1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the parser class for .ll files. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LLParser.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/AsmParser/SlotMapping.h" 21 #include "llvm/BinaryFormat/Dwarf.h" 22 #include "llvm/IR/Argument.h" 23 #include "llvm/IR/AutoUpgrade.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallingConv.h" 26 #include "llvm/IR/Comdat.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DebugInfoMetadata.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/GlobalIFunc.h" 32 #include "llvm/IR/GlobalObject.h" 33 #include "llvm/IR/InlineAsm.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/LLVMContext.h" 38 #include "llvm/IR/Metadata.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/Operator.h" 41 #include "llvm/IR/Type.h" 42 #include "llvm/IR/Value.h" 43 #include "llvm/IR/ValueSymbolTable.h" 44 #include "llvm/Support/Casting.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/MathExtras.h" 47 #include "llvm/Support/SaveAndRestore.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include <algorithm> 50 #include <cassert> 51 #include <cstring> 52 #include <iterator> 53 #include <vector> 54 55 using namespace llvm; 56 57 static std::string getTypeString(Type *T) { 58 std::string Result; 59 raw_string_ostream Tmp(Result); 60 Tmp << *T; 61 return Tmp.str(); 62 } 63 64 /// Run: module ::= toplevelentity* 65 bool LLParser::Run() { 66 // Prime the lexer. 67 Lex.Lex(); 68 69 if (Context.shouldDiscardValueNames()) 70 return Error( 71 Lex.getLoc(), 72 "Can't read textual IR with a Context that discards named Values"); 73 74 return ParseTopLevelEntities() || ValidateEndOfModule() || 75 ValidateEndOfIndex(); 76 } 77 78 bool LLParser::parseStandaloneConstantValue(Constant *&C, 79 const SlotMapping *Slots) { 80 restoreParsingState(Slots); 81 Lex.Lex(); 82 83 Type *Ty = nullptr; 84 if (ParseType(Ty) || parseConstantValue(Ty, C)) 85 return true; 86 if (Lex.getKind() != lltok::Eof) 87 return Error(Lex.getLoc(), "expected end of string"); 88 return false; 89 } 90 91 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 92 const SlotMapping *Slots) { 93 restoreParsingState(Slots); 94 Lex.Lex(); 95 96 Read = 0; 97 SMLoc Start = Lex.getLoc(); 98 Ty = nullptr; 99 if (ParseType(Ty)) 100 return true; 101 SMLoc End = Lex.getLoc(); 102 Read = End.getPointer() - Start.getPointer(); 103 104 return false; 105 } 106 107 void LLParser::restoreParsingState(const SlotMapping *Slots) { 108 if (!Slots) 109 return; 110 NumberedVals = Slots->GlobalValues; 111 NumberedMetadata = Slots->MetadataNodes; 112 for (const auto &I : Slots->NamedTypes) 113 NamedTypes.insert( 114 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 115 for (const auto &I : Slots->Types) 116 NumberedTypes.insert( 117 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 118 } 119 120 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the 121 /// module. 122 bool LLParser::ValidateEndOfModule() { 123 if (!M) 124 return false; 125 // Handle any function attribute group forward references. 126 for (const auto &RAG : ForwardRefAttrGroups) { 127 Value *V = RAG.first; 128 const std::vector<unsigned> &Attrs = RAG.second; 129 AttrBuilder B; 130 131 for (const auto &Attr : Attrs) 132 B.merge(NumberedAttrBuilders[Attr]); 133 134 if (Function *Fn = dyn_cast<Function>(V)) { 135 AttributeList AS = Fn->getAttributes(); 136 AttrBuilder FnAttrs(AS.getFnAttributes()); 137 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 138 139 FnAttrs.merge(B); 140 141 // If the alignment was parsed as an attribute, move to the alignment 142 // field. 143 if (FnAttrs.hasAlignmentAttr()) { 144 Fn->setAlignment(FnAttrs.getAlignment()); 145 FnAttrs.removeAttribute(Attribute::Alignment); 146 } 147 148 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 149 AttributeSet::get(Context, FnAttrs)); 150 Fn->setAttributes(AS); 151 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 152 AttributeList AS = CI->getAttributes(); 153 AttrBuilder FnAttrs(AS.getFnAttributes()); 154 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 155 FnAttrs.merge(B); 156 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 157 AttributeSet::get(Context, FnAttrs)); 158 CI->setAttributes(AS); 159 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 160 AttributeList AS = II->getAttributes(); 161 AttrBuilder FnAttrs(AS.getFnAttributes()); 162 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 163 FnAttrs.merge(B); 164 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 165 AttributeSet::get(Context, FnAttrs)); 166 II->setAttributes(AS); 167 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) { 168 AttrBuilder Attrs(GV->getAttributes()); 169 Attrs.merge(B); 170 GV->setAttributes(AttributeSet::get(Context,Attrs)); 171 } else { 172 llvm_unreachable("invalid object with forward attribute group reference"); 173 } 174 } 175 176 // If there are entries in ForwardRefBlockAddresses at this point, the 177 // function was never defined. 178 if (!ForwardRefBlockAddresses.empty()) 179 return Error(ForwardRefBlockAddresses.begin()->first.Loc, 180 "expected function name in blockaddress"); 181 182 for (const auto &NT : NumberedTypes) 183 if (NT.second.second.isValid()) 184 return Error(NT.second.second, 185 "use of undefined type '%" + Twine(NT.first) + "'"); 186 187 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 188 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 189 if (I->second.second.isValid()) 190 return Error(I->second.second, 191 "use of undefined type named '" + I->getKey() + "'"); 192 193 if (!ForwardRefComdats.empty()) 194 return Error(ForwardRefComdats.begin()->second, 195 "use of undefined comdat '$" + 196 ForwardRefComdats.begin()->first + "'"); 197 198 if (!ForwardRefVals.empty()) 199 return Error(ForwardRefVals.begin()->second.second, 200 "use of undefined value '@" + ForwardRefVals.begin()->first + 201 "'"); 202 203 if (!ForwardRefValIDs.empty()) 204 return Error(ForwardRefValIDs.begin()->second.second, 205 "use of undefined value '@" + 206 Twine(ForwardRefValIDs.begin()->first) + "'"); 207 208 if (!ForwardRefMDNodes.empty()) 209 return Error(ForwardRefMDNodes.begin()->second.second, 210 "use of undefined metadata '!" + 211 Twine(ForwardRefMDNodes.begin()->first) + "'"); 212 213 // Resolve metadata cycles. 214 for (auto &N : NumberedMetadata) { 215 if (N.second && !N.second->isResolved()) 216 N.second->resolveCycles(); 217 } 218 219 for (auto *Inst : InstsWithTBAATag) { 220 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); 221 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); 222 auto *UpgradedMD = UpgradeTBAANode(*MD); 223 if (MD != UpgradedMD) 224 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); 225 } 226 227 // Look for intrinsic functions and CallInst that need to be upgraded 228 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 229 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove 230 231 // Some types could be renamed during loading if several modules are 232 // loaded in the same LLVMContext (LTO scenario). In this case we should 233 // remangle intrinsics names as well. 234 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) { 235 Function *F = &*FI++; 236 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) { 237 F->replaceAllUsesWith(Remangled.getValue()); 238 F->eraseFromParent(); 239 } 240 } 241 242 if (UpgradeDebugInfo) 243 llvm::UpgradeDebugInfo(*M); 244 245 UpgradeModuleFlags(*M); 246 UpgradeSectionAttributes(*M); 247 248 if (!Slots) 249 return false; 250 // Initialize the slot mapping. 251 // Because by this point we've parsed and validated everything, we can "steal" 252 // the mapping from LLParser as it doesn't need it anymore. 253 Slots->GlobalValues = std::move(NumberedVals); 254 Slots->MetadataNodes = std::move(NumberedMetadata); 255 for (const auto &I : NamedTypes) 256 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 257 for (const auto &I : NumberedTypes) 258 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 259 260 return false; 261 } 262 263 /// Do final validity and sanity checks at the end of the index. 264 bool LLParser::ValidateEndOfIndex() { 265 if (!Index) 266 return false; 267 268 if (!ForwardRefValueInfos.empty()) 269 return Error(ForwardRefValueInfos.begin()->second.front().second, 270 "use of undefined summary '^" + 271 Twine(ForwardRefValueInfos.begin()->first) + "'"); 272 273 if (!ForwardRefAliasees.empty()) 274 return Error(ForwardRefAliasees.begin()->second.front().second, 275 "use of undefined summary '^" + 276 Twine(ForwardRefAliasees.begin()->first) + "'"); 277 278 if (!ForwardRefTypeIds.empty()) 279 return Error(ForwardRefTypeIds.begin()->second.front().second, 280 "use of undefined type id summary '^" + 281 Twine(ForwardRefTypeIds.begin()->first) + "'"); 282 283 return false; 284 } 285 286 //===----------------------------------------------------------------------===// 287 // Top-Level Entities 288 //===----------------------------------------------------------------------===// 289 290 bool LLParser::ParseTopLevelEntities() { 291 // If there is no Module, then parse just the summary index entries. 292 if (!M) { 293 while (true) { 294 switch (Lex.getKind()) { 295 case lltok::Eof: 296 return false; 297 case lltok::SummaryID: 298 if (ParseSummaryEntry()) 299 return true; 300 break; 301 case lltok::kw_source_filename: 302 if (ParseSourceFileName()) 303 return true; 304 break; 305 default: 306 // Skip everything else 307 Lex.Lex(); 308 } 309 } 310 } 311 while (true) { 312 switch (Lex.getKind()) { 313 default: return TokError("expected top-level entity"); 314 case lltok::Eof: return false; 315 case lltok::kw_declare: if (ParseDeclare()) return true; break; 316 case lltok::kw_define: if (ParseDefine()) return true; break; 317 case lltok::kw_module: if (ParseModuleAsm()) return true; break; 318 case lltok::kw_target: if (ParseTargetDefinition()) return true; break; 319 case lltok::kw_source_filename: 320 if (ParseSourceFileName()) 321 return true; 322 break; 323 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; 324 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; 325 case lltok::LocalVar: if (ParseNamedType()) return true; break; 326 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; 327 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; 328 case lltok::ComdatVar: if (parseComdat()) return true; break; 329 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break; 330 case lltok::SummaryID: 331 if (ParseSummaryEntry()) 332 return true; 333 break; 334 case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break; 335 case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break; 336 case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break; 337 case lltok::kw_uselistorder_bb: 338 if (ParseUseListOrderBB()) 339 return true; 340 break; 341 } 342 } 343 } 344 345 /// toplevelentity 346 /// ::= 'module' 'asm' STRINGCONSTANT 347 bool LLParser::ParseModuleAsm() { 348 assert(Lex.getKind() == lltok::kw_module); 349 Lex.Lex(); 350 351 std::string AsmStr; 352 if (ParseToken(lltok::kw_asm, "expected 'module asm'") || 353 ParseStringConstant(AsmStr)) return true; 354 355 M->appendModuleInlineAsm(AsmStr); 356 return false; 357 } 358 359 /// toplevelentity 360 /// ::= 'target' 'triple' '=' STRINGCONSTANT 361 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 362 bool LLParser::ParseTargetDefinition() { 363 assert(Lex.getKind() == lltok::kw_target); 364 std::string Str; 365 switch (Lex.Lex()) { 366 default: return TokError("unknown target property"); 367 case lltok::kw_triple: 368 Lex.Lex(); 369 if (ParseToken(lltok::equal, "expected '=' after target triple") || 370 ParseStringConstant(Str)) 371 return true; 372 M->setTargetTriple(Str); 373 return false; 374 case lltok::kw_datalayout: 375 Lex.Lex(); 376 if (ParseToken(lltok::equal, "expected '=' after target datalayout") || 377 ParseStringConstant(Str)) 378 return true; 379 if (DataLayoutStr.empty()) 380 M->setDataLayout(Str); 381 return false; 382 } 383 } 384 385 /// toplevelentity 386 /// ::= 'source_filename' '=' STRINGCONSTANT 387 bool LLParser::ParseSourceFileName() { 388 assert(Lex.getKind() == lltok::kw_source_filename); 389 Lex.Lex(); 390 if (ParseToken(lltok::equal, "expected '=' after source_filename") || 391 ParseStringConstant(SourceFileName)) 392 return true; 393 if (M) 394 M->setSourceFileName(SourceFileName); 395 return false; 396 } 397 398 /// toplevelentity 399 /// ::= 'deplibs' '=' '[' ']' 400 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 401 /// FIXME: Remove in 4.0. Currently parse, but ignore. 402 bool LLParser::ParseDepLibs() { 403 assert(Lex.getKind() == lltok::kw_deplibs); 404 Lex.Lex(); 405 if (ParseToken(lltok::equal, "expected '=' after deplibs") || 406 ParseToken(lltok::lsquare, "expected '=' after deplibs")) 407 return true; 408 409 if (EatIfPresent(lltok::rsquare)) 410 return false; 411 412 do { 413 std::string Str; 414 if (ParseStringConstant(Str)) return true; 415 } while (EatIfPresent(lltok::comma)); 416 417 return ParseToken(lltok::rsquare, "expected ']' at end of list"); 418 } 419 420 /// ParseUnnamedType: 421 /// ::= LocalVarID '=' 'type' type 422 bool LLParser::ParseUnnamedType() { 423 LocTy TypeLoc = Lex.getLoc(); 424 unsigned TypeID = Lex.getUIntVal(); 425 Lex.Lex(); // eat LocalVarID; 426 427 if (ParseToken(lltok::equal, "expected '=' after name") || 428 ParseToken(lltok::kw_type, "expected 'type' after '='")) 429 return true; 430 431 Type *Result = nullptr; 432 if (ParseStructDefinition(TypeLoc, "", 433 NumberedTypes[TypeID], Result)) return true; 434 435 if (!isa<StructType>(Result)) { 436 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 437 if (Entry.first) 438 return Error(TypeLoc, "non-struct types may not be recursive"); 439 Entry.first = Result; 440 Entry.second = SMLoc(); 441 } 442 443 return false; 444 } 445 446 /// toplevelentity 447 /// ::= LocalVar '=' 'type' type 448 bool LLParser::ParseNamedType() { 449 std::string Name = Lex.getStrVal(); 450 LocTy NameLoc = Lex.getLoc(); 451 Lex.Lex(); // eat LocalVar. 452 453 if (ParseToken(lltok::equal, "expected '=' after name") || 454 ParseToken(lltok::kw_type, "expected 'type' after name")) 455 return true; 456 457 Type *Result = nullptr; 458 if (ParseStructDefinition(NameLoc, Name, 459 NamedTypes[Name], Result)) return true; 460 461 if (!isa<StructType>(Result)) { 462 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 463 if (Entry.first) 464 return Error(NameLoc, "non-struct types may not be recursive"); 465 Entry.first = Result; 466 Entry.second = SMLoc(); 467 } 468 469 return false; 470 } 471 472 /// toplevelentity 473 /// ::= 'declare' FunctionHeader 474 bool LLParser::ParseDeclare() { 475 assert(Lex.getKind() == lltok::kw_declare); 476 Lex.Lex(); 477 478 std::vector<std::pair<unsigned, MDNode *>> MDs; 479 while (Lex.getKind() == lltok::MetadataVar) { 480 unsigned MDK; 481 MDNode *N; 482 if (ParseMetadataAttachment(MDK, N)) 483 return true; 484 MDs.push_back({MDK, N}); 485 } 486 487 Function *F; 488 if (ParseFunctionHeader(F, false)) 489 return true; 490 for (auto &MD : MDs) 491 F->addMetadata(MD.first, *MD.second); 492 return false; 493 } 494 495 /// toplevelentity 496 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 497 bool LLParser::ParseDefine() { 498 assert(Lex.getKind() == lltok::kw_define); 499 Lex.Lex(); 500 501 Function *F; 502 return ParseFunctionHeader(F, true) || 503 ParseOptionalFunctionMetadata(*F) || 504 ParseFunctionBody(*F); 505 } 506 507 /// ParseGlobalType 508 /// ::= 'constant' 509 /// ::= 'global' 510 bool LLParser::ParseGlobalType(bool &IsConstant) { 511 if (Lex.getKind() == lltok::kw_constant) 512 IsConstant = true; 513 else if (Lex.getKind() == lltok::kw_global) 514 IsConstant = false; 515 else { 516 IsConstant = false; 517 return TokError("expected 'global' or 'constant'"); 518 } 519 Lex.Lex(); 520 return false; 521 } 522 523 bool LLParser::ParseOptionalUnnamedAddr( 524 GlobalVariable::UnnamedAddr &UnnamedAddr) { 525 if (EatIfPresent(lltok::kw_unnamed_addr)) 526 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 527 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 528 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 529 else 530 UnnamedAddr = GlobalValue::UnnamedAddr::None; 531 return false; 532 } 533 534 /// ParseUnnamedGlobal: 535 /// OptionalVisibility (ALIAS | IFUNC) ... 536 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 537 /// OptionalDLLStorageClass 538 /// ... -> global variable 539 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 540 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 541 /// OptionalDLLStorageClass 542 /// ... -> global variable 543 bool LLParser::ParseUnnamedGlobal() { 544 unsigned VarID = NumberedVals.size(); 545 std::string Name; 546 LocTy NameLoc = Lex.getLoc(); 547 548 // Handle the GlobalID form. 549 if (Lex.getKind() == lltok::GlobalID) { 550 if (Lex.getUIntVal() != VarID) 551 return Error(Lex.getLoc(), "variable expected to be numbered '%" + 552 Twine(VarID) + "'"); 553 Lex.Lex(); // eat GlobalID; 554 555 if (ParseToken(lltok::equal, "expected '=' after name")) 556 return true; 557 } 558 559 bool HasLinkage; 560 unsigned Linkage, Visibility, DLLStorageClass; 561 bool DSOLocal; 562 GlobalVariable::ThreadLocalMode TLM; 563 GlobalVariable::UnnamedAddr UnnamedAddr; 564 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 565 DSOLocal) || 566 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 567 return true; 568 569 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 570 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 571 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 572 573 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 574 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 575 } 576 577 /// ParseNamedGlobal: 578 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 579 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 580 /// OptionalVisibility OptionalDLLStorageClass 581 /// ... -> global variable 582 bool LLParser::ParseNamedGlobal() { 583 assert(Lex.getKind() == lltok::GlobalVar); 584 LocTy NameLoc = Lex.getLoc(); 585 std::string Name = Lex.getStrVal(); 586 Lex.Lex(); 587 588 bool HasLinkage; 589 unsigned Linkage, Visibility, DLLStorageClass; 590 bool DSOLocal; 591 GlobalVariable::ThreadLocalMode TLM; 592 GlobalVariable::UnnamedAddr UnnamedAddr; 593 if (ParseToken(lltok::equal, "expected '=' in global variable") || 594 ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 595 DSOLocal) || 596 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 597 return true; 598 599 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 600 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 601 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 602 603 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 604 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 605 } 606 607 bool LLParser::parseComdat() { 608 assert(Lex.getKind() == lltok::ComdatVar); 609 std::string Name = Lex.getStrVal(); 610 LocTy NameLoc = Lex.getLoc(); 611 Lex.Lex(); 612 613 if (ParseToken(lltok::equal, "expected '=' here")) 614 return true; 615 616 if (ParseToken(lltok::kw_comdat, "expected comdat keyword")) 617 return TokError("expected comdat type"); 618 619 Comdat::SelectionKind SK; 620 switch (Lex.getKind()) { 621 default: 622 return TokError("unknown selection kind"); 623 case lltok::kw_any: 624 SK = Comdat::Any; 625 break; 626 case lltok::kw_exactmatch: 627 SK = Comdat::ExactMatch; 628 break; 629 case lltok::kw_largest: 630 SK = Comdat::Largest; 631 break; 632 case lltok::kw_noduplicates: 633 SK = Comdat::NoDuplicates; 634 break; 635 case lltok::kw_samesize: 636 SK = Comdat::SameSize; 637 break; 638 } 639 Lex.Lex(); 640 641 // See if the comdat was forward referenced, if so, use the comdat. 642 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 643 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 644 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 645 return Error(NameLoc, "redefinition of comdat '$" + Name + "'"); 646 647 Comdat *C; 648 if (I != ComdatSymTab.end()) 649 C = &I->second; 650 else 651 C = M->getOrInsertComdat(Name); 652 C->setSelectionKind(SK); 653 654 return false; 655 } 656 657 // MDString: 658 // ::= '!' STRINGCONSTANT 659 bool LLParser::ParseMDString(MDString *&Result) { 660 std::string Str; 661 if (ParseStringConstant(Str)) return true; 662 Result = MDString::get(Context, Str); 663 return false; 664 } 665 666 // MDNode: 667 // ::= '!' MDNodeNumber 668 bool LLParser::ParseMDNodeID(MDNode *&Result) { 669 // !{ ..., !42, ... } 670 LocTy IDLoc = Lex.getLoc(); 671 unsigned MID = 0; 672 if (ParseUInt32(MID)) 673 return true; 674 675 // If not a forward reference, just return it now. 676 if (NumberedMetadata.count(MID)) { 677 Result = NumberedMetadata[MID]; 678 return false; 679 } 680 681 // Otherwise, create MDNode forward reference. 682 auto &FwdRef = ForwardRefMDNodes[MID]; 683 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 684 685 Result = FwdRef.first.get(); 686 NumberedMetadata[MID].reset(Result); 687 return false; 688 } 689 690 /// ParseNamedMetadata: 691 /// !foo = !{ !1, !2 } 692 bool LLParser::ParseNamedMetadata() { 693 assert(Lex.getKind() == lltok::MetadataVar); 694 std::string Name = Lex.getStrVal(); 695 Lex.Lex(); 696 697 if (ParseToken(lltok::equal, "expected '=' here") || 698 ParseToken(lltok::exclaim, "Expected '!' here") || 699 ParseToken(lltok::lbrace, "Expected '{' here")) 700 return true; 701 702 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 703 if (Lex.getKind() != lltok::rbrace) 704 do { 705 MDNode *N = nullptr; 706 // Parse DIExpressions inline as a special case. They are still MDNodes, 707 // so they can still appear in named metadata. Remove this logic if they 708 // become plain Metadata. 709 if (Lex.getKind() == lltok::MetadataVar && 710 Lex.getStrVal() == "DIExpression") { 711 if (ParseDIExpression(N, /*IsDistinct=*/false)) 712 return true; 713 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 714 ParseMDNodeID(N)) { 715 return true; 716 } 717 NMD->addOperand(N); 718 } while (EatIfPresent(lltok::comma)); 719 720 return ParseToken(lltok::rbrace, "expected end of metadata node"); 721 } 722 723 /// ParseStandaloneMetadata: 724 /// !42 = !{...} 725 bool LLParser::ParseStandaloneMetadata() { 726 assert(Lex.getKind() == lltok::exclaim); 727 Lex.Lex(); 728 unsigned MetadataID = 0; 729 730 MDNode *Init; 731 if (ParseUInt32(MetadataID) || 732 ParseToken(lltok::equal, "expected '=' here")) 733 return true; 734 735 // Detect common error, from old metadata syntax. 736 if (Lex.getKind() == lltok::Type) 737 return TokError("unexpected type in metadata definition"); 738 739 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 740 if (Lex.getKind() == lltok::MetadataVar) { 741 if (ParseSpecializedMDNode(Init, IsDistinct)) 742 return true; 743 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 744 ParseMDTuple(Init, IsDistinct)) 745 return true; 746 747 // See if this was forward referenced, if so, handle it. 748 auto FI = ForwardRefMDNodes.find(MetadataID); 749 if (FI != ForwardRefMDNodes.end()) { 750 FI->second.first->replaceAllUsesWith(Init); 751 ForwardRefMDNodes.erase(FI); 752 753 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 754 } else { 755 if (NumberedMetadata.count(MetadataID)) 756 return TokError("Metadata id is already used"); 757 NumberedMetadata[MetadataID].reset(Init); 758 } 759 760 return false; 761 } 762 763 // Skips a single module summary entry. 764 bool LLParser::SkipModuleSummaryEntry() { 765 // Each module summary entry consists of a tag for the entry 766 // type, followed by a colon, then the fields surrounded by nested sets of 767 // parentheses. The "tag:" looks like a Label. Once parsing support is 768 // in place we will look for the tokens corresponding to the expected tags. 769 if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module && 770 Lex.getKind() != lltok::kw_typeid) 771 return TokError( 772 "Expected 'gv', 'module', or 'typeid' at the start of summary entry"); 773 Lex.Lex(); 774 if (ParseToken(lltok::colon, "expected ':' at start of summary entry") || 775 ParseToken(lltok::lparen, "expected '(' at start of summary entry")) 776 return true; 777 // Now walk through the parenthesized entry, until the number of open 778 // parentheses goes back down to 0 (the first '(' was parsed above). 779 unsigned NumOpenParen = 1; 780 do { 781 switch (Lex.getKind()) { 782 case lltok::lparen: 783 NumOpenParen++; 784 break; 785 case lltok::rparen: 786 NumOpenParen--; 787 break; 788 case lltok::Eof: 789 return TokError("found end of file while parsing summary entry"); 790 default: 791 // Skip everything in between parentheses. 792 break; 793 } 794 Lex.Lex(); 795 } while (NumOpenParen > 0); 796 return false; 797 } 798 799 /// SummaryEntry 800 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry 801 bool LLParser::ParseSummaryEntry() { 802 assert(Lex.getKind() == lltok::SummaryID); 803 unsigned SummaryID = Lex.getUIntVal(); 804 805 // For summary entries, colons should be treated as distinct tokens, 806 // not an indication of the end of a label token. 807 Lex.setIgnoreColonInIdentifiers(true); 808 809 Lex.Lex(); 810 if (ParseToken(lltok::equal, "expected '=' here")) 811 return true; 812 813 // If we don't have an index object, skip the summary entry. 814 if (!Index) 815 return SkipModuleSummaryEntry(); 816 817 switch (Lex.getKind()) { 818 case lltok::kw_gv: 819 return ParseGVEntry(SummaryID); 820 case lltok::kw_module: 821 return ParseModuleEntry(SummaryID); 822 case lltok::kw_typeid: 823 return ParseTypeIdEntry(SummaryID); 824 break; 825 default: 826 return Error(Lex.getLoc(), "unexpected summary kind"); 827 } 828 Lex.setIgnoreColonInIdentifiers(false); 829 return false; 830 } 831 832 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 833 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 834 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 835 } 836 837 // If there was an explicit dso_local, update GV. In the absence of an explicit 838 // dso_local we keep the default value. 839 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) { 840 if (DSOLocal) 841 GV.setDSOLocal(true); 842 } 843 844 /// parseIndirectSymbol: 845 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 846 /// OptionalVisibility OptionalDLLStorageClass 847 /// OptionalThreadLocal OptionalUnnamedAddr 848 // 'alias|ifunc' IndirectSymbol 849 /// 850 /// IndirectSymbol 851 /// ::= TypeAndValue 852 /// 853 /// Everything through OptionalUnnamedAddr has already been parsed. 854 /// 855 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc, 856 unsigned L, unsigned Visibility, 857 unsigned DLLStorageClass, bool DSOLocal, 858 GlobalVariable::ThreadLocalMode TLM, 859 GlobalVariable::UnnamedAddr UnnamedAddr) { 860 bool IsAlias; 861 if (Lex.getKind() == lltok::kw_alias) 862 IsAlias = true; 863 else if (Lex.getKind() == lltok::kw_ifunc) 864 IsAlias = false; 865 else 866 llvm_unreachable("Not an alias or ifunc!"); 867 Lex.Lex(); 868 869 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 870 871 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 872 return Error(NameLoc, "invalid linkage type for alias"); 873 874 if (!isValidVisibilityForLinkage(Visibility, L)) 875 return Error(NameLoc, 876 "symbol with local linkage must have default visibility"); 877 878 Type *Ty; 879 LocTy ExplicitTypeLoc = Lex.getLoc(); 880 if (ParseType(Ty) || 881 ParseToken(lltok::comma, "expected comma after alias or ifunc's type")) 882 return true; 883 884 Constant *Aliasee; 885 LocTy AliaseeLoc = Lex.getLoc(); 886 if (Lex.getKind() != lltok::kw_bitcast && 887 Lex.getKind() != lltok::kw_getelementptr && 888 Lex.getKind() != lltok::kw_addrspacecast && 889 Lex.getKind() != lltok::kw_inttoptr) { 890 if (ParseGlobalTypeAndValue(Aliasee)) 891 return true; 892 } else { 893 // The bitcast dest type is not present, it is implied by the dest type. 894 ValID ID; 895 if (ParseValID(ID)) 896 return true; 897 if (ID.Kind != ValID::t_Constant) 898 return Error(AliaseeLoc, "invalid aliasee"); 899 Aliasee = ID.ConstantVal; 900 } 901 902 Type *AliaseeType = Aliasee->getType(); 903 auto *PTy = dyn_cast<PointerType>(AliaseeType); 904 if (!PTy) 905 return Error(AliaseeLoc, "An alias or ifunc must have pointer type"); 906 unsigned AddrSpace = PTy->getAddressSpace(); 907 908 if (IsAlias && Ty != PTy->getElementType()) 909 return Error( 910 ExplicitTypeLoc, 911 "explicit pointee type doesn't match operand's pointee type"); 912 913 if (!IsAlias && !PTy->getElementType()->isFunctionTy()) 914 return Error( 915 ExplicitTypeLoc, 916 "explicit pointee type should be a function type"); 917 918 GlobalValue *GVal = nullptr; 919 920 // See if the alias was forward referenced, if so, prepare to replace the 921 // forward reference. 922 if (!Name.empty()) { 923 GVal = M->getNamedValue(Name); 924 if (GVal) { 925 if (!ForwardRefVals.erase(Name)) 926 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 927 } 928 } else { 929 auto I = ForwardRefValIDs.find(NumberedVals.size()); 930 if (I != ForwardRefValIDs.end()) { 931 GVal = I->second.first; 932 ForwardRefValIDs.erase(I); 933 } 934 } 935 936 // Okay, create the alias but do not insert it into the module yet. 937 std::unique_ptr<GlobalIndirectSymbol> GA; 938 if (IsAlias) 939 GA.reset(GlobalAlias::create(Ty, AddrSpace, 940 (GlobalValue::LinkageTypes)Linkage, Name, 941 Aliasee, /*Parent*/ nullptr)); 942 else 943 GA.reset(GlobalIFunc::create(Ty, AddrSpace, 944 (GlobalValue::LinkageTypes)Linkage, Name, 945 Aliasee, /*Parent*/ nullptr)); 946 GA->setThreadLocalMode(TLM); 947 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 948 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 949 GA->setUnnamedAddr(UnnamedAddr); 950 maybeSetDSOLocal(DSOLocal, *GA); 951 952 if (Name.empty()) 953 NumberedVals.push_back(GA.get()); 954 955 if (GVal) { 956 // Verify that types agree. 957 if (GVal->getType() != GA->getType()) 958 return Error( 959 ExplicitTypeLoc, 960 "forward reference and definition of alias have different types"); 961 962 // If they agree, just RAUW the old value with the alias and remove the 963 // forward ref info. 964 GVal->replaceAllUsesWith(GA.get()); 965 GVal->eraseFromParent(); 966 } 967 968 // Insert into the module, we know its name won't collide now. 969 if (IsAlias) 970 M->getAliasList().push_back(cast<GlobalAlias>(GA.get())); 971 else 972 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get())); 973 assert(GA->getName() == Name && "Should not be a name conflict!"); 974 975 // The module owns this now 976 GA.release(); 977 978 return false; 979 } 980 981 /// ParseGlobal 982 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 983 /// OptionalVisibility OptionalDLLStorageClass 984 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 985 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs 986 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 987 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr 988 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type 989 /// Const OptionalAttrs 990 /// 991 /// Everything up to and including OptionalUnnamedAddr has been parsed 992 /// already. 993 /// 994 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, 995 unsigned Linkage, bool HasLinkage, 996 unsigned Visibility, unsigned DLLStorageClass, 997 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM, 998 GlobalVariable::UnnamedAddr UnnamedAddr) { 999 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 1000 return Error(NameLoc, 1001 "symbol with local linkage must have default visibility"); 1002 1003 unsigned AddrSpace; 1004 bool IsConstant, IsExternallyInitialized; 1005 LocTy IsExternallyInitializedLoc; 1006 LocTy TyLoc; 1007 1008 Type *Ty = nullptr; 1009 if (ParseOptionalAddrSpace(AddrSpace) || 1010 ParseOptionalToken(lltok::kw_externally_initialized, 1011 IsExternallyInitialized, 1012 &IsExternallyInitializedLoc) || 1013 ParseGlobalType(IsConstant) || 1014 ParseType(Ty, TyLoc)) 1015 return true; 1016 1017 // If the linkage is specified and is external, then no initializer is 1018 // present. 1019 Constant *Init = nullptr; 1020 if (!HasLinkage || 1021 !GlobalValue::isValidDeclarationLinkage( 1022 (GlobalValue::LinkageTypes)Linkage)) { 1023 if (ParseGlobalValue(Ty, Init)) 1024 return true; 1025 } 1026 1027 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 1028 return Error(TyLoc, "invalid type for global variable"); 1029 1030 GlobalValue *GVal = nullptr; 1031 1032 // See if the global was forward referenced, if so, use the global. 1033 if (!Name.empty()) { 1034 GVal = M->getNamedValue(Name); 1035 if (GVal) { 1036 if (!ForwardRefVals.erase(Name)) 1037 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 1038 } 1039 } else { 1040 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1041 if (I != ForwardRefValIDs.end()) { 1042 GVal = I->second.first; 1043 ForwardRefValIDs.erase(I); 1044 } 1045 } 1046 1047 GlobalVariable *GV; 1048 if (!GVal) { 1049 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, 1050 Name, nullptr, GlobalVariable::NotThreadLocal, 1051 AddrSpace); 1052 } else { 1053 if (GVal->getValueType() != Ty) 1054 return Error(TyLoc, 1055 "forward reference and definition of global have different types"); 1056 1057 GV = cast<GlobalVariable>(GVal); 1058 1059 // Move the forward-reference to the correct spot in the module. 1060 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 1061 } 1062 1063 if (Name.empty()) 1064 NumberedVals.push_back(GV); 1065 1066 // Set the parsed properties on the global. 1067 if (Init) 1068 GV->setInitializer(Init); 1069 GV->setConstant(IsConstant); 1070 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 1071 maybeSetDSOLocal(DSOLocal, *GV); 1072 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1073 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1074 GV->setExternallyInitialized(IsExternallyInitialized); 1075 GV->setThreadLocalMode(TLM); 1076 GV->setUnnamedAddr(UnnamedAddr); 1077 1078 // Parse attributes on the global. 