ReadOnly)
9476     VI.setReadOnly();
9477   if (WriteOnly)
9478     VI.setWriteOnly();
9479   return false;
9480 }
9481