1079 while (Lex.getKind() == lltok::comma) { 1080 Lex.Lex(); 1081 1082 if (Lex.getKind() == lltok::kw_section) { 1083 Lex.Lex(); 1084 GV->setSection(Lex.getStrVal()); 1085 if (ParseToken(lltok::StringConstant, "expected global section string")) 1086 return true; 1087 } else if (Lex.getKind() == lltok::kw_align) { 1088 unsigned Alignment; 1089 if (ParseOptionalAlignment(Alignment)) return true; 1090 GV->setAlignment(Alignment); 1091 } else if (Lex.getKind() == lltok::MetadataVar) { 1092 if (ParseGlobalObjectMetadataAttachment(*GV)) 1093 return true; 1094 } else { 1095 Comdat *C; 1096 if (parseOptionalComdat(Name, C)) 1097 return true; 1098 if (C) 1099 GV->setComdat(C); 1100 else 1101 return TokError("unknown global variable property!"); 1102 } 1103 } 1104 1105 AttrBuilder Attrs; 1106 LocTy BuiltinLoc; 1107 std::vector<unsigned> FwdRefAttrGrps; 1108 if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc)) 1109 return true; 1110 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) { 1111 GV->setAttributes(AttributeSet::get(Context, Attrs)); 1112 ForwardRefAttrGroups[GV] = FwdRefAttrGrps; 1113 } 1114 1115 return false; 1116 } 1117 1118 /// ParseUnnamedAttrGrp 1119 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 1120 bool LLParser::ParseUnnamedAttrGrp() { 1121 assert(Lex.getKind() == lltok::kw_attributes); 1122 LocTy AttrGrpLoc = Lex.getLoc(); 1123 Lex.Lex(); 1124 1125 if (Lex.getKind() != lltok::AttrGrpID) 1126 return TokError("expected attribute group id"); 1127 1128 unsigned VarID = Lex.getUIntVal(); 1129 std::vector<unsigned> unused; 1130 LocTy BuiltinLoc; 1131 Lex.Lex(); 1132 1133 if (ParseToken(lltok::equal, "expected '=' here") || 1134 ParseToken(lltok::lbrace, "expected '{' here") || 1135 ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 1136 BuiltinLoc) || 1137 ParseToken(lltok::rbrace, "expected end of attribute group")) 1138 return true; 1139 1140 if (!NumberedAttrBuilders[VarID].hasAttributes()) 1141 return Error(AttrGrpLoc, "attribute group has no attributes"); 1142 1143 return false; 1144 } 1145 1146 /// ParseFnAttributeValuePairs 1147 /// ::= <attr> | <attr> '=' <value> 1148 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B, 1149 std::vector<unsigned> &FwdRefAttrGrps, 1150 bool inAttrGrp, LocTy &BuiltinLoc) { 1151 bool HaveError = false; 1152 1153 B.clear(); 1154 1155 while (true) { 1156 lltok::Kind Token = Lex.getKind(); 1157 if (Token == lltok::kw_builtin) 1158 BuiltinLoc = Lex.getLoc(); 1159 switch (Token) { 1160 default: 1161 if (!inAttrGrp) return HaveError; 1162 return Error(Lex.getLoc(), "unterminated attribute group"); 1163 case lltok::rbrace: 1164 // Finished. 1165 return false; 1166 1167 case lltok::AttrGrpID: { 1168 // Allow a function to reference an attribute group: 1169 // 1170 // define void @foo() #1 { ... } 1171 if (inAttrGrp) 1172 HaveError |= 1173 Error(Lex.getLoc(), 1174 "cannot have an attribute group reference in an attribute group"); 1175 1176 unsigned AttrGrpNum = Lex.getUIntVal(); 1177 if (inAttrGrp) break; 1178 1179 // Save the reference to the attribute group. We'll fill it in later. 1180 FwdRefAttrGrps.push_back(AttrGrpNum); 1181 break; 1182 } 1183 // Target-dependent attributes: 1184 case lltok::StringConstant: { 1185 if (ParseStringAttribute(B)) 1186 return true; 1187 continue; 1188 } 1189 1190 // Target-independent attributes: 1191 case lltok::kw_align: { 1192 // As a hack, we allow function alignment to be initially parsed as an 1193 // attribute on a function declaration/definition or added to an attribute 1194 // group and later moved to the alignment field. 1195 unsigned Alignment; 1196 if (inAttrGrp) { 1197 Lex.Lex(); 1198 if (ParseToken(lltok::equal, "expected '=' here") || 1199 ParseUInt32(Alignment)) 1200 return true; 1201 } else { 1202 if (ParseOptionalAlignment(Alignment)) 1203 return true; 1204 } 1205 B.addAlignmentAttr(Alignment); 1206 continue; 1207 } 1208 case lltok::kw_alignstack: { 1209 unsigned Alignment; 1210 if (inAttrGrp) { 1211 Lex.Lex(); 1212 if (ParseToken(lltok::equal, "expected '=' here") || 1213 ParseUInt32(Alignment)) 1214 return true; 1215 } else { 1216 if (ParseOptionalStackAlignment(Alignment)) 1217 return true; 1218 } 1219 B.addStackAlignmentAttr(Alignment); 1220 continue; 1221 } 1222 case lltok::kw_allocsize: { 1223 unsigned ElemSizeArg; 1224 Optional<unsigned> NumElemsArg; 1225 // inAttrGrp doesn't matter; we only support allocsize(a[, b]) 1226 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1227 return true; 1228 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1229 continue; 1230 } 1231 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break; 1232 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break; 1233 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break; 1234 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break; 1235 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break; 1236 case lltok::kw_inaccessiblememonly: 1237 B.addAttribute(Attribute::InaccessibleMemOnly); break; 1238 case lltok::kw_inaccessiblemem_or_argmemonly: 1239 B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break; 1240 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break; 1241 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break; 1242 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break; 1243 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break; 1244 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break; 1245 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break; 1246 case lltok::kw_noimplicitfloat: 1247 B.addAttribute(Attribute::NoImplicitFloat); break; 1248 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break; 1249 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break; 1250 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break; 1251 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break; 1252 case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break; 1253 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break; 1254 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break; 1255 case lltok::kw_optforfuzzing: 1256 B.addAttribute(Attribute::OptForFuzzing); break; 1257 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break; 1258 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break; 1259 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1260 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1261 case lltok::kw_returns_twice: 1262 B.addAttribute(Attribute::ReturnsTwice); break; 1263 case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break; 1264 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break; 1265 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break; 1266 case lltok::kw_sspstrong: 1267 B.addAttribute(Attribute::StackProtectStrong); break; 1268 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break; 1269 case lltok::kw_shadowcallstack: 1270 B.addAttribute(Attribute::ShadowCallStack); break; 1271 case lltok::kw_sanitize_address: 1272 B.addAttribute(Attribute::SanitizeAddress); break; 1273 case lltok::kw_sanitize_hwaddress: 1274 B.addAttribute(Attribute::SanitizeHWAddress); break; 1275 case lltok::kw_sanitize_thread: 1276 B.addAttribute(Attribute::SanitizeThread); break; 1277 case lltok::kw_sanitize_memory: 1278 B.addAttribute(Attribute::SanitizeMemory); break; 1279 case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break; 1280 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break; 1281 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1282 1283 // Error handling. 1284 case lltok::kw_inreg: 1285 case lltok::kw_signext: 1286 case lltok::kw_zeroext: 1287 HaveError |= 1288 Error(Lex.getLoc(), 1289 "invalid use of attribute on a function"); 1290 break; 1291 case lltok::kw_byval: 1292 case lltok::kw_dereferenceable: 1293 case lltok::kw_dereferenceable_or_null: 1294 case lltok::kw_inalloca: 1295 case lltok::kw_nest: 1296 case lltok::kw_noalias: 1297 case lltok::kw_nocapture: 1298 case lltok::kw_nonnull: 1299 case lltok::kw_returned: 1300 case lltok::kw_sret: 1301 case lltok::kw_swifterror: 1302 case lltok::kw_swiftself: 1303 HaveError |= 1304 Error(Lex.getLoc(), 1305 "invalid use of parameter-only attribute on a function"); 1306 break; 1307 } 1308 1309 Lex.Lex(); 1310 } 1311 } 1312 1313 //===----------------------------------------------------------------------===// 1314 // GlobalValue Reference/Resolution Routines. 1315 //===----------------------------------------------------------------------===// 1316 1317 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy, 1318 const std::string &Name) { 1319 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType())) 1320 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M); 1321 else 1322 return new GlobalVariable(*M, PTy->getElementType(), false, 1323 GlobalValue::ExternalWeakLinkage, nullptr, Name, 1324 nullptr, GlobalVariable::NotThreadLocal, 1325 PTy->getAddressSpace()); 1326 } 1327 1328 /// GetGlobalVal - Get a value with the specified name or ID, creating a 1329 /// forward reference record if needed. This can return null if the value 1330 /// exists but does not have the right type. 1331 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty, 1332 LocTy Loc) { 1333 PointerType *PTy = dyn_cast<PointerType>(Ty); 1334 if (!PTy) { 1335 Error(Loc, "global variable reference must have pointer type"); 1336 return nullptr; 1337 } 1338 1339 // Look this name up in the normal function symbol table. 1340 GlobalValue *Val = 1341 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1342 1343 // If this is a forward reference for the value, see if we already created a 1344 // forward ref record. 1345 if (!Val) { 1346 auto I = ForwardRefVals.find(Name); 1347 if (I != ForwardRefVals.end()) 1348 Val = I->second.first; 1349 } 1350 1351 // If we have the value in the symbol table or fwd-ref table, return it. 1352 if (Val) { 1353 if (Val->getType() == Ty) return Val; 1354 Error(Loc, "'@" + Name + "' defined with type '" + 1355 getTypeString(Val->getType()) + "'"); 1356 return nullptr; 1357 } 1358 1359 // Otherwise, create a new forward reference for this value and remember it. 1360 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name); 1361 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1362 return FwdVal; 1363 } 1364 1365 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) { 1366 PointerType *PTy = dyn_cast<PointerType>(Ty); 1367 if (!PTy) { 1368 Error(Loc, "global variable reference must have pointer type"); 1369 return nullptr; 1370 } 1371 1372 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1373 1374 // If this is a forward reference for the value, see if we already created a 1375 // forward ref record. 1376 if (!Val) { 1377 auto I = ForwardRefValIDs.find(ID); 1378 if (I != ForwardRefValIDs.end()) 1379 Val = I->second.first; 1380 } 1381 1382 // If we have the value in the symbol table or fwd-ref table, return it. 1383 if (Val) { 1384 if (Val->getType() == Ty) return Val; 1385 Error(Loc, "'@" + Twine(ID) + "' defined with type '" + 1386 getTypeString(Val->getType()) + "'"); 1387 return nullptr; 1388 } 1389 1390 // Otherwise, create a new forward reference for this value and remember it. 1391 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, ""); 1392 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1393 return FwdVal; 1394 } 1395 1396 //===----------------------------------------------------------------------===// 1397 // Comdat Reference/Resolution Routines. 1398 //===----------------------------------------------------------------------===// 1399 1400 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1401 // Look this name up in the comdat symbol table. 1402 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1403 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1404 if (I != ComdatSymTab.end()) 1405 return &I->second; 1406 1407 // Otherwise, create a new forward reference for this value and remember it. 1408 Comdat *C = M->getOrInsertComdat(Name); 1409 ForwardRefComdats[Name] = Loc; 1410 return C; 1411 } 1412 1413 //===----------------------------------------------------------------------===// 1414 // Helper Routines. 1415 //===----------------------------------------------------------------------===// 1416 1417 /// ParseToken - If the current token has the specified kind, eat it and return 1418 /// success. Otherwise, emit the specified error and return failure. 1419 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { 1420 if (Lex.getKind() != T) 1421 return TokError(ErrMsg); 1422 Lex.Lex(); 1423 return false; 1424 } 1425 1426 /// ParseStringConstant 1427 /// ::= StringConstant 1428 bool LLParser::ParseStringConstant(std::string &Result) { 1429 if (Lex.getKind() != lltok::StringConstant) 1430 return TokError("expected string constant"); 1431 Result = Lex.getStrVal(); 1432 Lex.Lex(); 1433 return false; 1434 } 1435 1436 /// ParseUInt32 1437 /// ::= uint32 1438 bool LLParser::ParseUInt32(uint32_t &Val) { 1439 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1440 return TokError("expected integer"); 1441 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1442 if (Val64 != unsigned(Val64)) 1443 return TokError("expected 32-bit integer (too large)"); 1444 Val = Val64; 1445 Lex.Lex(); 1446 return false; 1447 } 1448 1449 /// ParseUInt64 1450 /// ::= uint64 1451 bool LLParser::ParseUInt64(uint64_t &Val) { 1452 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1453 return TokError("expected integer"); 1454 Val = Lex.getAPSIntVal().getLimitedValue(); 1455 Lex.Lex(); 1456 return false; 1457 } 1458 1459 /// ParseTLSModel 1460 /// := 'localdynamic' 1461 /// := 'initialexec' 1462 /// := 'localexec' 1463 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1464 switch (Lex.getKind()) { 1465 default: 1466 return TokError("expected localdynamic, initialexec or localexec"); 1467 case lltok::kw_localdynamic: 1468 TLM = GlobalVariable::LocalDynamicTLSModel; 1469 break; 1470 case lltok::kw_initialexec: 1471 TLM = GlobalVariable::InitialExecTLSModel; 1472 break; 1473 case lltok::kw_localexec: 1474 TLM = GlobalVariable::LocalExecTLSModel; 1475 break; 1476 } 1477 1478 Lex.Lex(); 1479 return false; 1480 } 1481 1482 /// ParseOptionalThreadLocal 1483 /// := /*empty*/ 1484 /// := 'thread_local' 1485 /// := 'thread_local' '(' tlsmodel ')' 1486 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1487 TLM = GlobalVariable::NotThreadLocal; 1488 if (!EatIfPresent(lltok::kw_thread_local)) 1489 return false; 1490 1491 TLM = GlobalVariable::GeneralDynamicTLSModel; 1492 if (Lex.getKind() == lltok::lparen) { 1493 Lex.Lex(); 1494 return ParseTLSModel(TLM) || 1495 ParseToken(lltok::rparen, "expected ')' after thread local model"); 1496 } 1497 return false; 1498 } 1499 1500 /// ParseOptionalAddrSpace 1501 /// := /*empty*/ 1502 /// := 'addrspace' '(' uint32 ')' 1503 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) { 1504 AddrSpace = 0; 1505 if (!EatIfPresent(lltok::kw_addrspace)) 1506 return false; 1507 return ParseToken(lltok::lparen, "expected '(' in address space") || 1508 ParseUInt32(AddrSpace) || 1509 ParseToken(lltok::rparen, "expected ')' in address space"); 1510 } 1511 1512 /// ParseStringAttribute 1513 /// := StringConstant 1514 /// := StringConstant '=' StringConstant 1515 bool LLParser::ParseStringAttribute(AttrBuilder &B) { 1516 std::string Attr = Lex.getStrVal(); 1517 Lex.Lex(); 1518 std::string Val; 1519 if (EatIfPresent(lltok::equal) && ParseStringConstant(Val)) 1520 return true; 1521 B.addAttribute(Attr, Val); 1522 return false; 1523 } 1524 1525 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes. 1526 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) { 1527 bool HaveError = false; 1528 1529 B.clear(); 1530 1531 while (true) { 1532 lltok::Kind Token = Lex.getKind(); 1533 switch (Token) { 1534 default: // End of attributes. 1535 return HaveError; 1536 case lltok::StringConstant: { 1537 if (ParseStringAttribute(B)) 1538 return true; 1539 continue; 1540 } 1541 case lltok::kw_align: { 1542 unsigned Alignment; 1543 if (ParseOptionalAlignment(Alignment)) 1544 return true; 1545 B.addAlignmentAttr(Alignment); 1546 continue; 1547 } 1548 case lltok::kw_byval: B.addAttribute(Attribute::ByVal); break; 1549 case lltok::kw_dereferenceable: { 1550 uint64_t Bytes; 1551 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1552 return true; 1553 B.addDereferenceableAttr(Bytes); 1554 continue; 1555 } 1556 case lltok::kw_dereferenceable_or_null: { 1557 uint64_t Bytes; 1558 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1559 return true; 1560 B.addDereferenceableOrNullAttr(Bytes); 1561 continue; 1562 } 1563 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break; 1564 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1565 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break; 1566 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1567 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break; 1568 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1569 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1570 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1571 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break; 1572 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1573 case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break; 1574 case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break; 1575 case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break; 1576 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1577 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1578 1579 case lltok::kw_alignstack: 1580 case lltok::kw_alwaysinline: 1581 case lltok::kw_argmemonly: 1582 case lltok::kw_builtin: 1583 case lltok::kw_inlinehint: 1584 case lltok::kw_jumptable: 1585 case lltok::kw_minsize: 1586 case lltok::kw_naked: 1587 case lltok::kw_nobuiltin: 1588 case lltok::kw_noduplicate: 1589 case lltok::kw_noimplicitfloat: 1590 case lltok::kw_noinline: 1591 case lltok::kw_nonlazybind: 1592 case lltok::kw_noredzone: 1593 case lltok::kw_noreturn: 1594 case lltok::kw_nocf_check: 1595 case lltok::kw_nounwind: 1596 case lltok::kw_optforfuzzing: 1597 case lltok::kw_optnone: 1598 case lltok::kw_optsize: 1599 case lltok::kw_returns_twice: 1600 case lltok::kw_sanitize_address: 1601 case lltok::kw_sanitize_hwaddress: 1602 case lltok::kw_sanitize_memory: 1603 case lltok::kw_sanitize_thread: 1604 case lltok::kw_ssp: 1605 case lltok::kw_sspreq: 1606 case lltok::kw_sspstrong: 1607 case lltok::kw_safestack: 1608 case lltok::kw_shadowcallstack: 1609 case lltok::kw_strictfp: 1610 case lltok::kw_uwtable: 1611 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1612 break; 1613 } 1614 1615 Lex.Lex(); 1616 } 1617 } 1618 1619 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes. 1620 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) { 1621 bool HaveError = false; 1622 1623 B.clear(); 1624 1625 while (true) { 1626 lltok::Kind Token = Lex.getKind(); 1627 switch (Token) { 1628 default: // End of attributes. 1629 return HaveError; 1630 case lltok::StringConstant: { 1631 if (ParseStringAttribute(B)) 1632 return true; 1633 continue; 1634 } 1635 case lltok::kw_dereferenceable: { 1636 uint64_t Bytes; 1637 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1638 return true; 1639 B.addDereferenceableAttr(Bytes); 1640 continue; 1641 } 1642 case lltok::kw_dereferenceable_or_null: { 1643 uint64_t Bytes; 1644 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1645 return true; 1646 B.addDereferenceableOrNullAttr(Bytes); 1647 continue; 1648 } 1649 case lltok::kw_align: { 1650 unsigned Alignment; 1651 if (ParseOptionalAlignment(Alignment)) 1652 return true; 1653 B.addAlignmentAttr(Alignment); 1654 continue; 1655 } 1656 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1657 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1658 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1659 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1660 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1661 1662 // Error handling. 1663 case lltok::kw_byval: 1664 case lltok::kw_inalloca: 1665 case lltok::kw_nest: 1666 case lltok::kw_nocapture: 1667 case lltok::kw_returned: 1668 case lltok::kw_sret: 1669 case lltok::kw_swifterror: 1670 case lltok::kw_swiftself: 1671 HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute"); 1672 break; 1673 1674 case lltok::kw_alignstack: 1675 case lltok::kw_alwaysinline: 1676 case lltok::kw_argmemonly: 1677 case lltok::kw_builtin: 1678 case lltok::kw_cold: 1679 case lltok::kw_inlinehint: 1680 case lltok::kw_jumptable: 1681 case lltok::kw_minsize: 1682 case lltok::kw_naked: 1683 case lltok::kw_nobuiltin: 1684 case lltok::kw_noduplicate: 1685 case lltok::kw_noimplicitfloat: 1686 case lltok::kw_noinline: 1687 case lltok::kw_nonlazybind: 1688 case lltok::kw_noredzone: 1689 case lltok::kw_noreturn: 1690 case lltok::kw_nocf_check: 1691 case lltok::kw_nounwind: 1692 case lltok::kw_optforfuzzing: 1693 case lltok::kw_optnone: 1694 case lltok::kw_optsize: 1695 case lltok::kw_returns_twice: 1696 case lltok::kw_sanitize_address: 1697 case lltok::kw_sanitize_hwaddress: 1698 case lltok::kw_sanitize_memory: 1699 case lltok::kw_sanitize_thread: 1700 case lltok::kw_ssp: 1701 case lltok::kw_sspreq: 1702 case lltok::kw_sspstrong: 1703 case lltok::kw_safestack: 1704 case lltok::kw_shadowcallstack: 1705 case lltok::kw_strictfp: 1706 case lltok::kw_uwtable: 1707 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1708 break; 1709 1710 case lltok::kw_readnone: 1711 case lltok::kw_readonly: 1712 HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type"); 1713 } 1714 1715 Lex.Lex(); 1716 } 1717 } 1718 1719 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1720 HasLinkage = true; 1721 switch (Kind) { 1722 default: 1723 HasLinkage = false; 1724 return GlobalValue::ExternalLinkage; 1725 case lltok::kw_private: 1726 return GlobalValue::PrivateLinkage; 1727 case lltok::kw_internal: 1728 return GlobalValue::InternalLinkage; 1729 case lltok::kw_weak: 1730 return GlobalValue::WeakAnyLinkage; 1731 case lltok::kw_weak_odr: 1732 return GlobalValue::WeakODRLinkage; 1733 case lltok::kw_linkonce: 1734 return GlobalValue::LinkOnceAnyLinkage; 1735 case lltok::kw_linkonce_odr: 1736 return GlobalValue::LinkOnceODRLinkage; 1737 case lltok::kw_available_externally: 1738 return GlobalValue::AvailableExternallyLinkage; 1739 case lltok::kw_appending: 1740 return GlobalValue::AppendingLinkage; 1741 case lltok::kw_common: 1742 return GlobalValue::CommonLinkage; 1743 case lltok::kw_extern_weak: 1744 return GlobalValue::ExternalWeakLinkage; 1745 case lltok::kw_external: 1746 return GlobalValue::ExternalLinkage; 1747 } 1748 } 1749 1750 /// ParseOptionalLinkage 1751 /// ::= /*empty*/ 1752 /// ::= 'private' 1753 /// ::= 'internal' 1754 /// ::= 'weak' 1755 /// ::= 'weak_odr' 1756 /// ::= 'linkonce' 1757 /// ::= 'linkonce_odr' 1758 /// ::= 'available_externally' 1759 /// ::= 'appending' 1760 /// ::= 'common' 1761 /// ::= 'extern_weak' 1762 /// ::= 'external' 1763 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage, 1764 unsigned &Visibility, 1765 unsigned &DLLStorageClass, 1766 bool &DSOLocal) { 1767 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 1768 if (HasLinkage) 1769 Lex.Lex(); 1770 ParseOptionalDSOLocal(DSOLocal); 1771 ParseOptionalVisibility(Visibility); 1772 ParseOptionalDLLStorageClass(DLLStorageClass); 1773 1774 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) { 1775 return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch"); 1776 } 1777 1778 return false; 1779 } 1780 1781 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) { 1782 switch (Lex.getKind()) { 1783 default: 1784 DSOLocal = false; 1785 break; 1786 case lltok::kw_dso_local: 1787 DSOLocal = true; 1788 Lex.Lex(); 1789 break; 1790 case lltok::kw_dso_preemptable: 1791 DSOLocal = false; 1792 Lex.Lex(); 1793 break; 1794 } 1795 } 1796 1797 /// ParseOptionalVisibility 1798 /// ::= /*empty*/ 1799 /// ::= 'default' 1800 /// ::= 'hidden' 1801 /// ::= 'protected' 1802 /// 1803 void LLParser::ParseOptionalVisibility(unsigned &Res) { 1804 switch (Lex.getKind()) { 1805 default: 1806 Res = GlobalValue::DefaultVisibility; 1807 return; 1808 case lltok::kw_default: 1809 Res = GlobalValue::DefaultVisibility; 1810 break; 1811 case lltok::kw_hidden: 1812 Res = GlobalValue::HiddenVisibility; 1813 break; 1814 case lltok::kw_protected: 1815 Res = GlobalValue::ProtectedVisibility; 1816 break; 1817 } 1818 Lex.Lex(); 1819 } 1820 1821 /// ParseOptionalDLLStorageClass 1822 /// ::= /*empty*/ 1823 /// ::= 'dllimport' 1824 /// ::= 'dllexport' 1825 /// 1826 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) { 1827 switch (Lex.getKind()) { 1828 default: 1829 Res = GlobalValue::DefaultStorageClass; 1830 return; 1831 case lltok::kw_dllimport: 1832 Res = GlobalValue::DLLImportStorageClass; 1833 break; 1834 case lltok::kw_dllexport: 1835 Res = GlobalValue::DLLExportStorageClass; 1836 break; 1837 } 1838 Lex.Lex(); 1839 } 1840 1841 /// ParseOptionalCallingConv 1842 /// ::= /*empty*/ 1843 /// ::= 'ccc' 1844 /// ::= 'fastcc' 1845 /// ::= 'intel_ocl_bicc' 1846 /// ::= 'coldcc' 1847 /// ::= 'x86_stdcallcc' 1848 /// ::= 'x86_fastcallcc' 1849 /// ::= 'x86_thiscallcc' 1850 /// ::= 'x86_vectorcallcc' 1851 /// ::= 'arm_apcscc' 1852 /// ::= 'arm_aapcscc' 1853 /// ::= 'arm_aapcs_vfpcc' 1854 /// ::= 'msp430_intrcc' 1855 /// ::= 'avr_intrcc' 1856 /// ::= 'avr_signalcc' 1857 /// ::= 'ptx_kernel' 1858 /// ::= 'ptx_device' 1859 /// ::= 'spir_func' 1860 /// ::= 'spir_kernel' 1861 /// ::= 'x86_64_sysvcc' 1862 /// ::= 'win64cc' 1863 /// ::= 'webkit_jscc' 1864 /// ::= 'anyregcc' 1865 /// ::= 'preserve_mostcc' 1866 /// ::= 'preserve_allcc' 1867 /// ::= 'ghccc' 1868 /// ::= 'swiftcc' 1869 /// ::= 'x86_intrcc' 1870 /// ::= 'hhvmcc' 1871 /// ::= 'hhvm_ccc' 1872 /// ::= 'cxx_fast_tlscc' 1873 /// ::= 'amdgpu_vs' 1874 /// ::= 'amdgpu_ls' 1875 /// ::= 'amdgpu_hs' 1876 /// ::= 'amdgpu_es' 1877 /// ::= 'amdgpu_gs' 1878 /// ::= 'amdgpu_ps' 1879 /// ::= 'amdgpu_cs' 1880 /// ::= 'amdgpu_kernel' 1881 /// ::= 'cc' UINT 1882 /// 1883 bool LLParser::ParseOptionalCallingConv(unsigned &CC) { 1884 switch (Lex.getKind()) { 1885 default: CC = CallingConv::C; return false; 1886 case lltok::kw_ccc: CC = CallingConv::C; break; 1887 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1888 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1889 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1890 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1891 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break; 1892 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1893 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 1894 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1895 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1896 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1897 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1898 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 1899 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 1900 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1901 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1902 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 1903 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 1904 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 1905 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 1906 case lltok::kw_win64cc: CC = CallingConv::Win64; break; 1907 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 1908 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 1909 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 1910 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 1911 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 1912 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 1913 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 1914 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 1915 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 1916 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 1917 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 1918 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break; 1919 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break; 1920 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break; 1921 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 1922 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 1923 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 1924 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 1925 case lltok::kw_cc: { 1926 Lex.Lex(); 1927 return ParseUInt32(CC); 1928 } 1929 } 1930 1931 Lex.Lex(); 1932 return false; 1933 } 1934 1935 /// ParseMetadataAttachment 1936 /// ::= !dbg !42 1937 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 1938 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 1939 1940 std::string Name = Lex.getStrVal(); 1941 Kind = M->getMDKindID(Name); 1942 Lex.Lex(); 1943 1944 return ParseMDNode(MD); 1945 } 1946 1947 /// ParseInstructionMetadata 1948 /// ::= !dbg !42 (',' !dbg !57)* 1949 bool LLParser::ParseInstructionMetadata(Instruction &Inst) { 1950 do { 1951 if (Lex.getKind() != lltok::MetadataVar) 1952 return TokError("expected metadata after comma"); 1953 1954 unsigned MDK; 1955 MDNode *N; 1956 if (ParseMetadataAttachment(MDK, N)) 1957 return true; 1958 1959 Inst.setMetadata(MDK, N); 1960 if (MDK == LLVMContext::MD_tbaa) 1961 InstsWithTBAATag.push_back(&Inst); 1962 1963 // If this is the end of the list, we're done. 1964 } while (EatIfPresent(lltok::comma)); 1965 return false; 1966 } 1967 1968 /// ParseGlobalObjectMetadataAttachment 1969 /// ::= !dbg !57 1970 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) { 1971 unsigned MDK; 1972 MDNode *N; 1973 if (ParseMetadataAttachment(MDK, N)) 1974 return true; 1975 1976 GO.addMetadata(MDK, *N); 1977 return false; 1978 } 1979 1980 /// ParseOptionalFunctionMetadata 1981 /// ::= (!dbg !57)* 1982 bool LLParser::ParseOptionalFunctionMetadata(Function &F) { 1983 while (Lex.getKind() == lltok::MetadataVar) 1984 if (ParseGlobalObjectMetadataAttachment(F)) 1985 return true; 1986 return false; 1987 } 1988 1989 /// ParseOptionalAlignment 1990 /// ::= /* empty */ 1991 /// ::= 'align' 4 1992 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) { 1993 Alignment = 0; 1994 if (!EatIfPresent(lltok::kw_align)) 1995 return false; 1996 LocTy AlignLoc = Lex.getLoc(); 1997 if (ParseUInt32(Alignment)) return true; 1998 if (!isPowerOf2_32(Alignment)) 1999 return Error(AlignLoc, "alignment is not a power of two"); 2000 if (Alignment > Value::MaximumAlignment) 2001 return Error(AlignLoc, "huge alignments are not supported yet"); 2002 return false; 2003 } 2004 2005 /// ParseOptionalDerefAttrBytes 2006 /// ::= /* empty */ 2007 /// ::= AttrKind '(' 4 ')' 2008 /// 2009 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 2010 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind, 2011 uint64_t &Bytes) { 2012 assert((AttrKind == lltok::kw_dereferenceable || 2013 AttrKind == lltok::kw_dereferenceable_or_null) && 2014 "contract!"); 2015 2016 Bytes = 0; 2017 if (!EatIfPresent(AttrKind)) 2018 return false; 2019 LocTy ParenLoc = Lex.getLoc(); 2020 if (!EatIfPresent(lltok::lparen)) 2021 return Error(ParenLoc, "expected '('"); 2022 LocTy DerefLoc = Lex.getLoc(); 2023 if (ParseUInt64(Bytes)) return true; 2024 ParenLoc = Lex.getLoc(); 2025 if (!EatIfPresent(lltok::rparen)) 2026 return Error(ParenLoc, "expected ')'"); 2027 if (!Bytes) 2028 return Error(DerefLoc, "dereferenceable bytes must be non-zero"); 2029 return false; 2030 } 2031 2032 /// ParseOptionalCommaAlign 2033 /// ::= 2034 /// ::= ',' align 4 2035 /// 2036 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2037 /// end. 2038 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment, 2039 bool &AteExtraComma) { 2040 AteExtraComma = false; 2041 while (EatIfPresent(lltok::comma)) { 2042 // Metadata at the end is an early exit. 2043 if (Lex.getKind() == lltok::MetadataVar) { 2044 AteExtraComma = true; 2045 return false; 2046 } 2047 2048 if (Lex.getKind() != lltok::kw_align) 2049 return Error(Lex.getLoc(), "expected metadata or 'align'"); 2050 2051 if (ParseOptionalAlignment(Alignment)) return true; 2052 } 2053 2054 return false; 2055 } 2056 2057 /// ParseOptionalCommaAddrSpace 2058 /// ::= 2059 /// ::= ',' addrspace(1) 2060 /// 2061 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2062 /// end. 2063 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace, 2064 LocTy &Loc, 2065 bool &AteExtraComma) { 2066 AteExtraComma = false; 2067 while (EatIfPresent(lltok::comma)) { 2068 // Metadata at the end is an early exit. 2069 if (Lex.getKind() == lltok::MetadataVar) { 2070 AteExtraComma = true; 2071 return false; 2072 } 2073 2074 Loc = Lex.getLoc(); 2075 if (Lex.getKind() != lltok::kw_addrspace) 2076 return Error(Lex.getLoc(), "expected metadata or 'addrspace'"); 2077 2078 if (ParseOptionalAddrSpace(AddrSpace)) 2079 return true; 2080 } 2081 2082 return false; 2083 } 2084 2085 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 2086 Optional<unsigned> &HowManyArg) { 2087 Lex.Lex(); 2088 2089 auto StartParen = Lex.getLoc(); 2090 if (!EatIfPresent(lltok::lparen)) 2091 return Error(StartParen, "expected '('"); 2092 2093 if (ParseUInt32(BaseSizeArg)) 2094 return true; 2095 2096 if (EatIfPresent(lltok::comma)) { 2097 auto HowManyAt = Lex.getLoc(); 2098 unsigned HowMany; 2099 if (ParseUInt32(HowMany)) 2100 return true; 2101 if (HowMany == BaseSizeArg) 2102 return Error(HowManyAt, 2103 "'allocsize' indices can't refer to the same parameter"); 2104 HowManyArg = HowMany; 2105 } else 2106 HowManyArg = None; 2107 2108 auto EndParen = Lex.getLoc(); 2109 if (!EatIfPresent(lltok::rparen)) 2110 return Error(EndParen, "expected ')'"); 2111 return false; 2112 } 2113 2114 /// ParseScopeAndOrdering 2115 /// if isAtomic: ::= SyncScope? AtomicOrdering 2116 /// else: ::= 2117 /// 2118 /// This sets Scope and Ordering to the parsed values. 2119 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID, 2120 AtomicOrdering &Ordering) { 2121 if (!isAtomic) 2122 return false; 2123 2124 return ParseScope(SSID) || ParseOrdering(Ordering); 2125 } 2126 2127 /// ParseScope 2128 /// ::= syncscope("singlethread" | "<target scope>")? 2129 /// 2130 /// This sets synchronization scope ID to the ID of the parsed value. 2131 bool LLParser::ParseScope(SyncScope::ID &SSID) { 2132 SSID = SyncScope::System; 2133 if (EatIfPresent(lltok::kw_syncscope)) { 2134 auto StartParenAt = Lex.getLoc(); 2135 if (!EatIfPresent(lltok::lparen)) 2136 return Error(StartParenAt, "Expected '(' in syncscope"); 2137 2138 std::string SSN; 2139 auto SSNAt = Lex.getLoc(); 2140 if (ParseStringConstant(SSN)) 2141 return Error(SSNAt, "Expected synchronization scope name"); 2142 2143 auto EndParenAt = Lex.getLoc(); 2144 if (!EatIfPresent(lltok::rparen)) 2145 return Error(EndParenAt, "Expected ')' in syncscope"); 2146 2147 SSID = Context.getOrInsertSyncScopeID(SSN); 2148 } 2149 2150 return false; 2151 } 2152 2153 /// ParseOrdering 2154 /// ::= AtomicOrdering 2155 /// 2156 /// This sets Ordering to the parsed value. 2157 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) { 2158 switch (Lex.getKind()) { 2159 default: return TokError("Expected ordering on atomic instruction"); 2160 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 2161 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 2162 // Not specified yet: 2163 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 2164 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 2165 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 2166 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 2167 case lltok::kw_seq_cst: 2168 Ordering = AtomicOrdering::SequentiallyConsistent; 2169 break; 2170 } 2171 Lex.Lex(); 2172 return false; 2173 } 2174 2175 /// ParseOptionalStackAlignment 2176 /// ::= /* empty */ 2177 /// ::= 'alignstack' '(' 4 ')' 2178 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { 2179 Alignment = 0; 2180 if (!EatIfPresent(lltok::kw_alignstack)) 2181 return false; 2182 LocTy ParenLoc = Lex.getLoc(); 2183 if (!EatIfPresent(lltok::lparen)) 2184 return Error(ParenLoc, "expected '('"); 2185 LocTy AlignLoc = Lex.getLoc(); 2186 if (ParseUInt32(Alignment)) return true; 2187 ParenLoc = Lex.getLoc(); 2188 if (!EatIfPresent(lltok::rparen)) 2189 return Error(ParenLoc, "expected ')'"); 2190 if (!isPowerOf2_32(Alignment)) 2191 return Error(AlignLoc, "stack alignment is not a power of two"); 2192 return false; 2193 } 2194 2195 /// ParseIndexList - This parses the index list for an insert/extractvalue 2196 /// instruction. This sets AteExtraComma in the case where we eat an extra 2197 /// comma at the end of the line and find that it is followed by metadata. 2198 /// Clients that don't allow metadata can call the version of this function that 2199 /// only takes one argument. 2200 /// 2201 /// ParseIndexList 2202 /// ::= (',' uint32)+ 2203 /// 2204 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, 2205 bool &AteExtraComma) { 2206 AteExtraComma = false; 2207 2208 if (Lex.getKind() != lltok::comma) 2209 return TokError("expected ',' as start of index list"); 2210 2211 while (EatIfPresent(lltok::comma)) { 2212 if (Lex.getKind() == lltok::MetadataVar) { 2213 if (Indices.empty()) return TokError("expected index"); 2214 AteExtraComma = true; 2215 return false; 2216 } 2217 unsigned Idx = 0; 2218 if (ParseUInt32(Idx)) return true; 2219 Indices.push_back(Idx); 2220 } 2221 2222 return false; 2223 } 2224 2225 //===----------------------------------------------------------------------===// 2226 // Type Parsing. 2227 //===----------------------------------------------------------------------===// 2228 2229 /// ParseType - Parse a type. 2230 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 2231 SMLoc TypeLoc = Lex.getLoc(); 2232 switch (Lex.getKind()) { 2233 default: 2234 return TokError(Msg); 2235 case lltok::Type: 2236 // Type ::= 'float' | 'void' (etc) 2237 Result = Lex.getTyVal(); 2238 Lex.Lex(); 2239 break; 2240 case lltok::lbrace: 2241 // Type ::= StructType 2242 if (ParseAnonStructType(Result, false)) 2243 return true; 2244 break; 2245 case lltok::lsquare: 2246 // Type ::= '[' ... ']' 2247 Lex.Lex(); // eat the lsquare. 2248 if (ParseArrayVectorType(Result, false)) 2249 return true; 2250 break; 2251 case lltok::less: // Either vector or packed struct. 2252 // Type ::= '<' ... '>' 2253 Lex.Lex(); 2254 if (Lex.getKind() == lltok::lbrace) { 2255 if (ParseAnonStructType(Result, true) || 2256 ParseToken(lltok::greater, "expected '>' at end of packed struct")) 2257 return true; 2258 } else if (ParseArrayVectorType(Result, true)) 2259 return true; 2260 break; 2261 case lltok::LocalVar: { 2262 // Type ::= %foo 2263 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2264 2265 // If the type hasn't been defined yet, create a forward definition and 2266 // remember where that forward def'n was seen (in case it never is defined). 2267 if (!Entry.first) { 2268 Entry.first = StructType::create(Context, Lex.getStrVal()); 2269 Entry.second = Lex.getLoc(); 2270 } 2271 Result = Entry.first; 2272 Lex.Lex(); 2273 break; 2274 } 2275 2276 case lltok::LocalVarID: { 2277 // Type ::= %4 2278 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2279 2280 // If the type hasn't been defined yet, create a forward definition and 2281 // remember where that forward def'n was seen (in case it never is defined). 2282 if (!Entry.first) { 2283 Entry.first = StructType::create(Context); 2284 Entry.second = Lex.getLoc(); 2285 } 2286 Result = Entry.first; 2287 Lex.Lex(); 2288 break; 2289 } 2290 } 2291 2292 // Parse the type suffixes. 2293 while (true) { 2294 switch (Lex.getKind()) { 2295 // End of type. 2296 default: 2297 if (!AllowVoid && Result->isVoidTy()) 2298 return Error(TypeLoc, "void type only allowed for function results"); 2299 return false; 2300 2301 // Type ::= Type '*' 2302 case lltok::star: 2303 if (Result->isLabelTy()) 2304 return TokError("basic block pointers are invalid"); 2305 if (Result->isVoidTy()) 2306 return TokError("pointers to void are invalid - use i8* instead"); 2307 if (!PointerType::isValidElementType(Result)) 2308 return TokError("pointer to this type is invalid"); 2309 Result = PointerType::getUnqual(Result); 2310 Lex.Lex(); 2311 break; 2312 2313 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2314 case lltok::kw_addrspace: { 2315 if (Result->isLabelTy()) 2316 return TokError("basic block pointers are invalid"); 2317 if (Result->isVoidTy()) 2318 return TokError("pointers to void are invalid; use i8* instead"); 2319 if (!PointerType::isValidElementType(Result)) 2320 return TokError("pointer to this type is invalid"); 2321 unsigned AddrSpace; 2322 if (ParseOptionalAddrSpace(AddrSpace) || 2323 ParseToken(lltok::star, "expected '*' in address space")) 2324 return true; 2325 2326 Result = PointerType::get(Result, AddrSpace); 2327 break; 2328 } 2329 2330 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2331 case lltok::lparen: 2332 if (ParseFunctionType(Result)) 2333 return true; 2334 break; 2335 } 2336 } 2337 } 2338 2339 /// ParseParameterList 2340 /// ::= '(' ')' 2341 /// ::= '(' Arg (',' Arg)* ')' 2342 /// Arg 2343 /// ::= Type OptionalAttributes Value OptionalAttributes 2344 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2345 PerFunctionState &PFS, bool IsMustTailCall, 2346 bool InVarArgsFunc) { 2347 if (ParseToken(lltok::lparen, "expected '(' in call")) 2348 return true; 2349 2350 while (Lex.getKind() != lltok::rparen) { 2351 // If this isn't the first argument, we need a comma. 2352 if (!ArgList.empty() && 2353 ParseToken(lltok::comma, "expected ',' in argument list")) 2354 return true; 2355 2356 // Parse an ellipsis if this is a musttail call in a variadic function. 2357 if (Lex.getKind() == lltok::dotdotdot) { 2358 const char *Msg = "unexpected ellipsis in argument list for "; 2359 if (!IsMustTailCall) 2360 return TokError(Twine(Msg) + "non-musttail call"); 2361 if (!InVarArgsFunc) 2362 return TokError(Twine(Msg) + "musttail call in non-varargs function"); 2363 Lex.Lex(); // Lex the '...', it is purely for readability. 2364 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2365 } 2366 2367 // Parse the argument. 2368 LocTy ArgLoc; 2369 Type *ArgTy = nullptr; 2370 AttrBuilder ArgAttrs; 2371 Value *V; 2372 if (ParseType(ArgTy, ArgLoc)) 2373 return true; 2374 2375 if (ArgTy->isMetadataTy()) { 2376 if (ParseMetadataAsValue(V, PFS)) 2377 return true; 2378 } else { 2379 // Otherwise, handle normal operands. 2380 if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS)) 2381 return true; 2382 } 2383 ArgList.push_back(ParamInfo( 2384 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs))); 2385 } 2386 2387 if (IsMustTailCall && InVarArgsFunc) 2388 return TokError("expected '...' at end of argument list for musttail call " 2389 "in varargs function"); 2390 2391 Lex.Lex(); // Lex the ')'. 2392 return false; 2393 } 2394 2395 /// ParseOptionalOperandBundles 2396 /// ::= /*empty*/ 2397 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2398 /// 2399 /// OperandBundle 2400 /// ::= bundle-tag '(' ')' 2401 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2402 /// 2403 /// bundle-tag ::= String Constant 2404 bool LLParser::ParseOptionalOperandBundles( 2405 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2406 LocTy BeginLoc = Lex.getLoc(); 2407 if (!EatIfPresent(lltok::lsquare)) 2408 return false; 2409 2410 while (Lex.getKind() != lltok::rsquare) { 2411 // If this isn't the first operand bundle, we need a comma. 2412 if (!BundleList.empty() && 2413 ParseToken(lltok::comma, "expected ',' in input list")) 2414 return true; 2415 2416 std::string Tag; 2417 if (ParseStringConstant(Tag)) 2418 return true; 2419 2420 if (ParseToken(lltok::lparen, "expected '(' in operand bundle")) 2421 return true; 2422 2423 std::vector<Value *> Inputs; 2424 while (Lex.getKind() != lltok::rparen) { 2425 // If this isn't the first input, we need a comma. 2426 if (!Inputs.empty() && 2427 ParseToken(lltok::comma, "expected ',' in input list")) 2428 return true; 2429 2430 Type *Ty = nullptr; 2431 Value *Input = nullptr; 2432 if (ParseType(Ty) || ParseValue(Ty, Input, PFS)) 2433 return true; 2434 Inputs.push_back(Input); 2435 } 2436 2437 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2438 2439 Lex.Lex(); // Lex the ')'. 2440 } 2441 2442 if (BundleList.empty()) 2443 return Error(BeginLoc, "operand bundle set must not be empty"); 2444 2445 Lex.Lex(); // Lex the ']'. 2446 return false; 2447 } 2448 2449 /// ParseArgumentList - Parse the argument list for a function type or function 2450 /// prototype. 2451 /// ::= '(' ArgTypeListI ')' 2452 /// ArgTypeListI 2453 /// ::= /*empty*/ 2454 /// ::= '...' 2455 /// ::= ArgTypeList ',' '...' 2456 /// ::= ArgType (',' ArgType)* 2457 /// 2458 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2459 bool &isVarArg){ 2460 isVarArg = false; 2461 assert(Lex.getKind() == lltok::lparen); 2462 Lex.Lex(); // eat the (. 2463 2464 if (Lex.getKind() == lltok::rparen) { 2465 // empty 2466 } else if (Lex.getKind() == lltok::dotdotdot) { 2467 isVarArg = true; 2468 Lex.Lex(); 2469 } else { 2470 LocTy TypeLoc = Lex.getLoc(); 2471 Type *ArgTy = nullptr; 2472 AttrBuilder Attrs; 2473 std::string Name; 2474 2475 if (ParseType(ArgTy) || 2476 ParseOptionalParamAttrs(Attrs)) return true; 2477 2478 if (ArgTy->isVoidTy()) 2479 return Error(TypeLoc, "argument can not have void type"); 2480 2481 if (Lex.getKind() == lltok::LocalVar) { 2482 Name = Lex.getStrVal(); 2483 Lex.Lex(); 2484 } 2485 2486 if (!FunctionType::isValidArgumentType(ArgTy)) 2487 return Error(TypeLoc, "invalid type for function argument"); 2488 2489 ArgList.emplace_back(TypeLoc, ArgTy, 2490 AttributeSet::get(ArgTy->getContext(), Attrs), 2491 std::move(Name)); 2492 2493 while (EatIfPresent(lltok::comma)) { 2494 // Handle ... at end of arg list. 2495 if (EatIfPresent(lltok::dotdotdot)) { 2496 isVarArg = true; 2497 break; 2498 } 2499 2500 // Otherwise must be an argument type. 2501 TypeLoc = Lex.getLoc(); 2502 if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true; 2503 2504 if (ArgTy->isVoidTy()) 2505 return Error(TypeLoc, "argument can not have void type"); 2506 2507 if (Lex.getKind() == lltok::LocalVar) { 2508 Name = Lex.getStrVal(); 2509 Lex.Lex(); 2510 } else { 2511 Name = ""; 2512 } 2513 2514 if (!ArgTy->isFirstClassType()) 2515 return Error(TypeLoc, "invalid type for function argument"); 2516 2517 ArgList.emplace_back(TypeLoc, ArgTy, 2518 AttributeSet::get(ArgTy->getContext(), Attrs), 2519 std::move(Name)); 2520 } 2521 } 2522 2523 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2524 } 2525 2526 /// ParseFunctionType 2527 /// ::= Type ArgumentList OptionalAttrs 2528 bool LLParser::ParseFunctionType(Type *&Result) { 2529 assert(Lex.getKind() == lltok::lparen); 2530 2531 if (!FunctionType::isValidReturnType(Result)) 2532 return TokError("invalid function return type"); 2533 2534 SmallVector<ArgInfo, 8> ArgList; 2535 bool isVarArg; 2536 if (ParseArgumentList(ArgList, isVarArg)) 2537 return true; 2538 2539 // Reject names on the arguments lists. 2540 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2541 if (!ArgList[i].Name.empty()) 2542 return Error(ArgList[i].Loc, "argument name invalid in function type"); 2543 if (ArgList[i].Attrs.hasAttributes()) 2544 return Error(ArgList[i].Loc, 2545 "argument attributes invalid in function type"); 2546 } 2547 2548 SmallVector<Type*, 16> ArgListTy; 2549 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2550 ArgListTy.push_back(ArgList[i].Ty); 2551 2552 Result = FunctionType::get(Result, ArgListTy, isVarArg); 2553 return false; 2554 } 2555 2556 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into 2557 /// other structs. 2558 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) { 2559 SmallVector<Type*, 8> Elts; 2560 if (ParseStructBody(Elts)) return true; 2561 2562 Result = StructType::get(Context, Elts, Packed); 2563 return false; 2564 } 2565 2566 /// ParseStructDefinition - Parse a struct in a 'type' definition. 2567 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name, 2568 std::pair<Type*, LocTy> &Entry, 2569 Type *&ResultTy) { 2570 // If the type was already defined, diagnose the redefinition. 2571 if (Entry.first && !Entry.second.isValid()) 2572 return Error(TypeLoc, "redefinition of type"); 2573 2574 // If we have opaque, just return without filling in the definition for the 2575 // struct. This counts as a definition as far as the .ll file goes. 2576 if (EatIfPresent(lltok::kw_opaque)) { 2577 // This type is being defined, so clear the location to indicate this. 2578 Entry.second = SMLoc(); 2579 2580 // If this type number has never been uttered, create it. 2581 if (!Entry.first) 2582 Entry.first = StructType::create(Context, Name); 2583 ResultTy = Entry.first; 2584 return false; 2585 } 2586 2587 // If the type starts with '<', then it is either a packed struct or a vector. 2588 bool isPacked = EatIfPresent(lltok::less); 2589 2590 // If we don't have a struct, then we have a random type alias, which we 2591 // accept for compatibility with old files. These types are not allowed to be 2592 // forward referenced and not allowed to be recursive. 2593 if (Lex.getKind() != lltok::lbrace) { 2594 if (Entry.first) 2595 return Error(TypeLoc, "forward references to non-struct type"); 2596 2597 ResultTy = nullptr; 2598 if (isPacked) 2599 return ParseArrayVectorType(ResultTy, true); 2600 return ParseType(ResultTy); 2601 } 2602 2603 // This type is being defined, so clear the location to indicate this. 2604 Entry.second = SMLoc(); 2605 2606 // If this type number has never been uttered, create it. 2607 if (!Entry.first) 2608 Entry.first = StructType::create(Context, Name); 2609 2610 StructType *STy = cast<StructType>(Entry.first); 2611 2612 SmallVector<Type*, 8> Body; 2613 if (ParseStructBody(Body) || 2614 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct"))) 2615 return true; 2616 2617 STy->setBody(Body, isPacked); 2618 ResultTy = STy; 2619 return false; 2620 } 2621 2622 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2623 /// StructType 2624 /// ::= '{' '}' 2625 /// ::= '{' Type (',' Type)* '}' 2626 /// ::= '<' '{' '}' '>' 2627 /// ::= '<' '{' Type (',' Type)* '}' '>' 2628 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) { 2629 assert(Lex.getKind() == lltok::lbrace); 2630 Lex.Lex(); // Consume the '{' 2631 2632 // Handle the empty struct. 2633 if (EatIfPresent(lltok::rbrace)) 2634 return false; 2635 2636 LocTy EltTyLoc = Lex.getLoc(); 2637 Type *Ty = nullptr; 2638 if (ParseType(Ty)) return true; 2639 Body.push_back(Ty); 2640 2641 if (!StructType::isValidElementType(Ty)) 2642 return Error(EltTyLoc, "invalid element type for struct"); 2643 2644 while (EatIfPresent(lltok::comma)) { 2645 EltTyLoc = Lex.getLoc(); 2646 if (ParseType(Ty)) return true; 2647 2648 if (!StructType::isValidElementType(Ty)) 2649 return Error(EltTyLoc, "invalid element type for struct"); 2650 2651 Body.push_back(Ty); 2652 } 2653 2654 return ParseToken(lltok::rbrace, "expected '}' at end of struct"); 2655 } 2656 2657 /// ParseArrayVectorType - Parse an array or vector type, assuming the first 2658 /// token has already been consumed. 2659 /// Type 2660 /// ::= '[' APSINTVAL 'x' Types ']' 2661 /// ::= '<' APSINTVAL 'x' Types '>' 2662 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) { 2663 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2664 Lex.getAPSIntVal().getBitWidth() > 64) 2665 return TokError("expected number in address space"); 2666 2667 LocTy SizeLoc = Lex.getLoc(); 2668 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2669 Lex.Lex(); 2670 2671 if (ParseToken(lltok::kw_x, "expected 'x' after element count")) 2672 return true; 2673 2674 LocTy TypeLoc = Lex.getLoc(); 2675 Type *EltTy = nullptr; 2676 if (ParseType(EltTy)) return true; 2677 2678 if (ParseToken(isVector ? lltok::greater : lltok::rsquare, 2679 "expected end of sequential type")) 2680 return true; 2681 2682 if (isVector) { 2683 if (Size == 0) 2684 return Error(SizeLoc, "zero element vector is illegal"); 2685 if ((unsigned)Size != Size) 2686 return Error(SizeLoc, "size too large for vector"); 2687 if (!VectorType::isValidElementType(EltTy)) 2688 return Error(TypeLoc, "invalid vector element type"); 2689 Result = VectorType::get(EltTy, unsigned(Size)); 2690 } else { 2691 if (!ArrayType::isValidElementType(EltTy)) 2692 return Error(TypeLoc, "invalid array element type"); 2693 Result = ArrayType::get(EltTy, Size); 2694 } 2695 return false; 2696 } 2697 2698 //===----------------------------------------------------------------------===// 2699 // Function Semantic Analysis. 2700 //===----------------------------------------------------------------------===// 2701 2702 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 2703 int functionNumber) 2704 : P(p), F(f), FunctionNumber(functionNumber) { 2705 2706 // Insert unnamed arguments into the NumberedVals list. 2707 for (Argument &A : F.args()) 2708 if (!A.hasName()) 2709 NumberedVals.push_back(&A); 2710 } 2711 2712 LLParser::PerFunctionState::~PerFunctionState() { 2713 // If there were any forward referenced non-basicblock values, delete them. 2714 2715 for (const auto &P : ForwardRefVals) { 2716 if (isa<BasicBlock>(P.second.first)) 2717 continue; 2718 P.second.first->replaceAllUsesWith( 2719 UndefValue::get(P.second.first->getType())); 2720 P.second.first->deleteValue(); 2721 } 2722 2723 for (const auto &P : ForwardRefValIDs) { 2724 if (isa<BasicBlock>(P.second.first)) 2725 continue; 2726 P.second.first->replaceAllUsesWith( 2727 UndefValue::get(P.second.first->getType())); 2728 P.second.first->deleteValue(); 2729 } 2730 } 2731 2732 bool LLParser::PerFunctionState::FinishFunction() { 2733 if (!ForwardRefVals.empty()) 2734 return P.Error(ForwardRefVals.begin()->second.second, 2735 "use of undefined value '%" + ForwardRefVals.begin()->first + 2736 "'"); 2737 if (!ForwardRefValIDs.empty()) 2738 return P.Error(ForwardRefValIDs.begin()->second.second, 2739 "use of undefined value '%" + 2740 Twine(ForwardRefValIDs.begin()->first) + "'"); 2741 return false; 2742 } 2743 2744 static bool isValidVariableType(Module *M, Type *Ty, Value *Val, bool IsCall) { 2745 if (Val->getType() == Ty) 2746 return true; 2747 // For calls we also accept variables in the program address space 2748 if (IsCall && isa<PointerType>(Ty)) { 2749 Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo( 2750 M->getDataLayout().getProgramAddressSpace()); 2751 if (Val->getType() == TyInProgAS) 2752 return true; 2753 } 2754 return false; 2755 } 2756 2757 /// GetVal - Get a value with the specified name or ID, creating a 2758 /// forward reference record if needed. This can return null if the value 2759 /// exists but does not have the right type. 2760 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty, 2761 LocTy Loc, bool IsCall) { 2762 // Look this name up in the normal function symbol table. 2763 Value *Val = F.getValueSymbolTable()->lookup(Name); 2764 2765 // If this is a forward reference for the value, see if we already created a 2766 // forward ref record. 2767 if (!Val) { 2768 auto I = ForwardRefVals.find(Name); 2769 if (I != ForwardRefVals.end()) 2770 Val = I->second.first; 2771 } 2772 2773 // If we have the value in the symbol table or fwd-ref table, return it. 2774 if (Val) { 2775 if (isValidVariableType(P.M, Ty, Val, IsCall)) 2776 return Val; 2777 if (Ty->isLabelTy()) 2778 P.Error(Loc, "'%" + Name + "' is not a basic block"); 2779 else 2780 P.Error(Loc, "'%" + Name + "' defined with type '" + 2781 getTypeString(Val->getType()) + "'"); 2782 return nullptr; 2783 } 2784 2785 // Don't make placeholders with invalid type. 2786 if (!Ty->isFirstClassType()) { 2787 P.Error(Loc, "invalid use of a non-first-class type"); 2788 return nullptr; 2789 } 2790 2791 // Otherwise, create a new forward reference for this value and remember it. 2792 Value *FwdVal; 2793 if (Ty->isLabelTy()) { 2794 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 2795 } else { 2796 FwdVal = new Argument(Ty, Name); 2797 } 2798 2799 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 2800 return FwdVal; 2801 } 2802 2803 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc, 2804 bool IsCall) { 2805 // Look this name up in the normal function symbol table. 2806 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 2807 2808 // If this is a forward reference for the value, see if we already created a 2809 // forward ref record. 2810 if (!Val) { 2811 auto I = ForwardRefValIDs.find(ID); 2812 if (I != ForwardRefValIDs.end()) 2813 Val = I->second.first; 2814 } 2815 2816 // If we have the value in the symbol table or fwd-ref table, return it. 2817 if (Val) { 2818 if (isValidVariableType(P.M, Ty, Val, IsCall)) 2819 return Val; 2820 if (Ty->isLabelTy()) 2821 P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block"); 2822 else 2823 P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" + 2824 getTypeString(Val->getType()) + "'"); 2825 return nullptr; 2826 } 2827 2828 if (!Ty->isFirstClassType()) { 2829 P.Error(Loc, "invalid use of a non-first-class type"); 2830 return nullptr; 2831 } 2832 2833 // Otherwise, create a new forward reference for this value and remember it. 2834 Value *FwdVal; 2835 if (Ty->isLabelTy()) { 2836 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 2837 } else { 2838 FwdVal = new Argument(Ty); 2839 } 2840 2841 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 2842 return FwdVal; 2843 } 2844 2845 /// SetInstName - After an instruction is parsed and inserted into its 2846 /// basic block, this installs its name. 2847 bool LLParser::PerFunctionState::SetInstName(int NameID, 2848 const std::string &NameStr, 2849 LocTy NameLoc, Instruction *Inst) { 2850 // If this instruction has void type, it cannot have a name or ID specified. 2851 if (Inst->getType()->isVoidTy()) { 2852 if (NameID != -1 || !NameStr.empty()) 2853 return P.Error(NameLoc, "instructions returning void cannot have a name"); 2854 return false; 2855 } 2856 2857 // If this was a numbered instruction, verify that the instruction is the 2858 // expected value and resolve any forward references. 2859 if (NameStr.empty()) { 2860 // If neither a name nor an ID was specified, just use the next ID. 2861 if (NameID == -1) 2862 NameID = NumberedVals.size(); 2863 2864 if (unsigned(NameID) != NumberedVals.size()) 2865 return P.Error(NameLoc, "instruction expected to be numbered '%" + 2866 Twine(NumberedVals.size()) + "'"); 2867 2868 auto FI = ForwardRefValIDs.find(NameID); 2869 if (FI != ForwardRefValIDs.end()) { 2870 Value *Sentinel = FI->second.first; 2871 if (Sentinel->getType() != Inst->getType()) 2872 return P.Error(NameLoc, "instruction forward referenced with type '" + 2873 getTypeString(FI->second.first->getType()) + "'"); 2874 2875 Sentinel->replaceAllUsesWith(Inst); 2876 Sentinel->deleteValue(); 2877 ForwardRefValIDs.erase(FI); 2878 } 2879 2880 NumberedVals.push_back(Inst); 2881 return false; 2882 } 2883 2884 // Otherwise, the instruction had a name. Resolve forward refs and set it. 2885 auto FI = ForwardRefVals.find(NameStr); 2886 if (FI != ForwardRefVals.end()) { 2887 Value *Sentinel = FI->second.first; 2888 if (Sentinel->getType() != Inst->getType()) 2889 return P.Error(NameLoc, "instruction forward referenced with type '" + 2890 getTypeString(FI->second.first->getType()) + "'"); 2891 2892 Sentinel->replaceAllUsesWith(Inst); 2893 Sentinel->deleteValue(); 2894 ForwardRefVals.erase(FI); 2895 } 2896 2897 // Set the name on the instruction. 2898 Inst->setName(NameStr); 2899 2900 if (Inst->getName() != NameStr) 2901 return P.Error(NameLoc, "multiple definition of local value named '" + 2902 NameStr + "'"); 2903 return false; 2904 } 2905 2906 /// GetBB - Get a basic block with the specified name or ID, creating a 2907 /// forward reference record if needed. 2908 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, 2909 LocTy Loc) { 2910 return dyn_cast_or_null<BasicBlock>( 2911 GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 2912 } 2913 2914 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { 2915 return dyn_cast_or_null<BasicBlock>( 2916 GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 2917 } 2918 2919 /// DefineBB - Define the specified basic block, which is either named or 2920 /// unnamed. If there is an error, this returns null otherwise it returns 2921 /// the block being defined. 2922 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, 2923 LocTy Loc) { 2924 BasicBlock *BB; 2925 if (Name.empty()) 2926 BB = GetBB(NumberedVals.size(), Loc); 2927 else 2928 BB = GetBB(Name, Loc); 2929 if (!BB) return nullptr; // Already diagnosed error. 2930 2931 // Move the block to the end of the function. Forward ref'd blocks are 2932 // inserted wherever they happen to be referenced. 2933 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 2934 2935 // Remove the block from forward ref sets. 2936 if (Name.empty()) { 2937 ForwardRefValIDs.erase(NumberedVals.size()); 2938 NumberedVals.push_back(BB); 2939 } else { 2940 // BB forward references are already in the function symbol table. 2941 ForwardRefVals.erase(Name); 2942 } 2943 2944 return BB; 2945 } 2946 2947 //===----------------------------------------------------------------------===// 2948 // Constants. 2949 //===----------------------------------------------------------------------===// 2950 2951 /// ParseValID - Parse an abstract value that doesn't necessarily have a 2952 /// type implied. For example, if we parse "4" we don't know what integer type 2953 /// it has. The value will later be combined with its type and checked for 2954 /// sanity. PFS is used to convert function-local operands of metadata (since 2955 /// metadata operands are not just parsed here but also converted to values). 2956 /// PFS can be null when we are not parsing metadata values inside a function. 2957 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { 2958 ID.Loc = Lex.getLoc(); 2959 switch (Lex.getKind()) { 2960 default: return TokError("expected value token"); 2961 case lltok::GlobalID: // @42 2962 ID.UIntVal = Lex.getUIntVal(); 2963 ID.Kind = ValID::t_GlobalID; 2964 break; 2965 case lltok::GlobalVar: // @foo 2966 ID.StrVal = Lex.getStrVal(); 2967 ID.Kind = ValID::t_GlobalName; 2968 break; 2969 case lltok::LocalVarID: // %42 2970 ID.UIntVal = Lex.getUIntVal(); 2971 ID.Kind = ValID::t_LocalID; 2972 break; 2973 case lltok::LocalVar: // %foo 2974 ID.StrVal = Lex.getStrVal(); 2975 ID.Kind = ValID::t_LocalName; 2976 break; 2977 case lltok::APSInt: 2978 ID.APSIntVal = Lex.getAPSIntVal(); 2979 ID.Kind = ValID::t_APSInt; 2980 break; 2981 case lltok::APFloat: 2982 ID.APFloatVal = Lex.getAPFloatVal(); 2983 ID.Kind = ValID::t_APFloat; 2984 break; 2985 case lltok::kw_true: 2986 ID.ConstantVal = ConstantInt::getTrue(Context); 2987 ID.Kind = ValID::t_Constant; 2988 break; 2989 case lltok::kw_false: 2990 ID.ConstantVal = ConstantInt::getFalse(Context); 2991 ID.Kind = ValID::t_Constant; 2992 break; 2993 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 2994 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 2995 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 2996 case lltok::kw_none: ID.Kind = ValID::t_None; break; 2997 2998 case lltok::lbrace: { 2999 // ValID ::= '{' ConstVector '}' 3000 Lex.Lex(); 3001 SmallVector<Constant*, 16> Elts; 3002 if (ParseGlobalValueVector(Elts) || 3003 ParseToken(lltok::rbrace, "expected end of struct constant")) 3004 return true; 3005 3006 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 3007 ID.UIntVal = Elts.size(); 3008 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3009 Elts.size() * sizeof(Elts[0])); 3010 ID.Kind = ValID::t_ConstantStruct; 3011 return false; 3012 } 3013 case lltok::less: { 3014 // ValID ::= '<' ConstVector '>' --> Vector. 3015 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 3016 Lex.Lex(); 3017 bool isPackedStruct = EatIfPresent(lltok::lbrace); 3018 3019 SmallVector<Constant*, 16> Elts; 3020 LocTy FirstEltLoc = Lex.getLoc(); 3021 if (ParseGlobalValueVector(Elts) || 3022 (isPackedStruct && 3023 ParseToken(lltok::rbrace, "expected end of packed struct")) || 3024 ParseToken(lltok::greater, "expected end of constant")) 3025 return true; 3026 3027 if (isPackedStruct) { 3028 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 3029 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3030 Elts.size() * sizeof(Elts[0])); 3031 ID.UIntVal = Elts.size(); 3032 ID.Kind = ValID::t_PackedConstantStruct; 3033 return false; 3034 } 3035 3036 if (Elts.empty()) 3037 return Error(ID.Loc, "constant vector must not be empty"); 3038 3039 if (!Elts[0]->getType()->isIntegerTy() && 3040 !Elts[0]->getType()->isFloatingPointTy() && 3041 !Elts[0]->getType()->isPointerTy()) 3042 return Error(FirstEltLoc, 3043 "vector elements must have integer, pointer or floating point type"); 3044 3045 // Verify that all the vector elements have the same type. 3046 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 3047 if (Elts[i]->getType() != Elts[0]->getType()) 3048 return Error(FirstEltLoc, 3049 "vector element #" + Twine(i) + 3050 " is not of type '" + getTypeString(Elts[0]->getType())); 3051 3052 ID.ConstantVal = ConstantVector::get(Elts); 3053 ID.Kind = ValID::t_Constant; 3054 return false; 3055 } 3056 case lltok::lsquare: { // Array Constant 3057 Lex.Lex(); 3058 SmallVector<Constant*, 16> Elts; 3059 LocTy FirstEltLoc = Lex.getLoc(); 3060 if (ParseGlobalValueVector(Elts) || 3061 ParseToken(lltok::rsquare, "expected end of array constant")) 3062 return true; 3063 3064 // Handle empty element. 3065 if (Elts.empty()) { 3066 // Use undef instead of an array because it's inconvenient to determine 3067 // the element type at this point, there being no elements to examine. 3068 ID.Kind = ValID::t_EmptyArray; 3069 return false; 3070 } 3071 3072 if (!Elts[0]->getType()->isFirstClassType()) 3073 return Error(FirstEltLoc, "invalid array element type: " + 3074 getTypeString(Elts[0]->getType())); 3075 3076 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 3077 3078 // Verify all elements are correct type! 3079 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 3080 if (Elts[i]->getType() != Elts[0]->getType()) 3081 return Error(FirstEltLoc, 3082 "array element #" + Twine(i) + 3083 " is not of type '" + getTypeString(Elts[0]->getType())); 3084 } 3085 3086 ID.ConstantVal = ConstantArray::get(ATy, Elts); 3087 ID.Kind = ValID::t_Constant; 3088 return false; 3089 } 3090 case lltok::kw_c: // c "foo" 3091 Lex.Lex(); 3092 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 3093 false); 3094 if (ParseToken(lltok::StringConstant, "expected string")) return true; 3095 ID.Kind = ValID::t_Constant; 3096 return false; 3097 3098 case lltok::kw_asm: { 3099 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 3100 // STRINGCONSTANT 3101 bool HasSideEffect, AlignStack, AsmDialect; 3102 Lex.Lex(); 3103 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 3104 ParseOptionalToken(lltok::kw_alignstack, AlignStack) || 3105 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 3106 ParseStringConstant(ID.StrVal) || 3107 ParseToken(lltok::comma, "expected comma in inline asm expression") || 3108 ParseToken(lltok::StringConstant, "expected constraint string")) 3109 return true; 3110 ID.StrVal2 = Lex.getStrVal(); 3111 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) | 3112 (unsigned(AsmDialect)<<2); 3113 ID.Kind = ValID::t_InlineAsm; 3114 return false; 3115 } 3116 3117 case lltok::kw_blockaddress: { 3118 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 3119 Lex.Lex(); 3120 3121 ValID Fn, Label; 3122 3123 if (ParseToken(lltok::lparen, "expected '(' in block address expression") || 3124 ParseValID(Fn) || 3125 ParseToken(lltok::comma, "expected comma in block address expression")|| 3126 ParseValID(Label) || 3127 ParseToken(lltok::rparen, "expected ')' in block address expression")) 3128 return true; 3129 3130 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3131 return Error(Fn.Loc, "expected function name in blockaddress"); 3132 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 3133 return Error(Label.Loc, "expected basic block name in blockaddress"); 3134 3135 // Try to find the function (but skip it if it's forward-referenced). 3136 GlobalValue *GV = nullptr; 3137 if (Fn.Kind == ValID::t_GlobalID) { 3138 if (Fn.UIntVal < NumberedVals.size()) 3139 GV = NumberedVals[Fn.UIntVal]; 3140 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3141 GV = M->getNamedValue(Fn.StrVal); 3142 } 3143 Function *F = nullptr; 3144 if (GV) { 3145 // Confirm that it's actually a function with a definition. 3146 if (!isa<Function>(GV)) 3147 return Error(Fn.Loc, "expected function name in blockaddress"); 3148 F = cast<Function>(GV); 3149 if (F->isDeclaration()) 3150 return Error(Fn.Loc, "cannot take blockaddress inside a declaration"); 3151 } 3152 3153 if (!F) { 3154 // Make a global variable as a placeholder for this reference. 3155 GlobalValue *&FwdRef = 3156 ForwardRefBlockAddresses.insert(std::make_pair( 3157 std::move(Fn), 3158 std::map<ValID, GlobalValue *>())) 3159 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 3160 .first->second; 3161 if (!FwdRef) 3162 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 3163 GlobalValue::InternalLinkage, nullptr, ""); 3164 ID.ConstantVal = FwdRef; 3165 ID.Kind = ValID::t_Constant; 3166 return false; 3167 } 3168 3169 // We found the function; now find the basic block. Don't use PFS, since we 3170 // might be inside a constant expression. 3171 BasicBlock *BB; 3172 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 3173 if (Label.Kind == ValID::t_LocalID) 3174 BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc); 3175 else 3176 BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc); 3177 if (!BB) 3178 return Error(Label.Loc, "referenced value is not a basic block"); 3179 } else { 3180 if (Label.Kind == ValID::t_LocalID) 3181 return Error(Label.Loc, "cannot take address of numeric label after " 3182 "the function is defined"); 3183 BB = dyn_cast_or_null<BasicBlock>( 3184 F->getValueSymbolTable()->lookup(Label.StrVal)); 3185 if (!BB) 3186 return Error(Label.Loc, "referenced value is not a basic block"); 3187 } 3188 3189 ID.ConstantVal = BlockAddress::get(F, BB); 3190 ID.Kind = ValID::t_Constant; 3191 return false; 3192 } 3193 3194 case lltok::kw_trunc: 3195 case lltok::kw_zext: 3196 case lltok::kw_sext: 3197 case lltok::kw_fptrunc: 3198 case lltok::kw_fpext: 3199 case lltok::kw_bitcast: 3200 case lltok::kw_addrspacecast: 3201 case lltok::kw_uitofp: 3202 case lltok::kw_sitofp: 3203 case lltok::kw_fptoui: 3204 case lltok::kw_fptosi: 3205 case lltok::kw_inttoptr: 3206 case lltok::kw_ptrtoint: { 3207 unsigned Opc = Lex.getUIntVal(); 3208 Type *DestTy = nullptr; 3209 Constant *SrcVal; 3210 Lex.Lex(); 3211 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || 3212 ParseGlobalTypeAndValue(SrcVal) || 3213 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 3214 ParseType(DestTy) || 3215 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 3216 return true; 3217 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 3218 return Error(ID.Loc, "invalid cast opcode for cast from '" + 3219 getTypeString(SrcVal->getType()) + "' to '" + 3220 getTypeString(DestTy) + "'"); 3221 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 3222 SrcVal, DestTy); 3223 ID.Kind = ValID::t_Constant; 3224 return false; 3225 } 3226 case lltok::kw_extractvalue: { 3227 Lex.Lex(); 3228 Constant *Val; 3229 SmallVector<unsigned, 4> Indices; 3230 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| 3231 ParseGlobalTypeAndValue(Val) || 3232 ParseIndexList(Indices) || 3233 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 3234 return true; 3235 3236 if (!Val->getType()->isAggregateType()) 3237 return Error(ID.Loc, "extractvalue operand must be aggregate type"); 3238 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 3239 return Error(ID.Loc, "invalid indices for extractvalue"); 3240 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 3241 ID.Kind = ValID::t_Constant; 3242 return false; 3243 } 3244 case lltok::kw_insertvalue: { 3245 Lex.Lex(); 3246 Constant *Val0, *Val1; 3247 SmallVector<unsigned, 4> Indices; 3248 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| 3249 ParseGlobalTypeAndValue(Val0) || 3250 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| 3251 ParseGlobalTypeAndValue(Val1) || 3252 ParseIndexList(Indices) || 3253 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 3254 return true; 3255 if (!Val0->getType()->isAggregateType()) 3256 return Error(ID.Loc, "insertvalue operand must be aggregate type"); 3257 Type *IndexedType = 3258 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 3259 if (!IndexedType) 3260 return Error(ID.Loc, "invalid indices for insertvalue"); 3261 if (IndexedType != Val1->getType()) 3262 return Error(ID.Loc, "insertvalue operand and field disagree in type: '" + 3263 getTypeString(Val1->getType()) + 3264 "' instead of '" + getTypeString(IndexedType) + 3265 "'"); 3266 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 3267 ID.Kind = ValID::t_Constant; 3268 return false; 3269 } 3270 case lltok::kw_icmp: 3271 case lltok::kw_fcmp: { 3272 unsigned PredVal, Opc = Lex.getUIntVal(); 3273 Constant *Val0, *Val1; 3274 Lex.Lex(); 3275 if (ParseCmpPredicate(PredVal, Opc) || 3276 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || 3277 ParseGlobalTypeAndValue(Val0) || 3278 ParseToken(lltok::comma, "expected comma in compare constantexpr") || 3279 ParseGlobalTypeAndValue(Val1) || 3280 ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) 3281 return true; 3282 3283 if (Val0->getType() != Val1->getType()) 3284 return Error(ID.Loc, "compare operands must have the same type"); 3285 3286 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 3287 3288 if (Opc == Instruction::FCmp) { 3289 if (!Val0->getType()->isFPOrFPVectorTy()) 3290 return Error(ID.Loc, "fcmp requires floating point operands"); 3291 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3292 } else { 3293 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3294 if (!Val0->getType()->isIntOrIntVectorTy() && 3295 !Val0->getType()->isPtrOrPtrVectorTy()) 3296 return Error(ID.Loc, "icmp requires pointer or integer operands"); 3297 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3298 } 3299 ID.Kind = ValID::t_Constant; 3300 return false; 3301 } 3302 3303 // Binary Operators. 3304 case lltok::kw_add: 3305 case lltok::kw_fadd: 3306 case lltok::kw_sub: 3307 case lltok::kw_fsub: 3308 case lltok::kw_mul: 3309 case lltok::kw_fmul: 3310 case lltok::kw_udiv: 3311 case lltok::kw_sdiv: 3312 case lltok::kw_fdiv: 3313 case lltok::kw_urem: 3314 case lltok::kw_srem: 3315 case lltok::kw_frem: 3316 case lltok::kw_shl: 3317 case lltok::kw_lshr: 3318 case lltok::kw_ashr: { 3319 bool NUW = false; 3320 bool NSW = false; 3321 bool Exact = false; 3322 unsigned Opc = Lex.getUIntVal(); 3323 Constant *Val0, *Val1; 3324 Lex.Lex(); 3325 LocTy ModifierLoc = Lex.getLoc(); 3326 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3327 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3328 if (EatIfPresent(lltok::kw_nuw)) 3329 NUW = true; 3330 if (EatIfPresent(lltok::kw_nsw)) { 3331 NSW = true; 3332 if (EatIfPresent(lltok::kw_nuw)) 3333 NUW = true; 3334 } 3335 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3336 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3337 if (EatIfPresent(lltok::kw_exact)) 3338 Exact = true; 3339 } 3340 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3341 ParseGlobalTypeAndValue(Val0) || 3342 ParseToken(lltok::comma, "expected comma in binary constantexpr") || 3343 ParseGlobalTypeAndValue(Val1) || 3344 ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3345 return true; 3346 if (Val0->getType() != Val1->getType()) 3347 return Error(ID.Loc, "operands of constexpr must have same type"); 3348 if (!Val0->getType()->isIntOrIntVectorTy()) { 3349 if (NUW) 3350 return Error(ModifierLoc, "nuw only applies to integer operations"); 3351 if (NSW) 3352 return Error(ModifierLoc, "nsw only applies to integer operations"); 3353 } 3354 // Check that the type is valid for the operator. 3355 switch (Opc) { 3356 case Instruction::Add: 3357 case Instruction::Sub: 3358 case Instruction::Mul: 3359 case Instruction::UDiv: 3360 case Instruction::SDiv: 3361 case Instruction::URem: 3362 case Instruction::SRem: 3363 case Instruction::Shl: 3364 case Instruction::AShr: 3365 case Instruction::LShr: 3366 if (!Val0->getType()->isIntOrIntVectorTy()) 3367 return Error(ID.Loc, "constexpr requires integer operands"); 3368 break; 3369 case Instruction::FAdd: 3370 case Instruction::FSub: 3371 case Instruction::FMul: 3372 case Instruction::FDiv: 3373 case Instruction::FRem: 3374 if (!Val0->getType()->isFPOrFPVectorTy()) 3375 return Error(ID.Loc, "constexpr requires fp operands"); 3376 break; 3377 default: llvm_unreachable("Unknown binary operator!"); 3378 } 3379 unsigned Flags = 0; 3380 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3381 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3382 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3383 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3384 ID.ConstantVal = C; 3385 ID.Kind = ValID::t_Constant; 3386 return false; 3387 } 3388 3389 // Logical Operations 3390 case lltok::kw_and: 3391 case lltok::kw_or: 3392 case lltok::kw_xor: { 3393 unsigned Opc = Lex.getUIntVal(); 3394 Constant *Val0, *Val1; 3395 Lex.Lex(); 3396 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3397 ParseGlobalTypeAndValue(Val0) || 3398 ParseToken(lltok::comma, "expected comma in logical constantexpr") || 3399 ParseGlobalTypeAndValue(Val1) || 3400 ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3401 return true; 3402 if (Val0->getType() != Val1->getType()) 3403 return Error(ID.Loc, "operands of constexpr must have same type"); 3404 if (!Val0->getType()->isIntOrIntVectorTy()) 3405 return Error(ID.Loc, 3406 "constexpr requires integer or integer vector operands"); 3407 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3408 ID.Kind = ValID::t_Constant; 3409 return false; 3410 } 3411 3412 case lltok::kw_getelementptr: 3413 case lltok::kw_shufflevector: 3414 case lltok::kw_insertelement: 3415 case lltok::kw_extractelement: 3416 case lltok::kw_select: { 3417 unsigned Opc = Lex.getUIntVal(); 3418 SmallVector<Constant*, 16> Elts; 3419 bool InBounds = false; 3420 Type *Ty; 3421 Lex.Lex(); 3422 3423 if (Opc == Instruction::GetElementPtr) 3424 InBounds = EatIfPresent(lltok::kw_inbounds); 3425 3426 if (ParseToken(lltok::lparen, "expected '(' in constantexpr")) 3427 return true; 3428 3429 LocTy ExplicitTypeLoc = Lex.getLoc(); 3430 if (Opc == Instruction::GetElementPtr) { 3431 if (ParseType(Ty) || 3432 ParseToken(lltok::comma, "expected comma after getelementptr's type")) 3433 return true; 3434 } 3435 3436 Optional<unsigned> InRangeOp; 3437 if (ParseGlobalValueVector( 3438 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) || 3439 ParseToken(lltok::rparen, "expected ')' in constantexpr")) 3440 return true; 3441 3442 if (Opc == Instruction::GetElementPtr) { 3443 if (Elts.size() == 0 || 3444 !Elts[0]->getType()->isPtrOrPtrVectorTy()) 3445 return Error(ID.Loc, "base of getelementptr must be a pointer"); 3446 3447 Type *BaseType = Elts[0]->getType(); 3448 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3449 if (Ty != BasePointerType->getElementType()) 3450 return Error( 3451 ExplicitTypeLoc, 3452 "explicit pointee type doesn't match operand's pointee type"); 3453 3454 unsigned GEPWidth = 3455 BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0; 3456 3457 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3458 for (Constant *Val : Indices) { 3459 Type *ValTy = Val->getType(); 3460 if (!ValTy->isIntOrIntVectorTy()) 3461 return Error(ID.Loc, "getelementptr index must be an integer"); 3462 if (ValTy->isVectorTy()) { 3463 unsigned ValNumEl = ValTy->getVectorNumElements(); 3464 if (GEPWidth && (ValNumEl != GEPWidth)) 3465 return Error( 3466 ID.Loc, 3467 "getelementptr vector index has a wrong number of elements"); 3468 // GEPWidth may have been unknown because the base is a scalar, 3469 // but it is known now. 3470 GEPWidth = ValNumEl; 3471 } 3472 } 3473 3474 SmallPtrSet<Type*, 4> Visited; 3475 if (!Indices.empty() && !Ty->isSized(&Visited)) 3476 return Error(ID.Loc, "base element of getelementptr must be sized"); 3477 3478 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3479 return Error(ID.Loc, "invalid getelementptr indices"); 3480 3481 if (InRangeOp) { 3482 if (*InRangeOp == 0) 3483 return Error(ID.Loc, 3484 "inrange keyword may not appear on pointer operand"); 3485 --*InRangeOp; 3486 } 3487 3488 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, 3489 InBounds, InRangeOp); 3490 } else if (Opc == Instruction::Select) { 3491 if (Elts.size() != 3) 3492 return Error(ID.Loc, "expected three operands to select"); 3493 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3494 Elts[2])) 3495 return Error(ID.Loc, Reason); 3496 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3497 } else if (Opc == Instruction::ShuffleVector) { 3498 if (Elts.size() != 3) 3499 return Error(ID.Loc, "expected three operands to shufflevector"); 3500 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3501 return Error(ID.Loc, "invalid operands to shufflevector"); 3502 ID.ConstantVal = 3503 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); 3504 } else if (Opc == Instruction::ExtractElement) { 3505 if (Elts.size() != 2) 3506 return Error(ID.Loc, "expected two operands to extractelement"); 3507 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3508 return Error(ID.Loc, "invalid extractelement operands"); 3509 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3510 } else { 3511 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3512 if (Elts.size() != 3) 3513 return Error(ID.Loc, "expected three operands to insertelement"); 3514 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3515 return Error(ID.Loc, "invalid insertelement operands"); 3516 ID.ConstantVal = 3517 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3518 } 3519 3520 ID.Kind = ValID::t_Constant; 3521 return false; 3522 } 3523 } 3524 3525 Lex.Lex(); 3526 return false; 3527 } 3528 3529 /// ParseGlobalValue - Parse a global value with the specified type. 3530 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) { 3531 C = nullptr; 3532 ValID ID; 3533 Value *V = nullptr; 3534 bool Parsed = ParseValID(ID) || 3535 ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false); 3536 if (V && !(C = dyn_cast<Constant>(V))) 3537 return Error(ID.Loc, "global values must be constants"); 3538 return Parsed; 3539 } 3540 3541 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { 3542 Type *Ty = nullptr; 3543 return ParseType(Ty) || 3544 ParseGlobalValue(Ty, V); 3545 } 3546 3547 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3548 C = nullptr; 3549 3550 LocTy KwLoc = Lex.getLoc(); 3551 if (!EatIfPresent(lltok::kw_comdat)) 3552 return false; 3553 3554 if (EatIfPresent(lltok::lparen)) { 3555 if (Lex.getKind() != lltok::ComdatVar) 3556 return TokError("expected comdat variable"); 3557 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3558 Lex.Lex(); 3559 if (ParseToken(lltok::rparen, "expected ')' after comdat var")) 3560 return true; 3561 } else { 3562 if (GlobalName.empty()) 3563 return TokError("comdat cannot be unnamed"); 3564 C = getComdat(GlobalName, KwLoc); 3565 } 3566 3567 return false; 3568 } 3569 3570 /// ParseGlobalValueVector 3571 /// ::= /*empty*/ 3572 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)* 3573 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts, 3574 Optional<unsigned> *InRangeOp) { 3575 // Empty list. 3576 if (Lex.getKind() == lltok::rbrace || 3577 Lex.getKind() == lltok::rsquare || 3578 Lex.getKind() == lltok::greater || 3579 Lex.getKind() == lltok::rparen) 3580 return false; 3581 3582 do { 3583 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange)) 3584 *InRangeOp = Elts.size(); 3585 3586 Constant *C; 3587 if (ParseGlobalTypeAndValue(C)) return true; 3588 Elts.push_back(C); 3589 } while (EatIfPresent(lltok::comma)); 3590 3591 return false; 3592 } 3593 3594 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) { 3595 SmallVector<Metadata *, 16> Elts; 3596 if (ParseMDNodeVector(Elts)) 3597 return true; 3598 3599 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3600 return false; 3601 } 3602 3603 /// MDNode: 3604 /// ::= !{ ... } 3605 /// ::= !7 3606 /// ::= !DILocation(...) 3607 bool LLParser::ParseMDNode(MDNode *&N) { 3608 if (Lex.getKind() == lltok::MetadataVar) 3609 return ParseSpecializedMDNode(N); 3610 3611 return ParseToken(lltok::exclaim, "expected '!' here") || 3612 ParseMDNodeTail(N); 3613 } 3614 3615 bool LLParser::ParseMDNodeTail(MDNode *&N) { 3616 // !{ ... } 3617 if (Lex.getKind() == lltok::lbrace) 3618 return ParseMDTuple(N); 3619 3620 // !42 3621 return ParseMDNodeID(N); 3622 } 3623 3624 namespace { 3625 3626 /// Structure to represent an optional metadata field. 3627 template <class FieldTy> struct MDFieldImpl { 3628 typedef MDFieldImpl ImplTy; 3629 FieldTy Val; 3630 bool Seen; 3631 3632 void assign(FieldTy Val) { 3633 Seen = true; 3634 this->Val = std::move(Val); 3635 } 3636 3637 explicit MDFieldImpl(FieldTy Default) 3638 : Val(std::move(Default)), Seen(false) {} 3639 }; 3640 3641 /// Structure to represent an optional metadata field that 3642 /// can be of either type (A or B) and encapsulates the 3643 /// MD<typeofA>Field and MD<typeofB>Field structs, so not 3644 /// to reimplement the specifics for representing each Field. 3645 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl { 3646 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy; 3647 FieldTypeA A; 3648 FieldTypeB B; 3649 bool Seen; 3650 3651 enum { 3652 IsInvalid = 0, 3653 IsTypeA = 1, 3654 IsTypeB = 2 3655 } WhatIs; 3656 3657 void assign(FieldTypeA A) { 3658 Seen = true; 3659 this->A = std::move(A); 3660 WhatIs = IsTypeA; 3661 } 3662 3663 void assign(FieldTypeB B) { 3664 Seen = true; 3665 this->B = std::move(B); 3666 WhatIs = IsTypeB; 3667 } 3668 3669 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB) 3670 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false), 3671 WhatIs(IsInvalid) {} 3672 }; 3673 3674 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 3675 uint64_t Max; 3676 3677 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 3678 : ImplTy(Default), Max(Max) {} 3679 }; 3680 3681 struct LineField : public MDUnsignedField { 3682 LineField() : MDUnsignedField(0, UINT32_MAX) {} 3683 }; 3684 3685 struct ColumnField : public MDUnsignedField { 3686 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 3687 }; 3688 3689 struct DwarfTagField : public MDUnsignedField { 3690 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 3691 DwarfTagField(dwarf::Tag DefaultTag) 3692 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 3693 }; 3694 3695 struct DwarfMacinfoTypeField : public MDUnsignedField { 3696 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 3697 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 3698 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 3699 }; 3700 3701 struct DwarfAttEncodingField : public MDUnsignedField { 3702 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 3703 }; 3704 3705 struct DwarfVirtualityField : public MDUnsignedField { 3706 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 3707 }; 3708 3709 struct DwarfLangField : public MDUnsignedField { 3710 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 3711 }; 3712 3713 struct DwarfCCField : public MDUnsignedField { 3714 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 3715 }; 3716 3717 struct EmissionKindField : public MDUnsignedField { 3718 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 3719 }; 3720 3721 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 3722 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 3723 }; 3724 3725 struct MDSignedField : public MDFieldImpl<int64_t> { 3726 int64_t Min; 3727 int64_t Max; 3728 3729 MDSignedField(int64_t Default = 0) 3730 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 3731 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 3732 : ImplTy(Default), Min(Min), Max(Max) {} 3733 }; 3734 3735 struct MDBoolField : public MDFieldImpl<bool> { 3736 MDBoolField(bool Default = false) : ImplTy(Default) {} 3737 }; 3738 3739 struct MDField : public MDFieldImpl<Metadata *> { 3740 bool AllowNull; 3741 3742 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 3743 }; 3744 3745 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> { 3746 MDConstant() : ImplTy(nullptr) {} 3747 }; 3748 3749 struct MDStringField : public MDFieldImpl<MDString *> { 3750 bool AllowEmpty; 3751 MDStringField(bool AllowEmpty = true) 3752 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 3753 }; 3754 3755 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 3756 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 3757 }; 3758 3759 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> { 3760 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {} 3761 }; 3762 3763 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> { 3764 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true) 3765 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {} 3766 3767 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max, 3768 bool AllowNull = true) 3769 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {} 3770 3771 bool isMDSignedField() const { return WhatIs == IsTypeA; } 3772 bool isMDField() const { return WhatIs == IsTypeB; } 3773 int64_t getMDSignedValue() const { 3774 assert(isMDSignedField() && "Wrong field type"); 3775 return A.Val; 3776 } 3777 Metadata *getMDFieldValue() const { 3778 assert(isMDField() && "Wrong field type"); 3779 return B.Val; 3780 } 3781 }; 3782 3783 struct MDSignedOrUnsignedField 3784 : MDEitherFieldImpl<MDSignedField, MDUnsignedField> { 3785 MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {} 3786 3787 bool isMDSignedField() const { return WhatIs == IsTypeA; } 3788 bool isMDUnsignedField() const { return WhatIs == IsTypeB; } 3789 int64_t getMDSignedValue() const { 3790 assert(isMDSignedField() && "Wrong field type"); 3791 return A.Val; 3792 } 3793 uint64_t getMDUnsignedValue() const { 3794 assert(isMDUnsignedField() && "Wrong field type"); 3795 return B.Val; 3796 } 3797 }; 3798 3799 } // end anonymous namespace 3800 3801 namespace llvm { 3802 3803 template <> 3804 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3805 MDUnsignedField &Result) { 3806 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 3807 return TokError("expected unsigned integer"); 3808 3809 auto &U = Lex.getAPSIntVal(); 3810 if (U.ugt(Result.Max)) 3811 return TokError("value for '" + Name + "' too large, limit is " + 3812 Twine(Result.Max)); 3813 Result.assign(U.getZExtValue()); 3814 assert(Result.Val <= Result.Max && "Expected value in range"); 3815 Lex.Lex(); 3816 return false; 3817 } 3818 3819 template <> 3820 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) { 3821 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3822 } 3823 template <> 3824 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 3825 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3826 } 3827 3828 template <> 3829 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 3830 if (Lex.getKind() == lltok::APSInt) 3831 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3832 3833 if (Lex.getKind() != lltok::DwarfTag) 3834 return TokError("expected DWARF tag"); 3835 3836 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 3837 if (Tag == dwarf::DW_TAG_invalid) 3838 return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 3839 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 3840 3841 Result.assign(Tag); 3842 Lex.Lex(); 3843 return false; 3844 } 3845 3846 template <> 3847 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3848 DwarfMacinfoTypeField &Result) { 3849 if (Lex.getKind() == lltok::APSInt) 3850 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3851 3852 if (Lex.getKind() != lltok::DwarfMacinfo) 3853 return TokError("expected DWARF macinfo type"); 3854 3855 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 3856 if (Macinfo == dwarf::DW_MACINFO_invalid) 3857 return TokError( 3858 "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'"); 3859 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 3860 3861 Result.assign(Macinfo); 3862 Lex.Lex(); 3863 return false; 3864 } 3865 3866 template <> 3867 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3868 DwarfVirtualityField &Result) { 3869 if (Lex.getKind() == lltok::APSInt) 3870 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3871 3872 if (Lex.getKind() != lltok::DwarfVirtuality) 3873 return TokError("expected DWARF virtuality code"); 3874 3875 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 3876 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 3877 return TokError("invalid DWARF virtuality code" + Twine(" '") + 3878 Lex.getStrVal() + "'"); 3879 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 3880 Result.assign(Virtuality); 3881 Lex.Lex(); 3882 return false; 3883 } 3884 3885 template <> 3886 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 3887 if (Lex.getKind() == lltok::APSInt) 3888 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3889 3890 if (Lex.getKind() != lltok::DwarfLang) 3891 return TokError("expected DWARF language"); 3892 3893 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 3894 if (!Lang) 3895 return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 3896 "'"); 3897 assert(Lang <= Result.Max && "Expected valid DWARF language"); 3898 Result.assign(Lang); 3899 Lex.Lex(); 3900 return false; 3901 } 3902 3903 template <> 3904 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 3905 if (Lex.getKind() == lltok::APSInt) 3906 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3907 3908 if (Lex.getKind() != lltok::DwarfCC) 3909 return TokError("expected DWARF calling convention"); 3910 3911 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 3912 if (!CC) 3913 return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() + 3914 "'"); 3915 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 3916 Result.assign(CC); 3917 Lex.Lex(); 3918 return false; 3919 } 3920 3921 template <> 3922 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) { 3923 if (Lex.getKind() == lltok::APSInt) 3924 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3925 3926 if (Lex.getKind() != lltok::EmissionKind) 3927 return TokError("expected emission kind"); 3928 3929 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 3930 if (!Kind) 3931 return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 3932 "'"); 3933 assert(*Kind <= Result.Max && "Expected valid emission kind"); 3934 Result.assign(*Kind); 3935 Lex.Lex(); 3936 return false; 3937 } 3938 3939 template <> 3940 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3941 DwarfAttEncodingField &Result) { 3942 if (Lex.getKind() == lltok::APSInt) 3943 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3944 3945 if (Lex.getKind() != lltok::DwarfAttEncoding) 3946 return TokError("expected DWARF type attribute encoding"); 3947 3948 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 3949 if (!Encoding) 3950 return TokError("invalid DWARF type attribute encoding" + Twine(" '") + 3951 Lex.getStrVal() + "'"); 3952 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 3953 Result.assign(Encoding); 3954 Lex.Lex(); 3955 return false; 3956 } 3957 3958 /// DIFlagField 3959 /// ::= uint32 3960 /// ::= DIFlagVector 3961 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 3962 template <> 3963 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 3964 3965 // Parser for a single flag. 3966 auto parseFlag = [&](DINode::DIFlags &Val) { 3967 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 3968 uint32_t TempVal = static_cast<uint32_t>(Val); 3969 bool Res = ParseUInt32(TempVal); 3970 Val = static_cast<DINode::DIFlags>(TempVal); 3971 return Res; 3972 } 3973 3974 if (Lex.getKind() != lltok::DIFlag) 3975 return TokError("expected debug info flag"); 3976 3977 Val = DINode::getFlag(Lex.getStrVal()); 3978 if (!Val) 3979 return TokError(Twine("invalid debug info flag flag '") + 3980 Lex.getStrVal() + "'"); 3981 Lex.Lex(); 3982 return false; 3983 }; 3984 3985 // Parse the flags and combine them together. 3986 DINode::DIFlags Combined = DINode::FlagZero; 3987 do { 3988 DINode::DIFlags Val; 3989 if (parseFlag(Val)) 3990 return true; 3991 Combined |= Val; 3992 } while (EatIfPresent(lltok::bar)); 3993 3994 Result.assign(Combined); 3995 return false; 3996 } 3997 3998 template <> 3999 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4000 MDSignedField &Result) { 4001 if (Lex.getKind() != lltok::APSInt) 4002 return TokError("expected signed integer"); 4003 4004 auto &S = Lex.getAPSIntVal(); 4005 if (S < Result.Min) 4006 return TokError("value for '" + Name + "' too small, limit is " + 4007 Twine(Result.Min)); 4008 if (S > Result.Max) 4009 return TokError("value for '" + Name + "' too large, limit is " + 4010 Twine(Result.Max)); 4011 Result.assign(S.getExtValue()); 4012 assert(Result.Val >= Result.Min && "Expected value in range"); 4013 assert(Result.Val <= Result.Max && "Expected value in range"); 4014 Lex.Lex(); 4015 return false; 4016 } 4017 4018 template <> 4019 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 4020 switch (Lex.getKind()) { 4021 default: 4022 return TokError("expected 'true' or 'false'"); 4023 case lltok::kw_true: 4024 Result.assign(true); 4025 break; 4026 case lltok::kw_false: 4027 Result.assign(false); 4028 break; 4029 } 4030 Lex.Lex(); 4031 return false; 4032 } 4033 4034 template <> 4035 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) { 4036 if (Lex.getKind() == lltok::kw_null) { 4037 if (!Result.AllowNull) 4038 return TokError("'" + Name + "' cannot be null"); 4039 Lex.Lex(); 4040 Result.assign(nullptr); 4041 return false; 4042 } 4043 4044 Metadata *MD; 4045 if (ParseMetadata(MD, nullptr)) 4046 return true; 4047 4048 Result.assign(MD); 4049 return false; 4050 } 4051 4052 template <> 4053 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4054 MDSignedOrMDField &Result) { 4055 // Try to parse a signed int. 4056 if (Lex.getKind() == lltok::APSInt) { 4057 MDSignedField Res = Result.A; 4058 if (!ParseMDField(Loc, Name, Res)) { 4059 Result.assign(Res); 4060 return false; 4061 } 4062 return true; 4063 } 4064 4065 // Otherwise, try to parse as an MDField. 4066 MDField Res = Result.B; 4067 if (!ParseMDField(Loc, Name, Res)) { 4068 Result.assign(Res); 4069 return false; 4070 } 4071 4072 return true; 4073 } 4074 4075 template <> 4076 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4077 MDSignedOrUnsignedField &Result) { 4078 if (Lex.getKind() != lltok::APSInt) 4079 return false; 4080 4081 if (Lex.getAPSIntVal().isSigned()) { 4082 MDSignedField Res = Result.A; 4083 if (ParseMDField(Loc, Name, Res)) 4084 return true; 4085 Result.assign(Res); 4086 return false; 4087 } 4088 4089 MDUnsignedField Res = Result.B; 4090 if (ParseMDField(Loc, Name, Res)) 4091 return true; 4092 Result.assign(Res); 4093 return false; 4094 } 4095 4096 template <> 4097 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 4098 LocTy ValueLoc = Lex.getLoc(); 4099 std::string S; 4100 if (ParseStringConstant(S)) 4101 return true; 4102 4103 if (!Result.AllowEmpty && S.empty()) 4104 return Error(ValueLoc, "'" + Name + "' cannot be empty"); 4105 4106 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 4107 return false; 4108 } 4109 4110 template <> 4111 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 4112 SmallVector<Metadata *, 4> MDs; 4113 if (ParseMDNodeVector(MDs)) 4114 return true; 4115 4116 Result.assign(std::move(MDs)); 4117 return false; 4118 } 4119 4120 template <> 4121 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4122 ChecksumKindField &Result) { 4123 Optional<DIFile::ChecksumKind> CSKind = 4124 DIFile::getChecksumKind(Lex.getStrVal()); 4125 4126 if (Lex.getKind() != lltok::ChecksumKind || !CSKind) 4127 return TokError( 4128 "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'"); 4129 4130 Result.assign(*CSKind); 4131 Lex.Lex(); 4132 return false; 4133 } 4134 4135 } // end namespace llvm 4136 4137 template <class ParserTy> 4138 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) { 4139 do { 4140 if (Lex.getKind() != lltok::LabelStr) 4141 return TokError("expected field label here"); 4142 4143 if (parseField()) 4144 return true; 4145 } while (EatIfPresent(lltok::comma)); 4146 4147 return false; 4148 } 4149 4150 template <class ParserTy> 4151 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) { 4152 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4153 Lex.Lex(); 4154 4155 if (ParseToken(lltok::lparen, "expected '(' here")) 4156 return true; 4157 if (Lex.getKind() != lltok::rparen) 4158 if (ParseMDFieldsImplBody(parseField)) 4159 return true; 4160 4161 ClosingLoc = Lex.getLoc(); 4162 return ParseToken(lltok::rparen, "expected ')' here"); 4163 } 4164 4165 template <class FieldTy> 4166 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) { 4167 if (Result.Seen) 4168 return TokError("field '" + Name + "' cannot be specified more than once"); 4169 4170 LocTy Loc = Lex.getLoc(); 4171 Lex.Lex(); 4172 return ParseMDField(Loc, Name, Result); 4173 } 4174 4175 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 4176 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4177 4178 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 4179 if (Lex.getStrVal() == #CLASS) \ 4180 return Parse##CLASS(N, IsDistinct); 4181 #include "llvm/IR/Metadata.def" 4182 4183 return TokError("expected metadata type"); 4184 } 4185 4186 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 4187 #define NOP_FIELD(NAME, TYPE, INIT) 4188 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 4189 if (!NAME.Seen) \ 4190 return Error(ClosingLoc, "missing required field '" #NAME "'"); 4191 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 4192 if (Lex.getStrVal() == #NAME) \ 4193 return ParseMDField(#NAME, NAME); 4194 #define PARSE_MD_FIELDS() \ 4195 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 4196 do { \ 4197 LocTy ClosingLoc; \ 4198 if (ParseMDFieldsImpl([&]() -> bool { \ 4199 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 4200 return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \ 4201 }, ClosingLoc)) \ 4202 return true; \ 4203 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 4204 } while (false) 4205 #define GET_OR_DISTINCT(CLASS, ARGS) \ 4206 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 4207 4208 /// ParseDILocationFields: 4209 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6) 4210 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) { 4211 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4212 OPTIONAL(line, LineField, ); \ 4213 OPTIONAL(column, ColumnField, ); \ 4214 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4215 OPTIONAL(inlinedAt, MDField, ); 4216 PARSE_MD_FIELDS(); 4217 #undef VISIT_MD_FIELDS 4218 4219 Result = GET_OR_DISTINCT( 4220 DILocation, (Context, line.Val, column.Val, scope.Val, inlinedAt.Val)); 4221 return false; 4222 } 4223 4224 /// ParseGenericDINode: 4225 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 4226 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) { 4227 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4228 REQUIRED(tag, DwarfTagField, ); \ 4229 OPTIONAL(header, MDStringField, ); \ 4230 OPTIONAL(operands, MDFieldList, ); 4231 PARSE_MD_FIELDS(); 4232 #undef VISIT_MD_FIELDS 4233 4234 Result = GET_OR_DISTINCT(GenericDINode, 4235 (Context, tag.Val, header.Val, operands.Val)); 4236 return false; 4237 } 4238 4239 /// ParseDISubrange: 4240 /// ::= !DISubrange(count: 30, lowerBound: 2) 4241 /// ::= !DISubrange(count: !node, lowerBound: 2) 4242 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) { 4243 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4244 REQUIRED(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \ 4245 OPTIONAL(lowerBound, MDSignedField, ); 4246 PARSE_MD_FIELDS(); 4247 #undef VISIT_MD_FIELDS 4248 4249 if (count.isMDSignedField()) 4250 Result = GET_OR_DISTINCT( 4251 DISubrange, (Context, count.getMDSignedValue(), lowerBound.Val)); 4252 else if (count.isMDField()) 4253 Result = GET_OR_DISTINCT( 4254 DISubrange, (Context, count.getMDFieldValue(), lowerBound.Val)); 4255 else 4256 return true; 4257 4258 return false; 4259 } 4260 4261 /// ParseDIEnumerator: 4262 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind") 4263 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) { 4264 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4265 REQUIRED(name, MDStringField, ); \ 4266 REQUIRED(value, MDSignedOrUnsignedField, ); \ 4267 OPTIONAL(isUnsigned, MDBoolField, (false)); 4268 PARSE_MD_FIELDS(); 4269 #undef VISIT_MD_FIELDS 4270 4271 if (isUnsigned.Val && value.isMDSignedField()) 4272 return TokError("unsigned enumerator with negative value"); 4273 4274 int64_t Value = value.isMDSignedField() 4275 ? value.getMDSignedValue() 4276 : static_cast<int64_t>(value.getMDUnsignedValue()); 4277 Result = 4278 GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val)); 4279 4280 return false; 4281 } 4282 4283 /// ParseDIBasicType: 4284 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32, 4285 /// encoding: DW_ATE_encoding, flags: 0) 4286 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) { 4287 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4288 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 4289 OPTIONAL(name, MDStringField, ); \ 4290 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4291 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4292 OPTIONAL(encoding, DwarfAttEncodingField, ); \ 4293 OPTIONAL(flags, DIFlagField, ); 4294 PARSE_MD_FIELDS(); 4295 #undef VISIT_MD_FIELDS 4296 4297 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 4298 align.Val, encoding.Val, flags.Val)); 4299 return false; 4300 } 4301 4302 /// ParseDIDerivedType: 4303 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 4304 /// line: 7, scope: !1, baseType: !2, size: 32, 4305 /// align: 32, offset: 0, flags: 0, extraData: !3, 4306 /// dwarfAddressSpace: 3) 4307 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) { 4308 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4309 REQUIRED(tag, DwarfTagField, ); \ 4310 OPTIONAL(name, MDStringField, ); \ 4311 OPTIONAL(file, MDField, ); \ 4312 OPTIONAL(line, LineField, ); \ 4313 OPTIONAL(scope, MDField, ); \ 4314 REQUIRED(baseType, MDField, ); \ 4315 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4316 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4317 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4318 OPTIONAL(flags, DIFlagField, ); \ 4319 OPTIONAL(extraData, MDField, ); \ 4320 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); 4321 PARSE_MD_FIELDS(); 4322 #undef VISIT_MD_FIELDS 4323 4324 Optional<unsigned> DWARFAddressSpace; 4325 if (dwarfAddressSpace.Val != UINT32_MAX) 4326 DWARFAddressSpace = dwarfAddressSpace.Val; 4327 4328 Result = GET_OR_DISTINCT(DIDerivedType, 4329 (Context, tag.Val, name.Val, file.Val, line.Val, 4330 scope.Val, baseType.Val, size.Val, align.Val, 4331 offset.Val, DWARFAddressSpace, flags.Val, 4332 extraData.Val)); 4333 return false; 4334 } 4335 4336 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) { 4337 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4338 REQUIRED(tag, DwarfTagField, ); \ 4339 OPTIONAL(name, MDStringField, ); \ 4340 OPTIONAL(file, MDField, ); \ 4341 OPTIONAL(line, LineField, ); \ 4342 OPTIONAL(scope, MDField, ); \ 4343 OPTIONAL(baseType, MDField, ); \ 4344 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4345 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4346 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4347 OPTIONAL(flags, DIFlagField, ); \ 4348 OPTIONAL(elements, MDField, ); \ 4349 OPTIONAL(runtimeLang, DwarfLangField, ); \ 4350 OPTIONAL(vtableHolder, MDField, ); \ 4351 OPTIONAL(templateParams, MDField, ); \ 4352 OPTIONAL(identifier, MDStringField, ); \ 4353 OPTIONAL(discriminator, MDField, ); 4354 PARSE_MD_FIELDS(); 4355 #undef VISIT_MD_FIELDS 4356 4357 // If this has an identifier try to build an ODR type. 4358 if (identifier.Val) 4359 if (auto *CT = DICompositeType::buildODRType( 4360 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 4361 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 4362 elements.Val, runtimeLang.Val, vtableHolder.Val, 4363 templateParams.Val, discriminator.Val)) { 4364 Result = CT; 4365 return false; 4366 } 4367 4368 // Create a new node, and save it in the context if it belongs in the type 4369 // map. 4370 Result = GET_OR_DISTINCT( 4371 DICompositeType, 4372 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 4373 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 4374 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val, 4375 discriminator.Val)); 4376 return false; 4377 } 4378 4379 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) { 4380 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4381 OPTIONAL(flags, DIFlagField, ); \ 4382 OPTIONAL(cc, DwarfCCField, ); \ 4383 REQUIRED(types, MDField, ); 4384 PARSE_MD_FIELDS(); 4385 #undef VISIT_MD_FIELDS 4386 4387 Result = GET_OR_DISTINCT(DISubroutineType, 4388 (Context, flags.Val, cc.Val, types.Val)); 4389 return false; 4390 } 4391 4392 /// ParseDIFileType: 4393 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir", 4394 /// checksumkind: CSK_MD5, 4395 /// checksum: "000102030405060708090a0b0c0d0e0f", 4396 /// source: "source file contents") 4397 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) { 4398 // The default constructed value for checksumkind is required, but will never 4399 // be used, as the parser checks if the field was actually Seen before using 4400 // the Val. 4401 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4402 REQUIRED(filename, MDStringField, ); \ 4403 REQUIRED(directory, MDStringField, ); \ 4404 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \ 4405 OPTIONAL(checksum, MDStringField, ); \ 4406 OPTIONAL(source, MDStringField, ); 4407 PARSE_MD_FIELDS(); 4408 #undef VISIT_MD_FIELDS 4409 4410 Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum; 4411 if (checksumkind.Seen && checksum.Seen) 4412 OptChecksum.emplace(checksumkind.Val, checksum.Val); 4413 else if (checksumkind.Seen || checksum.Seen) 4414 return Lex.Error("'checksumkind' and 'checksum' must be provided together"); 4415 4416 Optional<MDString *> OptSource; 4417 if (source.Seen) 4418 OptSource = source.Val; 4419 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val, 4420 OptChecksum, OptSource)); 4421 return false; 4422 } 4423 4424 /// ParseDICompileUnit: 4425 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 4426 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 4427 /// splitDebugFilename: "abc.debug", 4428 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 4429 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd) 4430 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) { 4431 if (!IsDistinct) 4432 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 4433 4434 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4435 REQUIRED(language, DwarfLangField, ); \ 4436 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 4437 OPTIONAL(producer, MDStringField, ); \ 4438 OPTIONAL(isOptimized, MDBoolField, ); \ 4439 OPTIONAL(flags, MDStringField, ); \ 4440 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 4441 OPTIONAL(splitDebugFilename, MDStringField, ); \ 4442 OPTIONAL(emissionKind, EmissionKindField, ); \ 4443 OPTIONAL(enums, MDField, ); \ 4444 OPTIONAL(retainedTypes, MDField, ); \ 4445 OPTIONAL(globals, MDField, ); \ 4446 OPTIONAL(imports, MDField, ); \ 4447 OPTIONAL(macros, MDField, ); \ 4448 OPTIONAL(dwoId, MDUnsignedField, ); \ 4449 OPTIONAL(splitDebugInlining, MDBoolField, = true); \ 4450 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \ 4451 OPTIONAL(gnuPubnames, MDBoolField, = false); 4452 PARSE_MD_FIELDS(); 4453 #undef VISIT_MD_FIELDS 4454 4455 Result = DICompileUnit::getDistinct( 4456 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 4457 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 4458 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 4459 splitDebugInlining.Val, debugInfoForProfiling.Val, gnuPubnames.Val); 4460 return false; 4461 } 4462 4463 /// ParseDISubprogram: 4464 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 4465 /// file: !1, line: 7, type: !2, isLocal: false, 4466 /// isDefinition: true, scopeLine: 8, containingType: !3, 4467 /// virtuality: DW_VIRTUALTIY_pure_virtual, 4468 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 4469 /// isOptimized: false, templateParams: !4, declaration: !5, 4470 /// retainedNodes: !6, thrownTypes: !7) 4471 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) { 4472 auto Loc = Lex.getLoc(); 4473 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4474 OPTIONAL(scope, MDField, ); \ 4475 OPTIONAL(name, MDStringField, ); \ 4476 OPTIONAL(linkageName, MDStringField, ); \ 4477 OPTIONAL(file, MDField, ); \ 4478 OPTIONAL(line, LineField, ); \ 4479 OPTIONAL(type, MDField, ); \ 4480 OPTIONAL(isLocal, MDBoolField, ); \ 4481 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4482 OPTIONAL(scopeLine, LineField, ); \ 4483 OPTIONAL(containingType, MDField, ); \ 4484 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 4485 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 4486 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 4487 OPTIONAL(flags, DIFlagField, ); \ 4488 OPTIONAL(isOptimized, MDBoolField, ); \ 4489 OPTIONAL(unit, MDField, ); \ 4490 OPTIONAL(templateParams, MDField, ); \ 4491 OPTIONAL(declaration, MDField, ); \ 4492 OPTIONAL(retainedNodes, MDField, ); \ 4493 OPTIONAL(thrownTypes, MDField, ); 4494 PARSE_MD_FIELDS(); 4495 #undef VISIT_MD_FIELDS 4496 4497 if (isDefinition.Val && !IsDistinct) 4498 return Lex.Error( 4499 Loc, 4500 "missing 'distinct', required for !DISubprogram when 'isDefinition'"); 4501 4502 Result = GET_OR_DISTINCT( 4503 DISubprogram, 4504 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 4505 type.Val, isLocal.Val, isDefinition.Val, scopeLine.Val, 4506 containingType.Val, virtuality.Val, virtualIndex.Val, thisAdjustment.Val, 4507 flags.Val, isOptimized.Val, unit.Val, templateParams.Val, 4508 declaration.Val, retainedNodes.Val, thrownTypes.Val)); 4509 return false; 4510 } 4511 4512 /// ParseDILexicalBlock: 4513 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 4514 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 4515 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4516 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4517 OPTIONAL(file, MDField, ); \ 4518 OPTIONAL(line, LineField, ); \ 4519 OPTIONAL(column, ColumnField, ); 4520 PARSE_MD_FIELDS(); 4521 #undef VISIT_MD_FIELDS 4522 4523 Result = GET_OR_DISTINCT( 4524 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 4525 return false; 4526 } 4527 4528 /// ParseDILexicalBlockFile: 4529 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 4530 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 4531 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4532 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4533 OPTIONAL(file, MDField, ); \ 4534 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 4535 PARSE_MD_FIELDS(); 4536 #undef VISIT_MD_FIELDS 4537 4538 Result = GET_OR_DISTINCT(DILexicalBlockFile, 4539 (Context, scope.Val, file.Val, discriminator.Val)); 4540 return false; 4541 } 4542 4543 /// ParseDINamespace: 4544 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 4545 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) { 4546 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4547 REQUIRED(scope, MDField, ); \ 4548 OPTIONAL(name, MDStringField, ); \ 4549 OPTIONAL(exportSymbols, MDBoolField, ); 4550 PARSE_MD_FIELDS(); 4551 #undef VISIT_MD_FIELDS 4552 4553 Result = GET_OR_DISTINCT(DINamespace, 4554 (Context, scope.Val, name.Val, exportSymbols.Val)); 4555 return false; 4556 } 4557 4558 /// ParseDIMacro: 4559 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue") 4560 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) { 4561 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4562 REQUIRED(type, DwarfMacinfoTypeField, ); \ 4563 OPTIONAL(line, LineField, ); \ 4564 REQUIRED(name, MDStringField, ); \ 4565 OPTIONAL(value, MDStringField, ); 4566 PARSE_MD_FIELDS(); 4567 #undef VISIT_MD_FIELDS 4568 4569 Result = GET_OR_DISTINCT(DIMacro, 4570 (Context, type.Val, line.Val, name.Val, value.Val)); 4571 return false; 4572 } 4573 4574 /// ParseDIMacroFile: 4575 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 4576 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) { 4577 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4578 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 4579 OPTIONAL(line, LineField, ); \ 4580 REQUIRED(file, MDField, ); \ 4581 OPTIONAL(nodes, MDField, ); 4582 PARSE_MD_FIELDS(); 4583 #undef VISIT_MD_FIELDS 4584 4585 Result = GET_OR_DISTINCT(DIMacroFile, 4586 (Context, type.Val, line.Val, file.Val, nodes.Val)); 4587 return false; 4588 } 4589 4590 /// ParseDIModule: 4591 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG", 4592 /// includePath: "/usr/include", isysroot: "/") 4593 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) { 4594 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4595 REQUIRED(scope, MDField, ); \ 4596 REQUIRED(name, MDStringField, ); \ 4597 OPTIONAL(configMacros, MDStringField, ); \ 4598 OPTIONAL(includePath, MDStringField, ); \ 4599 OPTIONAL(isysroot, MDStringField, ); 4600 PARSE_MD_FIELDS(); 4601 #undef VISIT_MD_FIELDS 4602 4603 Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val, 4604 configMacros.Val, includePath.Val, isysroot.Val)); 4605 return false; 4606 } 4607 4608 /// ParseDITemplateTypeParameter: 4609 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1) 4610 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 4611 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4612 OPTIONAL(name, MDStringField, ); \ 4613 REQUIRED(type, MDField, ); 4614 PARSE_MD_FIELDS(); 4615 #undef VISIT_MD_FIELDS 4616 4617 Result = 4618 GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val)); 4619 return false; 4620 } 4621 4622 /// ParseDITemplateValueParameter: 4623 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 4624 /// name: "V", type: !1, value: i32 7) 4625 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 4626 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4627 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 4628 OPTIONAL(name, MDStringField, ); \ 4629 OPTIONAL(type, MDField, ); \ 4630 REQUIRED(value, MDField, ); 4631 PARSE_MD_FIELDS(); 4632 #undef VISIT_MD_FIELDS 4633 4634 Result = GET_OR_DISTINCT(DITemplateValueParameter, 4635 (Context, tag.Val, name.Val, type.Val, value.Val)); 4636 return false; 4637 } 4638 4639 /// ParseDIGlobalVariable: 4640 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 4641 /// file: !1, line: 7, type: !2, isLocal: false, 4642 /// isDefinition: true, declaration: !3, align: 8) 4643 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 4644 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4645 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 4646 OPTIONAL(scope, MDField, ); \ 4647 OPTIONAL(linkageName, MDStringField, ); \ 4648 OPTIONAL(file, MDField, ); \ 4649 OPTIONAL(line, LineField, ); \ 4650 OPTIONAL(type, MDField, ); \ 4651 OPTIONAL(isLocal, MDBoolField, ); \ 4652 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4653 OPTIONAL(declaration, MDField, ); \ 4654 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4655 PARSE_MD_FIELDS(); 4656 #undef VISIT_MD_FIELDS 4657 4658 Result = GET_OR_DISTINCT(DIGlobalVariable, 4659 (Context, scope.Val, name.Val, linkageName.Val, 4660 file.Val, line.Val, type.Val, isLocal.Val, 4661 isDefinition.Val, declaration.Val, align.Val)); 4662 return false; 4663 } 4664 4665 /// ParseDILocalVariable: 4666 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 4667 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4668 /// align: 8) 4669 /// ::= !DILocalVariable(scope: !0, name: "foo", 4670 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4671 /// align: 8) 4672 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) { 4673 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4674 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4675 OPTIONAL(name, MDStringField, ); \ 4676 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 4677 OPTIONAL(file, MDField, ); \ 4678 OPTIONAL(line, LineField, ); \ 4679 OPTIONAL(type, MDField, ); \ 4680 OPTIONAL(flags, DIFlagField, ); \ 4681 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4682 PARSE_MD_FIELDS(); 4683 #undef VISIT_MD_FIELDS 4684 4685 Result = GET_OR_DISTINCT(DILocalVariable, 4686 (Context, scope.Val, name.Val, file.Val, line.Val, 4687 type.Val, arg.Val, flags.Val, align.Val)); 4688 return false; 4689 } 4690 4691 /// ParseDILabel: 4692 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7) 4693 bool LLParser::ParseDILabel(MDNode *&Result, bool IsDistinct) { 4694 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4695 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4696 REQUIRED(name, MDStringField, ); \ 4697 REQUIRED(file, MDField, ); \ 4698 REQUIRED(line, LineField, ); 4699 PARSE_MD_FIELDS(); 4700 #undef VISIT_MD_FIELDS 4701 4702 Result = GET_OR_DISTINCT(DILabel, 4703 (Context, scope.Val, name.Val, file.Val, line.Val)); 4704 return false; 4705 } 4706 4707 /// ParseDIExpression: 4708 /// ::= !DIExpression(0, 7, -1) 4709 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) { 4710 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4711 Lex.Lex(); 4712 4713 if (ParseToken(lltok::lparen, "expected '(' here")) 4714 return true; 4715 4716 SmallVector<uint64_t, 8> Elements; 4717 if (Lex.getKind() != lltok::rparen) 4718 do { 4719 if (Lex.getKind() == lltok::DwarfOp) { 4720 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 4721 Lex.Lex(); 4722 Elements.push_back(Op); 4723 continue; 4724 } 4725 return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 4726 } 4727 4728 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4729 return TokError("expected unsigned integer"); 4730 4731 auto &U = Lex.getAPSIntVal(); 4732 if (U.ugt(UINT64_MAX)) 4733 return TokError("element too large, limit is " + Twine(UINT64_MAX)); 4734 Elements.push_back(U.getZExtValue()); 4735 Lex.Lex(); 4736 } while (EatIfPresent(lltok::comma)); 4737 4738 if (ParseToken(lltok::rparen, "expected ')' here")) 4739 return true; 4740 4741 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 4742 return false; 4743 } 4744 4745 /// ParseDIGlobalVariableExpression: 4746 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1) 4747 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result, 4748 bool IsDistinct) { 4749 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4750 REQUIRED(var, MDField, ); \ 4751 REQUIRED(expr, MDField, ); 4752 PARSE_MD_FIELDS(); 4753 #undef VISIT_MD_FIELDS 4754 4755 Result = 4756 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val)); 4757 return false; 4758 } 4759 4760 /// ParseDIObjCProperty: 4761 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 4762 /// getter: "getFoo", attributes: 7, type: !2) 4763 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 4764 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4765 OPTIONAL(name, MDStringField, ); \ 4766 OPTIONAL(file, MDField, ); \ 4767 OPTIONAL(line, LineField, ); \ 4768 OPTIONAL(setter, MDStringField, ); \ 4769 OPTIONAL(getter, MDStringField, ); \ 4770 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 4771 OPTIONAL(type, MDField, ); 4772 PARSE_MD_FIELDS(); 4773 #undef VISIT_MD_FIELDS 4774 4775 Result = GET_OR_DISTINCT(DIObjCProperty, 4776 (Context, name.Val, file.Val, line.Val, setter.Val, 4777 getter.Val, attributes.Val, type.Val)); 4778 return false; 4779 } 4780 4781 /// ParseDIImportedEntity: 4782 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 4783 /// line: 7, name: "foo") 4784 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 4785 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4786 REQUIRED(tag, DwarfTagField, ); \ 4787 REQUIRED(scope, MDField, ); \ 4788 OPTIONAL(entity, MDField, ); \ 4789 OPTIONAL(file, MDField, ); \ 4790 OPTIONAL(line, LineField, ); \ 4791 OPTIONAL(name, MDStringField, ); 4792 PARSE_MD_FIELDS(); 4793 #undef VISIT_MD_FIELDS 4794 4795 Result = GET_OR_DISTINCT( 4796 DIImportedEntity, 4797 (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val)); 4798 return false; 4799 } 4800 4801 #undef PARSE_MD_FIELD 4802 #undef NOP_FIELD 4803 #undef REQUIRE_FIELD 4804 #undef DECLARE_FIELD 4805 4806 /// ParseMetadataAsValue 4807 /// ::= metadata i32 %local 4808 /// ::= metadata i32 @global 4809 /// ::= metadata i32 7 4810 /// ::= metadata !0 4811 /// ::= metadata !{...} 4812 /// ::= metadata !"string" 4813 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 4814 // Note: the type 'metadata' has already been parsed. 4815 Metadata *MD; 4816 if (ParseMetadata(MD, &PFS)) 4817 return true; 4818 4819 V = MetadataAsValue::get(Context, MD); 4820 return false; 4821 } 4822 4823 /// ParseValueAsMetadata 4824 /// ::= i32 %local 4825 /// ::= i32 @global 4826 /// ::= i32 7 4827 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 4828 PerFunctionState *PFS) { 4829 Type *Ty; 4830 LocTy Loc; 4831 if (ParseType(Ty, TypeMsg, Loc)) 4832 return true; 4833 if (Ty->isMetadataTy()) 4834 return Error(Loc, "invalid metadata-value-metadata roundtrip"); 4835 4836 Value *V; 4837 if (ParseValue(Ty, V, PFS)) 4838 return true; 4839 4840 MD = ValueAsMetadata::get(V); 4841 return false; 4842 } 4843 4844 /// ParseMetadata 4845 /// ::= i32 %local 4846 /// ::= i32 @global 4847 /// ::= i32 7 4848 /// ::= !42 4849 /// ::= !{...} 4850 /// ::= !"string" 4851 /// ::= !DILocation(...) 4852 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) { 4853 if (Lex.getKind() == lltok::MetadataVar) { 4854 MDNode *N; 4855 if (ParseSpecializedMDNode(N)) 4856 return true; 4857 MD = N; 4858 return false; 4859 } 4860 4861 // ValueAsMetadata: 4862 // <type> <value> 4863 if (Lex.getKind() != lltok::exclaim) 4864 return ParseValueAsMetadata(MD, "expected metadata operand", PFS); 4865 4866 // '!'. 4867 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 4868 Lex.Lex(); 4869 4870 // MDString: 4871 // ::= '!' STRINGCONSTANT 4872 if (Lex.getKind() == lltok::StringConstant) { 4873 MDString *S; 4874 if (ParseMDString(S)) 4875 return true; 4876 MD = S; 4877 return false; 4878 } 4879 4880 // MDNode: 4881 // !{ ... } 4882 // !7 4883 MDNode *N; 4884 if (ParseMDNodeTail(N)) 4885 return true; 4886 MD = N; 4887 return false; 4888 } 4889 4890 //===----------------------------------------------------------------------===// 4891 // Function Parsing. 4892 //===----------------------------------------------------------------------===// 4893 4894 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, 4895 PerFunctionState *PFS, bool IsCall) { 4896 if (Ty->isFunctionTy()) 4897 return Error(ID.Loc, "functions are not values, refer to them as pointers"); 4898 4899 switch (ID.Kind) { 4900 case ValID::t_LocalID: 4901 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 4902 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall); 4903 return V == nullptr; 4904 case ValID::t_LocalName: 4905 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 4906 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall); 4907 return V == nullptr; 4908 case ValID::t_InlineAsm: { 4909 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 4910 return Error(ID.Loc, "invalid type for inline asm constraint string"); 4911 V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, 4912 (ID.UIntVal >> 1) & 1, 4913 (InlineAsm::AsmDialect(ID.UIntVal >> 2))); 4914 return false; 4915 } 4916 case ValID::t_GlobalName: 4917 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc); 4918 return V == nullptr; 4919 case ValID::t_GlobalID: 4920 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc); 4921 return V == nullptr; 4922 case ValID::t_APSInt: 4923 if (!Ty->isIntegerTy()) 4924 return Error(ID.Loc, "integer constant must have integer type"); 4925 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 4926 V = ConstantInt::get(Context, ID.APSIntVal); 4927 return false; 4928 case ValID::t_APFloat: 4929 if (!Ty->isFloatingPointTy() || 4930 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 4931 return Error(ID.Loc, "floating point constant invalid for type"); 4932 4933 // The lexer has no type info, so builds all half, float, and double FP 4934 // constants as double. Fix this here. Long double does not need this. 4935 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) { 4936 bool Ignored; 4937 if (Ty->isHalfTy()) 4938 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, 4939 &Ignored); 4940 else if (Ty->isFloatTy()) 4941 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 4942 &Ignored); 4943 } 4944 V = ConstantFP::get(Context, ID.APFloatVal); 4945 4946 if (V->getType() != Ty) 4947 return Error(ID.Loc, "floating point constant does not have type '" + 4948 getTypeString(Ty) + "'"); 4949 4950 return false; 4951 case ValID::t_Null: 4952 if (!Ty->isPointerTy()) 4953 return Error(ID.Loc, "null must be a pointer type"); 4954 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 4955 return false; 4956 case ValID::t_Undef: 4957 // FIXME: LabelTy should not be a first-class type. 4958 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 4959 return Error(ID.Loc, "invalid type for undef constant"); 4960 V = UndefValue::get(Ty); 4961 return false; 4962 case ValID::t_EmptyArray: 4963 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 4964 return Error(ID.Loc, "invalid empty array initializer"); 4965 V = UndefValue::get(Ty); 4966 return false; 4967 case ValID::t_Zero: 4968 // FIXME: LabelTy should not be a first-class type. 4969 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 4970 return Error(ID.Loc, "invalid type for null constant"); 4971 V = Constant::getNullValue(Ty); 4972 return false; 4973 case ValID::t_None: 4974 if (!Ty->isTokenTy()) 4975 return Error(ID.Loc, "invalid type for none constant"); 4976 V = Constant::getNullValue(Ty); 4977 return false; 4978 case ValID::t_Constant: 4979 if (ID.ConstantVal->getType() != Ty) 4980 return Error(ID.Loc, "constant expression type mismatch"); 4981 4982 V = ID.ConstantVal; 4983 return false; 4984 case ValID::t_ConstantStruct: 4985 case ValID::t_PackedConstantStruct: 4986 if (StructType *ST = dyn_cast<StructType>(Ty)) { 4987 if (ST->getNumElements() != ID.UIntVal) 4988 return Error(ID.Loc, 4989 "initializer with struct type has wrong # elements"); 4990 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 4991 return Error(ID.Loc, "packed'ness of initializer and type don't match"); 4992 4993 // Verify that the elements are compatible with the structtype. 4994 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 4995 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 4996 return Error(ID.Loc, "element " + Twine(i) + 4997 " of struct initializer doesn't match struct element type"); 4998 4999 V = ConstantStruct::get( 5000 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 5001 } else 5002 return Error(ID.Loc, "constant expression type mismatch"); 5003 return false; 5004 } 5005 llvm_unreachable("Invalid ValID"); 5006 } 5007 5008 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 5009 C = nullptr; 5010 ValID ID; 5011 auto Loc = Lex.getLoc(); 5012 if (ParseValID(ID, /*PFS=*/nullptr)) 5013 return true; 5014 switch (ID.Kind) { 5015 case ValID::t_APSInt: 5016 case ValID::t_APFloat: 5017 case ValID::t_Undef: 5018 case ValID::t_Constant: 5019 case ValID::t_ConstantStruct: 5020 case ValID::t_PackedConstantStruct: { 5021 Value *V; 5022 if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false)) 5023 return true; 5024 assert(isa<Constant>(V) && "Expected a constant value"); 5025 C = cast<Constant>(V); 5026 return false; 5027 } 5028 case ValID::t_Null: 5029 C = Constant::getNullValue(Ty); 5030 return false; 5031 default: 5032 return Error(Loc, "expected a constant value"); 5033 } 5034 } 5035 5036 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 5037 V = nullptr; 5038 ValID ID; 5039 return ParseValID(ID, PFS) || 5040 ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false); 5041 } 5042 5043 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) { 5044 Type *Ty = nullptr; 5045 return ParseType(Ty) || 5046 ParseValue(Ty, V, PFS); 5047 } 5048 5049 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 5050 PerFunctionState &PFS) { 5051 Value *V; 5052 Loc = Lex.getLoc(); 5053 if (ParseTypeAndValue(V, PFS)) return true; 5054 if (!isa<BasicBlock>(V)) 5055 return Error(Loc, "expected a basic block"); 5056 BB = cast<BasicBlock>(V); 5057 return false; 5058 } 5059 5060 /// FunctionHeader 5061 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 5062 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName 5063 /// '(' ArgList ')' OptFuncAttrs OptSection OptionalAlign OptGC 5064 /// OptionalPrefix OptionalPrologue OptPersonalityFn 5065 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { 5066 // Parse the linkage. 5067 LocTy LinkageLoc = Lex.getLoc(); 5068 unsigned Linkage; 5069 unsigned Visibility; 5070 unsigned DLLStorageClass; 5071 bool DSOLocal; 5072 AttrBuilder RetAttrs; 5073 unsigned CC; 5074 bool HasLinkage; 5075 Type *RetType = nullptr; 5076 LocTy RetTypeLoc = Lex.getLoc(); 5077 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 5078 DSOLocal) || 5079 ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5080 ParseType(RetType, RetTypeLoc, true /*void allowed*/)) 5081 return true; 5082 5083 // Verify that the linkage is ok. 5084 switch ((GlobalValue::LinkageTypes)Linkage) { 5085 case GlobalValue::ExternalLinkage: 5086 break; // always ok. 5087 case GlobalValue::ExternalWeakLinkage: 5088 if (isDefine) 5089 return Error(LinkageLoc, "invalid linkage for function definition"); 5090 break; 5091 case GlobalValue::PrivateLinkage: 5092 case GlobalValue::InternalLinkage: 5093 case GlobalValue::AvailableExternallyLinkage: 5094 case GlobalValue::LinkOnceAnyLinkage: 5095 case GlobalValue::LinkOnceODRLinkage: 5096 case GlobalValue::WeakAnyLinkage: 5097 case GlobalValue::WeakODRLinkage: 5098 if (!isDefine) 5099 return Error(LinkageLoc, "invalid linkage for function declaration"); 5100 break; 5101 case GlobalValue::AppendingLinkage: 5102 case GlobalValue::CommonLinkage: 5103 return Error(LinkageLoc, "invalid function linkage type"); 5104 } 5105 5106 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 5107 return Error(LinkageLoc, 5108 "symbol with local linkage must have default visibility"); 5109 5110 if (!FunctionType::isValidReturnType(RetType)) 5111 return Error(RetTypeLoc, "invalid function return type"); 5112 5113 LocTy NameLoc = Lex.getLoc(); 5114 5115 std::string FunctionName; 5116 if (Lex.getKind() == lltok::GlobalVar) { 5117 FunctionName = Lex.getStrVal(); 5118 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 5119 unsigned NameID = Lex.getUIntVal(); 5120 5121 if (NameID != NumberedVals.size()) 5122 return TokError("function expected to be numbered '%" + 5123 Twine(NumberedVals.size()) + "'"); 5124 } else { 5125 return TokError("expected function name"); 5126 } 5127 5128 Lex.Lex(); 5129 5130 if (Lex.getKind() != lltok::lparen) 5131 return TokError("expected '(' in function argument list"); 5132 5133 SmallVector<ArgInfo, 8> ArgList; 5134 bool isVarArg; 5135 AttrBuilder FuncAttrs; 5136 std::vector<unsigned> FwdRefAttrGrps; 5137 LocTy BuiltinLoc; 5138 std::string Section; 5139 unsigned Alignment; 5140 std::string GC; 5141 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 5142 Constant *Prefix = nullptr; 5143 Constant *Prologue = nullptr; 5144 Constant *PersonalityFn = nullptr; 5145 Comdat *C; 5146 5147 if (ParseArgumentList(ArgList, isVarArg) || 5148 ParseOptionalUnnamedAddr(UnnamedAddr) || 5149 ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 5150 BuiltinLoc) || 5151 (EatIfPresent(lltok::kw_section) && 5152 ParseStringConstant(Section)) || 5153 parseOptionalComdat(FunctionName, C) || 5154 ParseOptionalAlignment(Alignment) || 5155 (EatIfPresent(lltok::kw_gc) && 5156 ParseStringConstant(GC)) || 5157 (EatIfPresent(lltok::kw_prefix) && 5158 ParseGlobalTypeAndValue(Prefix)) || 5159 (EatIfPresent(lltok::kw_prologue) && 5160 ParseGlobalTypeAndValue(Prologue)) || 5161 (EatIfPresent(lltok::kw_personality) && 5162 ParseGlobalTypeAndValue(PersonalityFn))) 5163 return true; 5164 5165 if (FuncAttrs.contains(Attribute::Builtin)) 5166 return Error(BuiltinLoc, "'builtin' attribute not valid on function"); 5167 5168 // If the alignment was parsed as an attribute, move to the alignment field. 5169 if (FuncAttrs.hasAlignmentAttr()) { 5170 Alignment = FuncAttrs.getAlignment(); 5171 FuncAttrs.removeAttribute(Attribute::Alignment); 5172 } 5173 5174 // Okay, if we got here, the function is syntactically valid. Convert types 5175 // and do semantic checks. 5176 std::vector<Type*> ParamTypeList; 5177 SmallVector<AttributeSet, 8> Attrs; 5178 5179 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5180 ParamTypeList.push_back(ArgList[i].Ty); 5181 Attrs.push_back(ArgList[i].Attrs); 5182 } 5183 5184 AttributeList PAL = 5185 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs), 5186 AttributeSet::get(Context, RetAttrs), Attrs); 5187 5188 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy()) 5189 return Error(RetTypeLoc, "functions with 'sret' argument must return void"); 5190 5191 FunctionType *FT = 5192 FunctionType::get(RetType, ParamTypeList, isVarArg); 5193 PointerType *PFT = PointerType::getUnqual(FT); 5194 5195 Fn = nullptr; 5196 if (!FunctionName.empty()) { 5197 // If this was a definition of a forward reference, remove the definition 5198 // from the forward reference table and fill in the forward ref. 5199 auto FRVI = ForwardRefVals.find(FunctionName); 5200 if (FRVI != ForwardRefVals.end()) { 5201 Fn = M->getFunction(FunctionName); 5202 if (!Fn) 5203 return Error(FRVI->second.second, "invalid forward reference to " 5204 "function as global value!"); 5205 if (Fn->getType() != PFT) 5206 return Error(FRVI->second.second, "invalid forward reference to " 5207 "function '" + FunctionName + "' with wrong type!"); 5208 5209 ForwardRefVals.erase(FRVI); 5210 } else if ((Fn = M->getFunction(FunctionName))) { 5211 // Reject redefinitions. 5212 return Error(NameLoc, "invalid redefinition of function '" + 5213 FunctionName + "'"); 5214 } else if (M->getNamedValue(FunctionName)) { 5215 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 5216 } 5217 5218 } else { 5219 // If this is a definition of a forward referenced function, make sure the 5220 // types agree. 5221 auto I = ForwardRefValIDs.find(NumberedVals.size()); 5222 if (I != ForwardRefValIDs.end()) { 5223 Fn = cast<Function>(I->second.first); 5224 if (Fn->getType() != PFT) 5225 return Error(NameLoc, "type of definition and forward reference of '@" + 5226 Twine(NumberedVals.size()) + "' disagree"); 5227 ForwardRefValIDs.erase(I); 5228 } 5229 } 5230 5231 if (!Fn) 5232 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M); 5233 else // Move the forward-reference to the correct spot in the module. 5234 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 5235 5236 if (FunctionName.empty()) 5237 NumberedVals.push_back(Fn); 5238 5239 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 5240 maybeSetDSOLocal(DSOLocal, *Fn); 5241 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 5242 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 5243 Fn->setCallingConv(CC); 5244 Fn->setAttributes(PAL); 5245 Fn->setUnnamedAddr(UnnamedAddr); 5246 Fn->setAlignment(Alignment); 5247 Fn->setSection(Section); 5248 Fn->setComdat(C); 5249 Fn->setPersonalityFn(PersonalityFn); 5250 if (!GC.empty()) Fn->setGC(GC); 5251 Fn->setPrefixData(Prefix); 5252 Fn->setPrologueData(Prologue); 5253 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 5254 5255 // Add all of the arguments we parsed to the function. 5256 Function::arg_iterator ArgIt = Fn->arg_begin(); 5257 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 5258 // If the argument has a name, insert it into the argument symbol table. 5259 if (ArgList[i].Name.empty()) continue; 5260 5261 // Set the name, if it conflicted, it will be auto-renamed. 5262 ArgIt->setName(ArgList[i].Name); 5263 5264 if (ArgIt->getName() != ArgList[i].Name) 5265 return Error(ArgList[i].Loc, "redefinition of argument '%" + 5266 ArgList[i].Name + "'"); 5267 } 5268 5269 if (isDefine) 5270 return false; 5271 5272 // Check the declaration has no block address forward references. 5273 ValID ID; 5274 if (FunctionName.empty()) { 5275 ID.Kind = ValID::t_GlobalID; 5276 ID.UIntVal = NumberedVals.size() - 1; 5277 } else { 5278 ID.Kind = ValID::t_GlobalName; 5279 ID.StrVal = FunctionName; 5280 } 5281 auto Blocks = ForwardRefBlockAddresses.find(ID); 5282 if (Blocks != ForwardRefBlockAddresses.end()) 5283 return Error(Blocks->first.Loc, 5284 "cannot take blockaddress inside a declaration"); 5285 return false; 5286 } 5287 5288 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 5289 ValID ID; 5290 if (FunctionNumber == -1) { 5291 ID.Kind = ValID::t_GlobalName; 5292 ID.StrVal = F.getName(); 5293 } else { 5294 ID.Kind = ValID::t_GlobalID; 5295 ID.UIntVal = FunctionNumber; 5296 } 5297 5298 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 5299 if (Blocks == P.ForwardRefBlockAddresses.end()) 5300 return false; 5301 5302 for (const auto &I : Blocks->second) { 5303 const ValID &BBID = I.first; 5304 GlobalValue *GV = I.second; 5305 5306 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 5307 "Expected local id or name"); 5308 BasicBlock *BB; 5309 if (BBID.Kind == ValID::t_LocalName) 5310 BB = GetBB(BBID.StrVal, BBID.Loc); 5311 else 5312 BB = GetBB(BBID.UIntVal, BBID.Loc); 5313 if (!BB) 5314 return P.Error(BBID.Loc, "referenced value is not a basic block"); 5315 5316 GV->replaceAllUsesWith(BlockAddress::get(&F, BB)); 5317 GV->eraseFromParent(); 5318 } 5319 5320 P.ForwardRefBlockAddresses.erase(Blocks); 5321 return false; 5322 } 5323 5324 /// ParseFunctionBody 5325 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 5326 bool LLParser::ParseFunctionBody(Function &Fn) { 5327 if (Lex.getKind() != lltok::lbrace) 5328 return TokError("expected '{' in function body"); 5329 Lex.Lex(); // eat the {. 5330 5331 int FunctionNumber = -1; 5332 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 5333 5334 PerFunctionState PFS(*this, Fn, FunctionNumber); 5335 5336 // Resolve block addresses and allow basic blocks to be forward-declared 5337 // within this function. 5338 if (PFS.resolveForwardRefBlockAddresses()) 5339 return true; 5340 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 5341 5342 // We need at least one basic block. 5343 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 5344 return TokError("function body requires at least one basic block"); 5345 5346 while (Lex.getKind() != lltok::rbrace && 5347 Lex.getKind() != lltok::kw_uselistorder) 5348 if (ParseBasicBlock(PFS)) return true; 5349 5350 while (Lex.getKind() != lltok::rbrace) 5351 if (ParseUseListOrder(&PFS)) 5352 return true; 5353 5354 // Eat the }. 5355 Lex.Lex(); 5356 5357 // Verify function is ok. 5358 return PFS.FinishFunction(); 5359 } 5360 5361 /// ParseBasicBlock 5362 /// ::= LabelStr? Instruction* 5363 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { 5364 // If this basic block starts out with a name, remember it. 5365 std::string Name; 5366 LocTy NameLoc = Lex.getLoc(); 5367 if (Lex.getKind() == lltok::LabelStr) { 5368 Name = Lex.getStrVal(); 5369 Lex.Lex(); 5370 } 5371 5372 BasicBlock *BB = PFS.DefineBB(Name, NameLoc); 5373 if (!BB) 5374 return Error(NameLoc, 5375 "unable to create block named '" + Name + "'"); 5376 5377 std::string NameStr; 5378 5379 // Parse the instructions in this block until we get a terminator. 5380 Instruction *Inst; 5381 do { 5382 // This instruction may have three possibilities for a name: a) none 5383 // specified, b) name specified "%foo =", c) number specified: "%4 =". 5384 LocTy NameLoc = Lex.getLoc(); 5385 int NameID = -1; 5386 NameStr = ""; 5387 5388 if (Lex.getKind() == lltok::LocalVarID) { 5389 NameID = Lex.getUIntVal(); 5390 Lex.Lex(); 5391 if (ParseToken(lltok::equal, "expected '=' after instruction id")) 5392 return true; 5393 } else if (Lex.getKind() == lltok::LocalVar) { 5394 NameStr = Lex.getStrVal(); 5395 Lex.Lex(); 5396 if (ParseToken(lltok::equal, "expected '=' after instruction name")) 5397 return true; 5398 } 5399 5400 switch (ParseInstruction(Inst, BB, PFS)) { 5401 default: llvm_unreachable("Unknown ParseInstruction result!"); 5402 case InstError: return true; 5403 case InstNormal: 5404 BB->getInstList().push_back(Inst); 5405 5406 // With a normal result, we check to see if the instruction is followed by 5407 // a comma and metadata. 5408 if (EatIfPresent(lltok::comma)) 5409 if (ParseInstructionMetadata(*Inst)) 5410 return true; 5411 break; 5412 case InstExtraComma: 5413 BB->getInstList().push_back(Inst); 5414 5415 // If the instruction parser ate an extra comma at the end of it, it 5416 // *must* be followed by metadata. 5417 if (ParseInstructionMetadata(*Inst)) 5418 return true; 5419 break; 5420 } 5421 5422 // Set the name on the instruction. 5423 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; 5424 } while (!isa<TerminatorInst>(Inst)); 5425 5426 return false; 5427 } 5428 5429 //===----------------------------------------------------------------------===// 5430 // Instruction Parsing. 5431 //===----------------------------------------------------------------------===// 5432 5433 /// ParseInstruction - Parse one of the many different instructions. 5434 /// 5435 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, 5436 PerFunctionState &PFS) { 5437 lltok::Kind Token = Lex.getKind(); 5438 if (Token == lltok::Eof) 5439 return TokError("found end of file when expecting more instructions"); 5440 LocTy Loc = Lex.getLoc(); 5441 unsigned KeywordVal = Lex.getUIntVal(); 5442 Lex.Lex(); // Eat the keyword. 5443 5444 switch (Token) { 5445 default: return Error(Loc, "expected instruction opcode"); 5446 // Terminator Instructions. 5447 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 5448 case lltok::kw_ret: return ParseRet(Inst, BB, PFS); 5449 case lltok::kw_br: return ParseBr(Inst, PFS); 5450 case lltok::kw_switch: return ParseSwitch(Inst, PFS); 5451 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS); 5452 case lltok::kw_invoke: return ParseInvoke(Inst, PFS); 5453 case lltok::kw_resume: return ParseResume(Inst, PFS); 5454 case lltok::kw_cleanupret: return ParseCleanupRet(Inst, PFS); 5455 case lltok::kw_catchret: return ParseCatchRet(Inst, PFS); 5456 case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS); 5457 case lltok::kw_catchpad: return ParseCatchPad(Inst, PFS); 5458 case lltok::kw_cleanuppad: return ParseCleanupPad(Inst, PFS); 5459 // Binary Operators. 5460 case lltok::kw_add: 5461 case lltok::kw_sub: 5462 case lltok::kw_mul: 5463 case lltok::kw_shl: { 5464 bool NUW = EatIfPresent(lltok::kw_nuw); 5465 bool NSW = EatIfPresent(lltok::kw_nsw); 5466 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 5467 5468 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 5469 5470 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 5471 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 5472 return false; 5473 } 5474 case lltok::kw_fadd: 5475 case lltok::kw_fsub: 5476 case lltok::kw_fmul: 5477 case lltok::kw_fdiv: 5478 case lltok::kw_frem: { 5479 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5480 int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2); 5481 if (Res != 0) 5482 return Res; 5483 if (FMF.any()) 5484 Inst->setFastMathFlags(FMF); 5485 return 0; 5486 } 5487 5488 case lltok::kw_sdiv: 5489 case lltok::kw_udiv: 5490 case lltok::kw_lshr: 5491 case lltok::kw_ashr: { 5492 bool Exact = EatIfPresent(lltok::kw_exact); 5493 5494 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 5495 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 5496 return false; 5497 } 5498 5499 case lltok::kw_urem: 5500 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1); 5501 case lltok::kw_and: 5502 case lltok::kw_or: 5503 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); 5504 case lltok::kw_icmp: return ParseCompare(Inst, PFS, KeywordVal); 5505 case lltok::kw_fcmp: { 5506 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5507 int Res = ParseCompare(Inst, PFS, KeywordVal); 5508 if (Res != 0) 5509 return Res; 5510 if (FMF.any()) 5511 Inst->setFastMathFlags(FMF); 5512 return 0; 5513 } 5514 5515 // Casts. 5516 case lltok::kw_trunc: 5517 case lltok::kw_zext: 5518 case lltok::kw_sext: 5519 case lltok::kw_fptrunc: 5520 case lltok::kw_fpext: 5521 case lltok::kw_bitcast: 5522 case lltok::kw_addrspacecast: 5523 case lltok::kw_uitofp: 5524 case lltok::kw_sitofp: 5525 case lltok::kw_fptoui: 5526 case lltok::kw_fptosi: 5527 case lltok::kw_inttoptr: 5528 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); 5529 // Other. 5530 case lltok::kw_select: return ParseSelect(Inst, PFS); 5531 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); 5532 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); 5533 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); 5534 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); 5535 case lltok::kw_phi: return ParsePHI(Inst, PFS); 5536 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS); 5537 // Call. 5538 case lltok::kw_call: return ParseCall(Inst, PFS, CallInst::TCK_None); 5539 case lltok::kw_tail: return ParseCall(Inst, PFS, CallInst::TCK_Tail); 5540 case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail); 5541 case lltok::kw_notail: return ParseCall(Inst, PFS, CallInst::TCK_NoTail); 5542 // Memory. 5543 case lltok::kw_alloca: return ParseAlloc(Inst, PFS); 5544 case lltok::kw_load: return ParseLoad(Inst, PFS); 5545 case lltok::kw_store: return ParseStore(Inst, PFS); 5546 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS); 5547 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS); 5548 case lltok::kw_fence: return ParseFence(Inst, PFS); 5549 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); 5550 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); 5551 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); 5552 } 5553 } 5554 5555 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. 5556 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { 5557 if (Opc == Instruction::FCmp) { 5558 switch (Lex.getKind()) { 5559 default: return TokError("expected fcmp predicate (e.g. 'oeq')"); 5560 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 5561 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 5562 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 5563 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 5564 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 5565 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 5566 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 5567 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 5568 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 5569 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 5570 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 5571 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 5572 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 5573 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 5574 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 5575 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 5576 } 5577 } else { 5578 switch (Lex.getKind()) { 5579 default: return TokError("expected icmp predicate (e.g. 'eq')"); 5580 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 5581 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 5582 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 5583 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 5584 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 5585 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 5586 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 5587 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 5588 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 5589 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 5590 } 5591 } 5592 Lex.Lex(); 5593 return false; 5594 } 5595 5596 //===----------------------------------------------------------------------===// 5597 // Terminator Instructions. 5598 //===----------------------------------------------------------------------===// 5599 5600 /// ParseRet - Parse a return instruction. 5601 /// ::= 'ret' void (',' !dbg, !1)* 5602 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 5603 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, 5604 PerFunctionState &PFS) { 5605 SMLoc TypeLoc = Lex.getLoc(); 5606 Type *Ty = nullptr; 5607 if (ParseType(Ty, true /*void allowed*/)) return true; 5608 5609 Type *ResType = PFS.getFunction().getReturnType(); 5610 5611 if (Ty->isVoidTy()) { 5612 if (!ResType->isVoidTy()) 5613 return Error(TypeLoc, "value doesn't match function result type '" + 5614 getTypeString(ResType) + "'"); 5615 5616 Inst = ReturnInst::Create(Context); 5617 return false; 5618 } 5619 5620 Value *RV; 5621 if (ParseValue(Ty, RV, PFS)) return true; 5622 5623 if (ResType != RV->getType()) 5624 return Error(TypeLoc, "value doesn't match function result type '" + 5625 getTypeString(ResType) + "'"); 5626 5627 Inst = ReturnInst::Create(Context, RV); 5628 return false; 5629 } 5630 5631 /// ParseBr 5632 /// ::= 'br' TypeAndValue 5633 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5634 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { 5635 LocTy Loc, Loc2; 5636 Value *Op0; 5637 BasicBlock *Op1, *Op2; 5638 if (ParseTypeAndValue(Op0, Loc, PFS)) return true; 5639 5640 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 5641 Inst = BranchInst::Create(BB); 5642 return false; 5643 } 5644 5645 if (Op0->getType() != Type::getInt1Ty(Context)) 5646 return Error(Loc, "branch condition must have 'i1' type"); 5647 5648 if (ParseToken(lltok::comma, "expected ',' after branch condition") || 5649 ParseTypeAndBasicBlock(Op1, Loc, PFS) || 5650 ParseToken(lltok::comma, "expected ',' after true destination") || 5651 ParseTypeAndBasicBlock(Op2, Loc2, PFS)) 5652 return true; 5653 5654 Inst = BranchInst::Create(Op1, Op2, Op0); 5655 return false; 5656 } 5657 5658 /// ParseSwitch 5659 /// Instruction 5660 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 5661 /// JumpTable 5662 /// ::= (TypeAndValue ',' TypeAndValue)* 5663 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 5664 LocTy CondLoc, BBLoc; 5665 Value *Cond; 5666 BasicBlock *DefaultBB; 5667 if (ParseTypeAndValue(Cond, CondLoc, PFS) || 5668 ParseToken(lltok::comma, "expected ',' after switch condition") || 5669 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 5670 ParseToken(lltok::lsquare, "expected '[' with switch table")) 5671 return true; 5672 5673 if (!Cond->getType()->isIntegerTy()) 5674 return Error(CondLoc, "switch condition must have integer type"); 5675 5676 // Parse the jump table pairs. 5677 SmallPtrSet<Value*, 32> SeenCases; 5678 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 5679 while (Lex.getKind() != lltok::rsquare) { 5680 Value *Constant; 5681 BasicBlock *DestBB; 5682 5683 if (ParseTypeAndValue(Constant, CondLoc, PFS) || 5684 ParseToken(lltok::comma, "expected ',' after case value") || 5685 ParseTypeAndBasicBlock(DestBB, PFS)) 5686 return true; 5687 5688 if (!SeenCases.insert(Constant).second) 5689 return Error(CondLoc, "duplicate case value in switch"); 5690 if (!isa<ConstantInt>(Constant)) 5691 return Error(CondLoc, "case value is not a constant integer"); 5692 5693 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 5694 } 5695 5696 Lex.Lex(); // Eat the ']'. 5697 5698 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 5699 for (unsigned i = 0, e = Table.size(); i != e; ++i) 5700 SI->addCase(Table[i].first, Table[i].second); 5701 Inst = SI; 5702 return false; 5703 } 5704 5705 /// ParseIndirectBr 5706 /// Instruction 5707 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 5708 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 5709 LocTy AddrLoc; 5710 Value *Address; 5711 if (ParseTypeAndValue(Address, AddrLoc, PFS) || 5712 ParseToken(lltok::comma, "expected ',' after indirectbr address") || 5713 ParseToken(lltok::lsquare, "expected '[' with indirectbr")) 5714 return true; 5715 5716 if (!Address->getType()->isPointerTy()) 5717 return Error(AddrLoc, "indirectbr address must have pointer type"); 5718 5719 // Parse the destination list. 5720 SmallVector<BasicBlock*, 16> DestList; 5721 5722 if (Lex.getKind() != lltok::rsquare) { 5723 BasicBlock *DestBB; 5724 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5725 return true; 5726 DestList.push_back(DestBB); 5727 5728 while (EatIfPresent(lltok::comma)) { 5729 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5730 return true; 5731 DestList.push_back(DestBB); 5732 } 5733 } 5734 5735 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 5736 return true; 5737 5738 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 5739 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 5740 IBI->addDestination(DestList[i]); 5741 Inst = IBI; 5742 return false; 5743 } 5744 5745 /// ParseInvoke 5746 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 5747 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 5748 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 5749 LocTy CallLoc = Lex.getLoc(); 5750 AttrBuilder RetAttrs, FnAttrs; 5751 std::vector<unsigned> FwdRefAttrGrps; 5752 LocTy NoBuiltinLoc; 5753 unsigned CC; 5754 Type *RetType = nullptr; 5755 LocTy RetTypeLoc; 5756 ValID CalleeID; 5757 SmallVector<ParamInfo, 16> ArgList; 5758 SmallVector<OperandBundleDef, 2> BundleList; 5759 5760 BasicBlock *NormalBB, *UnwindBB; 5761 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5762 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 5763 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || 5764 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 5765 NoBuiltinLoc) || 5766 ParseOptionalOperandBundles(BundleList, PFS) || 5767 ParseToken(lltok::kw_to, "expected 'to' in invoke") || 5768 ParseTypeAndBasicBlock(NormalBB, PFS) || 5769 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 5770 ParseTypeAndBasicBlock(UnwindBB, PFS)) 5771 return true; 5772 5773 // If RetType is a non-function pointer type, then this is the short syntax 5774 // for the call, which means that RetType is just the return type. Infer the 5775 // rest of the function argument types from the arguments that are present. 5776 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 5777 if (!Ty) { 5778 // Pull out the types of all of the arguments... 5779 std::vector<Type*> ParamTypes; 5780 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 5781 ParamTypes.push_back(ArgList[i].V->getType()); 5782 5783 if (!FunctionType::isValidReturnType(RetType)) 5784 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 5785 5786 Ty = FunctionType::get(RetType, ParamTypes, false); 5787 } 5788 5789 CalleeID.FTy = Ty; 5790 5791 // Look up the callee. 5792 Value *Callee; 5793 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS, 5794 /*IsCall=*/true)) 5795 return true; 5796 5797 // Set up the Attribute for the function. 5798 SmallVector<Value *, 8> Args; 5799 SmallVector<AttributeSet, 8> ArgAttrs; 5800 5801 // Loop through FunctionType's arguments and ensure they are specified 5802 // correctly. Also, gather any parameter attributes. 5803 FunctionType::param_iterator I = Ty->param_begin(); 5804 FunctionType::param_iterator E = Ty->param_end(); 5805 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5806 Type *ExpectedTy = nullptr; 5807 if (I != E) { 5808 ExpectedTy = *I++; 5809 } else if (!Ty->isVarArg()) { 5810 return Error(ArgList[i].Loc, "too many arguments specified"); 5811 } 5812 5813 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 5814 return Error(ArgList[i].Loc, "argument is not of expected type '" + 5815 getTypeString(ExpectedTy) + "'"); 5816 Args.push_back(ArgList[i].V); 5817 ArgAttrs.push_back(ArgList[i].Attrs); 5818 } 5819 5820 if (I != E) 5821 return Error(CallLoc, "not enough parameters specified for call"); 5822 5823 if (FnAttrs.hasAlignmentAttr()) 5824 return Error(CallLoc, "invoke instructions may not have an alignment"); 5825 5826 // Finish off the Attribute and check them 5827 AttributeList PAL = 5828 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 5829 AttributeSet::get(Context, RetAttrs), ArgAttrs); 5830 5831 InvokeInst *II = 5832 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 5833 II->setCallingConv(CC); 5834 II->setAttributes(PAL); 5835 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 5836 Inst = II; 5837 return false; 5838 } 5839 5840 /// ParseResume 5841 /// ::= 'resume' TypeAndValue 5842 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) { 5843 Value *Exn; LocTy ExnLoc; 5844 if (ParseTypeAndValue(Exn, ExnLoc, PFS)) 5845 return true; 5846 5847 ResumeInst *RI = ResumeInst::Create(Exn); 5848 Inst = RI; 5849 return false; 5850 } 5851 5852 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args, 5853 PerFunctionState &PFS) { 5854 if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 5855 return true; 5856 5857 while (Lex.getKind() != lltok::rsquare) { 5858 // If this isn't the first argument, we need a comma. 5859 if (!Args.empty() && 5860 ParseToken(lltok::comma, "expected ',' in argument list")) 5861 return true; 5862 5863 // Parse the argument. 5864 LocTy ArgLoc; 5865 Type *ArgTy = nullptr; 5866 if (ParseType(ArgTy, ArgLoc)) 5867 return true; 5868 5869 Value *V; 5870 if (ArgTy->isMetadataTy()) { 5871 if (ParseMetadataAsValue(V, PFS)) 5872 return true; 5873 } else { 5874 if (ParseValue(ArgTy, V, PFS)) 5875 return true; 5876 } 5877 Args.push_back(V); 5878 } 5879 5880 Lex.Lex(); // Lex the ']'. 5881 return false; 5882 } 5883 5884 /// ParseCleanupRet 5885 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 5886 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 5887 Value *CleanupPad = nullptr; 5888 5889 if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret")) 5890 return true; 5891 5892 if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 5893 return true; 5894 5895 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 5896 return true; 5897 5898 BasicBlock *UnwindBB = nullptr; 5899 if (Lex.getKind() == lltok::kw_to) { 5900 Lex.Lex(); 5901 if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 5902 return true; 5903 } else { 5904 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 5905 return true; 5906 } 5907 } 5908 5909 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 5910 return false; 5911 } 5912 5913 /// ParseCatchRet 5914 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 5915 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 5916 Value *CatchPad = nullptr; 5917 5918 if (ParseToken(lltok::kw_from, "expected 'from' after catchret")) 5919 return true; 5920 5921 if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS)) 5922 return true; 5923 5924 BasicBlock *BB; 5925 if (ParseToken(lltok::kw_to, "expected 'to' in catchret") || 5926 ParseTypeAndBasicBlock(BB, PFS)) 5927 return true; 5928 5929 Inst = CatchReturnInst::Create(CatchPad, BB); 5930 return false; 5931 } 5932 5933 /// ParseCatchSwitch 5934 /// ::= 'catchswitch' within Parent 5935 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 5936 Value *ParentPad; 5937 5938 if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch")) 5939 return true; 5940 5941 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 5942 Lex.getKind() != lltok::LocalVarID) 5943 return TokError("expected scope value for catchswitch"); 5944 5945 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 5946 return true; 5947 5948 if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 5949 return true; 5950 5951 SmallVector<BasicBlock *, 32> Table; 5952 do { 5953 BasicBlock *DestBB; 5954 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5955 return true; 5956 Table.push_back(DestBB); 5957 } while (EatIfPresent(lltok::comma)); 5958 5959 if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 5960 return true; 5961 5962 if (ParseToken(lltok::kw_unwind, 5963 "expected 'unwind' after catchswitch scope")) 5964 return true; 5965 5966 BasicBlock *UnwindBB = nullptr; 5967 if (EatIfPresent(lltok::kw_to)) { 5968 if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 5969 return true; 5970 } else { 5971 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) 5972 return true; 5973 } 5974 5975 auto *CatchSwitch = 5976 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 5977 for (BasicBlock *DestBB : Table) 5978 CatchSwitch->addHandler(DestBB); 5979 Inst = CatchSwitch; 5980 return false; 5981 } 5982 5983 /// ParseCatchPad 5984 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 5985 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 5986 Value *CatchSwitch = nullptr; 5987 5988 if (ParseToken(lltok::kw_within, "expected 'within' after catchpad")) 5989 return true; 5990 5991 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 5992 return TokError("expected scope value for catchpad"); 5993 5994 if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 5995 return true; 5996 5997 SmallVector<Value *, 8> Args; 5998 if (ParseExceptionArgs(Args, PFS)) 5999 return true; 6000 6001 Inst = CatchPadInst::Create(CatchSwitch, Args); 6002 return false; 6003 } 6004 6005 /// ParseCleanupPad 6006 /// ::= 'cleanuppad' within Parent ParamList 6007 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 6008 Value *ParentPad = nullptr; 6009 6010 if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 6011 return true; 6012 6013 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6014 Lex.getKind() != lltok::LocalVarID) 6015 return TokError("expected scope value for cleanuppad"); 6016 6017 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6018 return true; 6019 6020 SmallVector<Value *, 8> Args; 6021 if (ParseExceptionArgs(Args, PFS)) 6022 return true; 6023 6024 Inst = CleanupPadInst::Create(ParentPad, Args); 6025 return false; 6026 } 6027 6028 //===----------------------------------------------------------------------===// 6029 // Binary Operators. 6030 //===----------------------------------------------------------------------===// 6031 6032 /// ParseArithmetic 6033 /// ::= ArithmeticOps TypeAndValue ',' Value 6034 /// 6035 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1, 6036 /// then any integer operand is allowed, if it is 2, any fp operand is allowed. 6037 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 6038 unsigned Opc, unsigned OperandType) { 6039 LocTy Loc; Value *LHS, *RHS; 6040 if (ParseTypeAndValue(LHS, Loc, PFS) || 6041 ParseToken(lltok::comma, "expected ',' in arithmetic operation") || 6042 ParseValue(LHS->getType(), RHS, PFS)) 6043 return true; 6044 6045 bool Valid; 6046 switch (OperandType) { 6047 default: llvm_unreachable("Unknown operand type!"); 6048 case 0: // int or FP. 6049 Valid = LHS->getType()->isIntOrIntVectorTy() || 6050 LHS->getType()->isFPOrFPVectorTy(); 6051 break; 6052 case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break; 6053 case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break; 6054 } 6055 6056 if (!Valid) 6057 return Error(Loc, "invalid operand type for instruction"); 6058 6059 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6060 return false; 6061 } 6062 6063 /// ParseLogical 6064 /// ::= ArithmeticOps TypeAndValue ',' Value { 6065 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, 6066 unsigned Opc) { 6067 LocTy Loc; Value *LHS, *RHS; 6068 if (ParseTypeAndValue(LHS, Loc, PFS) || 6069 ParseToken(lltok::comma, "expected ',' in logical operation") || 6070 ParseValue(LHS->getType(), RHS, PFS)) 6071 return true; 6072 6073 if (!LHS->getType()->isIntOrIntVectorTy()) 6074 return Error(Loc,"instruction requires integer or integer vector operands"); 6075 6076 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6077 return false; 6078 } 6079 6080 /// ParseCompare 6081 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 6082 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 6083 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, 6084 unsigned Opc) { 6085 // Parse the integer/fp comparison predicate. 6086 LocTy Loc; 6087 unsigned Pred; 6088 Value *LHS, *RHS; 6089 if (ParseCmpPredicate(Pred, Opc) || 6090 ParseTypeAndValue(LHS, Loc, PFS) || 6091 ParseToken(lltok::comma, "expected ',' after compare value") || 6092 ParseValue(LHS->getType(), RHS, PFS)) 6093 return true; 6094 6095 if (Opc == Instruction::FCmp) { 6096 if (!LHS->getType()->isFPOrFPVectorTy()) 6097 return Error(Loc, "fcmp requires floating point operands"); 6098 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6099 } else { 6100 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 6101 if (!LHS->getType()->isIntOrIntVectorTy() && 6102 !LHS->getType()->isPtrOrPtrVectorTy()) 6103 return Error(Loc, "icmp requires integer operands"); 6104 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6105 } 6106 return false; 6107 } 6108 6109 //===----------------------------------------------------------------------===// 6110 // Other Instructions. 6111 //===----------------------------------------------------------------------===// 6112 6113 6114 /// ParseCast 6115 /// ::= CastOpc TypeAndValue 'to' Type 6116 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, 6117 unsigned Opc) { 6118 LocTy Loc; 6119 Value *Op; 6120 Type *DestTy = nullptr; 6121 if (ParseTypeAndValue(Op, Loc, PFS) || 6122 ParseToken(lltok::kw_to, "expected 'to' after cast value") || 6123 ParseType(DestTy)) 6124 return true; 6125 6126 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 6127 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 6128 return Error(Loc, "invalid cast opcode for cast from '" + 6129 getTypeString(Op->getType()) + "' to '" + 6130 getTypeString(DestTy) + "'"); 6131 } 6132 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 6133 return false; 6134 } 6135 6136 /// ParseSelect 6137 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6138 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { 6139 LocTy Loc; 6140 Value *Op0, *Op1, *Op2; 6141 if (ParseTypeAndValue(Op0, Loc, PFS) || 6142 ParseToken(lltok::comma, "expected ',' after select condition") || 6143 ParseTypeAndValue(Op1, PFS) || 6144 ParseToken(lltok::comma, "expected ',' after select value") || 6145 ParseTypeAndValue(Op2, PFS)) 6146 return true; 6147 6148 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 6149 return Error(Loc, Reason); 6150 6151 Inst = SelectInst::Create(Op0, Op1, Op2); 6152 return false; 6153 } 6154 6155 /// ParseVA_Arg 6156 /// ::= 'va_arg' TypeAndValue ',' Type 6157 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { 6158 Value *Op; 6159 Type *EltTy = nullptr; 6160 LocTy TypeLoc; 6161 if (ParseTypeAndValue(Op, PFS) || 6162 ParseToken(lltok::comma, "expected ',' after vaarg operand") || 6163 ParseType(EltTy, TypeLoc)) 6164 return true; 6165 6166 if (!EltTy->isFirstClassType()) 6167 return Error(TypeLoc, "va_arg requires operand with first class type"); 6168 6169 Inst = new VAArgInst(Op, EltTy); 6170 return false; 6171 } 6172 6173 /// ParseExtractElement 6174 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 6175 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 6176 LocTy Loc; 6177 Value *Op0, *Op1; 6178 if (ParseTypeAndValue(Op0, Loc, PFS) || 6179 ParseToken(lltok::comma, "expected ',' after extract value") || 6180 ParseTypeAndValue(Op1, PFS)) 6181 return true; 6182 6183 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 6184 return Error(Loc, "invalid extractelement operands"); 6185 6186 Inst = ExtractElementInst::Create(Op0, Op1); 6187 return false; 6188 } 6189 6190 /// ParseInsertElement 6191 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6192 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 6193 LocTy Loc; 6194 Value *Op0, *Op1, *Op2; 6195 if (ParseTypeAndValue(Op0, Loc, PFS) || 6196 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6197 ParseTypeAndValue(Op1, PFS) || 6198 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6199 ParseTypeAndValue(Op2, PFS)) 6200 return true; 6201 6202 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 6203 return Error(Loc, "invalid insertelement operands"); 6204 6205 Inst = InsertElementInst::Create(Op0, Op1, Op2); 6206 return false; 6207 } 6208 6209 /// ParseShuffleVector 6210 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6211 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 6212 LocTy Loc; 6213 Value *Op0, *Op1, *Op2; 6214 if (ParseTypeAndValue(Op0, Loc, PFS) || 6215 ParseToken(lltok::comma, "expected ',' after shuffle mask") || 6216 ParseTypeAndValue(Op1, PFS) || 6217 ParseToken(lltok::comma, "expected ',' after shuffle value") || 6218 ParseTypeAndValue(Op2, PFS)) 6219 return true; 6220 6221 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 6222 return Error(Loc, "invalid shufflevector operands"); 6223 6224 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 6225 return false; 6226 } 6227 6228 /// ParsePHI 6229 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 6230 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { 6231 Type *Ty = nullptr; LocTy TypeLoc; 6232 Value *Op0, *Op1; 6233 6234 if (ParseType(Ty, TypeLoc) || 6235 ParseToken(lltok::lsquare, "expected '[' in phi value list") || 6236 ParseValue(Ty, Op0, PFS) || 6237 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6238 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 6239 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 6240 return true; 6241 6242 bool AteExtraComma = false; 6243 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 6244 6245 while (true) { 6246 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 6247 6248 if (!EatIfPresent(lltok::comma)) 6249 break; 6250 6251 if (Lex.getKind() == lltok::MetadataVar) { 6252 AteExtraComma = true; 6253 break; 6254 } 6255 6256 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || 6257 ParseValue(Ty, Op0, PFS) || 6258 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6259 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 6260 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 6261 return true; 6262 } 6263 6264 if (!Ty->isFirstClassType()) 6265 return Error(TypeLoc, "phi node must have first class type"); 6266 6267 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 6268 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 6269 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 6270 Inst = PN; 6271 return AteExtraComma ? InstExtraComma : InstNormal; 6272 } 6273 6274 /// ParseLandingPad 6275 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 6276 /// Clause 6277 /// ::= 'catch' TypeAndValue 6278 /// ::= 'filter' 6279 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 6280 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 6281 Type *Ty = nullptr; LocTy TyLoc; 6282 6283 if (ParseType(Ty, TyLoc)) 6284 return true; 6285 6286 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 6287 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 6288 6289 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 6290 LandingPadInst::ClauseType CT; 6291 if (EatIfPresent(lltok::kw_catch)) 6292 CT = LandingPadInst::Catch; 6293 else if (EatIfPresent(lltok::kw_filter)) 6294 CT = LandingPadInst::Filter; 6295 else 6296 return TokError("expected 'catch' or 'filter' clause type"); 6297 6298 Value *V; 6299 LocTy VLoc; 6300 if (ParseTypeAndValue(V, VLoc, PFS)) 6301 return true; 6302 6303 // A 'catch' type expects a non-array constant. A filter clause expects an 6304 // array constant. 6305 if (CT == LandingPadInst::Catch) { 6306 if (isa<ArrayType>(V->getType())) 6307 Error(VLoc, "'catch' clause has an invalid type"); 6308 } else { 6309 if (!isa<ArrayType>(V->getType())) 6310 Error(VLoc, "'filter' clause has an invalid type"); 6311 } 6312 6313 Constant *CV = dyn_cast<Constant>(V); 6314 if (!CV) 6315 return Error(VLoc, "clause argument must be a constant"); 6316 LP->addClause(CV); 6317 } 6318 6319 Inst = LP.release(); 6320 return false; 6321 } 6322 6323 /// ParseCall 6324 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 6325 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6326 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 6327 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6328 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 6329 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6330 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 6331 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6332 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, 6333 CallInst::TailCallKind TCK) { 6334 AttrBuilder RetAttrs, FnAttrs; 6335 std::vector<unsigned> FwdRefAttrGrps; 6336 LocTy BuiltinLoc; 6337 unsigned CC; 6338 Type *RetType = nullptr; 6339 LocTy RetTypeLoc; 6340 ValID CalleeID; 6341 SmallVector<ParamInfo, 16> ArgList; 6342 SmallVector<OperandBundleDef, 2> BundleList; 6343 LocTy CallLoc = Lex.getLoc(); 6344 6345 if (TCK != CallInst::TCK_None && 6346 ParseToken(lltok::kw_call, 6347 "expected 'tail call', 'musttail call', or 'notail call'")) 6348 return true; 6349 6350 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6351 6352 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 6353 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 6354 ParseValID(CalleeID) || 6355 ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 6356 PFS.getFunction().isVarArg()) || 6357 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 6358 ParseOptionalOperandBundles(BundleList, PFS)) 6359 return true; 6360 6361 if (FMF.any() && !RetType->isFPOrFPVectorTy()) 6362 return Error(CallLoc, "fast-math-flags specified for call without " 6363 "floating-point scalar or vector return type"); 6364 6365 // If RetType is a non-function pointer type, then this is the short syntax 6366 // for the call, which means that RetType is just the return type. Infer the 6367 // rest of the function argument types from the arguments that are present. 6368 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6369 if (!Ty) { 6370 // Pull out the types of all of the arguments... 6371 std::vector<Type*> ParamTypes; 6372 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6373 ParamTypes.push_back(ArgList[i].V->getType()); 6374 6375 if (!FunctionType::isValidReturnType(RetType)) 6376 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 6377 6378 Ty = FunctionType::get(RetType, ParamTypes, false); 6379 } 6380 6381 CalleeID.FTy = Ty; 6382 6383 // Look up the callee. 6384 Value *Callee; 6385 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS, 6386 /*IsCall=*/true)) 6387 return true; 6388 6389 // Set up the Attribute for the function. 6390 SmallVector<AttributeSet, 8> Attrs; 6391 6392 SmallVector<Value*, 8> Args; 6393 6394 // Loop through FunctionType's arguments and ensure they are specified 6395 // correctly. Also, gather any parameter attributes. 6396 FunctionType::param_iterator I = Ty->param_begin(); 6397 FunctionType::param_iterator E = Ty->param_end(); 6398 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6399 Type *ExpectedTy = nullptr; 6400 if (I != E) { 6401 ExpectedTy = *I++; 6402 } else if (!Ty->isVarArg()) { 6403 return Error(ArgList[i].Loc, "too many arguments specified"); 6404 } 6405 6406 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6407 return Error(ArgList[i].Loc, "argument is not of expected type '" + 6408 getTypeString(ExpectedTy) + "'"); 6409 Args.push_back(ArgList[i].V); 6410 Attrs.push_back(ArgList[i].Attrs); 6411 } 6412 6413 if (I != E) 6414 return Error(CallLoc, "not enough parameters specified for call"); 6415 6416 if (FnAttrs.hasAlignmentAttr()) 6417 return Error(CallLoc, "call instructions may not have an alignment"); 6418 6419 // Finish off the Attribute and check them 6420 AttributeList PAL = 6421 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6422 AttributeSet::get(Context, RetAttrs), Attrs); 6423 6424 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 6425 CI->setTailCallKind(TCK); 6426 CI->setCallingConv(CC); 6427 if (FMF.any()) 6428 CI->setFastMathFlags(FMF); 6429 CI->setAttributes(PAL); 6430 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 6431 Inst = CI; 6432 return false; 6433 } 6434 6435 //===----------------------------------------------------------------------===// 6436 // Memory Instructions. 6437 //===----------------------------------------------------------------------===// 6438 6439 /// ParseAlloc 6440 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 6441 /// (',' 'align' i32)? (',', 'addrspace(n))? 6442 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 6443 Value *Size = nullptr; 6444 LocTy SizeLoc, TyLoc, ASLoc; 6445 unsigned Alignment = 0; 6446 unsigned AddrSpace = 0; 6447 Type *Ty = nullptr; 6448 6449 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 6450 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 6451 6452 if (ParseType(Ty, TyLoc)) return true; 6453 6454 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 6455 return Error(TyLoc, "invalid type for alloca"); 6456 6457 bool AteExtraComma = false; 6458 if (EatIfPresent(lltok::comma)) { 6459 if (Lex.getKind() == lltok::kw_align) { 6460 if (ParseOptionalAlignment(Alignment)) 6461 return true; 6462 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 6463 return true; 6464 } else if (Lex.getKind() == lltok::kw_addrspace) { 6465 ASLoc = Lex.getLoc(); 6466 if (ParseOptionalAddrSpace(AddrSpace)) 6467 return true; 6468 } else if (Lex.getKind() == lltok::MetadataVar) { 6469 AteExtraComma = true; 6470 } else { 6471 if (ParseTypeAndValue(Size, SizeLoc, PFS)) 6472 return true; 6473 if (EatIfPresent(lltok::comma)) { 6474 if (Lex.getKind() == lltok::kw_align) { 6475 if (ParseOptionalAlignment(Alignment)) 6476 return true; 6477 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 6478 return true; 6479 } else if (Lex.getKind() == lltok::kw_addrspace) { 6480 ASLoc = Lex.getLoc(); 6481 if (ParseOptionalAddrSpace(AddrSpace)) 6482 return true; 6483 } else if (Lex.getKind() == lltok::MetadataVar) { 6484 AteExtraComma = true; 6485 } 6486 } 6487 } 6488 } 6489 6490 if (Size && !Size->getType()->isIntegerTy()) 6491 return Error(SizeLoc, "element count must have integer type"); 6492 6493 AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, Alignment); 6494 AI->setUsedWithInAlloca(IsInAlloca); 6495 AI->setSwiftError(IsSwiftError); 6496 Inst = AI; 6497 return AteExtraComma ? InstExtraComma : InstNormal; 6498 } 6499 6500 /// ParseLoad 6501 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 6502 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 6503 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6504 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) { 6505 Value *Val; LocTy Loc; 6506 unsigned Alignment = 0; 6507 bool AteExtraComma = false; 6508 bool isAtomic = false; 6509 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6510 SyncScope::ID SSID = SyncScope::System; 6511 6512 if (Lex.getKind() == lltok::kw_atomic) { 6513 isAtomic = true; 6514 Lex.Lex(); 6515 } 6516 6517 bool isVolatile = false; 6518 if (Lex.getKind() == lltok::kw_volatile) { 6519 isVolatile = true; 6520 Lex.Lex(); 6521 } 6522 6523 Type *Ty; 6524 LocTy ExplicitTypeLoc = Lex.getLoc(); 6525 if (ParseType(Ty) || 6526 ParseToken(lltok::comma, "expected comma after load's type") || 6527 ParseTypeAndValue(Val, Loc, PFS) || 6528 ParseScopeAndOrdering(isAtomic, SSID, Ordering) || 6529 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6530 return true; 6531 6532 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 6533 return Error(Loc, "load operand must be a pointer to a first class type"); 6534 if (isAtomic && !Alignment) 6535 return Error(Loc, "atomic load must have explicit non-zero alignment"); 6536 if (Ordering == AtomicOrdering::Release || 6537 Ordering == AtomicOrdering::AcquireRelease) 6538 return Error(Loc, "atomic load cannot use Release ordering"); 6539 6540 if (Ty != cast<PointerType>(Val->getType())->getElementType()) 6541 return Error(ExplicitTypeLoc, 6542 "explicit pointee type doesn't match operand's pointee type"); 6543 6544 Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, SSID); 6545 return AteExtraComma ? InstExtraComma : InstNormal; 6546 } 6547 6548 /// ParseStore 6549 6550 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 6551 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 6552 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6553 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) { 6554 Value *Val, *Ptr; LocTy Loc, PtrLoc; 6555 unsigned Alignment = 0; 6556 bool AteExtraComma = false; 6557 bool isAtomic = false; 6558 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6559 SyncScope::ID SSID = SyncScope::System; 6560 6561 if (Lex.getKind() == lltok::kw_atomic) { 6562 isAtomic = true; 6563 Lex.Lex(); 6564 } 6565 6566 bool isVolatile = false; 6567 if (Lex.getKind() == lltok::kw_volatile) { 6568 isVolatile = true; 6569 Lex.Lex(); 6570 } 6571 6572 if (ParseTypeAndValue(Val, Loc, PFS) || 6573 ParseToken(lltok::comma, "expected ',' after store operand") || 6574 ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6575 ParseScopeAndOrdering(isAtomic, SSID, Ordering) || 6576 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6577 return true; 6578 6579 if (!Ptr->getType()->isPointerTy()) 6580 return Error(PtrLoc, "store operand must be a pointer"); 6581 if (!Val->getType()->isFirstClassType()) 6582 return Error(Loc, "store operand must be a first class value"); 6583 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 6584 return Error(Loc, "stored value and pointer type do not match"); 6585 if (isAtomic && !Alignment) 6586 return Error(Loc, "atomic store must have explicit non-zero alignment"); 6587 if (Ordering == AtomicOrdering::Acquire || 6588 Ordering == AtomicOrdering::AcquireRelease) 6589 return Error(Loc, "atomic store cannot use Acquire ordering"); 6590 6591 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, SSID); 6592 return AteExtraComma ? InstExtraComma : InstNormal; 6593 } 6594 6595 /// ParseCmpXchg 6596 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 6597 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering 6598 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 6599 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 6600 bool AteExtraComma = false; 6601 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 6602 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 6603 SyncScope::ID SSID = SyncScope::System; 6604 bool isVolatile = false; 6605 bool isWeak = false; 6606 6607 if (EatIfPresent(lltok::kw_weak)) 6608 isWeak = true; 6609 6610 if (EatIfPresent(lltok::kw_volatile)) 6611 isVolatile = true; 6612 6613 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6614 ParseToken(lltok::comma, "expected ',' after cmpxchg address") || 6615 ParseTypeAndValue(Cmp, CmpLoc, PFS) || 6616 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 6617 ParseTypeAndValue(New, NewLoc, PFS) || 6618 ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) || 6619 ParseOrdering(FailureOrdering)) 6620 return true; 6621 6622 if (SuccessOrdering == AtomicOrdering::Unordered || 6623 FailureOrdering == AtomicOrdering::Unordered) 6624 return TokError("cmpxchg cannot be unordered"); 6625 if (isStrongerThan(FailureOrdering, SuccessOrdering)) 6626 return TokError("cmpxchg failure argument shall be no stronger than the " 6627 "success argument"); 6628 if (FailureOrdering == AtomicOrdering::Release || 6629 FailureOrdering == AtomicOrdering::AcquireRelease) 6630 return TokError( 6631 "cmpxchg failure ordering cannot include release semantics"); 6632 if (!Ptr->getType()->isPointerTy()) 6633 return Error(PtrLoc, "cmpxchg operand must be a pointer"); 6634 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 6635 return Error(CmpLoc, "compare value and pointer type do not match"); 6636 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 6637 return Error(NewLoc, "new value and pointer type do not match"); 6638 if (!New->getType()->isFirstClassType()) 6639 return Error(NewLoc, "cmpxchg operand must be a first class value"); 6640 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 6641 Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID); 6642 CXI->setVolatile(isVolatile); 6643 CXI->setWeak(isWeak); 6644 Inst = CXI; 6645 return AteExtraComma ? InstExtraComma : InstNormal; 6646 } 6647 6648 /// ParseAtomicRMW 6649 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 6650 /// 'singlethread'? AtomicOrdering 6651 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 6652 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 6653 bool AteExtraComma = false; 6654 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6655 SyncScope::ID SSID = SyncScope::System; 6656 bool isVolatile = false; 6657 AtomicRMWInst::BinOp Operation; 6658 6659 if (EatIfPresent(lltok::kw_volatile)) 6660 isVolatile = true; 6661 6662 switch (Lex.getKind()) { 6663 default: return TokError("expected binary operation in atomicrmw"); 6664 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 6665 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 6666 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 6667 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 6668 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 6669 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 6670 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 6671 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 6672 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 6673 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 6674 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 6675 } 6676 Lex.Lex(); // Eat the operation. 6677 6678 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6679 ParseToken(lltok::comma, "expected ',' after atomicrmw address") || 6680 ParseTypeAndValue(Val, ValLoc, PFS) || 6681 ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 6682 return true; 6683 6684 if (Ordering == AtomicOrdering::Unordered) 6685 return TokError("atomicrmw cannot be unordered"); 6686 if (!Ptr->getType()->isPointerTy()) 6687 return Error(PtrLoc, "atomicrmw operand must be a pointer"); 6688 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 6689 return Error(ValLoc, "atomicrmw value and pointer type do not match"); 6690 if (!Val->getType()->isIntegerTy()) 6691 return Error(ValLoc, "atomicrmw operand must be an integer"); 6692 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 6693 if (Size < 8 || (Size & (Size - 1))) 6694 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 6695 " integer"); 6696 6697 AtomicRMWInst *RMWI = 6698 new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 6699 RMWI->setVolatile(isVolatile); 6700 Inst = RMWI; 6701 return AteExtraComma ? InstExtraComma : InstNormal; 6702 } 6703 6704 /// ParseFence 6705 /// ::= 'fence' 'singlethread'? AtomicOrdering 6706 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) { 6707 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6708 SyncScope::ID SSID = SyncScope::System; 6709 if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 6710 return true; 6711 6712 if (Ordering == AtomicOrdering::Unordered) 6713 return TokError("fence cannot be unordered"); 6714 if (Ordering == AtomicOrdering::Monotonic) 6715 return TokError("fence cannot be monotonic"); 6716 6717 Inst = new FenceInst(Context, Ordering, SSID); 6718 return InstNormal; 6719 } 6720 6721 /// ParseGetElementPtr 6722 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 6723 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 6724 Value *Ptr = nullptr; 6725 Value *Val = nullptr; 6726 LocTy Loc, EltLoc; 6727 6728 bool InBounds = EatIfPresent(lltok::kw_inbounds); 6729 6730 Type *Ty = nullptr; 6731 LocTy ExplicitTypeLoc = Lex.getLoc(); 6732 if (ParseType(Ty) || 6733 ParseToken(lltok::comma, "expected comma after getelementptr's type") || 6734 ParseTypeAndValue(Ptr, Loc, PFS)) 6735 return true; 6736 6737 Type *BaseType = Ptr->getType(); 6738 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 6739 if (!BasePointerType) 6740 return Error(Loc, "base of getelementptr must be a pointer"); 6741 6742 if (Ty != BasePointerType->getElementType()) 6743 return Error(ExplicitTypeLoc, 6744 "explicit pointee type doesn't match operand's pointee type"); 6745 6746 SmallVector<Value*, 16> Indices; 6747 bool AteExtraComma = false; 6748 // GEP returns a vector of pointers if at least one of parameters is a vector. 6749 // All vector parameters should have the same vector width. 6750 unsigned GEPWidth = BaseType->isVectorTy() ? 6751 BaseType->getVectorNumElements() : 0; 6752 6753 while (EatIfPresent(lltok::comma)) { 6754 if (Lex.getKind() == lltok::MetadataVar) { 6755 AteExtraComma = true; 6756 break; 6757 } 6758 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; 6759 if (!Val->getType()->isIntOrIntVectorTy()) 6760 return Error(EltLoc, "getelementptr index must be an integer"); 6761 6762 if (Val->getType()->isVectorTy()) { 6763 unsigned ValNumEl = Val->getType()->getVectorNumElements(); 6764 if (GEPWidth && GEPWidth != ValNumEl) 6765 return Error(EltLoc, 6766 "getelementptr vector index has a wrong number of elements"); 6767 GEPWidth = ValNumEl; 6768 } 6769 Indices.push_back(Val); 6770 } 6771 6772 SmallPtrSet<Type*, 4> Visited; 6773 if (!Indices.empty() && !Ty->isSized(&Visited)) 6774 return Error(Loc, "base element of getelementptr must be sized"); 6775 6776 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 6777 return Error(Loc, "invalid getelementptr indices"); 6778 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 6779 if (InBounds) 6780 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 6781 return AteExtraComma ? InstExtraComma : InstNormal; 6782 } 6783 6784 /// ParseExtractValue 6785 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 6786 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 6787 Value *Val; LocTy Loc; 6788 SmallVector<unsigned, 4> Indices; 6789 bool AteExtraComma; 6790 if (ParseTypeAndValue(Val, Loc, PFS) || 6791 ParseIndexList(Indices, AteExtraComma)) 6792 return true; 6793 6794 if (!Val->getType()->isAggregateType()) 6795 return Error(Loc, "extractvalue operand must be aggregate type"); 6796 6797 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 6798 return Error(Loc, "invalid indices for extractvalue"); 6799 Inst = ExtractValueInst::Create(Val, Indices); 6800 return AteExtraComma ? InstExtraComma : InstNormal; 6801 } 6802 6803 /// ParseInsertValue 6804 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 6805 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 6806 Value *Val0, *Val1; LocTy Loc0, Loc1; 6807 SmallVector<unsigned, 4> Indices; 6808 bool AteExtraComma; 6809 if (ParseTypeAndValue(Val0, Loc0, PFS) || 6810 ParseToken(lltok::comma, "expected comma after insertvalue operand") || 6811 ParseTypeAndValue(Val1, Loc1, PFS) || 6812 ParseIndexList(Indices, AteExtraComma)) 6813 return true; 6814 6815 if (!Val0->getType()->isAggregateType()) 6816 return Error(Loc0, "insertvalue operand must be aggregate type"); 6817 6818 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 6819 if (!IndexedType) 6820 return Error(Loc0, "invalid indices for insertvalue"); 6821 if (IndexedType != Val1->getType()) 6822 return Error(Loc1, "insertvalue operand and field disagree in type: '" + 6823 getTypeString(Val1->getType()) + "' instead of '" + 6824 getTypeString(IndexedType) + "'"); 6825 Inst = InsertValueInst::Create(Val0, Val1, Indices); 6826 return AteExtraComma ? InstExtraComma : InstNormal; 6827 } 6828 6829 //===----------------------------------------------------------------------===// 6830 // Embedded metadata. 6831 //===----------------------------------------------------------------------===// 6832 6833 /// ParseMDNodeVector 6834 /// ::= { Element (',' Element)* } 6835 /// Element 6836 /// ::= 'null' | TypeAndValue 6837 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 6838 if (ParseToken(lltok::lbrace, "expected '{' here")) 6839 return true; 6840 6841 // Check for an empty list. 6842 if (EatIfPresent(lltok::rbrace)) 6843 return false; 6844 6845 do { 6846 // Null is a special case since it is typeless. 6847 if (EatIfPresent(lltok::kw_null)) { 6848 Elts.push_back(nullptr); 6849 continue; 6850 } 6851 6852 Metadata *MD; 6853 if (ParseMetadata(MD, nullptr)) 6854 return true; 6855 Elts.push_back(MD); 6856 } while (EatIfPresent(lltok::comma)); 6857 6858 return ParseToken(lltok::rbrace, "expected end of metadata node"); 6859 } 6860 6861 //===----------------------------------------------------------------------===// 6862 // Use-list order directives. 6863 //===----------------------------------------------------------------------===// 6864 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 6865 SMLoc Loc) { 6866 if (V->use_empty()) 6867 return Error(Loc, "value has no uses"); 6868 6869 unsigned NumUses = 0; 6870 SmallDenseMap<const Use *, unsigned, 16> Order; 6871 for (const Use &U : V->uses()) { 6872 if (++NumUses > Indexes.size()) 6873 break; 6874 Order[&U] = Indexes[NumUses - 1]; 6875 } 6876 if (NumUses < 2) 6877 return Error(Loc, "value only has one use"); 6878 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 6879 return Error(Loc, 6880 "wrong number of indexes, expected " + Twine(V->getNumUses())); 6881 6882 V->sortUseList([&](const Use &L, const Use &R) { 6883 return Order.lookup(&L) < Order.lookup(&R); 6884 }); 6885 return false; 6886 } 6887 6888 /// ParseUseListOrderIndexes 6889 /// ::= '{' uint32 (',' uint32)+ '}' 6890 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 6891 SMLoc Loc = Lex.getLoc(); 6892 if (ParseToken(lltok::lbrace, "expected '{' here")) 6893 return true; 6894 if (Lex.getKind() == lltok::rbrace) 6895 return Lex.Error("expected non-empty list of uselistorder indexes"); 6896 6897 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 6898 // indexes should be distinct numbers in the range [0, size-1], and should 6899 // not be in order. 6900 unsigned Offset = 0; 6901 unsigned Max = 0; 6902 bool IsOrdered = true; 6903 assert(Indexes.empty() && "Expected empty order vector"); 6904 do { 6905 unsigned Index; 6906 if (ParseUInt32(Index)) 6907 return true; 6908 6909 // Update consistency checks. 6910 Offset += Index - Indexes.size(); 6911 Max = std::max(Max, Index); 6912 IsOrdered &= Index == Indexes.size(); 6913 6914 Indexes.push_back(Index); 6915 } while (EatIfPresent(lltok::comma)); 6916 6917 if (ParseToken(lltok::rbrace, "expected '}' here")) 6918 return true; 6919 6920 if (Indexes.size() < 2) 6921 return Error(Loc, "expected >= 2 uselistorder indexes"); 6922 if (Offset != 0 || Max >= Indexes.size()) 6923 return Error(Loc, "expected distinct uselistorder indexes in range [0, size)"); 6924 if (IsOrdered) 6925 return Error(Loc, "expected uselistorder indexes to change the order"); 6926 6927 return false; 6928 } 6929 6930 /// ParseUseListOrder 6931 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 6932 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) { 6933 SMLoc Loc = Lex.getLoc(); 6934 if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 6935 return true; 6936 6937 Value *V; 6938 SmallVector<unsigned, 16> Indexes; 6939 if (ParseTypeAndValue(V, PFS) || 6940 ParseToken(lltok::comma, "expected comma in uselistorder directive") || 6941 ParseUseListOrderIndexes(Indexes)) 6942 return true; 6943 6944 return sortUseListOrder(V, Indexes, Loc); 6945 } 6946 6947 /// ParseUseListOrderBB 6948 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 6949 bool LLParser::ParseUseListOrderBB() { 6950 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 6951 SMLoc Loc = Lex.getLoc(); 6952 Lex.Lex(); 6953 6954 ValID Fn, Label; 6955 SmallVector<unsigned, 16> Indexes; 6956 if (ParseValID(Fn) || 6957 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 6958 ParseValID(Label) || 6959 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 6960 ParseUseListOrderIndexes(Indexes)) 6961 return true; 6962 6963 // Check the function. 6964 GlobalValue *GV; 6965 if (Fn.Kind == ValID::t_GlobalName) 6966 GV = M->getNamedValue(Fn.StrVal); 6967 else if (Fn.Kind == ValID::t_GlobalID) 6968 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 6969 else 6970 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 6971 if (!GV) 6972 return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb"); 6973 auto *F = dyn_cast<Function>(GV); 6974 if (!F) 6975 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 6976 if (F->isDeclaration()) 6977 return Error(Fn.Loc, "invalid declaration in uselistorder_bb"); 6978 6979 // Check the basic block. 6980 if (Label.Kind == ValID::t_LocalID) 6981 return Error(Label.Loc, "invalid numeric label in uselistorder_bb"); 6982 if (Label.Kind != ValID::t_LocalName) 6983 return Error(Label.Loc, "expected basic block name in uselistorder_bb"); 6984 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); 6985 if (!V) 6986 return Error(Label.Loc, "invalid basic block in uselistorder_bb"); 6987 if (!isa<BasicBlock>(V)) 6988 return Error(Label.Loc, "expected basic block in uselistorder_bb"); 6989 6990 return sortUseListOrder(V, Indexes, Loc); 6991 } 6992 6993 /// ModuleEntry 6994 /// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')' 6995 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')' 6996 bool LLParser::ParseModuleEntry(unsigned ID) { 6997 assert(Lex.getKind() == lltok::kw_module); 6998 Lex.Lex(); 6999 7000 std::string Path; 7001 if (ParseToken(lltok::colon, "expected ':' here") || 7002 ParseToken(lltok::lparen, "expected '(' here") || 7003 ParseToken(lltok::kw_path, "expected 'path' here") || 7004 ParseToken(lltok::colon, "expected ':' here") || 7005 ParseStringConstant(Path) || 7006 ParseToken(lltok::comma, "expected ',' here") || 7007 ParseToken(lltok::kw_hash, "expected 'hash' here") || 7008 ParseToken(lltok::colon, "expected ':' here") || 7009 ParseToken(lltok::lparen, "expected '(' here")) 7010 return true; 7011 7012 ModuleHash Hash; 7013 if (ParseUInt32(Hash[0]) || ParseToken(lltok::comma, "expected ',' here") || 7014 ParseUInt32(Hash[1]) || ParseToken(lltok::comma, "expected ',' here") || 7015 ParseUInt32(Hash[2]) || ParseToken(lltok::comma, "expected ',' here") || 7016 ParseUInt32(Hash[3]) || ParseToken(lltok::comma, "expected ',' here") || 7017 ParseUInt32(Hash[4])) 7018 return true; 7019 7020 if (ParseToken(lltok::rparen, "expected ')' here") || 7021 ParseToken(lltok::rparen, "expected ')' here")) 7022 return true; 7023 7024 auto ModuleEntry = Index->addModule(Path, ID, Hash); 7025 ModuleIdMap[ID] = ModuleEntry->first(); 7026 7027 return false; 7028 } 7029 7030 /// TypeIdEntry 7031 /// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')' 7032 bool LLParser::ParseTypeIdEntry(unsigned ID) { 7033 assert(Lex.getKind() == lltok::kw_typeid); 7034 Lex.Lex(); 7035 7036 std::string Name; 7037 if (ParseToken(lltok::colon, "expected ':' here") || 7038 ParseToken(lltok::lparen, "expected '(' here") || 7039 ParseToken(lltok::kw_name, "expected 'name' here") || 7040 ParseToken(lltok::colon, "expected ':' here") || 7041 ParseStringConstant(Name)) 7042 return true; 7043 7044 TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name); 7045 if (ParseToken(lltok::comma, "expected ',' here") || 7046 ParseTypeIdSummary(TIS) || ParseToken(lltok::rparen, "expected ')' here")) 7047 return true; 7048 7049 // Check if this ID was forward referenced, and if so, update the 7050 // corresponding GUIDs. 7051 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 7052 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 7053 for (auto TIDRef : FwdRefTIDs->second) { 7054 assert(!*TIDRef.first && 7055 "Forward referenced type id GUID expected to be 0"); 7056 *TIDRef.first = GlobalValue::getGUID(Name); 7057 } 7058 ForwardRefTypeIds.erase(FwdRefTIDs); 7059 } 7060 7061 return false; 7062 } 7063 7064 /// TypeIdSummary 7065 /// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')' 7066 bool LLParser::ParseTypeIdSummary(TypeIdSummary &TIS) { 7067 if (ParseToken(lltok::kw_summary, "expected 'summary' here") || 7068 ParseToken(lltok::colon, "expected ':' here") || 7069 ParseToken(lltok::lparen, "expected '(' here") || 7070 ParseTypeTestResolution(TIS.TTRes)) 7071 return true; 7072 7073 if (EatIfPresent(lltok::comma)) { 7074 // Expect optional wpdResolutions field 7075 if (ParseOptionalWpdResolutions(TIS.WPDRes)) 7076 return true; 7077 } 7078 7079 if (ParseToken(lltok::rparen, "expected ')' here")) 7080 return true; 7081 7082 return false; 7083 } 7084 7085 /// TypeTestResolution 7086 /// ::= 'typeTestRes' ':' '(' 'kind' ':' 7087 /// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ',' 7088 /// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]? 7089 /// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]? 7090 /// [',' 'inlinesBits' ':' UInt64]? ')' 7091 bool LLParser::ParseTypeTestResolution(TypeTestResolution &TTRes) { 7092 if (ParseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") || 7093 ParseToken(lltok::colon, "expected ':' here") || 7094 ParseToken(lltok::lparen, "expected '(' here") || 7095 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7096 ParseToken(lltok::colon, "expected ':' here")) 7097 return true; 7098 7099 switch (Lex.getKind()) { 7100 case lltok::kw_unsat: 7101 TTRes.TheKind = TypeTestResolution::Unsat; 7102 break; 7103 case lltok::kw_byteArray: 7104 TTRes.TheKind = TypeTestResolution::ByteArray; 7105 break; 7106 case lltok::kw_inline: 7107 TTRes.TheKind = TypeTestResolution::Inline; 7108 break; 7109 case lltok::kw_single: 7110 TTRes.TheKind = TypeTestResolution::Single; 7111 break; 7112 case lltok::kw_allOnes: 7113 TTRes.TheKind = TypeTestResolution::AllOnes; 7114 break; 7115 default: 7116 return Error(Lex.getLoc(), "unexpected TypeTestResolution kind"); 7117 } 7118 Lex.Lex(); 7119 7120 if (ParseToken(lltok::comma, "expected ',' here") || 7121 ParseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") || 7122 ParseToken(lltok::colon, "expected ':' here") || 7123 ParseUInt32(TTRes.SizeM1BitWidth)) 7124 return true; 7125 7126 // Parse optional fields 7127 while (EatIfPresent(lltok::comma)) { 7128 switch (Lex.getKind()) { 7129 case lltok::kw_alignLog2: 7130 Lex.Lex(); 7131 if (ParseToken(lltok::colon, "expected ':'") || 7132 ParseUInt64(TTRes.AlignLog2)) 7133 return true; 7134 break; 7135 case lltok::kw_sizeM1: 7136 Lex.Lex(); 7137 if (ParseToken(lltok::colon, "expected ':'") || ParseUInt64(TTRes.SizeM1)) 7138 return true; 7139 break; 7140 case lltok::kw_bitMask: { 7141 unsigned Val; 7142 Lex.Lex(); 7143 if (ParseToken(lltok::colon, "expected ':'") || ParseUInt32(Val)) 7144 return true; 7145 assert(Val <= 0xff); 7146 TTRes.BitMask = (uint8_t)Val; 7147 break; 7148 } 7149 case lltok::kw_inlineBits: 7150 Lex.Lex(); 7151 if (ParseToken(lltok::colon, "expected ':'") || 7152 ParseUInt64(TTRes.InlineBits)) 7153 return true; 7154 break; 7155 default: 7156 return Error(Lex.getLoc(), "expected optional TypeTestResolution field"); 7157 } 7158 } 7159 7160 if (ParseToken(lltok::rparen, "expected ')' here")) 7161 return true; 7162 7163 return false; 7164 } 7165 7166 /// OptionalWpdResolutions 7167 /// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')' 7168 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')' 7169 bool LLParser::ParseOptionalWpdResolutions( 7170 std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) { 7171 if (ParseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") || 7172 ParseToken(lltok::colon, "expected ':' here") || 7173 ParseToken(lltok::lparen, "expected '(' here")) 7174 return true; 7175 7176 do { 7177 uint64_t Offset; 7178 WholeProgramDevirtResolution WPDRes; 7179 if (ParseToken(lltok::lparen, "expected '(' here") || 7180 ParseToken(lltok::kw_offset, "expected 'offset' here") || 7181 ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) || 7182 ParseToken(lltok::comma, "expected ',' here") || ParseWpdRes(WPDRes) || 7183 ParseToken(lltok::rparen, "expected ')' here")) 7184 return true; 7185 WPDResMap[Offset] = WPDRes; 7186 } while (EatIfPresent(lltok::comma)); 7187 7188 if (ParseToken(lltok::rparen, "expected ')' here")) 7189 return true; 7190 7191 return false; 7192 } 7193 7194 /// WpdRes 7195 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir' 7196 /// [',' OptionalResByArg]? ')' 7197 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl' 7198 /// ',' 'singleImplName' ':' STRINGCONSTANT ',' 7199 /// [',' OptionalResByArg]? ')' 7200 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel' 7201 /// [',' OptionalResByArg]? ')' 7202 bool LLParser::ParseWpdRes(WholeProgramDevirtResolution &WPDRes) { 7203 if (ParseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") || 7204 ParseToken(lltok::colon, "expected ':' here") || 7205 ParseToken(lltok::lparen, "expected '(' here") || 7206 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7207 ParseToken(lltok::colon, "expected ':' here")) 7208 return true; 7209 7210 switch (Lex.getKind()) { 7211 case lltok::kw_indir: 7212 WPDRes.TheKind = WholeProgramDevirtResolution::Indir; 7213 break; 7214 case lltok::kw_singleImpl: 7215 WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl; 7216 break; 7217 case lltok::kw_branchFunnel: 7218 WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel; 7219 break; 7220 default: 7221 return Error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind"); 7222 } 7223 Lex.Lex(); 7224 7225 // Parse optional fields 7226 while (EatIfPresent(lltok::comma)) { 7227 switch (Lex.getKind()) { 7228 case lltok::kw_singleImplName: 7229 Lex.Lex(); 7230 if (ParseToken(lltok::colon, "expected ':' here") || 7231 ParseStringConstant(WPDRes.SingleImplName)) 7232 return true; 7233 break; 7234 case lltok::kw_resByArg: 7235 if (ParseOptionalResByArg(WPDRes.ResByArg)) 7236 return true; 7237 break; 7238 default: 7239 return Error(Lex.getLoc(), 7240 "expected optional WholeProgramDevirtResolution field"); 7241 } 7242 } 7243 7244 if (ParseToken(lltok::rparen, "expected ')' here")) 7245 return true; 7246 7247 return false; 7248 } 7249 7250 /// OptionalResByArg 7251 /// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')' 7252 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':' 7253 /// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' | 7254 /// 'virtualConstProp' ) 7255 /// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]? 7256 /// [',' 'bit' ':' UInt32]? ')' 7257 bool LLParser::ParseOptionalResByArg( 7258 std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg> 7259 &ResByArg) { 7260 if (ParseToken(lltok::kw_resByArg, "expected 'resByArg' here") || 7261 ParseToken(lltok::colon, "expected ':' here") || 7262 ParseToken(lltok::lparen, "expected '(' here")) 7263 return true; 7264 7265 do { 7266 std::vector<uint64_t> Args; 7267 if (ParseArgs(Args) || ParseToken(lltok::comma, "expected ',' here") || 7268 ParseToken(lltok::kw_byArg, "expected 'byArg here") || 7269 ParseToken(lltok::colon, "expected ':' here") || 7270 ParseToken(lltok::lparen, "expected '(' here") || 7271 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7272 ParseToken(lltok::colon, "expected ':' here")) 7273 return true; 7274 7275 WholeProgramDevirtResolution::ByArg ByArg; 7276 switch (Lex.getKind()) { 7277 case lltok::kw_indir: 7278 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir; 7279 break; 7280 case lltok::kw_uniformRetVal: 7281 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 7282 break; 7283 case lltok::kw_uniqueRetVal: 7284 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 7285 break; 7286 case lltok::kw_virtualConstProp: 7287 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 7288 break; 7289 default: 7290 return Error(Lex.getLoc(), 7291 "unexpected WholeProgramDevirtResolution::ByArg kind"); 7292 } 7293 Lex.Lex(); 7294 7295 // Parse optional fields 7296 while (EatIfPresent(lltok::comma)) { 7297 switch (Lex.getKind()) { 7298 case lltok::kw_info: 7299 Lex.Lex(); 7300 if (ParseToken(lltok::colon, "expected ':' here") || 7301 ParseUInt64(ByArg.Info)) 7302 return true; 7303 break; 7304 case lltok::kw_byte: 7305 Lex.Lex(); 7306 if (ParseToken(lltok::colon, "expected ':' here") || 7307 ParseUInt32(ByArg.Byte)) 7308 return true; 7309 break; 7310 case lltok::kw_bit: 7311 Lex.Lex(); 7312 if (ParseToken(lltok::colon, "expected ':' here") || 7313 ParseUInt32(ByArg.Bit)) 7314 return true; 7315 break; 7316 default: 7317 return Error(Lex.getLoc(), 7318 "expected optional whole program devirt field"); 7319 } 7320 } 7321 7322 if (ParseToken(lltok::rparen, "expected ')' here")) 7323 return true; 7324 7325 ResByArg[Args] = ByArg; 7326 } while (EatIfPresent(lltok::comma)); 7327 7328 if (ParseToken(lltok::rparen, "expected ')' here")) 7329 return true; 7330 7331 return false; 7332 } 7333 7334 /// OptionalResByArg 7335 /// ::= 'args' ':' '(' UInt64[, UInt64]* ')' 7336 bool LLParser::ParseArgs(std::vector<uint64_t> &Args) { 7337 if (ParseToken(lltok::kw_args, "expected 'args' here") || 7338 ParseToken(lltok::colon, "expected ':' here") || 7339 ParseToken(lltok::lparen, "expected '(' here")) 7340 return true; 7341 7342 do { 7343 uint64_t Val; 7344 if (ParseUInt64(Val)) 7345 return true; 7346 Args.push_back(Val); 7347 } while (EatIfPresent(lltok::comma)); 7348 7349 if (ParseToken(lltok::rparen, "expected ')' here")) 7350 return true; 7351 7352 return false; 7353 } 7354 7355 static ValueInfo EmptyVI = 7356 ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8); 7357 7358 /// Stores the given Name/GUID and associated summary into the Index. 7359 /// Also updates any forward references to the associated entry ID. 7360 void LLParser::AddGlobalValueToIndex( 7361 std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage, 7362 unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) { 7363 // First create the ValueInfo utilizing the Name or GUID. 7364 ValueInfo VI; 7365 if (GUID != 0) { 7366 assert(Name.empty()); 7367 VI = Index->getOrInsertValueInfo(GUID); 7368 } else { 7369 assert(!Name.empty()); 7370 if (M) { 7371 auto *GV = M->getNamedValue(Name); 7372 assert(GV); 7373 VI = Index->getOrInsertValueInfo(GV); 7374 } else { 7375 assert( 7376 (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) && 7377 "Need a source_filename to compute GUID for local"); 7378 GUID = GlobalValue::getGUID( 7379 GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName)); 7380 VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name)); 7381 } 7382 } 7383 7384 // Add the summary if one was provided. 7385 if (Summary) 7386 Index->addGlobalValueSummary(VI, std::move(Summary)); 7387 7388 // Resolve forward references from calls/refs 7389 auto FwdRefVIs = ForwardRefValueInfos.find(ID); 7390 if (FwdRefVIs != ForwardRefValueInfos.end()) { 7391 for (auto VIRef : FwdRefVIs->second) { 7392 assert(*VIRef.first == EmptyVI && 7393 "Forward referenced ValueInfo expected to be empty"); 7394 *VIRef.first = VI; 7395 } 7396 ForwardRefValueInfos.erase(FwdRefVIs); 7397 } 7398 7399 // Resolve forward references from aliases 7400 auto FwdRefAliasees = ForwardRefAliasees.find(ID); 7401 if (FwdRefAliasees != ForwardRefAliasees.end()) { 7402 for (auto AliaseeRef : FwdRefAliasees->second) { 7403 assert(!AliaseeRef.first->hasAliasee() && 7404 "Forward referencing alias already has aliasee"); 7405 AliaseeRef.first->setAliasee(VI.getSummaryList().front().get()); 7406 } 7407 ForwardRefAliasees.erase(FwdRefAliasees); 7408 } 7409 7410 // Save the associated ValueInfo for use in later references by ID. 7411 if (ID == NumberedValueInfos.size()) 7412 NumberedValueInfos.push_back(VI); 7413 else { 7414 // Handle non-continuous numbers (to make test simplification easier). 7415 if (ID > NumberedValueInfos.size()) 7416 NumberedValueInfos.resize(ID + 1); 7417 NumberedValueInfos[ID] = VI; 7418 } 7419 } 7420 7421 /// ParseGVEntry 7422 /// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64) 7423 /// [',' 'summaries' ':' Summary[',' Summary]* ]? ')' 7424 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')' 7425 bool LLParser::ParseGVEntry(unsigned ID) { 7426 assert(Lex.getKind() == lltok::kw_gv); 7427 Lex.Lex(); 7428 7429 if (ParseToken(lltok::colon, "expected ':' here") || 7430 ParseToken(lltok::lparen, "expected '(' here")) 7431 return true; 7432 7433 std::string Name; 7434 GlobalValue::GUID GUID = 0; 7435 switch (Lex.getKind()) { 7436 case lltok::kw_name: 7437 Lex.Lex(); 7438 if (ParseToken(lltok::colon, "expected ':' here") || 7439 ParseStringConstant(Name)) 7440 return true; 7441 // Can't create GUID/ValueInfo until we have the linkage. 7442 break; 7443 case lltok::kw_guid: 7444 Lex.Lex(); 7445 if (ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(GUID)) 7446 return true; 7447 break; 7448 default: 7449 return Error(Lex.getLoc(), "expected name or guid tag"); 7450 } 7451 7452 if (!EatIfPresent(lltok::comma)) { 7453 // No summaries. Wrap up. 7454 if (ParseToken(lltok::rparen, "expected ')' here")) 7455 return true; 7456 // This was created for a call to an external or indirect target. 7457 // A GUID with no summary came from a VALUE_GUID record, dummy GUID 7458 // created for indirect calls with VP. A Name with no GUID came from 7459 // an external definition. We pass ExternalLinkage since that is only 7460 // used when the GUID must be computed from Name, and in that case 7461 // the symbol must have external linkage. 7462 AddGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID, 7463 nullptr); 7464 return false; 7465 } 7466 7467 // Have a list of summaries 7468 if (ParseToken(lltok::kw_summaries, "expected 'summaries' here") || 7469 ParseToken(lltok::colon, "expected ':' here")) 7470 return true; 7471 7472 do { 7473 if (ParseToken(lltok::lparen, "expected '(' here")) 7474 return true; 7475 switch (Lex.getKind()) { 7476 case lltok::kw_function: 7477 if (ParseFunctionSummary(Name, GUID, ID)) 7478 return true; 7479 break; 7480 case lltok::kw_variable: 7481 if (ParseVariableSummary(Name, GUID, ID)) 7482 return true; 7483 break; 7484 case lltok::kw_alias: 7485 if (ParseAliasSummary(Name, GUID, ID)) 7486 return true; 7487 break; 7488 default: 7489 return Error(Lex.getLoc(), "expected summary type"); 7490 } 7491 if (ParseToken(lltok::rparen, "expected ')' here")) 7492 return true; 7493 } while (EatIfPresent(lltok::comma)); 7494 7495 if (ParseToken(lltok::rparen, "expected ')' here")) 7496 return true; 7497 7498 return false; 7499 } 7500 7501 /// FunctionSummary 7502 /// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags 7503 /// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]? 7504 /// [',' OptionalTypeIdInfo]? [',' OptionalRefs]? ')' 7505 bool LLParser::ParseFunctionSummary(std::string Name, GlobalValue::GUID GUID, 7506 unsigned ID) { 7507 assert(Lex.getKind() == lltok::kw_function); 7508 Lex.Lex(); 7509 7510 StringRef ModulePath; 7511 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 7512 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 7513 /*Live=*/false, /*IsLocal=*/false); 7514 unsigned InstCount; 7515 std::vector<FunctionSummary::EdgeTy> Calls; 7516 FunctionSummary::TypeIdInfo TypeIdInfo; 7517 std::vector<ValueInfo> Refs; 7518 // Default is all-zeros (conservative values). 7519 FunctionSummary::FFlags FFlags = {}; 7520 if (ParseToken(lltok::colon, "expected ':' here") || 7521 ParseToken(lltok::lparen, "expected '(' here") || 7522 ParseModuleReference(ModulePath) || 7523 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 7524 ParseToken(lltok::comma, "expected ',' here") || 7525 ParseToken(lltok::kw_insts, "expected 'insts' here") || 7526 ParseToken(lltok::colon, "expected ':' here") || ParseUInt32(InstCount)) 7527 return true; 7528 7529 // Parse optional fields 7530 while (EatIfPresent(lltok::comma)) { 7531 switch (Lex.getKind()) { 7532 case lltok::kw_funcFlags: 7533 if (ParseOptionalFFlags(FFlags)) 7534 return true; 7535 break; 7536 case lltok::kw_calls: 7537 if (ParseOptionalCalls(Calls)) 7538 return true; 7539 break; 7540 case lltok::kw_typeIdInfo: 7541 if (ParseOptionalTypeIdInfo(TypeIdInfo)) 7542 return true; 7543 break; 7544 case lltok::kw_refs: 7545 if (ParseOptionalRefs(Refs)) 7546 return true; 7547 break; 7548 default: 7549 return Error(Lex.getLoc(), "expected optional function summary field"); 7550 } 7551 } 7552 7553 if (ParseToken(lltok::rparen, "expected ')' here")) 7554 return true; 7555 7556 auto FS = llvm::make_unique<FunctionSummary>( 7557 GVFlags, InstCount, FFlags, std::move(Refs), std::move(Calls), 7558 std::move(TypeIdInfo.TypeTests), 7559 std::move(TypeIdInfo.TypeTestAssumeVCalls), 7560 std::move(TypeIdInfo.TypeCheckedLoadVCalls), 7561 std::move(TypeIdInfo.TypeTestAssumeConstVCalls), 7562 std::move(TypeIdInfo.TypeCheckedLoadConstVCalls)); 7563 7564 FS->setModulePath(ModulePath); 7565 7566 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 7567 ID, std::move(FS)); 7568 7569 return false; 7570 } 7571 7572 /// VariableSummary 7573 /// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags 7574 /// [',' OptionalRefs]? ')' 7575 bool LLParser::ParseVariableSummary(std::string Name, GlobalValue::GUID GUID, 7576 unsigned ID) { 7577 assert(Lex.getKind() == lltok::kw_variable); 7578 Lex.Lex(); 7579 7580 StringRef ModulePath; 7581 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 7582 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 7583 /*Live=*/false, /*IsLocal=*/false); 7584 std::vector<ValueInfo> Refs; 7585 if (ParseToken(lltok::colon, "expected ':' here") || 7586 ParseToken(lltok::lparen, "expected '(' here") || 7587 ParseModuleReference(ModulePath) || 7588 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags)) 7589 return true; 7590 7591 // Parse optional refs field 7592 if (EatIfPresent(lltok::comma)) { 7593 if (ParseOptionalRefs(Refs)) 7594 return true; 7595 } 7596 7597 if (ParseToken(lltok::rparen, "expected ')' here")) 7598 return true; 7599 7600 auto GS = llvm::make_unique<GlobalVarSummary>(GVFlags, std::move(Refs)); 7601 7602 GS->setModulePath(ModulePath); 7603 7604 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 7605 ID, std::move(GS)); 7606 7607 return false; 7608 } 7609 7610 /// AliasSummary 7611 /// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ',' 7612 /// 'aliasee' ':' GVReference ')' 7613 bool LLParser::ParseAliasSummary(std::string Name, GlobalValue::GUID GUID, 7614 unsigned ID) { 7615 assert(Lex.getKind() == lltok::kw_alias); 7616 LocTy Loc = Lex.getLoc(); 7617 Lex.Lex(); 7618 7619 StringRef ModulePath; 7620 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 7621 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 7622 /*Live=*/false, /*IsLocal=*/false); 7623 if (ParseToken(lltok::colon, "expected ':' here") || 7624 ParseToken(lltok::lparen, "expected '(' here") || 7625 ParseModuleReference(ModulePath) || 7626 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 7627 ParseToken(lltok::comma, "expected ',' here") || 7628 ParseToken(lltok::kw_aliasee, "expected 'aliasee' here") || 7629 ParseToken(lltok::colon, "expected ':' here")) 7630 return true; 7631 7632 ValueInfo AliaseeVI; 7633 unsigned GVId; 7634 if (ParseGVReference(AliaseeVI, GVId)) 7635 return true; 7636 7637 if (ParseToken(lltok::rparen, "expected ')' here")) 7638 return true; 7639 7640 auto AS = llvm::make_unique<AliasSummary>(GVFlags); 7641 7642 AS->setModulePath(ModulePath); 7643 7644 // Record forward reference if the aliasee is not parsed yet. 7645 if (AliaseeVI == EmptyVI) { 7646 auto FwdRef = ForwardRefAliasees.insert( 7647 std::make_pair(GVId, std::vector<std::pair<AliasSummary *, LocTy>>())); 7648 FwdRef.first->second.push_back(std::make_pair(AS.get(), Loc)); 7649 } else 7650 AS->setAliasee(AliaseeVI.getSummaryList().front().get()); 7651 7652 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 7653 ID, std::move(AS)); 7654 7655 return false; 7656 } 7657 7658 /// Flag 7659 /// ::= [0|1] 7660 bool LLParser::ParseFlag(unsigned &Val) { 7661 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 7662 return TokError("expected integer"); 7663 Val = (unsigned)Lex.getAPSIntVal().getBoolValue(); 7664 Lex.Lex(); 7665 return false; 7666 } 7667 7668 /// OptionalFFlags 7669 /// := 'funcFlags' ':' '(' ['readNone' ':' Flag]? 7670 /// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]? 7671 /// [',' 'returnDoesNotAlias' ':' Flag]? ')' 7672 bool LLParser::ParseOptionalFFlags(FunctionSummary::FFlags &FFlags) { 7673 assert(Lex.getKind() == lltok::kw_funcFlags); 7674 Lex.Lex(); 7675 7676 if (ParseToken(lltok::colon, "expected ':' in funcFlags") | 7677 ParseToken(lltok::lparen, "expected '(' in funcFlags")) 7678 return true; 7679 7680 do { 7681 unsigned Val; 7682 switch (Lex.getKind()) { 7683 case lltok::kw_readNone: 7684 Lex.Lex(); 7685 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 7686 return true; 7687 FFlags.ReadNone = Val; 7688 break; 7689 case lltok::kw_readOnly: 7690 Lex.Lex(); 7691 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 7692 return true; 7693 FFlags.ReadOnly = Val; 7694 break; 7695 case lltok::kw_noRecurse: 7696 Lex.Lex(); 7697 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 7698 return true; 7699 FFlags.NoRecurse = Val; 7700 break; 7701 case lltok::kw_returnDoesNotAlias: 7702 Lex.Lex(); 7703 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 7704 return true; 7705 FFlags.ReturnDoesNotAlias = Val; 7706 break; 7707 default: 7708 return Error(Lex.getLoc(), "expected function flag type"); 7709 } 7710 } while (EatIfPresent(lltok::comma)); 7711 7712 if (ParseToken(lltok::rparen, "expected ')' in funcFlags")) 7713 return true; 7714 7715 return false; 7716 } 7717 7718 /// OptionalCalls 7719 /// := 'calls' ':' '(' Call [',' Call]* ')' 7720 /// Call ::= '(' 'callee' ':' GVReference 7721 /// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')' 7722 bool LLParser::ParseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) { 7723 assert(Lex.getKind() == lltok::kw_calls); 7724 Lex.Lex(); 7725 7726 if (ParseToken(lltok::colon, "expected ':' in calls") | 7727 ParseToken(lltok::lparen, "expected '(' in calls")) 7728 return true; 7729 7730 IdToIndexMapType IdToIndexMap; 7731 // Parse each call edge 7732 do { 7733 ValueInfo VI; 7734 if (ParseToken(lltok::lparen, "expected '(' in call") || 7735 ParseToken(lltok::kw_callee, "expected 'callee' in call") || 7736 ParseToken(lltok::colon, "expected ':'")) 7737 return true; 7738 7739 LocTy Loc = Lex.getLoc(); 7740 unsigned GVId; 7741 if (ParseGVReference(VI, GVId)) 7742 return true; 7743 7744 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 7745 unsigned RelBF = 0; 7746 if (EatIfPresent(lltok::comma)) { 7747 // Expect either hotness or relbf 7748 if (EatIfPresent(lltok::kw_hotness)) { 7749 if (ParseToken(lltok::colon, "expected ':'") || ParseHotness(Hotness)) 7750 return true; 7751 } else { 7752 if (ParseToken(lltok::kw_relbf, "expected relbf") || 7753 ParseToken(lltok::colon, "expected ':'") || ParseUInt32(RelBF)) 7754 return true; 7755 } 7756 } 7757 // Keep track of the Call array index needing a forward reference. 7758 // We will save the location of the ValueInfo needing an update, but 7759 // can only do so once the std::vector is finalized. 7760 if (VI == EmptyVI) 7761 IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc)); 7762 Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)}); 7763 7764 if (ParseToken(lltok::rparen, "expected ')' in call")) 7765 return true; 7766 } while (EatIfPresent(lltok::comma)); 7767 7768 // Now that the Calls vector is finalized, it is safe to save the locations 7769 // of any forward GV references that need updating later. 7770 for (auto I : IdToIndexMap) { 7771 for (auto P : I.second) { 7772 assert(Calls[P.first].first == EmptyVI && 7773 "Forward referenced ValueInfo expected to be empty"); 7774 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 7775 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 7776 FwdRef.first->second.push_back( 7777 std::make_pair(&Calls[P.first].first, P.second)); 7778 } 7779 } 7780 7781 if (ParseToken(lltok::rparen, "expected ')' in calls")) 7782 return true; 7783 7784 return false; 7785 } 7786 7787 /// Hotness 7788 /// := ('unknown'|'cold'|'none'|'hot'|'critical') 7789 bool LLParser::ParseHotness(CalleeInfo::HotnessType &Hotness) { 7790 switch (Lex.getKind()) { 7791 case lltok::kw_unknown: 7792 Hotness = CalleeInfo::HotnessType::Unknown; 7793 break; 7794 case lltok::kw_cold: 7795 Hotness = CalleeInfo::HotnessType::Cold; 7796 break; 7797 case lltok::kw_none: 7798 Hotness = CalleeInfo::HotnessType::None; 7799 break; 7800 case lltok::kw_hot: 7801 Hotness = CalleeInfo::HotnessType::Hot; 7802 break; 7803 case lltok::kw_critical: 7804 Hotness = CalleeInfo::HotnessType::Critical; 7805 break; 7806 default: 7807 return Error(Lex.getLoc(), "invalid call edge hotness"); 7808 } 7809 Lex.Lex(); 7810 return false; 7811 } 7812 7813 /// OptionalRefs 7814 /// := 'refs' ':' '(' GVReference [',' GVReference]* ')' 7815 bool LLParser::ParseOptionalRefs(std::vector<ValueInfo> &Refs) { 7816 assert(Lex.getKind() == lltok::kw_refs); 7817 Lex.Lex(); 7818 7819 if (ParseToken(lltok::colon, "expected ':' in refs") | 7820 ParseToken(lltok::lparen, "expected '(' in refs")) 7821 return true; 7822 7823 IdToIndexMapType IdToIndexMap; 7824 // Parse each ref edge 7825 do { 7826 ValueInfo VI; 7827 LocTy Loc = Lex.getLoc(); 7828 unsigned GVId; 7829 if (ParseGVReference(VI, GVId)) 7830 return true; 7831 7832 // Keep track of the Refs array index needing a forward reference. 7833 // We will save the location of the ValueInfo needing an update, but 7834 // can only do so once the std::vector is finalized. 7835 if (VI == EmptyVI) 7836 IdToIndexMap[GVId].push_back(std::make_pair(Refs.size(), Loc)); 7837 Refs.push_back(VI); 7838 } while (EatIfPresent(lltok::comma)); 7839 7840 // Now that the Refs vector is finalized, it is safe to save the locations 7841 // of any forward GV references that need updating later. 7842 for (auto I : IdToIndexMap) { 7843 for (auto P : I.second) { 7844 assert(Refs[P.first] == EmptyVI && 7845 "Forward referenced ValueInfo expected to be empty"); 7846 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 7847 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 7848 FwdRef.first->second.push_back(std::make_pair(&Refs[P.first], P.second)); 7849 } 7850 } 7851 7852 if (ParseToken(lltok::rparen, "expected ')' in refs")) 7853 return true; 7854 7855 return false; 7856 } 7857 7858 /// OptionalTypeIdInfo 7859 /// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]? 7860 /// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]? 7861 /// [',' TypeCheckedLoadConstVCalls]? ')' 7862 bool LLParser::ParseOptionalTypeIdInfo( 7863 FunctionSummary::TypeIdInfo &TypeIdInfo) { 7864 assert(Lex.getKind() == lltok::kw_typeIdInfo); 7865 Lex.Lex(); 7866 7867 if (ParseToken(lltok::colon, "expected ':' here") || 7868 ParseToken(lltok::lparen, "expected '(' in typeIdInfo")) 7869 return true; 7870 7871 do { 7872 switch (Lex.getKind()) { 7873 case lltok::kw_typeTests: 7874 if (ParseTypeTests(TypeIdInfo.TypeTests)) 7875 return true; 7876 break; 7877 case lltok::kw_typeTestAssumeVCalls: 7878 if (ParseVFuncIdList(lltok::kw_typeTestAssumeVCalls, 7879 TypeIdInfo.TypeTestAssumeVCalls)) 7880 return true; 7881 break; 7882 case lltok::kw_typeCheckedLoadVCalls: 7883 if (ParseVFuncIdList(lltok::kw_typeCheckedLoadVCalls, 7884 TypeIdInfo.TypeCheckedLoadVCalls)) 7885 return true; 7886 break; 7887 case lltok::kw_typeTestAssumeConstVCalls: 7888 if (ParseConstVCallList(lltok::kw_typeTestAssumeConstVCalls, 7889 TypeIdInfo.TypeTestAssumeConstVCalls)) 7890 return true; 7891 break; 7892 case lltok::kw_typeCheckedLoadConstVCalls: 7893 if (ParseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls, 7894 TypeIdInfo.TypeCheckedLoadConstVCalls)) 7895 return true; 7896 break; 7897 default: 7898 return Error(Lex.getLoc(), "invalid typeIdInfo list type"); 7899 } 7900 } while (EatIfPresent(lltok::comma)); 7901 7902 if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo")) 7903 return true; 7904 7905 return false; 7906 } 7907 7908 /// TypeTests 7909 /// ::= 'typeTests' ':' '(' (SummaryID | UInt64) 7910 /// [',' (SummaryID | UInt64)]* ')' 7911 bool LLParser::ParseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) { 7912 assert(Lex.getKind() == lltok::kw_typeTests); 7913 Lex.Lex(); 7914 7915 if (ParseToken(lltok::colon, "expected ':' here") || 7916 ParseToken(lltok::lparen, "expected '(' in typeIdInfo")) 7917 return true; 7918 7919 IdToIndexMapType IdToIndexMap; 7920 do { 7921 GlobalValue::GUID GUID = 0; 7922 if (Lex.getKind() == lltok::SummaryID) { 7923 unsigned ID = Lex.getUIntVal(); 7924 LocTy Loc = Lex.getLoc(); 7925 // Keep track of the TypeTests array index needing a forward reference. 7926 // We will save the location of the GUID needing an update, but 7927 // can only do so once the std::vector is finalized. 7928 IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc)); 7929 Lex.Lex(); 7930 } else if (ParseUInt64(GUID)) 7931 return true; 7932 TypeTests.push_back(GUID); 7933 } while (EatIfPresent(lltok::comma)); 7934 7935 // Now that the TypeTests vector is finalized, it is safe to save the 7936 // locations of any forward GV references that need updating later. 7937 for (auto I : IdToIndexMap) { 7938 for (auto P : I.second) { 7939 assert(TypeTests[P.first] == 0 && 7940 "Forward referenced type id GUID expected to be 0"); 7941 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 7942 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 7943 FwdRef.first->second.push_back( 7944 std::make_pair(&TypeTests[P.first], P.second)); 7945 } 7946 } 7947 7948 if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo")) 7949 return true; 7950 7951 return false; 7952 } 7953 7954 /// VFuncIdList 7955 /// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')' 7956 bool LLParser::ParseVFuncIdList( 7957 lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) { 7958 assert(Lex.getKind() == Kind); 7959 Lex.Lex(); 7960 7961 if (ParseToken(lltok::colon, "expected ':' here") || 7962 ParseToken(lltok::lparen, "expected '(' here")) 7963 return true; 7964 7965 IdToIndexMapType IdToIndexMap; 7966 do { 7967 FunctionSummary::VFuncId VFuncId; 7968 if (ParseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size())) 7969 return true; 7970 VFuncIdList.push_back(VFuncId); 7971 } while (EatIfPresent(lltok::comma)); 7972 7973 if (ParseToken(lltok::rparen, "expected ')' here")) 7974 return true; 7975 7976 // Now that the VFuncIdList vector is finalized, it is safe to save the 7977 // locations of any forward GV references that need updating later. 7978 for (auto I : IdToIndexMap) { 7979 for (auto P : I.second) { 7980 assert(VFuncIdList[P.first].GUID == 0 && 7981 "Forward referenced type id GUID expected to be 0"); 7982 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 7983 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 7984 FwdRef.first->second.push_back( 7985 std::make_pair(&VFuncIdList[P.first].GUID, P.second)); 7986 } 7987 } 7988 7989 return false; 7990 } 7991 7992 /// ConstVCallList 7993 /// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')' 7994 bool LLParser::ParseConstVCallList( 7995 lltok::Kind Kind, 7996 std::vector<FunctionSummary::ConstVCall> &ConstVCallList) { 7997 assert(Lex.getKind() == Kind); 7998 Lex.Lex(); 7999 8000 if (ParseToken(lltok::colon, "expected ':' here") || 8001 ParseToken(lltok::lparen, "expected '(' here")) 8002 return true; 8003 8004 IdToIndexMapType IdToIndexMap; 8005 do { 8006 FunctionSummary::ConstVCall ConstVCall; 8007 if (ParseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size())) 8008 return true; 8009 ConstVCallList.push_back(ConstVCall); 8010 } while (EatIfPresent(lltok::comma)); 8011 8012 if (ParseToken(lltok::rparen, "expected ')' here")) 8013 return true; 8014 8015 // Now that the ConstVCallList vector is finalized, it is safe to save the 8016 // locations of any forward GV references that need updating later. 8017 for (auto I : IdToIndexMap) { 8018 for (auto P : I.second) { 8019 assert(ConstVCallList[P.first].VFunc.GUID == 0 && 8020 "Forward referenced type id GUID expected to be 0"); 8021 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 8022 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 8023 FwdRef.first->second.push_back( 8024 std::make_pair(&ConstVCallList[P.first].VFunc.GUID, P.second)); 8025 } 8026 } 8027 8028 return false; 8029 } 8030 8031 /// ConstVCall 8032 /// ::= '(' VFuncId ',' Args ')' 8033 bool LLParser::ParseConstVCall(FunctionSummary::ConstVCall &ConstVCall, 8034 IdToIndexMapType &IdToIndexMap, unsigned Index) { 8035 if (ParseToken(lltok::lparen, "expected '(' here") || 8036 ParseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index)) 8037 return true; 8038 8039 if (EatIfPresent(lltok::comma)) 8040 if (ParseArgs(ConstVCall.Args)) 8041 return true; 8042 8043 if (ParseToken(lltok::rparen, "expected ')' here")) 8044 return true; 8045 8046 return false; 8047 } 8048 8049 /// VFuncId 8050 /// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ',' 8051 /// 'offset' ':' UInt64 ')' 8052 bool LLParser::ParseVFuncId(FunctionSummary::VFuncId &VFuncId, 8053 IdToIndexMapType &IdToIndexMap, unsigned Index) { 8054 assert(Lex.getKind() == lltok::kw_vFuncId); 8055 Lex.Lex(); 8056 8057 if (ParseToken(lltok::colon, "expected ':' here") || 8058 ParseToken(lltok::lparen, "expected '(' here")) 8059 return true; 8060 8061 if (Lex.getKind() == lltok::SummaryID) { 8062 VFuncId.GUID = 0; 8063 unsigned ID = Lex.getUIntVal(); 8064 LocTy Loc = Lex.getLoc(); 8065 // Keep track of the array index needing a forward reference. 8066 // We will save the location of the GUID needing an update, but 8067 // can only do so once the caller's std::vector is finalized. 8068 IdToIndexMap[ID].push_back(std::make_pair(Index, Loc)); 8069 Lex.Lex(); 8070 } else if (ParseToken(lltok::kw_guid, "expected 'guid' here") || 8071 ParseToken(lltok::colon, "expected ':' here") || 8072 ParseUInt64(VFuncId.GUID)) 8073 return true; 8074 8075 if (ParseToken(lltok::comma, "expected ',' here") || 8076 ParseToken(lltok::kw_offset, "expected 'offset' here") || 8077 ParseToken(lltok::colon, "expected ':' here") || 8078 ParseUInt64(VFuncId.Offset) || 8079 ParseToken(lltok::rparen, "expected ')' here")) 8080 return true; 8081 8082 return false; 8083 } 8084 8085 /// GVFlags 8086 /// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ',' 8087 /// 'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ',' 8088 /// 'dsoLocal' ':' Flag ')' 8089 bool LLParser::ParseGVFlags(GlobalValueSummary::GVFlags &GVFlags) { 8090 assert(Lex.getKind() == lltok::kw_flags); 8091 Lex.Lex(); 8092 8093 bool HasLinkage; 8094 if (ParseToken(lltok::colon, "expected ':' here") || 8095 ParseToken(lltok::lparen, "expected '(' here") || 8096 ParseToken(lltok::kw_linkage, "expected 'linkage' here") || 8097 ParseToken(lltok::colon, "expected ':' here")) 8098 return true; 8099 8100 GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 8101 assert(HasLinkage && "Linkage not optional in summary entry"); 8102 Lex.Lex(); 8103 8104 unsigned Flag; 8105 if (ParseToken(lltok::comma, "expected ',' here") || 8106 ParseToken(lltok::kw_notEligibleToImport, 8107 "expected 'notEligibleToImport' here") || 8108 ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag)) 8109 return true; 8110 GVFlags.NotEligibleToImport = Flag; 8111 8112 if (ParseToken(lltok::comma, "expected ',' here") || 8113 ParseToken(lltok::kw_live, "expected 'live' here") || 8114 ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag)) 8115 return true; 8116 GVFlags.Live = Flag; 8117 8118 if (ParseToken(lltok::comma, "expected ',' here") || 8119 ParseToken(lltok::kw_dsoLocal, "expected 'dsoLocal' here") || 8120 ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag)) 8121 return true; 8122 GVFlags.DSOLocal = Flag; 8123 8124 if (ParseToken(lltok::rparen, "expected ')' here")) 8125 return true; 8126 8127 return false; 8128 } 8129 8130 /// ModuleReference 8131 /// ::= 'module' ':' UInt 8132 bool LLParser::ParseModuleReference(StringRef &ModulePath) { 8133 // Parse module id. 8134 if (ParseToken(lltok::kw_module, "expected 'module' here") || 8135 ParseToken(lltok::colon, "expected ':' here") || 8136 ParseToken(lltok::SummaryID, "expected module ID")) 8137 return true; 8138 8139 unsigned ModuleID = Lex.getUIntVal(); 8140 auto I = ModuleIdMap.find(ModuleID); 8141 // We should have already parsed all module IDs 8142 assert(I != ModuleIdMap.end()); 8143 ModulePath = I->second; 8144 return false; 8145 } 8146 8147 /// GVReference 8148 /// ::= SummaryID 8149 bool LLParser::ParseGVReference(ValueInfo &VI, unsigned &GVId) { 8150 if (ParseToken(lltok::SummaryID, "expected GV ID")) 8151 return true; 8152 8153 GVId = Lex.getUIntVal(); 8154 8155 // Check if we already have a VI for this GV 8156 if (GVId < NumberedValueInfos.size()) { 8157 assert(NumberedValueInfos[GVId] != EmptyVI); 8158 VI = NumberedValueInfos[GVId]; 8159 } else 8160 // We will create a forward reference to the stored location. 8161 VI = EmptyVI; 8162 8163 return false; 8164 } 8165